Fluke 125 Users Manual 0master 97
2015-09-09
: Fluke Fluke-125-Users-Manual-808820 fluke-125-users-manual-808820 fluke pdf
Open the PDF directly: View PDF .
Page Count: 170
Download | |
Open PDF In Browser | View PDF |
123 Industrial ScopeMeter Service Manual 4822 872 05375 August 1997, Rev. 3, 01/00 © 1997 Fluke Corporation. All rights reserved. Printed in the Netherlands All product names are trademarks of their respective companies. SERVICE CENTERS To locate an authorized service center, visit us on the World Wide Web: http://www.fluke.com or call Fluke using any of the phone numbers listed below: +1-888-993-5853 in U.S.A. and Canada +31-402-678-200 in Europe +1-425-356-5500 from other countries Table of Contents Chapter 1 Title Safety Instructions ............................................................................. 1-1 1.1 Introduction................................................................................................. 1.2 Safety Precautions....................................................................................... 1.3 Caution and Warning Statements................................................................ 1.4 Symbols....................................................................................................... 1.5 Impaired Safety ........................................................................................... 1.6 General Safety Information......................................................................... 2 1-3 1-3 1-3 1-3 1-4 1-4 Characteristics ................................................................................... 2-1 2.1 Introduction................................................................................................. 2.2 Dual Input Oscilloscope.............................................................................. 2.2.1 Vertical ................................................................................................ 2.2.2 Horizontal ............................................................................................ 2.2.3 Trigger ................................................................................................. 2.2.4 Advanced Scope Functions.................................................................. 2.3 Dual Input Meter ......................................................................................... 2.3.1 Input A and Input B ............................................................................. 2.3.2 Input A ................................................................................................. 2.3.3 Advanced Meter Functions.................................................................. 2.4 Miscellaneous ............................................................................................. 2.5 Environmental ............................................................................................. 2.6 Service and Maintenance ............................................................................ 2.7 Safety .......................................................................................................... 2.8 EMC Immunity ........................................................................................... 3 Page 2-3 2-3 2-3 2-4 2-4 2-5 2-5 2-5 2-8 2-8 2-9 2-10 2-11 2-11 2-12 Circuit Descriptions ........................................................................... 3-1 3.1 Introduction................................................................................................. 3.2 Block Diagram ............................................................................................ 3.2.1 Channel A, Channel B Measurement Circuits..................................... 3.2.2 Trigger Circuit ..................................................................................... 3.2.3 Digital Circuit ...................................................................................... 3.2.4 Power Circuit ....................................................................................... 3.2.5 Start-up Sequence, Operating Modes .................................................. 3-3 3-3 3-4 3-4 3-5 3-6 3-7 123 Service Manual 3.3 Detailed Circuit Descriptions...................................................................... 3.3.1 Power Circuit ....................................................................................... 3.3.2 Channel A - Channel B Measurement Circuits ................................... 3.3.3 Trigger Circuit ..................................................................................... 3.3.4 Digital Circuit ...................................................................................... 4 Performance Verification ................................................................... 4-1 4.1 Introduction................................................................................................. 4.2 Equipment Required For Verification ........................................................ 4.3 How To Verify ............................................................................................ 4.4 Display and Backlight Test ......................................................................... 4.5 Input A and Input B Tests ........................................................................... 4.5.1 Input A and B Base Line Jump Test .................................................... 4.5.2 Input A Trigger Sensitivity Test .......................................................... 4.5.3 Input A Frequency Response Upper Transition Point Test................. 4.5.4 Input A Frequency Measurement Accuracy Test ................................ 4.5.5 Input B Frequency Measurement Accuracy Test ................................ 4.5.6 Input B Frequency Response Upper Transition Point Test ................. 4.5.7 Input B Trigger Sensitivity Test .......................................................... 4.5.8 Input A and B Trigger Level and Trigger Slope Test.......................... 4.5.9 Input A and B DC Voltage Accuracy Test .......................................... 4.5.10 Input A and B AC Voltage Accuracy Test ........................................ 4.5.11 Input A and B AC Input Coupling Test ............................................. 4.5.12 Input A and B Volts Peak Measurements Test.................................. 4.5.13 Input A and B Phase Measurements Test .......................................... 4.5.14 Input A and B High Voltage AC/DC Accuracy Test......................... 4.5.15 Resistance Measurements Test.......................................................... 4.5.16 Continuity Function Test ................................................................... 4.5.17 Diode Test Function Test .................................................................. 4.5.18 Capacitance Measurements Test ....................................................... 4.5.19 Video Trigger Test............................................................................. 5 3-9 3-9 3-15 3-20 3-25 4-3 4-3 4-3 4-4 4-5 4-6 4-7 4-8 4-8 4-9 4-10 4-10 4-11 4-14 4-15 4-16 4-17 4-18 4-19 4-20 4-21 4-22 4-22 4-23 Calibration Adjustment ...................................................................... 5-1 5.1 General ........................................................................................................ 5.1.1 Introduction.......................................................................................... 5.1.2 Calibration number and date................................................................ 5.1.3 General Instructions............................................................................. 5.2 Equipment Required For Calibration.......................................................... 5.3 Starting Calibration Adjustment ................................................................. 5.4 Contrast Calibration Adjustment ................................................................ 5.5 Warming Up & Pre-Calibration .................................................................. 5.6 Final Calibration ......................................................................................... 5.6.1 HF Gain Input A&B ............................................................................ 5.6.2 Delta T Gain, Trigger Delay Time & Pulse Adjust Input A................ 5.6.3 Pulse Adjust Input A (firmware V01.00 only) .................................... 5.6.4 Pulse Adjust Input B............................................................................ 5.6.5 Gain DMM (Gain Volt) ....................................................................... 5.6.6 Volt Zero.............................................................................................. 5.6.7 Zero Ohm (firmware V01.00 only)...................................................... 5.6.8 Gain Ohm............................................................................................. 5.6.9 Capacitance Gain Low and High......................................................... 5.6.10 Capacitance Clamp & Zero................................................................ 5.6.11 Capacitance Gain ............................................................................... 5.7 Save Calibration Data and Exit................................................................... 5-3 5-3 5-3 5-3 5-4 5-4 5-6 5-7 5-7 5-7 5-9 5-10 5-11 5-11 5-13 5-13 5-14 5-15 5-15 5-16 5-16 Contents (continued) 6 Disassembling the Test Tool ............................................................. 6-1 6.1. Introduction................................................................................................ 6.2. Disassembling Procedures ......................................................................... 6.1.1 Required Tools .................................................................................... 6.2.2 Removing the Battery Pack ................................................................. 6.2.3 Removing the Bail ............................................................................... 6.2.4 Opening the Test Tool ......................................................................... 6.2.5 Removing the Main PCA Unit............................................................. 6.2.6 Removing the Display Assembly......................................................... 6.2.7 Removing the Keypad and Keypad Foil.............................................. 6.3 Disassembling the Main PCA Unit ............................................................. 6.4 Reassembling the Main PCA Unit .............................................................. 6.5 Reassembling the Test Tool........................................................................ 7 Corrective Maintenance ..................................................................... 7-1 7.1 Introduction................................................................................................. 7.2 Starting Fault Finding. ................................................................................ 7.3 Charger Circuit............................................................................................ 7.4 Starting with a Dead Test Tool ................................................................... 7.4.1 Test Tool Completely Dead................................................................. 7.4.2 Test Tool Software Does not Run. ...................................................... 7.4.3 Software Runs, Test Tool not Operative ............................................. 7.5 Miscellaneous Functions............................................................................. 7.5.1 Display and Back Light ....................................................................... 7.5.2 Fly Back Converter.............................................................................. 7.5.3 Slow ADC............................................................................................ 7.5.4 Keyboard.............................................................................................. 7.5.5 Optical Port (Serial RS232 Interface).................................................. 7.5.6 Channel A, Channel B Voltage Measurements ................................... 7.5.7 Channel A Ohms and Capacitance Measurements.............................. 7.5.8 Trigger Functions................................................................................. 7.5.9 Reference Voltages.............................................................................. 7.5.10 Buzzer Circuit .................................................................................... 7.5.11 Reset ROM Circuit (PCB version <8 only)....................................... 7.5.12 RAM Test .......................................................................................... 7.5.13 Power ON/OFF .................................................................................. 7.5.14 PWM Circuit...................................................................................... 7.5.15 Randomize Circuit ............................................................................. 7.6 Loading Software........................................................................................ 8 7-3 7-4 7-4 7-6 7-6 7-7 7-7 7-8 7-8 7-9 7-10 7-11 7-11 7-12 7-13 7-14 7-15 7-15 7-16 7-16 7-16 7-17 7-17 7-17 List of Replaceable Parts................................................................... 8-1 8.1 Introduction................................................................................................. 8.2 How to Obtain Parts.................................................................................... 8.3 Final Assembly Parts .................................................................................. 8.4 Main PCA Unit Parts .................................................................................. 8.5 Main PCA Parts .......................................................................................... 8.6 Accessory Replacement Parts ..................................................................... 8.7 Service Tools............................................................................................... 9 6-3 6-3 6-3 6-3 6-3 6-3 6-5 6-6 6-6 6-6 6-8 6-8 8-3 8-3 8-4 8-6 8-7 8-24 8-24 Circuit Diagrams................................................................................. 9-1 9.1 Introduction................................................................................................. 9-3 9.2 Schematic Diagrams.................................................................................... 9-4 123 Service Manual 10 Modifications ...................................................................................... 10-1 10.1 Software modifications ............................................................................. 10-1 10.2 Hardware modifications............................................................................ 10-1 List of Tables Table 2-1. 2-2. 2-3. 3-1. 3-2. 3-3. 3-4. 3-5. 3-6. 4-1. 4-2. 4-3. 4-4. 4-5. 4-6. 4-7. 4-8. 4-9. 5-1. 5-2. 5-3. 5-4. 7-1. 8-1. 8-2. 8-3. 9-1. 9-2. Title No Visible Trace Disturbance ............................................................................... Trace Disturbance < 10%...................................................................................... Multimeter Disturbance < 1% ............................................................................... Fluke 123 Main Blocks ......................................................................................... Fluke 123 Operating Modes .................................................................................. Voltage Ranges And Trace Sensitivity ................................................................. Ohms Ranges, Trace Sensitivity, and Current ...................................................... Capacitance Ranges, Current, and Pulse Width.................................................... D-ASIC PWM Signals........................................................................................... Input A,B Frequency Measurement Accuracy Test .............................................. Volts DC Measurement Verification Points ......................................................... Volts AC Measurement Verification Points ......................................................... Input A and B AC Input Coupling Verification Points ......................................... Volts Peak Measurement Verification Points ....................................................... Phase Measurement Verification Points ............................................................... V DC and V AC High Voltage Verification Tests................................................ Resistance Measurement Verification Points........................................................ Capacitance Measurement Verification Points ..................................................... HF Gain Calibration Points Fast ........................................................................... HF Gain Calibration Points Slow.......................................................................... Volt Gain Calibration Points <300V..................................................................... Ohm Gain Calibration Points ................................................................................ Starting Fault Finding............................................................................................ Final Assembly Parts............................................................................................. Main PCA Unit...................................................................................................... Main PCA.............................................................................................................. Parts Location Main PCA Side 1 .......................................................................... Parts Location Main PCA Side 2 .......................................................................... Page 2-12 2-12 2-12 3-3 3-9 3-18 3-18 3-20 3-29 4-9 4-15 4-16 4-17 4-18 4-18 4-20 4-21 4-23 5-8 5-9 5-12 5-14 7-4 8-4 8-6 8-7 9-4 9-5 List of Figures Figure 3-1. 3-2. 3-3. 3-4. 3-5. 3-6. 3-7. 3-8. 3-9. 3-10. 3-11. 3-12. 3-13. 4-1. 4-2. 4-3. 4-4. 4-5. 4-6. 4-7. 4-8. 4-9. 4-10. 4-11. 4-12. 4-13. 4-14. 4-15. 5-1. 5-2. 5-3. 5-4. 5-5. 5-6. 5-7. Title Fluke 123 Block Diagram...................................................................................... Fluke 123 Start-up Sequence, Operating Modes................................................... Power Supply Block Diagram ............................................................................... CHAGATE Control Voltage ................................................................................. Fly-Back Converter Current and Control Voltage ................................................ Fly-Back Converter Block Diagram...................................................................... Back Light Converter Voltages ............................................................................. C-ASIC Block Diagram......................................................................................... Capacitance Measurement..................................................................................... T-ASIC Trigger Section Block Diagram............................................................... Random Repetitive Sampling Mode ..................................................................... Reference Voltage Section .................................................................................... LCD Control.......................................................................................................... Display Pixel Test Pattern ..................................................................................... Menu item selection .............................................................................................. Test Tool Input A to 5500A Scope Output 50Ω ................................................... Test Tool Input B to 5500A Scope Output 50Ω ................................................... Test Tool Input A-B to 5500A Normal Output ..................................................... Test Tool Input A-B to 5500A Normal Output for >300V ................................... Test Tool Input A to 5500A Normal Output 4-Wire............................................. Test Tool Input A to TV Signal Generator ........................................................... Test Tool Screen for PAL/SECAM line 622 ........................................................ Test Tool Screen for NTSC line 525..................................................................... Test Tool Screen for PAL/SECAM line 310 ........................................................ Test Tool Screen for NTSC line 262..................................................................... Test Tool Input A to TV Signal Generator Inverted ............................................. Test Tool Screen for PAL/SECAM line 310 Negative Video .............................. Test Tool Screen for NTSC line 262 Negative Video .......................................... Version & Calibration Screen ............................................................................... Display Test Pattern .............................................................................................. HF Gain Calibration Input Connections................................................................ 5500A Scope Output to Input A............................................................................ 5500A Scope Output to Input B ............................................................................ Volt Gain Calibration Input Connections <300V ................................................. Volt Gain Calibration Input Connections 500V.................................................... Page 3-2 3-8 3-9 3-12 3-12 3-13 3-15 3-15 3-19 3-21 3-22 3-24 3-28 4-4 4-6 4-7 4-9 4-11 4-19 4-20 4-23 4-24 4-24 4-25 4-25 4-25 4-26 4-26 5-3 5-6 5-7 5-9 5-11 5-12 5-13 123 Service Manual 5-8. 5-9. 5-10. 6-1. 6-2. 6-3. 6-4. 6-5. 7-1. 7-2. 8-1. 8-2. 9-1. 9-2. 9-3. 9-4. 9-5. 9-6. 9-7. 9-8. 9-9. 9-10. Four-wire Ohms calibration connections .............................................................. Capacitance Gain Calibration Input Connections ................................................. 20 V Supply Cable for Calibration........................................................................ Fluke 123 Main Assembly..................................................................................... Flex Cable Connectors .......................................................................................... Main PCA Unit Assembly..................................................................................... Mounting the display shielding bracket ................................................................ Battery pack installation........................................................................................ Operative Test Tool without Case......................................................................... 20V Supply Cable for Loading Software .............................................................. Fluke 123 Final Assembly..................................................................................... Main PCA Unit...................................................................................................... Circuit Diagram 1, Channel A Circuit................................................................... Circuit Diagram 2, Channel B Circuit................................................................... Circuit Diagram 3, Trigger Circuit........................................................................ Circuit Diagram 4, Digital Circuit......................................................................... Circuit Diagram 4 (cont), Digital Circuit Keyboard ............................................. Circuit Diagram 5, Power Circuit.......................................................................... Main PCA side 1 ................................................................................................... Main PCA side 2 ................................................................................................... Main PCA side 1, PCB version 8 .......................................................................... Main PCA side 2, PCB version 8 .......................................................................... 5-14 5-15 5-16 6-4 6-5 6-7 6-9 6-9 7-3 7-17 8-5 8-6 9-7 9-8 9-9 9-10 9-11 9-12 9-13 9-14 9-15 9-16 Chapter 1 Safety Instructions Title 1.1 Introduction................................................................................................. 1.2 Safety Precautions....................................................................................... 1.3 Caution and Warning Statements................................................................ 1.4 Symbols....................................................................................................... 1.5 Impaired Safety ........................................................................................... 1.6 General Safety Information......................................................................... Page 1-3 1-3 1-3 1-3 1-4 1-4 1-1 Safety Instructions 1.1 Introduction 1 1.1 Introduction Read these pages carefully before beginning to install and use the instrument. The following paragraphs contain information, cautions and warnings which must be followed to ensure safe operation and to keep the instrument in a safe condition. Warning Servicing described in this manual is to be done only by qualified service personnel. To avoid electrical shock, do not service the instrument unless you are qualified to do so. 1.2 Safety Precautions For the correct and safe use of this instrument it is essential that both operating and service personnel follow generally accepted safety procedures in addition to the safety precautions specified in this manual. Specific warning and caution statements, where they apply, will be found throughout the manual. Where necessary, the warning and caution statements and/or symbols are marked on the instrument. 1.3 Caution and Warning Statements Caution Used to indicate correct operating or maintenance procedures to prevent damage to or destruction of the equipment or other property. Warning Calls attention to a potential danger that requires correct procedures or practices to prevent personal injury. 1.4 Symbols Read the safety information in the Users Manual DOUBLE INSULATION (Protection Class) Equal potential inputs, connected internally Static sensitive components (black/yellow). Live voltage Recycling information Earth Disposal information Conformité Européenne 1-3 123 Service Manual 1.5 Impaired Safety Whenever it is likely that safety has been impaired, the instrument must be turned off and disconnected from line power. The matter should then be referred to qualified technicians. Safety is likely to be impaired if, for example, the instrument fails to perform the intended measurements or shows visible damage. 1.6 General Safety Information Warning Removing the instrument covers or removing parts, except those to which access can be gained by hand, is likely to expose live parts and accessible terminals which can be dangerous to life. The instrument shall be disconnected from all voltage sources before it is opened. Capacitors inside the instrument can hold their charge even if the instrument has been separated from all voltage sources. Components which are important for the safety of the instrument may only be replaced by components obtained through your local FLUKE organization. These parts are indicated with an asterisk (*) in the List of Replaceable Parts, Chapter 8. 1-4 Chapter 2 Characteristics Title 2.1 Introduction................................................................................................. 2.2 Dual Input Oscilloscope.............................................................................. 2.2.1 Vertical ................................................................................................ 2.2.2 Horizontal ............................................................................................ 2.2.3 Trigger ................................................................................................. 2.2.4 Advanced Scope Functions.................................................................. 2.3 Dual Input Meter ......................................................................................... 2.3.1 Input A and Input B ............................................................................. 2.3.2 Input A ................................................................................................. 2.3.3 Advanced Meter Functions.................................................................. 2.4 Miscellaneous ............................................................................................. 2.5 Environmental ............................................................................................. 2.6 Service and Maintenance ............................................................................ 2.7 Safety .......................................................................................................... 2.8 EMC Immunity ........................................................................................... Page 2-3 2-3 2-3 2-4 2-4 2-5 2-5 2-5 2-8 2-8 2-9 2-10 2-11 2-11 2-12 2-1 Characteristics 2.1 Introduction 2 2.1 Introduction Performance Characteristics FLUKE guarantees the properties expressed in numerical values with the stated tolerance. Specified non-tolerance numerical values indicate those that could be nominally expected from the mean of a range of identical ScopeMeter test tools. Environmental Data The environmental data mentioned in this manual are based on the results of the manufacturer’s verification procedures. Safety Characteristics The test tool has been designed and tested in accordance with Standards ANSI/ISA S82.01-1994, EN 61010-1 (1993) (IEC 1010-1), CAN/CSA-C22.2 No.1010.1-92 (including approval), UL3111-1 (including approval) Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use. Use of this equipment in a manner not specified by the manufacturer may impair protection provided by the equipment. 2.2 Dual Input Oscilloscope 2.2.1 Vertical Frequency Response DC Coupled: excluding probes and test leads: with STL120 1:1 shielded test leads: DC to 20 MHz (-3 dB) DC to 12.5 MHz (-3 dB) DC to 20 MHz (-6 dB) with PM8918 10:1 probe: (optional accessory) DC to 20 MHz (-3 dB) AC Coupled (LF roll off): excluding probes and test leads with STL120 with PM8918 <10 Hz (-3 dB) <10 Hz (-3dB) <1 Hz (-3 dB) Rise Time excluding probes and test leads <17.5 ns Input Impedance excluding probes and test leads with BB120 with STL120 with PM8918 1 MΩ//12 pF 1 MΩ//20 pF 1 MΩ//225 pF 10 MΩ//15 pF Sensitivity 5 mV to 500 V/div Display Modes A, -A, B, -B 2-3 123 Service Manual Max. Input Voltage A and B direct or with test leads 600 Vrms with BB120 300 Vrms (For detailed specifications see “2.7 Safety”) Max. Floating Voltage from any terminal to ground 600 Vrms, up to 400Hz Resolution 8 bit Vertical Accuracy ±(1% + 0.05 range/div) Max. Vertical Move ±4 divisions Max. Base Line Jump After changing time base or sensitivity Normal & Single mode ±0.04 divisions (= ±1 pixel) 2.2.2 Horizontal Scope Modes Normal, Single, Roll Ranges Normal: equivalent sampling real time sampling 20 ns to 500 ns/div 1 µs to 5 s/div Single (real time) 1 µs to 5 s/div Roll (real time) 1s to 60 s/div Sampling Rate (for both channels simultaneously) Equivalent sampling (repetitive signals) up to 1.25 GS/s Real time sampling: 1 µs to 5 ms/div 10 ms to 5 s/div 25 MS/s 5 MS/s Time Base Accuracy Equivalent sampling Real time sampling ±(0.4% +0.04 time/div) ±(0.1% +0.04 time/div) Glitch Detection ≥40 ns @ 20 ns to 5 ms/div ≥200 ns @ 10 ms to 60 s/div Glitch detection is always active. Horizontal Move 10 divisions Trigger point can be positioned anywhere across the screen. 2.2.3 Trigger 2-4 Screen Update Free Run, On Trigger Source A, B, EXT EXTernal via optically isolated trigger probe ITP120 (optional accessory) Characteristics 2.3 Dual Input Meter 2 Sensitivity A and B @ DC to 5 MHz @ 25 MHz @ 40 MHz 0.5 divisions or 5 mV 1.5 divisions 4 divisions Voltage level error ±0.5 div. max. Slope Positive, Negative Video on A Interlaced video signals only Modes Standards Polarity Sensitivity Lines, Line Select PAL , NTSC, PAL+, SECAM Positive, Negative 0.6 divisions sync. 2.2.4 Advanced Scope Functions Display Modes Normal Smooth Envelope Captures up to 40 ns glitches and displays analog-like persistence waveform. Suppresses noise from a waveform. Records and displays the minimum and maximum of waveforms over time. Auto Set Continuous fully automatic adjustment of amplitude, time base, trigger levels, trigger gap, and hold-off. Manual override by user adjustment of amplitude, time base, or trigger level. 2.3 Dual Input Meter The accuracy of all measurements is within ± (% of reading + number of counts) from 18 °C to 28 °C. Add 0.1x (specific accuracy) for each °C below 18 °C or above 28 °C. For voltage measurements with 10:1 probe, add probe uncertainty +1%. More than one waveform period must be visible on the screen. 2.3.1 Input A and Input B DC Voltage (VDC) Ranges 500 mV, 5V, 50V, 500V, 1250V Accuracy ±(0.5% +5 counts) Turnover ±12 counts Normal Mode Rejection (SMR) >60 dB @ 50 or 60 Hz ±1% Common Mode Rejection (CMRR) >100 dB @ DC >60 dB @ 50, 60, or 400 Hz Full Scale Reading 5000 counts Move influence ±6 counts max. 2-5 123 Service Manual True RMS Voltages (VAC and VAC+DC) Ranges 500 mV, 5V, 50V, 500V, 1250V Accuracy for 5 to 100% of range DC coupled: DC to 60 Hz (VAC+DC) 1 Hz to 60 Hz (VAC) AC or DC coupled: 60 Hz to 20 kHz 20 kHz to 1 MHz 1 MHz to 5 MHz 5 MHz to 12.5 MHz 5 MHz to 20 MHz AC coupled with 1:1 (shielded) test leads: 60 Hz (6 Hz with 10:1 probe) 50 Hz (5 Hz with 10:1 probe) 33 Hz (3.3 Hz with 10:1 probe) 10 Hz (1 Hz with 10:1 probe) ±(1% +10 counts) ±(1% +10 counts) ±(2.5% +15 counts) ±(5% +20 counts) ±(10% +25 counts) ±(30% +25 counts) ±(30% +25 counts), excluding test leads or probes -1.5% -2% -5% -30% DC Rejection (only VAC) >50 dB Common Mode Rejection (CMRR) >100 dB @ DC >60 dB @ 50, 60, or 400 Hz Full Scale Reading 5000 counts The reading is independent of any signal crest factor. Move influence ±6 counts max. Peak Modes Max peak, Min peak, or pk-to-pk Ranges 500 mV, 5V, 50V, 500V, 1250V Accuracy: Max peak or Min peak Peak-to-Peak Full Scale Reading 5% of full scale 10% of full scale 500 counts Frequency (Hz) Ranges 1Hz, 10Hz, 100Hz, 1 kHz, 10 kHz, 100 kHz,1 MHz, 10 MHz, 40 MHz Frequency Range for Continuous Autoset 15Hz (1Hz) to 30 MHz Accuracy: @1Hz to 1 MHz @1 MHz to 10 MHz @10 MHz to 40 MHz Full Scale Reading 2-6 ±(0.5% +2 counts) ±(1.0% +2 counts) ±(2.5% +2 counts) 10 000 counts Characteristics 2.3 Dual Input Meter 2 Duty Cycle (DUTY) Range 2% to 98% Frequency Range for Continuous Autoset 15Hz (1Hz) to 30 MHz Accuracy: @1Hz to 1 MHz @1 MHz to 10 MHz @10 MHz to 40 MHz Resolution ±(0.5% +2 counts) ±(1.0% +2 counts) ±(2.5% +2 counts) 0.1% Pulse Width (PULSE) Frequency Range for Continuous Autoset 15Hz (1Hz) to 30 MHz Accuracy: @1Hz to 1 MHz @1 MHz to 10 MHz @10 MHz to 40 MHz Full Scale reading Amperes (AMP) ±(0.5% +2 counts) ±(1.0% +2 counts) ±(2.5% +2 counts) 1000 counts with optional current probe Ranges same as VDC, VAC, VAC+DC, or PEAK Scale Factor 1 mV/A, 10 mV/A, 100 mV/A, and 1 V/A Accuracy same as VDC, VAC, VAC+DC, or PEAK (add current probe uncertainty) Temperature (TEMP) with optional temperature probe Range 200 °C/div (200 °F/div) Scale Factor 1 mV/°C and 1 mV/°F Accuracy as VDC (add temperature probe uncertainty) Decibel (dB) 0 dBV 1V 0 dBm (600Ω /50Ω) 1 mW, referenced to 600Ω or 50Ω dB on VDC, VAC, or VAC+DC Full Scale Reading 1000 counts Crest Factor (CREST) Range 1 to 10 Accuracy ±(5% +1 count) Full Scale Reading 100 counts Phase Modes A to B, B to A Range 0 to 359 degrees Accuracy ±(1 degree +1 count) Resolution 1 degree 2-7 123 Service Manual 2.3.2 Input A Ohm (Ω Ω) Ranges 500Ω, 5 kΩ, 50 kΩ, 500 kΩ, 5 MΩ, 30 MΩ Accuracy ±(0.6% +5 counts) Full Scale Reading 500Ω to 5 MΩ 30 MΩ 5000 counts 3000 counts Measurement Current 0.5 mA to 50 nA decreases with increasing ranges Open Circuit Voltage <4V Continuity (CONT) Beep 30Ω ± 5Ω in 50Ω range Measurement Current 0.5 mA Detection of shorts of ≥1 ms Diode Maximum Voltage: @0.5 mA @open circuit >2.8V <4V Accuracy ±(2% +5 counts) Measurement Current 0.5 mA Polarity + on input A, - on COM Capacitance (CAP) Ranges 50 nF, 500 nF, 5 µF, 50 µF, 500 µF Accuracy ±(2% +10 counts) Full Scale Reading 5000 counts Measurement Current 5 µA to 0.5 mA, increases with increasing ranges Measurement principle Dual slope integrating measurement with parasitic serial and parallel resistance cancellation. 2.3.3 Advanced Meter Functions 2-8 Zero Set Set actual value to reference Fast/Normal/Smooth Meter settling time Fast Meter settling time Normal Meter settling time Smooth 1s @ 1µs to 10 ms/div 2s @ 1µs to 10 ms/div 10s @ 1µs to 10 ms/div Characteristics 2.4 Miscellaneous Touch Hold (on A) Captures and freezes a stable measurement result. Beeps when stable. Touch Hold works on the main meter reading , with threshholds of 1 Vpp for AC signals and 100mV for DC signals. TrendPlot Graphs meter readings of the Min and Max values from 15 s/div (120 seconds) to 2 days/div (16 days) with time and date stamp. Automatic vertical scaling and time compression. Displays the actual and Minimum, Maximum, or average (AVG) reading. Fixed Decimal Point Possible by using attenuation keys. 2 2.4 Miscellaneous Display Size 72 x 72 mm (2.83 x 2.83 in) Resolution 240 x 240 pixels Waveform display: Vertical Horizontal 8 divisions of 20 pixels 9.6 divisions of 25 pixels Backlight Cold Cathode Fluorescent (CCFL) Power External: Input Voltage Power Input Connector Internal: Battery Power Operating Time Charging Time Allowable ambient temperature during charging via Power Adapter PM8907 10 to 21V DC 5W typical 5 mm jack Rechargeable Ni-Cd 4.8V 4 hours with bright backlight 5 hours with dimmed backlight 4 hours with test tool off 12 hours with test tool on 12 hours with refresh cycle 0 to 45 °C (32 to 113 °F) Memory Number of Screens Number of User Setups 2 10 Mechanical Size Weight 232 x 115 x 50 mm (9.1 x 4.5 x 2 in) 1.1 kg (2.5 lbs), including battery pack. 2-9 123 Service Manual Interface To Printer To PC RS-232, optically isolated supports Epson FX, LQ, and HP Deskjet, Laserjet, and Postscript Serial via PM9080 (optically isolated RS232 adapter/cable, optional). Parallel via PAC91 (optically isolated print adapter cable, optional). Dump and load settings and data. Serial via PM9080 (optically isolated RS232 adapter/cable, optional), using SW90W (FlukeView software for Windows). 2.5 Environmental Environmental MIL 28800E, Type 3, Class III, Style B Temperature Operating Storage 0 to 50 °C (32 to 122 °F) -20 to 60 °C (-4 to 140 °F) Humidity Operating: @0 to 10 °C (32 to 50 °F) @10 to 30 °C (50 to 86 °F) @30 to 40 °C (86 to 104 °F) @40 to 50 °C (104 to 122 °F) Storage: @-20 to 60 °C (-4 to 140 °F) noncondensing 95% 75% 45% noncondensing Altitude Operating Storage 4.5 km (15 000 feet) Max. Input and Floating Voltage 600 Vrms up to 2 km, linearly derating to 400 Vrms @ 4.5 km 12 km (40 000 feet) Vibration max. 3g Shock max. 30g Fungus Resistance MIL28800E, Class 3, 3.7.7 & 4.5.6.1 Salt Exposure MIL28800E, Class 3, 3.7.8.2 & 4.5.6.2.2. Structural parts meet 48 hours 5% salt solution test. Electromagnetic Compatibility (EMC) Emission EN 50081-1 (1992): EN55022 and EN60555-2 Immunity EN 50082-2(1992): IEC1000-4-2, -3, -4, -5 (see also Section 2.8, Tables 2-1 to 2-3) Enclosure Protection 2-10 IP51, ref: IEC529 Characteristics 2.6 Service and Maintenance 2 2.6 Service and Maintenance Calibration Interval 1 Year 2.7 Safety Designed for measurements on 600 Vrms Category III Installations, Pollution Degree 2, per: • ANSI/ISA S82.01-1994 • EN61010-1 (1993) (IEC1010-1) • CAN/CSA-C22.2 No.1010.1-92 (including approval) • UL3111-1 (including approval) Max. Input Voltage Input A and B Direct on input or with leads 600 Vrms. For derating see Figure 2-1. With Banana-to-BNC Adapter BB120 300V rms. For derating see Figure 2-1. Max. Floating Voltage from any terminal to ground 600 Vrms up to 400Hz ST8112.CGM Figure 2-1. Maximum Input Voltage vs Frequency 2-11 123 Service Manual 2.8 EMC Immunity The Fluke 123, including standard accessories, conforms with the EEC directive 89/336 for EMC immunity, as defined by IEC1000-4-3, with the addition of tables 2-1 to 2-3. Trace Disturbance with STL120 See Table 2-1 and Table 2-2. Table 2-1. No Visible Trace Disturbance No visible disturbance Frequency range 10 kHz to 27 MHz Frequency range 27 MHz to 1 GHz E= 3 V/m E= 10 V/m 50 mV/div to 500 V/div 50 mV/div to 500 V/div 500 mV/div to 500 V/div 50 mV/div to 500 V/div Table 2-2. Trace Disturbance < 10% Disturbance less than 10% of full scale Frequency range 10 kHz to 27 MHz Frequency range 2 MHz to 1 GHz E= 3 V/m E= 10 V/m 10 mV/div to 20 mV/div 5 mV/div to 20 mV/div 50 mV/div to 200 mV/div - (-): no visible disturbance Test tool ranges not specified in Table 2-1 and Table 2-2 may have a disturbance of more than 10% of full scale. Multimeter disturbance See Table 2-3. • VDC, VAC, and VAC+DC with STL 120 and short ground lead • OHM, CONT, DIODE, and CAP with STL120 and black test lead to COM Table 2-3. Multimeter Disturbance < 1% Disturbance less than 1% of full scale Frequency range 10 kHz to 27 MHz VDC, VAC, VAC+DC OHM, CONT, DIODE CAP Frequency range 27 MHz to 1 GHz VDC, VAC, VAC+DC OHM, CONT, DIODE CAP E= 3 V/m E= 10 V/m 500 mV to 1250V 500Ω to 30 MΩ 50 nF to 500 µF 500 mV to 1250V 500Ω to 30 MΩ 50 nF to 500 µF 500 mV to 1250V 500Ω to 30 MΩ 50 nF to 500 µF 500 mV to 1250V 500Ω to 30 MΩ 50 nF to 500 µF Test tool ranges not specified in Table 2-3 may have a disturbance of more than 10% of full scale. 2-12 Chapter 3 Circuit Descriptions Title 3.1 Introduction................................................................................................. 3.2 Block Diagram ............................................................................................ 3.2.1 Channel A, Channel B Measurement Circuits..................................... 3.2.2 Trigger Circuit ..................................................................................... 3.2.3 Digital Circuit ...................................................................................... 3.2.4 Power Circuit ....................................................................................... 3.2.5 Start-up Sequence, Operating Modes .................................................. 3.3 Detailed Circuit Descriptions...................................................................... 3.3.1 Power Circuit ....................................................................................... 3.3.2 Channel A - Channel B Measurement Circuits ................................... 3.3.3 Trigger Circuit ..................................................................................... 3.3.4 Digital Circuit ...................................................................................... Page 3-3 3-3 3-4 3-4 3-5 3-6 3-7 3-9 3-9 3-15 3-20 3-25 3-1 123 Service Manual ST7965.EPS Figure 3-1. Fluke 123 Block Diagram 3-2 Circuit Descriptions 3.1 Introduction 3 3.1 Introduction Section 3.2 describes the functional block diagram shown in Figure 3-1. It provides a quick way to get familiar with the test tool basic build-up. Section 3.3 describes the principle of operation of the test tool functions in detail, on the basis of the circuit diagrams shown in Figures 9-1 to 9-5. For all measurements, input signals are applied to the shielded input banana jackets. Traces and readings are derived from the same input signal samples. So readings are related to the displayed readings. 3.2 Block Diagram In the overall block diagram Figure 3-1, the test tool is divided in five main blocks. Each block represents a functional part, build up around an Application Specific Integrated Circuit (ASIC). A detailed circuit diagram of each block is shown in Section 9. See Table 3-1. for an overview of the blocks in which the test tool is broken down, the main block function, the ASIC name, and the applicable circuit diagram. Table 3-1. Fluke 123 Main Blocks Block Main Functions ASIC Circuit Diagram CHANNEL A Input A signal (V-Ω-F) conditioning C(hannel)-ASIC OQ0258 Figure 9-1 CHANNEL B Input B signal (V) conditioning C(hannel)-ASIC OQ0258 Figure 9-2 TRIGGER Trigger selection and conditioning T(rigger)-ASIC OQ0257 Figure 9-3 D(igital)-ASIC MOT0002 Figure 9-4 P(ower)-ASIC OQ0256 Figure 9-5 Current source for resistance, capacitance, continuity, and diode measurements AC/DC input coupling and Ω/F relay control Voltage reference source DIGITAL Analog to Digital Conversion Acquisition of ADC samples Micro controller (µP-ROM-RAM) Keyboard- and LCD control POWER Power supply, battery charger LCD back light voltage converter Optical interface input All circuits, except the LCD unit and the KEYBOARD, are located on one Printed Circuit Board (PCB), called the MAIN PCB. The ASIC’s are referred to as C-ASIC (Channel ASIC), T-ASIC (Trigger ASIC), P-ASIC (Power ASIC), and D-ASIC (Digital ASIC). 3-3 123 Service Manual 3.2.1 Channel A, Channel B Measurement Circuits The Channel A and Channel B circuit are similar. The only difference is that Channel A can do all measurements, whereas Channel B does not provide resistance, diode, and capacitance measurements. Volts, and derived measurements (e.g. current with optional probe) The input voltage is supplied to the C-ASIC, via the LF and HF path. The C-ASIC converts (attenuates, amplifies) the input signal to a normalized output voltage ADCA/ADC-B, which is supplied to the Analog to Digital Converters (ADC-A and ADC-B) on the DIGITAL part. The D-ASIC acquires the digital samples to build the trace, and to calculate readings. For the HF and LF attenuation section of the C-ASIC some external components are required: the HF DECade ATTenuator and LF DECade ATTenuator section. Resistance, continuity, and diode measurements (Input A only) The T-ASIC supplies a current via the Ω/F relays to the unknown resistance Rx, connected to the Input A and the COM input jacket. The voltage drop across Rx is measured as for voltage measurements. Capacitance measurements (Input A only) The T-ASIC supplies a current via the Ω/F relays to the unknown capacitance Cx, connected to the Input A and the COM input jacket. Cx is charged and discharged by this current. The C-ASIC converts the charging time and the discharging time into a pulse width signal. This signal is supplied to the T-ASIC via the C-ASIC trigger output TRIG-A. The T-ASIC shapes and levels the signal, and supplies the resulting pulse width signal ALLTRIG to the D-ASIC. The D-ASIC counts the pulse width and calculates the capacitance reading. When the capacitance function is selected no other measurement or wave form display is possible. There is only a numeric readout of the capacitance value. Frequency, pulse width, and duty cycle measurements The input voltage is measured as described above. From the ADC samples to built the trace, also the frequency, pulse width, and duty cycle of the input signal are calculated. Miscellaneous Control of the C-ASIC, e.g. selecting the attenuation factor, is done by the D-ASIC via the SDAT and SCLK serial communication lines. An offset compensation voltage and a trace position control voltage are provided by the D-ASIC via the APWM bus. The C-ASIC’s also provide conditioned input voltages on the TRIG-A/TRIG-B line. These voltages can be selected as trigger source by the T-ASIC. 3.2.2 Trigger Circuit The T ASIC selects one of the possible trigger sources TRIG-A (Input A) or TRIG-B (Input B). For TV triggering the selected trigger source signal is processed via the Sync(hronization) Pulse Separator circuit (TVOUT-TVSYNC lines). Two adjustable trigger levels are supplied by the D-ASIC via the PWM FILTERS (TRIGLEV1 and TRIGLEV2 line). Depending on the selected trigger conditions (- source, - level, - edge, - mode), the T-ASIC generates the final trigger signal TRIGDT, which is supplied to the D-ASIC. 3-4 Circuit Descriptions 3.2 Block Diagram 3 Note External triggers, supplied via the optical interface RXDA line, are buffered by the P-ASIC, and then supplied to the D-ASIC (RXD signal). The TRIG-A input is also used for capacitance measurements, as described in Section 3.2.1. The T-ASIC includes a constant current source for resistance and capacitance measurements. The current is supplied via the GENOUT output and the Ω/F relays to the unknown resistance Rx or capacitance Cx connected to Input A. The SENSE signal senses the voltage across Cx and controls a CLAMP circuit in the T-ASIC. This circuit limits the voltage on Input A at capacitance measurements. The protection circuit prevents the T-ASIC from being damaged by voltages supplied to the input during resistance or capacitance measurements. For probe adjustment, a voltage generator circuit in the T-ASIC can provide a square wave voltage via the GENOUT output to the Input A connector. The T-ASIC contains opamps to derive reference voltages from a 1.23V reference source. The gain factors for these opamps are determined by resistors in the REF GAIN circuit. The reference voltages are supplied to various circuits. The T-ASIC also controls the Channel A and B AC/DC input coupling relays, and the Ω/F relays. Control data for the T-ASIC are provided by the D-ASIC via the SDAT and SCLK serial communication lines. 3.2.3 Digital Circuit The D-ASIC includes a micro processor, ADC sample acquisition logic, trigger processing logic, display and keyboard control logic, I/O ports, and various other logic circuits. The instrument software is stored in the FlashROM, the RAM is used for temporary data storage. The RESET ROM circuit controls the operating mode of the FlashROM (reset, programmable, operational). For Voltage and Resistance measurements, the conditioned Input A/ Input B voltages are supplied to the ADC-A and ADC-B ADC. The voltages are sampled, and digitized by the ADC’s. The output data of the ADC’s are acquired and processed by the D-ASIC. For capacitance measurements, the ALLTRIG signal generated by the T-ASIC, is used. The D-ASIC counts the ALLTRIG signal pulse width, which is proportional to the unknown capacitance. The DPWM-BUS (Digital Pulse Width Modulation) supplies square wave signals with a variable duty cycle to the PWM FILTERS circuit (RC filters). The outgoing APWMBUS (Analog PWM) provides analog signals of which the amplitude is controlled by the D-ASIC. These voltages are used to control e.g. the trace positions (C-ASIC), the trigger levels (T-ASIC), and the battery charge current (P-ASIC). In random sampling mode (time base faster than 1 µs/div.), a trace is built-up from several acquisition cycles. During each acquisition, a number of trace samples are placed as pixels in the LCD. The RANDOMIZE circuit takes care that the starting moment of each acquisition cycle (trigger release signal HOLDOFF goes low) is random. This prevents that at each next acquisition the trace is sampled at the same time positions, and that the displayed trace misses samples at some places on the LCD. The D-ASIC supplies control data and display data to the LCD module. The LCD module is connected to the main board via connector X453. It consists of the LCD, LCD 3-5 123 Service Manual drivers, and a fluorescent back light lamp. As the module is not repairable, no detailed description and diagrams are provided. The back light supply voltage is generated by the back light converter on the POWER part. The keys of the keyboard are arranged in a matrix. The D-ASIC drives the rows and scans the matrix. The contact pads on the keyboard foil are connected to the main board via connector X452. The ON-OFF key is not included in the matrix, but is sensed by a logic circuit in the D-ASIC, that is active even when the test tool is turned off. Via the PROBE-A and PROBE-B lines, connected to the Input A and Input B banana shielding, the D-ASIC can detect if a probe is connected. This function is not supported by the Fluke 123 software. The D-ASIC sends commands to the C-ASICs and T-ASIC via the SCLK and SDAT serial control lines, e.g. to select the required trigger source. Various I/O lines are provided, e.g. to control the BUZZER and the Slow-ADC (via the SADC bus. 3.2.4 Power Circuit The test tool can be powered via the power adapter, or by the battery pack. If the power adapter is connected, it powers the test tool and charges the battery via the CHARGER-CONVERTER circuit. The battery charge current is sensed by sense resistor Rs (signal IBAT). It is controlled by changing the output current of the CHARGER-CONVERTER (control signal CHAGATE). If no power adapter is connected, the battery pack supplies the VBAT voltage. The VBAT voltage powers the P-ASIC, and is also supplied to the FLY BACK CONVERTER (switched mode power supply). If the test tool is turned on, the FLY BACK CONVERTER generates supply voltages for various test tool circuits. The +3V3GAR supply voltage powers the D-ASIC, RAM and ROM. If the test tool is turned off, the battery supplies the +3V3GAR voltage via transistor V569. This transistor is controlled by the P-ASIC. So when the test tool is turned off, the D-ASIC can still control the battery charging process (CHARCURR signal), the real time clock, the on/off key, and the serial RS232 interface (to turn the test tool on). To monitor and control the battery charging process, the P-ASIC senses and buffers various battery signals, as e.g. temperature (TEMP), voltage (BATVOLT), current (IBAT). Via the SLOW ADC various analog signals can be measured by the D-ASIC. Involved signals are: battery voltage (BATVOLT), battery type (IDENT), battery temperature (TEMP), battery current (BATCUR) LCD temperature (LCDTEMP, from LCD unit), and 3 test output pins of the C-ASIC’s, and the T-ASIC (DACTEST). The signals are used for control and test purposes. The BACK LIGHT CONVERTER generates the 400V ! supply voltage for the LCD fluorescent back light lamp. If the lamp is defective a 1.5 kV voltage can be present for 0.2 second maximum. The brightness is controlled by the BACKBRIG signal supplied by the D-ASIC. Serial communication with a PC or printer is possible via the RS232 optically isolated interface. This interface is also used for external trigger input using the Isolated Trigger Probe. The P-ASIC buffers the received data line (RXDA) and supplies the buffered data (RXD) to the D-ASIC. The transmit data line TXD is directly connected to the DASIC. 3-6 Circuit Descriptions 3.2 Block Diagram 3 A linear regulator in the P-ASIC derives a +12V voltage from the power adapter voltage. The +12V is used as programming voltage for the Flash EPROM on the Digital part. 3.2.5 Start-up Sequence, Operating Modes The test tool sequences through the following steps when power is applied (see also Figure 3-2): 1. The P-ASIC is directly powered by the battery or power adapter voltage VBAT. Initially the Fly Back Converter is off, and the D-ASIC is powered by VBAT via transistor V569 (+3V3GAR). If the voltage +3V3GAR is below 3.05V, the P-ASIC keeps its output signal VGARVAL (supplied to the D-ASIC) low, and the D-ASIC will not start up. The test tool is not working, and is in the Idle mode. 2. If the voltage +3V3GAR is above 3.05V, the P-ASIC makes the line VGARVAL high, and the D-ASIC will start up. The test tool is operative now. If it is powered by batteries only, and not turned on, it is in the Off mode. In this mode the DASIC is active: the real time clock runs, and the ON/OFF key is monitored to see if the test tool will be turned on. 3. If the power adapter is connected (P-ASIC output MAINVAL high), and/or the test tool is turned on, the embedded D-ASIC program, called mask software, starts up. The mask software checks if valid instrument software is present in the Flash ROM’s. If not, the test tool does not start up and the mask software continues running until the test tool is turned off, or the power is removed. This is called the Mask active mode. The mask active mode can also be entered by pressing the ^ and > key when turning on the test tool. If valid instrument software is present, one of the following modes will become active: Charge mode The Charge mode is entered when the test tool is powered by the power adapter, and is turned off. The FLY-BACK CONVERTER is off. The CHARGERCONVERTER charges the batteries (if installed). Operational & Charge mode The Operational & Charge mode is entered when the test tool is powered by the power adapter, and is turned on. The FLY-BACK CONVERTER is on, the CHARGER-CONVERTER supplies the primary current. If batteries are installed, they will be charged. In this mode a battery refresh (see below) can be done. Operational mode The Operational mode is entered when the test tool is powered by batteries only, and is turned on. The FLY-BACK CONVERTER is on, the batteries supply the primary current. If the battery voltage (VBAT) drops below 4V when starting up the fly back converter, the Off mode is entered. 3-7 123 Service Manual Battery Refresh In the following situations the batteries will need a deep discharge-full charge cycle, called a “refresh”: • every 50 not-full discharge/charge cycles, or each 6 months. This prevents battery capacity loss due to the memory effect. • after the battery has been removed, as the test tool does not know the battery status then. The user will be prompted for this action when he turns the test tool on, directly following the start up screen. A refresh cycle takes 16 hours maximum, depending on the battery status. It can be started via the keyboard (USER OPTIONS, F1, activate refresh) if the test tool is on, and the power adapter is connected. During a refresh, first the battery is completely charged, then it is completely discharged (the test tool is powered by the battery only, and the power adapter must be connected!), and then it is completely charged again. VGARVAL=L Idle mode VGARVAL=H Off mode TURN ON or MAINVAL=H Flash ROM NOT OK Mask StartUp OR & Flash ROM OK Extern StartUp Software TURN ON & BATTVOLT > 4 & MAINVAL=L Mask Active mode TURN OFF & TURN ON MAINVAL=L & (TURN OFF or BATTVOLT<4V) TURN OFF&MAINVAL=H TURN ON & MAINVAL=H Operational Mode MAINVAL=H MAINVAL=L BATTVOLT < 4V or AutoShutDown or TURN OFF Operational & Charge Mode TURN OFF Charge Mode TURN ON MAINVAL=L Battery refresh Figure 3-2. Fluke 123 Start-up Sequence, Operating Modes Table 3-2 shows an overview of the test tool operating modes. 3-8 Circuit Descriptions 3.3 Detailed Circuit Descriptions 3 Table 3-2. Fluke 123 Operating Modes Mode Conditions Remark Idle mode No power adapter and no battery no activity Off mode No power adapter connected, battery installed, test tool off P-ASIC & D-ASIC powered (VBAT & +3V3GAR). Mask active mode No valid instrument software, or ^ and > key pressed when turning on Mask software runs Charge mode Power adapter connected and test tool off Batteries will be charged Operational & Charge mode Power adapter connected and test tool on Test tool operational, and batteries will be charged Operational mode No power adapter connected, battery installed, and test tool on Test tool operational, powered by batteries 3.3 Detailed Circuit Descriptions 3.3.1 Power Circuit The description below refers to circuit diagram Figure 9-5. Power Sources , Operating Modes Figure 3-3 shows a simplified diagram of the power supply and battery charger circuit. SUPPLY FLY BACK CONVERTER VBAT FROM POWER ADAPTER CHARGER/CONVERTER V506 R503 VBATSUP R513 VBATHIGH C503 R512 R504 R506 R507 R514 R502 C502 60 69 66 64 VGARVAL L501 R501 V503 +3V3GAR V569 R516 7 VBATT 3 TEMP 5 TEMPHI 4 IBATP 9 CHAGATE 16 CHASENSN 14 CHASENSP 15 IIMAXCHA 6 VCHDRIVE 19 VADALOW 8 VADAPTER 20 Vref 78 BATVOLT Amplify Level shift 79 BATTEMP 77 BATCUR 80 CHARCURR CONTROL COSC 43 100kHz C553 12 linear regulator V565 V566 MAINVAL 18 P7VCHA C507 linear regulator 22 +12V POWER ASIC Figure 3-3. Power Supply Block Diagram 3-9 123 Service Manual As described in Section 3.2.5, the test tool operating mode depends on the connected power source. The voltage VBAT is supplied either by the power adapter via V506/L501, or by the battery pack. It powers a part of the P-ASIC via R503 to pin 60 (VBATSUP). If the test tool is off, the Fly Back Converter is off, and VBAT powers the D-ASIC via transistor V569 (+3V3GAR). This +3V3GAR voltage is controlled and sensed by the P-ASIC. If it is NOT OK (<3.05V), the output VGARVAL (pin 64) is low. The VGARVAL line is connected to the D-ASIC, and if the line is low, the D-ASIC is inactive: the test tool is in the Idle mode. A low VGARVAL line operates as a reset for the D-ASIC. If VGARVAL is high (+3V3GAR > 3.05V), the D-ASIC becomes active, and the Off mode is entered. The D-ASIC monitors the P-ASIC output pin 12 MAINVAL, and the test tool ON/OFF status. By pressing the ON/OFF key, a bit in the D-ASIC, indicating the test tool ON/OFF status is toggled. If neither a correct power adapter voltage is supplied (MAINVAL is low), or the test tool is turned on, the Off mode will be maintained. If a correct power adapter voltage is supplied (MAINVAL high), or if the test tool is turned on, the mask software starts up. The mask software checks if valid instrument software is present. If not, e.g. no instrument firmware is loaded, the mask software will keep running, and the test tool is not operative: the test tool is in the Mask active state. For test purposes the mask active mode can also be entered by pressing the ^ and > key when the test tool is turned on. If valid software is present, one of the three modes Operational, Operational & Charge or Charge will become active. The Charger/Converter circuit is active in the Operational & Charge and in the Charge mode. The Fly back converter is active in the Operational and in the Operational & Charge mode. Charger/Converter (See Also Figure 3-3.) The power adapter powers the Charge Control circuit in the P-ASIC via an internal linear regulator. The power adapter voltage is applied to R501. The Charger/Converter circuit controls the battery charge current. If a charged battery pack is installed, VBAT is approximately +4.8V. If no battery pack is installed, VBAT is approximately +15V. The voltage VBAT is supplied to the battery pack, to the P-ASIC, to the Fly Back Converter, and to transistor V569. The FET control signal CHAGATE is a 100 kHz square wave voltage with a variable duty cycle , supplied by the P-ASIC Control circuit. The duty cycle determines the amount of energy loaded into L501/C503. By controlling the voltage VBAT, the battery charge current can be controlled. The various test tool circuits are supplied by the Fly Back Converter, and/or V569. Required power adapter voltage The P-ASIC supplies a current to reference resistor R516 (VADALOW pin 8). It compares the voltage on R516 to the power adapter voltage VADAPTER on pin 20 (supplied via R502, and attenuated in the P-ASIC). If the power adapter voltage is below 10V, the P-ASIC output pin 12, and the line MAINVAL, are low. This signal on pin 12 is also supplied to the P-ASIC internal control circuit, which then makes the CHAGATE signal high. As a result FET V506 becomes non-conductive, and the Charger/Converter is off. Battery charge current control The actual charge current is sensed via resistors R504-R506-507, and filter R509-C509, on pin 9 of the P-ASIC (IBATP). The sense voltage is supplied to the control circuit. The required charge current information is supplied by the D-ASIC via the CHARCUR 3-10 Circuit Descriptions 3.3 Detailed Circuit Descriptions 3 line and filter R534-C534 to pin 80. A control loop in the control circuit adjusts the actual charge current to the required value. The filtered CHARCUR voltage range on pin 80 is 0... 2.7V for a charge current from 0.5A to zero. A voltage of 0V complies to 0.5A (fast charge), 1.5V to 0.2A (top off charge), 2.3V to 0.06A (trickle charge), and 2.7V to 0A (no charge). If the voltage is > 3 Volt, the charger converter is off (V506 permanently non-conductive). The D-ASIC derives the required charge current value from the battery voltage VBAT. The P-ASIC converts this voltage to an appropriate level and supplies it to output pin 78 (BATVOLT). The D-ASIC measures this voltage via the Slow ADC. The momentary value, and the voltage change as a function of time (-dV/dt), are used as control parameters. Charging process If the battery voltage drops below 5.2V, and the battery temperature is between 10 and 45°C, the charge current is set to 0.5A (fast charge). From the battery voltage change dV/dt the D-ASIC can see when the battery is fully charged, and stop fast charge. Additionally a timer in the D-ASIC limits the fast charge time to 6 hours. After fast charge, a 0.2A top off charge current is supplied for 2 hours. Then a 0.06A trickle charge current is applied for 48 hours maximum. If the battery temperature becomes higher than 50°C, the charge current is set to zero Battery temperature monitoring The P-ASIC supplies a current to a NTC resistor in the battery pack (TEMP pin 5). It conditions the voltage on pin 5 and supplies it to output pin 79 BATTEMP. The D-ASIC measures this voltage via the slow ADC. It uses the BATTEMP voltage to decide if fast charge is allowed (10-45°C), or no charge is allowed at all (<10°C, >50°C). Additionally the temperature is monitored by the P-ASIC. The P-ASIC supplies a current to reference resistor R512 (TEMPHI pin 4), and compares the resulting TEMPHI voltage to the voltage on pin 5 (TEMP). If the battery temperature is too high, the PASIC Control circuit will set the charge current to zero, in case the D-ASIC fails to do this. If the battery temperature monitoring system fails, a bimetal switch in the battery pack interrupts the battery current if the temperature becomes higher then 70 °C Maximum VBAT The P-ASIC supplies a current to reference resistor R513 (VBATHIGH pin 7). It compares the voltage on R513 to the battery voltage VBAT on pin 3 (after being attenuated in the P-ASIC). The P-ASIC limits the voltage VBAT to 7.4V via its internal Control circuit. This situation arises in case no battery or a defective battery (open) is present. Charger/Converter input current This input current is sensed by R501. The P-ASIC supplies a reference current to R514. The P-ASIC compares the voltage drop on R501 (CHASENSP-CHASENSN pin 14 and 15) to the voltage on R514 (IMAXCHA pin 6). It limits the input current (e.g. when loading C503 and C555 just after connecting the power adapter) via its internal Control circuit. 3-11 123 Service Manual CHAGATE control signal To make the FET conductive its Vgs (gate-source voltage) must be negative. For that purpose, the CHAGATE voltage must be negative with respect to VCHDRIVE. The P-ASIC voltage VCHDRIVE also limits the swing of the CHAGATE signal to 13V. VCHDRIVE V506 “OFF” VCHDRIVE -13V V506 “ON” 10 µs Figure 3-4. CHAGATE Control Voltage +3V3GAR Voltage When the test tool is not turned on, the Fly Back Converter does not run. In this situation, the +3V3GAR voltage for the D-ASIC, the FlashROM, and the RAM is supplied via transistor V569. The voltage is controlled by the VGARDRV signal supplied by the P-ASIC (pin 69). The current sense voltage across R580 is supplied to pin 70 (VGARCURR). The voltage +3V3GAR is sensed on pin 66 for regulation. The internal regulator in the P-ASIC regulates the +3V3GAR voltage, and limits the current. Fly Back Converter When the test tool is turned on, the D-ASIC makes the PWRONOFF line (P-ASIC pin 62) high. Then the self oscillating Fly Back Converter becomes active. It is started up by the internal 100 kHz oscillator that is also used for the Charger/Converter circuit. First the FLYGATE signal turns FET V554 on (see Figure 3-5), and an increasing current flows in the primary transformer winding to ground, via sense resistor R551. If the voltage FLYSENSP across this resistor exceeds a certain value, the P-ASIC turns FET V554 off. Then a decreasing current flows in the secondary windings to ground. If the windings are “empty” (all energy transferred), the voltage VCOIL sensed by the PASIC (pin 52) is zero, and the FLYGATE signal will turn FET V554 on again. Primary current Secondary current V554 “ON” FLYGATE SIGNAL V554 “OFF” Figure 3-5. Fly-Back Converter Current and Control Voltage The output voltage is regulated by feeding back a part of the +3V3A output voltage via R552-R553-R554 to pin 54 (VSENS). This voltage is referred to a 1.23V reference voltage. Any deviation of the +3V3A voltage from the required 3.3V changes the current level at which current FET V554 will be switched off. If the output voltage increases, the current level at which V554 is switched off will become lower, and less energy is transferred to the secondary winding. As a result the output voltage will become lower. An internal current source supplies a current to R559. The resulting voltage is a reference for the maximum allowable primary current (IMAXFLY). The voltage across 3-12 Circuit Descriptions 3.3 Detailed Circuit Descriptions 3 the sense resistor (FLYSENSP) is compared to the IMAXFLY voltage. If the current exceeds the set limit, FET V554 will be turned off. Another internal current source supplies a current to R558. This resulting voltage is a reference for the maximum allowable output voltage (VOUTHI). The -3V3A output voltage (M3V3A) is attenuated and level shifted in the P-ASIC, and then compared to the VOUTHI voltage. If the -3V3A voltage exceeds the set limit, FET V554 will be turned off. The FREQPS control signal is converted to appropriate voltage levels for the FET switch V554 by the BOOST circuit. The voltage VBAT supplies the BOOST circuit power via V553 and R561. The FREQPS signal is also supplied to the D-ASIC, in order to detect if the Fly Back converter is running well. V551 and C552 limit the voltage on the primary winding of T552 when the FET V554 is turned of. The signal SNUB increases the FLYGATE high level to decreases ONresistance of V554 (less power dissipation in V554). VBAT +5VA V561 V553 +3V3A T552 V562 R561 FLYBOOST SNUB -3V3A C552 C551 V551 V563 -30VD 48 47 49 FLYGATE V554 63 FREQPS R551 55 FLYSENSP 57 IMAXFLY 52 VCOIL 58 -3V3A 51 VOUTHI 54 VSENS 62 PWRONOFF 72 REFP (1.23V) V564 BOOST CONTROL COSC C553 43 R559 R570 R558 R552 R554 R553 POWER ASIC Figure 3-6. Fly-Back Converter Block Diagram Slow ADC The Slow ADC enables the D-ASIC to measure the following signals: BATCUR, BATVOLT, BATTEMP, BATIDENT (Battery current, - voltage, temperature, - type ), DACTEST-A, DACTEST-B, and DACTEST-T (test output of the C-ASIC’s and the T-ASIC). De-multiplexer D531 supplies one of these signals to its output, and to the input of comparator N531 TP536). The D-ASIC supplies the selection control signals SELMUX0-2. The Slow ADC works according to the successive approximation principle. The D-ASIC changes the SADCLEV signal level, and thus the voltage level on pin 3 of the comparator step wise, by changing the duty cycle of the PWM signal SADCLEVD. The comparator output SLOWADC is monitored by the D-ASIC, who 3-13 123 Service Manual knows now if the previous input voltage step caused the comparator output to switch. By increasing the voltage steps, the voltage level can be approximated within the smallest possible step of the SADCLEV voltage. From its set SADCLEVD duty cycle, the DASIC knows voltage level of the selected input. RS232 The optical interface is used for two purposes: • enable serial communication (RS232) between the test tool and a PC or printer • enable external triggering using the Isolated Trigger Probe ITP120 The received data line RXDA (P-ASIC pin 75) is connected to ground via a 20 kΩ resistor in the P-ASIC. If no light is received by the light sensitive diode H522, the RXDA line is +200 mV, which corresponds to a “1” (+3V) on the RXD (P-ASIC output pin 76) line. If light is received, the light sensitive diode will conduct, and the RXDA line goes low (0...-0.6V), which corresponds to a “0” on the RXD line. The level on the RXDA line is compared by a comparator in the P-ASIC to a 100 mV level. The comparator output is the RXD line, which is supplied to the D-ASIC for communication, and for external triggering. The D-ASIC controls the transmit data line TXD. If the line is low, diode H521 will emit light. The supply voltage for the optical interface receive circuit (RXDA), is the +3V3SADC voltage. The +3V3SADC voltage is present if the test tool is turned on, or if the Power Adapter is connected (or both). So if the Power Adapter is present, serial communication is always possible, even when the test tool is off. Backlight Converter The LCD back light is provided by a ∅2.4 mm fluorescent lamp in LCD unit. The back light converter generates the 300-400 Vpp ! supply voltage. The circuit consist of: • A pulse width modulated (PWM) buck regulator to generate a variable, regulated voltage (V600, V602, L600, C602). • A zero voltage switched (ZVS) resonant push-pull converter to transform the variable, regulated voltage into a high voltage AC output (V601, T600). The PWM buck regulator consists of FET V600, V602, L600, C602, and a control circuit in N600. FET V600 is turned on and off by a square wave voltage on the COUT output of N600 pin 14). By changing the duty cycle of this signal, the output on C602 provides a variable, regulated voltage. The turn on edge of the COUT signal is synchronized with each zero detect. Outputs AOUT and BOUT of N600 provide complementary drive signals for the pushpull FETs V601a/b (dual FET). If V601a conducts, the circuit consisting of the primary winding of transformer T600 and C608, will start oscillating at its resonance frequency. After half a cycle, a zero voltage is detected on pin 9 (ZD) of N600, V601a will be turned off, and V601b is turned on. This process goes on each time a zero is detected. The secondary current is sensed by R600/R604, and fed back to N600 pin 7 and pin 4 for regulation of the PWM buck regulator output voltage. The BACKBRIG signal supplied by the D-ASIC provides a pulse width modulated (variable duty cycle) square wave. By changing the duty cycle of this signal, the average on-resistance of V604 can be changed. This will change the secondary current, and thus the back light intensity. The voltage on the “cold” side of the lamp is limited by V605 and V603. This limits the emission of electrical interference. 3-14 Circuit Descriptions 3.3 Detailed Circuit Descriptions 3 In PCB versions 8 and newer R605 and R606 provide a more reliable startup of the backlight converter. Voltage at T600 pin 4 Voltage AOUT Voltage BOUT Voltage COUT zero detect zero detect Figure 3-7. Back Light Converter Voltages 3.3.2 Channel A - Channel B Measurement Circuits The description below refers to circuit diagrams Figure 9-1 and Figure 9-2. The Channel A and Channel B circuits are almost identical. Both channels can measure voltage, and do time related measurements (frequency, pulse width, etc.). Channel A also provides resistance, continuity, diode, and capacitance measurements. The Channel A/B circuitry is built-up around a C-ASIC OQ0258. The C-ASIC is placed directly behind the input connector and transforms the input signal to levels that are suitable for the ADC and trigger circuits. The C-ASIC Figure 3-8 shows the simplified C-ASIC block diagram. The C-ASIC consists of separate paths for HF and LF signals, an output stage that delivers signals to the trigger and ADC circuits and a control block that allows software control of all modes and adjustments. The transition frequency from the LF-path to the HF-path is approximately 20 kHz, but there is a large overlap. CHANNEL ASIC OQ 0258 C HF IN R ADC HF-PATH OUTPUT STAGE AC LF IN LF-PATH CONTROL INPUT TRIGGER SUPPLY DC GROUND PROTECT CAL POS BUS SUPPLY Figure 3-8. C-ASIC Block Diagram 3-15 123 Service Manual LF input The LF-input (pin 42) is connected to a LF decade attenuator in voltage mode, or to a high impedance buffer for resistance and capacitance measurements. The LF decade attenuator consists of an amplifier with switchable external feedback resistors R131 to R136. Depending on the selected range the LF attenuation factor which will be set to 110-100-1000-10,000. The C-ASIC includes a LF pre-amplifier with switchable gain factors for the 1-2-5 steps. HF input The HF component of the input signal is supplied to four external HF capacitive attenuators via C104 and R108. Depending on the required range, the C-ASIC selects and buffers one of the attenuator outputs :1 (HF0), :10 (HF1), :100 (HF2), or :1000 (HF3). By attenuating the HF3 input internally by a factor 10, the C-ASIC can also create a :10000 attenuation factor. Inputs of not selected input buffers are internally shorted. If required, optional FETs V151-V153 can be installed. They will provide an additional input buffer short for the not-selected buffers, to eliminate internal (in the CASIC) cross talk. To control the DC bias of the buffers inputs, their output voltage is fed back via an internal feed back resistor and external resistors R115, R111/R120, R112, R113, and-R114. The internal feed back resistor and filter R110/C105 will eliminate HF feed back, to obtain a large HF gain. The C-ASIC includes a HF pre-amplifier with switchable gain factors for the 1-2-5 steps. The C-ASIC also includes circuitry to adjust the gain, and pulse response. ADC output pin 27 The combined conditioned HF/LF signal is supplied to the ADC output (pin 27) via an internal ADC buffer. The output voltage is 150 mV/division. The MIDADC signal (pin 28), supplied by the ADC, matches the middle of the C-ASIC output voltage swing to the middle if the ADC input voltage swing. TRIGGER output pin 29 The combined conditioned HF/LF signal is also supplied to the trigger output (pin 29) via an internal trigger buffer. The output voltage is 100 mV/div. This signal (TRIG-A) is supplied to the TRIGGER ASIC for triggering, and time related measurements (See 3.3.4 “Triggering”). For capacitance measurements the ADC output is not used, but the TRIG-A output pulse length indicates the measured capacitance, see “Capacitance measurements” below. GPROT input pin 2 PTC (Positive Temperature Coefficient) resistors (R106-R206) are provided between the Input A and Input B shield ground, and the COM input (instrument ground). This prevents damage to the test tool if the various ground inputs are connected to different voltage levels. The voltage across the PTC resistor is supplied via the GPROT input pin 2 to an input buffer. If this voltage exceeds ±200 mV, the ground protect circuit in the C-ASIC makes the DACTEST output (pin 24) high. The DACTEST line output level is read by the D-ASIC via the slow ADC (See 3.3.2 “Power”). The test tool will give a ground error warning. Because of ground loops, a LF interference voltage can arise across PTC resistor R106 (mainly mains interference when the power adapter is connected). To eliminate this LF interference voltage, it is buffered (also via input GPROT, pin 2), and subtracted from the input signal. Pin 43 (PROTGND) is the ground reference of the input buffer. 3-16 Circuit Descriptions 3.3 Detailed Circuit Descriptions 3 CALSIG input pin 36 The reference circuit on the TRIGGER part supplies an accurate +1.23V DC voltage to the CALSIG input pin 36 via R141. This voltage is used for internal calibration of the gain, and the capacitance measurement threshold levels. A reference current Ical is supplied by the T-ASIC via R144 for calibration of the resistance and capacitance measurement function. For ICAL see also Section 3.3.3. POS input pin 1 The PWM circuit on the Digital part provides an adjustable voltage (0 to 3.3V) to the POS input via R151. The voltage level is used to move the input signal trace on the LCD. The REFN line provides a negative bias voltage via R152, to create the correct voltage swing level on the C-ASIC POS input. OFFSET input pin 44 The PWM circuit on the Digital part supplies an adjustable voltage (0 to +3.3V) to the OFFSET input via R153. The voltage level is used to compensate the offset in the LF path of the C-ASIC. The REFN line provides a negative bias voltage via R152, to create the correct voltage swing level on the C-ASIC POS input. DACTEST output pin 24 As described above, the DACTEST output is used for signaling a ground protect error. It can also be used for testing purposes. Furthermore the DACTEST output provides a CASIC reset output signal (+1.75V) after a power on. ADDRESS output pin 23 The output provides a replica of the input voltage to the SENSE line via R165. In capacitance mode, the sense signal controls the CLAMP function in the T-ASIC (See Section 3.3.3). TRACEROT input pin 31 The TRACEROT signal is supplied by the T-ASIC. It is a triangle sawtooth voltage. SDAT, SCLK Control information for the C-ASIC, e.g. selection of the attenuation factor, is sent by the D-ASIC via the SDA data line. The SCL line provides the synchronization clock signal. Voltage Measurements (Channel A & Channel B) The following description applies to both Channel A and Channel B. The input voltage is applied to the HF attenuator inputs of the C-ASIC via C104, and to the LF input of the C-ASIC via R101/R102, AC/DC input coupling relay K171, and R104. The C-ASIC conditions the input voltage to an output voltage of 50 mV/div. This voltage is supplied to the ADC on the Digital part. The ADC output data is read and processed by the D-ASIC, and represented as a numerical reading, and as a graphical trace. Table 3-3. shows the relation between the reading range (V) and the trace sensitivity (V/div.) The selected trace sensitivity determines the C-ASIC attenuation/gain factor. The reading range is only a readout function, it does not change the hardware range or the wave form display. 3-17 123 Service Manual Table 3-3. Voltage Ranges And Trace Sensitivity range 50 mV 50 mV 50 mV 500 mV 500 mV 500 mV 5V 5V trace ../div 5 mV 10 mV 20 mV 50 mV 100 mV 200 mV 500 mV 1V range 5V 50V 50V 50V 500V 500V 500V 1250V trace ../div 2V 5V 10V 20V 50V 100V 200V 500V During measuring, input voltage measurements, gain measurements, and zero measurements are done. As a result, the voltage supplied to the ADC is a multiplexed (zero, + reference, -reference, input voltage) signal. In ROLL mode however, no gain and zero measurements are done. Now the ADC input voltage includes only the conditioned input voltage. The input voltage is connected to Input A. The shield of the input is connected to system ground (⊥ ⊥) via a PTC ground protection resistor. If a voltage is applied between the Input A and Input B ground shield, or between one of these ground shields and the black COM input, the PTC resistor will limit the resulting current. The voltage across the PTC resistor is supplied to the C-ASIC GPROT input, and causes a ground error warning (high voltage level) on output pin 24 (DACTEST). Resistance Measurements (Channel A) The unknown resistance Rx is connected to Input A, and the black COM input. The TASIC supplies a constant current to Rx via relay contacts K173, and the PTC resistor R172. The voltage across Rx is supplied to a high impedance input buffer in the C-ASIC via the LF input pin 42. The C-ASIC conditions the voltage across Rx to an output voltage of 50 mV/div. This voltage is supplied to the ADC on the Digital part. The ADC data is read and processed by the D-ASIC, and represented as a numerical reading, and a graphical trace in a fixed time base. Table 3-4 shows the relation between the reading range (Ω), the trace sensitivity (Ω/div.), and the current in Rx. The selected trace sensitivity determines the C-ASIC attenuation/gain factor. The reading range is only a readout function, it does not change the hardware range or the wave form display. Table 3-4. Ohms Ranges, Trace Sensitivity, and Current Range 50Ω 500Ω 5kΩ 50 kΩ 500 kΩ 5 MΩ 30 MΩ Sensitivity ../div 20Ω 200Ω 2 kΩ 20 kΩ 200 kΩ 2 MΩ 10 MΩ Current in Rx 500 µA 500 µA 50 µA 5 µA 500 nA 50 nA 50 nA To protect the current source from being damaged by a voltage applied to the input, a PTC resistor R172 and a protection circuit are provided (See Section 3.3.3 “Current Source”). During measuring, input voltage measurements, gain measurements, and zero measurements are done. As a result, the voltage supplied to the ADC is a multiplexed (zero, + reference, -reference, input voltage) signal. Capacitance Measurements (Channel A) The capacitance measurement is based on the equation: C x dV = I x dt. The unknown capacitor Cx is charged with a constant known current. The voltage across Cx increases, 3-18 Circuit Descriptions 3.3 Detailed Circuit Descriptions 3 and the time lapse between two different known threshold crossings is measured. Thus dV, I and dt are known and the capacitance can be calculated. The unknown capacitance Cx is connected to the red Input A safety banana socket, and the black COM input. The T-ASIC supplies a constant current to Cx via relay contacts K173, and protection PTC resistor R172. The voltage on Cx is supplied to two comparators in the C-ASIC via the LF input. The threshold levels th1 and th2of the comparators are fixed (see Figure 3-9). The time lapse between the first and the second threshold crossing depends on the value of Cx. The resulting pulse is supplied to the TRIGGER output pin 29, which is connected to the analog trigger input of the T-ASIC (TRIG-A signal). The T-ASIC adjusts the pulse to an appropriate level, and supplies it to the D-ASIC via its ALLTRIG output. The pulse width is measured and processed by the D-ASIC, and represented on the LCD as numerical reading. There will be no trace displayed. +Iref 0 I-Cx -Iref pos. clamp active ref clamp th2 th1 U-Cx 0 neg. clamp active neg. clamp active TRIG-A Figure 3-9. Capacitance Measurement The T-ASIC supplies a positive (charge) and a negative (discharge) current. A measurement cycle starts from a discharged situation (U CX=0) with a charge current. After reaching the first threshold level (th1) the pulse width measurement is started. The dead zone between start of charge and start of pulse width measurement avoids measurement errors due to a series resistance of Cx. The pulse width measurement is stopped after crossing the second threshold level (th2 ), the completes the first part of the cycle. Unlimited increase of the capacitor voltage is avoided by the positive clamp in the TASIC. The output of the high impedance buffer in the C-ASIC supplies a replica of the voltage across Cx to output pin 23 (ADDRESS). Via R165, this voltage is supplied to a clamp circuit in the T-ASIC (SENSE, pin 59). This clamp circuit limits the positive voltage on Cx to 0.45V. Now the second part of the measurement is started by reversing the charge current. The capacitor will be discharged in the same way as the charge cycle. The time between passing both threshold levels is measured again. A clamp limits the minimum voltage on Cx to 0V. Averaging the results of both measurements cancels the effect of a possible parallel resistance, and suppresses the influence of mains interference voltages. Table 3-5 shows the relation between the capacitance ranges, the charge current and the pulse width at full scale. 3-19 123 Service Manual Table 3-5. Capacitance Ranges, Current, and Pulse Width Range 50 nF 500 nF 5000 nF 50 µF 500 µF Current µA 0.5 µA 5 µA 50 µA 500 µA 500 µA Pulse width at Full Scale 25 ms 25 ms 25 ms 25 ms 250 ms To protect the current source if a voltage is applied to the input, a PTC resistor R172, and a protection circuit on the TRIGGER part, are provided (see Section 3.3.3). Frequency & Pulse Width Measurements The input voltage is measured as described above. From the ADC samples to built the trace, also the frequency, pulse width, and duty cycle of the input signal are calculated. Probe Detection The Input A and Input B safety banana jacks are provided with a ground shield, consisting of two separated half round parts. One half is connected to ground via the protection PTC resistor R106/R206. Via a 220K resistor installed on the input block, the other half is connected to the probe input of the D-ASIC (pin 54, 55). If the shielded STL120 test lead, or a BB120 shielded banana-to-BNC adapter, is inserted in Input A or Input B, it will short the two ground shield halves This can be detected by the D-ASIC. Supply Voltages The +5VA, +3V3A, and -3V3A supply voltages are supplied by the Fly Back Converter on the POWER part. The voltages are present only if the test tool is turned on. 3.3.3 Trigger Circuit The description refers to circuit diagram Figure 9-3. The trigger section is built up around the T-ASIC OQ0257. It provides the following functions: • • • • 3-20 Triggering: trigger source selection, trigger signal conditioning, and generation of trigger information to be supplied to the D-ASIC. Current source for resistance and capacitance measurements. Voltage reference source: buffering and generation of reference voltages. AC/DC relay and Resistance/Capacitance (Ω/F) relay control. Circuit Descriptions 3.3 Detailed Circuit Descriptions 3 Triggering Figure 3-10 shows the block diagram of the T-ASIC trigger section. TRIGLEV1 TRIGLEV2 TRIG A TRIG B TRIGGER ASIC OQ0257 trigger section 10 35 11 42 13 ALLTRIG 15 analog DUALTRIG trigger path select logic synchronize delta-t 38 16 12 TVSYNC sync. pulse separator TVOUT freq. detect TRIGQUAL 34 TRIGDT 39 colour filter +/- amplifier ALLTRIG 29 HOLDOFF SMPCLK DACTEST Figure 3-10. T-ASIC Trigger Section Block Diagram In normal trigger modes (= not TV triggering), the analog trigger path directly uses the Input A (TRIG A) or Input B (TRIG B) signal for triggering. In the TV trigger mode, the analog trigger path uses the TVSYNC signal for triggering. This signal is the synchronization pulse, derived from the TRIGA or TRIGB composite video signal. The color filter +/- amplify section in the T-ASIC blocks the color information, and amplifies and inverts (if required) the video signal. The TVOUT output signal is supplied to the synchronization pulse separator circuit. This circuit consists of C395, V395 and related parts. The output signal TVSYNC is the synchronization pulse at the appropriate voltage level and amplitude for the T-ASIC analog trigger path. Note External triggers provided by the Isolated Trigger Probe to the optical interface are processed directly by the D-ASIC. The TRIG-A, TRIG-B, or TVSYNC signal, and two trigger level voltages TRIGLEV1 and TRIGLEV2, are supplied to the analog trigger part. The trigger level voltages are, supplied by the PWM section on the Digital part See Section 3.3.4). The TRIGLEV1 voltage is used for triggering on a negative slope of the Input A/B voltage. The TRIGLEV2 voltage is used for triggering on a positive slope of the Input A/B voltage. As the C-ASIC inverts the Input A/B voltage, the TRIGA, TRIGB slopes on the T-ASIC input are inverted! From the selected trigger source signal and the used trigger level voltages, the ALLTRIG and the DUALTRIG trigger signal are derived. The select logic selects which one will be used by the synchronization/delta-T circuit to generate the final trigger. There are three possibilities: 1. Single shot triggering. The DUALTRIG signal is supplied to the synchronization/delta-T circuit. The trigger levels TRIGLEV1 and TRIGLEV2 are set just above and below the DC level of the input signal. A trigger is generated when the signal crosses the trigger levels. A trigger will occur on both a positive or a negative glitch. This mode ensures triggering, when the polarity of an expected glitch is not known. 2. Qualified triggering (e.g. TV triggering). The ALLTRIG signal is supplied to T-ASIC output pin 35, which is connected to the D-ASIC input pin 21. The D-ASIC derives a qualified trigger signal TRIGQUAL 3-21 123 Service Manual from ALLTRIG, e.g. on each 10th ALLTRIG pulse a TRIGQUAL pulse is given. The TRIGQUAL is supplied this to the synchronize/delta-T circuit via the select logic. 3. Normal triggering. The ALLTRIG signal is supplied to the synchronization/delta-T circuit. The ALLTRIG signal includes all triggers. It is used by the D-ASIC for signal analysis during AUTOSET. Traditionally a small trigger gap is applied for each the trigger level. In noisy signals, this small-gap-triggering would lead to unstable displaying of the wave form, if the noise is larger than the gap. The result is that the system will trigger randomly. This problem is solved by increasing the trigger gap (TRIGLEV1 - TRIGLEV2) automatically to 80% (10 to 90%) of the input signal peak-to-peak value. This 80% gap is used in AUTOSET. Note The ALLTRIG signal is also used for frequency/pulse width -, and capacitance measurements. Section 3.3.2. The Synchronize/Delta-t part provides an output pulse TRIGDT. The front edge of this pulse is the real trigger moment. The pulse width is a measure for the time between the trigger moment, and the moment of the first sample after the trigger. This pulse width information is required in random repetitive sampling mode (see below). The HOLDOFF signal, supplied by the D-ASIC, releases the trigger system. The sample clock SMPCLK, also provided by the D-ASIC, is used for synchronization. Real time sampling TRIGDT signal For time base settings of 1 µs/div and slower, the pixel distance on the LCD is ≥40 ns (1 division is 25 pixels). As the maximum sample rate is 25 MHz, a sample is taken each 40 ns. So the first sample after a trigger can be assigned to the first pixel, and successive samples to each next pixel. So a trace can be built-up from a single period of the input signal. Random repetitive (equivalent) sampling TRIGDT signal For time base settings below 1 µs/div, the time between two successive pixels on the screen is smaller than the time between two successive samples. For example at 20 ns/div, the time between two pixels is 20:25=0.8 ns, and the sample distance is 40 ns (sample rate 25 MHz). A number of sweeps must be taken to reconstruct the original signal, see Figure 3-11. As the samples are taken randomly with respect to the trigger moment, the time dt must be known to position the samples on the correct LCD pixel. The TRIGDT signal is a measure for the time between the trigger and the sample moment dt. The pulse duration of the TRIGDT signal is approximately 4 µs...20 µs. TRIGGER dt1 3 13 SAMPLES SWEEP 1 dt2 14 4 SAMPLES SWEEP 2 PIXEL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Figure 3-11. Random Repetitive Sampling Mode 3-22 Circuit Descriptions 3.3 Detailed Circuit Descriptions 3 DACTEST output A frequency detector in the T-ASIC monitors the ALLTRIG signal frequency. If the frequency is too high to obtain a reliable transmission to the D-ASIC, the DACTEST output pin 29 will become high. The DACTEST signal is read by the D-ASIC via the slow ADC on the Power part. It and indicates that the D-ASIC cannot use the ALLTRIG signal (e.g. for qualified triggering). Current Source A current source in the T-ASIC supplies a DC current to the GENOUT output pin 1. The current is used for resistance and capacitance measurements. It is adjustable in decades between 50 nA and 500 µA depending on the measurement range, and is derived from an external reference current. This reference current is supplied by the REFP reference voltage via R323 and R324 to input REFOHMIN (pin 6). The SENSE input signal is the buffered voltage on Input A. For capacitance measurements it is supplied to a clamp circuit in the T-ASIC (pin 59). The clamp circuit limits the positive voltage on the unknown capacitance to 0.45V. The protection circuit prevents the T-ASIC from being damaged by a voltage applied to Input A during resistance or capacitance measurements. If a voltage is applied, a current will flow via PTC resistor R172 (on the Channel A part), V358/V359, V353, V354 to ground. The resulting voltage across the diodes is approximately -2V or +15V. R354/R356, and V356/V357 limit the voltage on the T-ASIC GENOUT output (pin 1). The BOOTSTRAP output signal on pin 3 is the buffered GENOUT signal on pin 1, or the buffered SENSE signal on pin 59. It is supplied to the protection diodes via R352, R353, and to protection transistor V356, to minimize leakage currents. On the ICAL-output of the T-ASIC (pin 5) a copy of the output current on GENOUT is available. The current is supplied to the Channel A C-ASIC via R144. ICAL shows the same time/temperature drift as the GENOUT measurement current, it can be used for internal calibration of the resistance and capacitance measurement function. Capacitor C356 is use for hum/noise suppression. Square Wave Voltage Generator For Probe Adjustment For probe adjustment, a voltage generator circuit in the T-ASIC can provide a 2.5Vpp, 760Hz, square wave voltage via the GENOUT output pin 1 to the Input A connector. Capacitor C357 is the external timing capacitor for the generator. 3-23 123 Service Manual Reference Voltage Circuit This circuit derives several reference voltages from the 1.23V main reference source. REFPWM2 +3.3V +1.23V 73 REFP 72 V301 71 REFP R309 R311 R312 R308 -1.23V + - 1.23V +3.3V P-ASIC OQ0256 R307 62 + GAINPWM 56 REFPWM1 55 GNDREF 57 GAINREFN 63 - + - REFN 64 + GAINADCB 54 - 3 R303 REFADCB 53 + +1.6V 2 R306 R310 +0.1V 1 T-ASIC OQ0257 R302 GAINADCT 52 R301 R305 REFADCT 51 REFATT 8 - 4 Figure 3-12. Reference Voltage Section The output of an amplifier in the P-ASIC supplies a current to the +1.23V reference source V301 via R307. The +3.3V REFPWM2 voltage is used as reference for the PWMB outputs of the D-ASIC on the Digital part. The +1.23V REFP voltage is used as main reference source for the reference circuit. This circuit consists of four amplifiers in the T-ASIC, external gain resistors, and filter capacitors. Amplifier 1 and connected resistors supply the REFPWM1 reference voltage. This voltage is a reference for the PWMA outputs of the D-ASIC on the Digital section. It is also used as reference voltage for the LCD supply on the LCD unit. Amplifier 2 and connected resistors supply the -1.23V REFN reference voltage, used for the trigger level voltages TRIGLEV1&2, the C-ASIC POS-A and POS-B voltages, and the C-ASIC OFFSET-A and OFFSET-B voltages. REFN is also the input reference for amplifiers 3 and 4. 3-24 Circuit Descriptions 3.3 Detailed Circuit Descriptions 3 Amplifier 3 and 4 and connected resistors supply the REFADCT and REFADCB reference voltages for the ADC’s. Both voltages directly influence the gain accuracy of the ADC’s. The T-ASIC can select some of the reference voltages to be output to pin 8 (REFATT). The REFATT voltage is used for internal calibration of the input A and B overall gain. Tracerot Signal The T-ASIC generates the TRACEROT signal, used by the C-ASIC’s. Control signals TROTRST and TROTCLK are provided by the D-ASIC. AC/DC Relay and Ω/F Relay Control The Channel A/B AC/DC relays K171/K271, and the Channel A Ω/F relay K173 are controlled by the T-ASIC output signals ACDCA (pin 22), ACDCB (pin 23) and OHMA (pin 24). SCLK, SDAT Signals T-ASIC control data, e.g. for trigger source/mode/edge selection and relay control, are provided by the D-ASIC via the SCLK and SDAT serial control lines.. 3.3.4 Digital Circuit See the Fluke 123 block diagram Figure 3-1, and circuit diagram Figure 9-4. The Digital part is built up around the D-ASIC MOT0002. It provides the following functions: • Analog to Digital Conversion of the conditioned Input A and Input B signals • ADC data acquisition for traces and numerical readings • Trigger processing • Pulse width measurements, e.g. for capacitance measurement function • Microprocessor, Flash EPROM and RAM control • Display control • Keyboard control, ON/OFF control • Miscellaneous functions, as PWM signal generation, SDA-SCL serial data control, probe detection, Slow ADC control, serial RS232 interface control, buzzer control, etc. The D-ASIC is permanently powered by the +3V3GAR voltage. The P-ASIC indicates the status of the +3V3GAR voltage via the VGARVAL line connected to D-ASIC pin 89. If +3V3GAR is correct, VGARVAL is high, and the D-ASIC will start-up. as a result the D-ASIC functions are operative regardless of the test tool is ON/OFF status. Analog to Digital Conversion For voltage and resistance measurements, the Input A/B (B for voltage only) signal is conditioned by the C-ASIC to 150 mV/division. Zero and gain measurement are done to eliminate offset and gain errors. The C-ASIC output voltage is supplied to the Channel A/B ADC (D401/D451 pin 5). The ADC samples the analog voltage, and converts it into an 8-bit data byte (D0-D7). The data are read and processed by the D-ASIC, see below “ADC data Acquisition”. 3-25 123 Service Manual The sample rate depends on the sample clock supplied to pin 24. The sample rate is 5 MHz or 25 MHz, depending on the instrument mode. The ADC input signal is sampled on the rising edge of the sample clock. The digital equivalent of this sample is available on the outputs D0-D7 with a delay of 6 sample clock cycles. The reference voltages REFADCT and REFADCB determine the input voltage swing that corresponds to an output data swing of 00000000 to 11111111 (D0-D7). The reference voltages are supplied by the reference circuit on the Trigger part. The ADC output voltages MIDADC-A/B are supplied to the C-ASIC’s (input pin 28), and are added to the conditioned input signal. The MIDADC voltage matches the middle of the C-ASIC output swing to the middle of the ADC input swing. Current IREF is supplied to pin 7 of the ADC’s via R403/R453 for biasing internal ADC circuits. The D-ASIC can disable the ADC conversion by making the STBY-A/STBY-B line pin 1 high. Conversion also stops if the sample clock stops. ADC data acquisition for traces and numerical readings During an acquisition cycle, ADC samples are acquired to complete a trace on the LCD. Numerical readings (METER readings) are derived from the trace. So in single shot mode a new reading becomes available when a new trace is started. The test tool software starts an acquisition cycle. The D-ASIC acquires data from the ADC, and stores them internally in a cyclic Fast Acquisition Memory (FAM). The DASIC also makes the HOLDOFF line low, to enable the T-ASIC to generate the trigger signal TRIGDT. The acquisition cycle is stopped if the required number of samples is acquired. From the FAM the ADC data are moved to the RAM D475. The ADC data stored in the RAM are processed and represented as traces and readings. Triggering (HOLDOFF, TRIGDT, Randomize) To start a new trace, the D-ASIC makes the HOLDOFF signal low. Now the T-ASIC can generate the trigger signal TRIGDT. For signal frequencies higher than the system clock frequency, and in the random repetitive sampling mode, no fixed time relation between the HOLDOFF signal and the system clock is allowed. The RANDOMIZE circuit desynchronizes the HOLDOFF from the clock, by phase modulation with a LF ramp signal. Trigger qualifying (ALLTRIG, TRIGQUAL) The ALLTRIG signal supplied by the T-ASIC contains all possible triggers. For normal triggering, the T-ASIC uses ALLTRIG to generate the final trigger TRIGDT. For qualified triggering (e.g. TV triggering), the D-ASIC returns a qualified, e.g. each nth , trigger pulse to the T-ASIC (TRIGQUAL). Now the T-ASIC derives the final trigger TRIGDT from the qualified trigger signal TRIGQUAL. Capacitance measurements (ALLTRIG) As described in Section 3.3.2, capacitance measurements are based on measuring the capacitor charging time using a known current. The ALLTRIG pulse signal represents the charging time. The time is counted by the D-ASIC Microprocessor The D-ASIC includes a microprocessor with a 16 bit data bus. The instrument software is loaded in a 8 Mb Flash ROM D474. 3-26 Circuit Descriptions 3.3 Detailed Circuit Descriptions 3 ROM control for PCB versions < 8 The Flash ROM mode depends on the output signal of the RESET ROM circuit, RP#: • RP#>2V, software can run. True if +12V present and/or ROMRST is high. • RP#<2V, software cannot run. True if +12V not present and/or ROMRST is low (test tool off). • RP#>12V, software can run, and ROM can be programmed. True if +12V is present. The +12VPROG voltage is derived from the power adapter input voltage by the P-ASIC on the POWER part. To program the ROM, the power adapter voltage must be +20V±1V, to ensure a correct +12V voltage level. ROM control for PCB versions 8 and newer FlashROMs used on PCB version 8 and newer do not need the 12V programming voltage. The circuit D480 and related parts create a delay for the ROMWRITE enable signal. This prevents the ROM write proces being disabled before all data have been written. RAM Measurement data and instrument settings are stored in RAM D475. All RAM data will be lost if all power sources (battery and power adapter) are removed. mask ROM The D-ASIC has on-chip mask ROM. If no valid Flash ROM software is present when the test tool is turned on, the mask ROM software will become activate. The test tool can be forced to stay in the mask ROM software by pressing the ^ and > key, and then turning the test tool on. When active, the mask ROM software generates a 100 kHz square wave on pin 59 of the D-ASIC. Display Control The LCD unit includes the LCD, the LCD drivers, and the fluorescent back light lamp. It is connected to the main board via connector X453. The LCD is built up of 240 columns of 240 pixels each (240x240 matrix). The D-ASIC supplies the data and control signals for the LCD drivers on the LCD unit (Figure 3-13). 3-27 123 Service Manual FRAME Common Driver LnCl M Column Driver Din DCl LnCl Do Di Common Driver LnCl M X1..80 Do Di X81..160 Common Driver LnCl M X161..240 TOP Y1..80 M Carry Column Driver Din DCl LnCl LEFT Y81..160 FRONTVIEW M LCD Carry LCDAT0-3 Column Driver Din DATACLK0 DCl LINECLK M LnCl M Y161..240 PIXEL (0,0) Figure 3-13. LCD Control Each 14 ms the LCD picture is refreshed during a frame. The frame pulse (FRAME) indicates that the concurrent LINECLK pulse is for the first column. The column drivers must have been filled with data for the first column. Data nibbles (4 bit) are supplied via lines LCDAT0-LCDAT3. During 20 data clock pulses (DATACLK0) the driver for Y161..240 is filled. When it is full, it generates a carry to enable the driver above it, which is filled now. When a column is full, the LINECLK signal transfers the data to the column driver outputs. Via the common drivers, the LINECLK also selects the next column to be filled. So after 240 column clocks a full screen image is built up on the LCD. The LCD unit generates various voltage levels for the LCD drivers outputs to drive the LCD. The various levels are supplied to the driver outputs, depending on the supplied data and the M(ultiplex) signal. The M signal (back plane modulation) is used by the LCD drivers to supply the various DC voltages in such an order, that the average voltage does not contain a DC component. A DC component in the LCD drive voltage may cause memory effects in the LCD. The LCD contrast is controlled by the CONTRAST voltage. This voltage is controlled by the D-ASIC, which supplies a PWM signal (pin 37 CONTR-D) to PWM filter R436/C436. The voltage REFPWM1 is used as bias voltage for the contrast adjustment circuit on the LCD unit. To compensate for contrast variations due to temperature variations, a temperature dependent resistor is mounted in the LCD unit. It is connected to the LCDTEMP1 line. The resistance change, which represents the LCD temperature, is measured by the D-ASIC via the S-ADC on the POWER part. The back light lamp is located at the left side of the LCD, so this side becomes warmer than the right side. As a result the contrast changes from left to right. To eliminate this unwanted effect, the CONTRAST control voltage is increased during building up a screen image. A FRAME pulse starts the new screen image. The FRAME pulse is also used to discharge C404. After the FRAME pulse, the voltage on C404 increases during building up a sreen image. Keyboard Control, ON/OFF Control 3-28 Circuit Descriptions 3.3 Detailed Circuit Descriptions 3 The keys are arranged in a 6 rows x 6 columns matrix. If a key is pressed, the D-ASIC drives the rows, and senses the columns. The ON/OFF key is not included in the matrix. This key toggles a flip-flop in the D-ASIC via the ONKEY line (D-ASIC pin 72). As the D-ASIC is permanently powered, the flip-flop can signal the test tool on/off status. PWM Signals The D-ASIC generates various pulse signals, by switching a reference voltage (REFPWM1 or REFPWM2), with software controllable duty cycle (PWMA, PWMB pins 26-40). By filtering the pulses in low pass filters (RC), software controlled DC voltages are generated. The voltages are used for various control purposes, as shown in Table 3-6. Table 3-6. D-ASIC PWM Signals PWM signal Function Destination Reference HO-RNDM HOLDOFF randomize control R487 of RANDOMIZE circuit REFPWM1 TRGLEV1D, TRIGLEV2D Trigger level control T-ASIC REFPWM1 POS-AD, POS-BD Channel A,B position control C-ASIC REFPWM1 OFFSETAD, OFFSETBD Channel A,B offset control C-ASIC REFPWM1 BACKBRIG Back light brightness control Back light converter (POWER part) REFPWM1 CONTR-D Display contrast control LCD unit REFPWM1 SADCLEVD S ADC comparator voltage SLOW ADC (POWER part) REFPWM2 CHARCURD Battery charge current control P-ASIC REFPWM2 3-29 123 Service Manual SDA-SCL Serial Bus The unidirectional SDA-SCL serial bus (pin 56, 57) is used to send control data to the CASIC’s (e.g. change attenuation factor), and the T-ASIC (e.g. select other trigger source). The SDA line transmits the data bursts, the SCL line transmits the synchronization clock (1.25 MHz). Probe Detection Via the probe detection inputs PROBE-A and PROBE-B (pin 54, 55), the D-ASIC detects if the Input A and B probes have been connected/disconnected. The SUPPRDET signal (pin 99) can suppress the probe detection. If this signal is low, The PROBE-A and PROBE-B lines are permanently low (via R471, R472), regardless of a probe is connected or not connected. This function is not supported by the Fluke 123 software. See also Section 3.3.2 “Probe detection”. TXD, RXD Serial Interface (Optical Port) The optical interface output is directly connected to the TXD line (pin 86). The optical input line is buffered by the P-ASIC on the power part. The buffered line is supplied to the RXD input (pin 87). The serial data communication (RS232) is controlled by the DASIC. Slow ADC Control, SADC Bus The SELMUX0-2 (pins 96-98) and SLOWADC (pin 100) lines are used for measurements of various analog signals, as described in Section 3.3.1. “SLOW ADC”. BATIDENT The BATTIDENT line (pin 90) is connected to R508 on the Power part, and to a resistor in the battery pack. If the battery is removed, this is signaled to the D-ASIC (BATTIDENT line goes high). MAINVAL, FREQPS The MAINVAL signal (pin91) is supplied by the P-ASIC, and indicates the presence of the power adapter voltage (high = present). The FREQPS signal (pin 93) is also supplied by the P-ASIC. It is the same signal that controls the Fly Back Converter control voltage FLYGATE. The D-ASIC measures the frequency in order to detect if the Fly Back Converter is running within specified frequency limits. D-ASIC Clocks A 25 MHz crystal (B403) controls the D-ASIC system clock. For the real time clock, counting the time and date, an additional 32.768 kHz crystal (B401) is provided. When the test tool is turned on, a 16MHz microprocessor clock (derived from B402) becomes active. Buzzer The Buzzer is directly driven by a 4 kHz square wave from the D-ASIC (pin 101) via FET V522. If the test tool is on, the -30VD supply from the Fly Back converter is present, and the buzzer sounds loudly. If the -30VD is not present, the buzzer sounds weak, e.g. when the Mask Active mode is entered. 3-30 Chapter 4 Performance Verification Title 4.1 Introduction................................................................................................. 4.2 Equipment Required For Verification ........................................................ 4.3 How To Verify ............................................................................................ 4.4 Display and Backlight Test ......................................................................... 4.5 Input A and Input B Tests ........................................................................... 4.5.1 Input A and B Base Line Jump Test .................................................... 4.5.2 Input A Trigger Sensitivity Test .......................................................... 4.5.3 Input A Frequency Response Upper Transition Point Test................. 4.5.4 Input A Frequency Measurement Accuracy Test ................................ 4.5.5 Input B Frequency Measurement Accuracy Test ................................ 4.5.6 Input B Frequency Response Upper Transition Point Test ................. 4.5.7 Input B Trigger Sensitivity Test .......................................................... 4.5.8 Input A and B Trigger Level and Trigger Slope Test.......................... 4.5.9 Input A and B DC Voltage Accuracy Test .......................................... 4.5.10 Input A and B AC Voltage Accuracy Test ........................................ 4.5.11 Input A and B AC Input Coupling Test ............................................. 4.5.12 Input A and B Volts Peak Measurements Test.................................. 4.5.13 Input A and B Phase Measurements Test .......................................... 4.5.14 Input A and B High Voltage AC/DC Accuracy Test......................... 4.5.15 Resistance Measurements Test.......................................................... 4.5.16 Continuity Function Test ................................................................... 4.5.17 Diode Test Function Test .................................................................. 4.5.18 Capacitance Measurements Test ....................................................... 4.5.19 Video Trigger Test............................................................................. Page 4-3 4-3 4-3 4-4 4-5 4-6 4-7 4-8 4-8 4-9 4-10 4-10 4-11 4-14 4-15 4-16 4-17 4-18 4-19 4-20 4-21 4-22 4-22 4-23 4-1 Performance Verification 4.1 Introduction 4 4.1 Introduction Warning Procedures in this chapter should be performed by qualified service personnel only. To avoid electrical shock, do not perform any servicing unless you are qualified to do so. The test tool should be calibrated and in operating condition when you receive it. The following performance tests are provided to ensure that the test tool is in a proper operating condition. If the test tool fails any of the performance tests, calibration adjustment (see Chapter 5) and/or repair (see Chapter 7) is necessary. The Performance Verification Procedure is based on the specifications, listed in Chapter 2 of this Service Manual. The values given here are valid for ambient temperatures between 18 °C and 28 °C. The Performance Verification Procedure is a quick way to check most of the test tool’s specifications. Because of the highly integrated design of the test tool, it is not always necessary to check all features separately. For example: the duty cycle, pulse width, and frequency measurement are based on the same measurement principles; so only one of these functions needs to be verified. 4.2 Equipment Required For Verification The primary source instrument used in the verification procedures is the Fluke 5500A. If a 5500A is not available, you can substitute another calibrator as long as it meets the minimum test requirements. • Fluke 5500A Multi Product Calibrator, including 5500A-SC Oscilloscope Calibration Option. • Stackable Test Leads (4x), supplied with the 5500A. • 50Ω Coax Cables (2x), Fluke PM9091 (1.5m) or PM9092 (0.5m). • 50Ω feed through terminations (2x), Fluke PM9585. • Fluke BB120 Shielded Banana to Female BNC adapters (2x), supplied with the Fluke 123. • Dual Banana Plug to Female BNC Adapter (1x), Fluke PM9081/001. • Dual Banana Jack to Male BNC Adapter (1x), Fluke PM9082/001. • TV Signal Generator, Philips PM5418. • 75Ω Coax cable (1x), Fluke PM9075. • 75Ω Feed through termination (1x), ITT-Pomona model 4119-75. • PM9093/001 Male BNC to Dual Female BNC Adapter 4.3 How To Verify Verification procedures for the display function and measure functions follow. For each procedure the test requirements are listed. If the result of the test does not meet the requirements, the test tool should be recalibrated or repaired if necessary. 4-3 123 Service Manual Follow these general instructions for all tests: • For all tests, power the test tool with the PM8907 power adapter. The battery pack must be installed. • Allow the 5500A to satisfy its specified warm-up period. • For each test point , wait for the 5500A to settle. • Allow the test tool a minimum of 20 minutes to warm up. 4.4 Display and Backlight Test Proceed as follows to test the display and the backlight: 1. Press TO TURN THE Test tool on. 2. Press and verify that the backlight is dimmed. Then select maximum backlight brightness again. 3. Remove the adapter power, and verify that the backlight is dimmed. 4. Apply the adapter power and verify that the backlight brightness is set to maximum. 5. Press and hold 6. Press and release . . 7. Release . The test tool shows the calibration menu in the bottom of the display. Do not press now! If you did, turn the test tool off and on, and start at 5. 8. Press (PREV) three times. The test tool shows Contrast (CL 0100):MANUAL 9. Press (CAL) . The test tool shows a dark display; the test pattern as shown in Figure 4-1 may not be visible or hardly visible. Observe the display closely, and verify that no light pixels are shown. Figure 4-1. Display Pixel Test Pattern 11. Press . The test pattern is removed; the test tool shows Contrast (CL 0110):MANUAL 4-4 Performance Verification 4.5 Input A and Input B Tests 4 12. Press (CAL) . The test tool shows the display test pattern shown in Figure 4-1, at default contrast. Observe the test pattern closely, and verify that the no pixels with abnormal contrast are present in the display pattern squares. Also verify that the contrast of the upper left and upper right square of the test pattern are equal. 13. Press . The test pattern is removed; the test tool shows Contrast (CL 0120):MANUAL 14. Press (CAL) . The test tool shows a light display; the test pattern as shown in Figure 4-1 may not be visible or hardly visible. Observe the display closely, and verify that no dark pixels are shown. 15. Turn the test tool OFF and ON to exit the calibration menu and to return to the normal operating mode. 4.5 Input A and Input B Tests Before performing the Input A and Input B tests, the test tool must be set in a defined state, by performing a RESET. Proceed as follows to reset the test tool: • Press • Press and hold • Press and release to turn the test tool off. . to turn the test tool on. Wait until the test tool has beeped twice, and then release beeped twice, the RESET was successful. .. When the test tool has For most tests, you must turn Input B on. Input A is always on. Proceed as follows to turn Input B on: • Press • Using • to confirm the selection; the mark changes to ■ . The active setting Press from the next item group will be highlighted (for example ■ VAC ), and maintained after leaving the menu. • Press to open the Meter B menu. select INPUT B: ON . to exit the menu. During verification you must open menus, and to choose items from the menu. Proceed as follows to make choices in a menu (see Figure 4.2): • Open the menu, for example press • Press • to confirm the selection and to jump to the next item group (if present). Press Item groups in a menu are separated by a vertical line. • After pressing . to highlight the item to be selected in a menu. in the last menu item group, the menu is closed. 4-5 123 Service Manual ST7968.CGM Figure 4-2. Menu item selection If an item is selected, it is marked by ■. Not selected items are marked by . If a is pressed, the item remains selected. selected item is highlighted, an then You can also navigate through the menu using you must press . . To conform the highlighted item 4.5.1 Input A and B Base Line Jump Test Proceed as follows to check the Input A and Input B base line jump: 1. Short circuit the Input A and the Input B shielded banana sockets of the test tool. Use the BB120 banana to BNC adapter, and a 50Ω (or lower) BNC termination. 2. Select the following test tool setup: • Turn Input B on (if not already on). • to select auto ranging (AUTO in top of display). Press ( toggles between AUTO and MANUAL ranging). • Press to open the SCOPE INPUTS menu. • Press to open the SCOPE OPTIONS menu, and choose : SCOPE MODE: ■ NORMAL | WAVEFORM MODE: ■ SMOOTH 3. Using toggle the time base between 10 ms/div and 5 ms/div. (the time base ranging is set to manual now, the input sensitivity is still automatic; no indication AUTO or MANUAL is displayed). After changing the time base wait some seconds until the trace has settled. Observe the Input A trace, and check to see if it returns to the same position after changing the time base. The allowed difference is ±0.04 division (= 1 pixel). Observe the Input B trace for the same conditions. toggle the time base between 1 µs/div and 500 ns/div. After changing 4. Using the time base wait some seconds until the trace has settled. Observe the Input A trace, and check to see if it is set to the same position after changing the time base. The allowed difference is ±0.04 division (= 1 pixel). Observe the Input B trace for the same conditions. 4-6 Performance Verification 4.5 Input A and Input B Tests 5. Using 4 set the time base to 10 ms/div. toggle the sensitivity of Input A between 5 and 10 mV/div. After 6. Using changing the sensitivity wait some seconds until the trace has settled. Observe the Input A trace, and check to see if it is set to the same position after changing the sensitivity. The allowed difference is ±0.04 division (= 1 pixel). 7. Using toggle the sensitivity of Input B between 5 and 10 mV/div. After changing the sensitivity wait some seconds until the trace has settled. Observe the Input B trace, and check to see if it is set to the same position after changing the sensitivity. The allowed difference is ±0.04 division (= 1 pixel). 8. When you are finished, remove the Input A and Input B short. 4.5.2 Input A Trigger Sensitivity Test Proceed as follows to test the Input A trigger sensitivity: 1. Connect the test tool to the 5500A as shown in Figure 4-3. ST8004.CGM Figure 4-3. Test Tool Input A to 5500A Scope Output 50Ω Ω 2. Select the following test tool setup: • to select auto ranging (AUTO in top of display). Press Do not press anymore! • Using change the sensitivity to select manual sensitivity ranging, and lock the Input A sensitivity on 200 mV/div. 3. Set the 5500A to source a 5 MHz leveled sine wave of 100 mV peak-to-peak (SCOPE output, MODE levsin). 4. Adjust the amplitude of the sine wave to 0.5 division on the display. 5. Verify that the signal is well triggered. to enable the up/down arrow keys for Trigger Level If it is not, press adjustment; adjust the trigger level using and verify that the signal will be triggered now. The trigger level is indicated by the trigger icon ( ). 6. Set the 5500A to source a 25 MHz leveled sine wave of 400 mV peak-to-peak. 7. Adjust the amplitude of the sine wave to 1.5 divisions on the test tool display. 4-7 123 Service Manual 8. Verify that the signal is well triggered. If it is not, press to enable the up/down arrow keys for Trigger Level adjustment; adjust the trigger level and verify that the signal will be triggered now. 9. Set the 5500A to source a 40 MHz leveled sine wave of 1.8V peak-to-peak. 10. Adjust the amplitude of the sine wave to 4 divisions on the test tool display. 11. Verify that the signal is well triggered. to enable the up/down arrow keys for Trigger Level If it is not, press adjustment; adjust the trigger level and verify that the signal will be triggered now. 12. When you are finished, set the 5500A to Standby. 4.5.3 Input A Frequency Response Upper Transition Point Test Proceed as follows to test the Input A frequency response upper transition point: 1. Connect the test tool to the 5500A as for the previous test (see Figure 4-3). 2. Select the following test tool setup: • Press to select auto ranging (AUTO in top of display). Do not press anymore! • Using change the sensitivity to select manual sensitivity ranging, and lock the Input A sensitivity on 200 mV/div. 3. Set the 5500A to source a leveled sine wave of 1.2V peak-to-peak, 50 kHz (SCOPE output, MODE levsin). 4. Adjust the amplitude of the sine wave to 6 divisions on the test tool display. 5. Set the 5500A to 20 MHz, without changing the amplitude. 6. Observe the Input A trace check to see if it is ≥ 4.2 divisions. 7. When you are finished, set the 5500A to Standby. Note The lower transition point is tested in Section 4.5.11. 4.5.4 Input A Frequency Measurement Accuracy Test Proceed as follows to test the Input A frequency measurement accuracy: 1. Connect the test tool to the 5500A as for the previous test (see Figure 4-3). 2. Select the following test tool setup: • Press to select auto ranging (AUTO in top of display). • Press to open the INPUT A MEASUREMENTS menu, and choose: MEASURE on A: ■ Hz 3. Set the 5500A to source a leveled sine wave of 600 mV peak-to-peak (SCOPE output, MODE levsin). 4. Set the 5500A frequency according to the first test point in Table 4-1. 5. Observe the Input A main reading on the test tool and check to see if it is within the range shown under the appropriate column. 4-8 Performance Verification 4.5 Input A and Input B Tests 4 6. Continue through the test points. 7. When you are finished, set the 5500A to Standby. Table 4-1. Input A,B Frequency Measurement Accuracy Test 5500A output, 600 mVpp Input A, B Reading 1 MHz 0.993 to 1.007 MHz 10 MHz 09.88 to 10.12 MHz 40 MHz 38.98 to 41.02 MHz Note Duty Cycle and Pulse Width measurements are based on the same principles as Frequency measurements. Therefore the Duty Cycle and Pulse Width measurement function will not be verified separately. 4.5.5 Input B Frequency Measurement Accuracy Test Proceed as follows to test the Input B frequency measurement accuracy: 1. Connect the test tool to the 5500A as shown in Figure 4-4. ST8005.CGM Figure 4-4. Test Tool Input B to 5500A Scope Output 50Ω Ω 2. Select the following test tool setup: • Press select auto ranging (AUTO in top of display). • Press to open the INPUT B MEASUREMENTS menu, and choose: INPUT B: ■ ON | MEASURE on B: ■ Hz • Press to open the SCOPE INPUTS menu. • Press to open the TRIGGER menu, and choose: INPUT: ■ B | SCREEN UPDATE: ■ FREE RUN | AUTO RANGE: ■ >15HZ 3. Set the 5500A to source a leveled sine wave of 600 mV peak-to-peak (SCOPE output, MODE levsin). 4-9 123 Service Manual 4. Set the 5500A frequency according to the first test point in Table 4-1. 5. Observe the Input B main reading on the test tool and check to see if it is within the range shown under the appropriate column. 6. Continue through the test points. 7. When you are finished, set the 5500A to Standby. 4.5.6 Input B Frequency Response Upper Transition Point Test Proceed as follows to test the Input B frequency response upper transition point: 1. Connect the test tool to the 5500A as for the previous test (see Figure 4-4). 2. Select the following test tool setup: • Turn Input B on (if not already on). • Press to select auto ranging (AUTO in top of display). Do not press anymore! • Using change the sensitivity to select manual sensitivity ranging, and lock the Input B sensitivity on 200 mV/div. • Press to open the SCOPE INPUTS menu. • Press to open the TRIGGER menu, and choose: INPUT: ■ B | SCREEN UPDATE: ■ FREE RUN | AUTO RANGE: ■ >15HZ 3. Set the 5500A to source a leveled sine wave of 1.2V peak-to-peak, 50 kHz (SCOPE output, MODE levsin). 4. Adjust the amplitude of the sine wave to 6 divisions on the test tool display. 5. Set the 5500A to 20 MHz, without changing the amplitude. 6. Observe the Input B trace check to see if it is ≥ 4.2 divisions. 7. When you are finished, set the 5500A to Standby. Note The lower transition point is tested in Section 4.5.11. 4.5.7 Input B Trigger Sensitivity Test Proceed as follows to test the Input B trigger sensitivity: 1. Connect the test tool to the 5500A as for the previous test (see Figure 4-4). 2. Select the following test tool setup: 4-10 • Turn Input B on (if not already on). • Press to select auto ranging (AUTO in top of display). Do not press anymore! • Using change the sensitivity to select manual sensitivity ranging, and lock the Input B sensitivity on 200 mV/div. • Press to open the SCOPE INPUTS menu. Performance Verification 4.5 Input A and Input B Tests • Press 4 to open the TRIGGER menu, and choose: INPUT: ■ B | SCREEN UPDATE: ■ FREE RUN | AUTO RANGE: ■ >15HZ 3. Set the 5500A to source a 5 MHz leveled sine wave of 100 mV peak-to-peak (SCOPE output, MODE levsin). 4. Adjust the amplitude of the sine wave to 0.5 division on the display. 5. Verify that the signal is well triggered. If it is not, press to enable the up/down arrow keys for Trigger Level adjustment; adjust the trigger level and verify that the signal will be triggered now. The trigger level is indicated by the trigger icon ( ). 6. Set the 5500A to source a 25 MHz leveled sine wave of 400 mV peak-to-peak. 7. Adjust the amplitude of the sine wave 1.5 divisions on the test tool display. 8. Verify that the signal is well triggered. to enable the up/down arrow keys for Trigger Level If it is not, press adjustment; adjust the trigger level and verify that the signal will be triggered now. 9. Set the 5500A to source a 40 MHz leveled sine wave of 1.8V peak-to-peak. 10. Adjust the amplitude of the sine wave to exactly 4 divisions on the test tool display. 11. Verify that the signal is well triggered. If it is not, press to enable the up/down arrow keys for Trigger Level adjustment; adjust the trigger level and verify that the signal will be triggered now. 12. When you are finished, set the 5500A to Standby. 4.5.8 Input A and B Trigger Level and Trigger Slope Test Proceed as follows: 1. Connect the test tool to the 5500A as shown in Figure 4-5. ST8001.CGM Figure 4-5. Test Tool Input A-B to 5500A Normal Output 2. Select the following test tool setup: • Turn Input B on ( if not already on). • Using change the sensitivity to select manual sensitivity ranging, and lock the Input A and Input B sensitivity on 1V/div. 4-11 123 Service Manual • Move the Input A and Input B ground level (indicated by zero icon center grid line. Proceed as follows: ) to the Press to enable the arrow keys for moving the Input A ground level. Press to enable the arrow keys for moving the Input B ground level. Using the keys move the ground level. • Using change the time base to select manual time base ranging, and lock the time base on 10 ms/div. • Press to open the SCOPE INPUTS menu. • Press to open the TRIGGER menu, and choose: INPUT: ■ A | SCREEN UPDATE: ■ FREE RUN | AUTO RANGE: ■ >15HZ • Press to enable the arrow keys for Trigger Level and Slope adjustment. • Using select positive slope triggering (trigger icon • Using set the trigger level to +2 divisions from the screen center. For positive slope triggering, the trigger level is the top of the trigger icon ( ). • Press to open the SCOPE INPUTS menu. • Press to open the SCOPE OPTIONS menu, and choose: ). SCOPE MODE: ■ SINGLE SHOT | WAVEFORM MODE: ■ NORMAL 3. Set the 5500A to source 0.4V DC. 4. Verify that no trace is shown on the test tool display, and that the status line at the display bottom shows Wait:A . If the display shows the traces and status Hold:A , then press to re-arm the test tool for a trigger. 5. Increase the 5500A voltage slowly in 0.1V steps, using the 5500A EDIT FIELD function, until the test tool is triggered, and the traces are shown. 6. Verify that the 5500A voltage is between +1.5V and +2.5V when the test tool is triggered. To repeat the test, start at step 3. 7. Set the 5500A to Standby. 8. Press to clear the display. 9. Press to enable the arrow keys for Trigger Level and Slope adjustment. 10. Using select negative slope triggering ( ). set the trigger level to +2 divisions from the screen center. For 11. Using negative slope triggering, the trigger level is the bottom of the trigger icon ( ). 12. Set the 5500A to source +3V DC. 13. Verify that no trace is shown on the test tool display, and that the status line at the display bottom shows Wait:A . If the display shows the traces and status Hold:A , then press to re-arm the test tool for a trigger. 14. Decrease the 5500A voltage slowly in 0.1V steps, using the 5500A EDIT FIELD function, until the test tool is triggered, and the traces are shown. 4-12 Performance Verification 4.5 Input A and Input B Tests 4 15. Verify that the 5500A voltage is between +1.5V and +2.5V when the test tool is triggered. To repeat the test, start at step 12. 16. Set the 5500A to Standby. 17. Press to clear the display. 18. Select the following test tool setup: • Press to open the SCOPE INPUTS menu. • Press to open the TRIGGER menu, and choose: INPUT: ■ B | SCREEN UPDATE: ■ FREE RUN | AUTO RANGE: ■ >15HZ • Press to enable the arrow keys for Trigger Level and Slope adjustment. • Using select positive slope triggering (trigger icon • Using set the trigger level to +2 divisions from the screen center. For positive slope triggering, the trigger level is the top of the trigger icon ( ). ). 19. Set the 5500A to source 0.4V DC. 20. Verify that no trace is shown on the test tool display, and that the status line at the display bottom shows Wait:B . If the display shows the traces and status Hold:B , then press to re-arm the test tool for a trigger. 21. Increase the 5500A voltage slowly in 0.1V steps, using the 5500A EDIT FIELD function, until the test tool is triggered, and the traces are shown. 22. Verify that the 5500A voltage is between +1.5V and +2.5V when the test tool is triggered. To repeat the test, start at step 19. 23. Set the 5500A to Standby. 24. Press to clear the display. 25. Press to enable the arrow keys for Trigger Level and Slope adjustment. 26. Using select negative slope triggering ( ). 27. Using set the trigger level to +2 divisions from the screen center. For negative slope triggering, the trigger level is the bottom of the trigger icon ( ). 28. Set the 5500A to source +3V DC. 29. Verify that no trace is shown on the test tool display, and that the status line at the display bottom shows Wait:B . If the display shows the traces and status Hold:B , then press to re-arm the test tool for a trigger. 30. Decrease the 5500A voltage in 0.1V steps, using the 5500A EDIT FIELD function, until the test tool is triggered, and the traces are shown. 31. Verify that the 5500A voltage is between +1.5V and +2.5V when the test tool is triggered. To repeat the test, start at step 28. 32. When you are finished, set the 5500A to Standby. 4-13 123 Service Manual 4.5.9 Input A and B DC Voltage Accuracy Test WARNING Dangerous voltages will be present on the calibration source and connecting cables during the following steps. Ensure that the calibrator is in standby mode before making any connection between the calibrator and the test tool. Proceed as follows: 1. Connect the test tool to the 5500A as for the previous test (see Figure 4-5). 2. Select the following test tool setup: • Press select auto ranging (AUTO in top of display). • Press to open the INPUT A MEASUREMENTS menu, and choose: MEASURE on A: ■ VDC • Press to open the INPUT B MEASUREMENTS menu, and choose: INPUT B: ■ ON | MEASURE on B: ■ VDC • Using change the time base to select manual time base ranging, and lock the time base on 10 ms/div. • Press to open the SCOPE INPUTS menu. • Press to open the SCOPE OPTIONS menu, and choose: SCOPE MODE: ■ NORMAL | WAVEFORM MODE: ■ SMOOTH • Move the Input A and Input B ground level (indicated by zero icon center grid line. Proceed as follows: ) to the Press to enable the arrow keys for moving the Input A ground level. Press to enable the arrow keys for moving the Input B ground level. Using the keys move the ground level. set the Input A and B sensitivity to the first test point in Table 4-2. 3. Using The corresponding range is shown in the second column of the table. 4. Set the 5500A to source the appropriate DC voltage. 5. Observe the main reading and check to see if it is within the range shown under the appropriate column. 6. Continue through the test points. 7. When you are finished, set the 5500A to 0 (zero) Volt, and to Standby. 4-14 Performance Verification 4.5 Input A and Input B Tests 4 Table 4-2. Volts DC Measurement Verification Points 1) Sensitivity (Oscilloscope) Range (Meter) 5500A output, V DC 5 mV/div 500 mV 15 mV 014.4 to 015.6 2) 10 mV/div 500 mV 30 mV 029.3 to 030.7 2) 20 mV/div 500 mV 60 mV 059.2 to 060.8 50 mV/div 500 mV 150 mV 148.7 to 151.3 100 mV/div 500 mV 300 mV 298.0 to 302.0 200 mV/div 500 mV 500 mV 497.0 to 503.0 -500 mV -497.0 to -503.0 0 mV -000.5 to + 000.5 Input A-B DC Reading 500 mV/div 5V 1.5V 1.487 to 1.513 1 V/div 5V 3V 2.980 to 3.020 2 V/div 5V 5V 4.970 to 5.030 -5V -4.970 to -5.030 0V -0.005 to +0.005 5 V/div 50V 15V 14.87 to 15.13 10 V/div 50V 30V 29.80 to 30.20 20 V/div 50V 50V 49.70 to 50.30 -50V -49.70 to -50.30 0V -00.05 to +00.05 50 V/div 500V 150V 148.7 to 151.3 100 V/div 500V 300V 298.0 to 302.0 1) The 500V and 1250V range will be tested in Section 4.5.14 2) Due to calibrator noise, occasionally OL (overload) can be shown. 4.5.10 Input A and B AC Voltage Accuracy Test Warning Dangerous voltages will be present on the calibration source and connecting cables during the following steps. Ensure that the calibrator is in standby mode before making any connection between the calibrator and the test tool. Proceed as follows to test the Input A and B AC Voltage accuracy: 1. Connect the test tool to the 5500A as for the previous test (see Figure 4-5). 4-15 123 Service Manual 2. Select the following test tool setup: • to select auto ranging (AUTO in top of display). Press Do not press anymore! • Press to open the INPUT A MEASUREMENTS menu, and choose: MEASURE on A: ■ VAC • Press to open the INPUT B MEASUREMENTS menu, and choose: INPUT B: ■ ON | MEASURE on B: ■ VAC • Move the Input A and Input B ground level (indicated by zero icon center grid line. Proceed as follows: ) to the Press to enable the arrow keys for moving the Input A ground level. Press to enable the arrow keys for moving the Input B ground level. Using the keys move the ground level. set the Input A and B sensitivity to the first test point in Table 4-3. 3. Using The corresponding range is shown in the second column of the table. 4. Set the 5500A to source the required AC voltage (NORMAL output, WAVE sine). 5. Observe the Input A and Input B main reading and check to see if it is within the range shown under the appropriate column. 6. Continue through the test points. 7. When you are finished, set the 5500A to Standby. Table 4-3. Volts AC Measurement Verification Points 1) Sensitivity (Oscilloscope) Range (Meter) 5500A output Volts rms 5500A Frequency Reading A-B 200 mV/div 500 mV 500 mV 60 Hz 494.0 to 506.0 500 mV 20 kHz 486.0 to 514.0 5V 20 kHz 4.860 to 5.140 5V 60 Hz 4.940 to 5.060 50V 60 Hz 49.40 to 50.60 50V 20 kHz 48.60 to 51.40 2V/div 5V 20V/div 1) 50V The 500V and 1250V range will be tested in Section 4.5.14 4.5.11 Input A and B AC Input Coupling Test Proceed as follows to test the Input A and B AC coupled input lower transition point: 1. Connect the test tool to the 5500A as for the previous test (see Figure 4-5). 2. Select the following test tool setup: 4-16 • Use the setup of the previous step (AUTO time base, traces at vertical center). • Using select 200 mV/div for Input A and B (500 mV range). Performance Verification 4.5 Input A and Input B Tests • Press 4 to open the SCOPE INPUTS menu, and choose: INPUT A: ■ AC | ■ NORMAL | INPUT B: ■ AC | NORMAL■ • Press to open the SCOPE INPUTS menu. • Press to open the TRIGGER menu, and choose: INPUT: A | SCREEN UPDATE: ■ FREE RUN | AUTO RANGE: ■ > 1HZ 3. Set the 5500A to source an AC voltage, to the first test point in Table 4-4 (NORMAL output, WAVE sine). 4. Observe the Input A and Input B main reading and check to see if it is within the range shown under the appropriate column. 5. Continue through the test points. 6. When you are finished, set the 5500A to Standby. Table 4-4. Input A and B AC Input Coupling Verification Points 5500A output, V rms 5500A Frequency Reading A-B 500.0 mV 10 Hz > 344.0 500.0 mV 33 Hz > 469.0 500.0 mV 60 Hz > 486.5 4.5.12 Input A and B Volts Peak Measurements Test WARNING Dangerous voltages will be present on the calibration source and connecting cables during the following steps. Ensure that the calibrator is in standby mode before making any connection between the calibrator and the test tool. Proceed as follows to test the Volts Peak measurement function: 1. Connect the test tool to the 5500A as for the previous test (see Figure 4-5). 2. Select the following test tool setup: • Press to open the SCOPE INPUTS menu. • Press to open the TRIGGER menu, and choose: INPUT: A | SCREEN UPDATE: ■ FREE RUN | AUTO RANGE: ■ > 15HZ • Press to select auto ranging (AUTO in top of display). • Press to open the INPUT A MEASUREMENTS menu, and choose: MEASURE on A: ■ PEAK From the INPUT A PEAK sub-menu choose: PEAK TYPE : ■ PEAK-PEAK • Press to open the INPUT B MEASUREMENTS menu, and choose: INPUT B: ■ ON | MEASURE on B: ■ PEAK 4-17 123 Service Manual From the INPUT B PEAK sub-menu choose: PEAK TYPE : ■ PEAK-PEAK • Using select 1V/div for input A and B. 3. Set the 5500A to source a sine wave, to the first test point in Table 4-5 (NORMAL output, WAVE sine). 4. Observe the Input A and Input B main reading and check to see if it is within the range shown under the appropriate column. 5. Continue through the test points. 6. When you are finished, set the 5500A to Standby. Table 4-5. Volts Peak Measurement Verification Points 5500A output, Vrms (sine) 5500A Frequency Reading A-B 1.768 (5V peak) 1 kHz 4.50 to 5.50 4.5.13 Input A and B Phase Measurements Test Proceed as follows: 1. Connect the test tool to the 5500A as for the previous test (see Figure 4-5). 2. Select the following test tool setup: • Press to select auto ranging (AUTO in top of display). • Press to open the INPUT A MEASUREMENTS menu, and choose: MEASURE on A: ■ PHASE • Press to open the INPUT B MEASUREMENTS menu, and choose: INPUT B: ■ ON | MEASURE on B: ■ PHASE • Using select 1V/div for input A and B. 3. Set the 5500A to source a sine wave, to the first test point in Table 4-6 (NORMAL output, WAVE sine). 4. Observe the Input A and Input B main reading and check to see if it is within the range shown under the appropriate column. 5. Continue through the test points. 6. When you are finished, set the 5500A to Standby. Table 4-6. Phase Measurement Verification Points 4-18 5500A output, Vrms (sine) 5500A Frequency Reading A-B 1.5V 1 kHz -2 to +2 Deg Performance Verification 4.5 Input A and Input B Tests 4 4.5.14 Input A and B High Voltage AC/DC Accuracy Test Warning Dangerous voltages will be present on the calibration source and connecting cables during the following steps. Ensure that the calibrator is in standby mode before making any connection between the calibrator and the test tool. Proceed as follows to test the Input A&B High Voltage AC and DC Accuracy: 1. Connect the test tool to the 5500A as shown in Figure 4-6. ST8129.CGM Figure 4-6. Test Tool Input A-B to 5500A Normal Output for >300V 2. Select the following test tool setup: • Press to select auto ranging (AUTO in top of display). Do not press anymore! • Press to open the INPUT A MEASUREMENTS menu, and choose: MEASURE on A: ■ VAC • Press to open the INPUT A MEASUREMENTS menu, and choose: MEASURE on A: ■ VDC (VDC • Press becomes main reading, VAC secondary reading) to open the INPUT B MEASUREMENTS menu, and choose: INPUT B: ■ ON | MEASURE on B: ■ VAC • Press to open the INPUT B MEASUREMENTS menu, and choose: INPUT B: ■ ON | MEASURE on B: ■ VDC • Move the Input A and Input B ground level (indicated by zero icon center grid line. Proceed as follows: ) to the Press to enable the arrow keys for moving the Input A ground level. Press to enable the arrow keys for moving the Input B ground level. Using the keys move the ground level. 4-19 123 Service Manual 3. Using set the Input A and B sensitivity to the first test point in Table 4-7. The corresponding range is shown in the second column of the table. 4. Set the 5500A to source the required AC voltage (NORMAL output, WAVE sine). 5. Observe the Input A and B main reading (V DC) and secondary reading (V-AC) and check to see if it is within the range shown under the appropriate column. 6. Continue through the test points. 7. When you are finished, set the 5500A to Standby Table 4-7. V DC and V AC High Voltage Verification Tests Sensitivity (Scope) Range (Meter) 5500A output Vrms 5500A Frequency Main (DC) Reading A-B 200V/div 500V 0V DC -000.5 to +000.5 +500V DC +497.0 to +503.0 -500V DC -497.0 to -503.0 500V 60Hz 494.0 to 506.0 500V 10 kHz 486.0 to 514.0 600V 10 kHz 0.570 to 0.630 600V 60Hz 0.584 to 0.616 +600V DC +0.592 to +0.608 -600V DC -0.592 to -0.608 0V DC -0.005 to +0.005 500V/div 1250V Secondary (AC) Reading A-B 4.5.15 Resistance Measurements Test Proceed as follows: 1. Connect the test tool to the 5500A as shown in Figure 4-7. ST8003.CGM Figure 4-7. Test Tool Input A to 5500A Normal Output 4-Wire 4-20 Performance Verification 4.5 Input A and Input B Tests 4 2. Select the following test tool setup: • Press to select auto ranging (AUTO in top of display). • Press to open the INPUT A MEASUREMENTS menu, and choose: MEASURE on A: ■ OHM Ω 3. Set the 5500A to the first test point in Table 4-8. Use the 5500A “COMP 2 wire” mode for the verifications up to and including 50 kΩ. For the higher values, the 5500A will turn off the “COMP 2 wire” mode. 4. Observe the Input A main reading and check to see if it is within the range shown under the appropriate column. 5. Continue through the test points. 6. When you are finished, set the 5500A to Standby. Table 4-8. Resistance Measurement Verification Points 5500A output Reading 0Ω 000.0 to 000.5 400Ω 397.1 to 402.9 4 kΩ 3.971 to 4.029 40 kΩ 39.71 to 40.29 400 kΩ 397.1 to 402.9 4 MΩ 3.971 to 4.029 30 MΩ 29.77 to 30.23 4.5.16 Continuity Function Test Proceed as follows: 1. Connect the test tool to the 5500A as for the previous test (see Figure 4-7). 2. Select the following test tool setup: • Press to select auto ranging (AUTO in top of display). • Press to open the INPUT A MEASUREMENTS menu, and choose: MEASURE on A: ■ CONT ))) 3. Set the 5500A to 25Ω. Use the 5500A “COMP 2 wire” mode. 4. Listen to hear that the beeper sounds continuously. 5. Set the 5500A to 35Ω. 6. Listen to hear that the beeper does not sound. 7. When you are finished, set the 5500A to Standby. 4-21 123 Service Manual 4.5.17 Diode Test Function Test Proceed as follows to test the Diode Test function : 1. Connect the test tool to the 5500A as for the previous test (see Figure 4-7). 2. Press to open the INPUT A MEASUREMENTS menu, and choose: MEASURE on A: ■ DIODE 3. Set the 5500A to 1 kΩ Ω. Use the 5500A “COMP 2 wire” mode. 4. Observe the main reading and check to see if it is within 0.425 and 0.575V. 5. Set the 5500A to 1V DC. 6. Observe the main reading and check to see if it is within 0.975 and 1.025V. 7. When you are finished, set the 5500A to Standby. 4.5.18 Capacitance Measurements Test Proceed as follows: 1. Connect the test tool to the 5500A as for the previous test (see Figure 4-7). Ensure that the 5500A is in Standby. 2. Select the following test tool setup: • Press to open the INPUT A MEASUREMENTS menu, and choose: MEASURE on A: ■ CAP • Press to select auto ranging (AUTO in top of display). • Press to open the INPUT A MEASUREMENTS menu. • Press the select the METER A OPTIONS MENU, and choose: SMOOTHING: ■ NORMAL | ZERO REF: ■ ON The ZERO REF function is used to eliminate the capacitance of the test leads. 3. Set the 5500A to the first test point in Table 4-9. Use the 5500A “COMP OFF” mode. 4. Observe the Input A main reading and check to see if it is within the range shown under the appropriate column. 5. Continue through the test points. 6. When you are finished, set the 5500A to Standby. 7. Remove all test leads from the test tool to check the zero point. 8. Press to open the INPUT A MEASUREMENTS menu. 9. Press the select the METER A OPTIONS MENU, and choose: SMOOTHING: ■ NORMAL | ZERO REF: ■ OFF 10. Observe the Input A reading and check to see if it is between 00.00 and 00.10 nF. 4-22 Performance Verification 4.5 Input A and Input B Tests 4 Table 4-9. Capacitance Measurement Verification Points 5500A output Reading 40 nF 39.10 to 40.90 300 nF 293.0 to 307.0 3 µF 2.930 to 3.070 30 µF 29.30 to 30.70 300 µF 293.0 to 307.0 0 (remove test tool input connections ) 00.00 to 00.10 (see steps 7...10) 4.5.19 Video Trigger Test Only one of the systems NTSC, PAL, or SECAM has to be verified. Proceed as follows: 1. Connect the test tool to the TV Signal Generator as shown in Figure 4-8. ST8141.CGM Figure 4-8. Test Tool Input A to TV Signal Generator 2. Select the following test tool setup: • Reset the test tool (power off and then on with • Press to open the SCOPE INPUTS menu. • Press to open the TRIGGER menu and choose: ). ■ VIDEO on A... From the shown VIDEO TRIGGER menu choose: SYSTEM: ■ NTSC or ■ PAL or ■ SECAM LINE: ■ SELECT POLARITY: ■ POSITIVE 4-23 123 Service Manual • Using • Using • Press • Using set the Input A sensitivity to 200 mV/div. select 20 µs/div. to enable the arrow keys for selecting the video line number. select the line number: 622 for PAL or SECAM 525 for NTSC. 3. Set the TV Signal Generator to source a signal with the following properties: • the system selected in step 2 • gray scale • video amplitude 1V (5 divisions on the test tool) • chroma amplitude zero. 4. Observe the trace, and check to see if the test tool triggers on line number: 622 for PAL or SECAM, see Figure 4-9 525 for NTSC, see Figure 4-10. Note Numerical readings in the pictures shown below may deviate from those shown in the test tool display during verification. PAL622.BMP Figure 4-9. Test Tool Screen for PAL/SECAM line 622 5. Using NTSC525.BMP Figure 4-10. Test Tool Screen for NTSC line 525 select the line number: 310 for PAL or SECAM 262 for NTSC 6. Observe the trace, and check to see if the test tool triggers on: line number 310 for PAL or SECAM, see Figure 4-11. line number 262 for NTSC, see Figure 4-12. 4-24 Performance Verification 4.5 Input A and Input B Tests PAL310.BMP Figure 4-11. Test Tool Screen for PAL/SECAM line 310 4 NTSC262.BMP Figure 4-12. Test Tool Screen for NTSC line 262 7. Apply the inverted TV Signal Generator signal to the test tool. You can invert the signal by using a Banana Plug to BNC adapter (Fluke PM9081/001) and a Banana Jack to BNC adapters (Fluke PM9082/001), as shown in Figure 4-13. ST8142.CGM Figure 4-13. Test Tool Input A to TV Signal Generator Inverted 8. Select the following test tool setup: • Press to open the SCOPE INPUTS menu. • Press to open the TRIGGER menu and choose: ■ VIDEO on A The VIDEO TRIGGER sub-menu is shown now. From the VIDEO TRIGGER menu choose: 4-25 123 Service Manual SYSTEM: ■ NTSC or ■ PAL or ■ SECAM or ■ PALplus | LINE: ■ SELECT | • POLARITY: ■ NEGATIVE • Using • Using 9. Using set the Input A sensitivity to 200 mV/div. select 20 µs/div. select the line number: 310 for PAL or SECAM 262 for NTSC 10. Observe the trace, and check to see if the test tool triggers on: line number 311 for PAL or SECAM, see Figure 4-14 line number 262 for NTSC, see Figure 4-15. PAL310I..BMP Figure 4-14. Test Tool Screen for PAL/SECAM line 310 Negative Video NTSC262I.BMP Figure 4-15. Test Tool Screen for NTSC line 262 Negative Video This is the end of the Performance Verification Procedure. 4-26 Chapter 5 Calibration Adjustment Title 5.1 General ........................................................................................................ 5.1.1 Introduction.......................................................................................... 5.1.2 Calibration number and date................................................................ 5.1.3 General Instructions............................................................................. 5.2 Equipment Required For Calibration.......................................................... 5.3 Starting Calibration Adjustment ................................................................. 5.4 Contrast Calibration Adjustment ................................................................ 5.5 Warming Up & Pre-Calibration .................................................................. 5.6 Final Calibration ......................................................................................... 5.6.1 HF Gain Input A&B ............................................................................ 5.6.2 Delta T Gain, Trigger Delay Time & Pulse Adjust Input A................ 5.6.3 Pulse Adjust Input A (firmware V01.00 only) .................................... 5.6.4 Pulse Adjust Input B............................................................................ 5.6.5 Gain DMM (Gain Volt) ....................................................................... 5.6.6 Volt Zero.............................................................................................. 5.6.7 Zero Ohm (firmware V01.00 only)...................................................... 5.6.8 Gain Ohm............................................................................................. 5.6.9 Capacitance Gain Low and High......................................................... 5.6.10 Capacitance Clamp & Zero................................................................ 5.6.11 Capacitance Gain ............................................................................... 5.7 Save Calibration Data and Exit................................................................... Page 5-3 5-3 5-3 5-3 5-4 5-4 5-6 5-7 5-7 5-7 5-9 5-10 5-11 5-11 5-13 5-13 5-14 5-15 5-15 5-16 5-16 5-1 Calibration Adjustment 5.1 General 5 5.1 General 5.1.1 Introduction The following information, provides the complete Calibration Adjustment procedure for the Fluke 123 test tool. The test tool allows closed-case calibration using known reference sources. It measures the reference signals, calculates the correction factors, and stores the correction factors in RAM. After completing the calibration, the correction factors can be stored in FlashROM. The test tool should be calibrated after repair, or if it fails the performance test. The test tool has a normal calibration cycle of one year. 5.1.2 Calibration number and date When storing valid calibration data in FlashROM after performing the calibration adjustment procedure, the calibration date is set to the actual test tool date, and calibration number is raised by one. To display the calibration date and - number: 1. Press to open the USER OPTIONS menu. 2. Press to show the VERSION&CALIBRATION screen (see Figure 5.1). 3. Press to return to normal mode. VERSION.BMP Figure 5-1. Version & Calibration Screen 5.1.3 General Instructions Follow these general instructions for all calibration steps: • Allow the 5500A to satisfy its specified warm-up period. For each calibration point , wait for the 5500A to settle. • The required warm up period for the test tool is included in the WarmingUp & PreCal calibration step. • Ensure that the test tool battery is charged sufficiently. 5-3 123 Service Manual 5.2 Equipment Required For Calibration The primary source instrument used in the calibration procedures is the Fluke 5500A. If a 5500A is not available, you can substitute another calibrator as long as it meets the minimum test requirements. • Fluke 5500A Multi Product Calibrator, including 5500A-SC Oscilloscope Calibration Option. • Stackable Test Leads (4x), supplied with the 5500A. • 50Ω Coax Cables (2x), Fluke PM9091 or PM9092. • 50Ω feed through terminations (2x), Fluke PM9585. • Fluke BB120 Shielded Banana to Female BNC adapters (2x), supplied with the Fluke 123. • Dual Banana Plug to Female BNC Adapter (1x), Fluke PM9081/001. • Male BNC to Dual Female BNC Adapter (1x), Fluke PM9093/001. • 20V ± 1V, 0.5A, DC power supply (not for serial numbers > DM7000000). • Power adapter input supply cable (not for serial numbers > DM7000000); refer to Section 8.8 for the ordering number. 5.3 Starting Calibration Adjustment Follow the steps below to start calibration adjustments. 1. Power the test tool via the power adapter input, using the PM8907 power adapter. 2. Check the actual test tool date, and adjust the date if necessary: • press • using • press • adjust the date if necessary. to open the USER OPTIONS menu select DATE ADJUST to open the DATE ADJUST menu 3. Select the Maintenance mode. The Calibration Adjustment Procedure uses built-in calibration setups, that can be accessed in the Maintenance mode. To enter the Maintenance mode proceed as follows: • Press and hold • Press and release • Release • The display shows the Calibration Adjustment Screen. The display shows the first calibration step Warming Up (CL 0200) , and the calibration status :IDLE (valid) or :IDLE (invalid). 5-4 Calibration Adjustment 5.3 Starting Calibration Adjustment 5 4. Continue with either a. or b. below: a. To calibrate the display contrast adjustment range and the default contrast, go to Section 5.4 Contrast Calibration Adjustment. This calibration step is only required if the display cannot made dark or light enough, or if the display after a test tool reset is too light or too dark. b. To calibrate the test tool without calibrating the contrast , go to Section 5.5 Warming Up & Pre-calibration. Explanation of screen messages and key functions. When the test tool is in the Maintenance Mode, only the F1 to F4 soft keys, the ON/OFF key, and the backlight key can be operated, unless otherwise stated. The calibration adjustment screen shows the actual calibration step (name and number) and its status : Cal Name (CL nnnn) :Status Status Calibration step nnnn can be: IDLE (valid) After (re)entering this step, the calibration process is not started. The calibration data of this step are valid. This means that the last time this step was done, the calibration process was successful. It does not necessarily mean that the unit meets the specifications related to this step! IDLE (invalid) After (re)entering this step, the calibration process is not started. The calibration data are invalid. This means that the unit will not meet the specifications if the calibration data are saved. BUSY aaa% bbb% Calibration adjustment step in progress; progress % for Input A and Input B. READY Calibration adjustment step finished. Error :xxxx Calibration adjustment failed, due to wrong input signal(s) or because the test tool is defective. The error codes xxxx are shown for production purposes only. Functions of the keys F1-F4 are: PREV select the previous step NEXT select the next step CAL start the calibration adjustment of the actual step EXIT leave the Maintenance mode Readings and traces After completing a calibration step, readings and traces are shown using the new calibration data. 5-5 123 Service Manual 5.4 Contrast Calibration Adjustment After entering the Maintenance mode, the test tool display shows Warming Up (CL 0200):IDLE (valid). Do not press now! If you did, turn the test tool off and on, and enter the Maintenance mode again. Proceed as follows to adjust the maximum display darkness (CL0100), the default contrast (CL0110) , and the maximum display brightness (CL0120). 1. Press a three times to select the first calibration step. The display shows: Contrast (CL 0100) :MANUAL 2. Press CAL. The display will show a dark test pattern, see Figure 5-2 adjust the display to the maximum darkness, at which the test pattern 3. Using is only just visible. 4. Press to select the default contrast calibration. The display shows: Contrast (CL 0110) :MANUAL 5. Press CAL. The display shows the test pattern at default contrast. set the display to optimal (becomes default) contrast. 6. Using 7. Press to select maximum brightness calibration. The display shows: Contrast (CL 0120) :MANUAL 8. Press CAL. The display shows a bright test pattern. adjust the display to the maximum brightness, at which the test 9. Using pattern is only just visible. 10. You can now : • Exit, if only the Contrast had to be adjusted. Continue at Section 5.7. OR • Do the complete calibration. Press and continue at Section 5.5. to select the next step (Warming Up), Figure 5-2. Display Test Pattern 5-6 Calibration Adjustment 5.5 Warming Up & Pre-Calibration 5 5.5 Warming Up & Pre-Calibration After entering the Warming-Up & Pre-Calibration state, the display shows: WarmingUp (CL 0200):IDLE (valid) or (invalid). You must always start the Warming Up & Pre Calibration at Warming Up (CL0200) . Starting at another step will make the calibration invalid! Proceed as follows: 1. Remove all input connections from the test tool. to start the Warming-Up & Pre-Calibration. 2. Press The display shows the calibration step in progress, and its status. The first step is WarmingUp (CL0200) :BUSY 00:29:59 . The warming-up period is counted down from 00:29:59 to 00:00:00. Then the other pre-calibration steps are performed automatically. The procedure takes about 60 minutes. 3. Wait until the display shows End Precal :READY 4. Continue at Section 5.6. 5.6 Final Calibration You must always start the Final Calibration at the first step of Section 5.6.1. Starting at another step will make the calibration invalid! If you proceeded to step N (for example step CL 0615), then return to a previous step (for example step CL 0613) , and then calibrate this step, the complete final calibration becomes invalid. You must do the final calibration from the beginning (step CL 0600) again. You can repeat a step that shows the status :READY by pressing again. 5.6.1 HF Gain Input A&B Proceed as follows to do the HF Gain Input A&B calibration: 1. Press to select the first calibration step in Table 5-1 ( HFG & FI AB (CL 0600): ) 2. Connect the test tool to the 5500A as shown in Figure 5-3. Do NOT use 50Ω terminations! ST8097.CGM Figure 5-3. HF Gain Calibration Input Connections 5-7 123 Service Manual 3. Set the 5500A to source a 1 kHz fast rising edge square wave (Output SCOPE, MODE edge) to the first calibration point in Table 5-1. 4. Set the 5500A in operate (OPR). to start the calibration. 5. Press 6. Wait until the display shows calibration status READY . to select the next calibration step, set the 5500A to the next calibration 7. Press point, and start the calibration. Continue through all calibration points in Table 5-1. 8. Set the 5500A to source a 1 kHz square wave (Output SCOPE, MODE wavegen, WAVE square), to the first calibration point in Table 5-2. 9. Press to select the first step in Table 5-2. 10. Press to start the calibration. 11. Wait until the display shows calibration status READY. to select the next calibration step, set the 5500A to the next calibration 12. Press point, and start the calibration. Continue through all calibration points Table 5-2. 13. When you are finished, set the 5500A to Standby. 14. Continue at Section 5.6.2. Table 5-1. HF Gain Calibration Points Fast Cal step 5500A Setting 1) (1 kHz, no 50Ω!) HFG & FI AB (CL 0600) 10 mV 20 mV HFG & FI AB (CL 0601) 25 mV 50 mV HFG & FI AB (CL 0602) 50 mV 100 mV HFG & FI AB (CL 0603) 100 mV 200 mV HFG & FI AB (CL 0604) 250 mV 500 mV HFG & FI AB (CL 0605) 500 mV 1V HFG & FI AB (CL 0606) 1V 2V 2.5V 5V HFG & FI AB (CL 0607) 2) [HFG & FI A (CL 0608), HFG & FI B (CL 0628)] 5-8 Test Tool Input Signal 1) Requirements (1 kHz, trise<100 ns, flatness after rising edge: <0.5% after 200 ns) 1) As the 5500A output is not terminated with 50Ω, its output voltage is two times its set voltage 2) After starting the first step in this table cell, these steps are done automatically. Calibration Adjustment 5.6 Final Calibration 5 Table 5-2. HF Gain Calibration Points Slow Cal step 5500A Setting (1 kHz, MODE wavegen, WAVE square) Test Tool Input Signal Requirements (1 kHz square, trise<2 µs, flatness after rising edge: <0.5% after 4 µs) HF-Gain AB (CL 0609) 25V 25V For firmware V01.00 50V 50V HF-Gain AB (CL 0610) [HF-Gain A (CL 0611), HF-Gain B (CL 0631) HF-Gain A (CL 0612), HF-Gain B (CL 0632) HF-Gain A (CL 0613), HF-Gain B (CL 0633) HF-Gain A (CL 0614), HF-Gain B (CL 0634) 1) HF-Gain A (CL 0615), HF-Gain B (CL 0635)] For firmware > V01.00 HF-Gain A (CL 0612), [HF-Gain B (CL 0632) 1) HF-Gain A (CL 0615), HF-Gain B (CL 0635)] 1) After starting the first step in this table cell, these steps are done automatically. 5.6.2 Delta T Gain, Trigger Delay Time & Pulse Adjust Input A Note For firmware version V01.00 the Pulse adjust Input A calibration is a separate step, described in Section 5.6.3. Proceed as follows to do the calibrations: 1. Press to select calibration step Delta T (CL 0700):IDLE 2. Connect the test tool to the 5500A as shown in Figure 5-4. ST8004.CGM Figure 5-4. 5500A Scope Output to Input A 3. Set the 5500A to source a 1V, 1 MHz fast rising (rise time ≤ 1 ns) square wave (SCOPE output, MODE edge). 5-9 123 Service Manual 4. Set the 5500A to operate (OPR). to start the calibration. 5. Press The Delta T gain, Trigger Delay (CL0720), and Pulse Adjust Input A (CL0640) will be calibrated. (For firmware V01.00 CL0640 is a separate step!). 6. Wait until the display shows Pulse Adj A (CL 0640):READY. (For firmware V01.00 wait until the display shows Delay (CL 0720):READY 7. When you are finished, set the 5500A to Standby. 8. Continue at Section 5.6.4. (For firmware V01.00 continue at Section 5.6.3). 5.6.3 Pulse Adjust Input A (firmware V01.00 only) Note For firmware versions newer than V01.00 the Pulse Adjust Input A (CL0640) step is included in Section 5.6.2. Proceed as follows to do the Pulse Adjust Input A calibration: 1. Press to select calibration step Pulse Adj A (CL 0640):IDLE 2. Connect the test tool to the 5500A as for the previous calibration (Figure 5-4). 3. Set the 5500A to source a 1V, 1 MHz fast rising square wave (SCOPE output, MODE edge) (rise time ≤ 1 ns, aberrations <2% pp). 4. Set the 5500A to operate (OPR). 5. Press to start the calibration. 6. Wait until the display shows Pulse Adj A (CL 0640): READY. 7. When you are finished, set the 5500A to Standby. 8. Continue at Section 5.6.4. 5-10 Calibration Adjustment 5.6 Final Calibration 5 5.6.4 Pulse Adjust Input B Proceed as follows to do the Pulse Adjust Input A calibration: 1. Press to select calibration step Pulse Adj B (CL 0660):IDLE 2. Connect the test tool to the 5500A as shown in Figure 5-5. ST8005.CGM Figure 5-5. 5500A Scope Output to Input B 3. Set the 5500A to source a 1V, 1 MHz fast rising square wave (SCOPE output, MODE edge) (rise time ≤ 1 ns, aberrations <2% pp). 4. Set the 5500A to operate (OPR). 5. Press to start the calibration. 6. Wait until the display shows Pulse Adj B (CL 0660):READY. 7. When you are finished, set the 5500A to Standby. 8. Continue at Section 5.6.5. 5.6.5 Gain DMM (Gain Volt) Warning Dangerous voltages will be present on the calibration source and connection cables during the following steps. Ensure that the calibrator is in standby mode before making any connection between the calibrator and the test tool. Proceed as follows to do the Gain DMM calibration. 1. Press to select the first calibration step in Table 5-3. 2. Connect the test tool to the 5500A as shown in Figure 5-6. 5-11 123 Service Manual ST8001.CGM Figure 5-6. Volt Gain Calibration Input Connections <300V 3. Set the 5500A to supply a DC voltage, to the first calibration point in Table 5-3. 4. Set the 5500A to operate (OPR). 5. Press to start the calibration. 6. Wait until the display shows calibration status :READY. 7. Press to select the next calibration step, set the 5500A to the next calibration point, and start the calibration. Continue through all calibration points of Table 5-3 8. Set the 5500A to Standby, and continue with step 9. Table 5-3. Volt Gain Calibration Points <300V Cal step 9. Press 5-12 Input value Gain DMM (CL0800) 12.5 mV Gain DMM (CL0801) 25 mV Gain DMM (CL0802) 50 mV Gain DMM (CL0803) 125 mV Gain DMM (CL0804) 250 mV Gain DMM (CL0805) 500 mV Gain DMM (CL0806) 1.25V Gain DMM (CL0807) 2.5V Gain DMM (CL0808) 5V Gain DMM (CL0809) 12.5V Gain DMM (CL0810) 25V Gain DMM (CL0811) 50V Gain DMM (CL0812) 125V Gain DMM (CL0813) 250V to select calibration step Gain DMM (CL0814) :IDLE (set 5500A to OPR!) Calibration Adjustment 5.6 Final Calibration 5 10. Connect the test tool to the 5500A as shown in Figure 5-7. ST8129.CGM Figure 5-7. Volt Gain Calibration Input Connections 500V 11. Set the 5500A to supply a DC voltage of 500V. 12. Set the 5500A to operate (OPR). to start the calibration. 13. Press Gain DMM (CL0814) and Gain DMM (CL0815) will be calibrated now. 14. Wait until the display shows calibration status Gain DMM (CL0815):READY. 15. Set the 5500A to 0V (zero) and to Standby. 16. Continue at Section 5.6.6. 5.6.6 Volt Zero Proceed as follows to do the Volt Zero calibration: 1. Press to select calibration adjustment step Volt Zero (CL 0820):IDLE. 2. Terminate Input A and Input B with the BB120 and a 50Ω or lower termination. 3. Press to start the zero calibration of all mV/d settings (CL0820...CL0835) 4. Wait until the display shows Volt Zero (CL 0835):READY. 5. Remove the 50Ω terminations from the inputs. 6. Continue at Section 5.6.8. (For firmware version V01.00 continue at Section 5.6.7). 5.6.7 Zero Ohm (firmware V01.00 only) Proceed as follows to do the Zero Ohm calibration: 1. Press to select calibration adjustment step Zero Ohm (CL 0840):IDLE 2. Make a short circuit between the Input A banana socket and the COM input . 3. Press to start the Ohm Zero calibration of all ranges (CL 0840...CL 0846). 4. Wait until the display shows the calibration status Zero Ohm (CL 0846):READY. 5. Remove the Input A to COM short. 6. Continue at Section 5.6.8. 5-13 123 Service Manual 5.6.8 Gain Ohm Proceed as follows to do the Gain Ohm calibration: 1. Press to select calibration adjustment step Gain Ohm (CL 0860):IDLE 2. Connect the UUT to the 5500A as shown in Figure 5-8. Notice that the sense leads must be connected directly to the test tool. ST8003.CGM Figure 5-8. Four-wire Ohms calibration connections 3. Set the 5500A to the first test point in Table 5-4. Use the 5500A “COMP 2 wire” mode for the calibration adjustments up to and including 100 kΩ. For the higher values, the 5500A will turn off the “COMP 2 wire” mode. 4. Set the 5500A to operate (OPR). 5. Press to start the calibration. 6. Wait until the display shows the calibration status :READY. 7. Press to select the next calibration step, set the 5500A to the next calibration point, and start the calibration. Continue through all calibration points. 8. When you are finished, set the 5500A to Standby. 9. Continue at Section 5.6.9. Table 5-4. Ohm Gain Calibration Points Cal Step Gain Ohm (CL 0860) [Cap. Pos. (CL 0920), Cap.Neg. (CL 0921)] 100Ω Gain Ohm (CL 0861) [Cap. Pos. (CL 0922), Cap.Neg. (CL 0923)] 1) 1 kΩ Gain Ohm (CL 0862) [Cap. Pos. (CL 0924), Cap.Neg. (CL 0925)] 1) 10 kΩ Gain Ohm (CL 0863) [Cap. Pos. (CL 0926), Cap.Neg. (CL 0927)] 1) 100 kΩ Gain Ohm (CL 0864) Gain Ohm (CL 0865) [Gain Ohm (CL 0866)] 1) 2) 5-14 Input Value 1) 1 MΩ 2) 10 MΩ The capacitance measurement current calibrations (Cap.Pos. and Cap.Neg) are done automatically after the Gain Ohm calibration. The Gain Ohm (CL0866) calibration step is done automatically after the Gain Ohm (CL0865) calibration. Calibration Adjustment 5.6 Final Calibration 5 5.6.9 Capacitance Gain Low and High Proceed as follows to do the Capacitance Gain calibration: 1. Press to select calibration adjustment step Cap. Low (CL 0900):IDLE 2. Connect the test tool to the 5500A as shown in Figure 5-9. ST8002.CGM Figure 5-9. Capacitance Gain Calibration Input Connections 3. Set the 5500A to supply 250 mV DC. 4. Set the 5500A to operate (OPR). 5. Press to start the calibration. 6. Wait until the display shows Cap. Low (CL 0900):READY. 7. Press to select calibration adjustment step Cap. High (CL 0910):IDLE 8. Set the 5500A to supply 50 mV DC. 9. Press to start the calibration. 10. Wait until the display shows Cap High (CL 910):READY. 11. Set the 5500A to Standby. 12. Continue at Section 5.6.10. 5.6.10 Capacitance Clamp & Zero Proceed as follows to do the Capacitance Clamp Voltage & Zero calibration: 1. Press to select calibration adjustment step Cap. Clamp (CL 0940):IDLE 2. Remove any input connection from the test tool (open inputs). to start the calibration. 3. Press The capacitance measurement clamp voltage Cap. Clamp (CL 0940), and the zero of the capacitance ranges Cap. Zero (CL 0950)... Cap. Zero (CL 0953) will be calibrated now. Firmware version V01.00 has an additional step Cap. Zero (CL 0954). 4. Wait until the display shows Cap. Zero (CL 0953): READY. (For firmware V01.00 wait until the display shows Cap. Zero (CL 0954): READY). 5. Continue at Section 5.6.11. 5-15 123 Service Manual 5.6.11 Capacitance Gain Proceed as follows to do the Capacitance Gain calibration: to select calibration adjustment step Cap. Gain (CL 0960):IDLE 1. Press 2. Connect the test tool to the 5500A as shown in Figure 5-9 (Section 5.6.9). 3. Set the 5500A to 500 nF. 4. Set the 5500A to operate (OPR). 5. Press to start the calibration. 6. Wait until the display shows Cap. Gain (CL 0960):READY. 7. Continue at Section 5.7 to save the calibration data. 5.7 Save Calibration Data and Exit Proceed as follows to save the calibration data, and to exit the Maintenance mode: 1. Remove all test leads from the test tool inputs. Do NOT turn off the test tool! Steps 2 and 3 are required for serial numbers below DM7000000 only. 2. Remove the PM8907 power adapter supply from the test tool. 3. Power the test tool via the power adapter input, using a 20V ± 1V, 0.5A, DC supply. For this purpose, a special supply cable (see Figure 5-10) can be ordered; refer to Section 8.7 for the ordering number. + RED - WHITE + Figure 5-10. 20 V Supply Cable for Calibration CAUTION To avoid damaging the test tool be sure to apply the polarity and voltage level of the 20V supply voltage correctly. 4. Press (EXIT). The test tool will display: Calibration data is valid Save data and EXIT maintenance? Note Calibration data valid indicates that the calibration adjustment procedure is performed correctly. It does not indicate that the test tool meets the characteristics listed in Chapter 2. 5-16 Calibration Adjustment 5.7 Save Calibration Data and Exit 4. Press - 5 (YES) to save and exit. Notes The calibration number and date will be updated only if the calibration data have been changed and the data are valid. - The calibration data will change when a calibration adjustment has been done. The data will not change when just entering and then leaving the maintenance mode without doing a calibration adjustment. - The calibration number and date will NOT be updated if only the display contrast has been adjusted. Possible error messages. The following messages can be shown on the test tool display: WARNING.Calibration data NOT valid. Save data and EXIT? Proceed as follows: • To return to the Maintenance mode: Press NO. Now press until the display shows WarmingUp (CL 0200):IDLE, and calibrate the test tool, starting at Section 5.5. • To exit and save the INVALID calibration data: Press YES. The test tool will show the message The test tool needs calibration. Please contact your service center at power on. The calibration date and number will not be updated. A complete recalibration must be done. • To exit and maintain the old calibration data: Turn the test tool off. WARNING.No adapter present. Calibration data will not be saved. Exit maintenance mode? • To save the calibration data: Press NO The test tool returns to the maintenance mode. Then supply the correct adapter input voltage, and press to exit and save. • To exit without saving the calibration data: Press YES 5-17 Chapter 6 Disassembling the Test Tool Title 6.1. Introduction................................................................................................ 6.2. Disassembling Procedures ......................................................................... 6.1.1 Required Tools .................................................................................... 6.2.2 Removing the Battery Pack ................................................................. 6.2.3 Removing the Bail ............................................................................... 6.2.4 Opening the Test Tool ......................................................................... 6.2.5 Removing the Main PCA Unit............................................................. 6.2.6 Removing the Display Assembly......................................................... 6.2.7 Removing the Keypad and Keypad Foil.............................................. 6.3 Disassembling the Main PCA Unit ............................................................. 6.4 Reassembling the Main PCA Unit .............................................................. 6.5 Reassembling the Test Tool........................................................................ Page 6-3 6-3 6-3 6-3 6-3 6-3 6-5 6-6 6-6 6-6 6-8 6-8 ` 6-1 Disassembling the Test Tool 6.1. Introduction 6 6.1. Introduction This section provides the required disassembling procedures. The printed circuit board removed from the test tool must be adequately protected against damage. Warning To avoid electric shock, disconnect test leads, probes and power supply from any live source and from the test tool itself. Always remove the battery pack before completely disassembling the test tool. If repair of the disassembled test tool under voltage is required, it shall be carried out only by qualified personnel using customary precautions against electric shock. 6.2. Disassembling Procedures 6.1.1 Required Tools To access all the assemblies, you need the following: • Static-free work surface, and anti-static wrist wrap. • #8, and #10 Torx screwdrivers. • Cotton gloves (to avoid contaminating the lens, and the PCA). 6.2.2 Removing the Battery Pack Referring to Figure 6-1, use the following procedure to remove the battery pack. 1. Loosen the M3 Torx screw (item 15) (do not remove it) from the battery door. 2. Lift the battery door at the screw edge to remove it. 3. Lift out the battery pack, and unplug the cable leading to the Main PCA (pull the cable gently backwards). 6.2.3 Removing the Bail Referring to Figure 6-1, use the following procedure to remove the bail (item 16). 1. Set the bail to a 45 degree position respective to the test tool bottom. 2. Holding the test tool tight, rotate the bail firmly sideways. 6.2.4 Opening the Test Tool Referring to Figure 6-1, use the following procedure to open the test tool. 1. Remove the battery pack (see Section 6.2.2) 2. Unscrew the four M3 Torx screws (item 12) that secure the bottom case to the top case. 3. Hold the test tool upside down, and lift off the bottom case. 6-3 123 Service Manual ST8014.EPS Figure 6-1. Fluke 123 Main Assembly 6-4 Disassembling the Test Tool 6.2. Disassembling Procedures 6 6.2.5 Removing the Main PCA Unit Referring to Figure 6-1, use the following procedure to remove the main PCA unit. 1. Open the test tool (see Section 6.2.4). 2. Disconnect the LCD flex cable, and the keypad foil flat cable, see Figure 6-2. Unlock the cables by lifting the connector latch. The latch remains attached to the connector body. The keypad foil is provided with a shielding flap that covers the LCD flat cable. The end of the flap is put under the main PCA unit shielding plate, and can be easily pulled out. Caution To avoid contaminating the flex cable contacts with oil from your fingers, do not touch the contacts (or wear gloves). Contaminated contacts may not cause immediate instrument failure in controlled environments. Failures typically show up when contaminated units are operated in humid areas. 3. Unplug the backlight cable. Warning If the battery pack or the power adapter is connected, the LCD backlight voltage on the wire cable is 400V ! (when the test tool is on). 4. Remove the two screws (item 10) that secure the Main PCA unit to the top case. 5. Lift the screw end of the Main PCA unit and remove the unit by gently wiggling the assembly from side to side as you pull backwards. ST8035.EPS Figure 6-2. Flex Cable Connectors 6-5 123 Service Manual 6.2.6 Removing the Display Assembly Caution Read the Caution statement in Section 6.5 when installing the display assembly. An incorrect installation can damage the display assembly. There are no serviceable parts in the display assembly. Referring to Figure 6-1, use the following procedure to remove the display assembly. 1. Remove the main PCA unit (see Section 6.2.5). 2. The keypad pressure plate (item 9) is captivated by four plastic keeper tabs in the top case. Press the plate down, carefully slide the plate to release it from the tabs, and then remove it. 3. Remove the display assembly (item 6). To prevent finger contamination, wear cotton gloves, or handle the display assembly by its edge. After removing the display assembly, the shielding bracket (item 5) with the conductive foam strip (item 4), the dust seal (item 3), and the shielding foil (item 2) can be removed. 6.2.7 Removing the Keypad and Keypad Foil Referring to Figure 6-1, use the following procedure to remove the keypad and the keypad foil. 1. Remove the display assembly (see Section 6.2.6). 2. Remove the keypad foil. Notice the four keypad foil positioning pins in the top case. 3. Remove the keypad. Caution To avoid contaminating the keypad contacts, and the keypad foil contacts with oil from your fingers, do not touch the contacts (or wear gloves). Contaminated contacts may not cause immediate instrument failure in controlled environments. Failures typically show up when contaminated units are operated in humid areas. 6.3 Disassembling the Main PCA Unit Referring to Figure 6-3, use the following procedure disassemble the main PCA unit. 1. Remove the M2.5 Torx screws (items 1 and 8) that secure the main shielding plate (item 7) to the main PCA shielding box (item 5). 2. Pull the shielding plate away from the input banana jacks as you rotate the far end upwards, and then remove it. 3. Remove the power input insulator (item 3), and the LED guide piece (item 6). 4. Remove the M2.5.Torx screws (item 2) that secure the PCA to the shielding box. 5. Lift the PCA at the screw end approximately 2 cm, and pull it away from the input banana jack holes to remove it. 6-6 Disassembling the Test Tool 6.3 Disassembling the Main PCA Unit 6 Note Each input banana jacket is provided with a rubber sealing ring (Input A,B item 9, COM input item 10). Ensure that the rings are present when reassembling the main PCA unit! Caution To avoid contaminating the main PCA with oil from your fingers, do not touch the contacts (or wear gloves). A contaminated PCA may not cause immediate instrument failure in controlled environments. Failures typically show up when contaminated units are operated in humid areas. ST8015.CGM 6-3. Main PCA Unit Assembly 6-7 123 Service Manual 6.4 Reassembling the Main PCA Unit Reassembling the main PCA is the reverse of disassembly. However you must follow special precautions when reassembling the main PCA unit. 1. Ensure the input banana jacks have the rubber sealing ring in place (Input A, B item 9, COM input item 10, see Figure 4-6). 2. Do not forget to install the power connector insulator (item 3) and the LED holder (item 6). 3. Notice the correct position of the shielding box, main PCA (notice the shielding plates on the PCA), and shielding plate, as shown in Figure 6-2. The tabs of the shielding plate must be inside both shields. 6.5 Reassembling the Test Tool Reassembling the test tool is the reverse of disassembly. However you must follow special precautions when reassembling the test tool. Refer also to figure 6-1. Caution The first shipped units are provided with a yellow tube on the two notches with the screw inserts at the top in the top case,. The reason for this is that the display assembly in these units is smaller than in the later units. All display assemblies supplied as spare part are of the latest type, and do not need the yellow tubes in the top case. • Remove the tube from both notches when installing a new display assembly! • Transfer the tubes to the new top case, if you replace a top case that has the tubes installed, and you re-install the unit’s original display assembly. Reassembling procedure for a completely disassembled unit: 1. Clean the inside of the lens with a moist soft cloth if necessary. Keep the lens free of dust and grease. 2. Install the keypad. Press the edge of the keypad into the sealing groove of the top case. Ensure that the keypad lays flat in the top case, and that all keys are correctly seated. 3. Install the shielding foil (item 2). Remove the protection foil from the shielding foil, by pulling it off in one rapid movement! If you pull it off slowly, the protection foil may crack. Keep the shielding foil free of dust and grease. 4. Install the dust seal (item 3). 5. Install the display shielding bracket (item 5) provided with the conductive foam strip (item 4). Note Figure 6-4 shows how the shielding bracket (with conductive foam strip), the shielding foil, the dust seal, and the display assembly (see step 7) are clamped in the top cover edge. 6. Install the keypad foil. Align the positioning holes in the keypad foil to the positioning pins in the top case. 6-8 Disassembling the Test Tool 6.5 Reassembling the Test Tool 6 7. Clean the display glass with a moist soft cloth if necessary. Install the display assembly. Ensure that the display is secured correctly by the four alignment tabs in the top case. It is secured correctly when it cannot be moved horizontally. 8. Install the keypad pressure plate. Press the plate firmly, and slide it under the four plastic keeper tabs in the top case. 9. Install the main PCA unit, and re-attach the cables. Secure the flat cables in the connectors with the connector latches. Keep the backlight wires twisted to minimize interference voltages! Insert the shielding flap below the main PCA shielding plate. 10. Put the bottom case and the top case together at the flat cable side, and hinge the cases to each other. This ensures the keypad foil flat cable is folded correctly. 11. Install the battery pack, and the battery door, see figure 6-5. ST8185.EPS Figure 6-4. Mounting the display shielding bracket ST8197.EPS Figure 6-5. Battery pack installation 6-9 Chapter 7 Corrective Maintenance Title 7.1 Introduction ....................................................................................................... 7.2 Starting Fault Finding........................................................................................ 7.3 Charger Circuit .................................................................................................. 7.4 Starting with a Dead Test Tool.......................................................................... 7.4.1 Test Tool Completely Dead ....................................................................... 7.4.2 Test Tool Software Does not Run.............................................................. 7.4.3 Software Runs, Test Tool not Operative.................................................... 7.5 Miscellaneous Functions ................................................................................... 7.5.1 Display and Back Light.............................................................................. 7.5.2 Fly Back Converter .................................................................................... 7.5.3 Slow ADC .................................................................................................. 7.5.4 Keyboard .................................................................................................... 7.5.5 Optical Port (Serial RS232 Interface) ........................................................ 7.5.6 Channel A, Channel B Voltage Measurements.......................................... 7.5.7 Channel A Ohms and Capacitance Measurements .................................... 7.5.8 Trigger Functions ....................................................................................... 7.5.9 Reference Voltages .................................................................................... 7.5.10 Buzzer Circuit .......................................................................................... 7.5.11 Reset ROM Circuit (PCB version <8 only) ............................................. 7.5.12 RAM Test................................................................................................. 7.5.13 Power ON/OFF ........................................................................................ 7.5.14 PWM Circuit ............................................................................................ 7.5.15 Randomize Circuit.................................................................................... 7.6 Loading Software .............................................................................................. Page 7-3 7-4 7-4 7-6 7-6 7-7 7-7 7-8 7-8 7-9 7-10 7-11 7-11 7-11 7-13 7-14 7-15 7-15 7-15 7-16 7-16 7-17 7-17 7-17 7-1 Corrective Maintenance 7.1 Introduction 7 7.1 Introduction This chapter describes troubleshooting procedures that can be used to isolate problems with the test tool. Warning Opening the case may expose hazardous voltages. For example, the voltage for the LCD back light fluorescent lamp is >400V! Always disconnect the test tool from all voltage sources and remove the batteries before opening the case. If repair of the disassembled test tool under voltage is required, it shall be carried out only by qualified personnel using customary precautions against electric shock. • If the test tool fails, first verify that you are operating it correctly by reviewing the operating instructions in the Users Manual. • When making measurements for fault finding, you can use the black COM input banana jack, or the metal shielding on the Main PCA unit, as measurement ground. • To access the Main PCA for measurements, proceed as follows: 1. Remove the Main PCA unit, see Section 6.2.5. 2. Disassemble the Main PCA unit, see Section 6.3. 3. Connect the Display Assembly flat cable, the Backlight cable, and the Keypad Foil flex cable to the Main PCA unit. Position the Keypad on the Keypad foil. See Figure 7.1. The Test tool without the case is operative now. 4. Power the PCA via the Power Adapter and/or battery pack. Watch out for short circuiting due to metal parts on your desk!! REPAIR3.BMP Figure 7-1. Operative Test Tool without Case 7-3 123 Service Manual 7.2 Starting Fault Finding. After each step, continue with the next step, unless stated otherwise. Power the test tool by the battery pack only, then by the power adapter only. 1. The test tool operates with the power adapter, but not with the battery only: install a charged battery (VBAT >4V), and check the connections between the battery and the test tool (X503, R504, R506, R507). 2. The test tool operates with the battery pack, but not with the power adapter only, and the battery pack is not charged by the test tool: continue at 7.3 Charger Circuit. 3. The test tool operates neither with the battery pack, nor with the power adapter: continue at 7.4 Starting with a Dead Test Tool. 4. Particular functions are not correct: continue at 7.5 Miscellaneous Functions. Table 7-1. Starting Fault Finding Power adapter Battery Pack Check 1 OK NOT OK Battery pack, connector, sense resistors 2 NOT OK OK See Section 7.3 Charger Circuit 3 NOT OK NOT OK See Section 7.4 Starting with a Dead Test Tool 4 Partly OK Partly OK See Section 7.5 Miscellaneous Functions 7.3 Charger Circuit 1. Power the test tool by the power adapter only. 2. Check TP501 for ≅15...20V. If not correct, check the power adapter input circuit (X501, Z501,V501, C501). 3. Check TP504 (VBAT) for about 7.5V. If not correct, check R501, V504, V503, L501, C503. Check TP502 for a 100 kHz, 13Vpp pulse signal; if correct or low, check if TP504 is shorted to ground, and check V506. 4. Install a charged battery. The voltage at TP504 will be now about 5V. 5. Check N501 pin 18 (P7VCHA) for ≅7V. If not correct, check N501 pin 20 for ≅15V (supplied via R502). If 15V on pin 20 is correct, check C507, replace N501. P7VCHA is the supply voltage for the charger control circuit in N501. It is derived from VADAPTER (pin20), by an internal linear supply in N501. 6. Check N501 pin 12 (NETVALID) for +2.7V, and TP529 (MAINVAL) for +3.3V. The NETVALID and MAINVAL signals indicate to the P-ASIC and the D-ASIC that a correct power adapter voltage is connected. The signals enable control of the PASIC CHARGE circuit (controls V506 by 100 kHz, 13Vpp square wave). If correct continue at step 7. 7-4 Corrective Maintenance 7.3 Charger Circuit 7 If not correct, then: a. Check TP571 (+3V3GAR) for +3V3V. If not correct, possibly caused by V569, R580, TP571 short to ground, loose pins of N501, N501 defective. b. Check N501 pin 8 (VADALOW) for ≅ 1.1V If not correct: 1. Check R516 and connections. The P-ASIC supplies a current to R516. The current source uses REFPWM2 and IREF, see 2 and 3 below. 2. Check N501 pin 73 (REFPWM2) for +3V3. REFPWM2 is supplied by the P-ASIC. Check TP307 (N501 pin 72, REFP) for 1.22V, check V301 and R307. 3. Check N501 pin 74 (IREF) for 1.61V. If not correct, possibly caused by R528, loose pin 74, or N501 defective. c. Check +3V3SADC on N501 pin 65 for +3.3V. 7. Check TP531 (CHARCURR): The CHARCURR signal controls the battery charge current. If TP531 < 2.7V continue at step 7a. If TP531 >2.7V continue at step 7b. a. Check if charger FET V506 is controlled by a ≅100 kHz, 13 Vpp square wave on TP502 (FET gate). If correct check/replace V506. If not correct, check: 1. N501 pin 4 TEMPHI relative to X503 pin 3 (=N501 pin 9) for ≅ 200 mV. If not correct, check R512 and connections. 2. N501 pin 5 TEMP relative to X503 pin 3 (=N501 pin 9) for ≅ 400...500 mV at about 20 °C. If not correct check the NTC in the battery pack for ≅12 kΩ at 20°C (X503 pins 3 and 5); check connections to N501. 3. N501 pin 6 (IMAXCHA) for ≅ 150 mV. If not correct check R514, and connections to N501. 4. N501 pin 7 (VBATHIGH) for ≅ 1.2V. If not correct check R513, and connections to N501. Steps 1 to 4 verify that N501 supplies a 47 µA current to each of the resistors R512, battery NTC, R514, and R513 5. Check N501 pin 9 for the same voltage as on X503 pin 3 (sense resistors R504, R506, and R507). 6. If 1 to 5 above correct, then N501 is defective. b. Connect TP531 for a short time (max. 1 minute) to ground, and see if the FET gate TP502 now shows a 100 kHz pulse signal. If it does not, continue at step 7d. If it does, the CHARCURR control signal is not correct, continue at step 7c. c. Check the CHARCURR control signal: 7-5 123 Service Manual The CHARCURR voltage on TP531 is controlled by a pulse width modulated voltage (CHARCUR) from the D-ASIC D471 (pin 40). The D-ASIC measures the required signals needed for control, via the Slow ADC. 1. Check the SLOW ADC, see Section 7.5.3. 2. Check VGARVAL (N501 pin 64), for +3.3V. If not correct, check if the line is shorted to ground. If it is not, then replace N501. 3. Trace the CHARCURR signal path to R534, R 442 and D471 (D-ASIC) output pin 40. d. Check the following: 1. C506 and connections to N501. 2. Connections between V506 and N501 pin 16 (CHAGATE). 3. The voltage at TP501 (N501 pin 19, VCHDRIVE) for ≅ 15...20V. 4. The voltage at N501 pin 43 for a triangle waveform, 80...100 kHz, +1.6V to +3.2V. 5. If 1 to 4 correct, then replace N501. 7.4 Starting with a Dead Test Tool If the test tool cannot be turned on, when powered by a charged battery pack, or by the power adapter, follow the steps below to locate the fault. 1. Connect a power adapter and a charged battery pack. 2. Turn the test tool on and listen if you hear a beep. a. If you hear no beep, continue at 7.4.1 Test Tool Completely Dead. b. If you hear a weak beep, continue at 7.4.2 Test Tool Software Does not Run. c. If you hear a “normal” beep, the software runs, but obviously the test tool is not operative. Continue at 7.4.3 Software Runs, Test Tool not Operative. 7.4.1 Test Tool Completely Dead 1. Turn the test tool off. Keep the keys pressed, and turn the test tool on again. This will start up the mask software. If you still hear no beep, continue at step 2. If you hear a weak beep now, continue at Section 7.4.2. 2. Check the Keyboard ROW1 line (MS433 next to X452) for a 100 kHz square wave. If not correct, continue at step 3. If correct, the mask software runs, but the buzzer circuit does not function. Check the buzzer function (Section 7.5.10), and then continue at Section 7.4.2. 3. Check N501 pin 60 (VBATSUP) for >4.8V. If not correct check R503, and connections to battery pack. 4. Check TP571 (+3V3GAR) for +3V3V. If not correct, this is possibly caused by V569, R580, TP571 short to ground, loose 7-6 Corrective Maintenance 7.4 Starting with a Dead Test Tool 7 pins of N501, or N501 defective. Check the +VD supply voltage on D-ASIC D471. Temporarily remove R470 to check for short circuit. 5. Check N501 pin 64 (VGARVAL) for +3.3V. If not correct: a. Check if the line is shorted to ground. b. Check N501 pin 73 (REFPWM2) for +3V3. REFPWM2 is supplied by N501, and derived from REFP on the reference circuit on the Trigger part. Check TP307 (N501 pin 72, REFP) for 1.22V, check V301/R307. If no 1.22V, and V301/R307 and connections are correct, then replace N501. c. Check N501 pin 12 (NETVALID) for +2.6V. If not correct, proceed as indicated in Section 7.3, step 6. d. Check the Power ON/OFF function, see Section 7.5.13. 6. Check X-tal signals on TP473 (32 kHz), and TP476 (25 MHz); if not correct check connections, replace X-tals, replace D471. The 16 MHz clock on TP474 runs only if the test tool software runs. If the 16 MHz clock is present, then continue at Section7.4.3. 7.4.2 Test Tool Software Does not Run. 1. Turn the test tool OFF and ON again. 2. Check D471 pin 59 (row1) for a 100 kHz square wave. If no 100 kHz is not present, but you heard a weak beep, the test tool software runs, but the buzzer circuit does not function correctly. Go to Section 7.5.10 to check the buzzer circuit, then continue at Section 7.4.3 to see why the test tool cannot be operated. If a 100 kHz square wave is present, the MASK software is running. Continue at step 3. 3. Check TP486 (RP#) for >3V. If a power adapter voltage >19V is supplied, TP486 is +12V. If not correct then check TP487 for +3.3V (generated by D471), and check V481. 4. Load new software to see if the loaded software is corrupted. See Section 7.6. 5. Do the RAM test, see Section 7.5.12. 6. Check for bad soldered address/data lines and IC pins. 7. Replace FLASH-ROM D474 and RAM D475. 7.4.3 Software Runs, Test Tool not Operative 1. Check the Display and Backlight function, see Section 7.5.1 2. Check the Fly Back Converter, see Section 7.5.2 3. Check the Keyboard function, see Section 7.5.3 7-7 123 Service Manual 7.5 Miscellaneous Functions 7.5.1 Display and Back Light Warning The voltage for the LCD back light fluorescent lamp is >400V! 1. Connect another LCD unit to see if the problem is caused by the LCD unit. The unit is not repairable. 2. Defective display Check the LCD control signals on measure spots MS401...MS422 (near to X453). Use a 10:1 probe with ground lead on the probe connected to the metal screening of the UUT. Notice that MS407 is missing ! a. MS422: LCDONOFF for +3.3V. b. MS420: MS414-415: MS417-418: MS412 MS411 MS409 DATACLK0 for 120 ns pulses LCDAT0,1 for 250 ns pulses LCDAT2,3 for 250 ns pulses LINECLK, for 120 ns pulses, ≅16 kHz FRAME, for 250 ns pules, ≅66Hz M, for a ≅625Hz square wave. c. MS406 MS405 MS401 +5VA for +5V +3V3D for +3.3V -30VD for -30V (from Fly Back Converter). d. MS404 REFPWM1 for +3.3V. 3. Bad contrast. a. Check MS403 (CONTRAST), see Figure below: ≅ 0.8V }≅ 50 mV ≅ 15 ms If not correct check FRAME signal on V401 for 0...3V, 250 ns pulses, 66Hz; check PWM circuit (Section 7.5.14); check V401-V403. b. Check MS408 (LCDTEMP1) for +1.6V at room temperature (to SLOW ADC). If not correct, check R591 in SLOW ADC part. 4. Defective backlight: a. Turn the test tool on, and monitor the voltage on T600 pin 3 or pin 5 for a 8 Vpp, 66 kHz, half rectified sine wave. If a half rectified sine wave, with an increasing amplitude, is only seen for about 0.2 second directly after power on, then the secondary circuit is defective. Install a new LCD unit. If this does not cure the problem, check the resistance between T600 pin 10 and 11 for ≅300Ω, replace V603, V605. Check C606! b. Check T600 pin 3 and pin 5 for a 8 Vpp, 66 kHz, half rectified sine wave. If it is present on only pin 3 or pin 5, then replace V601. 7-8 Corrective Maintenance 7.5 Miscellaneous Functions 7 c. Check TP601 and TP602 for a 7Vpp, 66 kHz, square wave. If not correct then check TP604 (TLON) for +3V3. If TLON is correct, then replace N600. d. Check (replace) V600, V602. 5. Backlight brightness control not correct: Check the TP605 (BACKBRIG, supplied by D-ASIC D471) for a 25 kHz, 3.3 V pulse signal. The duty cycle of the pulses controls the back light brightness. The backlight brightness increases with an increasing length of the high pulse. Check V604, R604. 6. Measure the voltage on the collctro of V605: - correct voltage 1.5 V - >1.5 V : N600 defect - <1.5 V : secundary circuit defect (V606, V603, replace both if one is defective!) 7.5.2 Fly Back Converter 1. Check the voltages on TP572 (+5V), TP573 (+3.3V), TP574 (+3.3V), TP576 (-3.3V), TP577 (-30V) on the POWER part. a. If one or more voltages are correct, then check the rectifier diodes (V561...V564), and coils (L562...L567) of the incorrect voltage. b. If none of the voltages is correct, then the fly back converter does not run correctly, continue at step 2. 2. Check TP504 (VBATT) for >4.8V. 3. Check TP552 (FLYGATE) for a square wave voltage of at least some volts (for a correct Fly Back Converter 50...100 kHz, ≅10 Vpp). a. If a square wave is present on TP552 (may be not the correct value), then: 1. Check the voltage on N501 pin 55 (FLYSENSP). For a correct converter this is a saw tooth voltage of 50...100 kHz, 50...150 mVpp). } 50...150 mV a. If no sawtooth voltage is present on R501, no current, or a DC current flows in FET V554. The primary coil or V554 may be defective (or interrupted connections). Check R504, R506, R507 (battery current sense resistors); these resistors may be fused due to a short in FET V554. b. If an incorrect sawtooth is present on R501 this can be caused by: -overloaded outputs (Frequency low, e.g. <<50 kHz; 250 mVpp) -underloaded outputs (Frequency high, e.g. >>100 kHz; <<100 mVpp) -bad FET V554 (Sawtooth voltage is not linear). 2. Check V552 and V553, check R570 and VCOIL connections. b. No FLYGATE square wave is present. Check TP526 (FREQPS) for a 50...100 kHz, 3.3 Vpp square wave. If correct, then check V552, and V553. If no square wave on TP526, then go to step 4. 7-9 123 Service Manual 4. Check TP528 (PWRONOFF) for +3V. If not correct, see Section 7.5.13 Power ON/OFF. 5. Check N501 pin 43 (COSC) for a triangle waveform, 50...100 kHz, +1.6V to +3.2V. If not correct check C553 and connections; check IREF, see step 6. If all correct, replace N501. 6. Check N501 pin 74 (IREF) for 1.6V. If not correct: a. Check N501 pin 73 (REFPWM2) for +3V3. REFPWM2 is supplied by N501, and derived from REFP on the reference circuit on the Trigger part. Check TP307 (N501 pin 72, REFP) for 1.22V. If not correct, check V301/R307. b. Check R528, loose pin 74, or N501 defective. 7. Check N501 pin 51 (VOUTHI) for <2.5V (nominal value 1.65V). If not correct check R558 and connections to N501; check IREF, see step 6. 8. Check N501 pin 57 (IMAXFLY) for ≅250 mV. If not correct check R559 and connections to N501; check IREF, see step 6. 7.5.3 Slow ADC Check the following signals: 1. BATCUR (N501 pin 77), must be {1.63+(6.7 x IBATP)} Volt. If not correct, replace N501. Measure IBATP on X503 pin 3 (= N501 pin 9); IBATP senses the battery current. 2. BATVOLT (N501 pin 78), must be {0.67 x (VBAT-3.27)} Volt. If not correct, replace N501. Measure VBAT on TP504 (= N501 pin 3); VBAT senses battery the voltage. 3. BATTEMP (N501 pin 79), must be {TEMP - IBATP} Volt. If not correct, replace N501. Measure TEMP on N501 pin 5 (=X503 pin 6); TEMP senses the battery temperature. Measure IBATP on X503 pin 3 (= N501 pin 9); IBATP senses the battery current. 4. +3V3SADC must be +3.3V (supplied by N501 pin 65). If not correct, check if the +3V3SADC line is shorted to ground. If it is not, then replace N501. 5. SELMUXn (TP591, TP592, TP593) supplied by the D-ASIC must show LF pulses (0V to +3.3V, 0.5...3 seconds period). 6. Check TP536, TP537, and TP534 for signals shown below (typical examples, measured signals may have different pulse amplitude and repetition rate). TP536: if at a fixed level, replace D531. TP537: if not correct, trace signal to PWM circuit on the Digital part. TP534: if at a fixed level, replace N531. ≈+3V TP536 TP537 ≈+0.5V 0V ≈ 500 ms 7-10 TP534 Corrective Maintenance 7.5 Miscellaneous Functions 7 7.5.4 Keyboard Proceed as follows if one or more keys cannot be operated. 1. Replace the key pad, and the key pad foil to see if this cures the problem. 2. Press a key, and check ROW0...5 (measure spots MS432..MS437) for the signal shown below : +3.3V 0V Press key ≈ 50 ms 500 µs pulses Release key If no key is pressed the ROW lines are low if a battery is installed; if the 123 is powered by the the mains adapter only, the lines are alternating pulsing and low. 3. Check COL0...3 (measure spots MS438...MS441) for a +3.3V level. Then press and hold a key, and check the matching COL line for the signal shown below: +3.3V 0V Press key ≈ 50 ms 500 µs pulses Release key If not correct, check the connections from X452 to D471; replace D471. For the ON/OFF key see Section 7.5.13. 7.5.5 Optical Port (Serial RS232 Interface) Receive (RXD) 1. Check the voltage RXDA on TP522 for +200 mV, and the voltage RXD on TP527 (buffered and amplified RXDA voltage) for +3.3V. 2. Shine with a lamp in the optical port (H522). Check the voltage RXDA on TP522 for 0...-0.6V, and the voltage RXD on TP527 for 0V. Send (TXD). 1. Check the voltage TXD on TP521 for +3.3V. 2. Press to open the SAVE & PRINT menu. 3. Press PRINT SCREEN to start the test tool data output. Check the voltage TXD on TP521 for a burst of pulses (pulses from +2V to +3.3V). The length of the burst and the pulses depends on the selected baud rate. 7.5.6 Channel A, Channel B Voltage Measurements 1. Press to open the SCOPE INPUTS menu, and select: ■ NORMAL | INPUT B: ■ DC | ■ NORMAL INPUT A: ■ DC | 7-11 123 Service Manual 2. Press Press to open the SCOPE INPUTS menu. to open the SCOPE OPTIONS ... menu, and select: SCOPE MODE: ■ ROLL MODE | WAVEFORM MODE: ■ NORMAL. 3. Apply a 1 kHz square wave to Input A and Input B, and change the test tool sensitivity (V/div) to make the complete square wave visible. 4. Check TP154 (ADC-A) and TP254 (ADC-B) for the signal shown below: Input positive. Input zero. Input negative 0.3 to 1.4V } 150 mV/div A trace amplitude of 1 division results in an 150 mV voltage on TP154/255 Moving the trace position, with a zero input signal, results in a TP154/254 voltage of about +0.3V (bottom) to +1.4V (top). If the voltages are not correct, do steps 6 to 16; if these steps are correct, then replace the C-ASIC. If the voltages are correct, the error is most probably caused by the ADC, or ADC control: continue at step 16. 5. Check TP156 (TRIGA) and TP256 (TRIGB). The TRIGA and TRIGB signals must be the inverted input signals, with an amplitude of 50 mV per division trace amplitude. Moving the trace position, with a zero input signal, results in a TP156/256 voltage of about +0.4V (bottom) to -0.4V (top). If the voltages are not correct, do steps 6 to 16; if these steps are correct, then replace the C-ASIC. 6. Check the supply voltages +3V3A (+3.3V), -3V3A (-3.3V), and +5VA (+5V). If not correct trace to the Fly Back converter on the Power part. 7. Check TP151 (POS-A) and TP251 (POS-B) for about +1.1V (trace at mid-screen), +0.4V (trace at top of screen), +1.8V (trace at bottom of screen). If not correct check the PWM circuit (in the Digital Circuit). 8. Check TP152 (OFFSET-A) and TP252 (OFFSET-B) for about +1.1V. 9. Check TP303 (REFN) for -1.2V. 10. Check TP153 (DACTESTA) and TP253 (DACTESTB) for 0V. If TP153 is +1.7V, the C-ASIC is in the reset state (200 mV/div fixed sensitivity); check SDAT and SCLK, see step 15. 11. Check TP155 (MIDADCA) and TP255 (MIDADCB) for about +0.9V. 12. Press Press to open the SCOPE INPUTS menu. to open the SCOPE OPTIONS ... menu, and select: SCOPE MODE: ■ NORMAL | WAVEFORM MODE: ■ NORMAL. Select a time base of 20 ms/div. 7-12 Corrective Maintenance 7.5 Miscellaneous Functions 7 13. Check TP258 (TRACEROT supplied by T-ASIC N301) for the signals shown below (typical example at 20 ms/div.). +0.8V -0.8V ≈100 ms ≈5 ms If not correct check: TP432 (RAMPCLK) for 3V, 200 ns pulses. TP332 (RAMPCLK) for 0.6V, 200 ns pulses. TP331 (RSTRAMP) for +3V pulses, with varying pulse with and repetition rate. All pulses are supplied by D-ASIC-D471. 14. Check TP310 (REFATT) for alternating +1.2V and -1.2V pulses. The repetition frequency depends on the time base, and is for example 500 ms at 20 ms/div. 15. Check the SCLK and SDAT lines for +3.3V pulse bursts (C-ASIC pin 25 and 26). 16. Check TP437 (Sample clock) for a 5 MHz (time base ≥ 10 ms/div) or 25 MHz clock signal (3.3V). 17. Check TP301 (REFADCT) for +1.62V, and TP302 (REFADCB) for +0.12V 18. Check the ADC supply voltages VDDAA ,VDDDA, VDDBB, VDDDB, and VDD0 for+3.3V 19. Check TP401 and TP451 for 0V. 7.5.7 Channel A Ohms and Capacitance Measurements 1. Press and select MEASURE on A: ■ OHMΩ Ω. Connect a current meter between Input A and the COM input. Select the various Ohms ranges, and verify that the current approximately matches the values listed in the table below. If not correct, the protection circuit or the current source in the T-ASIC (N301) may be defective. If the current is correct, and the Volt function is correct (so ADC is correct), then the Ohms part in the C-ASIC is defective: replace N101. Range Current 1) 1) 50 Ω 500 µA 500 Ω 500 µA 5 kΩ 50 µA 50 kΩ 5 µA 500 kΩ 0.5 µA 5 MΩ 50 nA 30 MΩ 50 nA 50 Ω range for CONTINUITY only. 7-13 123 Service Manual 2. Press and select MEASURE on A: ■ CAP . Verify TP156 for +3.3 ... 0V pulses (repetition rate 100...200 ms): Zero scale (open input): pulse width approximately 30 µs. Full scale (for example 500 nF): pulse width approximately 25 ms. If not correct, most probably the C-ASIC N101 is defective. If correct, continue at Section 7.5.8 Trigger functions (pulse width is measured via the T-ASIC). 7.5.8 Trigger Functions 1. Press and select MEASURE on A: ■ VDC . 2. Press and select INPUT A: ■ DC | NORMAL | INPUT B: ■ DC | NORMAL 3. Press Press to select the SCOPE INPUTS menu. to select the TRIGGER menu, and select: INPUT: ■ A or B | SCREEN UPDATE: ■ FREE RUN | AUTO RANGE: . ■ >15HZ Press Press to open the SCOPE INPUTS menu. to open the SCOPE OPTIONS ... menu, and select: SCOPE MODE: ■ NORMAL | WAVEFORM MODE: ■ NORMAL. 4. Supply a 1 kHz sine wave of +/- 3 divisions to Input A, and Input B. 5. Check: a. TP156, TP256 for a 600 mV (6 div. x 100 mV/div), 1 kHz, sine wave; the DC level depends on the trace position. If not correct, C-ASIC N101/N102 is probably defective. b. TP321, TP322 for 1.1...1.9V DC (move the trigger level from top to bottom). If not correct check the PWM circuit, see Section 7.5.8. c. TP311for a 0...+3.3V, 1 kHz square wave when the trigger level is at the middle of the trace). Change the trigger level, and verify that the duty cycle of the square wave changes. If not correct T-ASIC N301 may be defective. d. TP433 for 0...+3.3V pulses. Pulse width: 4...10 µs for time base 2 µs/div and faster; >40 µs for time base 5 µs/div and slower; pulse width increases with time base. e. TP336 for +0.6...0V pulses, TP436 for +3.3...0V pulses; the pulse width is about 40 µs...10 ms. If not correct, check the RANDOMIZE circuit, see Section 7.5.15. f. TP437 (SMPCLK) for a 5 MHz (time base ≥ 10 ms/div) or 25 MHz (time base < 10 ms/div) clock signal (3.3V). Check SMPCLK on both sides of R339. 6. To test video trigger press to select the SCOPE INPUTS menu. Press to select the TRIGGER menu, and select INPUT: ■ VIDEO on A... From the VIDEO TRIGGER submenu select: SYSTEM: ■ PAL | LINE: ■ RANDOM | POLARITY: ■ POSITIVE Press to open the SCOPE INPUTS menu. Press to open the SCOPE OPTIONS ... menu, and select: SCOPE MODE: ■ NORMAL | WAVEFORM MODE: ■ NORMAL 7-14 Corrective Maintenance 7.5 Miscellaneous Functions 7 7. Supply a 15.6 kHz square wave of 20V (+10...-10V) to Input A, and Input B. 8. Check: a. TP308 (TVOUT) for 15.6 kHz, -0.8...+0.6V pulse (square wave) bursts (see figure below). 15.6 kHz ≈600 ms If not correct, N301 may be defective. b. TVSYNC, on R392/R397, for 15.6 kHz, +2.6...+3.3V pulse bursts. If not correct, V395 may be defective. c. TP311 (ALLTRIG) for 15.6 kHz, +3.3...0V pulse bursts. If not correct, N301 may be defective. d. TP433 (TRIGDT) for 0...+3.3 pulses. If not correct, TRIGQUAL may be not correct. e. TP338 (TRIGQUAL) for 0...+0.6V pulses, width 70 µs, frequency about 2 kHz. If not correct, D471 may be defective. 7.5.9 Reference Voltages 1. Check: a. TP306 for +3.3V, TP307 for +1.23V If not correct check/replace V301, R307, C3112, P-ASIC N501. b. TP301 for +1.6V TP303 for -1.23V TP302 for +0.1V TP304 for +3.3V TP310, see figure below (in ROLL mode TP310 is zero). If not correct, check/replace REFERENCE GAIN circuit and T-ASIC N301. +1.2V TP310 -1.2V ≈ 800 ms 7.5.10 Buzzer Circuit 1. Press and select MEASURE on A : CONT ))) 2. Short circuit Input A to COM. The buzzer is activated now. 3. Check TP496 for a 4 kHz, 0...3V square wave during beeping (+3 V if not activated). 4. Check TP495 for a 4 kHz +3...-30V square wave during beeping (TP495 is +3V if the beeper is not activated). 7.5.11 Reset ROM Circuit (PCB version <8 only) 1. Check TP486 for 3V, or ≅+12V if a power adapter input voltage >19V is supplied 7-15 123 Service Manual 2. Check TP487 for +3V (supplied by D471). 7.5.12 RAM Test You can use the Microsoft TERMINAL program to test the RAM. Proceed as follows: 1. Connect the Test Tool to a PC via the Optical Interface Cable PM9080. 2. Start the Terminal program, and select the following Settings: Terminal Emulation TTY (Generic) Terminal Preferences Terminal Modes CR -> CR/LF Line Wrap Inbound Local Echo Outbound Sound Communications Baud Rate 9600 Data Bits 8 Stop Bits 1 Parity None Flow Control Xon/Xoff Connector COMn 3. Turn the test tool off. Keep the keys pressed, and turn the test tool on again. This will start up the mask software. You will hear a very weak beep now. 4. In the terminal program type capital characters X (no ENTER!). After a number of characters the test tool mask software will respond with an acknowledge 0 (zero). This indicates that the communication between the Terminal program and the test tool is accomplished. 5. Type ID and press [Enter] The test tool will return an acknowledge 0 (zero), and the string Universal Host Mask software; UHM V2.1 If it does not, check the Terminal program settings, the interface connection, and the test tool Optical Port (Section 7.5.5). 6. Type EX10,#H400000,#H20000 and press [Enter] The test tool will return one of the following acknowledges: 0 the RAM is OK. 1 syntax error in the typed command 6 the RAM does not properly function. Notice that the acknowledge overwites the first character of the message sent to the test tool. 7.5.13 Power ON/OFF 1. Check TP528 for +3V at power on, and 0V at power off (supplied by D471). If not correct, do the Section 7.4.1. tests first! 2. Check MS444 (ONKEY, D471) for +3V; when pressing the ON key the signal must below for 100...150 ms. 7-16 Corrective Maintenance 7.6 Loading Software 7 7.5.14 PWM Circuit 1. Check the PWM control signals generated by D471. The signals must show 0...3V pulses, with variable duty cycle, and a frequency of 100, 25, or 6 kHz: a. CHARCURD, CONTR-D ≅ 100 kHz b. SADCLEV, POS A-D, BACKBRIG, POS B-D, TRIGLEV2D, TRIGLEV1D, HO-RNDM ≅ 25 kHz c. OFFSETA-D, OFFSETB-D ≅ 6 kHz 2. If not correct, check: a. TP306 (REFPWM2) for +3.3V (used for CHARCURD SADCLEV) b. TP304 (REFPWM1) for +3.3V (used for other PWM signals). If TP306 and TP304 are correct, D471 may be defective. 7.5.15 Randomize Circuit 1. Check TP483 for 0...+3V pulses, 25 kHz, variable duty cycle 2. Check TP482, for +3...0V pulses, variable frequency and duty cycle. 7.6 Loading Software To load instrument software in the test tool, the Fluke-43-123-19x ScopeMeter Loader program is required. Power the test tool via the power adapter input using the BC190 Power Adapter. Some units having serial numbers below DM7000000 can give the error message Error 8: No connection possible with UHM because they require a 20V ± 1VDC (0.5 A) voltage on the Power Adapter input (units having an Intel FlashROM). For this purpose, a special supply cable, also advised for calibration, can be ordered (See figure 7-2). See Section 8.7. for the ordering number. CAUTION To avoid damaging the test tool be sure to apply the polarity and voltage level of the 20V supply voltage correctly. - + RED - WHITE + Figure 7-2. 20V Supply Cable for Loading Software 7-17 Chapter 8 List of Replaceable Parts Title 8.1 Introduction................................................................................................. 8.2 How to Obtain Parts.................................................................................... 8.3 Final Assembly Parts .................................................................................. 8.4 Main PCA Unit Parts .................................................................................. 8.5 Main PCA Parts .......................................................................................... 8.6 Accessory Replacement Parts ..................................................................... 8.7 Service Tools............................................................................................... Page 8-3 8-3 8-4 8-6 8-7 8-24 8-24 8-1 List of Replaceable Parts 8.1 Introduction 8 8.1 Introduction This chapter contains an illustrated list of replaceable parts for the model 123 ScopeMeter test tool. Parts are listed by assembly; alphabetized by item number or reference designator. Each assembly is accompanied by an illustration showing the location of each part and its item number or reference designator. The parts list gives the following information: • • • • Item number or reference designator (for example, “R122”) An indication if the part is subject to static discharge: the * symbol Description Ordering code Caution A * symbol indicates a device that may be damaged by static discharge. 8.2 How to Obtain Parts Contact an authorized Fluke service center. To locate an authorized service center refer to the second page of this manual (back of the title page). In the event that the part ordered has been replaced by a new or improved part, the replacement will be accompanied by an explanatory note and installation instructions, if necessary. To ensure prompt delivery of the correct part, include the following information when you place an order: • • • • • Instrument model (Fluke 123), 12 digit instrument code (9444 ... ....), and serial number (DM.......). The items are printed on the type plate on the bottom cover. Ordering code Item number - Reference designator Description Quantity 8-3 123 Service Manual 8.3 Final Assembly Parts See Table 8-1 and Figure 8-1 for the Final Assembly parts. Table 8-1. Final Assembly Parts Item Description Ordering Code 1 top case assembly Fluke 123 5322 442 00272 2 shielding foil 5322 466 11434 3 dust seal 5322 466 11435 4 conductive foam strip 5322 466 11436 5 display shielding bracket 5322 402 10204 6 display assembly 5322 135 00029 7 keypad 5322 410 10397 8 keypad foil 5322 276 13711 9 keyboard pressure plate 5322 466 10963 10 combiscrew M3x10 5322 502 21507 11 bottom case 5322 442 00273 12 combiscrew M3x10 5322 502 21507 13 battery pack BP120 14 battery door 5322 443 10237 15 combiscrew M3x10 5322 502 21507 16 bail 5322 466 10975 A main PCA unit assembly. No firmware loaded! Not calibrated! 5322 216 04048 Ni-Cd Note The test tool contains a Nickel Cadmium battery (item 13). Do not mix with the solid wastestream. Spent batteries should be disposed of by a qualified recycler or hazardous materials handler. 8-4 List of Replaceable Parts 8.3 Final Assembly Parts 8 ST8014.EPS Figure 8-1. Fluke 123 Final Assembly 8-5 123 Service Manual 8.4 Main PCA Unit Parts See Table 8-2 and Figure 8-2 for the Main PCA Unit parts. Table 8-2. Main PCA Unit Item Description Ordering Code 1 screw M2.5x5 5322 502 21206 2 combiscrew M3x10 5322 502 21507 3 insulator for power input 5322 325 10163 5 main PCA shielding box 5322 466 10976 6 guide piece for optical gate LEDs 5322 256 10201 7 main PCA shielding plate 5322 466 10964 8 screw M2.5x16 5322 502 14132 9 O-ring ∅ 17 mm Input A,B 5322 530 10272 10 O-ring ∅ 12 mm COM input 5322 530 10273 Note If the main PCA must be replaced, you must order the complete Main PCA Unit. ST8015.CGM Figure 8-2. Main PCA Unit 8-6 List of Replaceable Parts 8.5 Main PCA Parts 8 8.5 Main PCA Parts See Figure 9-6 and Figure 9-7 at the end of Chapter 9 for the Main PCA drawings. Table 8-3. Main PCA Reference Designator Description Ordering Code 1 Led Holder for H521 and H522 5322 255 41213 2 Screw for Input Banana Jack Assembly 5322 502 14362 3 ( X100 ) Input Banana Jack Assembly - without Input A,B and COM O-rings, see Figure 8-2. - including rersistors R1 and R2 5322 264 10311 B401 QUARTZ CRYSTAL 32.768KHZ SEK 5322 242 10302 B402 QUARTZ CRYSTAL 16.0MHZ KDK 5322 242 10573 B403 QUARTZ CRYSTAL 25.0MHZ KDK 5322 242 10574 C101 MKC FILM CAP 630V 10% 22NF 5322 121 10616 C102 SUPPR CAPACIT0R 0.1 UF 5322 121 10527 C104 CER.CAP. 3.15KV +-5% 120PF 5322 126 14046 C105 ALCAP NICHICON 16V 10UF 5322 124 41979 C106 CER.CAP. 1KV -20+80% 4.7NF 5322 126 13825 C107 CER CHIP CAP 63V 5322 122 32268 C111 CER CAP 1 500V 0.25PF 4.7PF 5322 122 33082 C112 CER CAP 1 500V 0.25PF 4.7PF 5322 122 33082 C113 CER CAP 1 500V 0.25PF 4.7PF 5322 122 33082 C114 CER CAP 1 500V 0.25PF 4.7PF 5322 122 33082 C116 CER CAP 1 500V 0.25PF 4.7PF 5322 122 33082 C117 CER CAP 1 500V 4822 122 31195 C118 CER CAP 1 500V 0.25PF 4.7PF 5322 122 33082 C119 CER CAP 1 500V 0.25PF 4.7PF 5322 122 33082 C121 CER CAP 1 500V 4822 122 31202 C122 CER CAP 1 500V 0.25PF 4.7PF 5322 122 33082 C123 CER CAP 1 500V 0.25PF 4.7PF 5322 122 33082 C124 CER CAP 1 500V 4822 122 31202 C131 CER CHIP CAP 63V 0.25PF 0.82PF 5% 470PF 2% 10PF 2% 33PF 2% 33PF Remarks 5322 126 10786 8-7 123 Service Manual Reference Designator 8-8 Description Ordering Code C132 CER CHIP CAP 63V 0.25PF 4.7PF 5322 122 32287 C133 CER CHIP CAP 63V 5% 47PF 5322 122 32452 C134 CER CHIP CAP 63V 5% 470PF 5322 122 32268 C136 CER CHIP CAP 63V 10% 4.7NF 5322 126 10223 C142 CHIPCAP NP0 0805 5% 1NF 5322 126 10511 C145 CHIPCAP NP0 0805 5% 1NF 5322 126 10511 C146 CHIPCAP NP0 0805 5% 1NF 5322 126 10511 C148 CHIPCAP X7R 0805 10% 10NF 5322 122 34098 C152 CERCAP X7R 0805 10% 15NF 4822 122 33128 C153 CHIPCAP X7B 0805 10% 22NF 5322 122 32654 C156 CHIPCAP NP0 0805 5% 1NF 5322 126 10511 C158 CER CHIP CAP 63V 5322 122 33538 C159 CHIPCAP NPO 0805 5% 100PF 5322 122 32531 C161 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C162 CER CHIP CAP 63V 0.25PF 4.7PF 5322 122 32287 C181 ALCAP SANYO 5322 124 11837 C182 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C183 ALCAP SANYO 5322 124 11837 C184 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C186 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C187 ALCAP SANYO 5322 124 11837 C188 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C189 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C190 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C191 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C199 CER CHIP CAP 63V 5322 122 32268 C201 MKC FILM CAP 630V 10% 22NF 5322 121 10616 C202 SUPPR CAPACIT0R 0.1 UF 5322 121 10527 C204 CER.CAP. 3.15KV +-5% 120PF 5322 126 14046 C205 ALCAP NICHICON 16V 10UF 5322 124 41979 C206 CER.CAP. 1KV -20+80% 4.7NF 5322 126 13825 C207 CER CHIP CAP 63V 5322 122 32268 C211 CER CAP 1 500V 0.25PF 4.7PF 5% 150PF 10V 20% 22UF 10V 20% 22UF 10V 20% 22UF 5% 470PF 5% 470PF 5322 122 33082 Remarks List of Replaceable Parts 8.5 Main PCA Parts Reference Designator Description Ordering Code C212 CER CAP 1 500V 0.25PF 4.7PF 5322 122 33082 C213 CER CAP 1 500V 0.25PF 4.7PF 5322 122 33082 C214 CER CAP 1 500V 0.25PF 4.7PF 5322 122 33082 C216 CER CAP 1 500V 0.25PF 4.7PF 5322 122 33082 C217 CER CAP 1 500V 4822 122 31195 C218 CER CAP 1 500V 0.25PF 4.7PF 5322 122 33082 C219 CER CAP 1 500V 0.25PF 4.7PF 5322 122 33082 C221 CER CAP 1 500V 4822 122 31202 C222 CER CAP 1 500V 0.25PF 4.7PF 5322 122 33082 C223 CER CAP 1 500V 0.25PF 4.7PF 5322 122 33082 C224 CER CAP 1 500V 4822 122 31202 C231 CER CHIP CAP 63V 0.25PF 0.68PF 4822 126 12342 C232 CER CHIP CAP 63V 0.25PF 4.7PF 5322 122 32287 C233 CER CHIP CAP 63V 5% 47PF 5322 122 32452 C234 CER CHIP CAP 63V 5% 470PF 5322 122 32268 C236 CER CHIP CAP 63V 10% 4.7NF 5322 126 10223 C242 CHIPCAP NP0 0805 5% 1NF 5322 126 10511 C245 CHIPCAP NP0 0805 5% 1NF 5322 126 10511 C246 CHIPCAP NP0 0805 5% 1NF 5322 126 10511 C248 CHIPCAP X7R 0805 10% 10NF 5322 122 34098 C252 CERCAP X7R 0805 10% 15NF 4822 122 33128 C253 CHIPCAP X7B 0805 10% 22NF 5322 122 32654 C256 CHIPCAP NP0 0805 5% 1NF 5322 126 10511 C258 CER CHIP CAP 63V 5322 122 33538 C259 CHIPCAP NPO 0805 5% 100PF 5322 122 32531 C261 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C262 CER CHIP CAP 63V 0.25PF 4.7PF 5322 122 32287 C281 ALCAP SANYO 5322 124 11837 C282 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C283 ALCAP SANYO 5322 124 11837 C284 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C286 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C287 ALCAP SANYO 5322 124 11837 C288 CER CHIPCAP 25V 20% 100NF 2% 10PF 2% 33PF 2% 33PF 5% 150PF 10V 20% 22UF 10V 20% 22UF 10V 20% 22UF 8 Remarks 5322 126 13638 8-9 123 Service Manual Reference Designator 8-10 Description Ordering Code C289 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C290 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C291 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C301 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C303 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C306 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C311 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C312 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C313 ALCAP SANYO 25V 20% 10UF 5322 124 11838 C314 ALCAP SANYO 25V 20% 10UF 5322 124 11838 C317 ALCAP NICHICON 6.3V 20% 22UF 4822 124 80675 C321 CER CHIP CAP 63V 10% 1.5NF 5322 122 31865 C322 CER CHIP CAP 63V 10% 1.5NF 5322 122 31865 C331 CER CHIP CAP 63V 0.25PF 4.7PF 5322 122 32287 C332 CER CHIP CAP 63V 5322 122 32658 C333 CER CHIP CAP 63V 0.25PF 1PF 5322 122 32447 C337 CER CHIP CAP 63V 0.25PF 4.7PF 5322 122 32287 C339 CER CHIP CAP 63V 0.25PF 1PF 5322 122 32447 C342 CER CHIP CAP 63V 0.25PF 1PF 5322 122 32447 C344 CER CHIP CAP 63V C356 CER CHIP CAP 63V 10% 18NF 5322 126 14044 C357 CHIPCAP X7B 0805 10% 22NF 5322 122 32654 C376 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C377 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C378 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C379 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C381 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C382 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C391 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C392 ALCAP NICHICON 16V 5322 124 41979 C393 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C394 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C395 CER CHIP CAP 25V 20% 47NF 5322 126 14045 5% 22PF 5% 22PF 10UF 5322 122 32658 Remarks List of Replaceable Parts 8.5 Main PCA Parts Reference Designator Description Ordering Code C396 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C397 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C398 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C399 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C400 CHIPCAP X7B 0805 10% 22NF 5322 122 32654 C401 CER CHIP CAP 63V 0.25PF 4.7PF 5322 122 32287 C402 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C403 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C404 CER CHIP CAP 63V 5322 122 32268 C407 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C408 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C409 CHIPCAP X7B 0805 10% 22NF 5322 122 32654 C416 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C431 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C432 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C433 CHIPCAP X7B 0805 10% 22NF 5322 122 32654 C434 CHIPCAP X7B 0805 10% 22NF 5322 122 32654 C436 CER CAP X5R 1206 10% 1UF 5322 126 14089 C438 CER CHIP CAP 63V 10% 4.7NF 5322 126 10223 C439 CER CHIP CAP 63V 10% 4.7NF 5322 126 10223 C441 CHIPCAP X7B 0805 10% 22NF 5322 122 32654 C442 CHIPCAP X7B 0805 10% 22NF 5322 122 32654 C451 CER CHIP CAP 63V 0.25PF 4.7PF 5322 122 32287 C452 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C453 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C457 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C458 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C463 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C464 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C465 ALCAP NICHICON 16V 5322 124 41979 C466 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C470 CC 470 PF 5% 0805 NP0 50V 4022 301 60371 C471 CER CHIPCAP 25V 20% 100NF 5322 126 13638 5% 470PF 10UF 8 Remarks 8-11 123 Service Manual Reference Designator 8-12 Description Ordering Code C472 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C473 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C474 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C475 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C476 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C478 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C479 CER CHIP CAP 63V 5322 122 32658 C480 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C481 CER CHIP CAP 63V 5% 22PF 5322 122 32658 C482 CER CHIP CAP 63V 5% 22PF 5322 122 32658 C483 CER CHIP CAP 63V 5% 22PF 5322 122 32658 C484 CER CHIP CAP 63V 5% 22PF 5322 122 32658 C485 CER CHIP CAP 63V 5% 27PF 5322 122 31946 C486 CER CHIP CAP 63V 5% 27PF 5322 122 31946 C487 CHIPCAP NPO 0805 5% 100PF 5322 122 32531 C488 CHIPCAP NPO 0805 5% 100PF 5322 122 32531 C489 CC 22NF 10% 0805 X7R 50 V 4022 301 60491 C500 1UF CERCAP Y5V 1206 10% 5322 126 14086 C501 ELCAP 25V 5322 124 11843 C502 ALCAP NICHICON 25V 20% 10UF 5322 124 11839 C503 ELCAP 10V 5322 124 11844 C504 ALCAP NICHICON 16V C505 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C506 CER CHIP CAP 25V 20% 47NF 5322 126 14045 C507 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C509 CER CAP X5R 1206 10% 1UF 5322 126 14089 C511 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C512 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C528 ALCAP NICHICON 6.3V 20% 22UF 4822 124 80675 C529 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C531 CHIPCAP X7B 0805 10% 22NF 5322 122 32654 C532 CC 22NF 10% 0805 X7R 50V 4022 301 60491 C534 CER CHIPCAP 25V 20% 100NF 5322 126 13638 5% 22PF 20% 180UF 20% 390UF 10UF 5322 124 41979 Remarks List of Replaceable Parts 8.5 Main PCA Parts Reference Designator Description Ordering Code C547 CHIPCAP X7B 0805 10% 22NF 5322 122 32654 C548 CHIPCAP X7B 0805 10% 22NF 5322 122 32654 C549 CHIPCAP X7B 0805 10% 22NF 5322 122 32654 C550 CER CHIP CAP 63V 5322 126 10223 C551 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C552 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C553 CER CHIP CAP 63V 5322 122 33538 C554 CER CAP X5R 1206 10% 1UF 5322 126 14089 C555 ELCAP 10V 20% 390UF 5322 124 11844 C561 ALCAP SANYO 6,3V 20% 150UF 5322 124 11841 C562 ALCAP SANYO 6,3V 20% 150UF 5322 124 11841 C563 ALCAP SANYO 6,3V 20% 150UF 5322 124 11841 C564 ALCAP SANYO 35V 20% 47UF 5322 124 11842 C565 ALCAP SANYO 6,3V 20% 150UF 5322 124 11841 C567 ALCAP SANYO 6,3V 20% 150UF 5322 124 11841 C568 ALCAP SANYO 6,3V 20% 150UF 5322 124 11841 C572 ALCAP SANYO 6,3V 20% 150UF 5322 124 11841 C573 ALCAP SANYO 6,3V 20% 150UF 5322 124 11841 C574 ALCAP SANYO 6,3V 20% 150UF 5322 124 11841 C576 ALCAP SANYO 6,3V 20% 150UF 5322 124 11841 C581 ALCAP NICHICON 16V C583 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C591 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C592 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C593 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C594 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C602 CER CHIP CAP 25V 20% 47NF 5322 126 14045 C603 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C604 CER CAP X5R 1206 10% 1UF 5322 126 14089 C605 CHIPCAP NP0 0805 5% 1NF 5322 126 10511 C606 CER CHIPCAP 25V 20% 100NF 5322 126 13638 C607 CHIPCAP X7R 0805 10% 10NF 5322 122 34098 C608 MKT FILM CAP 5322 121 42386 10% 4.7NF 5% 150PF 10UF 63V 10% 100NF 8 Remarks 5322 124 41979 8-13 123 Service Manual Reference Designator Description 2KV +-5% 33PF Ordering Code C609 CER.CAP. 5322 126 14047 C610 CER CAP X5R 1206 10% 1UF 5322 126 14089 D401 * LOW VOLT ADC TDA8792M/C2/R1 5322 209 14837 D451 * LOW VOLT ADC TDA8792M/C2/R1 5322 209 14837 D471 * D-ASIC MOT0002 5322 209 13139 D474 * 8M FEPROM 5322 209 15199 AM29LV800B-120EC, or HN29WT800T , or M5M29FB800VP-120, or equivalent. 8-14 D475 * 128K8SRAM M5M51008AVP10VLL MIT 5322 209 14844 D480 * 4X2-INP OR 74LVC32APW 4022 304 10771 D531 * 8-INP MUX 5322 209 61483 H495 PE BUZZER PKM13EPP-4002 MUR 5322 280 10311 H521 IR LED 5322 130 61296 H522 PHOTODIODE OP906 OPT 5322 130 10777 K171 DPDT RELAY ASL-1.5W-K-B05 5322 280 10309 K173 DPDT RELAY DSP1-L-1,5V MAT 5322 280 10312 K271 DPDT RELAY ASL-1.5W-K-B05 5322 280 10309 L181 CHIP INDUCT. 47UH 10% TDK 4822 157 70794 L182 CHIP INDUCT. 47UH 10% TDK 4822 157 70794 L183 CHIP INDUCT. 47UH 10% TDK 4822 157 70794 L281 CHIP INDUCT. 47UH 10% TDK 4822 157 70794 L282 CHIP INDUCT. 47UH 10% TDK 4822 157 70794 L283 CHIP INDUCT. 47UH 10% TDK 4822 157 70794 L481 CHIP INDUCT. 47UH 10% TDK 4822 157 70794 L501 CHOKE 5322 157 10994 L562 CHIP INDUCT. 47UH 10% TDK 4822 157 70794 L563 CHIP INDUCT. 47UH 10% TDK 4822 157 70794 74HC4051D PEL SFH409-2 33UH SIE TDK Remarks List of Replaceable Parts 8.5 Main PCA Parts Reference Designator Description Ordering Code L564 FIXED INDUCOR 68UH 10% TDK 5322 157 10995 L566 FIXED INDUCOR 68UH 10% TDK 5322 157 10995 L567 CHIP INDUCT. 47UH 10% TDK 4822 157 70794 L569 FIXED INDUCOR 68UH 10% TDK 5322 157 10995 L600 SHIELDED CHOKE 150UH 5322 157 10996 N101 * C-ASIC OQ0258 5322 209 13141 N201 * C-ASIC OQ0258 5322 209 13141 N301 * T-ASIC OQ0257 5322 209 13142 N501 * P-ASIC OQ0256 5322 209 13143 N531 * LOW POW OPAMP LMC7101BIM5X NSC 5322 209 15144 N600 * LAMP CONTROLLER UC3872DW UNI 5322 209 14851 R1 MTL FILM RST VR25 5% 220K 0,25W 4822 053 20224 R2 MTL FILM RST VR25 5% 220K 0,25W 4822 053 20224 R101 MTL FILM RST MRS25 1% 487K 4822 050 24874 R102 MTL FILM RST MRS25 1% 487K 4822 050 24874 R103 RESISTOR CHIP RC12H 1% 4822 117 11948 R104 RESISTOR CHIP RC12H 1% 26K1 5322 117 12448 R105 RESISTOR CHIP RC12H 1% 511E 5322 117 12451 R106 PTC THERM DISC 600V 300-500E 5322 116 40274 R108 RESISTOR CHIP RC12H 1% 511E 5322 117 12451 R109 RESISTOR CHIP RC12H 1% 2K15 5322 117 12452 R110 RESISTOR CHIP RC12H 1% 2K15 5322 117 12452 R111 RESISTOR CHIP RC11 2% 10M 4822 051 20106 R112 RESISTOR CHIP RC11 2% 10M 4822 051 20106 R113 RESISTOR CHIP RC11 2% 10M 4822 051 20106 R114 RESISTOR CHIP RC11 2% 10M 4822 051 20106 R116 RESISTOR CHIP RC12H 1% 215E 5322 117 12453 R117 RESISTOR CHIP RC12H 1% 215E 5322 117 12453 R118 RESISTOR CHIP RC12H 1% 68E1 5322 117 12454 TDK 1M 8 Remarks 8-15 123 Service Manual Reference Designator 8-16 Description Ordering Code R119 RESISTOR CHIP RC12H 1% 464E 5322 117 12455 R120 RESISTOR CHIP RC11 2% 10M 4822 051 20106 R121 RESISTOR CHIP RC12H 1% 68E1 5322 117 12454 R125 RESISTOR CHIP RC12H 1% 68E1 5322 117 12454 R131 RESISTOR CHIP RC12G 1% 5322 117 12484 R132 RESISTOR CHIP RC12G 1% 100K 5322 117 12485 R133 RESISTOR CHIP RC12G 1% 10K 5322 117 12486 R134 RESISTOR CHIP RC12G 1% 5322 117 12487 R136 RESISTOR CHIP RC-02G 1% 100E 4822 051 51001 R137 RESISTOR CHIP RC-02H 1% 56K2 5322 117 10574 R138 RESISTOR CHIP RC-02H 1% 56K2 5322 117 10574 R139 RESISTOR CHIP RC-02H 1% 56K2 5322 117 10574 R140 RESISTOR CHIP RC-02H 1% 56K2 5322 117 10574 R141 RESISTOR CHIP RC12G 1% 215K 5322 117 12488 R142 RESISTOR CHIP RC12G 1% 147K 5322 117 12489 R143 RESISTOR CHIP RC12G 1% 909K 5322 117 12491 R144 RESISTOR CHIP RC12H 1% 348E 5322 117 12456 R146 RESISTOR CHIP RC12H 1% 215K 5322 117 12457 R151 RESISTOR CHIP RC12H 1% 100K 5322 117 12458 R152 RESISTOR CHIP RC12H 1% 100K 5322 117 12485 R153 RESISTOR CHIP RC12H 1% 681K 5322 117 12485 R154 RESISTOR CHIP RC12H 1% 681K 5322 117 12458 R155 RESISTOR CHIP RC12H 1% 178K 5322 117 12459 R156 RESISTOR CHIP RC12G 1% 100K 5322 117 12485 R157 RESISTOR CHIP RC12H 1% 348E 5322 117 12456 R158 RESISTOR CHIP RC12H 1% 287E 5322 117 12461 R159 RESISTOR CHIP RC12H 1% 100E 4822 117 11373 R160 RESISTOR CHIP RC12H 1% 51K1 5322 117 12462 R161 RESISTOR CHIP RC12G 1% 100K 5322 117 12485 R165 RESISTOR CHIP RC12H 1% 100E 4822 117 11373 R171 RESISTOR CHIP RC12H 1% 348E 5322 117 12456 R172 PTC THERM DISC 600V 300-500E 5322 116 40274 R173 RESISTOR CHIP RC12H 1% 348E 5322 117 12456 R182 RESISTOR CHIP RC12H 1% 10E 5322 117 12464 1M 1K Remarks List of Replaceable Parts 8.5 Main PCA Parts Reference Designator Description Ordering Code R184 RESISTOR CHIP RC12H 1% 10E 5322 117 12464 R186 RESISTOR CHIP RC12H 1% 10E 5322 117 12464 R188 RESISTOR CHIP RC12H 1% 10E 5322 117 12464 R189 RESISTOR CHIP RC12H 1% 10E 5322 117 12464 R201 MTL FILM RST MRS25 1% 487K 4822 050 24874 R202 MTL FILM RST MRS25 1% 487K 4822 050 24874 R203 RESISTOR CHIP RC12H 1% 4822 117 11948 R204 RESISTOR CHIP RC12H 1% 26K1 5322 117 12448 R205 RESISTOR CHIP RC12H 1% 511E 5322 117 12451 R206 PTC THERM DISC 600V 300-500E 5322 116 40274 R208 RESISTOR CHIP RC12H 1% 511E 5322 117 12451 R209 RESISTOR CHIP RC12H 1% 2K15 5322 117 12452 R210 RESISTOR CHIP RC12H 1% 2K15 5322 117 12452 R211 RESISTOR CHIP RC11 2% 10M 4822 051 20106 R212 RESISTOR CHIP RC11 2% 10M 4822 051 20106 R213 RESISTOR CHIP RC11 2% 10M 4822 051 20106 R214 RESISTOR CHIP RC11 2% 10M 4822 051 20106 R216 RESISTOR CHIP RC12H 1% 215E 5322 117 12453 R217 RESISTOR CHIP RC12H 1% 215E 5322 117 12453 R218 RESISTOR CHIP RC12H 1% 68E1 5322 117 12454 R219 RESISTOR CHIP RC12H 1% 464E 5322 117 12455 R220 RESISTOR CHIP RC11 2% 10M 4822 051 20106 R221 RESISTOR CHIP RC12H 1% 68E1 5322 117 12454 R225 RESISTOR CHIP RC12H 1% 68E1 5322 117 12454 R231 RESISTOR CHIP RC12G 1% 5322 117 12484 R232 RESISTOR CHIP RC12G 1% 100K 5322 117 12485 R233 RESISTOR CHIP RC12G 1% 10K 5322 117 12486 R234 RESISTOR CHIP RC12G 1% 5322 117 12487 R236 RESISTOR CHIP RC-02G 1% 100E 4822 051 51001 R237 RESISTOR CHIP RC-02H 1% 56K2 5322 117 10574 R238 RESISTOR CHIP RC-02H 1% 56K2 5322 117 10574 R239 RESISTOR CHIP RC-02H 1% 56K2 5322 117 10574 R240 RESISTOR CHIP RC-02H 1% 56K2 5322 117 10574 1M 1M 1K 8 Remarks 8-17 123 Service Manual Reference Designator 8-18 Description Ordering Code R241 RESISTOR CHIP RC12G 1% 215K 5322 117 12488 R242 RESISTOR CHIP RC12G 1% 147K 5322 117 12489 R243 RESISTOR CHIP RC12G 1% 909K 5322 117 12491 R246 RESISTOR CHIP RC12H 1% 215K 5322 117 12457 R251 RESISTOR CHIP RC12H 1% 100K 5322 117 12485 R252 RESISTOR CHIP RC12H 1% 100K 5322 117 12485 R253 RESISTOR CHIP RC12H 1% 681K 5322 117 12458 R254 RESISTOR CHIP RC12H 1% 681K 5322 117 12458 R255 RESISTOR CHIP RC12H 1% 178K 5322 117 12459 R256 RESISTOR CHIP RC12G 1% 100K 5322 117 12485 R257 RESISTOR CHIP RC12H 1% 287E 5322 117 12461 R258 RESISTOR CHIP RC12H 1% 287E 5322 117 12461 R259 RESISTOR CHIP RC12H 1% 100E 4822 117 11373 R260 RESISTOR CHIP RC12H 1% 51K1 5322 117 12462 R261 RESISTOR CHIP RC12G 1% 100K 5322 117 12485 R271 RESISTOR CHIP RC12H 1% 348E 5322 117 12456 R282 RESISTOR CHIP RC12H 1% 10E 5322 117 12464 R284 RESISTOR CHIP RC12H 1% 10E 5322 117 12464 R286 RESISTOR CHIP RC12H 1% 10E 5322 117 12464 R288 RESISTOR CHIP RC12H 1% 10E 5322 117 12464 R289 RESISTOR CHIP RC12H 1% 10E 5322 117 12464 R301 RESISTOR CHIP RC12H 1% 3K16 5322 117 12465 R302 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 R303 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 R305 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 R306 RESISTOR CHIP RC12G 1% 21K5 5322 117 12492 R307 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 R308 RESISTOR CHIP RC12G 1% 21K5 5322 117 12492 R309 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 R310 RESISTOR CHIP RC12H 1% 100K 4822 117 10837 R311 RESISTOR CHIP RC12H 1% 31K6 5322 117 12466 R312 RESISTOR CHIP RC12H 1% 34K8 5322 117 12467 R321 RESISTOR CHIP RC12H 1% 681K 5322 117 12458 Remarks List of Replaceable Parts 8.5 Main PCA Parts Reference Designator Description Ordering Code R322 RESISTOR CHIP RC12H 1% 681K 5322 117 12458 R323 RESISTOR CHIP RC12H 1% 34K8 5322 117 12467 R324 RESISTOR CHIP RC12H 1% 215K 5322 117 12457 R326 RESISTOR CHIP RC12H 1% 562K 5322 117 12468 R327 RESISTOR CHIP RC12H 1% 562K 5322 117 12468 R331 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 R333 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 R337 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 R339 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 R342 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 R352 RESISTOR CHIP RC12H 1% 5K11 5322 117 12469 R353 RESISTOR CHIP RC12H 1% 4822 117 11154 R354 RESISTOR CHIP RC-02H 1% 261E 4822 051 52611 R356 RESISTOR CHIP RC-02H 1% 261E 4822 051 52611 R369 RESISTOR CHIP RC12H 1% 26K1 5322 117 12448 R371 RESISTOR CHIP RC12H 1% 0E 5322 117 12471 R375 RESISTOR CHIP RC12H 1% 0E 5322 117 12471 R376 RESISTOR CHIP RC12H 1% 10E 5322 117 12464 R377 RESISTOR CHIP RC12H 1% 1E 5322 117 12472 R378 RESISTOR CHIP RC12H 1% 10E 5322 117 12464 R381 RESISTOR CHIP RC12H 1% 10E 5322 117 12464 R385 RESISTOR CHIP RC12H 1% 5322 117 12471 R390 RESISTOR CHIP RC12H 1% 464K 5322 117 12474 R391 RESISTOR CHIP RC12H 1% 4822 117 11154 R392 RESISTOR CHIP RC12H 1% 4K22 5322 117 12476 R393 RESISTOR CHIP RC12H 1% 10E 5322 117 12464 R394 RESISTOR CHIP RC12H 1% 1E 5322 117 12472 R395 RESISTOR CHIP RC12H 1% 0E 5322 117 12471 R396 RESISTOR CHIP RC12H 1% 10E 5322 117 12464 R398 RESISTOR CHIP RC12H 1% 5322 117 12472 R403 RESISTOR CHIP RC12H 1% 21K5 5322 117 12477 R404 RESISTOR CHIP RC12H 1% 1E 5322 117 12472 R405 RESISTOR CHIP RC12H 1% 1K 4822 117 11154 1K 0E 1K 1E 8 Remarks 8-19 123 Service Manual Reference Designator 8-20 Description Ordering Code Remarks R406 RESISTOR CHIP RC12H 1% 511E 5322 117 12451 R407 RESISTOR CHIP RC12H 1% 3K16 5322 117 12465 R408 RESISTOR CHIP RC11 2% 10M 4822 051 20106 R409 RESISTOR CHIP RC12H 1% 26K1 5322 117 12448 R410 RESISTOR CHIP RC12H 1% 68E1 5322 117 12454 R416 RESISTOR CHIP RC12H 1% 1E 5322 117 12472 R417 RESISTOR CHIP RC12H 1% 1E 5322 117 12472 R431 RESISTOR CHIP RC12H 1% 21K5 5322 117 12477 R432 RESISTOR CHIP RC12H 1% 147K 5322 117 12478 R433 RESISTOR CHIP RC12H 1% 147K 5322 117 12478 R434 RESISTOR CHIP RC12H 1% 147K 5322 117 12478 R436 RESISTOR CHIP RC12H 1% 26K1 5322 117 12448 R438 RESISTOR CHIP RC12H 1% 147K 5322 117 12478 R439 RESISTOR CHIP RC12H 1% 21K5 5322 117 12477 R441 RESISTOR CHIP RC12H 1% 3K16 5322 117 12465 R442 RESISTOR CHIP RC12H 1% 1K47 5322 117 12479 R453 RESISTOR CHIP RC12H 1% 21K5 5322 117 12477 R454 RESISTOR CHIP RC12H 1% 1E 5322 117 12472 R466 RESISTOR CHIP RC12H 1% 1E 5322 117 12472 R467 RESISTOR CHIP RC12H 1% 1E 5322 117 12472 R469 RESISTOR CHIP RC12H 1% 100K 4822 117 10837 R470 RESISTOR CHIP RC12H 1% 0E 5322 117 12471 R471 RESISTOR CHIP RC12H 1% 1M 4822 117 11948 R472 RESISTOR CHIP RC12H 1% 1M 4822 117 11948 R473 RESISTOR CHIP RC12H 1% 100E 4822 117 11373 R474 RESISTOR CHIP RC12H 1% 100E 4822 117 11373 R478 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 R479 RESISTOR CHIP RC12H 1% 51K1 5322 117 12462 R480 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 R481 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 R482 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 PCB version < 8 R482 RESISTOR CHIP RC12H 1% 511E 4022 301 21761 PCB version ≥ 8 R483 RESISTOR CHIP RC12H 1% 100K 4822 117 10837 PCB version < 8 R483 SMD RES 51K1 1% TC100 0805 4022 301 22241 PCB version ≥ 8 List of Replaceable Parts 8.5 Main PCA Parts Reference Designator Description Ordering Code R486 SMD RES 10K 1% TC50 0805 4022 301 22071 R487 SMD RES 10K 1% TC50 0805 4022 301 22071 R491 RESISTOR CHIP RC12H 1% 51K1 5322 117 12462 R495 RESISTOR CHIP RC12H 1% 3K16 5322 117 12465 R496 RESISTOR CHIP RC12H 1% 3K16 5322 117 12465 R497 RESISTOR CHIP RC12H 1% 0E 5322 117 12471 R499 SMD RES 56K2 1% TC100 0805 4022 301 22251 R501 RESISTOR CHIP LRC01 5% 0E1 5322 117 11759 R502 RESISTOR CHIP RC12H 1% 10E 5322 117 12464 R503 RESISTOR CHIP RC12H 1% 10E 5322 117 12464 R504 RES FRC01 1206 5% 1E 4822 117 11151 R506 RES FRC01 1206 5% 1E 4822 117 11151 R507 RES FRC01 1206 5% 1E 4822 117 11151 R508 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 R509 RESISTOR CHIP RC12H 1% 46E4 5322 117 12463 R512 RESISTOR CHIP RC12H 1% 2K87 5322 117 12608 R513 RESISTOR CHIP RC12H 1% 26K1 5322 117 12448 R514 RESISTOR CHIP RC12H 1% 3K16 5322 117 12465 R516 RESISTOR CHIP RC12H 1% 23K7 5322 117 12481 R524 RESISTOR CHIP RC12H 1% 100E 4822 117 11373 R527 RESISTOR CHIP RC12H 1% 147E 5322 117 12482 R528 RESISTOR CHIP RC12H 1% 34K8 5322 117 12467 R529 RESISTOR CHIP RC12H 1% 261K 5322 117 12617 R531 RESISTOR CHIP RC12H 1% 21K5 5322 117 12477 R532 SMD RES 100E 1% TC100 0805 4022 301 21591 R534 RESISTOR CHIP RC12H 1% 1K47 5322 117 12479 R535 RESISTOR CHIP RC12H 1% 51K1 5322 117 12462 R550 RESISTOR CHIP RC12H 1% 348E 5322 117 12456 R551 RESISTOR CHIP LRC01 5% 0E1 5322 117 11759 R552 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 R553 RESISTOR CHIP RC12H 1% 4K22 5322 117 12476 R554 RESISTOR CHIP RC12H 1% 26K1 5322 117 12448 R555 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 8 Remarks 8-21 123 Service Manual Reference Designator 8-22 Description Ordering Code Remarks R558 RESISTOR CHIP RC12H 1% 31K6 5322 117 12466 R559 RESISTOR CHIP RC12H 1% 5K11 5322 117 12469 R561 RESISTOR CHIP RC12H 1% 100E 4822 117 11373 R562 RESISTOR CHIP RC12H 1% 100E 4822 117 11373 R563 RESISTOR CHIP RC12H 1% 100K 4822 117 10837 R564 RESISTOR CHIP RC12H 1% 100K 4822 117 10837 R565 RESISTOR CHIP RC12H 1% 100K 4822 117 10837 R570 RESISTOR CHIP RC12H 1% 100K 4822 117 10837 R580 RESISTOR CHIP LRC01 5% 0E33 5322 117 11725 R591 RESISTOR CHIP RC12H 1% 2K15 5322 117 12452 R600 RESISTOR CHIP RC12H 1% 5K11 5322 117 12469 R602 RESISTOR CHIP RC12H 1% 10K 4822 117 10833 R603 RESISTOR CHIP RC12H 1% 100K 4822 117 10837 R604 RESISTOR CHIP RC12H 1% 4822 117 11154 R605 SMD RES 10 K 1% TC50 0805 4022 301 22071 R606 SMD RES 6K19 1% TC50 0805 4022 301 22021 T552 BACKLIGHT TRANSFORMER PT73458 5322 146 10447 T600 SMD TRANSFORMER 678XN-1081 TOK 5322 146 10634 V171 * PNP/NPN TR.PAIR BCV65 5322 130 10762 V172 * PNP/NPN TR.PAIR BCV65 5322 130 10762 V174 * PNP/NPN TR.PAIR BCV65 5322 130 10762 V301 * PREC.VOLT.REF. LM4041CIM-1.2 5322 209 14852 2X4 pin DIL V302 * PREC.VOLT.REF. LM4041CIM-1.2 3X 4022 304 10571 Transistor shape V353 * VOLT REG DIODE BZD27-C7V5 PEL 4822 130 82522 V354 * VOLT REG DIODE BZD27-C7V5 PEL 4822 130 82522 V356 * LF TRANSISTOR BC858C 4822 130 42513 V358 * LF TRANSISTOR BC868 PEL 5322 130 61569 V359 * LF TRANSISTOR BC868 PEL 5322 130 61569 V395 * LF TRANSISTOR BC848C 1K PEL PEL 5322 130 42136 List of Replaceable Parts 8.5 Main PCA Parts Reference Designator Description BSN20 Ordering Code V401 * N-CHAN FET PEL V402 * P-CHAN. MOSFET BSS84 V403 * N-CHAN FET V471 * SCHOTTKY DIODE BAS85 V482 * SCHOTTKY DIODE BAT54S V495 * P-CHAN. MOSFET BSS84 V501 * SCHOTTKY DIODE MBRS340T3 MOT 5322 130 10674 V503 * SCHOTTKY DIODE MBRS340T3 MOT 5322 130 10674 V504 * SCHOTTKY DIODE MBRS340T3 MOT 5322 130 10674 V506 * POWER TMOS FET MTD5P06ET4 MOT 5322 130 10671 V550 * RECT DIODE BYD77A 5322 130 10763 V551 * RECT DIODE BYD77A 5322 130 10763 V554 * N-CHAN MOSFET 2SK974STR HIT 5322 130 62921 V555 * RECT DIODE 5322 130 10763 V561 * SCHOTTKY DIODE MBRS340T3 MOT 5322 130 10674 V562 * SCHOTTKY DIODE MBRS340T3 MOT 5322 130 10674 V563 * SCHOTTKY DIODE MBRS340T3 MOT 5322 130 10674 V564 * SCHOTTKY DIODE MBRS1100T3 MOT 5322 130 10675 V565 * LF TRANSISTOR BC848C PEL 5322 130 42136 V566 * LF TRANSISTOR BC848C PEL 5322 130 42136 V567 * SCHOTTKY DIODE MBRS340T3 MOT 5322 130 10674 V569 * LF TRANSISTOR BC869 4822 130 60142 V600 * TMOS P-CH FET MMSF3P03HD MOT 5322 130 10672 V601 * TMOS N-CH FET MMDF3N02HD MOT 5322 130 10673 V602 * SCHOTTKY DIODE MBRS340T3 MOT 5322 130 10674 V603 * SIL DIODE 5322 130 31928 V604 * N-CHAN FET V605 * LF TRANSISTOR BC858C X452 FLEX-PRINT CONNECTOR 15-P FCN 5322 265 10725 X453 FLEX-PRINT CONNECTOR 21-P FCN 5322 265 10726 X501 DC POWER JACK HEC0739-01-010 4822 267 30431 X503 MALE HEADER 2MM 6-P DBL RT.ANG 5322 267 10501 BSN20 PEL 5322 130 10669 PEL 5322 130 63289 9338 765 40115 PEL 4822 130 82262 PEL 5322 130 10669 PEL PEL BSN20 Remarks 5322 130 63289 BYD77A BAS16 8 PEL 5322 130 63289 PEL 4822 130 42513 8-23 123 Service Manual Reference Designator Description X601 MALE HEADER 7-P SNG RT.ANG Z501 EMI-FILTER 50V 10A MUR Ordering Code Remarks 5322 267 10502 5322 156 11139 8.6 Accessory Replacement Parts Black ground lead for STL120 5322 320 11354 8.7 Service Tools Power Adapter Cable for calibration (see Section 5.7). 8-24 5322 320 11707 Chapter 9 Circuit Diagrams Title Page 9.1 Introduction................................................................................................. 9-3 9.2 Schematic Diagrams.................................................................................... 9-4 9-1 Circuit Diagrams 9.1 Introduction 9 9.1 Introduction This chapter contains all circuit diagrams and PCA drawings of the test tool. There are no serviceable parts on the LCD unit. Therefore no circuit diagrams and drawings of the LCD unit are provided. Referring signals from one place to another in the circuit diagrams is done in the following way: 1 2 3 4 5 A B 1 2 3 4 5 A SIGNAL B [5, C2] C C [1,B3] Figure 9.1 Circuit Diagram 1 SIGNAL Figure 9.5 Circuit diagram 5 The line SIGNAL on circuit diagram 1, location B3 [1,B3], is connected to the line SIGNAL on circuit diagram 5, location C2 [5,C2]. If the signal is referred to a location on the same circuit diagram, the circuit diagram number is omitted. 9-3 123 Service Manual 9.2 Schematic Diagrams The tables below show where to find the parts on the Main PCA circuit diagrams and assembly drawings. Separate tables are created for the Main PCA side 1 and side 2 assembly drawing. B402 C4 indicates that part B402 can be found in: 4, J10 location C4 on the Main PCA side 1 drawing circuit diagram part 4, location J10. Table 9-1. Parts Location Main PCA Side 1 9-4 B402 B403 C4 4, J10 C4 4, J11 C101 C102 C104 C105 C106 C111 C112 C113 C114 C116 C117 C118 C119 C121 C122 C123 C124 C146 C181 C183 C187 C201 C202 C204 C205 C206 C211 C212 C213 C214 C216 C217 C218 C219 C221 C222 A2 A1 B2 B3 A2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B3 A2 A3 B3 B3 C2 D1 C2 D3 D1 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 1, E3 1, E2 1, C2 1, B4 1, F3 1, B2 1, B3 1, B2 1, B3 1, B4 1, C3 1, C4 1, C4 1, D4 1, C4 1, C5 1, D5 1, F5 1, A9 1, C9 1, C8 2, E3 2, E2 2, C2 2, B3 2, E2 2, A2 2, A2 2, B2 2, B2 2, B3 2, C3 2, C3 2, C4 2, C3 2, C3 C223 C224 C246 C281 C283 C287 C303 C313 C314 C317 C321 C322 C333 C337 C339 C392 C395 C399 C465 C501 C502 C503 C504 C528 C553 C555 C561 C562 C563 C564 C565 C567 C568 C572 C573 C574 C576 C581 C608 C609 D2 D3 C2 C3 C3 D3 B3 D3 A3 C3 C3 C3 B3 B3 B3 D3 C3 C3 D3 D3 C4 D4 D4 D4 C5 C5 C5 B5 B5 A5 B5 B5 D5 C5 B5 A5 B5 A3 B5 A4 2, C4 2, C4 2, F5 2, A9 2, C9 2, B2 3, E6 3, D7 3, E6 3, G6 3, C7 3, C7 3, E11 3, G11 3, G11 3, G2 3, B10 3, A11 4, B12 5, E3 5, F6 5, E6 5, E6 5, H8 5, G10 5, C11 5, C13 5, C14 5, C14 5, D14 5, B14 5, B14 5, B15 5, B15 5, C15 5, C15 5, C15 5, B10 5, J15 5, J15 D401 D451 D471 D474 D475 D480 B3 C3 B4 A4 B5 A3 H495 H521 H522 A3 4, I16 D3 5, K9 D3 5, K8 K171 L501 L564 L566 L569 L600 A2 1, E4 3, D14 A2 1,C2 3, C14 C2 2, E4 3,E14 D4 5, E5 A5 5, C14 B5 5, C14 D5 5, B14 A5 5, J13 N101 N201 N301 N501 B2 C2 B3 D5 1, D6 2, D6 3, D9 5, E5 R001 R002 R101 R102 R103 R104 R105 R106 R108 R172 R201 B1 C1 B2 B2 A2 A2 B2 A1 B2 A2 C2 1, E2 2, E1 1, E2 1, E3 1, E4 1, E4 1, B3 1, F2 1, B3 1, C2 2, E2 K173 K271 4, B4 4, J4 4, F11 4, B15 4, F15 4,D15 R202 R203 R204 R205 R206 R208 R306 R312 R321 R322 R323 R324 R327 R333 R339 R378 R381 R391 R392 R486 R487 C2 C2 C2 D2 D1 D2 B3 C3 C3 C3 B3 B3 C3 B3 B3 C3 C3 C3 C3 C4 C4 2, E2 2, E4 2, E4 2, A2 2, E2 2, B2 3, F6 3, G6 3, C6 3, B6 3, C8 3, C8 3, C7 3, E11 3, G11 3, F3 3, F3 3, A11 3, B11 4,I14 4,I14 T552 T600 C5 5, C12 A5 5, J14 V302 V401 V402 V603 A4 A4 A4 B4 3,G8 4, G1 4, G2 5, J15 X452 X453 X501 X503 X601 A4 A3 D4 A5 A4 4, J8 4, B7 5, E1 5, C3 5, J15 Z501 D3 5, E2 Circuit Diagrams 9.2 Schematic Diagrams 9 Table 9-2. Parts Location Main PCA Side 2 B401 B4 4, J9 C107 C131 C132 C133 C134 C136 C142 C145 C148 C152 C153 C156 C158 C159 C161 C162 C182 C184 C186 C188 C189 C190 C191 C199 C207 C231 C232 C233 C234 C236 C242 C245 C248 C252 C253 C256 C258 C259 C261 C262 C282 C284 C286 C288 C289 C290 C291 C301 C306 C311 C312 D2 D2 D2 D2 D2 D2 C2 D2 C1 D2 D2 C3 C2 C2 D2 D3 C2 C2 D2 C2 D2 C2 C2 D3 B2 B2 B2 B2 B2 B2 A2 B2 B1 B2 B2 A3 B2 B2 B2 B3 A2 A2 B2 A2 B2 B2 A2 C3 D3 C3 C3 1, D5 1, D5 1, D5 1, D5 1, D5 1, E5 1, F4 1, F5 1, E2 1, C7 1, D7 1, D8 1, C7 1, F7 1, E10 1, F8 1, A7 1, B8 1, B7 1, B7 1, C8 1, C8 1, C8 1, C1 2, D4 2, C5 2, D5 2, D5 2, D5 2, E5 2, F4 2, E4 2, E2 2, C6 2, D6 2, D8 2, C7 2, E7 2, D9 2, E9 2, A7 2, A6 2, B7 2, B7 2, B8 2, C7 2, C8 3, D6 3, F7 3, G7 3, G8 C331 C332 C342 C344 C356 C357 C376 C377 C378 C379 C381 C382 C391 C393 C394 C396 C397 C398 C401 C402 C403 C404 C407 C408 C409 C416 C431 C432 C433 C434 C436 C438 C439 C441 C442 C451 C452 C453 C457 C458 C463 C464 C466 C470 C471 C472 C473 C474 C475 C476 C478 C479 C480 C3 C4 C3 C3 C3 C3 B3 B3 C3 C3 B3 B3 A3 B3 B3 C3 C3 B3 C3 C3 C3 D4 D3 C3 D3 C3 B4 B4 B3 B4 C4 C4 C3 C3 C4 B3 B3 B3 B3 B3 B4 B4 B3 C3 C4 C4 C4 B4 D4 D4 B5 C4 C4 3, E11 3, E10 3, G11 3, F9 3, A10 3, B10 3, F5 3, F4 3, F4 3, F4 3, F3 3, F4 3, G2 3, H5 3, H4 3, H4 3, H4 3, H3 4, B2 4, B2 4, C2 4, G2 4, A4 4, A5 4, H2 4, A4 4, E1 4, F2 4, E2 4, F2 4, F3 4, F3 4, E3 4, F3 4, E3 4, J1 4, J2 4, J2 4, I5 4, I5 4, F6 4, G6 4, I4 4,D15 4, B11 4, B11 4, B11 4, B12 4, C14 4, E16 4, G16 4, F4 4, F5 C481 C482 C483 C484 C485 C486 C487 C488 C489 C500 C505 C506 C507 C509 C511 C512 C532 C529 C531 C534 C547 C548 C549 C550 C551 C552 C554 C583 C591 C592 C593 C594 C602 C603 C604 C605 C606 C607 C610 B4 B4 B4 B4 B4 B4 B4 B3 B4 A4 A4 A5 A5 A5 D5 D5 B4 A4 C4 A4 A5 A5 A4 A5 A5 A5 D5 A4 B5 B5 B5 C4 D5 D4 D5 D5 C5 C5 C5 4, J11 4, J11 4, J10 4, J10 4, J9 4, J9 4, I8 4, I7 4, J13 5, E2 5, E4 5, D6 5, F6 5, C5 5, B4 5, C5 5, K6 5, H8 5, K5 5, G6 5, C7 5, C7 5, C7 5, D13 5, D11 5, D11 5, D4 5, J8 5, K3 5, K3 5, K3 5, K4 5, H13 5, K10 5, K11 5, K11 5, K10 5, K12 5, K15 D531 B4 5, J5 L181 L182 L183 L281 L282 L283 L481 L562 L563 L567 C3 D3 D3 A3 B3 B3 C4 C5 C5 C5 1, A9 1, A9 1, B9 2, A9 2, A9 2, B9 4, A16 5, B14 5, B14 5, C14 N531 N600 R109 R110 R111 R112 R113 R114 R116 R117 R118 R119 R120 R121 R125 R131 R132 R133 R134 R136 R137 R138 R139 R140 R141 R142 R143 R144 R146 R151 R152 R153 R154 R155 R156 R157 R158 R159 R160 R161 R165 R171 R173 R182 R184 R186 R188 R189 R209 R210 R211 R212 R213 B4 D5 D2 C2 C2 C2 C2 C2 C2 C2 C2 C3 C2 C2 C2 D2 D2 D2 D2 D2 D1 D1 D1 D1 C2 D2 D2 D2 D2 D2 D2 D2 D2 D2 C3 C3 C3 D3 C2 C3 D3 D3 D3 C3 C2 D2 C3 D2 B2 A2 A2 A2 A2 5, J6 5, J11 1, E5 1, A4 1, A4 1, A4 1, A5 1, A5 1, C3 1, B3 1, D4 1, C4 1, B4 1, D5 1, C4 1, D5 1, D5 1, D5 1, E5 1, E5 1, E3 1, E3 1, E4 1, E4 1, E3 1, F4 1, E4 1, F5 1, F5 1, C8 1, C8 1, D8 1, D8 1, D7 1, D8 1, D8 1, E7 1, F7 1, D7 1, D8 1, E8 3, D12 3, C12 1, A7 1, A9 1, B7 1, B7 1, B9 2, D4 2, A3 2, A3 2, A4 2, A4 9-5 123 Service Manual R214 R216 R217 R218 R219 R220 R221 R225 R231 R232 R233 R234 R236 R237 R238 R239 R240 R241 R242 R243 R246 R251 R252 R253 R254 R255 R256 R257 R258 R259 R260 R261 R271 R282 R284 R286 R288 R289 R301 R302 R303 R305 R307 R308 R309 R310 R311 9-6 A2 A2 A2 A2 A3 A2 A2 A2 B2 B2 B2 B2 B2 A1 A1 A1 A1 A2 B2 B2 B2 B2 B2 B2 B2 B2 A3 A3 B3 B3 A2 A3 B3 A3 A2 B3 A3 B2 C3 C3 C3 C3 D4 D3 C3 C3 C3 2, A5 2, C3 2, B3 2, D3 2, C4 2, B4 2, D4 2, C4 2, C5 2, D5 2, D5 2, D5 2, E5 2, E3 2, E3 2, E3 2, E4 2, E3 2, E3 2, E4 2, E5 2, C8 2, C8 2, D8 2, D8 2, D7 2, D8 2, D7 2, E7 2, E7 2, D7 2, D7 3, E12 2, A7 2, A8 2, B7 2, B7 2, B8 3, D6 3, E6 3, E6 3, D6 3, F8 3, F6 3, G6 3, E6 3, G6 R326 R331 R337 R342 R352 R353 R354 R356 R369 R371 R375 R376 R377 R385 R390 R393 R394 R395 R396 R398 R403 R404 R405 R406 R407 R408 R409 R410 R416 R417 R431 R432 R433 R434 R436 R438 R439 R441 R442 R453 R454 R466 R467 R469 R470 R471 R472 B3 C3 C3 C3 D1 D1 D3 D3 B3 C3 B5 B3 B3 C4 B3 A3 A3 A3 A3 A3 C3 D3 D4 D4 D4 D3 C3 D3 C5 D3 C4 C3 C3 C4 B4 B4 B3 B4 B4 B3 B3 C5 B3 B4 B5 B4 B4 3, C6 3, C7 3, F11 3, G11 3, B3 3, B3 3, A2 3, A2 3, C11 3, E3 3, E2 3, F3 3, F3 3, F2 3, B10 3, G3 3, G3 3, G2 3, G3 3, G3 4, A3 4, A11 4, G2 4, G2 4, G2 4, G2 4, F3 4, G3 4, A12 4, A11 4, D3 4, D3 4, E3 4, E3 4, F3 4, E3 4, E3 4, E3 4, E3 4, I3 4, A11 4, A12 4, B11 4, J12 4, B12 4, H7 4, H8 R473 R474 R478 R479 R480 R481 R482 R482 R483 R483 R491 R495 R496 R497 R499 R501 R502 R503 R504 R506 R507 R508 R509 R512 R513 R514 R516 R524 R527 R528 R529 R531 R532 R534 R535 R550 R551 R552 R553 R554 R558 R559 R563 R564 R565 R570 R580 B3 B4 C4 C4 C4 C4 C4 C3 C4 C3 B4 D3 D3 C5 B4 A4 A4 A5 C5 C5 C5 B4 A5 A5 A5 A5 A5 A5 A3 A4 A3 B4 B4 A4 A4 A5 B5 A5 A5 A5 A5 A5 A5 A5 A5 B5 A4 4, I8 4, I8 4, F5 4, F5 4, E5 4, E15 4, D16 4, D15 4, E16 4, D16 4, H14 4, I15 4, J15 4, G15 4, J13 5, E3 5, F5 5, E6 5, C4 5, C4 5, C5 5, B4 5, C5 5, C5 5, G3 5, G3 5, G4 5, G15 5, J9 5, H7 5, J8 5, K6 5, K6 5, G6 5, G8 5, D12 5, E12 5, E16 5, E16 5, E15 5, F10 5, F10 5, F15 5, F15 5, F14 5, C12 5, A8 R591 R600 R602 R603 R604 R605 R606 C4 C5 C5 C4 C5 D4 D4 5, K4 5, K15 5, K13 5, K15 5, K15 5, J10 5, K11 V171 V172 V174 V301 V302 V353 V354 V356 V358 V359 V395 V403 V471 V482 V495 V501 V503 V504 V506 V550 V551 V554 V555 V561 V562 V563 V564 V565 V566 V567 V569 V600 V601 V602 V604 V605 D3 B3 D3 C4 C3 D1 D1 D3 D2 D2 B3 D4 C3 C4 D3 A3 A4 A4 A4 A5 B5 B5 B5 B5 B5 C5 C5 A5 A5 B5 A5 D5 D5 D5 C5 C5 3, D13 3, E13 3, C13 3, G8 3, G8 3, B2 3, B2 3, A3 3, B2 3, B2 3, B11 4, G2 4, D15 4, D15 4, H15 5, E3 5, E5 5, E4 5, E4 5, C10 5, C11 5, D12 5, D12 5, C13 5, C13 5, C13 5, C13 5, F15 5, F15 5, A13 5, A9 5, J12 5, J13 5, J13 5, K15 5, J15 Circuit Diagrams 9.2 Schematic Diagrams 7 8 9 9 10 N101 GENOUT 10 [3,A1] R110 2K15 C111 4p7 R105 511E C113 4p7 R113 10M R112 10M R114 10M 13 C114 4p7 R108 511E R117 215E HF0 14 12 SWHF0 GNDHF0 16 HF1 K173 C119 4p7 C118 4p7 4 R125 68E1 K173 C104 120p C122 4p7 ptc HF C121 33p C124 33p R118 68E1 R121 68E1 C107 470p PROBE_A AC/DC [4,I7] INPUT A (red input) 2 4 R102 487K R137 56K2 3 ptc + R106 500E C102 100n C106 4n7 R138 56K2 R141 215K 50PPM VDIGN3V3 30 VDIGN3V3 6 CERR1 4 C136 4n7 C142 1n 50PPM REF_BUS [3,H8] R144 348E C145 1n C146 1n 35 FB0 37 38 R133 10K 50PPM 40 R134 1K 50PPM C152 15n C-ASIC OQ0258 L183 47u +5VA [5,B16] APWM_BUS POS_A R155 178K OFFSET_A REF_BUS R154 681K R161 100K R160 51K1 REFN [3,H8] TP153 R156 100K C156 1n FB3 [4,D1] TP152 R153 681K C153 22n FB4 [5,C16] C183 22u C191 100n R152 100K DACTEST 24 FB2 -3V3A C189 100n R151 100K ADC 27 41 R146 215K FB1 L182 47u TP151 CERR2 5 POS 1 OFFSET 44 R132 100K 50PPM R136 100E 50PPM 1206 R143 909K 50PPM HF3 GNDHF3 C187 22u C190 100n C158 150p SWHF2 GNDHF2 21 22 R131 1M 50PPM R104 26K1 R140 56K2 REFATT COMMON (black input) C134 470p 3 R139 56K2 R142 147K INPUT BLOCK X100 1 C132 4p7 R103 1M LF R101 487K 2 F R109 2K15 C101 22n C148 10n E C131 0p82 C133 47p CHANNEL A 4 18 20 C123 4p7 R119 464E R116 215E D HF2 C117 10p C199 470p R172 500E 19 + C188 100n GNDDIG 3 348E R157 DACTESTA TP154 TP155 MIDADC 28 ADC_A [5,J2] [4,B1] C161 100n MIDADC_A [4,C1] TRIG_A [3,C1] SENSE [3,C1] TP156 39 FBC 42 LF 2 GPROT 36 43 CALSIG PROTGND R158 287E TRIGGER 29 ADDRESS 23 100E R165 R159 100E TRACEROT 31 SCLK SDAT 25 C 3 SWHF1 GNDHF1 26 2 R188 10E VP5V 7 17 15 [5,C16] R189 10E VAMPN3V3 32 Ohms/F 5 C186 100n GNDREF 34 +3V3A C184 100n R186 10E VAMPPSUP 33 R120 10M L181 47u C181 22u R184 10E VATTN3V3 9 + C116 4p7 + C182 100n GNDATT 11 C112 4p7 C105 10u B R111 10M R182 10E VATTP3V3 8 DCBIAS C159 100p TRACEROT [3,F13] C162 4p7 SDAT [4,I7] SCLK [4,I7] ICAL [3,A1] 1 ST8086 970604 G ST8086.WMF Figure 9-1. Circuit Diagram 1, Channel A Circuit 9-7 123 Service Manual 1 2 3 4 5 6 7 8 9 N201 10 A R210 2K15 C211 4p7 R211 10M R214 10M GNDATT 13 C205 10u C214 4p7 R208 511E B R213 10M C212 4p7 R205 511E C213 4p7 R212 10M R217 215E VATTP3V3 DCBIAS VATTN3V3 VAMPPSUP 14 12 SWHF0 GNDHF0 16 HF1 C219 4p7 C218 4p7 R225 68E1 19 32 SWHF1 GNDHF1 GNDDIG 21 INPUT C233 47p CHANNEL B C207 470p PROBE_B AC/DC [4,H7] C248 10n R201 487K 5 6 INPUT B (grey input) ptc R206 500E C202 100n C206 4n7 R239 56K2 R242 147K COMMON (black input) R231 1M 50PPM R240 56K2 R243 909K 50PPM 37 38 R233 10K 50PPM 40 R234 1K 50PPM R286 10E C286 100n R288 10E 7 C242 1n 2 36 43 C246 1n R246 215K -3V3A L283 47u +5VA REF_BUS [5,B16] 22u C290 100n C291 100n C283 22u APWM_BUS TP251 [4,D1] 5 POS_B C252 15n TP252 FB0 44 OFFSET_B REF_BUS FB1 C-ASIC OQ0258 DACTEST FB2 C253 R255 22n 178K 24 TP253 R261 R256 100K 100K FBC TRIGGER ADC_B TP254 R257 100K TP255 TP256 R258 TRIG_B 287E LF [4,I1] C261 100n MIDADC_B 28 29 [5,J2] 1n FB3 FB4 DACTESTB C256 R260 51K1 27 [3,H8] REFN [4,J1] [3,C1] C262 4p7 GPROT TP258 CALSIG PROTGND TRACEROT SCLK SDAT R259 100E 31 TRACEROT [3,F13] C259 100p SDAT SCLK REFATT [5,C16] C289 100n C288 100n 3 ADDRESS 23 MIDADC 39 L282 47u [5,C16] R289 10E POS 1 HF3 GNDHF3 ADC 41 42 C245 1n CERR2 +3V3A C284 100n 150p SWHF2 GNDHF2 OFFSET R232 100K 50PPM R204 26K1 50PPM F 35 R236 100E 50PPM 1206 3 K271 R238 56K2 R241 215K 50PPM C236 4n7 R203 1M 2 4 R202 487K R237 56K2 C234 470p R209 2K15 C201 22n LF E C232 4p7 R221 68E1 X100 22 C231 0p68 C224 33p R218 68E1 7 R284 10E 30 VDIGN3V3 VDIGN3V3 6 4 CERR1 HF2 25 R219 464E R216 215E 18 20 C223 4p7 C221 33p D 22u 33 VAMPN3V3 26 C222 4p7 HF C281 100n C258 C BLOCK C282 9 34 C217 10p C204 120p 11 GNDREF VP5V 17 15 10E HF0 R220 10M C216 4p7 L281 47u R282 8 [4,I7] [4,I7] [3,H8] ST8087 970604 ST8087.WMF Figure 9-2. Circuit Diagram 2, Channel B Circuit 9-8 9 Circuit Diagrams 9.2 Schematic Diagrams 1 [1,F10] [1,A2] 2 3 4 5 6 7 8 9 11 10 R354 261E GENOUT R356 261E V358 BC868 VCC5REF VCC3ATR C356 15 or18n FILM [4,A11] PROTECTION V359 BC868 C357 22n TVSYNC APWM_BUS [4,D1] C321 1n5 TP321 C R326 562K R323 34K8 REFP R324 215K R327 562K REFN TP301 TP310 REFATT REFADCT C313 10u R305 10K C301 100n GAINADCT TP302 REFADCB R375 0E VCC5REF R371 0E VCC5DT GAINADCB +3V3A R302 10K R385 0E F R381 10E C381 100n C379 100n C378 100n C377 100n VCC3ATR [D11] VCC3DT [D11] VCC3RAMP [D11] VCC3REF [D8] VCC3CML [E9] TP309 C303 100n [D11] C382 100n R376 10E R377 1E R378 10E R303 10K C314 10u [D8] R310 100K TP303 [4,I7] R306 21K5 G [5,C16] -3V3A R395 0E GAINREFN C391 100n C392 10u R398 1E [D11] VEERAMP [E11] VEEREF [C10] VEECML C398 100n C397 100n C396 100n C394 100n C393 100n TP307 [E9] 2x R312 34K8 R311 31K6 OQ0257 C311 100n C312 100n R173 348E 1 K173 -3V3A +5VA 17 18 24 22 23 20 25 21 26 50 49 48 47 46 43 45 VCC3ATR BIAS OHMA ACDCA ACDCB VCC5DT VCC3DT VEEDT [F5] 10 VCC3RAMP [F5] VEERAMP [G5] C332 22p V171 BCV65 [E5] [F5] [G5] TP331 TP332 R171 348E 1 K171 -3V3A +5VA V172 BCV65 R331 10K C331 4p7 R333 10K C333 1p 10 RSTRAMP R271 348E 1 K271 -3V3A RAMPCLK TRIGDT TRACEROT [1,E10] [2,E10] TP311 C344 22p V301 * 4041 [5,J7] V302 * 4041 V301 OR V302 See Ch.10, Rev. 14 R309 10K R369 26K1 [5,J7] R307 10K REFP REF_BUS H T-ASIC 6 TP336 GAINPWM [D8] REF_BUS ALLTRIG REFP REFPWM1 C317 22u SCLK REFPWM2 [C9] N301 V174 BCV65 REFPWM1 VCC3ATR BIAS OHMA ACDCA ACDCB VCC5DT VCC3DT VEEDT GNDDT TRACEROT GNDRDAC VCC3RAMP GNDRAMP VEERAMP GNDCML RSTRAMP TP306 R308 21K5 50PPM VEEDT SDAT C306 100n 50PPM C376 100n VEEATR [4,I7] REFN TP304 R393 10E R394 1E R396 10E REFATT GNDDISTR GAINREFN REFN REFP VCC5REF VCC3REF VEEREF GNDREF GAINADCT GAINADCB GAINPWM REFADCT REFADCB REFPWM DACTEST [G5] +5VA +5VA [G8] SDAT SCLK VEECML GNDCML GQUALIFY TRIGINDIG GNDDI VEECML SMPCLK GNDCML HOLDOFF VCC3CML ALLTRIG TRIGDT GNDDO RAMPCLK REFERENCE GAIN 8 7 63 64 62 VCC5REF 61 [E5] VCC3REF 60 [F5] VEEREF 58 [G5] 57 GAINADCT 52 GAINADCB 54 GAINPWM 56 REFADCT 51 53 REFADCB 55 REFPWM1 DACTESTT 29 [5,K2] [4,E14] GAINREFN REFN REFP R301 3K16 D RELAY CONTROL [G5] [G5] C322 1n5 VEEATR TVOUT TVSYNC VEEREF R321 681K ICAL TRIG_B TRIGLEV1 V395 BC848C C395 47n [F5] [2,E10] R322 681K BTRAP TRIG_A TRIGLEV2 [G5] [1,E10] TVOUT TRIG_B TRIG_A SENSE TP322 14 6 10 11 15 13 59 3 1 5 2 4 19 12 16 9 [1,E10] V354 BZD27 C7V5 1K R353 GNDATR REFOHMIN TRIGLEV1 TRIGLEV2 TRIGINB TRIGINA SENSE BOOTSTRAP GENOUT ICAL COHM CGEN VEEATR TVOUT TRIGINEXT VEEREF OPTION V360 BYD17 TP308 31 30 27 28 42 40 37 41 VEECML 38 32 39 VCC3CML 36 35 34 33 44 V353 BZD27 C7V5 SYNC.PULSE SEPARATOR R392 4K22 VEECML B 5K11 R352 C399 100n R391 1K R390 464K [5,C16] 14 V356 BC858 C VDDAA [5,B16] 13 ICAL A E 12 [C11] [1,D10] [2,D10] [4,C2] [4,G6] R337 10K C337 4p7 HOLDOFF R339 10K C339 1p SMPCLK R342 10K TRIGQUAL TP338 C342 1p DTRG_BUS [1,F4] [2,F3] [4,C7] [4,J1] [4,C5] 3 ST8088-2 00-01-12 ST8088-2.WMF Figure 9-3. Circuit Diagram 3, Trigger Circuit 9-9 123 Service Manual 8 9 10 11 VDDO [A5] [I5] X453 VRB 7 IREF C403 100n D401 TDA 8792 VSSA2 VSSA1 STBY NC CLK OEN 24 13 VSSD VSSO SMPCLK 1 11 3 23 SMPCLK TP432 PWM FILTERS TRIGLEV1 TRIGLEV2 OFFSET_A POS_A E SADCLEV CHARCUR C431 100n C439 4n7 C433 22n C432 100n C434 22n C438 4n7 [5,C16] R405 1K TRGLEV2D BSS84 V402 V403 BSN20 R407 3K16 HO_OUT OFFSETAD POS_A_D RAMPCLK OPTION CHARCURD SMPCLK HO_IN C442 22n R479 51K1 TP483 C441 22n R478 10K R436 26K1 [I8] HO_RNDM C480 100n TRGLEV1D TRGLEV2D POS_B_D DPWM_BUS OFFSETBD REFPWM1 [5,K16] REFPWM2 C404 470p SADCLEVD CHARCURD R410 68E1 C464 100n ADCB_BUS REFADCT C452 100n VIN 8 VRT 9 REFADCB REF_BUS 5 C453 100n 10 7 VDDAB [B11] C457 100n VRM TDA 8792 VRB VSSA2 VSSA1 STBY [A10] VDDO [A10] SUPPRDET R471 1M 11 PROBE 14 15 16 17 18 19 20 21 ADC_B_D0 ADC_B_D1 ADC_B_D2 ADC_B_D3 ADC_B_D4 ADC_B_D5 ADC_B_D6 ADC_B_D7 CLK OEN 24 13 SMPCLK VSSD VSSO 3 [1,E3] [2,D3] SCLK, SDAT [F8] 1 2 3 4 5 +VD 6 7 8 9 10 11 +VD 12 13 HO_OUT 14 HO_IN 15 16 +VD 17 18 19 20 21 22 23 24 25 HO_RNDM 26 27 28 29 NC 30 31 32 33 34 BACKBRIG 35 36 37 38 39 40 +VD 41 42 43 44 45 +VD 46 47 48 49 50 51 NC 52 NC ADCA7 ADCA6 ADCA5 ADCA4 VDD VSS ADCA3 ADCA2 ADCA1 ADCA0 VCLAMPA HOLDOFF DIGHO HOSCHMIN TROTCLK VDD VSS SMPCLK EXTTRIG ALLTRIG TRIGDT TRIGQUAL TROTRST SHLDPWM PWMA10N6 PWMA10N5 PWMA10N4 PWMA10N3 PWMA10N2 PWMA12N1 VDDREFA VSSREF PWMA12N0 PWMA10N1 PWMA10N0 PWMA8N0 VDDREFB PWMB10N0 PWMB8N0 VCLAMPB ADCB7 ADCB6 ADCB5 ADCB4 VDD VSS ADCB3 ADCB2 ADCB1 ADCB0 NC [I12] R472 1M PROBE_A PROBE_B SCLK R473 100E SDAT 100E R474 C488 100p C472 100n C473 100n STBY_B [I,14] +3V3GAR [5,B16] TP471 TP472 C475 100n C476 100n ROM_ADDR ROM_DATA 2 D-ASIC MOT0002N1 TP476 KEYPAD FOIL B401 3 32KHz 2 1 B402 3 16MHz 2 1 4 4 3 R469 100K B403 25MHz 1 SEE CIRCUIT DIAGRAM 4 DIGITAL CIRCUIT KEYBOARD C486 27p C485 27p C484 22p C483 22p C482 22p C481 22p 3 R488 0E ROM_A19 R488 FOR INTEL 16M ROM ONLY R483 51K1 +VD R482 511E C470 V471 BAS85 D480 74LVC32 4 1 5 470P 6 ROMRST [3,E8] +12VPROG [5,B10] V482 BAT54S TP487 +VD R482 10K R481 10K R483 100K C476 100n RAM_DATA D475 RAM_CS0 RAM_A11 RAM_A09 RAM_A08 READRAM RAM_A13 WRITERAM WRITERAM DEBUG1 NC [B11] RAM_A00 RAM_A01 RAM_A02 RAM_A03 RAM_A04 RAM_A05 RAM_A06 RAM_A07 RAM_A08 RAM_A09 RAM_A10 RAM_A11 RAM_A12 RAM_A13 RAM_A14 [B11] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 RAM_A15 RAM_A18 RAM_A16 RAM_A14 RAM_A12 RAM_A07 RAM_A06 RAM_A05 RAM_A04 M5M51008 TP A11 OE A9 A10 A8 S1 A13 DQ8 W DQ7 DQ6 S2/A17 A15 DQ5 VCC DQ4 NC/A18 GND A16 DQ3 DQ2 A14 A12 DQ1 A0 A7 A6 A1 A2 A5 A3 A4 128X8 SRAM 512X8 SRAM RAM READRAM RAM_A10 RAM_CS0 RAM_D7 RAM_D6 RAM_D5 RAM_D4 RAM_D3 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 RAM_D2 RAM_D1 RAM_D0 RAM_A00 RAM_A01 RAM_A02 RAM_A03 [B11] +VD RAM_A15 RAM_A16 RAM_A17 RAM_A18 RXD2 TXD2 R497 0E +VD R498 OPTION C478 100n [B11] RAM_A18 RAM_ADDR MS447 +VD 128x8 256x8 512x8 R498 open open 0E R497 0E 0E open OPTION R484 R485 R486 10K R487 10K V495 BSS84 [J3] [C3] FREQPS MAINVAL [5,G15] [5,F15] BATIDENT [5,B5] VGARVALF PWRONOFF RXD TXD [5,G16] [5,H15] [5,H15] PCA Version Detect (not for PCB <8) TP496 TP495 R495 3K16 To ADC's for PCB version <8 BUZZER H495 BUZZER SADC_BUS X452 23 [B11] ROM_A18 ROM_A17 ROM_A07 ROM_A06 ROM_A05 ROM_A04 ROM_A03 ROM_A02 ROM_A01 NC BUZZER TP474 +VD Dotted connections and parts for PCB version < 8 DACTESTT RAM_D7 RAM_D6 RAM_D5 RAM_D4 RAM_D3 RAM_D2 RAM_D1 RAM_D0 +VD ROMWRITE ROMRST Direct connections for PCB version 8 [B11] +VD 13 14 15 16 17 18 19 20 21 22 23 24 ROM_A15 ROM_A14 ROM_A13 ROM_A12 ROM_A11 ROM_A10 ROM_A09 ROM_A08 Delay circuit for PCB version 8 Dotted connection for PCB version < 8 NC TLON DEBUG2 ROM_CS0 ROM_A18 ROM_A19 ROMREAD ROMWR +VD 1 2 3 4 5 6 7 8 9 10 11 12 L481 47u ROMWRITE R491 51K1 STBY_A TP473 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 1 1 [5,J11] NC IO9EXDTA EXTMA0 D16CS0 D16CS1A18 D16CS2A19 ROMRD ROMWR VSS VDD ROMRST IO8 RAMD7 RAMD6 RAMD5 RAMD4 RAMD3 RAMD2 RAMD1 RAMD0 D08CS0 D08CS1 D08CS2 RAMRD RAMWR VSS VDD RAMA0 RAMA1 RAMA2 RAMA3 RAMA4 RAMA5 RAMA6 RAMA7 RAMA8 RAMA9 RAMA10 RAMA11 RAMA12 RAMA13 RAMA14 VSS VDD RAMA15 RAMA16 RAMA17 RAMA18 RXD2 TXD2 EMUL NC D471 17 TP488 ROM ROM_ADDR STBY_B C487 100p ROM_D11 36 ROM_D03 35 ROM_D10 34 ROM_D02 33 ROM_D09 32 ROM_D01 31 ROM_D08 30 ROM_D00 29 ROMREAD 28 27 ROM_CS0 26 ROM_A00 25 ROM_ADDR PCB version < 8 PCB version 8 C474 100n [5,C16] C465 10u R470 0E C471 100n NC MIDADC_B NC 1 VDDDB 2 22 VDDD VDDO D0 D1 D2 D3 D4 D5 D6 D7 IREF 4 [B11] C458 100n D451 12 [B11] ADC_B_D7 ADC_B_D6 ADC_B_D5 ADC_B_D4 ADC_B_D3 ADC_B_D2 ADC_B_D1 ADC_B_D0 ADC-CHANNEL-B ADC_B C451 4p7 REF_BUS [3,H8] 6 VDDA [2,E10] OFFSETAD C463 100n C466 100n [3,H8] ALLTRIG TRIGDT TRIGQUAL RSTRAMP CONTR_D R453 21K5 [2,D10] [B11] SMPCLK C409 22n I [B11] HOLDOFF V461 BAS16 R480 10K TP482 SADCLEVD R408 10M -30VD H J ADC_A_D3 ADC_A_D2 ADC_A_D1 ADC_A_D0 FRAME [5,C16] [B11] HOLDOFF POS_A_D CONTR_D V401 BSN20 G R406 511E RSTRAMP TP436 RANDOMIZE TRGLEV1D C436 1u CONTRAST [C7] R409 26K1 +3V3D ADC_A_D7 ADC_A_D6 ADC_A_D5 ADC_A_D4 OFFSETBD C479 22p CONTRAST NC TRIGQUAL TP431 F [C7] TRIGDT TP438 POS_B_D R467 1E +3V3A ROM_D15 ROM_D07 ROM_D14 ROM_D06 ROM_D13 ROM_D05 ROM_D12 ROM_D04 D480 74LVC32 RAMPCLK TP433 VDDAB R466 1E +VD R481 0E OPTION FRAME NC TP437 PCB version 8 OFFSET_B CONTRAST [F1] [G1] [3,H13] R431 21K5 R432 147K R433 147K R434 147K R438 147K R439 21K5 R441 3K16 R442 1K47 -30VD [5,C16] DTRG_BUS PCB version < 8 POS_B [5,C16] LCDTEMP1 REF_BUS [3,H8] ADCA_BUS STBY_A [J,14] APWM_BUS [5,B16] [5,B16] R417 1E [B11] +VD LCD_BUS NC 4 MIDADC_A [1,E10] D -30VD [5,K2] 12 C [B11] M LCDTEMP1 +5VA [5,B16] +3V3D [5,B16] REFPWM1 CONTRAST [I4] VDDAA 16 28F400 AM29LV800B A16 BYTE# A15 GND A14 DQ15/A_1 A13 DQ7 A12 DQ14 A11 DQ6 A10 DQ13 A9 DQ5 A8 DQ12 NC DQ4 NC VCC WE# RP# DQ11 DQ3 VPP DQ10 WP# DQ2 RY DQ9 A18 DQ1 A17 DQ8 A7 DQ0 A6 OE# A5 GND A4 CE# A3 A0 A2 A1 48 47 46 45 44 43 42 41 40 39 38 37 NC VRM 10 ADC_A_D0 ADC_A_D1 ADC_A_D2 ADC_A_D3 ADC_A_D4 ADC_A_D5 ADC_A_D6 ADC_A_D7 LINECLK FRAME [A4] LCDONOFF ROM_A00 ROM_A01 ROM_A02 ROM_A03 ROM_A04 ROM_A05 ROM_A06 ROM_A07 ROM_A08 ROM_A09 ROM_A10 ROM_A11 9 REFADCB 14 15 16 17 18 19 20 21 LCDAT1 LCDAT0 DATACLK0 +12VPROG LCDAT3 LCDAT2 NC LCDAT1 LCDAT0 NC LINECLK FRAME +VD M LCDTEMP1 +5VA +3V3D REFPWM1 CONTRAST ROM_A16 ROMA0 ROMA1 ROMA2 ROMA3 ROMA4 ROMA5 ROMA6 ROMA7 ROMA8 ROMA9 ROMA10 ROMA11 VSS VDD ROMA12 ROMA13 ROMA14 ROMA15 ROMA16 ROMA17 ROMD15 ROMD7 ROMD14 ROMD6 ROMD13 ROMD5 ROMD12 ROMD4 ROMD11 VSS VDD ROMD3 ROMD10 ROMD2 ROMD9 ROMD1 ROMD8 ROMD0 NC VRT C402 100n REF_BUS [3,H8] VIN 8 2 22 VDDD VDDO D0 D1 D2 D3 D4 D5 D6 D7 [5,B10] LCDAT3 LCDAT2 VDDDB [I5] [B11] DATACLK0 C401 4p7 5 REFADCT TO LCD MODULE DATACLK0 +VD 6 VDDA ADC_A [1,D10] [A10] MS422 MS421 MS420 MS419 MS418 MS417 MS416 MS415 MS414 MS413 MS412 MS411 MS410 MS409 MS408 MS406 MS405 MS404 MS403 MS402 MS401 NC M FRAME LINECLK LCDAT0 LCDAT1 LCDAT2 LCDAT3 VSS VDD B VDDO C408 100n C407 100n LCDONOFF NC [B11] C416 100n LCDONOFF [5,B16] R404 1E R454 1E VDDDA [A5] 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 M FRAME LINECLK LCDAT0 LCDAT1 LCDAT2 LCDAT3 VDDAA [A10] 15 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 R403 21K5 VDDDA +3V3D 14 D474 NC PROBEA PROBEB SCL SDA ROW0 ROW1 ROW2 ROW3 ROW4 ROW5 VDD VSS COL0 COL1 COL2 COL3 COL4 COL5 ONKEY RTCXTALO RTCXTALI VDD VSS UPXTALO UPXTALI VSS CPXTALO CPXTALI VDD VSS TEST EXTINT TXD1 RXD1 PWRON VGARVALID PROBEC NETVALID BACKLIGHT FREQPS VDD VSS IO0 IO1 IO2 IO3 IO4 IO5 IO6 IO7 NC ADC-CHANNEL-A 13 NC 53 54 55 56 57 58 59 60 61 62 63 64 +VD [B11] 65 66 67 68 69 70 71 72 73 74 +VD 75 [B11] 76 77 78 79 80 81 +VD 82 [B11] 83 84 85 +VD [B11] TXD 86 RXD 87 PWRONOFF 88 VGARVAL 89 BATIDENT 90 MAINVAL 91 NC 92 93 FREQPS 94 +VD [B11] 95 SELMUX0 96 SELMUX1 97 SELMUX2 98 SUPPRDET 99 [H8] SLOWADC 100 101 102 103 104 A 12 R416 1E [5,H7] R496 3K16 Dotted line for PCB <8 R499 56K2 C489 VGARVAL [5,B10] +VD 22n (not for PCB <8) BUZ -30VD 7 [B11] ROM_D03 ROM_D10 ROM_D02 ROM_D09 ROM_D01 ROM_D08 ROM_D00 6 5 +VD 4 3 [B11] ROM_A12 ROM_A13 ROM_A14 ROM_A15 ROM_A16 ROM_A17 ROM_D15 ROM_D07 ROM_D14 ROM_D06 ROM_D13 ROM_D05 ROM_D12 ROM_D04 ROM_D11 2 +VD 1 [5,C16] 4 ST8089-2 00-01-12 ST8089.WMF Figure 9-4. Circuit Diagram 4, Digital Circuit 9-10 Circuit Diagrams 9.2 Schematic Diagrams 9 4 ST8108.WMF Figure 9-5. Circuit Diagram 4 (cont), Digital Circuit Keyboard 9-11 123 Service Manual 1 2 3 5 4 7 6 8 9 11 10 12 13 14 15 16 LINEAR SUPPLY A FLYBACK CONVERTER V569 BC869 R580 VBAT 0.33E V567 MBRS340 +3V3SADC B VGARVAL R508 10K TP568 C511 100n GNDC GNDC GNDC VBATHIGH IMAXCHA VADALOW 7 6 8 VBATHIGH IMAXCHA VADALOW [4,D1] APWM_BUS CHARCURR 80 CHARCURR C534 100n +3V3GAR VGARVAL +12VPROG TP551 GNDP P3V3GAR V564 MBRS1100 ETD15 66 64 22 23 VGARDRV VGARCURR 70 69 NC NC NC NC NC NC NC NC NC NC NC NC NC 37 36 35 34 33 32 31 30 29 28 27 26 25 38 V550 BYD77A VCOIL FLYBOOST SNUB 52 48 47 GNDD 50 FLYGATE FLYSENSP 49 55 C562 150u L566 68uH C574 150u C563 150u TP531 VSENS 54 GNDF GNDF GNDF 59 56 53 G [4,A13] [4,B8] [4,F1] +3V3A [1,B10] [2,A10] [3,F1] [4,A13] -3V3A [1,A10] [2,A10] [3,G1] -30VD [4,C8] [4,C9] [4,H1] [4,J15] TP576 C576 150u L567 47uH TP577 R550 348E C551 100n TP552 C552 100n C550 4n7 FLYGATE FLYSENSP R554 26K1 R552 10K VSENS VSENS R553 4K22 M3V3A 58 -3V3A VBATSUP 17 NC IMAXFLY VOUTHI 57 51 IMAXFLY VOUTHI +3V3SADC R559 5K11 R563 100K R564 100K V565 BC848 C V566 BC848 C MAINVAL GNDO GNDO COSC GNDO [1,B10] [2,B10] [3,E1] [4,B8] +3V3D TP574 C564 47u V555 BYD77A V554 2SK974 VCOIL FLYBOOST SNUB R558 31K6 POWONOFF FREQPS NETVALD R516 23K7 P7VCHA 2 13 21 P-ASIC RS232A RS232D R514 3K16 CHARCUR 7 L564 68uH C573 150u 1 8 46 44 43 42 R565 100K [4,J13] TP529 C553 150p 62 63 12 R513 26K1 18 P7VCHA C507 100n R534 1K47 CHAGATE CHASENSN CHASENSP VCHDRIVE VADAPTER 75 76 C502 10u CHARGER 16 14 15 19 20 RXDA RXD R502 10E F N501 OQ0256 CHAGATE CHASENSN CHASENSP VCHDRIVE VADAPTER V551 BYD77A V563 MBRS340 C561 150u TP573 R551 0.1E C504 10u TP502 6 L563 47uH +5VA C572 150u VBATSUP P3V3SADC C503 390u 5 VBATMEAS GNDM NOSAFETY V503 MBRS340 60 65 100n C501 180u VBATSUP +3V3SADC 3 MTD5P06E V506 R503 10E P3V3REF P1V23REF P1V23REFLS C505 3 VBAT L501 33uH 73 72 67 V504 MBRS340 REFPWM2 REFP REFPLS R501 0.1E IREF GNDREF TP501 74 71 2 V501 MBRS340 IREF 3 4 BATCURR BATVOLT BATTEMP 1 1 C500 1u 25V -INPUT NC TP503 77 78 79 +INPUT 2 E Z501 BNX002 BATCUR BATVOLT BATTEMP X501 TEMP TEMPHI IBATP RCCHA1 RCCHA2 TEMP TEMPHI IBATP 68 61 POWER ADAPTER 11 10 5 4 9 VGARDRV C506 47n TP504 GNDB [J11] C554 1u CBL1N CBL1P CBL2N CBL2P CBL3N HVISO1 CBL4N CBL4P HVISO2 CBL3P HVISO3 CBL5P CBL5N 45 D V562 MBRS340 4 M29VBL SUB SUB SUB M30VBL VBAT 2 C555 390u C509 1u +3V3GAR V561 MBRS340 R570 100K C547 22n R507 1E R506 1E C581 10u T552 NC R504 1E L562 47uH [4,D16] C548 22n R509 46E4 MAX. TEMP SWITCH NTC C512 100n R512 2K87 NC NC 41 24 1 40 39 I T + C R IDENT + C549 22n X503 1 5 4 6 3 2 [4,B13] TP572 [J3][4,J13] -30VD BP120: R IDENT = 0 Ohm +3V3GAR C568 150u C567 150u For PCB versions < 8 only +12VPROG BATIDENT BATTERY PACK C565 150u [4,J14] TP571 L569 68uH TP561 TP526 FREQPS [4,J13] PWRONOFF [4,J13] TP528 R524 100E R535 51K1 TP527 R528 34K8 SLOW ADC H RXD TXD C529 100n [4,J13] [4,J13] C528 22u [4,I14] SADC_BUS TP591 TP592 TP593 J [B5] [1,D10] [2,D10] [3,E8] [4,C7] [3,F8] [3,G8] D531 74HC4051 SELMUX0 SELMUX1 SELMUX2 11 10 9 6 BATIDENT BATVOLT BATTEMP BATCUR 13 14 15 12 1 5 2 4 DACTESTA DACTESTB DACTESTT LCDTEMP1 S0 S1 S2 E VCC 16 GND 8 VEE 7 Z Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 TP536 N531 LMC7101 3 C591 100n C592 100n C593 100n C594 100n R591 2K15 +3V3A +3V3SADC 1 (6) 3 (3) 5 (4) V V 2 (7) SLOWADC R532 * 100E C583 100n R529 261K TP600 R527 147E TP522 TP521 (.) IF N531=NE5230 C532 * 22n MUX K TP534 4 (2) TP537 SADCLEV R531 21K5 C531 22n APWM_BUS [4,D1] H522 OP906 * For PCB versions < 8: R532 = 0 Ohm (is a track) C532 = not present H521 SFH409 RS232 +3V3GAR R605 * 10K 1 2 3 4 5 6 7 8 BOUT AOUT VC COMP SS N/C INV CT GND PGND COUT ENBL VCC REF N/C ZD [4,D14] R606 * 6K19 16 15 14 13 12 11 10 9 TLON +5VA C606 100n C607 10n TP604 5 * R605 & R606 not for PCB versions < 8 ST8090-2 00-01-24 OPTICAL PORT ST8090-2.WMF Figure 9-6. Circuit Diagram 5, Power Circuit 9-12 Circuit Diagrams 9.2 Schematic Diagrams 3 2 5 MS431 MS432 MS433 MS434 MS435 MS436 MS437 MS438 MS439 MS440 MS441 MS442 MS443 MS444 MS445 MS454 4 MS453 3 MS401 MS402 MS403 MS404 MS405 MS406 MS408 MS409 MS410 MS411 MS412 MS413 MS414 MS415 MS416 MS417 MS418 MS419 MS420 MS421 MS422 2 1 9 1 R103 TP572 X601 2 T600 R102 N101 C183 R306 24 14 1 12 C187 TP155 TP604 TP152 C337 TP436 TP487 49 R324 64 C333 48 TP332 R333 TP438 TP431 R339 TP483 N301 TP331 TP156 17 TP303 K271 C321 R322 R392 TP322 14 1 TP254 5 R391 1 TP471 R312 13 23 22 12 B403 2 6 8 4 TP551 C572 TP561 TP526 C504 C528 TP528 C501 C287 1 7 C561 TP593 TP574 C465 11 6 TP473 C502 C283 5 16 TP401 TP451 B402 TP253 TP592 TP534 R381 R378 TP304 TP591 TP536 TP537 12 TP476 TP474 TP472 C317 N201 C204 1 104 53 C281 34 33 105 52 TP308 6 TP255 44 TP151 D451 R202 R201 C TP256 C246 C201 R204 TP302 TP321 C399 R321 T552 TP301 C562 TP307 C553 10 C567 MS447 1 C563 TP311 TP433 TP251 C395 R327 TP252 32 31 TP309 C322 R2 220k R203 C339 16 17 C565 TP482 TP432 D475 C124 C123 C121 TP605 TP338 1 C122 C118 TP573 156 32 R323 R108 C119 C114 C116 C113 C117 C112 157 1 C303 C576 D471 C104 13 TP336 R1 220k L566 208 R105 TP600 C573 12 B C608 TP486 TP310 C105 1 25 TP437 D401 R101 23 22 TP601 C564 TP154 TP153 11 10 C581 R172 D474 TP258 C574 2 V603 34 33 44 3 C609 C181 1 4 1 H495 TP602 5 4 48 X503 V401 1 C555 6 5 6 L564 C314 TP496 3 TP603 TP495 5 C111 L600 1 V402 6 C106 X452 1 K171 5 X453 1 R104 C101 4 10 C146 A R106 C102 K173 1 TP552 TP576 TP571 64 41 65 40 TP521 C218 Z501 TP306 TP531 80 - - B - - C - TP252 D - - 25 1 24 TP577 TP501 C222 TP503 A C568 TP527 H521 C224 C223 C221 TP522 L501 R208 C219 C214 C216 C213 C217 C212 H522 R206 R205 C211 L569 N501 X501 C202 D TP529 C313 C206 C392 C503 C205 TP502 TP504 TP568 ST8135 TP258 TP495, 496 TP 572 TP152 ... 156 TP310, 331, 332, 336, 338 TP431, 432, 436, 437, 438, 482, 483, 486 TP604 TP601 ... 603 TP487 TP573 TP600, 605 TP151 TP251, 254, 255, 256 TP301 ... 304, 308, 309, 311, 321, 322 TP433 TP521 TP253 TP401, 451, 471 ... 474, 476 TP 526, 534, 536, 537, 561, 591 TP306, 307 TP503, 522, 527, 531, 571 TP528, 551, 552, 574, 576, 592, 593 TP501, 502, 504, 529, 568, 577 ST8135.WMF Figure 9-7. Main PCA side 1, PCB version <8 9-13 123 Service Manual R563 C548 R565 C506 V565 R564 C551 C550 R553 R570 V567 R491 C478 V562 V554 V555 R552 R554 R559 C482 R550 R512 C529 C481 C483 V561 R375 V564 V563 L563 V604 V482 L567 L562 R481 R483 R385 R504 V602 C610 R466 R506 R602 R603 R507 R600 C607 C312 C547 R528 R472 R471 C488 R480 C342 N600 R405 C409 R406 C512 C512 C475 R495 L481 C378 R342 C301 C479 C381 R151 R152 R154 R153 R155 V359 R352 R353 V358 R139 R132 R354 R496 C132 R356 C136 C199 R186 V171 R133 V174 R134 R171 R189 R173 C133 L182 R604 V601 R408 C189 C134 R136 V356 R165 V301 OR V302 can be present R407 R417 C472 C476 C107 C186 C306 C594 V605 V403 C162 C438 R416 V301 R307 R158 R497 C473 C404 C159 C408 R410 C401 R409 R161 C416 C531 C332 V495 R157 C331 R301 C191 C480 R331 R308 C402 L183 C153 R403 R156 C407 R121 R188 R159 C379 D531 C436 C442 R434 V551 N531 R436 C471 R337 R305 C397 C357 C156 R404 C131 C158 R144 C152 R131 R143 R142 C145 R109 C403 R160 C161 C142 R146 R182 R141 C188 C190 R114 R118 R125 R184 C184 R303 L181 V302 R119 C394 C376 C382 R251 R252 R253 R255 R110 R111 C182 R113 R116 R120 R112 C356 V550 R470 R479 C344 R508 C463 R478 C396 R302 C552 R591 R310 R309 R469 C432 R431 R433 C439 C400 C434 R438 R432 C591 R441 C431 R442 C433 C441 R311 C592 R531 R474 R439 C311 R371 C474 C487 C464 R117 R254 L283 R473 R326 C377 R232 R236 V395 R369 C232 C458 C451 R558 C593 C485 C398 C452 L282 R454 C236 C466 C393 R233 R286 C457 R234 R289 C148 V353 R396 C453 R390 C233 C253 V354 R398 B401 R271 R482 C286 C289 C234 C248 R137 C486 V566 V569 R551 C484 R259 C207 C252 C V504 R377 C262 R467 R376 R258 R394 C259 R393 R261 R395 R257 R503 R502 V172 C231 C258 R231 C291 R535 C583 C505 R453 R209 C245 B R256 C261 R210 R243 R242 R246 R288 C391 R260 C288 C290 C256 R509 R524 R282 R241 C242 R138 R501 R221 R214 R218 R225 R213 R212 R216 R220 R211 R284 R534 C534 R239 R237 C282 C507 C509 R580 R527 L281 V501 C284 R140 C500 R529 R516 R514 C549 V503 R240 V506 R238 A D 5 R219 4 R513 3 C606 2 R217 1 V600 C511 C603 C604 C511 OR C605 C602 C554 ST8136-0 / 00-01-12 ST8136-0.WMF Figure 9-8. Main PCA side 2, PCB version <8 9-14 9 V302 Circuit Diagrams 9.2 Schematic Diagrams D480 C611 1 R486 R487 4022 245 0443.8 ST8135-2/00-01-12 ST8135-2.WMF Figure 9-9. Main PCA side 1, PCB version 8 9-15 123 C489 R532 C532 R499 Service Manual R483 R482 R605 R606 V471 C476 C470 ST8136-2/00-01-12 ST8136-2.WMF Figure 9-10. Main PCA side 2, PCB version 8 9-16 Chapter 10 Modifications Title Page 10.1 Software modifications ............................................................................. 10-1 10.2 Hardware modifications............................................................................ 10-1 Modifications 10.1 Software modifications 10 10.1 Software modifications Changes and improvements made to the test tool software (firmware) are identified by incrementing the software version number. These changes are documented on a supplemental change/errata sheet which, when applicable, is included with the manual. To display the software version, proceed as follows: 1. Press to open the USER OPTIONS menu. 2. Press to show the VERSION&CALIBRATION screen (see Figure 5.1 in Section 5). 3. Press to return to normal mode. 10.2 Hardware modifications Changes and improvements made to the test tool hardware are identified by incrementing the revision number of the Main PCA. The revision number is printed on a sticker, see the example below. The sticker is placed on D-ASIC D471, on the Main PCA. This example of the Main PCA revision number sticker indicates revision 1. 1 The following revisions have been released: Revision 09 Revision number of first deliveries. Revision 10 Changes: Physical size of C511 and C512 changed Reason: For production purposes Servicing effects: none; you can use the PN listed in Section 8. Revision 11 Changes: C556 has been changed from 18 nF into 15 nF Reason: For production purposes Servicing effects: none; you can use the PN listed in Section 8. 10-1 123 Service Manual Revision 12 Changes: New software version V01.02. No hardware changes. Revision 13 Changes: For the 8M FlashROM D474 one of the following types can be used: • AM29LV800B-120EC • E28F800CV-B70 • HNWT800T • M5M29FB800VP-120 The part number of D474 has not been changed. Revision 14 A new version of the Printed Circuit Board (PCB) is used in the Main PCA. The version of the PCB is the last digit of the 12 digit number on the PCB edge near N501. The new version 12 digit code is 4022 245 0443.8 (version 8). The part number of the Main PCA has not changed. Old and new PCA versions are fully compatible. See Section 9 for the circuit diagrams and the parts location drawings of the old and new version PCB. The following changes have been made: • The 12 V program voltage (+12VPROG from N501 pin 22 to D474 pin 13), and the RESET ROM circuit have been removed. See the Digital Circuit diagram figure 9-4, and the Power Circuit diagram figure 9-6. • A delay circuit for the Rom Write Enable end edge has been added: D480 and related parts between D471 pin 149 (ROMWR) and FlashROM D474 pin 11 (ROMWRITE). The delay is required to make the circuit suitable for FlashROMs that need a large delay between the write data and the write enable end. See the Digital Circuit diagram figure 9-4. • Capacitor C476 was missing in the Digital Circuit diagram, and has been added near C474. • Another shape for the 4041 reference diode is used. The shape was a 2x4 pin DIL mounted on the Main PCA side 2, reference designator V301. The new shape is a transistor shape mounted on the Main PCA side 1, the reference designator becomes V302. The reason is the availability of the diode versions. The PCB layout still has the possibility to mount V301 is place of V302. Note: In some units having PCB version <8, the reference voltage diode can have the transistor shape, and has reference designator V302 then. In this case it is soldered on C312 (see the adjacent figure, and Figure 9-8 location C3), and 10-2 C312 In the Backlight Converter circuit R605 and R606 are added to provide a more reliable start-up of the backlight. See the Power Circuit diagram figure 9-6. V302 • Modifications 10 replaces V301. • A filter circuit has been added in the Slow ADC supply (N532 pin 2, R532-C532), see the Power Circuit diagram figure 9-6 • A PCA version detection circuit has been added, see the Digital Circuit diagram figure 9-4. • A filter circuit for VGARVAL has been added, see the Digital Circuit diagram figure 9-4. The new parts numbers are listed in Table 8-3. 10-3
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : Yes XMP Toolkit : 3.1-702 Create Date : 2000:10:26 14:12:59Z Creator Tool : AdobePS5.dll Version 5.0.1 Modify Date : 2007:04:16 11:14:09-07:00 Metadata Date : 2007:04:16 11:14:09-07:00 Producer : Acrobat Distiller 4.0 for Windows Format : application/pdf Title : Microsoft Word - 0master-97.doc Document ID : uuid:8dc01463-f4d1-4ea6-96fd-0f9abc892c27 Instance ID : uuid:1e1cbdc4-9b66-4f66-89da-c4bbe1ad8710 Page Count : 170 Creator : AdobePS5.dll Version 5.0.1EXIF Metadata provided by EXIF.tools