Honeywell Suitepro Tb6575 Users Manual 62 0278—07 TB6575/TB8575 SuitePRO™ Digital Fan Coil Thermostats

TB8575 to the manual 7c244af3-d357-4c7d-adab-22a882bddf09

2015-01-23

: Honeywell Honeywell-Suitepro-Tb6575-Users-Manual-262394 honeywell-suitepro-tb6575-users-manual-262394 honeywell pdf

Open the PDF directly: View PDF PDF.
Page Count: 20

DownloadHoneywell Honeywell-Suitepro-Tb6575-Users-Manual- 62-0278—07 - TB6575/TB8575 SuitePRO™ Digital Fan Coil Thermostats  Honeywell-suitepro-tb6575-users-manual
Open PDF In BrowserView PDF
TB6575/TB8575 SuitePRO™
Digital Fan Coil Thermostats
INSTALLATION INSTRUCTIONS

FEATURES

PRODUCT DESCRIPTION
The SuitePRO™ is a family of Digital Fan Coil
thermostats for residential and commercial applications
such as hotels, condominiums, school classrooms, etc.
Four models are available for your application:
• TB6575A1000: 2-pipe or 4-pipe with seasonal/manual/
automatic heat/cool changeover; 120/240 Vac.
• TB6575B1000: 2-pipe only with seasonal or manual
heat/cool changeover; 120/240 Vac.
• TB6575C1000: 2-pipe or 4-pipe with seasonal/manual/
automatic heat/cool changeover; 120/240/277 Vac.
• TB8575A1000: 2-pipe or 4-pipe with seasonal heat/
cool changeover; 24Vac.
All four models are suitable for multiple applications.
Changes in output wiring and external links between
wiring terminals allow you to configure the thermostat for
the appropriate application.
The applications that are available are:
• Heating or Cooling only
• Two pipes: Heat or Cool with Manual Changeover
• Two pipes: Heat or Cool with Seasonal Changeover
(requires optional pipe sensor)
• Two pipes: Heat or Cool with Auxiliary Heat and
Manual or Seasonal Changeover (requires optional
pipe sensor)
• Four pipes: Mixed Manual and Auto Changeover
• Four pipes: Manual Changeover
• Four pipes: Auto Changeover

• Simple, intuitive user interface.
• Pre-installed lead wires for fast installation
(TB6575A, TB6575B and TB6575C models only)
• Backlight display permits easy viewing in any
light.
• Four buttons allow manual control of system
operation, fan speed, and temperature setpoint
adjustment.
• Digital display of ambient temperature, setpoint,
heating or cooling mode, fan status, and remote
setback
• Proportional plus Integral (P+I) control algorithm
for precision temperature regulation.
• Single Setpoint and Heat/Cool setpoint methods
for 4-pipe auto changeover.
• Adjustable maximum heating and minimum
cooling setpoint limits using range stops.
• EEPROM permanently retains user settings,
including setpoints, during power loss (no
batteries required).
• Selectable °C or °F display via Setup button on
thermostat.
• Displayable pipe sensor temperature readout to
aid in troubleshooting.
• Selectable to allow the fan motor to always begin
on high speed to ensure sufficient torque at
startup.
• Option to wire a remote indoor temperature
sensor.
• Freeze protect algorithm turns on heat when
needed.
• Economy Setback options via dry contact or
Activity Sensing
• Advanced fan control with VersaSpeed(TM) fan
ramp algorithm and Auto Fan Reset

The fan is controlled from the thermostat. The Low,
Medium, High, or Auto fan settings are easily made with
a press of a key.
Valves and auxiliary electric heaters can be controlled using
a relay or contactor controlled by the system switch.

62-0278-07

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS

SPECIFICATIONS

Cooling: 22°C to 32°C (72°F to 90°F).
Enclosure: Plastic (cover, sub-base, and optional adaptor plate)

Supply Voltages:
TB6575A1000 and TB6575B1000:
•
•

120 Vac ±10% at 50/60Hz
240 Vac -15% to +10% at 50/60Hz

•

120/240/277 Vac ±10% at 50/60Hz

•

20 to 30 Vac at 50/60Hz (using 24 Vac, Class 2,
NEMA rated transformer)

Junction Box Mounting: Direct mounting on a horizontal
single gang NEMA 2 x 4 in. surface mount electrical box,
or on 4 x 4 in. box or vertical 2 x 4 in. surface mount
electrical box with the optional 50033847-001 adapter
plate.

TB6575C1000:
TB8575A1000:

Dimensions: See Fig. 1 on page 3.

Safety Fuse: TB6575A1000 and TB6575B1000 use 15A
250 Vac fuse. TB6575C1000 uses a 15A 350 Vac fuse.
If the safety fuse blows, the thermostat must be
replaced. The fuse is not field replaceable.

Wiring: 11 screw-in terminals located on the sub-base
capable of accepting up to 2 x 18 AWG (0.8 sq. mm), 1 x
16 AWG (1.3 sq. mm), or 1 x 14 AWG (2.1 sq. mm) wires.
Accepts stranded or unstranded 14-28 gauge wire.

Electrical Ratings: (see Table 1).

NOTES:
1. The TB6575A1000 and TB6575C1000 models
are pre-fitted with color-coded fly leads (16
AWG) attached to seven terminals.
2. The TB6575B1000 model is pre-fitted with colorcoded fly leads (16 AWG) attached to six
terminals.
3. The TB8575A1000 model does not have fly
leads attached to any terminals.
4. See Table 3 on page 5 for fly lead usage.

Table 1. Electrical Ratings.
Amps (inductive) for:
Component

24 Vac 120 Vac 240 Vac 277 Vac

Fan Relay

1.0 A

6.0 A

3.0 A

2.4 A

Heat/Cool Relay

1.0 A

1.0 A

1.0 A

1.0 A

Environmental Ratings:
Temperature:
Operating Range: 18°C to 49°C (0°F to 120°F).
Shipping and Storage Range: -29°C to 49°C (-20°F to
120°F).
Humidity: 5% to 90% RH, non-condensing.

Minimum Operational Life (at maximum load):
Thermostat contacts: 100,000 cycles
Approvals:
CSA Certified C/US for Canada and the U.S.A. Meets
the same requirements as UL-873.
FCC Part 15 Class B

Onboard Temperature Sensor:
Type: 10K NTC
Working Range: 18°C to 49°C (0°F to 120°F)
Display Range: 0°C to 37°C (32°F to 99°F)
Accuracy ±2.0°F at 70°F

Accessories:
• 50033847-001 – Adapter plate for mounting on a
vertical 2 x 4 in. single-gang or double-gang NEMA
standard vertical switch box (6 1/4 in. (158 mm) x 5 1/
16 in. (128 mm) x 13/22 in. (10 mm)).
• TR21 – 20K Ohm NTC Non-Linear Remote
temperature sensor.
Other acceptable remote temperature sensors are —

Remote Temperature Sensor (optional):
Type: 20K NTC
Working Range: 18°C to 49°C (0°F to 120°F)
Display Range: 0°C to 37°C (32°F to 99°F)
Accuracy ±2.0°F at 70°F
Remote Pipe Sensor (optional):
Type: 20K NTC
Working Range: 0°C to 93°C (32°F to 199°F)
Display Range: 0°C to 93°C (32°F to 199°F)
Accuracy ±5.0°F over the temperature sensing range

•

20K Ohm: C7041B2005, C7041B2013, C7041C2003,
C7041P2004, C7770A1006, C7772A1004, and
C7772A1012

•

10K Ohm (for averaging only): TR21-A

• PS20 – Remote pipe sensor (20K Ohm)
• W6380B1005 – Fan Coil Unit Relay Control Center
• WSK-24 - Wireless Occupancy Solution (Receiver,
occupancy sensor and door sensor)

Remote Setback Input: Dry contact, maximum
resistance of 100 ohms. TB6575 – 9Vdc, < 4 mA; TB8575
– 16 Vdc, < 5 mA. Note Electrical WARNING on page 3.

Models, applications, and features:
Remote Setback Range:
Heating: 10°C to 21°C (50°F to 70°F).
Table 2 identifies the applications and features of each model.
Table 2. Applications and Features
Applications

Models

Features

Heat/Cool/ Pipes Voltage
Auto

Remote Back
Number
Energy Fan: On, Manual/
a
Sensor Light
Auto
Auto,
or
3
Savings
of Relays
Changeover
speed
Input

TB6575A1000 All

2 or 4 120 or
240 Vac

5

TB6575B1000 Heat or
Cool

2

4

TB6575C1000 All

2 or 4 120/240/ 5
277 Vac

TB8575A1000 All

2 or 4 24 Vac

62-0278—07

120 or
240 Vac

Yes

5
2

Yes

Yes

Yes

Yes

Pipe
Sensorb
Yes

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS
a

The five relays are wired via terminals W, Y, Gh, Gm, and Gl. Relay 1 controls Heat open (W) or Cool open (Y). Relay
2 controls Cool open or Electrical heater output (Y/A). Relays 3, 4, and 5 control the High, Medium, and Low fan
speeds respectively (Gh, Gm, and Gl).
NOTE: In 2-pipe configurations without Auxiliary Heat, only 4 relays are used; relay 2 (Y/A) is not used.
b Pipe sensor is required for 2 pipe auto changeover and 2 pipe auxiliary heat applications.
IMPORTANT
Do not mount the device where it can be affected by:

1-1/8
(29)

5-13/16 (148)

1.
2.
3.
4.

Drafts or dead spots behind doors or in corners.
Hot or cold air from ducts.
Radiant heat from the sun or appliances.
Unheated (uncooled) areas such as an outside
wall behind the thermostat.
5. Concealed pipes or chimneys.

3-13/16
(97)

Mounting and Wiring
THERMOSTAT
SUB-BASE

3-1/4 (83)

CAUTION
Equipment damage hazard.

1-3/16
(30)

Operation at low temperatures can cause fan
coil damage.
This thermostat is not a safety device. Do not use
it where the space temperature is outside of the
device operating range.

5/32
(4)

5/32
(4)

UP

1-3/4
(44)

2-3/8 (60)

A display of two dashes, – –, for the Room Temp
display indicates a sensor failure or a temperature
outside of the thermostat operating range of 18°C
to 49°C (0°F to 120°F). With – – displayed, the
thermostat ceases to operate. When the
temperature returns to within its operating limits,
the thermostat returns to operation.

M27589

Fig. 1. Dimensions in inches (mm).

INSTALLATION

The optional freeze protect feature should be used
if low temperatures can occur.

When Installing this Product…
1.
2.
3.

The thermostat must be mounted flush to the wall. The
thermostat can be mounted directly to a 2 x 4 in.
horizontal junction box (see Fig. 2 on page 4). An optional
adaptor plate (50033847-001) can be used with a 4 x 4 in.
or a vertical junction box for which mounting screws are
supplied (see Fig. 3 on page 4).

Read these instructions carefully. Failure to follow
them could damage the product or cause a hazardous condition.
Check the ratings given in the instructions and on
the product to make sure the product is suitable for
your application.
Installer must be a trained and experienced service
technician.

1.

WARNING

Risk of electrical shock.
Can cause severe injury, property damage or
death.
Disconnect power supply before installation and
before servicing.

2.

IMPORTANT
The thermostats are line voltage powered devices. All
wiring must comply with national and local electrical
codes, ordinances and regulations. Provide disconnect
means and overload protection, as required.
The TB8575A1000 thermostat must be powered by an
Approved 24 Vac, Class 2, NEMA rated transformer
(such as a W6380 Relay Control Center).

Location
The thermostats are the temperature control element in a
fan coil or air-conditioning system. They must be located
about 1.5m (5 ft.) above the floor, in a position with good
air circulation, to sense room temperature.
3

Prepare the supply wires:
a. Mounting on a 4 x 4 in. or vertical 2 x 4 in.
junction box:
(1) Feed the supply wires through the junction
box and the opening in the adaptor plate.
(2) Affix the adaptor plate to the junction box
using the screws provided.
b. Mounting on a horizontal 2 x 4 in. junction box:
Feed the supply wires through the opening of the
junction box.
Attach the supply wires:
a. For the TB6575A1000, TB6575B1000 and
TB6575C1000 models:
(1) Push the fly lead wires through the wiring
access hole in the sub-base.
(2) Attach the fly lead wires to the supply wires
using wire nuts (not provided).See Table 3
on page 5 for terminal and lead identification.
(3) Push the fly lead and supply wires back into
the junction box.
b. For the TB8575A1000 model (which does not
have pre-wired fly leads):

62-0278—07

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS

3.

(1) Attach the supply wires directly to the terminals on the sub-base. See Table 3 on page 5
for terminal identification.
(2) Push the supply wires back into the junction
box.
Mount the sub-base:
a. Mounting on a 4 x 4 in. or vertical 2 x 4 in. junction box:
Align the two holes at the top edges of the subbase with the two pins on the adaptor plate.
Attach the sub-base to the adaptor plate using
the screws provided.
b. Mounting on a horizontal 2 x 4 in. junction box:

4.
5.
6.
7.

Attach the sub-base to the junction box using the
screws provided.
Thoroughly check the wiring to the sub-base before
finally mounting the thermostat on the wall.
Center the thermostat body over the sub-base, and
press down firmly to engage the four tabs on the
sub-base and snap the thermostat body into place.
Use the provided safety screw to secure the thermostat main body to the sub-base.
If using the adaptor plate, press the adaptor plate
screw cover into place.

SUBBASE
MOUNT SUBBASE TO
HORIZONTAL 2X4
JUNCTION BOX USING
TWO SCREWS

SNAP MAIN BODY
ONTO SUBBASE

INSERT SCREW TO LOCK
MAIN BODY TO SUBBASE

M27590

Fig. 2. Mounting sub-base and thermostat to 2 x 4 in. junction box.

MOUNT ADAPTOR PLATE ONTO
4X4 WIRING BOX OR 2X4
VERTICAL JUNCTION BOX
USING TWO SCREWS

ADAPTOR
PLATE

SUB-BASE
MOUNT SUB-BASE
ONTO WALL PLATE
USING TWO SCREWS

ADAPTOR
PLATE
SCREW HEAD
COVER
INSERT SCREW
TO LOCK MAIN
BODY TO
SUB-BASE

SNAP MAIN BODY
ONTO SUB-BASE

NOTE: MIDDLE HOLES OF ADAPTOR PLATE ARE USED FOR MOUNTING
TO A 2X4 VERTICAL JUNCTION BOX. USE OUTER HOLES FOR
MOUNTING TO A 4X4 WIRING BOX.

M27591

Fig. 3. Mounting sub-base and thermostat using the adaptor plate (50033847-001).

Terminal Wiring

The Terminal Identifiers in Table 3 have the following
meaning:
• C: Common 24 Vac
• Gh: High speed fan relay
• Gl: Low speed fan relay
• Gm: Medium speed fan relay
• L: Line voltage power (120/240/277 Vac)
• N: Line voltage ground (120/240/277 Vac)

Table 3 provides the terminal wiring for each model and
application.
NOTE: The TB6575A1000, TB6575B1000 and
TB6575C1000 models have color coded fly
leads attached to the terminals. Refer to
Table 3 for the color codes.
62-0278—07

4

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS
•
•
•
•

• Sc: Ground (required if remote sensor, pipe sensor,
and/or remote setback are connected)
• W/Y: W = Heating; Y = Cooling (2 pipe only)
• Y/A: Y = Cooling; A = Electrical heater output

Ps: Pipe sensor (optional)
R: 24 Vac power
Rs: Remote sensor (optional)
SB: Remote setback (optional)

Table 3. Terminal Wiring.
Terminals
Model

Application

1

2

3

4

5

6

7

L

W/Y

Y/A

Gl

Gm

Gh

N

8

9

10 11

TB6575A1000 — 120/240 Vac
TB6575C1000 — 120/240/277 Vac
Terminal Identifier
Fly lead wire color

Rsa Scb SBc Psd
Nonee

Black Orange Yellow Red Blue Brown White

2 pipes; Heat only

f

W









Og

Rh

O

2 pipes; Cool only



Y









O

R

O

2 pipes; Heat or Cool with Manual Changeover



W/Y









O

R

O

2 pipes; Heat or Cool with Seasonal Changeover



W/Y









O

R

O

4 pipes; Heat and Cool with Manual Changeover



W

Y









O

R

O

4 pipes; Heat and Cool with Auto Changeover



W

Y









O

R

O

2 pipes; Heat or Cool with Auxiliary Heat



W/Y

A









O

R

O

4 pipes; Heat and Cool with Manual Changeover or
Auto Changeover



W

Y









O

R

O

Gl

Gm

Gh

N





TB6575B1000 — 120/240 Vac
Terminal Identifier
Fly lead wire color

L

n/ai

W/Y

Black Orange

Rsa Scb SBc Psd
Nonee

Red Blue Brown White

2 pipes; Heat only



W









O

R

O

2 pipes; Cool only



Y









O

R

O

2 pipes; Heat or Cool with Manual Changeover



W/Y









O

R

O

2 pipes; Heat or Cool with Seasonal Changeover



W/Y









O

R

O

Gl

Gm

Gh

C



TB8575A1000 — 24 Vac
Rsa Scb SBc Psd

Terminal Identifierj

R

2 pipes; Heat only



W









O

R

O

2 pipes; Cool only



Y









O

R

O

2 pipes; Heat or Cool with Manual Changeover



W/Y









O

R

O

2 pipes; Heat or Cool with Seasonal Changeover



W/Y









O

R

O

4 pipes; Heat and Cool with Manual Changeover



W

Y









O

R

O

4 pipes; Heat and Cool with Auto Changeover



W

Y









O

R

O

2 pipes; Heat or Cool with Auxiliary Heat



W/Y

A









O

R

O

4 pipes; Heat and Cool with Manual Changeover or
Auto Changeover



W

Y









O

R

O

W/Y

Y/A





a Rs;

Remote sensor is optional.
when Rs, SB, or Ps is wired.
c
SB; Remote setback is optional.
d
Pipe sensor: Discrete, Analog, or Aquastat®.
e
These terminals (8, 9, 10, and 11) do not have lead wires attached to them.
f A check mark () indicates the terminal is used in that application. Rs and SB terminal connections are optional. If a
terminal is left blank, it is not used in that application.
g O = Optional
h
R = Required if Rs, SB, or Ps is wired.
i
Terminal 3 is not used on the TB6575B1000 model.
j
The TB8575A1000 model does not have fly lead wires attached to any terminals.
b Required

5

62-0278—07

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS

Accessory Wiring

NOTE: For complete wiring instructions, please
follow the installation instructions provided
with the remote sensor.

Remote Pipe Sensor Wiring

Sensor Wiring for Temperature
Averaging

The remote pipe sensor is used for 2 pipes auto and 2
pipes heat and cool with auxiliary heat changeover. The
pipe sensor will sense the temperature in the pipes to tell
the thermostat when the system is set for Heat or Cool.
1. Check Installer Setup Number (ISU) 5 to ensure it is
set to the desired value. (See Table 4 on page 11).
2. Wire pipe sensor to Sc and Ps terminals.
3. Attach pipe sensor to the pipe.
4. Insulate pipe sensor, as necessary.
5. Change pipe sensor thresholds for cooling or heating by setting Installer Setup Numbers (ISU) 6 and
7 to desired values.

Fig. 4–Fig. 6 illustrate sensor wiring for temperature
averaging applications.
SUBBASE
Rs

Sc

TR21

TR21

T

T

T

T

Remote Temperature Sensor Wiring
The TR21 is an optional remote temperature sensor that
can be used as an alternative to the internal sensor. In
addition to the TR21, other Honeywell sensors that use a
20k Ohm curve may be used as the remote sensor.

TR21

TR21

T

T

T

T

WARNING

Risk of electrical shock.
Can cause severe injury, property damage or
death.
Disconnect power supply before servicing.

M27559

Fig. 4. Wiring four TR21 (20K ohm) sensors.
SUBBASE

CAUTION
Erratic system operation hazard.

Rs

Failure to follow proper wiring practices can
introduce disruptive electrical interference
(noise).
Keep wiring at least one foot away from large
inductive loads such as motors line starters,
lighting ballasts, and large power distribution
panels. Shielded cable is required in installations
where these guidelines cannot be met. Ground
shield only to grounded controller case.

T4

Sc

T3

T4

1
TR21-A

T3

1
TR21-A

1 THE TR21-A IS A 10K OHM SENSOR.

M27560

IMPORTANT
All wiring must comply with local electrical codes and
ordinances or as specified on installation wiring diagrams.

—
—
—
1.
2.
3.
4.
5.
6.
7.

Fig. 5. Wiring two TR21-A (10K ohm) sensors to
provide a temperature averaging network.

Wall module wiring can be sized from 16 to 22
AWG (1.31 to 0.33 sq. mm) depending on the
application.
The maximum length of wire from the thermostat
to a wall module is 1000 ft. (305 m).
Twisted pair wire is recommended for wire runs
longer than 100 ft. (30.5 m).

SUBBASE
Rs
TR21
T

Check Installer Setup Number (ISU) 4 to ensure it is
set to use the remote sensor. (See Table 4 on
page 11).
Wire sensor to Rs and Sc thermostat terminals.
Push excess wire back into the hole. Plug the hole
using non-hardening caulk, putty or insulation to
prevent drafts from affecting performance.
Remove sensor cover.
Mount sensor to the wall or junction box using the
screws and anchors provided.
Level the sensor for appearance only. Device functions correctly even when not level.
Replace sensor cover.

62-0278—07

Sc

T

T3

T4

1
TR21-A
TR21
T

T

1 THE TR21-A IS A 10K OHM SENSOR.

M27561

Fig. 6. Wiring two TR21 (20K ohm) sensors and
one TR21-A (10K ohm) sensor to provide
a temperature averaging network.

6

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS

Thermostat Wiring Diagrams
L

The figures in this section illustrate typical wiring for:
• TB6575A1000, TB6575B1000 and TB6575C1000 fan
coil thermostats, which are 120/240/277 Vac powered.
Refer to Fig. 7–Fig. 13, beginning on page 7,
• TB8575A1000 model, which is 24 Vac powered. Refer
to Fig. 14–Fig. 20, beginning on page 8.

W/Y

L (HOT)
VALVE

Y/A
GI
Gm

FAN

Gh
N

120/240/277 Vac Wiring Diagrams
(TB6575A/B/C)

N

Rs

REMOTE SENSOR

Sc
REMOTE SETBACK

SB
L
W/Y

L (HOT)
HEAT VALVE

M27569

Fig. 10. Two pipes (Heat or Cool) Auto Changeover
wiring diagram (120/240/277 Vac shown).

Y/A
GI
Gm

PIPE SENSOR

Ps

FAN

Gh

L

N

N

Rs

REMOTE SENSOR

Sc

Ps

HEAT VALVE

Y/A

COOL VALVE

GI

REMOTE SETBACK

SB

L (HOT)

W/Y

Gm

FAN

Gh

M27566

N

Fig. 7. Two pipes Heat-only wiring diagram
(120/240/277 Vac shown).

N

Rs

REMOTE SENSOR

Sc
REMOTE SETBACK

SB
L (HOT)

L
W/Y

Ps

COOL VALVE

Fig. 11. Four pipes (Heat and Cool) Manual/Auto
changeover wiring diagram (120/240/277 Vac shown).

Y/A
GI
Gm

FAN

Gh

L

N

N
Rs

REMOTE SENSOR

Sc

VALVE

Y/A

AUX

Gm

Ps

N

Fig. 8. Two pipes Cool-only wiring diagram
(120/240/277 Vac shown).

Rs
Sc
SB
Ps

L (HOT)
VALVE

N
REMOTE SENSOR
REMOTE SETBACK
PIPE SENSOR
M27571

Fig. 12. Two pipes (Heat or Cool) with Auxiliary Heat
and Manual Changeover wiring diagram (120/240/277
Vac shown).

Y/A
GI
Gm

FAN

Gh

M27567

L

L (HOT)

W/Y

GI

REMOTE SETBACK

SB

W/Y

M27570

FAN

Gh
N
Rs
Sc
SB
Ps

N
REMOTE SENSOR
REMOTE SETBACK
M27568

Fig. 9. Two pipes (Heat or Cool) Manual Changeover
wiring diagram (120/240/277 Vac shown).

7

62-0278—07

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS

24 Vac Wiring Diagrams (TB8575)

.
L

For the TB8575A1000 model, a 24 Vac Class 2 NEMA
rated transformer must be used.

L (HOT)

W/Y

HEAT VALVE

Y/A

COOL VALVE

R

GI
1
2

Gm
Gh
N
Rs
Sc
SB

5

W/Y

FAN
3

HEAT VALVE

Y/A
GI

N 4

Gm

REMOTE SENSOR

FAN

Gh

REMOTE SETBACK

24 VAC

C
Rs

Ps

L1
(HOT)
L2

1

REMOTE SENSOR

Sc

1

REMOVE PRE-WIRED WIRE FROM TERMINAL 5 (MID FAN SPEED).

SB

2

JUMPER TERMINALS 5 AND 6 (MID AND HIGH FAN SPEEDS). FAN
MEDIUM SETTING WILL OPERATE ON HIGH SPEED.

Ps

3

CONNECT TERMINAL 7 TO THE MID FAN SPEED WIRE FROM THE
PREVIOUS SYSTEM.

1

4

REWIRE THE PREVIOUS MID SPEED FAN WIRE TO THE NEUTRAL
CIRCUIT IN THE SYSTEM.

5

CHANGE INSTALLER SETUP IS CODE 9 TO 2 FOR
2 SPEED FAN CONTROL.

REMOTE SETBACK

POWER SUPPLY. PROVIDE DISCONNECT MEANS AND
OVERLOAD PROTECTION AS REQUIRED.
M27573

Fig. 14. Two pipes Heat-only wiring diagram (24 Vac
shown).

M31328

Fig. 13. Wiring diagram when missing a wire for
electromechanical retrofit (120/240/277 Vac shown).

R
W/Y

COOL VALVE

Y/A
GI
Gm

FAN

Gh

24 VAC

C
Rs

L1
(HOT)
L2

1

REMOTE SENSOR

Sc

REMOTE SETBACK

SB
Ps
1

POWER SUPPLY. PROVIDE DISCONNECT MEANS AND
OVERLOAD PROTECTION AS REQUIRED.
M27574

Fig. 15. Two pipes Cool-only wiring diagram (24 Vac
shown).

R
W/Y

VALVE

Y/A
GI
Gm
Gh
C
Rs

FAN
24 VAC

L1
(HOT)
L2

1

REMOTE SENSOR

Sc
SB

REMOTE SETBACK

Ps
1

POWER SUPPLY. PROVIDE DISCONNECT MEANS AND
OVERLOAD PROTECTION AS REQUIRED.
M27575

Fig. 16. Two pipes (Heat or Cool) Manual Changeover
wiring diagram (24 Vac shown).

62-0278—07

8

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS
.
R
W/Y

L
VALVE

Y/A
GI
Gm

24 VAC

C
Rs

L2

2

C

1

Rs
Sc
SB

POWER SUPPLY. PROVIDE DISCONNECT MEANS AND
OVERLOAD PROTECTION AS REQUIRED.
M27576

R
W/Y

HEAT VALVE

Y/A

COOL VALVE

GI

24 VAC

C
Rs

FAN
3

24 VAC

REMOTE SENSOR

L1 5
(HOT)
L2

4

REMOTE SETBACK

L1
(HOT)
L2

1

REMOVE PRE-WIRED WIRE FROM TERMINAL 5 (MID FAN SPEED).

2

JUMPER TERMINALS 5 AND 6 (MID AND HIGH FAN SPEEDS). FAN
MEDIUM SETTING WILL OPERATE ON HIGH SPEED.

3

CONNECT TERMINAL 7 TO THE MID FAN SPEED WIRE FROM
PREVIOUS SYSTEM.

4

REWIRE THE PREVIOUS MID FAN SPEED WIRE TO THE NEUTRAL
CIRCUIT IN THE SYSTEM.

5

POWER SUPPLY. PROVIDE DISCONNECT MEANS AND OVERLOAD
PROTECTION AS REQUIRED.

6

CHANGE INSTALLER SETUP IS CODE 9 TO 2 FOR
2 SPEED FAN CONTROL.

M31329

Fig. 20. Wiring diagram when missing a wire for
electromechanical retrofit (24 Vac shown).

FAN

Gh

6

Ps

Fig. 17. Two pipes (Heat or Cool) auto changeover
wiring diagram (24 Vac shown).

Gm

Gh

PIPE SENSOR

Ps
1

L1
(HOT)

REMOTE SETBACK

SB

COOL VALVE

Gm

1

REMOTE SENSOR

Sc

HEAT VALVE

Y/A
GI

FAN

Gh

W/Y

1

Removing the Thermostat

REMOTE SENSOR

Sc
REMOTE SETBACK

SB

WARNING

Ps
1

Risk of electrical shock.
Can cause severe injury, property damage or
death.
Disconnect power supply before servicing.

POWER SUPPLY. PROVIDE DISCONNECT MEANS AND
OVERLOAD PROTECTION AS REQUIRED.
M27577

Fig. 18. Four pipes (Heat and Cool) Manual/Auto
Changeover wiring diagram (24 Vac shown).

CAUTION
Equipment damage hazard.

R
W/Y

VALVE

Y/A

AUX

Improper removal can damage the thermostat.
Carefully follow the thermostat removal directions.

GI
Gm
Gh
C
Rs
Sc
SB
Ps
1

If it is necessary to remove the thermostat from the subbase, refer to Fig. 21 and perform the following steps:
1. Turn off the thermostat by pressing the system
button until OFF displays.
2. Remove the power source from the thermostat.
3. Remove the small safety screw at the bottom of the
thermostat.
4. Use both hands to pull the thermostat straight away
from the sub-base.

FAN
24 VAC

L1
(HOT)
L2

1

REMOTE SENSOR
REMOTE SETBACK
PIPE SENSOR

POWER SUPPLY. PROVIDE DISCONNECT MEANS AND
OVERLOAD PROTECTION AS REQUIRED.
M27578

Fig. 19. Two pipes (Heat or Cool) with Auxiliary Heat
and Manual Changeover wiring diagram (24 Vac
shown).

9

62-0278—07

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS

UP AND DOWN
ARROW BUTTONS

ºF

Set to

RoomTemp
ºF

Fan On

Heat On
Heat

System

M27592

Auto

Fan

SYSTEM
BUTTON

Fig. 21. Removing the thermostat.

FAN
BUTTON

M27586

Fig. 23. LCD display showing default screen.

SETUP

Power-up

The thermostat provides an LCD display, two buttons
below the display for System and Fan control and two
adjustment buttons (Up and Down) to the right of the
display. See Fig. 23.

At power-up, the thermostat’s LCD shows all display
segments for two seconds, enters a self-test mode for a
few seconds, and then displays the current room
temperature (default screen), as shown in Fig. 23.

Settings, including setpoints, are permanently retained in
EEPROM in case of a power outage.

NOTE: If there is a temperature sensor failure or the
temperature is outside of the operating
range, the room temperature display shows
two dashes, — —.
When the sensor returns to its operating
range, the temperature display resumes.

Fig. 22 illustrates all the possible LCD display elements.
Only those elements pertinent to the current settings and
status (including the text for the two buttons, System and
Fan), actually display.

Locked

Freeze Set to
Protect Setup

CAUTION
Equipment damage hazard.

ºF ºC

Power overload will damage the thermostat.
The thermostat has a safety fuse rated at 15 A/
250 Vac. If the fuse blows, the thermostat must be
replaced. The fuse is not field replaceable.

Set to RoomTemp
Test
Pipe
ºF ºC
Sensor
Economy
Setback
Heat On Cool On

Fan On

OffHeatAutoCool

LowMedHiAuto

This fuse is provided as a safety feature to prevent
fire if the thermostat is overloaded.

Installer Setup (IS) Mode

M27584

To enter Installer Setup Mode:
• Press and hold both the System button (labeled
Heat/Cool) and the Up Arrow button for three (3)
seconds.

Fig. 22. LCD display with all possible elements
shown.

This displays the setup screen on the LCD. See Fig. 24.
NOTE: Exiting Installer Setup Mode is the same as
the method for entering setup mode.
Table 4 provides the setup codes (IS codes) and values.
To enter the setup parameters:
1. Press the System (Heat/Cool) button to cycle
through the IS codes, which display in the upper
right following the word Setup.
2. Press the Up or Down Arrow buttons to cycle
through the option values for the currently displayed
IS code. The values display in the center of the
screen.
3. After the desired value displays, press the System
button to store your value selection and display the
next IS code.

62-0278—07

10

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS

Setup

M27585

Fig. 24. Installer Setup (IS) mode screen.
Table 4. Installer Setup (IS) Codes and Options.
IS
Option
Code Code Description Value

Option Description (Default value shown in
Bold)

Notes

1

Line Voltage
Selection

0
1

240 Vac power supply

2

System Type

0

Heat only

1

Cool only

2

Two pipes: Heat or Cool; Manual Changeover

3

Two pipes: Heat or Cool; Seasonal Changeover
(requires optional pipe sensor)

4

Four pipes: Manual Changeover

TB6575A, TB6575C and
TB8575A only

5

Four pipes: Auto Changeover

TB6575A, TB6575C and
TB8575A only

6

Two pipes: Heat or Cool; with Auxiliary Heat
(requires optional pipe sensor).

Allows auxiliary heat to turn
on when pipes have cold
water
(TB6575A, TB6575C and
TB8575A only).

7

Four pipes: Manual and Auto Changeover
(Default)

TB6575A, TB6575C and
TB8575A only
Enables or disables the
auto fan operation when
Auxiliary Heat is On
(TB6575A, TB6575C and
TB8575A only).

2.5

3
4
5

120 Vac power supply (Default)

Fan On/Off
Selection for Aux
Heat On

0

Fan ON when Auxiliary Heat is on (Default)

1

Fan OFF when Auxiliary Heat is on

Valve Output Type

0

N.C. (normally closed) - ON/OFF (Default)

1

N.O. (normally open) - ON/OFF

0

Onboard Sensor (Default)

1

Remote Sensor (TR21 or other 20K Ohm sensor)

0

Default mode is Heat:
N.O. (normally open) Input.
Only displays when system type 3 or 6 is selected.

1

Default mode is Cool:
N.O. (normally open) Input.
Only displays when system type 3 or 6 is selected.

2

Default mode is Heat:
N.C. (normally closed) Input.
Only displays when system type 3 or 6 is selected.

3

Default mode is Cool:
N.C. (normally closed) Input.
Only displays when system type 3 or 6 is selected.

Sensor Type
Pipe Sensor

4

Analog input (Default). NTC20K, whose curve is
the same as TR21.
Only displays when system type 3 or 6 is selected.

11

The Pipe Sensor code
automatically displays
based on the System Type
(IS code #2) selection. For
example, only when you
select the value 3 or 6 for
the System Type, will the
Pipe Sensor code and its
values display.
•
•

Pipe sensor will flash on
display screen if analog
input (#4) is lost.
Pipe sensor status and
water temperature can be
checked in test mode (see
“Installer Test (IT) Mode” on
page 13 for details)

62-0278—07

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS
Table 4. Installer Setup (IS) Codes and Options. (Continued)
IS
Option
Code Code Description Value

Option Description (Default value shown in
Bold)

Notes

6

Pipe Sensor
Threshold for
Cooling

50 to
72

Range is 50°F to 72°F. Default is 60°F.

Changes to Cool when pipe
temperature is below
threshold.

7

Pipe Sensor
Threshold for
Heating

75 to
90

Range is 75°F to 90°F. Default is 80°F.

Changes to Heat when pipe
sensor temperature is
above threshold.

8

Temperature Scale

8.5

9

9.5

10

Fan Speed at motor
start up

Number of Fan
Speeds
Fan Control Type

Control Method for
4-Pipe Auto
Changeover

10.5 Deadband for Heat/
Cool Setpoints

Switching
Differential for
Single Setpoint

0

Degrees Fahrenheit (°F); Default.

1

Degrees Celsius (°C).

0

Provide full power when fan motor starts –
always starts in high fan speed (Default)

1

Disable – fan will start at speed that is needed as
defined by VersaSpeed

1

Single Speed Fan

Low speed only

2

2 Speed Fan

Hi and Low speed fans only

3

3 Speed Fan (Default)

Hi, Med, and Low speed fan

0

Constant and Auto (Default)

1

Auto only

When fan is in Auto, the fan
ramping algorithm,
Veraspeed, is used

1

Single Setpoint (Default)

Uses switching differential
to change between heating
and cooling and controls to
a single setpoint (Only
displayed for system types
5 or 7)

2

Heat and Cool Setpoints (2 setpoint method)

Uses a deadband of no
control and controls to a
heat or cool setpoint. (Only
displayed for system types
5 or 7)

High speed start up
ensures that there is
enough torque to start the
motor and eliminates and
motor locking.

2 to 9 Range is 2 to 9. Default is 3. Deadband = minimum Available when Heat and
distance between heating and cooling setpoints.
Cool Setpoints are chosen
for the control method for 4pipe Auto (ISU 10)
2 to 6 Range is 2 to 6. Default is 3. Heat switching point = Available when Single
setpoint - switching differential. Cool switching point Setpoint is chosen for the
control method for 4-pipe
= setpoint + switching differential.
Auto (ISU 10)

11

CPH Value for Heat 1 to 12 Range is 1 to 12. Default is 4.

12

CPH Value for Cool

1 to 6 Range is 1 to 6. Default is 3.

The number selected
indicates the maximum
times Cooling is cycled on
per hour (CPH).

13

CPH for Auxiliary
Electrical Heater

1 to 12 Range is 1 to 12. Default is 6.

The number selected
indicates the maximum
times Auxiliary Heating is
cycled on per hour (CPH).

14

Display
Temperature
Adjustment

-4 to 4 Range is -4°F to +4°F; Default is 0°F.

15

Temperature
Display Mode

16

Setpoint Range
Stop for Heating

62-0278—07

0

Display Room Temperature

1

Display Setpoint

2

Display Temperature and Setpoint; Default.

50 to
90

Range is 50°F to 90°F. Default is 90°F.

12

The number selected
indicates the maximum
times Heating is cycled on
per hour (CPH).

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS
Table 4. Installer Setup (IS) Codes and Options. (Continued)
IS
Option
Code Code Description Value

Option Description (Default value shown in
Bold)

Notes

17

Setpoint Range
Stop for Cooling

50 to
90

18

Keypad Lockout

0

All keys are available (Default)

1

The System button (Heat/Cool) is locked out

2

Both the System and Fan buttons are locked out.

3

All buttons are locked out (System, Fan, Up Arrow,
and Down Arrow). The LCD displays LOCKED.

0

Disabled

1

Hotel card enabled N.O. for unoccupied mode with
1 second software delay going from UnOccupied to
Occupied;
2 minute delay going from Occupied to UnOccupied.

2

Hotel Card enabled N.C. for unoccupied mode with
1 second software delay going from UnOccupied to
Occupied;
2 minute delay going from Occupied to UnOccupied.

3

Hotel Card enabled N.O. for unoccupied mode with
1 second software delay going from UnOccupied to
Occupied;
30 minute delay going from Occupied to
UnOccupied

4

Hotel Card enabled N.C. for unoccupied mode with
1 second software delay going from UnOccupied to
Occupied;
30 minute delay going from Occupied to
UnOccupied.

5

Button Press (Default)

Press and hold “Heat/Cool/
Off” button for 3 seconds
and thermostat will go into
“Economy Setback”
Used when the thermostat
is in the Unoccupied state.

19

Remote Setback

Range is 50°F to 90°F. Default is 50°F.

20

Remote Setback for
Heating

50 to
70

Range is 50°F to 70°F. Default is 64°F.

21

Remote Setback for
Cooling

72 to
90

Range is 72°F to 90°F. Default is 79°F.

22

Activity Sensing

23

Freeze Protection

0

Disabled (Default)

1

4 hour sensing

2

8 hour sensing

3

12 hour sensing

4

16 hour sensing

5

20 hour sensing

6

24 hour sensing

0

Disabled

1

24

Auto Fan Reset

0
1

2

This will be selectable when
ISU 19 is set to option 0 or
5. If ISU 19 is configured
for N.O or N.C, activity
sensing will not be
available.

This feature can not
activate
when the
Enabled (Default) – Stat cycles On Heat when room
temperature reaches 40°F (4°C), and disables Heat application is Cool only.
when room temperature reaches below 46°F (8°C).
The LCD displays FREEZE PROTECT
Inactive (Default)

Auto Fan Reset is not
Resets back to Auto after 2 hours. The start time is allowed (does not display)
when the fan control type is
calculated after the initial call for Heat/Cool is
set to Auto Only, (IS code
satisfied. Then, the two (2) hour timing begins.
#9 - value 1).
Resets back to Auto after 4 hours. The start time is
calculated after the initial call for Heat/Cool is
satisfied. Then, the four (4) hour timing begins.

Installer Test (IT) Mode

This displays all segments of the LCD screen on the LCD.
See Fig. 22 on page 10.

To enter Installer Test Mode:
• Press and hold both the Up arrow button and the
Down Arrow button for three (3) seconds.
13

62-0278—07

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS
Table 5 provides the Test codes (IT codes) and values. To
enter the IT codes:
1. Press the System (Heat/Cool) button to cycle
through the IT codes, which display in the upper
right above the word Test.
2. Press the Up or Down Arrow buttons to cycle
through the values for the currently displayed IT
code. The values display in the center of the screen.
3. After the desired value displays, press the System
button to store your value selection and display the
next IT code.

Table 5. Installer Test (IT) Codes and Options.
IT
Code

NOTE: Exiting Installer Test Mode is the same as the
method for entering test mode,

Test

M27587

Fig. 25. Installer Test (IT) mode screen.

Code
Description

Option
Value

Option Description

10

Heat Control

0

Close

20

Auxiliary Heat
Control

1

Open

0

Close

1

Open

30

Cool Control

0

Close

1

Open

40

Fan Control

0

Close

1

Low Speed

2

Medium Speed

3

High Speed

50

Pipe Sensor

32-199 Displays the pipe
sensor temperature.
Only used for System
Type 3 or 6 (IS code
#2, value 3 or 6). Only
the Analog pipe sensor
is tested.

71

Software Main
version

01-99

A 2-digit number, 01-99

72

Software Vice
version

01-99

A 2-digit number, 01-99

73

Configuration
Data Main version

01-99

A 2-digit number, 01-99

74

Configuration
Data Vice version

01-99

A 2-digit number, 01-99

75

Week Produced

01-52

A 2-digit number, 01-52

76

Year Produced

08-99

A 2-digit number, 08-99

OPERATION
PROPORTIONAL + INTEGRAL
(P+I) CONTROL
Like a mechanical thermostat, the fan coil thermostats
have On/Off control output. However, this output is
regulated by a P+I algorithm, enabling the thermostat to
control closer to setpoint than conventional thermostats.
This results in performance where the space temperature
is maintained within 0.75°C (1.5°F) of the setpoint
regardless of fan speed.
NOTE: Integral action corrects the temperature control errors of proportional-only control, but it
is slower to react to large temperature or setpoint changes.

Economy Setback Modes
ACTIVITY SENSING (IS CODE #22)
If Activity Sensing is enabled, any time the thermostat is
not touched (no single key is pressed) for the duration
selected, the thermostat automatically falls back into the
Economy Setback. The LCD displays ECONOMY
SETBACK just to the right of the main temperature display
to indicate Activity Sensing mode is active. When any key
is pressed, the thermostat controls to Occupied mode.

62-0278—07

14

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS
BUTTON PRESS SETBACK (IS CODE #19-5)
The default remote setback option is for economy setback
via a button press on the thermostat. In this mode, the
thermostat can quickly be setback by pressing and
holding down the System Mode button for more than 3
seconds. The LCD displays ECONOMY SETBACK just to
the right of the main temperature display to indicate the
Setback is active. When any key is pressed, the
thermostat controls to Occupied mode.

REMOTE SETBACK COOL SETPOINT
UNOCCUPIED DEADBAND
COOL SWITCHING POINT
SETPOINT

UNOCCUPIED DEADBAND

HEAT SWITCHING POINT

REMOTE SETBACK HEAT SETPOINT

REMOTE SETBACK (IS CODE #19)
Remote Setback is activated by a dry contact closure on
the remote setback input from an occupancy sensor, time
switch, or hotel card key. The thermostat controls to the
user/installer defined setback setpoints for increased
energy savings. The LCD displays Economy Setback just
to the right of the main temperature display to indicate the
Remote Setback mode is active.

M31331

Fig. 27. 4 Pipe Auto Changeover with Single Setpoint
and Economy Setback Deadband Illustration

Fan Modes
VERSASPEED™ FAN RAMPING
When the fan switch is in auto, the thermostat will cycle
the fan using the fan ramping algorithm. The appropriate
fan speed is selected according to Fig. 28.

When Remote Setback is active, all buttons on the
thermostat are disabled. However, the button
combinations to access Installer Setup (IS) and Installer
Test (IT) remain enabled.

The fan ramping algorithm is illustrated in Fig. 28

ECONOMY SETBACK OPERATION
For Heat Mode, when Economy Setback is enabled, the
set point changes to the remote setback heating setpoint
(IS CODE #20).

FAN SPEED IS HIGH
+4°F

For Cool Mode, when Economy Setback is enabled, the
set point changes to the remote setback cooling setpoint
(IS CODE #21).

DIFFERENCE
+2°F
BETWEEN
RT AND
SETPOINT
-2°F

For 4 pipe applications with Auto Changeover and Heat/
Cool Setpoints, when Economy Setback is enabled, the
cool setpoint changes to the remote setback cooling
setpoint and the heat setpoint changes to the remote
setback heating setpoint. The new effective deadband is
the difference between the remote setback heating
setpoint and the remote setback cooling setpoint.

FAN SPEED IS MEDIUM
FAN SPEED IS LOW
FAN SPEED IS LOW

COOL
SETPOINT

FAN SPEED IS MEDIUM
-4°F
FAN SPEED IS HIGH

HEAT
M27563

Fig. 28. VersaSpeed™ fan ramping algorithm
illustration.

Fig. 26 illustrates the relationship between setpoints,
Remote Setback, and deadband for auto changeover
with heat and cool setpoints.

AUTO FAN RESET (IS CODE #24)
If Auto Fan Reset is enabled, and a constant fan speed is
selected, the thermostat resets the fan to Auto.
• Value = 1: The fan resets back to Auto after 2 hours.
• Value = 2: The fan resets back to Auto after 4 hours.
The start time is calculated after the initial call for Heat/
Cool is satisfied. Then, the two or four hour timing begins.
The fan is set back to Auto when the 2-hour or 4-hour
delay expires.

REMOTE SETBACK COOL SETPOINT
UNOCCUPIED DEADBAND
COOL SETPOINT
DEADBAND

Application Modes

HEAT SETPOINT

2 PIPE SEASONAL CHANGEOVER APPLICATIONS
These applications require the pipe sensor as a N.O,
N.C., or Analog Input to detect seasonal changeover:

UNOCCUPIED DEADBAND
REMOTE SETBACK HEAT SETPOINT
M27562

• 2 pipes with auto changeover
• 2 pipes with auxiliary heat
Changeover occurs when the system has been changed
over from the boiler to the chiller. This occurs on a
seasonal basis from winter to summer months. When
using a pipe sensor as an analog input, the thermostat
can use the logic below to determine what mode to
operate in. A changeover will occur when the pipe
temperature goes above the threshold for heating or
below the threshold for cooling. If a purge has not
occurred or a call has not been satisfied in awhile, the
pipe temperature may start to get close to the ambient
temperature. In this case, the thermostat will only
changeover once the temperature falls into the opposite
threshold.

Fig. 26. Auto Changeover with Heat/Cool Setpoints
deadband illustration.
For 4 pipe applications with Auto Changeover and a single
setpoint, when Economy Setback is enabled, the setpoint
will revert to a dual heat/cool setpoint approach. The
remote setback heating and remote setback cooling
setpoints will be used to create an effective unoccupied
deadband.
Fig. 27 illustrates the unoccupied deadband when
Economy Setback is enabled for 4-pipe single setpoint
auto changeover.

15

62-0278—07

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS
Table 7. Logic for 2 Pipes with Auxiliary Heat

2 Pipes with Auto Changeover
For this application the system switch only provides "Off"
and "Auto". When in "Auto" mode the water temperature
will indicate if the thermostat should operate in heating or
cooling.

Pipe
Temperature
After Purge

Operation:
After exiting the installer setup, the thermostat will perform
a 5 minute purge. During this initial 5 minute purge, the
valve (W/Y) will energize and the fan will be de-energized.
After the 5 minute purge, the thermostat will go into the
appropriate mode as described in Table 6.
Table 6. Logic for 2 Pipes with Auto Changeover
Pipe Temperature after purge

System Mode

>Threshold for Heating (IS code #7)

Heat

Between Thresholds
After Purge Occurs

Fan Only*

< Threshold for Cooling

Heat Mode

Cool Mode

> Threshold
for Heating
(IS code #7)

Valve (W/Y)
energized on calls
for heat

Changeover.
Mode changes to
Heat.

Between
Thresholds
After Purge
Occurs

Aux Heat (Y/A)
energized on calls
for heat

Changeover. Mode
changes to Heat
because Cool is not
available.

< Threshold
for Cooling
(IS code #6)

Mode stays in Heat Valve (W/Y)
but Aux Heat (Y/A) energized on calls
energized on calls for cool
for heat

If pipe temperature is between the two threshold values
after the 5 minute purge occurs, the thermostat will
activate a second 5 minute purge to double check the
water temperature. If after the second 5 minute purge,
the water temperature is still between the two thresholds,
the valve output will be disabled and only auxiliary heat
will be available for heating.

(IS code #6) Cool

*If pipe temperature is between the two threshold values
after the 5 minute purge occurs, the thermostat will
activate a second 5 minute purge to double check the
water temperature. If after the second 5 minute purge,
the water temperature is still between the two thresholds,
the valve output will be disabled and only manual fan will
be available. It will stay in this operation until the next
purge cycle occurs.

Auxiliary heat (Y/A) always de-energizes during purges.
Purge Cycles for 2 Pipe Seasonal Changeover
Applications
For 2 Pipe with Auto Changeover and 2 Pipe with
Auxiliary Heat applications, the thermostat will run purge
cycles to determine if there is hot or cold water in the
pipes.

2 Pipes with Auxiliary Heat
For this application, when there is hot water in the pipes,
the system switch provides "Off" and "Heat". When there
is cold water in the pipes, the system switch provides
"Off", "Heat", and "Cool".

A 5 minute purge will occur every 2 hours to ensure that
the pipe sensor is sensing the correct mode during
seasonal changeover months.

Operation:
After exiting the installer setup, the thermostat will perform
a 5 minute purge. During this time, the valve (W/Y) will
energize and the fan and auxiliary heat (Y/A) will be deenergized. After the 5 minute purge, the thermostat will
go into the appropriate mode as described by Table 7.

A 5 minute purge will also occur anytime the installer
setup or installer test menus are exited, whenever the
thermostat is switched from its "Off" position1, and if the
power is reset.
4 PIPES AUTO CHANGEOVER
Single Set Point Method
In 4 pipe auto changeover with a single setpoint, the
temperature is always controlled to the setpoint.
Switching points are used to determine when to switch
between heating and cooling modes. If the current mode
is heat and the temperature drifts above the cool switch
point (Setpoint + Switching Differential), the thermostat
will switch to heat operation and will heat the space until
setpoint is reached.
For this application, the setpoint setting and switching
points are illustrated in Fig. 29. The switching differential
is defined via IS code #10.

1

For the 2 Pipe with Auxiliary Heat application, the thermostat must be in the "Off" position for more than 30 minutes
before a 5 minute purge will occur when it is switched back into "Heat" or "Cool".

62-0278—07

16

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS
For this application, the setpoint settings and deadband
are illustrated in Fig. 30. The deadband is changed via IS
code #10.

SWITCHING
DIFFERENTIAL

COOLING SETPOINT

COOL SWITCHING POINT

DEADBAND
HEATING SETPOINT

SETPOINT

M27565
HEAT SWITCHING POINT

Fig. 30. 4 Pipe Auto Changeover setpoints and
deadband.

M31330

TROUBLESHOOTING

Fig. 29. 4 Pipe Auto Changeover with Single Setpoint
and Switching Points

Table 8 provides troubleshooting information.

Heat/Cool Setpoint Method
In 4 pipe auto changeover with heat and cool setpoints,
the system key is used to switch between the heating
setpoint and cooling setpoints. Use the Up and Down
arrow buttons to change the setpoint.
Table 8. Troubleshooting.
Symptom

Possible Cause

Action

Display does not
come on.

Thermostat is not being
powered.

For TB6575A/B/C, check for 120/240/277 Vac between L and N.
For TB8575A, check for 24 Vac between R and C.

Temperature settings
do not change.

The upper or lower
temperature limits were
reached.

Check the temperature setpoints for heating and cooling (Installer
Setup codes 16 and 17 respectively). Modify as needed.

The keypad is fully locked. Change keypad locked options (Installer Setup code #18).
Heating or cooling
does not come on.

System Type selection not Set the Installer Setup code #2 (System Type) to the correct value
set to Heat or Cool or the to match the installed heating and/or cooling equipment. Verify
selection is incorrect.
operation of wiring and equipment in Installer Test mode.

Thermostat is calling Heating or cooling
for Heat (Heat on) or equipment is not
Cool (Cool on) but no operating.
heating or cooling is
running.

Check wiring. Check that the Installer Setup code #2 (System
Type) value matches the installed heating and/or cooling
equipment. Verify operation of equipment in Installer Test mode.

Heat does not turn on Heating equipment failure. For TB6575A/B/C:
(Heat On is solid in
1. Check for 120/240/277 Vac at the equipment between power
the display).
and common, (terminals L and N).
2. Check for 120/240/277 Vac between the heat (W) and common (N) terminals. If 120/240/277 Vac is present, the thermostat is functional.
For TB8575A:
1. Check for 24 Vac at the equipment on the secondary side of
the transformer between power and common (terminals R
and C).
2. Check for 24 Vac between the heat terminal (W) and transformer common. If 24 Vac is present, the thermostat is functional.
If voltage is present, check the heating equipment to find the cause
of the problem.
Loose connection or
broken wire between
thermostat and heating
equipment.

For TB6575A/B/C:
Check for 120/240/277 Vac between the heat (W) and common
(N) terminals.
For TB8575A:
Check for 24 Vac between the heat terminal (W) and
transformer common.
If voltage is not present, check wire connection (loose or broken)
between the thermostat and the heating equipment.

17

62-0278—07

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS
Table 8. Troubleshooting. (Continued)
Symptom
Both the heating and
cooling equipment are
running at the same
time.

Possible Cause
Incorrect System Type
selected.

Action
Check that the Installer Setup code #2 (System Type) value
matches the installed heating and/or cooling equipment.

Heating and cooling wires Separate the shorted heating and cooling wires.
are shorted together.

Cooling does not turn Cooling equipment failure. For TB6575A/B/C:
on (Cool On is solid in
1. Check for 120/240/277 Vac at the equipment between power
the display).
and common, (terminals L and N).
2. Check for 120/240/277 Vac between the cool (Y) and common (N) terminals. If 120/240/277 Vac is present, the thermostat is functional.
For TB8575A:
1. Check for 24 Vac at the equipment on the secondary side of
the transformer between power and common (terminals R
and C).
2. Check for 24 Vac between the cool terminal (Y) and transformer common. If 24 Vac is present, the thermostat is functional.
If voltage is present, check the cooling equipment to find the cause
of the problem.
Loose connection or
broken wire between
thermostat and cooling
equipment.

For TB6575A/B/C:
Check for 120/240/277 Vac between the cool (Y) and common
(N) terminals.
For TB8575A:
Check for 24 Vac between the cool terminal (Y) and transformer
common.
If voltage is not present, check the wire connection (loose or
broken) between the thermostat and the cooling equipment.

Fan does not turn on
in a call for Heat.

Wiring or connection
failure

Check wiring and make sure the connection is correct.

Cannot select fan
speed.

Fan Control Type
selection is incorrect.

Check that the Installer Setup code #9 (Fan Control) value is set to
zero (0).

Heating equipment is Incorrect System Type
running in the Cool
configured.
mode.

Check that the Installer Setup code #2 (System Type) value
matches the installed heating and/or cooling equipment.

Incorrect System Type
Heating equipment
does not turn off and configured.
heat temperature
setting is set below
room temperature
(Heat On is not in the
display).

Check that the Installer Setup code #2 (System Type) value
matches the installed heating and/or cooling equipment.

Cannot set the system System Type (Installer
setting to Heat.
Setup code #2) is set to
Cool Only (value = 1).

Set the Installer Setup code #2 value to match the installed heating
and/or cooling equipment.

Cannot set the system System Type (Installer
setting to Cool.
Setup code #2) is set to
Heat Only (value = 0).

Set the Installer Setup code #2 value to match the installed heating
and/or cooling equipment.

Heat On is not in the
display.

System Type setting is not Set the Installer Setup code #2 to Heat and set the temperature
setting above the room temperature.
set to Heat and/or the
temperature setting is not
set above the room
temperature.

Cool On is not in the
display.

System Type setting is not Set the Installer Setup code #2 to Cool and set the temperature
set to Cool and/or the
setting below the room temperature.
temperature setting is not
set below the room
temperature.

Remote sensor does
not display
temperatures

Incorrect IS code.

62-0278—07

Set the Installer Setup code #4 to Remote (value = 1).

Sensor is not compatible. The remote sensor must be TR21 or compatible 20K NTC.

18

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS
Table 8. Troubleshooting. (Continued)
Symptom

Possible Cause

Remote Setback does Incorrect IS code.
not activate

Action
Make sure the NO/NC and timer selection is correct. Check the
value selected for IS code #19.

Remote setpoint error.

Make sure the remote setback setpoint is correct for energy saving
usage.

Activity Sensing does All buttons are locked.
not exit when button
pressed

Make sure keypad lockout is disabled. Set IS code #18, value = 0.

Freeze Protection
does not activate
Auto Fan Reset does
not activate

System Type is set to
Cool.

Freeze protection is not activated when system type is Cool (IS
code #2; value = 1). Change System Type.

System mode is not Off.

Set the System mode button to Off.

Incorrect IS code.

Set the Installer Setup code #24 to Enabled (value = 1 or 2).

Calling for Heat/Cool
setpoint couldn't be
satisfied.

Only after the setpoint is satisfied, will the auto fan reset timer
activate.

LIMITED TWO-YEAR
WARRANTY

INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING,
DIRECTLY OR INDIRECTLY, FROM ANY BREACH OF ANY
WARRANTY, EXPRESS OR IMPLIED, OR ANY OTHER FAILURE OF
THIS PRODUCT. Some states do not allow the exclusion or limitation of
incidental or consequential damages, so this limitation may not apply to
you.

Honeywell warrants this product, excluding battery, to be free from defects
in the workmanship or materials, under normal use and service, for a period
of two (2) years from the date of purchase by the consumer. If, at any time
during the warranty period, the product is defective or malfunctions,
Honeywell shall repair or replace it (at Honeywell’s option) within a
reasonable period of time.

THIS WARRANTY IS THE ONLY EXPRESS WARRANTY HONEYWELL
MAKES ON THIS PRODUCT. THE DURATION OF ANY IMPLIED
WARRANTIES, INCLUDING THE WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, IS
HEREBY LIMITED TO THE TWO YEAR DURATION OF THIS
WARRANTY. Some states do not allow limitations on how long an implied
warranty lasts, so the above limitation may not apply to you.

If the product is defective,
(i) return it, with a bill of sale or other dated proof of purchase, to the
retailer from which you purchased it, or
(ii) package it carefully, along with proof of purchase (including date of
purchase) and a short description of the malfunction, and mail it,
postage prepaid, to the following address:

This warranty gives you specific legal rights, and you may have other
rights which vary from state to state.

If you have any questions concerning this warranty,
please write Honeywell Customer Relations, 1985
Douglas Dr., Golden Valley, MN 55422 or call 1-800-4681502, Monday-Friday, 7:00 a.m. to 5:30 p.m., Central time.

Honeywell Return Goods
Dock 4 - MN10-3860
1985 Douglas Dr. N
Golden Valley, MN 55422
This warranty does not cover removal or reinstallation costs. This warranty
shall not apply if it is shown by Honeywell that the defect or malfunction
was caused by damage which occurred while the product was in the
possession of a consumer.

CUSTOMER ASSISTANCE
If you have any questions about the operation of your
thermostat, please go to customer.honeywell.com

Honeywell’s sole responsibility shall be to repair or replace the product
within the terms stated above. HONEYWELL SHALL NOT BE LIABLE
FOR ANY LOSS OR DAMAGE OF ANY KIND, INCLUDING ANY

19

62-0278—07

TB6575/TB8575 SUITEPRO™ DIGITAL FAN COIL THERMOSTATS

Aquastat® is a registered trademark of Honeywell International Inc.
SuitePRO™ is a trademark of Honeywell International Inc.
VersaSpeed™ is a trademark of Honeywell International Inc.

Automation and Control Solutions
Honeywell International Inc.
1985 Douglas Drive North
Golden Valley, MN 55422
customer.honeywell.com

® U.S. Registered Trademark
© 2011 Honeywell International Inc.
62-0278—07 M.S. Rev. 09-11
Printed in United States



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : No
Encryption                      : Standard V4.4 (128-bit)
User Access                     : Print, Copy, Extract, Assemble, Print high-res
Author                          : Honeywell ECC Technical Communications
Create Date                     : 1999:07:07 12:30:47Z
Modify Date                     : 2011:09:19 17:31:12-05:00
Subject                         : Installation Instructions
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:08:04
Creator Tool                    : FrameMaker 9.0
Metadata Date                   : 2011:09:19 17:31:12-05:00
Format                          : application/pdf
Title                           : 62-0278—07 - TB6575/TB8575 SuitePRO™ Digital Fan Coil Thermostats
Creator                         : Honeywell ECC Technical Communications
Description                     : Installation Instructions
Producer                        : Acrobat Distiller 9.4.6 (Windows)
Document ID                     : uuid:a5020d88-2a97-4570-9b60-8c3b01c36e75
Instance ID                     : uuid:18a5035a-e96e-4d8d-b167-008925298130
Page Mode                       : UseOutlines
Page Count                      : 20
EXIF Metadata provided by EXIF.tools

Navigation menu