Fluke 125 Users Manual 0master 97

2015-09-09

: Fluke Fluke-125-Users-Manual-808820 fluke-125-users-manual-808820 fluke pdf

Open the PDF directly: View PDF PDF.
Page Count: 170

DownloadFluke Fluke-125-Users-Manual 0master-97
Open PDF In BrowserView PDF
123

Industrial ScopeMeter

Service Manual

4822 872 05375
August 1997, Rev. 3, 01/00
© 1997 Fluke Corporation. All rights reserved. Printed in the Netherlands
All product names are trademarks of their respective companies.

SERVICE CENTERS
To locate an authorized service center, visit us on the World Wide Web:
http://www.fluke.com
or call Fluke using any of the phone numbers listed below:
+1-888-993-5853 in U.S.A. and Canada
+31-402-678-200 in Europe
+1-425-356-5500 from other countries

Table of Contents

Chapter
1

Title

Safety Instructions ............................................................................. 1-1
1.1 Introduction.................................................................................................
1.2 Safety Precautions.......................................................................................
1.3 Caution and Warning Statements................................................................
1.4 Symbols.......................................................................................................
1.5 Impaired Safety ...........................................................................................
1.6 General Safety Information.........................................................................

2

1-3
1-3
1-3
1-3
1-4
1-4

Characteristics ................................................................................... 2-1
2.1 Introduction.................................................................................................
2.2 Dual Input Oscilloscope..............................................................................
2.2.1 Vertical ................................................................................................
2.2.2 Horizontal ............................................................................................
2.2.3 Trigger .................................................................................................
2.2.4 Advanced Scope Functions..................................................................
2.3 Dual Input Meter .........................................................................................
2.3.1 Input A and Input B .............................................................................
2.3.2 Input A .................................................................................................
2.3.3 Advanced Meter Functions..................................................................
2.4 Miscellaneous .............................................................................................
2.5 Environmental .............................................................................................
2.6 Service and Maintenance ............................................................................
2.7 Safety ..........................................................................................................
2.8 EMC Immunity ...........................................................................................

3

Page

2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-5
2-8
2-8
2-9
2-10
2-11
2-11
2-12

Circuit Descriptions ........................................................................... 3-1
3.1 Introduction.................................................................................................
3.2 Block Diagram ............................................................................................
3.2.1 Channel A, Channel B Measurement Circuits.....................................
3.2.2 Trigger Circuit .....................................................................................
3.2.3 Digital Circuit ......................................................................................
3.2.4 Power Circuit .......................................................................................
3.2.5 Start-up Sequence, Operating Modes ..................................................

3-3
3-3
3-4
3-4
3-5
3-6
3-7

123
Service Manual

3.3 Detailed Circuit Descriptions......................................................................
3.3.1 Power Circuit .......................................................................................
3.3.2 Channel A - Channel B Measurement Circuits ...................................
3.3.3 Trigger Circuit .....................................................................................
3.3.4 Digital Circuit ......................................................................................
4

Performance Verification ................................................................... 4-1
4.1 Introduction.................................................................................................
4.2 Equipment Required For Verification ........................................................
4.3 How To Verify ............................................................................................
4.4 Display and Backlight Test .........................................................................
4.5 Input A and Input B Tests ...........................................................................
4.5.1 Input A and B Base Line Jump Test ....................................................
4.5.2 Input A Trigger Sensitivity Test ..........................................................
4.5.3 Input A Frequency Response Upper Transition Point Test.................
4.5.4 Input A Frequency Measurement Accuracy Test ................................
4.5.5 Input B Frequency Measurement Accuracy Test ................................
4.5.6 Input B Frequency Response Upper Transition Point Test .................
4.5.7 Input B Trigger Sensitivity Test ..........................................................
4.5.8 Input A and B Trigger Level and Trigger Slope Test..........................
4.5.9 Input A and B DC Voltage Accuracy Test ..........................................
4.5.10 Input A and B AC Voltage Accuracy Test ........................................
4.5.11 Input A and B AC Input Coupling Test .............................................
4.5.12 Input A and B Volts Peak Measurements Test..................................
4.5.13 Input A and B Phase Measurements Test ..........................................
4.5.14 Input A and B High Voltage AC/DC Accuracy Test.........................
4.5.15 Resistance Measurements Test..........................................................
4.5.16 Continuity Function Test ...................................................................
4.5.17 Diode Test Function Test ..................................................................
4.5.18 Capacitance Measurements Test .......................................................
4.5.19 Video Trigger Test.............................................................................

5

3-9
3-9
3-15
3-20
3-25

4-3
4-3
4-3
4-4
4-5
4-6
4-7
4-8
4-8
4-9
4-10
4-10
4-11
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-22
4-23

Calibration Adjustment ...................................................................... 5-1
5.1 General ........................................................................................................
5.1.1 Introduction..........................................................................................
5.1.2 Calibration number and date................................................................
5.1.3 General Instructions.............................................................................
5.2 Equipment Required For Calibration..........................................................
5.3 Starting Calibration Adjustment .................................................................
5.4 Contrast Calibration Adjustment ................................................................
5.5 Warming Up & Pre-Calibration ..................................................................
5.6 Final Calibration .........................................................................................
5.6.1 HF Gain Input A&B ............................................................................
5.6.2 Delta T Gain, Trigger Delay Time & Pulse Adjust Input A................
5.6.3 Pulse Adjust Input A (firmware V01.00 only) ....................................
5.6.4 Pulse Adjust Input B............................................................................
5.6.5 Gain DMM (Gain Volt) .......................................................................
5.6.6 Volt Zero..............................................................................................
5.6.7 Zero Ohm (firmware V01.00 only)......................................................
5.6.8 Gain Ohm.............................................................................................
5.6.9 Capacitance Gain Low and High.........................................................
5.6.10 Capacitance Clamp & Zero................................................................
5.6.11 Capacitance Gain ...............................................................................
5.7 Save Calibration Data and Exit...................................................................

5-3
5-3
5-3
5-3
5-4
5-4
5-6
5-7
5-7
5-7
5-9
5-10
5-11
5-11
5-13
5-13
5-14
5-15
5-15
5-16
5-16

Contents (continued)

6

Disassembling the Test Tool ............................................................. 6-1
6.1. Introduction................................................................................................
6.2. Disassembling Procedures .........................................................................
6.1.1 Required Tools ....................................................................................
6.2.2 Removing the Battery Pack .................................................................
6.2.3 Removing the Bail ...............................................................................
6.2.4 Opening the Test Tool .........................................................................
6.2.5 Removing the Main PCA Unit.............................................................
6.2.6 Removing the Display Assembly.........................................................
6.2.7 Removing the Keypad and Keypad Foil..............................................
6.3 Disassembling the Main PCA Unit .............................................................
6.4 Reassembling the Main PCA Unit ..............................................................
6.5 Reassembling the Test Tool........................................................................

7

Corrective Maintenance ..................................................................... 7-1
7.1 Introduction.................................................................................................
7.2 Starting Fault Finding. ................................................................................
7.3 Charger Circuit............................................................................................
7.4 Starting with a Dead Test Tool ...................................................................
7.4.1 Test Tool Completely Dead.................................................................
7.4.2 Test Tool Software Does not Run. ......................................................
7.4.3 Software Runs, Test Tool not Operative .............................................
7.5 Miscellaneous Functions.............................................................................
7.5.1 Display and Back Light .......................................................................
7.5.2 Fly Back Converter..............................................................................
7.5.3 Slow ADC............................................................................................
7.5.4 Keyboard..............................................................................................
7.5.5 Optical Port (Serial RS232 Interface)..................................................
7.5.6 Channel A, Channel B Voltage Measurements ...................................
7.5.7 Channel A Ohms and Capacitance Measurements..............................
7.5.8 Trigger Functions.................................................................................
7.5.9 Reference Voltages..............................................................................
7.5.10 Buzzer Circuit ....................................................................................
7.5.11 Reset ROM Circuit (PCB version <8 only).......................................
7.5.12 RAM Test ..........................................................................................
7.5.13 Power ON/OFF ..................................................................................
7.5.14 PWM Circuit......................................................................................
7.5.15 Randomize Circuit .............................................................................
7.6 Loading Software........................................................................................

8

7-3
7-4
7-4
7-6
7-6
7-7
7-7
7-8
7-8
7-9
7-10
7-11
7-11
7-12
7-13
7-14
7-15
7-15
7-16
7-16
7-16
7-17
7-17
7-17

List of Replaceable Parts................................................................... 8-1
8.1 Introduction.................................................................................................
8.2 How to Obtain Parts....................................................................................
8.3 Final Assembly Parts ..................................................................................
8.4 Main PCA Unit Parts ..................................................................................
8.5 Main PCA Parts ..........................................................................................
8.6 Accessory Replacement Parts .....................................................................
8.7 Service Tools...............................................................................................

9

6-3
6-3
6-3
6-3
6-3
6-3
6-5
6-6
6-6
6-6
6-8
6-8

8-3
8-3
8-4
8-6
8-7
8-24
8-24

Circuit Diagrams................................................................................. 9-1
9.1 Introduction................................................................................................. 9-3
9.2 Schematic Diagrams.................................................................................... 9-4

123
Service Manual

10

Modifications ...................................................................................... 10-1
10.1 Software modifications ............................................................................. 10-1
10.2 Hardware modifications............................................................................ 10-1

List of Tables

Table
2-1.
2-2.
2-3.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
5-1.
5-2.
5-3.
5-4.
7-1.
8-1.
8-2.
8-3.
9-1.
9-2.

Title
No Visible Trace Disturbance ...............................................................................
Trace Disturbance < 10%......................................................................................
Multimeter Disturbance < 1% ...............................................................................
Fluke 123 Main Blocks .........................................................................................
Fluke 123 Operating Modes ..................................................................................
Voltage Ranges And Trace Sensitivity .................................................................
Ohms Ranges, Trace Sensitivity, and Current ......................................................
Capacitance Ranges, Current, and Pulse Width....................................................
D-ASIC PWM Signals...........................................................................................
Input A,B Frequency Measurement Accuracy Test ..............................................
Volts DC Measurement Verification Points .........................................................
Volts AC Measurement Verification Points .........................................................
Input A and B AC Input Coupling Verification Points .........................................
Volts Peak Measurement Verification Points .......................................................
Phase Measurement Verification Points ...............................................................
V DC and V AC High Voltage Verification Tests................................................
Resistance Measurement Verification Points........................................................
Capacitance Measurement Verification Points .....................................................
HF Gain Calibration Points Fast ...........................................................................
HF Gain Calibration Points Slow..........................................................................
Volt Gain Calibration Points <300V.....................................................................
Ohm Gain Calibration Points ................................................................................
Starting Fault Finding............................................................................................
Final Assembly Parts.............................................................................................
Main PCA Unit......................................................................................................
Main PCA..............................................................................................................
Parts Location Main PCA Side 1 ..........................................................................
Parts Location Main PCA Side 2 ..........................................................................

Page
2-12
2-12
2-12
3-3
3-9
3-18
3-18
3-20
3-29
4-9
4-15
4-16
4-17
4-18
4-18
4-20
4-21
4-23
5-8
5-9
5-12
5-14
7-4
8-4
8-6
8-7
9-4
9-5

List of Figures

Figure
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
3-11.
3-12.
3-13.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.
4-12.
4-13.
4-14.
4-15.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.

Title
Fluke 123 Block Diagram......................................................................................
Fluke 123 Start-up Sequence, Operating Modes...................................................
Power Supply Block Diagram ...............................................................................
CHAGATE Control Voltage .................................................................................
Fly-Back Converter Current and Control Voltage ................................................
Fly-Back Converter Block Diagram......................................................................
Back Light Converter Voltages .............................................................................
C-ASIC Block Diagram.........................................................................................
Capacitance Measurement.....................................................................................
T-ASIC Trigger Section Block Diagram...............................................................
Random Repetitive Sampling Mode .....................................................................
Reference Voltage Section ....................................................................................
LCD Control..........................................................................................................
Display Pixel Test Pattern .....................................................................................
Menu item selection ..............................................................................................
Test Tool Input A to 5500A Scope Output 50Ω ...................................................
Test Tool Input B to 5500A Scope Output 50Ω ...................................................
Test Tool Input A-B to 5500A Normal Output .....................................................
Test Tool Input A-B to 5500A Normal Output for >300V ...................................
Test Tool Input A to 5500A Normal Output 4-Wire.............................................
Test Tool Input A to TV Signal Generator ...........................................................
Test Tool Screen for PAL/SECAM line 622 ........................................................
Test Tool Screen for NTSC line 525.....................................................................
Test Tool Screen for PAL/SECAM line 310 ........................................................
Test Tool Screen for NTSC line 262.....................................................................
Test Tool Input A to TV Signal Generator Inverted .............................................
Test Tool Screen for PAL/SECAM line 310 Negative Video ..............................
Test Tool Screen for NTSC line 262 Negative Video ..........................................
Version & Calibration Screen ...............................................................................
Display Test Pattern ..............................................................................................
HF Gain Calibration Input Connections................................................................
5500A Scope Output to Input A............................................................................
5500A Scope Output to Input B ............................................................................
Volt Gain Calibration Input Connections <300V .................................................
Volt Gain Calibration Input Connections 500V....................................................

Page
3-2
3-8
3-9
3-12
3-12
3-13
3-15
3-15
3-19
3-21
3-22
3-24
3-28
4-4
4-6
4-7
4-9
4-11
4-19
4-20
4-23
4-24
4-24
4-25
4-25
4-25
4-26
4-26
5-3
5-6
5-7
5-9
5-11
5-12
5-13

123
Service Manual

5-8.
5-9.
5-10.
6-1.
6-2.
6-3.
6-4.
6-5.
7-1.
7-2.
8-1.
8-2.
9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.
9-8.
9-9.
9-10.

Four-wire Ohms calibration connections ..............................................................
Capacitance Gain Calibration Input Connections .................................................
20 V Supply Cable for Calibration........................................................................
Fluke 123 Main Assembly.....................................................................................
Flex Cable Connectors ..........................................................................................
Main PCA Unit Assembly.....................................................................................
Mounting the display shielding bracket ................................................................
Battery pack installation........................................................................................
Operative Test Tool without Case.........................................................................
20V Supply Cable for Loading Software ..............................................................
Fluke 123 Final Assembly.....................................................................................
Main PCA Unit......................................................................................................
Circuit Diagram 1, Channel A Circuit...................................................................
Circuit Diagram 2, Channel B Circuit...................................................................
Circuit Diagram 3, Trigger Circuit........................................................................
Circuit Diagram 4, Digital Circuit.........................................................................
Circuit Diagram 4 (cont), Digital Circuit Keyboard .............................................
Circuit Diagram 5, Power Circuit..........................................................................
Main PCA side 1 ...................................................................................................
Main PCA side 2 ...................................................................................................
Main PCA side 1, PCB version 8 ..........................................................................
Main PCA side 2, PCB version 8 ..........................................................................

5-14
5-15
5-16
6-4
6-5
6-7
6-9
6-9
7-3
7-17
8-5
8-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16

Chapter 1

Safety Instructions

Title
1.1 Introduction.................................................................................................
1.2 Safety Precautions.......................................................................................
1.3 Caution and Warning Statements................................................................
1.4 Symbols.......................................................................................................
1.5 Impaired Safety ...........................................................................................
1.6 General Safety Information.........................................................................

Page
1-3
1-3
1-3
1-3
1-4
1-4

1-1

Safety Instructions
1.1 Introduction

1

1.1 Introduction
Read these pages carefully before beginning to install and use the instrument.
The following paragraphs contain information, cautions and warnings which must be
followed to ensure safe operation and to keep the instrument in a safe condition.

Warning
Servicing described in this manual is to be done only by
qualified service personnel. To avoid electrical shock, do not
service the instrument unless you are qualified to do so.

1.2 Safety Precautions
For the correct and safe use of this instrument it is essential that both operating and
service personnel follow generally accepted safety procedures in addition to the safety
precautions specified in this manual. Specific warning and caution statements, where
they apply, will be found throughout the manual. Where necessary, the warning and
caution statements and/or symbols are marked on the instrument.

1.3 Caution and Warning Statements
Caution
Used to indicate correct operating or maintenance procedures
to prevent damage to or destruction of the equipment or other
property.

Warning
Calls attention to a potential danger that requires correct
procedures or practices to prevent personal injury.

1.4 Symbols
Read the safety information in the Users
Manual

DOUBLE INSULATION (Protection Class)

Equal potential inputs, connected
internally

Static sensitive components
(black/yellow).

Live voltage

Recycling information

Earth

Disposal information

Conformité Européenne

1-3

123
Service Manual

1.5 Impaired Safety
Whenever it is likely that safety has been impaired, the instrument must be turned off
and disconnected from line power. The matter should then be referred to qualified
technicians. Safety is likely to be impaired if, for example, the instrument fails to
perform the intended measurements or shows visible damage.

1.6 General Safety Information
Warning
Removing the instrument covers or removing parts, except
those to which access can be gained by hand, is likely to
expose live parts and accessible terminals which can be
dangerous to life.
The instrument shall be disconnected from all voltage sources before it is opened.
Capacitors inside the instrument can hold their charge even if the instrument has been
separated from all voltage sources.
Components which are important for the safety of the instrument may only be replaced
by components obtained through your local FLUKE organization. These parts are
indicated with an asterisk (*) in the List of Replaceable Parts, Chapter 8.

1-4

Chapter 2

Characteristics

Title
2.1 Introduction.................................................................................................
2.2 Dual Input Oscilloscope..............................................................................
2.2.1 Vertical ................................................................................................
2.2.2 Horizontal ............................................................................................
2.2.3 Trigger .................................................................................................
2.2.4 Advanced Scope Functions..................................................................
2.3 Dual Input Meter .........................................................................................
2.3.1 Input A and Input B .............................................................................
2.3.2 Input A .................................................................................................
2.3.3 Advanced Meter Functions..................................................................
2.4 Miscellaneous .............................................................................................
2.5 Environmental .............................................................................................
2.6 Service and Maintenance ............................................................................
2.7 Safety ..........................................................................................................
2.8 EMC Immunity ...........................................................................................

Page
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-5
2-8
2-8
2-9
2-10
2-11
2-11
2-12

2-1

Characteristics
2.1 Introduction

2

2.1 Introduction
Performance Characteristics
FLUKE guarantees the properties expressed in numerical values with the stated
tolerance. Specified non-tolerance numerical values indicate those that could be
nominally expected from the mean of a range of identical ScopeMeter test tools.
Environmental Data
The environmental data mentioned in this manual are based on the results of the
manufacturer’s verification procedures.
Safety Characteristics
The test tool has been designed and tested in accordance with Standards ANSI/ISA
S82.01-1994, EN 61010-1 (1993) (IEC 1010-1), CAN/CSA-C22.2 No.1010.1-92
(including approval), UL3111-1 (including approval) Safety Requirements for Electrical
Equipment for Measurement, Control, and Laboratory Use. Use of this equipment in a
manner not specified by the manufacturer may impair protection provided by the
equipment.

2.2 Dual Input Oscilloscope
2.2.1 Vertical
Frequency Response
DC Coupled:
excluding probes and test leads:
with STL120 1:1 shielded test leads:

DC to 20 MHz (-3 dB)
DC to 12.5 MHz (-3 dB)
DC to 20 MHz (-6 dB)

with PM8918 10:1 probe:
(optional accessory)

DC to 20 MHz (-3 dB)

AC Coupled (LF roll off):
excluding probes and test leads
with STL120
with PM8918

<10 Hz (-3 dB)
<10 Hz (-3dB)
<1 Hz (-3 dB)

Rise Time
excluding probes and test leads

<17.5 ns

Input Impedance
excluding probes and test leads
with BB120
with STL120
with PM8918

1 MΩ//12 pF
1 MΩ//20 pF
1 MΩ//225 pF
10 MΩ//15 pF

Sensitivity

5 mV to 500 V/div

Display Modes

A, -A, B, -B

2-3

123
Service Manual

Max. Input Voltage A and B
direct or with test leads
600 Vrms
with BB120
300 Vrms
(For detailed specifications see “2.7 Safety”)
Max. Floating Voltage
from any terminal to ground

600 Vrms, up to 400Hz

Resolution

8 bit

Vertical Accuracy

±(1% + 0.05 range/div)

Max. Vertical Move

±4 divisions

Max. Base Line Jump

After changing time base or sensitivity

Normal & Single mode

±0.04 divisions (= ±1 pixel)

2.2.2 Horizontal
Scope Modes

Normal, Single, Roll

Ranges
Normal:
equivalent sampling
real time sampling

20 ns to 500 ns/div
1 µs to 5 s/div

Single (real time)

1 µs to 5 s/div

Roll (real time)

1s to 60 s/div

Sampling Rate (for both channels simultaneously)
Equivalent sampling (repetitive signals)

up to 1.25 GS/s

Real time sampling:
1 µs to 5 ms/div
10 ms to 5 s/div

25 MS/s
5 MS/s

Time Base Accuracy
Equivalent sampling
Real time sampling

±(0.4% +0.04 time/div)
±(0.1% +0.04 time/div)

Glitch Detection

≥40 ns @ 20 ns to 5 ms/div
≥200 ns @ 10 ms to 60 s/div
Glitch detection is always active.

Horizontal Move

10 divisions
Trigger point can be positioned anywhere
across the screen.

2.2.3 Trigger

2-4

Screen Update

Free Run, On Trigger

Source

A, B, EXT
EXTernal via optically isolated trigger
probe ITP120 (optional accessory)

Characteristics
2.3 Dual Input Meter

2

Sensitivity A and B
@ DC to 5 MHz
@ 25 MHz
@ 40 MHz

0.5 divisions or 5 mV
1.5 divisions
4 divisions

Voltage level error

±0.5 div. max.

Slope

Positive, Negative

Video on A

Interlaced video signals only

Modes
Standards
Polarity
Sensitivity

Lines, Line Select
PAL , NTSC, PAL+, SECAM
Positive, Negative
0.6 divisions sync.

2.2.4 Advanced Scope Functions
Display Modes
Normal
Smooth
Envelope

Captures up to 40 ns glitches and displays analog-like persistence
waveform.
Suppresses noise from a waveform.
Records and displays the minimum and maximum of waveforms
over time.

Auto Set
Continuous fully automatic adjustment of amplitude, time base, trigger levels, trigger
gap, and hold-off. Manual override by user adjustment of amplitude, time base, or
trigger level.

2.3 Dual Input Meter
The accuracy of all measurements is within ± (% of reading + number of counts) from
18 °C to 28 °C.
Add 0.1x (specific accuracy) for each °C below 18 °C or above 28 °C. For voltage
measurements with 10:1 probe, add probe uncertainty +1%.
More than one waveform period must be visible on the screen.

2.3.1 Input A and Input B
DC Voltage (VDC)
Ranges

500 mV, 5V, 50V, 500V, 1250V

Accuracy

±(0.5% +5 counts)

Turnover

±12 counts

Normal Mode Rejection (SMR)

>60 dB @ 50 or 60 Hz ±1%

Common Mode Rejection (CMRR)

>100 dB @ DC
>60 dB @ 50, 60, or 400 Hz

Full Scale Reading

5000 counts

Move influence

±6 counts max.

2-5

123
Service Manual

True RMS Voltages (VAC and VAC+DC)
Ranges

500 mV, 5V, 50V, 500V, 1250V

Accuracy for 5 to 100% of range
DC coupled:
DC to 60 Hz (VAC+DC)
1 Hz to 60 Hz (VAC)
AC or DC coupled:
60 Hz to 20 kHz
20 kHz to 1 MHz
1 MHz to 5 MHz
5 MHz to 12.5 MHz
5 MHz to 20 MHz
AC coupled with 1:1 (shielded) test leads:
60 Hz (6 Hz with 10:1 probe)
50 Hz (5 Hz with 10:1 probe)
33 Hz (3.3 Hz with 10:1 probe)
10 Hz (1 Hz with 10:1 probe)

±(1% +10 counts)
±(1% +10 counts)
±(2.5% +15 counts)
±(5% +20 counts)
±(10% +25 counts)
±(30% +25 counts)
±(30% +25 counts), excluding test leads or
probes
-1.5%
-2%
-5%
-30%

DC Rejection (only VAC)

>50 dB

Common Mode Rejection (CMRR)

>100 dB @ DC
>60 dB @ 50, 60, or 400 Hz

Full Scale Reading

5000 counts
The reading is independent of any signal
crest factor.

Move influence

±6 counts max.

Peak
Modes

Max peak, Min peak, or pk-to-pk

Ranges

500 mV, 5V, 50V, 500V, 1250V

Accuracy:
Max peak or Min peak
Peak-to-Peak
Full Scale Reading

5% of full scale
10% of full scale
500 counts

Frequency (Hz)
Ranges

1Hz, 10Hz, 100Hz, 1 kHz, 10 kHz,
100 kHz,1 MHz, 10 MHz, 40 MHz

Frequency Range for Continuous Autoset

15Hz (1Hz) to 30 MHz

Accuracy:
@1Hz to 1 MHz
@1 MHz to 10 MHz
@10 MHz to 40 MHz
Full Scale Reading

2-6

±(0.5% +2 counts)
±(1.0% +2 counts)
±(2.5% +2 counts)
10 000 counts

Characteristics
2.3 Dual Input Meter

2

Duty Cycle (DUTY)
Range

2% to 98%

Frequency Range for Continuous Autoset

15Hz (1Hz) to 30 MHz

Accuracy:
@1Hz to 1 MHz
@1 MHz to 10 MHz
@10 MHz to 40 MHz
Resolution

±(0.5% +2 counts)
±(1.0% +2 counts)
±(2.5% +2 counts)
0.1%

Pulse Width (PULSE)
Frequency Range for Continuous Autoset

15Hz (1Hz) to 30 MHz

Accuracy:
@1Hz to 1 MHz
@1 MHz to 10 MHz
@10 MHz to 40 MHz
Full Scale reading
Amperes (AMP)

±(0.5% +2 counts)
±(1.0% +2 counts)
±(2.5% +2 counts)
1000 counts
with optional current probe

Ranges

same as VDC, VAC, VAC+DC, or PEAK

Scale Factor

1 mV/A, 10 mV/A, 100 mV/A, and 1 V/A

Accuracy

same as VDC, VAC, VAC+DC, or PEAK
(add current probe uncertainty)

Temperature (TEMP)

with optional temperature probe

Range

200 °C/div (200 °F/div)

Scale Factor

1 mV/°C and 1 mV/°F

Accuracy

as VDC (add temperature probe
uncertainty)

Decibel (dB)
0 dBV

1V

0 dBm (600Ω /50Ω)

1 mW, referenced to 600Ω or 50Ω

dB on

VDC, VAC, or VAC+DC

Full Scale Reading

1000 counts

Crest Factor (CREST)
Range

1 to 10

Accuracy

±(5% +1 count)

Full Scale Reading

100 counts

Phase
Modes

A to B, B to A

Range

0 to 359 degrees

Accuracy

±(1 degree +1 count)

Resolution

1 degree
2-7

123
Service Manual

2.3.2 Input A
Ohm (Ω
Ω)
Ranges

500Ω, 5 kΩ, 50 kΩ, 500 kΩ, 5 MΩ,
30 MΩ

Accuracy

±(0.6% +5 counts)

Full Scale Reading
500Ω to 5 MΩ
30 MΩ

5000 counts
3000 counts

Measurement Current

0.5 mA to 50 nA
decreases with increasing ranges

Open Circuit Voltage

<4V

Continuity (CONT)
Beep

30Ω ± 5Ω in 50Ω range

Measurement Current

0.5 mA

Detection of shorts of

≥1 ms

Diode
Maximum Voltage:
@0.5 mA
@open circuit

>2.8V
<4V

Accuracy

±(2% +5 counts)

Measurement Current

0.5 mA

Polarity

+ on input A, - on COM

Capacitance (CAP)
Ranges

50 nF, 500 nF, 5 µF, 50 µF, 500 µF

Accuracy

±(2% +10 counts)

Full Scale Reading

5000 counts

Measurement Current

5 µA to 0.5 mA, increases with increasing
ranges

Measurement principle

Dual slope integrating measurement with
parasitic serial and parallel resistance
cancellation.

2.3.3 Advanced Meter Functions

2-8

Zero Set

Set actual value to reference

Fast/Normal/Smooth
Meter settling time Fast
Meter settling time Normal
Meter settling time Smooth

1s @ 1µs to 10 ms/div
2s @ 1µs to 10 ms/div
10s @ 1µs to 10 ms/div

Characteristics
2.4 Miscellaneous

Touch Hold (on A)

Captures and freezes a stable measurement
result. Beeps when stable. Touch Hold
works on the main meter reading , with
threshholds of 1 Vpp for AC signals and
100mV for DC signals.

TrendPlot

Graphs meter readings of the Min and
Max values from 15 s/div (120 seconds) to
2 days/div (16 days) with time and date
stamp. Automatic vertical scaling and time
compression.
Displays the actual and Minimum,
Maximum, or average (AVG) reading.

Fixed Decimal Point

Possible by using attenuation keys.

2

2.4 Miscellaneous
Display
Size

72 x 72 mm (2.83 x 2.83 in)

Resolution

240 x 240 pixels

Waveform display:
Vertical
Horizontal

8 divisions of 20 pixels
9.6 divisions of 25 pixels

Backlight

Cold Cathode Fluorescent (CCFL)

Power
External:
Input Voltage
Power
Input Connector
Internal:
Battery Power
Operating Time
Charging Time
Allowable ambient temperature
during charging

via Power Adapter PM8907
10 to 21V DC
5W typical
5 mm jack
Rechargeable Ni-Cd 4.8V
4 hours with bright backlight
5 hours with dimmed backlight
4 hours with test tool off
12 hours with test tool on
12 hours with refresh cycle
0 to 45 °C (32 to 113 °F)

Memory
Number of Screens
Number of User Setups

2
10

Mechanical
Size
Weight

232 x 115 x 50 mm (9.1 x 4.5 x 2 in)
1.1 kg (2.5 lbs), including battery pack.

2-9

123
Service Manual

Interface
To Printer

To PC

RS-232, optically isolated
supports Epson FX, LQ, and HP Deskjet,
Laserjet, and Postscript
Serial via PM9080 (optically isolated
RS232 adapter/cable, optional).
Parallel via PAC91 (optically isolated
print adapter cable, optional).
Dump and load settings and data.
Serial via PM9080 (optically isolated
RS232 adapter/cable, optional), using
SW90W (FlukeView software for
Windows).

2.5 Environmental
Environmental

MIL 28800E, Type 3, Class III, Style B

Temperature
Operating
Storage

0 to 50 °C (32 to 122 °F)
-20 to 60 °C (-4 to 140 °F)

Humidity
Operating:
@0 to 10 °C (32 to 50 °F)
@10 to 30 °C (50 to 86 °F)
@30 to 40 °C (86 to 104 °F)
@40 to 50 °C (104 to 122 °F)
Storage:
@-20 to 60 °C (-4 to 140 °F)

noncondensing
95%
75%
45%
noncondensing

Altitude
Operating

Storage

4.5 km (15 000 feet)
Max. Input and Floating Voltage 600
Vrms up to 2 km, linearly derating to 400
Vrms @ 4.5 km
12 km (40 000 feet)

Vibration

max. 3g

Shock

max. 30g

Fungus Resistance

MIL28800E, Class 3, 3.7.7 & 4.5.6.1

Salt Exposure

MIL28800E, Class 3, 3.7.8.2 & 4.5.6.2.2.
Structural parts meet 48 hours 5% salt
solution test.

Electromagnetic Compatibility (EMC)
Emission

EN 50081-1 (1992): EN55022 and
EN60555-2

Immunity

EN 50082-2(1992): IEC1000-4-2, -3, -4, -5
(see also Section 2.8, Tables 2-1 to 2-3)

Enclosure Protection

2-10

IP51, ref: IEC529

Characteristics
2.6 Service and Maintenance

2

2.6 Service and Maintenance
Calibration Interval

1 Year

2.7 Safety
Designed for measurements on 600 Vrms Category III Installations, Pollution Degree 2,
per:
• ANSI/ISA S82.01-1994
• EN61010-1 (1993) (IEC1010-1)
• CAN/CSA-C22.2 No.1010.1-92 (including approval)
• UL3111-1 (including approval)
Max. Input Voltage Input A and B
Direct on input or with leads

600 Vrms. For derating see Figure 2-1.

With Banana-to-BNC Adapter BB120

300V rms. For derating see Figure 2-1.

Max. Floating Voltage
from any terminal to ground

600 Vrms up to 400Hz

ST8112.CGM

Figure 2-1. Maximum Input Voltage vs Frequency

2-11

123
Service Manual

2.8 EMC Immunity
The Fluke 123, including standard accessories, conforms with the EEC directive 89/336
for EMC immunity, as defined by IEC1000-4-3, with the addition of tables 2-1 to 2-3.
Trace Disturbance with STL120

See Table 2-1 and Table 2-2.

Table 2-1. No Visible Trace Disturbance
No visible disturbance
Frequency range 10 kHz to 27 MHz
Frequency range 27 MHz to 1 GHz

E= 3 V/m

E= 10 V/m

50 mV/div to 500 V/div
50 mV/div to 500 V/div

500 mV/div to 500 V/div
50 mV/div to 500 V/div

Table 2-2. Trace Disturbance < 10%
Disturbance less than 10% of full scale
Frequency range 10 kHz to 27 MHz
Frequency range 2 MHz to 1 GHz

E= 3 V/m

E= 10 V/m

10 mV/div to 20 mV/div
5 mV/div to 20 mV/div

50 mV/div to 200 mV/div
-

(-): no visible disturbance
Test tool ranges not specified in Table 2-1 and Table 2-2 may have a disturbance of more than 10% of full
scale.

Multimeter disturbance

See Table 2-3.

•

VDC, VAC, and VAC+DC with STL 120 and short ground lead

•

OHM, CONT, DIODE, and CAP with STL120 and black test lead to COM
Table 2-3. Multimeter Disturbance < 1%

Disturbance less than 1% of full scale
Frequency range 10 kHz to 27 MHz
VDC, VAC, VAC+DC
OHM, CONT, DIODE
CAP
Frequency range 27 MHz to 1 GHz
VDC, VAC, VAC+DC
OHM, CONT, DIODE
CAP

E= 3 V/m

E= 10 V/m

500 mV to 1250V
500Ω to 30 MΩ
50 nF to 500 µF

500 mV to 1250V
500Ω to 30 MΩ
50 nF to 500 µF

500 mV to 1250V
500Ω to 30 MΩ
50 nF to 500 µF

500 mV to 1250V
500Ω to 30 MΩ
50 nF to 500 µF

Test tool ranges not specified in Table 2-3 may have a disturbance of more than 10% of full scale.

2-12

Chapter 3

Circuit Descriptions

Title
3.1 Introduction.................................................................................................
3.2 Block Diagram ............................................................................................
3.2.1 Channel A, Channel B Measurement Circuits.....................................
3.2.2 Trigger Circuit .....................................................................................
3.2.3 Digital Circuit ......................................................................................
3.2.4 Power Circuit .......................................................................................
3.2.5 Start-up Sequence, Operating Modes ..................................................
3.3 Detailed Circuit Descriptions......................................................................
3.3.1 Power Circuit .......................................................................................
3.3.2 Channel A - Channel B Measurement Circuits ...................................
3.3.3 Trigger Circuit .....................................................................................
3.3.4 Digital Circuit ......................................................................................

Page
3-3
3-3
3-4
3-4
3-5
3-6
3-7
3-9
3-9
3-15
3-20
3-25

3-1

123
Service Manual

ST7965.EPS

Figure 3-1. Fluke 123 Block Diagram

3-2

Circuit Descriptions
3.1 Introduction

3

3.1 Introduction
Section 3.2 describes the functional block diagram shown in Figure 3-1. It provides a
quick way to get familiar with the test tool basic build-up.
Section 3.3 describes the principle of operation of the test tool functions in detail, on the
basis of the circuit diagrams shown in Figures 9-1 to 9-5.
For all measurements, input signals are applied to the shielded input banana jackets.
Traces and readings are derived from the same input signal samples. So readings are
related to the displayed readings.

3.2 Block Diagram
In the overall block diagram Figure 3-1, the test tool is divided in five main blocks. Each
block represents a functional part, build up around an Application Specific Integrated
Circuit (ASIC). A detailed circuit diagram of each block is shown in Section 9.
See Table 3-1. for an overview of the blocks in which the test tool is broken down, the
main block function, the ASIC name, and the applicable circuit diagram.
Table 3-1. Fluke 123 Main Blocks
Block

Main Functions

ASIC

Circuit
Diagram

CHANNEL A

Input A signal (V-Ω-F) conditioning

C(hannel)-ASIC OQ0258

Figure 9-1

CHANNEL B

Input B signal (V) conditioning

C(hannel)-ASIC OQ0258

Figure 9-2

TRIGGER

Trigger selection and conditioning

T(rigger)-ASIC OQ0257

Figure 9-3

D(igital)-ASIC MOT0002

Figure 9-4

P(ower)-ASIC OQ0256

Figure 9-5

Current source for resistance, capacitance,
continuity, and diode measurements
AC/DC input coupling and Ω/F relay control
Voltage reference source
DIGITAL

Analog to Digital Conversion
Acquisition of ADC samples
Micro controller (µP-ROM-RAM)
Keyboard- and LCD control

POWER

Power supply, battery charger
LCD back light voltage converter
Optical interface input

All circuits, except the LCD unit and the KEYBOARD, are located on one Printed
Circuit Board (PCB), called the MAIN PCB.
The ASIC’s are referred to as C-ASIC (Channel ASIC), T-ASIC (Trigger ASIC), P-ASIC
(Power ASIC), and D-ASIC (Digital ASIC).

3-3

123
Service Manual

3.2.1 Channel A, Channel B Measurement Circuits
The Channel A and Channel B circuit are similar. The only difference is that Channel A
can do all measurements, whereas Channel B does not provide resistance, diode, and
capacitance measurements.
Volts, and derived measurements (e.g. current with optional probe)
The input voltage is supplied to the C-ASIC, via the LF and HF path. The C-ASIC
converts (attenuates, amplifies) the input signal to a normalized output voltage ADCA/ADC-B, which is supplied to the Analog to Digital Converters (ADC-A and ADC-B)
on the DIGITAL part. The D-ASIC acquires the digital samples to build the trace, and to
calculate readings. For the HF and LF attenuation section of the C-ASIC some external
components are required: the HF DECade ATTenuator and LF DECade ATTenuator
section.
Resistance, continuity, and diode measurements (Input A only)
The T-ASIC supplies a current via the Ω/F relays to the unknown resistance Rx,
connected to the Input A and the COM input jacket. The voltage drop across Rx is
measured as for voltage measurements.
Capacitance measurements (Input A only)
The T-ASIC supplies a current via the Ω/F relays to the unknown capacitance Cx,
connected to the Input A and the COM input jacket. Cx is charged and discharged by
this current. The C-ASIC converts the charging time and the discharging time into a
pulse width signal. This signal is supplied to the T-ASIC via the C-ASIC trigger output
TRIG-A. The T-ASIC shapes and levels the signal, and supplies the resulting pulse
width signal ALLTRIG to the D-ASIC. The D-ASIC counts the pulse width and
calculates the capacitance reading.
When the capacitance function is selected no other measurement or wave form display is
possible. There is only a numeric readout of the capacitance value.
Frequency, pulse width, and duty cycle measurements
The input voltage is measured as described above. From the ADC samples to built the
trace, also the frequency, pulse width, and duty cycle of the input signal are calculated.
Miscellaneous
Control of the C-ASIC, e.g. selecting the attenuation factor, is done by the D-ASIC via
the SDAT and SCLK serial communication lines.
An offset compensation voltage and a trace position control voltage are provided by the
D-ASIC via the APWM bus.
The C-ASIC’s also provide conditioned input voltages on the TRIG-A/TRIG-B line.
These voltages can be selected as trigger source by the T-ASIC.

3.2.2 Trigger Circuit
The T ASIC selects one of the possible trigger sources TRIG-A (Input A) or TRIG-B
(Input B). For TV triggering the selected trigger source signal is processed via the
Sync(hronization) Pulse Separator circuit (TVOUT-TVSYNC lines). Two adjustable
trigger levels are supplied by the D-ASIC via the PWM FILTERS (TRIGLEV1 and
TRIGLEV2 line). Depending on the selected trigger conditions (- source, - level, - edge,
- mode), the T-ASIC generates the final trigger signal TRIGDT, which is supplied to the
D-ASIC.
3-4

Circuit Descriptions
3.2 Block Diagram

3

Note
External triggers, supplied via the optical interface RXDA line, are
buffered by the P-ASIC, and then supplied to the D-ASIC (RXD signal).
The TRIG-A input is also used for capacitance measurements, as described in
Section 3.2.1.
The T-ASIC includes a constant current source for resistance and capacitance
measurements. The current is supplied via the GENOUT output and the Ω/F relays to
the unknown resistance Rx or capacitance Cx connected to Input A. The SENSE signal
senses the voltage across Cx and controls a CLAMP circuit in the T-ASIC. This circuit
limits the voltage on Input A at capacitance measurements. The protection circuit
prevents the T-ASIC from being damaged by voltages supplied to the input during
resistance or capacitance measurements.
For probe adjustment, a voltage generator circuit in the T-ASIC can provide a square
wave voltage via the GENOUT output to the Input A connector.
The T-ASIC contains opamps to derive reference voltages from a 1.23V reference
source. The gain factors for these opamps are determined by resistors in the REF GAIN
circuit. The reference voltages are supplied to various circuits.
The T-ASIC also controls the Channel A and B AC/DC input coupling relays, and the
Ω/F relays.
Control data for the T-ASIC are provided by the D-ASIC via the SDAT and SCLK serial
communication lines.

3.2.3 Digital Circuit
The D-ASIC includes a micro processor, ADC sample acquisition logic, trigger
processing logic, display and keyboard control logic, I/O ports, and various other logic
circuits.
The instrument software is stored in the FlashROM, the RAM is used for temporary data
storage. The RESET ROM circuit controls the operating mode of the FlashROM (reset,
programmable, operational).
For Voltage and Resistance measurements, the conditioned Input A/ Input B voltages are
supplied to the ADC-A and ADC-B ADC. The voltages are sampled, and digitized by
the ADC’s. The output data of the ADC’s are acquired and processed by the D-ASIC.
For capacitance measurements, the ALLTRIG signal generated by the T-ASIC, is used.
The D-ASIC counts the ALLTRIG signal pulse width, which is proportional to the
unknown capacitance.
The DPWM-BUS (Digital Pulse Width Modulation) supplies square wave signals with a
variable duty cycle to the PWM FILTERS circuit (RC filters). The outgoing APWMBUS (Analog PWM) provides analog signals of which the amplitude is controlled by the
D-ASIC. These voltages are used to control e.g. the trace positions (C-ASIC), the trigger
levels (T-ASIC), and the battery charge current (P-ASIC).
In random sampling mode (time base faster than 1 µs/div.), a trace is built-up from
several acquisition cycles. During each acquisition, a number of trace samples are
placed as pixels in the LCD. The RANDOMIZE circuit takes care that the starting
moment of each acquisition cycle (trigger release signal HOLDOFF goes low) is random.
This prevents that at each next acquisition the trace is sampled at the same time
positions, and that the displayed trace misses samples at some places on the LCD.
The D-ASIC supplies control data and display data to the LCD module. The LCD
module is connected to the main board via connector X453. It consists of the LCD, LCD
3-5

123
Service Manual

drivers, and a fluorescent back light lamp. As the module is not repairable, no detailed
description and diagrams are provided. The back light supply voltage is generated by the
back light converter on the POWER part.
The keys of the keyboard are arranged in a matrix. The D-ASIC drives the rows and
scans the matrix. The contact pads on the keyboard foil are connected to the main board
via connector X452. The ON-OFF key is not included in the matrix, but is sensed by a
logic circuit in the D-ASIC, that is active even when the test tool is turned off.
Via the PROBE-A and PROBE-B lines, connected to the Input A and Input B banana
shielding, the D-ASIC can detect if a probe is connected. This function is not supported
by the Fluke 123 software.
The D-ASIC sends commands to the C-ASICs and T-ASIC via the SCLK and SDAT
serial control lines, e.g. to select the required trigger source.
Various I/O lines are provided, e.g. to control the BUZZER and the Slow-ADC (via the
SADC bus.

3.2.4 Power Circuit
The test tool can be powered via the power adapter, or by the battery pack.
If the power adapter is connected, it powers the test tool and charges the battery via the
CHARGER-CONVERTER circuit. The battery charge current is sensed by sense
resistor Rs (signal IBAT). It is controlled by changing the output current of the
CHARGER-CONVERTER (control signal CHAGATE).
If no power adapter is connected, the battery pack supplies the VBAT voltage. The
VBAT voltage powers the P-ASIC, and is also supplied to the FLY BACK
CONVERTER (switched mode power supply).
If the test tool is turned on, the FLY BACK CONVERTER generates supply voltages for
various test tool circuits.
The +3V3GAR supply voltage powers the D-ASIC, RAM and ROM. If the test tool is
turned off, the battery supplies the +3V3GAR voltage via transistor V569. This
transistor is controlled by the P-ASIC. So when the test tool is turned off, the D-ASIC
can still control the battery charging process (CHARCURR signal), the real time clock,
the on/off key, and the serial RS232 interface (to turn the test tool on).
To monitor and control the battery charging process, the P-ASIC senses and buffers
various battery signals, as e.g. temperature (TEMP), voltage (BATVOLT), current
(IBAT).
Via the SLOW ADC various analog signals can be measured by the D-ASIC. Involved
signals are: battery voltage (BATVOLT), battery type (IDENT), battery temperature
(TEMP), battery current (BATCUR) LCD temperature (LCDTEMP, from LCD unit),
and 3 test output pins of the C-ASIC’s, and the T-ASIC (DACTEST). The signals are
used for control and test purposes.
The BACK LIGHT CONVERTER generates the 400V ! supply voltage for the LCD
fluorescent back light lamp. If the lamp is defective a 1.5 kV voltage can be present for
0.2 second maximum. The brightness is controlled by the BACKBRIG signal supplied
by the D-ASIC.
Serial communication with a PC or printer is possible via the RS232 optically isolated
interface. This interface is also used for external trigger input using the Isolated Trigger
Probe. The P-ASIC buffers the received data line (RXDA) and supplies the buffered
data (RXD) to the D-ASIC. The transmit data line TXD is directly connected to the DASIC.

3-6

Circuit Descriptions
3.2 Block Diagram

3

A linear regulator in the P-ASIC derives a +12V voltage from the power adapter voltage.
The +12V is used as programming voltage for the Flash EPROM on the Digital part.

3.2.5 Start-up Sequence, Operating Modes
The test tool sequences through the following steps when power is applied (see also
Figure 3-2):
1. The P-ASIC is directly powered by the battery or power adapter voltage VBAT.
Initially the Fly Back Converter is off, and the D-ASIC is powered by VBAT via
transistor V569 (+3V3GAR).
If the voltage +3V3GAR is below 3.05V, the P-ASIC keeps its output signal
VGARVAL (supplied to the D-ASIC) low, and the D-ASIC will not start up. The
test tool is not working, and is in the Idle mode.
2. If the voltage +3V3GAR is above 3.05V, the P-ASIC makes the line VGARVAL
high, and the D-ASIC will start up. The test tool is operative now. If it is powered
by batteries only, and not turned on, it is in the Off mode. In this mode the DASIC is active: the real time clock runs, and the ON/OFF key is monitored to see if
the test tool will be turned on.
3. If the power adapter is connected (P-ASIC output MAINVAL high), and/or the
test tool is turned on, the embedded D-ASIC program, called mask software, starts
up. The mask software checks if valid instrument software is present in the Flash
ROM’s. If not, the test tool does not start up and the mask software continues
running until the test tool is turned off, or the power is removed. This is called the
Mask active mode. The mask active mode can also be entered by pressing the ^ and
> key when turning on the test tool.

If valid instrument software is present, one of the following modes will become
active:
Charge mode
The Charge mode is entered when the test tool is powered by the power adapter,
and is turned off. The FLY-BACK CONVERTER is off. The CHARGERCONVERTER charges the batteries (if installed).
Operational & Charge mode
The Operational & Charge mode is entered when the test tool is powered by the
power adapter, and is turned on. The FLY-BACK CONVERTER is on, the
CHARGER-CONVERTER supplies the primary current. If batteries are installed,
they will be charged. In this mode a battery refresh (see below) can be done.
Operational mode
The Operational mode is entered when the test tool is powered by batteries only,
and is turned on. The FLY-BACK CONVERTER is on, the batteries supply the
primary current. If the battery voltage (VBAT) drops below 4V when starting up the
fly back converter, the Off mode is entered.

3-7

123
Service Manual

Battery Refresh
In the following situations the batteries will need a deep discharge-full charge cycle,
called a “refresh”:
•

every 50 not-full discharge/charge cycles, or each 6 months. This prevents
battery capacity loss due to the memory effect.

•

after the battery has been removed, as the test tool does not know the battery
status then.

The user will be prompted for this action when he turns the test tool on, directly
following the start up screen. A refresh cycle takes 16 hours maximum, depending
on the battery status. It can be started via the keyboard (USER OPTIONS, F1,
activate refresh) if the test tool is on, and the power adapter is connected. During a
refresh, first the battery is completely charged, then it is completely discharged (the
test tool is powered by the battery only, and the power adapter must be connected!),
and then it is completely charged again.
VGARVAL=L

Idle mode

VGARVAL=H

Off mode
TURN ON or
MAINVAL=H
Flash ROM
NOT OK

Mask StartUp

OR
&

Flash ROM OK

Extern StartUp
Software
TURN ON & BATTVOLT > 4 & MAINVAL=L

Mask Active
mode

TURN OFF

& TURN ON

MAINVAL=L & (TURN OFF or BATTVOLT<4V)

TURN OFF&MAINVAL=H

TURN ON & MAINVAL=H

Operational
Mode

MAINVAL=H

MAINVAL=L

BATTVOLT < 4V
or
AutoShutDown
or
TURN OFF

Operational &
Charge Mode

TURN OFF

Charge Mode

TURN ON
MAINVAL=L

Battery refresh

Figure 3-2. Fluke 123 Start-up Sequence, Operating Modes

Table 3-2 shows an overview of the test tool operating modes.
3-8

Circuit Descriptions
3.3 Detailed Circuit Descriptions

3

Table 3-2. Fluke 123 Operating Modes
Mode

Conditions

Remark

Idle mode

No power adapter and no battery

no activity

Off mode

No power adapter connected, battery
installed, test tool off

P-ASIC & D-ASIC powered
(VBAT & +3V3GAR).

Mask active mode

No valid instrument software, or ^ and > key
pressed when turning on

Mask software runs

Charge mode

Power adapter connected and test tool off

Batteries will be charged

Operational &
Charge mode

Power adapter connected and test tool on

Test tool operational, and
batteries will be charged

Operational mode

No power adapter connected, battery
installed, and test tool on

Test tool operational, powered
by batteries

3.3 Detailed Circuit Descriptions
3.3.1 Power Circuit
The description below refers to circuit diagram Figure 9-5.
Power Sources , Operating Modes
Figure 3-3 shows a simplified diagram of the power supply and battery charger circuit.
SUPPLY
FLY BACK
CONVERTER
VBAT

FROM POWER
ADAPTER

CHARGER/CONVERTER
V506

R503

VBATSUP
R513 VBATHIGH

C503
R512
R504
R506
R507

R514
R502

C502

60

69

66
64 VGARVAL

L501

R501
V503

+3V3GAR

V569

R516

7

VBATT

3

TEMP

5

TEMPHI

4

IBATP

9

CHAGATE

16

CHASENSN

14

CHASENSP

15

IIMAXCHA

6

VCHDRIVE

19

VADALOW

8

VADAPTER

20

Vref
78 BATVOLT
Amplify
Level shift

79 BATTEMP

77 BATCUR

80 CHARCURR

CONTROL

COSC
43

100kHz

C553

12
linear regulator

V565
V566

MAINVAL

18 P7VCHA
C507

linear regulator

22 +12V

POWER ASIC
Figure 3-3. Power Supply Block Diagram

3-9

123
Service Manual

As described in Section 3.2.5, the test tool operating mode depends on the connected
power source.
The voltage VBAT is supplied either by the power adapter via V506/L501, or by the
battery pack. It powers a part of the P-ASIC via R503 to pin 60 (VBATSUP). If the test
tool is off, the Fly Back Converter is off, and VBAT powers the D-ASIC via transistor
V569 (+3V3GAR). This +3V3GAR voltage is controlled and sensed by the P-ASIC. If it
is NOT OK (<3.05V), the output VGARVAL (pin 64) is low. The VGARVAL line is
connected to the D-ASIC, and if the line is low, the D-ASIC is inactive: the test tool is in
the Idle mode. A low VGARVAL line operates as a reset for the D-ASIC.
If VGARVAL is high (+3V3GAR > 3.05V), the D-ASIC becomes active, and the Off
mode is entered. The D-ASIC monitors the P-ASIC output pin 12 MAINVAL, and the
test tool ON/OFF status. By pressing the ON/OFF key, a bit in the D-ASIC, indicating
the test tool ON/OFF status is toggled. If neither a correct power adapter voltage is
supplied (MAINVAL is low), or the test tool is turned on, the Off mode will be
maintained.
If a correct power adapter voltage is supplied (MAINVAL high), or if the test tool is
turned on, the mask software starts up. The mask software checks if valid instrument
software is present. If not, e.g. no instrument firmware is loaded, the mask software will
keep running, and the test tool is not operative: the test tool is in the Mask active state.
For test purposes the mask active mode can also be entered by pressing the ^ and > key
when the test tool is turned on.
If valid software is present, one of the three modes Operational, Operational &
Charge or Charge will become active. The Charger/Converter circuit is active in the
Operational & Charge and in the Charge mode. The Fly back converter is active in the
Operational and in the Operational & Charge mode.
Charger/Converter (See Also Figure 3-3.)
The power adapter powers the Charge Control circuit in the P-ASIC via an internal linear
regulator. The power adapter voltage is applied to R501. The Charger/Converter circuit
controls the battery charge current. If a charged battery pack is installed, VBAT is
approximately +4.8V. If no battery pack is installed, VBAT is approximately +15V.
The voltage VBAT is supplied to the battery pack, to the P-ASIC, to the Fly Back
Converter, and to transistor V569. The FET control signal CHAGATE is a 100 kHz
square wave voltage with a variable duty cycle , supplied by the P-ASIC Control circuit.
The duty cycle determines the amount of energy loaded into L501/C503. By controlling
the voltage VBAT, the battery charge current can be controlled. The various test tool
circuits are supplied by the Fly Back Converter, and/or V569.
Required power adapter voltage
The P-ASIC supplies a current to reference resistor R516 (VADALOW pin 8). It
compares the voltage on R516 to the power adapter voltage VADAPTER on pin 20
(supplied via R502, and attenuated in the P-ASIC). If the power adapter voltage is below
10V, the P-ASIC output pin 12, and the line MAINVAL, are low. This signal on pin 12
is also supplied to the P-ASIC internal control circuit, which then makes the CHAGATE
signal high. As a result FET V506 becomes non-conductive, and the Charger/Converter
is off.
Battery charge current control
The actual charge current is sensed via resistors R504-R506-507, and filter R509-C509,
on pin 9 of the P-ASIC (IBATP). The sense voltage is supplied to the control circuit.
The required charge current information is supplied by the D-ASIC via the CHARCUR
3-10

Circuit Descriptions
3.3 Detailed Circuit Descriptions

3

line and filter R534-C534 to pin 80. A control loop in the control circuit adjusts the
actual charge current to the required value.
The filtered CHARCUR voltage range on pin 80 is 0... 2.7V for a charge current from
0.5A to zero. A voltage of 0V complies to 0.5A (fast charge), 1.5V to 0.2A (top off
charge), 2.3V to 0.06A (trickle charge), and 2.7V to 0A (no charge). If the voltage is > 3
Volt, the charger converter is off (V506 permanently non-conductive).
The D-ASIC derives the required charge current value from the battery voltage VBAT.
The P-ASIC converts this voltage to an appropriate level and supplies it to output pin 78
(BATVOLT). The D-ASIC measures this voltage via the Slow ADC. The momentary
value, and the voltage change as a function of time (-dV/dt), are used as control
parameters.
Charging process
If the battery voltage drops below 5.2V, and the battery temperature is between 10 and
45°C, the charge current is set to 0.5A (fast charge). From the battery voltage change dV/dt the D-ASIC can see when the battery is fully charged, and stop fast charge.
Additionally a timer in the D-ASIC limits the fast charge time to 6 hours. After fast
charge, a 0.2A top off charge current is supplied for 2 hours. Then a 0.06A trickle
charge current is applied for 48 hours maximum. If the battery temperature becomes
higher than 50°C, the charge current is set to zero
Battery temperature monitoring
The P-ASIC supplies a current to a NTC resistor in the battery pack (TEMP pin 5). It
conditions the voltage on pin 5 and supplies it to output pin 79 BATTEMP. The D-ASIC
measures this voltage via the slow ADC. It uses the BATTEMP voltage to decide if fast
charge is allowed (10-45°C), or no charge is allowed at all (<10°C, >50°C).
Additionally the temperature is monitored by the P-ASIC. The P-ASIC supplies a
current to reference resistor R512 (TEMPHI pin 4), and compares the resulting TEMPHI
voltage to the voltage on pin 5 (TEMP). If the battery temperature is too high, the PASIC Control circuit will set the charge current to zero, in case the D-ASIC fails to do
this.
If the battery temperature monitoring system fails, a bimetal switch in the battery pack
interrupts the battery current if the temperature becomes higher then 70 °C
Maximum VBAT
The P-ASIC supplies a current to reference resistor R513 (VBATHIGH pin 7). It
compares the voltage on R513 to the battery voltage VBAT on pin 3 (after being
attenuated in the P-ASIC). The P-ASIC limits the voltage VBAT to 7.4V via its internal
Control circuit. This situation arises in case no battery or a defective battery (open) is
present.
Charger/Converter input current
This input current is sensed by R501. The P-ASIC supplies a reference current to R514.
The P-ASIC compares the voltage drop on R501 (CHASENSP-CHASENSN pin 14 and
15) to the voltage on R514 (IMAXCHA pin 6). It limits the input current (e.g. when
loading C503 and C555 just after connecting the power adapter) via its internal Control
circuit.

3-11

123
Service Manual

CHAGATE control signal
To make the FET conductive its Vgs (gate-source voltage) must be negative. For that
purpose, the CHAGATE voltage must be negative with respect to VCHDRIVE. The
P-ASIC voltage VCHDRIVE also limits the swing of the CHAGATE signal to 13V.
VCHDRIVE

V506 “OFF”

VCHDRIVE -13V

V506 “ON”
10 µs

Figure 3-4. CHAGATE Control Voltage

+3V3GAR Voltage
When the test tool is not turned on, the Fly Back Converter does not run. In this
situation, the +3V3GAR voltage for the D-ASIC, the FlashROM, and the RAM is
supplied via transistor V569. The voltage is controlled by the VGARDRV signal
supplied by the P-ASIC (pin 69). The current sense voltage across R580 is supplied to
pin 70 (VGARCURR). The voltage +3V3GAR is sensed on pin 66 for regulation. The
internal regulator in the P-ASIC regulates the +3V3GAR voltage, and limits the current.
Fly Back Converter
When the test tool is turned on, the D-ASIC makes the PWRONOFF line (P-ASIC pin
62) high. Then the self oscillating Fly Back Converter becomes active. It is started up
by the internal 100 kHz oscillator that is also used for the Charger/Converter circuit.
First the FLYGATE signal turns FET V554 on (see Figure 3-5), and an increasing
current flows in the primary transformer winding to ground, via sense resistor R551. If
the voltage FLYSENSP across this resistor exceeds a certain value, the P-ASIC turns
FET V554 off. Then a decreasing current flows in the secondary windings to ground. If
the windings are “empty” (all energy transferred), the voltage VCOIL sensed by the PASIC (pin 52) is zero, and the FLYGATE signal will turn FET V554 on again.

Primary current
Secondary current

V554 “ON”
FLYGATE SIGNAL

V554 “OFF”

Figure 3-5. Fly-Back Converter Current and Control Voltage

The output voltage is regulated by feeding back a part of the +3V3A output voltage via
R552-R553-R554 to pin 54 (VSENS). This voltage is referred to a 1.23V reference
voltage. Any deviation of the +3V3A voltage from the required 3.3V changes the
current level at which current FET V554 will be switched off. If the output voltage
increases, the current level at which V554 is switched off will become lower, and less
energy is transferred to the secondary winding. As a result the output voltage will
become lower.
An internal current source supplies a current to R559. The resulting voltage is a
reference for the maximum allowable primary current (IMAXFLY). The voltage across
3-12

Circuit Descriptions
3.3 Detailed Circuit Descriptions

3

the sense resistor (FLYSENSP) is compared to the IMAXFLY voltage. If the current
exceeds the set limit, FET V554 will be turned off.
Another internal current source supplies a current to R558. This resulting voltage is a
reference for the maximum allowable output voltage (VOUTHI). The -3V3A output
voltage (M3V3A) is attenuated and level shifted in the P-ASIC, and then compared to
the VOUTHI voltage. If the -3V3A voltage exceeds the set limit, FET V554 will be
turned off.
The FREQPS control signal is converted to appropriate voltage levels for the FET switch
V554 by the BOOST circuit. The voltage VBAT supplies the BOOST circuit power via
V553 and R561. The FREQPS signal is also supplied to the D-ASIC, in order to detect
if the Fly Back converter is running well.
V551 and C552 limit the voltage on the primary winding of T552 when the FET V554 is
turned of. The signal SNUB increases the FLYGATE high level to decreases ONresistance of V554 (less power dissipation in V554).
VBAT

+5VA
V561

V553

+3V3A

T552
V562

R561
FLYBOOST

SNUB

-3V3A

C552

C551

V551

V563
-30VD

48

47

49

FLYGATE

V554

63

FREQPS

R551

55

FLYSENSP

57

IMAXFLY

52

VCOIL

58

-3V3A

51

VOUTHI

54

VSENS

62

PWRONOFF

72

REFP (1.23V)

V564

BOOST

CONTROL
COSC
C553

43

R559

R570

R558

R552
R554

R553

POWER ASIC
Figure 3-6. Fly-Back Converter Block Diagram

Slow ADC
The Slow ADC enables the D-ASIC to measure the following signals:
BATCUR, BATVOLT, BATTEMP, BATIDENT (Battery current, - voltage, temperature, - type ), DACTEST-A, DACTEST-B, and DACTEST-T (test output of the
C-ASIC’s and the T-ASIC).
De-multiplexer D531 supplies one of these signals to its output, and to the input of
comparator N531 TP536). The D-ASIC supplies the selection control signals
SELMUX0-2. The Slow ADC works according to the successive approximation
principle. The D-ASIC changes the SADCLEV signal level, and thus the voltage level
on pin 3 of the comparator step wise, by changing the duty cycle of the PWM signal
SADCLEVD. The comparator output SLOWADC is monitored by the D-ASIC, who
3-13

123
Service Manual

knows now if the previous input voltage step caused the comparator output to switch. By
increasing the voltage steps, the voltage level can be approximated within the smallest
possible step of the SADCLEV voltage. From its set SADCLEVD duty cycle, the DASIC knows voltage level of the selected input.
RS232
The optical interface is used for two purposes:
•

enable serial communication (RS232) between the test tool and a PC or printer

•

enable external triggering using the Isolated Trigger Probe ITP120

The received data line RXDA (P-ASIC pin 75) is connected to ground via a 20 kΩ
resistor in the P-ASIC.
If no light is received by the light sensitive diode H522, the RXDA line is +200 mV,
which corresponds to a “1” (+3V) on the RXD (P-ASIC output pin 76) line.
If light is received, the light sensitive diode will conduct, and the RXDA line goes low
(0...-0.6V), which corresponds to a “0” on the RXD line.
The level on the RXDA line is compared by a comparator in the P-ASIC to a 100 mV
level. The comparator output is the RXD line, which is supplied to the D-ASIC for
communication, and for external triggering.
The D-ASIC controls the transmit data line TXD. If the line is low, diode H521 will
emit light.
The supply voltage for the optical interface receive circuit (RXDA), is the +3V3SADC
voltage. The +3V3SADC voltage is present if the test tool is turned on, or if the Power
Adapter is connected (or both). So if the Power Adapter is present, serial
communication is always possible, even when the test tool is off.
Backlight Converter
The LCD back light is provided by a ∅2.4 mm fluorescent lamp in LCD unit. The back
light converter generates the 300-400 Vpp ! supply voltage. The circuit consist of:
•

A pulse width modulated (PWM) buck regulator to generate a variable, regulated
voltage (V600, V602, L600, C602).

•

A zero voltage switched (ZVS) resonant push-pull converter to transform the
variable, regulated voltage into a high voltage AC output (V601, T600).

The PWM buck regulator consists of FET V600, V602, L600, C602, and a control circuit
in N600. FET V600 is turned on and off by a square wave voltage on the COUT output
of N600 pin 14). By changing the duty cycle of this signal, the output on C602 provides
a variable, regulated voltage. The turn on edge of the COUT signal is synchronized with
each zero detect.
Outputs AOUT and BOUT of N600 provide complementary drive signals for the pushpull FETs V601a/b (dual FET). If V601a conducts, the circuit consisting of the primary
winding of transformer T600 and C608, will start oscillating at its resonance frequency.
After half a cycle, a zero voltage is detected on pin 9 (ZD) of N600, V601a will be
turned off, and V601b is turned on. This process goes on each time a zero is detected.
The secondary current is sensed by R600/R604, and fed back to N600 pin 7 and pin 4 for
regulation of the PWM buck regulator output voltage. The BACKBRIG signal supplied
by the D-ASIC provides a pulse width modulated (variable duty cycle) square wave. By
changing the duty cycle of this signal, the average on-resistance of V604 can be changed.
This will change the secondary current, and thus the back light intensity. The voltage on
the “cold” side of the lamp is limited by V605 and V603. This limits the emission of
electrical interference.
3-14

Circuit Descriptions
3.3 Detailed Circuit Descriptions

3

In PCB versions 8 and newer R605 and R606 provide a more reliable startup of the
backlight converter.

Voltage at T600 pin 4

Voltage AOUT

Voltage BOUT

Voltage COUT

zero
detect

zero
detect

Figure 3-7. Back Light Converter Voltages

3.3.2 Channel A - Channel B Measurement Circuits
The description below refers to circuit diagrams Figure 9-1 and Figure 9-2.
The Channel A and Channel B circuits are almost identical. Both channels can measure
voltage, and do time related measurements (frequency, pulse width, etc.). Channel A
also provides resistance, continuity, diode, and capacitance measurements.
The Channel A/B circuitry is built-up around a C-ASIC OQ0258. The C-ASIC is placed
directly behind the input connector and transforms the input signal to levels that are
suitable for the ADC and trigger circuits.
The C-ASIC
Figure 3-8 shows the simplified C-ASIC block diagram. The C-ASIC consists of
separate paths for HF and LF signals, an output stage that delivers signals to the trigger
and ADC circuits and a control block that allows software control of all modes and
adjustments. The transition frequency from the LF-path to the HF-path is approximately
20 kHz, but there is a large overlap.

CHANNEL ASIC OQ 0258
C
HF IN

R

ADC
HF-PATH

OUTPUT
STAGE

AC
LF IN

LF-PATH
CONTROL

INPUT

TRIGGER

SUPPLY

DC
GROUND
PROTECT
CAL

POS

BUS

SUPPLY

Figure 3-8. C-ASIC Block Diagram

3-15

123
Service Manual

LF input
The LF-input (pin 42) is connected to a LF decade attenuator in voltage mode, or to a
high impedance buffer for resistance and capacitance measurements. The LF decade
attenuator consists of an amplifier with switchable external feedback resistors R131 to
R136. Depending on the selected range the LF attenuation factor which will be set to 110-100-1000-10,000. The C-ASIC includes a LF pre-amplifier with switchable gain
factors for the 1-2-5 steps.
HF input
The HF component of the input signal is supplied to four external HF capacitive
attenuators via C104 and R108. Depending on the required range, the C-ASIC selects
and buffers one of the attenuator outputs :1 (HF0), :10 (HF1), :100 (HF2), or :1000
(HF3). By attenuating the HF3 input internally by a factor 10, the C-ASIC can also
create a :10000 attenuation factor. Inputs of not selected input buffers are internally
shorted. If required, optional FETs V151-V153 can be installed. They will provide an
additional input buffer short for the not-selected buffers, to eliminate internal (in the CASIC) cross talk. To control the DC bias of the buffers inputs, their output voltage is fed
back via an internal feed back resistor and external resistors R115, R111/R120, R112,
R113, and-R114. The internal feed back resistor and filter R110/C105 will eliminate HF
feed back, to obtain a large HF gain. The C-ASIC includes a HF pre-amplifier with
switchable gain factors for the 1-2-5 steps. The C-ASIC also includes circuitry to adjust
the gain, and pulse response.
ADC output pin 27
The combined conditioned HF/LF signal is supplied to the ADC output (pin 27) via an
internal ADC buffer. The output voltage is 150 mV/division. The MIDADC signal (pin
28), supplied by the ADC, matches the middle of the C-ASIC output voltage swing to the
middle if the ADC input voltage swing.
TRIGGER output pin 29
The combined conditioned HF/LF signal is also supplied to the trigger output (pin 29)
via an internal trigger buffer. The output voltage is 100 mV/div. This signal (TRIG-A)
is supplied to the TRIGGER ASIC for triggering, and time related measurements (See
3.3.4 “Triggering”).
For capacitance measurements the ADC output is not used, but the TRIG-A output pulse
length indicates the measured capacitance, see “Capacitance measurements” below.
GPROT input pin 2
PTC (Positive Temperature Coefficient) resistors (R106-R206) are provided between the
Input A and Input B shield ground, and the COM input (instrument ground). This
prevents damage to the test tool if the various ground inputs are connected to different
voltage levels. The voltage across the PTC resistor is supplied via the GPROT input pin
2 to an input buffer. If this voltage exceeds ±200 mV, the ground protect circuit in the
C-ASIC makes the DACTEST output (pin 24) high. The DACTEST line output level is
read by the D-ASIC via the slow ADC (See 3.3.2 “Power”). The test tool will give a
ground error warning.
Because of ground loops, a LF interference voltage can arise across PTC resistor R106
(mainly mains interference when the power adapter is connected). To eliminate this LF
interference voltage, it is buffered (also via input GPROT, pin 2), and subtracted from
the input signal. Pin 43 (PROTGND) is the ground reference of the input buffer.

3-16

Circuit Descriptions
3.3 Detailed Circuit Descriptions

3

CALSIG input pin 36
The reference circuit on the TRIGGER part supplies an accurate +1.23V DC voltage to
the CALSIG input pin 36 via R141. This voltage is used for internal calibration of the
gain, and the capacitance measurement threshold levels. A reference current Ical is
supplied by the T-ASIC via R144 for calibration of the resistance and capacitance
measurement function. For ICAL see also Section 3.3.3.
POS input pin 1
The PWM circuit on the Digital part provides an adjustable voltage (0 to 3.3V) to the
POS input via R151. The voltage level is used to move the input signal trace on the
LCD. The REFN line provides a negative bias voltage via R152, to create the correct
voltage swing level on the C-ASIC POS input.
OFFSET input pin 44
The PWM circuit on the Digital part supplies an adjustable voltage (0 to +3.3V) to the
OFFSET input via R153. The voltage level is used to compensate the offset in the LF
path of the C-ASIC. The REFN line provides a negative bias voltage via R152, to create
the correct voltage swing level on the C-ASIC POS input.
DACTEST output pin 24
As described above, the DACTEST output is used for signaling a ground protect error. It
can also be used for testing purposes. Furthermore the DACTEST output provides a CASIC reset output signal (+1.75V) after a power on.
ADDRESS output pin 23
The output provides a replica of the input voltage to the SENSE line via R165. In
capacitance mode, the sense signal controls the CLAMP function in the T-ASIC (See
Section 3.3.3).
TRACEROT input pin 31
The TRACEROT signal is supplied by the T-ASIC. It is a triangle sawtooth voltage.
SDAT, SCLK
Control information for the C-ASIC, e.g. selection of the attenuation factor, is sent by the
D-ASIC via the SDA data line. The SCL line provides the synchronization clock signal.
Voltage Measurements (Channel A & Channel B)
The following description applies to both Channel A and Channel B.
The input voltage is applied to the HF attenuator inputs of the C-ASIC via C104, and to
the LF input of the C-ASIC via R101/R102, AC/DC input coupling relay K171, and
R104. The C-ASIC conditions the input voltage to an output voltage of 50 mV/div. This
voltage is supplied to the ADC on the Digital part. The ADC output data is read and
processed by the D-ASIC, and represented as a numerical reading, and as a graphical
trace.
Table 3-3. shows the relation between the reading range (V) and the trace sensitivity
(V/div.) The selected trace sensitivity determines the C-ASIC attenuation/gain factor.
The reading range is only a readout function, it does not change the hardware range or
the wave form display.

3-17

123
Service Manual

Table 3-3. Voltage Ranges And Trace Sensitivity
range

50 mV

50 mV

50 mV

500 mV

500 mV

500 mV

5V

5V

trace ../div

5 mV

10 mV

20 mV

50 mV

100 mV

200 mV

500 mV

1V

range

5V

50V

50V

50V

500V

500V

500V

1250V

trace ../div

2V

5V

10V

20V

50V

100V

200V

500V

During measuring, input voltage measurements, gain measurements, and zero
measurements are done. As a result, the voltage supplied to the ADC is a multiplexed
(zero, + reference, -reference, input voltage) signal. In ROLL mode however, no gain
and zero measurements are done. Now the ADC input voltage includes only the
conditioned input voltage.
The input voltage is connected to Input A. The shield of the input is connected to system
ground (⊥
⊥) via a PTC ground protection resistor. If a voltage is applied between the
Input A and Input B ground shield, or between one of these ground shields and the black
COM input, the PTC resistor will limit the resulting current. The voltage across the PTC
resistor is supplied to the C-ASIC GPROT input, and causes a ground error warning
(high voltage level) on output pin 24 (DACTEST).
Resistance Measurements (Channel A)
The unknown resistance Rx is connected to Input A, and the black COM input. The TASIC supplies a constant current to Rx via relay contacts K173, and the PTC resistor
R172. The voltage across Rx is supplied to a high impedance input buffer in the C-ASIC
via the LF input pin 42. The C-ASIC conditions the voltage across Rx to an output
voltage of 50 mV/div. This voltage is supplied to the ADC on the Digital part. The
ADC data is read and processed by the D-ASIC, and represented as a numerical reading,
and a graphical trace in a fixed time base.
Table 3-4 shows the relation between the reading range (Ω), the trace sensitivity
(Ω/div.), and the current in Rx. The selected trace sensitivity determines the C-ASIC
attenuation/gain factor. The reading range is only a readout function, it does not change
the hardware range or the wave form display.
Table 3-4. Ohms Ranges, Trace Sensitivity, and Current
Range

50Ω

500Ω

5kΩ

50 kΩ

500 kΩ

5 MΩ

30 MΩ

Sensitivity ../div

20Ω

200Ω

2 kΩ

20 kΩ

200 kΩ

2 MΩ

10 MΩ

Current in Rx

500 µA

500 µA

50 µA

5 µA

500 nA

50 nA

50 nA

To protect the current source from being damaged by a voltage applied to the input, a
PTC resistor R172 and a protection circuit are provided (See Section 3.3.3 “Current
Source”).
During measuring, input voltage measurements, gain measurements, and zero
measurements are done. As a result, the voltage supplied to the ADC is a multiplexed
(zero, + reference, -reference, input voltage) signal.
Capacitance Measurements (Channel A)
The capacitance measurement is based on the equation: C x dV = I x dt. The unknown
capacitor Cx is charged with a constant known current. The voltage across Cx increases,
3-18

Circuit Descriptions
3.3 Detailed Circuit Descriptions

3

and the time lapse between two different known threshold crossings is measured. Thus
dV, I and dt are known and the capacitance can be calculated.
The unknown capacitance Cx is connected to the red Input A safety banana socket, and
the black COM input. The T-ASIC supplies a constant current to Cx via relay contacts
K173, and protection PTC resistor R172. The voltage on Cx is supplied to two
comparators in the C-ASIC via the LF input. The threshold levels th1 and th2of the
comparators are fixed (see Figure 3-9). The time lapse between the first and the second
threshold crossing depends on the value of Cx. The resulting pulse is supplied to the
TRIGGER output pin 29, which is connected to the analog trigger input of the T-ASIC
(TRIG-A signal). The T-ASIC adjusts the pulse to an appropriate level, and supplies it
to the D-ASIC via its ALLTRIG output. The pulse width is measured and processed by
the D-ASIC, and represented on the LCD as numerical reading. There will be no trace
displayed.
+Iref
0

I-Cx

-Iref

pos. clamp active

ref clamp
th2

th1

U-Cx

0
neg. clamp active

neg. clamp active

TRIG-A

Figure 3-9. Capacitance Measurement

The T-ASIC supplies a positive (charge) and a negative (discharge) current. A
measurement cycle starts from a discharged situation (U CX=0) with a charge current.
After reaching the first threshold level (th1) the pulse width measurement is started. The
dead zone between start of charge and start of pulse width measurement avoids
measurement errors due to a series resistance of Cx.
The pulse width measurement is stopped after crossing the second threshold level (th2 ),
the completes the first part of the cycle.
Unlimited increase of the capacitor voltage is avoided by the positive clamp in the TASIC. The output of the high impedance buffer in the C-ASIC supplies a replica of the
voltage across Cx to output pin 23 (ADDRESS). Via R165, this voltage is supplied to a
clamp circuit in the T-ASIC (SENSE, pin 59). This clamp circuit limits the positive
voltage on Cx to 0.45V.
Now the second part of the measurement is started by reversing the charge current. The
capacitor will be discharged in the same way as the charge cycle. The time between
passing both threshold levels is measured again. A clamp limits the minimum voltage on
Cx to 0V.
Averaging the results of both measurements cancels the effect of a possible parallel
resistance, and suppresses the influence of mains interference voltages.
Table 3-5 shows the relation between the capacitance ranges, the charge current and the
pulse width at full scale.

3-19

123
Service Manual

Table 3-5. Capacitance Ranges, Current, and Pulse Width
Range

50 nF

500 nF

5000 nF

50 µF

500 µF

Current µA

0.5 µA

5 µA

50 µA

500 µA

500 µA

Pulse width at Full Scale

25 ms

25 ms

25 ms

25 ms

250 ms

To protect the current source if a voltage is applied to the input, a PTC resistor R172,
and a protection circuit on the TRIGGER part, are provided (see Section 3.3.3).
Frequency & Pulse Width Measurements
The input voltage is measured as described above. From the ADC samples to built the
trace, also the frequency, pulse width, and duty cycle of the input signal are calculated.
Probe Detection
The Input A and Input B safety banana jacks are provided with a ground shield,
consisting of two separated half round parts. One half is connected to ground via the
protection PTC resistor R106/R206. Via a 220K resistor installed on the input block, the
other half is connected to the probe input of the D-ASIC (pin 54, 55). If the shielded
STL120 test lead, or a BB120 shielded banana-to-BNC adapter, is inserted in Input A or
Input B, it will short the two ground shield halves This can be detected by the D-ASIC.
Supply Voltages
The +5VA, +3V3A, and -3V3A supply voltages are supplied by the Fly Back Converter
on the POWER part. The voltages are present only if the test tool is turned on.

3.3.3 Trigger Circuit
The description refers to circuit diagram Figure 9-3. The trigger section is built up
around the T-ASIC OQ0257. It provides the following functions:
•
•
•
•

3-20

Triggering: trigger source selection, trigger signal conditioning, and generation of
trigger information to be supplied to the D-ASIC.
Current source for resistance and capacitance measurements.
Voltage reference source: buffering and generation of reference voltages.
AC/DC relay and Resistance/Capacitance (Ω/F) relay control.

Circuit Descriptions
3.3 Detailed Circuit Descriptions

3

Triggering
Figure 3-10 shows the block diagram of the T-ASIC trigger section.

TRIGLEV1
TRIGLEV2
TRIG A
TRIG B

TRIGGER ASIC OQ0257 trigger section

10

35

11

42

13

ALLTRIG

15

analog
DUALTRIG
trigger path

select
logic

synchronize
delta-t

38

16

12

TVSYNC sync. pulse
separator

TVOUT

freq.
detect

TRIGQUAL

34 TRIGDT
39

colour filter
+/- amplifier

ALLTRIG

29

HOLDOFF
SMPCLK
DACTEST

Figure 3-10. T-ASIC Trigger Section Block Diagram

In normal trigger modes (= not TV triggering), the analog trigger path directly uses the
Input A (TRIG A) or Input B (TRIG B) signal for triggering.
In the TV trigger mode, the analog trigger path uses the TVSYNC signal for triggering.
This signal is the synchronization pulse, derived from the TRIGA or TRIGB composite
video signal. The color filter +/- amplify section in the T-ASIC blocks the color
information, and amplifies and inverts (if required) the video signal. The TVOUT output
signal is supplied to the synchronization pulse separator circuit. This circuit consists of
C395, V395 and related parts. The output signal TVSYNC is the synchronization pulse
at the appropriate voltage level and amplitude for the T-ASIC analog trigger path.
Note
External triggers provided by the Isolated Trigger Probe to the optical
interface are processed directly by the D-ASIC.
The TRIG-A, TRIG-B, or TVSYNC signal, and two trigger level voltages TRIGLEV1
and TRIGLEV2, are supplied to the analog trigger part. The trigger level voltages are,
supplied by the PWM section on the Digital part See Section 3.3.4). The TRIGLEV1
voltage is used for triggering on a negative slope of the Input A/B voltage. The
TRIGLEV2 voltage is used for triggering on a positive slope of the Input A/B voltage.
As the C-ASIC inverts the Input A/B voltage, the TRIGA, TRIGB slopes on the T-ASIC
input are inverted! From the selected trigger source signal and the used trigger level
voltages, the ALLTRIG and the DUALTRIG trigger signal are derived. The select logic
selects which one will be used by the synchronization/delta-T circuit to generate the final
trigger. There are three possibilities:
1. Single shot triggering.
The DUALTRIG signal is supplied to the synchronization/delta-T circuit. The
trigger levels TRIGLEV1 and TRIGLEV2 are set just above and below the DC level
of the input signal. A trigger is generated when the signal crosses the trigger levels.
A trigger will occur on both a positive or a negative glitch. This mode ensures
triggering, when the polarity of an expected glitch is not known.
2. Qualified triggering (e.g. TV triggering).
The ALLTRIG signal is supplied to T-ASIC output pin 35, which is connected to the
D-ASIC input pin 21. The D-ASIC derives a qualified trigger signal TRIGQUAL
3-21

123
Service Manual

from ALLTRIG, e.g. on each 10th ALLTRIG pulse a TRIGQUAL pulse is given.
The TRIGQUAL is supplied this to the synchronize/delta-T circuit via the select
logic.
3. Normal triggering.
The ALLTRIG signal is supplied to the synchronization/delta-T circuit.
The ALLTRIG signal includes all triggers. It is used by the D-ASIC for signal analysis
during AUTOSET.
Traditionally a small trigger gap is applied for each the trigger level. In noisy signals,
this small-gap-triggering would lead to unstable displaying of the wave form, if the noise
is larger than the gap. The result is that the system will trigger randomly. This problem
is solved by increasing the trigger gap (TRIGLEV1 - TRIGLEV2) automatically to 80%
(10 to 90%) of the input signal peak-to-peak value. This 80% gap is used in AUTOSET.
Note
The ALLTRIG signal is also used for frequency/pulse width -, and
capacitance measurements. Section 3.3.2.
The Synchronize/Delta-t part provides an output pulse TRIGDT. The front edge of this
pulse is the real trigger moment. The pulse width is a measure for the time between the
trigger moment, and the moment of the first sample after the trigger. This pulse width
information is required in random repetitive sampling mode (see below). The
HOLDOFF signal, supplied by the D-ASIC, releases the trigger system. The sample
clock SMPCLK, also provided by the D-ASIC, is used for synchronization.
Real time sampling TRIGDT signal
For time base settings of 1 µs/div and slower, the pixel distance on the LCD is ≥40 ns (1
division is 25 pixels). As the maximum sample rate is 25 MHz, a sample is taken each
40 ns. So the first sample after a trigger can be assigned to the first pixel, and successive
samples to each next pixel. So a trace can be built-up from a single period of the input
signal.
Random repetitive (equivalent) sampling TRIGDT signal
For time base settings below 1 µs/div, the time between two successive pixels on the
screen is smaller than the time between two successive samples. For example at 20
ns/div, the time between two pixels is 20:25=0.8 ns, and the sample distance is 40 ns
(sample rate 25 MHz). A number of sweeps must be taken to reconstruct the original
signal, see Figure 3-11. As the samples are taken randomly with respect to the trigger
moment, the time dt must be known to position the samples on the correct LCD pixel.
The TRIGDT signal is a measure for the time between the trigger and the sample
moment dt. The pulse duration of the TRIGDT signal is approximately 4 µs...20 µs.

TRIGGER
dt1

3

13

SAMPLES SWEEP 1
dt2

14

4

SAMPLES SWEEP 2
PIXEL
1

2

3

4

5

6

7

8

9

10 11 12 13 14 15 16

Figure 3-11. Random Repetitive Sampling Mode

3-22

Circuit Descriptions
3.3 Detailed Circuit Descriptions

3

DACTEST output
A frequency detector in the T-ASIC monitors the ALLTRIG signal frequency. If the
frequency is too high to obtain a reliable transmission to the D-ASIC, the DACTEST
output pin 29 will become high. The DACTEST signal is read by the D-ASIC via the
slow ADC on the Power part. It and indicates that the D-ASIC cannot use the ALLTRIG
signal (e.g. for qualified triggering).
Current Source
A current source in the T-ASIC supplies a DC current to the GENOUT output pin 1. The
current is used for resistance and capacitance measurements. It is adjustable in decades
between 50 nA and 500 µA depending on the measurement range, and is derived from an
external reference current. This reference current is supplied by the REFP reference
voltage via R323 and R324 to input REFOHMIN (pin 6).
The SENSE input signal is the buffered voltage on Input A. For capacitance
measurements it is supplied to a clamp circuit in the T-ASIC (pin 59). The clamp circuit
limits the positive voltage on the unknown capacitance to 0.45V.
The protection circuit prevents the T-ASIC from being damaged by a voltage applied to
Input A during resistance or capacitance measurements. If a voltage is applied, a current
will flow via PTC resistor R172 (on the Channel A part), V358/V359, V353, V354 to
ground. The resulting voltage across the diodes is approximately -2V or +15V.
R354/R356, and V356/V357 limit the voltage on the T-ASIC GENOUT output (pin 1).
The BOOTSTRAP output signal on pin 3 is the buffered GENOUT signal on pin 1, or
the buffered SENSE signal on pin 59. It is supplied to the protection diodes via R352,
R353, and to protection transistor V356, to minimize leakage currents.
On the ICAL-output of the T-ASIC (pin 5) a copy of the output current on GENOUT is
available. The current is supplied to the Channel A C-ASIC via R144. ICAL shows the
same time/temperature drift as the GENOUT measurement current, it can be used for
internal calibration of the resistance and capacitance measurement function.
Capacitor C356 is use for hum/noise suppression.
Square Wave Voltage Generator For Probe Adjustment
For probe adjustment, a voltage generator circuit in the T-ASIC can provide a 2.5Vpp,
760Hz, square wave voltage via the GENOUT output pin 1 to the Input A connector.
Capacitor C357 is the external timing capacitor for the generator.

3-23

123
Service Manual

Reference Voltage Circuit
This circuit derives several reference voltages from the 1.23V main reference source.
REFPWM2

+3.3V

+1.23V

73

REFP

72

V301
71

REFP

R309
R311
R312

R308
-1.23V

+
-

1.23V

+3.3V

P-ASIC
OQ0256

R307

62

+
GAINPWM

56

REFPWM1

55

GNDREF

57

GAINREFN 63

-

+
-

REFN

64

+
GAINADCB 54

-

3

R303
REFADCB

53

+

+1.6V

2

R306

R310

+0.1V

1

T-ASIC
OQ0257

R302

GAINADCT 52

R301
R305

REFADCT

51

REFATT

8

-

4

Figure 3-12. Reference Voltage Section

The output of an amplifier in the P-ASIC supplies a current to the +1.23V reference
source V301 via R307. The +3.3V REFPWM2 voltage is used as reference for the
PWMB outputs of the D-ASIC on the Digital part.
The +1.23V REFP voltage is used as main reference source for the reference circuit.
This circuit consists of four amplifiers in the T-ASIC, external gain resistors, and filter
capacitors.
Amplifier 1 and connected resistors supply the REFPWM1 reference voltage. This
voltage is a reference for the PWMA outputs of the D-ASIC on the Digital section. It is
also used as reference voltage for the LCD supply on the LCD unit.
Amplifier 2 and connected resistors supply the -1.23V REFN reference voltage, used for
the trigger level voltages TRIGLEV1&2, the C-ASIC POS-A and POS-B voltages, and
the C-ASIC OFFSET-A and OFFSET-B voltages. REFN is also the input reference for
amplifiers 3 and 4.

3-24

Circuit Descriptions
3.3 Detailed Circuit Descriptions

3

Amplifier 3 and 4 and connected resistors supply the REFADCT and REFADCB
reference voltages for the ADC’s. Both voltages directly influence the gain accuracy of
the ADC’s.
The T-ASIC can select some of the reference voltages to be output to pin 8 (REFATT).
The REFATT voltage is used for internal calibration of the input A and B overall gain.
Tracerot Signal
The T-ASIC generates the TRACEROT signal, used by the C-ASIC’s. Control signals
TROTRST and TROTCLK are provided by the D-ASIC.
AC/DC Relay and Ω/F Relay Control
The Channel A/B AC/DC relays K171/K271, and the Channel A Ω/F relay K173 are
controlled by the T-ASIC output signals ACDCA (pin 22), ACDCB (pin 23) and OHMA
(pin 24).
SCLK, SDAT Signals
T-ASIC control data, e.g. for trigger source/mode/edge selection and relay control, are
provided by the D-ASIC via the SCLK and SDAT serial control lines..

3.3.4 Digital Circuit
See the Fluke 123 block diagram Figure 3-1, and circuit diagram Figure 9-4.
The Digital part is built up around the D-ASIC MOT0002. It provides the following
functions:
•

Analog to Digital Conversion of the conditioned Input A and Input B signals

•

ADC data acquisition for traces and numerical readings

•

Trigger processing

•

Pulse width measurements, e.g. for capacitance measurement function

•

Microprocessor, Flash EPROM and RAM control

•

Display control

•

Keyboard control, ON/OFF control

•

Miscellaneous functions, as PWM signal generation, SDA-SCL serial data control,
probe detection, Slow ADC control, serial RS232 interface control, buzzer control,
etc.

The D-ASIC is permanently powered by the +3V3GAR voltage. The P-ASIC indicates
the status of the +3V3GAR voltage via the VGARVAL line connected to D-ASIC pin
89. If +3V3GAR is correct, VGARVAL is high, and the D-ASIC will start-up. as a
result the D-ASIC functions are operative regardless of the test tool is ON/OFF status.
Analog to Digital Conversion
For voltage and resistance measurements, the Input A/B (B for voltage only) signal is
conditioned by the C-ASIC to 150 mV/division. Zero and gain measurement are done to
eliminate offset and gain errors. The C-ASIC output voltage is supplied to the Channel
A/B ADC (D401/D451 pin 5). The ADC samples the analog voltage, and converts it into
an 8-bit data byte (D0-D7). The data are read and processed by the D-ASIC, see below
“ADC data Acquisition”.

3-25

123
Service Manual

The sample rate depends on the sample clock supplied to pin 24. The sample rate is 5
MHz or 25 MHz, depending on the instrument mode. The ADC input signal is sampled
on the rising edge of the sample clock. The digital equivalent of this sample is available
on the outputs D0-D7 with a delay of 6 sample clock cycles.
The reference voltages REFADCT and REFADCB determine the input voltage swing
that corresponds to an output data swing of 00000000 to 11111111 (D0-D7). The
reference voltages are supplied by the reference circuit on the Trigger part. The ADC
output voltages MIDADC-A/B are supplied to the C-ASIC’s (input pin 28), and are
added to the conditioned input signal. The MIDADC voltage matches the middle of the
C-ASIC output swing to the middle of the ADC input swing.
Current IREF is supplied to pin 7 of the ADC’s via R403/R453 for biasing internal ADC
circuits.
The D-ASIC can disable the ADC conversion by making the STBY-A/STBY-B line pin
1 high. Conversion also stops if the sample clock stops.
ADC data acquisition for traces and numerical readings
During an acquisition cycle, ADC samples are acquired to complete a trace on the LCD.
Numerical readings (METER readings) are derived from the trace. So in single shot
mode a new reading becomes available when a new trace is started.
The test tool software starts an acquisition cycle. The D-ASIC acquires data from the
ADC, and stores them internally in a cyclic Fast Acquisition Memory (FAM). The DASIC also makes the HOLDOFF line low, to enable the T-ASIC to generate the trigger
signal TRIGDT. The acquisition cycle is stopped if the required number of samples is
acquired. From the FAM the ADC data are moved to the RAM D475. The ADC data
stored in the RAM are processed and represented as traces and readings.
Triggering (HOLDOFF, TRIGDT, Randomize)
To start a new trace, the D-ASIC makes the HOLDOFF signal low. Now the T-ASIC
can generate the trigger signal TRIGDT. For signal frequencies higher than the system
clock frequency, and in the random repetitive sampling mode, no fixed time relation
between the HOLDOFF signal and the system clock is allowed. The RANDOMIZE
circuit desynchronizes the HOLDOFF from the clock, by phase modulation with a LF
ramp signal.
Trigger qualifying (ALLTRIG, TRIGQUAL)
The ALLTRIG signal supplied by the T-ASIC contains all possible triggers. For normal
triggering, the T-ASIC uses ALLTRIG to generate the final trigger TRIGDT. For
qualified triggering (e.g. TV triggering), the D-ASIC returns a qualified, e.g. each nth ,
trigger pulse to the T-ASIC (TRIGQUAL). Now the T-ASIC derives the final trigger
TRIGDT from the qualified trigger signal TRIGQUAL.
Capacitance measurements (ALLTRIG)
As described in Section 3.3.2, capacitance measurements are based on measuring the
capacitor charging time using a known current. The ALLTRIG pulse signal represents
the charging time. The time is counted by the D-ASIC
Microprocessor
The D-ASIC includes a microprocessor with a 16 bit data bus. The instrument software
is loaded in a 8 Mb Flash ROM D474.

3-26

Circuit Descriptions
3.3 Detailed Circuit Descriptions

3

ROM control for PCB versions < 8
The Flash ROM mode depends on the output signal of the RESET ROM circuit, RP#:
•

RP#>2V, software can run. True if +12V present and/or ROMRST is high.

•

RP#<2V, software cannot run. True if +12V not present and/or ROMRST is low
(test tool off).

•

RP#>12V, software can run, and ROM can be programmed. True if +12V is present.

The +12VPROG voltage is derived from the power adapter input voltage by the P-ASIC
on the POWER part. To program the ROM, the power adapter voltage must be
+20V±1V, to ensure a correct +12V voltage level.
ROM control for PCB versions 8 and newer
FlashROMs used on PCB version 8 and newer do not need the 12V programming
voltage.
The circuit D480 and related parts create a delay for the ROMWRITE enable signal.
This prevents the ROM write proces being disabled before all data have been written.
RAM
Measurement data and instrument settings are stored in RAM D475. All RAM data will
be lost if all power sources (battery and power adapter) are removed.
mask ROM
The D-ASIC has on-chip mask ROM. If no valid Flash ROM software is present when
the test tool is turned on, the mask ROM software will become activate. The test tool
can be forced to stay in the mask ROM software by pressing the ^ and > key, and then
turning the test tool on. When active, the mask ROM software generates a 100 kHz
square wave on pin 59 of the D-ASIC.
Display Control
The LCD unit includes the LCD, the LCD drivers, and the fluorescent back light lamp.
It is connected to the main board via connector X453. The LCD is built up of 240
columns of 240 pixels each (240x240 matrix). The D-ASIC supplies the data and
control signals for the LCD drivers on the LCD unit (Figure 3-13).

3-27

123
Service Manual

FRAME

Common Driver
LnCl
M

Column
Driver
Din
DCl
LnCl

Do Di

Common Driver
LnCl
M

X1..80

Do Di

X81..160

Common Driver
LnCl
M

X161..240

TOP
Y1..80

M

Carry
Column
Driver
Din
DCl
LnCl

LEFT
Y81..160

FRONTVIEW

M

LCD

Carry

LCDAT0-3

Column
Driver
Din

DATACLK0

DCl

LINECLK
M

LnCl
M

Y161..240

PIXEL (0,0)

Figure 3-13. LCD Control

Each 14 ms the LCD picture is refreshed during a frame. The frame pulse (FRAME)
indicates that the concurrent LINECLK pulse is for the first column. The column drivers
must have been filled with data for the first column. Data nibbles (4 bit) are supplied via
lines LCDAT0-LCDAT3. During 20 data clock pulses (DATACLK0) the driver for
Y161..240 is filled. When it is full, it generates a carry to enable the driver above it,
which is filled now. When a column is full, the LINECLK signal transfers the data to the
column driver outputs. Via the common drivers, the LINECLK also selects the next
column to be filled. So after 240 column clocks a full screen image is built up on the
LCD.
The LCD unit generates various voltage levels for the LCD drivers outputs to drive the
LCD. The various levels are supplied to the driver outputs, depending on the supplied
data and the M(ultiplex) signal. The M signal (back plane modulation) is used by the
LCD drivers to supply the various DC voltages in such an order, that the average voltage
does not contain a DC component. A DC component in the LCD drive voltage may
cause memory effects in the LCD.
The LCD contrast is controlled by the CONTRAST voltage. This voltage is controlled
by the D-ASIC, which supplies a PWM signal (pin 37 CONTR-D) to PWM filter
R436/C436. The voltage REFPWM1 is used as bias voltage for the contrast adjustment
circuit on the LCD unit. To compensate for contrast variations due to temperature
variations, a temperature dependent resistor is mounted in the LCD unit. It is connected
to the LCDTEMP1 line. The resistance change, which represents the LCD temperature,
is measured by the D-ASIC via the S-ADC on the POWER part.
The back light lamp is located at the left side of the LCD, so this side becomes warmer
than the right side. As a result the contrast changes from left to right. To eliminate this
unwanted effect, the CONTRAST control voltage is increased during building up a
screen image. A FRAME pulse starts the new screen image. The FRAME pulse is also
used to discharge C404. After the FRAME pulse, the voltage on C404 increases during
building up a sreen image.
Keyboard Control, ON/OFF Control
3-28

Circuit Descriptions
3.3 Detailed Circuit Descriptions

3

The keys are arranged in a 6 rows x 6 columns matrix. If a key is pressed, the D-ASIC
drives the rows, and senses the columns. The ON/OFF key is not included in the matrix.
This key toggles a flip-flop in the D-ASIC via the ONKEY line (D-ASIC pin 72). As the
D-ASIC is permanently powered, the flip-flop can signal the test tool on/off status.
PWM Signals
The D-ASIC generates various pulse signals, by switching a reference voltage
(REFPWM1 or REFPWM2), with software controllable duty cycle (PWMA, PWMB
pins 26-40). By filtering the pulses in low pass filters (RC), software controlled DC
voltages are generated. The voltages are used for various control purposes, as shown in
Table 3-6.
Table 3-6. D-ASIC PWM Signals
PWM signal

Function

Destination

Reference

HO-RNDM

HOLDOFF randomize control

R487 of RANDOMIZE circuit

REFPWM1

TRGLEV1D,
TRIGLEV2D

Trigger level control

T-ASIC

REFPWM1

POS-AD, POS-BD

Channel A,B position control

C-ASIC

REFPWM1

OFFSETAD,
OFFSETBD

Channel A,B offset control

C-ASIC

REFPWM1

BACKBRIG

Back light brightness control

Back light converter (POWER part)

REFPWM1

CONTR-D

Display contrast control

LCD unit

REFPWM1

SADCLEVD

S ADC comparator voltage

SLOW ADC (POWER part)

REFPWM2

CHARCURD

Battery charge current control

P-ASIC

REFPWM2

3-29

123
Service Manual

SDA-SCL Serial Bus
The unidirectional SDA-SCL serial bus (pin 56, 57) is used to send control data to the CASIC’s (e.g. change attenuation factor), and the T-ASIC (e.g. select other trigger source).
The SDA line transmits the data bursts, the SCL line transmits the synchronization clock
(1.25 MHz).
Probe Detection
Via the probe detection inputs PROBE-A and PROBE-B (pin 54, 55), the D-ASIC
detects if the Input A and B probes have been connected/disconnected. The SUPPRDET
signal (pin 99) can suppress the probe detection. If this signal is low, The PROBE-A and
PROBE-B lines are permanently low (via R471, R472), regardless of a probe is
connected or not connected. This function is not supported by the Fluke 123 software.
See also Section 3.3.2 “Probe detection”.
TXD, RXD Serial Interface (Optical Port)
The optical interface output is directly connected to the TXD line (pin 86). The optical
input line is buffered by the P-ASIC on the power part. The buffered line is supplied to
the RXD input (pin 87). The serial data communication (RS232) is controlled by the DASIC.
Slow ADC Control, SADC Bus
The SELMUX0-2 (pins 96-98) and SLOWADC (pin 100) lines are used for
measurements of various analog signals, as described in Section 3.3.1. “SLOW ADC”.
BATIDENT
The BATTIDENT line (pin 90) is connected to R508 on the Power part, and to a resistor
in the battery pack. If the battery is removed, this is signaled to the D-ASIC
(BATTIDENT line goes high).
MAINVAL, FREQPS
The MAINVAL signal (pin91) is supplied by the P-ASIC, and indicates the presence of
the power adapter voltage (high = present).
The FREQPS signal (pin 93) is also supplied by the P-ASIC. It is the same signal that
controls the Fly Back Converter control voltage FLYGATE. The D-ASIC measures the
frequency in order to detect if the Fly Back Converter is running within specified
frequency limits.
D-ASIC Clocks
A 25 MHz crystal (B403) controls the D-ASIC system clock. For the real time clock,
counting the time and date, an additional 32.768 kHz crystal (B401) is provided. When
the test tool is turned on, a 16MHz microprocessor clock (derived from B402) becomes
active.
Buzzer
The Buzzer is directly driven by a 4 kHz square wave from the D-ASIC (pin 101) via
FET V522. If the test tool is on, the -30VD supply from the Fly Back converter is
present, and the buzzer sounds loudly. If the -30VD is not present, the buzzer sounds
weak, e.g. when the Mask Active mode is entered.

3-30

Chapter 4

Performance Verification

Title
4.1 Introduction.................................................................................................
4.2 Equipment Required For Verification ........................................................
4.3 How To Verify ............................................................................................
4.4 Display and Backlight Test .........................................................................
4.5 Input A and Input B Tests ...........................................................................
4.5.1 Input A and B Base Line Jump Test ....................................................
4.5.2 Input A Trigger Sensitivity Test ..........................................................
4.5.3 Input A Frequency Response Upper Transition Point Test.................
4.5.4 Input A Frequency Measurement Accuracy Test ................................
4.5.5 Input B Frequency Measurement Accuracy Test ................................
4.5.6 Input B Frequency Response Upper Transition Point Test .................
4.5.7 Input B Trigger Sensitivity Test ..........................................................
4.5.8 Input A and B Trigger Level and Trigger Slope Test..........................
4.5.9 Input A and B DC Voltage Accuracy Test ..........................................
4.5.10 Input A and B AC Voltage Accuracy Test ........................................
4.5.11 Input A and B AC Input Coupling Test .............................................
4.5.12 Input A and B Volts Peak Measurements Test..................................
4.5.13 Input A and B Phase Measurements Test ..........................................
4.5.14 Input A and B High Voltage AC/DC Accuracy Test.........................
4.5.15 Resistance Measurements Test..........................................................
4.5.16 Continuity Function Test ...................................................................
4.5.17 Diode Test Function Test ..................................................................
4.5.18 Capacitance Measurements Test .......................................................
4.5.19 Video Trigger Test.............................................................................

Page
4-3
4-3
4-3
4-4
4-5
4-6
4-7
4-8
4-8
4-9
4-10
4-10
4-11
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-22
4-23

4-1

Performance Verification
4.1 Introduction

4

4.1 Introduction
Warning
Procedures in this chapter should be performed by qualified
service personnel only. To avoid electrical shock, do not
perform any servicing unless you are qualified to do so.
The test tool should be calibrated and in operating condition when you receive it.
The following performance tests are provided to ensure that the test tool is in a proper
operating condition. If the test tool fails any of the performance tests, calibration
adjustment (see Chapter 5) and/or repair (see Chapter 7) is necessary.
The Performance Verification Procedure is based on the specifications, listed in Chapter
2 of this Service Manual. The values given here are valid for ambient temperatures
between 18 °C and 28 °C.
The Performance Verification Procedure is a quick way to check most of the test tool’s
specifications. Because of the highly integrated design of the test tool, it is not always
necessary to check all features separately. For example: the duty cycle, pulse width, and
frequency measurement are based on the same measurement principles; so only one of
these functions needs to be verified.

4.2 Equipment Required For Verification
The primary source instrument used in the verification procedures is the Fluke 5500A. If
a 5500A is not available, you can substitute another calibrator as long as it meets the
minimum test requirements.
•

Fluke 5500A Multi Product Calibrator, including 5500A-SC Oscilloscope
Calibration Option.

•

Stackable Test Leads (4x), supplied with the 5500A.

•

50Ω Coax Cables (2x), Fluke PM9091 (1.5m) or PM9092 (0.5m).

•

50Ω feed through terminations (2x), Fluke PM9585.

•

Fluke BB120 Shielded Banana to Female BNC adapters (2x), supplied with the
Fluke 123.

•

Dual Banana Plug to Female BNC Adapter (1x), Fluke PM9081/001.

•

Dual Banana Jack to Male BNC Adapter (1x), Fluke PM9082/001.

•

TV Signal Generator, Philips PM5418.

•

75Ω Coax cable (1x), Fluke PM9075.

•

75Ω Feed through termination (1x), ITT-Pomona model 4119-75.

•

PM9093/001 Male BNC to Dual Female BNC Adapter

4.3 How To Verify
Verification procedures for the display function and measure functions follow. For each
procedure the test requirements are listed. If the result of the test does not meet the
requirements, the test tool should be recalibrated or repaired if necessary.

4-3

123
Service Manual

Follow these general instructions for all tests:
•

For all tests, power the test tool with the PM8907 power adapter. The battery pack
must be installed.

•

Allow the 5500A to satisfy its specified warm-up period.

•

For each test point , wait for the 5500A to settle.

•

Allow the test tool a minimum of 20 minutes to warm up.

4.4 Display and Backlight Test
Proceed as follows to test the display and the backlight:
1. Press

TO TURN THE Test tool on.

2. Press
and verify that the backlight is dimmed. Then select maximum backlight
brightness again.
3. Remove the adapter power, and verify that the backlight is dimmed.
4. Apply the adapter power and verify that the backlight brightness is set to maximum.
5. Press and hold
6. Press and release

.
.

7. Release
.
The test tool shows the calibration menu in the bottom of the display.
Do not press

now! If you did, turn the test tool off and on, and start at 5.

8. Press
(PREV) three times.
The test tool shows Contrast (CL 0100):MANUAL
9. Press
(CAL) .
The test tool shows a dark display; the test pattern as shown in Figure 4-1 may not be
visible or hardly visible.
Observe the display closely, and verify that no light pixels are shown.

Figure 4-1. Display Pixel Test Pattern

11. Press
.
The test pattern is removed; the test tool shows Contrast (CL 0110):MANUAL
4-4

Performance Verification
4.5 Input A and Input B Tests

4

12. Press
(CAL) .
The test tool shows the display test pattern shown in Figure 4-1, at default contrast.
Observe the test pattern closely, and verify that the no pixels with abnormal contrast
are present in the display pattern squares. Also verify that the contrast of the upper
left and upper right square of the test pattern are equal.
13. Press
.
The test pattern is removed; the test tool shows Contrast (CL 0120):MANUAL
14. Press
(CAL) .
The test tool shows a light display; the test pattern as shown in Figure 4-1 may not be
visible or hardly visible.
Observe the display closely, and verify that no dark pixels are shown.
15. Turn the test tool OFF and ON to exit the calibration menu and to return to the
normal operating mode.

4.5 Input A and Input B Tests
Before performing the Input A and Input B tests, the test tool must be set in a defined
state, by performing a RESET.
Proceed as follows to reset the test tool:
•

Press

•

Press and hold

•

Press and release

to turn the test tool off.
.

to turn the test tool on.

Wait until the test tool has beeped twice, and then release
beeped twice, the RESET was successful.

..

When the test tool has

For most tests, you must turn Input B on. Input A is always on.
Proceed as follows to turn Input B on:
•

Press

•

Using

•

to confirm the selection; the mark changes to ■ . The active setting
Press
from the next item group will be highlighted (for example ■ VAC ), and maintained
after leaving the menu.

•

Press

to open the Meter B menu.
select INPUT B:

ON .

to exit the menu.

During verification you must open menus, and to choose items from the menu.
Proceed as follows to make choices in a menu (see Figure 4.2):
•

Open the menu, for example press

•

Press

•

to confirm the selection and to jump to the next item group (if present).
Press
Item groups in a menu are separated by a vertical line.

•

After pressing

.

to highlight the item to be selected in a menu.

in the last menu item group, the menu is closed.

4-5

123
Service Manual

ST7968.CGM

Figure 4-2. Menu item selection

If an item is selected, it is marked by ■. Not selected items are marked by . If a
is pressed, the item remains selected.
selected item is highlighted, an then
You can also navigate through the menu using
you must press
.

. To conform the highlighted item

4.5.1 Input A and B Base Line Jump Test
Proceed as follows to check the Input A and Input B base line jump:
1. Short circuit the Input A and the Input B shielded banana sockets of the test tool.
Use the BB120 banana to BNC adapter, and a 50Ω (or lower) BNC termination.
2. Select the following test tool setup:
•

Turn Input B on (if not already on).

•

to select auto ranging (AUTO in top of display).
Press
(
toggles between AUTO and MANUAL ranging).

•

Press

to open the SCOPE INPUTS menu.

•

Press

to open the SCOPE OPTIONS menu, and choose :

SCOPE MODE: ■ NORMAL | WAVEFORM MODE: ■ SMOOTH

3. Using
toggle the time base between 10 ms/div and 5 ms/div.
(the time base ranging is set to manual now, the input sensitivity is still automatic; no
indication AUTO or MANUAL is displayed).
After changing the time base wait some seconds until the trace has settled.
Observe the Input A trace, and check to see if it returns to the same position after
changing the time base. The allowed difference is ±0.04 division (= 1 pixel).
Observe the Input B trace for the same conditions.
toggle the time base between 1 µs/div and 500 ns/div. After changing
4. Using
the time base wait some seconds until the trace has settled.
Observe the Input A trace, and check to see if it is set to the same position after
changing the time base. The allowed difference is ±0.04 division (= 1 pixel).
Observe the Input B trace for the same conditions.
4-6

Performance Verification
4.5 Input A and Input B Tests

5. Using

4

set the time base to 10 ms/div.

toggle the sensitivity of Input A between 5 and 10 mV/div. After
6. Using
changing the sensitivity wait some seconds until the trace has settled.
Observe the Input A trace, and check to see if it is set to the same position after
changing the sensitivity. The allowed difference is ±0.04 division (= 1 pixel).
7. Using
toggle the sensitivity of Input B between 5 and 10 mV/div. After
changing the sensitivity wait some seconds until the trace has settled.
Observe the Input B trace, and check to see if it is set to the same position after
changing the sensitivity. The allowed difference is ±0.04 division (= 1 pixel).
8. When you are finished, remove the Input A and Input B short.

4.5.2 Input A Trigger Sensitivity Test
Proceed as follows to test the Input A trigger sensitivity:
1. Connect the test tool to the 5500A as shown in Figure 4-3.

ST8004.CGM

Figure 4-3. Test Tool Input A to 5500A Scope Output 50Ω
Ω

2. Select the following test tool setup:
•

to select auto ranging (AUTO in top of display).
Press
Do not press
anymore!

•

Using
change the sensitivity to select manual sensitivity ranging, and
lock the Input A sensitivity on 200 mV/div.

3. Set the 5500A to source a 5 MHz leveled sine wave of 100 mV peak-to-peak
(SCOPE output, MODE levsin).
4. Adjust the amplitude of the sine wave to 0.5 division on the display.
5. Verify that the signal is well triggered.
to enable the up/down arrow keys for Trigger Level
If it is not, press
adjustment; adjust the trigger level using
and verify that the signal will be
triggered now. The trigger level is indicated by the trigger icon ( ).
6. Set the 5500A to source a 25 MHz leveled sine wave of 400 mV peak-to-peak.
7. Adjust the amplitude of the sine wave to 1.5 divisions on the test tool display.
4-7

123
Service Manual

8. Verify that the signal is well triggered.
If it is not, press
to enable the up/down arrow keys for Trigger Level
adjustment; adjust the trigger level and verify that the signal will be triggered now.
9. Set the 5500A to source a 40 MHz leveled sine wave of 1.8V peak-to-peak.
10. Adjust the amplitude of the sine wave to 4 divisions on the test tool display.
11. Verify that the signal is well triggered.
to enable the up/down arrow keys for Trigger Level
If it is not, press
adjustment; adjust the trigger level and verify that the signal will be triggered now.
12. When you are finished, set the 5500A to Standby.

4.5.3 Input A Frequency Response Upper Transition Point Test
Proceed as follows to test the Input A frequency response upper transition point:
1. Connect the test tool to the 5500A as for the previous test (see Figure 4-3).
2. Select the following test tool setup:
•

Press
to select auto ranging (AUTO in top of display).
Do not press
anymore!

•

Using
change the sensitivity to select manual sensitivity ranging, and
lock the Input A sensitivity on 200 mV/div.

3. Set the 5500A to source a leveled sine wave of 1.2V peak-to-peak, 50 kHz (SCOPE
output, MODE levsin).
4. Adjust the amplitude of the sine wave to 6 divisions on the test tool display.
5. Set the 5500A to 20 MHz, without changing the amplitude.
6. Observe the Input A trace check to see if it is ≥ 4.2 divisions.
7. When you are finished, set the 5500A to Standby.
Note
The lower transition point is tested in Section 4.5.11.

4.5.4 Input A Frequency Measurement Accuracy Test
Proceed as follows to test the Input A frequency measurement accuracy:
1. Connect the test tool to the 5500A as for the previous test (see Figure 4-3).
2. Select the following test tool setup:
•

Press

to select auto ranging (AUTO in top of display).

•

Press

to open the INPUT A MEASUREMENTS menu, and choose:

MEASURE on A: ■ Hz

3. Set the 5500A to source a leveled sine wave of 600 mV peak-to-peak (SCOPE
output, MODE levsin).
4. Set the 5500A frequency according to the first test point in Table 4-1.
5. Observe the Input A main reading on the test tool and check to see if it is within the
range shown under the appropriate column.
4-8

Performance Verification
4.5 Input A and Input B Tests

4

6. Continue through the test points.
7. When you are finished, set the 5500A to Standby.
Table 4-1. Input A,B Frequency Measurement Accuracy Test
5500A output, 600 mVpp

Input A, B Reading

1 MHz

0.993 to 1.007 MHz

10 MHz

09.88 to 10.12 MHz

40 MHz

38.98 to 41.02 MHz

Note
Duty Cycle and Pulse Width measurements are based on the same
principles as Frequency measurements. Therefore the Duty Cycle and
Pulse Width measurement function will not be verified separately.

4.5.5 Input B Frequency Measurement Accuracy Test
Proceed as follows to test the Input B frequency measurement accuracy:
1. Connect the test tool to the 5500A as shown in Figure 4-4.

ST8005.CGM

Figure 4-4. Test Tool Input B to 5500A Scope Output 50Ω
Ω

2. Select the following test tool setup:
•

Press

select auto ranging (AUTO in top of display).

•

Press

to open the INPUT B MEASUREMENTS menu, and choose:

INPUT B: ■ ON | MEASURE on B: ■ Hz

•

Press

to open the SCOPE INPUTS menu.

•

Press

to open the TRIGGER menu, and choose:

INPUT: ■ B | SCREEN UPDATE: ■ FREE RUN | AUTO RANGE: ■ >15HZ

3. Set the 5500A to source a leveled sine wave of 600 mV peak-to-peak (SCOPE
output, MODE levsin).
4-9

123
Service Manual

4. Set the 5500A frequency according to the first test point in Table 4-1.
5. Observe the Input B main reading on the test tool and check to see if it is within the
range shown under the appropriate column.
6. Continue through the test points.
7. When you are finished, set the 5500A to Standby.

4.5.6 Input B Frequency Response Upper Transition Point Test
Proceed as follows to test the Input B frequency response upper transition point:
1. Connect the test tool to the 5500A as for the previous test (see Figure 4-4).
2. Select the following test tool setup:
•

Turn Input B on (if not already on).

•

Press
to select auto ranging (AUTO in top of display).
Do not press
anymore!

•

Using
change the sensitivity to select manual sensitivity ranging, and
lock the Input B sensitivity on 200 mV/div.

•

Press

to open the SCOPE INPUTS menu.

•

Press

to open the TRIGGER menu, and choose:

INPUT: ■ B | SCREEN UPDATE: ■ FREE RUN | AUTO RANGE: ■ >15HZ

3. Set the 5500A to source a leveled sine wave of 1.2V peak-to-peak, 50 kHz (SCOPE
output, MODE levsin).
4. Adjust the amplitude of the sine wave to 6 divisions on the test tool display.
5. Set the 5500A to 20 MHz, without changing the amplitude.
6. Observe the Input B trace check to see if it is ≥ 4.2 divisions.
7. When you are finished, set the 5500A to Standby.
Note
The lower transition point is tested in Section 4.5.11.

4.5.7 Input B Trigger Sensitivity Test
Proceed as follows to test the Input B trigger sensitivity:
1. Connect the test tool to the 5500A as for the previous test (see Figure 4-4).
2. Select the following test tool setup:

4-10

•

Turn Input B on (if not already on).

•

Press
to select auto ranging (AUTO in top of display).
Do not press
anymore!

•

Using
change the sensitivity to select manual sensitivity ranging, and
lock the Input B sensitivity on 200 mV/div.

•

Press

to open the SCOPE INPUTS menu.

Performance Verification
4.5 Input A and Input B Tests

•

Press

4

to open the TRIGGER menu, and choose:

INPUT: ■ B | SCREEN UPDATE: ■ FREE RUN | AUTO RANGE: ■ >15HZ

3. Set the 5500A to source a 5 MHz leveled sine wave of 100 mV peak-to-peak
(SCOPE output, MODE levsin).
4. Adjust the amplitude of the sine wave to 0.5 division on the display.
5. Verify that the signal is well triggered.
If it is not, press
to enable the up/down arrow keys for Trigger Level
adjustment; adjust the trigger level and verify that the signal will be triggered now.
The trigger level is indicated by the trigger icon ( ).
6. Set the 5500A to source a 25 MHz leveled sine wave of 400 mV peak-to-peak.
7. Adjust the amplitude of the sine wave 1.5 divisions on the test tool display.
8. Verify that the signal is well triggered.
to enable the up/down arrow keys for Trigger Level
If it is not, press
adjustment; adjust the trigger level and verify that the signal will be triggered now.
9. Set the 5500A to source a 40 MHz leveled sine wave of 1.8V peak-to-peak.
10. Adjust the amplitude of the sine wave to exactly 4 divisions on the test tool display.
11. Verify that the signal is well triggered.
If it is not, press
to enable the up/down arrow keys for Trigger Level
adjustment; adjust the trigger level and verify that the signal will be triggered now.
12. When you are finished, set the 5500A to Standby.

4.5.8 Input A and B Trigger Level and Trigger Slope Test
Proceed as follows:
1. Connect the test tool to the 5500A as shown in Figure 4-5.

ST8001.CGM

Figure 4-5. Test Tool Input A-B to 5500A Normal Output

2. Select the following test tool setup:
•

Turn Input B on ( if not already on).

•

Using
change the sensitivity to select manual sensitivity ranging, and
lock the Input A and Input B sensitivity on 1V/div.
4-11

123
Service Manual

•

Move the Input A and Input B ground level (indicated by zero icon
center grid line. Proceed as follows:

) to the

Press

to enable the arrow keys for moving the Input A ground level.

Press

to enable the arrow keys for moving the Input B ground level.

Using the

keys move the ground level.

•

Using
change the time base to select manual time base ranging, and lock
the time base on 10 ms/div.

•

Press

to open the SCOPE INPUTS menu.

•

Press

to open the TRIGGER menu, and choose:

INPUT: ■ A | SCREEN UPDATE: ■ FREE RUN | AUTO RANGE: ■ >15HZ

•

Press

to enable the arrow keys for Trigger Level and Slope adjustment.

•

Using

select positive slope triggering (trigger icon

•

Using
set the trigger level to +2 divisions from the screen center. For
positive slope triggering, the trigger level is the top of the trigger icon ( ).

•

Press

to open the SCOPE INPUTS menu.

•

Press

to open the SCOPE OPTIONS menu, and choose:

).

SCOPE MODE: ■ SINGLE SHOT | WAVEFORM MODE: ■ NORMAL

3. Set the 5500A to source 0.4V DC.
4. Verify that no trace is shown on the test tool display, and that the status line at the
display bottom shows Wait:A . If the display shows the traces and status Hold:A ,
then press
to re-arm the test tool for a trigger.
5. Increase the 5500A voltage slowly in 0.1V steps, using the 5500A EDIT FIELD
function, until the test tool is triggered, and the traces are shown.
6. Verify that the 5500A voltage is between +1.5V and +2.5V when the test tool is
triggered. To repeat the test, start at step 3.
7. Set the 5500A to Standby.
8. Press

to clear the display.

9. Press

to enable the arrow keys for Trigger Level and Slope adjustment.

10. Using

select negative slope triggering ( ).

set the trigger level to +2 divisions from the screen center. For
11. Using
negative slope triggering, the trigger level is the bottom of the trigger icon ( ).
12. Set the 5500A to source +3V DC.
13. Verify that no trace is shown on the test tool display, and that the status line at the
display bottom shows Wait:A . If the display shows the traces and status Hold:A ,
then press
to re-arm the test tool for a trigger.
14. Decrease the 5500A voltage slowly in 0.1V steps, using the 5500A EDIT FIELD
function, until the test tool is triggered, and the traces are shown.
4-12

Performance Verification
4.5 Input A and Input B Tests

4

15. Verify that the 5500A voltage is between +1.5V and +2.5V when the test tool is
triggered. To repeat the test, start at step 12.
16. Set the 5500A to Standby.
17. Press

to clear the display.

18. Select the following test tool setup:
•

Press

to open the SCOPE INPUTS menu.

•

Press

to open the TRIGGER menu, and choose:

INPUT: ■ B | SCREEN UPDATE: ■ FREE RUN | AUTO RANGE: ■ >15HZ

•

Press

to enable the arrow keys for Trigger Level and Slope adjustment.

•

Using

select positive slope triggering (trigger icon

•

Using
set the trigger level to +2 divisions from the screen center. For
positive slope triggering, the trigger level is the top of the trigger icon ( ).

).

19. Set the 5500A to source 0.4V DC.
20. Verify that no trace is shown on the test tool display, and that the status line at the
display bottom shows Wait:B . If the display shows the traces and status Hold:B ,
then press
to re-arm the test tool for a trigger.
21. Increase the 5500A voltage slowly in 0.1V steps, using the 5500A EDIT FIELD
function, until the test tool is triggered, and the traces are shown.
22. Verify that the 5500A voltage is between +1.5V and +2.5V when the test tool is
triggered.
To repeat the test, start at step 19.
23. Set the 5500A to Standby.
24. Press

to clear the display.

25. Press

to enable the arrow keys for Trigger Level and Slope adjustment.

26. Using

select negative slope triggering ( ).

27. Using
set the trigger level to +2 divisions from the screen center. For
negative slope triggering, the trigger level is the bottom of the trigger icon ( ).
28. Set the 5500A to source +3V DC.
29. Verify that no trace is shown on the test tool display, and that the status line at the
display bottom shows Wait:B . If the display shows the traces and status Hold:B ,
then press
to re-arm the test tool for a trigger.
30. Decrease the 5500A voltage in 0.1V steps, using the 5500A EDIT FIELD function,
until the test tool is triggered, and the traces are shown.
31. Verify that the 5500A voltage is between +1.5V and +2.5V when the test tool is
triggered. To repeat the test, start at step 28.
32. When you are finished, set the 5500A to Standby.

4-13

123
Service Manual

4.5.9 Input A and B DC Voltage Accuracy Test
WARNING
Dangerous voltages will be present on the calibration source
and connecting cables during the following steps. Ensure that
the calibrator is in standby mode before making any connection
between the calibrator and the test tool.
Proceed as follows:
1. Connect the test tool to the 5500A as for the previous test (see Figure 4-5).
2. Select the following test tool setup:
•

Press

select auto ranging (AUTO in top of display).

•

Press

to open the INPUT A MEASUREMENTS menu, and choose:

MEASURE on A: ■ VDC

•

Press

to open the INPUT B MEASUREMENTS menu, and choose:

INPUT B: ■ ON | MEASURE on B: ■ VDC

•

Using
change the time base to select manual time base ranging, and lock
the time base on 10 ms/div.

•

Press

to open the SCOPE INPUTS menu.

•

Press

to open the SCOPE OPTIONS menu, and choose:

SCOPE MODE: ■ NORMAL | WAVEFORM MODE: ■ SMOOTH

•

Move the Input A and Input B ground level (indicated by zero icon
center grid line. Proceed as follows:

) to the

Press

to enable the arrow keys for moving the Input A ground level.

Press

to enable the arrow keys for moving the Input B ground level.

Using the

keys move the ground level.

set the Input A and B sensitivity to the first test point in Table 4-2.
3. Using
The corresponding range is shown in the second column of the table.
4. Set the 5500A to source the appropriate DC voltage.
5. Observe the main reading and check to see if it is within the range shown under the
appropriate column.
6. Continue through the test points.
7. When you are finished, set the 5500A to 0 (zero) Volt, and to Standby.

4-14

Performance Verification
4.5 Input A and Input B Tests

4

Table 4-2. Volts DC Measurement Verification Points
1)

Sensitivity
(Oscilloscope)

Range
(Meter)

5500A output,
V DC

5 mV/div

500 mV

15 mV

014.4 to 015.6

2)

10 mV/div

500 mV

30 mV

029.3 to 030.7

2)

20 mV/div

500 mV

60 mV

059.2 to 060.8

50 mV/div

500 mV

150 mV

148.7 to 151.3

100 mV/div

500 mV

300 mV

298.0 to 302.0

200 mV/div

500 mV

500 mV

497.0 to 503.0

-500 mV

-497.0 to -503.0

0 mV

-000.5 to + 000.5

Input A-B DC Reading

500 mV/div

5V

1.5V

1.487 to 1.513

1 V/div

5V

3V

2.980 to 3.020

2 V/div

5V

5V

4.970 to 5.030

-5V

-4.970 to -5.030

0V

-0.005 to +0.005

5 V/div

50V

15V

14.87 to 15.13

10 V/div

50V

30V

29.80 to 30.20

20 V/div

50V

50V

49.70 to 50.30

-50V

-49.70 to -50.30

0V

-00.05 to +00.05

50 V/div

500V

150V

148.7 to 151.3

100 V/div

500V

300V

298.0 to 302.0

1)

The 500V and 1250V range will be tested in Section 4.5.14

2)

Due to calibrator noise, occasionally OL (overload) can be shown.

4.5.10 Input A and B AC Voltage Accuracy Test
Warning
Dangerous voltages will be present on the calibration source
and connecting cables during the following steps. Ensure that
the calibrator is in standby mode before making any connection
between the calibrator and the test tool.
Proceed as follows to test the Input A and B AC Voltage accuracy:
1. Connect the test tool to the 5500A as for the previous test (see Figure 4-5).

4-15

123
Service Manual

2. Select the following test tool setup:
•

to select auto ranging (AUTO in top of display).
Press
Do not press
anymore!

•

Press

to open the INPUT A MEASUREMENTS menu, and choose:

MEASURE on A: ■ VAC

•

Press

to open the INPUT B MEASUREMENTS menu, and choose:

INPUT B: ■ ON | MEASURE on B: ■ VAC

•

Move the Input A and Input B ground level (indicated by zero icon
center grid line. Proceed as follows:

) to the

Press

to enable the arrow keys for moving the Input A ground level.

Press

to enable the arrow keys for moving the Input B ground level.

Using the

keys move the ground level.

set the Input A and B sensitivity to the first test point in Table 4-3.
3. Using
The corresponding range is shown in the second column of the table.
4. Set the 5500A to source the required AC voltage (NORMAL output, WAVE sine).
5. Observe the Input A and Input B main reading and check to see if it is within the
range shown under the appropriate column.
6. Continue through the test points.
7. When you are finished, set the 5500A to Standby.
Table 4-3. Volts AC Measurement Verification Points
1)

Sensitivity
(Oscilloscope)

Range
(Meter)

5500A output
Volts rms

5500A
Frequency

Reading A-B

200 mV/div

500 mV

500 mV

60 Hz

494.0 to 506.0

500 mV

20 kHz

486.0 to 514.0

5V

20 kHz

4.860 to 5.140

5V

60 Hz

4.940 to 5.060

50V

60 Hz

49.40 to 50.60

50V

20 kHz

48.60 to 51.40

2V/div

5V

20V/div

1)

50V

The 500V and 1250V range will be tested in Section 4.5.14

4.5.11 Input A and B AC Input Coupling Test
Proceed as follows to test the Input A and B AC coupled input lower transition point:
1. Connect the test tool to the 5500A as for the previous test (see Figure 4-5).
2. Select the following test tool setup:

4-16

•

Use the setup of the previous step (AUTO time base, traces at vertical center).

•

Using

select 200 mV/div for Input A and B (500 mV range).

Performance Verification
4.5 Input A and Input B Tests

•

Press

4

to open the SCOPE INPUTS menu, and choose:

INPUT A: ■ AC | ■ NORMAL | INPUT B: ■ AC | NORMAL■
•

Press

to open the SCOPE INPUTS menu.

•

Press

to open the TRIGGER menu, and choose:

INPUT: A | SCREEN UPDATE: ■ FREE RUN | AUTO RANGE: ■ > 1HZ

3. Set the 5500A to source an AC voltage, to the first test point in Table 4-4
(NORMAL output, WAVE sine).
4. Observe the Input A and Input B main reading and check to see if it is within the
range shown under the appropriate column.
5. Continue through the test points.
6. When you are finished, set the 5500A to Standby.
Table 4-4. Input A and B AC Input Coupling Verification Points
5500A output, V rms

5500A Frequency

Reading A-B

500.0 mV

10 Hz

> 344.0

500.0 mV

33 Hz

> 469.0

500.0 mV

60 Hz

> 486.5

4.5.12 Input A and B Volts Peak Measurements Test
WARNING
Dangerous voltages will be present on the calibration source
and connecting cables during the following steps. Ensure that
the calibrator is in standby mode before making any connection
between the calibrator and the test tool.
Proceed as follows to test the Volts Peak measurement function:
1. Connect the test tool to the 5500A as for the previous test (see Figure 4-5).
2. Select the following test tool setup:
•

Press

to open the SCOPE INPUTS menu.

•

Press

to open the TRIGGER menu, and choose:

INPUT: A | SCREEN UPDATE: ■ FREE RUN | AUTO RANGE: ■ > 15HZ

•

Press

to select auto ranging (AUTO in top of display).

•

Press

to open the INPUT A MEASUREMENTS menu, and choose:

MEASURE on A: ■ PEAK

From the INPUT A PEAK sub-menu choose:
PEAK TYPE : ■ PEAK-PEAK

•

Press

to open the INPUT B MEASUREMENTS menu, and choose:

INPUT B: ■ ON | MEASURE on B: ■ PEAK

4-17

123
Service Manual

From the INPUT B PEAK sub-menu choose:
PEAK TYPE : ■ PEAK-PEAK
•

Using

select 1V/div for input A and B.

3. Set the 5500A to source a sine wave, to the first test point in Table 4-5 (NORMAL
output, WAVE sine).
4. Observe the Input A and Input B main reading and check to see if it is within the
range shown under the appropriate column.
5. Continue through the test points.
6. When you are finished, set the 5500A to Standby.
Table 4-5. Volts Peak Measurement Verification Points
5500A output, Vrms (sine)

5500A Frequency

Reading A-B

1.768 (5V peak)

1 kHz

4.50 to 5.50

4.5.13 Input A and B Phase Measurements Test
Proceed as follows:
1. Connect the test tool to the 5500A as for the previous test (see Figure 4-5).
2. Select the following test tool setup:
•

Press

to select auto ranging (AUTO in top of display).

•

Press

to open the INPUT A MEASUREMENTS menu, and choose:

MEASURE on A: ■ PHASE

•

Press

to open the INPUT B MEASUREMENTS menu, and choose:

INPUT B: ■ ON | MEASURE on B: ■ PHASE
•

Using

select 1V/div for input A and B.

3. Set the 5500A to source a sine wave, to the first test point in Table 4-6 (NORMAL
output, WAVE sine).
4. Observe the Input A and Input B main reading and check to see if it is within the
range shown under the appropriate column.
5. Continue through the test points.
6. When you are finished, set the 5500A to Standby.
Table 4-6. Phase Measurement Verification Points

4-18

5500A output, Vrms (sine)

5500A Frequency

Reading A-B

1.5V

1 kHz

-2 to +2 Deg

Performance Verification
4.5 Input A and Input B Tests

4

4.5.14 Input A and B High Voltage AC/DC Accuracy Test
Warning
Dangerous voltages will be present on the calibration source
and connecting cables during the following steps. Ensure that
the calibrator is in standby mode before making any connection
between the calibrator and the test tool.
Proceed as follows to test the Input A&B High Voltage AC and DC Accuracy:
1. Connect the test tool to the 5500A as shown in Figure 4-6.

ST8129.CGM

Figure 4-6. Test Tool Input A-B to 5500A Normal Output for >300V

2. Select the following test tool setup:
•

Press
to select auto ranging (AUTO in top of display).
Do not press
anymore!

•

Press

to open the INPUT A MEASUREMENTS menu, and choose:

MEASURE on A: ■ VAC

•

Press

to open the INPUT A MEASUREMENTS menu, and choose:

MEASURE on A: ■ VDC (VDC

•

Press

becomes main reading, VAC secondary reading)

to open the INPUT B MEASUREMENTS menu, and choose:

INPUT B: ■ ON | MEASURE on B: ■ VAC

•

Press

to open the INPUT B MEASUREMENTS menu, and choose:

INPUT B: ■ ON | MEASURE on B: ■ VDC

•

Move the Input A and Input B ground level (indicated by zero icon
center grid line. Proceed as follows:

) to the

Press

to enable the arrow keys for moving the Input A ground level.

Press

to enable the arrow keys for moving the Input B ground level.

Using the

keys move the ground level.
4-19

123
Service Manual

3. Using
set the Input A and B sensitivity to the first test point in Table 4-7.
The corresponding range is shown in the second column of the table.
4. Set the 5500A to source the required AC voltage (NORMAL output, WAVE sine).
5. Observe the Input A and B main reading (V DC) and secondary reading (V-AC) and
check to see if it is within the range shown under the appropriate column.
6. Continue through the test points.
7. When you are finished, set the 5500A to Standby
Table 4-7. V DC and V AC High Voltage Verification Tests
Sensitivity
(Scope)

Range
(Meter)

5500A
output Vrms

5500A
Frequency

Main (DC)
Reading A-B

200V/div

500V

0V

DC

-000.5 to +000.5

+500V

DC

+497.0 to +503.0

-500V

DC

-497.0 to -503.0

500V

60Hz

494.0 to 506.0

500V

10 kHz

486.0 to 514.0

600V

10 kHz

0.570 to 0.630

600V

60Hz

0.584 to 0.616

+600V

DC

+0.592 to +0.608

-600V

DC

-0.592 to -0.608

0V

DC

-0.005 to +0.005

500V/div

1250V

Secondary (AC)
Reading A-B

4.5.15 Resistance Measurements Test
Proceed as follows:
1. Connect the test tool to the 5500A as shown in Figure 4-7.

ST8003.CGM

Figure 4-7. Test Tool Input A to 5500A Normal Output 4-Wire

4-20

Performance Verification
4.5 Input A and Input B Tests

4

2. Select the following test tool setup:
•

Press

to select auto ranging (AUTO in top of display).

•

Press

to open the INPUT A MEASUREMENTS menu, and choose:

MEASURE on A: ■ OHM Ω

3. Set the 5500A to the first test point in Table 4-8.
Use the 5500A “COMP 2 wire” mode for the verifications up to and including
50 kΩ. For the higher values, the 5500A will turn off the “COMP 2 wire” mode.
4. Observe the Input A main reading and check to see if it is within the range shown
under the appropriate column.
5. Continue through the test points.
6. When you are finished, set the 5500A to Standby.
Table 4-8. Resistance Measurement Verification Points
5500A output

Reading

0Ω

000.0 to 000.5

400Ω

397.1 to 402.9

4 kΩ

3.971 to 4.029

40 kΩ

39.71 to 40.29

400 kΩ

397.1 to 402.9

4 MΩ

3.971 to 4.029

30 MΩ

29.77 to 30.23

4.5.16 Continuity Function Test
Proceed as follows:
1. Connect the test tool to the 5500A as for the previous test (see Figure 4-7).
2. Select the following test tool setup:
•

Press

to select auto ranging (AUTO in top of display).

•

Press

to open the INPUT A MEASUREMENTS menu, and choose:

MEASURE on A: ■ CONT )))

3. Set the 5500A to 25Ω. Use the 5500A “COMP 2 wire” mode.
4. Listen to hear that the beeper sounds continuously.
5. Set the 5500A to 35Ω.
6. Listen to hear that the beeper does not sound.
7. When you are finished, set the 5500A to Standby.

4-21

123
Service Manual

4.5.17 Diode Test Function Test
Proceed as follows to test the Diode Test function :
1. Connect the test tool to the 5500A as for the previous test (see Figure 4-7).
2. Press

to open the INPUT A MEASUREMENTS menu, and choose:

MEASURE on A: ■ DIODE

3. Set the 5500A to 1 kΩ
Ω. Use the 5500A “COMP 2 wire” mode.
4. Observe the main reading and check to see if it is within 0.425 and 0.575V.
5. Set the 5500A to 1V DC.
6. Observe the main reading and check to see if it is within 0.975 and 1.025V.
7. When you are finished, set the 5500A to Standby.

4.5.18 Capacitance Measurements Test
Proceed as follows:
1. Connect the test tool to the 5500A as for the previous test (see Figure 4-7).
Ensure that the 5500A is in Standby.
2. Select the following test tool setup:
•

Press

to open the INPUT A MEASUREMENTS menu, and choose:

MEASURE on A: ■ CAP

•

Press

to select auto ranging (AUTO in top of display).

•

Press

to open the INPUT A MEASUREMENTS menu.

•

Press

the select the METER A OPTIONS MENU, and choose:

SMOOTHING: ■ NORMAL | ZERO REF: ■ ON

The ZERO REF function is used to eliminate the capacitance of the test leads.
3. Set the 5500A to the first test point in Table 4-9. Use the 5500A “COMP OFF”
mode.
4. Observe the Input A main reading and check to see if it is within the range shown
under the appropriate column.
5. Continue through the test points.
6. When you are finished, set the 5500A to Standby.
7. Remove all test leads from the test tool to check the zero point.
8. Press

to open the INPUT A MEASUREMENTS menu.

9. Press

the select the METER A OPTIONS MENU, and choose:

SMOOTHING: ■ NORMAL | ZERO REF: ■ OFF

10. Observe the Input A reading and check to see if it is between 00.00 and 00.10 nF.

4-22

Performance Verification
4.5 Input A and Input B Tests

4

Table 4-9. Capacitance Measurement Verification Points
5500A output

Reading

40 nF

39.10 to 40.90

300 nF

293.0 to 307.0

3 µF

2.930 to 3.070

30 µF

29.30 to 30.70

300 µF

293.0 to 307.0

0
(remove test tool input connections )

00.00 to 00.10
(see steps 7...10)

4.5.19 Video Trigger Test
Only one of the systems NTSC, PAL, or SECAM has to be verified.
Proceed as follows:
1. Connect the test tool to the TV Signal Generator as shown in Figure 4-8.

ST8141.CGM

Figure 4-8. Test Tool Input A to TV Signal Generator

2. Select the following test tool setup:
•

Reset the test tool (power off and then on with

•

Press

to open the SCOPE INPUTS menu.

•

Press

to open the TRIGGER menu and choose:

).

■ VIDEO on A...
From the shown VIDEO TRIGGER menu choose:
SYSTEM: ■ NTSC

or ■ PAL or ■ SECAM

LINE: ■ SELECT
POLARITY: ■ POSITIVE

4-23

123
Service Manual

•

Using

•

Using

•

Press

•

Using

set the Input A sensitivity to 200 mV/div.
select 20 µs/div.
to enable the arrow keys for selecting the video line number.
select the line number:

622 for PAL or SECAM
525 for NTSC.
3. Set the TV Signal Generator to source a signal with the following properties:
•

the system selected in step 2

•

gray scale

•

video amplitude 1V (5 divisions on the test tool)

•

chroma amplitude zero.

4. Observe the trace, and check to see if the test tool triggers on line number:
622 for PAL or SECAM, see Figure 4-9
525 for NTSC, see Figure 4-10.
Note
Numerical readings in the pictures shown below may deviate from those
shown in the test tool display during verification.

PAL622.BMP

Figure 4-9. Test Tool Screen for PAL/SECAM
line 622

5. Using

NTSC525.BMP

Figure 4-10. Test Tool Screen for NTSC line
525

select the line number:

310 for PAL or SECAM
262 for NTSC
6. Observe the trace, and check to see if the test tool triggers on:
line number 310 for PAL or SECAM, see Figure 4-11.
line number 262 for NTSC, see Figure 4-12.
4-24

Performance Verification
4.5 Input A and Input B Tests

PAL310.BMP

Figure 4-11. Test Tool Screen for PAL/SECAM
line 310

4

NTSC262.BMP

Figure 4-12. Test Tool Screen for NTSC line
262

7. Apply the inverted TV Signal Generator signal to the test tool.
You can invert the signal by using a Banana Plug to BNC adapter (Fluke
PM9081/001) and a Banana Jack to BNC adapters (Fluke PM9082/001), as shown in
Figure 4-13.

ST8142.CGM

Figure 4-13. Test Tool Input A to TV Signal Generator Inverted

8. Select the following test tool setup:
•

Press

to open the SCOPE INPUTS menu.

•

Press

to open the TRIGGER menu and choose:

■ VIDEO on A
The VIDEO TRIGGER sub-menu is shown now. From the VIDEO TRIGGER
menu choose:
4-25

123
Service Manual
SYSTEM: ■ NTSC or ■ PAL or ■ SECAM or ■ PALplus |
LINE: ■ SELECT |

•

POLARITY: ■ NEGATIVE

•

Using

•

Using

9. Using

set the Input A sensitivity to 200 mV/div.
select 20 µs/div.
select the line number:

310 for PAL or SECAM
262 for NTSC
10. Observe the trace, and check to see if the test tool triggers on:
line number 311 for PAL or SECAM, see Figure 4-14
line number 262 for NTSC, see Figure 4-15.

PAL310I..BMP

Figure 4-14. Test Tool Screen for PAL/SECAM
line 310 Negative Video

NTSC262I.BMP

Figure 4-15. Test Tool Screen for NTSC line
262 Negative Video

This is the end of the Performance Verification Procedure.

4-26

Chapter 5

Calibration Adjustment

Title
5.1 General ........................................................................................................
5.1.1 Introduction..........................................................................................
5.1.2 Calibration number and date................................................................
5.1.3 General Instructions.............................................................................
5.2 Equipment Required For Calibration..........................................................
5.3 Starting Calibration Adjustment .................................................................
5.4 Contrast Calibration Adjustment ................................................................
5.5 Warming Up & Pre-Calibration ..................................................................
5.6 Final Calibration .........................................................................................
5.6.1 HF Gain Input A&B ............................................................................
5.6.2 Delta T Gain, Trigger Delay Time & Pulse Adjust Input A................
5.6.3 Pulse Adjust Input A (firmware V01.00 only) ....................................
5.6.4 Pulse Adjust Input B............................................................................
5.6.5 Gain DMM (Gain Volt) .......................................................................
5.6.6 Volt Zero..............................................................................................
5.6.7 Zero Ohm (firmware V01.00 only)......................................................
5.6.8 Gain Ohm.............................................................................................
5.6.9 Capacitance Gain Low and High.........................................................
5.6.10 Capacitance Clamp & Zero................................................................
5.6.11 Capacitance Gain ...............................................................................
5.7 Save Calibration Data and Exit...................................................................

Page
5-3
5-3
5-3
5-3
5-4
5-4
5-6
5-7
5-7
5-7
5-9
5-10
5-11
5-11
5-13
5-13
5-14
5-15
5-15
5-16
5-16

5-1

Calibration Adjustment
5.1 General

5

5.1 General
5.1.1 Introduction
The following information, provides the complete Calibration Adjustment procedure for
the Fluke 123 test tool. The test tool allows closed-case calibration using known
reference sources. It measures the reference signals, calculates the correction factors,
and stores the correction factors in RAM. After completing the calibration, the
correction factors can be stored in FlashROM.
The test tool should be calibrated after repair, or if it fails the performance test. The test
tool has a normal calibration cycle of one year.

5.1.2 Calibration number and date
When storing valid calibration data in FlashROM after performing the calibration
adjustment procedure, the calibration date is set to the actual test tool date, and
calibration number is raised by one. To display the calibration date and - number:
1. Press

to open the USER OPTIONS menu.

2. Press

to show the VERSION&CALIBRATION screen (see Figure 5.1).

3. Press

to return to normal mode.

VERSION.BMP

Figure 5-1. Version & Calibration Screen

5.1.3 General Instructions
Follow these general instructions for all calibration steps:
•

Allow the 5500A to satisfy its specified warm-up period. For each calibration point ,
wait for the 5500A to settle.

•

The required warm up period for the test tool is included in the WarmingUp &
PreCal calibration step.

•

Ensure that the test tool battery is charged sufficiently.
5-3

123
Service Manual

5.2 Equipment Required For Calibration
The primary source instrument used in the calibration procedures is the Fluke 5500A. If
a 5500A is not available, you can substitute another calibrator as long as it meets the
minimum test requirements.
•

Fluke 5500A Multi Product Calibrator, including 5500A-SC Oscilloscope
Calibration Option.

•

Stackable Test Leads (4x), supplied with the 5500A.

•

50Ω Coax Cables (2x), Fluke PM9091 or PM9092.

•

50Ω feed through terminations (2x), Fluke PM9585.

•

Fluke BB120 Shielded Banana to Female BNC adapters (2x), supplied with the
Fluke 123.

•

Dual Banana Plug to Female BNC Adapter (1x), Fluke PM9081/001.

•

Male BNC to Dual Female BNC Adapter (1x), Fluke PM9093/001.

•

20V ± 1V, 0.5A, DC power supply (not for serial numbers > DM7000000).

•

Power adapter input supply cable (not for serial numbers > DM7000000); refer to
Section 8.8 for the ordering number.

5.3 Starting Calibration Adjustment
Follow the steps below to start calibration adjustments.
1. Power the test tool via the power adapter input, using the PM8907 power adapter.
2. Check the actual test tool date, and adjust the date if necessary:
•

press

•

using

•

press

•

adjust the date if necessary.

to open the USER OPTIONS menu
select DATE ADJUST
to open the DATE ADJUST menu

3. Select the Maintenance mode.
The Calibration Adjustment Procedure uses built-in calibration setups, that can be
accessed in the Maintenance mode.
To enter the Maintenance mode proceed as follows:
•

Press and hold

•

Press and release

•

Release

•

The display shows the Calibration Adjustment Screen.

The display shows the first calibration step Warming Up (CL 0200) , and the
calibration status :IDLE (valid) or :IDLE (invalid).

5-4

Calibration Adjustment
5.3 Starting Calibration Adjustment

5

4. Continue with either a. or b. below:
a. To calibrate the display contrast adjustment range and the default contrast, go to
Section 5.4 Contrast Calibration Adjustment.
This calibration step is only required if the display cannot made dark or light
enough, or if the display after a test tool reset is too light or too dark.
b. To calibrate the test tool without calibrating the contrast , go to Section 5.5
Warming Up & Pre-calibration.
Explanation of screen messages and key functions.
When the test tool is in the Maintenance Mode, only the F1 to F4 soft keys, the ON/OFF
key, and the backlight key can be operated, unless otherwise stated.
The calibration adjustment screen shows the actual calibration step (name and number)
and its status :
Cal Name (CL nnnn) :Status
Status

Calibration step nnnn

can be:

IDLE (valid)

After (re)entering this step, the calibration process is not started.
The calibration data of this step are valid. This means that the
last time this step was done, the calibration process was
successful. It does not necessarily mean that the unit meets the
specifications related to this step!

IDLE (invalid)

After (re)entering this step, the calibration process is not started.
The calibration data are invalid. This means that the unit will not
meet the specifications if the calibration data are saved.

BUSY aaa% bbb%

Calibration adjustment step in progress; progress % for Input A
and Input B.

READY

Calibration adjustment step finished.

Error :xxxx

Calibration adjustment failed, due to wrong input signal(s) or
because the test tool is defective. The error codes xxxx are
shown for production purposes only.

Functions of the keys F1-F4 are:
PREV

select the previous step

NEXT

select the next step

CAL

start the calibration adjustment of the actual step

EXIT

leave the Maintenance mode

Readings and traces
After completing a calibration step, readings and traces are shown using the new
calibration data.

5-5

123
Service Manual

5.4 Contrast Calibration Adjustment
After entering the Maintenance mode, the test tool display shows
Warming Up (CL 0200):IDLE (valid).
Do not press
now! If you did, turn the test tool off and on, and enter the
Maintenance mode again.
Proceed as follows to adjust the maximum display darkness (CL0100), the default
contrast (CL0110) , and the maximum display brightness (CL0120).
1.

Press

a three times to select the first calibration step. The display shows:

Contrast (CL 0100) :MANUAL

2. Press

CAL. The display will show a dark test pattern, see Figure 5-2

adjust the display to the maximum darkness, at which the test pattern
3. Using
is only just visible.
4.

Press

to select the default contrast calibration. The display shows:

Contrast (CL 0110) :MANUAL

5. Press

CAL. The display shows the test pattern at default contrast.
set the display to optimal (becomes default) contrast.

6. Using
7.

Press

to select maximum brightness calibration. The display shows:

Contrast (CL 0120) :MANUAL

8. Press

CAL. The display shows a bright test pattern.

adjust the display to the maximum brightness, at which the test
9. Using
pattern is only just visible.
10. You can now :
•

Exit, if only the Contrast had to be adjusted. Continue at Section 5.7.

OR
•

Do the complete calibration. Press
and continue at Section 5.5.

to select the next step (Warming Up),

Figure 5-2. Display Test Pattern

5-6

Calibration Adjustment
5.5 Warming Up & Pre-Calibration

5

5.5 Warming Up & Pre-Calibration
After entering the Warming-Up & Pre-Calibration state, the display shows:
WarmingUp (CL 0200):IDLE (valid) or (invalid).
You must always start the Warming Up & Pre Calibration at Warming Up (CL0200) .
Starting at another step will make the calibration invalid!
Proceed as follows:
1. Remove all input connections from the test tool.
to start the Warming-Up & Pre-Calibration.
2. Press
The display shows the calibration step in progress, and its status.
The first step is WarmingUp (CL0200) :BUSY 00:29:59 . The warming-up period is
counted down from 00:29:59 to 00:00:00. Then the other pre-calibration steps are
performed automatically. The procedure takes about 60 minutes.
3. Wait until the display shows End Precal :READY
4. Continue at Section 5.6.

5.6 Final Calibration
You must always start the Final Calibration at the first step of Section 5.6.1. Starting at
another step will make the calibration invalid!
If you proceeded to step N (for example step CL 0615), then return to a previous step
(for example step CL 0613) , and then calibrate this step, the complete final calibration
becomes invalid. You must do the final calibration from the beginning (step CL 0600)
again.
You can repeat a step that shows the status :READY by pressing

again.

5.6.1 HF Gain Input A&B
Proceed as follows to do the HF Gain Input A&B calibration:
1. Press

to select the first calibration step in Table 5-1 ( HFG & FI AB (CL 0600): )

2. Connect the test tool to the 5500A as shown in Figure 5-3. Do NOT use 50Ω
terminations!

ST8097.CGM

Figure 5-3. HF Gain Calibration Input Connections

5-7

123
Service Manual

3. Set the 5500A to source a 1 kHz fast rising edge square wave (Output SCOPE,
MODE edge) to the first calibration point in Table 5-1.
4. Set the 5500A in operate (OPR).
to start the calibration.

5. Press

6. Wait until the display shows calibration status READY .
to select the next calibration step, set the 5500A to the next calibration
7. Press
point, and start the calibration. Continue through all calibration points in Table 5-1.
8. Set the 5500A to source a 1 kHz square wave (Output SCOPE, MODE wavegen,
WAVE square), to the first calibration point in Table 5-2.
9. Press

to select the first step in Table 5-2.

10. Press

to start the calibration.

11. Wait until the display shows calibration status READY.
to select the next calibration step, set the 5500A to the next calibration
12. Press
point, and start the calibration. Continue through all calibration points Table 5-2.
13. When you are finished, set the 5500A to Standby.
14. Continue at Section 5.6.2.
Table 5-1. HF Gain Calibration Points Fast
Cal step

5500A Setting
1)

(1 kHz, no
50Ω!)
HFG & FI AB (CL 0600)

10 mV

20 mV

HFG & FI AB (CL 0601)

25 mV

50 mV

HFG & FI AB (CL 0602)

50 mV

100 mV

HFG & FI AB (CL 0603)

100 mV

200 mV

HFG & FI AB (CL 0604)

250 mV

500 mV

HFG & FI AB (CL 0605)

500 mV

1V

HFG & FI AB (CL 0606)

1V

2V

2.5V

5V

HFG & FI AB (CL 0607)
2)
[HFG & FI A (CL 0608), HFG & FI B (CL 0628)]

5-8

Test Tool Input Signal
1)
Requirements
(1 kHz, trise<100 ns,
flatness after rising edge:
<0.5% after 200 ns)

1)

As the 5500A output is not terminated with 50Ω, its output voltage is two times its set voltage

2)

After starting the first step in this table cell, these steps are done automatically.

Calibration Adjustment
5.6 Final Calibration

5

Table 5-2. HF Gain Calibration Points Slow
Cal step

5500A Setting
(1 kHz, MODE
wavegen,
WAVE square)

Test Tool Input Signal
Requirements
(1 kHz square, trise<2 µs,
flatness after rising edge:
<0.5% after 4 µs)

HF-Gain AB (CL 0609)

25V

25V

For firmware V01.00

50V

50V

HF-Gain AB (CL 0610)
[HF-Gain A (CL 0611), HF-Gain B (CL 0631)
HF-Gain A (CL 0612), HF-Gain B (CL 0632)
HF-Gain A (CL 0613), HF-Gain B (CL 0633)
HF-Gain A (CL 0614), HF-Gain B (CL 0634)
1)
HF-Gain A (CL 0615), HF-Gain B (CL 0635)]
For firmware > V01.00
HF-Gain A (CL 0612),
[HF-Gain B (CL 0632)
1)
HF-Gain A (CL 0615), HF-Gain B (CL 0635)]
1)

After starting the first step in this table cell, these steps are done automatically.

5.6.2 Delta T Gain, Trigger Delay Time & Pulse Adjust Input A
Note
For firmware version V01.00 the Pulse adjust Input A calibration is a
separate step, described in Section 5.6.3.
Proceed as follows to do the calibrations:
1. Press

to select calibration step Delta T (CL 0700):IDLE

2. Connect the test tool to the 5500A as shown in Figure 5-4.

ST8004.CGM

Figure 5-4. 5500A Scope Output to Input A

3. Set the 5500A to source a 1V, 1 MHz fast rising (rise time ≤ 1 ns) square wave
(SCOPE output, MODE edge).
5-9

123
Service Manual

4. Set the 5500A to operate (OPR).
to start the calibration.
5. Press
The Delta T gain, Trigger Delay (CL0720), and Pulse Adjust Input A (CL0640) will
be calibrated.
(For firmware V01.00 CL0640 is a separate step!).
6. Wait until the display shows Pulse Adj A (CL 0640):READY.
(For firmware V01.00 wait until the display shows Delay (CL 0720):READY
7. When you are finished, set the 5500A to Standby.
8. Continue at Section 5.6.4.
(For firmware V01.00 continue at Section 5.6.3).

5.6.3 Pulse Adjust Input A (firmware V01.00 only)
Note
For firmware versions newer than V01.00 the Pulse Adjust Input A
(CL0640) step is included in Section 5.6.2.
Proceed as follows to do the Pulse Adjust Input A calibration:
1. Press

to select calibration step Pulse Adj A (CL 0640):IDLE

2. Connect the test tool to the 5500A as for the previous calibration (Figure 5-4).
3. Set the 5500A to source a 1V, 1 MHz fast rising square wave (SCOPE output,
MODE edge) (rise time ≤ 1 ns, aberrations <2% pp).
4. Set the 5500A to operate (OPR).
5. Press

to start the calibration.

6. Wait until the display shows Pulse Adj A (CL 0640): READY.
7. When you are finished, set the 5500A to Standby.
8. Continue at Section 5.6.4.

5-10

Calibration Adjustment
5.6 Final Calibration

5

5.6.4 Pulse Adjust Input B
Proceed as follows to do the Pulse Adjust Input A calibration:
1. Press

to select calibration step Pulse Adj B (CL 0660):IDLE

2. Connect the test tool to the 5500A as shown in Figure 5-5.

ST8005.CGM

Figure 5-5. 5500A Scope Output to Input B

3. Set the 5500A to source a 1V, 1 MHz fast rising square wave (SCOPE output,
MODE edge) (rise time ≤ 1 ns, aberrations <2% pp).
4. Set the 5500A to operate (OPR).
5. Press

to start the calibration.

6. Wait until the display shows Pulse Adj B (CL 0660):READY.
7. When you are finished, set the 5500A to Standby.
8. Continue at Section 5.6.5.

5.6.5 Gain DMM (Gain Volt)
Warning
Dangerous voltages will be present on the calibration source
and connection cables during the following steps. Ensure that
the calibrator is in standby mode before making any connection
between the calibrator and the test tool.
Proceed as follows to do the Gain DMM calibration.
1. Press

to select the first calibration step in Table 5-3.

2. Connect the test tool to the 5500A as shown in Figure 5-6.

5-11

123
Service Manual

ST8001.CGM

Figure 5-6. Volt Gain Calibration Input Connections <300V

3. Set the 5500A to supply a DC voltage, to the first calibration point in Table 5-3.
4. Set the 5500A to operate (OPR).
5. Press

to start the calibration.

6. Wait until the display shows calibration status :READY.
7. Press
to select the next calibration step, set the 5500A to the next calibration
point, and start the calibration. Continue through all calibration points of Table 5-3
8. Set the 5500A to Standby, and continue with step 9.
Table 5-3. Volt Gain Calibration Points <300V
Cal step

9. Press
5-12

Input value

Gain DMM (CL0800)

12.5 mV

Gain DMM (CL0801)

25 mV

Gain DMM (CL0802)

50 mV

Gain DMM (CL0803)

125 mV

Gain DMM (CL0804)

250 mV

Gain DMM (CL0805)

500 mV

Gain DMM (CL0806)

1.25V

Gain DMM (CL0807)

2.5V

Gain DMM (CL0808)

5V

Gain DMM (CL0809)

12.5V

Gain DMM (CL0810)

25V

Gain DMM (CL0811)

50V

Gain DMM (CL0812)

125V

Gain DMM (CL0813)

250V

to select calibration step Gain DMM (CL0814) :IDLE

(set 5500A to OPR!)

Calibration Adjustment
5.6 Final Calibration

5

10. Connect the test tool to the 5500A as shown in Figure 5-7.

ST8129.CGM

Figure 5-7. Volt Gain Calibration Input Connections 500V

11. Set the 5500A to supply a DC voltage of 500V.
12. Set the 5500A to operate (OPR).
to start the calibration.
13. Press
Gain DMM (CL0814) and Gain DMM (CL0815) will be calibrated now.
14. Wait until the display shows calibration status Gain DMM (CL0815):READY.
15. Set the 5500A to 0V (zero) and to Standby.
16. Continue at Section 5.6.6.

5.6.6 Volt Zero
Proceed as follows to do the Volt Zero calibration:
1. Press

to select calibration adjustment step Volt Zero (CL 0820):IDLE.

2. Terminate Input A and Input B with the BB120 and a 50Ω or lower termination.
3. Press

to start the zero calibration of all mV/d settings (CL0820...CL0835)

4. Wait until the display shows Volt Zero (CL 0835):READY.
5. Remove the 50Ω terminations from the inputs.
6. Continue at Section 5.6.8. (For firmware version V01.00 continue at Section 5.6.7).

5.6.7 Zero Ohm (firmware V01.00 only)
Proceed as follows to do the Zero Ohm calibration:
1. Press

to select calibration adjustment step Zero Ohm (CL 0840):IDLE

2. Make a short circuit between the Input A banana socket and the COM input .
3. Press

to start the Ohm Zero calibration of all ranges (CL 0840...CL 0846).

4. Wait until the display shows the calibration status Zero Ohm (CL 0846):READY.
5. Remove the Input A to COM short.
6. Continue at Section 5.6.8.
5-13

123
Service Manual

5.6.8 Gain Ohm
Proceed as follows to do the Gain Ohm calibration:
1. Press

to select calibration adjustment step Gain Ohm (CL 0860):IDLE

2. Connect the UUT to the 5500A as shown in Figure 5-8.
Notice that the sense leads must be connected directly to the test tool.

ST8003.CGM

Figure 5-8. Four-wire Ohms calibration connections

3. Set the 5500A to the first test point in Table 5-4. Use the 5500A “COMP 2 wire”
mode for the calibration adjustments up to and including 100 kΩ. For the higher
values, the 5500A will turn off the “COMP 2 wire” mode.
4. Set the 5500A to operate (OPR).
5. Press

to start the calibration.

6. Wait until the display shows the calibration status :READY.
7. Press
to select the next calibration step, set the 5500A to the next calibration
point, and start the calibration. Continue through all calibration points.
8. When you are finished, set the 5500A to Standby.
9. Continue at Section 5.6.9.
Table 5-4. Ohm Gain Calibration Points
Cal Step
Gain Ohm (CL 0860) [Cap. Pos. (CL 0920), Cap.Neg. (CL 0921)]

100Ω

Gain Ohm (CL 0861) [Cap. Pos. (CL 0922), Cap.Neg. (CL 0923)]

1)

1 kΩ

Gain Ohm (CL 0862) [Cap. Pos. (CL 0924), Cap.Neg. (CL 0925)]

1)

10 kΩ

Gain Ohm (CL 0863) [Cap. Pos. (CL 0926), Cap.Neg. (CL 0927)]

1)

100 kΩ

Gain Ohm (CL 0864)
Gain Ohm (CL 0865) [Gain Ohm (CL 0866)]
1)

2)

5-14

Input Value
1)

1 MΩ
2)

10 MΩ

The capacitance measurement current calibrations (Cap.Pos. and Cap.Neg) are done automatically after
the Gain Ohm calibration.
The Gain Ohm (CL0866) calibration step is done automatically after the Gain Ohm (CL0865) calibration.

Calibration Adjustment
5.6 Final Calibration

5

5.6.9 Capacitance Gain Low and High
Proceed as follows to do the Capacitance Gain calibration:
1. Press

to select calibration adjustment step Cap. Low (CL 0900):IDLE

2. Connect the test tool to the 5500A as shown in Figure 5-9.

ST8002.CGM

Figure 5-9. Capacitance Gain Calibration Input Connections

3. Set the 5500A to supply 250 mV DC.
4. Set the 5500A to operate (OPR).
5. Press

to start the calibration.

6. Wait until the display shows Cap. Low (CL 0900):READY.
7. Press

to select calibration adjustment step Cap. High (CL 0910):IDLE

8. Set the 5500A to supply 50 mV DC.
9. Press

to start the calibration.

10. Wait until the display shows Cap High (CL 910):READY.
11. Set the 5500A to Standby.
12. Continue at Section 5.6.10.

5.6.10 Capacitance Clamp & Zero
Proceed as follows to do the Capacitance Clamp Voltage & Zero calibration:
1. Press

to select calibration adjustment step Cap. Clamp (CL 0940):IDLE

2. Remove any input connection from the test tool (open inputs).
to start the calibration.
3. Press
The capacitance measurement clamp voltage Cap. Clamp (CL 0940), and the zero of
the capacitance ranges Cap. Zero (CL 0950)... Cap. Zero (CL 0953) will be calibrated
now. Firmware version V01.00 has an additional step Cap. Zero (CL 0954).
4. Wait until the display shows Cap. Zero (CL 0953): READY.
(For firmware V01.00 wait until the display shows Cap. Zero (CL 0954): READY).
5. Continue at Section 5.6.11.
5-15

123
Service Manual

5.6.11 Capacitance Gain
Proceed as follows to do the Capacitance Gain calibration:
to select calibration adjustment step Cap. Gain (CL 0960):IDLE

1. Press

2. Connect the test tool to the 5500A as shown in Figure 5-9 (Section 5.6.9).
3. Set the 5500A to 500 nF.
4. Set the 5500A to operate (OPR).
5. Press

to start the calibration.

6. Wait until the display shows Cap. Gain (CL 0960):READY.
7. Continue at Section 5.7 to save the calibration data.

5.7 Save Calibration Data and Exit
Proceed as follows to save the calibration data, and to exit the Maintenance mode:
1. Remove all test leads from the test tool inputs. Do NOT turn off the test tool!
Steps 2 and 3 are required for serial numbers below DM7000000 only.
2. Remove the PM8907 power adapter supply from the test tool.
3. Power the test tool via the power adapter input, using a 20V ± 1V, 0.5A, DC supply.
For this purpose, a special supply cable (see Figure 5-10) can be ordered; refer to
Section 8.7 for the ordering number.

+ RED
- WHITE

+
Figure 5-10. 20 V Supply Cable for Calibration

CAUTION
To avoid damaging the test tool be sure to apply the polarity
and voltage level of the 20V supply voltage correctly.
4. Press

(EXIT). The test tool will display:

Calibration data is valid
Save data and EXIT maintenance?

Note
Calibration data valid indicates that the calibration adjustment procedure
is performed correctly. It does not indicate that the test tool meets the
characteristics listed in Chapter 2.
5-16

Calibration Adjustment
5.7 Save Calibration Data and Exit

4. Press
-

5

(YES) to save and exit.

Notes
The calibration number and date will be updated only if the
calibration data have been changed and the data are valid.

-

The calibration data will change when a calibration adjustment has
been done. The data will not change when just entering and then
leaving the maintenance mode without doing a calibration
adjustment.

-

The calibration number and date will NOT be updated if only the
display contrast has been adjusted.

Possible error messages.
The following messages can be shown on the test tool display:
WARNING.Calibration data NOT valid.
Save data and EXIT?

Proceed as follows:
•

To return to the Maintenance mode:
Press

NO.

Now press
until the display shows WarmingUp (CL 0200):IDLE, and calibrate the
test tool, starting at Section 5.5.
•

To exit and save the INVALID calibration data:
Press

YES.

The test tool will show the message The test tool needs calibration. Please contact your
service center at power on. The calibration date and number will not be updated. A
complete recalibration must be done.
•

To exit and maintain the old calibration data:
Turn the test tool off.

WARNING.No adapter present.
Calibration data will not be saved.
Exit maintenance mode?

•

To save the calibration data:
Press

NO

The test tool returns to the maintenance mode. Then supply the correct adapter
input voltage, and press
to exit and save.
•

To exit without saving the calibration data:
Press

YES
5-17

Chapter 6

Disassembling the Test Tool

Title
6.1. Introduction................................................................................................
6.2. Disassembling Procedures .........................................................................
6.1.1 Required Tools ....................................................................................
6.2.2 Removing the Battery Pack .................................................................
6.2.3 Removing the Bail ...............................................................................
6.2.4 Opening the Test Tool .........................................................................
6.2.5 Removing the Main PCA Unit.............................................................
6.2.6 Removing the Display Assembly.........................................................
6.2.7 Removing the Keypad and Keypad Foil..............................................
6.3 Disassembling the Main PCA Unit .............................................................
6.4 Reassembling the Main PCA Unit ..............................................................
6.5 Reassembling the Test Tool........................................................................

Page
6-3
6-3
6-3
6-3
6-3
6-3
6-5
6-6
6-6
6-6
6-8
6-8

`

6-1

Disassembling the Test Tool
6.1. Introduction

6

6.1. Introduction
This section provides the required disassembling procedures. The printed circuit board
removed from the test tool must be adequately protected against damage.

Warning
To avoid electric shock, disconnect test leads, probes and
power supply from any live source and from the test tool itself.
Always remove the battery pack before completely
disassembling the test tool. If repair of the disassembled test
tool under voltage is required, it shall be carried out only by
qualified personnel using customary precautions against
electric shock.

6.2. Disassembling Procedures
6.1.1 Required Tools
To access all the assemblies, you need the following:
•

Static-free work surface, and anti-static wrist wrap.

•

#8, and #10 Torx screwdrivers.

•

Cotton gloves (to avoid contaminating the lens, and the PCA).

6.2.2 Removing the Battery Pack
Referring to Figure 6-1, use the following procedure to remove the battery pack.
1. Loosen the M3 Torx screw (item 15) (do not remove it) from the battery door.
2. Lift the battery door at the screw edge to remove it.
3. Lift out the battery pack, and unplug the cable leading to the Main PCA (pull the
cable gently backwards).

6.2.3 Removing the Bail
Referring to Figure 6-1, use the following procedure to remove the bail (item 16).
1. Set the bail to a 45 degree position respective to the test tool bottom.
2. Holding the test tool tight, rotate the bail firmly sideways.

6.2.4 Opening the Test Tool
Referring to Figure 6-1, use the following procedure to open the test tool.
1. Remove the battery pack (see Section 6.2.2)
2. Unscrew the four M3 Torx screws (item 12) that secure the bottom case to the top
case.
3. Hold the test tool upside down, and lift off the bottom case.

6-3

123
Service Manual

ST8014.EPS

Figure 6-1. Fluke 123 Main Assembly

6-4

Disassembling the Test Tool
6.2. Disassembling Procedures

6

6.2.5 Removing the Main PCA Unit
Referring to Figure 6-1, use the following procedure to remove the main PCA unit.
1. Open the test tool (see Section 6.2.4).
2. Disconnect the LCD flex cable, and the keypad foil flat cable, see Figure 6-2.
Unlock the cables by lifting the connector latch. The latch remains attached to the
connector body.
The keypad foil is provided with a shielding flap that covers the LCD flat cable. The
end of the flap is put under the main PCA unit shielding plate, and can be easily
pulled out.
Caution
To avoid contaminating the flex cable contacts with oil from
your fingers, do not touch the contacts (or wear gloves).
Contaminated contacts may not cause immediate instrument
failure in controlled environments. Failures typically show up
when contaminated units are operated in humid areas.
3. Unplug the backlight cable.

Warning
If the battery pack or the power adapter is connected, the LCD
backlight voltage on the wire cable is 400V ! (when the test tool
is on).
4. Remove the two screws (item 10) that secure the Main PCA unit to the top case.
5. Lift the screw end of the Main PCA unit and remove the unit by gently wiggling the
assembly from side to side as you pull backwards.

ST8035.EPS

Figure 6-2. Flex Cable Connectors

6-5

123
Service Manual

6.2.6 Removing the Display Assembly
Caution
Read the Caution statement in Section 6.5 when installing the
display assembly. An incorrect installation can damage the
display assembly.
There are no serviceable parts in the display assembly. Referring to Figure 6-1, use the
following procedure to remove the display assembly.
1. Remove the main PCA unit (see Section 6.2.5).
2. The keypad pressure plate (item 9) is captivated by four plastic keeper tabs in the top
case. Press the plate down, carefully slide the plate to release it from the tabs, and
then remove it.
3. Remove the display assembly (item 6). To prevent finger contamination, wear
cotton gloves, or handle the display assembly by its edge.
After removing the display assembly, the shielding bracket (item 5) with the conductive
foam strip (item 4), the dust seal (item 3), and the shielding foil (item 2) can be removed.

6.2.7 Removing the Keypad and Keypad Foil
Referring to Figure 6-1, use the following procedure to remove the keypad and the
keypad foil.
1. Remove the display assembly (see Section 6.2.6).
2. Remove the keypad foil. Notice the four keypad foil positioning pins in the top case.
3. Remove the keypad.
Caution
To avoid contaminating the keypad contacts, and the keypad
foil contacts with oil from your fingers, do not touch the
contacts (or wear gloves). Contaminated contacts may not
cause immediate instrument failure in controlled environments.
Failures typically show up when contaminated units are
operated in humid areas.

6.3 Disassembling the Main PCA Unit
Referring to Figure 6-3, use the following procedure disassemble the main PCA unit.
1. Remove the M2.5 Torx screws (items 1 and 8) that secure the main shielding plate
(item 7) to the main PCA shielding box (item 5).
2. Pull the shielding plate away from the input banana jacks as you rotate the far end
upwards, and then remove it.
3. Remove the power input insulator (item 3), and the LED guide piece (item 6).
4. Remove the M2.5.Torx screws (item 2) that secure the PCA to the shielding box.
5. Lift the PCA at the screw end approximately 2 cm, and pull it away from the input
banana jack holes to remove it.

6-6

Disassembling the Test Tool
6.3 Disassembling the Main PCA Unit

6

Note
Each input banana jacket is provided with a rubber sealing ring (Input A,B
item 9, COM input item 10). Ensure that the rings are present when
reassembling the main PCA unit!
Caution
To avoid contaminating the main PCA with oil from your
fingers, do not touch the contacts (or wear gloves). A
contaminated PCA may not cause immediate instrument failure
in controlled environments. Failures typically show up when
contaminated units are operated in humid areas.

ST8015.CGM

6-3. Main PCA Unit Assembly

6-7

123
Service Manual

6.4 Reassembling the Main PCA Unit
Reassembling the main PCA is the reverse of disassembly. However you must follow
special precautions when reassembling the main PCA unit.
1. Ensure the input banana jacks have the rubber sealing ring in place (Input A, B item
9, COM input item 10, see Figure 4-6).
2. Do not forget to install the power connector insulator (item 3) and the LED holder
(item 6).
3. Notice the correct position of the shielding box, main PCA (notice the shielding
plates on the PCA), and shielding plate, as shown in Figure 6-2. The tabs of the
shielding plate must be inside both shields.

6.5 Reassembling the Test Tool
Reassembling the test tool is the reverse of disassembly. However you must follow
special precautions when reassembling the test tool. Refer also to figure 6-1.
Caution
The first shipped units are provided with a yellow tube on the
two notches with the screw inserts at the top in the top case,.
The reason for this is that the display assembly in these units
is smaller than in the later units. All display assemblies
supplied as spare part are of the latest type, and do not need
the yellow tubes in the top case.
•

Remove the tube from both notches when installing a new
display assembly!

•

Transfer the tubes to the new top case, if you replace a top
case that has the tubes installed, and you re-install the
unit’s original display assembly.

Reassembling procedure for a completely disassembled unit:
1. Clean the inside of the lens with a moist soft cloth if necessary. Keep the lens free
of dust and grease.
2. Install the keypad. Press the edge of the keypad into the sealing groove of the top
case. Ensure that the keypad lays flat in the top case, and that all keys are correctly
seated.
3. Install the shielding foil (item 2). Remove the protection foil from the shielding foil,
by pulling it off in one rapid movement! If you pull it off slowly, the protection foil
may crack. Keep the shielding foil free of dust and grease.
4. Install the dust seal (item 3).
5. Install the display shielding bracket (item 5) provided with the conductive foam strip
(item 4).
Note
Figure 6-4 shows how the shielding bracket (with conductive foam strip),
the shielding foil, the dust seal, and the display assembly (see step 7) are
clamped in the top cover edge.
6. Install the keypad foil. Align the positioning holes in the keypad foil to the
positioning pins in the top case.
6-8

Disassembling the Test Tool
6.5 Reassembling the Test Tool

6

7. Clean the display glass with a moist soft cloth if necessary. Install the display
assembly. Ensure that the display is secured correctly by the four alignment tabs in
the top case. It is secured correctly when it cannot be moved horizontally.
8. Install the keypad pressure plate. Press the plate firmly, and slide it under the four
plastic keeper tabs in the top case.
9. Install the main PCA unit, and re-attach the cables. Secure the flat cables in the
connectors with the connector latches. Keep the backlight wires twisted to
minimize interference voltages! Insert the shielding flap below the main PCA
shielding plate.
10. Put the bottom case and the top case together at the flat cable side, and hinge the
cases to each other. This ensures the keypad foil flat cable is folded correctly.
11. Install the battery pack, and the battery door, see figure 6-5.

ST8185.EPS

Figure 6-4. Mounting the display shielding bracket

ST8197.EPS

Figure 6-5. Battery pack installation

6-9

Chapter 7

Corrective Maintenance

Title
7.1 Introduction .......................................................................................................
7.2 Starting Fault Finding........................................................................................
7.3 Charger Circuit ..................................................................................................
7.4 Starting with a Dead Test Tool..........................................................................
7.4.1 Test Tool Completely Dead .......................................................................
7.4.2 Test Tool Software Does not Run..............................................................
7.4.3 Software Runs, Test Tool not Operative....................................................
7.5 Miscellaneous Functions ...................................................................................
7.5.1 Display and Back Light..............................................................................
7.5.2 Fly Back Converter ....................................................................................
7.5.3 Slow ADC ..................................................................................................
7.5.4 Keyboard ....................................................................................................
7.5.5 Optical Port (Serial RS232 Interface) ........................................................
7.5.6 Channel A, Channel B Voltage Measurements..........................................
7.5.7 Channel A Ohms and Capacitance Measurements ....................................
7.5.8 Trigger Functions .......................................................................................
7.5.9 Reference Voltages ....................................................................................
7.5.10 Buzzer Circuit ..........................................................................................
7.5.11 Reset ROM Circuit (PCB version <8 only) .............................................
7.5.12 RAM Test.................................................................................................
7.5.13 Power ON/OFF ........................................................................................
7.5.14 PWM Circuit ............................................................................................
7.5.15 Randomize Circuit....................................................................................
7.6 Loading Software ..............................................................................................

Page
7-3
7-4
7-4
7-6
7-6
7-7
7-7
7-8
7-8
7-9
7-10
7-11
7-11
7-11
7-13
7-14
7-15
7-15
7-15
7-16
7-16
7-17
7-17
7-17

7-1

Corrective Maintenance
7.1 Introduction

7

7.1 Introduction
This chapter describes troubleshooting procedures that can be used to isolate problems
with the test tool.

Warning
Opening the case may expose hazardous voltages. For example,
the voltage for the LCD back light fluorescent lamp is >400V!
Always disconnect the test tool from all voltage sources and
remove the batteries before opening the case. If repair of the
disassembled test tool under voltage is required, it shall be carried
out only by qualified personnel using customary precautions
against electric shock.
•

If the test tool fails, first verify that you are operating it correctly by reviewing the
operating instructions in the Users Manual.

•

When making measurements for fault finding, you can use the black COM input
banana jack, or the metal shielding on the Main PCA unit, as measurement ground.

•

To access the Main PCA for measurements, proceed as follows:
1. Remove the Main PCA unit, see Section 6.2.5.
2. Disassemble the Main PCA unit, see Section 6.3.
3. Connect the Display Assembly flat cable, the Backlight cable, and the Keypad
Foil flex cable to the Main PCA unit. Position the Keypad on the Keypad foil.
See Figure 7.1. The Test tool without the case is operative now.
4. Power the PCA via the Power Adapter and/or battery pack. Watch out for short
circuiting due to metal parts on your desk!!

REPAIR3.BMP

Figure 7-1. Operative Test Tool without Case

7-3

123
Service Manual

7.2 Starting Fault Finding.
After each step, continue with the next step, unless stated otherwise.
Power the test tool by the battery pack only, then by the power adapter only.
1. The test tool operates with the power adapter, but not with the battery only:
install a charged battery (VBAT >4V), and check the connections between the
battery and the test tool (X503, R504, R506, R507).
2. The test tool operates with the battery pack, but not with the power adapter only, and
the battery pack is not charged by the test tool: continue at 7.3 Charger Circuit.
3. The test tool operates neither with the battery pack, nor with the power adapter:
continue at 7.4 Starting with a Dead Test Tool.
4. Particular functions are not correct: continue at 7.5 Miscellaneous Functions.
Table 7-1. Starting Fault Finding
Power adapter

Battery Pack

Check

1

OK

NOT OK

Battery pack, connector, sense resistors

2

NOT OK

OK

See Section 7.3 Charger Circuit

3

NOT OK

NOT OK

See Section 7.4 Starting with a Dead Test Tool

4

Partly OK

Partly OK

See Section 7.5 Miscellaneous Functions

7.3 Charger Circuit
1. Power the test tool by the power adapter only.
2. Check TP501 for ≅15...20V.
If not correct, check the power adapter input circuit (X501, Z501,V501, C501).
3. Check TP504 (VBAT) for about 7.5V.
If not correct, check R501, V504, V503, L501, C503.
Check TP502 for a 100 kHz, 13Vpp pulse signal; if correct or low, check if TP504 is
shorted to ground, and check V506.
4. Install a charged battery. The voltage at TP504 will be now about 5V.
5. Check N501 pin 18 (P7VCHA) for ≅7V.
If not correct, check N501 pin 20 for ≅15V (supplied via R502). If 15V on pin 20 is
correct, check C507, replace N501.
P7VCHA is the supply voltage for the charger control circuit in N501. It is derived from
VADAPTER (pin20), by an internal linear supply in N501.
6. Check N501 pin 12 (NETVALID) for +2.7V, and TP529 (MAINVAL) for +3.3V.
The NETVALID and MAINVAL signals indicate to the P-ASIC and the D-ASIC that a
correct power adapter voltage is connected. The signals enable control of the PASIC CHARGE circuit (controls V506 by 100 kHz, 13Vpp square wave).
If correct continue at step 7.

7-4

Corrective Maintenance
7.3 Charger Circuit

7

If not correct, then:
a. Check TP571 (+3V3GAR) for +3V3V.
If not correct, possibly caused by V569, R580, TP571 short to ground, loose pins
of N501, N501 defective.
b. Check N501 pin 8 (VADALOW) for ≅ 1.1V
If not correct:
1. Check R516 and connections.
The P-ASIC supplies a current to R516. The current source uses REFPWM2
and IREF, see 2 and 3 below.
2. Check N501 pin 73 (REFPWM2) for +3V3. REFPWM2 is supplied by the
P-ASIC. Check TP307 (N501 pin 72, REFP) for 1.22V, check V301 and
R307.
3. Check N501 pin 74 (IREF) for 1.61V.
If not correct, possibly caused by R528, loose pin 74, or N501 defective.
c. Check +3V3SADC on N501 pin 65 for +3.3V.
7. Check TP531 (CHARCURR):
The CHARCURR signal controls the battery charge current.
If TP531 < 2.7V continue at step 7a.
If TP531 >2.7V continue at step 7b.
a. Check if charger FET V506 is controlled by a ≅100 kHz, 13 Vpp square wave on
TP502 (FET gate). If correct check/replace V506.
If not correct, check:
1. N501 pin 4 TEMPHI relative to X503 pin 3 (=N501 pin 9) for ≅ 200 mV. If
not correct, check R512 and connections.
2. N501 pin 5 TEMP relative to X503 pin 3 (=N501 pin 9) for ≅ 400...500 mV
at about 20 °C. If not correct check the NTC in the battery pack for ≅12 kΩ
at 20°C (X503 pins 3 and 5); check connections to N501.
3. N501 pin 6 (IMAXCHA) for ≅ 150 mV. If not correct check R514, and
connections to N501.
4. N501 pin 7 (VBATHIGH) for ≅ 1.2V. If not correct check R513, and
connections to N501.
Steps 1 to 4 verify that N501 supplies a 47 µA current to each of the resistors
R512, battery NTC, R514, and R513
5. Check N501 pin 9 for the same voltage as on X503 pin 3 (sense resistors
R504, R506, and R507).
6. If 1 to 5 above correct, then N501 is defective.
b. Connect TP531 for a short time (max. 1 minute) to ground, and see if the FET
gate TP502 now shows a 100 kHz pulse signal.
If it does not, continue at step 7d.
If it does, the CHARCURR control signal is not correct, continue at step 7c.
c. Check the CHARCURR control signal:
7-5

123
Service Manual

The CHARCURR voltage on TP531 is controlled by a pulse width modulated
voltage (CHARCUR) from the D-ASIC D471 (pin 40). The D-ASIC measures the
required signals needed for control, via the Slow ADC.
1. Check the SLOW ADC, see Section 7.5.3.
2. Check VGARVAL (N501 pin 64), for +3.3V. If not correct, check if the line
is shorted to ground. If it is not, then replace N501.
3. Trace the CHARCURR signal path to R534, R 442 and D471 (D-ASIC)
output pin 40.
d. Check the following:
1. C506 and connections to N501.
2. Connections between V506 and N501 pin 16 (CHAGATE).
3. The voltage at TP501 (N501 pin 19, VCHDRIVE) for ≅ 15...20V.
4. The voltage at N501 pin 43 for a triangle waveform, 80...100 kHz, +1.6V to
+3.2V.
5. If 1 to 4 correct, then replace N501.

7.4 Starting with a Dead Test Tool
If the test tool cannot be turned on, when powered by a charged battery pack, or by the
power adapter, follow the steps below to locate the fault.
1. Connect a power adapter and a charged battery pack.
2. Turn the test tool on and listen if you hear a beep.
a. If you hear no beep, continue at 7.4.1 Test Tool Completely Dead.
b. If you hear a weak beep, continue at 7.4.2 Test Tool Software Does not Run.
c. If you hear a “normal” beep, the software runs, but obviously the test tool is not
operative. Continue at 7.4.3 Software Runs, Test Tool not Operative.

7.4.1 Test Tool Completely Dead
1. Turn the test tool off. Keep the keys
pressed, and turn the test tool on again.
This will start up the mask software.
If you still hear no beep, continue at step 2.
If you hear a weak beep now, continue at Section 7.4.2.
2. Check the Keyboard ROW1 line (MS433 next to X452) for a 100 kHz square wave.
If not correct, continue at step 3.
If correct, the mask software runs, but the buzzer circuit does not function. Check
the buzzer function (Section 7.5.10), and then continue at Section 7.4.2.
3. Check N501 pin 60 (VBATSUP) for >4.8V. If not correct check R503, and
connections to battery pack.
4. Check TP571 (+3V3GAR) for +3V3V.
If not correct, this is possibly caused by V569, R580, TP571 short to ground, loose

7-6

Corrective Maintenance
7.4 Starting with a Dead Test Tool

7

pins of N501, or N501 defective. Check the +VD supply voltage on D-ASIC D471.
Temporarily remove R470 to check for short circuit.
5. Check N501 pin 64 (VGARVAL) for +3.3V. If not correct:
a. Check if the line is shorted to ground.
b. Check N501 pin 73 (REFPWM2) for +3V3. REFPWM2 is supplied by N501,
and derived from REFP on the reference circuit on the Trigger part. Check
TP307 (N501 pin 72, REFP) for 1.22V, check V301/R307. If no 1.22V, and
V301/R307 and connections are correct, then replace N501.
c. Check N501 pin 12 (NETVALID) for +2.6V. If not correct, proceed as
indicated in Section 7.3, step 6.
d. Check the Power ON/OFF function, see Section 7.5.13.
6. Check X-tal signals on TP473 (32 kHz), and TP476 (25 MHz); if not correct check
connections, replace X-tals, replace D471. The 16 MHz clock on TP474 runs only if
the test tool software runs. If the 16 MHz clock is present, then continue at
Section7.4.3.

7.4.2 Test Tool Software Does not Run.
1. Turn the test tool OFF and ON again.
2. Check D471 pin 59 (row1) for a 100 kHz square wave.
If no 100 kHz is not present, but you heard a weak beep, the test tool software runs,
but the buzzer circuit does not function correctly. Go to Section 7.5.10 to check the
buzzer circuit, then continue at Section 7.4.3 to see why the test tool cannot be
operated.
If a 100 kHz square wave is present, the MASK software is running. Continue at
step 3.
3. Check TP486 (RP#) for >3V. If a power adapter voltage >19V is supplied, TP486 is
+12V.
If not correct then check TP487 for +3.3V (generated by D471), and check V481.
4. Load new software to see if the loaded software is corrupted. See Section 7.6.
5. Do the RAM test, see Section 7.5.12.
6. Check for bad soldered address/data lines and IC pins.
7. Replace FLASH-ROM D474 and RAM D475.

7.4.3 Software Runs, Test Tool not Operative
1. Check the Display and Backlight function, see Section 7.5.1
2. Check the Fly Back Converter, see Section 7.5.2
3. Check the Keyboard function, see Section 7.5.3

7-7

123
Service Manual

7.5 Miscellaneous Functions
7.5.1 Display and Back Light
Warning
The voltage for the LCD back light fluorescent lamp is >400V!
1. Connect another LCD unit to see if the problem is caused by the LCD unit. The unit
is not repairable.
2. Defective display
Check the LCD control signals on measure spots MS401...MS422 (near to X453).
Use a 10:1 probe with ground lead on the probe connected to the metal screening of
the UUT. Notice that MS407 is missing !
a. MS422:

LCDONOFF for +3.3V.

b. MS420:
MS414-415:
MS417-418:
MS412
MS411
MS409

DATACLK0 for 120 ns pulses
LCDAT0,1 for 250 ns pulses
LCDAT2,3 for 250 ns pulses
LINECLK, for 120 ns pulses, ≅16 kHz
FRAME, for 250 ns pules, ≅66Hz
M, for a ≅625Hz square wave.

c. MS406
MS405
MS401

+5VA for +5V
+3V3D for +3.3V
-30VD for -30V (from Fly Back Converter).

d. MS404

REFPWM1 for +3.3V.

3. Bad contrast.
a. Check MS403 (CONTRAST), see Figure below:

≅ 0.8V

}≅ 50 mV
≅ 15 ms

If not correct check FRAME signal on V401 for 0...3V, 250 ns pulses, 66Hz;
check PWM circuit (Section 7.5.14); check V401-V403.
b. Check MS408 (LCDTEMP1) for +1.6V at room temperature (to SLOW ADC).
If not correct, check R591 in SLOW ADC part.
4. Defective backlight:
a. Turn the test tool on, and monitor the voltage on T600 pin 3 or pin 5 for a 8 Vpp,
66 kHz, half rectified sine wave. If a half rectified sine wave, with an increasing
amplitude, is only seen for about 0.2 second directly after power on, then the
secondary circuit is defective. Install a new LCD unit. If this does not cure the
problem, check the resistance between T600 pin 10 and 11 for ≅300Ω, replace
V603, V605. Check C606!
b. Check T600 pin 3 and pin 5 for a 8 Vpp, 66 kHz, half rectified sine wave. If it is
present on only pin 3 or pin 5, then replace V601.
7-8

Corrective Maintenance
7.5 Miscellaneous Functions

7

c. Check TP601 and TP602 for a 7Vpp, 66 kHz, square wave. If not correct then
check TP604 (TLON) for +3V3. If TLON is correct, then replace N600.
d. Check (replace) V600, V602.
5. Backlight brightness control not correct:
Check the TP605 (BACKBRIG, supplied by D-ASIC D471) for a 25 kHz, 3.3 V
pulse signal. The duty cycle of the pulses controls the back light brightness. The
backlight brightness increases with an increasing length of the high pulse. Check
V604, R604.
6. Measure the voltage on the collctro of V605:
- correct voltage 1.5 V
- >1.5 V : N600 defect
- <1.5 V : secundary circuit defect (V606, V603, replace both if one is defective!)

7.5.2 Fly Back Converter
1. Check the voltages on TP572 (+5V), TP573 (+3.3V), TP574 (+3.3V), TP576
(-3.3V), TP577 (-30V) on the POWER part.
a. If one or more voltages are correct, then check the rectifier diodes
(V561...V564), and coils (L562...L567) of the incorrect voltage.
b. If none of the voltages is correct, then the fly back converter does not run
correctly, continue at step 2.
2. Check TP504 (VBATT) for >4.8V.
3. Check TP552 (FLYGATE) for a square wave voltage of at least some volts (for a
correct Fly Back Converter 50...100 kHz, ≅10 Vpp).
a. If a square wave is present on TP552 (may be not the correct value), then:
1. Check the voltage on N501 pin 55 (FLYSENSP). For a correct converter
this is a saw tooth voltage of 50...100 kHz, 50...150 mVpp).

} 50...150 mV
a. If no sawtooth voltage is present on R501, no current, or a DC current
flows in FET V554. The primary coil or V554 may be defective (or
interrupted connections). Check R504, R506, R507 (battery current
sense resistors); these resistors may be fused due to a short in FET
V554.
b. If an incorrect sawtooth is present on R501 this can be caused by:
-overloaded outputs (Frequency low, e.g. <<50 kHz; 250 mVpp)
-underloaded outputs (Frequency high, e.g. >>100 kHz; <<100 mVpp)
-bad FET V554 (Sawtooth voltage is not linear).
2. Check V552 and V553, check R570 and VCOIL connections.
b. No FLYGATE square wave is present.
Check TP526 (FREQPS) for a 50...100 kHz, 3.3 Vpp square wave. If correct,
then check V552, and V553. If no square wave on TP526, then go to step 4.

7-9

123
Service Manual

4. Check TP528 (PWRONOFF) for +3V. If not correct, see Section 7.5.13 Power
ON/OFF.
5. Check N501 pin 43 (COSC) for a triangle waveform, 50...100 kHz, +1.6V to +3.2V.
If not correct check C553 and connections; check IREF, see step 6. If all correct,
replace N501.
6. Check N501 pin 74 (IREF) for 1.6V. If not correct:
a. Check N501 pin 73 (REFPWM2) for +3V3. REFPWM2 is supplied by N501,
and derived from REFP on the reference circuit on the Trigger part. Check
TP307 (N501 pin 72, REFP) for 1.22V. If not correct, check V301/R307.
b. Check R528, loose pin 74, or N501 defective.
7. Check N501 pin 51 (VOUTHI) for <2.5V (nominal value 1.65V). If not correct
check R558 and connections to N501; check IREF, see step 6.
8. Check N501 pin 57 (IMAXFLY) for ≅250 mV. If not correct check R559 and
connections to N501; check IREF, see step 6.

7.5.3 Slow ADC
Check the following signals:
1. BATCUR (N501 pin 77), must be {1.63+(6.7 x IBATP)} Volt.
If not correct, replace N501.
Measure IBATP on X503 pin 3 (= N501 pin 9); IBATP senses the battery current.
2. BATVOLT (N501 pin 78), must be {0.67 x (VBAT-3.27)} Volt.
If not correct, replace N501.
Measure VBAT on TP504 (= N501 pin 3); VBAT senses battery the voltage.
3. BATTEMP (N501 pin 79), must be {TEMP - IBATP} Volt.
If not correct, replace N501.
Measure TEMP on N501 pin 5 (=X503 pin 6); TEMP senses the battery temperature.
Measure IBATP on X503 pin 3 (= N501 pin 9); IBATP senses the battery current.
4. +3V3SADC must be +3.3V (supplied by N501 pin 65). If not correct, check if the
+3V3SADC line is shorted to ground. If it is not, then replace N501.
5. SELMUXn (TP591, TP592, TP593) supplied by the D-ASIC must show LF pulses
(0V to +3.3V, 0.5...3 seconds period).
6. Check TP536, TP537, and TP534 for signals shown below (typical examples,
measured signals may have different pulse amplitude and repetition rate).
TP536: if at a fixed level, replace D531.
TP537: if not correct, trace signal to PWM circuit on the Digital part.
TP534: if at a fixed level, replace N531.
≈+3V

TP536

TP537
≈+0.5V

0V
≈ 500 ms

7-10

TP534

Corrective Maintenance
7.5 Miscellaneous Functions

7

7.5.4 Keyboard
Proceed as follows if one or more keys cannot be operated.
1. Replace the key pad, and the key pad foil to see if this cures the problem.
2. Press a key, and check ROW0...5 (measure spots MS432..MS437) for the signal
shown below :
+3.3V
0V
Press key

≈ 50 ms

500 µs pulses

Release key

If no key is pressed the ROW lines are low if a battery is installed; if the 123 is
powered by the the mains adapter only, the lines are alternating pulsing and low.
3. Check COL0...3 (measure spots MS438...MS441) for a +3.3V level. Then press and
hold a key, and check the matching COL line for the signal shown below:
+3.3V
0V
Press key

≈ 50 ms

500 µs pulses

Release key

If not correct, check the connections from X452 to D471; replace D471.
For the ON/OFF key see Section 7.5.13.

7.5.5 Optical Port (Serial RS232 Interface)
Receive (RXD)
1. Check the voltage RXDA on TP522 for +200 mV, and the voltage RXD on TP527
(buffered and amplified RXDA voltage) for +3.3V.
2. Shine with a lamp in the optical port (H522).
Check the voltage RXDA on TP522 for 0...-0.6V, and the voltage RXD on TP527 for
0V.
Send (TXD).
1. Check the voltage TXD on TP521 for +3.3V.
2. Press

to open the SAVE & PRINT menu.

3. Press
PRINT SCREEN to start the test tool data output.
Check the voltage TXD on TP521 for a burst of pulses (pulses from +2V to +3.3V).
The length of the burst and the pulses depends on the selected baud rate.

7.5.6 Channel A, Channel B Voltage Measurements
1. Press

to open the SCOPE INPUTS menu, and select:
■ NORMAL | INPUT B: ■ DC | ■ NORMAL

INPUT A: ■ DC |

7-11

123
Service Manual

2. Press
Press

to open the SCOPE INPUTS menu.
to open the SCOPE OPTIONS ... menu, and select:
SCOPE MODE: ■ ROLL MODE | WAVEFORM MODE: ■ NORMAL.

3. Apply a 1 kHz square wave to Input A and Input B, and change the test tool
sensitivity (V/div) to make the complete square wave visible.
4. Check TP154 (ADC-A) and TP254 (ADC-B) for the signal shown below:
Input positive.
Input zero.
Input negative

0.3 to 1.4V

}

150 mV/div

A trace amplitude of 1 division results in an 150 mV voltage on TP154/255
Moving the trace position, with a zero input signal, results in a TP154/254 voltage of
about +0.3V (bottom) to +1.4V (top).
If the voltages are not correct, do steps 6 to 16; if these steps are correct, then replace
the C-ASIC.
If the voltages are correct, the error is most probably caused by the ADC, or ADC
control: continue at step 16.
5. Check TP156 (TRIGA) and TP256 (TRIGB). The TRIGA and TRIGB signals must
be the inverted input signals, with an amplitude of 50 mV per division trace
amplitude.
Moving the trace position, with a zero input signal, results in a TP156/256 voltage of
about +0.4V (bottom) to -0.4V (top).
If the voltages are not correct, do steps 6 to 16; if these steps are correct, then replace
the C-ASIC.
6. Check the supply voltages +3V3A (+3.3V), -3V3A (-3.3V), and +5VA (+5V).
If not correct trace to the Fly Back converter on the Power part.
7. Check TP151 (POS-A) and TP251 (POS-B) for about +1.1V (trace at mid-screen),
+0.4V (trace at top of screen), +1.8V (trace at bottom of screen).
If not correct check the PWM circuit (in the Digital Circuit).
8. Check TP152 (OFFSET-A) and TP252 (OFFSET-B) for about +1.1V.
9. Check TP303 (REFN) for -1.2V.
10. Check TP153 (DACTESTA) and TP253 (DACTESTB) for 0V. If TP153 is +1.7V,
the C-ASIC is in the reset state (200 mV/div fixed sensitivity); check SDAT and
SCLK, see step 15.
11. Check TP155 (MIDADCA) and TP255 (MIDADCB) for about +0.9V.
12. Press
Press

to open the SCOPE INPUTS menu.
to open the SCOPE OPTIONS ... menu, and select:
SCOPE MODE: ■ NORMAL | WAVEFORM MODE: ■ NORMAL.
Select a time base of 20 ms/div.

7-12

Corrective Maintenance
7.5 Miscellaneous Functions

7

13. Check TP258 (TRACEROT supplied by T-ASIC N301) for the signals shown below
(typical example at 20 ms/div.).
+0.8V

-0.8V
≈100 ms

≈5 ms

If not correct check:
TP432 (RAMPCLK) for 3V, 200 ns pulses.
TP332 (RAMPCLK) for 0.6V, 200 ns pulses.
TP331 (RSTRAMP) for +3V pulses, with varying pulse with and repetition rate.
All pulses are supplied by D-ASIC-D471.
14. Check TP310 (REFATT) for alternating +1.2V and -1.2V pulses. The repetition
frequency depends on the time base, and is for example 500 ms at 20 ms/div.
15. Check the SCLK and SDAT lines for +3.3V pulse bursts (C-ASIC pin 25 and 26).
16. Check TP437 (Sample clock) for a 5 MHz (time base ≥ 10 ms/div) or 25 MHz clock
signal (3.3V).
17. Check TP301 (REFADCT) for +1.62V, and TP302 (REFADCB) for +0.12V
18. Check the ADC supply voltages VDDAA ,VDDDA, VDDBB, VDDDB, and VDD0
for+3.3V
19. Check TP401 and TP451 for 0V.

7.5.7 Channel A Ohms and Capacitance Measurements
1. Press
and select MEASURE on A: ■ OHMΩ
Ω.
Connect a current meter between Input A and the COM input. Select the various
Ohms ranges, and verify that the current approximately matches the values listed in
the table below.
If not correct, the protection circuit or the current source in the T-ASIC (N301) may
be defective.
If the current is correct, and the Volt function is correct (so ADC is correct), then the
Ohms part in the C-ASIC is defective: replace N101.
Range
Current
1)

1)

50 Ω
500 µA

500 Ω
500 µA

5 kΩ
50 µA

50 kΩ
5 µA

500 kΩ
0.5 µA

5 MΩ
50 nA

30 MΩ
50 nA

50 Ω range for CONTINUITY only.

7-13

123
Service Manual

2. Press
and select MEASURE on A: ■ CAP .
Verify TP156 for +3.3 ... 0V pulses (repetition rate 100...200 ms):
Zero scale (open input):
pulse width approximately 30 µs.
Full scale (for example 500 nF):
pulse width approximately 25 ms.
If not correct, most probably the C-ASIC N101 is defective.
If correct, continue at Section 7.5.8 Trigger functions (pulse width is measured via
the T-ASIC).

7.5.8 Trigger Functions
1. Press

and select MEASURE on A: ■ VDC .

2. Press

and select INPUT A: ■ DC | NORMAL | INPUT B: ■ DC | NORMAL

3. Press
Press

to select the SCOPE INPUTS menu.
to select the TRIGGER menu, and select:
INPUT: ■ A or B | SCREEN UPDATE: ■ FREE RUN | AUTO RANGE: . ■ >15HZ

Press
Press

to open the SCOPE INPUTS menu.
to open the SCOPE OPTIONS ... menu, and select:
SCOPE MODE: ■ NORMAL | WAVEFORM MODE: ■ NORMAL.

4. Supply a 1 kHz sine wave of +/- 3 divisions to Input A, and Input B.
5. Check:
a. TP156, TP256 for a 600 mV (6 div. x 100 mV/div), 1 kHz, sine wave; the DC
level depends on the trace position.
If not correct, C-ASIC N101/N102 is probably defective.
b. TP321, TP322 for 1.1...1.9V DC (move the trigger level from top to bottom).
If not correct check the PWM circuit, see Section 7.5.8.
c. TP311for a 0...+3.3V, 1 kHz square wave when the trigger level is at the middle
of the trace). Change the trigger level, and verify that the duty cycle of the
square wave changes. If not correct T-ASIC N301 may be defective.
d. TP433 for 0...+3.3V pulses. Pulse width:
4...10 µs for time base 2 µs/div and faster;
>40 µs for time base 5 µs/div and slower; pulse width increases with time base.
e. TP336 for +0.6...0V pulses, TP436 for +3.3...0V pulses; the pulse width is about
40 µs...10 ms.
If not correct, check the RANDOMIZE circuit, see Section 7.5.15.
f.

TP437 (SMPCLK) for a 5 MHz (time base ≥ 10 ms/div) or 25 MHz (time base <
10 ms/div) clock signal (3.3V). Check SMPCLK on both sides of R339.

6. To test video trigger press

to select the SCOPE INPUTS menu.

Press
to select the TRIGGER menu, and select INPUT: ■ VIDEO on A...
From the VIDEO TRIGGER submenu select:
SYSTEM: ■ PAL | LINE: ■ RANDOM | POLARITY: ■ POSITIVE
Press
to open the SCOPE INPUTS menu.
Press
to open the SCOPE OPTIONS ... menu, and select:
SCOPE MODE: ■ NORMAL | WAVEFORM MODE: ■ NORMAL
7-14

Corrective Maintenance
7.5 Miscellaneous Functions

7

7. Supply a 15.6 kHz square wave of 20V (+10...-10V) to Input A, and Input B.
8. Check:
a. TP308 (TVOUT) for 15.6 kHz, -0.8...+0.6V pulse (square wave) bursts (see
figure below).

15.6 kHz

≈600 ms

If not correct, N301 may be defective.
b. TVSYNC, on R392/R397, for 15.6 kHz, +2.6...+3.3V pulse bursts.
If not correct, V395 may be defective.
c. TP311 (ALLTRIG) for 15.6 kHz, +3.3...0V pulse bursts.
If not correct, N301 may be defective.
d. TP433 (TRIGDT) for 0...+3.3 pulses.
If not correct, TRIGQUAL may be not correct.
e. TP338 (TRIGQUAL) for 0...+0.6V pulses, width 70 µs, frequency about 2 kHz.
If not correct, D471 may be defective.

7.5.9 Reference Voltages
1. Check:
a. TP306 for +3.3V, TP307 for +1.23V
If not correct check/replace V301, R307, C3112, P-ASIC N501.
b. TP301 for +1.6V
TP303 for -1.23V
TP302 for +0.1V
TP304 for +3.3V
TP310, see figure below (in ROLL mode TP310 is zero).
If not correct, check/replace REFERENCE GAIN circuit and T-ASIC N301.
+1.2V
TP310
-1.2V
≈ 800 ms

7.5.10 Buzzer Circuit
1. Press

and select MEASURE on A : CONT )))

2. Short circuit Input A to COM. The buzzer is activated now.
3. Check TP496 for a 4 kHz, 0...3V square wave during beeping (+3 V if not activated).
4. Check TP495 for a 4 kHz +3...-30V square wave during beeping (TP495 is +3V if
the beeper is not activated).

7.5.11 Reset ROM Circuit (PCB version <8 only)
1. Check TP486 for 3V, or ≅+12V if a power adapter input voltage >19V is supplied
7-15

123
Service Manual

2. Check TP487 for +3V (supplied by D471).

7.5.12 RAM Test
You can use the Microsoft TERMINAL program to test the RAM. Proceed as follows:
1. Connect the Test Tool to a PC via the Optical Interface Cable PM9080.
2. Start the Terminal program, and select the following Settings:
Terminal Emulation
TTY (Generic)
Terminal Preferences
Terminal Modes
CR -> CR/LF
 Line Wrap
 Inbound
 Local Echo
 Outbound
 Sound
Communications
Baud Rate
9600
Data Bits
8
Stop Bits
1
Parity
None
Flow Control
Xon/Xoff
Connector
COMn
3. Turn the test tool off. Keep the keys
pressed, and turn the test tool on again.
This will start up the mask software. You will hear a very weak beep now.
4. In the terminal program type capital characters X (no ENTER!). After a number of
characters the test tool mask software will respond with an acknowledge 0 (zero).
This indicates that the communication between the Terminal program and the test
tool is accomplished.
5. Type
ID
and press
[Enter]
The test tool will return an acknowledge 0 (zero), and the string
Universal Host Mask software; UHM V2.1
If it does not, check the Terminal program settings, the interface connection, and the
test tool Optical Port (Section 7.5.5).
6. Type
EX10,#H400000,#H20000
and press
[Enter]
The test tool will return one of the following acknowledges:
0
the RAM is OK.
1
syntax error in the typed command
6
the RAM does not properly function.
Notice that the acknowledge overwites the first character of the message sent to the
test tool.

7.5.13 Power ON/OFF
1. Check TP528 for +3V at power on, and 0V at power off (supplied by D471).
If not correct, do the Section 7.4.1. tests first!
2. Check MS444 (ONKEY, D471) for +3V; when pressing the ON key the signal must
below for 100...150 ms.
7-16

Corrective Maintenance
7.6 Loading Software

7

7.5.14 PWM Circuit
1. Check the PWM control signals generated by D471. The signals must show 0...3V
pulses, with variable duty cycle, and a frequency of 100, 25, or 6 kHz:
a. CHARCURD, CONTR-D

≅ 100 kHz

b. SADCLEV, POS A-D, BACKBRIG, POS B-D,
TRIGLEV2D, TRIGLEV1D, HO-RNDM

≅ 25 kHz

c. OFFSETA-D, OFFSETB-D

≅ 6 kHz

2. If not correct, check:
a. TP306 (REFPWM2) for +3.3V (used for CHARCURD SADCLEV)
b. TP304 (REFPWM1) for +3.3V (used for other PWM signals).
If TP306 and TP304 are correct, D471 may be defective.

7.5.15 Randomize Circuit
1. Check TP483 for 0...+3V pulses, 25 kHz, variable duty cycle
2. Check TP482, for +3...0V pulses, variable frequency and duty cycle.

7.6 Loading Software
To load instrument software in the test tool, the Fluke-43-123-19x ScopeMeter Loader
program is required.
Power the test tool via the power adapter input using the BC190 Power Adapter.
Some units having serial numbers below DM7000000 can give the error message
Error 8: No connection possible with UHM

because they require a 20V ± 1VDC (0.5 A) voltage on the Power Adapter input (units
having an Intel FlashROM). For this purpose, a special supply cable, also advised for
calibration, can be ordered (See figure 7-2). See Section 8.7. for the ordering number.
CAUTION
To avoid damaging the test tool be sure to apply the polarity and
voltage level of the 20V supply voltage correctly.

-

+ RED
- WHITE

+
Figure 7-2. 20V Supply Cable for Loading Software

7-17

Chapter 8

List of Replaceable Parts

Title
8.1 Introduction.................................................................................................
8.2 How to Obtain Parts....................................................................................
8.3 Final Assembly Parts ..................................................................................
8.4 Main PCA Unit Parts ..................................................................................
8.5 Main PCA Parts ..........................................................................................
8.6 Accessory Replacement Parts .....................................................................
8.7 Service Tools...............................................................................................

Page
8-3
8-3
8-4
8-6
8-7
8-24
8-24

8-1

List of Replaceable Parts
8.1 Introduction

8

8.1 Introduction
This chapter contains an illustrated list of replaceable parts for the model 123
ScopeMeter test tool. Parts are listed by assembly; alphabetized by item number or
reference designator. Each assembly is accompanied by an illustration showing the
location of each part and its item number or reference designator. The parts list gives the
following information:
•
•
•
•

Item number or reference designator (for example, “R122”)
An indication if the part is subject to static discharge: the * symbol
Description
Ordering code
Caution
A * symbol indicates a device that may be damaged by static
discharge.

8.2 How to Obtain Parts
Contact an authorized Fluke service center.
To locate an authorized service center refer to the second page of this manual (back of the
title page).
In the event that the part ordered has been replaced by a new or improved part, the
replacement will be accompanied by an explanatory note and installation instructions, if
necessary.
To ensure prompt delivery of the correct part, include the following information when
you place an order:
•
•
•
•
•

Instrument model (Fluke 123), 12 digit instrument code (9444 ... ....), and serial
number (DM.......). The items are printed on the type plate on the bottom cover.
Ordering code
Item number - Reference designator
Description
Quantity

8-3

123
Service Manual

8.3 Final Assembly Parts
See Table 8-1 and Figure 8-1 for the Final Assembly parts.
Table 8-1. Final Assembly Parts
Item

Description

Ordering Code

1

top case assembly Fluke 123

5322 442 00272

2

shielding foil

5322 466 11434

3

dust seal

5322 466 11435

4

conductive foam strip

5322 466 11436

5

display shielding bracket

5322 402 10204

6

display assembly

5322 135 00029

7

keypad

5322 410 10397

8

keypad foil

5322 276 13711

9

keyboard pressure plate

5322 466 10963

10

combiscrew M3x10

5322 502 21507

11

bottom case

5322 442 00273

12

combiscrew M3x10

5322 502 21507

13

battery pack

BP120

14

battery door

5322 443 10237

15

combiscrew M3x10

5322 502 21507

16

bail

5322 466 10975

A

main PCA unit assembly. No firmware loaded!
Not calibrated!

5322 216 04048

Ni-Cd

Note
The test tool contains a Nickel Cadmium battery (item 13). Do not mix
with the solid wastestream. Spent batteries should be disposed of by a
qualified recycler or hazardous materials handler.

8-4

List of Replaceable Parts
8.3 Final Assembly Parts

8

ST8014.EPS

Figure 8-1. Fluke 123 Final Assembly

8-5

123
Service Manual

8.4 Main PCA Unit Parts
See Table 8-2 and Figure 8-2 for the Main PCA Unit parts.
Table 8-2. Main PCA Unit
Item

Description

Ordering Code

1

screw M2.5x5

5322 502 21206

2

combiscrew M3x10

5322 502 21507

3

insulator for power input

5322 325 10163

5

main PCA shielding box

5322 466 10976

6

guide piece for optical gate LEDs

5322 256 10201

7

main PCA shielding plate

5322 466 10964

8

screw M2.5x16

5322 502 14132

9

O-ring ∅ 17 mm Input A,B

5322 530 10272

10

O-ring ∅ 12 mm COM input

5322 530 10273

Note
If the main PCA must be replaced, you must order the complete Main PCA Unit.

ST8015.CGM

Figure 8-2. Main PCA Unit

8-6

List of Replaceable Parts
8.5 Main PCA Parts

8

8.5 Main PCA Parts
See Figure 9-6 and Figure 9-7 at the end of Chapter 9 for the Main PCA drawings.
Table 8-3. Main PCA
Reference
Designator

Description

Ordering
Code

1

Led Holder for H521 and H522

5322 255 41213

2

Screw for Input Banana Jack Assembly

5322 502 14362

3 ( X100 )

Input Banana Jack Assembly
- without Input A,B and COM O-rings, see
Figure 8-2.
- including rersistors R1 and R2

5322 264 10311

B401

QUARTZ CRYSTAL 32.768KHZ SEK

5322 242 10302

B402

QUARTZ CRYSTAL 16.0MHZ

KDK

5322 242 10573

B403

QUARTZ CRYSTAL 25.0MHZ

KDK

5322 242 10574

C101

MKC FILM CAP 630V 10% 22NF

5322 121 10616

C102

SUPPR CAPACIT0R 0.1 UF

5322 121 10527

C104

CER.CAP. 3.15KV +-5%

120PF

5322 126 14046

C105

ALCAP NICHICON 16V

10UF

5322 124 41979

C106

CER.CAP. 1KV -20+80% 4.7NF

5322 126 13825

C107

CER CHIP CAP 63V

5322 122 32268

C111

CER CAP 1 500V 0.25PF 4.7PF

5322 122 33082

C112

CER CAP 1 500V 0.25PF 4.7PF

5322 122 33082

C113

CER CAP 1 500V 0.25PF 4.7PF

5322 122 33082

C114

CER CAP 1 500V 0.25PF 4.7PF

5322 122 33082

C116

CER CAP 1 500V 0.25PF 4.7PF

5322 122 33082

C117

CER CAP 1 500V

4822 122 31195

C118

CER CAP 1 500V 0.25PF 4.7PF

5322 122 33082

C119

CER CAP 1 500V 0.25PF 4.7PF

5322 122 33082

C121

CER CAP 1 500V

4822 122 31202

C122

CER CAP 1 500V 0.25PF 4.7PF

5322 122 33082

C123

CER CAP 1 500V 0.25PF 4.7PF

5322 122 33082

C124

CER CAP 1 500V

4822 122 31202

C131

CER CHIP CAP 63V 0.25PF 0.82PF

5% 470PF

2% 10PF

2% 33PF

2% 33PF

Remarks

5322 126 10786

8-7

123
Service Manual

Reference
Designator

8-8

Description

Ordering
Code

C132

CER CHIP CAP 63V 0.25PF 4.7PF

5322 122 32287

C133

CER CHIP CAP 63V

5% 47PF

5322 122 32452

C134

CER CHIP CAP 63V

5% 470PF

5322 122 32268

C136

CER CHIP CAP 63V

10% 4.7NF

5322 126 10223

C142

CHIPCAP NP0 0805 5% 1NF

5322 126 10511

C145

CHIPCAP NP0 0805 5% 1NF

5322 126 10511

C146

CHIPCAP NP0 0805 5% 1NF

5322 126 10511

C148

CHIPCAP X7R 0805 10% 10NF

5322 122 34098

C152

CERCAP X7R 0805 10% 15NF

4822 122 33128

C153

CHIPCAP X7B 0805 10% 22NF

5322 122 32654

C156

CHIPCAP NP0 0805 5% 1NF

5322 126 10511

C158

CER CHIP CAP 63V

5322 122 33538

C159

CHIPCAP NPO 0805 5% 100PF

5322 122 32531

C161

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C162

CER CHIP CAP 63V 0.25PF 4.7PF

5322 122 32287

C181

ALCAP SANYO

5322 124 11837

C182

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C183

ALCAP SANYO

5322 124 11837

C184

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C186

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C187

ALCAP SANYO

5322 124 11837

C188

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C189

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C190

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C191

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C199

CER CHIP CAP 63V

5322 122 32268

C201

MKC FILM CAP 630V 10% 22NF

5322 121 10616

C202

SUPPR CAPACIT0R 0.1 UF

5322 121 10527

C204

CER.CAP. 3.15KV +-5%

120PF

5322 126 14046

C205

ALCAP NICHICON 16V

10UF

5322 124 41979

C206

CER.CAP. 1KV -20+80% 4.7NF

5322 126 13825

C207

CER CHIP CAP 63V

5322 122 32268

C211

CER CAP 1 500V 0.25PF 4.7PF

5% 150PF

10V 20% 22UF

10V 20% 22UF

10V 20% 22UF

5% 470PF

5% 470PF

5322 122 33082

Remarks

List of Replaceable Parts
8.5 Main PCA Parts

Reference
Designator

Description

Ordering
Code

C212

CER CAP 1 500V 0.25PF 4.7PF

5322 122 33082

C213

CER CAP 1 500V 0.25PF 4.7PF

5322 122 33082

C214

CER CAP 1 500V 0.25PF 4.7PF

5322 122 33082

C216

CER CAP 1 500V 0.25PF 4.7PF

5322 122 33082

C217

CER CAP 1 500V

4822 122 31195

C218

CER CAP 1 500V 0.25PF 4.7PF

5322 122 33082

C219

CER CAP 1 500V 0.25PF 4.7PF

5322 122 33082

C221

CER CAP 1 500V

4822 122 31202

C222

CER CAP 1 500V 0.25PF 4.7PF

5322 122 33082

C223

CER CAP 1 500V 0.25PF 4.7PF

5322 122 33082

C224

CER CAP 1 500V

4822 122 31202

C231

CER CHIP CAP 63V 0.25PF 0.68PF

4822 126 12342

C232

CER CHIP CAP 63V 0.25PF 4.7PF

5322 122 32287

C233

CER CHIP CAP 63V

5% 47PF

5322 122 32452

C234

CER CHIP CAP 63V

5% 470PF

5322 122 32268

C236

CER CHIP CAP 63V

10% 4.7NF

5322 126 10223

C242

CHIPCAP NP0 0805 5% 1NF

5322 126 10511

C245

CHIPCAP NP0 0805 5% 1NF

5322 126 10511

C246

CHIPCAP NP0 0805 5% 1NF

5322 126 10511

C248

CHIPCAP X7R 0805 10% 10NF

5322 122 34098

C252

CERCAP X7R 0805 10% 15NF

4822 122 33128

C253

CHIPCAP X7B 0805 10% 22NF

5322 122 32654

C256

CHIPCAP NP0 0805 5% 1NF

5322 126 10511

C258

CER CHIP CAP 63V

5322 122 33538

C259

CHIPCAP NPO 0805 5% 100PF

5322 122 32531

C261

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C262

CER CHIP CAP 63V 0.25PF 4.7PF

5322 122 32287

C281

ALCAP SANYO

5322 124 11837

C282

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C283

ALCAP SANYO

5322 124 11837

C284

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C286

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C287

ALCAP SANYO

5322 124 11837

C288

CER CHIPCAP 25V 20% 100NF

2% 10PF

2% 33PF

2% 33PF

5% 150PF

10V 20% 22UF

10V 20% 22UF

10V 20% 22UF

8

Remarks

5322 126 13638

8-9

123
Service Manual

Reference
Designator

8-10

Description

Ordering
Code

C289

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C290

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C291

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C301

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C303

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C306

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C311

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C312

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C313

ALCAP SANYO

25V 20% 10UF

5322 124 11838

C314

ALCAP SANYO

25V 20% 10UF

5322 124 11838

C317

ALCAP NICHICON 6.3V 20% 22UF

4822 124 80675

C321

CER CHIP CAP 63V

10% 1.5NF

5322 122 31865

C322

CER CHIP CAP 63V

10% 1.5NF

5322 122 31865

C331

CER CHIP CAP 63V 0.25PF 4.7PF

5322 122 32287

C332

CER CHIP CAP 63V

5322 122 32658

C333

CER CHIP CAP 63V 0.25PF

1PF

5322 122 32447

C337

CER CHIP CAP 63V 0.25PF 4.7PF

5322 122 32287

C339

CER CHIP CAP 63V 0.25PF

1PF

5322 122 32447

C342

CER CHIP CAP 63V 0.25PF

1PF

5322 122 32447

C344

CER CHIP CAP 63V

C356

CER CHIP CAP 63V 10% 18NF

5322 126 14044

C357

CHIPCAP X7B 0805 10% 22NF

5322 122 32654

C376

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C377

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C378

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C379

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C381

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C382

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C391

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C392

ALCAP NICHICON 16V

5322 124 41979

C393

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C394

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C395

CER CHIP CAP 25V 20% 47NF

5322 126 14045

5% 22PF

5% 22PF

10UF

5322 122 32658

Remarks

List of Replaceable Parts
8.5 Main PCA Parts

Reference
Designator

Description

Ordering
Code

C396

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C397

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C398

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C399

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C400

CHIPCAP X7B 0805 10% 22NF

5322 122 32654

C401

CER CHIP CAP 63V 0.25PF 4.7PF

5322 122 32287

C402

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C403

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C404

CER CHIP CAP 63V

5322 122 32268

C407

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C408

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C409

CHIPCAP X7B 0805 10% 22NF

5322 122 32654

C416

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C431

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C432

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C433

CHIPCAP X7B 0805 10% 22NF

5322 122 32654

C434

CHIPCAP X7B 0805 10% 22NF

5322 122 32654

C436

CER CAP X5R 1206 10% 1UF

5322 126 14089

C438

CER CHIP CAP 63V

10% 4.7NF

5322 126 10223

C439

CER CHIP CAP 63V

10% 4.7NF

5322 126 10223

C441

CHIPCAP X7B 0805 10% 22NF

5322 122 32654

C442

CHIPCAP X7B 0805 10% 22NF

5322 122 32654

C451

CER CHIP CAP 63V 0.25PF 4.7PF

5322 122 32287

C452

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C453

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C457

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C458

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C463

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C464

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C465

ALCAP NICHICON 16V

5322 124 41979

C466

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C470

CC 470 PF 5% 0805 NP0 50V

4022 301 60371

C471

CER CHIPCAP 25V 20% 100NF

5322 126 13638

5% 470PF

10UF

8

Remarks

8-11

123
Service Manual

Reference
Designator

8-12

Description

Ordering
Code

C472

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C473

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C474

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C475

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C476

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C478

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C479

CER CHIP CAP 63V

5322 122 32658

C480

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C481

CER CHIP CAP 63V

5% 22PF

5322 122 32658

C482

CER CHIP CAP 63V

5% 22PF

5322 122 32658

C483

CER CHIP CAP 63V

5% 22PF

5322 122 32658

C484

CER CHIP CAP 63V

5% 22PF

5322 122 32658

C485

CER CHIP CAP 63V

5% 27PF

5322 122 31946

C486

CER CHIP CAP 63V

5% 27PF

5322 122 31946

C487

CHIPCAP NPO 0805 5% 100PF

5322 122 32531

C488

CHIPCAP NPO 0805 5% 100PF

5322 122 32531

C489

CC 22NF 10% 0805 X7R 50 V

4022 301 60491

C500

1UF CERCAP Y5V 1206 10%

5322 126 14086

C501

ELCAP 25V

5322 124 11843

C502

ALCAP NICHICON 25V 20% 10UF

5322 124 11839

C503

ELCAP 10V

5322 124 11844

C504

ALCAP NICHICON 16V

C505

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C506

CER CHIP CAP 25V 20% 47NF

5322 126 14045

C507

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C509

CER CAP X5R 1206 10% 1UF

5322 126 14089

C511

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C512

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C528

ALCAP NICHICON 6.3V 20% 22UF

4822 124 80675

C529

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C531

CHIPCAP X7B 0805 10% 22NF

5322 122 32654

C532

CC 22NF 10% 0805 X7R 50V

4022 301 60491

C534

CER CHIPCAP 25V 20% 100NF

5322 126 13638

5% 22PF

20% 180UF

20% 390UF
10UF

5322 124 41979

Remarks

List of Replaceable Parts
8.5 Main PCA Parts

Reference
Designator

Description

Ordering
Code

C547

CHIPCAP X7B 0805 10% 22NF

5322 122 32654

C548

CHIPCAP X7B 0805 10% 22NF

5322 122 32654

C549

CHIPCAP X7B 0805 10% 22NF

5322 122 32654

C550

CER CHIP CAP 63V

5322 126 10223

C551

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C552

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C553

CER CHIP CAP 63V

5322 122 33538

C554

CER CAP X5R 1206 10% 1UF

5322 126 14089

C555

ELCAP 10V

20% 390UF

5322 124 11844

C561

ALCAP SANYO

6,3V 20% 150UF

5322 124 11841

C562

ALCAP SANYO

6,3V 20% 150UF

5322 124 11841

C563

ALCAP SANYO

6,3V 20% 150UF

5322 124 11841

C564

ALCAP SANYO

35V 20% 47UF

5322 124 11842

C565

ALCAP SANYO

6,3V 20% 150UF

5322 124 11841

C567

ALCAP SANYO

6,3V 20% 150UF

5322 124 11841

C568

ALCAP SANYO

6,3V 20% 150UF

5322 124 11841

C572

ALCAP SANYO

6,3V 20% 150UF

5322 124 11841

C573

ALCAP SANYO

6,3V 20% 150UF

5322 124 11841

C574

ALCAP SANYO

6,3V 20% 150UF

5322 124 11841

C576

ALCAP SANYO

6,3V 20% 150UF

5322 124 11841

C581

ALCAP NICHICON 16V

C583

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C591

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C592

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C593

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C594

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C602

CER CHIP CAP 25V 20% 47NF

5322 126 14045

C603

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C604

CER CAP X5R 1206 10% 1UF

5322 126 14089

C605

CHIPCAP NP0 0805 5% 1NF

5322 126 10511

C606

CER CHIPCAP 25V 20% 100NF

5322 126 13638

C607

CHIPCAP X7R 0805 10% 10NF

5322 122 34098

C608

MKT FILM CAP

5322 121 42386

10% 4.7NF

5% 150PF

10UF

63V 10% 100NF

8

Remarks

5322 124 41979

8-13

123
Service Manual

Reference
Designator

Description
2KV +-5%

33PF

Ordering
Code

C609

CER.CAP.

5322 126 14047

C610

CER CAP X5R 1206 10% 1UF

5322 126 14089

D401 *

LOW VOLT ADC TDA8792M/C2/R1

5322 209 14837

D451 *

LOW VOLT ADC TDA8792M/C2/R1

5322 209 14837

D471 *

D-ASIC MOT0002

5322 209 13139

D474 *

8M FEPROM

5322 209 15199

AM29LV800B-120EC, or HN29WT800T , or
M5M29FB800VP-120, or equivalent.

8-14

D475 *

128K8SRAM M5M51008AVP10VLL MIT

5322 209 14844

D480 *

4X2-INP OR 74LVC32APW

4022 304 10771

D531 *

8-INP MUX

5322 209 61483

H495

PE BUZZER PKM13EPP-4002 MUR

5322 280 10311

H521

IR LED

5322 130 61296

H522

PHOTODIODE OP906 OPT

5322 130 10777

K171

DPDT RELAY

ASL-1.5W-K-B05

5322 280 10309

K173

DPDT RELAY

DSP1-L-1,5V MAT

5322 280 10312

K271

DPDT RELAY

ASL-1.5W-K-B05

5322 280 10309

L181

CHIP INDUCT. 47UH 10% TDK

4822 157 70794

L182

CHIP INDUCT. 47UH 10% TDK

4822 157 70794

L183

CHIP INDUCT. 47UH 10% TDK

4822 157 70794

L281

CHIP INDUCT. 47UH 10% TDK

4822 157 70794

L282

CHIP INDUCT. 47UH 10% TDK

4822 157 70794

L283

CHIP INDUCT. 47UH 10% TDK

4822 157 70794

L481

CHIP INDUCT. 47UH 10% TDK

4822 157 70794

L501

CHOKE

5322 157 10994

L562

CHIP INDUCT. 47UH 10% TDK

4822 157 70794

L563

CHIP INDUCT. 47UH 10% TDK

4822 157 70794

74HC4051D PEL

SFH409-2

33UH

SIE

TDK

Remarks

List of Replaceable Parts
8.5 Main PCA Parts

Reference
Designator

Description

Ordering
Code

L564

FIXED INDUCOR 68UH 10% TDK

5322 157 10995

L566

FIXED INDUCOR 68UH 10% TDK

5322 157 10995

L567

CHIP INDUCT. 47UH 10% TDK

4822 157 70794

L569

FIXED INDUCOR 68UH 10% TDK

5322 157 10995

L600

SHIELDED CHOKE 150UH

5322 157 10996

N101 *

C-ASIC OQ0258

5322 209 13141

N201 *

C-ASIC OQ0258

5322 209 13141

N301 *

T-ASIC OQ0257

5322 209 13142

N501 *

P-ASIC OQ0256

5322 209 13143

N531 *

LOW POW OPAMP LMC7101BIM5X NSC

5322 209 15144

N600 *

LAMP CONTROLLER UC3872DW

UNI

5322 209 14851

R1

MTL FILM RST VR25

5% 220K 0,25W

4822 053 20224

R2

MTL FILM RST VR25

5% 220K 0,25W

4822 053 20224

R101

MTL FILM RST MRS25 1% 487K

4822 050 24874

R102

MTL FILM RST MRS25 1% 487K

4822 050 24874

R103

RESISTOR CHIP RC12H 1%

4822 117 11948

R104

RESISTOR CHIP RC12H 1% 26K1

5322 117 12448

R105

RESISTOR CHIP RC12H 1% 511E

5322 117 12451

R106

PTC THERM DISC 600V 300-500E

5322 116 40274

R108

RESISTOR CHIP RC12H 1% 511E

5322 117 12451

R109

RESISTOR CHIP RC12H 1% 2K15

5322 117 12452

R110

RESISTOR CHIP RC12H 1% 2K15

5322 117 12452

R111

RESISTOR CHIP RC11 2% 10M

4822 051 20106

R112

RESISTOR CHIP RC11 2% 10M

4822 051 20106

R113

RESISTOR CHIP RC11 2% 10M

4822 051 20106

R114

RESISTOR CHIP RC11 2% 10M

4822 051 20106

R116

RESISTOR CHIP RC12H 1% 215E

5322 117 12453

R117

RESISTOR CHIP RC12H 1% 215E

5322 117 12453

R118

RESISTOR CHIP RC12H 1% 68E1

5322 117 12454

TDK

1M

8

Remarks

8-15

123
Service Manual

Reference
Designator

8-16

Description

Ordering
Code

R119

RESISTOR CHIP RC12H 1% 464E

5322 117 12455

R120

RESISTOR CHIP RC11 2% 10M

4822 051 20106

R121

RESISTOR CHIP RC12H 1% 68E1

5322 117 12454

R125

RESISTOR CHIP RC12H 1% 68E1

5322 117 12454

R131

RESISTOR CHIP RC12G 1%

5322 117 12484

R132

RESISTOR CHIP RC12G 1% 100K

5322 117 12485

R133

RESISTOR CHIP RC12G 1% 10K

5322 117 12486

R134

RESISTOR CHIP RC12G 1%

5322 117 12487

R136

RESISTOR CHIP RC-02G 1% 100E

4822 051 51001

R137

RESISTOR CHIP RC-02H 1% 56K2

5322 117 10574

R138

RESISTOR CHIP RC-02H 1% 56K2

5322 117 10574

R139

RESISTOR CHIP RC-02H 1% 56K2

5322 117 10574

R140

RESISTOR CHIP RC-02H 1% 56K2

5322 117 10574

R141

RESISTOR CHIP RC12G 1% 215K

5322 117 12488

R142

RESISTOR CHIP RC12G 1% 147K

5322 117 12489

R143

RESISTOR CHIP RC12G 1% 909K

5322 117 12491

R144

RESISTOR CHIP RC12H 1% 348E

5322 117 12456

R146

RESISTOR CHIP RC12H 1% 215K

5322 117 12457

R151

RESISTOR CHIP RC12H 1% 100K

5322 117 12458

R152

RESISTOR CHIP RC12H 1% 100K

5322 117 12485

R153

RESISTOR CHIP RC12H 1% 681K

5322 117 12485

R154

RESISTOR CHIP RC12H 1% 681K

5322 117 12458

R155

RESISTOR CHIP RC12H 1% 178K

5322 117 12459

R156

RESISTOR CHIP RC12G 1% 100K

5322 117 12485

R157

RESISTOR CHIP RC12H 1% 348E

5322 117 12456

R158

RESISTOR CHIP RC12H 1% 287E

5322 117 12461

R159

RESISTOR CHIP RC12H 1% 100E

4822 117 11373

R160

RESISTOR CHIP RC12H 1% 51K1

5322 117 12462

R161

RESISTOR CHIP RC12G 1% 100K

5322 117 12485

R165

RESISTOR CHIP RC12H 1% 100E

4822 117 11373

R171

RESISTOR CHIP RC12H 1% 348E

5322 117 12456

R172

PTC THERM DISC 600V 300-500E

5322 116 40274

R173

RESISTOR CHIP RC12H 1% 348E

5322 117 12456

R182

RESISTOR CHIP RC12H 1% 10E

5322 117 12464

1M

1K

Remarks

List of Replaceable Parts
8.5 Main PCA Parts

Reference
Designator

Description

Ordering
Code

R184

RESISTOR CHIP RC12H 1% 10E

5322 117 12464

R186

RESISTOR CHIP RC12H 1% 10E

5322 117 12464

R188

RESISTOR CHIP RC12H 1% 10E

5322 117 12464

R189

RESISTOR CHIP RC12H 1% 10E

5322 117 12464

R201

MTL FILM RST MRS25 1% 487K

4822 050 24874

R202

MTL FILM RST MRS25 1% 487K

4822 050 24874

R203

RESISTOR CHIP RC12H 1%

4822 117 11948

R204

RESISTOR CHIP RC12H 1% 26K1

5322 117 12448

R205

RESISTOR CHIP RC12H 1% 511E

5322 117 12451

R206

PTC THERM DISC 600V 300-500E

5322 116 40274

R208

RESISTOR CHIP RC12H 1% 511E

5322 117 12451

R209

RESISTOR CHIP RC12H 1% 2K15

5322 117 12452

R210

RESISTOR CHIP RC12H 1% 2K15

5322 117 12452

R211

RESISTOR CHIP RC11 2% 10M

4822 051 20106

R212

RESISTOR CHIP RC11 2% 10M

4822 051 20106

R213

RESISTOR CHIP RC11 2% 10M

4822 051 20106

R214

RESISTOR CHIP RC11 2% 10M

4822 051 20106

R216

RESISTOR CHIP RC12H 1% 215E

5322 117 12453

R217

RESISTOR CHIP RC12H 1% 215E

5322 117 12453

R218

RESISTOR CHIP RC12H 1% 68E1

5322 117 12454

R219

RESISTOR CHIP RC12H 1% 464E

5322 117 12455

R220

RESISTOR CHIP RC11 2% 10M

4822 051 20106

R221

RESISTOR CHIP RC12H 1% 68E1

5322 117 12454

R225

RESISTOR CHIP RC12H 1% 68E1

5322 117 12454

R231

RESISTOR CHIP RC12G 1%

5322 117 12484

R232

RESISTOR CHIP RC12G 1% 100K

5322 117 12485

R233

RESISTOR CHIP RC12G 1% 10K

5322 117 12486

R234

RESISTOR CHIP RC12G 1%

5322 117 12487

R236

RESISTOR CHIP RC-02G 1% 100E

4822 051 51001

R237

RESISTOR CHIP RC-02H 1% 56K2

5322 117 10574

R238

RESISTOR CHIP RC-02H 1% 56K2

5322 117 10574

R239

RESISTOR CHIP RC-02H 1% 56K2

5322 117 10574

R240

RESISTOR CHIP RC-02H 1% 56K2

5322 117 10574

1M

1M

1K

8

Remarks

8-17

123
Service Manual

Reference
Designator

8-18

Description

Ordering
Code

R241

RESISTOR CHIP RC12G 1% 215K

5322 117 12488

R242

RESISTOR CHIP RC12G 1% 147K

5322 117 12489

R243

RESISTOR CHIP RC12G 1% 909K

5322 117 12491

R246

RESISTOR CHIP RC12H 1% 215K

5322 117 12457

R251

RESISTOR CHIP RC12H 1% 100K

5322 117 12485

R252

RESISTOR CHIP RC12H 1% 100K

5322 117 12485

R253

RESISTOR CHIP RC12H 1% 681K

5322 117 12458

R254

RESISTOR CHIP RC12H 1% 681K

5322 117 12458

R255

RESISTOR CHIP RC12H 1% 178K

5322 117 12459

R256

RESISTOR CHIP RC12G 1% 100K

5322 117 12485

R257

RESISTOR CHIP RC12H 1% 287E

5322 117 12461

R258

RESISTOR CHIP RC12H 1% 287E

5322 117 12461

R259

RESISTOR CHIP RC12H 1% 100E

4822 117 11373

R260

RESISTOR CHIP RC12H 1% 51K1

5322 117 12462

R261

RESISTOR CHIP RC12G 1% 100K

5322 117 12485

R271

RESISTOR CHIP RC12H 1% 348E

5322 117 12456

R282

RESISTOR CHIP RC12H 1% 10E

5322 117 12464

R284

RESISTOR CHIP RC12H 1% 10E

5322 117 12464

R286

RESISTOR CHIP RC12H 1% 10E

5322 117 12464

R288

RESISTOR CHIP RC12H 1% 10E

5322 117 12464

R289

RESISTOR CHIP RC12H 1% 10E

5322 117 12464

R301

RESISTOR CHIP RC12H 1% 3K16

5322 117 12465

R302

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

R303

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

R305

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

R306

RESISTOR CHIP RC12G 1% 21K5

5322 117 12492

R307

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

R308

RESISTOR CHIP RC12G 1% 21K5

5322 117 12492

R309

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

R310

RESISTOR CHIP RC12H 1% 100K

4822 117 10837

R311

RESISTOR CHIP RC12H 1% 31K6

5322 117 12466

R312

RESISTOR CHIP RC12H 1% 34K8

5322 117 12467

R321

RESISTOR CHIP RC12H 1% 681K

5322 117 12458

Remarks

List of Replaceable Parts
8.5 Main PCA Parts

Reference
Designator

Description

Ordering
Code

R322

RESISTOR CHIP RC12H 1% 681K

5322 117 12458

R323

RESISTOR CHIP RC12H 1% 34K8

5322 117 12467

R324

RESISTOR CHIP RC12H 1% 215K

5322 117 12457

R326

RESISTOR CHIP RC12H 1% 562K

5322 117 12468

R327

RESISTOR CHIP RC12H 1% 562K

5322 117 12468

R331

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

R333

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

R337

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

R339

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

R342

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

R352

RESISTOR CHIP RC12H 1% 5K11

5322 117 12469

R353

RESISTOR CHIP RC12H 1%

4822 117 11154

R354

RESISTOR CHIP RC-02H 1% 261E

4822 051 52611

R356

RESISTOR CHIP RC-02H 1% 261E

4822 051 52611

R369

RESISTOR CHIP RC12H 1% 26K1

5322 117 12448

R371

RESISTOR CHIP RC12H 1%

0E

5322 117 12471

R375

RESISTOR CHIP RC12H 1%

0E

5322 117 12471

R376

RESISTOR CHIP RC12H 1% 10E

5322 117 12464

R377

RESISTOR CHIP RC12H 1%

1E

5322 117 12472

R378

RESISTOR CHIP RC12H 1% 10E

5322 117 12464

R381

RESISTOR CHIP RC12H 1% 10E

5322 117 12464

R385

RESISTOR CHIP RC12H 1%

5322 117 12471

R390

RESISTOR CHIP RC12H 1% 464K

5322 117 12474

R391

RESISTOR CHIP RC12H 1%

4822 117 11154

R392

RESISTOR CHIP RC12H 1% 4K22

5322 117 12476

R393

RESISTOR CHIP RC12H 1% 10E

5322 117 12464

R394

RESISTOR CHIP RC12H 1%

1E

5322 117 12472

R395

RESISTOR CHIP RC12H 1%

0E

5322 117 12471

R396

RESISTOR CHIP RC12H 1% 10E

5322 117 12464

R398

RESISTOR CHIP RC12H 1%

5322 117 12472

R403

RESISTOR CHIP RC12H 1% 21K5

5322 117 12477

R404

RESISTOR CHIP RC12H 1%

1E

5322 117 12472

R405

RESISTOR CHIP RC12H 1%

1K

4822 117 11154

1K

0E

1K

1E

8

Remarks

8-19

123
Service Manual

Reference
Designator

8-20

Description

Ordering
Code

Remarks

R406

RESISTOR CHIP RC12H 1% 511E

5322 117 12451

R407

RESISTOR CHIP RC12H 1% 3K16

5322 117 12465

R408

RESISTOR CHIP RC11 2% 10M

4822 051 20106

R409

RESISTOR CHIP RC12H 1% 26K1

5322 117 12448

R410

RESISTOR CHIP RC12H 1% 68E1

5322 117 12454

R416

RESISTOR CHIP RC12H 1%

1E

5322 117 12472

R417

RESISTOR CHIP RC12H 1%

1E

5322 117 12472

R431

RESISTOR CHIP RC12H 1% 21K5

5322 117 12477

R432

RESISTOR CHIP RC12H 1% 147K

5322 117 12478

R433

RESISTOR CHIP RC12H 1% 147K

5322 117 12478

R434

RESISTOR CHIP RC12H 1% 147K

5322 117 12478

R436

RESISTOR CHIP RC12H 1% 26K1

5322 117 12448

R438

RESISTOR CHIP RC12H 1% 147K

5322 117 12478

R439

RESISTOR CHIP RC12H 1% 21K5

5322 117 12477

R441

RESISTOR CHIP RC12H 1% 3K16

5322 117 12465

R442

RESISTOR CHIP RC12H 1% 1K47

5322 117 12479

R453

RESISTOR CHIP RC12H 1% 21K5

5322 117 12477

R454

RESISTOR CHIP RC12H 1%

1E

5322 117 12472

R466

RESISTOR CHIP RC12H 1%

1E

5322 117 12472

R467

RESISTOR CHIP RC12H 1%

1E

5322 117 12472

R469

RESISTOR CHIP RC12H 1% 100K

4822 117 10837

R470

RESISTOR CHIP RC12H 1%

0E

5322 117 12471

R471

RESISTOR CHIP RC12H 1%

1M

4822 117 11948

R472

RESISTOR CHIP RC12H 1%

1M

4822 117 11948

R473

RESISTOR CHIP RC12H 1% 100E

4822 117 11373

R474

RESISTOR CHIP RC12H 1% 100E

4822 117 11373

R478

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

R479

RESISTOR CHIP RC12H 1% 51K1

5322 117 12462

R480

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

R481

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

R482

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

PCB version < 8

R482

RESISTOR CHIP RC12H 1% 511E

4022 301 21761

PCB version ≥ 8

R483

RESISTOR CHIP RC12H 1% 100K

4822 117 10837

PCB version < 8

R483

SMD RES 51K1 1% TC100 0805

4022 301 22241

PCB version ≥ 8

List of Replaceable Parts
8.5 Main PCA Parts

Reference
Designator

Description

Ordering
Code

R486

SMD RES 10K 1% TC50 0805

4022 301 22071

R487

SMD RES 10K 1% TC50 0805

4022 301 22071

R491

RESISTOR CHIP RC12H 1% 51K1

5322 117 12462

R495

RESISTOR CHIP RC12H 1% 3K16

5322 117 12465

R496

RESISTOR CHIP RC12H 1% 3K16

5322 117 12465

R497

RESISTOR CHIP RC12H 1%

0E

5322 117 12471

R499

SMD RES 56K2 1% TC100 0805

4022 301 22251

R501

RESISTOR CHIP LRC01 5% 0E1

5322 117 11759

R502

RESISTOR CHIP RC12H 1% 10E

5322 117 12464

R503

RESISTOR CHIP RC12H 1% 10E

5322 117 12464

R504

RES FRC01 1206 5% 1E

4822 117 11151

R506

RES FRC01 1206 5% 1E

4822 117 11151

R507

RES FRC01 1206 5% 1E

4822 117 11151

R508

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

R509

RESISTOR CHIP RC12H 1% 46E4

5322 117 12463

R512

RESISTOR CHIP RC12H 1% 2K87

5322 117 12608

R513

RESISTOR CHIP RC12H 1% 26K1

5322 117 12448

R514

RESISTOR CHIP RC12H 1% 3K16

5322 117 12465

R516

RESISTOR CHIP RC12H 1% 23K7

5322 117 12481

R524

RESISTOR CHIP RC12H 1% 100E

4822 117 11373

R527

RESISTOR CHIP RC12H 1% 147E

5322 117 12482

R528

RESISTOR CHIP RC12H 1% 34K8

5322 117 12467

R529

RESISTOR CHIP RC12H 1% 261K

5322 117 12617

R531

RESISTOR CHIP RC12H 1% 21K5

5322 117 12477

R532

SMD RES 100E 1% TC100 0805

4022 301 21591

R534

RESISTOR CHIP RC12H 1% 1K47

5322 117 12479

R535

RESISTOR CHIP RC12H 1% 51K1

5322 117 12462

R550

RESISTOR CHIP RC12H 1% 348E

5322 117 12456

R551

RESISTOR CHIP LRC01 5% 0E1

5322 117 11759

R552

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

R553

RESISTOR CHIP RC12H 1% 4K22

5322 117 12476

R554

RESISTOR CHIP RC12H 1% 26K1

5322 117 12448

R555

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

8

Remarks

8-21

123
Service Manual

Reference
Designator

8-22

Description

Ordering
Code

Remarks

R558

RESISTOR CHIP RC12H 1% 31K6

5322 117 12466

R559

RESISTOR CHIP RC12H 1% 5K11

5322 117 12469

R561

RESISTOR CHIP RC12H 1% 100E

4822 117 11373

R562

RESISTOR CHIP RC12H 1% 100E

4822 117 11373

R563

RESISTOR CHIP RC12H 1% 100K

4822 117 10837

R564

RESISTOR CHIP RC12H 1% 100K

4822 117 10837

R565

RESISTOR CHIP RC12H 1% 100K

4822 117 10837

R570

RESISTOR CHIP RC12H 1% 100K

4822 117 10837

R580

RESISTOR CHIP LRC01 5% 0E33

5322 117 11725

R591

RESISTOR CHIP RC12H 1% 2K15

5322 117 12452

R600

RESISTOR CHIP RC12H 1% 5K11

5322 117 12469

R602

RESISTOR CHIP RC12H 1% 10K

4822 117 10833

R603

RESISTOR CHIP RC12H 1% 100K

4822 117 10837

R604

RESISTOR CHIP RC12H 1%

4822 117 11154

R605

SMD RES 10 K 1% TC50 0805

4022 301 22071

R606

SMD RES 6K19 1% TC50 0805

4022 301 22021

T552

BACKLIGHT TRANSFORMER PT73458

5322 146 10447

T600

SMD TRANSFORMER 678XN-1081 TOK

5322 146 10634

V171 *

PNP/NPN TR.PAIR BCV65

5322 130 10762

V172 *

PNP/NPN TR.PAIR BCV65

5322 130 10762

V174 *

PNP/NPN TR.PAIR BCV65

5322 130 10762

V301 *

PREC.VOLT.REF. LM4041CIM-1.2

5322 209 14852

2X4 pin DIL

V302 *

PREC.VOLT.REF. LM4041CIM-1.2 3X

4022 304 10571

Transistor shape

V353 *

VOLT REG DIODE BZD27-C7V5 PEL

4822 130 82522

V354 *

VOLT REG DIODE BZD27-C7V5 PEL

4822 130 82522

V356 *

LF TRANSISTOR BC858C

4822 130 42513

V358 *

LF TRANSISTOR BC868

PEL

5322 130 61569

V359 *

LF TRANSISTOR BC868

PEL

5322 130 61569

V395 *

LF TRANSISTOR BC848C

1K

PEL

PEL

5322 130 42136

List of Replaceable Parts
8.5 Main PCA Parts

Reference
Designator

Description
BSN20

Ordering
Code

V401 *

N-CHAN FET

PEL

V402 *

P-CHAN. MOSFET BSS84

V403 *

N-CHAN FET

V471 *

SCHOTTKY DIODE BAS85

V482 *

SCHOTTKY DIODE BAT54S

V495 *

P-CHAN. MOSFET BSS84

V501 *

SCHOTTKY DIODE MBRS340T3 MOT

5322 130 10674

V503 *

SCHOTTKY DIODE MBRS340T3 MOT

5322 130 10674

V504 *

SCHOTTKY DIODE MBRS340T3 MOT

5322 130 10674

V506 *

POWER TMOS FET MTD5P06ET4 MOT

5322 130 10671

V550 *

RECT DIODE

BYD77A

5322 130 10763

V551 *

RECT DIODE

BYD77A

5322 130 10763

V554 *

N-CHAN MOSFET 2SK974STR HIT

5322 130 62921

V555 *

RECT DIODE

5322 130 10763

V561 *

SCHOTTKY DIODE MBRS340T3 MOT

5322 130 10674

V562 *

SCHOTTKY DIODE MBRS340T3 MOT

5322 130 10674

V563 *

SCHOTTKY DIODE MBRS340T3 MOT

5322 130 10674

V564 *

SCHOTTKY DIODE MBRS1100T3 MOT

5322 130 10675

V565 *

LF TRANSISTOR BC848C

PEL

5322 130 42136

V566 *

LF TRANSISTOR BC848C

PEL

5322 130 42136

V567 *

SCHOTTKY DIODE MBRS340T3 MOT

5322 130 10674

V569 *

LF TRANSISTOR BC869

4822 130 60142

V600 *

TMOS P-CH FET MMSF3P03HD MOT

5322 130 10672

V601 *

TMOS N-CH FET MMDF3N02HD MOT

5322 130 10673

V602 *

SCHOTTKY DIODE MBRS340T3 MOT

5322 130 10674

V603 *

SIL DIODE

5322 130 31928

V604 *

N-CHAN FET

V605 *

LF TRANSISTOR BC858C

X452

FLEX-PRINT CONNECTOR 15-P

FCN

5322 265 10725

X453

FLEX-PRINT CONNECTOR 21-P

FCN

5322 265 10726

X501

DC POWER JACK HEC0739-01-010

4822 267 30431

X503

MALE HEADER 2MM 6-P DBL RT.ANG

5322 267 10501

BSN20

PEL

5322 130 10669

PEL

5322 130 63289
9338 765 40115
PEL

4822 130 82262

PEL

5322 130 10669

PEL

PEL

BSN20

Remarks

5322 130 63289

BYD77A

BAS16

8

PEL

5322 130 63289

PEL

4822 130 42513

8-23

123
Service Manual

Reference
Designator

Description

X601

MALE HEADER

7-P SNG RT.ANG

Z501

EMI-FILTER 50V 10A

MUR

Ordering
Code

Remarks

5322 267 10502

5322 156 11139

8.6 Accessory Replacement Parts
Black ground lead for STL120

5322 320 11354

8.7 Service Tools
Power Adapter Cable for calibration
(see Section 5.7).

8-24

5322 320 11707

Chapter 9

Circuit Diagrams

Title

Page

9.1 Introduction................................................................................................. 9-3
9.2 Schematic Diagrams.................................................................................... 9-4

9-1

Circuit Diagrams
9.1 Introduction

9

9.1 Introduction
This chapter contains all circuit diagrams and PCA drawings of the test tool. There are
no serviceable parts on the LCD unit. Therefore no circuit diagrams and drawings of the
LCD unit are provided.
Referring signals from one place to another in the circuit diagrams is done in the
following way:

1

2

3

4

5

A

B

1

2

3

4

5

A

SIGNAL

B
[5, C2]

C

C
[1,B3]
Figure 9.1 Circuit Diagram 1

SIGNAL

Figure 9.5 Circuit diagram 5

The line SIGNAL on circuit diagram 1, location B3 [1,B3], is connected
to the line SIGNAL on circuit diagram 5, location C2 [5,C2].
If the signal is referred to a location on the same circuit diagram, the
circuit diagram number is omitted.

9-3

123
Service Manual

9.2 Schematic Diagrams
The tables below show where to find the parts on the Main PCA circuit diagrams and
assembly drawings. Separate tables are created for the Main PCA side 1 and side 2
assembly drawing.
B402

C4

indicates that part B402 can be found in:

4, J10

location C4 on the Main PCA side 1 drawing
circuit diagram part 4, location J10.
Table 9-1. Parts Location Main PCA Side 1

9-4

B402
B403

C4 4, J10
C4 4, J11

C101
C102
C104
C105
C106
C111
C112
C113
C114
C116
C117
C118
C119
C121
C122
C123
C124
C146
C181
C183
C187
C201
C202
C204
C205
C206
C211
C212
C213
C214
C216
C217
C218
C219
C221
C222

A2
A1
B2
B3
A2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B3
A2
A3
B3
B3
C2
D1
C2
D3
D1
D2
D2
D2
D2
D2
D2
D2
D2
D2
D2

1, E3
1, E2
1, C2
1, B4
1, F3
1, B2
1, B3
1, B2
1, B3
1, B4
1, C3
1, C4
1, C4
1, D4
1, C4
1, C5
1, D5
1, F5
1, A9
1, C9
1, C8
2, E3
2, E2
2, C2
2, B3
2, E2
2, A2
2, A2
2, B2
2, B2
2, B3
2, C3
2, C3
2, C4
2, C3
2, C3

C223
C224
C246
C281
C283
C287
C303
C313
C314
C317
C321
C322
C333
C337
C339
C392
C395
C399
C465
C501
C502
C503
C504
C528
C553
C555
C561
C562
C563
C564
C565
C567
C568
C572
C573
C574
C576
C581
C608
C609

D2
D3
C2
C3
C3
D3
B3
D3
A3
C3
C3
C3
B3
B3
B3
D3
C3
C3
D3
D3
C4
D4
D4
D4
C5
C5
C5
B5
B5
A5
B5
B5
D5
C5
B5
A5
B5
A3
B5
A4

2, C4
2, C4
2, F5
2, A9
2, C9
2, B2
3, E6
3, D7
3, E6
3, G6
3, C7
3, C7
3, E11
3, G11
3, G11
3, G2
3, B10
3, A11
4, B12
5, E3
5, F6
5, E6
5, E6
5, H8
5, G10
5, C11
5, C13
5, C14
5, C14
5, D14
5, B14
5, B14
5, B15
5, B15
5, C15
5, C15
5, C15
5, B10
5, J15
5, J15

D401
D451
D471
D474
D475
D480

B3
C3
B4
A4
B5
A3

H495
H521
H522

A3 4, I16
D3 5, K9
D3 5, K8

K171

L501
L564
L566
L569
L600

A2 1, E4
3, D14
A2 1,C2
3, C14
C2 2, E4
3,E14
D4 5, E5
A5 5, C14
B5 5, C14
D5 5, B14
A5 5, J13

N101
N201
N301
N501

B2
C2
B3
D5

1, D6
2, D6
3, D9
5, E5

R001
R002
R101
R102
R103
R104
R105
R106
R108
R172
R201

B1
C1
B2
B2
A2
A2
B2
A1
B2
A2
C2

1, E2
2, E1
1, E2
1, E3
1, E4
1, E4
1, B3
1, F2
1, B3
1, C2
2, E2

K173
K271

4, B4
4, J4
4, F11
4, B15
4, F15
4,D15

R202
R203
R204
R205
R206
R208
R306
R312
R321
R322
R323
R324
R327
R333
R339
R378
R381
R391
R392
R486
R487

C2
C2
C2
D2
D1
D2
B3
C3
C3
C3
B3
B3
C3
B3
B3
C3
C3
C3
C3
C4
C4

2, E2
2, E4
2, E4
2, A2
2, E2
2, B2
3, F6
3, G6
3, C6
3, B6
3, C8
3, C8
3, C7
3, E11
3, G11
3, F3
3, F3
3, A11
3, B11
4,I14
4,I14

T552
T600

C5 5, C12
A5 5, J14

V302
V401
V402
V603

A4
A4
A4
B4

3,G8
4, G1
4, G2
5, J15

X452
X453
X501
X503
X601

A4
A3
D4
A5
A4

4, J8
4, B7
5, E1
5, C3
5, J15

Z501

D3 5, E2

Circuit Diagrams
9.2 Schematic Diagrams

9

Table 9-2. Parts Location Main PCA Side 2
B401

B4 4, J9

C107
C131
C132
C133
C134
C136
C142
C145
C148
C152
C153
C156
C158
C159
C161
C162
C182
C184
C186
C188
C189
C190
C191
C199
C207
C231
C232
C233
C234
C236
C242
C245
C248
C252
C253
C256
C258
C259
C261
C262
C282
C284
C286
C288
C289
C290
C291
C301
C306
C311
C312

D2
D2
D2
D2
D2
D2
C2
D2
C1
D2
D2
C3
C2
C2
D2
D3
C2
C2
D2
C2
D2
C2
C2
D3
B2
B2
B2
B2
B2
B2
A2
B2
B1
B2
B2
A3
B2
B2
B2
B3
A2
A2
B2
A2
B2
B2
A2
C3
D3
C3
C3

1, D5
1, D5
1, D5
1, D5
1, D5
1, E5
1, F4
1, F5
1, E2
1, C7
1, D7
1, D8
1, C7
1, F7
1, E10
1, F8
1, A7
1, B8
1, B7
1, B7
1, C8
1, C8
1, C8
1, C1
2, D4
2, C5
2, D5
2, D5
2, D5
2, E5
2, F4
2, E4
2, E2
2, C6
2, D6
2, D8
2, C7
2, E7
2, D9
2, E9
2, A7
2, A6
2, B7
2, B7
2, B8
2, C7
2, C8
3, D6
3, F7
3, G7
3, G8

C331
C332
C342
C344
C356
C357
C376
C377
C378
C379
C381
C382
C391
C393
C394
C396
C397
C398
C401
C402
C403
C404
C407
C408
C409
C416
C431
C432
C433
C434
C436
C438
C439
C441
C442
C451
C452
C453
C457
C458
C463
C464
C466
C470
C471
C472
C473
C474
C475
C476
C478
C479
C480

C3
C4
C3
C3
C3
C3
B3
B3
C3
C3
B3
B3
A3
B3
B3
C3
C3
B3
C3
C3
C3
D4
D3
C3
D3
C3
B4
B4
B3
B4
C4
C4
C3
C3
C4
B3
B3
B3
B3
B3
B4
B4
B3
C3
C4
C4
C4
B4
D4
D4
B5
C4
C4

3, E11
3, E10
3, G11
3, F9
3, A10
3, B10
3, F5
3, F4
3, F4
3, F4
3, F3
3, F4
3, G2
3, H5
3, H4
3, H4
3, H4
3, H3
4, B2
4, B2
4, C2
4, G2
4, A4
4, A5
4, H2
4, A4
4, E1
4, F2
4, E2
4, F2
4, F3
4, F3
4, E3
4, F3
4, E3
4, J1
4, J2
4, J2
4, I5
4, I5
4, F6
4, G6
4, I4
4,D15
4, B11
4, B11
4, B11
4, B12
4, C14
4, E16
4, G16
4, F4
4, F5

C481
C482
C483
C484
C485
C486
C487
C488
C489
C500
C505
C506
C507
C509
C511
C512
C532
C529
C531
C534
C547
C548
C549
C550
C551
C552
C554
C583
C591
C592
C593
C594
C602
C603
C604
C605
C606
C607
C610

B4
B4
B4
B4
B4
B4
B4
B3
B4
A4
A4
A5
A5
A5
D5
D5
B4
A4
C4
A4
A5
A5
A4
A5
A5
A5
D5
A4
B5
B5
B5
C4
D5
D4
D5
D5
C5
C5
C5

4, J11
4, J11
4, J10
4, J10
4, J9
4, J9
4, I8
4, I7
4, J13
5, E2
5, E4
5, D6
5, F6
5, C5
5, B4
5, C5
5, K6
5, H8
5, K5
5, G6
5, C7
5, C7
5, C7
5, D13
5, D11
5, D11
5, D4
5, J8
5, K3
5, K3
5, K3
5, K4
5, H13
5, K10
5, K11
5, K11
5, K10
5, K12
5, K15

D531

B4 5, J5

L181
L182
L183
L281
L282
L283
L481
L562
L563
L567

C3
D3
D3
A3
B3
B3
C4
C5
C5
C5

1, A9
1, A9
1, B9
2, A9
2, A9
2, B9
4, A16
5, B14
5, B14
5, C14

N531
N600
R109
R110
R111
R112
R113
R114
R116
R117
R118
R119
R120
R121
R125
R131
R132
R133
R134
R136
R137
R138
R139
R140
R141
R142
R143
R144
R146
R151
R152
R153
R154
R155
R156
R157
R158
R159
R160
R161
R165
R171
R173
R182
R184
R186
R188
R189
R209
R210
R211
R212
R213

B4
D5
D2
C2
C2
C2
C2
C2
C2
C2
C2
C3
C2
C2
C2
D2
D2
D2
D2
D2
D1
D1
D1
D1
C2
D2
D2
D2
D2
D2
D2
D2
D2
D2
C3
C3
C3
D3
C2
C3
D3
D3
D3
C3
C2
D2
C3
D2
B2
A2
A2
A2
A2

5, J6
5, J11
1, E5
1, A4
1, A4
1, A4
1, A5
1, A5
1, C3
1, B3
1, D4
1, C4
1, B4
1, D5
1, C4
1, D5
1, D5
1, D5
1, E5
1, E5
1, E3
1, E3
1, E4
1, E4
1, E3
1, F4
1, E4
1, F5
1, F5
1, C8
1, C8
1, D8
1, D8
1, D7
1, D8
1, D8
1, E7
1, F7
1, D7
1, D8
1, E8
3, D12
3, C12
1, A7
1, A9
1, B7
1, B7
1, B9
2, D4
2, A3
2, A3
2, A4
2, A4

9-5

123
Service Manual

R214
R216
R217
R218
R219
R220
R221
R225
R231
R232
R233
R234
R236
R237
R238
R239
R240
R241
R242
R243
R246
R251
R252
R253
R254
R255
R256
R257
R258
R259
R260
R261
R271
R282
R284
R286
R288
R289
R301
R302
R303
R305
R307
R308
R309
R310
R311

9-6

A2
A2
A2
A2
A3
A2
A2
A2
B2
B2
B2
B2
B2
A1
A1
A1
A1
A2
B2
B2
B2
B2
B2
B2
B2
B2
A3
A3
B3
B3
A2
A3
B3
A3
A2
B3
A3
B2
C3
C3
C3
C3
D4
D3
C3
C3
C3

2, A5
2, C3
2, B3
2, D3
2, C4
2, B4
2, D4
2, C4
2, C5
2, D5
2, D5
2, D5
2, E5
2, E3
2, E3
2, E3
2, E4
2, E3
2, E3
2, E4
2, E5
2, C8
2, C8
2, D8
2, D8
2, D7
2, D8
2, D7
2, E7
2, E7
2, D7
2, D7
3, E12
2, A7
2, A8
2, B7
2, B7
2, B8
3, D6
3, E6
3, E6
3, D6
3, F8
3, F6
3, G6
3, E6
3, G6

R326
R331
R337
R342
R352
R353
R354
R356
R369
R371
R375
R376
R377
R385
R390
R393
R394
R395
R396
R398
R403
R404
R405
R406
R407
R408
R409
R410
R416
R417
R431
R432
R433
R434
R436
R438
R439
R441
R442
R453
R454
R466
R467
R469
R470
R471
R472

B3
C3
C3
C3
D1
D1
D3
D3
B3
C3
B5
B3
B3
C4
B3
A3
A3
A3
A3
A3
C3
D3
D4
D4
D4
D3
C3
D3
C5
D3
C4
C3
C3
C4
B4
B4
B3
B4
B4
B3
B3
C5
B3
B4
B5
B4
B4

3, C6
3, C7
3, F11
3, G11
3, B3
3, B3
3, A2
3, A2
3, C11
3, E3
3, E2
3, F3
3, F3
3, F2
3, B10
3, G3
3, G3
3, G2
3, G3
3, G3
4, A3
4, A11
4, G2
4, G2
4, G2
4, G2
4, F3
4, G3
4, A12
4, A11
4, D3
4, D3
4, E3
4, E3
4, F3
4, E3
4, E3
4, E3
4, E3
4, I3
4, A11
4, A12
4, B11
4, J12
4, B12
4, H7
4, H8

R473
R474
R478
R479
R480
R481
R482
R482
R483
R483
R491
R495
R496
R497
R499
R501
R502
R503
R504
R506
R507
R508
R509
R512
R513
R514
R516
R524
R527
R528
R529
R531
R532
R534
R535
R550
R551
R552
R553
R554
R558
R559
R563
R564
R565
R570
R580

B3
B4
C4
C4
C4
C4
C4
C3
C4
C3
B4
D3
D3
C5
B4
A4
A4
A5
C5
C5
C5
B4
A5
A5
A5
A5
A5
A5
A3
A4
A3
B4
B4
A4
A4
A5
B5
A5
A5
A5
A5
A5
A5
A5
A5
B5
A4

4, I8
4, I8
4, F5
4, F5
4, E5
4, E15
4, D16
4, D15
4, E16
4, D16
4, H14
4, I15
4, J15
4, G15
4, J13
5, E3
5, F5
5, E6
5, C4
5, C4
5, C5
5, B4
5, C5
5, C5
5, G3
5, G3
5, G4
5, G15
5, J9
5, H7
5, J8
5, K6
5, K6
5, G6
5, G8
5, D12
5, E12
5, E16
5, E16
5, E15
5, F10
5, F10
5, F15
5, F15
5, F14
5, C12
5, A8

R591
R600
R602
R603
R604
R605
R606

C4
C5
C5
C4
C5
D4
D4

5, K4
5, K15
5, K13
5, K15
5, K15
5, J10
5, K11

V171
V172
V174
V301
V302
V353
V354
V356
V358
V359
V395
V403
V471
V482
V495
V501
V503
V504
V506
V550
V551
V554
V555
V561
V562
V563
V564
V565
V566
V567
V569
V600
V601
V602
V604
V605

D3
B3
D3
C4
C3
D1
D1
D3
D2
D2
B3
D4
C3
C4
D3
A3
A4
A4
A4
A5
B5
B5
B5
B5
B5
C5
C5
A5
A5
B5
A5
D5
D5
D5
C5
C5

3, D13
3, E13
3, C13
3, G8
3, G8
3, B2
3, B2
3, A3
3, B2
3, B2
3, B11
4, G2
4, D15
4, D15
4, H15
5, E3
5, E5
5, E4
5, E4
5, C10
5, C11
5, D12
5, D12
5, C13
5, C13
5, C13
5, C13
5, F15
5, F15
5, A13
5, A9
5, J12
5, J13
5, J13
5, K15
5, J15

Circuit Diagrams
9.2 Schematic Diagrams
7

8

9

9

10

N101
GENOUT

10

[3,A1]

R110
2K15
C111
4p7

R105
511E

C113
4p7

R113
10M

R112
10M

R114
10M

13

C114
4p7

R108
511E

R117
215E

HF0

14
12

SWHF0
GNDHF0

16

HF1

K173

C119
4p7

C118
4p7

4

R125
68E1

K173
C104
120p

C122
4p7

ptc

HF

C121
33p

C124
33p

R118
68E1

R121
68E1

C107
470p

PROBE_A

AC/DC

[4,I7]

INPUT A
(red input)

2
4

R102
487K
R137
56K2

3
ptc
+

R106
500E

C102
100n
C106
4n7

R138
56K2
R141
215K
50PPM

VDIGN3V3 30
VDIGN3V3 6
CERR1 4

C136
4n7

C142
1n

50PPM

REF_BUS

[3,H8]

R144
348E

C145
1n
C146
1n

35

FB0

37

38
R133
10K
50PPM
40
R134
1K
50PPM

C152
15n

C-ASIC
OQ0258

L183
47u

+5VA

[5,B16]

APWM_BUS
POS_A

R155
178K

OFFSET_A
REF_BUS

R154
681K
R161
100K

R160
51K1

REFN

[3,H8]

TP153
R156
100K

C156
1n

FB3

[4,D1]

TP152

R153
681K
C153
22n

FB4

[5,C16]

C183
22u

C191
100n

R152
100K

DACTEST 24

FB2

-3V3A

C189
100n

R151
100K

ADC 27
41

R146
215K

FB1

L182
47u

TP151

CERR2 5
POS 1

OFFSET 44

R132
100K
50PPM

R136
100E
50PPM
1206

R143
909K
50PPM

HF3
GNDHF3

C187
22u

C190
100n

C158
150p

SWHF2
GNDHF2

21
22

R131
1M
50PPM

R104
26K1
R140
56K2

REFATT

COMMON
(black input)

C134
470p

3

R139
56K2

R142
147K

INPUT
BLOCK
X100

1

C132
4p7

R103
1M

LF
R101
487K

2

F

R109
2K15

C101
22n

C148
10n
E

C131
0p82

C133
47p

CHANNEL A

4

18
20

C123
4p7

R119
464E

R116
215E

D

HF2

C117
10p

C199
470p

R172
500E

19

+

C188
100n

GNDDIG 3

348E
R157

DACTESTA

TP154

TP155

MIDADC 28

ADC_A

[5,J2]

[4,B1]

C161
100n
MIDADC_A

[4,C1]

TRIG_A

[3,C1]

SENSE

[3,C1]

TP156

39

FBC

42

LF

2

GPROT

36
43

CALSIG
PROTGND

R158
287E

TRIGGER 29

ADDRESS 23

100E
R165

R159
100E

TRACEROT 31

SCLK

SDAT
25

C

3

SWHF1
GNDHF1

26

2

R188
10E

VP5V 7
17
15

[5,C16]

R189
10E

VAMPN3V3 32

Ohms/F

5

C186
100n

GNDREF 34

+3V3A

C184
100n

R186
10E

VAMPPSUP 33

R120
10M

L181
47u
C181
22u

R184
10E

VATTN3V3 9

+

C116
4p7

+

C182
100n

GNDATT 11

C112
4p7

C105
10u

B

R111
10M

R182
10E

VATTP3V3 8

DCBIAS

C159
100p

TRACEROT

[3,F13]

C162
4p7
SDAT

[4,I7]

SCLK

[4,I7]

ICAL

[3,A1]

1
ST8086
970604

G
ST8086.WMF

Figure 9-1. Circuit Diagram 1, Channel A Circuit

9-7

123
Service Manual
1

2

3

4

5

6

7

8

9

N201
10

A

R210
2K15

C211
4p7

R211
10M

R214
10M

GNDATT

13

C205
10u

C214
4p7

R208
511E

B

R213
10M

C212
4p7

R205
511E

C213
4p7

R212
10M

R217
215E

VATTP3V3

DCBIAS

VATTN3V3

VAMPPSUP

14
12

SWHF0
GNDHF0

16

HF1

C219
4p7

C218
4p7

R225
68E1

19

32

SWHF1
GNDHF1

GNDDIG

21

INPUT

C233
47p

CHANNEL B
C207
470p

PROBE_B

AC/DC

[4,H7]

C248
10n

R201
487K

5
6

INPUT B
(grey input)

ptc
R206
500E

C202
100n
C206
4n7

R239
56K2

R242
147K

COMMON
(black input)

R231
1M
50PPM

R240
56K2
R243
909K
50PPM

37

38
R233
10K
50PPM

40
R234
1K
50PPM

R286
10E
C286
100n

R288
10E

7

C242
1n

2
36
43

C246
1n

R246
215K

-3V3A

L283
47u

+5VA

REF_BUS

[5,B16]

22u

C290
100n

C291
100n

C283
22u

APWM_BUS

TP251

[4,D1]

5
POS_B
C252
15n

TP252

FB0
44

OFFSET_B
REF_BUS

FB1

C-ASIC
OQ0258
DACTEST

FB2

C253

R255

22n

178K

24

TP253
R261

R256

100K

100K

FBC
TRIGGER

ADC_B

TP254

R257
100K

TP255

TP256
R258

TRIG_B

287E

LF

[4,I1]

C261

100n
MIDADC_B

28

29

[5,J2]

1n

FB3

FB4

DACTESTB

C256

R260
51K1

27

[3,H8]

REFN

[4,J1]

[3,C1]

C262
4p7

GPROT

TP258

CALSIG
PROTGND

TRACEROT

SCLK

SDAT

R259
100E

31

TRACEROT

[3,F13]

C259
100p

SDAT
SCLK

REFATT

[5,C16]

C289
100n

C288
100n

3

ADDRESS 23

MIDADC

39

L282
47u

[5,C16]

R289
10E

POS 1

HF3
GNDHF3

ADC

41

42

C245
1n

CERR2

+3V3A

C284
100n

150p

SWHF2
GNDHF2

OFFSET

R232
100K
50PPM

R204
26K1

50PPM

F

35

R236
100E
50PPM
1206

3
K271

R238
56K2
R241
215K
50PPM

C236
4n7

R203
1M
2
4

R202
487K
R237
56K2

C234
470p

R209
2K15

C201
22n

LF
E

C232
4p7

R221
68E1

X100

22

C231
0p68

C224
33p

R218
68E1

7

R284
10E

30
VDIGN3V3
VDIGN3V3 6
4
CERR1

HF2

25

R219
464E

R216
215E

18
20

C223
4p7

C221
33p

D

22u

33

VAMPN3V3

26

C222
4p7

HF

C281

100n

C258

C

BLOCK

C282

9

34

C217
10p

C204
120p

11

GNDREF

VP5V
17
15

10E

HF0

R220
10M
C216
4p7

L281
47u

R282

8

[4,I7]
[4,I7]

[3,H8]
ST8087
970604
ST8087.WMF

Figure 9-2. Circuit Diagram 2, Channel B Circuit

9-8

9

Circuit Diagrams
9.2 Schematic Diagrams
1

[1,F10]

[1,A2]

2

3

4

5

6

7

8

9

11

10

R354
261E

GENOUT

R356
261E

V358
BC868

VCC5REF

VCC3ATR

C356
15 or18n FILM

[4,A11]

PROTECTION

V359
BC868

C357
22n

TVSYNC

APWM_BUS

[4,D1]

C321
1n5

TP321

C

R326
562K

R323
34K8

REFP

R324
215K

R327
562K

REFN

TP301

TP310
REFATT

REFADCT
C313
10u

R305
10K

C301
100n
GAINADCT
TP302

REFADCB
R375
0E

VCC5REF
R371
0E

VCC5DT

GAINADCB

+3V3A

R302
10K

R385
0E

F

R381
10E

C381
100n

C379
100n

C378
100n

C377
100n

VCC3ATR

[D11]

VCC3DT

[D11]

VCC3RAMP

[D11]

VCC3REF

[D8]

VCC3CML

[E9]

TP309

C303
100n

[D11]

C382
100n

R376
10E
R377
1E
R378
10E

R303
10K

C314
10u

[D8]

R310
100K

TP303

[4,I7]

R306
21K5

G
[5,C16]

-3V3A

R395
0E

GAINREFN

C391
100n

C392
10u

R398
1E

[D11]

VEERAMP

[E11]

VEEREF

[C10]

VEECML
C398
100n

C397
100n

C396
100n

C394
100n

C393
100n

TP307

[E9] 2x

R312
34K8

R311
31K6

OQ0257

C311
100n

C312
100n

R173
348E

1
K173

-3V3A
+5VA

17
18
24
22
23
20
25
21
26
50
49
48
47
46
43
45

VCC3ATR
BIAS
OHMA
ACDCA
ACDCB
VCC5DT
VCC3DT
VEEDT

[F5]

10

VCC3RAMP

[F5]

VEERAMP

[G5]

C332
22p

V171
BCV65

[E5]
[F5]
[G5]

TP331

TP332

R171
348E

1

K171
-3V3A
+5VA

V172
BCV65
R331
10K
C331
4p7
R333
10K
C333
1p

10

RSTRAMP
R271
348E

1

K271
-3V3A

RAMPCLK
TRIGDT
TRACEROT

[1,E10]
[2,E10]

TP311

C344
22p

V301 *
4041

[5,J7]

V302 *
4041

V301 OR V302
See Ch.10, Rev. 14

R309
10K

R369
26K1

[5,J7]

R307
10K
REFP

REF_BUS

H

T-ASIC

6

TP336

GAINPWM

[D8]

REF_BUS

ALLTRIG

REFP

REFPWM1
C317
22u

SCLK

REFPWM2

[C9]

N301

V174
BCV65

REFPWM1

VCC3ATR
BIAS
OHMA
ACDCA
ACDCB
VCC5DT
VCC3DT
VEEDT
GNDDT
TRACEROT
GNDRDAC
VCC3RAMP
GNDRAMP
VEERAMP
GNDCML
RSTRAMP

TP306

R308
21K5

50PPM

VEEDT

SDAT

C306
100n

50PPM

C376
100n

VEEATR

[4,I7]

REFN

TP304
R393
10E
R394
1E
R396
10E

REFATT
GNDDISTR
GAINREFN
REFN
REFP
VCC5REF
VCC3REF
VEEREF
GNDREF
GAINADCT
GAINADCB
GAINPWM
REFADCT
REFADCB
REFPWM
DACTEST

[G5]

+5VA

+5VA

[G8]

SDAT
SCLK
VEECML
GNDCML
GQUALIFY
TRIGINDIG
GNDDI
VEECML
SMPCLK
GNDCML
HOLDOFF
VCC3CML
ALLTRIG
TRIGDT
GNDDO
RAMPCLK

REFERENCE
GAIN

8
7
63
64
62
VCC5REF 61
[E5]
VCC3REF
60
[F5]
VEEREF
58
[G5]
57
GAINADCT
52
GAINADCB
54
GAINPWM
56
REFADCT
51
53
REFADCB
55
REFPWM1
DACTESTT 29
[5,K2]
[4,E14]
GAINREFN
REFN
REFP

R301
3K16
D

RELAY
CONTROL

[G5]

[G5]

C322
1n5

VEEATR
TVOUT
TVSYNC
VEEREF

R321
681K

ICAL

TRIG_B

TRIGLEV1

V395
BC848C

C395
47n

[F5]

[2,E10]

R322
681K

BTRAP

TRIG_A

TRIGLEV2

[G5]

[1,E10]

TVOUT

TRIG_B
TRIG_A

SENSE

TP322

14
6
10
11
15
13
59
3
1
5
2
4
19
12
16
9

[1,E10]

V354
BZD27
C7V5

1K
R353

GNDATR
REFOHMIN
TRIGLEV1
TRIGLEV2
TRIGINB
TRIGINA
SENSE
BOOTSTRAP
GENOUT
ICAL
COHM
CGEN
VEEATR
TVOUT
TRIGINEXT
VEEREF

OPTION
V360
BYD17

TP308

31
30
27
28
42
40
37
41
VEECML
38
32
39
VCC3CML 36
35
34
33
44

V353
BZD27
C7V5

SYNC.PULSE
SEPARATOR

R392
4K22

VEECML

B

5K11
R352

C399
100n

R391
1K

R390
464K

[5,C16]

14

V356
BC858 C

VDDAA

[5,B16]

13

ICAL

A

E

12

[C11]
[1,D10]
[2,D10]
[4,C2]
[4,G6]

R337
10K
C337
4p7

HOLDOFF

R339
10K
C339
1p

SMPCLK

R342
10K

TRIGQUAL

TP338

C342
1p

DTRG_BUS

[1,F4]
[2,F3]
[4,C7]
[4,J1]

[4,C5]

3
ST8088-2
00-01-12

ST8088-2.WMF

Figure 9-3. Circuit Diagram 3, Trigger Circuit

9-9

123
Service Manual
8

9

10

11
VDDO

[A5] [I5]

X453

VRB

7

IREF

C403
100n

D401
TDA 8792

VSSA2 VSSA1 STBY

NC

CLK
OEN

24
13

VSSD VSSO

SMPCLK

1

11

3

23

SMPCLK

TP432

PWM FILTERS

TRIGLEV1
TRIGLEV2
OFFSET_A

POS_A

E

SADCLEV
CHARCUR
C431
100n

C439
4n7

C433
22n
C432
100n

C434
22n

C438
4n7

[5,C16]

R405
1K

TRGLEV2D

BSS84
V402

V403
BSN20

R407
3K16

HO_OUT

OFFSETAD

POS_A_D

RAMPCLK

OPTION

CHARCURD

SMPCLK

HO_IN

C442
22n

R479
51K1

TP483

C441
22n

R478
10K

R436
26K1

[I8]

HO_RNDM

C480
100n

TRGLEV1D
TRGLEV2D
POS_B_D

DPWM_BUS
OFFSETBD
REFPWM1

[5,K16]

REFPWM2

C404
470p

SADCLEVD
CHARCURD

R410
68E1

C464
100n

ADCB_BUS

REFADCT
C452
100n

VIN

8

VRT

9
REFADCB

REF_BUS

5

C453
100n

10
7

VDDAB

[B11]

C457
100n

VRM

TDA 8792

VRB

VSSA2 VSSA1 STBY

[A10]

VDDO

[A10]

SUPPRDET
R471
1M

11

PROBE
14
15
16
17
18
19
20
21

ADC_B_D0
ADC_B_D1
ADC_B_D2
ADC_B_D3
ADC_B_D4
ADC_B_D5
ADC_B_D6
ADC_B_D7

CLK
OEN

24
13

SMPCLK

VSSD VSSO

3

[1,E3]
[2,D3]

SCLK, SDAT
[F8]

1
2
3
4
5
+VD
6
7
8
9
10
11
+VD
12
13
HO_OUT
14
HO_IN
15
16
+VD
17
18
19
20
21
22
23
24
25
HO_RNDM 26
27
28
29
NC
30
31
32
33
34
BACKBRIG 35
36
37
38
39
40
+VD
41
42
43
44
45
+VD
46
47
48
49
50
51
NC
52

NC
ADCA7
ADCA6
ADCA5
ADCA4
VDD
VSS
ADCA3
ADCA2
ADCA1
ADCA0
VCLAMPA
HOLDOFF
DIGHO
HOSCHMIN
TROTCLK
VDD
VSS
SMPCLK
EXTTRIG
ALLTRIG
TRIGDT
TRIGQUAL
TROTRST
SHLDPWM
PWMA10N6
PWMA10N5
PWMA10N4
PWMA10N3
PWMA10N2
PWMA12N1
VDDREFA
VSSREF
PWMA12N0
PWMA10N1
PWMA10N0
PWMA8N0
VDDREFB
PWMB10N0
PWMB8N0
VCLAMPB
ADCB7
ADCB6
ADCB5
ADCB4
VDD
VSS
ADCB3
ADCB2
ADCB1
ADCB0
NC

[I12]

R472
1M

PROBE_A
PROBE_B
SCLK

R473
100E

SDAT

100E
R474

C488
100p

C472
100n

C473
100n

STBY_B
[I,14]

+3V3GAR

[5,B16]

TP471
TP472

C475
100n

C476
100n

ROM_ADDR

ROM_DATA

2

D-ASIC

MOT0002N1

TP476

KEYPAD FOIL

B401 3
32KHz
2
1

B402 3
16MHz
2
1

4

4

3

R469
100K

B403
25MHz

1

SEE CIRCUIT DIAGRAM 4
DIGITAL CIRCUIT KEYBOARD

C486
27p

C485
27p

C484
22p

C483
22p

C482
22p

C481
22p

3

R488
0E
ROM_A19

R488 FOR INTEL
16M ROM ONLY

R483
51K1

+VD
R482
511E
C470

V471
BAS85

D480
74LVC32
4
1
5

470P

6

ROMRST
[3,E8]

+12VPROG

[5,B10]

V482
BAT54S

TP487

+VD

R482
10K

R481
10K

R483
100K

C476
100n

RAM_DATA

D475
RAM_CS0

RAM_A11
RAM_A09
RAM_A08
READRAM RAM_A13
WRITERAM WRITERAM

DEBUG1
NC

[B11]

RAM_A00
RAM_A01
RAM_A02
RAM_A03
RAM_A04
RAM_A05
RAM_A06
RAM_A07
RAM_A08
RAM_A09
RAM_A10
RAM_A11
RAM_A12
RAM_A13
RAM_A14

[B11]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

RAM_A15

RAM_A18
RAM_A16
RAM_A14
RAM_A12
RAM_A07
RAM_A06
RAM_A05
RAM_A04

M5M51008 TP
A11
OE
A9
A10
A8
S1
A13
DQ8
W
DQ7
DQ6
S2/A17
A15
DQ5
VCC
DQ4
NC/A18
GND
A16
DQ3
DQ2
A14
A12
DQ1
A0
A7
A6
A1
A2
A5
A3
A4
128X8 SRAM
512X8 SRAM

RAM

READRAM
RAM_A10
RAM_CS0
RAM_D7
RAM_D6
RAM_D5
RAM_D4
RAM_D3

32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17

RAM_D2
RAM_D1
RAM_D0
RAM_A00
RAM_A01
RAM_A02
RAM_A03

[B11]
+VD

RAM_A15
RAM_A16
RAM_A17
RAM_A18

RXD2
TXD2

R497
0E

+VD

R498

OPTION

C478
100n

[B11]

RAM_A18

RAM_ADDR

MS447
+VD

128x8
256x8
512x8

R498
open
open
0E

R497
0E
0E
open

OPTION
R484

R485

R486
10K

R487
10K

V495
BSS84

[J3]
[C3]

FREQPS
MAINVAL

[5,G15]
[5,F15]

BATIDENT

[5,B5]

VGARVALF
PWRONOFF
RXD
TXD

[5,G16]
[5,H15]
[5,H15]

PCA Version Detect
(not for PCB <8)

TP496

TP495
R495
3K16

To ADC's for
PCB version <8

BUZZER
H495

BUZZER

SADC_BUS

X452

23

[B11]
ROM_A18
ROM_A17
ROM_A07
ROM_A06
ROM_A05
ROM_A04
ROM_A03
ROM_A02
ROM_A01

NC

BUZZER
TP474

+VD

Dotted connections and parts for PCB version < 8

DACTESTT
RAM_D7
RAM_D6
RAM_D5
RAM_D4
RAM_D3
RAM_D2
RAM_D1
RAM_D0

+VD

ROMWRITE
ROMRST

Direct connections for PCB version 8

[B11]

+VD

13
14
15
16
17
18
19
20
21
22
23
24

ROM_A15
ROM_A14
ROM_A13
ROM_A12
ROM_A11
ROM_A10
ROM_A09
ROM_A08

Delay circuit for PCB version 8
Dotted connection for PCB version < 8

NC
TLON
DEBUG2
ROM_CS0
ROM_A18
ROM_A19
ROMREAD
ROMWR
+VD

1
2
3
4
5
6
7
8
9
10
11
12

L481
47u

ROMWRITE

R491
51K1

STBY_A

TP473

156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105

1

1

[5,J11]

NC
IO9EXDTA
EXTMA0
D16CS0
D16CS1A18
D16CS2A19
ROMRD
ROMWR
VSS
VDD
ROMRST
IO8
RAMD7
RAMD6
RAMD5
RAMD4
RAMD3
RAMD2
RAMD1
RAMD0
D08CS0
D08CS1
D08CS2
RAMRD
RAMWR
VSS
VDD
RAMA0
RAMA1
RAMA2
RAMA3
RAMA4
RAMA5
RAMA6
RAMA7
RAMA8
RAMA9
RAMA10
RAMA11
RAMA12
RAMA13
RAMA14
VSS
VDD
RAMA15
RAMA16
RAMA17
RAMA18
RXD2
TXD2
EMUL
NC

D471

17

TP488

ROM

ROM_ADDR

STBY_B

C487
100p

ROM_D11
36
ROM_D03
35
ROM_D10
34
ROM_D02
33
ROM_D09
32
ROM_D01
31
ROM_D08
30
ROM_D00
29
ROMREAD 28
27
ROM_CS0 26
ROM_A00 25

ROM_ADDR

PCB version < 8
PCB version 8

C474
100n

[5,C16]

C465
10u

R470
0E

C471
100n

NC

MIDADC_B

NC

1

VDDDB

2
22
VDDD VDDO D0
D1
D2
D3
D4
D5
D6
D7

IREF

4

[B11]

C458
100n

D451

12

[B11]

ADC_B_D7
ADC_B_D6
ADC_B_D5
ADC_B_D4
ADC_B_D3
ADC_B_D2
ADC_B_D1
ADC_B_D0

ADC-CHANNEL-B

ADC_B
C451
4p7

REF_BUS

[3,H8]

6
VDDA

[2,E10]

OFFSETAD

C463
100n

C466
100n

[3,H8]

ALLTRIG
TRIGDT
TRIGQUAL
RSTRAMP

CONTR_D

R453
21K5

[2,D10]

[B11]
SMPCLK

C409
22n

I

[B11]

HOLDOFF

V461
BAS16

R480
10K

TP482

SADCLEVD

R408
10M

-30VD

H

J

ADC_A_D3
ADC_A_D2
ADC_A_D1
ADC_A_D0

FRAME

[5,C16]

[B11]

HOLDOFF

POS_A_D
CONTR_D

V401
BSN20

G

R406
511E

RSTRAMP

TP436

RANDOMIZE

TRGLEV1D

C436
1u

CONTRAST

[C7]

R409
26K1

+3V3D

ADC_A_D7
ADC_A_D6
ADC_A_D5
ADC_A_D4

OFFSETBD

C479
22p
CONTRAST

NC

TRIGQUAL

TP431

F

[C7]

TRIGDT

TP438

POS_B_D

R467
1E

+3V3A

ROM_D15
ROM_D07
ROM_D14
ROM_D06
ROM_D13
ROM_D05
ROM_D12
ROM_D04

D480
74LVC32

RAMPCLK

TP433

VDDAB

R466
1E

+VD

R481
0E
OPTION

FRAME
NC

TP437

PCB version 8

OFFSET_B

CONTRAST

[F1]
[G1]

[3,H13]

R431
21K5
R432
147K
R433
147K
R434
147K
R438
147K
R439
21K5
R441
3K16
R442
1K47

-30VD

[5,C16]

DTRG_BUS

PCB version < 8

POS_B

[5,C16]

LCDTEMP1
REF_BUS

[3,H8]
ADCA_BUS

STBY_A
[J,14]

APWM_BUS

[5,B16]
[5,B16]

R417
1E

[B11]

+VD

LCD_BUS

NC

4

MIDADC_A

[1,E10]

D

-30VD

[5,K2]
12

C

[B11]

M
LCDTEMP1
+5VA
[5,B16]
+3V3D
[5,B16]
REFPWM1
CONTRAST

[I4]

VDDAA

16

28F400
AM29LV800B
A16
BYTE#
A15
GND
A14
DQ15/A_1
A13
DQ7
A12
DQ14
A11
DQ6
A10
DQ13
A9
DQ5
A8
DQ12
NC
DQ4
NC
VCC
WE#
RP#
DQ11
DQ3
VPP
DQ10
WP#
DQ2
RY
DQ9
A18
DQ1
A17
DQ8
A7
DQ0
A6
OE#
A5
GND
A4
CE#
A3
A0
A2
A1

48
47
46
45
44
43
42
41
40
39
38
37

NC

VRM

10

ADC_A_D0
ADC_A_D1
ADC_A_D2
ADC_A_D3
ADC_A_D4
ADC_A_D5
ADC_A_D6
ADC_A_D7

LINECLK
FRAME

[A4]

LCDONOFF
ROM_A00
ROM_A01
ROM_A02
ROM_A03
ROM_A04
ROM_A05
ROM_A06
ROM_A07
ROM_A08
ROM_A09
ROM_A10
ROM_A11

9

REFADCB

14
15
16
17
18
19
20
21

LCDAT1
LCDAT0

DATACLK0
+12VPROG
LCDAT3
LCDAT2
NC
LCDAT1
LCDAT0
NC
LINECLK
FRAME
+VD
M
LCDTEMP1
+5VA
+3V3D
REFPWM1
CONTRAST

ROM_A16

ROMA0
ROMA1
ROMA2
ROMA3
ROMA4
ROMA5
ROMA6
ROMA7
ROMA8
ROMA9
ROMA10
ROMA11
VSS
VDD
ROMA12
ROMA13
ROMA14
ROMA15
ROMA16
ROMA17
ROMD15
ROMD7
ROMD14
ROMD6
ROMD13
ROMD5
ROMD12
ROMD4
ROMD11
VSS
VDD
ROMD3
ROMD10
ROMD2
ROMD9
ROMD1
ROMD8
ROMD0
NC

VRT

C402
100n

REF_BUS

[3,H8]

VIN

8

2
22
VDDD VDDO D0
D1
D2
D3
D4
D5
D6
D7

[5,B10]

LCDAT3
LCDAT2

VDDDB

[I5]

[B11]
DATACLK0

C401
4p7

5
REFADCT

TO
LCD
MODULE

DATACLK0

+VD

6
VDDA

ADC_A

[1,D10]

[A10]

MS422
MS421
MS420
MS419
MS418
MS417
MS416
MS415
MS414
MS413
MS412
MS411
MS410
MS409
MS408
MS406
MS405
MS404
MS403
MS402
MS401

NC
M
FRAME
LINECLK
LCDAT0
LCDAT1
LCDAT2
LCDAT3
VSS
VDD

B

VDDO
C408
100n

C407
100n

LCDONOFF

NC

[B11]

C416
100n

LCDONOFF

[5,B16]

R404
1E
R454
1E

VDDDA

[A5]

21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

M
FRAME
LINECLK
LCDAT0
LCDAT1
LCDAT2
LCDAT3

VDDAA

[A10]

15

208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157

R403
21K5

VDDDA

+3V3D

14
D474

NC
PROBEA
PROBEB
SCL
SDA
ROW0
ROW1
ROW2
ROW3
ROW4
ROW5
VDD
VSS
COL0
COL1
COL2
COL3
COL4
COL5
ONKEY
RTCXTALO
RTCXTALI
VDD
VSS
UPXTALO
UPXTALI
VSS
CPXTALO
CPXTALI
VDD
VSS
TEST
EXTINT
TXD1
RXD1
PWRON
VGARVALID
PROBEC
NETVALID
BACKLIGHT
FREQPS
VDD
VSS
IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7
NC

ADC-CHANNEL-A

13

NC 53
54
55
56
57
58
59
60
61
62
63
64
+VD
[B11]
65
66
67
68
69
70
71
72
73
74
+VD
75
[B11]
76
77
78
79
80
81
+VD
82
[B11]
83
84
85
+VD
[B11]
TXD
86
RXD
87
PWRONOFF 88
VGARVAL
89
BATIDENT
90
MAINVAL
91
NC
92
93
FREQPS
94
+VD
[B11]
95
SELMUX0
96
SELMUX1
97
SELMUX2
98
SUPPRDET 99
[H8]
SLOWADC 100
101
102
103
104

A

12
R416
1E

[5,H7]

R496
3K16

Dotted line for PCB <8
R499
56K2
C489

VGARVAL

[5,B10]
+VD

22n

(not for PCB <8)

BUZ

-30VD

7

[B11]
ROM_D03
ROM_D10
ROM_D02
ROM_D09
ROM_D01
ROM_D08
ROM_D00

6

5

+VD

4

3

[B11]
ROM_A12
ROM_A13
ROM_A14
ROM_A15
ROM_A16
ROM_A17
ROM_D15
ROM_D07
ROM_D14
ROM_D06
ROM_D13
ROM_D05
ROM_D12
ROM_D04
ROM_D11

2

+VD

1

[5,C16]

4
ST8089-2
00-01-12

ST8089.WMF

Figure 9-4. Circuit Diagram 4, Digital Circuit

9-10

Circuit Diagrams
9.2 Schematic Diagrams

9

4
ST8108.WMF

Figure 9-5. Circuit Diagram 4 (cont), Digital Circuit Keyboard

9-11

123
Service Manual
1

2

3

5

4

7

6

8

9

11

10

12

13

14

15

16

LINEAR SUPPLY

A

FLYBACK CONVERTER
V569
BC869

R580

VBAT

0.33E

V567
MBRS340

+3V3SADC

B

VGARVAL

R508
10K

TP568

C511
100n

GNDC
GNDC
GNDC

VBATHIGH
IMAXCHA
VADALOW

7
6
8

VBATHIGH
IMAXCHA
VADALOW

[4,D1]

APWM_BUS

CHARCURR

80

CHARCURR

C534
100n

+3V3GAR
VGARVAL
+12VPROG

TP551

GNDP

P3V3GAR

V564
MBRS1100

ETD15

66
64
22
23

VGARDRV

VGARCURR
70

69

NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
37
36
35
34
33
32
31
30
29
28
27
26
25

38

V550
BYD77A

VCOIL
FLYBOOST
SNUB

52
48
47

GNDD

50

FLYGATE
FLYSENSP

49
55

C562
150u

L566
68uH

C574
150u

C563
150u

TP531

VSENS

54

GNDF
GNDF
GNDF

59
56
53

G

[4,A13] [4,B8]
[4,F1]

+3V3A

[1,B10] [2,A10]
[3,F1] [4,A13]

-3V3A

[1,A10] [2,A10]
[3,G1]

-30VD

[4,C8] [4,C9]
[4,H1] [4,J15]

TP576

C576
150u

L567
47uH

TP577

R550
348E
C551
100n

TP552

C552
100n

C550
4n7

FLYGATE
FLYSENSP

R554
26K1

R552
10K
VSENS

VSENS

R553
4K22

M3V3A

58

-3V3A

VBATSUP

17

NC

IMAXFLY
VOUTHI

57
51

IMAXFLY
VOUTHI

+3V3SADC

R559
5K11

R563
100K

R564
100K

V565
BC848 C

V566
BC848 C

MAINVAL
GNDO
GNDO
COSC
GNDO

[1,B10] [2,B10]
[3,E1] [4,B8]

+3V3D
TP574

C564
47u

V555
BYD77A

V554
2SK974

VCOIL
FLYBOOST
SNUB

R558
31K6
POWONOFF
FREQPS
NETVALD

R516
23K7

P7VCHA

2
13
21

P-ASIC

RS232A
RS232D

R514
3K16

CHARCUR

7

L564
68uH

C573
150u

1
8

46
44
43
42

R565
100K

[4,J13]

TP529

C553
150p

62
63
12

R513
26K1

18

P7VCHA
C507
100n

R534
1K47

CHAGATE
CHASENSN
CHASENSP
VCHDRIVE
VADAPTER

75
76

C502
10u

CHARGER

16
14
15
19
20

RXDA
RXD

R502
10E

F

N501
OQ0256

CHAGATE
CHASENSN
CHASENSP
VCHDRIVE
VADAPTER

V551
BYD77A

V563
MBRS340

C561
150u

TP573

R551
0.1E

C504
10u

TP502

6

L563
47uH

+5VA
C572
150u

VBATSUP

P3V3SADC

C503
390u

5

VBATMEAS

GNDM
NOSAFETY

V503
MBRS340

60

65

100n

C501
180u

VBATSUP

+3V3SADC

3

MTD5P06E
V506

R503
10E

P3V3REF
P1V23REF
P1V23REFLS

C505

3

VBAT
L501
33uH

73
72
67

V504
MBRS340

REFPWM2
REFP
REFPLS

R501
0.1E

IREF
GNDREF

TP501

74
71

2

V501
MBRS340

IREF

3

4

BATCURR
BATVOLT
BATTEMP

1

1
C500
1u 25V
-INPUT
NC

TP503

77
78
79

+INPUT

2
E

Z501
BNX002

BATCUR
BATVOLT
BATTEMP

X501

TEMP
TEMPHI
IBATP

RCCHA1
RCCHA2
TEMP
TEMPHI
IBATP

68
61

POWER ADAPTER

11
10
5
4
9

VGARDRV

C506
47n

TP504

GNDB

[J11]

C554
1u

CBL1N
CBL1P
CBL2N
CBL2P
CBL3N
HVISO1
CBL4N
CBL4P
HVISO2
CBL3P
HVISO3
CBL5P
CBL5N

45
D

V562
MBRS340

4

M29VBL
SUB
SUB
SUB
M30VBL

VBAT

2

C555
390u

C509
1u
+3V3GAR

V561
MBRS340

R570
100K

C547
22n

R507
1E

R506
1E

C581
10u

T552

NC

R504
1E

L562
47uH

[4,D16]

C548
22n

R509
46E4

MAX.
TEMP
SWITCH

NTC

C512
100n

R512
2K87

NC
NC

41
24
1
40
39

I
T
+

C

R IDENT

+

C549
22n

X503
1
5
4
6
3
2

[4,B13]

TP572
[J3][4,J13]
-30VD

BP120: R IDENT = 0 Ohm

+3V3GAR
C568
150u

C567
150u

For PCB versions < 8 only
+12VPROG

BATIDENT

BATTERY PACK

C565
150u

[4,J14]

TP571

L569
68uH

TP561

TP526
FREQPS

[4,J13]

PWRONOFF

[4,J13]

TP528
R524
100E

R535
51K1
TP527
R528
34K8

SLOW ADC

H

RXD
TXD

C529
100n

[4,J13]
[4,J13]

C528
22u

[4,I14]
SADC_BUS
TP591

TP592

TP593

J
[B5]

[1,D10]
[2,D10]
[3,E8]
[4,C7]

[3,F8]
[3,G8]

D531
74HC4051

SELMUX0
SELMUX1
SELMUX2

11
10
9
6

BATIDENT
BATVOLT
BATTEMP
BATCUR

13
14
15
12
1
5
2
4

DACTESTA
DACTESTB
DACTESTT
LCDTEMP1

S0
S1
S2
E

VCC 16
GND 8
VEE 7
Z

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

TP536

N531
LMC7101

3

C591
100n

C592
100n

C593
100n

C594
100n

R591
2K15

+3V3A

+3V3SADC
1 (6)

3 (3)
5 (4)

V

V

2 (7)

SLOWADC
R532 *
100E

C583
100n

R529
261K

TP600

R527
147E

TP522

TP521

(.) IF N531=NE5230
C532 *
22n

MUX
K

TP534

4 (2)

TP537
SADCLEV

R531
21K5
C531
22n

APWM_BUS

[4,D1]

H522
OP906

* For PCB versions < 8:
R532 = 0 Ohm (is a track)
C532 = not present

H521
SFH409
RS232

+3V3GAR

R605 *
10K

1
2
3
4
5
6
7
8

BOUT
AOUT
VC
COMP
SS
N/C
INV
CT

GND
PGND
COUT
ENBL
VCC
REF
N/C
ZD

[4,D14]
R606 *
6K19

16
15
14
13
12
11
10
9

TLON

+5VA
C606
100n
C607
10n

TP604

5

* R605 & R606 not for PCB versions < 8

ST8090-2
00-01-24

OPTICAL PORT

ST8090-2.WMF

Figure 9-6. Circuit Diagram 5, Power Circuit

9-12

Circuit Diagrams
9.2 Schematic Diagrams

3

2

5

MS431
MS432
MS433
MS434
MS435
MS436
MS437
MS438
MS439
MS440
MS441
MS442
MS443
MS444
MS445

MS454

4

MS453

3

MS401
MS402
MS403
MS404
MS405
MS406
MS408
MS409
MS410
MS411
MS412
MS413
MS414
MS415
MS416
MS417
MS418
MS419
MS420
MS421
MS422

2

1

9

1

R103

TP572
X601

2
T600

R102

N101

C183

R306

24

14

1

12

C187

TP155

TP604

TP152

C337

TP436

TP487

49

R324

64

C333
48 TP332
R333

TP438
TP431

R339

TP483

N301

TP331

TP156

17

TP303

K271

C321

R322

R392
TP322

14

1

TP254
5

R391

1

TP471

R312

13

23
22

12

B403

2

6

8

4

TP551

C572

TP561

TP526

C504

C528

TP528

C501

C287

1

7

C561

TP593

TP574

C465
11

6

TP473

C502

C283

5
16

TP401
TP451

B402
TP253

TP592

TP534

R381

R378

TP304

TP591

TP536

TP537
12

TP476

TP474

TP472

C317

N201

C204

1

104

53

C281
34
33

105

52

TP308

6
TP255

44

TP151

D451

R202

R201

C

TP256

C246

C201

R204

TP302

TP321 C399

R321

T552

TP301

C562

TP307

C553

10

C567

MS447

1

C563

TP311
TP433
TP251

C395

R327

TP252

32
31
TP309

C322

R2
220k

R203

C339
16
17

C565

TP482
TP432

D475

C124

C123

C121

TP605

TP338
1

C122

C118

TP573

156

32

R323

R108

C119

C114

C116

C113

C117

C112

157

1
C303

C576

D471

C104

13

TP336

R1
220k

L566
208

R105

TP600
C573

12

B

C608

TP486

TP310
C105

1

25

TP437

D401

R101

23
22

TP601

C564

TP154

TP153
11

10

C581

R172

D474
TP258

C574

2

V603

34
33

44

3

C609

C181
1

4

1
H495

TP602

5

4

48

X503

V401

1

C555

6

5

6

L564

C314

TP496

3

TP603

TP495

5

C111

L600

1

V402

6
C106

X452

1

K171

5

X453
1

R104

C101
4

10

C146

A

R106

C102

K173

1

TP552

TP576

TP571
64

41

65

40

TP521

C218

Z501

TP306
TP531 80

-

-

B

-

-

C

-

TP252

D

-

-

25
1

24

TP577
TP501

C222
TP503

A

C568

TP527

H521

C224

C223

C221

TP522

L501

R208

C219

C214

C216

C213

C217

C212

H522

R206

R205
C211

L569

N501

X501

C202

D

TP529

C313

C206

C392

C503
C205

TP502

TP504
TP568

ST8135

TP258 TP495, 496 TP 572
TP152 ... 156
TP310, 331, 332, 336, 338
TP431, 432, 436, 437, 438, 482, 483, 486

TP604

TP601 ... 603
TP487
TP573
TP600, 605

TP151
TP251, 254, 255, 256
TP301 ... 304, 308, 309, 311, 321, 322
TP433
TP521

TP253
TP401, 451, 471 ... 474, 476
TP 526, 534, 536, 537, 561, 591
TP306, 307 TP503, 522, 527, 531, 571

TP528, 551, 552, 574, 576, 592, 593

TP501, 502, 504, 529, 568, 577
ST8135.WMF

Figure 9-7. Main PCA side 1, PCB version <8

9-13

123
Service Manual

R563

C548

R565

C506

V565

R564

C551

C550

R553
R570

V567

R491

C478

V562

V554

V555

R552

R554

R559
C482

R550

R512

C529
C481

C483

V561

R375

V564

V563
L563

V604

V482

L567

L562

R481

R483

R385

R504

V602

C610

R466

R506

R602

R603

R507
R600

C607

C312

C547

R528
R472

R471

C488

R480

C342

N600

R405

C409

R406

C512

C512

C475

R495

L481

C378
R342
C301

C479

C381

R151

R152

R154

R153

R155

V359

R352
R353

V358

R139

R132

R354

R496

C132

R356

C136

C199

R186

V171

R133

V174

R134

R171

R189

R173

C133

L182

R604

V601

R408

C189

C134

R136

V356

R165

V301
OR
V302
can be present

R407

R417

C472

C476

C107

C186

C306

C594

V605

V403

C162

C438

R416

V301

R307

R158

R497

C473

C404

C159

C408

R410

C401

R409

R161

C416

C531

C332

V495

R157

C331

R301

C191

C480

R331

R308

C402

L183
C153

R403

R156

C407

R121

R188

R159

C379

D531

C436

C442
R434

V551

N531
R436

C471

R337

R305

C397

C357

C156

R404

C131

C158
R144

C152

R131

R143

R142
C145

R109

C403

R160

C161

C142

R146

R182

R141

C188
C190

R114

R118

R125

R184

C184

R303

L181

V302

R119

C394

C376

C382

R251

R252

R253

R255
R110

R111

C182

R113

R116

R120

R112

C356

V550

R470

R479

C344

R508

C463

R478

C396

R302

C552

R591

R310

R309

R469

C432

R431

R433

C439

C400

C434

R438

R432

C591

R441

C431

R442
C433

C441

R311

C592

R531

R474

R439

C311

R371

C474

C487

C464

R117

R254

L283

R473

R326
C377

R232

R236

V395

R369

C232

C458

C451

R558

C593

C485

C398

C452

L282

R454

C236

C466

C393

R233

R286

C457

R234

R289

C148

V353

R396

C453
R390

C233

C253

V354

R398

B401

R271

R482

C286
C289

C234

C248

R137

C486

V566

V569

R551

C484

R259

C207

C252

C

V504

R377

C262

R467

R376

R258

R394

C259

R393

R261

R395

R257

R503

R502

V172

C231

C258
R231

C291

R535

C583

C505

R453

R209

C245

B

R256

C261

R210

R243

R242
R246

R288

C391

R260

C288
C290

C256

R509

R524

R282

R241

C242

R138

R501

R221

R214

R218

R225

R213

R212

R216

R220
R211

R284

R534

C534

R239
R237

C282

C507
C509

R580

R527

L281

V501

C284

R140

C500

R529

R516

R514

C549

V503

R240

V506

R238

A

D

5

R219

4

R513

3

C606

2
R217

1

V600
C511
C603

C604

C511

OR

C605
C602

C554

ST8136-0 / 00-01-12

ST8136-0.WMF

Figure 9-8. Main PCA side 2, PCB version <8

9-14

9

V302

Circuit Diagrams
9.2 Schematic Diagrams

D480

C611

1

R486
R487

4022 245 0443.8
ST8135-2/00-01-12

ST8135-2.WMF

Figure 9-9. Main PCA side 1, PCB version 8

9-15

123

C489
R532

C532

R499

Service Manual

R483
R482

R605

R606

V471

C476

C470

ST8136-2/00-01-12
ST8136-2.WMF

Figure 9-10. Main PCA side 2, PCB version 8

9-16

Chapter 10

Modifications

Title

Page

10.1 Software modifications ............................................................................. 10-1
10.2 Hardware modifications............................................................................ 10-1

Modifications
10.1 Software modifications

10

10.1 Software modifications
Changes and improvements made to the test tool software (firmware) are identified by
incrementing the software version number. These changes are documented on a
supplemental change/errata sheet which, when applicable, is included with the manual.
To display the software version, proceed as follows:
1. Press

to open the USER OPTIONS menu.

2. Press
to show the VERSION&CALIBRATION screen (see Figure 5.1 in
Section 5).
3. Press

to return to normal mode.

10.2 Hardware modifications
Changes and improvements made to the test tool hardware are identified by incrementing
the revision number of the Main PCA. The revision number is printed on a sticker, see
the example below. The sticker is placed on D-ASIC D471, on the Main PCA.
This example of the Main PCA revision number
sticker indicates revision 1.

1

The following revisions have been released:

Revision 09
Revision number of first deliveries.

Revision 10
Changes:
Physical size of C511 and C512 changed
Reason:
For production purposes
Servicing effects:
none; you can use the PN listed in Section 8.

Revision 11
Changes:
C556 has been changed from 18 nF into 15 nF
Reason:
For production purposes
Servicing effects:
none; you can use the PN listed in Section 8.

10-1

123
Service Manual

Revision 12
Changes:
New software version V01.02. No hardware changes.

Revision 13
Changes:
For the 8M FlashROM D474 one of the following types can be used:
•

AM29LV800B-120EC

•

E28F800CV-B70

•

HNWT800T

•

M5M29FB800VP-120

The part number of D474 has not been changed.

Revision 14
A new version of the Printed Circuit Board (PCB) is used in the Main PCA. The version
of the PCB is the last digit of the 12 digit number on the PCB edge near N501. The new
version 12 digit code is 4022 245 0443.8 (version 8).
The part number of the Main PCA has not changed. Old and new PCA versions are fully
compatible.
See Section 9 for the circuit diagrams and the parts location drawings of the old and new
version PCB.
The following changes have been made:

•

The 12 V program voltage (+12VPROG from N501 pin 22 to D474 pin 13), and the
RESET ROM circuit have been removed. See the Digital Circuit diagram figure 9-4,
and the Power Circuit diagram figure 9-6.

•

A delay circuit for the Rom Write Enable end edge has been added: D480 and
related parts between D471 pin 149 (ROMWR) and FlashROM D474 pin 11
(ROMWRITE). The delay is required to make the circuit suitable for FlashROMs
that need a large delay between the write data and the write enable end. See the
Digital Circuit diagram figure 9-4.

•

Capacitor C476 was missing in the Digital Circuit diagram, and has been added near
C474.

•

Another shape for the 4041 reference diode is used. The shape was a 2x4 pin DIL
mounted on the Main PCA side 2, reference designator V301. The new shape is a
transistor shape mounted on the Main PCA side 1, the reference designator becomes
V302. The reason is the availability of the diode versions. The PCB layout still has
the possibility to mount V301 is place of V302.
Note:
In some units having PCB version <8, the reference voltage
diode can have the transistor shape, and has reference
designator V302 then. In this case it is soldered on C312
(see the adjacent figure, and Figure 9-8 location C3), and

10-2

C312

In the Backlight Converter circuit R605 and R606 are added to provide a more
reliable start-up of the backlight. See the Power Circuit diagram figure 9-6.

V302

•

Modifications

10

replaces V301.
•

A filter circuit has been added in the Slow ADC supply (N532 pin 2, R532-C532),
see the Power Circuit diagram figure 9-6

•

A PCA version detection circuit has been added, see the Digital Circuit diagram
figure 9-4.

•

A filter circuit for VGARVAL has been added, see the Digital Circuit diagram figure
9-4.

The new parts numbers are listed in Table 8-3.

10-3



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : Yes
XMP Toolkit                     : 3.1-702
Create Date                     : 2000:10:26 14:12:59Z
Creator Tool                    : AdobePS5.dll Version 5.0.1
Modify Date                     : 2007:04:16 11:14:09-07:00
Metadata Date                   : 2007:04:16 11:14:09-07:00
Producer                        : Acrobat Distiller 4.0 for Windows
Format                          : application/pdf
Title                           : Microsoft Word - 0master-97.doc
Document ID                     : uuid:8dc01463-f4d1-4ea6-96fd-0f9abc892c27
Instance ID                     : uuid:1e1cbdc4-9b66-4f66-89da-c4bbe1ad8710
Page Count                      : 170
Creator                         : AdobePS5.dll Version 5.0.1
EXIF Metadata provided by EXIF.tools

Navigation menu