Application Of Data Matrix Verification Standards Verificationwhitepaper

2009-05-25

: Microscan Verificationwhitepaper verificationwhitepaper 8abad561-c115-415f-b2f8-2c54936b34fc _att

Open the PDF directly: View PDF PDF.
Page Count: 6

DownloadApplication Of Data Matrix Verification Standards  Verificationwhitepaper
Open PDF In BrowserView PDF
www.microscan.com

Application of Data Matrix Verification Standards
Data Matrix symbol verification at its most basic level eliminates the subjective quality determination that
causes discord between marking and reading suppliers, and replaces those subjective opinions with
objective measurements regarding the quality of the mark. Standards for verification take this process
further to allow an even field of play for all measurement systems, such that cross-company and cross-industry
applications may use an adopted standard to ensure the readability of symbols through their processes
by setting limits based upon agreed standards. This document introduces the standards ISO/IEC 16022,
SAE AS9132, ISO/IEC 15415, AIM DPM-1-2006, ISO/IEC 15434, and ISO/IEC 15418, discusses the
parameters measured by each standard, and explains where the standard has been applied, especially
regarding the United States Department of Defense Item Unique Identification initiative MIL-STD-130.

ISO/IEC 16022
The Data Matrix symbology was invented by International Data Matrix, Inc. The Association for Automatic
Identification and Mobility (AIM) promulgated the Data Matrix as a public standard in 1996 as “International
Symbology Specification – Data Matrix.” This standard was then adopted by ISO as standard ISO/IEC
16022 in May of 2000. The second revision of ISO/IEC 16022 was released in September of 2006. ISO/IEC
16022 Appendix N contains the first public standard for measurement of Data Matrix symbols. This
standard includes measurement of the following parameters:
•
•
•
•
•

Reference Decode
Symbol Contrast
Print Growth
Axial Non-Uniformity
Unused Error Correction

The lowest of the grades for the above parameters becomes the overall grade for the Data Matrix, and
then the parameters are combined. The limitations of this standard are its over-reliance on contrast with
regard to the overall quality of a symbol. This is because the standard is modeled after a guideline for
linear (1D) symbols.
This standard has some application for symbols produced using black ink on white paper. However, very
few marks of this type are used in the MIL-STD-130 application. The first version of MIL-STD-130 to
include verification was MIL-STD-130L (October 10, 2003) which stated that marks must be graded as
no less than “B” when generated and no less than “C” through the life of the mark, by the standards of
ISO/IEC 16022.
Lighting requirements for ISO/IEC 16022 verification are not specified aside from the need for uniformity
across the field of view. However, the standard recommends lighting from two or more sides at a 45°
angle of incidence.

SAE AS9132
The Society of Automotive Engineers (SAE) first published Aerospace Standard (AS)9132 in 2002. This
standard differs from other standards in two significant respects. AS9132 covers three specific marking
methods: dot peen, laser etch, and electro-chemical etch. Also, AS9132 is a pass or fail standard that
does not lend itself to process control, as there are no intermediate steps between success and failure.
The parameters measured by AS9132 are:

Dot Peening
•
•
•
•
•
•
•

Cell Fill
Cell Size
Dot Size Offset
Dot Center Offset
Angle of Distortion
Dot Ovality
Matrix Size

Copyright ©2009 Microscan Systems, Inc.

Rev A 1/09

1

Application of Data Matrix Verification Standards

Laser and Electro-Chemical Etching
•
•
•
•
•

Cell Fill
Contrast
Angle of Distortion
Matrix Size
Cell Size

If any one of the measured parameters for a mark fail then the overall grade for that mark is a failure.
There are no lighting or imaging requirements stated in the AS9132 standard.

ISO/IEC 15415
The first ISO/IEC standard designed to address Data Matrix verification was ISO/IEC 15415 (June, 2004).
This standard attempted to correct the insufficiencies of the previous standards by addressing the
components of direct part marking. The parameters measured by ISO/IEC 15415 are:
•
•
•
•
•
•
•
•

Symbol Contrast
Axial Non-Uniformity
Grid Non-Uniformity
Unused Error Correction
Fixed Pattern Damage
Modulation
Reference Decode
Print Growth (may be reported but is not included as a grade component)

ISO/IEC 15415 specifies that the verification report must include the following information, with each
element separated by a forward-slash character:
•
•
•
•

Grade (Arithmetic mean to one decimal place of the grades measured from all images)
Aperture (Diameter of the artificial aperture to the nearest thousandth of an inch)
Light (Wavelength in nanometers)
Angle (Assumed to be 45° and only reported if different than 45°)

One of the requirements of ISO/IEC 15415 is capturing five images each taken at 72° (± 5°) from each
other, such that the symbol is measured at five orientations through one complete rotation. Another
limitation of ISO/IEC 15415 is its over-sensitivity to minute changes in grayscale across the symbol and
quiet zone, resulting in failing grades for modulation and fixed pattern damage on many easy-to-read parts.

AIM DPM-1-2006
The AIM Direct Part Mark Quality Guideline was released in December 2006. The basic differences
between ISO/IEC 15415 and AIM DPM-1-2006 are enumerated in Sections 5.1 and 5.2 of the guideline
as follows:

5.1 Process Differences from ISO/IEC 15415
All parameters in the symbology and print quality specifications apply except for:
•
•
•
•
•
•
•
•

A different method for setting the image contrast.
A different method for creating the binary image.
A new method for choosing the aperture size.
An image pre-process methodology for joining disconnected modules in a symbol.
A different process for determining the Modulation parameter renamed Cell Modulation.
A different process for determining the Symbol Contrast parameter which has been renamed Cell Contrast.
A different process for computing Fixed Pattern Damage.
A new parameter called Minimum Reflectance.

This guideline explains how to specify and report quality grades in a manner complementary to, yet
distinct from, the method in ISO/IEC 15415.
2

Copyright ©2009 Microscan Systems, Inc.

Application of Data Matrix Verification Standards

5.2 Lighting
This guideline recommends three specific lighting environments consisting of two forms of diffuse
(non-directional) lighting:
• Diffuse on-axis illumination uses a diffuse light source illuminating the symbol approximately perpendicular
to its surface (nominally parallel to the optical axis of the camera).
• Diffuse off-axis illumination uses light from an array of LEDs reflected from the inside of a diffusely
reflecting surface of a hemisphere, with the symbol at its center, to provide even incident illumination
from all directions.
• Directional illumination is oriented at a low angle (approximately 30 degrees) to the mark surface.
The parameters measured by AIM DPM-1-2006 are:
•
•
•
•
•
•
•
•

Cell Contrast
Axial Non-Uniformity
Grid Non-Uniformity
Unused Error Correction
Fixed Pattern Damage
Cell Modulation
Reference Decode
Minimum Reflectance

As with other standards, the overall grade is the lowest of any of the sub-grades. Highlights of the
physical setup for AIM DPM-1-2006 are:
• The image sensor plane must be parallel to the surface of the part although no tolerance is specified
for the parallelism.
• The symbol must be oriented such that one edge is parallel to the side of the image sensor (±5°).
• A specific set of lights must be used for this verification type: 90° (90), dome (D), 30° from four directions
(30Q), 30° from two directions (30T) and 30° from one direction (30S).
• The image must be in the best possible focus, but there is no stated focus tolerance.

ISO/IEC 15434 and ISO/IEC 15418
These standards concern the syntax and semantics (formatting) of the string for Data Matrix symbols
used in the IUID program as specified by the MIL-STD-130. The string must start with the characters
“[)>” followed by a Record Separator (ASCII decimal 30) and ends with the Record Separator and the
End of Transmission (ASCII decimal 4). The string may be formatted using one of three formats:
• Application Identifiers (AI)
• Data Identifiers (DI)
• Text Element Identifiers (TEI)
All data elements in the string include a data qualifier specifying what type of information follows, and the
Group Separator (ASCII decimal 29) separates individual elements. Unique Item Identifier (UII) strings
using the AI or DI format may use a macro that replaces the leading “[)>RS05GS” or “[)>RS06GS” and
trailing “RSEOT” with a single byte, thus saving data capacity in the Data Matrix symbol.

Copyright ©2009 Microscan Systems, Inc.

3

Application of Data Matrix Verification Standards

Application of Verification Standards in MIL-STD-130
During the various releases of the MIL-STD-130, the definition of acceptable Data Matrix marking quality
has gone through several stages, and has used parts of each of the standards mentioned earlier in this
document. The table below describes the standards referenced in MIL-STD-130 and how they are applied.
Date
Oct. 10, 2003
Dec. 21, 2004
Dec. 2, 2005
June 15, 2007
Jan. 14, 2008

MIL-STD-130 Version
MIL-STD-130L

Verification Standard
ISO/IEC 16022
AS9132/IAQG or ISO/IEC
MIL-STD-130L Change 1
15415
ISO/IEC 15415 then
MIL-STD-130M
AS9132
AIM DPM-1-2006 and
MIL-STD-130M Change 1
ISO/IEC 15415
MIL-STD-130N

AIM DPM-1-2006

Application
All marks
AS9132 for DPM; ISO/IEC
15415 for labels
Use ICO/IEC 15415 first then
AS9132
AIM DPM-1-2006 for DPM;
ISO/IEC 15415 for labels
AIM DPM-1-2006 imaging,
lighting, grading requirements

1. Exceptions to ISO/IEC 15415 in MIL-STD-130:
• No rotational averaging
• Contrast and Modulation grades allowed to be as low as “C”
• 660nm lighting requirement
2. Exceptions to AIM DPM-1-2006 in MIL-STD-130:
• Dome light not allowed
• Quad-directional 45° medium-angle light from ISO/IEC 15415 allowed
• Only applies to direct part marks – not labels

4

Copyright ©2009 Microscan Systems, Inc.

Application of Data Matrix Verification Standards

Parameters Used in Verification
Below is a brief description of the parameters used in measuring Data Matrix symbols. Many of these
measurements use the concept of the “ideal grid.” This is the equally spaced array of line segments
formed by using the four corners and dividing the entire Data Matrix by the number of rows horizontally
and columns vertically.
• Angle of Distortion – The difference from perpendicular of the two solid edges of the Data Matrix,
measured in degrees.
• Axial Non-Uniformity – The difference between the height and the width with respect to the rows and
columns.
• Cell Contrast – In AIM DPM-1-2006, the difference in the population of dark pixels to the population of
light pixels (see histogram) using the sample principle as “Symbol Contrast” with modified definition.
• Cell Size – The overall width divided by the number of columns or the overall height divided by the
number of rows.
• Cell Modulation – In AIM DPM-1-2006, a measurement of the uniformity of the color of the dark areas
and the light areas of the Data Matrix (see histogram) similar to “Modulation” but differing in implementation.
• Dot Center Offset – The linear difference of the location of the center of the cell compared to the center
of the ideal grid center calculated as a percentage of the nominal cell size.
• Dot Size Offset – The difference in the apparent size of each individual data element in the Data Matrix.
• Fixed Pattern Damage – A measurement of the errors in the borders of the Data Matrix as well as any
errors in the quiet zone around the symbol necessary for the decoding process.
• Grid Non-Uniformity – The difference of the measured grid in relation to the ideal grid formed from the
four corners of the Data Matrix.
• Matrix Size – The overall size of the symbol as measured linearly across the width or height.
• Minimum Reflectance – Lowest reflectance of any sample area in the Data Matrix.
• Modulation – In ISO/IEC 15415, a measurement of the uniformity of the color of the dark areas and the
light areas of the Data Matrix (see histogram) similar to “Cell Modulation” but differing in implementation.
• Module Fill – The percentage of completeness of the ideal grid.
• Nominal Module Size – The scalable X-dimension of a typical symbol cell.
• Dot Ovality – The difference of the widest part of a round cell versus the narrowest part of the cell.
• Print Growth – The positive or negative size relation of the cells as printed with respect to the ideal grid.
• Reference Decode – This is a pass/fail measurement of the Data Matrix based upon a binary image of
the symbol as specified in ISO/IEC 16022 (First edition – 2000, Second edition – 2006).
• Symbol Contrast – The difference in the population of dark pixels to the population of light pixels (see
histogram) similar to AIM DPM-1-2006 “Cell Contrast”.
• Unused Error Correction – The amount of error correction that can be read incorrectly when the symbol
is still readable that is currently being read correctly, expressed as a percentage.

Histogram showing pixel color populations for a bimodal distribution
typically found in the Data Matrix symbology.
Copyright ©2009 Microscan Systems, Inc.

5

Application of Data Matrix Verification Standards

Verification Parameters vs. Standards

Standard
ISO/IEC 16022
ISO/IEC 15415
AS9132 Laser Etch
AS9132 Dot Peen
AS9132 Electrochem Etch
AIM DPM-1-2006

Date
May 2000
June 2004
Feb. 2002
Feb. 2002
Feb. 2002
Dec. 2006

Copyright ©2009 Microscan Systems, Inc.

Applicability
Labels
All
Laser DPM
Dot DPM
EC Etch DPM
DPM

MIL-STD-130
130L
130L Chg.1/130M
130L Chg.1/130M
130L Chg.1/130M
130L Chg.1/130M
130M Chg.1/130N

6



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : Yes
Page Mode                       : UseNone
XMP Toolkit                     : Adobe XMP Core 4.0-c316 44.253921, Sun Oct 01 2006 17:14:39
Format                          : application/pdf
Title                           : Application of Data Matrix Verification Standards
Creator                         : 
Create Date                     : 2005:03:28 11:26:25Z
Creator Tool                    : FrameMaker 7.1
Modify Date                     : 2009:01:08 15:32:19-08:00
Metadata Date                   : 2009:01:08 15:32:19-08:00
Producer                        : Acrobat Distiller 8.0.0 (Windows)
Document ID                     : uuid:5ff10098-3049-4fe2-ad5e-0eccd31efe8a
Instance ID                     : uuid:11e66f90-a030-4bc9-9b76-f168fc55960c
Page Count                      : 6
Page Layout                     : SinglePage
EXIF Metadata provided by EXIF.tools

Navigation menu