Fluke 434 Series Ii Application Note 2435544
2015-09-09
: Fluke Fluke-434-Series-Ii-Application-Note-808977 fluke-434-series-ii-application-note-808977 fluke pdf
Open the PDF directly: View PDF .
Page Count: 3
Download | |
Open PDF In Browser | View PDF |
PART FOUR of a predictive maintenance series Applying power quality measurements to predictive maintenance Application Note You may already be using predictive maintenance (PdM) techniques on your motors and drives. But how often do you inspect the power to your equipment? By adding basic power quality measurements to production equipment maintenance procedures you can head off unexpected failures in both production equipment and your power system. Cost savings Insurance claims data in the NFPA 70B maintenance standard shows that roughly half of the cost associated with electrical failures could be prevented by regular maintenance. A study published in IEEE 493-1997 says that a poorly maintained system can attribute 49 % of its failures to lack of maintenance. To determine the cost of a failure, it helps to consider three key categories: • Lost income (gross margin) due to downtime • Cost of labor to troubleshoot, patch, clean up, repair and restart • Cost of damaged equipment and materials, including repairs, replacements and scrapped material To calculate power quality costs and potential savings at your facility, reference the online calculator at www.fluke.com/pqcalculator. Figure 1. This maintenance control chart tracking voltage unbalance shows a Nov-03 reading above the 2.5 % limit and then the effect of the corrective action. For more information on Fluke Predictive Maintenance Products and Services go to www.fluke.com/pdm Voltage stability, harmonic Integrating power quality distortion, and unbalance are into PdM Unlike a comprehensive electrical system survey, predictive maintenance power quality focuses on a small set of measurements that can predict power distribution or critical load failures. By checking the power quality at critical loads, you see the effect of the electrical system up to the load. Your predictive maintenance inspection route probably already includes any motors, generators, pumps, A/C units, fans, gearboxes, or chillers on site. and as time goes on limits may be “tightened” or “loosened” by anagood indicators of load and distri- lyzing historical data. The approbution system health and can be priate limits depend somewhat on the ability of your loads to deal taken and recorded quickly with with power variation. But for most little incremental labor. Current equipment, your maintenance measurements can identify team can devise a set of default, changes in the way the load is “house limits” based on industry drawing. All of these measurestandards and experience. ments can be taken without The cost of three-phase power halting operations and generate analyzers is lower now than ever numbers that can easily be and it should only take roughly 15 entered into maintenance softminutes to take the readings disware and plotted over time. For each measurement point or cussed in this article. (Storing voltage sag data will add more time, piece of equipment, determine since it requires picking up the what limit should trigger correcdata after a day or so.) tive action. Limits should be set well below the point of failure, Measurement Guidelines Voltage Measurements Voltage Sags Voltage Harmonics Current Measurements Voltage Unbalance Phase-to-Neutral Voltages Neutral-to-Ground Voltages Phase to Neutral Sag Count Phase Voltage THD Phase Currents Negative Sequence, Zero Sequence Table 1. Basic power measurements for 3-phase Wye equipment Voltage Good voltage level and stability are fundamental requirements for reliable equipment operation. • Running loads at overly high or low voltages causes reliability problems and failures. Verify that line voltage is within 10 % of the nameplate rating. • As connections in your system deteriorate, the rising impedance will cause “insulation resistance drops” in voltage. • Added loads, especially those with high inrush, will also cause voltage decline over time. The loads farthest from the service entrance or transformer will show the lowest voltage. Neutral to ground voltage tells you how heavily your system is loaded and helps you track harmonic current. Neutral to ground voltage higher than 3 % should trigger further investigation. Figure 2. Recording all phase voltages and neutral to ground voltage is a good start for a PQ analysis of critical equipment and overall distribution system health. 2 Fluke Corporation Applying power quality measurements to predictive maintenance Voltage sag count Taking a single voltage reading tells only part of the story. How is the voltage changing during an hour? During a day? Sags, swells and transients are short-term variations in voltage. The voltage sag (or dip) is the most common and troublesome variety. Sags indicate that a system is having trouble responding to load requirements and significant sags can interrupt production. Voltage sags can cause spurious resets on electronic equipment such as computers or controllers, and a sag on one phase can cause the other two to overcompensate, potentially tripping the circuit. Sags have several dimensions: depth, duration, and time of day. Utilities use a special index to track the number of sags that occur over a period of time. To gauge the depth of the sags, they count how often voltage drops below various thresholds. The longer and larger the voltage variations, the more likely equipment is to malfunction. For example, the Information Technology Industry Council (ITIC) curve specifies that 120 V computer equipment should be able to run as long as voltage does not drop below 96 V for more than 10 seconds or below 84 V for more than 0.5 seconds. Current Current measurements that trend upward are a key indicator of a problem or degradation in your load. While equipment is running, monitor phase, neutral and ground current over time. Make sure none of the currents are increasing significantly, verify that they’re less than the nameplate rating, and keep an eye out for high neutral current, which can indicate harmonics and unbalance. • • Unbalance is tracked in percentages (see Figure 3). The negative sequence voltage (Vneg) and zero sequence voltage (Vzero) together identify any voltage asymmetry between phases. Using a power quality analyzer to do the math, high percentages indicate high unbalance. EN 50160 requires Vneg to be less than two percent. Voltage harmonic distortion Harmonic distortion is a normal consequence of a power system supplying electronic loads such as computers, business machines, electronic lighting ballasts, and control systems. Adding or removing loads from the system changes the amount of distortion, so it’s a good idea to regularly check harmonics. Harmonics cause heating and reduced life in motor windings and transformers, excessive neutral current, increased susceptibility to voltage sags, and reduced transformer efficiency. As current harmonics interact with impedance, they’re converted into voltage harmonics. Total Harmonic Distortion (THD) is a sum of the contributions of all harmonics. By tracking Voltage THD over time you can determine if distortion is changing. For voltage harmonics, IEEE 519 recommends less than 5 % THD. Figure 3. This unbalance display shows the voltage unbalance parameters (Vneg and Vzero) as well as current unbalance. International safety standards for test tools Overvoltage Category Summary Description CAT IV* Three-phase at utility connection, any outdoors conductors (under 1000 V) CAT III Three-phase distribution (under 1000 V), including single-phase commercial lighting and distribution panels CAT II Single-phase receptacle connected loads CAT I Electronic *CAT IV product specifications are not yet defined in the standard. Fluke. Keeping your world up and running. Fluke Corporation PO Box 9090, Everett, WA USA 98206 Voltage unbalance Fluke Europe B.V. PO Box 1186, 5602 BD Eindhoven, The Netherlands In a three-phase system, significant differences in phase voltage indicate a problem with the system or a defect in a load. • High voltage unbalance causes three-phase loads to draw excessive current and causes motors to deliver lower torque. For more information call: In the U.S.A. (800) 443-5853 or Fax (425) 446-5116 In Europe/M-East/Africa (31 40) 2 675 200 or Fax (31 40) 2 675 222 In Canada (800) 36-FLUKE or Fax (905) 890-6866 From other countries +1 (425) 446-5500 or Fax +1 (425) 446-5116 Web access: http://www.fluke.com Figure 4. This Harmonics table shows the voltage THD for each phase. Note that it’s normal for the voltage THD on the neutral to run close to 100 %. ©2005 Fluke Corporation. All rights reserved. Printed in U.S.A. 3/2005 2435544 A-US-N Rev A 3 Fluke Corporation Applying power quality measurements to predictive maintenance
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : Yes Page Count : 3 XMP Toolkit : XMP toolkit 2.9.1-13, framework 1.6 About : uuid:c12ed53a-8b3c-11d9-ac63-000a95b26bba Producer : QuarkXPress(tm) 6.1 X Press Private : %%DocumentProcessColors: Cyan Magenta Yellow Black.%%DocumentCustomColors: (PANTONE 123 C).%%CMYKCustomColor: 0 .24 .94 0 (PANTONE 123 C).%%EndComments Create Date : 2005:03:02 09:00:27Z Creator Tool : QuarkXPress(tm) 6.1 Modify Date : 2005:03:02 09:01:43-08:00 Metadata Date : 2005:03:02 09:01:43-08:00 Document ID : uuid:b3a5111e-8b3c-11d9-ac63-000a95b26bba Format : application/pdf Title : 2435544 Creator : QuarkXPress(tm) 6.1EXIF Metadata provided by EXIF.tools