Emerson Kat4000 Users Manual

2015-01-05

: Emerson Emerson-Kat4000-Users-Manual-165665 emerson-kat4000-users-manual-165665 emerson pdf

Open the PDF directly: View PDF PDF.
Page Count: 324 [warning: Documents this large are best viewed by clicking the View PDF Link!]

KAT4000: AMC Carrier for ATCA®
User’s Manual
from Emerson Network Power
Embedded Computing
April 2007
The information in this manual has been checked and is believed to be accurate and reli-
able. HOWEVER, NO RESPONSIBILITY IS ASSUMED BY ARTESYN COMMUNICATION PROD-
UCTS FOR ITS USE OR FOR ANY INACCURACIES. Specifications are subject to change
without notice. ARTESYN COMMUNICATION PRODUCTS DOES NOT ASSUME ANY LIABILITY
ARISING OUT OF USE OR OTHER APPLICATION OF ANY PRODUCT, CIRCUIT, OR PROGRAM
DESCRIBED HEREIN. This document does not convey any license under Artesyn Communi-
cation Products patents or the rights of others.
Artesyn and the Artesyn logo are registered trademarks of Artesyn Technologies and are
used by Artesyn Communication Products under license from Artesyn Technologies. All
other trademarks are property of their respective owners.
Copyright © 2007 Artesyn Communication Products. All rights reserved.
Emerson. Consider It Solved is a trademark, and Business-Critical Continuity,
Emerson Network Power, and the Emerson Network Power logo are trademarks
and service marks of Emerson Electric Co. © 2007 Emerson Electric Co.
Revision Level: Principal Changes: Date:
10007175-00 Original release January 2007
10007175-01 Added “Appendix A” February 2007
10007175-02 Added PCIe functionality; Released 10 GbE-1 GbE
fat pipe switch
April 2007
10007175-02 KAT4000 User’s Manual i
Regulatory Agency Warnings & Notices
The Emerson KAT4000 meets the requirements set forth by the Federal Communications
Commission (FCC) in Title 47 of the Code of Federal Regulations. The following information
is provided as required by this agency.
This device complies with part 15 of the FCC Rules. Operation is subject to the following
two conditions: (1) This device may not cause harmful interference, and (2) this device
must accept any interference received, including interference that may cause undesired
operation.
FCC RULES AND REGULATIONS — PART 15
This equipment has been tested and found to comply with the limits for a Class B digital
device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reason-
able protection against harmful interference in a residential installation. This equipment
generates, uses and can radiate radio frequency energy and, if not installed and used in
accordance with the instructions, may cause harmful interference to radio communica-
tions. However, there is no guarantee that interference will not occur in a particular installa-
tion. If this equipment does cause harmful interference to radio or television reception,
which can be determined by turning the equipment off and on, the user is encouraged to
try to correct the interference by one or more of the following measures:
Reorient or relocate the receiving antenna
Increase the separation between the equipment and receiver
Connect the equipment into an outlet on a circuit different from that to which the
receiver is connected
Consult the dealer or an experienced radio/TV technician for help
Caution: Making changes or modifications to the KAT4000 hardware without the explicit consent of
Emerson Network Power could invalidate the user’s authority to operate this equipment.
EMC COMPLIANCE
The electromagnetic compatibility (EMC) tests used a KAT4000 model that includes a front
panel assembly from Emerson Network Power.
Caution: For applications where the KAT4000 is provided without a front panel, or where the front
panel has been removed, your system chassis/enclosure must provide the required
electromagnetic interference (EMI) shielding to maintain CE compliance.
!
!
Regulatory Agency Warnings & Notices (continued)
KAT4000 User’s Manual 10007175-02
ii
EC Declaration of Conformity
According to EN 45014:1998
Manufacturer’s Name: Emerson Network Power
Embedded Computing
Manufacturer’s Address: 8310 Excelsior Drive
Madison, Wisconsin 53717
Declares that the following product, in accordance with the requirements of 89/336/EEC, EMC
Directive and 99/5/EC, RTTE Directive and their amending directives,
Product: ATCA Carrier
Model Name/Number: KAT4000/10007505-xx
has been designed and manufactured to the following specifications:
EN55022:1998 Information Technology Equipment, Radio disturbance characteristics, Limits and
methods of measurement
EN55024:1998 Information Technology Equipment, Immunity characteristics, Limits and methods
of measurement
EN300386 V.1.3.1 Electromagnetic compatibility and radio spectrum matters (ERM);
Telecommunication network equipment; EMC requirements
As manufacturer we hereby declare that the product named above has been designed to comply
with the relevant sections of the above referenced specifications. This product complies with the
essential health and safety requirements of the EMC Directive and RTTE Directive. We have an
internal production control system that ensures compliance between the manufactured products
and the technical documentation.
Issue date: April 3, 2007
Bill Fleury
Compliance Engineer
10007175-02 KAT4000 User’s Manual iii
Contents
1Overview
Components and Features . . . . . . . . . . . 1-1
KAT4000 Options. . . . . . . . . . . . . . . . 1-3
Functional Overview . . . . . . . . . . . . . . . . 1-5
Physical Memory Map . . . . . . . . . . . . . . . 1-6
AMC Mapping . . . . . . . . . . . . . . . . . . . . . . 1-9
Additional Information . . . . . . . . . . . . . 1-10
Product Certification . . . . . . . . . . . .1-10
UL Certification . . . . . . . . . . . . . . . . .1-11
RoHS Compliance. . . . . . . . . . . . . . .1-11
Terminology and Notation . . . . . . .1-12
Technical References. . . . . . . . . . . .1-12
2Setup
Electrostatic Discharge . . . . . . . . . . . . . . 2-1
KAT4000 Circuit Board . . . . . . . . . . . . . . 2-1
Front Panel . . . . . . . . . . . . . . . . . . . . . 2-4
Connectors . . . . . . . . . . . . . . . . . . . . . 2-4
Header JP4 . . . . . . . . . . . . . . . . . . . . . . 2-5
Jumpers . . . . . . . . . . . . . . . . . . . . . . . . 2-5
JTAG Interfaces . . . . . . . . . . . . . . . . . . 2-9
LEDs . . . . . . . . . . . . . . . . . . . . . . . . . .2-10
Reset. . . . . . . . . . . . . . . . . . . . . . . . . .2-13
KAT4000 Setup . . . . . . . . . . . . . . . . . . . . 2-15
Identification Numbers . . . . . . . . . .2-15
Power Requirements . . . . . . . . . . . .2-16
Environmental Considerations . . .2-16
Troubleshooting . . . . . . . . . . . . . . . . . . . 2-17
Technical Support . . . . . . . . . . . . . .2-17
Product Repair . . . . . . . . . . . . . . . . .2-18
3 Central Processing Unit
MPC8548 Functions . . . . . . . . . . . . . . . . . 3-3
Microprocessor Core (e500). . . . . . . . . . 3-3
L1 Cache. . . . . . . . . . . . . . . . . . . . . . . . 3-3
L2 Cache. . . . . . . . . . . . . . . . . . . . . . . . 3-3
Timer/Counter . . . . . . . . . . . . . . . . . . 3-4
PCI Device and Vendor ID Assignment.
3-4
L2 Control Register (L2CR) . . . . . . . . 3-4
Hardware Implementation Dependent
0 Register. . . . . . . . . . . . . . . . . . . . . . . 3-6
Hardware Implementation Dependent
1 Register. . . . . . . . . . . . . . . . . . . . . . . 3-7
Interrupts and Exception Processing. . . 3-8
Machine State Register. . . . . . . . . . . 3-9
Peripheral Interface . . . . . . . . . . . . . . . . 3-10
MPC8548 Peripheral Modules . . . . . . . 3-11
Three-Speed Ethernet Controllers
(TSEC) . . . . . . . . . . . . . . . . . . . . . . . . 3-11
Local Bus Controller (LBC) . . . . . . . 3-12
Chip Select Generation. . . . . . . . . . 3-12
Processor Reset and Clocking Signals. 3-12
MPC8548 Exception Handling . . . . . . . 3-13
JTAG/COP Interface . . . . . . . . . . . . . . . . 3-14
No Processor Configuration . . . . . . . . . 3-15
4 Common Switch Region
Ethernet Core Switch (optional) . . . . . . .4-2
Switch Configuration . . . . . . . . . . . . 4-3
High-Speed Serial Data Path
Configuration . . . . . . . . . . . . . . . . . . . 4-3
On-Board Path Device Settings 4-4
Off-Board Path Device Settings4-4
Ethernet Transceivers . . . . . . . . . . . . 4-5
Ethernet Address for the KAT4000 . . . . .4-5
Ethernet Address for the GbE Fat Pipe Switch
Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-6
PCI Express Switch (optional). . . . . . . . . .4-7
PCI Express Interface. . . . . . . . . . . . . 4-8
EEPROM Interface . . . . . . . . . . . . . . . 4-9
JTAG Controller Interface . . . . . . . . . 4-9
5 Fat Pipe Switch Module
GbE Fat Pipe Switch Module. . . . . . . . . . .5-2
GbE Fat Pipe Switch Module Circuit
Board . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Components and Features. . . . . . . . 5-5
GbE Fat Pipe Switch Module PLD . . 5-6
Product ID/Version Register . . 5-6
Scratch Register . . . . . . . . . . . . . 5-7
I2C Register. . . . . . . . . . . . . . . . . 5-7
Signal Detect Register . . . . . . . 5-8
Switch Reset Register . . . . . . . . 5-8
Module Status Register . . . . . . 5-8
Switch GPIO Register . . . . . . . . 5-9
GPIN/LED Register . . . . . . . . . . . 5-9
10 GbE-1 GbE Fat Pipe Switch Module 5-11
10 GbE-1 GbE Fat Pipe Switch Module
Circuit Board. . . . . . . . . . . . . . . . . . . 5-13
Components and Features. . . . . . . 5-14
Contents (continued)
KAT4000 User’s Manual 10007175-02
iv
10 GbE-1 GbE Fat Pipe Switch Module
PLD . . . . . . . . . . . . . . . . . . . . . . . . . . .5-16
Product ID/Version Register. .5-16
Scratch Register . . . . . . . . . . . .5-17
I2C Register . . . . . . . . . . . . . . . .5-17
Reserved Register 1 . . . . . . . . .5-18
Switch Reset Register . . . . . . .5-18
Module Status Register . . . . . .5-19
Switch GPIO Register. . . . . . . .5-19
GPIN/LED Register . . . . . . . . . .5-20
10 GbE-10 GbE Fat Pipe Switch Module5-21
sRIO Fat Pipe Switch Module . . . . . . . . 5-22
6 Memory Configuration
Boot Memory Configuration . . . . . . . . . .6-1
User Flash. . . . . . . . . . . . . . . . . . . . . . . . . . .6-1
On-Card SDRAM . . . . . . . . . . . . . . . . . . . . .6-2
NAND Flash . . . . . . . . . . . . . . . . . . . . . . . . .6-2
NVRAM Allocation . . . . . . . . . . . . . . . . . . .6-3
7CPLD
PLD Register Summary . . . . . . . . . . . . . . .7-1
Version and ID Registers . . . . . . . . . . . . . .7-2
Product ID Register (PIDR) . . . . . . . . 7-2
Hardware Version Register (HVR) . . 7-3
PLD Version Register (PVR) . . . . . . . 7-3
Configuration Registers . . . . . . . . . . . . . .7-4
Hardware Configuration Register 0
(HCR0) . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
PLL Configuration Register (PLLC). . 7-4
Miscellaneous Registers . . . . . . . . . . . . . .7-5
LED Control Register (LEDR). . . . . . . 7-5
Jumper Settings Register (JSR). . . . . 7-6
RTM GPIO State Register (RGSR). . . 7-6
RTM GPIO Control Register (RGCR) 7-7
MISC Control Register (MISC) . . . . . 7-7
Scratch Register 1 (SCR1) . . . . . . . . . 7-8
Boot and Reset Registers . . . . . . . . . . . . .7-8
Reset Event Register (RER) . . . . . . . . 7-8
Reset Command Register 1 (RCR1) 7-9
Reset Command Register 2 (RCR2)7-10
Boot Device Redirection Register
(BDRR) . . . . . . . . . . . . . . . . . . . . . . . .7-11
Clock Synchronizer Registers . . . . . . . . 7-13
Clock Synchronizer Control Registers 1-
3 (CSC1—CSC3) . . . . . . . . . . . . . . . . .7-13
Clock Synchronizer Primary Source
Registers 1-3 (CPS1—CPS3) . . . . . . 7-14
Clock Synchronizer Secondary Source
Registers 1-3 (CSS1—CSS3) . . . . . . 7-15
Clock Control Registers (CCR1—CCR14)
7-17
Clock Synchronizer Interrupt Registers
(CSI1-CSI3) . . . . . . . . . . . . . . . . . . . . 7-18
JTAG Interface . . . . . . . . . . . . . . . . . . . . . 7-19
8AMC Sites
AMC Connectors . . . . . . . . . . . . . . . . . . . .8-2
AMC Signals. . . . . . . . . . . . . . . . . . . . . . . . .8-2
Pin Assignments . . . . . . . . . . . . . . . . . . . . .8-4
SATA Lines . . . . . . . . . . . . . . . . . . . . . . . . . .8-6
9 System Management
IPMC Overview . . . . . . . . . . . . . . . . . . . . . .9-1
IPMI Messaging. . . . . . . . . . . . . . . . . . . . . .9-3
IPMI Completion Codes . . . . . . . . . . 9-4
IPMB Protocol . . . . . . . . . . . . . . . . . . . . . . .9-5
SIPL Protocol . . . . . . . . . . . . . . . . . . . . . . . .9-6
Message Bridging. . . . . . . . . . . . . . . . . . . .9-7
Standard Commands. . . . . . . . . . . . . . . . .9-9
Vendor Commands . . . . . . . . . . . . . . . . 9-12
Get Status Command . . . . . . . . . . . 9-12
Get Serial Interface Properties
Command. . . . . . . . . . . . . . . . . . . . . 9-14
Set Serial Interface Properties
Command. . . . . . . . . . . . . . . . . . . . . 9-15
Get Debug Level Command . . . . . 9-16
Set Debug Level Command . . . . . . 9-17
Get Hardware Address Command 9-17
Set Hardware Address Command 9-18
Get Handle Switch Command. . . . 9-18
Set Handle Switch Command . . . . 9-19
Get Payload Communication Time-Out
Command. . . . . . . . . . . . . . . . . . . . . 9-19
Set Payload Communication Time-Out
Command. . . . . . . . . . . . . . . . . . . . . 9-20
Enable Payload Control Command9-20
Disable Payload Control Command . . .
9-20
Reset IPMC Command . . . . . . . . . . 9-21
Hang IPMC Command . . . . . . . . . . 9-21
Bused Resource Control Command . . .
9-22
Contents (continued)
10007175-02 KAT4000 User’s Manual v
Bused Resource Status Command 9-22
Graceful Reset Command. . . . . . . .9-23
Diagnostic Interrupt Results . . . . .9-24
Get Payload Shutdown Time-Out
Command . . . . . . . . . . . . . . . . . . . . .9-24
Set Payload Shutdown Time-Out
Command . . . . . . . . . . . . . . . . . . . . .9-25
Get Module State Command . . . . .9-25
Enable AMC Site Command . . . . . .9-26
Disable AMC Site Command . . . . .9-26
IPMC Watchdog Timer Commands. . . 9-27
Watchdog Timer Actions . . . . . . . .9-27
Watchdog Timer Use Field and
Expiration Flags . . . . . . . . . . . . . . . .9-27
Using the Timer Use Field and
Expiration Flags. . . . . . . . . . . . .9-28
Watchdog Timer Event Logging . .9-28
Monitor Support for Watchdog
Timer . . . . . . . . . . . . . . . . . . . . .9-29
Reset Watchdog Timer Command9-29
Set Watchdog Timer Command . . 9-29
Get Watchdog Timer Command. . 9-31
FRU LEDs . . . . . . . . . . . . . . . . . . . . . . . . . 9-33
Get FRU LED Properties Command9-34
Get LED Color Capabilities Command .
9-34
Set FRU LED State Command. . . . .9-36
Get FRU LED State Command . . . . 9-38
Entities and Entity Associations . . . . . . 9-39
Sensors and Sensor Data Records . . . . 9-40
FRU Inventory . . . . . . . . . . . . . . . . . . . . . 9-44
E-Keying . . . . . . . . . . . . . . . . . . . . . . . . . . 9-45
Base Point-to-Point Connectivity .9-45
Carrier Point-to-Point Connectivity9-46
Firmware Upgrade . . . . . . . . . . . . . . . . . 9-47
Firmware Upgrade Status Command . .
9-47
Firmware Upgrade Start Command . . .
9-48
Firmware Upgrade Prepare Command
9-49
Firmware Upgrade Write Command . .
9-49
Firmware Upgrade Complete
Command . . . . . . . . . . . . . . . . . . . . .9-50
Firmware Upgrade Restore Backup
Command . . . . . . . . . . . . . . . . . . . . .9-50
Firmware Upgrade Backup Revision
Command . . . . . . . . . . . . . . . . . . . . .9-51
Firmware Upgrade Termination . . 9-51
Firmware Upgrade Sequence . . . . 9-51
10Synchronization Clocks
MT9045 and MT9046 Clock Synchronizers .
10-2
11 Real-Time Clock
Block Diagram. . . . . . . . . . . . . . . . . . . . . 11-1
Operation . . . . . . . . . . . . . . . . . . . . . . . . 11-1
Clock Operation . . . . . . . . . . . . . . . . . . . 11-2
12Connectors
Zone 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1
Zone 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2
Zone 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4
13Rear Transition Module
Components and Features . . . . . . . . . . 13-1
Functional Overview . . . . . . . . . . . . . . . 13-2
Circuit Board . . . . . . . . . . . . . . . . . . . . . . 13-3
Face Plate. . . . . . . . . . . . . . . . . . . . . . . . . 13-5
Connectors . . . . . . . . . . . . . . . . . . . . . . . 13-5
Console Serial Ports. . . . . . . . . . . . . 13-5
Ethernet Port . . . . . . . . . . . . . . . . . . 13-6
Zone 3 . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Identification Numbers . . . . . . . . . 13-7
Installation. . . . . . . . . . . . . . . . . . . . . . . . 13-7
14 Monitor
Command-Line Features. . . . . . . . . . . . 14-1
Basic Operation . . . . . . . . . . . . . . . . . . . 14-4
Power-up/Reset Sequence . . . . . . 14-4
POST Diagnostic Results . . . . . . . . 14-6
Monitor SDRAM Usage . . . . . . . . . . 14-6
Monitor Recovery and Updates . . . . . . 14-6
Recovering the Monitor . . . . . . . . . 14-7
Resetting Environment Variables . 14-7
Updating the Monitor via TFTP . . . 14-7
Monitor Command Reference . . . . . . . 14-8
Command Syntax . . . . . . . . . . . . . . 14-8
Command Help . . . . . . . . . . . . . . . . 14-9
Contents (continued)
KAT4000 User’s Manual 10007175-02
vi
Typographic Conventions . . . . . . .14-9
Boot Commands. . . . . . . . . . . . . . . . . . . 14-9
bootd . . . . . . . . . . . . . . . . . . . . . . . . .14-9
bootelf . . . . . . . . . . . . . . . . . . . . . . . .14-9
bootm . . . . . . . . . . . . . . . . . . . . . . . .14-9
bootp . . . . . . . . . . . . . . . . . . . . . . . . .14-9
bootv . . . . . . . . . . . . . . . . . . . . . . . .14-10
bootvx . . . . . . . . . . . . . . . . . . . . . . .14-10
dhcp . . . . . . . . . . . . . . . . . . . . . . . . .14-10
rarpboot. . . . . . . . . . . . . . . . . . . . . .14-11
tftpboot . . . . . . . . . . . . . . . . . . . . . .14-11
File Load Commands . . . . . . . . . . . . . . 14-12
loadb . . . . . . . . . . . . . . . . . . . . . . . .14-12
loads . . . . . . . . . . . . . . . . . . . . . . . . .14-12
Memory Commands . . . . . . . . . . . . . . 14-12
cmp. . . . . . . . . . . . . . . . . . . . . . . . . .14-13
cp . . . . . . . . . . . . . . . . . . . . . . . . . . .14-13
find . . . . . . . . . . . . . . . . . . . . . . . . . .14-13
md. . . . . . . . . . . . . . . . . . . . . . . . . . .14-13
mm . . . . . . . . . . . . . . . . . . . . . . . . . .14-14
nm. . . . . . . . . . . . . . . . . . . . . . . . . . .14-14
mw . . . . . . . . . . . . . . . . . . . . . . . . . .14-14
Flash Commands . . . . . . . . . . . . . . . . . 14-15
cp . . . . . . . . . . . . . . . . . . . . . . . . . . .14-15
erase . . . . . . . . . . . . . . . . . . . . . . . . .14-15
flinfo . . . . . . . . . . . . . . . . . . . . . . . . .14-15
protect . . . . . . . . . . . . . . . . . . . . . . .14-16
EEPROM/I2C Commands . . . . . . . . . . 14-16
eeprom . . . . . . . . . . . . . . . . . . . . . .14-16
icrc32 . . . . . . . . . . . . . . . . . . . . . . . .14-17
iloop . . . . . . . . . . . . . . . . . . . . . . . . .14-17
imd . . . . . . . . . . . . . . . . . . . . . . . . . .14-17
imd2 . . . . . . . . . . . . . . . . . . . . . . . . .14-17
imm . . . . . . . . . . . . . . . . . . . . . . . . .14-17
imm2 . . . . . . . . . . . . . . . . . . . . . . . .14-17
imw. . . . . . . . . . . . . . . . . . . . . . . . . .14-18
inm . . . . . . . . . . . . . . . . . . . . . . . . . .14-18
iprobe . . . . . . . . . . . . . . . . . . . . . . . .14-18
iprobe2. . . . . . . . . . . . . . . . . . . . . . .14-18
switchsrom . . . . . . . . . . . . . . . . . . .14-18
IPMC Commands . . . . . . . . . . . . . . . . . 14-18
fru . . . . . . . . . . . . . . . . . . . . . . . . . . .14-18
fruinit . . . . . . . . . . . . . . . . . . . . . . . .14-19
fruled . . . . . . . . . . . . . . . . . . . . . . . .14-19
ipmcfw . . . . . . . . . . . . . . . . . . . . . . .14-19
sensor. . . . . . . . . . . . . . . . . . . . . . . .14-19
Environment Parameter Commands 14-20
printenv. . . . . . . . . . . . . . . . . . . . . . 14-21
saveenv . . . . . . . . . . . . . . . . . . . . . . 14-21
setenv . . . . . . . . . . . . . . . . . . . . . . . 14-21
Test Commands . . . . . . . . . . . . . . . . . . 14-21
diags. . . . . . . . . . . . . . . . . . . . . . . . . 14-21
mtest . . . . . . . . . . . . . . . . . . . . . . . . 14-21
um . . . . . . . . . . . . . . . . . . . . . . . . . . 14-22
Other Commands. . . . . . . . . . . . . . . . . 14-22
autoscr. . . . . . . . . . . . . . . . . . . . . . . 14-22
base . . . . . . . . . . . . . . . . . . . . . . . . . 14-22
bdinfo . . . . . . . . . . . . . . . . . . . . . . . 14-22
coninfo . . . . . . . . . . . . . . . . . . . . . . 14-22
crc32 . . . . . . . . . . . . . . . . . . . . . . . . 14-22
date . . . . . . . . . . . . . . . . . . . . . . . . . 14-22
echo . . . . . . . . . . . . . . . . . . . . . . . . . 14-23
enumpci . . . . . . . . . . . . . . . . . . . . . 14-23
go . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-23
help . . . . . . . . . . . . . . . . . . . . . . . . . 14-23
iminfo . . . . . . . . . . . . . . . . . . . . . . . 14-23
isdram . . . . . . . . . . . . . . . . . . . . . . . 14-23
loop . . . . . . . . . . . . . . . . . . . . . . . . . 14-24
memmap . . . . . . . . . . . . . . . . . . . . 14-24
moninit . . . . . . . . . . . . . . . . . . . . . . 14-24
pci. . . . . . . . . . . . . . . . . . . . . . . . . . . 14-24
phy . . . . . . . . . . . . . . . . . . . . . . . . . . 14-25
ping . . . . . . . . . . . . . . . . . . . . . . . . . 14-25
reset . . . . . . . . . . . . . . . . . . . . . . . . . 14-25
run . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26
script . . . . . . . . . . . . . . . . . . . . . . . . 14-26
showmac. . . . . . . . . . . . . . . . . . . . . 14-26
showpci . . . . . . . . . . . . . . . . . . . . . . 14-26
sleep. . . . . . . . . . . . . . . . . . . . . . . . . 14-26
switch_reg . . . . . . . . . . . . . . . . . . . 14-27
version . . . . . . . . . . . . . . . . . . . . . . . 14-27
vlan. . . . . . . . . . . . . . . . . . . . . . . . . . 14-27
Environment Variables . . . . . . . . . . . . 14-28
Troubleshooting. . . . . . . . . . . . . . . . . . 14-31
Download Formats. . . . . . . . . . . . . . . . 14-32
Binary. . . . . . . . . . . . . . . . . . . . . . . . 14-32
Motorola S-Record . . . . . . . . . . . . 14-32
15 Acronym List
16 Appendix A
No-CPU KAT4000 . . . . . . . . . . . . . . . . . . . .A-1
Contents (continued)
10007175-02 KAT4000 User’s Manual vii
Ethernet Switch Configuration . . . . . . . A-2
Default Switch Configuration . . . . .A-2
Serial Command Line Interface (CLI). . . A-3
Log In/Log Out Procedures. . . . . . . .A-3
Help Utility. . . . . . . . . . . . . . . . . . . . . .A-3
Command Hierarchy . . . . . . . . . . . . .A-4
Command Usage Instructions . . . . . A-5
Commands . . . . . . . . . . . . . . . . . . . . . A-5
Command Overview . . . . . . . . .A-6
System Commands . . . . . . . . . . A-8
Console Commands . . . . . . . . . A-8
Port Commands . . . . . . . . . . . . .A-9
MAC Commands . . . . . . . . . . .A-10
VLAN Commands . . . . . . . . . . A-12
Aggregation/Trunking Commands
A-13
User Group Commands . . . . . A-14
QoS Commands. . . . . . . . . . . . A-14
Mirror Commands . . . . . . . . . . A-16
IP Commands . . . . . . . . . . . . . . A-16
Debug Commands . . . . . . . . . A-17
Web Interface . . . . . . . . . . . . . . . . . . . . . A-18
17 Appendix B
Sensor Data Records . . . . . . . . . . . . . . . . .B-1
KAT4000 User’s Manual 10007175-02
viii
(blank page)
10007175-02 KAT4000 User’s Manual ix
Figures
Figure 1-1: General System Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Figure 1-2: KAT4000 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Figure 1-3: AMC Port Mapping Regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9
Figure 2-1: Component Map, Top (Rev. 02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Figure 2-2: Component Map, Bottom (Rev. 02). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Figure 2-3: KAT4000 Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Figure 2-4: Jumper, Fuse and Switch Locations, Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Figure 2-5: Jumper, Fuse and Switch Locations, Bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Figure 2-6: JTAG Hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Figure 2-7: LEDs, Top. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Figure 2-8: LEDs, Bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Figure 2-9: KAT4000 Reset Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Figure 3-1: MPC8548 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Figure 3-2: Processor JTAG/COP Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
Figure 3-3: Processor JTAG/COP Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
Figure 4-1: Board Area Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Figure 4-2: VSC7376 GbE Switch Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Figure 4-3: PEX 8524 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Figure 4-4: PEX 8524 SPI EEPROM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Figure 5-1: AMC Port Map Fat Pipes Region–GbE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Figure 5-2: Signal Routing of the GbE Fat Pipe Switch Module on the KAT4000 . . . . . . . . . . . . . . 5-2
Figure 5-3: GbE Fat Pipe Switch Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Figure 5-4: GbE Fat Pipe Switch Module Component Map, Top (Rev. 00). . . . . . . . . . . . . . . . . . . . 5-4
Figure 5-5: GbE Fat Pipe Switch Module Component Map, Bottom (Rev. 00) . . . . . . . . . . . . . . . . 5-4
Figure 5-6: GbE Fat Pipe Switch JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Figure 5-7: GbE Fat Pipe Switch Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Figure 5-8: AMC Port Map Fat Pipes Region–10 GbE-1 GbE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Figure 5-9: Signal Routing of the 10 GbE-1 GbE Fat Pipe Switch Module on the KAT4000 . . . . 5-11
Figure 5-10: 10 GbE-1 GbE Fat Pipe Switch Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Figure 5-11: 10 GbE-1 GbE Fat Pipe Switch Module Component Map, Top (Rev. 01) . . . . . . . . . . 5-13
Figure 5-12: 10 GbE-1 GbE Fat Pipe Switch Module Component Map, Bottom (Rev. 01) . . . . . . 5-13
Figure 5-13: 10 GbE-1 GbE Fat Pipe Switch JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
Figure 5-14: 10 GbE-1 GbE Fat Pipe Switch Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
Figure 5-15: AMC Port Map Fat Pipes Region–10 GbE-10 GbE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21
Figure 5-16: Signal Routing of the 10 GbE-10 GbE Fat Pipe Switch Module on the KAT4000 . . . 5-21
Figure 5-17: AMC Port Map Fat Pipes Region–sRIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
Figure 5-18: Signal Routing of the sRIO Fat Pipe Switch Module on the KAT4000. . . . . . . . . . . . . 5-22
Figure 7-1: Boot Device Redirection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12
Figure 7-2: PLD JTAG Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20
Figure 8-1: AMC B+ Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
Figures (continued)
KAT4000 User’s Manual 10007175-02
x
Figure 8-2: Diagram of SATA line connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6
Figure 9-1: IPMC Connections Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
Figure 9-2: Extension Command Request Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7
Figure 9-3: Extension Command Response Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7
Figure 9-4: IPMB Entity Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-40
Figure 10-1: Synchronization Clock Circuit Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
Figure 11-1: M41T00 Real-Time Clock Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1
Figure 12-1: Zone 1 Connector, P10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1
Figure 12-2: Zone 2 Connectors, J20 and J23, and Zone 3 Connectors, J30-J32. . . . . . . . . . . . . . . 12-3
Figure 12-3: Zone 3 Connector, J33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-7
Figure 13-1: RTM General System Block Diagram with Face Plate . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2
Figure 13-2: RTM Component Map, Top (Rev. 00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4
Figure 13-3: Micro-D Console Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5
Figure 13-4: Standard Console Cable Wiring, #10007665-xx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Figure 13-5: Installing a KAT-Z3DB RTM on the KAT4000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-8
Figure 14-1: Example Monitor Start-up Display for KAT4000 with GbE Fat Pipe Switch Module 14-2
Figure 14-2: Example Monitor Start-up Display for KAT4000 with 10 GbE-1 GbE Fat Pipe Switch Mod-
ule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3
Figure 14-3: Power-up/Reset Sequence Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-5
Figure A-1: No-CPU KAT4000 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
Figure A-2: Web Interface for the Ethernet Core Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-20
10007175-02 KAT4000 User’s Manual xi
Tables
Table 1-1: KAT4000 Address Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Table 1-2: Regulatory Agency Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Table 1-3: Technical References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
Table 2-1: Circuit Board Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Table 2-2: JP4 Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Table 2-3: Jumpers–JP2 and JP7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Table 2-4: J35 Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Table 2-5: Typical Power Requirement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Table 2-6: Environmental Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Table 2-7: Air Flow Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Table 3-1: MPC8548 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Table 3-2: PCI Device and Vendor ID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Table 3-3: MPC8548 Peripheral Request Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
Table 3-4: MPC8548 Chip Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Table 3-5: MPC8548 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
Table 3-6: Processor JTAG/COP Pin Assignments (P1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
Table 4-1: KAT4000 PHYs and Address Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Table 4-2: Ethernet Core Switch Off-Board Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Table 4-3: GbE Fat Pipe Module Ethernet Switch Off-Board Ports. . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Table 4-4: Ethernet Port Address Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Table 4-5: PEX 8524 JTAG Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Table 5-1: GbE Fat Pipe PLD Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Table 5-2: BCM56580 Switch Ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
Table 5-3: 10 GbE-1 GbE Fat Pipe PLD Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
Table 6-1: Memory Configuration Jumper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Table 6-2: NVRAM Memory Map, User EEPROM 1 (write protected)1. . . . . . . . . . . . . . . . . . . . . . 6-3
Table 6-3: NVRAM Memory Map, User EEPROM 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Table 7-1: PLD Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Table 7-2: JP3 PLD JTAG Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19
Table 7-3: JP1 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20
Table 8-1: B1-B4 AMC Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
Table 9-1: Network Function Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3
Table 9-2: Completion Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4
Table 9-3: Format for IPMI Request Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5
Table 9-4: Format for IPMI Response Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6
Table 9-5: IPMC IPMI Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9
Table 9-6: Vendor Command Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12
Table 9-7: Get Status Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13
Table 9-8: Get Serial Interface Properties Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-14
Table 9-9: Set Serial Interface Properties Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-15
Tables (continued)
KAT4000 User’s Manual 10007175-02
xii
Table 9-10: Get Debug Level Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-16
Table 9-11: Set Debug Level Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17
Table 9-12: Get Hardware Address Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17
Table 9-13: Set Hardware Address Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-18
Table 9-14: Get Handle Switch Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-18
Table 9-15: Set Handle Switch Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19
Table 9-16: Get Payload Communication Time-Out Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19
Table 9-17: Set Payload Communication Time-Out Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20
Table 9-18: Disable Payload Control Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20
Table 9-19: Reset IPMC Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-21
Table 9-20: Hang IPMC Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-21
Table 9-21: Bused Resource Control Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-22
Table 9-22: Bused Resource Status Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-23
Table 9-23: Graceful Reset Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-24
Table 9-24: Diagnostic Interrupt Results Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-24
Table 9-25: Get Payload Shutdown Time-Out Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-25
Table 9-26: Set Payload Shutdown Time-Out Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-25
Table 9-27: Get Module State Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-25
Table 9-28: Enable AMC Site Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-26
Table 9-29: Disable AMC Site Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-26
Table 9-30: IPMC Watchdog Timer Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-27
Table 9-31: Reset Watchdog Timer Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-29
Table 9-32: Set Watchdog Timer Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-30
Table 9-33: Get Watchdog Timer Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-31
Table 9-34: FRU LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-33
Table 9-35: Get FRU LED Properties Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-34
Table 9-36: Get LED Color Capabilities Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-34
Table 9-37: Set FRU LED State Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-36
Table 9-38: Get FRU LED State Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-38
Table 9-39: IPMI Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-40
Table 9-40: Event Message Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-43
Table 9-41: FRU Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-44
Table 9-42: Link Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-45
Table 9-43: Firmware Upgrade Command Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-47
Table 9-44: Firmware Upgrade Status Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-47
Table 9-45: Firmware Upgrade Start Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-48
Table 9-46: Firmware Upgrade Prepare Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-49
Table 9-47: Firmware Upgrade Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-50
Table 9-48: Firmware Upgrade Complete Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-50
Table 9-49: Firmware Upgrade Restore Backup Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-51
Table 9-50: Firmware Upgrade Backup Revision Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-51
Tables (continued)
10007175-02 KAT4000 User’s Manual xiii
Table 11-1: RTC Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2
Table 12-1: Zone 1 Connector, P10 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1
Table 12-2: Zone 2 Connector, J20 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3
Table 12-3: Zone 2 Connector, J23 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4
Table 12-4: Zone 3 Connector, J30 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-5
Table 12-5: Zone 3 Connector, J31 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-5
Table 12-6: Zone 3 Connector, J32 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6
Table 12-7: Zone 3 Connector, J33 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-7
Table 13-1: RTM Circuit Board Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3
Table 13-2: Console Serial Port Pin Assignments, P1, P2 and P4-P7 . . . . . . . . . . . . . . . . . . . . . . . . 13-5
Table 13-3: Ethernet Port Pin Assignments, P3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Table 14-1: Debug LED Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-4
Table 14-2: POST Diagnostic Results–Bit Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-6
Table 14-3: Monitor Address per Flash Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-7
Table 14-4: Static IP Ethernet Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-10
Table 14-5: DHCP Ethernet Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-11
Table 14-6: Standard Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-28
Table 14-7: Optional Environment Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-30
Table A-1: General Command Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5
Table B-1: IPMI Sensor Data Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
Table B-2: KAT4000 IPMC SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
Table B-3: Hot Swap SDR Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
Table B-4: IPMB Physical SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4
Table B-5: BMC Watchdog SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-5
Table B-6: +3.3 Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7
Table B-7: +2.5 Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-9
Table B-8: +1.8 Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-11
Table B-9: +1.2 Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-13
Table B-10: +1.0 Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-15
Table B-11: CPU Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-17
Table B-12: Inflow Temp SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-19
Table B-13: Outflow Temp SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-21
Table B-14: Version Change SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-24
Table B-15: B1 Hot Swap SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-25
Table B-16: B2 Hot Swap SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-27
Table B-17: B3 Hot Swap SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-28
Table B-18: B4 Hot Swap SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-30
Table B-19: B1 +12V Current SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-31
Table B-20: B1 +12V Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-33
Table B-21: B2 +12V Current SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-35
Table B-22: B2 +12V Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-36
Tables (continued)
KAT4000 User’s Manual 10007175-02
xiv
Table B-23: B3 +12V Current SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-38
Table B-24: B3 +12V Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-40
Table B-25: B4 +12V Current SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-41
Table B-26: B4 +12V Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-43
Table B-27: -48V Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-45
Table B-28: -48V Current SDR Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-47
Table B-29: -48V Source A Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-48
Table B-30: -48V Source B Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-50
Table B-31: +3.3V Management SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-52
Table B-32: +12V Volt SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-54
Table B-33: -12V Current SDR Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-56
Table B-34: F/W (Firmware) Progress SDR Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-58
10007175-02 KAT4000 User’s Manual i
Registers
Register 3-1: L2 Control Register (L2CR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Register 3-2: MPC8548 Hardware Implementation Dependent Register 0 (HID0) . . . . . . . . . . . . . 3-6
Register 3-3: MPC8548 Hardware Implementation Dependent Register 1 (HID1) . . . . . . . . . . . . . 3-8
Register 3-4: CPU Machine State Register (MSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
Register 5-1: Product ID/Version Register (PIDV) at 0x00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
Register 5-2: Scratch Register (SCR) at 0x01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
Register 5-3: I2C Register (I2C) at 0x02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
Register 5-4: Signal Detect Register (SDET) at 0x03. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Register 5-5: Switch Reset Register (SRST) at 0x04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Register 5-6: Module Status Register (STAT) at 0x05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Register 5-7: Switch GPIO Register (GPIO) at 0x06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Register 5-8: GPIN/LED Register (GPLED) at 0x07 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Register 5-9: Product ID/Version Register (PIDV) at 0x00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
Register 5-10: Scratch Register (SCR) at 0x01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
Register 5-11: I2C Register (I2C) at 0x02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
Register 5-12: Reserved Register 1 at 0x03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Register 5-13: Switch Reset Register (SRST) at 0x04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Register 5-14: Module Status Register (STAT) at 0x05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19
Register 5-15: Switch GPIO Register (GPIO) at 0x06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19
Register 5-16: GPIN/LED Register (GPLED) at 0x07 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20
Register 7-1: Product ID Register (PIDR) at 0xfc40,0000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Register 7-2: Hardware Version Register (HVR) at 0xfc40,0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Register 7-3: PLD Version Register (PVR) at 0xfc40,0008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Register 7-4: Hardware Configuration Register 0 (HCR0) at 0xfc40,0010 . . . . . . . . . . . . . . . . . . . . . 7-4
Register 7-5: PLL Configuration Register (PLLC) at 0xfc40,000c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
Register 7-6: LED Control Register (LEDR) at 0xfc40,001c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
Register 7-7: Jumper Settings Register (JSR) at 0xfc40,0018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Register 7-8: RTM GPIO State Register (RGSR) at 0xfc40,0038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Register 7-9: RTM GPIO Control Register (RGCR) at 0xfc40,003c . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
Register 7-10: MISC Control Register (MISC) at 0xfc40,0034 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
Register 7-11: Scratch Register 1 (SCR1) at 0xfc40,002c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8
Register 7-12: Reset Event Register (RER) at 0xfc40,0020. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9
Register 7-13: Reset Command Register 1 (RCR1) at 0xfc40,0024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9
Register 7-14: Reset Command Register 2 (RCR2) at 0xfc40,0028 . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10
Register 7-15: Boot Device Redirection Register (BDRR) at 0xfc40,0030 . . . . . . . . . . . . . . . . . . . . . . 7-12
Register 7-16: Clock Synchronizer Control Registers 1-3 (CSC1-CSC3) at 0xfc40,0040, 0xfc40,0044,
0xfc40,0048, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13
Register 7-17: Clock Synchronizer Primary Source Registers 1-3 (CPS1-CPS3) at 0xfc40,0050,
0xfc40,0054, 0xfc40,0058, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14
Register 7-18: Clock Synchronizer Secondary Source Registers 1-3 (CSS1-CSS3) at 0xfc40,0060,
0xfc40,0064, 0xfc40,0068, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-15
Registers (continued)
KAT4000 User’s Manual 10007175-02
ii
Register 7-19: Clock Control Registers 1-14 (CCR1-CCR14) at 0xfc40,0070, 0xfc40,0074,
0xfc40,0078, 0xfc40,007c, 0xfc40,0080, 0xfc40,0084, 0xfc40,0088, 0xfc40,008c, 0xfc40,0090,
0xfc40,0094, 0xfc40,0098, 0xfc40,009c, 0xfc40,00a0, 0xfc40,00a4, respectively . . . . . . . . . . . . . . 7-17
Register 7-20: Clock Synchronizer Interrupt Registers 1-3 (CSI1-CSI3) at 0xfc40,00a8, 0xfc40,00ac,
0xfc40,00b0, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-18
Register 9-1: Enable Payload Control Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20
10007175-02 KAT4000 User’s Manual 1-1
Section 1
Overview
The KAT4000 is a single-slot Advanced Telecom Computing Architecture (AdvancedTCA®,
ATCA™) carrier with up to four Advanced Mezzanine Cards (AMC) expansion modules. This
expansion capability enables a wide variety of control and packet processing applications
such as WAN access, traffic processing, signaling gateways, media gateways, and many
others. ATCA is an open architecture telecom platform as defined by the PICMG® 3.0 Revi-
sion 2.0 AdvancedTCA™ Base Specification.
The KAT4000 features on-board Ethernet and PCI Express switches for the AdvancedMC
Common Options Region, where the majority of control plane data flows, and a flexible
modular Fat Pipe Switch (FPS) to address data plane traffic in the AdvancedMC Fat Pipes
Region. The FPS is implemented using a plug-over module, enabling simple maintenance
and a rapid upgrade path when a newer switch fabric is required. An optional on-board pro-
cessor gives users additional processing power and can be used to off-load system manage-
ment or OA&M functionality.
The KAT4000 is an intelligent Field Replaceable Unit (FRU) and implements a redundant
System Management Bus (SMB). It also fully supports the Intelligent Platform Management
Interface (IPMI) with AdvancedTCA extensions to support standards-based shelf manage-
ment, allowing it to be monitored by a local shelf management controller or by a remote
OA&M system over Ethernet.
COMPONENTS AND FEATURES
The following is a brief summary of the KAT4000 hardware components and features:
Processor: The Central Processing Unit (CPU) is a Freescale® Semiconductor MPC8548 PowerQUICC
III™ processor, operating at a rate of up to 1.3 GHz with a 533 MHz DDR2 bus. The
MPC8548 contains 32-kB separate level-one (L1) data and instruction caches, and 512-kB
L2 cache. The processor has a local bus that connects to the socketed, NOR, and NAND
flash; Ethernet core switch; fat pipe switch module; and PLD. The processor also has a
COP/JTAG for debugging purposes. Chapter 3 provides more information.
SDRAM: The KAT4000 includes a 64M x 72-bit Double Data Rate Two (DDR2) Synchronous Dynamic
Random Access Memory (SDRAM) Small-Outline Dual In-line Memory Module (SO-DIMM).
Options include 512 megabytes and 1 gigabyte. The interface implements eight additional
bits to permit the use of Error-Correcting Code (ECC). SDRAM is only implemented on the
processor KAT4000 board configuration. “On-Card SDRAM” on page 6-2 provides more
information.
Flash: The KAT4000 includes three independent Flash regions—socketed, NOR, and NAND. The
blade is capable of booting from either an 8-bit, 32-pin PLCC ROM socket up to 512 kilo-
bytes in size, or from a 16-bit NOR Flash region that consists of one or two Flash devices.
Overview: Components and Features
KAT4000 User’s Manual 10007175-02
1-2
The NOR Flash consists of two 16 megabyte banks. The supported NAND flash is 512 mega-
bytes or 1 gigabyte. Flash is only implemented on the processor KAT4000 board configura-
tion. Chapter 6 provides more information.
CPLD: The KAT4000 uses a Complex Programmable Logic Device (CPLD) to control board reset
logic, the Board Configuration, Board Revision and User LED registers, and miscellaneous
board logic. Register access to the PLD is only available on the processor KAT4000 board
configuration. Chapter 7 provides more information.
Ethernet: Depending on the configuration, the KAT4000 Ethernet interface consists of: Reduced
Gigabit (RGMII)/Serial Gigabit (SGMII)/1000Base-BX Serializer-Deserializer (SerDes) Ether-
net core or fat pipe switch module (Vitesse VSC7376), and 1000Base-BX (SerDes) devices
to the AMC sites.
One 10/100 eTSEC port from the MPC8548 is available through Zone 3 for Rear Transition
Module (RTM) access. This port is for development purposes only.
Serial I/O: An EIA-232 console serial port from the MPC8548 (serial 1) is available through an on-board
header and is optionally routable to Zone 3 for Rear Transition Module (RTM) access. The
default serial port settings are: 9,600 baud, 8 data, no parity, and 1 stop bit. This port is for
development purposes only.
A second serial port (serial 2) allows the MPC8548 to communicate with the Intelligent Plat-
form Management Controller (IPMC). The default serial port settings are: 115,200 baud, 8
data, no parity, and 1 stop bit.
I2C Bus: The private IPMC I2C bus consists of the following devices: temp sensors, the -48V con-
verter, AMC A-to-D converters, and an optional connection to Zone 3 for Rear Transition
Module (RTM) access.
One processor I2C bus links to the following: two user SEEPROMs, the CPU init SEEPROM,
the Real-Time Clock (RTC), the SO-DIMM, and the fat pipe switch module, if used. Another
processor I2C bus provides an optional connection to Zone 3 for Rear Transition Module
(RTM) access.
JTAG Hubs: The IPMC controls the two Joint Test Action Group (JTAG) interfaces (hubs). One JTAG hub
is connected to seven ports: the KSL PLD, the IPMC PLD, the fat pipe switch module, and the
four AMC sites. The other hub is connected to five ports: the VSC7376 switch, the PEX8524
switch, the clock synchronizers, the IPMC GPIO, and GbE PHYs. See “JTAG Interfaces” on
page 2-9 for more information.
AMC Sites: The KAT4000 has four single-width, mid-size Advanced Mezzanine Card (AMC) sites which
allow for use of up to four compatible AMC modules. Double-width and compact modules
can also be accommodated. B+ style AMC connectors are used. The KAT4000 complies
Overview: Components and Features
10007175-02 KAT4000 User’s Manual 1-3
with the PICMG® AMC.0 Revision 2.0 Advanced Mezzanine Card Base Specification with the
exception of a couple non-conformances. See the KAT4000 Errata for details. Each AMC site
is individually configurable. Chapter 8 provides more information.
System Management: The KAT4000 supports an Intelligent Platform Management Interface (IPMI) based on a
Renesas microcontroller with a UART interface for processor to IPMC communication (fixed
rate at 115,200 baud) and dual redundant IPMB-A/B interfaces. The IPMC allows for fea-
tures such as remote shutdown, remote reset, payload voltage monitoring, temperature
monitoring, and access to Field Replaceable Unit (FRU) data. Chapter 9 provides more
information.
Synchronization Clock: The synchronization clock interface consists of MT9045 or MT9046 T1/E1 system synchro-
nizers. Chapter 10 provides more information.
RTC: The Real-Time Clock (RTC) is an ST®Microelectronics M41T00 Serial Access Timekeeper®.
Chapter 11 provides more information.
Caution: There are no serviceable parts in this product. Return all damaged boards to Emerson for
repair (see page 2-18).
KAT4000 Options
No-CPU Configuration: A no-CPU KAT4000 board configuration is available. This configuration includes 256 Kb of
SRAM memory used by the internal 8051 microcontroller on the VSC7376 Ethernet core
switch for run time code storage. This configuration omits SDRAM and NOR and NAND
flash. Appendix A provides more information.
Ethernet Core Switch: The Ethernet core switch provides the interconnect between the fat pipe switch module,
the Ethernet ports on the AMC sites, two channels on the ATCA backplane Base fabric, the
processor, and the Update Channel (optional). A Vitesse VSC7376 GbE switch implements
this function. “Ethernet Core Switch (optional)” on page 4-2 provides more information.
PCI Express Switch: The PCIe switch provides the interconnect between the AMC sites, the processor, and the
fat pipe switch module. A PLX Technology PEX 8524 PCIe switch implements this function.
“PCI Express Switch (optional)” on page 4-7 provides more information.
Note: Of the Ethernet core switch and the PCI Express switch, at least one of the two switches must be used on the
board. The board can also use both switches.
!
Overview: Components and Features
KAT4000 User’s Manual 10007175-02
1-4
Fat Pipe Switch Module:
A high-speed fat pipe switch is provided as a plug-over module. It supports GbE, Serial
Rapid IO (sRIO), PCI Express (PCIe) or 10 Gigabit Ethernet (10 GbE). This switch provides an
interconnect between the AMC sites, the ATCA high-speed fabric ports, the processor, the
PCIe switch and the Ethernet core switch. See “Fat Pipe Switch Module”, Chapter 5, for
information on your module’s configuration.
Rear Transition Module (RTM):
The optional transition modules provide access to 16 or 32 ports when AMCs are installed
on the KAT4000. AMC site ports 12-20 are routed to Zone 3 for Rear Transition Module
(RTM) I/O. 64 AMC signals route to 264 pins in Zone 3 (see “Zone 3” on page 12-4). There
are nine T1/E1 ports per AMC site routed as differential pairs (64 signals). There are sepa-
rate I2C connections to the IPMC and the processor, and two ports each from the fat pipe
switch module and the Ethernet Core switch. A serial port and GbE port are provided for
development purposes only.
Overview: Functional Overview
10007175-02 KAT4000 User’s Manual 1-5
FUNCTIONAL OVERVIEW
The following block diagram provides a functional overview for the KAT4000:
Figure 1-1: General System Block Diagram
MPC8548
Processor
IPMB Base High Speed
Fabric A
Clock RTM I/O
(Optional)
High Speed
Fabric B
Clock
sRIO (x4)
IPMC
To Zone 3
(Optional)
Zone 3
Connections
(Opt.)
To Eth
Core
Switch
(Opt.)
GbE
RGMII
PLD
NOR
Flash
Socketed
Flash
To Update Channel
on J20 (Optional)
Xfmr
Xfmr (2)
GbE
PHYs (2)
Local bus
10/100
PHY Xfmr
DDR2-667
2GB
SROM
Fat Pipe Switch Module
Fabric Options:
GbE, sRIO,
10-1 GbE or 10-10 GbE
GbE
PHY
EIA-232
Transceiver
Sensors
-48V
Cnvrtr
AMC
A-to-D
EIA-232
Xcvr
Serial
Header
GbE
PHYs (2)

 
AMC (x4) Single-Width,
Half-/Full-/Extended-Height
Serial
Header
NAND
Flash
To Zone 3
PCIe or GbE
on port 1
I
2
C
RTC
Fat Pipe
SO-DIMM
User 1
SEEPROM
CPU Init
SEEPROM User 2
SEEPROM
PCIe
(x1 or x4)
To Eth
Core
Switch
PEX8524
PCI Express Switch
(Optional)
VSC7376
Ethernet Core Switch
Layer 2 (Optional)
SERDES
SERDES
4 SERDES
2 SGMII
SERDES
Private I
2
C
GbESERDES
Main PLD
I
2
C
To Zone 3
To Zone 3
2 SERDES
To local bus
2 SERDES
To processor
Optional
Serial 1
10/100 Debug Eth (MII)
PCIe
GMII/RGMII
4 SERDES
Serial 2
242
4 SERDES
4 SERDES
2 9
To
local
bus
4 SERDES
(no conn.
for
GbE)
3
IPMB-L I
2
C
P10 J20 Zone 3J23
Overview: Physical Memory Map
KAT4000 User’s Manual 10007175-02
1-6
PHYSICAL MEMORY MAP
Fig. 1-2 illustrates the KAT4000 memory map:
Figure 1-2: KAT4000 Memory Map
8000,0000
FC12,0000
FC00,0000
FC80,0000
FC88,0000
FFFF,FFFF
Hex Address
0000,0000
CPLD Registers (512 KB)
NAND Flash (32 KB)
FFF0,0000
Socketed Flash (if installed) (512 KB)
Boot Area (1 MB)
Reserved
Reserved
CCSRBAR (MPC8548 Registers, 1 MB)
FF70,0000
FF80,0000
A000,0000 PCI Express Switch
(if installed) (512 MB)
NOR Flash (32 MB)
E000,0000
Reserved
FC48,0000
Reserved
E200,0000
Reserved
Hex Address
FC40,0028
Scratch Register 1
Boot Device Redirection Register
Clock Sync. Control Register 2
Clock Control, AMC4 CLK1 Register
Clock Control, AMC4 CLK2 Register
Clock Control, AMC1 CLK1 Register
Clock Sync. Primary Source 1
Clock Sync. Primary Source 2
Clock Control, AMC3 CLK3 Register
Clock Control, AMC3 CLK2 Register
FC40,0040
FC40,0044
FC40,004C
FC40,0050
FC40,0054
FC40,0058
FC40,005C
FC40,0060
FC40,0064
FC40,0068
FC40,006C
FC40,0070
FC40,0074
FC40,0048
MISC Control Register
Clock Sync. Control Register 1
Clock Sync. Control Register 3
Clock Control, AMC1 CLK2 Register
Clock Control, AMC1 CLK3 Register
Clock Control, AMC2 CLK1 Register
Clock Control, AMC2 CLK2 Register
Clock Control, AMC2 CLK3 Register
Clock Control, AMC4 CLK3 Register
FC40,002C
FC40,0030
FC40,0034
FC40,0038
FC40,003C
FC40,0078
FC40,007C
FC40,0080
FC40,0084
FC40,0088
Clock Control, aTCA CLK3 A Register
FC40,008C
FC40,0000
FC40,0004
FC40,0024
FC40,0020
FC40,001C
FC40,0018
FC40,0014
FC40,0010
FC40,000C
FC40,0008
FC40,0090
Product ID Register
Hardware Version Register
PLD Version Register
PLL Configuration Register
Hardware Config. Register 0
Jumper Settings Register
LED Control Register
Reset Event Register
Reset Command Register 1
Reset Command Register 2
Reserved
Clock Sync. Primary Source 3
Reserved
Clock Control, AMC3 CLK1 Register
Reserved
RTM GPIO State Register
RTM GPIO Control Register
Clock Sync. Secondary Source 1
Clock Sync. Secondary Source 2
Clock Sync. Secondary Source 3
Reserved
Clock Control, aTCA CLK3 B Register
Clock Sync. Interrupt Register 1
Clock Sync. Interrupt Register 2
Clock Sync. Interrupt Register 3
FC40,0094
FC40,0098
FC40,009C
FC40,00A0
FC40,00A4
FC40,00A8
FC40,00AC
FC40,00B0
1FFF,FFFF
3FFF,FFFF
Reserved
SDRAM
DDR2
(512 MB)
SDRAM
DDR2
(1 GB)
PCIe Switch or sRIO Fat Pipe Module
(if installed) (1 GB)
FC14,0000
FC18,0000
FC40,0000 Reserved
Ethernet Core Switch Registers (128 KB)
FC10,0000 Reserved
FC00,8000
Reserved
Fat Pipe Switch Registers
(if installed) (256 KB)
Overview: Physical Memory Map
10007175-02 KAT4000 User’s Manual 1-7
Table 1-1 summarizes the physical addresses for the KAT4000 and provides references to
more detailed information:
Table 1-1: KAT4000 Address Summary
Physical
Address (hex):
Access
Mode: Description: See Page:
FFF0,0000 R/W Boot Area (1 MB)
FF80,0000 Reserved
FF70,0000 W CCSRBAR (MPC8548 Registers, 1 MB)
FC88,0000 Reserved1
FC80,0000 R/W Socketed Flash (if installed) (512 KB) 6-1
FC48,0000 Reserved
FC40,00B0 R/W Clock Synchronizer Interrupt Register 3 (CSI3) 7-18
FC40,00AC R/W Clock Synchronizer Interrupt Register 2 (CSI2) 7-18
FC40,00A8 R/W Clock Synchronizer Interrupt Register 1 (CSI1) 7-18
FC40,00A4 R/W Clock Control, aTCA CLK3 B Register (CCR14) 7-17
FC40,00A0 R/W Clock Control, aTCA CLK3 A Register (CCR13) 7-17
FC40,009C R/W Clock Control, AMC4 CLK3 Register (CCR12) 7-17
FC40,0098 R/W Clock Control, AMC4 CLK2 Register (CCR11) 7-17
FC40,0094 R/W Clock Control, AMC4 CLK1 Register (CCR10) 7-17
FC40,0090 R/W Clock Control, AMC3 CLK3 Register (CCR9) 7-17
FC40,008C R/W Clock Control, AMC3 CLK2 Register (CCR8) 7-17
FC40,0088 R/W Clock Control, AMC3 CLK1 Register (CCR7) 7-17
FC40,0084 R/W Clock Control, AMC2 CLK3 Register (CCR6) 7-17
FC40,0080 R/W Clock Control, AMC2 CLK2 Register (CCR5) 7-17
FC40,007C R/W Clock Control, AMC2 CLK1 Register (CCR4) 7-17
FC40,0078 R/W Clock Control, AMC1 CLK3 Register (CCR3) 7-17
FC40,0074 R/W Clock Control, AMC1 CLK2 Register (CCR2) 7-17
FC40,0070 R/W Clock Control, AMC1 CLK1 Register (CCR1) 7-17
FC40,006C Reserved
FC40,0068 R/W Clock Synchronizer Secondary Source Register 3 (CSS3) 7-15
FC40,0064 R/W Clock Synchronizer Secondary Source Register 2 (CSS2) 7-15
FC40,0060 R/W Clock Synchronizer Secondary Source Register 1 (CSS1) 7-15
FC40,005C Reserved
FC40,0058 R/W Clock Synchronizer Primary Source Register 3 (CPS3) 7-14
FC40,0054 R/W Clock Synchronizer Primary Source Register 2 (CPS2) 7-14
FC40,0050 R/W Clock Synchronizer Primary Source Register 1 (CPS1) 7-14
FC40,004C Reserved
FC40,0048 R/W Clock Synchronizer Control Register 3 (CSC3) 7-13
FC40,0044 R/W Clock Synchronizer Control Register 2 (CSC2) 7-13
FC40,0040 R/W Clock Synchronizer Control Register 1 (CSC1) 7-13
Overview: Physical Memory Map
KAT4000 User’s Manual 10007175-02
1-8
1. Depends on Flash/memory size.
2. Both the PCI Express Switch and sRIO Fat Pipe Switch Module are optional. If both devices are discovered onboard, then the PCIe
switch will be allocated 512 MB and the sRIO fat pipe switch module will be allocated 1 GB of addressable space. If neither device
is found onboard, the entire 1.5 GB area is reserved.
FC40,003C R/W RTM GPIO Control Register (RGCR) 7-7
FC40,0038 R RTM GPIO State Register (RGSR) 7-6
FC40,0034 R/W MISC Control (PCIe, SIO, I2C, Test Clock) Register (MISC) 7-7
FC40,0030 R Boot Device Redirection Register (BDRR) 7-12
FC40,002C R/W Scratch Register 1 (SCR1) 7-8
FC40,0028 W Reset Command Register 2 (RCR2) 7-10
FC40,0024 W Reset Command Register 1 (RCR1) 7-9
FC40,0020 R Reset Event Register (RER) 7-9
FC40,001C R/W LED Control Register (LEDR) 7-5
FC40,0018 R Jumper Settings Register (JSR) 7-6
FC00,0014 Reserved
FC40,0010 R Hardware Configuration Register 0 (HCR0) 7-4
FC40,000C R/W PLL Configuration Register (PLLC) 7-4
FC40,0008 R PLD Version Register (PVR) 7-3
FC40,0004 R Hardware Version Register (HVR) 7-3
FC40,0000 R Product ID Register (PIDR) 7-2
FC18,0000 Reserved
FC14,0000 R/W Fat Pipe Ethernet Switch Registers (if installed) (256 KB) 5-2
FC12,0000 Reserved
FC10,0000 R/W Ethernet Core Switch Registers (128 KB) 4-2
FC00,8000 Reserved
FC00,0000 R/W NAND Flash (32 KB) 6-2
E200,0000 Reserved1
E000,0000 R/W NOR Flash (32 MB) 6-1
A000,0000 R/W PCI Express Switch or sRIO Fat Pipe Switch Module (if installed)
(1 GB)24-7 or 5-22
8000,0000 R/W PCI Express Switch (if installed) (512 MB)24-7
4000,0000 Reserved1
0000,0000 R/W SDRAM DDR2 (512 MB/1 GB) 6-2
Physical
Address (hex):
Access
Mode: Description:
See Page:
(continued)
Overview: AMC Mapping
10007175-02 KAT4000 User’s Manual 1-9
AMC MAPPING
The figure below shows how the KAT4000 maps to the ports defined by the AMC.0 specifi-
cation:
Figure 1-3: AMC Port Mapping Regions
Port MappingPort #



!








!

"#$
%
&'
Basic Connector Extended Connector
()*
+,
&-()*
./+,
01 2
."
()*
%
&' 3
Port #
+,
+,
+,
+,
+,
(4#56"
."
&.%

&.%
Port #
&.%
(4#56"
."
+,

Port #
7+,

(4#56"
."
."1/
B4

B3

B2

B1

."1/ 8
B4
! 
B2
! 
B3
! 
B1
! 
(,"41/
//6'
(
,"41/
#1'6/

(,"4
1//
/6'
&'
Port #
+,
+,
+,
+,
7+,

(4#56"
."
Overview: Additional Information
KAT4000 User’s Manual 10007175-02
1-10
Clocks: This region supports a subset of the clock architecture, as defined in the AMC.0 specifica-
tion.
Common Options: This region supports essential interfaces that are common across multiple Fat Pipe imple-
mentations.
Fat Pipes: This region supports data path connections including GbE, sRIO, PCIe, and 10 GbE. It can
carry large amounts of data without significantly degrading the speed of transmission.
Extended Options: This region supports Rear Transition Modules. Also, it may be used to extend the Common
Options and Fat Pipes Regions, when required.
x1, x2, x4: This refers to the link width of the port (the number of lanes that can be used to intercon-
nect between two link partners).
ADDITIONAL INFORMATION
This section lists the KAT4000 hardware regulatory certifications and briefly discusses the
terminology and notation conventions used in this manual. It also lists general technical
references.
Mean time between failures (MTBF) has been calculated at greater than 315,816 hours for
the KAT4000 and greater than 264,795 hours for the KAT4000 with a GbE fat pipe switch
module. MTBFs were calculated using Method I Case 3, Telcordia Issue 1 model at 30° C.
Product Certification
The KAT4000 hardware has been tested to comply with various safety, immunity, and
emissions requirements as specified by the Federal Communications Commission (FCC),
Industry Canada (IC), Underwriters Laboratories Inc.® (UL), and the European Union Direc-
tives (CE mark). The following table summarizes this compliance:
Table 1-2: Regulatory Agency Compliance
Type: Specification:
Safety IEC60950/EN60950 – Safety of Information Technology Equipment
(Western Europe)
UL60950, CSA C22.2 No. 60950, Third Edition – Safety of Information
Technology Equipment, including Electrical Business Equipment (BI-
National)
AS/NZS 60950:2000 – Safety Standard for Australia and New Zealand
Global IEC – CB Scheme Report IEC 60950, all country deviations
Overview: Additional Information
10007175-02 KAT4000 User’s Manual 1-11
Emerson maintains test reports that provide specific information regarding the methods
and equipment used in compliance testing. Unshielded external I/O cables, loose screws, or
a poorly grounded chassis may adversely affect the KAT4000’s ability to comply with any of
the stated specifications.
UL Certification
The UL web site at ul.com has a list of Emerson’s UL certifications.
1To find the list, go to the web site and search in the online certifications directory using
Emerson’s UL file number, E190079. There is a list for products distributed in the United
States, as well as a list for products shipped to Canada.
2Products are listed by board type followed by the model name and/or number. The
KAT4000 is an AdvancedTCA (ATCA) blade. The model number is KAT4000’s Printed Circuit
Board (PCB) artwork number, which is 10007505-xx.
RoHS Compliance
The KAT4000, all fat pipe modules listed in Chapter 5, and the RTM described in Chapter 13
are compliant with the European Union’s RoHS (Restriction of Use of Hazardous Sub-
stances) directive created to limit harm to the environment and human health by restrict-
ing the use of harmful substances in electrical and electronic equipment. Effective July 1,
2006, RoHS restricts the use of six substances: cadmium (Cd), mercury (Hg), hexavalent
chromium (Cr (VI)), polybrominated biphenyls (PBBs), polybrominated diphenyl ethers
Environmental NEBS™: Telcordia™ GR-63 (applies to an entire system) –
Section 4.3 Equipment Handling Criteria;
Section 4.4.1 Earthquake Environment and Criteria (Zone 4);
Section 4.4.3 Office Vibration Environment and Criteria;
Section 4.4.4 Transportation Vibration Criteria
EMC FCC Part 15, Class B – Title 47, Code of Federal Regulations, Radio
Frequency Devices
ICES 003, Class A – Industry Canada Interference-causing Equipment
Standard for Digital Apparatus
NEBS: Telcordia GR-1089 level 3 – Emissions and Immunity (circuit pack
level testing only)
EN300386 – Electromagnetic Compatibility and Radio Spectrum Matters
(ERM), Telecommunication Network Equipment, Electromagnetic
Compatibility (EMC) Requirements
AS/NZS 3548 003 – Standard for radiated and conducted emissions for
Australia and New Zealand, Class A
Type: Specification: (continued)
Overview: Additional Information
KAT4000 User’s Manual 10007175-02
1-12
(PBDEs) and lead (Pb). Configurations that are RoHS compliant are built with lead-free sol-
der. Configurations that are 5-of-6 are built with tin-lead solder per the lead-in-solder RoHS
exemption.
To obtain a certificate of conformity (CoC) for the KAT4000 or other modules, send an e-
mail to sales@artesyncp.com or call 1-800-356-9602. Have the part number(s) (e.g.,
C000####-##) for your configuration(s) available when contacting Emerson.
Terminology and Notation
Active low signals: An active low signal is indicated with an asterisk * after the signal name.
Byte, word: Throughout this manual byte refers to 8 bits, word refers to 16 bits, and long word refers to
32 bits, double long word refers to 64 bits.
PLD: This manual uses the acronym, PLD, as a generic term for programmable logic device (also
known as FPGA, CPLD, EPLD, etc.).
Radix 2 and 16: Hexadecimal numbers end with a subscript 16 or begin with 0x. Binary numbers are shown
with a subscript 2.
Technical References
Further information on basic operation and programming of the KAT4000 components can
be found in the following documents:
Table 1-3: Technical References
Device / Interface: Document: 3
AMC/ATCA Advanced Mezzanine Card Base Specification
(PICMG® AMC.0 Rev. 2.0: November 15, 2006)
PCI Express and Advanced Switching on AdvancedMC
(PICMG® AMC.1 Rev. 1.0: January 20, 2005)
AdvancedTCA® Base Specification
(PICMG® 3.0 Rev. 2.0: March 18, 2005)
Engineering Change Notice 3.0-2.0-001
(PICMG® 3.0 Rev. 2.0: ECN 3.0-2.0-001; June 15, 2005)
AdvancedTCA® Ethernet/Fibre Channel for AdvancedTCA® Systems
(PICMG® 3.1 Rev. 1.0: January 22, 2003)
http://www.picmg.org
CPLD MAX®II Device Handbook
(Altera® MII5V1-1.3, Preliminary; December 2004)
http://www.altera.com
Overview: Additional Information
10007175-02 KAT4000 User’s Manual 1-13
CPU MPC8548E PowerQUICC III™ Integrated Host Processor Family Preliminary
Reference Manual
(Freescale® Semiconductor MPC8548ERM Rev. 1: July 2005)
http://www.freescale.com
EEPROM ATMEL® 2-Wire Serial EEPROM 64K AT24C64B Data Sheet
(ATMEL® Corp., Rev. 3350D-SEEPR: May 2005)
http://www.atmel.com/literature
Ethernet HawX-G26 – 26-Port 10/100/1000 Managed Layer 2 Ethernet Switch,
VSC7376 Data Sheet
(Vitesse Semiconductor Corp., VMDS-10133 Rev. 2.1: August 2005)
HawX-G26 Reference Board Manual/Software Manual
(Vitesse Semiconductor Corp., RBM0007 Rev. 09: November 24, 2005)
http://www.vitesse.com
88E1111 Integrated 10/100/1000 Ultra Gigabit Ethernet Transceiver
Datasheet
(Marvell® Doc. No. MV-S100649-00, Rev. G: February 10, 2006)
http://www.marvell.com
BCM5241 10/100Base-TX/FX Mini- ™ Transceiver Preliminary Data Sheet
(Broadcom® Corporation Document 5241-DS03-R 6/21/05)
http://www.broadcom.com
Flash Intel® StrataFlash® Embedded Memory (P30) Data Sheet
(Intel, Order Number: 306666 Rev. 002: August 2005)
http://www.intel.com
AMD® AM29LV040B 4 Megabit (512 K x 8-Bit) CMOS 3.0 Volt-only, Uniform
Sector 32-Pin Flash Memory Data Sheet
(Advanced Micro Devices, Inc. Publication #21354 Rev: E; June 11, 2004)
http://www.amd.com
mDOC H3 Embedded Flash Drive (EFD) featuring Embedded TrueFFS® Flash
Management Software Preliminary Data Sheet
(M-Systems Flash Disk Pioneers Ltd., 92-DS-1205-10 Rev: 0.2; June 2006)
http://www.m-systems.com/mobile
Hot Swap™ LTC®4211 Hot Swap Controller with Multifunction Current Control
(Linear Technology Corporation LT/TP 0702 2K 4211f)
LTC®4300A-1/LTC 4300A-2 Hot Swappable 2-Wire Bus Buffers
(Linear Technology Corporation LT/TP 0203 2K sn4300a)
http://www.linear.com
Hot Swap Specification
(PICMG® 2.1 Rev. 2.0: January 17, 2001)
http://www.picmg.org
Device / Interface: Document: 3
Φ
Overview: Additional Information
KAT4000 User’s Manual 10007175-02
1-14
IPMI/IPMB IPMI — Intelligent Platform Management Interface Specification v2.0
(Intel Corp., Hewlett-Packard Co., NEC Corp., Dell Computer Corp., Rev.
1.0; Feb. 12, 2004)
IPMB — Intelligent Platform Management Bus Communications Protocol
Specification v1.0
(Intel Corp., Hewlett-Packard Co., NEC Corp., Dell Computer Corp., Rev.
1.0; Nov. 15, 1999)
IPMI Platform Management FRU Information Storage Definition v1.0
(Intel, Document Revision 1.1; Sept. 27, 1999)
http://www.intel.com/design/servers/ipmi/spec.htm
Renesas 16-Bit Single-Chip Microcomputer Hardware Manual, H8S/2168
Group
(Renesas Technology Corp., Rev. 3.00; March 12, 2004)
http://www.renesas.com
JTAG SCANSTA112 7-port Multidrop IEEE 1149.1 (JTAG) Multiplexer Data Sheet
(National Semiconductor Corp., DS200512, May 2004)
http://www.national.com
PCI Express PCI Express™ Base Specification Revision 1.0
(PCI Special Interest Group (PCI-SIG), July 22, 2002)
http://www.pcisig.com
PEX 8524 Versatile PCI Express Switch Preliminary Data Book
(PLX Technology, Inc. Version 0.99: June 2005)
http://www.plxtech.com
Real-Time Clock Serial Access Timekeeper® M41T00
(ST®Microelectronics, June 2004)
http://www.st.com
SDRAM (SO-DIMM)
Module
512MB 64Mx72 DDR2 SDRAM Unbuffered SO-DIMM ECC Product
Specification
(Virtium Technology, Inc. Part Number VL491T6553B-D5/CC Rev. 1.3:
August 2005)
http://www.virtium.com
Serial
Interface
TIA/EIA-232-F: Interface Between Data Terminal Equipment and Data Circuit-
Terminating Equipment Employing Serial Binary Data Interchange
(Electronic Industries Association, October 1997)
http://www.eia.com
Synchronization
Clock Interface
MT9045 T1/E1/OC3 System Synchronizer Data Sheet
(Zarlink™ Semiconductor Inc., February 2005)
MT9046 T1/E1 System Synchronizer with Holdover Data Sheet
(Zarlink™ Semiconductor Inc., February 2005)
http://www.zarlink.com
Device / Interface: Document: 3
Overview: Additional Information
10007175-02 KAT4000 User’s Manual 1-15
3. Frequently, the most current information regarding addenda/errata for specific documents may be found
on the corresponding web site.
KAT4000 User’s Manual 10007175-02
1-16
(blank page)
10007175-02 KAT4000 User’s Manual 2-1
Section 2
Setup
This chapter describes the physical layout of the board and the setup process, including
power requirements and environmental considerations. This chapter also includes trouble-
shooting, service, and warranty information.
ELECTROSTATIC DISCHARGE
Before you begin the setup process, please remember that electrostatic discharge (ESD)
can easily damage the components on the KAT4000 hardware. Electronic devices, espe-
cially those with programmable parts, are susceptible to ESD, which can result in opera-
tional failure. Unless you ground yourself properly, static charges can accumulate in your
body and cause ESD damage when you touch the board.
Caution: Use proper static protection and handle KAT4000 boards only when absolutely necessary.
Always wear a wriststrap to ground your body before touching a board. Keep your body
grounded while handling the board. Hold the board by its edges–do not touch any
components or circuits. When the board is not in an enclosure, store it in a static-shielding
bag.
To ground yourself, wear a grounding wriststrap. Simply placing the board on top of a
static-shielding bag does not provide any protection–place it on a grounded dissipative
mat. Do not place the board on metal or other conductive surfaces.
KAT4000 CIRCUIT BOARD
The KAT4000 is a 16-layer, 8U form factor circuit board that conforms to the PICMG 3.0
Rev. 2 and AMC.0 Rev. 2 mechanical specifications with the exception of a couple non-con-
formances. See the KAT4000 Errata for details. It has the following physical dimensions:
Table 2-1: Circuit Board Dimensions
The following figures show the component maps for the KAT4000 circuit board. Figures are
also provided for the front panel, LEDs, fuse, jumper and JTAG locations.
Width: Depth: Thickness:
Component
Height (top side):
Component Height
(bottom side):
12.687 in.
(322.25 mm)
11.024 in.
(280.0 mm)
0.075 in.
(1.9 mm)
< 0.84 in.
(21.33 mm)
< 0.144 in.
(3.65 mm)
!
Setup: KAT4000 Circuit Board
KAT4000 User’s Manual 10007175-02
2-2
Figure 2-1: Component Map, Top (Rev. 02)
XXXX-
YYYYYY
C422
C374
C457
U81
100Base-T
L13
L8
L9
L7
L12
L11
U80
Flash
Y2
U34
U33
U32
C323
U82
1000Base-T
U79
1000Base-T
C417
C418
C453
C428 C448
C452
C420
C445
C380
C458
C381
C437
C433
C436
C434
C415
C435
C414
L10
U72
U6 U7
U15U14
U24 U27
U56
C337
C383
C394
C291
C395
C335
C94
C411
C400
C425
U36
Clock
U28
Clock
E1
R364
C468
C467
C408
C405
C459
C396
U63
C416
C407
U19
Clock
C404 C442
Y3
C39
C386
R186
C300
C463
C462
C464
C391
C379
C377
C392C378
C393
C375 C397
C410 C419
C65
C64 L6
U59
C403
U37
C382
U61
U60
U18
PLD
U76
SRAM
U69
U62
48->12 volt Power Supply
C216
C217
U21
U8
U16
SW2
SW1
R269
R270
U5
U65
PHY
U70
PHY
RN36
RN12
RN21
RN18
RN25
RN62
RN61
RN19 RN20
RN11
RN44
RN39
RN42
RN37
RN38
RN54
RN52
RN50
RN51RN49
RN48
RN47
RN46
RN40
RN43
RN45
RN41
RN58
RN15RN14
RN65
RN57
RN55
RN53 RN56
RN60RN59
RN28RN26 RN29
RN23 RN24
RN30 RN33RN31 RN34
RN32
RN27
RN35
RN64
RN63
M7
M8
F5
F6
F3
F4
U78
NAND Flash
R290
R199
R297
R296
R295
R200
R321
R320
R303
R304
R305
R306
R323
R291
R289
R322
R288
R298
R318
R287
R293
R286
R238
R351
R349
R292
R245
R354
R319
R2062
R2063
R314
R357
R325
R324
R352
R156
R353
R317
R302
R301 R312
R313
C409
C451
C449
C450
C454
C443
C444
C447
C446
C389
C426
C421
C440
C465
C466
C423
C429
C430
C438
C431
C424
C432
C439
C29
C45
C345
C343
C398
C387
C390
C470
C469
C460
C427
C441
C401
C402
C370
C371
C372
C373
R337
R336
R339
R338
R235
R365
R355 R356
R174
R160
R175
R157
R259
R358
R359
R350
R348
R250
R332
R343
C31
C388
C399
R347
R345
R344
R346
R307 R299
R308
C66
C86
C322
C334
C455
C456
C385
C406
C352
C384
C376
C412 C413
C55
C56
R311
R310
R309
R333
R340
R341
R271
R300
R334
R273
R272
R362
R363
R360
R361
R294
R329
R330
R54
R331
R50
R38
R335
R36
R37
R342
R326
R327
R328
R2004 R2005 R2006
R2007 R2008 R2009
R2012
R2048
R2049
U53
U2000
C2037
C2038
C2036
R2088
R2089
C2034
C2035
R2026
R2027
R2028
R2029
R2030
R2031
R2032
R2033
R2034
R2035
R2036
R2037
C2039
C2040
F1
F2
R1204
C461
R258
R2119
R2120
R2123
R2124
C13
C23
C367
C365
C358
R201
R130
Y5
Y4
U12
U11
U31
C326
C325
C165
C230
C301
C97
C70
C59
C63
C27
C24
C62
C26
C28
C25
C61
C60
C71
C73
C72
C90
C22
C21
C20
R257
R266
R253
R251
U13
C53
C54
L3
L2
U23 U26
U55
U57
U54
C119
C118
C117
C196
C331
C231
C93
C198
C106
C105
C329
C333
C341
C120
C107
U29 U35
U9
PLD
L5
C302
C85
C149
C259
C229
R219
R218
R131
R171
R179
C84
U38
U46
U44
U42
U4
U3
U41
C83
C74
C19
R222
R78
R153
Y1
U1
U22
C324
C48
C183
C35
C36 C80
C34
C81
C38 C82
C79
C78
C37
C67C16
C18 C69
C68C17
C57
C58
C51
C52
L4
L1
U10
U2
Y6
U43
U45
U25
U20
R240
R236
R263
R264
R260
R261
U17
RN6
RN1 RN2 RN3 RN4 RN5
RN22
RN17
RN16
RN13
RN7 RN8 RN9 RN10
U40
U39
U30
M1
M2
M3
M4
M5
M6
R191
R225
R215
R232
R230
R231
R229
R220
R227
R207
R228
R224
R226
R121
R94
R204
R203
R202
R143
R185
R206
R197
R205
R198
R180
R132
R127
R145
R149
R140
R135
R146
R141
R136
R137
R152
R147
R148
R187
R188
R189
R217
R194
R234
R193
R190
R233
R216
R221
R195
R196
R181
R178
R177
R138
R142
R183
R11
R10
R176
R169
R170
R268
R237
R159
R280
R239
R158
R151
R155
R210
R82
R209
R208
R150
R96
R154
R113
R83
R81
R192
R108
R91
R162
R161
R163
R164
R165
R166
R167
R168
R144
R244
R211
R212
R213
R262
R248
R92
R46
R87
R133
R139
R117
R116
R86
R134
R67
R85
R84
R126
R5
R6
R7
R8
R9
R1158
R12
C96
C76
C95
C75
C203
C263
C173
C147 C239
C266
C265
C142
C199C192C177C167 C212C159C144
C179C178
C102 C103
C130
C122
C133
C104
C315
C319
C318
C320
C321
C314
C316
C317
C137
C140
C134
C257
C260
C261
C109 C124
C123
C190
C208
C242
C150
C161
C209
C218
C170
C185
C184
C197
C228
C253
C254
C138
C255
C135
C256
C298
C297
C98 C101
C100C99
C47
C46
C303
C10
C30
C6
C8
C33
C4
C113
C110 C125
C111 C126
C112
C293
C252
C152
C151
C154
C153
C156
C155
C158
C157
C114
C115
C116
C129
C235
C234
C233
C232
C220 C223
C146
C175 C176
C204
C213
C281
C336
C145
C143
C132
C264
C269
C270
C108
C292
C294
C295
C296
C299
C290
C271 C272
C267
C268
C243
C128
C127
C174
C191
C180
C193
C221
C237
C238
C222
C139
C258
C244
C202
C136
C162
C15
C77
C87
C182
C344
C340
C346
C338
C342
C347
C2
C32
C7
C369
C339
C360
C353
C131
C121
C200
C168
C188
C163
C141
C249
C181
C205
C275
C276
C277
C278
C247
C273
C274
C248
C306
C308
C309
C307
C246
C245
C310
C311
C362
C364
C363
C361
C9
C5
C12
C3
C225
C224
C305
C304
C160
C148
C164
C169
C282
C283
C280
C279
C219
C236
C210
C211
C172
C187
C166
C171
C194
C201
C214
C206
C189
C195
C286
C287
C284
C285
C251
C241
C312
C313
C240
C250
C288
C289
C215
C207
C226
C227
C348
C351
C350
C349
C355
C356
C357
C354
R1
R214
R223
R128 R129
R95
R61
R62
R43
R47
R41
R115
R114
R120
R119
R125
R122
R123 R124
R184 R182
R64
R256
R265
R242
R79
R90
R89
R80
R34
R31
R105
R104
R100
R101
R99
R88 R102
R103
R60
R63
R24
R20
R247R246
R32
R29
R40 R42
R21
R22
R23
R18
R19
R17
C14
C1
C11
R2
R109
R98
R97
R45
R26
R3
R4
R28
R51
R16
R249
C40
C327
C332
C330
C328
C366
C359
C368
C91
C92
C262
C186
C88
C89
C43
C44
C50
C49
C42
C41
R39
R44
R35
R25
R14
R15
R13
R173
R172
R112
R118
R110
R285
R243
R267
R278 R279
R274 R275
R33
R27
R30
R49
R283
R284
R281
R282
R276
R277
R65
R53
R66
R107
R52
R93
R48
R241
R1159
R2016
R2018
C2000C2001
C2002
C2003
R2001
R2002
R2013
R2014R2015
R2045
R2050
R2051
R2052
R2053
U58
U52
U51
U50
U49
U48
U47
C2030
C2031
R2085
C2044
L20
R252
R254
R255
U77
K2
Polar Key
ATCA Guide
J33
24-pin
ATCA
Connector
J32
80-pin ATCA
Zone 3
Connector
J31
80-pin ATCA
Zone 3
Connector
J30
80-pin ATCA
Zone 3
Connector
JP4
JP3
CR40
CR41
K1
Polar Key
ATCA Guide
J20
80-pin ATCA
Zone 2
Connector
J34
J23
80-pin ATCA
Zone 2
Connector
JP2
JP7JP1
P10
34-pin ATCA
Zone 1
Connector
00000000-00 D
CR38 CR39CR36CR35 CR37
U66
PHY
U71
PHY
U67
PHY
U73
U74
U75
U68
MPC8548
Processor
U64
DDR2
SO-DIMM
J10
J4
J3
J2
J1
P1
CR34
CR33
CR32
CR29
CR30
CR31
CR28
CR27
CR14
CR12
CR9
CR10
CR19
CR16
CR18
CR21
CR1
CR3
CR5
CR7
CR25
CR24
CR20
CR23
CR22
CR17
CR15
CR13
CR11
CR26
CR8
CR6
CR2
CR4
COPYRIGHT 2006
Setup: KAT4000 Circuit Board
10007175-02 KAT4000 User’s Manual 2-3
Figure 2-2: Component Map, Bottom (Rev. 02)
R68
R2137
R2125
R2112
R2111
R2110
R2109
R2131
R1023
R1016
C592
C590
C588
C585
R2133
U2002
C827
C833
C668
R1202
R1201
R2126
R2122R2121 R2118R2117
R2116
R2115
R2114
R2113
R1200
C2043
R2132
C2041
R2134
R2130
R2129
R2128
R2127
C2042
R2136
R2107
R2106
R2105
R2104
R2103
R2102
R2101
R2100
R2097
R2096
R2099
R2098
R2094
R2092
R2095
R2093
R1203
R1208
R1207
R1206
R1205
R2108
R2091
R2090
U98
U99
R2086
R2087
CR2004
C2033
C2032
C2028
C2027
C2023
C2022
C2018
C2017
R2084
R2083
R2082
R2081
R2080
R2079 R2078
C2029 C2024
C2019
C2014
C2026
C2025
C2021
C2020
C2016
C2015
C2013
R2073
R2072
R2071
R2075
R2074
R2077
R2076
R2064
R2070
R2069
R2068
R2067
R2066
R2065
R2060
R2058
R2057
C2006
C2005
R2056
R2055
R2054
R2040R2039
R2038
C863
C854
C815
C814
C609
C606
C600
C595
C594
C591 C586
C583
C495
C490
C489
C488
R2011 R2010
R2003
R2000
R2024
R2023
R2020
R2019
R2017
R710
R709
R708
R707
R663
R662
R651
R636
R1098
R1097
R1094
R1090
R1086
R1085
R1083
R1080
R872
R863
R862
R857
R856
R836
R835
R714
R713
R712
R711
R1157
R1156
R1155
R1154
R1153
R1152
R1151
R1150
R1149
R1148
R1147
R1146
R1145
R1144
R1143
R1142
R1141
R1140
R1139
R1138
R1137
R1136
R1135
R1134
R1133
R1132
R1131
R891
R890
R889
R938
C686
R427
R948
R946
R1119
R1124
R1120
R1117
R1109
R1108
R1112
R1118
R532
R1024
R761
R760
R763
R762
R766
R765
R758
R759
R432
R488
R393
R489
R880
R881
R518
R529
R546
R543
R535
R1081 R1068 R1069
R1116
R1115
R1107
R384
R383
R460
R450
R443
R382
R1099
R1102
R1101
R1100
R1061
R1059
R1058
R1060
C903
R770
R774
R776
R784
R788
R790
R793
R795
R797
R809
R807
R804
R1084
R1093
R1104
R1105
R1111
R1114
R1123
R1128
R1113 R1125
R367
R369
R372
R374
R570
R571
R954
R965
R878
C688
C867
C593
C752
C619
R716
R875
R865
R855
R858
R859
R869
R834 R870
R744
R563
R572
R578
R769
R386
R385
R444
R638
R561
R466
R877
R802
R660
R659
R1010
R983
R1006
R1012
R838
R837
R882
R599
R1015
R1046
R980
R990
R957
R947
R926
R925
R995
R1065
R982
R1062
R1000
R1001
R998
R999
R873
R1005
R1032
R1029
R1030
R1031
R1034
R1033
R1036
R1035
R997
R1041
R1038
R1039
R1040
R1043
R1042
R1045
R1044
R566
R567
R565
R564
R540 R541
R527
R526
R428
R430
R391
R389
R500
R499
R497
R498
R495
R496
R493
R494
R734 R739 R749
R884
R396
R388
R378
R375
R955R945R876 R879
R1130
R1129
R387
R395
R398
R409
R459
R445
R435
R503
R467
R479
R373
R370
R368
R366
R436
R420
R410
R399
R1096
R730
R735
R741
R745
R783
R786
R767
R1095
R750 R752 R754 R756
R376
R451
R452
R1122
R1121
R545
R609
R723
R732
R721 R727
R737
R725 R715
R742
R768
R719
R747
R717
R77
R1049
R377
R423
R457
R414
R455
R520
R492
R519
R682
R506
R949
R1052
R934
R449
R704
R556
R705
R555
R557
R552
R554
R553
R548
R551
R559
R684
R549
R550
R558
R683
R1003
R434
R425
R442
R992
R1075
R1073
R619
R620
R621
R1071
R469
R424
R1028
R1078
R1077
R421
R422
R438
R437
R446
R453
R447
R454
R927
R928
R1103
R751 R753 R755 R757
R782
R787
R805
R76
R1064
R994
R1063
R993
R408
R1079
R371
R771
R775
R777
R780
R781
R778
R779
R845
R849
R841
R842
R839
R840
R843
R844
R846
R850
R847
R848
R851
R852
R854
R853
R826
R827
R828
R829
R832
R833
R831
R733
R731
R785
R789
R791
R830
R818
R819
R820
R821
R824
R825
R823
R822
R798
R799
R801
R800
R815
R814
R816
R817
R813
R812
R811
R810
R738
R736
R794
R792
R796
R743
R740
R808
R806
R803
R748R746
R883
R929
R963
R964
R501
R568
R944
R930
R664
R960
R961
R574
R573
R576
R575
R514
R513
R512
R511
R510
R509
R508
R507
C596
C611
C610
C597
C598
C612
C613
C599
C615
C614
C608
C607
C894
C893
C886
C883
C897
C900
C901
C905
C603
C604
C605
C602
C587 C589
C601
C584
C851
C856
C855
C850
C853
C858
C857
C852
C899 C902
C523
C530
C516
C524
C882
C881
C889 C890
C507
C493
C475
C508
C478
C498
C479
C476
C872
C873
C865
C864
C871
C870
C868
C869
C866
C885
C699
C707
C737
C480
C481
C663
C660
C634
C629 C658
C632
C574
C580
C555 C564
C572 C567
C573
C582
C579
C566
C512
C471
C477
C472
C486
C483
C494
C499
C496
C497
C577 C578
C560 C565
C544
C568
C552
C625C622
C621
C620 C624
C754
C724
C719
C801 C826 C835
C809 C828
C800
C772
C807
C840
C792
C738
C739
C837
C650
C664
C673
C645
C694
C693
C649
C672
C646
C700
C716
C515
C504
C505
C559
C761
C576
C539
C528 C529
C561
C581
C891
C887
C543
C540
C531
C520 C526
C521 C527
C492C491
C474C473
C849
C846
C845C844
C519
C549
C541
C562
C570
C553
C547
C542
C550
C548
C563
C571
C554
C627
C618
C616
C751
C759
C626
C617
C895 C904
C841
C525
C879
C502 C503
C485
C484
C511
C522
C557
C556 C558
C787C767
C794
C766
C821
C820
C765
C740
C741
C838
C842
C731
C743
C822
C768
C795
C769
C788C770
C742
C839
C843 C848
C789
C797
C805
C847
C861
C720
C756
C775
C736
C755
C757C745C729C706
C735C734
C644
C705
C643
C690
C689
C667 C679
C733
C702
C642
C718
C676
C654
C666
C687
C653
C641
C655
C675C652
C665
C696
C695C651
C640 C674
C717
C647
C701
C862
C834
C790
C732
C888
C878
C874
C760
C482
C659
C657
C635
C628
C637
C630
C631
C633 C662
C661
C638
C546
C569
C545
C813
C763
C811
C575
C623
C898
C810
C762
C812
C764
C501
C500
C518
C532
C509
C533
C510
C517
C514
C513
C536 C538
C535 C537
R895
R896
R652
R667
R632
R417
R485
R658
R631
R1047
R1048
R933
R885
R899
R656 R657
R935
R892
R920
R924
R919
R911
R996
R937
R932
R923
R912
R888
R906
R893
R894
R887
R666
R678
R671
R639
R600
R606
R615
R607
R582
R581
R580
R610
R585
R584
R583
R586
R642
R618
R635
R669
R679
R672
R641
R654
R633
R612
R601
R608
R634
R617
R589
R588
R587
R592
R591
R590
R593
R597
R595
R596
R594
R458
R1004 R1011
R415
C746
C678
C681
C728
C793
C804
C831
C830
C829
C803
C776
C758
C823
C806
C791
C798C771
C744
C704
C726
C703
C727
C677
C697
C680
C682
C685 C777
C750
C749
C748
C747
C698
C730 C721 C722
C708
C709
C670
C671
C691C692
C684
C683
C669
C656
C802
C824
C836
C825
C808
C799
C773
C774
R2061 R2059
R2041
R405
R404
R402
R401
R2021
R461
R474
R522
R533
R504
R505
R413
R379
R531
R521
R544
R536
R1017
R1057
R1025 R1026
R680
R661
R674
R871
R874
R676
R1127
R486
R487
R910
R922
R433
R477
R394
R381
R475
R476
R959
R974 R975
R972
R956
R950
R977
R978R976
R969
R979
R985
R1007
R1013
R962
R951
R952
R931
R1014
R1051
R478
R562
R542
R528
R547
R971
R981
R936
R953
R517
R577
R602
R579
R991
R970
R637R560R465
R426
R861
R860
R411 R470
R468
R416
R647
R648
R649
R412
R111
R106
R403
R400
R480
R484
R481
R491
R483
R482
R490
R473
R441
R456
R448
R1089
R440
R1092
R439
R681
R1008
R650
R921
R1082
R616
R720 R722
R534
R397
R724 R726
R764
R1018
R728 R729
R718
R1076
R1074
R1072
R471
R472
R1091
R1110
R1126
R1106
R1009
R988
R989
R986
R987
R902
R898
R1022
R968
R967
R984
R973
R1019
R1056
R1020
R1053
R1021
R1055
R907
R901
R915
R2025
R2022
R772
R773
R643
R644
R645
R530
R904
R908
R903
R916
R917
R909
R675
R966
R315
R864
R677
R316
R1054
R900
R913
R897
R914
R502
R665
R569
R706
R646
R464
R1002
R918
R905
R1066
R1067
R886
R524
R523
R624
R696
R697
R702
R703
R701
R699
R698
R673
R694
R670
R614
R613
R622
R695
R655
R623
R1027
R380
R462
R463
R627
R700
R868
R867
R866
R605
R604
R603
R628
R958
R626
R625
R598
R537 R538
R515
R539
R516
R392
R390
R431
R429
R685
R689
R688
R640
R687
R668
R690
R692
R691
R693
R653
R686
R611
R525
C2010
C2009
C2008
C2007
C2004
C2012
C2011
C819
C818
C817
C816
M9
M10
CR2003CR2001 CR2002CR2000
R55
R56
R57
R58
SW3
J2000
RN71 RN72
RN70RN69
RN66
RN73 RN74 RN75
RN76 RN77 RN78
RN68
RN67
U84
PEX8524 Switch
U85
U97
L17
L18
L19
C639
C723
U83
VSC7376 GbE Switch
C710
C711
C712
C715
C714
C713
U88
C778
C780
C779
C781
C487
C636
C648
J35
R419R418
R406
C877
C876
U92
Flash
U91
Flash
U93
C506
L14
C534
R941
R407
U90
C859
C753
C725
U101U100
U94
U95
U96
U86
U87 U89
R1087
R1088
C860
C796
C832
C551
C892
C782
C783
C786
C784
C785
R939
R940
R630
R629
L16
L15
Q5
R1050
R1037
R943
R942
R59
F10
F7
F9F8
CR43 CR44
CR42
C880
C896
COPYRIGHT 2006
Setup: KAT4000 Circuit Board
KAT4000 User’s Manual 10007175-02
2-4
Front Panel
The front panel, shown in Fig. 2-3, consists of four single-width, mid-size Advanced Mezza-
nine Card (AMC) sites (double-width and compact modules can be accommodated), a hot
swap LED, an out of service LED, two user LEDs (see “LEDs” on page 2-10 for more informa-
tion), and a reset switch.
Note: When using a compact AMC module, the module must have a front panel that fully covers the front opening
of the KAT4000 to maintain EMC compliance.
Figure 2-3: KAT4000 Front Panel
Note: The electromagnetic compatibility (EMC) tests used a KAT4000 model that includes a front panel assembly
from Emerson.
Caution: For applications where the KAT4000 is provided without a front panel, or where the front
panel has been removed, your system chassis/enclosure must provide the required
electromagnetic interference (EMI) shielding to maintain CE compliance.
Connectors
The KAT4000 circuit board has various connectors (see Fig. 2-1), summarized as follows:
EIA-232: A serial port is accessible off of the CPU through an on-board header for development pur-
poses and routes to Zone 3.
Ethernet: A 10/100 Ethernet port is accessible off of the CPU through Zone 3.
AMC Expansion Sites J1-J4:
Each site is capable of supporting an AMC module, depending on the configuration, using
B+ style AMC connectors. J1-J4 map to sites B1-B4 (see Table 8-1 for pin assignments).
Backplane Connectors: Whether individual backplane connectors are populated on the KAT4000 depends on the
specific product configuration. PICMG 3.0 specification defines three connector zones on
the backplane:
Zone 1 is the power connection (dual redundant -48V DC) and system management
connections—P10
Zone 2 is the data transport interface covering: Base, Fabric, and Synchronization clock
interfaces—J20 through J24
Front Panel
KAT4000
OOS
2
3
H/S
B1
B2
B3
B4
Out of service
and user LEDs
Hot
Swap
LED
AMC1 AMC2 AMC3 AMC4
RST
Reset
Switch
!
Setup: KAT4000 Circuit Board
10007175-02 KAT4000 User’s Manual 2-5
Zone 3 (ATCA) is for the optional Rear Transition Module (RTM) I/O interconnect—J30
through J33
P10: This connector provides the power and IPMB to the KAT4000. The P10 connector has four
levels of sequential mating to provide the proper functionality during live insertion or
extraction of the KAT4000. See Table 12-1 for the pin assignments.
J20, J23: The 80-pin Zone 2 (ZD) connectors provide three levels of sequential mating. See Table 12-2
and Table 12-3 for pin assignments.
J30-J32: The 80-pin Zone 3 (ZD) connectors provide an interconnect to an optional RTM. Connec-
tions include AMC ports 12-20, serial ports, a debug Ethernet port, and various other inter-
faces. See Table 12-4, Table 12-5 and Table 12-6 for pin assignments.
J33: The 24-pin Zone 3 connector provides the 3.3 volt, 12 volt, and transmit/receive signals to
the AMCs. See Table 12-7 for the pin assignments.
J2000: This hot swap switch header is a connector only–a switch assembly (P/N 10005468-xx)
connects to this socket.
Header JP4
JP4 is the 16-pin serial port header for the IPMC debug console, fat pipe debug console, and
host debug console. See Table 2-2 for signal descriptions. See Fig. 2-4 for the header’s loca-
tion.
Table 2-2: JP4 Signal Descriptions
Jumpers
The following KAT4000 jumpers select the boot device, SROM initialization, logic probe,
and whether the IPMC will communicate with the shelf manager system. See Table 2-3 for
jumper descriptions. Fig. 2-4 and Fig. 2-5 show jumper, switch and fuse locations.
Jumper: Pin: Signal Description: Pin: Signal Description:
JP4
1 IPMC_RS232_TX 2 GND
3 IPMC_RS232_RX 4 GND
5no connect 6 GND
7FP_CONN_RX 8GND
9 FP_CONN_TX 10 GND
11 no connect 12 GND
13 HOST_CONN_RX 14 GND
15 HOST_CONN_TX 16 GND
Setup: KAT4000 Circuit Board
KAT4000 User’s Manual 10007175-02
2-6
Table 2-3: Jumpers–JP2 and JP7
Note: Jumper settings for JP7 pins 1:2, 3:4 and 5:6 are not applicable to the no-CPU KAT4000 board configuration.
Jumper: Shunt Description:
Register
Map:
JP2
1:2 IPMC Mode bit MD2
out-factory use only–used for initial programming of the IPMC
controller (default) N/A
3:4 IPMC Mode bit MD1
out-factory use only–used for initial programming of the IPMC
controller (default)
JP7
1:2 Boot from socket
in-boot from ROM socket (default)
out-boot from soldered flash
7-7
3:4 Ignore SROM
in-CPU ignores SROM (default)
out-CPU loads from SROM
5:6 Boot redirect (see Register Map 7-4 and Register Map 7-15)
in-disabled The board only attempts to boot from the device
specified by JP7 1:2.
out- enabled (default) The board cycles through the boot
devices until a valid boot image is executed.
7:8 Logic probe–Reserved
out-(default)
9:10 Standalone (SA) mode
in-in ATCA standalone mode, the IPMC disconnects IPMB-0, then
activates/deactivates the board itself
out-in ATCA normal mode, the IPMC communicates with the
shelf manager to activate/deactivate the board (default)
Setup: KAT4000 Circuit Board
10007175-02 KAT4000 User’s Manual 2-7
Figure 2-4: Jumper, Fuse and Switch Locations, Top



























 















 

 




























 













 
 

 


































 






















 


 
 
  





















































 
















































 



















 












 































  
  
















































































 


















 


































 


 




 






















    




   






































































































































 



 

 


















 





















 











 
 



















 

 

















 



























































































































 












 
 















 









 
























































 
 


























































































70
  























































JP3 - PLD Prog. JTAG
JP4 - Serial Port:
1-4 IPMC
7-10 Fat Pipe Module
13-16 Host CPU


SW2 - Main Reset
JP7 - Boot
1:2 Boot from socket (defaultinstalled)
3:4 Ignore SROM
5:6 Enable boot redirection
7:8 Logic probe
9:10 Standalone (SA) mode
JP2 - IPMC
1:2 IPMC Mode bit MD2
3:4 IPMC Mode bit MD1
SW1 - IPMC Reset
JP1 - PLD Config. Header




F3 - Fuse

F5 - Fuse

F6 - Fuse

F4 - Fuse

F2 - Fuse

F1 - Fuse

P1 - CPU JTAG/COP
%)&.+92
Setup: KAT4000 Circuit Board
KAT4000 User’s Manual 10007175-02
2-8
Figure 2-5: Jumper, Fuse and Switch Locations, Bottom






















 

























































 
 

















































 



































































































 






































 





















 






























































 














  





 





























   









 



































































   





























































































































 










 






 


























 



 
















 







 



  
 


























 







 
 

























 



 





 



















 


















































































 
 














 


























































 


























 






 








































 


















 



































 































 


 


 








































































































 


































 










  
  




















































 



























 



J2000 - Hot Swap Switch Header
F7 - Fuse

J35 - IPMC JTAG/Emulation Header
F8 - Fuse (
 F9 - Fuse

F10 - Fuse

SW3 - Front Panel Reset
%)&.+92
Setup: KAT4000 Circuit Board
10007175-02 KAT4000 User’s Manual 2-9
JTAG Interfaces
The KAT4000 provides the capability for JTAG type boundary scan testing. The IPMC con-
trols the two JTAG interfaces (hubs), see Fig. 2-6. One JTAG hub is connected to the fat pipe
switch module, two PLDs, and the four AMC sites. The other hub is connected to the Ether-
net core switch, the PCI Express switch, the processor, the GbE PHYs, and the synchroniza-
tion clock circuitry. See Fig. 2-4 and Fig. 2-5 for the location of individual headers.
Figure 2-6: JTAG Hubs
P1: The 16-pin JTAG/COP P1 header is provided for debug purposes for the processor. This inter-
face provides for boundary-scan testing and COP debugger support of the CPU (see Fig. 3-2)
and is compliant with the IEEE 1149.1 standard. The header pin assignments are defined in
Table 3-6.
Caution: Install a shunt on JP1 pins 1:2 before using the JTAG/COP interface (P1) to enable CPU
JTAG/COP access. Attempting to use the JTAG/COP interface without this shunt in place may
cause damage to the board. Refer to Table 7-3 for JP1 pin details.
JP3: The 10-pin JTAG JP3 header is provided for programming In-System Programmable (ISP)
PLDs (see Fig. 7-2). The header pin assignments are defined in Table 7-2.
AMC 1
AMC 2
AMC 4
AMC 3
VSC7376
Ethernet Core Switch
Layer 2
PEX8524
PCI Express Switch
MPC8548
Processor
COP/JTAG
P1
SCANSTA112
JTAG Multiplexer
SCANSCA112
JTAG
Multiplexer
Master
Port 1
Port 2
Port 3
Port 4
Port 5
Port 6
Port 0
SCANSTA112
JTAG Multiplexer
SCANSCA112
JTAG
Multiplexer
Master
Port 1
Port 2
Port 3
Port 4
Port 5
Port 6
Port 0
GbE PHY
(5)
Clock
Synch. (3)
KSL PLD
IPMC PLD
Prog.
Header JP3
IPMC GPIO
JTAG/Debug
Header J35
Fat Pipe
Switch Module
Config.
Header JP1
!
Setup: KAT4000 Circuit Board
KAT4000 User’s Manual 10007175-02
2-10
JP1: The 10-pin JP1 configuration header is provided for PLD programming. Installing a shunt on
JP1, pins 1:2, enables the JP3 PLD programming header. The header pin assignments are
defined in Table 7-3.
J35: J35 is the 14-pin IPMC JTAG/emulation header. See Table 2-4 for signal descriptions.
Table 2-4: J35 Signal Descriptions
LEDs
See Fig. 2-7 for the on-board Light-Emitting Diodes (LEDs). The KAT4000 has four front
panel LEDs. See Fig. 2-8 for their location. The debug LED codes are defined in Table 14-1. The
front panel LEDs include:
2 and 3: The yellow (CR2000) and green (CR2002) LEDs are user defined.
OOS: The Out Of Service (CR2003) programmable LED controlled by the IPMI controller is either
red (North America) or yellow (Europe). When lit, this LED indicates the KAT4000 is in a
failed state.
HS: The blue Hot Swap LED (CR2001) displays four states:
On-the board can be safely extracted
Off-the board is operating and not safe for extraction
Long blink-insertion in progress
Short blink-requesting permission for extraction
Caution: Do not remove the KAT4000 while the blue LED is blinking.
Reference the PICMG® 3.0 Revision 2.0 AdvancedTCA™ Base Specification for more detailed
LED information.
Jumper: Pin: Signal Description: Pin: Signal Description:
J35
1IPMC_TCK 2GND
3IPMC_TRST* 4GND
5IPMC_TDO 6GND
7 IPMC_EMUL_RESI* 8 3_3 volts
9IPMC_TMS 10GND
11 IPMC_TDI 12 GND
13 IPMC_RES* 14 GND
!
Setup: KAT4000 Circuit Board
10007175-02 KAT4000 User’s Manual 2-11
Figure 2-7: LEDs, Top
&
&
&
&
&
&!
&
&
&
&
&
&
&!
&
&!
&
&
&
&
&
&
&
&& & & &!
&
&
&
&
&
&
&
&
&
&
&
&
&
&
Internal 8051 Debug
:0;<+:0
:0;<+:0
:0;<+:0
:0;<+:0
0;<+:0=
0;<+:0=
0;<+:0=
0;<+:0=
Debug
Boot Device
CPU Status
:0=
:0=
(2:0=
<:+&*0=
<:&00=
<:(2:%<2=
PCIe Lane Good
:*:+0
:*:+0
:*:+0
:*:+0
:*:+0
:*:+0
:*:+0
:*:+0
:*:+0
:*:+0
:*:+0
:*:+0
IPMC PLD Status
>"/
?"'1"6/
@1"6/
@1"6/
 @1"6/
@1"6/
@1"6/
<#/?"'1"6/
2(:2.@.2):0
2(:.*:0
Status:
10/100
Debug
Ethernet
Activity:
Fat Pipe, Core Switch,
Base PHYs
(:2:0
(A:2:0
(A:2:0
;:.*:2:0
;:.*:2:0
Setup: KAT4000 Circuit Board
KAT4000 User’s Manual 10007175-02
2-12
Figure 2-8: LEDs, Bottom
CR2001   CR2003
Hot Swap
;<:0:%**
User
0:%**
User
0:%**
Out of Service
0:%**-0&:%**
B&-,/C
Setup: KAT4000 Circuit Board
10007175-02 KAT4000 User’s Manual 2-13
Reset
The reset signals are routed to the PLD. See Chapter 7 for the reset registers. The following
sources can reset the KAT4000:
Front Panel: The front panel reset switch can reset the board.
Remote IPMI: The KAT4000 is capable of being reset remotely via the IPMI controller.
Software: Software is capable of asserting reset to the individual modules (see “reset” on
page 14-25).
Processor: The processor is also capable of resetting the board.
RTM: If a rear transition module is used that utilizes the Zone 3 reset signal, the board can be
reset from the RTM.
Setup: KAT4000 Circuit Board
KAT4000 User’s Manual 10007175-02
2-14
Figure 2-9: KAT4000 Reset Diagram
Soldered Flash
16/32/64MB
MPC8548
Processor
KSL
CPLD
%:9&(2:*
DEBUG_HRESET*
%:(&(2:*
Voltage
Monitor
250ms
Delay
Voltage
Monitor
250mS
Delay
<:9&(2:*
<:(&(2:*
DEBUG_SRESET*
CPU
COP/
JTAG CPU_SRESET*
CPU_HRESET*
PCIE_RST*
OSC_EN
FLASH_RST*
(9:&(2:*
%(:*
.:&(2:*
PAYLD_RST*
POR_RST*
3_3V
PWR_OK
PWRGD_OR
3_3V
3_3V
Front Panel
RESET
1_5V 1_5V
)0:&(2:*
PCI Express
Switch
Clock Tree
A&:%
3_3V
IPMC
PLD
%&:&(2:*
CORESW_RST*
%&(A:&(2:*
Core Switch
Port 3 PHY
Core Switch
Port 2 PHY
Ethernet
Core Switch
BC_RST*
;:&(2:*
Base Channel 2
Base Channel 1
GbE PHY
NAND_RST*
**0:&(2:* NAND Flash
256/512MB
EDEBUG_RST*
0;<+:&(2:* Debug 10/100
Ethernet PHY
FP_RST*
:&(2:* Fat Pipe
GbE PHY
Fat Pipe
Module Site
CLK_SYNC2_RST*
:()*BDC:&(2:*
MT9046 Clock
Synchronizers
(3)
<:2&(2:* CPU_TRST*
L_PAYLD_EN
FP_PWR_GOOD
3_3V_PWRGD
2_5V_PWRGD
1_8V_PWRGD
1_2V_PWRGD
1_0V_PWRGD
CPU_CORE_PWRGD
DEBUG_TRST*
3_3V
HRESET_REQ*
3_3V
CLK_SYNC1_RST*
CLK_SYNC3_RST*
NAND_WARM_RST*
**0:A&:&(2:*
DDR2_RST* DDR2
SODIMM
00&:&(2:*
125 MHz
20 MHz
25 MHz
33 MHz
IPMC
9&(2:&E:*
%:2&(2:*
3_3V
2_5V
3_3V
1_8V
1_2V
1_0V
1_1V_CPU_CORE
SCANSCA112_RST* PLD JTAG
MUX
3_3V_MP
33 MHz OSC33_IPMC
3_3V_MP
3_3V_MP
IPMC
RESET
IPMC_PO_RST*
I2C
I/O Port
PRIV_I2C_SCL
PRIV_I2C_SDA
IPMC
BMR-H8S
16-Bit uP
3_3V_MP
Hotswap
Switch
E_HANDLE
OSC_EN
48A_OK*
48B_OK*
IPMC_RST_PB*
3_3V
Voltage
Monitor
250mS
Delay
3_3V_MP
-48V
to 12V
Brick
IPMC_RES*
AMCs
PB_RST*
IPMC
NVRAM
AMCs
4
/
Bn_EN*
Setup: KAT4000 Setup
10007175-02 KAT4000 User’s Manual 2-15
KAT4000 SETUP
For step-by-step setup instructions, see the KAT4000 Quick Start Guide, #10008585-xx, or
the KAT4000 Quick Start Guide for the No-CPU Carrier Board, #10008506-xx.
You need the following items to set up and check the operation of the Emerson KAT4000:
KAT4000 carrier
ATCA chassis and power supply
Compatible AMC modules
Console serial cable(s)
Optional rear transition module and cable
CRT terminal
Save the antistatic bag and box for future shipping or storage.
Note: This guide assumes that the host is running Red Hat Linux 9.0. If you use a different Linux distribution, you’ll
have to adapt these instructions to your implementation.
Identification Numbers
Before you install the KAT4000 circuit board in a system, you should record the following
information:
The board serial number: 711_______________________________________ .
The board serial number appears on a bar code sticker located on the back of the board.
The board product identification: _____________________________________ .
This sticker is located near the board serial number.
The monitor version: _______________________________________________ .
The version number of the monitor is on the monitor start-up display.
The operating system version and part number:__________________________ .
This information is labeled on the master media supplied by Emerson or another vendor.
Any custom or user ROM installed, including version and serial number:
________________________________________________________________ .
It is useful to have these numbers available when you contact the Technical Support
department at Emerson.
Setup: KAT4000 Setup
KAT4000 User’s Manual 10007175-02
2-16
Power Requirements
The KAT4000 draws all payload power from the dual redundant -48 volt inputs on the ATCA
connector P10 (Zone 1). Under normal operating conditions, the power requirement is
shared between the two -48 volt supplies. Power is limited to 200 watts maximum (includ-
ing AMC and optional RTM sites), with 80W maximum per site and a combined max of
120W to all four sites and the RTM, if used. Optional RTMs receive their power from the
KAT4000. Table 2-5 lists the board’s typical power requirements.
Table 2-5: Typical Power Requirement
Note: When the KAT4000 is powered off, so is the RTM.
The exact power requirements for the KAT4000 circuit board depend upon the specific
configuration of the board, including the CPU frequency and amount of memory installed
on the board. Please contact Emerson Technical Support at 1-800-327-1251 if you have
specific questions regarding the board’s power requirements.
Environmental Considerations
As with any printed circuit board, be sure that air flow to the board is adequate. Chassis
constraints and other factors greatly affect the air flow rate. The environmental require-
ments are shown in Table 2-6 and Table 2- 7.
Table 2-6: Environmental Requirements
Table 2-7: Air Flow Requirements
1. The physical placement of AMC modules greatly affects air flow requirements. Air flow is required at the
processor to maintain junction temperature less than 105° C at specified ambient temperature.
Configuration: Watts:
1.3 GHz 8548 processor, 1 GB DDR2 SDRAM,
No AMC modules
40 W
Environment: Range: Relative Humidity:
Operating
Temperature
0° to +55° Centigrade, ambient
(at board)
Not to exceed 85%
(non-condensing)
Storage Temperature —40° to 70° Centigrade Not to exceed 95%
(non-condensing)
Altitude 0 to 4,000 meters above sea level n/a
Configuration: Power/Temperature: Air Flow:
1.3 GHz processor with
1 GB DDR2 SDRAM14 AMC
modules
182 W @ 55° C
(35.5 W per AMC)
21 CFM
Setup: Troubleshooting
10007175-02 KAT4000 User’s Manual 2-17
Cooling requirements are a function of operating software, AMC power consumption and
AMC airflow resistance. The KAT4000 thermal performance must be verified in the end
user’s operating environment. Contact Emerson Technical Support at 1-800-327-1251 for
more information.
TROUBLESHOOTING
For instructions on how to properly install and configure the KAT4000 in a system, see the
KAT4000 Quick Start Guide, #10008585-xx, or the KAT4000 Quick Start Guide for the No-CPU
Carrier Board, #10008506-xx. If difficulty persists after referencing the Quick Start Guide,
use this checklist:
Be sure all modules are seated firmly: the AMC modules on the KAT4000, the RTM on
the KAT4000 (if used), and the KAT4000 in the card cage.
Verify the jumper settings (see Table 2-3).
Be sure the system is not overheating.
Check the cables and connectors to be certain they are secure.
Check your power supply for proper DC voltages.
Check that your terminal is connected to a console port.
Technical Support
If you need help resolving a problem with your KAT4000, visit
http://www.artesyncp.com/support/index.html#postsales on the Internet or send e-mail
to support@artesyncp.com. Please have the following information available:
KAT4000 serial number
monitor revision level
product identification from the sticker on the KAT4000 board
version and part number of the operating system (if applicable)
whether your board has been customized for options such as a higher processor speed
or additional memory
license agreements (if applicable)
If you do not have Internet access, please call Emerson for further assistance:
(800) 327-1251 or (608) 826-8006 (US)
44-131-475-7070 (UK)
Setup: Troubleshooting
KAT4000 User’s Manual 10007175-02
2-18
Product Repair
If you plan to return the board to Emerson Network Power for service, visit
http://www.artesyncp.com/support on the internet or send e-mail to
serviceinfo@artesyncp.com to obtain a Return Merchandise Authorization (RMA) number.
We will ask you to list which items you are returning and the board serial number, plus your
purchase order number and billing information if your KAT4000 hardware is out of war-
ranty. Contact our Test Services Department for any warranty questions. If you return the
board, be sure to enclose it in an antistatic bag, such as the one in which it was originally
shipped. Send it prepaid to:
Emerson Network Power, Embedded Computing
Test Ser vices Department
8310 Excelsior Drive
Madison, WI 53717
RMA #____________
Please put the RMA number on the outside of the package so we can handle your problem
efficiently. Our service department cannot accept material received without an RMA num-
ber.
10007175-02 KAT4000 User’s Manual 3-1
Section 3
Central Processing Unit
This chapter is an overview of the processor logic (optional) on the KAT4000. It includes
information on the CPU, exception handling, and the I/O parallel port pin assignments. The
KAT4000 uses a Freescale MPC8548 PowerQUICC III™ microprocessor. For more detailed
information, refer to the MPC8548E PowerQUICC III™ Integrated Host Processor Family Refer-
ence Manual. Refer to Fig. 3-1 for a block diagram of the MPC8548. The MPC8548 is divided
into two main system blocks as outlined in the following table:
Table 3-1: MPC8548 Features
Category: MPC8548 Key Features:
Microprocessor Core
Embedded e500 Core Full 32-bit Book E architecture, integer data types of 8, 16, and 32 bits,
32-bit floating-point data type, capable of issuing and completing two
instructions per clock cycle, 7 pipeline stages, Auxiliary Processing
Units (APUs), page address translation, core registers, memory
management unit
L1 Cache 32-kilobyte data and 32-kilobyte instruction cache, 32-byte line,
eight-way set associative, parity protection
L2 Cache 512 kilobytes, eight-way set associative
CPU Core Speed 1 GHz or 1.3 GHz, with a 400 MHz or 533 MHz DDR2 bus, respectively
Peripheral Modules
Ethernet Four 10/100/1000 enhanced three-speed controllers (eTSEC), full-
/half-duplex support, for high-speed interconnect, a set of multiplexed
pins support two high-speed interface standards: 1x/4x serial RapidIO
(with message unit) and up to x4 PCI Express
Local Bus Controller (LBC) DDR2 SDRAM memory controller, General Purpose Chip Select
Machine (GPCM), and three User-Programmable Machines (UPM)
High-Speed Serial
Interfaces
PCIe, sRIO
Central Processing Unit:
KAT4000 User’s Manual 10007175-02
3-2
Figure 3-1: MPC8548 Block Diagram
The MPC8548 PowerQUICC III version follows the PowerQUICC II communications proces-
sor. Some new MPC8548 features used on the KAT4000 include:
e500 core 32-bit implementation of the Book E architecture
Serial Management Channel (SMC) UART functionality implemented in SCC
Four integrated 10/100/1000 Ethernet controllers
Double Data Rate Two (DDR2) SDRAM memory controller
4-port On-Chip Network (OCeaN) full crossbar switch fabric
Enhanced debug features
For more detailed information, reference the Freescale application note Migrating from
PowerQUICC II to PowerQUICC III.

5/#>
6"
;
#5-
(&
/"
;6
/
;
./6#
#5
;
0
#5
MII, GMII,
TBI, RTBI,
RGMII, RMII
IRQs
DDR2 SDRAM
Flash GPIO
./""/
00&/""/
#";6/""/
.//6/""/B.C
./""/
0<&2
Serial
2(
--+,
2(
--+,
2(
--+,
2(
--+,
I2C
I2C
%*
(4#5
,/#
4x RapidIO
8x PCI Express
(/"&.%/
.//""/
PCI-X
133 MHz
7,.7F/""/
75"0/""/
MII, GMII,
TBI, RTBI,
RGMII, RMII
MII, GMII,
TBI, RTBI,
RGMII, RMII
RTBI, RGMII,
RMII
(#6/>
'
F%&
'
Central Processing Unit: MPC8548 Functions
10007175-02 KAT4000 User’s Manual 3-3
MPC8548 FUNCTIONS
The MPC8548 provides the following functions on the KAT4000 module.
•Dual UART devices
•Two I
2C controllers
Programmable interrupt controller
•DDR2 SDRAM memory controller
General-purpose I/O (GPIO)
Chip select generation for the local bus devices
DMA capability
•PCI-X bus interface
•sRIO or PCIe controller
Four three-speed Ethernet controllers
MICROPROCESSOR CORE (E500)
L1 Cache
The MPC8548 processor implements two separate 32-kilobyte, level-one (L1) instruction
and data caches that are eight-way, set-associative. The L1 supports a four-state modi-
fied/exclusive/shared/invalid (MESI) cache coherency protocol. The caches also employ
pseudo-least recently used (PLRU) replacement algorithms within each way.
L2 Cache
The internal 512 kilobyte L2 cache is an eight-way set associative instruction and data
cache. The L2 cache is fully pipelined to provide 32 bytes per clock to the L1 caches. The L2
Control (L2CTL) register configures and operates the L2 SRAM array. The L2CTL is
read/write and contents are cleared during power-on reset.
The L2 cache is cleared following a power-on or hard reset. Before enabling the L2 cache,
configuration parameters must be set in the L2CR and the L2 tags must be globally invali-
dated. Initialize the L2 cache during system start-up per the following sequence:
1Power-on reset is automatically performed by the assertion of HRESET* signal.
2Verify that L2CR[L2E] = 0.
3Perform an L2 global invalidate by setting L2CR[L21].
Central Processing Unit: Microprocessor Core (e500)
KAT4000 User’s Manual 10007175-02
3-4
4Poll L2CR[L2I] until it is cleared.
5Enable the L2 cache for normal operation and then set the L2CR[L2E].
Timer/Counter
Each of the four 32-bit wide timer/counters can be selected to operate as a timer or a
counter. Each timer/counter increments with every TCLK rising edge. In counter mode, the
counter counts down to terminal count, stops, and issues an interrupt. In timer mode, the
timer counts down, issues an interrupt on terminal count, reloads itself to the programmed
value, and continues to count. Reads from the counter or timer are completed directly from
the counter, and writes are to the timer/counter register.
PCI Device and Vendor ID Assignment
The KAT4000 has been assigned the following PCI identification number:
Table 3-2: PCI Device and Vendor ID
The KAT4000 sets the PCI revision ID to the hardware version number located in the CPLD’s
Hardware Version register (Register Map 7-2).
L2 Control Register (L2CR)
Register 3-1: L2 Control Register (L2CR)
L2E: L2 Enable—enables L2 cache or memory-mapped SRAM (L2 array).
0 L2 array disabled
1 L2 array enabled
L2I: L2 Flash Invalidate
0 L2 status and LRU bits are not being cleared
1 Clears all L2 status bits and LRU
Vendor ID: Device ID: Description:
0x1223 0x001B Reported by the PCI bridge
0123456 8910111213 15
L2E L2I L2SIZ reserved L2
DO
L2I0 RL2IN
TDIS
L2SRAM
16 17 18 19 20 21 22 23 24 27 28 29 30 31
reserved L2
LO
L2
SLC
RL2LF
R
L2LFRID reserved
L2STA
SHDIS
RL2STASH
Central Processing Unit: Microprocessor Core (e500)
10007175-02 KAT4000 User’s Manual 3-5
L2SIZ: L2 SRAM Size—indicates the total available L2 SRAM size (read-only).
00 Reserved
01 256 kilobyte
10 512 kilobyte
11 1024 kilobyte
L2DO: L2 Data-Only mode (reserved in full memory-mapped SRAM mode)
0 L2 cache allocates entries for instruction fetches that miss in the L2
1 L2 cache allocates entries for processor data loads that miss in the L2
L2IO: L2 Instruction Only—causes L2 cache to allocate lines for instruction cache transactions only
(reserved in full memory-mapped SRAM mode).
0 L2 cache entries allocated for data loads that miss in the L2 and for processor L1
castouts
1 L2 cache allocates entries for instruction fetch misses
L2INTDIS: L2 read Intervention Disable (reserved for full memory-mapped SRAM mode)
0 Cache intervention enabled
1 Cache intervention disabled
L2SRAM: L2 cache/memory-mapped SRAM block assignment
L2SIZ = L2BLKSIZ (1 block):
000 Block 0 = cache
001 Block 0 = SRAM0
010-111 Reserved
L2SIZ = L2BLKSIZx2 (2 blocks):
Block 0 Block 1
000 Not used Cache
001 SRAM0 Not used
010 SRAM0 Cache
011 SRAM0 SRAM1
100-111 Reserved
L2LO: L2 cache Lock Overflow—sticky bit sets when an overlook condition is detected in L2 cache
(reserved in full memory-mapped SRAM mode).
0 Lock overflow not detected (clear L2LO in software)
1 Lock overflow condition detected
L2SLC: L2 Snoop Lock Clear—sticky bit sets when a snoop invalidated a locked data cache line
(reserved in full memory-mapped SRAM mode).
0 Snoop did not invalidate (clear L2LO in software)
1 Snoop invalidated a locked line
Central Processing Unit: Microprocessor Core (e500)
KAT4000 User’s Manual 10007175-02
3-6
L2LFR: L2 cache Lock bits Flash Reset—L2 cache must be enabled for reset to occur (reserved in full
memory-mapped SRAM mode).
0 L2 cache lock bits are not cleared or the clear operation completed
1 Reset operation clears each L2 cache line’s lock bits
L2LFRID: L2 cache Lock bits Flash Reset select Instruction or Data—indicates whether data, instruc-
tion, or both bits are reset.
00 Not used
01 Reset data locks if L2LFR=1
10 Reset instruction locks if L2LFR=1
11 Reset both data and instruction locks if L2LFR=1
L2STASHDIS: L2 Stash allocate Disable—disables allocation of lines for stashing.
00 L2 allocates lines
01 L2 does not allocate lines
L2STASH: L2 Stash configuration—reserves regions of cache for stash-only operation.
00 No stash-only region
01 One-half of the array is stash-only
10 One-quarter of the array is stash-only
11 One-eighth of the array is stash-only
Hardware Implementation Dependent 0 Register
The Hardware Implementation Dependent 0 (HID0) register contains bits for
CPU-specific features. Most of these bits are cleared on initial power-up of the KAT4000.
Please refer to the MPC8548 PowerQuicc III Integrated Communications Processor Reference
Manual for more detailed descriptions of the HIDx registers. The following register map
summarizes HID0 for the MPC8548 processor:
Register 3-2: MPC8548 Hardware Implementation Dependent Register 0 (HID0)
EMCP: Enable Machine Check Pin—masks further machine check exceptions caused by assertion of
MCP*.
0 MCP* is disabled
1 MCP* is enabled
32 33 39 40 41 42 43 47
EM
CP
reserved DOZ
E
NAP SLP reserved
48 49 50 51 55 56 57 58 62 63
RTB
EN
STB
CLK
reserved
EN_
MAS7
DCF
A
reserved NOP
TI
Central Processing Unit: Microprocessor Core (e500)
10007175-02 KAT4000 User’s Manual 3-7
R: Reserved should be cleared.
DOZE: Doze power management mode
0 Doze mode disabled
1 Doze mode enabled
NAP: Nap power management mode
0 Nap mode disabled
1 Nap mode enabled
SLP: Sleep power management mode enable
0 Sleep mode disabled
1 Sleep mode enabled
TBEN: Time Base Enable
0 Time base disabled (no counting)
1 Time base enabled
STBCLK: Select Time Base Clock—functions if the time base is enabled.
0 Time base is based on the processor clock
1 Time base is based on the TBCLK (RTC) input
EN_MAS7: Enable MAS7 update—enables updating MAS7 by tibre and tibsx.
0 MAS7 is not updated
1 MAS7 is updated
DCFA: Data Cache Flush Assist—forces data cache to ignore invalid sets on miss replacement selec-
tion.
0 DCFA is disabled
1 DCFA is enabled
NOPTI: No-op the data and instruction cache touch instructions
0dcbt, dcbst, and icbt are enabled
1dcbt, dcbst, and icbt are treated as no-ops
Hardware Implementation Dependent 1 Register
One of the functions of the Hardware Implementation Dependent 1 (HID1) register is to
display the state of the PLL_CFG[0:4] signals. The following register map summarizes HID1
for the MPC8548 CPU:
Central Processing Unit: Interrupts and Exception Processing
KAT4000 User’s Manual 10007175-02
3-8
Register 3-3: MPC8548 Hardware Implementation Dependent Register 1 (HID1)
PLL_MODE: Read-only for integrated devices
01 Fixed value for MPC8548
PLL_CFG: This is reflected directly from configuration input pins (read-only). PLL_CFG[0-4] corre-
sponds to the integer divide ratio and PLL_CFG is the half-mode bit.
00010 0 ratio of 2:1
00010 1 ratio of 5:2 (2.5:1)
00011 0 ratio of 3:1
00011 1 ratio of 7:2 (3.5:1)
R: Reserved should be cleared.
RFXE: Read Fault Exception Enable—controls whether assertion of core_fault_in causes a machine
check interrupt.
0 Assertion of core_fault_in cannot cause a machine check
1 A machine check can occur due to assertion of core_fault_in
ASTME: Address bus Streaming Mode Enable
0 Mode disabled
1 Mode enabled
ABE: Address Broadcast Enable for dcbf, dcbst, dcbi, dcbic, icbic, mbar, msync, tlbsync
0 Disable address broadcasting for cache and TLB control operations
1 Enable address broadcasting for cache and TLB control operations
INTERRUPTS AND EXCEPTION PROCESSING
The interrupt process begins when an exception occurs. The MPC8548 e500 core processes
three types of interrupts: machine check, critical, or noncritical. Each interrupt type has
separate control and status register sets as listed in the following priority:
Machine Check (highest priority):
Machine Check Save and Restore registers (MCSRR0/MCSRR1) save state when they are
taken, and use rfmci instruction to restore state. The machine check enable bit, MSR[ME],
can mask these interrupts.
32 33 34 39 40 45 46 47
PLL_MODE PLL_CFG reserved
RFXE
R
48 49 50 51 52 63
reserved AST
ME
ABE reserved
Central Processing Unit: Interrupts and Exception Processing
10007175-02 KAT4000 User’s Manual 3-9
Noncritical: The processor is able to change program flow to handle conditions generated by external
signals, errors, or unusual conditions. The Save and Restore registers, SRR0/SRR1, save
state when they are taken and use the rfi instruction to restore state. The external interrupt
enable bit, MSR[EE], can mask these asynchronous interrupts.
Critical: The Critical Save and Restore registers, CSRR0/CSRR1, save state when they are taken dur-
ing a noncritical interrupt or regular program flow and use the rfci instruction to restore
state. The critical enable bit, MSR[CE], can mask these interrupts. This interrupt also
includes watchdog timer time-out inputs.
Machine State Register
The Machine State register (MSR) configures the state of the MPC8548. On initial power-up
of the KAT4000, most of the MSR bits are cleared. Please refer to the MPC8548 PowerQuicc
III Integrated Communications Processor Reference Manual for more detailed descriptions of
the individual bit fields.
Register 3-4: CPU Machine State Register (MSR)
R: Reserved should be cleared.
UCLE: User-mode Cache Lock Enable—restricts user-mode cache-line locking by the operating sys-
tem.
0 Any cache lock instruction takes a cache-locking DSI exception
1 A cache-locking DSI is not taken
SPE: Signal Processing Engine enable
0 An SPE APU unavailable exception occurs
1 Software can execute supported SPE and SPFP APU instructions
WE: Wait state Enable—allows the core complex to signal a request for power management.
0 CPU continues processing
1 CPU enters wait state
CE: Critical Enable
0 Critical input and watchdog timer interrupts disabled
1 Critical input and watchdog timer interrupts enabled
32 36 37 38 39 44 45 46 47
reserved
UCLE
SPE reserved WE CE R
48 49 50 51 52 53 54 55 57 58 59 60 61 62 63
EE PR RMER
UBLE
DE reserved IS D RPM reserved
Central Processing Unit: Peripheral Interface
KAT4000 User’s Manual 10007175-02
3-10
EE: External interrupt Enable—allows the processor to take external input, fixed-interval timer,
system management, performance monitor, or decrementer interrupts.
0 Disabled
1Enabled
PR: Privilege level
0 Supervisor-level instructions are executed
1 User-level instructions are executed
ME: Machine check Enable
0 Machine check interrupts disabled
1 Machine check interrupts enabled
UBLE: User BTB Lock Enable
0 Execution of the BTB lock instructions for user mode disabled
1 Execution of the BTB lock instructions for user mode enabled
IS: Instruction address Space
0 CPU directs all instruction fetches to address space 0
1 CPU directs all instruction fetches to address space 1
DS: Data address Space
0 CPU directs data memory accesses to address space 0
1 CPU directs data memory accesses to address space 1
PM: Marks a process for the Performance Monitor
0 Process is not marked
1 Process is marked
PERIPHERAL INTERFACE
The MPC8548 uses the peripheral bus to communicate with its peripherals. Table 3-3 lists
the order in which the processor handles requests from peripherals.
Table 3-3: MPC8548 Peripheral Request Priority
Priority: Function: Request:
Highest 1 Reset in the Communication Processor Command register (CPCR)
or System Reset (SRESET*)
2 SDMA bus error
3 Commands issued to the CPCR
4 Emergency (from FCCs, MCCs, and SCCs)
5 IDMA(1-4) emulation (default option 1)11
6FCC1 receive
7FCC1 transmit
Central Processing Unit: MPC8548 Peripheral Modules
10007175-02 KAT4000 User’s Manual 3-11
1. The priority of each IDMA channel is programmed independently.
MPC8548 PERIPHERAL MODULES
Three-Speed Ethernet Controllers (TSEC)
Two TSECs incorporate a MAC sublayer that supports 10 Mbps, 100 Mbps, and 1 Gbps
Ethernet networks. See Chapter 4 for information on the Ethernet interface.
8MCC1 receive
9MCC2 receive
10 MCC1 transmit
11 MCC2 transmit
12 FCC2 receive
13 FCC2 transmit
14 FCC3 receive
15 FCC3 transmit
16 SCC1 receive
17 SCC1 transmit
18 SCC2 receive
19 SCC2 transmit
20 SCC3 receive
21 SCC3 transmit
22 SCC4 receive
23 SCC4 transmit
24 IDMA(1-4) Emulation (option 2)11
25 SMC1 receive
26 SMC1 transmit
27 SMC2 receive
28 SMC2 transmit
29 SPI receive
30 SPI transmit
31 I2C receive
32 I2C transmit
33 RISC timer table
Lowest 34 IDMA(1-4) emulation (option 3)11
Priority: Function: Request: (continued)
Central Processing Unit: Processor Reset and Clocking Signals
KAT4000 User’s Manual 10007175-02
3-12
Local Bus Controller (LBC)
The MPC8548 LBC connects to external memory, DSP and ASIC devices. There are three
separate state machines:
General-Purpose Chip Select Machine (GPCM) controls access to asynchronous devices
User Programmable Machine (UPM) interfaces synchronous devices
The Synchronous DRAM (SDRAM) controller provides access to standard SDRAM
Chip Select Generation
The MPC8548 memory controller functions as a chip select (CS) generator to access on-
board memory devices, saving the board’s area which results in reduced cost, power con-
sumption, and increased flexibility. Table 3-4 lists the chip selects for the KAT4000 module.
Table 3-4: MPC8548 Chip Select
2. Jumper selectable (see “Jumpers” on page 2-5 for jumper options).
PROCESSOR RESET AND CLOCKING SIGNALS
The MPC8548 external reset and clocking signals include:
HRESET*: Hard Reset input completely resets the MPC8548 and causes a power-on reset (POR)
sequence.
HRESET_REQ*: Hard Reset Request output causes internal block requests that HRESET* be asserted. This
can be requested by a hardware device, for example a watchdog timer event.
SRESET*: Soft Reset input causes a machine check interrupt assertion to the e500 core to undergo its
soft reset sequence.
READY: Ready output means the MPC8548 has completed the reset operation and is not in a
power-down (nap, doze, or sleep) or debug state.
Select: Assignment:
CS0* Boot (Socketed or NOR Flash)22
CS1* Flash 0
CS2* Flash 1
CS3* Socketed Flash
CS4* KSL Programmable Logic Device (PLD)
CS5* NAND Flash
CS6* Ethernet Core Switch
CS7* Fat Pipe
Central Processing Unit: MPC8548 Exception Handling
10007175-02 KAT4000 User’s Manual 3-13
SYSCLK: System Clock is the primary clock input to the e500 core and all the devices and interfaces
that operate synchronously with the core.
RTC: Real-Time Clock is an input to the MPC8548. Optionally, it can be used to clock the e500
core timer facilities and by the MPC8548 PIC global timer facilities.
MPC8548 EXCEPTION HANDLING
Each type of CPU exception transfers control to a different address in the vector table. The
vector table normally occupies the first 8 kilobytes of RAM (with a base address of
0000,000016) or Flash (with a base address of E000,000016). An unassigned vector position
may be used to point to an error routine or for code or data storage.
Table 3-5 lists the exceptions recognized by the MPC8548 and the conditions that cause
them.
Table 3-5: MPC8548 Exceptions
IVOR: Type:
Vector
Offset Hex
Address: Notes:
reserved 00000
IVOR0 Critical Input 00100 Caused when MSR[CE]=1
IVOR1 Machine Check 00200 Caused when MSR[ME]=1
IVOR2 Data Storage
Interrupt (DSI)
00300 Caused by one of the following exception conditions: read
access control, write access control, byte-ordering, cache
locking or storage synchronization
IVOR3 Instruction Storage
Interrupt (ISI)
00400 Caused by one of the following exception conditions:
execute access control or byte-ordering
IVOR4 External Interrupt 00500 Caused when MSR[EE]=1
IVOR5 Alignment 00600 Caused when the processor core cannot perform a
memory access
IVOR6 Program Check 00700 Caused by one of the following exception conditions:
illegal instruction, privileged instruction, trap or
unimplemented operation
IVOR7 Floating-Point
Unavailable
00800 If MSR[FP]=0, the floating point registers are disabled and
attempting to execute any floating point instruction
causes a floating point unavailable exception
IVOR8 System Call 00900 Caused by the execution of a System Call (sc) instruction
IVOR10 Decrementer 00A00 Caused when TSR[DIS]=1, TCR[DIE]=1 and MSR[EE]=1
IVOR11 Interval Timer 00B00 Caused when TSR[FIS]=1, TCR[FIE]=1 and MSR[EE]=1
IVOR12 Watchdog Timer 00C00 Caused when TSR[WIS]=1, TCR[WIE]=1 and MSR[CE]=1
IVOR13 Data TLB Error 00D00 Caused by a Data TLB Miss exception condition
IVOR14 Instruction TLB Error 00E00 Caused by an Instruction TLB Miss exception condition
Central Processing Unit: JTAG/COP Interface
KAT4000 User’s Manual 10007175-02
3-14
JTAG/COP INTERFACE
A single JTAG/COP header is provided for debug purposes for the processor. This interface
provides for boundary-scan testing of the CPU (see Fig. 3-2) and is compliant with the IEEE
1149.1 standard. The header pin assignments are defined in Table 3-6.
Caution: Install a shunt on JP1 pins 1:2 before using the JTAG/COP interface (P1) to enable CPU
JTAG/COP access. Attempting to use the JTAG/COP interface without this shunt in place may
cause damage to the board. Refer to Table 7-3 for JP1 pin details.
Figure 3-2: Processor JTAG/COP Diagram
Figure 3-3: Processor JTAG/COP Header
IVOR15 Debug 00F00 Caused when a debug exception exists in the DBSR and
when DBCR0[IDM]=1 and MSR[DE]=1
IVOR: Type:
Vector
Offset Hex
Address: Notes: (continued)
!
DEBUG_HRESET*
DEBUG_SRESET*
DEBUG_TRST*
COP
Debug
15
TDO
TDI
TCK
TMS
TRST*
16
2
3_3V (2.5V optional)
.75A
PICO_FUSE
MPC8548
Processor
Internal PU
TDO
TDI
TCK
TMS
CKSTP_OUT*
TRST*
KSL
PLD
3_3V
CPU_TDO
CPU_TDI
CPU_TCK
CPU_CKSTP_OUT*
CPU_TMS
CPU_HRESET*
CPU_SRESET*
CPU_TRST*
CPU_TDI
CPU_TCK
CPU_TMS
DEBUG_SRESET*
DEBUG_HRESET*
CPU_CKSTP_OUT*
CPU_TDO
3_3V
5.11K
5.11K
5.11K
5.11K
Central Processing Unit: No Processor Configuration
10007175-02 KAT4000 User’s Manual 3-15
Table 3-6: Processor JTAG/COP Pin Assignments (P1)
CPU_CKSTP_OUT*: Checkstop Output—when asserted, this output signal indicates that the CPU has detected a
checkstop condition and has ceased operation.
CPU_TCK: Test Clock Input—scan data is latched at the rising edge of this signal.
CPU_TDI: Test Data Input—this signal acts as the input port for scan instructions and data.
CPU_TDO: Test Data Output—this signal acts as the output port for scan instructions and data.
CPU_TMS: Test Mode Select—this input signal is the test access port (TAP) controller mode signal.
DEBUG_HRESET*: Hard Reset—this input signal indicates that a complete Power-on Reset must be initiated by
the processor.
DEBUG_SRESET*: Soft Reset—this input signal indicates that the processor must initiate a System Reset inter-
rupt.
DEBUG_TRST*: Test Reset—this input signal resets the test access port.
NO PROCESSOR CONFIGURATION
If a processor is not used on the KAT4000, the Ethernet core switch and GbE fat pipe switch
module (optional) are managed by an 8051 microcontroller internal to each switch. Cus-
tom configuration of the switch is possible through one of two user interfaces on each
switch. See “Appendix A” for more information.
Pin: Signal: Pin: Signal:
1CPU_TDO 2Not connected
3CPU_TDI 4DEBUG_TRST*
5Not connected 6 JT_3_ 3V (fused)
7CPU_TCK 8Not connected
9CPU_TMS 10
Not connected
11 DEBUG_SRESET* 12 GND
13 DEBUG_HRESET* 14 Not connected
15 CPU_CKSTP_OUT* 16 GND
KAT4000 User’s Manual 10007175-02
3-16
(blank page)
10007175-02 KAT4000 User’s Manual 4-1
Section 4
Common Switch Region
The KAT4000 supports multiple interfaces. This chapter describes the Ethernet core switch,
switch configuration, Ethernet address and PCI Express switch. The board area network
(BAN) refers to the routing of the Ethernet ports using the Vitesse VSC7376 Gigabit Ether-
net (GbE) core switch or the PCIe ports using the PEX 8524 PCI Express switch. The Ethernet
core switch provides the interconnect between the fat pipe switch module, the Ethernet
ports on the AMC sites, the processor, two channels on the ATCA backplane base fabric,
Zone 3, and the Update Channel (optional) (see Fig. 4-1). The PCI Express switch provides
the interconnect between the AMC sites, the processor, and the fat pipe switch module.
Both switches are optional, however at least one of the two must be used on the board. The
board can also use both switches.
Figure 4-1: Board Area Network
VSC7376
Ethernet Core
Switch
Layer 2
(Optional)
MPC8548
Processor
(Optional)
IPMB Base High Speed
Fabric A
Clock RTM I/O
(Optional)
High Speed
Fabric B
10/100 Debug Eth (MII)
To Zone 3
(Optional)
Zone 3
Connections
(Opt.)
To
Core
Eth
Switch
(Opt.)
SERDES
RGMII
Xfmr
Xfmr (2)
GbE
PHYs (2)
4
GMII/RGMII
10/100
PHY
Xfmr
GbE Fat Pipe
Switch Module
(Optional)
GbE
PHY
2
/
AMC (x4) Single Wide,
Mid-Size or Compact
To
Core
Eth
Switch
2
/
2(-2(
2(
2(
To Zone 3 2 SERDES
SERDES
4 SERDES
4 SERDES
4 SERDES
2 SGMII
SERDES
SERDES
4 SERDES
SERDES
GbE
PHYs (2)
Optional
PCIe or GbE
on port 1
PCIe
(x1 or x4)
PEX8524
PCI Express Switch
(Optional)
PCIe
To Update Channel
on J20 (Optional)
710
11
15,17
4,6
14,16
0,2:B1 12,13:B2
18,20:B3 22,24:B4
811:B3
12
1347 03
1417:B4
1821:B2
2225:B1
0
1
8:B1
10:B3
9:B2
11:B4
/7 /7
PCIe
GbE
GbE
GbE
GbE
GbE
P10 J20 Zone 3J23
Common Switch Region: Ethernet Core Switch (optional)
KAT4000 User’s Manual 10007175-02
4-2
ETHERNET CORE SWITCH (OPTIONAL)
The optional Vitesse VSC7376 GbE switch is a multilayer switch with 26 tri-speed
(10/100/1000 Mbps) SGMII Ethernet ports and integrated 1000Base-BX (SerDes) inter-
faces. The GbE switch supports the following:
Two SGMII Ethernet ports connected from the switch to the ATCA backplane base fabric
via PHYs (PICMG 3.0)
Two 1000Base-BX (SerDes) Ethernet ports routed between the processor and the switch
Up to two 1000Base-BX (SerDes) Ethernet ports routed between each AMC site and the
switch (AMC.2)
One 1000Base-BX (SerDes) Ethernet port routed between the fat pipe switch module
and the switch (AMC.2)
Four 1000Base-BX (SerDes) Ethernet ports connected from the switch to the Update
Channel interface on J20 on the backplane (optional)
Two 1000Base-BX (SerDes) Ethernet ports routed between the switch and Zone 3
Features of the switch include:
Layer 2 switching capable of running 26 GbE ports at full bit rate
Layer 2 features implemented: jumbo frames, port mirroring, quality-of-service and
traffic shaping
Automatic configuration to a user definable default state at power-up; these include
non-volatile Virtual Local Area Network (VLAN) table settings with the ability to modify
in the field. The configuration and management of the switch is done via the processor
local bus. In the no-CPU configuration, the on-chip 8051 microprocessor controls
configuration and management of the switch.
IEEE 802.1Q and port-based VLANs, IEEE 802.1D spanning tree protocol, and IEEE
802.3AD link aggregation control protocol
See Fig. 4-2 for a block diagram of the switch. For more information, reference the HawX-
G26 – 26-Port 10/100/1000 Managed Layer 2 Ethernet Switch, VSC7376 Data Sheet.
Note: Proprietary information on the Vitesse switch is not available in this user’s manual. Please refer to the Vitesse
web site for documentation, http://www.vitesse.com.
Common Switch Region: Ethernet Core Switch (optional)
10007175-02 KAT4000 User’s Manual 4-3
Figure 4-2: VSC7376 GbE Switch Block Diagram
Switch Configuration
The processor has a local bus connection to the Ethernet core switch and the fat pipe switch
module (reads and writes directly to the registers). On power-up, the configuration values
are read from flash and the chip is initialized.
To configure the switch, see the KAT4000 Quick Start Guide, #10008585-xx. For the no-CPU
KAT4000 Ethernet switch configuration, see Appendix A or the KAT4000 Quick Start Guide
for the No-CPU Carrier Board, #10008506-xx.
High-Speed Serial Data Path Configuration
The KAT4000 design implements several types of high-speed serial protocols: Gbe, sRIO,
and PCIe. Proper setup of the devices driving data onto and receiving data from the inter-
connecting transmission lines is important for optimal performance. Configurable device
parameters include drive strength, gain, impedance, equalization, and pre-emphasis. The
configuration of some serial paths has been set by Emerson and should not be changed. For
paths that go off the board (e.g., to AMC sites, the backplane), the user must be aware of
device register settings for devices at both ends of the transmission line and set them
appropriately to meet device specifications and achieve full bandwidth performance.











 




Port Block


 




Port Block



Frame Bus
 




Common Switch Region: Ethernet Core Switch (optional)
KAT4000 User’s Manual 10007175-02
4-4
On-Board Path Device Settings
Caution: On-board device values are determined by Emerson. Do not change these values. Altering
on-board device values could cause system failure.
Note: Proprietary information regarding register function or effect is not available in this user’s manual. Please
contact the PHY or switch manufacturer directly for details.
Table 4-1 lists the KAT4000 PHYs and their respective addresses.
Table 4-1: KAT4000 PHYs and Address Values
The Ethernet core switch has the following on-board ports: 14, 15, 16 and 17. The Ethernet
switch on the GbE fat pipe switch module uses on-board port 13.
Off-Board Path Device Settings
Modify off-board register values with the switch_reg or phy commands. See “phy” on
page 14-25 or “switch_reg” on page 14-27 for details.
Note: Proprietary information regarding register function or effect is not available in this user’s manual. Please
contact the switch manufacturer directly for details.
Table 4-2 shows the Ethernet core switch default off-board ports.
Table 4-2: Ethernet Core Switch Off-Board Ports
PHY: Address:
Base Channel 1/TSEC2 0x2
Base Channel 2/TSEC3 0x3
TSEC2 (from CPU to Ethernet switch) 0x4
TSEC3 (from CPU to Ethernet switch) 0x5
Fat Pipe/TSEC4 0x6
Destination: Port:
Update Channel 7,8,9,10
Zone 3 4,6
AMC1-4 12,13,18,20,1
!
Common Switch Region: Ethernet Address for the KAT4000
10007175-02 KAT4000 User’s Manual 4-5
Table 4-3 shows the GbE fat pipe’s Ethernet switch default off-board ports.
Table 4-3: GbE Fat Pipe Module Ethernet Switch Off-Board Ports
Ethernet Transceivers
The Marvell 88E1111 gigabit Ethernet transceivers are used to interface between the pro-
cessor MACs and the Ethernet switch ports. They are also used to connect two switch ports
to the backplane base channel 1 and 2 interfaces. The 88E1111 device is
10/100/1000BASE-T IEEE 802.3 compliant.
The Broadcom BCM5241 10/100BASE-TX/FX transceiver provides a physical interface to
the processor’s debug Ethernet MAC (eTSEC1). The BCM5241 complies with the IEEE 802.3
standard.
ETHERNET ADDRESS FOR THE KAT4000
The Ethernet address for your board is a unique identifier on a network and must not be
altered. The address consists of 48 bits (Medium Access Control—MAC [47:0]) divided into
two equal parts. The upper 24 bits define a unique identifier that has been assigned to Arte-
syn Communication Products by IEEE. The lower 24 bits are defined by Artesyn for identifi-
cation of each of our products.
The Ethernet address for the KAT4000 is a binary number referenced as 12 hexadecimal
digits separated into pairs, with each pair representing eight bits. The address assigned to
the KAT4000 has the following form:
00 80 F9 xx yy zz
00 80 F9 is Artesyn’s identifier. The last three bytes of the Ethernet address comprise the
data for the Ethernet addresses in non-volatile memory (NVRAM). The KAT4000 has been
assigned the Ethernet address range 00:80:F9:92:00:00 to 00:80:F9:95:FF:FF. The format is
shown in Table 4-4.
Destination: Port:
AMC1 22,23,24,25
AMC2 18,19,20,21
AMC3 8,9,10,11
AMC4 14,15,16,17
Fabric Channel 1 4,5,6,7
Fabric Channel 2 0,1,2,3
Common Switch Region: Ethernet Address for the GbE Fat Pipe
KAT4000 User’s Manual 10007175-02
4-6
Table 4-4: Ethernet Port Address Numbering
The last pair of hex numbers correspond to the following formula: n— 1000, where n is the
unique serial number assigned to each board. For example, if the serial number of a
KAT4000 is 2867, the calculated value is 1867 (74B16). Therefore, the board’s port 2 Ether-
net address is 00:80:F9:93:07:4B. The ports are assigned as follows: eTSEC1—Ethernet
debug port, eTSEC2—Ethernet core switch, eTSEC3—Ethernet core switch, and eTSEC4—fat
pipe switch module.
ETHERNET ADDRESS FOR THE GBE FAT PIPE SWITCH MODULE
The GbE fat pipe switch module has been assigned the Ethernet address range
00:80:F9:06:C0:00 to 00:80:F9:06:FF:FF. The address format is the same as described in
“Ethernet Address for the KAT4000”.
Offset: MAC: Description:
Ethernet
Identifier
(Hex):
Byte 5 15:0 LSB of (serial number -1000)
Byte 4 MSB of (serial number -1000)
Byte 3 23:16 Port 4 (eTSEC4) 95
Port 3 (eTSEC3) 94
Port 2 (eTSEC2) 93
Port 1 (eTSEC1) 92
Byte 2 47:24 Assigned to Artesyn by IEEE F9
Byte 1 80
Byte 0 00
Common Switch Region: PCI Express Switch (optional)
10007175-02 KAT4000 User’s Manual 4-7
PCI EXPRESS SWITCH (OPTIONAL)
The optional PLX Technology, Inc. PEX 8524 PCI Express switch device contains 24 PCI
Express lanes and up to six ports. The PCIe switch supports the following:
One port connected from each AMC site to the switch (AMC.0 and AMC.1)
One port connected from the processor to the switch (one x1 or one x4 port)
Four lanes connected from the fat pipe switch module to the switch with these possible
port configurations: four x1 ports, two x2 ports or one x4 port.
Features of the switch include:
PCI Express interface at 2.5 Gbps transfer rate
24 PCI Express lanes (SerDes [7:0] and [32:16]) and up to six ports (assign x1, x2, or x4
lanes to ports 0, 1, 8, 9, 10 or 11)
Link power management states (L0, L0s, L1, L2/L3 Ready and L3) and device power
management states (D0 and D3hot)
EEPROM interface signals
JTAG boundary scan interface signals
•Compliant with PCI Express Base 1.0a and PCI Standard Hot Plug r1.0
Note: The device ID for the PEX 8524 switch reads “8532h” because the PEX 8524 and PEX 8532 share the same
base device.
For more information, reference the PEX 8524 Versatile PCI Express™ Switches Data Book.
Note: Proprietary information on the PCIe switch is not available in this user’s manual. Please refer to the PLX
Technology web site for documentation, http://www.plxtech.com.
Common Switch Region: PCI Express Switch (optional)
KAT4000 User’s Manual 10007175-02
4-8
PCI Express Interface
Figure 4-3: PEX 8524 Block Diagram
The stations implement the PCI Express Base 1.0a Physical, Data Link, and Transaction layers.
Each PCI Express station is able to support up to 16 integrated Serializer/De-serializer
1000Base-BX (SerDes) modules, which provide PCI Express hardware interface lanes. These
lanes can be configured to support up to four PCI Express ports per station. The PEX 8524
contains two stations (Station 0 and Station 1), connected by non-blocking Crossbar Switch
fabric.
From the system model viewpoint, each PCI Express port is a virtual PCI-to-PCI bridge
device and contains its own set of PCI Express Configuration registers. One of the ports on
either station can be designated the Upstream port (or primary bus in PCI terms). Through
use of the Upstream port, the firmware configures the other ports during standard PCI enu-
meration.
Note: The PCI Express Upstream Station supports Upstream ports and Downstream ports at the same time, but
lanes from different stations cannot be combined to form ports.


































Common Switch Region: PCI Express Switch (optional)
10007175-02 KAT4000 User’s Manual 4-9
EEPROM Interface
The PEX 8524 has an embedded 64-kilobyte SPI EEPROM controller. This direct interface
provides the 7.8 MHz serial clock (EE_SK), chip select (EE_CS*), and data output (EE_DO)
for the EEPROM; and receives data input (EE_DI) from the EEPROM.
Figure 4-4: PEX 8524 SPI EEPROM Interface
JTAG Controller Interface
The PEX 8524 supports a five pin JTAG interface that complies with IEEE standard 1149.1
and 1149.6 Boundary-Scan signals. The JTAG interface consists of the following signals:
Table 4-5: PEX 8524 JTAG Signals
Signal:
Signal
Name: Type: Description:
JTAG_ TCK Test clock in This is the clock source for the PEX 8524
Test Access Port (TAP) and may be any
frequency from 0 to 10 MHz.
JTAG_ TDI Test data input in This inputs data to the TAP.
JTAG_ TDO Test data
output
out This transmits serial data from the TAP.
JTAG_ TMS Test mode
select
in The TAP state machine uses the TMS to
determine the TAP mode.
JTAG_ TRST* Test reset in This resets JTAG and the TAP. It should be
toggled or held at 0 for the PEX 8524 to
function properly.
PEX 8524
Initialization
Serial
EEPROM
EE_CS*
EE_DI
EE_DO
EE_SK
+3.3 V
+3.3 V
Serial
EEPROM
Controller
( (
Port 1Port 0 Port 9Port 8 Port 11Port 10
Configuration Data
KAT4000 User’s Manual 10007175-02
4-10
(blank page)
10007175-02 KAT4000 User’s Manual 5-1
Section 5
Fat Pipe Switch Module
The fat pipe switch module is a plug-over module that provides a high-speed interconnect
between the AMC modules, the ATCA high-speed fabric ports, the processor, and the
Ethernet core switch or the PCIe switch on the KAT4000. There are four configurations of
the fat pipe switch module: GbE, 10 GbE-1 GbE, 10 GbE-10 GbE and sRIO.
Note: The 10 GbE-10 GbE and sRIO modules are not yet available for order.
All fat pipe switch configurations support:
Four ports connected from each AMC site to the fat pipe switch capable of
interchangeably using GbE, sRIO or 10 GbE protocols
Eight GbE 1000Base-BX (SerDes) ports connected from the backplane high-speed fabric
to the fat pipe switch
Two ports connected from the fat pipe switch to Zone 3 for (optional) RTM access
The GbE and 10 GbE configurations also provide:
One port for a dedicated GbE channel from the MPC8548 processor to the fat pipe
switch
One port for a dedicated GbE channel from the Ethernet core switch to the fat pipe
switch
The sRIO configuration also provides:
One or four ports for a dedicated sRIO channel from the MPC8548 processor to the fat
pipe switch
Fat Pipe Switch Module: GbE Fat Pipe Switch Module
KAT4000 User’s Manual 10007175-02
5-2
GBE FAT PIPE SWITCH MODULE
Fig. 5-1 shows how the GbE fat pipe switch module maps to ports defined by the AMC.0
specification; see Fig. 1-3 for the full port mapping diagram.
Figure 5-1: AMC Port Map Fat Pipes Region–GbE
Fat Pipes: This region supports data path connections such as GbE. It can carry large amounts of data
without significantly degrading the speed of transmission.
x1: This refers to the link width of the port (the number of lanes that can be used to intercon-
nect between two link partners).
The following diagram shows the implementation of the GbE fat pipe switch module on the
KAT4000:
Figure 5-2: Signal Routing of the GbE Fat Pipe Switch Module on the KAT4000
Port Mapping
Port #
Basic
Connector
&'
+,
+,
+,
+,
01 +,
(4#56"
."
VSC7376
Ethernet Core Switch
Layer 2
MPC8548
Processor
GbE
GbE
RGMII
4
44
Fat Pipe Switch Module
GbE
GbE
PHY

 
AMC (x4) Single Wide,
Half/Full/Extended Height
I2C
Fat Pipe
Local bus
GbEGbE
GbE
2 GbE
Base High Speed
Fabric A
Clock RTM I/O
(Optional)
High Speed
Fabric B
J20 Zone 3J23
Fat Pipe Switch Module: GbE Fat Pipe Switch Module
10007175-02 KAT4000 User’s Manual 5-3
The following block diagram provides a functional overview for the GbE fat pipe switch
module:
Figure 5-3: GbE Fat Pipe Switch Module Block Diagram
PLD
Clock
SEEPROM
VSC7376
26-port GbE Switch
180-pin high-speed connector
I2C SDA/SCL
(18) GbE
ports
120-pin high-speed
connector
JTAG
Clock
Address bus
Flash*
Switch
SRAM*
=25(4#5(&"5/
">?","455
7<2,/
(8) GbE ports
GPIO
SPI Management
Interface
8-bit data bus
GPIO
Power
Supplies (2)
Fat Pipe Switch Module: GbE Fat Pipe Switch Module
KAT4000 User’s Manual 10007175-02
5-4
GbE Fat Pipe Switch Module Circuit Board
The following figures show the component maps for the GbE fat pipe switch module circuit
board.
Figure 5-4: GbE Fat Pipe Switch Module Component Map, Top (Rev. 00)
Figure 5-5: GbE Fat Pipe Switch Module Component Map, Bottom (Rev. 00)
R40
R41
R42
R44
R43
R46
R45
R49
R52
R51
CR1
C19
C20 C17
C15
C16
R3
U4
EEPROM
C7
C24
C8
C23 L2
L1
C4
C22
C21
C2
C6
C18
C3
U1
U5
VSC7376 26-Port
GbE Switch
Y1
C12
U3
PLD U2
C1
C9
C14
C10
R18
R25
C11
C13
R37
R21
R55
R36
R53
R54
R57
R48
R13
R6
R5
R4
R7
R10
R24
R8
R26
R12
R35
R16
R58
R59
R60
R61
R64
R65
R63
R62
R69
R68
R66
R67
R73
R72
R71
R70
R77
R76
R75
R74
R80
R79
R78
R28
R22
R19
R20
R15
R14
R11
R56
R38
R34
R39
R2
R9
R17
R27
C5
R32
R50
(for processorless
KAT4000)
U6
Switch SRAM
R1
R47
R33
R31
R23
R30
R29
J1
J2
U7 Flash
(for processorless
KAT4000)
XXXX-
YYYYYY
00001234-00-AA D
R166
R165
R164
R163
R162
R161
R160
R159
R127
R128
R129
R130
R101
R100
R99
R102
R110
R104
R108
R107
R112
R103
R111
R106
R105
R117
R116
R119
R118
R109
R113
R114
R115
R90
R89
R93
R92
R96
R91
R95
R94
R81
R84
R85
R97
R86
R98
R87
C166
R155
R156
R157
R132
R147
R149
R153
R148
R151
R152
R131
R150
R154 R126
R125
R124
R123
R158
R122
R121
R120
R133
R134
R135
R136
R138
R137
R139
R140
R88
R142
R141
R145
R146
R143
R144
C31
C32
C41
C42
C57
C66
C28
C27
C58
C68
C79
C72
C95
C103
C78
C70
C104
C96
C152
C153
C136
C144
C135
C143
C155
C154
C51
C52 C38
C37
C47
C48 C34
C33
C46
C45
C133
C141
C142
C134
C107
C100
C108
C102
C99
C92
C101
C93
C83
C76
C77
C84
R83
R82
C25
C26
C65
C71
C87
C94
C73
C67
C40
C39
C30
C29
C151
C150
C128
C127
C130
C129
C148
C149
C97
C88
C69
C64
C54
C53
C49
C50 C36
C35
C44
C43
C139 C137
C90
C111
C117 C116
C119
C120
C105
C106
C112
C91
C118C125
C132C138
C146
C123 C115
C75
C74
C109C124
C145
C61
C63
C147
C122
C62 C60 C59
C89
C114
C156
C162C163
C164
C159
C160
C161
C165
C80
C82
C140
C121
C81
C98
C110
C131
C55
C56
C157
C12
C85
C86
C11
C158
CR5
CR4
CR3
CR2
Fat Pipe Switch Module: GbE Fat Pipe Switch Module
10007175-02 KAT4000 User’s Manual 5-5
Components and Features
The following is a summary of the GbE fat pipe switch module hardware components and
features:
VSC7376, HawX-G26 GbE Switch:
The Vitesse VSC7376 GbE switch is a multilayer switch with 26 tri-speed (10/100/1000
Mbps) SGMII Ethernet ports and integrated 1000Base-BX (SerDes) interfaces. It is located
from FC16,0000-FC17,FFFF. This type of switch is also used on the KAT4000 board. For
more information about the VSC7376, see “Ethernet Core Switch (optional)” on page 4-2.
The default fat pipe switch is not configured. To configure the switch, see the KAT4000
Quick Start Guide, #10008585-xx.
PLD: The PLD is the interface between the local bus and the VSC7376 parallel interface. It con-
tains registers for fat pipe module control. For more information, see “GbE Fat Pipe Switch
Module PLD.
I2C SROM EEPROM: The 64 Kb EEPROM is used to store VSC7376 configuration information.
Flash: (Available only with the no-CPU KAT4000 board.) The 4 Mb asynchronous flash is used to
store firmware on the VSC7376 switch.
SRAM Memory: (Available only with the no-CPU KAT4000 board.) The 256 Kb asynchronous SRAM is used
by the on-board VSC7376 firmware.
JTAG: Resistors allow the JTAG to bypass the switch. See Fig. 5-6 for details.
Figure 5-6: GbE Fat Pipe Switch JTAG
LEDs: CR2-4 (green) and CR5 (red) on the bottom side of the board are generic LEDs for use by
the firmware.
High-Speed Connectors:
25
2
PLD
VSC7376
Ethernet
Switch
TMS, TCK
PLD_TDI
/5
2
PLD_TDO_R PLD_TDO VSC7376_TDO_R VSC7376_TDO
Fat Pipe Switch Module: GbE Fat Pipe Switch Module
KAT4000 User’s Manual 10007175-02
5-6
J1 is a 120-pin high-speed connector that provides an interface to the four AMC sites, the
Ethernet core switch and an 88E1111 Gigabit PHY. J2 is a 180-pin high-speed connector
that provides an interface to the RTM channel, clock, PLD, processor, and Zone 2 via fabric
channels 1 and 2.
Reset: Reset of the GbE fat pipe switch is shown in Fig. 5-7.
Figure 5-7: GbE Fat Pipe Switch Reset
GbE Fat Pipe Switch Module PLD
The PLD is used to interface to the fat pipe VSC7376 Ethernet switch and is located from
FC14,0000-FC15,FFFF. Internal registers of the PLD can only be accessed by the KAT4000’s
CPU when not using the built-in 8051 microcontroller on the VSC7376 switch. The PLD can-
not be accessed via the 8051 microcontroller. Table 5-1 lists the 8-bit PLD registers followed
by the register bit descriptions.
Table 5-1: GbE Fat Pipe PLD Registers
Product ID/Version Register
The read-only Product ID/Version register indicates the product type, PLD code version,
and hardware version. The values of these bits are hard-coded inside the PLD.
Address
Offset (hex):
Access
Mode: Mnemonic: Register Name:
Register
Map:
0x00 R PIDV Product ID/Version Register 5-1
0x01 R/W SCR Scratch Register 5-2
0x02 R/W I2CI
2C Register 5-3
0x03 R/W SDET Signal Detect Register 5-4
0x04 R/W SRST Switch Reset Register 5-5
0x05 R STAT Module Status Register 5-6
0x06 R/W GPIO Switch GPIO Register 5-7
0x07 R/W GPLED GPIN/LED Register 5-8
SWITCH_RST*
SWITCH_TRST*
RESET*
/5
2
PLD
VSC7376
GbE
Switch
3_3V
Fat Pipe Switch Module: GbE Fat Pipe Switch Module
10007175-02 KAT4000 User’s Manual 5-7
Register 5-1: Product ID/Version Register (PIDV) at 0x00
PID3–PID0: Product ID
0000 Fat Pipe Module, GbE
0001 Fat Pipe Module, sRIO
0010 Fat Pipe Module, 10 GbE-1 GbE
0011 Fat Pipe Module, 10 GbE-10 GbE
(All other values are reserved)
PVER1, PVER0: PLD Version
00 Revision 00
HVER1, HVER0: Hardware Version
00 Revision 00
Scratch Register
The Scratch register can be used by software for reads and writes. Accessing this register
does not have any affect on operations. Default is 0x00.
Register 5-2: Scratch Register (SCR) at 0x01
SCR7–SCR0: Scratch
I2C Register
The I2C register controls operations on the I2C bus. Default is 0x0f.
Register 5-3: I2C Register (I2C) at 0x02
R: Reserved
SDA: SDA Control
0Drives logic0 on the I
2C data line
1Tristates I
2C data line (pulled high externally)
76543210
PID3 PID2 PID1 PID0
PVER1 PVER0 HVER1 HVER0
76543210
SCR7 SCR6 SCR5 SCR4 SCR3 SCR2 SCR1 SCR0
76543210
reserved SDA SCL
ADD1 ADD0
Fat Pipe Switch Module: GbE Fat Pipe Switch Module
KAT4000 User’s Manual 10007175-02
5-8
SCL: SCL Control
0Drives logic0 on the I
2C clock line
1Tristates I
2C clock line (pulled high externally)
ADD1, ADD0: I2C Address
Values in these bits drive address to I2C ROM
Signal Detect Register
The Signal Detect register drives the signal detect signals on the VSC7376 Ethernet switch.
Default is 0x00.
Register 5-4: Signal Detect Register (SDET) at 0x03
SDET7–SDET0: Signal Detect State
0 Drives logic low on net
1 Tristate output. Signal is externally pulled high
Switch Reset Register
The Switch Reset register allows for software control of reset to the VSC7376 Ethernet
switch. Default is 0x00.
Register 5-5: Switch Reset Register (SRST) at 0x04
R: Reserved
SRST: Switch Reset
0 Switch not held in reset
1 Switch held in reset
Note: Software must ensure that the switch is held in reset for the minimum amount of time as listed in the
VSC7376 Ethernet switch data sheet.
Module Status Register
The read-only Module Status register contains information relating to the module status,
such as power supply state, switch operational mode, and switch interrupt state.
76543210
SDET7 SDET6 SDET5 SDET4 SDET3 SDET2 SDET1 SDET0
76543210
reserved SRST
Fat Pipe Switch Module: GbE Fat Pipe Switch Module
10007175-02 KAT4000 User’s Manual 5-9
Register 5-6: Module Status Register (STAT) at 0x05
R: Reserved
CPU: Switch Mode
0 Internal 8051 microcontoller disabled, parallel interface used for management access
1 Internal 8051 microcontroller enabled
S2V5: 2.5V Power Supply Status
0 Power supply out of spec
1 Power supply within spec
S1V2: 1.2V Power Supply Status
0 Power supply out of spec
1 Power supply within spec
INT1, INT0: Switch Interrupts
0 No interrupt pending
1 Interrupt pending
Switch GPIO Register
The Switch GPIO register drives the GPIO signals on the VSC7376 Ethernet switch. Default is
0x00.
Register 5-7: Switch GPIO Register (GPIO) at 0x06
GPIO7–GPIO0: GPIO State
0Drive logic low
1 Drive logic high
Note: When the internal 8051 microcontroller is enabled, GPIOs 5:4 are disabled, as they are used for other func-
tions. The PLD will tristate these pins.
GPIN/LED Register
The GPIN/LED register controls general purpose inputs to the PLD from the carrier. There
are also four LEDs which are under software control.
76543210
reserved CPU S2V5 S1V2 INT1 INT0
76543210
GPIO7 GPIO6 GPIO5 GPIO4 GPIO3 GPIO2 GPIO1 GPIO0
Fat Pipe Switch Module: GbE Fat Pipe Switch Module
KAT4000 User’s Manual 10007175-02
5-10
Register 5-8: GPIN/LED Register (GPLED) at 0x07
GPIO2–GPIO0: General Purpose Input from VSC7376
RSVD: Reserved
LED3–LED0: LED State
0Off
1On
76543210
GPIO2 GPIO1 GPIO0
RSVD LED3 LED2 LED1 LED0
Fat Pipe Switch Module: 10 GbE-1 GbE Fat Pipe Switch Module
10007175-02 KAT4000 User’s Manual 5-11
10 GBE-1 GBE FAT PIPE SWITCH MODULE
Fig. 5-8 shows how the 10 GbE-1 GbE fat pipe switch module maps to ports defined by the
AMC.0 specification; see Fig. 1-3 for the full port mapping diagram.
Figure 5-8: AMC Port Map Fat Pipes Region–10 GbE-1 GbE
Fat Pipes: This region supports data path connections such as GbE. It can carry large amounts of data
without significantly degrading the speed of transmission.
x4: This refers to the link width of the port (the number of lanes that can be used to intercon-
nect between two link partners).
The following diagram shows the implementation of the 10 GbE-1 GbE fat pipe switch
module on the KAT4000:
Figure 5-9: Signal Routing of the 10 GbE-1 GbE Fat Pipe Switch Module on the KAT4000
Port Mapping
Port #
Basic
Connector
&'
+,
+,
+,
+,
01 +,7+,

(4#56"
."
MPC8548
Processor
RGMII
4
Fat Pipe Switch Module
10 GbE-1 GbE

 
AMC (x4) Single Wide,
Half/Full/Extended Height
I2C
Fat Pipe Local bus
GbE
10 GbE
PCIe (x1)
10 GbE
10 GbE
GbE*
=.15+,#/4#5/G+,
/61/515+,#/4#5
.15+,#/4#5/G
+,/61/515<
GbE
PHY
VSC7376
Ethernet Core Switch
Layer 2
(Optional)
Base High Speed
Fabric A
Clock RTM I/O
(Optional)
High Speed
Fabric B
J20 Zone 3J23
Fat Pipe Switch Module: 10 GbE-1 GbE Fat Pipe Switch Module
KAT4000 User’s Manual 10007175-02
5-12
The following block diagram provides a functional overview for the 10 GbE-1 GbE fat pipe
switch module:
Figure 5-10: 10 GbE-1 GbE Fat Pipe Switch Module Block Diagram
PLD
BCM56580
16-port GbE/
4-port 10 GbE Switch
180-pin high-speed connector
I2C SDA/SCL
(17) GbE
ports
120-pin high-speed
connector
JTAG
Address bus
(3) 10 GbE ports
GPIO
8-bit data bus
LED Interface
Power
Supplies (2) Clocks (2)
SDA/SCL
PEX8111
PCIe to PCI
Bridge
Power
Supply
SROM
Clock
GPIO
PCIe
PCI
Management
Interface
JTAG
Clock
Fat Pipe Switch Module: 10 GbE-1 GbE Fat Pipe Switch Module
10007175-02 KAT4000 User’s Manual 5-13
10 GbE-1 GbE Fat Pipe Switch Module Circuit Board
The following figures show the component maps for the 10 GbE-1 GbE fat pipe switch mod-
ule circuit board.
Figure 5-11: 10 GbE-1 GbE Fat Pipe Switch Module Component Map, Top (Rev. 01)
Figure 5-12: 10 GbE-1 GbE Fat Pipe Switch Module Component Map, Bottom (Rev. 01)
00001234-00-AA D
XXXX-
YYYYYY
R36
R33
R32
C457
C21
C22
C25
C26
R27
R23
C2
C1
C438
C446
C442
C436
C434
C433
C441
C439
C437
C445
C492
C454
C449
C453
C450
C451
C447C435
C452
C491
C440
C448
C428
C113
C85
C86
C126
C460
C430
C469
C483
C471
C482
C474
C481
C475
C473 C476
C477
C484
C480
C478
C470
C479
C472
C468
C485
C486
C488
C487
C489
C490
C372
C375
C401
C400
C399
C398
C393
C392
C389
C388
C387
C386
C385
C384
C377
C376
C369
C368
C367
C366
C361
C360
C359
C358
C353
C350
C347
C346
C340
C341
C343
C342 C464
C465
C467
C466
R8
R3
R234
R190
R188
R7
R6
R5
R4
R170
R169
R168
R167
R17
R16
R39
R38
R35
R34
R230
R229 R228
R226
R225
R223
R22
R218
R215
R211
R208
R207
R205
R202
R199
R198 R185
R183
R179
R175
R173
R172
R171
R15
R14
R12
R11
C493
C456
C427
C426
C425
C424
C423
C422
C421
C420
C419
C418
C417
C416
C415
C414
C413
C412
C411
C410
C409
C408
C407
C406
C405
C404
C403
C402
C397
C396
C395
C394
C391
C390
C383
C382
C381
C380
C379
C378
C374
C373
C371
C370
C365
C364
C363
C362
C357
C356
C355
C354
C352
C351
C349
C348
C345
C344
C32
C31
C144
C143
C128
R201
R197 R196
R195
R182
R181
R98
R88
R87
R52
R217
R216
R192
R191
R158
R156
R155
R149
R147
R142
R141
R140
R139
R138
R137
R136
R135
R134
R133
R122
R121
R120
R1
R189
C335
C334
C333
C332
C331
C330
C329
C328
C327
C326
C325
C324
C323
C322
C321
C320
C319
C318
C317
C316
C315
C314
C313
C312
C311
C310
C309
C308
C307
C306
C305
C304
C303
C302
C301
C300
C299
C298
C297
C296
C295
C294
C293
C292
C291
C290
C289
C287
C285
C283
C282
C280
C278
C277
C275 C273
C272
C270
C268
C267
C265
C264
C262
C259
C258
C255
C254
C253
C251
C250
C248
C247
C245
C244C241
C240
C237
C236
C233
C232
C230
C229
C228
C227
C226
C224
C223
C222
C221
C220
C219
C218
C216
C215
C213
C212 C211
C210
C208
C207
C206
C205
C204 C203
C202
C201
C200
C199
C198
C197
C196
C194
C193
C192
C191
C190
C189
C188
C187
C186
C185
C184
C183
C182
C181
C180
C179
C178
C177
C175
C173
C171
C169
C167
C165
C163
C162
C158 C157
C156
C155
C154
C153
C152
L15
L17
L2
L6
L7
L18
L10
L11
L21
L22 L13
L19
L14 L5
C4
C443
C444
U3
L23
CR2
CR3
CR4
CR5
J4
J5
C461
Fat Pipe Switch Module: 10 GbE-1 GbE Fat Pipe Switch Module
KAT4000 User’s Manual 10007175-02
5-14
Components and Features
The following is a summary of the 10 GbE-1 GbE fat pipe switch module hardware compo-
nents and features:
BCM56580 10 GbE-1 GbE Switch:
The Broadcom BCM56580 is a Layer 2 and 3 network switch with sixteen GbE ports and four
10 GbE ports. The switch uses integrated XAUI SerDes for the 10 GbE ports to the ATCA fab-
ric channels and a single SerDes lane for each 1 GbE port to the AMC modules, complying
with the CX-4 and PICMG 3.1 standards. Table 5-2 defines connectivity for the switch’s ports
when the fat pipe module is installed on the KAT4000. For more information about this
switch, reference the BCM56580 16-Port 2.5 GbE Multilayer Switch with Four 10-GbE/HiGig
Ports Data Sheet at www.broadcom.com.
Table 5-2: BCM56580 Switch Ports
Port #:
10 GbE-1 GbE Switch
Connection:
XG1 Fabric Channel 1 (FC1) ports 0-3
XG2 Fabric Channel 2 (FC2) ports 0-3
XG3 Reserved
XG4 CPU or Core Switch, build-time
configured option (1 GbE only)
GE1 AMC 1 port 4
GE2 AMC 1 port 5
GE3 AMC 1 port 6
GE4 AMC 1 port 7
GE5 AMC 2 port 4
GE6 AMC 2 port 5
GE7 AMC 2 port 6
GE8 AMC 2 port 7
GE9 AMC 3 port 4
GE10 AMC 3 port 5
GE11 AMC 3 port 6
GE12 AMC 3 port 7
GE13 AMC 4 port 4
GE14 AMC 4 port 5
GE15 AMC 4 port 6
GE16 AMC 4 port 7
Fat Pipe Switch Module: 10 GbE-1 GbE Fat Pipe Switch Module
10007175-02 KAT4000 User’s Manual 5-15
PEX 8111 PCIe to PCI Bridge:
The BCM56580 switch is managed by the PCIe connection from the MPC8548 via the
PEX8111 bridge chip. The PCIe to PCI bridge supports forward and reverse transparent
bridging between the PCIe and PCI buses. The bridge’s PCI Express port has a single x1 link
with a maximum throughput of 250 MB/sec per transmit and receive direction. The PEX
8111 is compliant with the PCI Local Bus Specification (rev. 3.0), the PCI to PCI Bridge Archi-
tecture Specification (rev. 1.1), the PCI Express Base Specification (rev. 1.0a) and the PCI
Express to PCI/PCI-X Bridge Specification (rev. 1.0). For more information about this bridge,
reference the PEX 8111 ExpressLane™ PCI Express to PCI Bridge Data Sheet at www.plx-
tech.com.
PLD: The PLD is the interface between the local bus, the BCM56580 switch, and the PEX 8111
PCIe to PCI bridge. It contains registers for fat pipe module control. For more information,
see “10 GbE-1 GbE Fat Pipe Switch Module PLD.
SPI SROM EEPROM: The 128 Kb EEPROM is used to store PEX 8111 bridge configuration information.
JTAG: A jumper allows the JTAG to bypass the switch and/or the PEX bridge. See Fig. 5-12 for
details.
Figure 5-13: 10 GbE-1 GbE Fat Pipe Switch JTAG
LEDs: CR2 (green) and CR3-5 (red) on the bottom side of the board are generic LEDs for use by
the firmware.
High-Speed Connectors:
J1 is a 120-pin high-speed connector that provides an interface to the four AMC sites, the
BCM56580 switch, and the PEX 8111 PCIe to PCI bridge. J2 is a 180-pin high-speed connec-
tor that provides an interface to the RTM channel, PCIe channel, PLD, the I2C connection to
the processor, and Zone 2 via fabric channels 1 and 2.
J4 and J5 are PMC connectors that attach to a PCI analyzer for debug use only.
Reset: Reset of the 10 GbE-1 GbE fat pipe switch is shown in Fig. 5-14.
PLD BCM56580
10 GbE-1 GbE
Switch
PEX 8111
Bridge
PLD_TDI PLD_TDO_R PLD_TDO BCM_TDO_R BCM_TDO PEX_TDO_R PEX_TDO
TMS, TCK
/5
2
25
2
H
Fat Pipe Switch Module: 10 GbE-1 GbE Fat Pipe Switch Module
KAT4000 User’s Manual 10007175-02
5-16
Figure 5-14: 10 GbE-1 GbE Fat Pipe Switch Reset
10 GbE-1 GbE Fat Pipe Switch Module PLD
The PLD is used to interface to the BCM56580 switch. Table 5-3 lists the 8-bit PLD registers
followed by the register bit descriptions.
Table 5-3: 10 GbE-1 GbE Fat Pipe PLD Registers
Product ID/Version Register
The read-only Product ID/Version register indicates the product type, PLD code version,
and hardware version. The values of these bits are hard-coded inside the PLD.
Register 5-9: Product ID/Version Register (PIDV) at 0x00
Address
Offset (hex):
Access
Mode: Mnemonic: Register Name:
Register
Map:
0x00 R PIDV Product ID/Version Register 5-9
0x01 R/W SCR Scratch Register 5-10
0x02 R/W I2C I2C Register 5-11
0x03 R Reserved 1 5-12
0x04 R/W SRST Switch Reset Register 5-13
0x05 R STAT Module Status Register 5-14
0x06 R/W GPIO Switch GPIO Register 5-15
0x07 R/W GPLED GPIN/LED Register 5-16
76543210
PID3 PID2 PID1 PID0
PVER1 PVER0
HVER1 HVER0
BCM56580
10 GbE-1 GbE
Switch
1asserted with PCIE_RST
or for PCI Express Hot Reset
or when PCI Express link is down
BCM_PCI_RESET*
RESET*
/5
2 BCM_TRST*
PEX_PCI_RESET*1
PCIE_RST*
PLD
PEX8111
Bridge
Fat Pipe Switch Module: 10 GbE-1 GbE Fat Pipe Switch Module
10007175-02 KAT4000 User’s Manual 5-17
PID3–PID0: Product ID
0000 Fat Pipe Module, GbE
0001 Fat Pipe Module, sRIO
0010 Fat Pipe Module, 10 GbE-1 GbE
0011 Fat Pipe Module, 10 GbE-10 GbE
(All other values are reserved)
PVER1, PVER0: PLD Version
00 Revision 00
HVER1, HVER0: Hardware Version
00 Revision 00
Scratch Register
The Scratch register can be used by software for reads and writes. Accessing this register
does not have any affect on operations. Default is 0x00.
Register 5-10: Scratch Register (SCR) at 0x01
SCR7–SCR0: Scratch
I2C Register
The I2C register controls operations on the I2C bus. Default is 0x0f.
Register 5-11: I2C Register (I2C) at 0x02
R: Reserved
SDAS: SDA State
This read-only bit gives the current state of the I2C SDA line
SCLS: SCL State
This read-only bit gives the current state of the I2C SCL line
SDAC: SDA Control
0Drives logic0 on the I
2C data line
1Tristates I
2C data line (pulled high externally)
76543210
SCR7 SCR6 SCR5 SCR4 SCR3 SCR2 SCR1 SCR0
76543210
reserved SDAS SCLS SDAC SCLC
ADD1 ADD0
Fat Pipe Switch Module: 10 GbE-1 GbE Fat Pipe Switch Module
KAT4000 User’s Manual 10007175-02
5-18
SCLC: SCL Control
0Drives logic0 on the I
2C clock line
1Tristates I
2C clock line (pulled high externally)
ADD1, ADD0: I2C Address
Values in these bits drive address to the Ethernet switch
Reserved Register 1
This read-only register is reserved for future use.
Register 5-12: Reserved Register 1 at 0x03
R: Reserved
Switch Reset Register
The Switch Reset register allows for software control of reset to the BCM56580 Ethernet
switch. Default is 0x00.
Register 5-13: Switch Reset Register (SRST) at 0x04
R: Reserved
EE_WP: PCI Bus Bridge EEPROM Write Protect
0 Writing to EEPROM is disabled
1 Writing to EEPROM is enabled
JTAG_EN: Switch JTAG Enable
0 JTAG is disabled, switch does not operate. Switch register CMIC_TAP_CONTROL is
enabled for JTAG control of the switch via PCI or I2C. When this bit is cleared, the PLD and
PCI bus bridge are inaccessible over JTAG.
1 JTAG is enabled, normal switch operation
RESET: Switch Reset
0 Switch not held in reset
1 Switch held in reset
76543210
reserved
76543 2 1 0
reserved
EE_WP
JTAG_EN
RESET
Fat Pipe Switch Module: 10 GbE-1 GbE Fat Pipe Switch Module
10007175-02 KAT4000 User’s Manual 5-19
Note: Software must ensure that the switch is held in reset for the minimum amount of time as listed in the Ether-
net switch data sheet.
Module Status Register
The read-only Module Status register contains information relating to the module status,
such as power supply state, switch operational mode, and switch interrupt state.
Register 5-14: Module Status Register (STAT) at 0x05
R: Reserved
S3V3: 3.3V Power Supply Status
0 Power supply out of spec
1 Power supply within spec
S2V5: 2.5V Power Supply Status
0 Power supply out of spec
1 Power supply within spec
S1V2: 1.0V Power Supply Status
0 Power supply out of spec
1 Power supply within spec
Switch GPIO Register
The Switch GPIO register drives the GPIO signals on the PLX8111 PCIe to the PCI bridge.
Default is 0x00.
Register 5-15: Switch GPIO Register (GPIO) at 0x06
DIR3–DIR0: GPIO Direction
0 GPIOx bit reflects the state of the GPIO pin. The corresponding GPIO State bit becomes
read-only.
1 GPIOx bit drives the GPIO pin according to the state of the corresponding bit.
76543210
reserved S3V3 S2V5 S1V0 reserved
76543210
DIR3 DIR2 DIR1 DIR0
GPIO3 GPIO2 GPIO1 GPIO0
Fat Pipe Switch Module: 10 GbE-1 GbE Fat Pipe Switch Module
KAT4000 User’s Manual 10007175-02
5-20
GPIO3–GPIO0: GPIO State
0 Logic low
1Logic high
GPIN/LED Register
The GPIN/LED register controls general purpose inputs to the PLD from the carrier. There
are also four LEDs which are under software control.
Register 5-16: GPIN/LED Register (GPLED) at 0x07
GPIO2–GPIO0: General Purpose Input
LEDCTRL: LED Mode Control
0 LEDs 2:0 indicate insufficient voltage:
LED3 PCI Express Link Up
LED2 3.3V supply low
LED1 2.5V supply low
LED0 1.0V supply low
1 LEDs 3:0 are controlled by bits 3:0
LED3–LED0: LED State
0Off
1On
7654 3210
GPIO2 GPIO1 GPIO0
LEDCTRL
LED3 LED2 LED1 LED0
Fat Pipe Switch Module: 10 GbE-10 GbE Fat Pipe Switch Module
10007175-02 KAT4000 User’s Manual 5-21
10 GBE-10 GBE FAT PIPE SWITCH MODULE
Fig. 5-15 shows how the 10 GbE-10 GbE fat pipe switch module maps to ports defined by the
AMC.0 specification; see Fig. 1-3 for the full port mapping diagram.
Note: This fat pipe switch module option is currently not available for order.
Figure 5-15: AMC Port Map Fat Pipes Region–10 GbE-10 GbE
Fat Pipes: This region supports data path connections such as 10 GbE. It can carry large amounts of
data without significantly degrading the speed of transmission.
x4: This refers to the link width of the port (the number of lanes that can be used to intercon-
nect between two link partners).
The following diagram shows the implementation of the 10 GbE-10 GbE fat pipe switch
module on the KAT4000:
Figure 5-16: Signal Routing of the 10 GbE-10 GbE Fat Pipe Switch Module on the KAT4000
Port MappingPort #
Basic
Connector
01
&' +,

+,7+,

(4#56"
."
VSC7376
Ethernet Core Switch
Layer 2
(Optional)
MPC8548
Processor
GbE*RGMII
Fat Pipe Switch Module
10 GbE-10 GbE

 
AMC (x4) Single Wide,
Half/Full/Extended Height
I2C
Fat Pipe Local bus
PCIe (x1)
10 GbE
10 GbE
10 GbE
10 GbE
=.15+,#/4#5/G+,
/61/515+,#/4#5
.15+,#/4#5/G
+,/61/515<
GbE
PHY
Base High Speed
Fabric A
Clock RTM I/O
(Optional)
High Speed
Fabric B
J20 Zone 3J23
Fat Pipe Switch Module: sRIO Fat Pipe Switch Module
KAT4000 User’s Manual 10007175-02
5-22
SRIO FAT PIPE SWITCH MODULE
Fig. 5-17 shows how the sRIO fat pipe switch module maps to ports defined by the AMC.0
specification; see Fig. 1-3 for the full port mapping diagram.
Note: This fat pipe switch module option is currently not available for order.
Figure 5-17: AMC Port Map Fat Pipes Region–sRIO
Fat Pipes: This region supports data path connections such as sRIO. It can carry large amounts of data
without significantly degrading the speed of transmission.
x1, x4: This refers to the link width of the port (the number of lanes that can be used to intercon-
nect between two link partners).
The following diagram shows the implementation of the sRIO fat pipe switch module on
the KAT4000:
Figure 5-18: Signal Routing of the sRIO Fat Pipe Switch Module on the KAT4000
Port MappingPort #
Basic
Connector
&' &.%

&.%
01 &.%(4#56"
."
MPC8548
Processor Fat Pipe Switch Module
sRIO

 
AMC (x4) Single Wide,
Half/Full/Extended Height
I2C
Fat Pipe
Local bus
sRIO (x4)
Serial RIO (x4)
sRIO (x4)
sRIO (x4)
sRIO (x4)
Base High Speed
Fabric A
Clock RTM I/O
(Optional)
High Speed
Fabric B
J20 Zone 3J23
10007175-02 KAT4000 User’s Manual 6-1
Section 6
Memory Configuration
The KAT4000 includes the following memory devices:
Two banks of NOR Flash (32 MB total) and one bank of socketed Flash (512 KB)
Up to 1gigabyte of DDR2 Synchronous DRAM (SDRAM)
Up to 1 gigabyte of NAND Flash
Two 8-kilobyte banks of non-volatile serial EEPROM memory
BOOT MEMORY CONFIGURATION
The KAT4000 boot default is the 8-bit ROM socket which occupies the physical address
space beginning at FC80,0000. Removing the shunt on jumper JP7, pins 1:2, uses the on-
board Flash as the boot device. Read bit 5 of Jumper Settings register at FC40,0018 (see
Register Map 7-7) for the boot device selection.
Table 6-1: Memory Configuration Jumper
USER FLASH
The KAT4000 supports three independent Flash regions, one socketed and two NOR. The
KAT4000 will boot from either region and is selected by jumper JP7 (1:2); socketed Flash is
the default. User Flash starts at location E000,000016 with one megabyte at the base of
Flash reserved for the monitor.
Two banks of NOR Flash are available, 16 MB each (see Table 14-3 for memory address
details).
One bank of socketed Flash in a 32-pin PLCC includes up to 512 kilobytes.
The Flash devices interface to the most significant data bits of the PowerPC data bus. For
example, if the data path is 64 bits wide, the PowerPC data bus is declared as D[0:63],
where D0 is the most significant bit and D63 is the least significant bit. The interface to NOR
flash memory is 16-bits, which uses bits 0 to 15 on the processor data bus.
If booting from user Flash, the processor initially maps one megabyte addressing of Flash
memory (beginning at FFF0,000016) at the top of the address space. When an 8-bit Flash
device is installed in the PLCC socket, it always appears at FC80,000016 (and is mirrored at
FFF0,000016 when the socket is the boot device).
Jumper: Function: Options:
Default
Configuration:
JP7
pins 1:2
Selects monitor
boot device
Jumper out, User Flash
Jumper in, ROM socket
Jumper in, ROM socket
Memory Configuration: On-Card SDRAM
KAT4000 User’s Manual 10007175-02
6-2
Caution: When removing socketed PLCC devices, always use an extraction tool designed specifically
for that task. Otherwise, you risk damaging the PLCC device.
The KAT4000 supports a redundant boot bank. This boot bank is automatically used if the
primary bank fails to boot properly. The primary and redundant banks are designated from
the local processor as well as remotely over IPMI. The watchdog timer on the MPC8548 will
be used to change the boot select direction after a watchdog expiration event.
ON-CARD SDRAM
The KAT4000 supports 512 megabytes and 1 gigabyte of 72-bit wide DDR2 SDRAM. This
interface implements eight additional bits to permit the use of Error-Correcting Code
(ECC). ECC can also be disabled for specific configurations. The SDRAM interface clock
speed is 200 MHz.
A low profile, small-outline, dual inline memory module (SO-DIMM) is installed in a 200-pin
socket to reduce board density and routing constraints. An I2C serial EEPROM on the SO-
DIMM provides the serial presence detects (SPD). SDRAM occupies physical addresses from
0000,000016 to 3FFF,FFFF16.
In addition to the basic SDRAM control functions, the chip provides several additional
DRAM-related functions and contains the following performance enhancing features:
Supports page mode—minimizing SDRAM cycles on multiple transactions to the same
SDRAM page and can be configured to support up to 16 simultaneously opened pages
Supports Error-Correcting Code (ECC) and Read-Modify-Write (RMW) in the case of
partial writes (smaller than 64-bit) to DRAM
ECC provides single bit error correction and two bit error detection
NAND FLASH
The KAT4000 uses 512 MB or 1 GB of M-systems DiskOnChip NAND Flash, starting at physi-
cal address FC00,0000, for non-volatile RAM storage and True Flash File System (TFFS). The
DiskOnChip incorporates an embedded flash controller and memory, and features hard-
ware protection and security-enabling features, an enhanced programmable boot block
enabling eXecute In Place (XIP) functionality using 16-bit access, user-controlled One Time
Programmable (OTP) partitions, and 6-bit Error Detection Code/Error Correction Code
(EDC/ECC).
!
Memory Configuration: NVRAM Allocation
10007175-02 KAT4000 User’s Manual 6-3
NVRAM ALLOCATION
The KAT4000 uses two eight-kilobyte I2C SROMs for storing non-volatile information such
as board, monitor, and operating system configurations, as well as information specific to a
user’s application. All Emerson-specific data is stored in the upper two kilobits of each
device. The remainder of each device is available for the user’s application. Table 6-2 and
Table 6-3 define the organization of data within the SROMs.
Table 6-2: NVRAM Memory Map, User EEPROM 1 (write protected)1
1. EEPROM 1 is write protected to facilitate securing data.
2. The boot verify areas are for redundancy (e.g., if an application stops working, access the secondary boot
data area to bring up a working application).
3. The operating system parameters area is for future VxWorks implementation.
Table 6-3: NVRAM Memory Map, User EEPROM 2
4. The Emerson reserved area is for Emerson internal use only for test software error logging and
miscellaneous data storage.
Address Offset (hex): Name: Window Size (bytes):
0x1FF0-0x1FFF Boot verify secondary area216
0x1FE0-0x1FEF Boot verify primary area216
0x1EE0-0x1EEF Operating system parameters3256
0x0000-0x1EDF User defined 7903
Address Offset (hex): Name: Window Size (bytes):
0x1FF0-0x1FFF Emerson reserved area45887
0x0800-0x08FF Miscellaneous 256
0x07F0-0x07FF Power-on self test (POST) 16
0x0000-0x07EF User defined 2032
KAT4000 User’s Manual 10007175-02
6-4
(blank page)
10007175-02 KAT4000 User’s Manual 7-1
Section 7
CPLD
In addition to reset and interrupt registers, the complex programmable logic device (CPLD)
provides the peripheral bus interface for: user LEDs, configuration jumpers, board revision,
boot device selection, and the hardware configuration register. The CPLD is in-system pro-
grammable (ISP). A single JTAG interface is provided for local programming. Remote pro-
gramming via the IPMC is also possible.
All reset sources and loads are connected to the CPLD. The board can be remotely reset via
the IPMI controller. Software can also assert a board-level reset.
PLD REGISTER SUMMARY
The PLD registers start at address FC40,000016. Table 7-1 lists the 8-bit PLD registers fol-
lowed by the register bit descriptions.
Table 7-1: PLD Registers
Address
Offset (hex): Mnemonic: Register Name: Register Map:
0x00 PIDR Product ID 7-1
0x04 HVR Hardware Version 7-2
0x08 PVR PLD Version 7-3
0x0C PLLC PLL Configuration 7-5
0x10 HCR0 Hardware Configuration 0 7-4
0x14 Reserved
0x18 JSR Jumper Settings 7-7
0x1C LEDR LED Control 7-6
0x20 RER Reset Event 7-12
0x24 RCR1 Reset Command 1 7-13
0x28 RCR2 Reset Command 2 7-14
0x2C SCR1 Scratch 1 7-11
0x30 BDRR Boot Device Redirection 7-15
0x34 MISC MISC Control 7-10
0x38 RGSR RTM GPIO State 7-8
0x3C RGCR RTM GPIO Control 7-9
0x40 CSC1 Clock Synchronizer Control 1
7-160x44 CSC2 Clock Synchronizer Control 2
0x48 CSC3 Clock Synchronizer Control 3
0x4C Reserved
0x50 CPS1 Clock Synchronizer Primary Source 1
7-170x54 CPS2 Clock Synchronizer Primary Source 2
0x58 CPS3 Clock Synchronizer Primary Source 3
0x5C Reserved
CPLD: Version and ID Registers
KAT4000 User’s Manual 10007175-02
7-2
VERSION AND ID REGISTERS
Product ID Register (PIDR)
The read-only Product ID register indicates the product name and configuration. The values
of these bits are defined by strapping resistors. Default register values are shown in the bot-
tom row of the register table.
Register 7-1: Product ID Register (PIDR) at 0xfc40,0000
0x60 CSS1 Clock Synchronizer Secondary Source 1
7-180x64 CSS2 Clock Synchronizer Secondary Source 2
0x68 CSS3 Clock Synchronizer Secondary Source 3
0x6C Reserved
0x70 CCR1 Clock Control, AMC1 CLK1
7-19
0x74 CCR2 Clock Control, AMC1 CLK2
0x78 CCR3 Clock Control, AMC1 CLK3
0x7C CCR4 Clock Control, AMC2 CLK1
0x80 CCR5 Clock Control, AMC2 CLK2
0x84 CCR6 Clock Control, AMC2 CLK3
0x88 CCR7 Clock Control, AMC3 CLK1
0x8C CCR8 Clock Control, AMC3 CLK2
0x90 CCR9 Clock Control, AMC3 CLK3
0x94 CCR10 Clock Control, AMC4 CLK1
0x98 CCR11 Clock Control, AMC4 CLK2
0x9C CCR12 Clock Control, AMC4 CLK3
0xA0 CCR13 Clock Control, aTCA CLK3 A
0xA4 CCR14 Clock Control, aTCA CLK3 B
0xA8 CSI1 Clock Synchronizer Interrupt 1
7-200xAC CSI2 Clock Synchronizer Interrupt 2
0xB0 CSI3 Clock Synchronizer Interrupt 3
76543210
PID1 PID0 reserved ECS PCIE
00 configuration
dependent
Address
Offset (hex): Mnemonic: Register Name:
Register Map:
(continued)
CPLD: Version and ID Registers
10007175-02 KAT4000 User’s Manual 7-3
PID1, PID0: PID Select
00 KAT4000
01 Reserved
10 Reserved
11 Reserved
R: Reserved
ECS: Ethernet Core Switch
1 Ethernet Core Switch is installed
0 Ethernet Core Switch is not installed
PCIE: PCI Express Switch
1 PCI Express Switch is installed
0 PCI Express Switch is not installed
Hardware Version Register (HVR)
The read-only Hardware Version register indicates artwork revision and notifies of any
other change to the hardware. The values of these bits are defined by strapping resistors.
Register 7-2: Hardware Version Register (HVR) at 0xfc40,0004
R: Reserved
HVR1, HVR0: Hardware Version Register
This is hard-coded in the PLD and changes with every major PCB version. Version starts at
Ox00.
PLD Version Register (PVR)
The read-only PLD Version register provides a hard-coded tracking number that changes
with each CPLD code release.
Register 7-3: PLD Version Register (PVR) at 0xfc40,0008
PCV7-0: PLD Code Version
This is hard-coded in the PLD and changes with every major code version. Version starts at
Ox00.
76543210
reserved HVR1 HVR0
76543210
PCV7 PCV6 PCV5 PCV4 PCV3 PCV2 PCV1 PCV0
CPLD: Configuration Registers
KAT4000 User’s Manual 10007175-02
7-4
CONFIGURATION REGISTERS
Hardware Configuration Register 0 (HCR0)
The read-only Hardware Configuration 0 register indicates various settings of the particular
product configuration. The values of these bits are defined by strapping resistors. Default
register values are configuration dependent.
Register 7-4: Hardware Configuration Register 0 (HCR0) at 0xfc40,0010
R: Reserved
BDR: BDR Enable
1 Enable boot redirect circuitry
0 Disable boot redirect circuitry
CF1, CF0, DDRF: CCB and Core Frequencies (MHz)
PLL Configuration Register (PLLC)
The PLL Configuration register indicates PLL settings for the MPC8548 processor. The initial
values of these bits are defined by strapping resistors. The values can be overwritten by
software. Default register values are configuration dependent.
Register 7-5: PLL Configuration Register (PLLC) at 0xfc40,000c
R: Reserved
76543210
reserved BDR reserved CF1 CF0 DDRF
Bits 2:0: CCB: Core:
000 400 800
001 533 800
010 400 1000
011 533 800
100 400 1200
101 533 1333
110 reserved
111 reserved
76 5 4 3210
R
CORE2 CORE1 CORE0
SYS3 SYS2 SYS1 SYS0
CPLD: Miscellaneous Registers
10007175-02 KAT4000 User’s Manual 7-5
CORE2-0: Core CCB PLL Ratio
000 Reserved
001 Reserved
010 Reserved
011 3:2
100 Reserved
101 5:2
110 3:1
111 Reserved
SYS3-0: System CCB PLL Ratio
0000 16:1
1100 12:1
All others are reserved
MISCELLANEOUS REGISTERS
LED Control Register (LEDR)
The KAT4000 has multiple light-emitting diodes (LED) for status and software develop-
ment (see Section “LEDs” for LED location and description). The LED Control register con-
trols the card’s LEDs. Setting (1) the bit enables the LED. By default, the LEDs are not set.
Default is 0xd0. Default register values are shown in the bottom row of the register table.
Register 7-6: LED Control Register (LEDR) at 0xfc40,001c
CPUR: CPU Red LED
1On
0Off
CPUG: CPU Green LED
1On
0Off
R: Reserved
76543210
CPUR CPUG R LDM DBG3 DBG2 DBG1 DBG0
11 10000
CPLD: Miscellaneous Registers
KAT4000 User’s Manual 10007175-02
7-6
LDM: LED Debug Mode
Setting (0) puts the four debug LEDs into user mode allowing software to turn them off/on
individually. By default, they are in hardware debug mode and are connected to specific
internal/external signals.
1 Debug mode probes are enabled (default)
0 Debug mode probes are disabled
DBG3-0: Debug LEDs
1On
0Off
Jumper Settings Register (JSR)
The read-only Jumper Settings register indicates miscellaneous external settings. Default
register values are configuration dependent.
Register 7-7: Jumper Settings Register (JSR) at 0xfc40,0018
PRB: Logic Probe Input State
IROM: Ignore SROM
1SROM ignored
0 SROM not ignored
BFS: Boot From Socket
1 Boot from socketed flash (default)
0 Boot from NOR flash
R: Reserved
TID3-0: Transition Module ID
RTM GPIO State Register (RGSR)
The read-only RTM GPIO State register reads the state of the GPIO lines to/from the RTM.
Default register values are configuration dependent.
Register 7-8: RTM GPIO State Register (RGSR) at 0xfc40,0038
76543210
PRB IROM BFS R TID3 TID2 TID1 TID0
76543210
RIO7 RIO6 RIO5 RIO4 RIO3 RIO2 RIO1 RIO0
CPLD: Miscellaneous Registers
10007175-02 KAT4000 User’s Manual 7-7
RIO7-0: 1 Logic “1" on the net
0 Logic “0" on the net
RTM GPIO Control Register (RGCR)
The RTM GPIO Control register controls GPIO between the carrier card and the Rear Transi-
tion Module (RTM). The GPIO pin buffers are open collector. Set (1) the bit if the RTM will
drive the GPIO line to avoid contention. Default register values are shown in the bottom
row of the register table.
Register 7-9: RTM GPIO Control Register (RGCR) at 0xfc40,003c
RGC7-0: 1 Tristates the driver on the GPIO line, externally pulled high
0 Drives logic “0" onto the GPIO line
MISC Control Register (MISC)
The MISC Control register controls miscellaneous functions of the board (PCIe, SIO, I2C,
Test Clock). Default register values are shown in the bottom row of the register table.
Register 7-10: MISC Control Register (MISC) at 0xfc40,0034
PCIE: PCIe Root Complex
1 Root complex for PCIe system
0 Not the root complex for PCIe system
SRWP1: Serial ROM 1 Write Protect
1Write protected
0 Not write protected
SRWP0: Serial ROM 0 Write Protect
1Write protected
0 Not write protected
76543210
RGC7 RGC6 RGC5 RGC4 RGC3 RGC2 RGC1 RGC0
11111111
7
65
43
2
10
PCIE
SRWP1 SRWP0
FWP1 FWP0
NFWP
SDA SCL
11 100111
CPLD: Boot and Reset Registers
KAT4000 User’s Manual 10007175-02
7-8
FWP1: Flash 1 Write Protect
1 Not write protected
0Write protected
FWP0: Flash 0 Write Protect
1 Not write protected
0Write protected
NFWP: NAND Flash Write Protect
1Write protected
0 Not write protected
SDA: I2C SDA Output Driver State
Bit state indicates PLD’s output level on the bus
SCL: I2C SCL Output Driver State
Bit state indicates PLD’s output level on the bus
Scratch Register 1 (SCR1)
Scratch register 1 can be used as a reading/writing test register. Default register values are
shown in the bottom row of the register table.
Register 7-11: Scratch Register 1 (SCR1) at 0xfc40,002c
SCR7-0: Scratch bits
BOOT AND RESET REGISTERS
The reset signals are routed to and distributed by the CPLD. To support this functionality,
the CPLD includes three registers: one indicates the reason for the last reset, and the other
two force one of several types of reset.
Reset Event Register (RER)
The read-only Reset Event register contains the bit corresponding to the most recent event
which caused a reset. If the entire register does not contain a bit (1), it is a Power On Reset
(POR) condition. Default register values are dependent on reset events.
76543210
SCR7 SCR6 SCR5 SCR4 SCR3 SCR2 SCR1 SCR0
00000000
CPLD: Boot and Reset Registers
10007175-02 KAT4000 User’s Manual 7-9
Register 7-12: Reset Event Register (RER) at 0xfc40,0020
R: Reserved
SHR: Software Issued Hard Reset
1 The last reset was caused by a write to the Reset Command register
WE: Watchdog Expiration
1 A reset was caused by the expiration of the watchdog timer
COPS: MPC8548 COP Soft Reset
1 A COP header soft reset (SRESET) has occurred
COPH: MPC8548 COP Hard Reset
1 A COP header hard reset (HRESET) has occurred
PAYR: Payload Reset
1 An IPMC Payload reset has occurred
PBR: Push Button Reset
1 The switch (POR_RST) caused a reset
Reset Command Register 1 (RCR1)
Reset Command registers 1 and 2 force one of several types of resets, as shown below. A
reset sequence is initiated by writing a one to a valid bit, then the bit is automatically
cleared. Set only one bit in this register at a time. If reset when in a locked state, a clock syn-
chronizer will issue a loss of lock interrupt. To prevent this, mask the interrupt from regis-
ters 0xa8, 0xaC or 0xb0. The hardware will issue resets to the clock synchronizers for 10ms.
Software must wait at least 10ms before accessing these devices. Default register values
are shown in the bottom row of the register table.
Register 7-13: Reset Command Register 1 (RCR1) at 0xfc40,0024
CPUH: CPU Hard Reset
1 Reset
0No reset (default)
76543210
RSHRWECOPS
COPH
PAYR RPBR
76543210
CPUH CSR1 CSR2 CSR3 PCIE I2C FSHR CER
00000000
CPLD: Boot and Reset Registers
KAT4000 User’s Manual 10007175-02
7-10
CSR1: Clock Synchronizer 1 Reset
1 Reset
0No reset (default)
CSR2: Clock Synchronizer 2 Reset
1 Reset
0No reset (default)
CSR3: Clock Synchronizer 3 Reset
1 Reset
0No reset (default)
PCIE: PCI Express Reset
1 Reset
0No reset (default)
I2C: I2C Bus Reset
1 Reset
0No reset (default)
FSHR: NOR Flash Reset
1 Resets NOR flash to a known state
0No reset (default)
CER: Core Ethernet Reset
1 Reset
0No reset (default)
Reset Command Register 2 (RCR2)
Set only one bit in this register at a time. If reset when in a locked state, a clock synchronizer
will issue a loss of lock interrupt. To prevent this, mask the interrupt from registers 0xa8,
0xaC or 0xb0. The hardware will issue resets to the clock synchronizers for 10ms. Software
must wait at least 10ms before accessing these devices. Default register values are shown
in the bottom row of the register table.
Register 7-14: Reset Command Register 2 (RCR2) at 0xfc40,0028
FPR: Fat Pipe Module Reset
1 Reset
0No reset (default)
76543210
FPR DER BCR NFR reserved
0000
CPLD: Boot and Reset Registers
10007175-02 KAT4000 User’s Manual 7-11
DER: Debug Ethernet Reset
1 Reset
0No reset (default)
BCR: Base Channel Ethernet Reset
1 Reset
0No reset (default)
NFR: NAND Flash Reset
1 Reset
0No reset (default)
R: Reserved
Boot Device Redirection Register (BDRR)
The read-only Boot Device Redirection register indicates which of the three devices the CPU
is using as the boot device. The BDRR also indicates which device was set as the initial boot
device (see Fig. 7-1). The Boot Redirected Bit, BRB[7], is set (1) when the current boot device
does not match the initial default boot device. This indicates that the image in the default
device was defective, the watchdog timer expired, and the next device was tried. The boot
redirect circuitry is enabled or disabled by Register Map 7-4. Default register values are
dependent on boot settings.
CPLD: Boot and Reset Registers
KAT4000 User’s Manual 10007175-02
7-12
Figure 7-1: Boot Device Redirection
Register 7-15: Boot Device Redirection Register (BDRR) at 0xfc40,0030
BRB: Boot Redirected Bit
1 The current boot device does not match the initial default boot device.
R: Reserved
BSJ: Boot from Socket Jumper
1 Active boot device is socketed flash.
SKT: Socket Boot Device
1 The board booted from socket flash.
FL1: Flash 1 Boot Device
1 The board booted from flash bank 1.
FL0: Flash 0 Boot Device
1 The board booted from flash bank 0.
76543210
BRB reserved BSJ R SKT FL1 FL0
;(#$
H6/
Socketed
ROM
H
!
 
1:2 Boot from socketdefault
5:6 Boot device redirection is disabled
&
Initial
H
 !


& & &
1:2 Boot from soldered flash
5:6 Boot device redirection is enableddefault
Flash 0 Flash 1 Socketed
ROM
CPLD: Clock Synchronizer Registers
10007175-02 KAT4000 User’s Manual 7-13
CLOCK SYNCHRONIZER REGISTERS
Clock Synchronizer Control Registers 1-3 (CSC1—CSC3)
The Clock Synchronizer Control registers control the functionality of the clock synchronizer
devices. Default is 0x40 for register 1 and 0x00 for registers 2 and 3.
Register 7-16: Clock Synchronizer Control Registers 1-3 (CSC1-CSC3) at 0xfc40,0040, 0xfc40,0044, 0xfc40,0048,
respectively
Default register values for CSC1are shown in the following row.
Default register values for CSC2 and CSC3 are shown in the following row.
FS2, FS1: Input Frequency Select
00 19.44 MHz
01 8 KHz
10 1.544 MHz
11 2.048 MHz
MS2, MS1: Mode Select
00 Normal
01 Holdover
10 Freerun
11 Reserved
PCCI: Phase Continuity Control Input
Controls state changes between Holdover and Normal modes. Please refer to Chapter 7 for
further details.
RSEL: Input Reference Select
1 Secondary Clock
0Primary Clock
R: Reserved
76543210
FS2 FS1 MS2 MS1 PCCI RSEL reserved
010000
000000
CPLD: Clock Synchronizer Registers
KAT4000 User’s Manual 10007175-02
7-14
Clock Synchronizer Primary Source Registers 1-3 (CPS1—CPS3)
The Clock Synchronizer Primary Source registers define the input primary source to the
three clock synchronizer devices. Default is 0x00 for register 1, 0x02 for register 2 and 0x04
for register 3.
Register 7-17: Clock Synchronizer Primary Source Registers 1-3 (CPS1-CPS3) at 0xfc40,0050, 0xfc40,0054, 0xfc40,0058,
respectively
Default register values for CPS1 are shown in the following row.
Default register values for CPS2 are shown in the following row.
Default register values for CPS3 are shown in the following row.
R: Reserved
PRI4-0: Primary Input Source Selection
76543210
reserved PRI4 PRI3 PRI2 PRI1 PRI0
00000
00010
00100
Bit: Input Source:
00000 aTCA CLK1 A
00001 aTCA CLK1 B
00010 aTCA CLK2 A
00011 aTCA CLK2 B
00100 aTCA CLK3 A
00101 aTCA CLK3 B
00110 AMC1 CLK1
00111 AMC1 CLK2
01000 AMC1 CLK3
01001 AMC2 CLK1
01010 AMC2 CLK2
01011 AMC2 CLK3
01100 AMC3 CLK1
CPLD: Clock Synchronizer Registers
10007175-02 KAT4000 User’s Manual 7-15
Clock Synchronizer Secondary Source Registers 1-3 (CSS1—CSS3)
The Clock Synchronizer Secondary Source registers define the input secondary source to
the three clock synchronizer devices. Default is 0x01 for register 1, 0x03 for register 2 and
0x05 for register 3.
Register 7-18: Clock Synchronizer Secondary Source Registers 1-3 (CSS1-CSS3) at 0xfc40,0060, 0xfc40,0064, 0xfc40,0068,
respectively
Default register values for CSS1 are shown in the following row.
Default register values for CSS2 are shown in the following row.
Default register values for CSS3 are shown in the following row.
R: Reserved
SEC4-0: Secondary Input Source Selection
01101 AMC3 CLK2
01110 AMC3 CLK3
01111 AMC4 CLK1
10000 AMC4 CLK2
10001 AMC4 CLK3
10010 reserved
...
11111 reserved
76543210
reserved SEC4 SEC3 SEC2 SEC1 SEC0
00001
00011
00101
Bit: Input Source:
00000 aTCA CLK1 A
00001 aTCA CLK1 B
00010 aTCA CLK2 A
Bit: Input Source:
CPLD: Clock Synchronizer Registers
KAT4000 User’s Manual 10007175-02
7-16
00011 aTCA CLK2 B
00100 aTCA CLK3 A
00101 aTCA CLK3 B
00110 AMC1 CLK1
00111 AMC1 CLK2
01000 AMC1 CLK3
01001 AMC2 CLK1
01010 AMC2 CLK2
01011 AMC2 CLK3
01100 AMC3 CLK1
01101 AMC3 CLK2
01110 AMC3 CLK3
01111 AMC4 CLK1
10000 AMC4 CLK2
10001 AMC4 CLK3
10010 reserved
...
11111 reserved
Bit: Input Source:
CPLD: Clock Synchronizer Registers
10007175-02 KAT4000 User’s Manual 7-17
Clock Control Registers (CCR1—CCR14)
The Clock Control registers control the source clock to the various clock destinations.
Default is 0x0E for all 14 registers. Default register values are shown in the bottom row of
the register table.
Register 7-19: Clock Control Registers 1-14 (CCR1-CCR14) at 0xfc40,0070, 0xfc40,0074, 0xfc40,0078, 0xfc40,007c,
0xfc40,0080, 0xfc40,0084, 0xfc40,0088, 0xfc40,008c, 0xfc40,0090, 0xfc40,0094, 0xfc40,0098,
0xfc40,009c, 0xfc40,00a0, 0xfc40,00a4, respectively
OE: Clock Enable
0 Tristates clock driven to site
1 Drives selected clock source to site
R: Reserved
CSS4-0: Clock Source Select
Defines source of clock to be driven to site. If “self” is selected as source, logic “0” will be
driven.
76543210
OE reserved CSS4 CSS3 CSS2 CSS1 CSS0
001110
Bit: Input Source:
Clock Control
Register:
00000 AMC1 CLK1 1
00001 AMC1 CLK2 2
00010 AMC1 CLK3 3
00011 AMC2 CLK1 4
00100 AMC2 CLK2 5
00101 AMC2 CLK3 6
00110 AMC3 CLK1 7
00111 AMC3 CLK2 8
01000 AMC3 CLK3 9
01001 AMC4 CLK1 10
01010 AMC4 CLK2 11
01011 AMC4 CLK3 12
01100 aTCA CLK1 A
01101 aTCA CLK1 B
01110 aTCA CLK2 A
01111 aTCA CLK2 B
10000 aTCA CLK3 A 13
CPLD: Clock Synchronizer Registers
KAT4000 User’s Manual 10007175-02
7-18
Note: This 8 KHz source is generated by the PLD based off Sync 1 clocks. Therefore, the Sync 1 part must be enabled
for this clock to be active.
Clock Synchronizer Interrupt Registers (CSI1-CSI3)
The Clock Synchronizer Interrupt registers control the clock synchronizer interrupts.
Default is 0xc0 for all three registers. Default register values are shown in the bottom row of
the register table.
Register 7-20: Clock Synchronizer Interrupt Registers 1-3 (CSI1-CSI3) at 0xfc40,00a8, 0xfc40,00ac, 0xfc40,00b0, respectively
HM, PM: Holdover and PLL Lock Loss Interrupt Masks (read/write)
1 Masks interrupt from being generated to CPU
0 Allows interrupt to be generated to CPU
Note: Bits (3:2) are not affected by bits (7:6).
HIC, PIC: Holdover and PLL Lock Loss Interrupt Clear (write-only)
Setting (1) the bit clears interrupts.
10001 aTCA CLK3 B 14
10010 Sync #1 - 19.44 MHz
10011 Sync #1 - 2.048 MHz
10100 Sync #1 - 1.544 MHz
10101 8 KHz (see note)
10110 Sync #2 - 19.44 MHz
10111 Sync #2 - 2.048 MHz
11000 Sync #2 - 1.544 MHz
11001 Sync #3 - 19.44 MHz
11010 Sync #3 - 2.048 MHz
11011 Sync #3 - 1.544 MHz
11100 reserved
... —
11111 reserved
76543210
HM PM HIC PIC HPI PPI HS PS
11000000
Bit: Input Source:
Clock Control
Register:
CPLD: JTAG Interface
10007175-02 KAT4000 User’s Manual 7-19
HPI, PPI: Holdover and PLL Lock Loss Pending Interrupt (read-only)
1Interrupt latched
0 No interrupt latched
HS, PS: Holdover and PLL Lock Loss Status (read-only)
1 Indicates synchronizer in holdover/PLL lock loss state
0 Indicates synchronizer not in holdover, PLL locked
JTAG INTERFACE
The KAT4000 provides a single 10-pin JTAG header (JP3) for in-system programming of on-
board PLDs, as well as Altera PLDs on AMC site 1 (see Fig. 7-2). The header pin assignments
are defined in Table 7-2.
Table 7-2: JP3 PLD JTAG Pin Assignments
Pin: Description: Pin: Description:
1 Test Clock Input (TCK) 2 ground 1
3 Test Data Output (TDO) 4 3.3 volts VCC
5Test Mode Select (TMS)6not connected
7not connected 8 not connected
9 Test Data Input (TDI) 10 ground 2
CPLD: JTAG Interface
KAT4000 User’s Manual 10007175-02
7-20
Figure 7-2: PLD JTAG Diagram
JP1 is the configuration header for PLD programming. Installing a shunt on jumper JP1, pins
1:2, enables the JP3 PLD programming header. The header pin assignments are defined in
Table 7-3.
Table 7-3: JP1 Pin Assignments
Shunt Description:
1:2 TRANS: Enable programming via header (enables CPU JTAG/COP access)
3:4 LSBSEL0: Select KSL PLD
5:6 LSBSEL1: Select AMC Site 1
7:8 LSBSEL5: Select Fat Pipe Module
9:10 LSBSEL6: Select IPMC PLD
AMC 1
SCANSTA112
JTAG Multiplexer
SCANSCA112
JTAG
Multiplexer
Master
Port 1
Port 2
Port 3
Port 4
Port 5
Port 6
Port 0
KSL PLD
IPMC PLD
Programming
Header JP3
Fat Pipe
Switch Module
Config.
Header JP1
10007175-02 KAT4000 User’s Manual 8-1
Section 8
AMC Sites
The KAT4000 provides four Advanced Mezzanine Card (AMC) sites capable of supporting
the following AMC form factors: single- or double-width; mid-size or compact. Total power
of the AMC sites, including optional RTMs, shall not exceed 120 watts. B+ style AMC con-
nectors are used. Each site is individually configurable.
Note: When using a compact AMC module, the module must have a front panel that fully covers the front opening
of the KAT4000 to maintain EMC compliance.
Note: See PICMG® AMC.0 Rev. 2.0 Advanced Mezzanine Card Base Specification for the maximum allowable com-
ponent height and PCB width for a custom AMC module designed specifically for the KAT4000.
The following features are supported by all AMC interfaces:
Serial Ports: These TTL level signals are for general purpose serial communications. The KAT4000 routes
the serial ports from the AMC sites directly to the Zone 3 connectors.
10/100/1000 Ethernet Ports:
The KAT4000 provides up to two 1000Base-BX Ethernet ports from each AMC site into the
Ethernet core switch (VSC7376).
PCI Express Ports: (Optional) The KAT4000 provides one PCIe port from each AMC site into the PCI Express
switch (PEX 8524).
GbE, sRIO, PCIe or 10 GbE Ports:
The KAT4000 provides four ports from each AMC site into the fat pipe switch module
(optional) capable of using GbE, sRIO, PCIe or 10 GbE protocols.
User I/O: The AMC connectors provide the user-defined I/O for custom connectivity. The KAT4000
routes the user I/O pins from the AMC sites directly to the Zone 3 connectors.
IPMB-L: The local IPMB interfaces between the KAT4000’s IPMC and the AMC sites’ MMC.
AMC Sites: AMC Connectors
KAT4000 User’s Manual 10007175-02
8-2
AMC CONNECTORS
The connectors for modules B1 through B4 have 170 pins (see Fig. 8-1) and support the
Ethernet core switch, the PCI Express Switch, the Fat Pipe Switch module, and Zone 3. Refer
to the component map in Fig. 2-1 for the location and orientation of the AMC B+ connectors
on the KAT4000.
Figure 8-1: AMC B+ Connector
AMC SIGNALS
The following signals are available on all four connectors. All signals are bi-directional
unless stated otherwise. A sustained tristate line is driven high for one clock cycle before
float. The signals are the same for each connector since they are differential pairs. Bn stands
for B1 through B4.
AMCn_RXD/TXDn+/-: Differential pairs from AMC cards B1-B4 to the fat pipe switch module.
Bn_CONSOLE_TX/RX+/-:Serial ports from AMC sites to Zone 3.
Bn_EN*: ENABLE This signal connects to the IPMC PLD and enables the MMC on the board.
Bn_LEDCTRL_TX/RX+/-: Serial ports from AMC sites to Zone 3.
Bn_P1_RX/TX+/-: Power connectors to configuration capacitors for GbE or PCI Express.
Bn_PS1*: Connects to the IPMC PLD via a BMR H8S microcontroller.
Bn_SATA1_RXD/TXD+/-:Optional module connectivity test loop to B3 Sata 1, B4 Sata 2, B1 Sata 1 and B1 Sata 2,
respectively.
Bn_SATA2_RXD/TXD+/-:Optional module connectivity test loop to B4 Sata 1, B3 Sata 2, B2 Sata 2 B2 Sata 1, respec-
tively.
Bn_TRINGn/RRINGn+/-: Input (receive) and output (transmit) signals to Zone 3.
AMC Sites: AMC Signals
10007175-02 KAT4000 User’s Manual 8-3
Bn_TTIPn/RTIPn+/-: Input (receive) and output (transmit) signals to Zone 3.
CLK1+/-: CLOCK 1 Connects to the AMC synchronization clock transceivers.
CLK2+/-: CLOCK 2 Connects to the AMC synchronization clock transceivers.
EXPn_B_RX4/TX4+/-: Optional test loop to B3 port 8 (B1), B4 (B2), B1 (B3) and B2 (B4), respectively. PCI Express
interface port output (transmit) or input (receive) signals differential pairs.
EXPn_B_RX5/TX5+/-: Optional test loop to B3 port 9 (B1), B4 (B2), B1 (B3) and B2 (B4), respectively.
EXPn_B_RX6/TX6+/-: Optional test loop to B3 port 10 (B1), B4 (B2), B1 (B3) and B2 (B4), respectively.
EXPn_B_RX7/TX7+/-: Optional test loop to B3 port 11 (B1), B4 (B2), B1 (B3) and B2 (B4), respectively.
GIGn_RX/TX+/-: Gigabit Ethernet differential pairs to Ethernet core switch ports 0, 12, 18 and 11, respec-
tively.
PCIE_REFCLKn+/-: CLOCK 3 Connects to the PCI Express clock.
Bn_SCL: SERIAL I2C CLOCK To IPMC I2C buffer.
Bn_SDA: SERIAL I2C DATA/ADDRESS To IPMC I2C buffer.
TCK: TEST CLOCK INPUT (JTAG) clocks state information and test data into and out of the device
during operation of the TAP.
TDI: TEST DATA INPUT (JTAG) serially shifts test data and test instructions into the device during
TAP operations.
TDO: TEST DATA OUTPUT (JTAG) serially shifts test data and test instructions out of the device
during TAP operations.
TMS: TEST MODE SELECT (JTAG) controls the state of the TAP controller (input signal) in the
device.
TRST*: TEST RESET (JTAG) is the asynchronous reset for the JTAG controller (input signal).
AMC Sites: Pin Assignments
KAT4000 User’s Manual 10007175-02
8-4
PIN ASSIGNMENTS
Each connector has 170 pins (see Fig. 8-1) and supports PCIe and GbE signals, the Ethernet
core switch, the PCI Express switch, the fat pipe switch module, user I/O configuration sig-
nals and Zone 3.
Table 8-1: B1-B4 AMC Pin Assignments
Pin: B1-B4 Signal: Pin: B1-B4 Signal:
1GND 212 V
3Bn_PS1* 43.3 V
53.3 V 6Reserved
7GND 8Reserved
912 V 10GND
11 GIGn_RX+ 12 GIGn_RX-
13 GND 14 GIGn_TX+
15 GIGn_TX- 16 GND
17 3.3 V 18 12 V
19 GND 20 Bn_P1_RX+
21 Bn_P1_RX- 22 GND
23 Bn_P1_TX+ 24 Bn_P1_TX-
25 GND 26 3.3 V
27 12 V 28 GND
29 Bn_SATA1_RXD+ 30 Bn_SATA1_RXD-
31 GND 32 Bn_SATA1_TXD+
33 Bn_SATA1_TXD- 34 GND
35 Bn_SATA2_RXD+ 36 Bn_SATA2_RXD-
37 GND 38 Bn_SATA2_TXD+
39 Bn_SATA2_TXD- 40 GND
41 Bn_EN* 42 12 V
43 GND 44 AMCn_RXD4+
45 AMCn_RXD4- 46 GND
47 AMCn_TXD4+ 48 AMCn_TXD4-
49 GND 50 AMCn_RXD5+
51 AMCn_RXD5- 52 GND
53 AMCn_TXD5+ 54 AMCn_TXD5-
55 GND 56 Bn_SCL
57 12 V 58 GND
59 AMCn_RXD6+ 60 AMCn_RXD6-
61 GND 62 AMCn_TXD6+
63 AMCn_TXD6- 64 GND
65 AMCn_RXD7+ 66 AMCn_RXD7-
AMC Sites: Pin Assignments
10007175-02 KAT4000 User’s Manual 8-5
67 GND 68 AMCn_TXD7+
69 AMCn_TXD7- 70 GND
71 Bn_SDA 72 12 V
73 GND 74 Bn_CLK1+
75 Bn_CLK1- 76 GND
77 Bn_CLK2+ 78 Bn_CLK2-
79 GND 80 Bn_CLK3+
81 Bn_CLK3- 82 GND
83 GND 84 12 V
85 GND 86 GND
87 EXPn_B_TX4- 88 EXPn_B_TX4+
89 GND 90 EXPn_B_RX4-
91 EXPn_B_RX4+ 92 GND
93 EXPn_B_TX5- 94 EXPn_B_TX5+
95 GND 96 EXPn_B_RX5-
97 EXPn_B_RX5+ 98 GND
99 EXPn_B_TX6- 100 EXPn_B_TX6+
101 GND 102 EXPn_B_RX6-
103 EXPn_B_RX6+ 104 GND
105 EXPn_B_TX7- 106 EXPn_B_TX7+
107 GND 108 EXPn_B_RX7-
109 EXPn_B_RX7+ 110 GND
111 Bn_CONSOLE_RX- 112 Bn_CONSOLE_TX+
113 GND 114 Bn_LEDCTRL_RX-
115 Bn_LEDCTRL_TX+ 116 GND
117 Bn_RRING1- 118 Bn_RTIP1+
119 GND 120 Bn_TRING1-
121 Bn_TTIP1+ 122 GND
123 Bn_RRING2- 124 Bn_RTIP2+
125 GND 126 Bn_TRING2-
127 Bn_TTIP2+ 128 GND
129 Bn_RRING3- 130 Bn_RTIP3+
131 GND 132 Bn_TRING3-
133 Bn_TTIP3+ 134 GND
135 Bn_RRING4- 136 Bn_RTIP4+
137 GND 138 Bn_TRING4-
139 Bn_TTIP4+ 140 GND
141 Bn_RRING5- 142 Bn_RTIP5+
143 GND 144 Bn_TRING5-
Pin: B1-B4 Signal: Pin: B1-B4 Signal:
AMC Sites: SATA Lines
KAT4000 User’s Manual 10007175-02
8-6
SATA LINES
This section displays the SATA line connections for AMCs in the KAT4000. Use SATA lines to
link AMC modules with storage devices (e.g., SATA hard drive or Emerson Ethernet test
card).
Figure 8-2: Diagram of SATA line connections
145 Bn_TTIP5+ 146 GND
147 Bn_RRING6- 148 Bn_RTIP6+
149 GND 150 Bn_TRING6-
151 Bn_TTIP6+ 152 GND
153 Bn_RRING7- 154 Bn_RTIP7+
155 GND 156 Bn_TRING7-
157 Bn_TTIP7+ 158 GND
159 Bn_RRING8- 160 Bn_RTIP8+
161 GND 162 Bn_TRING8-
163 Bn_TTIP8+ 164 GND
165 TCK 166 TMS
167 TRST* 168 TDO
169 TDI 170 GND
Pin: B1-B4 Signal: Pin: B1-B4 Signal:
B4 B3 B2 B1
(2 (2 (2 (2 (2 (2 (2 (2
10007175-02 KAT4000 User’s Manual 9-1
Section 9
System Management
The KAT4000 provides an intelligent hardware management system, as defined in the
AdvancedTCA® Base Specification (PICMG® 3.0; AMC.0). This system implements an Intel-
ligent Platform Management Controller (IPMC) based on the proprietary BMR-H8S-ATCA®
reference design from Pigeon Point Systems.
The KAT4000 IPMC implements all the standard Intelligent Platform Management Interface
(IPMI) commands and provides hardware interfaces for other system management fea-
tures such as Hot Swap control, LED control, power control, and temperature and voltage
monitoring. The IPMC also supports an EIA-232 interface for serial communications via the
Serial Interface Protocol Lite (SIPL) IPMI commands.
IPMC OVERVIEW
The basic features of the KAT4000 IPMC include:
Conformance to ATCA Base Specification (PICMG 3.0)
Geographical addressing according to PICMG 3.0
Ability to read and write Field Replaceable Unit (FRU) data on each capable AMC site
Ability to reset IPMC from IPMB-0
Ability to read an inlet and outlet temperature sensor
Ability to read payload voltage/current levels
Ability to send event messages to a specified receiver
All sensors generate assertion and/or de-assertion event messages
Support for fault tolerant field upgrades
Support for field updates of firmware via the payload processor interface
Hardware added to accommodate console redirection over IPMB
System Management: IPMC Overview
KAT4000 User’s Manual 10007175-02
9-2
The following block diagram shows the IPMC connections for the KAT4000.
Figure 9-1: IPMC Connections Block Diagram
IPMB-B
IPMB-A
IPMC
Pigeon Point
Reference Design
B///>C
<&2
<&2
@"'
(/
0
9(0
0&
0
Front
Panel
LEDs
Hot Swap Switch
:@
:@
<:/
IPMC Debug
Console
IPMC Reset
Switch

Boot
Device
Select
Payload
Reset
<%6"
2(/
!
Temperature Sensors
.;6
9IDJ
." ."
.;7*;
.;7;*;
IPMB-0
ShMC Present
(from JP7)
<."
2(/
!
0
CPU Present
:@
: @
AMC Sites (B1-B4):
Ready,
Payload Power Current Monitor
RTM: Payload Power Enable
RTM: Management Power Enable
Payload
Power Enables and
AMC Sites (B1-B4):
Management
:@
:@
..
RTM: Present
AMC Sites (B1-B4): Enable
Payload
Processor
Interface
System Management: IPMI Messaging
10007175-02 KAT4000 User’s Manual 9-3
IPMI MESSAGING
All IPMI messages contain a Network Function Code field, which defines the category for a
particular command. Each category has two codes assigned to it–one for requests and one
for responses. The code for a request has the least significant bit of the field set to zero,
while the code for a response has the least significant bit of the field set to one. Table 9-1
lists the network function codes (as defined in the IPMI specification) used by the IPMC.
Table 9-1: Network Function Codes
Hex Code
Value(s): Name: Type: Description:
00, 01 Chassis chassis device
requests/responses
00 = command/request, 01 = response:
common chassis control and status functions
02, 03 Bridge bridge requests/
responses
02 = request, 03 = response:
message contains data for bridging to the next
bus. Typically, the data is another message,
which also may be a bridging message. This
function is only present on bridge nodes.
04, 05 Sensor/
Event
sensor and event
requests/responses
04 = command/request, 05 = response:
for configuration and transmission of Event
Messages and system Sensors. This function
may be present on any node.
06, 07 App application
requests/responses
06 = command/request, 07 = response:
message is implementation-specific for a
particular device, as defined by the IPMI
specification
08, 09 Firmware firmware transfer
requests/responses
08 = command/request, 09 = response:
firmware transfer messages match the format
of application messages, as determined by the
particular device
0A, 0B Storage non-volatile
storage requests/
responses
0A = command/request, 0B = response:
may be present on any node that provides
nonvolatile storage and retrieval services
0C-2F Reserved reserved: 36 network functions (18 pairs)
30-3F OEM vendor specific: 16 network functions (8 pairs).
The vendor defines functional semantics for
cmd and data fields. The cmd field must hold
the same value in requests and responses for a
given operation to support IPMI message
handling and transport mechanisms. The
controller’s Manufacturer ID value identifies
the vendor or group.
System Management: IPMI Messaging
KAT4000 User’s Manual 10007175-02
9-4
IPMI Completion Codes
All IPMI response messages contain a hexadecimal Completion Code field that indicates the
status of the operation. Table 9-2 lists the Completion Codes (as defined in the IPMI specifi-
cation) used by the IPMC.
Table 9-2: Completion Codes
Code: Description:
Generic Completion Codes 00, C0-FF
00 Command completed normally
C0 Node busy–command could not be processed because command-processing
resources are temporarily unavailable
C1 Invalid command–indicates an unrecognized or unsupported command
C2 Command invalid for given LUN
C3 Time-out while processing command, response unavailable
C4 Out of space–command could not be completed because of a lack of storage space
required to execute the given command operation
C5 Reservation canceled or invalid Reservation ID
C6 Request data truncated
C7 Request data length invalid
C8 Request data field length limit exceeded
C9 Parameter out of range–one or more parameters in the data field of the Request are
out of range. This is different from Invalid data field code (CC) because it indicates that
the erroneous field(s) has a contiguous range of possible values.
CA Cannot return number of requested data bytes
CB Requested sensor, data, or record not present
CC Invalid data field in Request
CD Command illegal for specified sensor or record type
CE Command response could not be provided
CF Cannot execute duplicated request–for devices that cannot return the response
returned for the original instance of the request. These devices should provide separate
commands that allow the completion status of the original request to be determined.
An Event Receiver does not use this completion code, but returns the 00 completion
code in the response to (valid) duplicated requests.
D0 Command response could not be provided, SDR Repository in update mode
D1 Command response could not be provided, device in firmware update mode
D2 Command response could not be provided, Baseboard Management Controller (BMC)
initialization or initialization agent in progress
D3 Destination unavailable–cannot deliver request to selected destination. (This code can
be returned if a request message is targeted to SMS, but receive message queue
reception is disabled for the particular channel.)
D4 Cannot execute command, insufficient privilege level
D5 Cannot execute command, parameter(s) not supported in present state
FF Unspecified error
System Management: IPMB Protocol
10007175-02 KAT4000 User’s Manual 9-5
IPMB PROTOCOL
The IPMB message protocol is designed to be robust and support many different physical
interfaces. The IPMC supports messages over the IPMB interface. Messages are defined as
either a request or a response, as indicated by the least significant bit in the Network Func-
tion Code of the message. Table 9-3 shows the format of an IPMI request message followed
by each byte description.
Table 9-3: Format for IPMI Request Message
The first byte contains the responder’s Slave Address, rsSA.
The second byte contains the Network Function Code, netFn, and the responder’s
Logical Unit Number, rsLUN.
The third byte contains the two’s-complement checksum for the first two bytes.
The fourth byte contains the requester’s Slave Address, rqSA.
The fifth byte contains the requester’s Sequence Number, rqSeq, and requester’s
Logical Unit Number, rqLUN. The Sequence number may be used to associate a specific
response to a specific request.
The sixth byte contains the Command Number.
Device-Specific (OEM) Codes 01-7E
01-7E Device specific (OEM) completion codes–command-specific codes (also specific for a
particular device and version). Interpretation of these codes requires prior knowledge
of the device command set.
Command-Specific Codes 80-BE
80-BE Standard command-specific codes–reserved for command-specific completion codes
(described in this chapter)
Byte: Bits:
76543210
1rsSA
2netFn rsLUN
3Checksum
4rqSA
5rqSeq rqLUN
6Command
7:N Data
N+1 Checksum
Code: Description: (continued)
System Management: SIPL Protocol
KAT4000 User’s Manual 10007175-02
9-6
The seventh byte and beyond contain parameters for specific commands (if required).
The final byte is the two’s-complement checksum of all of the message data after the
first checksum.
An IPMI response message (see Table 9-4) is similar to a IPMI request message. The main dif-
ference is that the seventh byte contains the Completion Code, and the eighth byte and
beyond hold data received from the controller (rather than data to send to the controller).
Also, the Slave Address and Logical Unit Number for the requester and responder are
swapped.
Table 9-4: Format for IPMI Response Message
SIPL PROTOCOL
The KAT4000 IPMC supports the Serial Interface Protocol Lite (SIPL) protocol. It supports
raw IPMI messages in SIPL and handles these messages the same way as it handles IPMI
messages from the IPMB-O bus, except that the replies route to either the payload or serial
debug interface. Messages are entered as case-insensitive hex-ASCII pairs, separated
optionally by a space, as shown in the following examples:
[18 00 22]<newline>
[180022]<newline>
The IPMC does not, however, support SIPL ASCII text commands, as defined by the IPMI
specification.
The KAT4000 IPMC does support Pigeon Point Systems extension commands, imple-
mented as OEM IPMI commands. These commands use Network Function Codes 2E/2F
(hex), and the message body is transferred similarly to raw IPMI messages, as described
previously.
Byte: Bits:
76543210
1rqSA
2netFn rqLUN
3Checksum
4rsSA
5rsSeq rsLUN
6Command
7Completion Code
8:N Data
N+1 Checksum
System Management: Message Bridging
10007175-02 KAT4000 User’s Manual 9-7
The following figures show an example of an extension command request and response,
respectively.
Figure 9-2: Extension Command Request Example
Figure 9-3: Extension Command Response Example
MESSAGE BRIDGING
The Message Bridging facility is responsible for bridging messages between various inter-
faces of the KAT4000 IPMC. As required by the AMC.0 specification, the KAT4000 IPMC
supports message bridging between the IPMB-0 and IPMB-L interfaces using the standard
Send Message command.
[B8 00 01 0A 40 00 12]
Command Code
rqSeq (0016) / Bridge (002)
NetFn Code (2E16) / LUN (002)
Pigeon Point IANA
Data
[BC 00 01 00 0A 40 00 34]
Command Code
rqSeq (0016) / Bridge (002)
NetFn Code (2F16) / LUN (002)
Pigeon Point IANA
Data
Completion Code
System Management: Message Bridging
KAT4000 User’s Manual 10007175-02
9-8
The KAT4000 IPMC also supports message bridging between the Payload Interface and
IPMB-O, which allows the payload to send custom messages to and receive them from
other shelf entities, such as the shelf manager. Message bridging is implemented using the
Send/Get Message commands and also via LUN 10 of the KAT4000 IPMC.
The following example illustrates how the Send/Get Message and Get Address Info com-
mands can be used by the payload software to get the physical location of the board in the
shelf:
1The payload software sends the Get Address Info command to the BMR-H8S-ATCA. Using
the SIPL protocol:
[B0 xx 01 00]
2The BMR-H8S-ATCA returns its IPMB address in the Get Address Info reply. In this example,
7216 is the IPMB-O address of the H8S ATCA.
{B4 00 01 00 00 FF 72 FF 00 01 07]
3The payload software composes a Get Address Info command requesting the responder to
provide its addressing information for FRU device 0. The request is composed in the IPMB
format. The responder address is set to 2016 (for the shelf manager). The requester address
is set to the value obtained in the previous step.
{20 B0 30 72 00 01 00 8D]
4The payload software forwards the command composed in the previous step to the shelf
manager using the Send Message command. The Send/Get Message in SIPL format is:
[18 xx 34 40 20 B0 30 72 00 01 00 8D]
5The BMR-H8S-ATCA firmware sends the Get Address Info request to the shelf manager,
waits for a reply to this request, and sends this reply to the payload software in the
Send/Get Message response.
[1C 00 34 00 72 B4 DA 20 00 01 00 00 41 82 FF 00 FF 00 1E]
6The payload software extracts the Get Address info reply from the Send/Get Message
response and gets the physical address of the board from it.
The second message bridging implementation, bridging via LUN 10, allows the payload to
receive responses to requests sent to IPMB-0 via the Send Message command with request
tracking disabled, as well as receive requests from IPMB-0. To provide this functionality, the
KAT4000 IPMC places all messages coming to LUN 10 from IPMB-0 in a dedicated Receive
Message Queue, and those messages are processed by the payload instead of the IPMC
firmware. To read messages from the Receive Message Queue, the payload software uses
the standard Get Message command. The payload software is notified about messages
coming to LUN 10 via the Get Status command of the SIPL protocol and the payload notifi-
cation mechanism, or, if the LPC/KCS-based Payload Interface is used, using the KCS inter-
rupt. The Receive Message Queue of the KAT4000 IPMC is limited to 128 bytes, which is
System Management: Standard Commands
10007175-02 KAT4000 User’s Manual 9-9
sufficient for storing at least three IPMB messages, but may be not enough for a larger
number of messages. Taking this into account, the payload software must read messages
from the queue as fast as possible, caching them on the on-carrier payload side for further
handling, if it is necessary. If the Receive Message Queue is full, the KAT4000 IPMC rejects
all requests coming to LUN 10 with the C0h (Node Busy) completion code and discards all
responses coming to this LUN.
STANDARD COMMANDS
The intelligent peripheral management controller (IPMC) supports standard IPMI com-
mands to query board information and to control the behavior of the board. These com-
mands provide a means to:
identify the controller
reset the controller
return the controller’s self-test results
read and write the controller’s SROMs
read the temperature, voltage, and watchdog sensors
get specific information, such as thresholds, for each sensor
read and write the Field Replaceable Unit (FRU) data
reserve and read the Sensor Data Record (SDR) repository
configure event broadcasts
bridge an IPMI request to the public IPMB and return the response
Table 9-5 lists the IPMI commands supported by the IPMC along with the hexadecimal values
for each command’s Network Function Code (netFn), Logical Unit Number (LUN), and
Command Code (Cmd).
Note: All values are hexadecimal.
Table 9-5: IPMC IPMI Commands
Command: netFn: LUN: Cmd:
Set Event Receiver Sensor/Event 04, 05 00 00
Get Event Receiver Sensor/Event 04, 05 00 01
Platform Event (Event Message) Sensor/Event 04, 05 00 02
Get Device SDR Information Sensor/Event 04, 05 00 20
Get Device SDR Sensor/Event 04, 05 00 21
Reserve Device SDR Repository Sensor/Event 04, 05 00 22
Get Sensor Reading Factors Sensor/Event 04, 05 00 23
System Management: Standard Commands
KAT4000 User’s Manual 10007175-02
9-10
Set Sensor Hysteresis Sensor/Event 04, 05 00 24
Get Sensor Hysteresis Sensor/Event 04, 05 00 25
Set Sensor Thresholds Sensor/Event 04, 05 00 26
Get Sensor Thresholds Sensor/Event 04, 05 00 27
Set Sensor Event Enable Sensor/Event 04, 05 00 28
Get Sensor Event Enable Sensor/Event 04, 05 00 29
Rearm Sensor Events Sensor/Event 04, 05 00 2A
Get Sensor Events Sensor/Event 04, 05 00 2B
Get Sensor Reading Sensor/Event 04, 05 00 2D
Set Sensor Type Sensor/Event 04, 05 00 2E
Get Sensor Type Sensor/Event 04, 05 00 2F
Get Device ID Application 06, 07 00 01
Broadcast 'Get Device ID' Application 06, 07 00 01
Cold Reset Application 06, 07 00 02
Warm Reset Application 06, 07 00 03
Get Self Test Results Application 06, 07 00 04
Get Device GUID Application 06, 07 00 08
Reset Watchdog Timer Application 06, 07 00 22
Set Watchdog Timer Application 06, 07 00 24
Get Watchdog Timer Application 06,07 00 25
Send Message Application 06,07 00 34
Get FRU Inventory Area Info Storage 0A, 0B 00 10
Read FRU Data Storage 0A, 0B 00 11
Write FRU Data Storage 0A, 0B 00 12
Get PCIMG Properties PICMG 2C, 2D 00 00
Get Address Info PICMG 2C, 2D 00 01
FRU Control PICMG 2C, 2D 00 04
Get FRU LED Properties PICMG 2C, 2D 00 05
Get LED Color Capabilities PICMG 2C, 2D 00 06
Set FRU LED State PICMG 2C, 2D 00 07
Get FRU LED State PICMG 2C, 2D 00 08
Set IPMB State Command PICMG 2C, 2D 00 09
Set FRU Activation Policy PICMG 2C, 2D 00 0A
Get FRU Activation Policy PICMG 2C, 2D 00 0B
Set FRU Activation PICMG 2C, 2D 00 0C
Get Device Locator Record ID PICMG 2C, 2D 00 0D
Get Port State PICMG 2C, 2D 00 0E
Set Port State PICMG 2C, 2D 00 0F
Compute Power Properties PICMG 2C, 2D 00 10
Set Power Level PICMG 2C, 2D 00 11
Command: (continued) netFn: LUN: Cmd:
System Management: Standard Commands
10007175-02 KAT4000 User’s Manual 9-11
The IPMC implements many standard IPMI commands. For example, software can use the
watchdog timer commands to monitor the system’s health. Normally, the software resets
the watchdog timer periodically to prevent it from expiring. The IPMI specification allows
for different actions such as reset, power off, and power cycle, to occur if the timer expires.
The watchdog’s ‘timer use’ fields can keep track of which software (Operating System, Sys-
tem Management, etc.) started the timer. Also, the time-out action and ‘timer use’ infor-
mation can be logged automatically to the System Event Log (SEL) when the time-out
occurs. Please refer to the IPMI specification (listed in Table 1-3) for details about each com-
mand’s request and response data. The IPMC also implements ATCA commands, see the
ATCA Base Specification (PICMG 3.0).
Get Power Level PICMG 2C, 2D 00 12
Bused Resource Control
(Release, Query, Force, Bus
Free)
PICMG 2C, 2D 00 17
Command: (continued) netFn: LUN: Cmd:
System Management: Vendor Commands
KAT4000 User’s Manual 10007175-02
9-12
VENDOR COMMANDS
The IPMC supports additional IPMI commands that are specific to Pigeon Point and/or
Emerson. This section provides detailed descriptions of those extensions.
Table 9-6: Vendor Command Summary
Get Status Command
The IPMC firmware notifies the payload about changes of all status bits except for bits 0-2
by sending an unprintable character (ASCII 07, BELL) over the Payload Interface. The pay-
load is expected to use the Get Status command to identify pending events and other SIPL
Command: netFn: LUN: Cmd:
Get Status OEM 2E, 2F 00 00
Get Serial Interface Properties OEM 2E, 2F 00 01
Set Serial Interface Properties OEM 2E, 2F 00 02
Get Debug Level OEM 2E, 2F 00 03
Set Debug Level OEM 2E, 2F 00 04
Get Hardware Address OEM 2E, 2F 00 05
Set Hardware Address OEM 2E, 2F 00 06
Get Handle Switch OEM 2E, 2F 00 07
Set Handle Switch OEM 2E, 2F 00 08
Get Payload Communication
Time-Out
OEM 2E, 2F 00 09
Set Payload Communication
Time-Out
OEM 2E, 2F 00 0A
Enable Payload Control OEM 2E, 2F 00 0B
Disable Payload Control OEM 2E, 2F 00 0C
Reset IPMC OEM 2E, 2F 00 0D
Hang IPMC OEM 2E, 2F 00 0E
Bused Resource Control OEM 2E, 2F 00 0F
Bused Resource Status OEM 2E, 2F 00 10
Graceful Reset OEM 2E, 2F 00 11
Diagnostic Interrupt Results OEM 2E, 2F 00 12
Get Payload Shutdown Time-
Out
OEM 2E, 2F 00 15
Set Payload Shutdown Time-
Out
OEM 2E, 2F 00 16
Get Module State OEM 2E, 2F 00 27
Enable AMC Site OEM 2E, 2F 00 28
Disable AMC Site OEM 2E, 2F 00 29
System Management: Vendor Commands
10007175-02 KAT4000 User’s Manual 9-13
commands to provide a response (if necessary). The event notification character is sent in a
synchronous manner, and does not appear in the contents of SIPL messages sent to the
payload.
Table 9-7: Get Status Command
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data
(continued)
5 Bit [7] Graceful Reboot Request
If set to 1, indicates that the payload is requested to initiate the
graceful reboot sequence
Bit [6] Diagnostic Interrupt Request
If set to 1, indicates that a payload diagnostic interrupt request
has arrived
Bit [5] Shutdown Alert
If set to 1, indicates that the payload is going to be shutdown
Bit [4] Reset Alert
If set to 1, indicates that the payload is going to be reset
Bit [3] Sensor Alert
If set to 1, indicates that at least one of the IPMC sensors
detects threshold crossing
Bits [2:1] Mode
The current IPMC modes are defined as:
0Normal
1Standalone
2 Manual Standalone
Bit [0] Control
If set to 0, the IPMC control over the payload is disabled
6 Bits [4:7] Metallic Bus 2 Events
These bits indicate pending Metallic Bus 2 requests arrived from
the shelf manager:
0 Metallic Bus 2 Query
1 Metallic Bus 2 Release
2 Metallic Bus 2 Force
3 Metallic Bus 2 Free
Bits [0:3] Metallic Bus 1 Events
These bits indicate pending Metallic Bus 1 requests arrived from
the shelf manager:
0 Metallic Bus 1 Query
1 Metallic Bus 1 Release
2 Metallic Bus 1 Force
3 Metallic Bus 1 Free
System Management: Vendor Commands
KAT4000 User’s Manual 10007175-02
9-14
Get Serial Interface Properties Command
The Get Serial Interface Properties command is used to get the properties of a particular
serial interface.
Table 9-8: Get Serial Interface Properties Command
7 Bits [4:7] Clock Bus 2 Events
These bits indicate pending Clock Bus 2 requests arrived from
the shelf manager:
0 Clock Bus 2 Query
1 Clock Bus 2 Release
2 Clock Bus 2 Force
3 Clock Bus 2 Free
Bits [0:3] Clock Bus 1 Events
These bits indicate pending Clock Bus 1 requests arrived from
the shelf manager:
0 Clock Bus 1 Query
1 Clock Bus 1 Release
2 Clock Bus 1 Force
3 Clock Bus 1 Free
Response Data
(continued)
8 Bits [4:7] Reserved
Bits [0:3] Clock Bus 3 Events
These bits indicate pending Clock Bus 3 requests arrived from
the shelf manager:
0 Clock Bus 3 Query
1 Clock Bus 3 Release
2 Clock Bus 3 Force
3 Clock Bus 3 Free
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4Interface ID
0Serial Debug Interface
1 Payload Interface
Type: Byte: Data Field: (continued)
System Management: Vendor Commands
10007175-02 KAT4000 User’s Manual 9-15
Set Serial Interface Properties Command
The Set Serial Interface Properties command is used to set the properties of a particular
serial interface.
Table 9-9: Set Serial Interface Properties Command
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5Bit [7] Echo On
If this bit is set, the IPMC enables echo for the given serial
interface
Bits [6:4] Reserved
Bits [3:0] Baud Rate ID
The baud rate ID defines the interface baud rate as follows:
0 9600 bps
1 19200 bps
2 38400 bps
3 57600 bps (unsupported)
4 115200 bps (unsupported)
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4Interface ID
0Serial Debug Interface
1 Payload Interface
5Bit [7] Echo On
If this bit is set, the IPMC enables echo for the given serial
interface
Bits [6:4] Reserved
Bits [3:0] Baud Rate ID
The baud rate ID defines the interface baud rate as follows:
0 9600 bps
1 19200 bps
2 38400 bps
3 57600 bps (unsupported)
4 115200 bps (unsupported)
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Type: Byte: Data Field: (continued)
System Management: Vendor Commands
KAT4000 User’s Manual 10007175-02
9-16
Get Debug Level Command
The Get Debug Level command gets the current debug level of the IPMC firmware.
Table 9-10: Get Debug Level Command
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data 5 Bits [7:5] Reserved
Bit [4] IPMB Dump Enable
If set to 1, the IPMC provides a trace of IPMB messages that
are arriving to/going from the IPMC via IPMB-O
Bit [3] Payload Logging Enable
If set to 1, the IPMC provides a trace of SIPL activity on the
Payload Interface onto the Serial Debug interface
Bit [2] Alert Logging Enable
If set to 1, the IPMC outputs important alert messages onto the
Serial Debug interface
Bit [1] Low-level Error Logging Enable
If set to 1, the IPMC outputs low-level error/diagnostic
messages onto the Serial Debug interface
Bit [0] Error Logging Enable
If set to 1, the IPMC outputs error/diagnostic messages onto
the Serial Debug interface
System Management: Vendor Commands
10007175-02 KAT4000 User’s Manual 9-17
Set Debug Level Command
The Set Debug Level command sets the current debug level of the IPMC firmware.
Table 9-11: Set Debug Level Command
Get Hardware Address Command
The Get Hardware Address command reads the hardware address of the IPMC.
Table 9-12: Get Hardware Address Command
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4 Bits [7:5] Reserved
Bit [4] IPMB Dump Enable
If set to 1, the IPMC provides a trace of IPMB messages that
are arriving to/going from the IPMC via IPMB-O
Bit [3] Payload Logging Enable
If set to 1, the IPMC provides a trace of SIPL activity on the
Payload Interface onto the Serial Debug interface
Bit [2] Alert Logging Enable
If set to 1, the IPMC outputs important alert messages onto the
Serial Debug interface
Bit [1] Low-level Error
If set to 1, the IPMC outputs low-level error/diagnostic
messages onto the Serial Debug interface
Bit [0] Error Logging Enable
If set to 1, the IPMC outputs error/diagnostic messages onto
the Serial Debug interface
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5 Hardware Address
System Management: Vendor Commands
KAT4000 User’s Manual 10007175-02
9-18
Set Hardware Address Command
The Set Hardware Address command allows overriding of the hardware address read from
hardware when the IPMC operates in (Manual) Standalone mode.
Table 9-13: Set Hardware Address Command
Get Handle Switch Command
The Get Handle Switch command reads the state of the Hot Swap handle of the IPMC. Over-
riding of the handle switch state is allowed only if the IPMC operates in (Manual) Standalone
mode.
Table 9-14: Get Handle Switch Command
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4 Hardware Address
If set to 00, the ability to override the hardware address is
disabled
NOTE: A hardware address change only takes effect after an
IPMC reset. See “Reset IPMC Command” on page 9-21.
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5 Handle Switch Status
0x00 The handle switch is open
0x01 The handle switch is closed
0x02 The handle switch state is read from hardware
System Management: Vendor Commands
10007175-02 KAT4000 User’s Manual 9-19
Set Handle Switch Command
The Set Handle Switch command sets the state of the Hot Swap handle switch in (Manual)
Standalone mode.
Table 9-15: Set Handle Switch Command
Get Payload Communication Time-Out Command
The Get Payload Communication Time-Out command reads the payload communication
time-out value.
Table 9-16: Get Payload Communication Time-Out Command
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4 Handle Switch Status
0x00 The handle switch is open
0x01 The handle switch is closed
0x02 The handle switch state is read from hardware
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5Payload Time-out
Payload communication time-out measured in hundreds of
milliseconds. Thus, the payload communication time-out
may vary from 0.1 to 25.5 seconds.
System Management: Vendor Commands
KAT4000 User’s Manual 10007175-02
9-20
Set Payload Communication Time-Out Command
The Set Payload Communication Time-Out command sets the payload communication
time-out value.
Table 9-17: Set Payload Communication Time-Out Command
Enable Payload Control Command
The Enable Payload Control command enables payload control from the Serial Debug inter-
face.
Register 9-1: Enable Payload Control Command
Disable Payload Control Command
The Disable Payload Control command disables payload control from the Serial Debug
interface.
Table 9-18: Disable Payload Control Command
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4Payload Time-out
Payload communication time-out measured in hundreds of
milliseconds. Thus, the payload communication time-out
may vary from 0.1 to 25.5 seconds.
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
System Management: Vendor Commands
10007175-02 KAT4000 User’s Manual 9-21
Reset IPMC Command
The Reset IPMC command allows the payload to reset the IPMC over the SIPL.
Table 9-19: Reset IPMC Command
Hang IPMC Command
The IPMC provides a way to test the watchdog timer support by implementing the Hang
IPMC command, which simulates firmware hanging by entering an endless loop.
Table 9-20: Hang IPMC Command
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4 Reset Type Code
0x00 Cold IPMC reset to the current mode
0x01 Cold IPMC reset to the Normal mode
0x02 Cold IPMC reset to the Standalone mode
0x03 Cold IPMC reset to the Manual Standalone mode
0x04 Reset the IPMC and enter Upgrade mode
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
System Management: Vendor Commands
KAT4000 User’s Manual 10007175-02
9-22
Bused Resource Control Command
To send a Bused Resource Control command to the shelf manager, the payload uses the
Bused Resource Control command of the SIPL.
Table 9-21: Bused Resource Control Command
Bused Resource Status Command
If the IPMC receives a Bused Resource Control command from IPMB-0, it asserts an appro-
priate event and notifies the payload which uses the Bused Resource Status command over
the SIPL. When the IPMC receives a Bused Resource Status command, the respective bit in
the IPMC status is cleared.
The payload must issue a Bused Resource Status command before the payload communi-
cation time-out time. If the payload does not issue such a command before the payload
communication time-out time, the IPMC sends the 0xC3 completion code (Time-Out) in
the appropriate Bused Resource Control command reply.
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4 Command Types for Shelf Manager to Board
0 Query if board has control of the bus
1 Release requests a board to release control of the bus
2 Force board to release control of bus immediately
3 Bus Free informs board that the bus is available
Command Types for Board to Shelf Manager
0 Request to seize control of the bus
1 Relinquish control of the bus, Shelf Manager can reassign
control of bus
2 Notify Shelf Manager that control of the bussed resource has
been transferred to this board from another authorized board
5Bused Resource ID
0 Metallic Test Bus pair #1
1 Metallic Test Bus pair #2
2 Synch clock group 1 (CLK1A and CLK1B pairs)
3 Synch clock group 2 (CLK2A and CLK2B pairs)
3 Synch clock group 3 (CLK3A and CLK3B pairs)
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5 Status
0 Ack; Shelf Manager acknowledges that board has control
1 Error; same as Ack, but Shelf Manager believes board should
not have been given control of the resource (optional)
2 Deny; Shelf Manager denies control of resource by the board
System Management: Vendor Commands
10007175-02 KAT4000 User’s Manual 9-23
Table 9-22: Bused Resource Status Command
Graceful Reset Command
The IPMC supports the Graceful Reboot option of the FRU Control command. On receiving
such a command, the IPMC sets the Graceful Reboot Request bit of the IPMC status, sends a
status update notification to the payload, and waits for the Graceful Reset command from
the payload. If the IPMC receives such a command before the payload communication
time-out time, it sends the 0x00 completion code (Success) to the shelf manager. Other-
wise the 0xCC completion code is sent.
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4 Command Types for Shelf Manager to Board
0 Query if board has control of the bus
(0=In control, 1= No control)
1 Release request a board to release control of the bus
(0=Ack, 1=Refused, 2=No control)
2 Force board to release control of bus immediately
(0=Ack, 1=No control)
3 Bus Free informs board that the bus is available
(0=Accept, 1=Not needed)
Command Types for Board to Shelf Manager
0 Request to seize control of the bus
(0=Grant, 1=Busy, 2=Defer, 3=Deny)
1 Relinquish control of the bus, Shelf Manager can reassign
control of bus (0=Ack, 1=Error)
2 Notify Shelf Manager that control of the bussed resource has
been transferred to this board from another authorized board
(0=Ack, 1=Error, 2=Deny)
5Bused Resource ID
0 Metallic Test Bus pair #1
1 Metallic Test Bus pair #2
2 Synch clock group 1 (CLK1A and CLK1B pairs)
3 Synch clock group 2 (CLK2A and CLK2B pairs)
4 Synch clock group 3 (CLK3A and CLK3B pairs)
6 Status
0 Ack; Shelf Manager acknowledges that board has control
1 Error; same as Ack, but Shelf Manager believes board should
not have been given control of the resource (optional)
2 Deny; Shelf Manager denies control of resource by the board
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
System Management: Vendor Commands
KAT4000 User’s Manual 10007175-02
9-24
The IPMC does not reset the payload on receiving the Graceful Reset command or time-
out. If the IPMC participation is necessary, the payload must request the IPMC to perform a
payload reset. The Graceful Reset command is also used to notify the IPMC about the com-
pletion of the payload shutdown sequence.
Table 9-23: Graceful Reset Command
Diagnostic Interrupt Results
The IPMC supports the Issue Diagnostic Interrupt feature of the FRU Control command. The
payload is notified about a diagnostic interrupt over the SIPL. The payload is expected to
return diagnostic interrupt results before the payload communication time-out using the
Diagnostic Interrupt Results command of the SIPL.
Table 9-24: Diagnostic Interrupt Results Command
Get Payload Shutdown Time-Out Command
When the shelf manager commands the IPMC to shut down the payload (i.e. sends the Set
Power Level (0) command), the IPMC notifies the payload by asserting an appropriate alert
and sending an alert notification to the payload. Upon receiving this notification, the pay-
load software is expected to initiate the payload shutdown sequence. After performing this
sequence, the payload should send the Graceful Reset command to the IPMC over the Pay-
load Interface to notify the IPMC that the payload shutdown is complete.
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4 If the payload responds before the payload communication
time-out, the diagnostic interrupt return code is forwarded to
the shelf controller as the completion code of the FRU Control
command response. Otherwise, the 0xCC completion code is
returned.
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
System Management: Vendor Commands
10007175-02 KAT4000 User’s Manual 9-25
To avoid deadlocks that may occur if the payload software does not respond, the IPMC pro-
vides a special time-out for the payload shutdown sequence. If the payload does not send
the Graceful Reset command within a definite period of time, the IPMC assumes that the
payload shutdown sequence is finished, and sends a Module Quiesced Hot Swap event to
the KAT4000 controller.
Table 9-25: Get Payload Shutdown Time-Out Command
Set Payload Shutdown Time-Out Command
The Set Payload Shutdown Time-Out command is defined as follows.
Table 9-26: Set Payload Shutdown Time-Out Command
Get Module State Command
The Get Module State command is used to query the state of an AMC via any of the external
interfaces.
Table 9-27: Get Module State Command
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5:6 Time-Out measured in hundreds of milliseconds, LSB first
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4:5 Time-Out measured in hundreds of milliseconds, LSB first
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4AMC Site ID
System Management: Vendor Commands
KAT4000 User’s Manual 10007175-02
9-26
Enable AMC Site Command
The Enable AMC Site command is used to enable an AMC site.
Table 9-28: Enable AMC Site Command
Disable AMC Site Command
The Disable AMC Site command is used to disable an AMC site. If an AMC site is disabled,
the IPMC firmware ignores the AMC inserted and acts as if the AMC is not present.
Table 9-29: Disable AMC Site Command
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5AMC Status
00 = AMC site is enabled
1 = AMC site is disabled
10 = AMC is not present
1 = AMC is present
2 0 = Management power is disabled
1 = Management power is enabled
3 0 = Management power is bad
1 = Management power is good
4 0 = Payload power is disabled
1 = Payload power is enabled
5 0 = Payload power is bad
1 = Payload power is good
6 0 = IPMB-L buffer is not attached
1 = IPMB-L buffer is attached
7 0 = IPMB-L buffer is not ready
1 = IPMB-L buffer is ready
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4AMC Site ID
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Type: Byte: Data Field:
Request Data 1:3 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
4AMC Site ID
Type: Byte: Data Field: (continued)
System Management: IPMC Watchdog Timer Commands
10007175-02 KAT4000 User’s Manual 9-27
IPMC WATCHDOG TIMER COMMANDS
The IPMC implements a standardized ‘Watchdog Timer’ that can be used for a number of
system time-out functions by System Management Software (SMS) or by the monitor. Set-
ting a time-out value of zero allows the selected time-out action to occur immediately. This
provides a standardized means for devices on the IPMB to perform emergency recovery
actions.
Table 9-30: IPMC Watchdog Timer Commands
Watchdog Timer Actions
The following actions are available on expiration of the Watchdog Timer:
•System Reset
•System Power Off
The System Reset and System Power Off on time-out selections are mutually exclusive. The
watchdog timer is stopped whenever the system is powered down. A command must be
sent to start the timer after the system powers up.
Watchdog Timer Use Field and Expiration Flags
The watchdog timer provides a ‘timer use’ field that indicates the current use assigned to
the watchdog timer. The watchdog timer provides a corresponding set of ‘timer use expira-
tion’ flags that are used to track the type of time-out(s) that had occurred.
The time-out use expiration flags retain their state across system resets and power cycles,
as long as the IPMC remains powered. The flags are normally cleared solely by the Set
Watchdog Timer command; with the exception of the “don’t log” flag, which is cleared
after every system hard reset or timer time-out.
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
Command: See Page: Optional/Mandatory:
Reset Watchdog Timer 9-29 M
Set Watchdog Timer 9-29 M
Get Watchdog Timer 9-31 M
Type: Byte: Data Field: (continued)
System Management: IPMC Watchdog Timer Commands
KAT4000 User’s Manual 10007175-02
9-28
The Timer Use fields indicate:
Monitor FRB-2 Time-out:
A Fault-resilient Booting, level 2 (FRB-2) time-out has occurred. This indicates that the last
system reset or power cycle was due to the system time-out during POST, presumed to be
caused by a failure or hang related to the bootstrap processor.
Monitor POST Time-out:
In this mode, the time-out occurred while the watchdog timer was being used by the moni-
tor for some purpose other than FRB-2 or OS Load Watchdog.
OS Load Time-out: The last reset or power cycle was caused by the timer being used to ‘watchdog’ the interval
from ‘boot’ to OS up and running. This mode requires system management software, or OS
support. The monitor should clear this flag if it starts this timer during POST.
SMS ‘OS Watchdog’ Time-out:
This indicates that the timer was being used by System Management Software (SMS). Dur-
ing run-time, SMS starts the timer, then periodically resets it to keep it from expiring. This
periodic action serves as a ‘heartbeat’ that indicates that the OS (or at least the SMS task) is
still functioning. If SMS hangs, the timer expires and the IPMC generates a system reset.
When SMS enables the timer, it should make sure the SMS’ bit is set to indicate that the
timer is being used in its ‘OS Watchdog’ role.
OEM: This indicates that the timer was being used for an OEM-specific function.
Using the Timer Use Field and Expiration Flags
The software that sets the Timer Use field is responsible for managing the associated Timer
Use Expiration flag. For example, if System Management Software (SMS) sets the timer use
to “SMS/OS Watchdog,” then that same SMS is responsible for acting on and clearing the
associated Timer Use Expiration flag.
In addition, software should only interpret or manage the expiration flags for watchdog
timer uses that it set. For example, the monitor should not report watchdog timer expira-
tions or clear the expiration flags for non-monitor uses of the timer. This is to allow the soft-
ware that did set the Timer Use to see that a matching expiration occurred.
Watchdog Timer Event Logging
By default, the IPMC will automatically log the corresponding sensor-specific watchdog
sensor event when a timer expiration occurs. A “don’t log” bit is provided to temporarily
disable the automatic logging. The “don’t log” bit is automatically cleared (logging re-
enabled) whenever a timer expiration occurs.
System Management: IPMC Watchdog Timer Commands
10007175-02 KAT4000 User’s Manual 9-29
Monitor Support for Watchdog Timer
If a system “Warm Reset” occurs, the watchdog timer may still be running while the moni-
tor executes POST. Therefore, the monitor should take steps to stop or restart the watch-
dog timer early in POST. Otherwise, the timer may expire later during POST or after the OS
has booted.
Reset Watchdog Timer Command
The Reset Watchdog Timer command is used for starting and restarting the Watchdog
Timer from the initial countdown value that was specified in the Set Watchdog Timer com-
mand.
If a pretime-out interrupt has been configured, the Reset Watchdog Timer command will
not restart the timer once the pretime-out interval has been reached. The only way to stop
the timer once it has reached this point is via the Set Watchdog Timer command.
Table 9-31: Reset Watchdog Timer Command
Set Watchdog Timer Command
The Set Watchdog Timer command is used for initializing and configuring the watchdog
timer. The command is also used for stopping the timer.
If the timer is already running, the Set Watchdog Timer command stops the timer (unless
the “don’t stop” bit is set) and clears the Watchdog pretime-out interrupt flag (see Get
Message Flags command in the IPMI specification v1.5). IPMC hard resets, system hard
resets, and the Cold Reset command also stop the timer and clear the flag.
Byte 1: This selects the timer use and configures whether an event will be logged on expiration.
Byte 2: This selects the time-out action and pretime-out interrupt type.
Byte 3: This sets the pretime-out interval. If the interval is set to zero, the pretime-out action
occurs concurrently with the time-out action.
Byte 4: This clears the Timer Use Expiration flags. A bit set in byte 4 of this command clears the cor-
responding bit in byte 5 of the Get Watchdog Timer command.
Bytes 5 and 6: These hold the least significant and most significant bytes, respectfully, of the countdown
value. The Watchdog Timer decrement is one count/100 ms. The counter expires when the
count reaches zero. If the counter is loaded with zero and the Reset Watchdog command is
issued to start the timer, the associated timer events occur immediately.
Type: Byte: Data Field:
Request Data
Response Data 1 Completion Code
System Management: IPMC Watchdog Timer Commands
KAT4000 User’s Manual 10007175-02
9-30
Table 9-32: Set Watchdog Timer Command
Type: Byte: Data Field:
Request Data 1 Timer Use
[7] 1b=don’t log
[6] 1b=don’t stop timer on Set Watchdog Timer command (new
for IPMI v1.5) new parameters take effect immediately. If
timer is already running, countdown value will get set to
given value and countdown will continue from that point.
If timer is already stopped, it will remain stopped. If the
pretime-out interrupt bit is set, it will get cleared.1
0b=timer stops automatically when Set Watchdog Timer
command is received
[5:3] reserved
[2:0] timer use (logged on expiration when “don’t log” bit = 0b)
000b=reserved
001b=Monitor FRB-2
010b=Monitor/POST
011b=OS Load
100b=SMS/OS
101b=OEM
110b-111b=reserved
2Timer Actions
[7] reserved
[6:4] pretime-out interrupt (logged on expiration when “don’t
log” bit = 0b)
000b=none
001b=SMI
010b=NMI/Diagnostic Interrupt
011b=Messaging Interrupt (this is the same interrupt as
allocated to the messaging interface)
100b, 111b =reserved
[3] reserved
[2:0] time-out action
000b=no action
001b=Hard Reset
010b=Power Down
011b=Power Cycle
100b, 111b=reserved
3 Pretime-out interval in seconds, ‘1’ based
System Management: IPMC Watchdog Timer Commands
10007175-02 KAT4000 User’s Manual 9-31
1. Potential race conditions exist with implementation of this option. If the Set Watchdog Timer command is
sent just before a pretime-out interrupt or time-out is set to occur, the time-out could occur before the
command is executed. To avoid this condition, it is recommended that software set this value no closer
than three counts before the pretime-out or time-out value is reached.
Get Watchdog Timer Command
This command retrieves the current settings and present countdown of the watchdog
timer. The Timer Use Expiration flags in byte 5 retain their states across system resets and
system power cycles. With the exception of bit 6 in the Timer Use byte, the Timer Use Expi-
ration flags are cleared using the Set Watchdog Timer command. They may also become
cleared because of a loss of IPMC power, firmware update, or other cause of IPMC hard
reset. Bit 6 of the Timer Use byte is automatically cleared to 0b whenever the timer times
out, is stopped when the system is powered down, enters a sleep state, or is reset.
Table 9-33: Get Watchdog Timer Command
Request Data
(continued)
4 Timer Use Expiration flags clear
(0b=leave alone, 1b=clear timer use expiration bit)
[7] reserved
[6] reserved
[5] OEM
[4] SMS/OS
[3] OS Load
[2] Monitor/POST
[1] Monitor FRB-2
[0] reserved
5 Initial countdown value, lsbyte (100 ms/count)
6 Initial countdown value, msbyte
Response Data 1 Completion Code
Type: Byte: Data Field:
Request Data
Type: Byte: Data Field: (continued)
System Management: IPMC Watchdog Timer Commands
KAT4000 User’s Manual 10007175-02
9-32
Response Data 1 Completion Code
2Timer Use
[7] 1b=don’t log
[6] 1b=timer is started (running)
0b=timer is stopped
[5:3] reserved
[2:0] timer use (logged on expiration if “don’t log” bit = 0)
000b=reserved
001b=Monitor FRB-2
010b=Monitor/POST
011b=OS Load
100b=SMS/OS
101b=OEM
110b, 111b=reserved
3Timer Actions
[7] reserved
[6:4] pretime-out interrupt
000b=none
001b=SMI
010b=NMI/Diagnostic Interrupt
011b=Messaging Interrupt (this would be the same interrupt
as allocated to the messaging interface)
100b, 111b =reserved
[3] reserved
[2:0] time-out action
000b=no action
001b=Hard Reset
010b=Power Down
011b=Power Cycle
100b, 111b=reserved
4 Pretime-out interval in seconds, ‘1’based
5 Timer Use Expiration flags (1b=timer expired while associated ‘use
was selected)
[7] reserved
[6] reserved
[5] OEM
[4] SMS/OS
[3] OS Load
[2] Monitor/POST
[1] Monitor FRB-2
[0] reserved
Type: Byte: Data Field: (continued)
System Management: FRU LEDs
10007175-02 KAT4000 User’s Manual 9-33
FRU LEDS
This section describes the front panel LEDs controlled by the IPMC and documents how to
control each LED with the standard FRU LED commands. Reference the PICMG® 3.0 Revision
2.0 AdvancedTCA® Base Specification for more detailed information.
The KAT4000 has four Light-Emitting Diodes (LEDs) on the front panel. See Fig. 2-3 for their
location.
Table 9-34: FRU LEDs
Response Data
(continued)
6 Initial countdown value, lsbyte (100 ms/count)
7 Initial countdown, msbyte
8 Present countdown value, lsbyte. The initial countdown value and
present countdown values should match immediately after the
countdown is initialized via a Set Watchdog Timer command and
after a Reset Watchdog Timer has been executed.
Note that internal delays in the IPMC may require software to delay
up to 100 ms before seeing the countdown value change and be
reflected in the Get Watchdog Timer command.
9 Present countdown value, msbyte
LEDs:
ID
(hex):
Reference
Designator: Description:
Hot
Swap
00 CR2001 The blue Hot Swap LED displays four states:
On—the board can be safely extracted
Off—the board is operating and not safe for
extraction,
Long blink—insertion is in progress
Short blink—requesting permission for
extraction
OOS 01 CR2003 The Out Of Service programmable LED
controlled by the IPMI controller is either red
(North America) or amber (Europe). When lit,
this LED indicates the KAT4000 is in a failed
state.
2 02 CR2002 The green LED is user defined, but frequently is
used as an In Service indicator. When used as an
In Service indicator, a lit LED indicates that the
KAT4000 is functioning properly.
3 03 CR2000 The amber LED is user defined.
Type: Byte: Data Field: (continued)
System Management: FRU LEDs
KAT4000 User’s Manual 10007175-02
9-34
Get FRU LED Properties Command
This command allows software to determine which LEDs are under IPMC control.
Table 9-35: Get FRU LED Properties Command
Get LED Color Capabilities Command
LED 1 can be either red or amber, this command is used to determine the valid color prior to
issuing a Set FRU LED State command.
Table 9-36: Get LED Color Capabilities Command
Type: Byte: Data Field:
Request Data 1 PICMG Identifierindicates that this is a PICMG defined group
extension command. Use value 00h.
2FRU Device ID
Response Data 1 Completion Code
2 PICMG Identifier—indicates that this is a PICMG defined group
extension command. Use value 00h.
3 General Status LED Properties—indicates the FRU’s ability to
control the four general status LEDs. When a bit is set, the FRU
can control the associated LED.
Bits [7:4] Reserved, set to 0
Bit [3] LED3
Bit [2] LED2
Bit [1] LED1
Bit [0] Blue LED
4 Application Specific LED Count—is the number of application
specific LEDs under IPMC control.
00h-FBh Number of application-specific LEDs under IPMC
control. If none are present, this field is 00h.
FCh-FFh Reserved
Type: Byte: Data Field:
Request Data 1 PICMG Identifier—indicates that this is a PICMG defined group
extension command. Use value 00h.
2FRU Device ID
3LED ID
FFh Reserved
System Management: FRU LEDs
10007175-02 KAT4000 User’s Manual 9-35
Response Data 1 Completion Code
CCh If the LED ID contained in the Request data is not present
on the FRU
2 PICMG Identifier—indicates that this is a PICMG defined group
extension command. Use value 00h.
3 LED Color Capabilities—when a bit is set, the LED supports the
color.
Bit [7] Reserved, set to 0
Bit [6] LED supports white
Bit [5] LED supports orange
Bit [4] LED supports amber
Bit [3] LED supports green
Bit [2] LED supports red
Bit [1] LED supports blue
Bit [0] Reserved, set to 0
4 Default LED Color in Local Control State
Bit [7] Reserved, set to 0
Bits [3:0]
0h Reserved
1h Blue
2h Red
3h Green
4h Amber
5h Orange
6h White
7h-Fh Reserved
5 Default LED Color in Override State
Bit [7] Reserved, set to 0
Bits [3:0]
0h Reserved
1h Blue
2h Red
3h Green
4h Amber
5h Orange
6h White
7h-Fh Reserved
Type: Byte: Data Field: (continued)
System Management: FRU LEDs
KAT4000 User’s Manual 10007175-02
9-36
Set FRU LED State Command
The Set FRU LED State command allows the state of the FRU LEDs to be controlled by the
management system.
Table 9-37: Set FRU LED State Command
Type: Byte: Data Field:
Request Data 1 PICMG Identifier—indicates that this is a PICMG defined group
extension command. Use value 00h.
2FRU Device ID
3LED ID
00h Blue LED (Hot Swap)
01h LED 1 (OOS)
02h LED 2
03h LED 3
04h-FEh OEM defined LEDs
FFh Lamp Test (all LEDs under management control are
addressed)
System Management: FRU LEDs
10007175-02 KAT4000 User’s Manual 9-37
4 LED Function
00h LED off override
01h-FAh LED blinking override
FBh Lamp Test state Turn on LED specified in byte 3 for the
duration specified in byte 5, then return to the highest
priority state.
FCh LED state restored to Local Control state
FDh-FEh Reserved
FFh LED on override
5On Duration
LED on-time is measured in tens of milliseconds
Lamp Test time in hundreds of milliseconds if byte 4=FBh, time
value must be less than 128. Other values when Byte 4=FBh are
reserved. Otherwise, this field is ignored and shall be set to 0h.
6 Color When Illuminated—sets the override color when LED Function
is 01h-FAh and FFh. This byte sets the Local Control color when LED
Function is FCh. This byte may be ignored during Lamp Test or may
be used to control the color during the lamp test when LED
Function is FBh.
Bits [7:4] Reserved, set to 0
Bits [3:0]
0h Reserved
1h Use Blue
2h Use Red
3h Use Green
4h Use Amber
5h Use Orange
6h Use White
7h-Dh Reserved
Eh Do not change
Fh Use default color
Response Data 1 Completion Code
2 PICMG Identifier—indicates that this is a PICMG defined group
extension command. Use value 00h.
Type: Byte: Data Field: (continued)
System Management: FRU LEDs
KAT4000 User’s Manual 10007175-02
9-38
Get FRU LED State Command
The Get FRU LED State command allows the state of the FRU LEDs to be controlled by the
management system.
Table 9-38: Get FRU LED State Command
Type: Byte: Data Field:
Request Data 1 PICMG Identifier—indicates that this is a PICMG defined group
extension command. Use value 00h.
2FRU Device ID
3LED ID
00h Blue LED (Hot Swap)
01h LED 1 (OOS)
02h LED 2
03h LED 3
04h-FEh OEM defined LEDs
FFh Reserved
Response Data 1 Completion Code
2 PICMG Identifier—indicates that this is a PICMG defined group
extension command. Use value 00h.
3LED States
Bits [7:3] Reserved, set to 0
Bit [2] 1b if Lamp Test has been enabled
Bit [1] 1b if override state has been enabled
Bit [2] 1b if IPMC has a Local control state
4 Local Control LED Function
00h LED is off (default if Local Control not supported)
01h-FAh LED is blinking Off duration specified by this byte,
on duration specified by byte 5 (in tens of
milliseconds)
FBh-FEh Reserved
FFh LED is on
5On Duration
LED on-time is measured in tens of milliseconds
Lamp Test time in hundreds of milliseconds if byte 4=FBh, time
value must be less than 128. Other values when Byte 4=FBh are
reserved. Otherwise, this field is ignored and shall be set to 0h.
System Management: Entities and Entity Associations
10007175-02 KAT4000 User’s Manual 9-39
ENTITIES AND ENTITY ASSOCIATIONS
The AdvancedTCA specification (see PICMG Engineering Change Notice 3.0 listed in Table 1-
3) uses Entity IDs and Instances to describe physical components associated with FRUs.
Device-relative Entities are unique to a specific IPMC and are referenced as follows in the
specification:
r(<ipmb>,<lun>,<Entity ID>,<Entity Instance – 60>)
Using this terminology, a KAT4000 (CPU and no PCIe configuration) installed in Logical Slot
1 (IPMB 82) has the description in Fig. 9-4.
6 Local Control Color
Bits [7:4] Reserved, set to 0
Bits [3:0]
0h Reserved
1h Blue
2h Red
3h Green
4h Amber
5h Orange
6h White
7h-Fh Reserved
7 Override State LED Functionis required if either override state or
Lamp Test is in effect.
00h LED override state is off
01h-FAh LED override state is blinking Off duration is
specified by this byte, on duration specified by
byte 8 (in tens of milliseconds)
FBh-FEh Reserved
FFh LED override state is on
8 Override State On Durationis required if either override state or
Lamp Test is in effect (in tens of milliseconds).
9 Override State Color
Bits [7:4] Reserved, set to 0
Bits [3:0]
0h Reserved
1h Blue
2h Red
3h Green
4h Amber
5h Orange
6h White
7h-Fh Reserved
10 Lamp Test Durationis optional if Lamp Test is not in effect
(hundreds of milliseconds).
Type: Byte: Data Field: (continued)
System Management: Sensors and Sensor Data Records
KAT4000 User’s Manual 10007175-02
9-40
Figure 9-4: IPMB Entity Structure
SENSORS AND SENSOR DATA RECORDS
The KAT4000 implements a number of sensors as described in Table 9- 39. “Appendix B”
details the KAT4000 Sensor Data Record (SDR) parameter values. All values are hexadeci-
mal.
Table 9-39: IPMI Sensors
Sensor Name: Sensor Type: Event/Reading Type: Entity ID:
Entity
Instance:
Event
Gen:
Hot Swap PICMG FRU Hot Swap=F0 Sensor-specific
Discrete=6F
PICMG Front
Board=A0
Device-
relative=60
Yes
B1 Hot Swap PICMG FRU Hot Swap=F0 Sensor-specific
Discrete=6F
PICMG AMC
Module=C1
Device-
relative=61
Yes
 
FF
FF
FF
FF
FF

FF
FF

FF
FF
FF
FF
FGF
FGF
FGF

FGF
FGF
FGF
FGF
FGF
 
FF
FGF
FGF
 
FF
FGF
FGF
 
FF
FGF
FGF
 
FF
FGF
FGF
System Management: Sensors and Sensor Data Records
10007175-02 KAT4000 User’s Manual 9-41
B2 Hot Swap PICMG FRU Hot Swap=F0 Sensor-specific
Discrete=6F
PICMG AMC
Module=C1
Device-
relative=62
Yes
B3 Hot Swap PICMG FRU Hot Swap=F0 Sensor-specific
Discrete=6F
PICMG AMC
Module=C1
Device-
relative=63
Yes
B4 Hot Swap PICMG FRU Hot Swap=F0 Sensor-specific
Discrete=6F
PICMG AMC
Module=C1
Device-
relative=64
Yes
IPMB Physical PICMG IPMB Physical
Link=F1
Sensor-specific
Discrete=6F
PICMG Front
Board=A0
Device-
relative=60
Yes
BMC Watchdog2Watchdog 2=23 Sensor-specific
Discrete=6F
Processor=03 Device-
relative=60
Yes
-48V Volt Voltage=02 Threshold=01 Power Supply=0A Device-
relative=60
Yes
-48V Curr Current=03 Threshold=01 Power Supply=0A Device-
relative=60
Yes
-48V Feed A Volt Voltage=02 Threshold=01 Power Supply=0A Device-
relative=60
Yes
-48V Feed B Volt Voltage=02 Threshold=01 Power Supply=0A Device-
relative=60
Yes
+3.3V Mgmt Voltage=02 Threshold=01 Power Supply=0A Device-
relative=60
Yes
+12V Volt Voltage=02 Threshold=01 Power Supply=0A Device-
relative=60
Yes
+12V Curr Current=03 Threshold=01 Power Supply=0A Device-
relative=60
Yes
+3.3V Voltage=02 Threshold=01 Power
Module/DC-to-DC
Converter=14
Device-
relative=60
Yes
+2.5V Voltage=02 Threshold=01 Power
Module/DC-to-DC
Converter=14
Device-
relative=60
Yes
+1.8V Voltage=02 Threshold=01 Power
Module/DC-to-DC
Converter=14
Device-
relative=60
Yes
+1.5V3Voltage=02 Threshold=01 Power
Module/DC-to-DC
Converter=14
Device-
relative=60
Yes
+1.2V Voltage=02 Threshold=01 Power
Module/DC-to-DC
Converter=14
Device-
relative=60
Yes
+1.0V Voltage=02 Threshold=01 Power
Module/DC-to-DC
Converter=14
Device-
relative=60
Yes
Sensor Name:
(continued) Sensor Type: Event/Reading Type: Entity ID:
Entity
Instance:
Event
Gen:
System Management: Sensors and Sensor Data Records
KAT4000 User’s Manual 10007175-02
9-42
2. Only supported on configurations with a CPU.
3. Only supported on configurations with a CPU and PCIe switch.
The IPMC implements a Device Sensor Data Record (SDR) Repository that contains SDRs for
the IPMC, the FRU device, and each sensor. A system management controller may use the
Get Device SDR command to read the repository and dynamically discover the capabilities
of the board. Please refer to the IPMI specification (listed in Table 1-3) for more information
on using Sensor Data Records and the Device SDR Repository.
Under certain circumstances, some sensors connected to the IPMC can generate Event
Messages for the system management controller. To enable these messages, the system
management controller must send a Set Event Receiver command to the IPMC, along with
the address of the Event Receiver. Table 9-40 shows the format of an Event Message.
CPU Volt Voltage=02 Threshold=01 Processor=03 Device-
relative=60
Yes
B1 +12 Volt Voltage=02 Threshold=01 PICMG AMC
Module=C1
Device-
relative=61
Yes
B1 +12 Curr Current=03 Threshold=01 PICMG AMC
Module=C1
Device-
relative=61
Yes
B2 +12 Volt Voltage=02 Threshold=01 PICMG AMC
Module=C1
Device-
relative=62
Yes
B2 +12 Curr Current=03 Threshold=01 PICMG AMC
Module=C1
Device-
relative=62
Yes
B3 +12 Volt Voltage=02 Threshold=01 PICMG AMC
Module=C1
Device-
relative=63
Yes
B3 +12 Curr Current=03 Threshold=01 PICMG AMC
Module=C1
Device-
relative=63
Yes
B4 +12 Volt Voltage=02 Threshold=01 PICMG AMC
Module=C1
Device-
relative=64
Yes
B4 +12 Curr Current=03 Threshold=01 PICMG AMC
Module=C1
Device-
relative=64
Yes
Inflow Temp Temperature=01 Threshold=01 PICMG Front
Board=A0
Device-
relative=60
Yes
Outflow Temp Temperature=01 Threshold=01 PICMG Front
Board=A0
Device-
relative=60
Yes
F/W Progress2System Firmware
Progress (0F)
Sensor-specific
Discrete=6F
PICMG Front
Board=A0
Device-
relative=60
Yes
Sensor Name:
(continued) Sensor Type: Event/Reading Type: Entity ID:
Entity
Instance:
Event
Gen:
System Management: Sensors and Sensor Data Records
10007175-02 KAT4000 User’s Manual 9-43
Note: Each byte has eight bits.
Table 9-40: Event Message Format
Event-generating sensors with a Threshold Event/Reading Type (0x01) initiate an event
message when a sensor reading crosses the defined threshold. The default thresholds for a
particular sensor are retrieved by sending the IPMC a Get Sensor Thresholds command. The
system management controller must send the IPMC a Get Sensor Reading command to
retrieve the current sensor reading. Please refer to the IPMI specification listed in Table 1-3
for complete details on using these commands.
Byte: Field: Description:
0 RsSA Responder’s Slave Address (Address of Event Receiver)
1 NetFn/RsLUN Net Function Code (0x04) in upper 6 bits; Responder’s LUN in
lower 2 bits
2Chk1 Checksum #1
3 RqSA Requester’s Slave Address (Address of our board on IPMB)
4 RqSeq/RqLUN Request Sequence number in upper 6 bits; Requester’s LUN in
low 2 bits
5 Cmd Command (Always 0x02 for event message)
6 EvMRev Event Message Revision (0x04 for IPMI 1.5)
7 Sensor Type Indicates event class or type of sensor that generated the
message
8 Sensor Number A unique number indicating the sensor that generated the
message
9Event Dir/Event
Type
Upper bit indicates direction (0 = Assert, 1 = Deassert); Lower 7
bits indicate type of threshold crossing or state transition
10 Event Data 0 Data for sensor and event type
11 Event Data 1 (Optional) Data for sensor and event type
12 Event Data 2 (Optional) Data for sensor and event type
13 Chk2 Checksum #2
System Management: FRU Inventory
KAT4000 User’s Manual 10007175-02
9-44
FRU INVENTORY
The IPMC stores Field Replaceable Unit (FRU) information in its boot memory (SROM). The
data structure contains information such as the product name, part number, serial number,
manufacturing date, and E-keying information. Please refer to the IPMI specification for
complete details on the FRU data structure. Table 9-41 lists the general contents of the
KAT4000’s FRU information.
Table 9-41: FRU Definitions
Item: Description:
Common Header
Version Version number of the overall FRU data structure defined by the
IPMI FRU specification
Internal Use Area
Version Version number of the Internal Use Area data structure defined by
the IPMI FRU specification
Internal Use Size 0x100 bytes are allocated for customer use in this area
Board Information Area
Version Version number of the Board Information Area data structure
defined by the IPMI FRU specification
Language Code 0x01 = English
Manufacturing Date/Time Variable, expressed as the number of minutes since 12:00 AM on
January 1, 1996
Board Manufacturer Emerson Network Power, Embedded Computing”
Board Product Name “KAT4000”
Board Serial Number Variable, formatted as “711A-XXXX”
Board Part Number Variable, formatted as “10XXXXXX-YY-Z”
FRU File ID Variable, for example: “p711a_c01
Product Information Area
Version Version number of the Product Information Area data structure
defined by the IPMI FRU specification
Language Code 0x01 = English
Manufacturer Name “Emerson Network Power, Embedded Computing”
Product Name “KAT4000”
Product Part/Model Number Variable, formatted as “10XXXXXX-YY-Z”
Product Version Not used, same information is provided by the part number
Product Serial Number Variable, formatted as “711A-XXXX”
Asset Tag Not Used
FRU File ID Variable, for example: “p711a_c01
Multi Record Area
E-Keying Records SeeE-Keying”
System Management: E-Keying
10007175-02 KAT4000 User’s Manual 9-45
E-KEYING
This section details the interfaces governed by E-keying and the protocols they support.
Specifically, this includes the interfaces implemented by the KAT4000 and the E-keying def-
inition that corresponds to each interface.
The IPMC supports E-keying for the KAT4000 per the PICMG® 3.0, Revision 2.0; PICMG®
3.1, Revision 1.0; and AMC.x specifications. The e-keying information for the blade is stored
in the Board Point-to-Point Connectivity Record and Carrier Connectivity Record located in
the MultiRecord Area of the FRU Inventory Information (see page 9-44). The Board Point-
to-Point Connectivity Record and Carrier Connectivity Record each contain a Link Descrip-
tor list, where each Link Descriptor details one type of point-to-point protocol supported by
the referenced channels.
Base Point-to-Point Connectivity
The KAT4000 supports one 10/100/1000BASE-T port on Base Interface Channels 0 and 1,
and also four 10/100/1000BASE-BX ports on the Update Interface Channels. Depending on
the configuration, the KAT4000 can support one of the following on Fabric Interface Chan-
nels A and B:
One, two or four 1000BASE-BX ports (GbE Fat Pipe Module Configurations)
sRIO x4 ports (sRIO Fat Pipe Switch Module Configurations)
10 GbE ports (10 GbE-1 GbE or 10 GbE-10 GbE Fat Pipe Switch Module Configurations)
Table 9-42 shows the Point-to-Point Connectivity Record Link Descriptors for the KAT4000
with a GbE Fat Pipe Switch Module.
Table 9-42: Link Descriptors
Maximum Module Current
(Per Site)
7.0 Amps
Maximum Internal Current
(All Sites)
15.0 Amps
Field: Value: Description:
Link Designator 000100000000b Port 0 Enabled; Base Interface; Channel 1
Link Type 01h PICMG 3.0 Base Interface 10/100/1000BASE-T
Link Type Extension 0000b
Link Grouping ID 00h Independent Channel
Link Designator 000100000001b Port 0 Enabled; Base Interface; Channel 2
Link Type 01h PICMG 3.0 Base Interface 10/100/1000BASE-T
Link Type Extension 0000b
Item: Description: (continued)
System Management: E-Keying
KAT4000 User’s Manual 10007175-02
9-46
Carrier Point-to-Point Connectivity
The KAT4000 supports one 1000BASE-BX port on AMC port 0 of AMC site B1, B2, B3, and
B4. The KAT4000 supports either 1000BASE-BX or PCIe (x1) on AMC port 1 of AMC sites B1,
B2, B3, and B4, depending on the configuration.
Link Grouping ID 00h Independent Channel
Link Designator 111101000000b Port 3,2,1,0 Enabled; Fabric Interface; Channel 1
Link Type 01h PICMG 3.1 Ethernet Fabric Interface
Link Type Extension 0000b Fixed 1000BASE-BX
Link Grouping ID 00h Independent Channel
Link Designator 001101000000b Port 1,0 Enabled; Fabric Interface; Channel 1
Link Type 01h PICMG 3.1 Ethernet Fabric Interface
Link Type Extension 0000b Fixed 1000BASE-BX
Link Grouping ID 00h Independent Channel
Link Designator 000101000000b Port 0 Enabled; Fabric Interface; Channel 1
Link Type 01h PICMG 3.1 Ethernet Fabric Interface
Link Type Extension 0000b Fixed 1000BASE-BX
Link Grouping ID 00h Independent Channel
Link Designator 111101000001b Port 3,2,1,0 Enabled; Fabric Interface; Channel 2
Link Type 01h PICMG 3.1 Ethernet Fabric Interface
Link Type Extension 0000b Fixed 1000BASE-BX
Link Grouping ID 00h Independent Channel
Link Designator 001101000001b Port 1,0 Enabled; Fabric Interface; Channel 2
Link Type 01h PICMG 3.1 Ethernet Fabric Interface
Link Type Extension 0000b Fixed 1000BASE-BX
Link Grouping ID 00h Independent Channel
Link Designator 000101000001b Port 0 Enabled; Fabric Interface; Channel 2
Link Type 01h PICMG 3.1 Ethernet Fabric Interface
Link Type Extension 0000b Fixed 1000BASE-BX
Link Grouping ID 00h Independent Channel
Link Designator 111110000001b Port 3,2,1,0 Enabled; Update Channel Interface;
Channel 1
Link Type 01h OEM Specific
Link Type Extension 0000b
Link Grouping ID 00h Independent Channel
Field: Value: Description: (continued)
System Management: Firmware Upgrade
10007175-02 KAT4000 User’s Manual 9-47
FIRMWARE UPGRADE
The IPMC firmware upgrade is performed using a set of special upgrade request and reply
messages that are delivered to and from the IPMC in the same way as standard IPMI com-
mands (for more information, refer to Intelligent Platform Management Bus Communication
Protocol specification). These upgrade commands are collectively referred to as the
Upgrade protocol in this specification.
All upgrade commands have the net function codes 08h/09h that are reserved by the IPMI
specification for firmware upgrade commands. Each upgrade request is protected with a
checksum that helps to validate the upgrade requests in case they are delivered to the
IPMC over a serial interface. A request is considered to be valid if the sum of all of the net-
work function code/LUN byte, the command code byte, and the request body bytes is 0
modulo 256. If the checksum validation fails, the Boot Loader sends a reply with the 0xCC
(Invalid Data In Request). The request sender is expected to resend the upgrade request in
this case. The upgrade replies are not protected with checksums. Table 9-43 provides a sum-
mary of the firmware upgrade commands supported by the Boot Loader.
Table 9-43: Firmware Upgrade Command Summary
The following sections detail the format of the firmware upgrade requests and replies.
Firmware Upgrade Status Command
The Firmware Upgrade Status command queries the Boot Loader or the IPMC firmware
about the firmware upgrade status. This command is supported by both the IPMC firmware
and the Boot Loader, which return the current firmware upgrade status and cause in the
Firmware Upgrade Status reply.
Table 9-44: Firmware Upgrade Status Command
Command: netFn: LUN: Cmd:
Firmware Upgrade Status Firmware 08, 09 00 00
Firmware Upgrade Start Firmware 08, 09 00 01
Firmware Upgrade Prepare Firmware 08, 09 00 02
Firmware Upgrade Write Firmware 08, 09 00 03
Firmware Upgrade Complete Firmware 08, 09 00 04
Firmware Upgrade Restore Backup Firmware 08, 09 00 05
Firmware Upgrade Backup Revision Firmware 08, 09 00 06
Type: Byte: Data Field:
Request Data 1 Checksum
System Management: Firmware Upgrade
KAT4000 User’s Manual 10007175-02
9-48
Firmware Upgrade Start Command
The Firmware Upgrade Start command switches the IPMC to the upgrade mode. If the
IPMC firmware receives this command, it stores a special magic number in a reserved loca-
tion of SRAM indicating that the Boot Loader is requested to enter the upgrade mode,
sends a reply with the 0xC0 (Node Busy) completion code, and reboots. When the
requestor receives the Node Busy reply, it resends the Firmware Upgrade Start request. By
this time, the IPMC firmware has already rebooted to the Boot Loader. When the Boot
Loader receives the Firmware Upgrade Start request, it checks if a firmware upgrade ses-
sion has not been opened yet. If it has, the Boot Loader returns a reply with the 0xD1
(Device In Firmware Update Mode) completion code. If a firmware upgrade session has not
been opened yet, the Boot Loader opens it and returns a success reply. This command is
supported by both the IPMC firmware and the Boot Loader.
Table 9-45: Firmware Upgrade Start Command
Response Data 1 Completion Code
2:4 PPS IANA Private Enterprise ID, MS Byte first
0x00400A = 16394 (Pigeon Point Systems)
5 Upgrade Status
0 IPMC is not in the firmware upgrade mode
1 IPMC is in the firmware upgrade mode but upgrade session
has not been opened yet
2 IPMC is in the firmware upgrade mode and an upgrade session
has already been opened (must send Firmware Upgrade Start to
open it)
6 Upgrade Cause, if the Upgrade Status parameter is not 0:
0 Boot Loader has read an ESC character from the Serial Debug
Interface
1 The firmware has received a Firmware Upgrade Start
command
2 The master H8S® IPMC firmware checksum is invalid
3 A watchdog reset has occurred while starting the new IPMC
firmware
4 The slave H8S IPMC firmware has failed (i.e. has been in reset
for too long)
Type: Byte: Data Field:
Request Data 1 Checksum
Response Data 1 Completion Code
Type: Byte: Data Field: (continued)
System Management: Firmware Upgrade
10007175-02 KAT4000 User’s Manual 9-49
Firmware Upgrade Prepare Command
The Firmware Upgrade Prepare command prepares the IPMC for programming of a new
firmware image. Preparation of the slave H8S flash memory includes only erasing the slave
H8S flash, while preparation of the master H8S flash memory includes the following:
Erasing the backup copies of the firmware in the master H8S flash
Making a backup copy of the master H8S firmware in the master H8S flash
Fetching the slave H8S firmware over SPI and making a backup copy of it in the master
H8S flash
Erasing the master H8S firmware area
This command is supported only by the Boot Loader. If the IPMC firmware receives this
command, it sends a reply with the 0xC1 (Invalid Command) completion code.
Table 9-46: Firmware Upgrade Prepare Command
Firmware Upgrade Write Command
The Firmware Upgrade Write command programs a portion of a new firmware image onto
the IPMC. The Boot Loader internally gathers data transferred to it via Firmware Upgrade
Write requests and programs it to flash when the Boot Loader has accumulated an entire
flash page. This command is supported only by the Boot Loader. If the IPMC firmware
receives this command, it sends a reply with the 0xC1 (Invalid Command) completion code.
Type: Byte: Data Field:
Request Data 1 This specifies the target device that should be prepared for
programming and must have one of the following values:
0 The flash memory of the master H8S
1 The flash memory of the slave H8S
2Checksum
Response Data 1 Completion Code
System Management: Firmware Upgrade
KAT4000 User’s Manual 10007175-02
9-50
Table 9-47: Firmware Upgrade Write Command
Firmware Upgrade Complete Command
The Firmware Upgrade Complete command completes the programming of the IPMC.
When the Boot Loader receives this request, it writes any remaining cached data to flash,
sends a success reply, exits the upgrade mode, and reboots. After reboot, the Boot Loader
performs the standard firmware integrity checks and if they are a success, boots the IPMC
firmware. This command is supported only by the Boot Loader. If the IPMC firmware
receives this command, it sends a reply with the 0xC1 (Invalid Command) completion code.
Table 9-48: Firmware Upgrade Complete Command
Firmware Upgrade Restore Backup Command
The Firmware Upgrade Restore Backup command makes the Boot Loader restore the firm-
ware from the backup image. If the Boot Loader receives this command, it does the follow-
ing:
Erases the slave H8S flash memory
Erases the master H8S firmware area
Programs the slave H8S firmware with the backup image stored in the master H8S flash
memory
Programs the master H8S firmware area with the backup image stored in the master
H8S flash memory
Type: Byte: Data Field:
Request Data 1 Specifies the target device that is to be programmed with the
data provided in the request body. The offset of the location at
which the data is to be programmed to the target devices is a 3-
byte value supplied in little-endian format.
2:4 Offset LSB/MSB
The offset of the location at which the data is to be programmed
to the target devices is a 3-byte value supplied in little-endian
format.
5:N Data 1/N
Data is required to be transferred sequentially, because the
IPMC firmware does not support the read-modify-write
operations.
N+1 Checksum
Response Data 1 Completion Code
Type: Byte: Data Field:
Request Data 1 Checksum
Response Data 1 Completion Code
System Management: Firmware Upgrade
10007175-02 KAT4000 User’s Manual 9-51
This command is only supported by the Boot Loader. If the IPMC firmware receives this
command, it sends a reply with the 0xC1 (Invalid Command) completion code.
Table 9-49: Firmware Upgrade Restore Backup Command
Firmware Upgrade Backup Revision Command
The Firmware Upgrade Backup Revision command reads the revision of the backup firm-
ware images stored in the master H8S flash memory. When the Boot Loader receives this
command, it validates the checksums of the backup firmware images of the master and
slave H8Ss. If either of the images is corrupted (the checksum is bad), the 0xCB (Requested
Data Not Present) completion code is returned. Otherwise, the Boot Loader extracts the
major and minor revision of the backup firmware and returns them.
This command is only supported by the Boot Loader. If the IPMC firmware receives this
command, it sends a reply with the 0xC1 (Invalid Command) completion code.
Table 9-50: Firmware Upgrade Backup Revision Command
Firmware Upgrade Termination
The Boot Loader exits the upgrade mode upon an explicit request (the Firmware Upgrade
Complete command) from the upgrade initiator. Additionally, the Boot Loader tracks the
traffic coming from the firmware upgrade initiator and, if the upgrade data channel has
been idle for more than a configurable amount of time, the Boot Loader closes the current
upgrade session and reverts to the normal mode. This ensures that the Boot Loader does
not get stuck if the upgrade initiator accidentally loses its connection to the KAT4000 or
shelf, or does not communicate for another reason.
Firmware Upgrade Sequence
The normal IPMC firmware upgrade sequence is as follows (in the simple configuration).
1The IPMC firmware receives a Firmware Upgrade Start command. After parsing this
command, the firmware sends a Node Busy reply and reboots to the Boot Loader. The Boot
Loader enters the upgrade node.
Type: Byte: Data Field:
Request Data 1 Checksum
Response Data 1 Completion Code
Type: Byte: Data Field:
Request Data 1 Checksum
Response Data 1 Completion Code
2:3 Major and Minor Revisions of the backup firmware
System Management: Firmware Upgrade
KAT4000 User’s Manual 10007175-02
9-52
2The upgrade initiator resends the Firmware Upgrade Start command and the Boot Loader
returns a success reply indicating that an upgrade session has been opened.
3The upgrade initiator issues a Firmware Upgrade Prepare (master H8S flash) command to
erase the master H8S flash. The Boot Loader erases the master H8S flash and returns a
success reply.
4The upgrade initiator sequentially writes the new master H8S firmware to the master H8S
flash using the Flash Upgrade Write command. The Boot Loader acknowledges each write
by sending a success reply to the upgrade initiator.
5The upgrade initiator issues a Firmware Upgrade Prepare (slave H8S flash) command to
erase the slave H8S flash. The Boot Loader writes the cached data to the master H8S flash,
erases the slave H8S flash, and returns a success reply.
6The upgrade initiator sequentially writes the new slave H8S firmware to the slave H8S flash
using the Flash Upgrade Write command. The Boot Loader acknowledges each write by
sending a success reply to the upgrade initiator.
7The upgrade initiator sends a Firmware Upgrade Complete command to finish the firmware
upgrade. The Boot Loader writes the remaining cached data to the slave H8S flash and
reboots the IPMC. After reset, the Boot Loader validates the master H8S firmware
checksum and passes control to the IPMC.
10007175-02 KAT4000 User’s Manual 10-1
Section 10
Synchronization Clocks
The KAT4000 implements a flexible clocking circuit based on a clock selection/holdover
chip with a PLD wrapper. This PLD wrapper allows local software control of the source clock
selection from these input options: backplane CLK1A/B, backplane CLK2A/B, backplane
CLK3A/B, AMCn TCLKA, AMCn TCLKB or AMCn FCLKA. Any of these clock sources can be
sent to the following output clocks: backplane CLK3A/B, AMCn TCLKA, AMCn TCLKB or
AMCn FCLKA. Transceiver buffers are used to convert all M-LVDS clocks to/from TTL levels.
CLK1 and CLK2 on the backplane are inputs only. See Fig. 10-1 for a diagram of this circuitry.
See “Clock Synchronizer Registers” on page 7-13 for information on configuring the stra-
tum clock buffers, selecting the primary and secondary clock sources, and selecting the
output source.
Note: The pins for TCLKC and TCLKD are routed to the Zone 3 connector interface. If these signals are used on a
rear transition module, there could be a conflict with an AMC module that uses these clocks.
Figure 10-1: Synchronization Clock Circuit Diagram
Clock
Transceiver
AMC 1 AMC 2 AMC 3 AMC 4
Clock
Selection 1
Clock
Selection 2
Clock
Selection 3
2;2 =
PLD Wrapper
Processor
Interface
via Local Bus
PCIe Clock
Source
Clock
Transceiver
Clock
Transceiver
Clock
Transceiver E-key Enable
from Processor
  
Clock
Transceiver
Clock
Transceiver Clock
Transceiver PCIe REFCLK
Distribution
* FCLKA is either a PCIe REFCLK or standard clock signal.
9
!9
9
!9
9K9
</"#$
</"#$
9K9 9K9 9K9
2;2 = 2;2 = 2;2 =
Three Frequency
Output Paths:
19.44 MHz
1.54 MHz
2.048 MHz
/"5
//>
(#/>
Primary and Secondary
Clock Inputs
//>
(#/>
//>
(#/>
/"5
/"5
ATCA J20
Synchronization Clocks: MT9045 and MT9046 Clock
KAT4000 User’s Manual 10007175-02
10-2
All clock circuitry and the synchronization clock interface meets all hard requirements as
stated in the latest PICMG3.0 and AMC.0 specifications, as well as those in all relevant AMC
subspecifications.
Backplane CLK1A/B and CLK2A/B inputs are Stratum Level 4E and Stratum Level 3 or 3E
sources, respectively, from the main system clock source. There are no specific Stratum
level requirements for the on-board output clocks that may be driven from these
Stratum level input clocks.
Backplane CLK3A/B output is selectable as 8 kHz, 1.544 MHz, 2.048 MHz or 19.44 MHz.
Backplane CLK3A/B is a derived REF clk and has no specific Stratum level quality
requirements.
Backplane clock interfaces are designed to work within the specified bused M-LVDS
electrical requirements.
AMC synchronization clocks are sourced from or drive the ATCA backplane
synchronization clock interface.
AMC clock interfaces are designed to work within the specified point-to-point M-LVDS
electrical requirements.
Clocks received from and transmitted to AMC sites have no specific Stratum level quality
requirements.
A configuration of this board is available with no clock interface circuitry.
MT9045 AND MT9046 CLOCK SYNCHRONIZERS
The MT9045 and MT9046 T1/E1 System Synchronizers contain a digital phase-locked loop
(DPLL), which provides timing and synchronization signals for multitrunk T1 and E1 primary
rate transmission links. The devices have reference switching and frequency holdover capa-
bilities to help maintain connectivity during temporary synchronization interruptions. The
MT9045 is compliant to Stratum 3 and Stratum 4/4E specifications. The MT9046 can be
used to provide a cost-reduced clock interface, compliant to only Stratum 4/4E specifica-
tions.
10007175-02 KAT4000 User’s Manual 11-1
Section 11
Real-Time Clock
The standard Real-Time Clock (RTC) for the KAT4000 is provided by an M41T00 device from
STMicroelectronics. This device has power sense circuitry and uses eight bytes of non-vola-
tile RAM for the clock/calendar function. The M41T00 is powered from the +3.3 volt rail
during normal operation, and uses a single, super capacitor which provides a minimum two
hour backup.
BLOCK DIAGRAM
Figure 11-1: M41T00 Real-Time Clock Block Diagram
OPERATION
The M41T00 clock operates as a slave device on the serial bus. To obtain access, the RTC
implements a start condition followed by the correct slave address (D0h). Access the eight
bytes in the following order:
1Seconds register
2Minutes register
3Century/Hours register
4Day register
5Date register
6Month register































Real-Time Clock: Clock Operation
KAT4000 User’s Manual 10007175-02
11-2
7Years register
8Control register
The M41T00 clock continually monitors the supply voltage (Vcc) for an out of tolerance
condition. If Vcc falls below switch-over voltage (Vso), the M41T00:
Terminates an access in progress
Resets the device address counter
Does not recognize inputs (prevents erroneous data from being written)
At power-up, the M41T00 uses Vcc at Vso and recognizes inputs.
CLOCK OPERATION
Read the seven Clock registers one byte at a time or in a sequential block. Access the Con-
trol register (address location 7) independently. An update to the Clock registers is delayed
for 250 ms to allow the read to be completed before the update occurs. This delay does not
alter the actual clock time. The eight byte clock register sets the clock and reads the date
and time from the clock, as summarized in Table 11-1.
Table 11-1: RTC Register Map
ST: Stop bit
1Stops the oscillator
0 Restarts the oscillator within one second
CEB: Century Enable Bit
1 Causes CB to toggle either from 0 to 1 or from 1 to 0 at the turn of the century
0 CB will not toggle
CB: Century Bit
Address: Data: Function/Range:
D7 D6 D5 D4 D3 D2 D1 D0 BCD Format
00 ST 10 Seconds Seconds Seconds 00—59
01 X 10 Minutes Minutes Minutes 00—59
02
CEB CB 10 Hours Hours Century/
Hours
0-1/
00-23
03 XXXXX Day Day0107
04 X X 10 Date Date Date 01—31
05 X X X 10 M Month Month 01—12
06 10 Years Years Years 0099
07 OUT FT S Calibration Control
Real-Time Clock: Clock Operation
10007175-02 KAT4000 User’s Manual 11-3
Day: Day of the week
Date: Day of the month
OUT: Output level
1 Default at initial power-up
0 FT/OUT (pin 7) driven low when FT is also zero
FT: Frequency Test bit
1 When oscillator is running at 32,768 Hz, the FT/OUT pin will toggle at 512 Hz
0 The FT/OUT pin is an output driver (default at initial power-up)
S: Sign bit
1 Positive calibration
0 Negative calibration
Calibration: Calibration bits The calibration circuit adds or subtracts counts from the oscillator divider
circuit at the divide by 256 stage. The number of times pulses are blanked (subtracted, neg-
ative calibration) or split (added, positive calibration) depends on this five-bit byte. Adding
counts accelerates the clock, and subtracting counts slows the clock down.
X: Don’t care bit
KAT4000 User’s Manual 10007175-02
11-4
(blank page)
10007175-02 KAT4000 User’s Manual 12-1
Section 12
Connectors
There are multiple connectors on the KAT4000. Reference Fig. 2-1 and Fig. 2-2 for their loca-
tions. Whether individual backplane connectors are populated on the KAT4000 depends on
the specific product configuration. The backplane connectors, Zones 1 through 3, are
described in this chapter.
ZONE 1
Connector P10 provides the ATCA Zone 1 power (dual redundant -48V DC) and system
management connections. Four levels of sequential mating provide proper functionality
during live insertion or extraction.
Figure 12-1: Zone 1 Connector, P10
Table 12-1: Zone 1 Connector, P10 Pin Assignments
Pin: Signal: Insertion Sequence:
1reserved NA
2reserved NA
3reserved NA
4reserved NA
5 Hardware Address bit 0 (HA0) third
6 HA1 third
7 HA2 third
8 HA3 third
9 HA4 third
10 HA5 third
11 HA6 third
12 HA7 (odd parity bit) third
Connectors: Zone 2
KAT4000 User’s Manual 10007175-02
12-2
ZONE 2
Zone 2 (ZD) defines five backplane connectors, J20 through J24, which support the data
transport interface. The KAT4000 is a Base node board supporting two Base channels,
therefore only the J23 connector is installed to support the 10BASE-T, and/or 100BASE-TX,
and/or 1000BASE-T Ethernet. Connector J20 is also used for the optional Update Channel
and synchronization clock interface. Each connector provides 40 differential signal contact
pairs, with each pair carrying an individual L-shaped ground contact. The ZD-style connec-
tor provides three levels of sequential mating, the third and shortest signal level is not used
with PICMG 3.0 backplanes. The Zone 2 connector array supports four different interfaces
to the ATCA backplane:
Base Node Interface (J23) supports two Base channels
Fabric Interface (J23) supports two Fabric channels (The fabric interface connection is
controlled by the system E-keying process)
13 IPMBA Clock (SCL port A) third
14 IPMBA Data (SDA port A) third
15 IPMBB Clock (SCL port B) third
16 IPMBB Data (SDA port B) third
17 no connect third
18 no connect third
19 no connect third
20 no connect third
21 no connect third
22 no connect third
23 no connect third
24 no connect third
25 Shelf ground first
26 Logic ground first
27 Enable B fourth
28 Voltage Return A (-48RTNA) first
29 Voltage Return B (-48RTNB) first
30 -48 volt Early A first
31 -48 volt Early B first
32 Enable A fourth
33 -48 volt A (-48A) second
34 -48 volt B (-48B) third
Pin: Signal: Insertion Sequence:
Connectors: Zone 2
10007175-02 KAT4000 User’s Manual 12-3
Six signal pairs (12 pins) are available to support the optional Synchronization Clock
Interface (J20) for 8 KHz, 19.44 KHz, and user defined clocks
Ten signal pairs are available for an optional Update Channel interface (J20)
Figure 12-2: Zone 2 Connectors, J20 and J23, and Zone 3 Connectors, J30-J32
Table 12-2: Zone 2 Connector, J20 Pin Assignments
In Table 12-3, example B1_Dx[m]p signifies:
x is the differential pair (A-D)
Row: A B C D
1 CLK1A+ CLK1A- CLK1B+ CLK1B-
2no connect no connect no connect no connect
3 UC_TX2+ UC_TX2- UC_RX2+ UC_RX2-
4 UC_TX0+ UC_TX0- UC_RX0+ UC_RX0-
5-10 no connect no connect no connect no connect
Row: E F G H
1 CLK2A+ CLK2A- CLK2B+ CLK2B-
2 CLK3A+ CLK3A- CLK3B+ CLK3B-
3 UC_TX3+ UC_TX3- UC_RX3+ UC_RX3-
4 UC_TX1+ UC_TX1- UC_RX1+ UC_RX1-
5-10 no connect no connect no connect no connect








10 6 15
Connectors: Zone 3
KAT4000 User’s Manual 10007175-02
12-4
m is the logical slot number (1-16)
•p is the polarity (+, -)
Table 12-3: Zone 2 Connector, J23 Pin Assignments
ZONE 3
These optional Zone 3 type A connectors, J30 through J33, support a Rear Transition Mod-
ule (RTM). Features include:
Two SerDes ports from the Ethernet core switch
Routing all AMC user I/O
Power routed to support active logic with hot swap control
•I
2C bus from IPMC for system management purposes
•I
2C bus from payload processor
Payload processor debug Ethernet port connection
KAT4000 with CPU: Console serial port interfaces for the payload processor
KAT4000 without CPU: Console serial port interfaces for the Ethernet core switch and fat
pipe Ethernet switch console ports
Connectors J30 through J32 use the same ZD-style connector as Zone 2.
Row: Interface: A B C D
1 Fabric Channel 2 Tx2[2]+ Tx2[2]- Rx2[2]+ Rx2[2]-
2 Tx0[2]+ Tx0[2]- Rx0[2]+ Rx0[2]-
3 Fabric Channel 1 Tx2[1]+ Tx2[1]- Rx2[1]+ Rx2[1]-
4 Tx0[1]+ Tx0[1]- Rx0[1]+ Rx0[1]-
5 Base Ethernet 1 XBC1_TR0+ XBC1_TR0- XBC1_TR1+ XBC1_TR1-
6 Base Ethernet 2 XBC2_TR0+ XBC2_TR0- XBC2_TR1+ XBC2_TR1-
7-10 na no connect
Row: Interface: E F G H
1 Fabric Channel 2 Tx3[2]+ Tx3[2]- Rx3[2]+ Rx3[2]-
2 Tx1[2]+ Tx1[2]- Rx1[2]+ Rx1[2]-
3 Fabric Channel 1 Tx3[1]+ Tx3[1]- Rx3[1]+ Rx3[1]-
4 Tx1[1]+ Tx1[1]- Rx1[1]+ Rx1[1]-
5 Base Ethernet 1 XBC1_TR2+ XBC1_TR2- XBC1_TR3+ XBC1_TR3-
6 Base Ethernet 2 XBC2_TR2+ XBC2_TR2- XBC2_TR3+ XBC2_TR3-
7-10 na no connect
Connectors: Zone 3
10007175-02 KAT4000 User’s Manual 12-5
Spare AMC site I/O will all be routed to Zone 3 as generic differential pairs, carrying any-
thing from SerDes to TDM signals to single-ended GPIO signals, and is capable of data rates
as high as 3.125 Gbps.
Table 12-4: Zone 3 Connector, J30 Pin Assignments
Table 12-5: Zone 3 Connector, J31 Pin Assignments
Row: A B C D
1 FP_CONN_TX FP_CONN_RX B3_RTIP4 B3_RRING4
2 B3_TTIP6 B3_TRING6 B3_RTIP6 B3_RRING6
3 B3_TTIP8 B3_TRING8 B3_RTIP8 B3_RRING8
4 RTM_ENET_TX+ RTM_ENET_TX- no connect no connect
5 RTM_ENET_RX+ RTM_ENET_RX- B4_RTIP2 B4_RRING2
6 HOST_CONN_TX HOST_CONN_RX RTM_ID1 PB_RST*
7 B4_TTIP3 B4_TRING3 IPMC_RST_PB* RTM_ID0
8 B4_TTIP4 B4_TRING4 RTM_ID3 no connect
9 B4_TTIP5 B4_TRING5 B4_RTIP5 B4_RRING5
10 B4_TTIP7 B4_TRING7 B4_RTIP7 B4_RRING7
Row: E F G H
1 B3_TTIP5 B3_TRING5 B3_RTIP5 B3_RRING5
2 B3_TTIP7 B3_TRING7 B3_RTIP7 B3_RRING7
3 GIG6_TX+ GIG6_TX- no connect no connect
4no connect no connect B4_TTIP2 B4_TRING2
5 B4_TTIP1 B4_TRING1 B4_RTIP1 B4_RRING1
6 GIG6_RX+ GIG6_RX- RTM_PS1_CONN* AMC_PP_EN*
7 B4_RTIP3 B4_RRING3 RTM_ID2 no connect
8no connect no connect B4_RTIP4 B4_RRING4
9 B4_TTIP6 B4_TRING6 B4_RTIP6 B4_RRING6
10 B4_TTIP8 B4_TRING8 B4_RTIP8 B4_RRING8
Row: A B C D
1no connect no connect RTM_GPIO7 RTM_GPIO6
2 B2_TTIP3 B2_TRING3 RTM_GPIO5 RTM_GPIO4
3 B2_TTIP4 B2_TRING4 no connect no connect
4 B2_TTIP5 B2_TRING5 B2_RTIP5 B2_RRING5
5 B2_TTIP7 B2_TRING7 B2_RTIP7 B2_RRING7
6 RTM_RX0+ RTM_RX0- no connect no connect
7 RTM_RX1+ RTM_RX1- B3_TTIP2 B3_TRING2
8 B3_TTIP1 B3_TRING1 B3_RTIP1 B3_RRING1
9no connect no connect RTM_RX2+ RTM_RX2-
10 B3_RTIP3 B3_RRING3 RTM_RX3+ RTM_RX3-
Connectors: Zone 3
KAT4000 User’s Manual 10007175-02
12-6
Table 12-6: Zone 3 Connector, J32 Pin Assignments
Row: E F G H
1no connect no connect RTM_GPIO3 RTM_GPIO2
2 B2_RTIP3 B2_RRING3 RTM_GPIO1 RTM_GPIO0
3 GIG4_TX+ GIG4_TX- B2_RTIP4 B2_RRING4
4 B2_TTIP6 B2_TRING6 B2_RTIP6 B2_RRING6
5 B2_TTIP8 B2_TRING8 B2_RTIP8 B2_RRING8
6 GIG4_RX+ GIG4_RX- no connect no connect
7 RTM_TX0+ RTM_TX0- B3_RTIP2 B3_RRING2
8 RTM_TX1+ RTM_TX1- no connect no connect
9 B3_TTIP3 B3_TRING3 RTM_TX2+ RTM_TX2-
10 B3_TTIP4 B3_TRING4 RTM_TX3+ RTM_TX3-
Row: A B C D
1 FP_CONN_TX FP_CONN_RX no connect no connect
2no connect no connect B1_TTIP2 B1_TRING2
3 B1_TTIP1 B1_TRING1 B1_RTIP1 B1_RRING1
4no connect no connect RTM_PS0_
CONN
no connect
5 B1_RTIP3 B1_RRING3 no connect no connect
6no connect no connect B1_RTIP4 B1_RRING4
7 B1_TTIP6 B1_TRING6 B1_RTIP6 B1_RRING6
8 B1_TTIP8 B1_TRING8 B1_RTIP8 B1_RRING8
9no connect no connect no connect no connect
10 no connect no connect B2_RTIP2 B2_RRING2
Row: E F G H
1 HOST_CONN_TX HOST_CONN_RX no connect no connect
2I2C_RTM_SCL_
BUFF
I2C_RTM_SDA_
BUFF
B1_RTIP2 B1_RRING2
3no connect no connect no connect no connect
4 B1_TTIP3 B1_TRING3 12V_RTM no connect
5 B1_TTIP4 B1_TRING4 no connect no connect
6 B1_TTIP5 B1_TRING5 B1_RTIP5 B1_RRING5
7 B1_TTIP7 B1_TRING7 B1_RTIP7 B1_RRING7
8no connect no connect no connect no connect
9no connect no connect B2_TTIP2 B2_TRING2
10 B2_TTIP1 B2_TRING1 B2_RTIP1 B2_RRING1
Connectors: Zone 3
10007175-02 KAT4000 User’s Manual 12-7
Figure 12-3: Zone 3 Connector, J33
Table 12-7: Zone 3 Connector, J33 Pin Assignments
A (AMC4): B (AMC3): C (AMC2): D (AMC1):
1 B4_CONSOLE_TX B3_CONSOLE_TX B2_CONSOLE_TX B1_CONSOLE_TX
2 B4_CONSOLE_RX B3_CONSOLE_RX B2_CONSOLE_RX B1_CONSOLE_RX
3 GND GND GND GND
4 B4_LEDCTRL_TX B3_LEDCTRL_TX B2_LEDCTRL_TX B1_LEDCTRL_TX
5 B4_LEDCTRL_RX B3_LEDCTRL_RX B2_LEDCTRL_RX B1_LEDCTRL_RX
6 12V RTM IPMB_RTM_SDA_
BUFF
3.3 V MP RTM IPMB_RTM_SCL_
BUFF

KAT4000 User’s Manual 10007175-02
12-8
(blank page)
10007175-02 KAT4000 User’s Manual 13-1
Section 13
Rear Transition Module
The KAT-Z3DB is an optional, single-slot ATCA Rear Transition Module (RTM) providing rear
shelf I/O access for the KAT4000. This RTM is for development purposes only. It has not
been tested for EMI, EMC or ESD.
This RTM connects to the KAT4000’s Zone 3 connectors, J30-J32, and ATCA connector, J33.
This chapter describes the physical layout of the RTM and the installation process.
COMPONENTS AND FEATURES
ATCA RTM Form Factor: The RTM has a K1 alignment feature in Zone 2, an A1 Zone 3 alignment and keying feature,
Zone 3 connectors, an ESD discharge strip, four AMC site serial ports, an ethernet debug
port, a host serial port, a fat pipe serial port, and board and IPMI reset switches.
Console Port Interface: EIA-232 is routed through six micro-D connectors (P1, P2, P4-P7) and one RJ45 connector
(P3) at the rear I/O face plate.
Reset: The RTM front panel provides two reset switches: a board reset and an IPMI reset.
Note: The RTM reset switches are not functional with the rev. 00 KAT4000.
Rear Transition Module: Functional Overview
KAT4000 User’s Manual 10007175-02
13-2
FUNCTIONAL OVERVIEW
The following block diagram provides a functional overview for the KAT-Z3DB.
Figure 13-1: RTM General System Block Diagram with Face Plate



 






User I/O
EIA-232 10/100 PHY
SER
FP
SER
Host
Enet
Board Reset
IPMI Reset
SER
AMC4
SER
AMC3
SER
AMC2
SER
AMC1
KAT-Z3DB
10/100BASE-T
Debug Ethernet Port
Serial Port to the
Fat Pipe Switch Module
Serial Port to the CPU
Board Reset Switch
IPMI Reset Switch
Serial Port to AMC4
Serial Port to AMC3
Serial Port to AMC2
Serial Port to AMC1
Rear Transition Module: Circuit Board
10007175-02 KAT4000 User’s Manual 13-3
CIRCUIT BOARD
The KAT-Z3DB circuit board is a rear transition module assembly. It uses a 6-layer printed
circuit board with the following dimensions.
Table 13-1: RTM Circuit Board Dimensions
The following figure shows the component map for the KAT-Z3DB circuit board.
Width: Depth:
12.687 in. (322.25 mm) 3.481 in. (88.42 mm)
Rear Transition Module: Circuit Board
KAT4000 User’s Manual 10007175-02
13-4
Figure 13-2: RTM Component Map, Top (Rev. 00)
R1
R10 R11
R12 R13
R14 R4
R5
R6
R7
R8 R9
R17
R18
SW1 SW2
L1
L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L2
L20
L21
L22
L23
L24
L3
L4
L5
L6
L7
L8
L9
R19
R20
R21
R22
R23
R24
R25
R26
CR1
P33
24-Pin
A1
ATCA Guide
P32
ATCA
80-Pin
P31
ATCA
80-Pin
P30
ATCA
80-Pin
K1
ATCA Guide
P2
Micro D P1
Micro D
P3
RJ45
P7
Micro D P6
Micro D P5
Micro D P4
Micro D
Rear Transition Module: Face Plate
10007175-02 KAT4000 User’s Manual 13-5
FACE PLATE
The rear face plate includes openings for six 9-pin micro-D connectors and one RJ45 con-
nector for serial I/O (see Fig. 13-1). There are also two reset switches: a board reset and an
IPMI reset.
CONNECTORS
There are several connectors on the KAT-Z3DB (see Fig. 13-2). Descriptions and pin assign-
ments are listed below.
Console Serial Ports
There are multiple asynchronous console serial ports on the face plate. P1 is for the host
serial port, P2 is for the fat pipe serial port, and P4-P7 are for AMC sites 1-4. These ports
operate at EIA-232 signal levels, but do not provide any handshaking functionality. The con-
nectors for the console ports are micro-DB9 connectors, with the following pin assign-
ments.
Table 13-2: Console Serial Port Pin Assignments, P1, P2 and P4-P7
The standard Emerson console cable (#10007665-xx) is cross-pinned, as shown in Fig. 13-4.
A straight-through 9-pin cable (#10007664-xx) also is available.
Figure 13-3: Micro-D Console Cable
Pin: Signal: Pin: Signal:
1no connect 6 no connect
2 RXD (Data In) 7 no connect
3 TXD (Data Out) 8 no connect
4no connect 9 no connect
5 ground
Pin 1
Pin 5
Micro D
Connector
Ferrite
DB9
Connector
Rear Transition Module: Setup
KAT4000 User’s Manual 10007175-02
13-6
Figure 13-4: Standard Console Cable Wiring, #10007665-xx
Ethernet Port
The face plate has one 10/100BASE-T Ethernet port, P3, for debug purposes that routes
through P30 to the GbE Core Switch. This port is not functional with the no-CPU KAT4000
configuration. This is a standard RJ45 connector, with the following pin assignments.
Table 13-3: Ethernet Port Pin Assignments, P3
Zone 3
P30-P32 are the ATCA 80-pin Zone 3 (ZD) connectors for routing serial host and fat pipe
data. See Table 12-4, Table 12-5 and Table 12-6 for pin assignments.
The 24-pin Zone 3 P33 connector routes serial I/O to the AMCs. See Table 12-7 for pin assign-
ments.
SETUP
You need the following items to set up and check the operation of the Emerson KAT-Z3DB:
The KAT4000 baseboard
Compatible AMC modules
Micro-D cable, Emerson part number C0007665-00 (cross-pinned) or C0007664-00
(straight-through)
Pin: Signal: Pin: Signal:
1 TX+ 5 no connect
2TX- 6RX-
3 RX+ 7 no connect
4no connect 8 no connect
24/
DB9 Connector Micro DB9 Connector
Rear Transition Module: Installation
10007175-02 KAT4000 User’s Manual 13-7
Card cage and power supply
Computer terminal
When you unpack the module, save the antistatic bag and box for future shipping or stor-
age.
Identification Numbers
Before you install the KAT-Z3DB in a system, you should record the following information:
The board serial number: 711G- _____________________________________ .
The board serial number appears on a bar code sticker located at the top of the board
near A1 (see Fig. 13-2).
The board product identification (ID): ________________________________ .
This product ID sticker is located in the middle of the board across from P5 and P6 (see
Fig. 13-2).
It is useful to have these numbers available when you contact Technical Support at Emer-
son.
INSTALLATION
Caution: To avoid damaging the module and/or baseboard, do not force the module onto the
baseboard.
Caution: Use proper static protection and handle KAT4000 boards only when absolutely necessary.
Always wear a wriststrap to ground your body before touching a board. Keep your body
grounded while handling the board. Hold the board by its edges–do not touch any
components or circuits. When the board is not in an enclosure, store it in a static-shielding
bag.
When installing a KAT-Z3DB to the backplane, follow these guidelines:
1To prevent ESD damage to the KAT4000, wear a grounding wrist strap and use a grounded
work surface while handling the board.
Note: The ESD strip on the bottom edge of the RTM provides a controlled discharge path before the Zone 3 connec-
tors engage.
2The KAT-Z3DB receives all its power from the front board. To install or remove the KAT-
Z3DB, either Hot Swap the KAT4000 or install the KAT-Z3DB with the KAT4000’s Hot Swap
switch open (no power).
3First align the RTM Zone 3 connectors (P30-P33) to the KAT4000 connectors (J30-J33).
Then align both two-pin ATCA guides: the RTM’s A1 (Zone 3) and K1 (Zone 2) to the
!
!
Rear Transition Module: Installation
KAT4000 User’s Manual 10007175-02
13-8
KAT4000’s K2 and K1, respectively. Finally mate the RTM’s P33 to the KAT4000 J33
connector and manually push in the module.
4Lock the Hot Swap ejector handles.
Figure 13-5: Installing a KAT-Z3DB RTM on the KAT4000


3 
3 H
H
H

KAT-Z3DB
ARTES N
SER
FP
SER
Host
Enet
Board Reset
IPMI Reset
SER
AMC4
SER
AMC3
SER
AMC2
SER
AMC1
10007175-02 KAT4000 User’s Manual 14-1
Section 14
Monitor
The KAT4000 monitor is based on the Embedded PowerPC Linux Universal Boot (U-Boot)
Project program, available under the GNU General Public License (GPL). For instructions on
how to obtain the source code for this GPL program, please visit http://www.arte-
syncp.com, send an e-mail to support@artesyncp.com, or call Emerson at (800) 327-1251.
This chapter describes the monitor’s basic features, operation, and configuration
sequences. This chapter also serves as a reference for the monitor commands and func-
tions.
COMMAND-LINE FEATURES
The KAT4000 monitor uses a command-line interface with the following features:
Auto-Repeat: After entering a command, you can re-execute it simply by pressing the ENTER or RETURN
key.
Command History: Recall previously entered commands using the up and down arrow keys.
TFTP Boot: You can use the TFTP protocol to load application images via Ethernet into the KAT4000’s
memory.
Auto-Boot: You can store specific boot commands in the environment to be executed automatically
after reset.
Flash Programming: You can write application images into Flash via the U-Boot command line. The upper 1 MB at
the base of Flash and 128 KB of each Flash bank is reserved for the monitor and environment
variables. One megabyte is reserved at the second bank of flash. The moninit command will
load both banks of flash (see “moninit” on page 14-24) with the monitor and default envi-
ronment variables.
When BDRR is enabled (see Table 2-3) and the monitor is loaded to both banks of flash (see
“moninit” on page 14-24), the hardware watchdog timer may cause a reset that will then
boot from the next flash bank (see Fig. 7-1).
At power-up or after a reset, the monitor runs diagnostics and reports the results in the
start-up display, see Fig. 14-1. During the power-up sequence, the monitor configures the
board according to the environment variables (see “Environment Variables” on
page 14-28). If the configuration indicates that autoboot is enabled, the monitor attempts
to load the application from the specified device. If the monitor is not configured for auto-
boot or a failure occurs during power-up, the monitor enters normal command-line mode.
Also, the optional “e-keying” environment variable enables connections at power-up, for
debug purposes only, to the Update Channel and payload ports that go off the KAT4000.
See Table 14-7 for more information.
Monitor: Command-Line Features
KAT4000 User’s Manual 10007175-02
14-2
The monitor command prompt in Fig. 14-1 is the result of a successful hardware boot of the
KAT4000 with a GbE fat pipe switch module.
Figure 14-1: Example Monitor Start-up Display for KAT4000 with GbE Fat Pipe Switch Module


U-Boot 1.1.4 (Jan 9 2007 - 11:15:43)1.01d
CPU: 8548_E, Version: 2.0, (0x80390020)
Core: E500, Version: 2.0, (0x80210020)
Clock Configuration:
CPU: 999 MHz, CCB: 399 MHz,
DDR: 199 MHz, LBC: 49 MHz
Board:KAT4000 AMC Carrier
Emerson Network Power, Embedded Computing
cPLD Ver: 2
I2C: ready
Clearing ALL of memory
...............................
DRAM: 512 MB
Testing Top 1M Area of DRAM.......PASSED
Relocating code to RAM
FLASH: [16MB@e0000000][16MB@e1000000]32 MB
L2 cache: enabled
PCIe: none
In: serial
Out: serial
Err: serial
Ser#: 1086
Diags Mem: PASSED
Diags I2C: PASSED
Diags Flash: PASSED
BootDev: Soldered Flash (Bank 1)
I-cache enabled
D-cache enabled (write-through)
L2 cache enabled . (L2CTL: 0xa0000000)
(write-through)
IPMC: v0.1.1
DOC: Turbo Mode
Net: eTSEC1, eTSEC2, eTSEC3, eTSEC4
Core Eth Sw: VSC7376
Fat Pipe Eth Sw: VSC7376
KAT4000 (Mon 1.01d)=>
Monitor: Command-Line Features
10007175-02 KAT4000 User’s Manual 14-3
The monitor command prompt in Fig. 14-2 is the result of a successful hardware boot of the
KAT4000 with a 10 GbE-1 GbE fat pipe switch module.
Figure 14-2: Example Monitor Start-up Display for KAT4000 with 10 GbE-1 GbE Fat Pipe Switch Module


U-Boot 1.1.4 (Apr 03 2007 - 15:20:30)1.3d
CPU: 8548_E, Version: 2.0, (0x80390020)
Core: E500, Version: 2.0, (0x80210020)
Clock Configuration:
CPU: 999 MHz, CCB: 399 MHz,
DDR: 199 MHz, LBC: 49 MHz
Board: KAT4000 AMC Carrier
Emerson Network Power, Embedded Computing
cPLD Ver: 5
I2C: ready
Clearing ALL of memory
................
DRAM: 512 MB
Testing Top 1M Area of DRAM........PASSED
Relocating code to RAM
FLASH: [16MB@e0000000][16MB@e1000000]32 MB
PCIe: Waiting for PCIe Devices...
Bus Dev Vend DevID Class Int
04 00 14e4 b580 0280 00
03 00 10b5 8111 0604 00
02 01 10b5 8532 0604 00
02 02 10b5 8532 0604 00
02 03 10b5 8532 0604 00
02 08 10b5 8532 0680 00
02 09 10b5 8532 0604 00
02 0a 10b5 8532 0604 00
09 00 1957 7011 0b20 00
02 0b 10b5 8532 0604 00
01 00 10b5 8532 0604 00
In: serial
Out: serial
Err: serial
Ser#: 1114
Diags Mem: PASSED
Diags I2C: PASSED
Diags Flash: PASSED
BootDev: Socket
I-cache enabled
D-cache enabled (write-through)
L2 cache enabled. (L2CTL: 0x20000000)
(write-through)
IPMC: v0.2.1
DOC: Turbo Mode
Net: eTSEC1, eTSEC2, eTSEC3
Core Eth Sw: VSC7376
Fat Pipe Eth Sw: BCM56580
autoboot in 1 seconds (hit 'h' to stop)
KAT4000 (Mon 1.3d)=>
Monitor: Basic Operation
KAT4000 User’s Manual 10007175-02
14-4
This prompt is also displayed as an indication that the monitor has finished executing a
command or function invoked at the command prompt (except when the command loads
and jumps to a user application). The hardware product name, KAT4000, and the current
software version number are displayed in the prompt.
Prior to the console port being available, the monitor will display a four-bit hexadecimal
value on LED1 through LED4 to indicate the power-up status (see Table 14-1). See Fig. 2-7 for
the debug LED locations. In the event of a specific initialization error, the LED pattern will be
displayed and the board initialization will halt.
Table 14-1: Debug LED Codes
BASIC OPERATION
The monitor performs various configuration tasks upon power-up or reset. This section
describes the monitor operation during initialization of the KAT4000 board. The flowchart
(see Fig. 14-3) illustrates the power-up and global reset sequence (bold text indicates envi-
ronment variables).
Power-up/Reset Sequence
The KAT4000 monitor follows the boot sequence in Fig. 14-3 before auto-booting the oper-
ating system or application software. At power-up or board reset, the monitor performs
hardware initialization, diagnostic routines, autoboot procedures, free memory initializa-
tion, and if necessary, invokes the command line. The U-Boot monitor also detects if the
optional PCI Express and serial Rapid I/O switches are present. Note that the U-Boot monitor
has the ability to timeout while waiting for PCIE_WAIT. See Table 14-6 for default environ-
ment variables settings.
LED Code: Power-up Status: LED Value:
BOARD_PRE_INIT start booting, setup BATs done 0x01
SERIAL_INIT console init done 0x02
CHECKBOARD get processor and bus speeds done 0x03
SDRAM_INIT RAM / ECC init done 0x04
AFTER_RELOC U-Boot relocated to RAM done 0x05
MISC_R final init including Ethernet done 0x06
GONE_TO_PROMPT — 0x00
Monitor: Basic Operation
10007175-02 KAT4000 User’s Manual 14-5
Figure 14-3: Power-up/Reset Sequence Flowchart
RESET
Initialize HID0
Initialize MSR
Relocate the
MPC8548
CCSRBDR base
address
Map LAWBARs/
TLBs
Invalidate the
L2 cache
LED 0001
Invalidate and
enable the L1
data cache
Setup initial stack
and data region
in cache
Configure the
MPC8548 device
chip selects
Enable icache
LED 0010
Initialize the
U-Boot
environment
Init. serial port per
baudrate
environment var.
LED 0011
Display version
string
Display CPU,
board, and bus
speed
LED 0100
Initialize
I2C
Init. SDRAM. Clear
per clearmem and
configure per ecc
environment vars.
Initialize
final stack
Relocate U-Boot
to RAM
LED 0110
Initialize
flash
Initialize malloc
area
Initialize
PCIe
Is module a
root complex
Enumerate PCI
per enumerate
environment
variable
Yes
Display board
serial number
No
Configure dcache
per cachemode
and dcache
environment vars.
Configure icache
per icache
environment
variable
Configure L2
cache per l2cache
and l2mode
environment vars.
Initialize Ethernet
ports
Turn off debug
LEDs and blink
front panel red
LED per blinked
environment var.
Main Loop
Initialize
disk-on-chip
Perform board
diagnostics per
powerondiags
environment var.
Enable MPC8548
external interrupts
Relocate IRQ
handlers and
IRQ traps
Display LED 0111
Initialize fat pipe
Ethernet switch,
if installed
Initialize core
Ethernet switch,
if installed
Monitor: Monitor Recovery and Updates
KAT4000 User’s Manual 10007175-02
14-6
POST Diagnostic Results
The KAT4000 Power-On Self-Test (POST) diagnostic results are stored as a 32-bit value in I2C
NVRAM at the offset 0x1DD8-0x1DDB. Errors will also be stored in the Vital Products Data
section and FRU user space area for access by other devices. Each bit indicates the results of
a specific test, therefore this field can store the results of up to 32 diagnostic tests. Table 14-
2 assigns the bits to specific tests.
Table 14-2: POST Diagnostic Results–Bit Assignments
Monitor SDRAM Usage
Monitor SDRAM usage is typically around 1 MB for monitor code and stack support. Please
note that the monitor stack grows downward from below where the monitor code resides
(in the upper 512 KB). The monitor C stack will typically not grow beyond 512 KB, therefore
the upper 1 MB of SDRAM is reserved for monitor use.
Note: The monitor has the ability to preserve (not overwrite) areas of memory defined by the pram environment
variable.
Caution: Any writes to these areas can cause unpredictable operation of the monitor.
MONITOR RECOVERY AND UPDATES
This section describes how to recover and/or update the monitor, given one or more of the
following conditions:
If there is no console output, the monitor may be corrupted and need recovering (see
the “Recovering the Monitor” section).
If the monitor still functions, but is not operating properly, then you may need to reset
the environment variables (see the “Resetting Environment Variables” section).
If you are having Ethernet problems in the monitor, you may need to set the serial
number, since the MAC address is calculated from the serial number variable.
Bit: Diagnostic Test: Value:
0SDRAM
0 Passed the test
1 Failure detected
1Flash
2I
2C
3 Ethernet Core Switch
4Reserved
5 PCIe Timeout (if Root Complex)
(currently not implemented)
6-31 Reserved
!
Monitor: Monitor Recovery and Updates
10007175-02 KAT4000 User’s Manual 14-7
Recovering the Monitor
1Make sure that a monitor ROM device is installed in the PLCC socket on the KAT4000.
2Ensure there is a jumper on JP7, across pins 1 and 2.
3Issue the following command, where serial_number is the board’s serial number, at the
monitor prompt:
KAT4000 (1.0) => moninit serial_number
moninit will also reset environment variables to the default state.
4To boot from soldered flash, power down the board and remove the jumper from JP7, pins 1
and 2.
The monitor always resides in the top 512 KB block of NOR flash as shown in Table 14-3.
Table 14-3: Monitor Address per Flash Device
Resetting Environment Variables
To restore the monitor’s standard environment variables, execute the following commands
and insert the appropriate data in the italicized fields:
KAT4000 (1.0) => moninit serial_number noburn
Note: Press the ‘s’ key on the keyboard during reset to force the default environment variables to be loaded. See
“Environment Variables” for more information.
Optionally, save your settings:
KAT4000 (1.0) => saveenv
Updating the Monitor via TFTP
To update the monitor via TFTP, ensure that an appropriate VLAN is set up in the Ethernet
switch (see the KAT4000 Quick Start Guide, #10008585-xx) and execute the following com-
mands, inserting the appropriate data in the italicized fields:
If necessary, edit your network settings:
KAT4000 (1.0) => setenv ipaddr 192.168.1.100
KAT4000 (1.0) => setenv gatewayip 192.168.1.1
KAT4000 (1.0) => setenv netmask 255.255.255.0
KAT4000 (1.0) => setenv serverip 10.64.16.168
KAT4000 (1.0) => setenv ethport all
Address Range (hex): Device:
E1F8,0000-E1FF,FFFF Monitor Location in Flash Bank1 (16 MB)
E0F8,0000-E0FF,FFFF Monitor Location in Flash Bank0 (16 MB)
E1F6,0000-E1F6,1000 Redundant Environment Variables
E0F6,0000-E0F6,1000 Environment Variables
Monitor: Monitor Command Reference
KAT4000 User’s Manual 10007175-02
14-8
Optionally, save your settings:
KAT4000 (1.0) => saveenv
TFTP the new monitor (binary) image to memory location 0x100000:
KAT4000 (1.0) => tftpboot 100000 path_to_file_on_tftp_server
Update the monitor:
KAT4000 (1.0) => moninit serial_number 100000
If moninit( ) fails, burn the new monitor to a ROM and follow the recovery steps in the
“Recovering the Monitor” section.
MONITOR COMMAND REFERENCE
This section describes the syntax and typographic conventions for the KAT4000 monitor
commands. Subsequent sections in this chapter describe individual commands, which fall
into the following categories: boot, memory, Flash, environment variables, test, and other
commands.
Command Syntax
The monitor uses the following basic command syntax:
<Command> <argument 1> <argument 2> <argument 3>
The command line accepts three different argument formats: string, numeric, and
symbolic. All command arguments must be separated by spaces with the exception of
argument flags, which are described below.
Monitor commands that expect numeric arguments assume a hexadecimal base.
All monitor commands are case sensitive.
Some commands accept flag arguments. A flag argument is a single character that
begins with a period (.). There is no white space between an argument flag and a
command. For example, md.b 80000 is a valid monitor command, while md .b 80000
is not.
Some commands may be abbreviated by typing only the first few characters that
uniquely identify the command. For example, you can type h instead of help. However,
commands cannot be abbreviated when accessing online help. You must type help and
the full command name.
Monitor: Boot Commands
10007175-02 KAT4000 User’s Manual 14-9
Command Help
Access all available monitor commands by pressing the ? key or entering help. Access the
monitor online help for individual commands by typing help <command>. The full com-
mand name must be entered to access the online help.
Typographic Conventions
In the following command descriptions, text in Courier shows the command format.
Square brackets [ ] enclose optional arguments, and angled brackets < > enclose required
arguments. Italic type indicates a variable or field that requires input.
BOOT COMMANDS
The boot commands provide facilities for booting application programs and operating sys-
tems from various devices.
bootd
Execute the command stored in the “bootcmd” environment variable.
Definition: bootd
bootelf
The bootelf command boots from an ELF image in memory, where address is the load
address of the ELF image.
Definition: bootelf [ address ]
bootm
The bootm command boots an application image stored in memory, passing any entered
arguments to the called application. When booting a Linux kernel, arg can be the address of
an initrd image. If addr is not specified, the environment variable loadaddr is used as the
default.
Definition: bootm [addr [arg …]]
bootp
The bootp command boots an image via a network connection using the BootP/TFTP pro-
tocol. If loadaddress or bootfilename is not specified, the environment variables loadaddr and
bootfile are used as the default.
Definition: bootp [loadAddress] [bootfilename]
Monitor: Boot Commands
KAT4000 User’s Manual 10007175-02
14-10
To use network download commands (e.g., bootp, bootvx, rarpboot, tftpboot), the envi-
ronment variables listed in Table 14-4 must be configured. To set a static IP, these environ-
ment variables must be specified through the command line interface.
Table 14-4: Static IP Ethernet Configuration
1. Ensure that each MAC address on the network is unique.
bootv
The bootv command checks the checksum on the primary image (in Flash) and boots it, if
valid. If it is not valid, it checks the checksum on the secondary image (in Flash) and boots it,
if valid. If neither checksum is valid, the command returns back to the monitor prompt.
Definition: Verify bootup.
bootv
Write image to Flash and update NVRAM.
bootv <primary|secondary> write <source> <dest> <size>
Update NVRAM based on image already in Flash.
bootv <primary|secondary> update <source> <size>
Check validity of images in Flash.
bootv <primary|secondary> check
bootvx
The bootvx command boots VxWorks® from an ELF image, where address is the load
address of the VxWorks ELF image. To use this command, the environment variables listed
in Table 14-4 must be configured.
Definition: bootvx [ address ]
dhcp
The dhcp command invokes a Dynamic Host Configuration Protocol (DHCP) client to obtain
IP and boot parameters by sending out a DHCP request and waiting for a response from a
server.
Environment Variable: Description:
ipaddr Local IP address for the board.
serverip TFTP/NFS server address.
netmask Net mask.
gatewayip Gateway IP address.
netdev eth0 - default
ethaddr1MAC address
Monitor: Boot Commands
10007175-02 KAT4000 User’s Manual 14-11
Definition: dhcp [loadaddress] [bootfilename]
To use the dhcp command, your DHCP server must be configured with the variables desig-
nated in Table 14-5.
Table 14-5: DHCP Ethernet Configuration
2. Values for ethaddr, netdev and autoload are set by the user.
3. The value obtained by the DHCP server may not be applicable to your development application.
4. Ensure that each MAC address on the network is unique.
5. If autoload is not set or configured to “yes,” ensure that the DHCP provides proper information for
autoboot. If proper autoboot information is not provided, an error may occur.
rarpboot
The rarpboot command boots an image via a network connection using the RARP/TFTP
protocol. If loadaddress or bootfilename is not specified, the environment variables loadaddr
and bootfile are used as the default. To use this command, the environment variables listed
in Table 14-4 must be configured.
Definition: rarpboot [loadaddress] [bootfilename]
tftpboot
The tftpboot command loads an image via a network connection using the TFTP protocol.
The environment variable’s ipaddr and serverip are used as additional parameters to this
command. If loadaddress or bootfilename is not specified, the environment variables
loadaddr and bootfile are used as the default. To use this command, the environment vari-
ables listed in Table 14-4 must be configured.
The port used is defined by the ethport environment variable. If all is selected for ethport,
the TFTP process will cycle through each port until a connection is found or all ports have
failed.
Environment Variable: Description: Value2:
ipaddr Local IP address for the board. Configured
by DHCP.
e.g., 192.168.1.1
serverip TFTP/NFS server address. This value must
be configured after the DHCP IP address is
acquired.3
e.g., 192.168.1.2
netmask Net mask. Obtained by DHCP.
gatewayip Gateway IP address. Obtained by DHCP.
netdev Ethernet device. Obtained by DHCP. eth0
ethaddr4MAC address 00:80:F9:xx:xx:xx
autoload5Boot image from TFTP server after DHCP
acquisition.
no
Monitor: File Load Commands
KAT4000 User’s Manual 10007175-02
14-12
Definition: tftpboot [loadaddress] [bootfilename]
FILE LOAD COMMANDS
The file load commands load files over the serial port.
loadb
The loadb command loads a binary file over the serial port. The command takes two
optional parameters:
offset: The address offset parameter allows the file to be stored in a location different than what is
indicated within the binary file by adding the value off to the file’s absolute address.
baudrate: The baudrate parameter allows the file to be loaded at baud instead of the monitor’s con-
sole baudrate.
The file is not automatically executed, the loadb command only loads the file into memory.
Definition: loadb [off] [baud]
loads
The loads command loads an S-Record file over the serial port. The command takes two
optional parameters:
offset: The address offset parameter allows the file to be stored in a location different than what is
indicated within the S-Record file by adding the value off to the file’s absolute address.
baudrate: The baudrate parameter allows the file to be loaded at baud instead of the monitor’s con-
sole baudrate.
The file is not automatically executed, the loads command only loads the file into memory.
Definition: loads [off] [baud]
MEMORY COMMANDS
The memory commands allow you to manipulate specific regions of memory. For some
memory commands, the data size is determined by the following flags:
Definition: The flag .b is for data in 8-bit bytes.
Definition: The flag .w is for data in 16-bit words.
Definition: The flag .l is for data in 32-bit long words.
These flags are optional arguments and describe the objects on which the command oper-
ates. If you do not specify a flag, memory commands default to 32-bit long words. Numeric
arguments are in hexadecimal.
Monitor: Memory Commands
10007175-02 KAT4000 User’s Manual 14-13
cmp
The cmp command compares count objects between addr1 and addr2. Any differences are
displayed on the console display.
Definition: cmp [.b, .w, .l] addr1 addr2 count
cp
The cp command copies count objects located at the source address to the target address.
Note: If the target address is located in the range of the Flash device, it will program the Flash with count objects
from the source address. The cp command does not erase the Flash region prior to copying the data. The Flash
region must be manually erased using the erase command prior to using the cp command.
Definition: cp [.b, .w, .l] source target count
Example: In this example, the cp command is used to copy 0x1000, 32-bit values from address
0x100000 to address 0x80000.
=> cp 100000 80000 1000
find
The find command searches from base_addr to top_addr looking for pattern. For the find
command to work properly, the size of pattern must match the size of the object flag. The -a
option searches for the absence of the specified pattern.
Definition: find [.b, .w, .l] [-a] base_addr top_addr pattern
Example: In this example, the find command is used to search for the 32-bit pattern 0x12345678 in
the address range starting at 0x40000, and ending at 0x80000.
=> find.1 40000 80000 12345678
Searching from 0x00040000 to 0x00080000
Match found: data = 0x12345678 Adrs = 0x00050a6c
=>
md
The command md displays the contents of memory starting at address. The number of
objects displayed can be defined by an optional third argument, # of objects. The memory’s
numerical value and its ASCII equivalent is displayed.
Definition: md [.b, .w, .l] address [# of objects]
Example: In this example, the md command is used to display thirty-two 16-bit words starting at the
physical address 0x80000.
=> md.w 80000 20
00080000: ffff ffff ffff ffff ffff ffff ffff ffff ................
00080010: ffff ffff ffff ffff ffff ffff ffff ffff ................
00080020: ffff ffff ffff ffff ffff ffff ffff ffff ................
Monitor: Memory Commands
KAT4000 User’s Manual 10007175-02
14-14
00080030: ffff ffff ffff ffff ffff ffff ffff ffff ................
mm
The mm command modifies memory one object at a time. Once started, the command line
prompts for a new value at the starting address. After a new value is entered, pressing
ENTER auto-increments the address to the next location. Pressing ENTER without entering a
new value leaves the original value for that address unchanged. To exit the mm command,
enter a non-valid hexadecimal value (such as x) followed by ENTER.
Definition: mm [.b, .w, .l] address
Example: In this example, the mm command is used to write random 8-bit data starting at the physi-
cal address 0x80000.
=> mm.b 80000
00080000: ff ? 12
00080001: ff ? 23
00080002: ff ? 34
00080003: ff ? 45
00080004: ff ?
00080005: ff ? x
=> md.b 80000 6
00080000: 12 23 34 45 ff ff .#4E
=>
nm
The nm command modifies a single object repeatedly. Once started, the command line
prompts for a new value at the selected address. After a new value is entered, pressing
ENTER modifies the value in memory and then the new value is displayed. The command
line then prompts for a new value to be written at the same address. Pressing ENTER with-
out entering a new value leaves the original value unchanged. To exit the nm command,
enter a non-valid hexadecimal value (such as x) followed by ENTER.
Definition: nm [.b, .w, .l] address
mw
The command mw writes value to memory starting at address. The number of objects mod-
ified can be defined by an optional fourth argument, count.
Definition: mw [.b, .w, .l] address value [count]
Example: In this example, the mw command is used to write the value 0xabba three times starting at
the physical address 0x80000.
=> mw.w 80000 abba 3
=> md 80000
00080000: abbaabba abbaffff ffffffff ffffffff ................
00080010: ffffffff ffffffff ffffffff ffffffff ................
Monitor: Flash Commands
10007175-02 KAT4000 User’s Manual 14-15
00080020: ffffffff ffffffff ffffffff ffffffff ................
00080030: ffffffff ffffffff ffffffff ffffffff ................
00080040: ffffffff ffffffff ffffffff ffffffff ................
00080050: ffffffff ffffffff ffffffff ffffffff ................
00080060: ffffffff ffffffff ffffffff ffffffff ................
00080070: ffffffff ffffffff ffffffff ffffffff ................
FLASH COMMANDS
The Flash commands affect the StrataFlash device on the KAT4000 circuit board. There is
one Flash bank on the KAT4000 board. The following Flash commands access the individual
Flash bank as Flash bank 1. To access the individual sectors within each Flash bank, the sec-
tor numbers start at 0 and end at one less than the total number of sectors in the bank. For a
Flash bank with 128 sectors, the following Flash commands access the individual sectors as
0 through 127.
cp
The cp command can be used to copy data into the Flash device. For the cp command syn-
tax, refer to “Memory Commands” on page 14-12.
erase
The erase command erases the specified area of Flash memory.
Definition: Erase all of the sectors in the address range from start to end.
erase start end
Erase all of the sectors SF (first sector) to SL (last sector) in Flash bank # N.
erase N:SF[-SL]
Erase all of the sectors in Flash bank # N.
erase bank N
Erase all of the sectors in all of the Flash banks.
erase all
flinfo
The flinfo command prints out the Flash device’s manufacturer, part number, size, number
of sectors, and starting address of each sector.
Definition: Print information for all Flash memory banks.
flinfo
Print information for the Flash memory in bank # N.
flinfo N
Monitor: EEPROM/I2C Commands
KAT4000 User’s Manual 10007175-02
14-16
protect
The protect command enables or disables the Flash sector protection for the specified Flash
sector. Protection is implemented using software only. The protection mechanism inside
the physical Flash part is not being used.
Definition: Protect all of the Flash sectors in the address range from start to end.
protect on start end
Protect all of the sectors SF (first sector) to SL (last sector) in Flash bank # N.
protect on N:SF[-SL]
Protect all of the sectors in Flash bank # N.
protect on bank N
Protect all of the sectors in all of the Flash banks.
protect on all
Remove protection on all of the Flash sectors in the address range from start to end.
protect off start end
Remove protection on all of the sectors SF (first sector) to SL (last sector) in Flash bank # N.
protect off N:SF[-SL]
Remove protection on all of the sectors in Flash bank # N.
protect off bank N
Remove protection on all of the sectors in all of the Flash banks.
protect off all
EEPROM/I2C COMMANDS
This section describes commands that allow you to read and write memory on the serial
EEPROMs and I2C devices.
eeprom
The eeprom command reads and writes from the EEPROM. For example:
eeprom read 53 100000 1800 100
reads 100 bytes from offset 0x1800 in serial EEPROM 0x53 (right-shifted 7-bit address) and
places it in memory at address 0x100000.
Definition: Read/write cnt bytes from devaddr EEPROM at offset off.
eeprom read devaddr addr off cnt
eeprom write devaddr addr off cnt
Monitor: EEPROM/I2C Commands
10007175-02 KAT4000 User’s Manual 14-17
icrc32
The icrc32 computes a CRC32 checksum.
Definition: icrc32 chip address[.0, .1, .2] count
iloop
The iloop command reads in an infinite loop on the specified address range.
Definition: iloop chip address[.0, .1, .2] [# of objects]
imd
The imd command displays the primary I2C bus memory. For example:
imd 53 1800.2 100
displays 100 bytes from offset 0x1800 of I2C device 0x53 (right-shifted 7-bit address). The
.2 at the end of the offset is the length, in bytes, of the offset information sent to the
device. The serial EEPROMs all have two-byte offset lengths. The Real-Time Clock (RTC) has
a one-byte offset length. The temperature sensors have zero-byte offset lengths.
Definition: imd chip address[.0, .1, .2] [# of objects]
imd2
The imd2 command displays the secondary I2C bus memory. For example:
imd 53 1800.2 100
displays 100 bytes from offset 0x1800 of I2C device 0x53 (right-shifted 7-bit address). The
.2 at the end of the offset is the length, in bytes, of the offset information sent to the
device. The serial EEPROMs all have two-byte offset lengths. The RTC has a one-byte offset
length. The temperature sensors have zero-byte offset lengths.
Definition: imd2 chip address[.0, .1, .2] [# of objects]
imm
The imm command modifies the primary I2C memory and automatically increments the
address.
Definition: imm chip address[.0, .1, .2]
imm2
The imm2 command modifies the secondary I2C memory and automatically increments
the address.
Definition: imm2 chip address[.0, .1, .2]
Monitor: IPMC Commands
KAT4000 User’s Manual 10007175-02
14-18
imw
The imw command writes (fills) memory.
Definition: imw chip address[.0, .1, .2] value [count]
inm
The inm command modifies I2C memory, reads it, and keeps the address.
Definition: inm chip address[.0, .1, .2]
iprobe
The iprobe command probes to discover valid primary I2C bus chip addresses.
Definition: iprobe
iprobe2
The iprobe command probes to discover valid secondary I2C bus chip addresses.
Definition: iprobe2
switchsrom
The switchsrom command reads bytes from the VSC7376 GbE switch EEPROM and writes
bytes to the EEPROM.
Definition: switchsrom read <offset> <size>
switchsrom write <source address> <size>
IPMC COMMANDS
IPMI Baseboard Management Controller (BMC) watchdog is supported and serviced
throughout the monitor boot process. The BMC watchdog is disabled if the monitor goes to
the monitor prompt.
fru
The fru command opens, closes, saves, sets, shows, dumps, and loads fru data to and from
the IPMC.
Definition: fru <command> [ arg1 arg2 … ]
command := [ open | close | save | set | show | dump | load | create ]
fru open <id>
fru close
fru save
fru set <section [chassis|board|product]><field><value>
fru set <section> <field> <value>
section := [ chassis | board | product ]
Monitor: IPMC Commands
10007175-02 KAT4000 User’s Manual 14-19
fru set chassis <field> <value>
field := [ type | part | serial ]
fru set board <field> <value>
field := [ date | maker | name | serial | part | file ]
fru set product <field> <value>
field := [ maker | name | part | version |serial | asset | file ]
fru show
fru dump <address>
fru load <address><size>
Set data in the internal use area.
fru set internal <source addr> <internal use offset> <count>
The fru create command loads a default fru image to a blank fru device.
fru create <id> default <product name>
fru create <id> <address> <size> <product name>
fruinit
The fruinit command initializes the following fru data fields: part number, build date, and
serial number in the board and product sections.
Definition: fruinit <fru id> <part number> <build date> [ serial number ]
fruled
The fruled command allows the application programmer to get the status of the red out-of-
service LED or to turn the LED on or off when an application fails to load.
Definition: fruled get <fru id> <led id> <led state> <led function (on/off)> <on time> <color>
fruled set <fru id> <led id> <led function (on/off)> <on time> <color>
Example: Turns the red out-of-service LED on.
fruled set 0 1 0xff 0 2
Turns the red out-of-service LED off.
fruled set 0 1 0 0 2
ipmcfw
The ipmcfw command restores the previous IPMC firmware from the backup IPMC firm-
ware stored in the controller. The upgrade argument upgrades the IPMC firmware with the
upgrade image held in memory.
Definition: ipmcfw [restore] [upgrade <source address>]
sensor
The sensor command probes, reads, and prints the sensor information from the IPMI.
Monitor: Environment Parameter Commands
KAT4000 User’s Manual 10007175-02
14-20
Definition: sensor [probe|read|dump]
Sensor probe prints out each sensor number and name.
sensor probe <sensor number>
Sensor read prints out the sensor reading for sensor.
sensor read <sensor number>
Sensor dump prints out the raw Sensor Data Record (SDR) information for sensor.
sensor dump <sensor number>
ENVIRONMENT PARAMETER COMMANDS
The monitor uses on-board, non-volatile memory for the storage of environment parame-
ters. Environment parameters are stored as ASCII strings with the following format.
<Parameter Name>=<Parameter Value>
Some environment variables are used for board configuration and identification by the
monitor. The environment parameter commands deal with the reading and writing of these
parameters. Refer to “Environment Variables” on page 14-28 for a list of monitor environ-
ment variables.
Redundant environment parameters allow you to store a “backup” copy of environment
parameters should they ever become corrupt. The redundant environment parameters are
only used if the main parameters are corrupt.
To save environment variables:
1Use moninit to save default environment variables to both primary and secondary
environment parameters.
2Use saveenv to save to the primary environment variables.
3Set the next save to the secondary image. For example:





Monitor: Test Commands
10007175-02 KAT4000 User’s Manual 14-21
printenv
The printenv command displays all of the environment variables and their current values to
the display.
Definition: Print the values of all environment variables.
printenv
Print the values of all environment variable (exact match) ‘name’.
printenv name …
saveenv
The saveenv command writes the environment variables to non-volatile memory.
Definition: saveenv
setenv
The setenv command adds new environment variables, sets the values of existing environ-
ment variables, and deletes unwanted environment variables.
Definition: Set the environment variable name to value or adds the new variable name and value to the
environment.
setenv name value
Removes the environment variable name from the environment.
setenv name
TEST COMMANDS
The commands described in this section perform diagnostic and memory tests.
diags
The diags command runs the Power-On Self-Test (POST).
Definition: diags
mtest
The mtest command performs a simple SDRAM read/write test.
Definition: mtest [start [end [pattern]]]
Monitor: Other Commands
KAT4000 User’s Manual 10007175-02
14-22
um
The um command is a destructive memory test. Press the ‘q’ key to quit this test; the moni-
tor completes running the most recent iteration, and exits to the default prompt after dis-
playing cumulative results for the completed iterations.
Definition: um [.b, .w, .l] base_addr [top_addr]
OTHER COMMANDS
This section describes all the remaining commands supported by the KAT4000 monitor.
autoscr
The autoscr command runs a script, starting at address addr, from memory.
A valid autoscr header must be present.
Definition: autoscr [addr]
base
The base command prints or sets the address offset for memory commands.
Definition: Displays the address offset for the memory commands.
base
Sets the address offset for the memory commands to off.
base off
bdinfo
The bdinfo command displays the Board Information Structure.
Definition: bdinfo
coninfo
The coninfo command displays the information for all available console devices.
Definition: coninfo
crc32
The crc32 command computes a CRC32 checksum on count bytes starting at address.
Definition: crc32 address count
date
The date command will set or get the date and time, and reset the RTC device.
Monitor: Other Commands
10007175-02 KAT4000 User’s Manual 14-23
Definition: Set the date and time.
date [MMDDhhmm[[CC]YY][.ss]]
Display the date and time.
date
Reset the RTC device.
date reset
echo
The echo command echoes args to console.
Definition: echo [args..]
enumpci
The enumpci command enumerates the PCIe bus (when the hardware is the PCIe Root
Complex in the system).
Definition: enumpci
go
The go command runs an application at address addr, passing the optional argument arg to
the called application.
Definition: go addr [arg…]
help
The help (or ?) command displays the online help. Without arguments, all commands are
displayed with a short usage message for each. To obtain more detailed information for a
specific command, enter the desired command as an argument.
Definition: help [command …]
iminfo
The iminfo command displays the header information for an application image that is
loaded into memory at address addr. Verification of the image contents (magic number,
header, and payload checksums) are also performed.
Definition: iminfo addr [addr …]
isdram
The isdram command displays the SDRAM configuration information (valid chip values
range from 50 to 57).
Monitor: Other Commands
KAT4000 User’s Manual 10007175-02
14-24
Definition: isdram addr
loop
The loop command executes an infinite loop on address range.
Definition: loop [.b, .w, .l] address number_of_objects
memmap
The memmap command displays the board’s memory map layout.
Definition: memmap
moninit
The moninit command resets the NVRAM and serial number, and it writes the monitor to
Flash. The KAT4000 must be booted from the boot socket for this command to function in
the default state. The proper region of Flash memory will be unlocked and erased prior to
copying the monitor software into it.
The command flags, .s or .d, force the monitor to be programmed to a single (.s) bank of
flash or dual (.d) banks of flash. If the command flags are not used, then moninit checks for
the number of banks of flash. If there are two banks of flash, then moninit automatically
programs both banks for redundancy. Also, the serial number can be obtained from the fru
data if “fru” is used as a parameter.
Definition: Initialize environment variables and serial number in NVRAM and copy the monitor from the
socket to NOR (soldered) Flash.
moninit[.s, .d] <serial# or “fru”>
Initialize environment variables and serial number in NVRAM but do not update the monitor
in NOR Flash.
moninit[.s, .d] <serial# or “fru”> noburn
Initialize environment variables and serial number in NVRAM and copy the monitor from
<src_address> into NOR Flash.
moninit[.s, .d] <serial# or “fru”> <src_address>
pci
The pci command enumerates the PCI bus. It displays enumeration information about each
detected device. The pci command allows you to display values for and access the PCI Con-
figuration Space.
Definition: Display a short or long list of PCI devices on the bus specified by bus.
pci [bus] [long]
Monitor: Other Commands
10007175-02 KAT4000 User’s Manual 14-25
Show the header of PCI device bus.device.function.
pci header b.d.f
Display the PCI configuration space (CFG).
pci display[.b, .w, .l] b.d.f [address] [# of objects]
Modify, read, and keep the CFG address.
pci next[.b, .w, .l] b.d.f address
Modify, automatically increment the CFG address.
pci modify[.b, .w, .l] b.d.f address
Write to the CFG address.
pci write[.b, .w, .l] b.d.f address value
phy
The phy command reads or writes to the contents of the PHY registers. The values changed
via this command are not persistent and clear after a hard or soft reset. The port options are
all, eTSEC1, eTSEC2, eTSEC3, and eTSEC4, and base1 and base2 via the switch. “R” reads the
register contents at the address specified. “W” writes the address value to the register
address specified. “A” reads the contents of all registers.
Definition: phy [port] [R|W|A] (address) (value)
Example: The following is an example of a read of register address 0x1a.
phy eTSEC2 r 0x1a
The following is an example of a write to register address 0x1a where 0 is the data to write.
phy eTSEC2 w 0x1a 0
ping
The ping command sends a ping over Ethernet to check if the host can be reached. The port
used is defined by the ethport environment variable. If all is selected for ethport, the ping
process cycles through each port until a connection is found or all ports have failed.
Definition: ping host
reset
The reset command performs a hard reset of the CPU by writing to the reset register on the
board. Without any arguments, the KAT4000 CPU is reset.
Definition: reset
Monitor: Other Commands
KAT4000 User’s Manual 10007175-02
14-26
run
The run command runs the commands in an environment variable var.
Definition: run var [ … ]
Use $ for variable substitution; the syntax “$(variable_name)” should be used for variable
expansion.
Example: => setenv cons_opts console=tty0 console=ttyS0,\$(baudrate)
=> printenv cons_opts cons_opts=console=tty0 console=ttyS0,$(baudrate)
Use the \ character to escape execution of the $ as seen in the setenv command above. In
this example, the value for baudrate will be inserted when cons_opts is executed.
script
The script command runs a list of monitor commands out of memory. The list is an ASCII
string of commands separated by the ; character and terminated with the ;; charac-
ters. <script address> is the starting location of the script.
Note: A script is limited to 1000 characters.
Definition: script <script address>
showmac
The showmac command displays the Processor MAC addresses assigned to each Ethernet
port.
Definition: showmac
showpci
The showpci command scans the PCIe bus and lists the base address of the devices. The
default PCI interface is PCI 1.
Definition: showpci
sleep
The sleep command executes a delay of N seconds.
Definition: Delay execution for N seconds (N is a decimal value).
sleep N
Monitor: Other Commands
10007175-02 KAT4000 User’s Manual 14-27
switch_reg
The switch_reg command reads or writes to the Ethernet core switch or fat pipe Ethernet
switch registers. The values changed via this command are not persistent and clear after a
hard or soft reset. Option values are as follows: switch (core or fp), port (0 - 25), block (1-7),
and sub-block (0-15). “R” reads the register contents at the address specified. “W” writes
the address value to the register address specified.
Definition: switch_reg [switch] [port op | block sub-block op [R|W]] (address) (value)
Example: The following is an example of a read of register address 0x1a.
switch_reg core 0 r 0x1a
The following is an example of a write to register address 0x1a where 0 is the data to write.
switch_reg core 0 w 0x1a 0
version
The version command displays the monitor’s current version number.
Definition: version
vlan
The vlan command creates one or more new VLANs using vid as the VLAN identification
(VID) value and deletes one or more existing VLANs whose VLAN ID matches the VLAN ID
value vid. These variables are set using a comma-separated list of port names. This com-
mand sets an untagged port-based VLAN and the VLAN table entry with the port’s default
VID. In this configuration, each port is assigned to one VLAN.
Definition: vlan add [core|fp] <vid1>=portlist1> <vid2>=<portlist2>…
vlan delete [core|fp] <vid1> <vid2>…
vlan show [core|fp]
Example: To create VLAN 1 on the core switch:
vlan add core 1=14,15
To create VLANs 2-3 on the fat pipe switch:
vlan add fp 2=18,17,0,3,19,22,6 3=21,17,1,4,20,23,10
To delete VLAN 1 on the core switch:
vlan delete core 1
To delete VLANs 2-3 on the fat pipe switch:
vlan delete fp 2 3
To delete all VLANs on the fat pipe switch:
vlan delete fp all
Monitor: Environment Variables
KAT4000 User’s Manual 10007175-02
14-28
To show VLANs in use on the fat pipe switch:
vlan show fp
ENVIRONMENT VARIABLES
Press the ‘s’ key on the keyboard during reset to force the default monitor environment vari-
ables to be loaded during hardware initialization but before diagnostic testing.
Table 14-6 lists the monitor’s standard environment variables.
Table 14-6: Standard Environment Variables
Variable:
Default
Value: Description:
baudrate 9600 Console baud rate.
Valid rates: 9600, 14400, 19200, 38400, 57600, 115200
bmc_wd_timeout -1 This sets the time-out in seconds for the BMC watchdog
before booting the OS. If set to -1, then the BMC watchdog
is disabled before booting the OS.
Valid options: -1, 1-65535
bootcmd " " Command to execute when auto-booting or executing the
‘bootd’ command.
bootdelay 1 Choose the number of seconds the Monitor counts down
before booting user application code.
Valid options: time in seconds, -1 to disable autoboot
bootfile " " Path to boot file on server (used with TFTP)—set this to
“path/file.bin” to specify filename and location of the file to
load.
bootretry -1 Set the number of seconds the Monitor counts down before
booting user application code (used only with autoboot). If
the boot commands fails, it will try again after bootretry
seconds.
Valid options: time in seconds, -1 to disable bootretry
bootstopkey h Press during power-up/reset initialization to terminate the
monitor autoboot sequence and go to the monitor prompt.
cachemode write Sets the L1 cache mode to write-through or copy-back.
Valid options: write, copy
clearmem on Select whether to clear unused SDRAM (memory used by
monitor is excluded) on power-up and reset.
Valid options: on, off
dcache on Enables the processor L1 data cache.
Valid options: on, off
ecc on Enable ECC initialization—all of memory is cleared during
ECC initialization. Valid options: on, off
Monitor: Environment Variables
10007175-02 KAT4000 User’s Manual 14-29
ecc_1bit_report off Select the reporting of single bit, correctable ECC errors to
the console (errors of 2 or more bits are always reported).
Valid options: on, off
enumerate on PCI bus enumeration. Valid options: on, off
ethaddr 00:80:F9:
92:00:00-
00:80:F9:
92:FF:FF
KAT4000 board Ethernet address for TSEC_1 port. The last
digits are the board serial number in hex.
eth1addr 00:80:F9:
93:00:00-
00:80:F9:
93:FF:FF
KAT4000 board Ethernet address for TSEC_2 port. The last
digits are the board serial number in hex.
eth2addr 00:80:F9:
94:00:00-
00:80:F9:
94:FF:FF
KAT4000 board Ethernet address for TSEC_3 port. The last
digits are the board serial number in hex.
eth3addr 00:80:F9:
95:00:00-
00:80:F9:
95:FF:FF
KAT4000 board Ethernet address for TSEC_4 port. The last
digits are the board serial number in hex.
ethport all Select which Ethernet port will be used for TFTP and ping.
Valid options: all, eTSEC1, eTSEC2, eTSEC3, eTSEC4
The ports are assigned as follows: eTSEC1—Ethernet debug
port, eTSEC2—Ethernet core switch, eTSEC3—Ethernet core
switch, and eTSEC4—fat pipe switch module.
fru_id undefined Corresponds to KAT4000 processing resources.
Valid options: Not defined in default configuration—
reported at bootup from the IPMC
gatewayip 0.0.0.0 Select the network gateway machine IP address.
hostname EMERSON
_KAT4000
Target hostna me
icache on Enables the processor L1 instruction cache.
Valid options: on, off
ipaddr 0.0.0.0 Board IP address
l2cache on Enables the L2 cache.
Valid options: on, off
loadaddr 0x100000 Define the address to download user application code to
(used with TFTP).
logical_slot undefined ATCA chassis logical slot number of KAT4000 location. Valid
options: Not defined in default configuration—reported at
bootup from the IPMC
model KAT4000 Board model number
netmask 0.0.0.0 Board sub-network mask
Variable:
Default
Value: Description: (continued)
Monitor: Environment Variables
KAT4000 User’s Manual 10007175-02
14-30
The monitor supports optional environment variables that enable additional functionality.
The moninit command (see “moninit” on page 14-24) clears all environment variables and
sets the standard environment variables to the default values. All optional environment
variables are removed after moninit. However, it can clear all optional variables. Table 14-7
lists the monitor’s optional environment variables.
Table 14-7: Optional Environment Variables
pcie_wait 0 Specifies time to wait until PCIe enumeration occurs. When
hit ‘q’ during pcie_wait, no PCIe enumeration will occur and
a POST fail flag will be set. Valid options: <??> time in
seconds
physical_slot undefined ATCA chassis physical slot number of KAT4000 location.
Valid options: Not defined in default configuration—
reported at bootup from the IPMC
powerondiags on Turns POST diagnostics on or off after power-on/reset. Valid
options: on, off
preboot undefined Command to execute immediately before auto-booting or
coming to the prompt.
rootpath eng/
artesyn/
Pathname of the NFS’ server root file system.
serial# xxxxx Board serial number
serverip 0.0.0.0 Boot server IP address
shelf_addr undefined ATCA chassis shelf address provided by shelf-manager.
Valid options: Not defined in default configuration—
reported at bootup from the IPMC
stderr serial Sets the standard destination for console error reporting.
Valid options: serial, nc (Net Console)
stdin serial Sets the standard source for console input.
Valid options: serial, nc (Net Console)
stdout serial Sets the standard destination for console output.
Valid options: serial, nc (Net Console)
switch_srom_init off Switch initialization: EEPROM or over PCI (default).
Valid options: on, off
tftp_port TSEC_1 Selects which Ethernet port will be used for tftp. Valid
options: all, TSEC_1, TSEC_2, TSEC_3, TSEC_4
write_enable_socket off Enable writing to the flash socket.
Valid options: on, off
Variable6:Description:
app_lock_base Assigns where to start block lock protection at the base of NOR (soldered) flash.
If assigned region does not fall within the NOR flash area, no user/application
locking will occur, except for the monitor block-locking protection.
Variable:
Default
Value: Description: (continued)
Monitor: Troubleshooting
10007175-02 KAT4000 User’s Manual 14-31
6. The moninit command does not initialize these variables. Each parameter is only defined if a change from
the default setting is desired and is not defined after initialization of the environment variables.
TROUBLESHOOTING
To bypass the full board initialization sequence, attach a terminal to the console located on
the front of the KAT4000. Configure the terminal parameters to be:
9600 bps, no parity, 8 data bits, 1 stop bit
Reset the KAT4000 while holding down the ‘s’ key. Pressing the ‘s’ key forces a configura-
tion based on default environment variables.
app_lock_size Size of user NOR (soldered) flash protection area.
bootverifycmd Sets the U-Boot boot command that is used to execute the primary and
secondary application images when using the bootv command. If not defined,
bootv uses the U-Boot go command as the default.
dhcp-client-id Populates the Client Identifier (Option 61) in the DHCP request Packet. See
“dhcp” on page -10.
dhcp-user-class Populates the User Class Information (Option 77) in the DHCP request Packet.
See “dhcp” on page -10.
e_keying Enables the Update Channels and payload ports that go off the KAT4000: fat
pipe switch module to high-speed fabric, fat pipe switch module to AMCs, and
GbE from fat pipe switch module to Ethernet core switch. For debug use only. If
e-keying is set to ”on” or if the variable is not present, the ports are disabled. The
e-keying variable is only used on power-up.
pri_bootargs Sets the boot arguments that are passed into the primary application images
when using the bootv command. If not defined, bootv will pass the bootargs
configuration parameters into the primary application image.
pci_memsize Sets the amount of SDRAM memory made available on the PCI bus. The
minimum setting is 16 megabytes. If not set, 128 MB of SDRAM are available
over PCI. This parameter takes a hex value.
Valid options: all, size in hex (0x8000000=128 MB)
pram This memory region is at the very top of memory and can be reserved—not to be
cleared on start-up or reset. Default size of the protected memory region is 0.
pram is defined in kilobytes and is a base 10 number. The smallest allowable size
is 4 (4 kB) and the largest recommended size is 32768 (32 MB). pram should be 4
kB aligned, otherwise U-Boot will round pram to the next 4 kB size.
sec_bootargs Sets the boot arguments that are passed into the secondary application images
when using the bootv command. If not defined, bootv will pass the bootargs
configuration parameters into both the primary and secondary application
images.
Variable6:Description: (continued)
Monitor: Download Formats
KAT4000 User’s Manual 10007175-02
14-32
DOWNLOAD FORMATS
The KAT4000 monitor supports binary and Motorola S-Record download formats, as
described in the following sections.
Binary
The binary formats (and associated commands) include:
Executable binary files (go)
VxWorks and QNX® ELF (bootm, bootvx, or bootelf)
Compressed (gzipped) VxWorks and QNX ELF (bootm)
Linux kernel images (bootm)
Compressed (gzipped) Linux kernel images (bootm)
Motorola S-Record
S-Record download uses the standard Motorola S-Record format. This includes load
address, section size, and checksum all embedded in an ASCII file.
10007175-02 KAT4000 User’s Manual 15-1
Section 15
Acronym List
AMC Advanced Mezzanine Card
ASCII American Standard Code for Information Interchange
ATA Advanced Technology Attachment
ATCA Advanced Telecom Computing Architecture or AdvancedTCA
BIOS Basic Input/output System
BDRR Boot Device Redirection Register
BMC Baseboard Management Controller
Cmd Command code
CPU Central Processing Unit
CRT Cathode Ray Tube
CSA Canadian Standards Association
CT Computer Telephony
DDR2 Double Data Rate Two
EC European Community
ECC Error-correcting Code
EIA Electronic Industries Alliance
EMC Electromagnetic Compatibility
ESD Electrostatic Discharge
ETSI European Telecommunications Standards Institute
FCC Federal Communications Commission
FRU Field Replaceable Unit
GbE Gigabit Ethernet
GMII Gigabit Media Independent Interface
GNU GNU’s Not Unix
GPIO General Purpose Input Output
GPL General Public License
I2CInter-integrated Circuit
IANA Internet Assigned Numbers Authority
IEC International Electrotechnical Commission
IO Input/Output
IPMB Intelligent Platform Management Bus
IPMC Intelligent Platform Management Controller
IPMI Intelligent Platform Management Interface
ISP In-system Programmable
IVOR Interrupt Vector Offset Register
JTAG Joint Test Action Group
LED Light-emitting Diode
Acronym List: (continued)
KAT4000 User’s Manual 10007175-02
15-2
LPC Low Pin Count
LUN Logical Unit Number
MAC Medium/media Access Control/controller
MMC Module Management Controller
NEBS Network Equipment-Building System
netFn Network Function Code
OEM Original Equipment Manufacturer
OS Operating System
PCI Peripheral Component Interconnect
PCIe PCI Express
PHY Physical Interface
PLD Programmable Logic Device (also known as FPGA, CPLD, EPLD)
POST Power-on Self Test
RMA Return Merchandise Authorization
RMII Reduced Media Independent Interface
RTC Real-Time Clock
RTM Rear Transition Module
SATA Serial ATA
SDR Sensor Data Record
SDRAM Synchronous Dynamic Random Access Memory
SEL System Event Log
SERDES Serializer/Deserializer
SGMII Serial Gigabit Media Independent Interface
SMC Serial Management Channel
SO-DIMM Small-Outline Dual In-line Memory Module
SPI Serial Peripheral Interface
sRIO Serial Rapid IO
SROM Serial Read Only Memory
TBD To Be Determined
TDM Time Division Multiplexed
UART Universal Asynchronous Receiver/Transmitter
UL Underwriters Laboratories
USB Universal Serial Bus
XAUI X (10) Gigabit Attachment Unit Interface
10007175-02 KAT4000 User’s Manual A-1
Section A
Appendix A
NO-CPU KAT4000
The following block diagram provides a functional overview for the no-CPU KAT4000 board
configuration. This configuration includes 256 Kb of SRAM memory used by the internal
8051 microcontroller on the VSC7376 Ethernet core switch for run time code storage. This
configuration omits SDRAM and NOR and NAND flash. Also, this configuration may not sup-
port some IPMC payload features.
Figure A-1: No-CPU KAT4000 System Block Diagram
IPMB Base High Speed
Fabric A
Clock RTM I/O
(Optional)
High Speed
Fabric B
Clock
IPMC
To
Core
Eth
Switch
(Opt.)
GbE
Xfmr
Xfmr (2)
GbE
PHYs (2)
Fat Pipe Switch Module
Sensors
-48V
Cnvrtr
AMC
A-to-D
EIA-232
Xcvr
Serial
Header

 
AMC (x4) Single-Width,
Half-/Full-/Extended-Height
PCIe or GbE
on port 1
To
Core
Eth
Switch
PEX8524
PCI Express Switch
(Optional)
VSC7376
Ethernet Core Switch
Layer 2 (Optional)
SERDES
4 SERDES
SERDES
2 SGMII
SERDES
4 SERDES
To Zone 3
To Update Channel
on J20 (Optional) 4 SERDES
Private I2C
Serial 2
4 SERDES
42
22
9
sRIO
(x4)
Switch
SRAM
To Zone 3
To
local
bus
PCIe
(x1 or x4)
IPMB-L I2C
Socketed
Flash
2 SERDES
Local bus
P10 J20 Zone 3J23
Appendix A: Ethernet Switch Configuration
KAT4000 User’s Manual 10007175-02
A-2
ETHERNET SWITCH CONFIGURATION
If a processor is not used on the KAT4000, the Ethernet core switch and GbE fat pipe switch
module (optional) are managed by an 8051 microcontroller internal to each switch. Cus-
tom configuration of the switch is possible through one of two user interfaces on each
switch:
1Serial command line interface (CLI)
2Web interface
Both interfaces use the VSC7376 switch’s internal 8051 microprocessor to accept com-
mands and configure the switch. Configuration changes are stored in a serial EEPROM and
will remain through system reset.
Note: The web interface offers only a subset of the CLI configuration options. Therefore, an Ethernet switch config-
ured via the CLI may not reflect properly on the web interface.
Note: Switching between interfaces while configuring a switch is not recommended.
To configure the switches and VLANs, or set up the COM port via the serial Command Line
Interface (CLI) or web interface, see the KAT4000 Quick Start Guide for the No-CPU Carrier
Board, #10008506-xx.
Default Switch Configuration
The default switch configuration is a VLAN unaware L2 switch with automatic learn-
ing/aging enabled on all ports:
System: The system name string is p711_core or p711_fatpipe.
Console: The password string is empty and inactivity timeout is disabled. The prompt is
“>”.
Port: All used ports are enabled and flow control is disabled. Max frame size is 1518.
MAC table: The table is empty, auto learning and aging is enabled. The aging timer is
300 seconds.
•VLANs: The KAT4000 Quick Start Guide for the No-CPU Carrier Board, #10008506-xx,
defines the default port-based VLANs for the no-CPU KAT4000’s Ethernet core switch
and GbE fat pipe switch module. See page 14-27 for the monitor vlan command.
Aggregation: No ports are aggregated, but aggregation mode is set to XOR.
User Groups: User group 1 exists and includes all ports.
QoS: Port mode is enabled. The four highest VLAN tag priorities are given high priority.
Default priority is high. All shaper and policers are disabled.
Appendix A: Serial Command Line Interface (CLI)
10007175-02 KAT4000 User’s Manual A-3
Mirror: Mirroring is disabled.
IP: IP mode is disabled and no IP address/mask/gateway is configured. To enable the
web interface, an IP address must be configured.
SERIAL COMMAND LINE INTERFACE (CLI)
Through the serial-based switch configuration, you have all the configuration options
found in the web application and more. The command line offers the option of configuring
the devices directly, without having to create a separate VLAN just for the web configura-
tion. The direct serial method allows for the board to be fully configured without using a
dedicated Ethernet port for configuration. General CLI usage instructions and command
details are described below.
Log In/Log Out Procedures
1To get access to the CLI, log in when prompted. No password is required.
2Logout at any time and at any context level using the exit command.
Help Utility
Access help by pressing the ? key or entering help. The help info depends on the context:
At top level, a list of command groups is displayed.
At group level, a list of the command syntaxes for the current group is displayed.
If the help command is issued for a specific command, the command syntax and a
description of the command are shown.
The command hierarchy and the help utility are demonstrated in the following example:
> ? <enter>
Commands at top level:
System – System commands
Console – Console commands
Port – Port commands
MAC - MAC table commands
VLAN – VLAN commands
Aggregation – Aggregation/Trunking commands
User Group – User Group commands
QoS – QoS commands
Mirror – Mirror commands
IP – IP commands
Debug - Debug commands
> console <enter>
Console> ? <enter>
Commands at Console level:
Console Configuration
Console Password [<password>]
Console Timeout [<timeout>]
Appendix A: Serial Command Line Interface (CLI)
KAT4000 User’s Manual 10007175-02
A-4
Console Prompt [<prompt string>]
------
Up
Console> password ?
Syntax:
Console Password [<password>]
Description:
Set or display console password. The empty string (“”) disables the password check.
[<password>]: Password string of up to 16 characters.
Console>
Command Hierarchy
The CLI is hierarchical with two levels, top level and group level. The group level consists of
the following groups:
•System
•Console
•Port
•MAC
•VLAN
• Aggregation
•User Group
•QoS
• Mirror
•IP
•Debug
•Test
Note: The “Test” group is for Emerson internal use only.
At top level, enter a command by giving the full command string, including group, or
change context into a group by entering the name of the group.
At group level, enter commands for the particular group chosen without specifying the
group name or return to the top level by entering the up command.
The current level and group is indicated by the prompt. At top level, the prompt will be:
>
At group level, the prompt will display the actual group, for example:
System>
Appendix A: Serial Command Line Interface (CLI)
10007175-02 KAT4000 User’s Manual A-5
Also, at group level use the slash (/) key to refer to a context relative to the top level (e.g.,
from the system group, enter a /console/configuration command or change context into
the console group by entering /console).
Command Usage Instructions
Commands are not case-sensitive.
Use the horizontal arrow-keys . and . to move the cursor within the command you are
entering.
Use the backspace key (provided you are using a terminal that sends the BS (8) character
when the backspace key is pressed) to delete chars from the command you are
entering.
Use the vertical arrow-keys . and . to scroll through a command history buffer of the
latest 20 commands issued.
If using a terminal that supports <home> and <end> keys (e.g., HyperTerminal), use
these keys to move the cursor to respectively the start of the command line and the end
of the command line.
Commands
Table A -1 shows general parameter types used in command syntaxes and descriptions.
Note: The following command types use port IDs versus the port number (i.e., the physical number of the port).
Port numbers (“port #”=port ID”-1) are used when discussing Ethernet switch ports. For example, VLAN port
ID 1 is the same as Ethernet switch port 0.
Table A-1: General Command Types
Command
Type: Description:
<port> Port identifier: Any number in the range 1-26.
<portlist> Comma and/or dash separated port list. This type can be used for specifying
individual ports or a range of ports. The keyword ‘none’ can be used to specify
an empty port list. The keyword ‘all’ can be used to specify all ports.
Example: 1,3,8-12
<macaddress> MAC Address; format: “hh-hh-hh-hh-hh-hh”, “hh:hh:hh:hh:hh:hh” or
“hhhhhhhhhhhh”. The hh is a hexadecimal number in the range 0x00 to 0xFF.
Example: 00-00-24-F1-02-03
<vid> VLAN ID: Decimal number in the range 1-4095. The keyword ‘all’ can be used to
specify all VLAN IDs. See note.
Appendix A: Serial Command Line Interface (CLI)
KAT4000 User’s Manual 10007175-02
A-6
The <portlist> type is very useful when setting up multiple ports in the same mode. For
example, the following commands will divide the ports into two untagged VLANs and
enable VLAN awareness:
Example: vlan add 1 1-8
vlan add 2 9-16
vlan pvid 1-8 1
vlan pvid 9-16 2
vlan aware all enable
Command Overview
?
Help
Up
Exit
System Configuration [all]
System Restore Default [keepIP]
System Name [<name>]
System Initialize [<serialnum>]
System Reboot
Console Configuration
Console Password [<password>]
Console Timeout [<timeout>]
Console Prompt [<prompt_string>]
Port Configuration [<portlist>]
Port Mode [<portlist>] [<mode>]
Port Flow Control [<portlist>] [enable|disable]
Port State [<portlist>] [enable|disable]
Port MaxFrame [<portlist>] [<framesize>|reset]
Port Statistics [<portlist>] [clear]
Port Excessive Collisions Drop [enable|disable]
MAC Configuration
MAC Add <macaddress> <portlist>|none [<vid>]
MAC Delete <macaddress> [<vid>]
MAC Lookup <macaddress> [<vid>]
MAC Table <vidlist>
MAC Flush
MAC Agetime [<agetime>]
MAC Learning [<enable|disable>]
VLAN Configuration [<portlist>]
VLAN Add <vidlist> [<portlist>]
VLAN Delete <vidlist>
VLAN Lookup <vidlist>
<vidlist> Comma and/or dash separated VLAN ID list. This type can be used for specifying
individual VLAN IDs or a range of VLAN IDs. The keyword ‘none’ can be used to
specify an empty VLAN ID list.
Example: 1,2,4-6
<class> Internal class of service, 1-8 (highest=1).
<grouplist> Comma and/or dash separated user group list. This type can be used for
specifying individual user groups or a range of user groups. The range is 1-26.
Command
Type: Description: (continued)
Appendix A: Serial Command Line Interface (CLI)
10007175-02 KAT4000 User’s Manual A-7
VLAN Aware [<portlist>] [enable|disable]
VLAN PVID [<portlist>] [<vid>|none]
VLAN Frame Type [<portlist>] [all|tagged]
Aggr Configuration
Aggr Add <portlist>
Aggr Delete <portlist>
Aggr Lookup <portlist>
Aggr Mode [smac|dmac|xor]
User Group Configuration
User Group Add <grouplist> [<portlist>]
User Group Delete <grouplist>
User Group Lookup <grouplist>
QoS Configuration [<portlist>]
QoS Mode [<portlist>] [tag|port|diffserv]
QoS Default [<portlist>] [<class>]
QoS Tagprio [<portlist>] [<tagpriolist>] [<class>]
QoS DiffServ [<dscpno>] [<class>]
QoS Userprio [<portlist>] [<tagprio>]
QoS Shaper [<portlist>] [disable|<rate>]
QoS Policer [<portlist>] [disable|<rate>]
Mirror Configuration
Mirror Port [<port>]
Mirror Source [<portlist>] [enable|disable]
IP Configuration
IP Setup [<ipaddress> [<ipmask> [<ipgateway>]]] [<vid>]
IP Mode [enable|disable]
IP ARP
IP Ping <ip_addr> <number_of_passes>
Debug Read Register <block> [<subblock>] <address>
Debug Write Register <block> <subblock> <address> <value>
Debug PHY Read <portlist> [<address>]
Debug PHY Write <portlist> <address> <value>
Debug SetRegs [clear | <address>] [<port_no>] [<value>]
Detailed Command Descriptions:
Some of the commands have optional parameters. If the optional parameter is omitted, a
default value may be used or the command may display the current setting (i.e., function as
a get command).
In Example 1, the omitted parameter is interpreted as the display command:
Example 1: Syntax:
System Name [<name>]
>system name <enter>
System Name: SuperSwitch-01
In Example 2, the omitted parameter is interpreted as the default value (VLAN ID 1):
Example 2: Syntax:
MAC Add <macaddress> <portlist> [<vid>]
>mac add 010203ABCDEF 16 <enter>
The following sections list the individual commands by showing the syntax and a descrip-
tion of each command.
Appendix A: Serial Command Line Interface (CLI)
KAT4000 User’s Manual 10007175-02
A-8
System Commands
System Configuration: Syntax:
System Configuration [all]
Description: Show system name, software version, hardware version and management
MAC address. Optionally show the full configuration.
[all]: Show the total switch configuration (Default: System configuration only).
System Restore Default:Syntax:
System Restore Default [keepIP]
Description: Restore factory default configuration.
[keepIP]: Preserve IP configuration (Default: Not preserved).
System Name: Syntax:
System Name [<name>]
Description: Set or show the system name. The empty string (“”) clears the system name.
[<name>]: String of up to 16 characters (Default: Show system name).
System Initialize: Syntax:
System Initialize [<serialnum>]
Description: Set Ethernet address and initialize NVRAM to default configuration.
[<serialnum>]: Second half of the carrier board’s serial number, for example, 1001, if the
serial number is 711A-1001 (Default: Show serial number).
System Reboot: Syntax:
System Reboot
Description: Reboot the switch.
Console Commands
Console Configuration: Syntax:
Console Configuration
Description: Show configured console password and timeout.
Console Password: Syntax:
Console Password [<password>]
Description: Set or show the console password. The empty string (“”) disables the password
check.
Appendix A: Serial Command Line Interface (CLI)
10007175-02 KAT4000 User’s Manual A-9
[<password>]: Password string of up to 16 characters.
Console Timeout: Syntax:
Console Timeout [<timeout>]
Description: Set or show the console inactivity timeout in seconds. The value zero disables
timeout.
[<timeout>]: Timeout value in seconds, 0, 60-10000.
Console Prompt: Syntax:
Console Prompt [<prompt_string>]
Description: Set or show the console prompt string. The empty string (“”) clears the
prompt string.
[<prompt_string>]: Command prompt string of up to 10 characters.
Port Commands
Port Configuration: Syntax:
Port Configuration [<portlist>]
Description: Show the configured and current speed, duplex mode, flow control mode and
state for the port.
<portlist>: Port list (Default: All ports).
Port Mode: Syntax:
Port Mode [<portlist>] [<mode>]
Description: Set or show the speed and duplex mode for the port.
<portlist>: Port list (Default: All ports).
<mode>: Port speed and duplex mode (Default: Show configured and current mode).
10hdx: 10 Mbit/s, half duplex.
10fdx: 10 Mbit/s, full duplex.
100hdx: 100 Mbit/s, half duplex.
100fdx: 100 Mbit/s, full duplex.
1000fdx: 1 Gbit/s, full duplex.
auto: Auto negotiation of speed and duplex.
Port Flow Control: Syntax:
Port Flow Control [<portlist>] [enable|disable]
Description: Set or show flow control mode for the port.
<portlist>: Port list (Default: All ports).
Appendix A: Serial Command Line Interface (CLI)
KAT4000 User’s Manual 10007175-02
A-10
[enable|disable]: Enable/disable flow control (Default: Show flow control mode).
Port State: Syntax:
Port State [<portlist>] [enable|disable]
Description: Set or show the state for the port.
<portlist>: Port list (Default: All ports).
[enable|disable]: Enable/disable port state (Default: Show state).
Port MaxFrame: Syntax:
Port MaxFrame [<portlist>] [<framesize>|reset]
Description: Set or show the maximum frame size in bytes (including FCS) for frames
received on the port. Tagged frames are allowed to be 4 bytes longer than the maximum
frame size. Use the reset option to return to the default setting.
[<portlist>]: Port list (Default: All ports).
[<framesize>|reset]: Maximum frame size or reset to 1518 bytes (Default: Show maximum
frame size).
Port Statistics: Syntax:
Port Statistics [<portlist>] [clear]
Description: Show or clear statistics for the port.
<portlist>: Port list (Default: All ports).
[clear]: Clear port statistics (Default: Show statistics).
Port Excessive Collisions Drop:
Syntax:
Port Excessive Collisions Drop [enable|disable]
Description: Enable or disable drop of frames when excessive collisions occur in half duplex
mode.
[enable|disable]: Enable/disable frame drop (Default: Show excessive collisions drop
mode).
MAC Commands
MAC Configuration: Syntax:
MAC Configuration
Description: Show the permanently stored MAC table and the MAC aging timer.
MAC Add: Syntax:
Appendix A: Serial Command Line Interface (CLI)
10007175-02 KAT4000 User’s Manual A-11
MAC Add <macaddress> <portlist>|none [<vid>]
Description: Add a static MAC address table entry and VLAN ID on ports.
<macaddress>: MAC address, 12-digit hex string, optionally separated with dashes or colons
(e.g., 010203ABCDEF, 01-02-03-AB-CD-EF or 01:02:03:AB:CD:EF).
<portlist>: Port list. Use ”none” to specify no ports.
[<vid>]: VLAN ID, 1-4095 (Default: 1).
MAC Delete: Syntax:
MAC Delete <macaddress> [<vid>]
Description: Delete MAC address and VLAN ID.
<macaddress>: MAC address, 12-digit hex string, optionally separated with dashes or colons
(e.g., 010203ABCDEF, 01-02-03-AB-CD-EF or 01:02:03:AB:CD:EF).
[<vid>]: VLAN ID (Default: 1).
MAC Lookup: Syntax:
MAC Lookup <macaddress> [<vid>]
Description: Lookup MAC address and VLAN ID.
<macaddress>: MAC address, 12-digit hex string, optionally separated with dashes or colons
(e.g., 010203ABCDEF, 01-02-03-AB-CD-EF or 01:02:03:AB:CD:EF).
[<vid>]: VLAN ID, 1-4095 (Default: 1).
MAC Table: Syntax:
MAC Table <vidlist>
Description: Show MAC table for the VLAN IDs specified. Since the list can be very long, only
the first 20 entries are shown.
<vidlist>: VLAN ID list.
MAC Flush: Syntax:
MAC Flush
Description: Removes non-static MAC address table entries.
MAC Age Time: Syntax:
MAC Agetime [<agetime>]
Description: Set or show the MAC age timer in seconds. The value zero disables aging.
[<agetime>]: Age timer in seconds, 0 or 10-65535 (Default: Show timer).
MAC Learning: Syntax:
Appendix A: Serial Command Line Interface (CLI)
KAT4000 User’s Manual 10007175-02
A-12
MAC Learning [<enable|disable>]
Description: Enable/disable MAC table auto-learning.
[enable|disable]: Enable or disable MAC table learning (default: disable).
VLAN Commands
VLANs use port IDs versus the port number (i.e., the physical number of the port). Port
numbers (“port #”=”port ID”-1) are used when discussing Ethernet switch ports. For exam-
ple, VLAN port ID 1 is the same as Ethernet switch port 0.
VLAN Configuration: Syntax:
VLAN Configuration [<portlist>]
Description: Show the VLAN aware mode, port VLAN ID and accepted frame type for the
port and the permanently stored VLAN table.
[<portlist>]: Port list (Default: All ports).
VLAN Add: Syntax:
VLAN Add <vidlist> [<portlist>]
Description: Add VLAN entry and include ports in member set.
<vidlist>: VLAN ID list.
[<portlist>]: Port list (Default: All ports).
VLAN Delete: Syntax:
VLAN Delete <vidlist>
Description: Delete VLAN entry (all ports excluded from member set).
<vidlist>: VLAN ID list.
VLAN Lookup: Syntax:
VLAN Lookup <vidlist>
Description: Lookup VLAN entry and show port list.
<vidlist>: VLAN ID list.
VLAN Aware: Syntax:
VLAN Aware [<portlist>] [enable|disable]
Description: Set or show the VLAN awareness mode for the port. VLAN aware ports will strip
the VLAN tag from received frames and insert the tag in transmitted frames (except PVID).
VLAN unaware ports will not strip the tag from received frames or insert the tag in transmit-
ted frames.
Appendix A: Serial Command Line Interface (CLI)
10007175-02 KAT4000 User’s Manual A-13
[<portlist>]: Port list (Default: All ports).
[enable|disable]: Enable/disable VLAN awareness (Default: Show awareness).
VLAN PVID: Syntax:
VLAN PVID [<portlist>] [<vid>|none]
Description: Set or show the port VLAN ID. Untagged frames received on the port will be
classified to this VLAN ID. Frames classified to this VLAN ID will be sent untagged on the
port.
[<portlist>]: Port list (Default: All ports).
[<vid>|none]: Port VLAN ID, 1-4095 (Default: Show PVID).
The ’none’ option can be used for trunk links.
VLAN Frame Type: Syntax:
VLAN Frame Type [<portlist>] [all|tagged]
Description: Set or show the accepted frame type for the port.
[<portlist>]: Port list (Default: All ports).
[all|tagged]: Accept all or only tagged (Default: Show frame type).
Aggregation/Trunking Commands
Aggregation Configuration:
Syntax:
Aggr Configuration
Description: Shows the aggregation groups and the aggregation mode.
Aggregation Add: Syntax:
Aggr Add <portlist>
Description: Add link aggregation group including ports.
<portlist>: Aggregation port list.
Aggregation Delete: Syntax:
Aggr Delete <portlist>
Description: Delete link aggregation group.
<portlist>: Port list. Aggregations including any of the ports will be deleted.
Aggregation Lookup: Syntax:
Aggr Lookup <portlist>
Appendix A: Serial Command Line Interface (CLI)
KAT4000 User’s Manual 10007175-02
A-14
Description: Lookup and display link aggregation group.
<portlist>: Port list. Aggregations including any of the ports will be shown.
Aggregation Mode: Syntax:
Aggr Mode [smac|dmac|xor]
Description: Set or show link aggregation traffic distribution mode.
[smac|dmac|xor]: Aggregation mode, SMAC, DMAC or XOR (Default: Show mode).
User Group Commands
User groups provide a way other than VLANs for making port groupings. With user groups it
is possible to share a port between more user groups.
User Group Configuration:
Syntax:
User Group Configuration
Description: Show the user groups.
User Group Add: Syntax:
User Group Add <grouplist> [<portlist>]
Description: Add user group entry including the ports.
<grouplist>: User group ID list.
[<portlist>]: Port list (Default: All ports).
User Group Delete: Syntax:
User Group Delete <grouplist>
Description: Delete user group entry.
<grouplist>: User group ID list.
User Group Lookup: Syntax:
User Group Lookup <grouplist>
Description: Lookup user group entry and show port members.
<grouplist>: User group ID list.
QoS Commands
QoS Configuration: Syntax:
QoS Configuration [<portlist>]
Appendix A: Serial Command Line Interface (CLI)
10007175-02 KAT4000 User’s Manual A-15
Description: Show the configured QoS mode, default class and DSCP mapping for the port.
[<portlist>]: Port list (Default: All ports).
QoS Mode: Syntax:
QoS Mode [<portlist>] [tag|port|diffserv]
Description: Set or show the QoS mode for the port.
[<portlist>]: Port list (Default: All ports).
[tag|port|diffserv]: Enable tag, port or IP differentiated services class of service for the
port (Default: Show mode).
QoS Default: Syntax:
QoS Default [<portlist>] [<class>]
Description: Set or show the default class. In tag mode, the default class is used for
untagged frames. In port mode, the default class is used as the port priority. In diffserv
mode, the default class is used for non-IP frames.
[<portlist>]: Port list (Default: All ports).
[<class>]: Internal class of service (Default: Show class).
QoS Tagprio: Syntax:
QoS Tagprio [<portlist>] [<tagpriolist>] [<class>]
Description: Set or show the VLAN user priority mapping.
[<portlist>]: Port list (Default: All ports).
[<tagpriolist>]: VLAN user priority list, 0-7 (Default: All user priorities).
[<class>]: Internal class of service (Default: Show class).
QoS DiffServ: Syntax:
QoS DiffServ [<dscpno>] [<class>]
Description: Set or show the IP Differentiated Services mapping.
[<dscpno>]: IP DSCP list, 0-63 (Default: All DSCP values).
[<class>]: Internal class of service (Default: Show class).
QoS Userprio: Syntax:
QoS Userprio [<portlist>] [<tagprio>]
Description: Set or show the default VLAN user priority for received untagged frames.
[<portlist>]: Port list (Default: All ports).
Appendix A: Serial Command Line Interface (CLI)
KAT4000 User’s Manual 10007175-02
A-16
[<tagprio>]: VLAN tag user priority, 0-7 (Default: Show user priority).
QoS Shaper: Syntax:
QoS Shaper [<portlist>] [disable|<rate>]
Description: Set or show the shaper configuration.
[<portlist>]: Port list (Default: All ports).
[disable|<rate>]: Disable or set leaky bucket rate to a % of the port speed [0%-100%]
(Default: Show shaper rate).
QoS Policer: Syntax:
QoS Policer [<portlist>] [disable|<rate>]
Description: Set or show the policer configuration.
[<portlist>]: Port list (Default: All ports).
[disable|<rate>]: Disable or set leaky bucket rate to a % of the port speed [0%-100%]
(Default: Show policer rate).
Mirror Commands
Mirror Configuration: Syntax:
Mirror Configuration
Description: Show the mirror destination port and mirror mode for source ports.
Mirror Port: Syntax:
Mirror Port [<port>]
Description: Set or show the mirror destination port.
[<port>]: Mirror destination port (Default: Show mirror port).
Mirror Source: Syntax:
Mirror Source [<portlist>] [enable|disable]
Description: Set or show the source port mirror mode.
[<portlist>]: Source port list (Default: All ports).
[enable|disable]: Enable/disable mirroring of frames received on port (Default: Show mir-
ror mode).
IP Commands
IP Configuration: Syntax:
Appendix A: Serial Command Line Interface (CLI)
10007175-02 KAT4000 User’s Manual A-17
IP Configuration
Description: Show configured IP address, mask, gateway, VLAN ID and mode.
IP Setup: Syntax:
IP Setup [ipaddress> [<ipmask> [ipgateway>]]] [<vid>]
Description: Set or show IP configuration.
[<ipaddress>]: IP address (Default: Show IP configuration).
[<ipmask>]: IP subnet mask (Default: Subnet mask for address class).
[<ipgateway>]: Default IP gateway (Default: 0.0.0.0).
[<vid>]: VLAN ID, 1-4095 (Default: 1).
IP Mode: Syntax:
IP Mode [enable|disable]
Description: Activate or deactivate the IP configuration.
[enable|disable]: Enable/disable IP (Default: Show IP mode).
IP Arp: Syntax:
IP Arp
Description: Show the current content of the ARP table.
IP Ping: Syntax:
IP Ping <ip_addr> <number_of_passes>
Description: Send one ICMP ECHO packet to the IP address provided.
<ip_addr>: IP address to ping.
<number_of_passes>: Number of passes to ping (default: 1).
Debug Commands
Debug Read Register: Syntax:
Debug Read Register <block> [<subblock>] <address>
Description: Read register address.
<block>: Block identifier, 0-7 or 0x0-0x7.
<subblock>: Sub block identifier, 0-15 or 0x0-0xf.
<address>: Register address within block, 0-255 or 0x00-0xff.
Debug Write Register: Syntax:
Appendix A: Web Interface
KAT4000 User’s Manual 10007175-02
A-18
Debug Write Register <block> <subblock> <address> <value>
Description: Write value to register address.
<block>: Block identifier, 0-7 or 0x0-0x7.
<subblock>: Sub block identifier, 0-15 or 0x0-0xf.
<address>: Register address within block, 0-255 or 0x00-0xff.
<value>: Register value, 0-4294967295 or 0x00000000-0xffffffff.
Debug PHY Read: Syntax:
Debug PHY Read <portlist> [<address>]
Description: Read PHY register for port.
<portlist>: Port list.
[<address>]: Register address, 0-31 or 0x00-0x1f (Default: Read all registers).
Debug PHY Write: Syntax:
Debug PHY Write <portlist> <address> <value>
Description: Write value to PHY register for port.
<portlist>: Port list.
<address>: Register address, 0-31 or 0x00-0x1f.
<value>: Register value to write, 0-65535 or 0x0000-0xffff.
Debug SetRegs: Syntax:
Debug SetRegs [clear | <address>] [<port_no>] [<value>]
Description: Saves user manual defined switch registers to EEPROM to make values persis-
tent, or clears/resets register values.
<address>: Register address, 0x1a or 0x1b.
<port_no>: Port number, 0-25.
<value>: Register value to be stored.
WEB INTERFACE
From the web interface it is possible to:
Set port mode
Enable/disable flow control
Configure simple port-based VLANs
Appendix A: Web Interface
10007175-02 KAT4000 User’s Manual A-19
Configure aggregation groups
•Configure QoS
Read and clear statistics counters
Restore system defaults
Note: The web interface uses port IDs versus the port number (i.e., the physical number of the port). Port numbers
(“port #”=”port ID”-1) are used when discussing Ethernet switch ports. For example, VLAN port ID 1 is the
same as Ethernet switch port 0.
All operations are password protected. The password must be entered at login. The pass-
word is the same as that used in the command line interface.
IP mode is disabled in the factory default configuration. To use the web interface, first
enable and configure the IP via the command line interface. Set the IP address, mask, and
gateway according to your environment. Provided below is an example of how to enable
the web interface via the command line interface (CLI):
>IP Setup 10.10.129.189 255.255.255.0 10.10.128.14.1 1
It is recommended that the port you plan to use to access the web interface be on its own
dedicated VLAN. This is because in systems where two or more KAT4000 ports are con-
nected to another Ethernet switch, it may not be possible to access the web interface
through that Ethernet switch (depending on the switch and how it is configured).
Note: It is possible to configure the switch so the web interface is no longer accessible. For example, if configured to
access the interface through VID 1 by default, always be sure that the port you are using to access the web
interface remains on VLAN 1. If the web interface is no longer accessible, use the CLI to recover.
Appendix A: Web Interface
KAT4000 User’s Manual 10007175-02
A-20
Figure A-2: Web Interface for the Ethernet Core Switch
10007175-02 KAT4000 User’s Manual B-1
Section B
Appendix B
SENSOR DATA RECORDS
This appendix details the KAT4000 IPMI Sensor Data Record (SDR) parameter values from
“Sensors and Sensor Data Records” on page 9-40. Table B -1 is a summary of all the KAT4000
SDRs with a link to the detailed sensor record. All values are hexadecimal. The no-CPU
KAT4000 configuration includes all of the SDRs listed in Table B -1 with the exception of the
following: BMC Watchdog, CPU Volt, and F/W (Firmware) Progress.
Table B -1: IPMI Sensor Data Record
Sensor Name:
Record ID
(hex): Table Information:
KAT4000 0000 Table B-2 on page B-2
Hot Swap 0001 Table B-3 on page B-2
IPMB Physical 0002 Table B-4 on page B-4
BMC Watchdog 0003 Table B-5 on page B-5
+3.3 Volt 0004 Table B-6 on page B-7
+2.5 Volt 0005 Table B-7 on page B-9
+1.8 Volt 0006 Table B-8 on page B-11
+1.2 Volt 0007 Table B-9 on page B-13
+1.0 Volt 0008 Table B-10 on page B-15
CPU Volt 0009 Table B-11 on page B-17
Inflow Temp 000a Table B-12 on page B-19
Outflow Temp 000b Table B-13 on page B-21
Version Change 000c Table B-14 on page B-24
B1 Hot Swap 000d Table B-15 on page B-25
B2 Hot Swap 000e Table B-16 on page B-27
B3 Hot Swap 000f Table B-17 on page B-28
B4 Hot Swap 0010 Table B-18 on page B-30
B1 +12V Current 0011 Table B-19 on page B-31
B1 +12V Volt 0012 Table B-20 on page B-33
B2 +12V Current 0013 Table B-21 on page B-35
B2 +12V Volt 0014 Table B-22 on page B-36
B3 +12V Current 0015 Table B-23 on page B-38
B3 +12V Volt 0016 Table B-24 on page B-40
B4 +12V Current 0017 Table B-25 on page B-41
B4 +12V Volt 0018 Table B-26 on page B-43
-48V Volt 0019 Table B-27 on page B-45
-48V Current 001a Table B-28 on page B-47
-48V Source A Volt 001b Table B-29 on page B-48
-48V Source B Volt 001c Table B-30 on page B-50
+3.3V Management 001d Table B-31 on page B-52
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-2
Table B -2: KAT4000 IPMC SDR Description
Table B -3: Hot Swap SDR Description
+12V Volt 001e Table B-32 on page B-54
+12V Current 001f Table B-33 on page B-56
F/W (Firmware) Progress 0020 Table B-34 on page B-58
KAT4000: Value: Parameter: Status:
Record ID 0000
SDR Version 51
Record Type 12 Controller
Record Length 12
Device Slave Address 00
Channel Number 00
Power State Notification /
Global Notification
cc ACPI System Power State notification required
ACPI Device Power State notification required
Controller Status dynamic
Controller Logs Init Agent Errors yes
Log Init Agent Errors Accessing Controller yes
Misc Controller Info enable event message
generation from controller
Device Capabilities 29 IPMB Event Generator
FRU Inventory Device
Sensor Device
FRU Entity ID a0 PICMG Front Board
FRU Entity Instance 60
OEM 00
KAT4000 Records: Value: Parameter: Status:
Record ID 0001
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 33
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID a0 ()
Entity Instance 60
Sensor Name:
Record ID
(hex):
Table Information:
(continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-3
Sensor Initialization 67 Init Scanning
Init Sensor Type
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 41 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis no hysteresis
Sensor Threshold Access no threshold
Event Message Control global disable only
Sensor Type f0 ()
Event/Reading Type Code 6f Sensor Specific
Assertion Event Mask 00ff
Deassertion Event Mask 0000
Discrete Reading Mask 00ff
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 00 Unspecified
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M00— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp 00
Analog Characteristic Flags 00
Nominal Reading 00
Normal Maximum 00
Normal Minimum 00
Sensor Maximum Reading 00
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
00 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-4
Table B -4: IPMB Physical SDR Description
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
00 —
Negative-Going Threshold Hyst
Value
00 —
OEM 00 —
ID String Type / Length Code c8
KAT4000 Records: Value: Parameter: Status:
Record ID 0002
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 38
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID a0 ()
Entity Instance 60
Sensor Initialization 67 Init Scanning
Init Sensor Type
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 41 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis no hysteresis
Sensor Threshold Access no threshold
Event Message Control global disable only
Sensor Type f1 ()
Event/Reading Type Code 6f Sensor Specific
Assertion Event Mask 000f
Deassertion Event Mask 0000
Discrete Reading Mask 000f
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 00 Unspecified
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-5
Table B -5: BMC Watchdog SDR Description
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M00— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp 00
Analog Characteristic Flags 00
Nominal Reading 00
Normal Maximum 00
Normal Minimum 00
Sensor Maximum
Reading
00 —
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
00 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
00 —
Negative-Going
Threshold Hyst Value
00 —
OEM 00 —
ID String Type / Length Code cd
KAT4000 Records: Value: Parameter: Status:
Record ID 0003
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 37
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID 03 Processor
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-6
Entity Instance 60
Sensor Initialization 67 Init Scanning
Init Sensor Type
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 41 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis no hysteresis
Sensor Threshold Access no threshold
Event Message Control global disable only
Sensor Type 23 Watchdog2
Event/Reading Type Code 6f Sensor Specific
Assertion Event Mask 010f Timer Interrupt
Power Cycle
Power Down
Hard Reset
Timer Expired status only
Deassertion Event Mask 0000
Discrete Reading Mask 010f Timer Interrupt
Power Cycle
Power Down
Hard Reset
Timer Expired status only
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 00 Unspecified
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M00— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp 00
Analog Characteristic Flags 00
Nominal Reading 00
Normal Maximum 00
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-7
Table B -6: +3.3 Volt SDR Description
Normal Minimum 00
Sensor Maximum Reading 00
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
00 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
00 —
Negative-Going Threshold Hyst
Value
00 —
OEM 00 —
ID String Type / Length Code cc
KAT4000 Records: Value: Parameter: Status:
Record ID 0004
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 30
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID 14 Power Module / DC-to-DC Converter
Entity Instance 60
Sensor Initialization 7f Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Init Events
Sensor Scanning enabled
Event Generation enabled
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-8
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 02 Voltage
Event/Reading Type Code 01 Threshold
Assertion Event Mask 4801 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Lower Non-Critical Going Low supported
Deassertion Event Mask 4801 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Lower Non-Critical Going Low supported
Discrete Reading Mask 3f3f Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Lower Non-Recoverable Threshold settable
Lower Critical Threshold settable
Lower Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Lower Non-Recoverable Threshold readable
Lower Critical Threshold readable
Lower Non-Critical Threshold readable
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 04 Volts
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
Ma2— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp c0
Analog Characteristic Flags 07
Nominal Reading cc
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-9
Table B -7: +2.5 Volt SDR Description
Normal Maximum d6
Normal Minimum c2
Sensor Maximum Reading ff
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
f5 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
a3 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
02 —
Negative-Going
Threshold Hyst Value
02 —
OEM 00 —
ID String Type / Length Code c5
KAT4000 Records: Value: Parameter: Status:
Record ID 0005
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 30
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID 14 Power Module / DC-to-DC Converter
Entity Instance 60
Sensor Initialization 7f Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Init Events
Sensor Scanning enabled
Event Generation enabled
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-10
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 02 Voltage
Event/Reading Type Code 01 Threshold
Assertion Event Mask 4000 Lower Non-Recoverable Threshold comparison returned
Deassertion Event Mask 4000 Lower Non-Recoverable Threshold comparison returned
Discrete Reading Mask 3f3f Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Lower Non-Recoverable Threshold settable
Lower Critical Threshold settable
Lower Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Lower Non-Recoverable Threshold readable
Lower Critical Threshold readable
Lower Non-Critical Threshold readable
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 04 Volts
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M7b— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp c0
Analog Characteristic Flags 07
Nominal Reading cc
Normal Maximum d6
Normal Minimum c2
Sensor Maximum
Reading
ff —
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-11
Table B -8: +1.8 Volt SDR Description
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
f4 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
a3 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
02 —
Negative-Going Threshold Hyst
Value
02 —
OEM 00 —
ID String Type / Length Code c5
KAT4000 Records: Value: Parameter: Status:
Record ID 0006
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 30
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID 14 Power Module / DC-to-DC Converter
Entity Instance 60
Sensor Initialization 7f Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 02 Voltage
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-12
Event/Reading Type Code 01 Threshold
Assertion Event Mask 4000 Lower Non-Recoverable Threshold comparison returned
Deassertion Event Mask 4000 Lower Non-Recoverable Threshold comparison returned
Discrete Reading Mask 3f3f Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Lower Non-Recoverable Threshold settable
Lower Critical Threshold settable
Lower Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Lower Non-Recoverable Threshold readable
Lower Critical Threshold readable
Lower Non-Critical Threshold readable
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 04 Volts
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M62— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp c0
Analog Characteristic Flags 07
Nominal Reading b8
Normal Maximum cb
Normal Minimum a6
Sensor Maximum
Reading
ff —
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
dd —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-13
Table B -9: +1.2 Volt SDR Description
Lower Non-Recoverable
Threshold
93 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
03 —
Negative-Going
Threshold Hyst Value
03 —
OEM 00 —
ID String Type / Length Code c5
KAT4000 Records: Value: Parameter: Status:
Record ID 0007
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 30
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID 14 Power Module / DC-to-DC Converter
Entity Instance 60
Sensor Initialization 7f Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 02 Voltage
Event/Reading Type Code 01 Threshold
Assertion Event Mask 4000 Lower Non-Recoverable Threshold comparison returned
Deassertion Event Mask 4000 Lower Non-Recoverable Threshold comparison returned
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-14
Discrete Reading Mask 3f3f Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Lower Non-Recoverable Threshold settable
Lower Critical Threshold settable
Lower Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Lower Non-Recoverable Threshold readable
Lower Critical Threshold readable
Lower Non-Critical Threshold readable
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 04 Volts
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M62— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp c0
Analog Characteristic Flags 07
Nominal Reading 7b
Normal Maximum 87
Normal Minimum 6f
Sensor Maximum
Reading
ff —
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
93 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
62 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-15
Table B-10: +1.0 Volt SDR Description
Positive-Going Threshold Hyst
Value
03 —
Negative-Going Threshold Hyst
Value
03 —
OEM 00 —
ID String Type / Length Code c5
KAT4000 Records: Value: Parameter: Status:
Record ID 0008
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 30
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID 14 Power Module / DC-to-DC Converter
Entity Instance 60
Sensor Initialization 7f Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 02 Voltage
Event/Reading Type Code 01 Threshold
Assertion Event Mask 4000 Lower Non-Recoverable Threshold comparison returned
Deassertion Event Mask 4000 Lower Non-Recoverable Threshold comparison returned
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-16
Discrete Reading Mask 3f3f Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Lower Non-Recoverable Threshold settable
Lower Critical Threshold settable
Lower Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Lower Non-Recoverable Threshold readable
Lower Critical Threshold readable
Lower Non-Critical Threshold readable
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 04 Volts
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M62— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp c0
Analog Characteristic Flags 07
Nominal Reading 67
Normal Maximum 76
Normal Minimum 57
Sensor Maximum Reading ff
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
7b —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
52 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-17
Table B-11: CPU Volt SDR Description
Positive-Going Threshold Hyst
Value
03 —
Negative-Going Threshold Hyst
Value
03 —
OEM 00 —
ID String Type / Length Code c5
KAT4000 Records: Value: Parameter: Status:
Record ID 0009
SDR Version 51 Sensor Model v1.5
Record Type 01 Full Sensor Record
Record Length 33
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID 03 Processor
Entity Instance 60
Sensor Initialization 7f Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 02 Voltage
Event/Reading Type Code 01 Threshold
Assertion Event Mask 4000 Lower Non-Recoverable Threshold comparison returned
Deassertion Event Mask 4000 Lower Non-Recoverable Threshold comparison returned
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-18
Discrete Reading Mask 3f3f Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Lower Non-Recoverable Threshold settable
Lower Critical Threshold settable
Lower Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Lower Non-Recoverable Threshold readable
Lower Critical Threshold readable
Lower Non-Critical Threshold readable
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 04 Volts
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 Linear
M62— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp c0
Analog Characteristic Flags 07
Nominal Reading 71
Normal Maximum 7c
Normal Minimum 66
Sensor Maximum
Reading
ff —
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
87 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
5a —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-19
Table B-12: Inflow Temp SDR Description
Positive-Going Threshold Hyst
Value
03 —
Negative-Going Threshold Hyst
Value
03 —
OEM 00 —
ID String Type / Length Code c8
KAT4000 Records: Value: Parameter: Status:
Record ID 000a
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 36
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID a0
Entity Instance 60
Sensor Initialization 7f Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 01 Temperature
Event/Reading Type Code 01 Threshold
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-20
Assertion Event Mask 7a95 Lower Non-Recoverable Threshold comparison returned
Lower Critical Threshold comparison returned
Lower Non-Critical Threshold comparison returned
Upper Non-Recoverable Going High supported
Upper Critical Going High supported
Upper Non-Critical Going High supported
Lower Non-Recoverable Going Low supported
Lower Critical Going Low supported
Lower Non-Critical Going Low supported
Deassertion Event Mask 7a95 Lower Non-Recoverable Threshold comparison returned
Lower Critical Threshold comparison returned
Lower Non-Critical Threshold comparison returned
Upper Non-Recoverable Going High supported
Upper Critical Going High supported
Upper Non-Critical Going High supported
Lower Non-Recoverable Going Low supported
Lower Critical Going Low supported
Lower Non-Critical Going Low supported
Discrete Reading Mask 3f3f Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Lower Non-Recoverable Threshold settable
Lower Critical Threshold settable
Lower Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Lower Non-Recoverable Threshold readable
Lower Critical Threshold readable
Lower Non-Critical Threshold readable
Sensor Units 1 80 Analog Data Format twos complement
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 01 Degrees C
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M64— —
M, Tolerance 00
B00— —
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-21
Table B-13: Outflow Temp SDR Description
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp e0
Analog Characteristic Flags 07
Nominal Reading 16
Normal Maximum 37
Normal Minimum 00
Sensor Maximum Reading 7f
Sensor Minimum Reading 80
Upper Non-Recoverable
Threshold
4b —
Upper Critical Threshold 41
Upper Non-Critical Threshold 37
Lower Non-Recoverable
Threshold
f1 —
Lower Critical Threshold f6
Lower Non-Critical Threshold fb
Positive-Going Threshold Hyst
Value
02 —
Negative-Going Threshold Hyst
Value
02 —
OEM 00 —
ID String Type / Length Code cb
KAT4000 Records: Value: Parameter: Status:
Record ID 000b
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 37
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID a0
Entity Instance 60
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-22
Sensor Initialization 7f Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 01 Temperature
Event/Reading Type Code 01 Threshold
Assertion Event Mask 7a95 Lower Non-Recoverable Threshold comparison returned
Lower Critical Threshold comparison returned
Lower Non-Critical Threshold comparison returned
Upper Non-Recoverable Going High supported
Upper Critical Going High supported
Upper Non-Critical Going High supported
Lower Non-Recoverable Going Low supported
Lower Critical Going Low supported
Lower Non-Critical Going Low supported
Deassertion Event Mask 7a95 Lower Non-Recoverable Threshold comparison returned
Lower Critical Threshold comparison returned
Lower Non-Critical Threshold comparison returned
Upper Non-Recoverable Going High supported
Upper Critical Going High supported
Upper Non-Critical Going High supported
Lower Non-Recoverable Going Low supported
Lower Critical Going Low supported
Lower Non-Critical Going Low supported
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-23
Discrete Reading Mask 3f3f Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Lower Non-Recoverable Threshold settable
Lower Critical Threshold settable
Lower Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Lower Non-Recoverable Threshold readable
Lower Critical Threshold readable
Lower Non-Critical Threshold readable
Sensor Units 1 80 Analog Data Format twos complement
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 01 Degrees C
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M64— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp e0
Analog Characteristic Flags 07
Nominal Reading 20
Normal Maximum 37
Normal Minimum 00
Sensor Maximum Reading 7f
Sensor Minimum Reading 80
Upper Non-Recoverable
Threshold
55 —
Upper Critical Threshold 4b
Upper Non-Critical Threshold 41
Lower Non-Recoverable
Threshold
f1 —
Lower Critical Threshold f6
Lower Non-Critical Threshold fb
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-24
Table B-14: Version Change SDR Description
Positive-Going Threshold Hyst
Value
02 —
Negative-Going Threshold Hyst
Value
02 —
OEM 00 —
ID String Type / Length Code cc
KAT4000 Records: Value: Parameter: Status:
Record ID 000c
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 39
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID a0
Entity Instance 60
Sensor Initialization 67 Init Scanning
Init Sensor Type
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 41 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis no hysteresis
Sensor Threshold Access no threshold
Event Message Control global disable only
Sensor Type 2b
Event/Reading Type Code 6f Sensor Specific
Assertion Event Mask 00ff
Deassertion Event Mask 0000
Discrete Reading Mask 00ff
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 00 Unspecified
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-25
Table B-15: B1 Hot Swap SDR Description
M00— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp 00
Analog Characteristic Flags 00
Nominal Reading 00
Normal Maximum 00
Normal Minimum 00
Sensor Maximum Reading 00
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
00 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
00 —
Negative-Going Threshold Hyst
Value
00 —
OEM 00 —
ID String Type / Length Code ce
KAT4000 Records: Value: Parameter: Status:
Record ID 000d
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 36
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID c1 AMC Module
Entity Instance 65
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-26
Sensor Initialization 67 Init Scanning
Init Sensor Type
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 41 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis no hysteresis
Sensor Threshold Access no threshold
Event Message Control global disable only
Sensor Type f0
Event/Reading Type Code 6f Sensor Specific
Assertion Event Mask 00ff
Deassertion Event Mask 0000
Discrete Reading Mask 00ff
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 00 Unspecified
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M00— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp 00
Analog Characteristic Flags 00
Nominal Reading 00
Normal Maximum 00
Normal Minimum 00
Sensor Maximum Reading 00
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
00 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-27
Table B-16: B2 Hot Swap SDR Description
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
00 —
Negative-Going Threshold Hyst
Value
00 —
OEM 00 —
ID String Type / Length Code cb
KAT4000 Records: Value: Parameter: Status:
Record ID 000e
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 36
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID c1 AMC Module
Entity Instance 66
Sensor Initialization 67 Init Scanning
Init Sensor Type
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 41 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis no hysteresis
Sensor Threshold Access no threshold
Event Message Control global disable only
Sensor Type f0
Event/Reading Type Code 6f Sensor Specific
Assertion Event Mask 00ff
Deassertion Event Mask 0000
Discrete Reading Mask 00ff
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 00 Unspecified
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-28
Table B-17: B3 Hot Swap SDR Description
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M00— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp 00
Analog Characteristic Flags 00
Nominal Reading 00
Normal Maximum 00
Normal Minimum 00
Sensor Maximum Reading 00
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
00 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
00 —
Negative-Going
Threshold Hyst Value
00 —
OEM 00 —
ID String Type / Length Code cb
KAT4000 Records: Value: Parameter: Status:
Record ID 000f
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 36
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID c1 AMC Module
Entity Instance 67
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-29
Sensor Initialization 67 Init Scanning
Init Sensor Type
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 41 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis no hysteresis
Sensor Threshold Access no threshold
Event Message Control global disable only
Sensor Type f0
Event/Reading Type Code 6f Sensor Specific
Assertion Event Mask 00ff
Deassertion Event Mask 0000
Discrete Reading Mask 00ff
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 00 Unspecified
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M00— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp 00
Analog Characteristic Flags 00
Nominal Reading 00
Normal Maximum 00
Normal Minimum 00
Sensor Maximum Reading 00
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
00 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-30
Table B-18: B4 Hot Swap SDR Description
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
00 —
Negative-Going Threshold Hyst
Value
00 —
OEM 00 —
ID String Type / Length Code cb
KAT4000 Records: Value: Parameter: Status:
Record ID 0010
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 36
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID c1 AMC Module
Entity Instance 68
Sensor Initialization 67 Init Scanning
Init Sensor Type
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 41 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis no hysteresis
Sensor Threshold Access no threshold
Event Message Control global disable only
Sensor Type f0
Event/Reading Type Code 6f Sensor Specific
Assertion Event Mask 00ff
Deassertion Event Mask 0000
Discrete Reading Mask 00ff
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 00 Unspecified
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-31
Table B-19: B1 +12V Current SDR Description
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M00— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp 00
Analog Characteristic Flags 00
Nominal Reading 00
Normal Maximum 00
Normal Minimum 00
Sensor Maximum Reading 00
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
00 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
00 —
Negative-Going Threshold Hyst
Value
00 —
OEM 00 —
ID String Type / Length Code cb
KAT4000 Records: Value: Parameter: Status:
Record ID 0011
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 37
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID c1 AMC Module
Entity Instance 65
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-32
Sensor Initialization 5d Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Sensor Scanning enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 03 Current
Event/Reading Type Code 01 Threshold
Assertion Event Mask 0800 Upper Non-Recoverable Going High supported
Deassertion Event Mask 4800 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Discrete Reading Mask 3838 Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 05 Amps
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M8a— —
M, Tolerance 40
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp c0
Analog Characteristic Flags 07
Nominal Reading 66
Normal Maximum bf
Normal Minimum 00
Sensor Maximum
Reading
ff —
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-33
Table B-20: B1 +12V Volt SDR Description
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
ff —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
03 —
Negative-Going Threshold Hyst
Value
00 —
OEM 00 —
ID String Type / Length Code cc
KAT4000 Records: Value: Parameter: Status:
Record ID 0012
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 37
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID c1 AMC Module
Entity Instance 65
Sensor Initialization 5d Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Sensor Scanning enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 02 Voltage
Event/Reading Type Code 01 Threshold
Assertion Event Mask 0800 Upper Non-Recoverable Going High supported
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-34
Deassertion Event Mask 4800 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Discrete Reading Mask 3838 Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 04 Volts
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M06— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp e0
Analog Characteristic Flags 07
Nominal Reading c8
Normal Maximum d6
Normal Minimum 00
Sensor Maximum Reading fe
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
f0 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
02 —
Negative-Going Threshold Hyst
Value
00 —
OEM 00 —
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-35
Table B-21: B2 +12V Current SDR Description
ID String Type / Length Code cc
KAT4000 Records: Value: Parameter: Status:
Record ID 0013
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 37
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID c1 AMC Module
Entity Instance 66
Sensor Initialization 5d Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Sensor Scanning enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 03 Current
Event/Reading Type Code 01 Threshold
Assertion Event Mask 0800 Upper Non-Recoverable Going High supported
Deassertion Event Mask 4800 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Discrete Reading Mask 3838 Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 05 Amps
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-36
Table B-22: B2 +12V Volt SDR Description
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M8a— —
M, Tolerance 40
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp c0
Analog Characteristic Flags 07
Nominal Reading 66
Normal Maximum bf
Normal Minimum 00
Sensor Maximum Reading ff
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
ff —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
03 —
Negative-Going Threshold Hyst
Value
00 —
OEM 00 —
ID String Type / Length Code cc
KAT4000 Records: Value: Parameter: Status:
Record ID 0014
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 37
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID c1 AMC Module
Entity Instance 66
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-37
Sensor Initialization 5d Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Sensor Scanning enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 02 Voltage
Event/Reading Type Code 01 Threshold
Assertion Event Mask 0800 Upper Non-Recoverable Going High supported
Deassertion Event Mask 4800 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Discrete Reading Mask 3838 Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 04 Volts
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M06— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp e0
Analog Characteristic Flags 07
Nominal Reading c8
Normal Maximum d6
Normal Minimum 00
Sensor Maximum Reading fe
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-38
Table B-23: B3 +12V Current SDR Description
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
f0 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
02 —
Negative-Going Threshold Hyst
Value
00 —
OEM 00 —
ID String Type / Length Code cc
KAT4000 Records: Value: Parameter: Status:
Record ID 0015
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 37
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID c1 AMC Module
Entity Instance 67
Sensor Initialization 5d Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Sensor Scanning enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 03 Current
Event/Reading Type Code 01 Threshold
Assertion Event Mask 0800 Upper Non-Recoverable Going High supported
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-39
Deassertion Event Mask 4800 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Discrete Reading Mask 3838 Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 05 Amps
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M8a— —
M, Tolerance 40
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp c0
Analog Characteristic Flags 07
Nominal Reading 66
Normal Maximum bf
Normal Minimum 00
Sensor Maximum Reading ff
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
ff —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
03 —
Negative-Going
Threshold Hyst Value
00 —
OEM 00 —
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-40
Table B-24: B3 +12V Volt SDR Description
ID String Type / Length Code cc
KAT4000 Records: Value: Parameter: Status:
Record ID 0016
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 37
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID c1 AMC Module
Entity Instance 67
Sensor Initialization 5d Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Sensor Scanning enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 02 Voltage
Event/Reading Type Code 01 Threshold
Assertion Event Mask 0800 Upper Non-Recoverable Going High supported
Deassertion Event Mask 4800 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Discrete Reading Mask 3838 Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 04 Volts
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-41
Table B-25: B4 +12V Current SDR Description
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M06— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp e0
Analog Characteristic Flags 07
Nominal Reading c8
Normal Maximum d6
Normal Minimum 00
Sensor Maximum
Reading
fe —
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
f0 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
02 —
Negative-Going
Threshold Hyst Value
00 —
OEM 00 —
ID String Type / Length Code cc
KAT4000 Records: Value: Parameter: Status:
Record ID 0017
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 37
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID c1 AMC Module
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-42
Entity Instance 68
Sensor Initialization 5d Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Sensor Scanning enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 03 Current
Event/Reading Type Code 01 Threshold
Assertion Event Mask 0800 Upper Non-Recoverable Going High supported
Deassertion Event Mask 4800 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Discrete Reading Mask 3838 Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 05 Amps
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M8a— —
M, Tolerance 40
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp c0
Analog Characteristic Flags 07
Nominal Reading 66
Normal Maximum bf
Normal Minimum 00
Sensor Maximum Reading ff
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-43
Table B-26: B4 +12V Volt SDR Description
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
ff —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
03 —
Negative-Going Threshold Hyst
Value
00 —
OEM 00 —
ID String Type / Length Code cc
KAT4000 Records: Value: Parameter: Status:
Record ID 0018
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 37
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID c1 AMC Module
Entity Instance 68
Sensor Initialization 5d Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Sensor Scanning enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 02 Voltage
Event/Reading Type Code 01 Threshold
Assertion Event Mask 0800 Upper Non-Recoverable Going High supported
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-44
Deassertion Event Mask 4800 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Discrete Reading Mask 3838 Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 04 Volts
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M06— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp e0
Analog Characteristic Flags 07
Nominal Reading c8
Normal Maximum d6
Normal Minimum 00
Sensor Maximum
Reading
fe —
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
f0 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
02 —
Negative-Going Threshold Hyst
Value
00 —
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-45
Table B-27: -48V Volt SDR Description
OEM 00 —
ID String Type / Length Code cc
KAT4000 Records: Value: Parameter: Status:
Record ID 0019
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 34
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID 0a
Entity Instance 60
Sensor Initialization 7f Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Init Events
Sensor Scanning enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 02 Voltage
Event/Reading Type Code 01 Threshold
Assertion Event Mask 4801 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Lower Non-Critical Going Low supported
Deassertion Event Mask 4801 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Lower Non-Critical Going Low supported
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-46
Discrete Reading Mask 3f3f Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Lower Non-Recoverable Threshold settable
Lower Critical Threshold settable
Lower Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Lower Non-Recoverable Threshold readable
Lower Critical Threshold readable
Lower Non-Critical Threshold readable
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 04 Volts
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M23— —
M, Tolerance 40
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp d0
Analog Characteristic Flags 07
Nominal Reading a5
Normal Maximum f8
Normal Minimum 7c
Sensor Maximum Reading ff
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
f8 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
7c —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-47
Table B-28: -48V Current SDR Description
Positive-Going Threshold Hyst
Value
02 —
Negative-Going Threshold Hyst
Value
02 —
OEM 00 —
ID String Type / Length Code c9
KAT4000 Records: Value: Parameter: Status:
Record ID 001a
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 34
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID 0a
Entity Instance 60
Sensor Initialization 7f Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Init Events
Sensor Scanning enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 03 Current
Event/Reading Type Code 01 Threshold
Assertion Event Mask 0800 Upper Non-Recoverable Going High supported
Deassertion Event Mask 4800 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Discrete Reading Mask 3838 Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-48
Table B-29: -48V Source A Volt SDR Description
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 05 Amps
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M11— —
M, Tolerance 40
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp c0
Analog Characteristic Flags 07
Nominal Reading 93
Normal Maximum ef
Normal Minimum 00
Sensor Maximum Reading ff
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
ff —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
02 —
Negative-Going Threshold Hyst
Value
00 —
OEM 00 —
ID String Type / Length Code c9
KAT4000 Records: Value: Parameter: Status:
Record ID 001b
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 3a
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-49
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID 0a
Entity Instance 60
Sensor Initialization 7f Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 02 Voltage
Event/Reading Type Code 01 Threshold
Assertion Event Mask 4801 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Lower Non-Critical Going Low supported
Deassertion Event Mask 4801 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Lower Non-Critical Going Low supported
Discrete Reading Mask 3f3f Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Lower Non-Recoverable Threshold settable
Lower Critical Threshold settable
Lower Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Lower Non-Recoverable Threshold readable
Lower Critical Threshold readable
Lower Non-Critical Threshold readable
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-50
Table B-30: -48V Source B Volt SDR Description
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 04 Volts
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M1a— —
M, Tolerance 40
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp d0
Analog Characteristic Flags 07
Nominal Reading ab
Normal Maximum ff
Normal Minimum 00
Sensor Maximum Reading ff
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
ff —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
02 —
Negative-Going
Threshold Hyst Value
02 —
OEM 00 —
ID String Type / Length Code cf
KAT4000 Records: Value: Parameter: Status:
Record ID 001c
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 3a
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-51
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID 0a
Entity Instance 60
Sensor Initialization 7f Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 02 Voltage
Event/Reading Type Code 01 Threshold
Assertion Event Mask 4801 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Lower Non-Critical Going Low supported
Deassertion Event Mask 4801 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Lower Non-Critical Going Low supported
Discrete Reading Mask 3f3f Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Lower Non-Recoverable Threshold settable
Lower Critical Threshold settable
Lower Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Lower Non-Recoverable Threshold readable
Lower Critical Threshold readable
Lower Non-Critical Threshold readable
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-52
Table B-31: +3.3V Management SDR Description
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 04 Volts
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M1a— —
M, Tolerance 40
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp d0
Analog Characteristic Flags 07
Nominal Reading ab
Normal Maximum ff
Normal Minimum 00
Sensor Maximum Reading ff
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
ff —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
02 —
Negative-Going Threshold Hyst
Value
02 —
OEM 00 —
ID String Type / Length Code cf
KAT4000 Records: Value: Parameter: Status:
Record ID 001d
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 35
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-53
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID 0a
Entity Instance 60
Sensor Initialization 7f Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 02 Voltage
Event/Reading Type Code 01 Threshold
Assertion Event Mask 4801 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Lower Non-Critical Going Low supported
Deassertion Event Mask 4801 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Lower Non-Critical Going Low supported
Discrete Reading Mask 3f3f Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Lower Non-Recoverable Threshold settable
Lower Critical Threshold settable
Lower Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Lower Non-Recoverable Threshold readable
Lower Critical Threshold readable
Lower Non-Critical Threshold readable
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-54
Table B-32: +12V Volt SDR Description
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 04 Volts
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
Maa— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp c0
Analog Characteristic Flags 07
Nominal Reading c3
Normal Maximum cc
Normal Minimum b9
Sensor Maximum Reading ff
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
e9 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
9c —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
02 —
Negative-Going Threshold Hyst
Value
02 —
OEM 00 —
ID String Type / Length Code ca
KAT4000 Records: Value: Parameter: Status:
Record ID 001e
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 34
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-55
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID 0a
Entity Instance 60
Sensor Initialization 7f Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Init Events
Sensor Scanning enabled
Event Generation enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 02 Voltage
Event/Reading Type Code 01 Threshold
Assertion Event Mask 4801 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Lower Non-Critical Going Low supported
Deassertion Event Mask 4801 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Lower Non-Critical Going Low supported
Discrete Reading Mask 3f3f Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Lower Non-Recoverable Threshold settable
Lower Critical Threshold settable
Lower Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Lower Non-Recoverable Threshold readable
Lower Critical Threshold readable
Lower Non-Critical Threshold readable
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-56
Table B-33: -12V Current SDR Description
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 04 Volts
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M06— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp e0
Analog Characteristic Flags 07
Nominal Reading c8
Normal Maximum d6
Normal Minimum ba
Sensor Maximum Reading ff
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
f0 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
a0 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
02 —
Negative-Going Threshold Hyst
Value
02 —
OEM 00 —
ID String Type / Length Code c9
KAT4000 Records: Value: Parameter: Status:
Record ID 001f
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 34
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-57
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID 0a
Entity Instance 60
Sensor Initialization 7f Init Scanning
Init Sensor Type
Init Hysteresis
Init Thresholds
Init Events
Sensor Scanning enabled
Sensor Capabilities 69 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis hysteresis is settable/readable
Sensor Threshold Access threshold is settable/readable
Event Message Control global disable only
Sensor Type 03 Current
Event/Reading Type Code 01 Threshold
Assertion Event Mask 0800 Upper Non-Recoverable Going High supported
Deassertion Event Mask 4800 Lower Non-Recoverable Threshold comparison returned
Upper Non-Recoverable Going High supported
Discrete Reading Mask 3838 Upper Non-Recoverable Threshold settable
Upper Critical Threshold settable
Upper Non-Critical Threshold settable
Upper Non-Recoverable Threshold readable
Upper Critical Threshold readable
Upper Non-Critical Threshold readable
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 05 Amps
Sensor Units 3 - Modifier Unit 00 Unspecified
Linearization 00 —
M6d— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-58
Table B-34: F/W (Firmware) Progress SDR Description
R exp, B Exp d0
Analog Characteristic Flags 07
Nominal Reading 53
Normal Maximum a1
Normal Minimum 00
Sensor Maximum Reading fe
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
cf —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
03 —
Negative-Going Threshold Hyst
Value
00 —
OEM 00 —
ID String Type / Length Code c9
KAT4000 Records: Value: Parameter: Status:
Record ID 0020
SDR Version 51
Record Type 01 Full Sensor Record
Record Length 37
Sensor Owner ID 00
Sensor Owner LUN 00
Sensor Number 00
Entity ID a0
Entity Instance 60
Sensor Initialization 67 Init Scanning
Init Sensor Type
Init Events
Sensor Scanning enabled
Event Generation enabled
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
10007175-02 KAT4000 User’s Manual B-59
Sensor Capabilities 41 Ignore Sensor no
Auto Re-Arm enabled
Sensor Hysteresis no hysteresis
Sensor Threshold Access no threshold
Event Message Control global disable only
Sensor Type 0f System Firmware Progress
Event/Reading Type Code 6f Sensor Specific
Assertion Event Mask 0007 System Firmware Progress
System Firmware Hang
System Firmware Error
Deassertion Event Mask 0000
Discrete Reading Mask 0007 System Firmware Progress
System Firmware Hang
System Firmware Error
Sensor Units 1 00 Analog Data Format unsigned
Rate Unit none
Modifier Unit none
Percentage no
Sensor Units 2 - Base Unit 00 unspecified
Sensor Units 3 - Modifier Unit 00 unspecified
Linearization 00 —
M00— —
M, Tolerance 00
B00— —
B, Accuracy 00
Accuracy, Accuracy Exp 00
R exp, B Exp 00
Analog Characteristic Flags 00
Nominal Reading 00
Normal Maximum 00
Normal Minimum 00
Sensor Maximum
Reading
00 —
Sensor Minimum Reading 00
Upper Non-Recoverable
Threshold
00 —
Upper Critical Threshold 00
Upper Non-Critical Threshold 00
Lower Non-Recoverable
Threshold
00 —
KAT4000 Records: Value: Parameter: Status: (continued)
Appendix B: Sensor Data Records
KAT4000 User’s Manual 10007175-02
B-60
Lower Critical Threshold 00
Lower Non-Critical Threshold 00
Positive-Going Threshold Hyst
Value
00 —
Negative-Going Threshold Hyst
Value
00 —
OEM 00 —
ID String Type / Length Code cc
KAT4000 Records: Value: Parameter: Status: (continued)
10007175-02 KAT4000 User’s Manual i-1
Index
A
air flow rate . . . . . . . . . . . . . . . . . .2-16
AMC
connectors . . . . . . . . . . . . . 2-4, 8-2
custom modules. . . . . . . . . . . . . 8-1
overview . . . . . . . . . . . . . . . . . . . 1-2
pin assignments . . . . . . . . . . . . . 8-4
reference manual . . . . . . . . . . .1-12
ATCA
reference manual . . . . . . . . . . .1-12
B
back panel
connectors . . . . . . . . . . . . . . . . . 2-4
binary download format . . . . . . .14-32
block diagram
CPU . . . . . . . . . . . . . . . . . . . . . . . 3-2
general system . . . . . . . . . . . . . . 1-5
IPMC connections . . . . . . . . . . . . 9-2
real-time clock . . . . . . . . . . . . .11-1
board
optional devices . . . . . . . . . . . . . 1-3
product ID. . . . . . . . . . . . . . . . .2-15
serial number . . . . . . . . . . . . . .2-15
boot
from redundant boot bank . . . . . 6-2
memory configuration . . . . . . . . 6-1
boot commands, monitor . . . . . .14-9
C
caution statements
board install/remove . . . . . . . .13-7
boards without front panel. . . . . 2-4
removing socketed PLCC device.6-2
writes to monitor area . . . . . . .14-6
chip-select generator, CPU . . . . . .3-12
circuit board dimensions . . . . . . . . 2-1
compliance . . . . . . . . . . . . . . . . . .1-10
component map
bottom . . . . . . . . . . . . . . . . . . . . 2-3
top . . . . . . . . . . . . . . . . . . . . . . . 2-2
connectors
AMC pin assignments . . . . . . . . . 8-4
backplane zones 1-3 . . . . . . . . .12-1
console port . . . . . . . . . . . . . . .13-5
J20 through J24. . . . . . . . . . . . .12-2
J30 through J33. . . . . . . . . . . . .12-4
overview . . . . . . . . . . . . . . . . . . . 2-4
P1, P2, P4-P7 pinouts . . . . . . . .13-5
P10 . . . . . . . . . . . . . . . . . . . . . .12-1
contents, table of . . . . . . . . . . . . . . ii-iii
CPLD
JTAG header . . . . . . . . . . . . . . . 7-19
reference manual . . . . . . . . . . . 1-12
registers . . . . . . . . . . . . . . . . . . . 7-1
CPU
block diagram . . . . . . . . . . . . . . 3-2
cache memory . . . . . . . . . . . . . . 3-3
chip-select generator . . . . . . . .3-12
exception handling. . . . . . . . . . 3-13
functions on the KAT4000 . . . . . 3-3
interrupts and exceptions . . . . . 3-8
overview . . . . . . . . . . . . . . . . . . . 1-1
peripheral request priority . . . .3-10
reference manual . . . . . . . . . . . 1-13
reset and clocking signals. . . . . 3-12
custom AMC requirements . . . . . . 8-1
customer support. See technical
support.
D
DRAM . . . . . . . . . . . . . . . . . . . . . . . 6-2
overview . . . . . . . . . . . . . . . . . . . 1-1
reference manual . . . . . . . . . . . 1-14
E
EEPROM
reference manual . . . . . . . . . . . 1-13
EIA-232
connector . . . . . . . . . . . . . . . . . . 2-4
E-keying . . . . . . . . . 9-45, 12-2, 14-1
environment parameter commands,
monitor. . . . . . . . . . . . . . . . . . . .14-20
environment variables . . . . . . . . . 14-7
equipment for setup. . . . . . . . . . . 2-15
ESD prevention. . . . . . . . . . . . . . . . 2-1
Ethernet
address . . . . . . . . . . . . . . . . . . . . 4-5
Artesyn identifier . . . . . . . . . . . . 4-5
connector . . . . . . . . . . . . . . . . . . 2-4
core switch . . . . . . . . . . . . . . . . . 4-2
overview . . . . . . . . . . . . . . . . . . . 1-2
reference manual . . . . . . . . . . . 1-13
transceivers . . . . . . . . . . . . . . . . 4-5
ethernet core switch
overview . . . . . . . . . . . . . . . . . . . 1-3
Ethernet switch configuration . . . . 4-3
exception handling, CPU . . . . . . . 3-13
F
fat pipe switch
10 GbE-1 GbE . . . . . . . . . . . . . . 5-11
PLD registers . . . . . . . . 5-16
10 GbE-10 GbE . . . . . . . . . . . . . 5-21
GbE. . . . . . . . . . . . . . . . . . . . . . . 5-2
PLD registers . . . . . . . . . 5-6
overview. . . . . . . . . . . . . . . 1-4, 5-1
sRIO . . . . . . . . . . . . . . . . . . . . . 5-22
features
IPMI . . . . . . . . . . . . . . . . . . . . . . 9-1
overview. . . . . . . . . . . . . . . . . . . 1-1
figures, list of . . . . . . . . . . . . . . . . .iii-ix
file load commands, monitor . . .14-12
Flash
commands, monitor . . . . . . .14-15
overview. . . . . . . . . . . . . . . . . . . 1-1
reference manual . . . . . . . . . . . 1-13
regions . . . . . . . . . . . . . . . . . . . . 6-1
fuses . . . . . . . . . . . . . . . . . . . . . . . . 2-8
G
GbE switch
features . . . . . . . . . . . . . . . . . . . 4-2
glossary of acronyms . . . . . . . . . . 15-1
grounding . . . . . . . . . . . . . . . . . . . 2-1
H
hardware implementation dependent
registers (HIDx) . . . . . . . . . 3-6 to 3-8
header, JP4 . . . . . . . . . . . . . . . . . . . 2-5
Hot Swap . . . . . . . . . . . . . . . . . . . 2-10
reference manual . . . . . . . . . . . 1-13
I
I2C bus
overview. . . . . . . . . . . . . . . . . . . 1-2
installation of the board . . . . . . . . 2-15
IPMB
reference manual . . . . . . . . . . . 1-14
IPMI
completion codes . . . . . . . . . . . 9-4
E-keying information . . . . . . . . 9-45
entity IDs and instances . . . . . . 9-39
FRU information. . . . . . . . . . . . 9-44
network function codes . . . . . . . 9-3
reference manual . . . . . . . . . . . 1-14
request/response messages . . . 9-5
(continued)
KAT4000 User’s Manual 10007175-02
i-2
Serial Interface Protocol Lite (SIPL)
protocol . . . . . . . . . . . . . . . . . . . 9-6
standard commands. . . . . . . . . . 9-9
vendor commands . . . . . . . . . .9-12
IPMI sensor data records . . . . . . . . . B-1
J
JP4 header. . . . . . . . . . . . . . . . . . . . 2-5
JTAG
CPLD configuration header, JP1 2-10
CPLD interface . . . . . . . . . . . . .7-19
CPLD JTAG header, JP3 . . . . . . . . 2-9
CPU JTAG/COP . . . . . . . . . . . . .3-14
CPU JTAG/COP header, P1 . . . . . 2-9
interface . . . . . . . . . . . . . . . . . . . 1-2
IPMC JTAG/emulation header, J35 . .
2-10
optional interfaces . . . . . . . . . . . 2-9
JTAG hubs
overview . . . . . . . . . . . . . . . . . . . 1-2
jumpers. . . . . . . . . . . . . . . . . . . . . . 2-8
device selection . . . . . . . . . . . . . 2-5
L
L2 cache, CPU . . . . . . . . . . . . . . . . . 3-3
LEDs . . . . . . . . . . . . . . . . . . . . . . .2-10
FRU/IPMC . . . . . . . . . . . . . . . . .9-33
M
machine state register (MSR) . . . . . 3-9
mean time between failures (MTBF). . .
1-10
memory
boot device. . . . . . . . . . . . . . . . . 6-1
commands, monitor. . . . . . . .14-12
monitor
auto-booting . . . . . . . . . . . . . .14-1
auto-repeat. . . . . . . . . . . . . . . .14-1
basic operation . . . . . . . . . . . . .14-4
boot commands . . . . . . . . . . . .14-9
command history . . . . . . . . . . .14-1
command reference . . . . . . . . .14-8
command syntax . . . . . . . . . . .14-8
command-line interface . . . . . .14-1
environment parameter commands
14-20
environment variables . . . . . .14-28
file load commands . . . . . . . .14-12
Flash commands. . . . . . . . . . .14-15
Flash programming . . . . . . . . .14-1
memory commands. . . . . . . .14-12
Motorola S-record . . . . . . . . .14-32
other commands . . . . . . . . . .14-22
power-up/reset sequence flowchart
14-5
recovery . . . . . . . . . . . . . . . . . . 14-6
start-up display of KAT4000 with 10
GbE-1 GbE fat pipe module . . . 14-3
start-up display of KAT4000 with GbE
fat pipe module . . . . . . . . . . . .14-2
test commands . . . . . . . . . . .14-21
TFTP booting . . . . . . . . . . . . . .14-1
troubleshooting . . . . . . . . . . .14-31
typographic conventions . . . . . 14-9
U-Boot . . . . . . . . . . . . . . . . . . . 14-1
updates . . . . . . . . . . . . . . . . . . 14-7
version number . . . . . . . . . . . .2-15
monitor commands
autoscr . . . . . . . . . . . . . . . . . .14-22
base . . . . . . . . . . . . . . . . . . . .14-22
bdinfo. . . . . . . . . . . . . . . . . . .14-22
bootd . . . . . . . . . . . . . . . . . . . . 14-9
bootelf . . . . . . . . . . . . . . . . . . . 14-9
bootm . . . . . . . . . . . . . . . . . . . 14-9
bootp . . . . . . . . . . . . . . . . . . . . 14-9
bootv . . . . . . . . . . . . . . . . . . .14-10
bootvx . . . . . . . . . . . . . . . . . .14-10
cmp . . . . . . . . . . . . . . . . . . . .14-13
coninfo . . . . . . . . . . . . . . . . . .14-22
cp . . . . . . . . . . . . . . . 14-13, 14-15
crc32 . . . . . . . . . . . . . . . . . . .14-22
date . . . . . . . . . . . . . . . . . . . .14-22
dhcp . . . . . . . . . . . . . . . . . . . .14-10
diags. . . . . . . . . . . . . . . . . . . .14-21
echo . . . . . . . . . . . . . . . . . . . .14-23
eeprom. . . . . . . . . . . . . . . . . .14-16
enumpci . . . . . . . . . . . . . . . . .14-23
erase. . . . . . . . . . . . . . . . . . . .14-15
find . . . . . . . . . . . . . . . . . . . . .14-13
flinfo . . . . . . . . . . . . . . . . . . . .14-15
fru. . . . . . . . . . . . . . . . . . . . . .14-18
fruinit . . . . . . . . . . . . . . . . . . .14-19
fruled . . . . . . . . . . . . . . . . . . .14-19
go . . . . . . . . . . . . . . . . . . . . . .14-23
help . . . . . . . . . . . . . . 14-9, 14-23
icrc32 . . . . . . . . . . . . . . . . . . .14-17
iloop . . . . . . . . . . . . . . . . . . . .14-17
imd . . . . . . . . . . . . . . . . . . . . .14-17
iminfo . . . . . . . . . . . . . . . . . . .14-23
imm . . . . . . . . . . . . . . . . . . . .14-17
imw . . . . . . . . . . . . . . . . . . . .14-18
inm . . . . . . . . . . . . . . . . . . . . .14-18
ipmcfw . . . . . . . . . . . . . . . . . . 14-19
iprobe. . . . . . . . . . . . . . . . . . . 14-18
isdram . . . . . . . . . . . . . . . . . . 14-23
loadb . . . . . . . . . . . . . . . . . . .14-12
loads. . . . . . . . . . . . . . . . . . . . 14-12
loop . . . . . . . . . . . . . . . . . . . . 14-24
md . . . . . . . . . . . . . . . . . . . . . 14-13
memmap . . . . . . . . . . . . . . . . 14-24
mm. . . . . . . . . . . . . . . . . . . . . 14-14
moninit . . . . . . . . . . . . . . . . .14-24
mtest . . . . . . . . . . . . . . . . . . . 14-21
mw . . . . . . . . . . . . . . . . . . . . . 14-14
nm . . . . . . . . . . . . . . . . . . . . . 14-14
pci . . . . . . . . . . . . . . . . . . . . . 14-24
phy . . . . . . . . . . . . . . . . . . . . . 14-25
ping . . . . . . . . . . . . . . . . . . . . 14-25
printenv . . . . . . . . . . . . . . . . . 14-21
protect . . . . . . . . . . . . . . . . . . 14-16
rarpboot . . . . . . . . . . . . . . . . . 14-11
reset . . . . . . . . . . . . . . . . . . . . 14-25
run . . . . . . . . . . . . . . . . . . . . . 14-26
saveenv . . . . . . . . . . . . . . . . . 14-21
script . . . . . . . . . . . . . . . . . . . 14-26
sensor. . . . . . . . . . . . . . . . . . . 14-19
setenv . . . . . . . . . . . . . . . . . . 14-21
showmac . . . . . . . . . . . . . . . . 14-26
showpci . . . . . . . . . . . . . . . . . 14-26
sleep. . . . . . . . . . . . . . . . . . . . 14-26
switch_reg . . . . . . . . . . . . . . . 14-27
switchsrom . . . . . . . . . . . . . . 14-18
tftpboot . . . . . . . . . . . . . . . . . 14-11
um . . . . . . . . . . . . . . . . . . . . . 14-22
version . . . . . . . . . . . . . . . . . . 14-27
vlan. . . . . . . . . . . . . . . . . . . . . 14-27
N
NAND flash . . . . . . . . . . . . . . . . . . . 6-2
no-CPU KAT4000 . . . . . . . . . . . . . . A-1
Ethernet switch configuration . . A-2
default settings . . . . . . . A-2
overview. . . . . . . . . . . . . . . . . . . 1-3
serial command line interface (CLI) .
A-3
VLAN setup . . . . . . . . . . . . . . . . A-2
web interface . . . . . . . . . . . . . . A-18
notation conventions . . . . . . . . . . 1-12
NVRAM memory map . . . . . . . . . . 6-3
O
operating temperature . . . . . . . . 2-16
(continued)
10007175-02 KAT4000 User’s Manual i-3
overview, IPMI. . . . . . . . . . . . . . . . . 9-1
P
PCI
device and vendor ID . . . . . . . . . 3-4
revision ID . . . . . . . . . . . . . . . . . . 3-4
signals. . . . . . . . . . . . . . . . . . . . . 8-2
PCI Express switch
EEPROM controller . . . . . . . . . . . 4-9
features. . . . . . . . . . . . . . . . . . . . 4-7
JTAG . . . . . . . . . . . . . . . . . . . . . . 4-9
overview . . . . . . . . . . . . . . . . . . . 1-3
reference manual . . . . . . . . . . .1-14
PLD
overview . . . . . . . . . . . . . . . . . . . 1-2
power supply requirements . . . . .2-16
product code, Ethernet. . . . . . . . . . 4-5
product ID. . . . . . . . . . . . . . . . . . .2-15
product repair. . . . . . . . . . . . . . . .2-18
programmable logic device (PLD) 5-6,
5-16, 7-1
R
real-time clock
block diagram. . . . . . . . . . . . . .11-1
operation . . . . . . . . . . . . . . . . .11-1
overview . . . . . . . . . . . . . . . . . . . 1-3
reference manual . . . . . . . . . . .1-14
register map . . . . . . . . . . . . . . .11-2
redundant boot bank . . . . . . . . . . . 6-2
references, manuals, and data books . .
1-12
registers
10 GbE-1 GbE fat pipe switch module
5-16 to 5-20
10 GbE-10 GbE fat pipe switch
module . . . . . . . . . . . .5-16 to 5-20
BDRR. . . . . . . . . . . . . . . . . . . . .7-11
boot and reset . . . . . . . 7-8 to 7-12
CCR . . . . . . . . . . . . . . . . . . . . . .7-17
clock synchronizer . . .7-13 to 7-19
configuration . . . . . . . . . 7-4 to 7-5
CPS . . . . . . . . . . . . . . . . . . . . . .7-14
CSC . . . . . . . . . . . . . . . . . . . . . .7-13
CSI. . . . . . . . . . . . . . . . . . . . . . .7-18
CSS . . . . . . . . . . . . . . . . . . . . . .7-15
GbE fat pipe switch module . 5-6 to
5-9
HCR0. . . . . . . . . . . . . . . . . . . . . . 7-4
HVR. . . . . . . . . . . . . . . . . . . . . . . 7-3
JSR . . . . . . . . . . . . . . . . . . . . . . . 7-6
LEDR . . . . . . . . . . . . . . . . . . . . . . 7-5
MISC . . . . . . . . . . . . . . . . . . . . . . 7-7
miscellaneous. . . . . . . . . 7-5 to 7-8
PIDR . . . . . . . . . . . . . . . . . . . . . . 7-2
PLLC . . . . . . . . . . . . . . . . . . . . . . 7-4
PVR. . . . . . . . . . . . . . . . . . . . . . . 7-3
RCR1. . . . . . . . . . . . . . . . . . . . . . 7-9
RCR2. . . . . . . . . . . . . . . . . . . . . 7-10
RER . . . . . . . . . . . . . . . . . . . . . . . 7-8
RGCR . . . . . . . . . . . . . . . . . . . . . 7-7
RGSR. . . . . . . . . . . . . . . . . . . . . . 7-6
SCR1 . . . . . . . . . . . . . . . . . . . . . . 7-8
version and ID. . . . . . . . . 7-2 to 7-3
regulatory certifications . . . . . . . . 1-10
reset
and clocking signals, CPU. . . . . 3-12
sources . . . . . . . . . . . . . . . . . . . 2-13
returning boards. . . . . . . . . . . . . .2-18
RoHS. . . . . . . . . . . . . . . . . . . . . . . 1-11
RTC
overview . . . . . . . . . . . . . . . . . . . 1-3
RTM
block diagram . . . . . . . . . . . . . 13-2
circuit board . . . . . . . . . . . . . . . 13-3
connectors . . . . . . . . . . . . . . . . 13-5
face plate . . . . . . . . . . . . . . . . . 13-5
features . . . . . . . . . . . . . . . . . .13-1
installation . . . . . . . . . . . . . . . .13-7
overview . . . . . . . . . . . . . . . . . . . 1-4
setup . . . . . . . . . . . . . . . . . . . . 13-6
S
SATA lines . . . . . . . . . . . . . . . . . . . . 8-6
SDR . . . . . . . . . . . . . . . . . . . . . . . . 9-40
SDRAM. See DRAM.
sensor data records . . . . . . . . . . . 9-40
serial command line interface (CLI)
aggregation/trunking commands . .
A-13
command hierarchy . . . . . . . . . . A-4
command overview . . . . . . . . . . A-6
commands . . . . . . . . . . . . . . . . . A-5
console commands . . . . . . . . . . A-8
debug commands . . . . . . . . . .A-17
help . . . . . . . . . . . . . . . . . . . . . . A-3
IP commands . . . . . . . . . . . . . .A-16
log in/log out . . . . . . . . . . . . . . . A-3
MAC commands . . . . . . . . . . . .A-10
mirror commands . . . . . . . . . .A-16
no-CPU KAT4000 . . . . . . . . . . . . A-3
port commands . . . . . . . . . . . . . A-9
QoS commands . . . . . . . . . . . . A-14
system commands. . . . . . . . . . . A-8
user group commands. . . . . . . A-14
VLAN commands . . . . . . . . . . . A-12
serial data path configuration . . . . 4-3
serial I/O
connector. . . . . . . . . . . . . . . . . . 2-4
overview. . . . . . . . . . . . . . . . . . . 1-2
serial interface
reference manual . . . . . . . . . . . 1-14
serial number . . . . . . . . . . . . . . . . 2-15
user ROM . . . . . . . . . . . . . . . . . 2-15
serial ports, console . . . . . . . . . . . 13-5
setup requirements . . . . . . . . . . . 2-15
signal descriptions, PCI. . . . . . . . . . 8-2
specifications
environmental . . . . . . . . . . . . . 2-16
mechanical. . . . . . . . . . . . . . . . . 2-1
power . . . . . . . . . . . . . . . . . . . . 2-16
SROM . . . . . . . . . . . . . . . . . . . . . . . 6-3
static control . . . . . . . . . . . . . . . . . 2-1
switches . . . . . . . . . . . . . . . . . . . . . 2-8
synchronization clock. . . . . . . . . . 10-1
overview. . . . . . . . . . . . . . . . . . . 1-3
reference manual . . . . . . . . . . . 1-14
system management
overview. . . . . . . . . . . . . . . . . . . 1-3
T
table of contents . . . . . . . . . . . . . . ii-iii
tables, list of . . . . . . . . . . . . . . . . . .iv-xi
technical references . . . . . . . . . . . 1-12
technical support
terminology . . . . . . . . . . . . . . . . . 1-12
test commands, monitor . . . . . . 14-21
timer/counters . . . . . . . . . . . . . . . . 3-4
troubleshooting
general . . . . . . . . . . . . . . . . . . . 2-17
monitor . . . . . . . . . . . . . . . . . 14-31
U
UL certifications . . . . . . . . . . . . . . 1-11
UL file number . . . . . . . . . . . . . . . 1-11
V
version
monitor . . . . . . . . . . . . . . . . . . 2-15
operating system . . . . . . . . . . . 2-15
VLAN setup. . . . . . . . . . . . . . . . . . . 4-3
(continued)
KAT4000 User’s Manual 10007175-02
i-4
W
watchdog timer . . . . . . . . . . . . . .9-27
watchdog, BMC . . . . . . 14-18, 14-28
web interface
no-CPU KAT4000 . . . . . . . . . . .A-18
VLAN setup. . . . . . . . . . . . . . . .A-18
Z
zone 1-3 connectors. . . . . . . . . . . 12-1
10007175-02 KAT4000 User’s Manual
Notes
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
____________________________________________________________________________________________
Emerson Network Power, Embedded Computing
8310 Excelsior Drive Madison, WI 53717-1935 USA
US Toll Free: 1-800-356-9602 Voice: +1-608-831-5500 FAX: 1-608-831-4249
Email: info@artesyncp.com
www.artesyncp.com
Business-Critical Continuity, Emerson Network Power and the
Emerson Network Power logo are trademarks and
service marks of Emerson Electric Co.
© 2006 Emerson Electric Co.
Emerson Network Power.
The global leader in enabling
Business-Critical Continuity.
AC Power Systems
Connectivity
DC Power Systems
Embedded Computing
Embedded Power
Integrated Cabinet Solutions
Outside Plant
Power Switching & Controls
Precision Cooling
Services
Site Monitoring
Surge & Signal Protection
EMERSON. CONSIDER IT SOLVED.

Navigation menu