Heatcraft Refrigeration Products Condensing Units H Im Cu Users Manual

H-IM-CU to the manual 0cabd96d-78fc-4424-a1d7-3f044e6c9502

2015-02-09

: Heatcraft-Refrigeration-Products Heatcraft-Refrigeration-Products-Condensing-Units-H-Im-Cu-Users-Manual-564758 heatcraft-refrigeration-products-condensing-units-h-im-cu-users-manual-564758 heatcraft-refrigeration-products pdf

Open the PDF directly: View PDF PDF.
Page Count: 24

H-IM-CU August 2008 Part No. 25008101
H-IM-CU-0808 | Version 000
Condensing
Units
Installation and
Operations Manual
Table of Contents
General Safety Information...............................................................................2
Inspection ...............................................................................................................2
Warranty Statement ............................................................................................2
Space and Location Requirements ...............................................................3
Remote and Water Cooled Condensing Units Requirements ..............4
City & Tower Water Connections .....................................................................4
Condensing Unit Rigging and Mounting ....................................................5
Head Pressure Control ........................................................................................6
Refrigerant Oils ......................................................................................................7
Phase Loss Monitor ..............................................................................................8
Recommended Refrigerant Piping Practices .............................................8
Refrigeration Pipe Supports ............................................................................8
Suction Lines ..........................................................................................................8
Liquid Lines ............................................................................................................9
Hot Gas Defrost Systems ...................................................................................9
Unit Cooler Piping .............................................................................................10
Line Sizing Tables ........................................................................................10-13
Evacuation and Leak Detection ...................................................................14
Refrigerant Charging Instructions ...............................................................14
Field Wiring .......................................................................................................... 14
Check Out and Start Up .................................................................................. 15
Operational Check Out .................................................................................... 16
System Balancing - Compressor Superheat ............................................. 16
General Sequence of Operation ..................................................................17
Electric Defrost Troubleshooting ................................................................. 17
System Troubleshooting Guide .................................................................... 18
Preventive Maintenance Guidelines ...........................................................19
Typical Wiring Diagrams ...........................................................................20-23
InterLink™ Replacement Parts ...................................................................... 24
Replaces None. Information formerly included in H-IM-64L.
2
General Safety Information
Installation and maintenance to be performed only by qualied
personnel who are familiar with this type of equipment.
Some units are pressurized with dry air or inert gas.
All units must be evacuated before charging the system with refrigerant.
1.
2.
WARNING: Refrigerant can be harmful if it is inhaled. Refrigerant must be used and recovered responsibly.
Failure to follow this warning may result in personal injury or death.
Inspection
Responsibility should be assigned to a dependable individual at the job site
to receive material. Each shipment should be carefully checked against the
bill of lading. The shipping receipt should not be signed until all items listed
on the bill of lading have been accounted. Check carefully for concealed
damage. Any shortage or damages should be reported to the delivering
carrier. Damaged material becomes the delivering carriers responsibility,
and should not be returned to the manufacturer unless prior approval is
given to do so. When uncrating, care should be taken to prevent damage.
Heavy equipment should be left on its shipping base until it has been
moved to the nal location. Check the serial tag information with invoice.
Report any discrepancies to your Heatcraft Refrigeration Products Sales
Representative.
Warranty Statement
Seller warrants to its direct purchasers that products, including Service Parts,
manufactured by SELLER shall be of a merchantable quality, free of defects in
material or workmanship, under normal use and service for a period of one
(1) year from date of original installation, or eighteen (18) months from
date of shipment by SELLER, whichever rst occurs. Any product covered by
this order found to Seller’s satisfaction to be defective upon examination at
Sellers factory will at SELLER’s option, be repaired or replaced and returned
to Buyer via lowest common carrier, or SELLER may at its option grant Buyer
a credit for the purchase price of the defective article. Upon return of a
defective product to SELLER’s plant, freight prepaid, by Buyer, correction of
such defect by repair or replacement, and return freight via lowest common
carrier, shall constitute full performance by SELLER of its obligations
hereunder.
SELLER shall have no liability for expenses incurred for repairs made by
Buyer except by prior, written authorization. Every claim on account of
breach of warranty shall be made to SELLER in writing within the warranty
period specied above – otherwise such claim shall be deemed waived.
Seller shall have no warranty obligation whatsoever if its products have
been subjected to alteration, misuse, negligence, free chemicals in system,
corrosive atmosphere, accident, or if operation is contrary to SELLER’s or
manufacturers recommendations, or if the serial number has been altered,
defaced, or removed.
MOTOR COMPRESSORS:
Motor compressors furnished by SELLER are subject to the standard
warranty terms set forth above, except that motor compressor replacements
or exchanges shall be made through the nearest authorized wholesaler
of the motor compressor manufacturer (not at SELLER’s factory) and no
freight shall be allowed for transportation of the motor compressor to and
from the wholesaler. The replacement motor compressor shall be identical
to the model of the motor compressor being replaced. Additional charges
which may be incurred throughout the substitution of other than identical
replacements are not covered by this warranty. An optional, non assignable,
four (4) year extended compressor warranty may be purchased within the
boundaries of the United Sates of America, its territories and possessions,
and Canada. With this extended compressor warranty, replacements are
administered by an authorized compressor distributor only. Replacements
within the rst year of the warranty area available through the distributor;
the second through fth years, the purchaser must submit a proof-of-
purchase of a compressor and supply it to Heatcraft Refrigeration Products
Warranty Claims for reimbursement.
Seller makes no express warranties except as noted above. All implied
warranties are limited to the duration of the Express Warranty. Liability for
incidental and consequential damages is excluded.
The forgoing is in lieu of all other warranties, express or implied,
notwithstanding the provisions of the uniform commercial code, the
Magnuson-Moss Warranty - Federal Trade Commission Improvement Act, or
any other statutory or common law, federal or state.
SELLER makes no warranty, express or implied, of tness for any particular
purpose, or of any nature whatsoever, with respect to products manufactures
or sold by seller hereunder, except as specically set forth above and on
the face hereof. It is expressly understood and agreed that SELLER shall not
be liable to buyer, or any customer of buyer, for direct or indirect, special,
incidental, consequential or penal damages, or for any expenses incurred by
reason of the use or misuse by buyer or third parties of said products. To the
extent said products may be considered "consumer products," As dened
in Sec. 101 of the Magnuson-Moss Warranty - Federal Trade Commission
Improvement Act, SELLER makes no warranty of any kind, express or implied,
to "consumers," except as specically set forth above and on the face hereof.
The following conditions should be adhered to when installing this unit to
maintain the manufacturers warranty:
System piping must be in accordance with good refrigeration
practices.
Inert gas must be charged into the piping during brazing.
The power supply to the unit must meet the following conditions:
A. Three phase voltages must be +/- 10%
of nameplate ratings. Single phase must be
within +10% or -5% of nameplate ratings.
B. Phase imbalance cannot exceed 2%.
All control and safety switch circuits must be properly connected
according to the wiring diagram.
The factory installed wiring and piping must not be changed
without written factory approval.
All equipment is installed in accordance with
Heatcraft Refrigeration Products specied minimum clearances.
a)
b)
c)
d)
e)
f)
© 2008 Heatcraft Refrigeration Products LLC
Make sure that all eld wiring conforms to the requirements
of the equipment and all applicable national and local codes.
Avoid contact with sharp edges and coil surfaces.
They are a potential injury hazard.
Make sure all power sources are disconnected before any
service work is done on units.
3.
4.
5.
3
© 2008 Heatcraft Refrigeration Products LLC
The most important consideration which must be taken into account when
deciding upon the location of air-cooled equipment is the provision for a
supply of ambient air to the condenser, and removal of heated air from the
condensing unit or remote condenser area. Where this essential requirement
is not adhered to, it will result in higher head pressures, which cause poor
operation and potential failure of equipment. Units must not be located
in the vicinity of steam, hot air or fume exhausts. Corrosive atmospheres
require custom designed condensers.
Another consideration which must be taken is that the unit should be
mounted away from noise sensitive spaces and must have adequate support
to avoid vibration and noise transmission into the building. Units should be
mounted over corridors, utility areas, rest rooms and other auxiliary areas
where high levels of sound are not an important factor. Sound and structural
consultants should be retained for recommendations.
Space and Location Requirements for
Air Cooled Condensing Units and Remote Condensers
Figure 1. Space and Location Requirements for Condensing Units
Units in Pits
The top of the unit should be level with the top of the pit, and side
distance increased to “2W”.
If the top of the unit is not level with the top of pit, discharge cones or
stacks must be used to raise discharge air to the top of the pit. This is a
minimum requirement.
Decorative Fences
Fences must have 50% free area, with 1 foot undercut, a W”
minimum clearance, and must not exceed the top of unit. If these
requirements are not met, unit must be installed as indicated for
“Units in pits”.
Walls or Obstructions
The unit should be located so that air may circulate freely and not be
recirculated. For proper air ow and access all sides of the unit should be
a minimum of W away from any wall or obstruction. It is preferred that
this distance be increased whenever possible. Care should be taken to
see that ample room is left for maintenance work through access doors
and panels. Overhead obstructions are not permitted. When the unit is
in an area where it is enclosed by three walls the unit must be installed
as indicated for units in a pit.
Walls or Obstructions for Horizontal Air Flow
Multiple Units with Horizontal Air Flow
* W” = Total width of the condensing unit
Multiple Units
For units placed side by side, the minimum distance between
units is the width of the largest unit. If units are placed end to
end, the minimum distance between units is 4 feet.
W
MIN.
W
AIR FLOW
W
AIR FLOW
WW
W
MIN.
W
AIR FLOW AIR FLOW
W
Clearance for multiple units placed side by side
AIR FLOW AIR FLOW
AIR FLOW
W
W
MIN. W
MIN.
1 FT. MIN.
Clearance for fence enclosures
AIR FLOW
2W
MIN.
2W
MIN.
10 FT. MAX.
W
Clearance for units in pits
AIR FLOW
STACK
(SUPPLIED BY OTHERS)
W
W
MIN.
AIR FLOW
Clearance from walls or obstructions
AIR FLOW
NOT RECOMMENDED
AIR FLOW
W
W
AIR FLOW
W
AIR FLOW AIR FLOW
W W
AIR FLOW
4
Requirements for Remote and Water Cooled
Condensing Units
General Installation
The indoor compressor units are designed to be used with a remote
condenser. The water cooled units are similar, except that they have an
integral water cooled condenser. Inlet and outlet water connections are to
be made in the eld. On units having a compressor water jacket, incoming
water shall be routed through the jacket prior to entering the condenser. For
cleaning purposes, condenser end plates can be removed to give access to
the water tubes. Cleaning is accomplished by a simple spiral tool powered
by an ordinary electric drill. During installation, allow space for cleaning the
condenser. Commercial equipment of this type is intended for installation
by qualied refrigeration mechanics.
Typical Arrangements
Diagram 1 illustrates a typical piping arrangement involving a remote
condenser located at a higher elevation, as commonly encountered when
the condenser is on a roof and the compressor and receiver are on grade
level or in a basement equipment room.
In this case, the design of the discharge line is very critical. If properly sized
for full load condition, the gas velocity might be too low at reduced loads
to carry oil up through the discharge line and condenser coil. Reducing the
discharge line size would increase the gas velocity suciently at reduced
load conditions; however, when operating at full load, the line would be
greatly undersized, and thereby creating an excessive refrigerant pressure
drop. This condition can be overcome in one of two of the following ways:
The discharge line may be properly sized for the desired pressure
drop at full load conditions and an oil separator installed at the
bottom of the trap in the discharge line from the compressor.
1.
City & Tower Water Connections
In the refrigeration industry “City” and Tower” are designations of
temperature and ow conditions, not applications. The term “City refers
to operating conditions where incoming water is 75˚F, and condensing
temperature is 105˚F. Tower refers to a higher temperature relationship
which is normally 85˚F, incoming water and 105˚F condensing temperature.
Water circuits in some condenser models provide a center, or Tower, outlet
connection to allow divided inlet water ow. This extra water port reduces
water velocity, water pressure drop, and condenser wear in applications such
as cooling towers where higher inlet temperatures and water ows occur.
Water Connections for City
For City water (open system) high pressure applications, the Tower
connections is plugged.
Water Connections for Tower
For Tower usage and low pressure applications, both normal water
connections will be used as inlets and the tower connection as an outlet.
Diagram 1 Diagram 2
Figure 2. Water Connections
A double riser discharge line may be used as shown in
Diagram 2. Line A” should be sized to carry the oil at minimum
load conditions and the line “B” should be sized so that at the
full load conditions both lines would have sucient ow velocity
to carry the oil to the condenser.
Water Regulating Valve
Using this control on the water cooled condensing units, the head pressure
can be maintained by adjusting the ow of water through the condenser
section. This type control is most often located on the water entering side of
the condenser and is regulated by the refrigerant condensing pressure.
Subcooler
Diagrams 1 and 2 below show typical subcooler piping. Diagram 1 is the
preferred connection with receiver as it provides maximum subcooling.
Diagram 2 may be used if the receiver is located far from the condenser.
Notes:
All oil traps are to be as short in radius as possible. Common practice is
to fabricate the trap using three 90 degree ells.
Pressure relief valves are recommended at the condenser for protection
of the coil.
A pressure valve at the high point in the discharge line is recommended
to aid in removing non-condensables.
The placement of a subcooler should be that it does not interfere with
normal airow of the condenser. Increased static of the unit could cause
a decrease in system capacity and fan motor damage.
2.
1.
2.
3.
4.
5
Figure 3. Spring Mount
Figure 5. Spring Mount
Figure 4. Solid Mount for Mobile or Deep Sump Application
Condensing Unit Rigging and Mounting
Rigging holes are provided on all units. Caution should be exercised when
moving these units. To prevent damage to the unit housing during rigging,
cables or chains used must be held apart by spacer bars. The mounting
platform or base should be level and located so as to permit free access of
supply air.
Ground Mounting
Concrete slab raised six inches above ground level provides a suitable base.
Raising the base above ground level provides some protection from ground
water and wind blown matter. Before tightening mounting bolts, recheck
level of unit. The unit should in all cases be located with a clear space in all
directions that is at a minimum, equal to the height of the unit above the
mounting surface. A condensing unit mounted in a corner formed by two
walls, may result in discharge air recirculation with resulting loss of capacity.
Roof Mounting
Due to the weight of the units, a structural analysis by a qualied engineer
may be required before mounting. Roof mounted units should be installed
level on steel channels or an I-beam frame capable of supporting the weight
of the unit. Vibration absorbing pads or springs should be installed between
the condensing unit legs or frame and the roof mounting assembly.
Access
Provide adequate space at the compressor end of the unit for servicing.
Provide adequate space on the connection side to permit service of components.
Spring Mounted Compressor
Compressors are secured rigidly to make sure there is no transit damage.
Before operating the unit, it is necessary to follow these steps:
Remove the upper nuts and washers.
Discard the shipping spacers.
Install the neoprene spacers. (Spacers located in the electrical
panel or tied to compressor.)
Replace the upper mounting nuts and washers.
Allow 1/16 inch space between the mounting nut/washer and
rubber spacer. Mounting spring must not be fully compressed
when mounting nut is properly installed. See Figures 3 and 5.
Rigid Mounted Compressor
Some products use rigid mounted compressors. Check the compressor
mounting bolts to insure they have not vibrated loose during shipment. See
Figure 4.
a)
b)
c)
d)
e)
6
CAUTION:
Under no circumstance should all condenser motors be allowed to cycle o on one control. At least one motor shall be wired to operate at all times.
Under most circumstances, the condenser motor nearest the inlet header should remain on whenever the compressor is operating.
CAUTION:
Fans closest to the headers should not be cycled on standard temperature or pressure controls. Dramatic temperature and pressure changes at the
headers as a result of fan action can result in possible tube failure. Fan motors are designed for continuous duty operation.
Fan cycling controls should be adjusted to maintain a minimum of (5) minutes on and (5) minutes o. Short cycling of fans may result in a
premature failure of motor and/or fan blade.
Compressors operating below +10°F SST must have air owing over the compressor at all times when the compressor is running.
Figure 6. Dual Valve Piping Arrangement
Figure 7. Single Valve Flooding Valve Piping Arrangement
Head Pressure Control
Several types of head pressure control systems are available on
condensing units:
Dual Valve System. (See section on operation and adjustment.)
Single Valve system. No adjustments are necessary.
(See section on operation.)
Ambient Fan Cycle Control. (See section on operation
and adjustment.)
A. Dual Valve System
The system employs an ORI (open on rise of inlet pressure) valve and an ORD
( open on rise of dierential pressure) valve. The high pressure discharge gas
is introduced above the liquid in the receiver tank. The receiver discharge is
regulated by the ORI valve.
The discharge pressure of the ORI valve must be adjusted to regulate the unit
for proper operating conditions. Adjust the ORI valve shown on the following
diagram to maintain a discharge pressure of 160 to 180 PSIG.
A.
B.
C.
Table 1. Ambient Fan Cycle Thermostat Settings
Models Design Thermostat Settings
T.D. T1 T2 T3
30 60
2-fan units: 25 65
20 70
4-fan units: 15 75
30 60 40
3-fan units: 25 65 55
20 70 60
6-fan units: 15 75 65
30 60 50 30
8-fan units: 25 65 55 40
20 70 65 50
15 75 70 60
NOTE: Cycle pairs of fans on double wide units.
Operation and Adjustment
Condensing units with dual valves require sucient charge to partially ood
the condenser during low ambient conditions.
Valve adjustment should be made with gauges connected to the discharge
port of the compressor. Adjustments should be made during mild or
low ambient conditions. Turning the valve stem clockwise on the ORI
valve will increase the discharge pressure, while turning the valve stem
counterclockwise” will decrease the discharge pressure.
If adjustments are made during warm ambient conditions, it may not be
possible to adjust the regulator valve as low as desired. Readjustment may
be necessary once cooler conditions prevail.
B. Single Valve System
The standard valve used on high pressure refrigerant systems controls
the head pressure at approximately 180 PSIG. There is no adjustment for
this valve. On low pressure refrigerant systems the valve controls pressure
at approximately 100 PSIG. For energy eciency, the 100 PSIG valve is
sometimes used on high pressure refrigerant systems.
At condensing pressures above the valve setting, ow enters Port C and
leaves Port R. When the condensing pressure falls below the valve setting,
the valve modulates to permit discharge gas to enter Port D. Metering
discharge gas into the refrigerant ow leaving the condenser produces a
higher pressure at the condenser outlet, reduces the ow, and causes the
level of liquid refrigerant to rise in the condenser. This “ooding” of the
condenser with liquid refrigerant reduces the available condensing surface,
holding the condensing pressure at the valve setting.
C. Ambient Fan Cycle Control
This is an automatic winter control method which will maintain a condensing
pressure within reasonable limits by cycling fan motors in response to
outside air temperature. The thermostat(s) should be eld adjusted to shut
o the fan when the condensing temperature is reduced to approximately
90˚F. Table 1 lists approximate settings for several system T.D.s. These settings
are approximate as they do not take into account variations in load.
7
Refrigeration Oils*
With the changes that have taken place in our industry due to the CFC
issue, we have reevaluated our lubricants to ensure compatibility with the
new HFC refrigerants and HCFC interim blends oered by several chemical
producers. As a secondary criteria, it is also desirable that any new lubricant
be compatible with the traditional refrigerants such as HCFC-22 or R502. This
“backward compatibility has been achieved with the introduction of the
Polyol ester lubricants.
Polyol Ester Lubricants
Hygroscopicity
Ester lubricants (POE) have the characteristic of quickly absorbing moisture
from the ambient surroundings. This is shown graphically in Figure 8 where
it can be seen that such lubricants absorb moisture faster and in greater
quantity than conventional mineral oils. Since moisture levels greater
than 100 ppm will results in system corrosion and ultimate failure, it is
imperative that compressors, components, containers and the entire system
be kept sealed as much as possible. Lubricants will be packaged in specially
designed, sealed containers. After opening, all the lubricant in a container
should be used at once since it will readily absorb moisture if left exposed to
the ambient. Any unused lubricant should be properly disposed of. Similarly,
work on systems and compressors must be carried out with the open time as
short as possible. Leaving the system or compressor open during breaks or
overnight MUST BE AVOIDED!
Figure 8.
Color
As received, the POE lubricant will be clear or straw colored. After use, it may
acquire a darker color. This does not indicate a problem as the darker color
merely reects the activity of the lubricant's protective additive.
Oil Level
During Copeland's testing of Polyol ester oil, it was found that this lubricant
exhibits a greater tendency to introduce oil into the cylinder during ooded
start conditions. If allowed to continue, this condition will cause mechanical
failure of the compressor.
A crankcase heater is required with condensing units and it must be turned
on several hours before start-up.
Oil level must not exceed 1/4 sight glass.
Oil Types
Table 2 below summarizes which oils/lubricants are approved for use in
Copeland compressors.
Mineral Oils
The BR and Scroll compressors use Sontex 200, a “white oil”. This oil is
not suitable for low temperature applications nor is it available through
the normal refrigeration wholesalers. For eld “top-o the use of 3GS or
equivalent, or Zerol 200TD is permissible, as long as at least 50% of the total
oil charge remains Sontex 200.
Suniso 3GS, Texaco WF32 and Calumet R015 (yellow oils) are available
through normal refrigeration wholesalers. These oils are compatible if mixed
and can be used on both high and low temperature systems.
Polyol Ester Lubricants
The Mobil EAL ARCTIC 22 CC is the preferred Polyol ester due to unique
additives included in this lubricant. ICI Emkarate RL 32S is an acceptable
Polyol ester lubricant approved for use when Mobil is not available. These
POE’s must be used if HFC refrigerants are used in the system. They are
also acceptable for use with any of the traditional refrigerants or interim
blends and are compatible with mineral oils. They can therefore be mixed
with mineral oils when used in systems with CFC or HCFC refrigerants when
Copeland compressors are used. These lubricants are compatible with one
another and can be mixed.
Alkyl Benzenes
Zerol 200TD is an alkyl benzene (AB) lubricant. Copeland recommends this
lubricant for use as a mixture with mineral oil (MO) when using the interim
blends such as R-401A, R-401B and R-402A (MP39, MP66 and HP80). A
minimum of 50% AB is required in these mixtures to assure proper oil return.
Shell MS 2212 is a 70/30 mixture of AB/MO. If this lubricant is used in a
retrot situation virtually all of the existing MO must be drained prior to
relling with the MS 2212 to assure a minimum 50% AB content.
Table 2. Refrigeration Oils
Refrigeration Oils Traditional Refrigerants
HCFC-22
Interims
R401A, R401B, R402A
(MP-39, MP-66, HP-80)
HFC's
HFC-134a, R404A, R507
POE's Mobil EAL ARCTIC 22 CC A A P
ICI (Virginia KMP) EMKARATE RL 32CF A A P
Mineral Oils Suniso 3GS P PM NOT ACCEPTABLE
Texaco WF32 P PM
Calumet RO15 (Witco) P PM
Sontex 200-LT (White Oil) (BR & Scroll Only)
Witco LP-200 P
A/B Zerol 200TD AM PM NOT ACCEPTABLE
Soltex Type AB-200 PM
P = Preferred Lubricant Choice A = Acceptable Alternative M = Mixture of Mineral Oil and Alkyl Benzene (AB) with minimum 50% AB.
*(Reprinted by permission from Copeland Corporation)
8
Figure 9. Example of Pipe Support Figure 10. Condensing Unit / Compressor to Wall Support
Suction Lines
Horizontal suction lines should slope away from the evaporator toward
the compressor at the rate of 1/4 inch per 10 feet for good oil return. When
multiple evaporators are connected in series using a common suction line,
the branch suction lines must enter the top of the common suction line.
For dual or multiple evaporator systems, the branch lines to each evaporator
should be sized for the evaporator capacity. The main common line should
be sized for the total system capacity.
Suction lines that are outside of refrigerated space must be insulated. See
the Line Insulation section on page 14 for more information.
Phase Loss Monitor
The combination phase sequence and loss monitor relay protects the system
against phase loss (single phasing), phase reversal (improper sequence) and
low voltage (brownout). When phase sequence is correct and full line voltage
is present on all three phases, the relay is energized as the normal condition
indicator light glows.
Note: If compressor fails to operate and the normal condition indicator light
on the phase monitor does not glow, then the supplied electrical current
is not in phase with the monitor. This problem is easily corrected by the
following steps:
Turn power o at disconnect switch.
Swap any two of the three power input wires.
Turn power on. Indicator light should glow and compressor
should start.
Observe motors for correct rotation.
Recommended Refrigerant Piping Practices
The system as supplied by Heatcraft Refrigeration Products, was
thoroughly cleaned and dehydrated at the factory. Foreign matter may enter
the system by way of the evaporator to condensing unit piping. Therefore,
care must be used during installation of the piping to prevent entrance of
foreign matter.
Install all refrigeration system components in accordance with applicable
local and national codes and in conformance with good practice required for
the proper operation of the system.
The refrigerant pipe size should be selected from the Line Sizing Tables. The
interconnecting pipe size is not necessarily the same size as the stub-out on
the condensing unit or the evaporator.
The following procedures should be followed:
Do not leave dehydrated compressors or lter-driers on
condensing units open to the atmosphere any longer than is
absolutely necessary.
Use only refrigeration grade copper tubing, properly sealed
against contamination.
Suction lines should slope 1/4" per 10 feet towards
the compressor.
1.
2.
3.
4.
a)
b)
c)
Suitable P-type oil traps should be located at the base of each
suction riser to enhance oil return to the compressor.
For desired method of superheat measurement, a pressure tap
should be installed in each evaporator suction line in
the proximity of the expansion valve bulb.
When brazing refrigerant lines, an inert gas should be passed
through the line at low pressure to prevent scaling and
oxidation inside the tubing. Dry nitrogen is preferred.
Use only a suitable silver solder alloy on suction and liquid lines.
Limit the soldering paste or ux to the minimum required to
prevent contamination of the solder joint internally. Flux only the
male portion of the connection, never the female. After brazing,
remove excess ux.
See Table 6 for discharge and liquid drain line sizes for remote
condenser connections.
If isolation valves are installed at the evaporator, full port ball
valves should be used.
Refrigerant Pipe Support
Normally, any straight run of tubing must be supported in at least two
locations near each end of the run. Long runs require additional
supports. The refrigerant lines should be supported and fastened
properly. As a guide, 3/8 to 7/8 should be supported every 5 feet; 1-1/8
and 1-3/8 every 7 feet; and 1-5/8 and 2-1/8 every 9 to 10 feet.
When changing directions in a run of tubing, no corner should be left
unsupported. Supports should be placed a maximum of 2 feet in each
direction from the corner.
Piping attached to a vibrating object (such as a compressor or
compressor base) must be supported in such a manner that will not
restrict the movement of the vibrating object. Rigid mounting will
fatigue the copper tubing.
Do not use short radius ells. Short radius elbows have points of excessive
stress concentration and are subject to breakage at these points.
Thoroughly inspect all piping after the equipment is in operation and
add supports wherever line vibration is signicantly greater than most
of the other piping. Extra supports are relatively inexpensive as
compared to refrigerant loss.
d)
e)
f)
g)
h)
i)
j)
1.
2.
3.
4.
5.
Figure 11. Suction P-Traps
Slope 1/4"
per 10 ft.
toward
compressor
Figure 12. Double Suction Riser Construction
Sized for
Minimum
Load
Sized
for Full
Load
Sized for
Minimum
Load
Sized
for Full
Load
Suction Line Risers
Prefabricated wrought copper traps are available, or a trap can be made
by using two street ells and one regular ell. The suction trap must be the
same size as the suction line. For long vertical risers, additional traps may
be necessary. Generally, one trap is recommended for each length of pipe
(approximately 20 feet) to insure proper oil movement. See Figure 11 for
methods of constructing proper suction line P-traps.
NOTE:
A suction line trap must be installed at the point where piping changes the direction of refrigerant ow from any horizontal run to an upward vertical run.
9
Liquid Lines
Liquid lines should be sized for a minimum pressure drop to prevent
“ashing”. Flashing in the liquid lines would create additional pressure drop
and poor expansion valve operation. If a system requires long liquid lines
from the receiver to the evaporator or if the liquid has to rise vertically
upward any distance, the losses should be calculated to determine whether
or not a heat exchanger is required. The use of a suction to liquid heat
exchanger may be used to subcool the liquid to prevent ashing. This
method of subcooling will normally provide no more than 20˚F subcooling
on high pressure systems. The amount of subcooling will depend on the
design and size of the heat exchanger and on the operating suction and
discharge pressures. An additional benet from the use of the suction to
liquid type heat exchanger is that it can help raise the superheat in the
suction line to prevent liquid return to the compressor via the suction line.
Generally, heat exchangers are not recommended on R-22 low temperature
systems. However, they have proved necessary on short, well insulated
suction line runs to provide superheat at the compressor.
Hot Gas Defrost Systems
Hot Gas Defrost systems can be described as reverse cycle, re-evap., or
alternating evaporator. Please see manual H-IM-HGD for Mohave™ systems.
Refrigerant Piping
Install all refrigerant components in accordance with applicable local and
national codes and in accordance with good practice for proper system
operation. The thermostatic expansion valve must be the externally
equalized type. It can be mounted inside the unit end compartment. Mount
the expansion valve bulb on a horizontal run of suction line as close as
possible to the suction header. Use the clamps provided with the valve to
fasten the bulb securely so there is a tight line-to-line contact between the
bulb and the suction line. Suction and hot gas connections are made on the
outside of the unit.
Suction lines should be sloped towards the compressor at the rate of one
(1) inch per ten (10) feet for good oil return. Vertical risers of more than four
(4) feet should be trapped at the bottom with a P-trap. If a P-trap is used, the
expansion valve bulb should be installed between the unit and the trap.
Reverse Cycle System
The hot gas unit coolers can be used in reverse cycle hot gas defrost systems
using multiple evaporators connected to one condensing unit. Generally, not
more than one-third of the system defrosts at one time. During the reverse
cycle defrost, the reversing valve, located in the compressor discharge line,
diverts hot gas through the suction line to the evaporator.
See the piping view in the Reverse Cycle Defrost Piping diagram. The suction
line check valve directs the hot gas through the drain pan loop which
prevents condensate in the pan from freezing. The hot gas exits the loop at
the pan loop outlet header and enters the evaporator through the check
valve assembly. As the hot gas defrosts the coil, heat is removed from the
hot gas and eventually it condenses into a liquid and exits the coil at the
distributor side port. The liquid then ows through the check valve of the
thermostatic expansion valve bypass assembly, around the thermostatic
expansion valve, and into the system liquid line. The liquid refrigerant then
feeds other evaporators on the cooling cycle, evaporates, and returns to the
compressor through their suction lines.
Hot gas line sizes for R-22, R404A and R507
System Capacity
BTU/Hr
Equivalent Discharge Length (Ft.)
25 50 75 100 150
4,000 1/2 1/2 1/2 1/2 1/2
5,000 1/2 1/2 1/2 1/2 1/2
6,000 1/2 1/2 1/2 5/8 5/8
7,000 1/2 1/2 5/8 5/8 5/8
8,000 1/2 5/8 5/8 5/8 5/8
9,000 1/2 5/8 5/8 5/8 5/8
10,000 1/2 5/8 5/8 5/8 5/8
12,000 5/8 5/8 5/8 7/8 7/8
14,000 5/8 5/8 7/8 7/8 7/8
16,000 5/8 5/8 7/8 7/8 7/8
18,000 5/8 7/8 7/8 7/8 7/8
20,000 5/8 7/8 7/8 7/8 7/8
25,000 7/8 7/8 7/8 7/8 1-1/8
30,000 7/8 7/8 7/8 1-1/8 1-1/8
35,000 7/8 7/8 1-1/8 1-1/8 1-1/8
40,000 7/8 1-1/8 1-1/8 1-1/8 1-1/8
45,000 7/8 1-1/8 1-1/8 1-1/8 1-1/8
50,000 7/8 1-1/8 1-1/8 1-1/8 1-1/8
60,000 1-1/8 1-1/8 1-1/8 1-3/8 1-3/8
70,000 1-1/8 1-1/8 1-3/8 1-3/8 1-3/8
80,000 1-1/8 1-1/8 1-3/8 1-3/8 1-5/8
90,000 1-1/8 1-3/8 1-3/8 1-5/8 1-5/8
100,000 1-1/8 1-3/8 1-3/8 1-5/8 1-5/8
Note: Use next larger hot gas line size for -200F. and lower suction temperatures.
EVAP. COIL
TXV
PAN LOOP
THREE-PIPE DEFROST PIPING
CHECK
VALVE
HOT GAS LINE
LIQUID LINE
SUCTION LINE
HEAT – X
EVAP. COIL
TXV
PAN LOOP
CHECK VALVE
REVERSE CYCLE DEFROST PIPING
CHECK VALVE
CHECK
VALVE
LIQUID
LINE
SUCTION
LINE
HEAT – X
IMPORTANT:
It is imperative that with the alternating evaporator hot
gas defrost system, no more that 25% of the operating
refrigeration load be in defrost at any time.
Three Pipe System
The three pipe system (sometimes called re-evap.) uses three pipes: one for
liquid line, one for suction line, and one for hot gas line. In addition, a re-
evaporator accumulator is used at the suction outlet of the evaporator. The
hot gas is taken from the discharge line between the compressor and the
condenser, through a hot gas solenoid valve, then to the evaporator drain
pan circuit, distributor tee, through the coil. See the Three-Pipe Defrost
Piping Diagram for typical piping at the evaporator coil.
Alternating Evaporator System
In the alternating evaporator hot gas defrost system, a third line is taken
o the compressor discharge line as the re-evap system. It is piped with
solenoids at each evaporator, so that hot gas defrost is accomplished on one
or more evaporators while the remaining evaporators continue to function
in a normal manner. The liquid from defrosting evaporators is reintroduced
to the main liquid line and it is necessary that 75% or greater capacity be
retained in the normal refrigeration cycle to oset the capacity that is being
removed by the units on the hot gas defrost.
10
Pipe size example:
Given: -10°F Freezer with one system having (2) evaporators
• One condensing unit rated at 24,000 BTUH’s @ -20°F SST R404A
refrigerant.
Two evaporators each rated at 12,000 BTUH’s @ 10°F TD.
• 100 feet of actual line run between condensing unit to rst evaporator
and 20 feet of actual line run between the rst evaporator and the
second evaporator (see gure below).
How to gure line sizes:
Determine equivalent line run = actual run + valves and tting allowances.
Use Line Sizing Tables to size lines.
Note any special considerations.
1.
2.
3.
Fittings in this system:
• (6) 90° elbows in main line plus a 90° turn through a tee.
• (5) addtional 90° elbows to rst evaporator.
• (4) additional 90° elbows to second evaporator.
Determine line size 1 (main line from condensing unit):
Main line from the condensing unit to be sized for the total capacity
(balance) of the whole system of 24,000 BTUHs (Table 8).
Refer to 24,000 @100 feet at -20°F SST R404A on the chart.
You will nd the suction line to be 1-3/8" and 1/2" liquid line.
Refer to Table 5. For every 1-3/8" 90° elbow you must add 4 equivalent
feet of pipe and 2.5 equivalent feet of pipe for each 1-3/8" tee.
Therefore, total equivalent line run =
Actual line run 100 feet
+ (6) 1-3/8" elbows @ 4' 24 feet
+ (1) 1-3/8" tee @ 2.5' 2.5 feet
Total equivalent line run 126.5 feet
Refer to Table 8. For 126.5 total equivalent feet, the suction
line size should be 1-3/8" and the liquid line stays at 1/2" line.
Note: The gray shaded areas on Table 8. For 24,000 BTUHs, the maximum
suction riser is 1-1/8" to insure proper oil return and pressure drop from the
bottom p-trap to the top p-trap.
1.
2.
3.
4.
Determine line size 2 (evaporators):
Line sizing to each evaporator is based on 12,000 BTUH’s and
equivalent run from condensing unit. First evaporator has an 105 ft.
run and the second evaporator has a 120 ft. run.
Table 8 indicates 1-1/8" suction for the rst evaporator and indicates
1-1/8" suction for the second evaporator.
Refer to Table 5. Each 1-1/8" 90° elbow adds 3 equivalent feet of pipe.
Each 90° turn through a 1-1/8" tee adds 6 equivalent feet.
Actual line run (evap 1) 105 feet
+ (5) 1-1/8" elbows @ 3' 15 feet
+ (1) 90° turn through tee @ 6' 6 feet
Total equivalent line run 126 feet
Actual line run (evap 2) 120 feet
+ (4) 1-1/8" elbows @ 3' 12 feet
Total equivalent line run 132 feet
Table 8 indicates 1-1/8" suction line and 3/8" liquid line from
main line to both evaporators.
1.
2.
3.
4.
5.
Unit Cooler Piping
Evap. 1
Evap. 2
Table 3. Weight of Refrigerants in Copper Lines During Operation (Pounds per 100 lineal feet of type "L" tubing)
Line Size O.D.
(Inches) Refrigerant Liquid Line Hot Gas Line Suction Line at Suction Temperature
-40˚F -20˚F 0˚F +20˚F +40˚F
3/8 22 3.9 0.22 0.02 0.03 0.04 0.06 0.08
R507, 404A 3.4 0.31 0.03 0.04 0.06 0.09 0.13
1/2 22 7.4 0.41 0.03 0.05 0.07 0.11 0.15
R507, 404A 6.4 0.58 0.04 0.07 0.13 0.16 0.24
5/8 22 11.8 0.65 0.05 0.08 0.12 0.17 0.25
R507, 404A 10.3 0.93 0.07 0.11 0.17 0.25 0.35
7/8 22 24.4 1.35 0.10 0.16 0.24 0.36 0.51
R507, 404A 21.2 1.92 0.15 0.23 0.37 0.51 0.72
1-1/8 22 41.6 2.30 0.17 0.28 0.42 0.61 0.87
R507, 404A 36.1 3.27 0.26 0.39 0.63 0.86 1.24
1-3/8 22 63.5 3.50 0.27 0.42 0.64 0.93 1.33
R507, 404A 55.0 4.98 0.40 0.58 0.95 1.32 1.87
1-5/8 22 90.0 4.96 0.37 0.59 0.90 1.33 1.88
R507, 404A 78.0 7.07 0.56 0.82 1.35 1.86 2.64
2-1/8 22 156 8.61 0.65 1.03 1.57 2.30 3.26
R507, 404A 134 12.25 0.98 1.43 2.35 3.23 4.58
2-5/8 22 241 13.70 1.01 1.59 2.42 3.54 5.03
R507, 404A 209 18.92 1.51 2.21 3.62 5.00 7.07
3-1/8 22 344 18.95 1.44 2.28 3.45 5.05 7.18
R507, 404A 298 27.05 2.16 3.15 5.17 7.14 9.95
3-5/8 22 465 25.60 1.94 3.08 4.67 6.83 9.74
R507, 404A 403 36.50 2.92 4.25 6.97 19.65 13.67
4-1/8 22 605 33.40 2.53 4.01 6.08 8.90 12.70
R507, 404A 526 47.57 3.80 5.55 9.09 12.58 17.80
Line Sizing
The following Tables 7 and 8 indicate liquid lines and suction lines for all
condensing units for R22, R404A, and R507.
When determining the refrigerant line length, be sure to add an allowance
for ttings. See Table 5. Total equivalent length of refrigerant lines is the sum
of the actual linear footage and the allowance for ttings.
11
Table 4. Pressure Loss of Liquid Refrigerants in Liquid Line Risers (Expressed in Pressure Drop, PSIG, and Subcooling Loss, ˚F)
Refrigerant
Liquid Line Rise in Feet
10' 15' 20' 25' 30' 40' 50' 75' 100'
PSIG ˚F PSIG ˚F PSIG ˚F PSIG ˚F PSIG ˚F PSIG ˚F PSIG ˚F PSIG ˚F PSIG ˚F
R22 4.8 1.6 7.3 2.3 9.7 3.1 12.1 3.8 14.5 4.7 19.4 6.2 24.2 8.0 36.3 12.1 48.4 16.5
R507, R404A 4.1 1.1 6.1 1.6 8.2 2.1 10.2 2.7 12.2 3.3 16.3 4.1 20.4 5.6 30.6 8.3 40.8 11.8
Based on 110˚F liquid temperature at bottom of riser.
Table 5. Equivalent Feet of Pipe Due to Valve and Fitting Friction
Copper Tube, O.D., Type “L 1/2 5/8 7/8 1-1/8 1-3/8 1-5/8 2-1/8 2-5/8 3-1/8 3-5/8 4-1/8 5-1/8 6-1/8
Globe Valve (Open) 14 16 22 28 36 42 57 69 83 99 118 138 168
Angle Valve (Open) 7 9 12 15 18 21 28 34 42 49 57 70 83
90˚ Turn Through Tee 3 4 5 6 8 9 12 14 17 20 22 28 34
Tee (Straight Through) or Sweep Below .75 1 1.5 2 2.5 3 3.5 4 5 6 7 9 11
90˚ Elbow or Reducing Tee (Straight Through)
1 2 2 3 4 4 5 7 8 10 12 14 16
Table 6. Recommended Remote Condenser Line Sizes
Net Evaporator
Capacity
Total Equiv.
Length
R-22 R507 & R-404A
Discharge Line (O.D.) Liquid Line Cond. to
Receiver (O.D.) Discharge Line (O.D.) Liquid Line Cond. to
Receiver (O.D.)
3,000 50 3/8 3/8 3/8 3/8
100 3/8 3/8 3/8 3/8
6,000 50 3/8 3/8 1/2 3/8
100 1/2 3/8 1/2 3/8
9,000 50 1/2 3/8 1/2 3/8
100 1/2 3/8 1/2 3/8
12,000 50 1/2 3/8 1/2 3/8
100 5/8 3/8 5/8 1/2
18,000 50 5/8 3/8 5/8 1/2
100 5/8 3/8 7/8 1/2
24,000 50 5/8 3/8 5/8 1/2
100 7/8 1/2 7/8 5/8
36,000 50 7/8 1/2 7/8 5/8
100 7/8 5/8 7/8 7/8
48,000 50 7/8 5/8 7/8 5/8
100 7/8 7/8 1-1/8 7/8
60,000 50 7/8 5/8 7/8 7/8
100 1-1/8 7/8 1-1/8 7/8
72,000 50 7/8 7/8 1-1/8 7/8
100 1-1/8 7/8 1-1/8 1-1/8
90,000 50 1-1/8 7/8 1-1/8 7/8
100 1-1/8 7/8 1-1/8 1-1/8
120,000 50 1-1/8 7/8 1-1/8 1-1/8
100 1-3/8 1-1/8 1-3/8 1-3/8
180,000 50 1-3/8 1-1/8 1-3/8 1-3/8
100 1-5/8 1-3/8 1-5/8 1-5/8
240,000 50 1-3/8 1-3/8 1-5/8 1-3/8
100 1-5/8 1-3/8 2-1/8 1-5/8
300,000 50 1-5/8 1-3/8 1-5/8 1-5/8
100 2-1/8 1-5/8 2-1/8 2-1/8
360,000 50 1-5/8 1-5/8 2-1/8 1-5/8
100 2-1/8 2-1/8 2-1/8 2-1/8
480,000 50 2-1/8 1-5/8 2-1/8 2-1/8
100 2-1/8 2-1/8 2-1/8 2-5/8
600,000 50 2-1/8 2-1/8 2-1/8 2-1/8
100 2-5/8 2-5/8 2-5/8 2-5/8
720,000 50 2-1/8 2-1/8 2-1/8 2-5/8
100 2-5/8 2-5/8 2-5/8 3-1/8
840,000 50 2-1/8 2-1/8 2-5/8 2-5/8
100 2-5/8 2-5/8 2-5/8 3-1/8
960,000 50 2-5/8 2-5/8 2-5/8 2-5/8
100 2-5/8 3-1/8 3-1/8 3-5/8
1,080,000 50 2-5/8 2-5/8 2-5/8 3-1/8
100 3-1/8 3-1/8 3-1/8 3-5/8
1,200,000 50 2-5/8 2-5/8 2-5/8 3-1/8
100 3-1/8 3-1/8 3-5/8 4-1/8
1,440,000 50 2-5/8 3-1/8 3-1/8 3-5/8
100 3-1/8 3-5/8 3-5/8 4-1/8
1,680,000 50 3-1/8 3-1/8 3-1/8 3-5/8
100 3-5/8 3-5/8 3-5/8 4-1/8
12
Table 7. Recommended Line Sizes for R-22 *
Capacity
BTUH
Suction Line Size Liquid Line Size
Suction Temperature Receiver to
Expansion Valve
Equivalent
Lengths
+40˚F
Equivalent Lengths
+20˚F
Equivalent Lengths
+10˚F
Equivalent Lengths
0˚F
Equivalent Lengths
-10˚F
Equivalent Lengths
-20˚F
Equivalent Lengths
25' 50' 100' 150' 25' 50' 100' 150' 25' 50' 100' 150' 25' 50' 100' 150' 25' 50' 100' 150' 25' 50' 100' 150' 25' 50' 100' 150'
1,000 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 1/2 3/8 3/8 3/8 1/2 3/8 3/8 1/2 1/2 3/8 3/8 3/8 3/8
3,000 3/8 3/8 1/2 1/2 3/8 1/2 1/2 5/8 3/8 1/2 1/2 5/8 1/2 1/2 5/8 5/8 1/2 1/2 5/8 5/8 1/2 1/2 5/8 5/8 3/8 3/8 3/8 3/8
4,000 3/8 3/8 1/2 1/2 3/8 1/2 1/2 5/8 1/2 1/2 5/8 5/8 1/2 1/2 5/8 5/8 1/2 1/2 5/8 5/8 1/2 5/8 5/8 7/8 3/8 3/8 3/8 3/8
6,000 1/2 1/2 5/8 5/8 1/2 1/2 5/8 5/8 1/2 5/8 5/8 7/8 5/8 5/8 5/8 7/8 1/2 5/8 7/8 7/8 5/8 5/8 7/8 7/8 3/8 3/8 3/8 3/8
9,000 1/2 5/8 5/8 7/8 1/2 5/8 5/8 7/8 5/8 5/8 7/8 7/8 5/8 7/8 7/8 7/8 5/8 7/8 7/8 7/8 5/8 7/8 7/8 1-
1/8 3/8 3/8 3/8 3/8
12,000 5/8 5/8 7/8 7/8 5/8 5/8 7/8 7/8 5/8 7/8 7/8 7/8 5/8 7/8 7/8 7/8 7/8 7/8 7/8 1-
1/8 7/8 7/8 1-
1/8
1-
1/8 3/8 3/8 3/8 3/8
15,000 5/8 5/8 7/8 7/8 5/8 7/8 7/8 7/8 7/8 7/8 7/8 1-
1/8 7/8 7/8 7/8 1-
1/8 7/8 7/8 1-
1/8
1-
1/8 7/8 7/8 1-
1/8
1-
1/8 3/8 3/8 3/8 3/8
18,000 5/8 7/8 7/8 7/8 5/8 7/8 7/8 7/8 7/8 7/8 7/8 1-
1/8 7/8 7/8 1-
1/8
1-
1/8 7/8 7/8 1-
1/8
1-
1/8 7/8 1-
1/8
1-
1/8
1-
1/8 3/8 3/8 3/8 1/2
24,000 5/8 7/8 7/8 1-
1/8 7/8 7/8 7/8 1-
1/8 7/8 7/8 1-
1/8
1-
1/8 7/8 1-
1/8
1-
1/8
1-
1/8 7/8 1-
1/8
1-
1/8
1-
3/8 7/8 1-
1/8
1-
3/8
1-
3/8 3/8 3/8 1/2 1/2
30,000 7/8 7/8 1-
1/8
1-
1/8 7/8 7/8 1-
1/8
1-
1/8 7/8 1-
1/8
1-
1/8
1-
1/8 7/8 1-
1/8
1-
1/8
1-
3/8 7/8 1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8 3/8 3/8 1/2 1/2
36,000 7/8 1-
1/8
1-
1/8
1-
1/8 7/8 1-
1/8
1-
1/8
1-
1/8 7/8 1-
1/8
1-
1/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8 3/8 1/2 1/2 1/2
42,000 7/8 1-
1/8
1-
1/8
1-
1/8 7/8 1-
1/8
1-
1/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
5/8
1-
1/8
1-
3/8
1-
5/8
1-
5/8 3/8 1/2 1/2 1/2
48,000 7/8 1-
1/8
1-
1/8
1-
1/8 7/8 1-
1/8
1-
1/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8
1-
1/8
1-
3/8
1-
5/8
1-
5/8 1/2 1/2 1/2 1/2
54,000 7/8 1-
1/8
1-
1/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8
1-
1/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
2-
1/8 1/2 1/2 1/2 5/8
60,000 7/8 1-
1/8
1-
1/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8
1-
1/8
1-
3/8
1-
5/8
1-
5/8
1-
1/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
2-
1/8 1/2 1/2 5/8 5/8
66,000 7/8 1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8
1-
1/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
5/8
1-
5/8
2-
1/8 1/2 1/2 5/8 5/8
72,000 1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8
1-
1/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
2-
1/8
1-
3/8
1-
3/8
1-
5/8
2-
1/8
1-
3/8
1-
5/8
2-
1/8
2-
1/8 1/2 1/2 5/8 5/8
78,000 1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8
1-
1/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
2-
1/8
1-
3/8
1-
5/8
1-
5/8
2-
1/8
1-
3/8
1-
5/8
2-
1/8
2-
1/8 1/2 1/2 5/8 5/8
84,000 1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
5/8
1-
5/8
2-
1/8
1-
3/8
1-
5/8
2-
1/8
2-
1/8
1-
3/8
1-
5/8
2-
1/8
2-
1/8 1/2 5/8 5/8 5/8
90,000 1-
1/8
1-
3/8
1-
3/8
1-
5/8
1-
1/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
2-
1/8
1-
3/8
1-
5/8
2-
1/8
2-
1/8
1-
3/8
1-
5/8
2-
1/8
2-
1/8
1-
3/8
1-
5/8
2-
1/8
2-
1/8 1/2 5/8 5/8 7/8
120,000
1-
1/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
2-
1/8
1-
3/8
1-
5/8
2-
1/8
2-
1/8
1-
5/8
1-
5/8
2-
1/8
2-
1/8
1-
5/8
1-
5/8
2-
1/8
2-
1/8
1-
5/8
2-
1/8
2-
1/8
2-
5/8 5/8 5/8 7/8 7/8
150,000
1-
3/8
1-
3/8
1-
5/8
2-
1/8
1-
3/8
1-
5/8
2-
1/8
2-
1/8
1-
5/8
1-
5/8
2-
1/8
2-
1/8
1-
5/8
2-
1/8
2-
1/8
2-
5/8
1-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8 5/8 7/8 7/8 7/8
180,000
1-
3/8
1-
5/8
2-
1/8
2-
1/8
1-
3/8
1-
5/8
2-
1/8
2-
1/8
1-
5/8
2-
1/8
2-
1/8
2-
5/8
1-
5/8
2-
1/8
2-
1/8
2-
5/8
1-
5/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8 5/8 7/8 7/8 7/8
210,000
1-
3/8
1-
5/8
2-
1/8
2-
1/8
1-
5/8
2-
1/8
2-
1/8
2-
1/8
1-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
5/8
2-
5/8
3-
1/8 7/8 7/8 7/8 7/8
240,000
1-
5/8
1-
5/8
2-
1/8
2-
1/8
1-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
5/8
2-
5/8
3-
1/8 7/8 7/8 7/8 1-
1/8
300,000
1-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
5/8
2-
5/8
3-
1/8
2-
1/8
2-
5/8
2-
5/8
3-
1/8
2-
1/8
2-
5/8
3-
1/8
3-
1/8 7/8 7/8 1-
1/8
1-
1/8
360,000
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
5/8
2-
5/8
3-
1/8
2-
1/8
2-
5/8
3-
1/8
3-
1/8
2-
1/8
2-
5/8
3-
1/8
3-
1/8
2-
5/8
3-
1/8
3-
1/8
3-
5/8 7/8 7/8 1-
1/8
1-
1/8
480,000
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
5/8
2-
5/8
3-
1/8
2-
1/8
2-
5/8
3-
1/8
3-
1/8
2-
5/8
2-
5/8
3-
1/8
3-
5/8
2-
5/8
3-
1/8
3-
1/8
3-
5/8
2-
5/8
3-
1/8
3-
5/8
3-
5/8
1-
1/8
1-
1/8
1-
1/8
1-
3/8
600,000
2-
1/8
2-
5/8
2-
5/8
3-
1/8
2-
1/8
2-
5/8
3-
1/8
3-
1/8
2-
5/8
2-
5/8
3-
1/8
3-
5/8
2-
5/8
3-
1/8
3-
5/8
3-
5/8
2-
5/8
3-
1/8
3-
5/8
3-
5/8
3-
1/8
3-
1/8
3-
5/8
4-
1/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
* NOTES:
Sizes that are highlighted indicate maximum suction line sizes that should be used for risers. Riser size should not exceed horizontal size.
Properly placed suction traps must also be used for adequate oil return.
All sizes shown are for O.D. Type L copper tubing.
Suction line sizes selected at pressure drop equivalent to 2˚F. Reduce estimate of system capacity accordingly.
Recommended liquid line size may increase with reverse cycle hot gas systems.
If system load drops below 40% of design, consideration to installing double suction risers should be made.
1.
2.
3.
4.
13
Table 8. Recommended Line Sizes for R-404A and R507*
Capacity
BTUH
Suction Line Size Liquid Line Size
Suction Temperature Receiver to
Expansion Valve
Equivalent
Lengths
+20˚F
Equivalent Lengths
+10˚F
Equivalent Lengths
-10˚F
Equivalent Lengths
-20˚F
Equivalent Lengths
-30˚F
Equivalent Lengths
-40˚F
Equivalent Lengths
25' 50' 100' 150' 25' 50' 100' 150' 25' 50' 100' 150' 25' 50' 100' 150' 25' 50' 100' 150' 25' 50' 100' 150' 25' 50' 100' 150'
1,000 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 1/2 1/2 3/8 3/8 1/2 1/2 3/8 3/8 1/2 1/2 3/8 1/2 1/2 5/8 3/8 3/8 3/8 3/8
3,000 3/8 3/8 1/2 1/2 3/8 1/2 1/2 5/8 1/2 1/2 5/8 5/8 1/2 1/2 5/8 7/8 1/2 1/2 5/8 7/8 1/2 1/2 5/8 7/8 3/8 3/8 3/8 3/8
4,000 3/8 1/2 1/2 5/8 1/2 1/2 5/8 5/8 1/2 5/8 5/8 7/8 1/2 5/8 7/8 7/8 5/8 5/8 7/8 7/8 1/2 5/8 7/8 7/8 3/8 3/8 3/8 3/8
6,000 1/2 1/2 5/8 7/8 1/2 1/2 5/8 7/8 1/2 5/8 7/8 7/8 5/8 5/8 7/8 7/8 5/8 5/8 7/8 7/8 5/8 5/8 7/8 7/8 3/8 3/8 3/8 3/8
9,000 5/8 5/8 7/8 7/8 5/8 5/8 7/8 7/8 5/8 7/8 7/8 7/8 5/8 7/8 7/8 1-
1/8 5/8 7/8 7/8 1-
1/8 5/8 7/8 7/8 1-
1/8 3/8 3/8 3/8 3/8
12,000 5/8 7/8 7/8 7/8 5/8 7/8 7/8 7/8 7/8 7/8 7/8 1-
1/8 7/8 7/8 1-
1/8
1-
1/8 7/8 7/8 1-
1/8
1-
1/8 7/8 7/8 1-
1/8
1-
1/8 3/8 3/8 3/8 3/8
15,000 5/8 7/8 7/8 7/8 7/8 7/8 7/8 1-
1/8 7/8 7/8 1-
1/8
1-
1/8 7/8 7/8 1-
1/8
1-
1/8 7/8 7/8 1-
1/8
1-
1/8 7/8 7/8 1-
1/8
1-
1/8 3/8 3/8 3/8 1/2
18,000 7/8 7/8 7/8 1-
1/8 7/8 7/8 1-
1/8
1-
1/8 7/8 7/8 1-
1/8
1-
1/8 7/8 1-
1/8
1-
1/8
1-
3/8 7/8 1-
1/8
1-
1/8
1-
3/8 7/8 1-
1/8
1-
1/8
1-
3/8 3/8 3/8 1/2 1/2
24,000 7/8 7/8 1-
1/8
1-
1/8 7/8 1-
1/8
1-
1/8
1-
1/8 7/8 1-
1/8
1-
1/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8 3/8 3/8 1/2 1/2
30,000 7/8 7/8 1-
1/8
1-
1/8 7/8 1-
1/8
1-
1/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8 3/8 1/2 1/2 1/2
36,000 7/8 1-
1/8
1-
1/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
3/8
1-
3/8
1-
3/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8 1/2 1/2 1/2 1/2
42,000 1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8
1-
1/8
1-
3/8
1-
5/8
1-
5/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8 1/2 1/2 1/2 5/8
48,000 1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
1/8
1-
3/8
1-
5/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8
1-
1/8
1-
3/8
1-
5/8
1-
5/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8 1/2 1/2 5/8 5/8
54,000 1-
1/8
1-
1/8
1-
3/8
1-
3/8
1-
1/8
1-
3/8
1-
3/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
1-
5/8 1/2 1/2 5/8 5/8
60,000 1-
1/8
1-
1/8
1-
3/8
1-
5/8
1-
1/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
1-
5/8 1/2 1/2 5/8 5/8
66,000 1-
1/8
1-
3/8
1-
3/8
1-
5/8
1-
1/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
5/8
1-
5/8
1-
5/8
1-
3/8
1-
5/8
1-
5/8
1-
5/8
1-
3/8
1-
5/8
1-
5/8
1-
5/8
1-
3/8
1-
5/8
1-
5/8
1-
5/8 1/2 1/2 5/8 5/8
72,000 1-
1/8
1-
3/8
1-
5/8
1-
5/8
1-
1/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
5/8
1-
5/8
1-
5/8
1-
3/8
1-
5/8
1-
5/8
1-
5/8
1-
3/8
1-
5/8
1-
5/8
1-
5/8
1-
3/8
1-
5/8
1-
5/8
1-
5/8 1/2 5/8 5/8 5/8
78,000 1-
1/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
5/8
1-
5/8
1-
5/8
1-
5/8
1-
5/8
1-
5/8
2-
1/8
1-
5/8
1-
5/8
1-
5/8
2-
1/8
1-
5/8
1-
5/8
1-
5/8
2-
1/8 5/8 5/8 5/8 5/8
84,000 1-
1/8
1-
3/8
1-
5/8
1-
5/8
1-
3/8
1-
3/8
1-
5/8
2-
1/8
1-
3/8
1-
5/8
1-
5/8
2-
1/8
1-
5/8
1-
5/8
2-
1/8
2-
1/8
1-
5/8
1-
5/8
2-
1/8
2-
1/8
1-
5/8
1-
5/8
2-
1/8
2-
1/8 5/8 5/8 5/8 7/8
90,000 1-
3/8
1-
3/8
1-
5/8
2-
1/8
1-
3/8
1-
5/8
1-
5/8
2-
1/8
1-
5/8
1-
5/8
2-
1/8
2-
1/8
1-
5/8
1-
5/8
2-
1/8
2-
1/8
1-
5/8
2-
1/8
2-
1/8
2-
1/8
1-
5/8
1-
5/8
2-
1/8
2-
1/8 5/8 5/8 7/8 7/8
120,000
1-
3/8
1-
5/8
2-
1/8
2-
1/8
1-
3/8
1-
5/8
2-
1/8
2-
1/8
1-
5/8
2-
1/8
2-
1/8
2-
5/8
1-
5/8
2-
1/8
2-
1/8
2-
5/8
1-
5/8
2-
1/8
2-
1/8
2-
5/8
1-
5/8
2-
1/8
2-
1/8
2-
5/8 5/8 5/8 7/8 7/8
150,000
1-
5/8
1-
5/8
2-
1/8
2-
1/8
1-
5/8
2-
1/8
2-
1/8
2-
1/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8 5/8 7/8 7/8 7/8
180,000
1-
5/8
2-
1/8
2-
1/8
2-
1/8
1-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8 7/8 7/8 7/8 1-
1/8
210,000
1-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
3-
1/8
2-
1/8
2-
5/8
2-
5/8
3-
1/8
2-
1/8
2-
5/8
2-
5/8
3-
1/8
2-
1/8
2-
5/8
2-
5/8
3-
1/8 7/8 7/8 1-
1/8
1-
1/8
240,000
1-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
5/8
2-
5/8
3-
1/8
2-
1/8
2-
5/8
2-
5/8
3-
1/8
2-
5/8
2-
5/8
3-
1/8
3-
1/8
2-
5/8
2-
5/8
3-
1/8
3-
1/8 7/8 7/8 1-
1/8
1-
1/8
300,000
2-
1/8
2-
1/8
2-
5/8
2-
5/8
2-
1/8
2-
5/8
2-
5/8
3-
1/8
2-
5/8
2-
5/8
3-
1/8
3-
1/8
2-
5/8
2-
5/8
3-
1/8
3-
5/8
2-
5/8
2-
5/8
3-
1/8
3-
5/8
2-
5/8
2-
5/8
3-
5/8
3-
5/8 7/8 1-
1/8
1-
1/8
1-
3/8
360,000
2-
1/8
2-
1/8
2-
5/8
3-
1/8
2-
1/8
2-
5/8
2-
5/8
3-
1/8
2-
5/8
2-
5/8
3-
1/8
3-
5/8
2-
5/8
2-
5/8
3-
5/8
3-
5/8
2-
5/8
3-
1/8
3-
5/8
3-
5/8
2-
5/8
3-
1/8
3-
5/8
4-
1/8
1-
1/8
1-
1/8
1-
3/8
1-
3/8
480,000
2-
1/8
2-
5/8
3-
1/8
3-
1/8
2-
5/8
2-
5/8
2-
5/8
3-
5/8
2-
5/8
3-
1/8
3-
5/8
3-
5/8
2-
5/8
3-
1/8
3-
5/8
3-
5/8
3-
1/8
3-
5/8
4-
1/8
4-
1/8
3-
1/8
3-
5/8
4-
1/8
4-
1/8
1-
1/8
1-
1/8
1-
3/8
1-
5/8
600,000
2-
5/8
2-
5/8
3-
1/8
3-
5/8
2-
5/8
2-
5/8
3-
1/8
3-
5/8
3-
1/8
3-
1/8
3-
5/8
4-
1/8
3-
1/8
3-
1/8
3-
5/8
3-
5/8
3-
1/8
3-
5/8
4-
1/8
4-
1/8
3-
1/8
3-
5/8
4-
1/8
4-
1/8
1-
1/8
1-
3/8
1-
5/8
1-
5/8
* NOTES:
Sizes that are highlighted indicate maximum suction line sizes that should be used for risers. Riser size should not exceed horizontal size.
Properly placed suction traps must also be used for adequate oil return.
All sizes shown are for O.D. Type L copper tubing.
Suction line sizes selected at pressure drop equivalent to 2˚F. Reduce estimate of system capacity accordingly.
Recommended liquid line size may increase with reverse cycle hot gas systems.
If system load drops below 40% of design, consideration to installing double suction risers should be made.
1.
2.
3.
4.
14
Evacuation and Leak Detection
Due to the smaller molecule size of HFC’s, they will tend to leak more readily
than CFC’s. Consequently, it is of the utmost importance that proper system
evacuation and leak detection procedures be employed.
Copeland recommends a minimum evacuation to 500 microns. In addition,
a vacuum decay test is strongly recommended to assure there is not a
large pressure dierential between the system and vacuum pump. Good
evacuation processes include frequent vacuum pump oil changes and large
diameter, short hose connections to both high and low sides of the system
preferably using bronze braided hose.
Leak detection can be carried out in the conventional manner.
If HCFC or CFC tracer gas is used, care must be taken to completely remove
all traces of the gas prior to introducing HFC’s.
Electronic leak detectors are now available that will sense HFC’s. This is
considered preferable since it removes the possibility of chlorine remaining
in the system after leak testing with HCFC’s and/or CFC’s. There is a view that
even small quantities of chlorine may act as a catalyst encouraging copper
plating and/or corrosion and should therefore be avoided.
WARNING:
HFC-134a has been shown to be combustible at pressure as low as 5.5
psig (at 350˚F) when mixed with air at concentrations more than 60%
air by volume.
At lower temperature, higher pressures are required to support
combustion. Therefore, air should never be mixed with HFC-134a for
leak detection.
Within the last several years, manufacturers have developed uorescent dye
leak detection systems for use with refrigerants. These dyes mix with the
lubricant and, when exposed to an ultraviolet light “uoresce, indicates the
location of leaks. Copeland has tested and approved the Rigid “System Safe
dye and found it to be compatible with the compressor materials in systems.
Leak Testing
After all lines are connected, the entire system must be leak tested. The
complete system should be pressurized to not more than 150 psig with
refrigerant and dry nitrogen (or dry CO2). The use of an electronic type leak
detector is highly recommended because of its greater sensitivity to small
leaks. As a further check it is recommended that this pressure be held for a
minimum of 12 hours and then rechecked. For a satisfactory installation, the
system must be leak tight.
Line Insulation
After the nal leak test, refrigerant lines exposed to high ambient conditions
should be insulated to reduce heat pickup and prevent the formation of
ash gas in the liquid lines. Suction lines must always be insulated with 3/4"
wall Armstrong Armaex or equal. When required, Liquid lines should be
insulated with 1/2 inch wall insulation or better. The insulation located in
outdoor environments should be protected from UV exposure to prevent
deterioration of insulating value.
Evacuation
CAUTION:
Do not use the refrigeration compressor to evacuate the system. Do
not start the compressor while it is in a vacuum.
A good, deep vacuum pump should be connected to both the low and high
side evacuation valves with copper tube or high vacuum hoses (1/4" ID
minimum). If the compressor has service valves, they should remain closed.
A deep vacuum gauge capable of registering pressure in microns should be
attached to the system for pressure readings.
A shut o valve between the gauge connection and vacuum pump should
be provided to allow the system pressure to be checked after evacuation. Do
not turn o vacuum pump when connected to an evacuated system before
closing shut o valve.
The vacuum pump should be operated until a pressure of 1,500 microns
absolute pressure is reached — at which time the vacuum should be broken
with the refrigerant to be used in the system through a drier until the system
pressure rises above “0” psig.
NOTE:
Refrigerant used during evacuation cannot be vented. Reclaim all used
refrigerant. EPA regulations are constantly being updated. Ensure your
procedure follows correct regulations.
Repeat this operation a second time.
Open the compressor service valves and evacuate the entire system to 500
microns absolute pressure. Raise the pressure to 2 psig with the refrigerant
and remove the vacuum pump.
Refrigerant Charging Instructions
Install a liquid line drier in the refrigerant supply line between the
service gauge and the liquid service port of the receiver. This
extra drier will insure that all refrigerant supplied to the
system is clean and dry.
When initially charging a system that is in a vacuum, liquid
refrigerant can be added directly into the receiver tank.
Check equipment catalog for refrigerant capacity. System
refrigerant capacity is 90% of receiver capacity. Do not add more
refrigerant than the data tag indicates, unless the line run exceeds
25ft. Then, add additional refrigerant as per the chart on page 30.
Weigh the refrigerant drum before charging so an accurate record
can be kept of the weight of refrigerant put in the system.
Start the system and nish charging until the sight glass indicates
a full charge and the proper amount has been weighed in. If the
refrigerant must be added to the system through the
suction side of the compressor, charge in vapor form only. Liquid
charging must be done in the high side only or with
liquid metering devices to protect the compressor.
Low Head Pressure Systems
If you are charging the system by using a clear sight glass as an indication of
proper charge the following must be considered.
Check the condensing temperature. It must be above 105˚F. If not, it will be
necessary to reduce the amount of air going through the condenser from
fans still running. Simply reduce the eective condenser face area to raise the
discharge pressure above the equivalent 105˚F condensing temperature and
then proceed to charge to clear the sightglass. Adjust evaporator superheat
at this time. Return to full condenser face area and allow the system to
balance.
Field Wiring
WARNING:
All wiring must be done in accordance with applicable codes and local
ordinances.
The eld wiring should enter the areas as provided on the unit. The wiring
diagram for each unit is located on the inside of the electrical panel door.
All eld wiring should be done in a professional manner and in accordance
with all governing codes. Before operating unit, double check all wiring
connections, including the factory terminals. Factory connections can vibrate
loose during shipment.
The serial data tag on the unit is marked with the electrical characteristic
for wiring the unit.
Consult the wiring diagram in the unit cooler and in the condensing unit
for proper connections.
Wire type should be of copper conductor only and of the proper
size to handle the connected load.
The unit must be grounded.
For multiple evaporator systems, the defrost termination controls
should be wired in series. Follow the wiring diagrams for multiple
evaporator systems carefully. This will assure complete defrost of
all evaporators in the system.
Multiple evaporator systems should operate o of one thermostat.
If a remote defrost timer is to be used, the timer should be located
outside the refrigerated space.
For air cooled condensers, due to multiple low amp motors, we
recommend using time delay fuse protection instead
of circuit breakers.
1.
2.
3.
4.
1.
2.
3.
4.
5.
6.
7.
8.
15
Check Out and Start Up
After the installation has been completed, the following points should be
covered before the system is placed in operation:
Check all electrical and refrigerant connections.
Be sure they are all tight.
Observe compressor oil level before start-up. The
oil level should be at or slightly above the 1/4 level
of the sight glass. Refer to Table 3 for proper compressor oil.
Remove upper mounting nuts on the compressor feet.
Remove the shipping spacers. Install the neoprene washers onto
the compressor feet. Replace the upper mounting nuts
and washers, allowing 1/16" space between the mounting nut
and the neoprene spacer.
Check high and low pressure controls, pressure regulating valves,
oil pressure safety controls, and all other safety controls, and
adjust if necessary.
Check the room thermostat for normal operation
and adjust.
Wiring diagrams, instruction bulletins, etc. attached to the
condensing units should be read and led for future reference.
All fan motors should be checked for proper rotation. Fan
motor mounts should be carefully checked for tightness and
proper alignment.
Electric and hot gas evaporator fan motors should
be temporarily wired for continuous operation until
the room temperature has stabilized.
Observe system pressures during charging and initial operation.
Do not add oil while the system is short of refrigerant
unless oil level is dangerously low.
Continue charging until system has sucient refrigerant for
proper operation. Do not overcharge.
Remember that bubbles in a sight glass may be caused by
a restriction as well as a shortage of refrigerant.
Do not leave unit unattended until the system has
reached normal operating conditions and the oil
charge has been properly adjusted to maintain the oil
level between 1/4 and bottom of the sight glass.
Make sure all Schrader valve caps are in place and tight.
Make sure ALL service valves are properly back-seated and tighten
valve packing if necessary.
a)
b)
c)
d)
e)
f)
g)
h)
i)
j)
k)
l)
m)
CAUTION:
Extreme care must be taken in starting compressors for the rst time
after system charging. At this time, all of the oil and most of the
refrigerant might be in the compressor creating a condition which could
cause compressor damage due to slugging. Activating the crankcase
heater for 24 hours prior to start-up is required. If no crankcase heater is
present, then directing a 500 watt heat lamp or other safe heat source on
the lower shell of the compressor for approximately thirty minutes will be
benecial in eliminating this condition which might never reoccur.
WARNING:
Scroll compressor is directional dependent. If noisy, change phase of
input wiring.
16
System Balancing - Compressor Superheat
IMPORTANT:
In order to obtain the maximum capacity from a system, and to ensure
trouble-free operation, it is necessary to balance each and every system.
This is extremely important with any refrigeration system.
The critical value which must be checked is suction superheat.
Suction superheat should be checked at the compressor as follows:
Measure the suction pressure at the suction service valve of the
compressor and determine the saturation temperature corresponding
to this pressure from a Temperature-Pressure chart.
Measure the suction temperature of the suction line about one
foot back from the compressor using an accurate thermometer.
Subtract the saturated temperature from the actual
suction line temperature. The dierence is superheat.
Too low a suction superheat can result in liquid being returned to the
compressor. This will cause dilution of the oil and eventual failure of the
bearings and rings or in the extreme case, valve failure.
Too high a suction superheat will result in excessive discharge temperatures
which cause a break down of the oil and results in piston ring wear, piston
and cylinder wall damage.
It should also be remembered that the system capacity decreases as the
suction superheat increases. For maximum system capacity, suction
superheat should be kept as low as is practical. Copeland mandates a
minimum superheat of 20˚F at the compressor. We recommend that the
superheat at the compressor be between 20˚F and 30˚F.
If adjustments to the suction superheat need to be made, the expansion
valve at the evaporator should be adjusted.
1.
2.
3.
Operational Check Out
After the system has been charged and has operated for at least two hours at
normal operating conditions without any indication of malfunction, it should
be allowed to operate overnight on automatic controls. Then a thorough
recheck of the entire system operation should be made as follows:
Check compressor discharge and suction pressures.
If not within system design limits, determine why and
take corrective action.
Check liquid line sight glass and expansion valve operation. If
there are indications that more refrigerant is required, leak test
all connections and system components and repair any
leaks before adding refrigerant.
Observe oil level in compressor crankcase sight glass. Add oil as
necessary to bring level to bottom 1/4 of the sight glass.
Thermostatic expansion valves must be checked
for proper superheat settings. Feeler bulbs must be
in positive contact with the suction line and should
be insulated. Valves set at high superheat will lower
refrigeration capacity. Low superheat promotes
liquid slugging and compressor bearing washout.
Using suitable instruments, carefully check line voltage and
amperage at the compressor terminals. Voltage must be within
10% of that indicated on the condensing unit nameplate. If high
or low voltage is indicated, notify the power company.
If amperage draw is excessive, immediately determine the cause
and take corrective action. On three phase motor compressors,
check to see that a balanced load is drawn
by each phase.
The maximum approved settings for high pressure controls on
our air cooled condensing equipment is 425 psig. On air cooled
systems, check as follows:
Disconnect the fan motors or block the condenser inlet air. Watch
high pressure gauge for cutout point. Recheck all safety and
operating controls for proper operation and adjust if necessary.
Check defrost controls for initiation and termination settings, and
length of defrost period. Set fail safe at length of defrost + 25%.
Example: 20 minute defrost + 5 minutes
= 25 minute fail safe
Check drain pan for proper drainage.
Check winter head pressure controls for pressure setting.
Check crankcase heater operation if used.
Install instruction card and control system diagram for
use of building manager or owner.
a)
b)
c)
d)
e)
f)
g)
h)
i)
j)
k)
NOTE:
All adjustable controls and valves must be eld adjusted to meet desired
operation. There are no factory preset controls or valve adjustments. This
includes low pressure, high pressure, adjustable head pressure systems
and expansion valves.
Table 9. Recommended Low Pressure Control Settings for Outdoor Air Cooled Condensing Units
*Minimum
Temp. ˚F
R-22 R-404A/R-507
Cut-In PSI Cut-Out PSI Cut-In PSI Cut-Out PSI
50 70 20 90 35
40 55 20 70 35
30 40 20 55 35
10 30 10 45 25
0 15 0 25 7
-10 15 0 20 1
-20 10 0 12 1
-30 6 0 8 1"Hg.
* Minimum ambient or box temperature anticipated, high pressure control setting: R-22, 360 PSI; R-404A, R-507, 400 PSI
* The standard preset low pressure switch used for pumpdown is set for 15 PSI cut in / 4 PSI cut out and is a good setting for most pumpdown systems
* ZB Scroll compressors should be set for 25 PSI cut in / 17 PSI cut out (R-404A / R-507)
17
Electric Defrost Troubleshooting
The electric defrost units are relatively simple and trouble-free in operation:
Timer
If the system does not go through its proper sequence , check timer
operation through a defrost cycle. Check for loose wires or terminals. Before
replacing timer, check other components.
Operation of Paragon Timer
To set time of day grasp knob which is in the center of the inner (fail-safe) dial
and rotate it in a counter-clockwise direction. This will cause the outer (24
hour) dial to revolve. Line up the correct time of day on the outer dial with
the time pointer. Do not try to set the time control by grasping the other (24
hour) dial. Place pins in the outer dial at the time of day that defrost
is required.
Operation of Grasslin Timer
To set the time, turn the minute hand clockwise until the time of day (and
AM or PM) on the outer dial is aligned with the triangle marker on the inner
dial. Do not rotate minute hand counter-clockwise. Move the white tab
(tripper) on the outer dial outward at each desired initiation time. Each white
tab (tripper) is a 15 minute interval and provides 15 minutes of defrost. For
longer defrost duration, move additional tabs (following in time) from the
initiation tab. For example, if a 45 minute defrost is to start at 7:00 AM, move
the tabs outward that lie between 7:00 - 7:15, 7:15 - 7:30 and 7:30 - 7:45 on
the AM side of the dial. The defrost will initiate at 7:00 AM and time terminate
at 7:45 AM (if temperature termination does not occur rst). For models with
plastic cover on timer assembly; re-install cover after adjustment.
NOTE:
After correcting faulty condition it is essential that the coil and unit be
free of ice before placing unit back on automatic operation.
NOTES:
1. Lockout relays or normally closed switch of auxiliary contact on the
compressor contactor may be wired to defrost contactor. Its purpose
is to prevent energizing of the defrost heaters until the compressor has
pumped down and stopped, thus keeping power demand to a minimum.
2. If the control voltage is to remain energized for any period of time with
the compressor disabled, remove the defrost clock pins to prevent the
defrost heaters from energizing.
3. A Preventative Maintenance schedule should be set up as soon as
possible after start-up to maintain equipment integrity.
General Sequence of Operation
Refrigeration Cycle
Power is supplied to the timer at terminals “1” and “N”.
The fan delay and the defrost termination thermostat is closed in the fan
delay position and open in the defrost termination position.
The unit cooler fans run continuously.
The defrost heaters are o.
The room thermostat closes when the temperature rises above the
desired setting.
The liquid line solenoid is energized and opens, which allows
liquid refrigerant to ow through the unit cooler.
The low pressure control closes when the suction pressure rises
above the cutin setting of the control.
On systems with oil pumps, the oil safety control is closed. If the
net oil pressure is less than 9 PSIG for more than 120
seconds, the oil safety opens, thus breaking the circuit
to the compressor contactor holding coil. The compressor will
not operate. This control is reset manually and must be
reset before the compressor can be restarted.
The compressor contactor closes. The compressor and condenser
fan start simultaneously.
The room temperature gradually decreases to the desired temperature.
Once the desired temperature is reached, the thermostat opens and the
liquid line solenoid closes, stopping refrigerant ow through
the evaporator.
Suction pressure decreases and the compressor contactor opens
when the pressure drops below the cutout setting on the low
pressure control. The compressor and condenser fan stop running.
This cycle is repeated as many times as necessary to satisfy the
room thermostat.
Frost starts to form on the evaporator coil and continues to form
until the defrost cycle is initiated.
Defrost Cycle
The defrost cycle starts automatically by the timer at predetermined
times. Typical settings are two to four defrost cycles per day for freezers.
For heavier frost loads additional settings may be required.
Switch “2” to “4” opens in the timer which breaks the circuit to the room
thermostat, liquid line solenoid, and evaporator fan motors, allowing
the compressor to pump down and shut o. Simultaneously
switch “1” to “3” closes in the timer allowing current to ow to one side
of the defrost heater contactor. When the compressor
shuts o, an auxiliary contact will send power to the contactor holding
coil; thus, energizing the defrost heaters.
The heaters raise the temperature of the coil to 32˚F causing the frost to
melt o the coil.
When the coil warms to 45˚F to 55˚F, the defrost termination thermostat
closes, which allows current to the switching solenoid in the timer
allowing the refrigeration cycle to begin again.
The evaporator heaters are o. If the termination thermostat fails to
close, the fail-safe set on the timer will terminate defrost.
The low pressure control closes and the compressor will start.
When the coil temperature reaches 23˚F to 30˚F, the fan
delay closes. This allows the current to ow to the fan
motors. The fan motors start running.
The system will now operate in the refrigeration cycle until another
defrost period is initiated by the timer.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
1.
2.
3.
4.
5.
6.
7.
8.
18
Table 10. System Troubleshooting Chart
PROBLEM POSSIBLE CAUSES POSSIBLE CORRECTIVE STEPS
Compressor will not
run
1. Main switch open.
2. Fuse blown.
3. Thermal overloads tripped.
4. Defective contactor or coil.
5. System shut down by safety devices.
6. No cooling required.
7. Liquid line solenoid will not open.
8. Motor electrical trouble.
9. Loose wiring.
10. Phase loss monitor inoperative.
1. Close switch.
2.
Check electrical circuits and motor winding for shorts or grounds.
Investigate for possible overloading. Replace fuse after fault is corrected.
3. Overloads are automatically reset. Check unit closely when unit
comes back on line.
4. Repair or replace.
5. Determine type and cause of shutdown and correct it before
resetting safety switch.
6. None. Wait until calls for cooling.
7. Repair or replace coil.
8. Check motor for open windings, short circuit or burn out.
9. Check all wire junctions. Tighten all terminal screws.
10. Refer to page 17.
Compressor noisy or
vibrating
1. Flooding of refrigerant into crankcase.
2. Improper piping support on suction or liquid line.
3. Worn compressor.
4. Scroll compressor rotation reversed.
1. Check setting of expansion valves.
2. Relocate, add or remove hangers.
3. Replace.
4. Rewire for phase change.
High discharge
pressure
1. Non-condensables in system.
2. System overcharges with refrigerant.
3. Discharge shutoff valve partially closed.
4. Fan not running.
5. Head pressure control setting.
6. Dirty condenser coil.
1. Remove the non-condensables.
2. Remove excess.
3. Open valve.
4. Check electrical circuit.
5. Adjust.
6. Clean.
Low discharge
pressure
1. Faulty condenser temperature regulation.
2. Suction shutoff valve partially closed.
3. Insufficient refrigerant in system.
4. Low suction pressure.
5. Variable head pressure valve.
1. Check condenser control operation.
2. Open valve.
3. Check for leaks. Repair and add charge.
4. See corrective steps for low suction pressure.
5. Check valve setting.
High suction
pressure
1. Excessive load.
2. Expansion valve overfeeding.
1. Reduce load or add additional equipment.
2. Check remote bulb. Regulate superheat.
Low suction pressure 1. Lack of refrigerant.
2. Evaporator dirty or iced.
3. Clogged liquid line filter drier.
4. Clogged suction line or compressor suction gas strainers.
5. Expansion valve malfunctioning.
6. Condensing temperature too low.
7. Improper TXV.
1. Check for leaks. Repair and add charge.
2. Clean.
3. Replace cartridge(s).
4. Clean strainers.
5. Check and reset for proper superheat.
6. Check means for regulating condensing temperature.
7. Check for proper sizing.
Little or no oil
pressure
1. Clogged suction oil strainer.
2. Excessive liquid in crankcase.
3. Low oil pressure safety switch defective.
4. Worn oil pump.
5. Oil pump reversing gear stuck in wrong position.
6. Worn bearings.
7. Low oil level.
8. Loose fitting on oil lines.
9. Pump housing gasket leaks.
1. Clean.
2. Check crankcase heater. Reset expansion valve for higher superheat.
Check liquid line solenoid valve operation.
3. Replace.
4. Replace.
5. Reverse direction of compressor rotation.
6. Replace compressor.
7. Add oil and/or through defrost.
8. Check and tighten system.
9. Replace gasket.
Compressor loses oil 1. Lack of refrigerant.
2. Excessive compression ring blow by.
3. Refrigerant flood back.
4. Improper piping or traps.
1. Check for leaks and repair. Add refrigerant.
2. Replace compressor.
3. Maintain proper superheat at compressor.
4. Correct piping.
Compressor thermal
protector switch
open
1. Operating beyond design conditions.
2. Discharge valve partially shut.
3. Blown valve plate gasket.
4. Dirty condenser coil.
5. Overcharged system.
1. Add components to bring conditions within acceptable limits (i.e.,
CPR/EPR valves, additional condenser surface, liquid injection, etc.).
2. Open valve.
3. Replace gasket.
4. Clean coil.
5. Reduce charge.
19
Air-Cooled Condensing Units
Quarterly
1) Visually inspect unit
• Look for signs of oil stains on interconnection piping and condenser
coil. Pay close attention to areas around solder joints, building
penetrations and pipe clamps. Check any suspect areas with an
electronic leak detector. Repair any leaks found and add refrigerant as
needed.
• Check condition of moisture indicator/sightglass in the sight glass if
so equipped. Replace liquid line drier if there is indication of slight
presence of moisture. Replace refrigerant, oil and drier if moisture
concentration is indicated to be high.
Unit Coolers
At every six month interval, or sooner if local conditions cause clogging
or fouling of air passages through the nned surface, the following items
should be checked.
1) Visually inspect unit
• Look for signs of corrosion on ns, cabinet, copper tubing and
solder joints.
• Look for excessive or unusual vibration for fan blades or sheet metal
panels when in operation. Identify fan cell(s) causing vibration and
check motor and blade carefully.
• Look for oil stains on headers, return bends, and coil ns. Check any
suspect areas with an electronic leak detector.
• Check drain pan to insure that drain is clear of debris,
obstructions or ice buildup and is free draining.
2) Clean evaporator coil and blades
• Periodic cleaning can be accomplished by using a brush, pressurized
water or a commercially available evaporator coil cleaner or mild
detergent. Never use an acid based cleaner. Follow label directions for
appropriate use. Be sure the product you use is approved for use in
your particular application.
• Flush and rinse coil until no residue remains.
• Pay close attention to drain pan, drain line and trap.
3) Check the operation of all fans and ensure airow is
unobstructed
• Check that each fan rotates freely and quietly. Replace any fan motor
that does not rotate smoothly or makes an unusual noise.
• Check all fan set screws and tighten if needed.
• Check all fan blades for signs of stress or wear.
Replace any blades that are worn, cracked or bent.
Verify that all fan motors are securely fastened to the motor rail.
• Lubricate motors if applicable.
4) Inspect electrical wiring and components
Visually inspect all wiring for wear, kinks, bare areas and discoloration.
Replace any wiring found to be damaged.
Verify that all electrical and ground connections are secure, tighten
if necessary.
• Check operation/calibration of all fan cycle and defrost controls
when used.
• Look for abnormal accumulation of ice patterns and adjust defrost
cycles accordingly
• Compare actual defrost heater amp draw against unit data plate.
Visually inspect heaters to ensure even surface contact with the coil. If
heaters have crept, decrease defrost termination temperature and be
sure you have even coil frost patterns. Re-align heaters as needed.
• Check drain line heat tape for proper operation (supplied and installed
by others).
5) Refrigeration Cycle
• Check unit cooler superheat and compare reading for your specic
application
Visually inspect coil for even distribution
• Check moisture indicator/sightglass for ash gas. If found check
entire system for refrigerant leaks and add refrigerant as needed after
repairing any leaks.
• Check compressor sightglass (if equipped) for proper oil level.
• Check condition of condenser. Look for accumulation of dirt and debris
(clean as required).
• Check for unusual noise or vibration. Take corrective action as required.
• Inspect wiring for signs of wear or discoloration and repair if needed.
• Check and tighten all are connections.
Semi-Annually
2) Repeat all quarterly inspection items.
3) Clean condenser coil and blades
• Periodic cleaning can be accomplished by using a brush, pressurized
water and a commercially available foam coil cleaner. If foam cleaner is
used, it should not be an acid based cleaner. Follow label directions for
appropriate use.
• Rinse until no residue remains.
4) Check operation of condenser fans
• Check that each fan rotates freely and quietly. Replace any fan motor
that does not rotate smoothly or makes excessive noise.
• Check all fan blade set screws and tighten as required.
• Check all fan blades for signs of cracks, wear or stress. Pay close
attention to the hub and spider. Replace blades as required.
Verify that all motors are mounted securely.
• Lubricate motors if applicable. Do not lubricate permanently sealed,
ball bearing motors.
5) Inspect electrical wiring and components
Verify that all electrical and ground connections are secure, tighten as
required.
• Check condition of compressor and heater contactors. Look for
discoloration and pitting. Replace as required.
• Check operation and calibration of all timers, relays pressure controls
and safety controls.
• Clean electrical cabinet. Look for signs of moisture, dirt, debris, insects
and wildlife. Take corrective action as required.
Verify operation of crankcase heater by measuring amp draw.
6) Check refrigeration cycle
• Check suction, discharge and net oil pressure readings. If abnormal take
appropriate action.
• Check operation of demand cooling, liquid injection or unloaders if so
equipped.
• Check pressure drop across all lters and driers. Replace as required.
Verify that superheat at the compressor conforms to specication. (30°F
to 45°F)
• Check pressure and safety control settings and verify proper operation.
Annually
7) In addition to quarterly and semiannual maintenance checks, submit an
oil sample for analysis
• Look for high concentrations of acid or moisture. Change oil and driers
until test results read normal.
• Investigate source of high metal concentrations, which normally
are due to abnormal bearing wear. Look for liquid refrigerant in the
crankcase, low oil pressure or low superheat as a possible source.
8) Inspect suction accumulator (if equipped)
• If the accumulator is insulated remove insulation and inspect for leaks
and corrosion.
• Pay close attention to all copper to steel brazed connections
Wire brush all corroded areas and peeling paint.
• Apply an anticorrosion primer and paint as required. Re-insulate if
applicable.
Preventive Maintenance
20
Diagram 3. Typical Wiring Diagram for Single Evaporator with and without Defrost Timer
Diagram 4. Typical Wiring Diagram for Single Evaporator with Defrost Timer Only
21
Diagram 5. Typical Wiring Diagram for Multiple Evaporators with Defrost Timer Only
Diagram 6. Typical Wiring Diagram for Single Evaporator / Single Phase Defrost and Evaporator Fan Contactors
22
Diagram 7. Typical Wiring Diagram for Single Evaporator Defrost and Evaporator Fan Contactors
Diagram 8. Typical Wiring Diagram for Multiple Evaporators with Evaporator Fan Contactors/without Heater Limit Defrost
23
Diagram 10. Typical Wiring Diagram for Multiple Evaporators Defrost and Evaporator Fan Contactors
with Unit Cooler Holdout Relay
Diagram 9. Typical Wiring Diagram for Multiple Evaporators with Heater Limit Defrost and Evaporator Fan Contactors
Since product improvement is a continuing eort, we reserve the right to make changes in
specications without notice.
CLIMATE
CONTROL
Commercial Refrigeration Parts
The name behind the brands you trust.
H-IM-CU-0808
Commercial Refrigeration Parts
Replacement Parts by
InterLink™ Comercial Refrigeration Parts is your link to a complete line of dependable and certied commercial refrigeration parts, accessories
and innovative electronic controls for all Heatcraft Refrigeration Products (HRP) brands - including Bohn, Larkin, Climate Control and Chandler.
At InterLink, we provide our wholesalers with a comprehensive selection of product solutions and innovative technologies for the installed
customer base. And every product is built to ensure the same high performance standards with which all HRP brands are built — backed by
a dedicated team to serve every customer need, delivering at the best lead times in the industry.
Replacement parts should be obtained from your local InterLink wholesaler. Replacement parts, which are covered under the terms of
the warranty statement on page 2 of this manual, will be reimbursed for total part cost only. The original invoice from the parts supplier
must accompany all warranty claims for replacement part reimbursement. Heatcraft Refrigeration Products reserves the right to adjust the
compensation amount paid on any parts submitted for warranty reimbursement when a parts supplier's original invoice is not provided with
a claim. For more information, call 800-686-7278 or visit www.interlinkparts.com.
For our complete Refrigeration Systems Installation and Operations Manual (H-IM-64L),
please visit http://heatcraftrpd.com/service/publibrary.asp.

Navigation menu