Iridium Satellite 9603 Short Burst Data Transceiver User Manual
Iridium Satellite LLC Short Burst Data Transceiver Users Manual
Users Manual
Iridium 9603
SBD Transceiver Developer’s Guide
R E V I S I O N 1
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
2
LEGAL DISCLAIMER AND CONDITIONS OF USE
This document contains information for the Iridium 9603 (“Product”) and is provided “as is.” The
purpose of providing such information is to enable Value Added Resellers and Value Added
Manufacturers (collectively, “Product Developer(s)”) to understand the Product and how to
integrate it into a wireless solution. Reasonable effort has been made to make the information in
this document reliable and consistent with specifications, test measurements and other
information. However, Iridium Communications Inc. and its affiliated companies, directors, officers,
employees, agents, trustees or consultants (“Iridium”) assume no responsibility for any
typographical, technical, content or other inaccuracies in this document. Iridium reserves the right
in its sole discretion and without notice to you to change Product specifications and materials
and/or revise this document or withdraw it at any time. This document is provided in conjunction
with the purchase of the Product and is therefore subject to the Product Sales Terms and
Conditions set forth at http://www.Iridium.com/support/library/Legal Notices.aspx. The Product
Developer assumes any and all risk of using the Product specifications and any other information
provided.
Your use of this document is governed by your Partner Agreement with Iridium. Please review
your Partner Agreement and the Iridium Product Sales Terms and Conditions that govern your
relationship with Iridium. This document is strictly Proprietary and Confidential to Iridium.
Consistent with your Partner Agreement with Iridium, you may not this document (or any portion
thereof) to others without express written permission from Iridium. Any violation of your
Agreement's Proprietary and Confidentiality obligations shall result in remedies to the fullest
extent available to Iridium at law or in equity.
IRIDIUM MAKES NO REPRESENTATIONS, GUARANTEES, CONDITIONS OR WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY IMPLIED
REPRESENTATIONS, GUARANTEES, CONDITIONS OR WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT,
SATISFACTORY QUALITY, NON-INTERFERENCE, ACCURACY OF INFORMATIONAL
CONTENT, OR ARISING FROM A COURSE OF DEALING, LAW, USAGE, OR TRADE
PRACTICE, USE, OR RELATED TO THE PERFORMANCE OR NONPERFORMANCE OF ANY
PRODUCTS AND/OR SERVICES ACCESSORIES, FACILITIES OR SATELLITE SERVICES OR
INFORMATION EXCEPT AS EXPRESSLY STATED IN THIS DOCUMENT AND/OR THE
PRODUCT AND/OR SATELLITE SERVICE DOCUMENTATION. ANY OTHER STANDARDS
OF PERFORMANCE, GUARANTEES, CONDITIONS AND WARRANTIES ARE HEREBY
EXPRESSLY EXCLUDED AND DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY
LAW. THIS DISCLAIMER AND EXCLUSION SHALL APPLY EVEN IF THE EXPRESS
LIMITED WARRANTY CONTAINED IN SUCH DOCUMENTATION FAILS OF ITS ESSENTIAL
PURPOSE.
IN NO EVENT SHALL IRIDIUM BE LIABLE, REGARDLESS OF LEGAL THEORY, INCLUDING
WITHOUT LIMITATION CONTRACT, EXPRESS OR IMPLIED WARRANTY, STRICT
LIABILITY, GROSS NEGLIGENCE OR NEGLIGENCE, FOR ANY DAMAGES IN EXCESS OF
THE PURCHASE PRICE OF THIS DOCUMENT, IF ANY. NOR SHALL IRIDIUM BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES OF
ANY KIND, OR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF PRIVACY,
LOSS OF USE, LOSS OF TIME OR INCONVENIENCE, LOSS OF INFORMATION OR DATA,
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
3
SOFTWARE OR APPLICATIONS OR OTHER FINANCIAL LOSS CAUSED BY THE
PRODUCT/SERVICE (INCLUDING HARDWARE, SOFTWARE AND/OR FIRMWARE) AND/OR
THE IRIDIUM SATELLITE SERVICES, OR ARISING OUT OF OR IN CONNECTION WITH THE
ABILITY OR INABILITY TO USE THE PRODUCT/SERVICE (INCLUDING HARDWARE,
SOFTWARE AND/OR FIRMWARE) AND/OR THE IRIDIUM SATELLITE SERVICES TO THE
FULLEST EXTENT THESE DAMAGES MAY BE DISCLAIMED BY LAW AND WHETHER
ADVISED OF THE POSSIBILITIES OF SUCH DAMAGES. IRIDIUM IS NOT LIABLE FOR ANY
CLAIM MADE BY A THIRD PARTY OR MADE BY YOU FOR A THIRD PARTY.
Your use of the information contained in this Guide is restricted to the development
activity authorized under the agreement(s) between you and Iridium, and is otherwise
subject to all applicable terms and conditions of such agreement(s), including without
limitation software license, warranty, conditions of use and confidentiality provisions.
Export Compliance Information
This Product is controlled by the export laws and regulations of the United States of America. The
U.S. Government may restrict the export or re-export of this Product to certain individuals and/or
destinations. Diversion contrary to U.S. law is prohibited. For further information, contact the U.S.
Department of Commerce, Bureau of Industry and Security or visit www.bis.doc.gov.
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
4
Revision History
Revision
Date
Comment
.9
05-09-12
Iridium 9603 Initial Release
1.0
06-04-12
Iridium Commercial Release
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
5
Revision History ....................................................................................................................... 4
List of Abbreviations ................................................................................................................ 6
1 Product Overview ................................................................................................................. 7
1.1 Key Features ............................................................................................................................................................. 7
1.2 Transceiver Packaging and Regulatory Certification ................................................................................................. 8
1.3 Software Revision...................................................................................................................................................... 9
1.4 FCC Warning Statement ........................................................................................................................................... 9
1.5 Industry Canada Warning Statement......................................................................................................................... 9
1.5.1 English ....................................................................................................................................................................... 9
1.5.2 French ....................................................................................................................................................................... 9
2 Physical Specification ........................................................................................................ 10
2.1 Module Dimensions ................................................................................................................................................. 10
2.2 Mechanical Dimensions – Motherboard Mounting ................................................................................................... 12
2.3 Environmental ......................................................................................................................................................... 15
2.3.1 Environmental Specification .................................................................................................................................... 15
2.3.2 Environmental Tests Performed .............................................................................................................................. 15
2.4 Physical Interface Connectors ................................................................................................................................. 15
3 Electrical Interfaces ............................................................................................................ 16
3.1 User Connector ....................................................................................................................................................... 16
3.1.1 User Connector Type .............................................................................................................................................. 16
3.1.2 User Connector Pin Allocation ................................................................................................................................. 17
3.2 DC Power Interface ................................................................................................................................................. 18
3.2.1 Power On/Off Control .............................................................................................................................................. 20
3.2.2 Typical Power Usage Profile ................................................................................................................................... 20
3.3 Serial Data Interface ................................................................................................................................................ 21
3.4 Network Available Output ........................................................................................................................................ 21
3.5 DC Supply Indicator Output ..................................................................................................................................... 21
4 RF Interface ......................................................................................................................... 22
4.1 RF Connector .......................................................................................................................................................... 22
4.2 Antenna Characteristics .......................................................................................................................................... 22
4.3 RF Interface Specifications ...................................................................................................................................... 22
4.4 Radio Characteristics ........................................................................................................................................ 23
4.5 S-meter Performance .............................................................................................................................................. 23
5 AT Command Set Description ............................................................................................ 24
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
6
List of Abbreviations
Abbreviation
Description
CE
Conformité Européene
CTS
(V.24 signal) Clear To Send. This signal is used to control the flow of data to the Iridium 9603
DC
Direct Current
DCD
(V.24 signal) Data Carrier Detect
DCE
Data Communications Equipment. In this Product, DCE refers to the Iridium 9603
DSR
(V.24 signal) Data Set Ready. This signal, from the Iridium 9603, indicates readiness to accept communication
over the data port
DTE
Data Terminal Equipment. In this Product, DTE refers to the FA
DTR
(V.24 signal) Data Terminal Ready. This signal, from the FA, requests the Iridium 9603 to accept
communication over the data port
ESS
ETC SBD Subsystem (synonymous with GSS)
ETC
Earth Terminal Controller
FA
Field Application; the application controlling the Iridium 9603
FCC
Federal Communications Commission
GND
Ground
GSS
Gateway SBD Subsystem (synonymous with ESS)
IC
Industry Canada
IMEI
International Mobile Equipment Identity
LBT
L-Band Transceiver
MO
Mobile Originated
MOMSN
Mobile Originated Message Sequence Number
MT
Mobile Terminated
MTMSN
Mobile Terminated Message Sequence Number
RHCP
Right Hand Circular Polarization
RI
(V.24 signal) Ring Indicate. This signal, from the Iridium 9603, indicates that an MT message is present at the
GSS
RTS
(V.24 signal) Request To Send. This signal is used to control the flow of data from the Iridium 9603.
SBD
Short Burst Data
SMS
Short Message Service
TBA
To Be Advised
UART
Universal Asynchronous Receiver Transmitter
VAM
Value Added Manufacturer
VAR
Value Added Reseller
VSWR
Voltage Standing Wave Ratio
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
7
1 Product Overview
The Iridium 9603 Short Burst Data Only Transceiver (9603) is designed to be integrated into a wireless data application with other
host system hardware and software to produce a full solution designed for a specific application or vertical market. Examples of these
solutions include tracking a maritime vessel or automatic vehicle location.
The 9603 only supports Iridium’s Short Burst Data (SBD) capability. It does not support voice, circuit switched
data, or short message service (SMS).
The 9603 is designed to meet the regulatory requirements for approval for FCC, Canada, and CE assuming an antenna with a gain
of ~3 dBi and adequate shielding. This allows the 9603 to be integrated into a variety of wireless data applications or retrofitted into
existing SBD-only applications that utilize SBD with the current Iridium 9602, 9601, 9522A, 9522B or 9522 L-Band transceiver-
based products. (Note that additional development work will be required). Such finished products, when integrated together,
require regulatory and safety testing to be conducted by the integrator.
The 9603 is a single board transceiver provided as a ‘black box’ transceiver module with all device interfaces provided by a single
multi-pin interface connector in addition to the antenna connector. The Product only provides the core transceiver. All other end
user Field Application functions such as GPS, microprocessor based logic control, digital and analog inputs, digital and analog
outputs, power supply and antenna must be provided by the solution developer. The device interface across the user connector
consists of a serial-data interface, DC power input, network available output and a power on/off control line.
The 9603 does not incorporate nor require a Subscriber Identity Module (also known as a SIM Card) to be inserted into the
Transceiver. The 9603 is intended to be used as a transceiver module fitted within another host system. The 9603 module is
designed to comply with the standards for Radio Emissions Compliance, Electromagnetic Compatibility, and AC Safety in the
United States, European Union and Canada, for host systems that provide safe connections to power supply and external antenna
or cable distribution system.
The Iridium 9603 is described within this document as “Iridium 9603,” “9603 SBD Transceiver,” “Transceiver,” “Modem,” and “ISU.”
All of these terms refer to the same product.
1.1 Key Features
Single board transceiver
Small form factor
No SIM card
Designed to be incorporated into an OEM solution
Maximum mobile originated message size 340 bytes
Maximum mobile terminated message size 270 bytes
Automatic Notification to the Transceiver that a mobile terminated message is queued at the Gateway
Global operating capability
RoHS compliant
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
8
1.2 Transceiver Packaging and Regulatory Certification
The 9603 SBD Transceiver is a regulatory approved daughter module transceiver that can be fitted within an enclosed host
system. With appropriate external connections, the host system can be designed to meet full transceiver regulatory tests and sold
as a Regulatory Certified product that meets CE, FCC and IC requirements.
The 9603 has regulatory and technical certifications as shown in Table 1.
Table 1: Regulatory and Technical Certifications.
Regulatory
Approvals
Radio Tests
EMC Tests
Electrical / Mechanical /
Operational
Safety Tests
CE
ETSI EN 301 441 V1.1.1
(2000-05)
ETSI EN 301 489-20 V1.2.1(2002-11)
ETSI EN 301 489-1 V1.8.1(2008-04)
EN61000-4-2 : 1995/A2 : 2001 Part 4.2
EN61000-4-3 : 2002 Part 4.3
EN61000-4-4 : 2004
EN61000-4-6 : 1996/A1 : 2001 Part 4.6
EN55022:2006
EN60950-1:2006 Part 1
FCC
FCC CFR47 parts 2, 15, and 25
Industry
Canada
Industry Canada RSS170 Issue 2, March, 2011
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
9
1.3 Software Revision
Product Developers should read this document in conjunction with the “Software Release Notes” relevant to the revision of the
software that is loaded into their Iridium 9603 SBD Transceiver.
Product Developers should take into account in their software design that it is possible that a transceiver may have an earlier
software release and may therefore have different capabilities to those listed in this document. Product Developers are advised to
ensure that production procedures for finished goods confirm that the software used in the Product Developer application is
designed for the Software Release loaded in the Iridium 9603 SBD Transceiver. This can be read out of the module using the AT
command interface. A software upgrade utility is provided with each SW release. The utility runs on a Windows compatible OS and
will automatically upgrade the modem with the latest version.
1.4 FCC Warning Statement
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
1) This device may not cause harmful interference, and
2) This device must accept any interference received, including interference that may cause undesired operation.
This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must
follow the specific operating instructions for satisfying RF exposure compliance. This transmitter must not be co-located or
operating in conjunction with any other antenna or transmitter.
Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority
to operate the equipment.
1.5 Industry Canada Warning Statement
1.5.1 English
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser)
gain approved for the transmitter by Industry Canada.
To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent
isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.
This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions:
(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause
undesired operation of the device.
1.5.2 French
Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et
d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada.
Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne
et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à
l'établissement d'une communication satisfaisante.
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation
est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit
accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
10
2 Physical Specification
For illustrative purposes a picture of the Iridium 9603 SBD Transceiver Module is shown in Figure 1.
Figure 1. Iridium 9603 SBD Transceiver Front and Back Views
2.1 Module Dimensions
The overall dimensions of the Iridium 9603 module and its weight are summarized in Table 2. These figures are approximate and
are expected to change in the next revision.
Table 2: Iridium 9603 Mechanical Dimensions and Weight
Parameter
Value
Length
31.5 mm
Width
29.6 mm
Depth
8.10 mm
Weight (approximate)
11.4g
These dimensions are subject to change for future revisions
Additionally host system Product Developers should plan space for connection to the host system motherboard, including robust
and electrically grounded connections to the antenna/cable distribution system.
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
11
Figure 2. Dimensions of the 9603 Transceiver
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
12
2.2 Mechanical Dimensions – Motherboard Mounting
The Iridium 9603 SBD Transceiver must be fitted within an enclosed host system. With appropriate external connections, the host
system motherboard and host system enclosure can be designed to meet full transceiver regulatory tests.
The Iridium 9603 SBD Transceiver is provided with two mounting holes on the opposite side from the system connector. The
module should be assembled onto the motherboard of the host system, by pushing the module onto matching connectors on the
motherboard and then securing the two mounting holes to the motherboard using screws.
Figure 3. Motherboard mounting for the 9603 Transceiver
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
13
Figure 4. Connector and Mounting Detail for the Iridium 9603 Transceiver
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
14
Figure 5. Motherboard mounting suggestions for the 9603 Transceiver
1. This example of a host system motherboard footprint is shown for illustrative purposes only. The host system may require a
different PCB layout or mechanical arrangement.
2. The 9603 is designed to be incorporated within a host system. As such, the antenna or cable distribution system that feeds
the host system should be terminated in a robust RF connector that is suitable for the end-application.
3. Safety isolation requirements for external antennas or cable distribution systems should also be taken into consideration when
designing the motherboard. A suitably safe design for the RF connections should be incorporated into the host system
motherboard, ideally using a chassis-bonded ground connection to the antenna cable shield.
4. The surface below the modem should be a conductive ground plane such that the modem bonds to the motherboard ground
system thus reducing the possibility of radiated emissions. This also requires that the mounting screws be properly tightened
to 10 cNm of torque.
5. The modem is to be installed in a “service access only” area not accessible by untrained personnel.
Warning- Although the modem dissipates very little power, its use in ambient temperatures in excess of 60
degrees C will make the caseworks considerably hot.
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
15
2.3 Environmental
2.3.1 Environmental Specification
The environmental specifications of the final Iridium 9603 Transceiver Module are summarized in Table 5 below.
Table 5: Environmental Specifications
Parameter
Value
Operating Temperature Range
-30ºC to + 70ºC
Operating Humidity Range
≤ 75% RH
Storage Temperature Range
-40ºC to + 85ºC
Storage Humidity Range
≤ 93% RH
2.3.2 Environmental Tests Performed
The 9603 complies with the specifications listed in Table 6.
Table 6: Environmental Tests
Test Name
Test Reference
Test Description
Thermal Shock
EN60068-2-14:2000
Change of Temperature,
-25°C to +70°C,
5 cycles of 1 hour each
Humidity
IEC60068-2-78:2002
Damp heat steady state
40OC 93% RH for 4 days
Vibration
IEC60068-2-64
0.96 m2/s3 from 5Hz to 20Hz
21Hz to 500Hz dropping -3dB per octave
Vibration
SAE J1455 Section 4.10
10-40Hz at 0.02g2/Hz
40-500Hz dropping 6dB per octave
Shock
EN60068-2-27:1993
(NF c20-727)
Shock
J1455 Society of Automotive Engineers
Drop 1m onto concrete in 3 perpendicular orientations (3 drops)
Also 10G shock over a period of 12ms
2.4 Physical Interface Connectors
The Iridium 9603 SBD Transceiver incorporates two connectors:
A multiway user connector
An RF antenna connector
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
16
3 Electrical Interfaces
The following subsections contain information for the electrical interfaces of the 9603 SBD Transceiver for the non-RF connections.
The RF interfaces are covered in section 4 4.
3.1 User Connector
The user connector provides the following connections to the 9603 module:
DC power supply input
Power on/off control
Serial data interface
Network available output
Supply power indicator output
3.1.1 User Connector Type
The connector on the 9603 is a Samtec low-profile header connector, part number ST4-10-2.50-L-D-P-TR. Data sheets on these
connectors can be found at: http://www.samtec.com
A suitable motherboard female socket that matches this connector is the SAMTEC header part number SS4-10-3.00-L-D-K-TR.
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
17
3.1.2 User Connector Pin Allocation
The user connector is surface mount, .4mm centerline terminal strip. Individual pin assignments are shown in Table 7 and the limits
for the digital signals are listed in Table 8. Multiple supply grounds are provided and all supply and supply grounds are required to
be connected to the power supply in order to limit the current on any one pin. Multiple signal grounds are provided to reduce
cross-talk.
Table 7: User Connector Pin Allocation
Pin
No.
Signal Name
Signal direction
(WRT 9603)
Signal function
Signal level
1
EXT_PWR
Input
Supply
+5 V +/- 0.2 V
2
EXT_PWR
Input
Supply
+5 V +/- 0.2 V
3
EXT_GND
Input
Supply return
0 V
4
EXT_GND
Input
Supply return
0 V
5
ON/OFF
Input
On/Off control input
Analog
On: >=2.0V
Off: <=0.5V
6
DF_S_TX
Input
Data port, serial data input
3.3V Digital
7
DF_S_RX
Output
Data port, serial data output
3.3V Digital
8
SIG_GND
Input
Signal ground
0V
9
DF_ DCD
Output
Data port, Data Carrier
Detect
3.3V Digital
10
DF_ DSR
Output
Data port, Data Set Ready
3.3V Digital
11
DF_ CTS
Output
Data port, Clear-to-Send
3.3V Digital
12
DF_RI
Output
Data port, Ring Indicator
3.3V Digital
13
DF_ RTS
Input
Data port, Request-to-Send
3.3V Digital
14
DF_ DTR
Input
Data port, Data Terminal
Ready
3.3V Digital
15
SIG_GND
Input
Signal ground
0V
16
Reserved
17
Reserved
18
SIG_GND
Input
Signal ground
0V
19
NETWORK
AVAILABLE
Output
Signals when the 9603 can
see an available satellite
network
3.3V Digital
Available = high
Not available= low
20
SUPPLY_OUT
Output
Supply power indicator
output
+3.3 V
5mA maximum
Table 8: Limits for 3.3V Digital Signals
Parameter
Symbol
Min
Typ
Max
Unit
Input High Voltage
VIH
2.0
5.5
V
Input Low Voltage
VIL
-0.3
0.8
V
Output High Voltage
VOH
2.4
V
Output Low Voltage
VOL
0.4
V
Low Level Output Current
IOL
4.4
mA
High Level Output Current
IOH
5.5
mA
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
18
Figure 6 provides a reference for the pin designation. The pins are marked in the figure. Note that Pin 1 is marked on the
connector.
Figure 6. User Connector Pin Number Designation
3.2 DC Power Interface
The DC power interface is comprised of the DC power inputs and a control signals as summarized in Table 7. The +5V Inputs and
0V supply returns are used to supply DC power to the 9603 and ensure that enough current can be drawn across the connector
without the 9603 malfunctioning during transmit due to lack of current supply. Note that all power and ground pins should be
connected externally.
The DC power supply requirements for the 9603 are summarized in Table 9 below. Note that these requirements apply to DC
power measured at the 9603 User connector input and not at the output of the power supply. Long power supply cables can cause
a voltage drop sufficient to cause the voltage to be out of specification at the physical power supply input to the 9603.
Pin 1
Pin 2
Pin 19
Pin 1 is marked on
the connector
Pin 20
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
19
Table 9: DC Power Input Specifications
Parameter
Value
Supply Input Voltage Range
5.0V DC +/-0.2V**
Supply Input Voltage Ripple
< 40 mV pp
Typical Power Consumption at +5.0 VDC
Value
Idle Current (average*)
45mA
Idle Current (peak)
195mA
Transmit Current (peak)
1.5 A
Transmit Current (average*)
190mA
Receive Current (peak)
195mA
Receive Current (average*)
45mA
SBD message transfer - average current*
190 mA
SBD message transfer - average power*
<= 1.0 W
* Note: The average power consumption will vary depending on the view of the satellite constellation from the antenna.
**Note: Includes Tx Burst droop.
The external power supply needs to guarantee the following:
The supply voltage droop over for a 8.3ms burst of 1.5A current should not be more than 0.2 Volts.
The power supply should limit the in-rush
1
current to 4 Amps maximum
The power source shall provide for over current protection in case of device malfunction.
The supply noise should be less than the limits in the following profile:
100 mVpp from 0 to 50 kHz
5 mVpp at 1 MHz measured in 50 kHz bandwidth
10 mVpp at 1 MHz measured in 1MHz bandwidth
5 mVpp above 5 MHz measured in 1 MHz bandwidth.
1
In rush limit refers to the impedance of the modem when it is unpowered is very low. When power is supplied from an
unlimited supply the instantaneous current can exceed 4 Amps If the current exceeds this value damage can occur. This can be
limited in several ways, included using a supply that cannot provide more than 4 Amps instantaneously; or providing some
series inductance/resistance to the supply lead.
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
20
3.2.1 Power On/Off Control
An external on/off input is provided on a pin of the User connector. The 9603 starts up when power is applied and the power on/off
input is high. As long as the input voltage is applied, logic high on this line turns the transceiver on and a logic low turns it off. If this
line is not required then it must be connected directly to the +5 V supply.
Note that this on/off control is similar to the Iridium 9601 and 9602 products, but it is not the same as the 9522, 9522A or 9522B
products.
Prior to turning off the modem a “flush memory” (AT*F) command should be issued to ensure all memory write activity is
completed. When a transceiver has been turned off, Product Developers should not reapply power on a unit until more than 2
seconds has elapsed after power has reached 0V. Additionally, if a unit does not respond to AT commands, power off the module,
wait for 2 seconds and then power it back on.
When a 9603 is powered off the power on reset circuit requires 2 seconds for voltages to decay. If the 2 second wait time is not
adhered to the reset circuit may not operate and the modem could be placed in a non-operational state. The state is not
permanent and can be rectified by the above procedure.
3.2.2 Typical Power Usage Profile
This section is designed to give the Product Developer some insight to the electrical power profile that the 9603 uses. It does not
describe every situation and permutation possible. It should be used as a starting point for the Product Developer to continue its
own development design. The actual usage profile can vary for a number of reasons:
1) View of the sky – if in poor visibility of the sky where a clear line of sight is not available between the transceiver and the
satellite.
2) The higher the antenna VSWR the higher the current consumed
3) How often the 9603 module is activated/deactivated by the Host Controller system
4) Manufacturing variation from transceiver to transceiver.
The host system designer should ensure their design covers for worst case power consumption scenarios.
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
21
3.3 Serial Data Interface
The data/fax serial interface is an RS-232 9-wire interface at 3.3V digital signal levels over which the 9602 and FA transfer
commands, responses, and SBD message data. With respect to this interface, the 9602 behaves as a DCE (Data Communication
Equipment), and the FA behaves as a DTE (Data Terminal Equipment).
If RS-232 voltage levels are needed, the FA must include an LVTTL/RS-232 level-shifter.
Autobaud is not supported. The baud rate can be set via the AT+IPR command. The default rate is 19200 bps.
See the ISU AT Command Reference Specification for information on the data/fax interface.
3.4 Network Available Output
This is a digital output that can be used by an application to know when the transceiver has visibility to the satellite network. This is
useful in applications where the transceiver may move around terrain that reduces the amount of time that clear line of sight to the
satellite constellation is available. The Product Developer can use this output to preserve battery life by reducing the number of
attempted transmissions by including this logic output in the application decision logic.
Network Available means only that the 9603 can successfully receive the Ring Channel, or, put more simply, it can see an Iridium
satellite. Network Available is not a guarantee that a message can be successfully sent. The Network Available state is evaluated
every time the Ring Channel is received or missed. If the Ring Channel is visible, then that is typically every 4 seconds. If the Ring
Channel is not currently visible, then the update period can be as long as 2 minutes, depending on how long the lack of satellite
visibility existed. This is because the 9603 attempts to conserve power by increasing the ring search interval while the satellites are
not visible. Every time a ring search fails, the time to wait is increased and eventually limits at 120 seconds.
If Network Available is currently off, the Field Application may still attempt an SBDI[X] session. This will force the 9603 Transceiver
to look for the Ring Channel immediately, and on finding it, to attempt to send the message. In this case Network Available will not
come on immediately. The Network Available does not turn on while in a +SBDI session. It will however turn on 4 seconds later
assuming that the Ring Channel is present. After the SBD session completes, the 9603 performs a new Ring Channel search
sequence, at the end of which Network Available gets turned on. That can take between 4 and 12 seconds.
The wait time between search windows is reset to 4 seconds every time a search succeeds. Otherwise it continues to increase. So
if the +SBDI attempt fails to find the ring channel, the search window does not reset to 4 seconds.
Note that the behavior of +CIEV:1 is identical in to that of the Network Available output.
3.5 DC Supply Indicator Output
A DC supply indicator signal is provided by the 9603 which could be used directly for driving an LED to provide a visible indication
that the Transceiver supply is on. Alternatively the output signal could be used in application logic to determine if the internal
Transceiver power supply is on.
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
22
4 RF Interface
This section describes the physical characteristics of the RF connectors and specifications of the RF Interface.
4.1 RF Connector
The 9603 RF connector is a U.FL connector produced by Hirose. The part number is U.FL-R-SMT-1. This is a surface mount
connector that is directly attached to the 9603 module. The U.FL connector mates with a pigtail which can link to an antenna.
Note - this 9603 module has a different antenna connector than other Iridium transceivers.
Note that for safety reasons, the RF connector on the 9603 module should not be directly connected to an external antenna cable
or cable distribution system. Paragraph 7.3 of EN60950-1:2006 safety standard requires that users are protected against high
voltages that might appear on these cables. This can be achieved either by inserting a high-voltage isolating capacitor in series
with the signal or by grounding the shield of the coaxial cable. The 9602 RF connector has limited voltage capacity; therefore,
protection needs to be provided in the host application. Developers are encouraged to review the EN60950-1:2006 standard for
additional details.
4.2 Antenna Characteristics
The 9603 should be connected to an Iridium-band antenna with the following antenna connector characteristics as described in
Table 11.
Table 11: Antenna Characteristics
Parameter
Value
Impedance
50 Ohms nominal
Gain (maximum)
3dBi
Polarization
RHCP
VSWR (in Iridium band)
1.5:1
VSWR (out of band)
3:1
Note:
Existing certified antennas will require different RF connector types than those for the 9601, 9602, 9522, 9522A and 9522B
4.3 RF Interface Specifications
The RF interface requirements for the 9603 are summarized in Table 12 below.
Table 12: General RF Parameters
Parameter
Value
Frequency Range
1616 MHz to 1626.5 MHz
Duplexing Method
TDD (Time Domain Duplex)
Input/Output Impedance
50Ω
Multiplexing Method
TDMA/FDMA
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
23
4.4 Radio Characteristics
Table 13 contains radio characteristics of the 9603 SBD Transceiver.
Table 13: Radio Characteristics
Parameter
Value
Average Power during a transmit slot (max)
1.6 W
Receiver sensitivity (Typical level at module connector)
-117dBm
Max Cable loss permitted (Note 1)
2dB
Link Margin – Downlink (Note 2)
13dB
Link Margin – Uplink (Note 2)
7dB
Note 1: Cable losses should be minimized. The total implementation loss for an antenna, connectors, cable, lightening arrestor and
any other RF component between the transceiver and the antenna should not exceed 3dB. The total cable loss between the
antenna and the modem includes losses in the motherboard. Implementation loss higher than this will affect the Iridium link
performance and quality of service. Solutions with a loss higher than 3dB will not meet the requirements of Iridium Solution
Certification.
Note 2: Link Margins are given assuming a free-space propagation model.
4.5 S-meter Performance
The numbers “reported over the AT command interface indicate the signal strength of the ring channel. Care should be taken when
using the S-meter readings for comparisons between devices. Of particular note are the following:
1. There is a 0.5 dB tolerance on calibrating the S-meter.
2. Each bar represents a 2 dB increment
3. Multiple ring channels can be present at the same time so units can lock to different signals.
4. If the reading is near the decision threshold it would be easy to see a 1 bar difference
Iridium 9603 SBD Transceiver Product Developers Guide
Revision 1.0
Proprietary & Confidential Information
Distribution of guide restricted to product developers only • Information contained in this guide is subject to change without notice.
24
5 AT Command Set Description
The 9603 is configured and operated through the use of AT commands. See the “ISU AT Command Reference” for the full set of
AT commands and responses. Note that versions 3.2 and earlier of the ISU AT Command Reference do not mention the 9603.
Subsequent versions of the reference will do so. At the time of writing of this version of this document, all information contained in
the ISU AT Command Reference for the 9602 applies equally to the 9603. For differences in AT command support between 9603
software releases, see the relevant software release notes, which are made available to authorized Iridium VARs and VAMs on the
Iridium Developer Extranet. It is the responsibility of Product Developers to check compatibility of applications software with the AT
Commands on all 9603s used for both development and commercial deployments. See also the “Iridium Short Burst Data Service
Developers Guide” for information on how SBD operates on the Iridium system.