Netgear orporated 06100030 54 Mbps Wireless Powerline Access Point User Manual FullManual

Netgear Incorporated 54 Mbps Wireless Powerline Access Point FullManual

user manual

July 2004 202-10036-01
202-10036-01
Version 1
July 2004
NETGEAR, Inc.
4500 Great America Parkway
Santa Clara, CA 95054 USA
Reference Manual for the
54 Mbps Wireless Powerline
Access Point WGX102 v2
Regulatory Approvals
FCC Statement
This equipment has been tested and found to comply with the limits for a Class B digital
device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable
protection against harmful interference in a residential installation.
This equipment generates, uses and can radiate radio frequency energy and, if not installed and
used in accordance with the instructions, may cause harmful interference to radio communica-
tions. However, there is no guarantee that interference will not occur in a particular installation.
If this equipment does cause harmful interference to radio or television reception, which can be
determined by turning the equipment off and on, the user is encouraged to try to correct the
interference by one of the following measures:
@ Reorient or relocate the receiving antenna.
@ Increase the separation between the equipment and receiver.
@ Connect the equipment into an outlet on a circuit different from that to which the receiver
is connected.
@ Consult the dealer or an experienced radio/TV technician for help.
To assure continued compliance, any changes or modifications not expressly approved by the
party responsible for compliance could void the user's authority to operate this equipment.
(Example - use only shielded interface cables when connecting to computer or peripheral
devices).
FCC Radiation Exposure Statement
This equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled
environment. This equipment should be installed and operated with a minimum distance of 20
centimeters between the radiator and your body.
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) This device must accept any interference received, including interference that may cause
undesired operation.
This transmitter must not be co-located or operating in conjunction with any other antenna or
transmitter.
@
The antennas used for this transmitter must be installed to provide a separation distance of at
least 20 cm from all persons and must not be co-located or operating in conjunction with any
other antenna or transmitter.
@@
Channel
The Wireless Channel sets the radio frequency used for communication.
@ @ΗAccess Points use a fixed Channel. You can select the Channel used. This allows you to
choose a Channel which provides the least interference and best performance. In the USA
and Canada, 11 channel are available. If using multiple Access Points, it is better if adjacent
Access Points use different Channels to reduce interference.
@ @Η In "Infrastructure" mode, Wireless Stations normally scan all Channels, looking for an
Access Point. If more than one Access Point can be used, the one with the strongest
signal is used. (This can only happen within an ESS.)
@ @Η If using "Ad-hoc" mode (no Access Point), all Wireless stations should be set to use the
same Channel. However, most Wireless stations will still scan all Channels to see if there
is an existing "Ad-hoc" group they can join.
Note: This equipment marketed in USA is restricted by firmware to only operate on 2.4 GHz channel 1-11.
ii
July 2004 202-10036-01
© 2004 by NETGEAR, Inc. All rights reserved. July 2004.
Trademarks
NETGEAR is a trademark of Netgear, Inc. Microsoft, Windows, and Windows NT are registered trademarks of
Microsoft Corporation.Other brand and product names are registered trademarks or trademarks of their respective
holders.
Statement of Conditions
In the interest of improving internal design, operational function, and/or reliability, NETGEAR reserves the right to
make changes to the products described in this document without notice. NETGEAR does not assume any liability that
may occur due to the use or application of the product(s) or circuit layout(s) described herein.
Certificate of the Manufacturer/Importer
It is hereby certified that the Model WGX102 wireless router has been suppressed in accordance with the conditions set
out in the BMPT- AmtsblVfg 243/1991 and Vfg 46/1992. The operation of some equipment (for example, test
transmitters) in accordance with the regulations may, however, be subject to certain restrictions. Please refer to the notes
in the operating instructions.
Federal Office for Telecommunications Approvals has been notified of the placing of this equipment on the market and
has been granted the right to test the series for compliance with the regulations.
Voluntary Control Council for Interference (VCCI) Statement
This equipment is in the second category (information equipment to be used in a residential area or an adjacent area
thereto) and conforms to the standards set by the Voluntary Control Council for Interference by Data Processing
Equipment and Electronic Office Machines aimed at preventing radio interference in such residential areas. When used
near a radio or TV receiver, it may become the cause of radio interference. Read instructions for correct handling.
Customer Support
Refer to the Support Information Card that shipped with your 54 Mbps Wall-Plugged Router WGX102.
World Wide Web
NETGEAR maintains a World Wide Web home page that you can access at the universal resource locator (URL)
http://www.netgear.com. A direct connection to the Internet and a Web browser such as Internet Explorer
or Netscape are required.
Federal Communications Commission (FCC) Compliance Notice: Radio Frequency Notice
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of
the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential
installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instructions, may cause harmful interference to radio communications. However, there is no
guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to
radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try
to correct the interference by one or more of the following measures:
Reorient or relocate the receiving antenna.
Increase the separation between the equipment and receiver.
Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
Consult the dealer or an experienced radio/TV technician for help.
July 2004 202-10036-01
iii
FCC Caution
1. FCC RF Radiation Exposure Statement: The equipment complies wiht FCC RF radiation exposure limits set forth
for an uncontrolled environmnet. This equipment should be installed and operated with a minimum distance of 20
centimeters between the radiator and your body.
2. This Transmitter must not be co-located or oeprating in conjunction wiht any other antenna or transmitter.
3. Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the
user authority to operate the equipment.
Europe - EU Declaration of Conformity
Marking by the above symbol indicates compliance with the Essential Requirements of the R&TTE Directive of the
European Union (1999/5/EC). This equipment meets the following conformance standards: EN300 328, EN301 489-17,
EN60950
EN 55 022 Declaration of Conformance
This is to certify that the 54 Mbps Wall-Plugged Router WGX102 is shielded against the generation of radio interference
in accordance with the application of Council Directive 89/336/EEC, Article 4a. Conformity is declared by the
application of EN 55 022 Class B (CISPR 22).
Countries of Operation and Conditions of Use in the European Community
This device is intended to be operated in all countries of the European Community. Requirements for indoor vs. outdoor
operation, license requirements and allowed channels of oeprations apply in some countries as described below.
NOTE: The user must use the configuration utility provided with this product to ensure the channels of operation are in
conformance with the spectrum usage rules for European Community countries as described below:
This device requires that the user or installer properly enter the current country of opearation in the RAdio
Configuration Window as described in the user guide, before operating this device.
This device will automatically limit the allowable channesl of operation applicable to each country. Incorrectly
entering the country of operation may result in illegal operation and may cause harmful interference to other
systems. The user is obligated to ensure the device is operating according to the channel limitations, indoor/outdoor
restrictuions and license requirements for each European Community country as described in this document.
This device may be operated indoors or outdoors in all countries of the European Community using hte 2.4GHz
band except where noted below.
In Italy the end-user must apply for a license from the national spectrum authority to operate this device outdoors.
In France outdoor operation is only permitted using hte s.4-2.454 GHz band: Changes 1-7.
This device is a 2.4 GHz low power RF device intended for
home and office use in EU and EFTA member states. In some
EU / EFTA member states some restrictions may apply.
Please contact local spectrum management authorities for
further details before putting this device into operation.
July 2004 202-10036-01
iv
Declaration of Conformity in Languages of the European Community
Finnish: Valmistaja NETGEAR, Inc. vakuuttaa täten että Radio LAN device tyyppinen laite on direktiivin 1999/5/EY
oleellisten vaatimusten ja sitä koskevien direktiivin muiden ehtojen mukainen.
Dutch: Hierbij verklaart NETGEAR, Inc. dat het toestel Radio LAN device in overeenstemming is met de essentiële
eisen en de andere relevante bepalingen van richtlijn 1999/5/EG.
French: Par la présente NETGEAR, Inc. déclare que l'appareil Radio LAN device est conforme aux exigences
essentielles et aux autres dispositions pertinentes de la directive 1999/5/CE.
Swedish: Härmed intygar NETGEAR, Inc. att denna Radio LAN device står I överensstämmelse med de väsentliga
egenskapskrav och övriga relevanta bestämmelser som framgår av direktiv 1999/5/EG.
Danish: Undertegnede NETGEAR, Inc. erklærer herved, at følgende udstyr Radio LAN device overholder de væsentlige
krav og øvrige relevante krav i direktiv 1999/5/EF.
German: Hiermit erklärt NETGEAR, Inc., dass sich dieser/diese/dieses Radio LAN device in Übereinstimmung mit den
grundlegenden Anforderungen und den anderen relevanten Vorschriften der Richtlinie 1999/5/EG befindet.
Italian: Con la presente NETGEAR, Inc. dichiara che questo Radio LAN device è conforme ai requisiti essenziali ed alle
altre disposizioni pertinenti stabilite dalla direttiva 1999/5/CE.
Spanish: Por medio de la presente NETGEAR, Inc. declara que el Radio LAN device cumple con los requisitos
esenciales y cualesquiera otras disposiciones aplicables o exigibles de la Directiva 1999/5/CE.
Portugese: NETGEAR, Inc. declara que este Radio LAN device está conforme com os requisitos essenciais e outras
disposições da Directiva 1999/5/CE.
Bestätigung des Herstellers/Importeurs
Es wird hiermit bestätigt, daß das 54 Mbps Wall-Plugged Router WGX102 gemäß der im BMPT-AmtsblVfg 243/1991
und Vfg 46/1992 aufgeführten Bestimmungen entstört ist. Das vorschriftsmäßige Betreiben einiger Geräte (z.B.
Testsender) kann jedoch gewissen Beschränkungen unterliegen. Lesen Sie dazu bitte die Anmerkungen in der
Betriebsanleitung.
Das Bundesamt für Zulassungen in der Telekommunikation wurde davon unterrichtet, daß dieses Gerät auf den Markt
gebracht wurde und es ist berechtigt, die Serie auf die Erfüllung der Vorschriften hin zu überprüfen.
Contents v
July 2004 202-10036-01
Contents
Chapter 1
About This Manual
Audience, Scope, Conventions, and Formats ................................................................1-1
How to Use This Manual ................................................................................................1-2
How to Print this Manual .................................................................................................1-3
Chapter 2
Introduction
Key Features ..................................................................................................................2-1
802.11g Wireless Networking ...................................................................................2-2
A Powerful, True Firewall with Content Filtering ......................................................2-2
Security ....................................................................................................................2-3
Extensive Protocol Support ......................................................................................2-3
Easy Installation and Management ..........................................................................2-4
Maintenance and Support ........................................................................................2-4
Package Contents ..........................................................................................................2-5
The Router’s Front Panel .........................................................................................2-6
The Router’s Rear Panel .........................................................................................2-7
A Road Map for ‘How to Get There From Here’ .............................................................2-7
Chapter 3
Connecting the Router to the Internet
Prepare to Install Your Wireless Router ..........................................................................3-1
First, Connect the Wireless Router to the Internet .........................................................3-1
Now, Set Up a Computer for Wireless Connectivity .......................................................3-7
Troubleshooting Tips ......................................................................................................3-8
Overview of How to Access the Wireless Router ...........................................................3-9
How to Log On to the Wireless Router After
Configuration Settings Have Been Applied ............................................................3-10
How to Bypass the Configuration Assistant ...........................................................3-12
How to Manually Configure Your Internet Connection ..................................................3-13
July 2004 202-10036-01
vi Contents
Using the Smart Setup Wizard .....................................................................................3-15
NETGEAR Product Registration, Support, and Documentation ...................................3-16
Chapter 4
Wireless Configuration
Observe Performance, Placement, and Range Guidelines ............................................4-1
Implement Appropriate Wireless Security ......................................................................4-2
Understanding Wireless Settings ...................................................................................4-3
Information to Gather Before Changing Basic Wireless Settings .............................4-6
Default Factory Settings ...........................................................................................4-7
How to Set Up and Test Basic Wireless Connectivity ..............................................4-7
How to Configure WEP ............................................................................................4-9
How to Configure WPA-PSK Wireless Security ............................................................4-11
How to Restrict Wireless Access by MAC Address ......................................................4-11
Chapter 5
Content Filtering
Content Filtering Overview .............................................................................................5-1
Blocking Access to Internet Sites ...................................................................................5-2
Blocking Access to Internet Services .............................................................................5-3
Configuring a User Defined Service .........................................................................5-4
Configuring Services Blocking by IP Address Range ..............................................5-5
Scheduling When Blocking Will Be Enforced .................................................................5-5
Viewing Logs of Web Access or Attempted Web Access ...............................................5-6
Configuring E-Mail Alert and Web Access Log Notifications ..........................................5-7
Chapter 6
Maintenance
Viewing Wireless Router Status Information ...................................................................6-1
Viewing a List of Attached Devices .................................................................................6-5
Configuration File Management .....................................................................................6-5
Restoring and Backing Up the Configuration ...........................................................6-6
Erasing the Configuration .........................................................................................6-7
Upgrading the Router Software ......................................................................................6-7
Changing the Administrator Password ...........................................................................6-8
Chapter 7
Advanced Configuration of the Router
Configuring Port Triggering .............................................................................................7-1
Configuring Port Forwarding to Local Servers ................................................................7-3
Contents vii
July 2004 202-10036-01
Adding a Custom Service .........................................................................................7-5
Editing or Deleting a Port Forwarding Entry .............................................................7-5
Local Web and FTP Server Example .......................................................................7-6
Multiple Computers for Half Life, KALI or Quake III Example ..................................7-6
Configuring the WAN Setup Options ..............................................................................7-7
Connect Automatically, as Required ........................................................................7-7
Disabling the SPI Firewall ........................................................................................7-8
Setting Up a Default DMZ Server .............................................................................7-8
Responding to Ping on Internet WAN Port ...............................................................7-8
Setting the MTU Size ...............................................................................................7-9
Using the LAN IP Setup Options ..................................................................................7-10
Configuring LAN TCP/IP Setup Parameters ..........................................................7-10
Using the Router as a DHCP server ......................................................................7-12
Using Address Reservation ....................................................................................7-12
Using a Dynamic DNS Service .....................................................................................7-13
Configuring Static Routes .............................................................................................7-14
Enabling Remote Management Access .......................................................................7-16
Using Universal Plug and Play (UPnP) ........................................................................7-17
Chapter 8
Troubleshooting
Basic Functioning ...........................................................................................................8-1
Power Light Not On ..................................................................................................8-1
Lights Never Turn Off ...............................................................................................8-2
LAN or WAN Port Lights Not On ..............................................................................8-2
Troubleshooting the Web Configuration Interface ..........................................................8-3
Troubleshooting the ISP Connection ..............................................................................8-4
Troubleshooting a TCP/IP Network Using a Ping Utility .................................................8-5
Testing the LAN Path to Your Router .......................................................................8-5
Testing the Path from Your Computer to a Remote Device .....................................8-6
Restoring the Default Configuration and Password ........................................................8-7
Problems with Date and Time .........................................................................................8-8
July 2004 202-10036-01
viii Contents
Appendix A
Technical Specifications
Appendix B
Network, Routing, Firewall, and Basics
Related Publications ...................................................................................................... B-1
Basic Router Concepts .................................................................................................. B-1
What is a Router? ................................................................................................... B-1
Routing Information Protocol ................................................................................... B-2
IP Addresses and the Internet ....................................................................................... B-2
Netmask .................................................................................................................. B-4
Subnet Addressing .................................................................................................. B-4
Private IP Addresses ............................................................................................... B-7
Single IP Address Operation Using NAT ....................................................................... B-7
MAC Addresses and Address Resolution Protocol ................................................. B-8
Related Documents ................................................................................................. B-9
Domain Name Server .............................................................................................. B-9
IP Configuration by DHCP ........................................................................................... B-10
Internet Security and Firewalls .................................................................................... B-10
What is a Firewall? ................................................................................................ B-10
Stateful Packet Inspection ...............................................................................B-11
Denial of Service Attack ..................................................................................B-11
Ethernet Cabling ...........................................................................................................B-11
Category 5 Cable Quality ...................................................................................... B-12
Inside Twisted Pair Cables .................................................................................... B-13
Uplink Switches, Crossover Cables, and MDI/MDIX Switching ............................ B-14
Appendix C
Preparing Your Network
What You Need To Use a Router with a Broadband Modem ......................................... C-1
Cabling and Computer Hardware ............................................................................ C-1
Computer Network Configuration Requirements .................................................... C-1
Internet Configuration Requirements ...................................................................... C-2
Where Do I Get the Internet Configuration Parameters? ........................................ C-2
Record Your Internet Connection Information ......................................................... C-3
Preparing Your Computers for TCP/IP Networking ....................................................... C-3
Configuring Windows 95, 98, and Me for TCP/IP Networking ....................................... C-4
Contents ix
July 2004 202-10036-01
Install or Verify Windows Networking Components ................................................. C-4
Enabling DHCP to Automatically Configure TCP/IP Settings in Windows 95B, 98, and Me
C-6
Selecting Windows’ Internet Access Method .......................................................... C-8
Verifying TCP/IP Properties .................................................................................... C-8
Configuring Windows NT4, 2000 or XP for IP Networking ............................................ C-9
Install or Verify Windows Networking Components ................................................. C-9
DHCP Configuration of TCP/IP in Windows XP, 2000, or NT4 ............................. C-10
DHCP Configuration of TCP/IP in Windows XP ................................................... C-10
DHCP Configuration of TCP/IP in Windows 2000 ................................................ C-12
DHCP Configuration of TCP/IP in Windows NT4 .................................................. C-15
Verifying TCP/IP Properties for Windows XP, 2000, and NT4 .............................. C-17
Configuring the Macintosh for TCP/IP Networking ...................................................... C-18
MacOS 8.6 or 9.x .................................................................................................. C-18
MacOS X ............................................................................................................... C-18
Verifying TCP/IP Properties for Macintosh Computers ......................................... C-19
Verifying the Readiness of Your Internet Account ....................................................... C-20
Are Login Protocols Used? ................................................................................... C-20
What Is Your Configuration Information? .............................................................. C-20
Obtaining ISP Configuration Information for Windows Computers ....................... C-21
Obtaining ISP Configuration Information for Macintosh Computers ..................... C-22
Restarting the Network ................................................................................................ C-23
Appendix D
Wireless Networking Basics
Wireless Networking Overview ...................................................................................... D-1
Infrastructure Mode ................................................................................................. D-1
Ad Hoc Mode (Peer-to-Peer Workgroup) ................................................................ D-2
Network Name: Extended Service Set Identification (ESSID) ................................ D-2
Wireless Channels .................................................................................................. D-2
WEP Wireless Security .................................................................................................. D-4
WEP Authentication ................................................................................................ D-4
WEP Open System Authentication ......................................................................... D-5
WEP Shared Key Authentication ............................................................................ D-6
Key Size and Configuration .............................................................................. D-7
How to Use WEP Parameters ................................................................................. D-8
WPA Wireless Security .................................................................................................. D-8
July 2004 202-10036-01
xContents
How Does WPA Compare to WEP? ........................................................................ D-9
How Does WPA Compare to IEEE 802.11i? ........................................................ D-10
What are the Key Features of WPA Security? ...................................................... D-10
WPA Authentication: Enterprise-level User
Authentication via 802.1x/EAP and RADIUS .................................................. D-12
WPA Data Encryption Key Management ........................................................ D-14
Is WPA Perfect? .................................................................................................... D-16
Product Support for WPA ...................................................................................... D-16
Supporting a Mixture of WPA and WEP Wireless Clients ............................... D-16
Changes to Wireless Access Points ............................................................... D-16
Changes to Wireless Network Adapters ......................................................... D-17
Changes to Wireless Client Programs ............................................................ D-18
Glossary
List of Glossary Terms ...................................................................................................G-1
Index
About This Manual 1
July 2004 202-10036-01
Chapter 1
About This Manual
This chapter describes the intended audience, scope, conventions, and formats of this manual.
Audience, Scope, Conventions, and Formats
This reference manual assumes that the reader has basic to intermediate computer and Internet
skills. However, basic computer network, Internet, firewall, and VPN technologies tutorial
information is provided in the Appendices and on the Netgear Web site.
This guide uses the following typographical conventions:
This guide uses the following format to highlight special messages:
This manual is written for the WGX102 router according to these specifications.
Table 1-1. Typographical Conventions
italics Emphasis, books, CDs, URL names
bold User input
SMALL CAPS Screen text, file and server names, extensions, commands, IP addresses
Note: This format is used to highlight information of importance or special interest.
Table 1-2. Manual Scope
Product Version 54 Mbps Wall-Plugged Router WGX102
Manual Publication Date July 2004
Note: Product updates are available on the NETGEAR Web site at
http://kbserver.netgear.com/products/WGX102.asp.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
2About This Manual
July 2004 202-10036-01
How to Use This Manual
The HTML version of this manual includes a variety of navigation features as well as links to PDF
versions of the full manual and individual chapters.
Figure 1 -1: HTML version of this manual
1. Left pane. Use the left pane to view the Contents, Index, Search, and Favorites tabs.
To view the HTML version of the manual, you must have a version 4 or later browser with
JavaScript enabled.
2. Toolbar buttons. Use the toolbar buttons across the top to navigate, print pages, and more.
The Show in Contents button locates the current topic in the Contents tab.
Previous/Next buttons display the previous or next topic.
The PDF button links to a PDF version of the full manual.
The Print button prints the current topic. Click this button when a step-by-step
procedure is displayed to send the entire procedure to your printer. You do not
have to worry about specifying the correct range of pages.
3. Right pane. Use the right pane to view the contents of the manual. Also, each page of the
manual includes a link at the top right which links to a PDF file
containing just the currently selected chapter of the manual.
12
3
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
About This Manual 3
July 2004 202-10036-01
How to Print this Manual
To print this manual you can choose one of the following several options, according to your needs.
Printing a “How To” Sequence of Steps in the HTML View.
Use the Print button on the upper right of the toolbar to print the currently displayed
topic. Use this button when a step-by-step procedure is displayed to send the entire procedure
to your printer. You do not have to worry about specifying the correct range of pages.
Printing a Chapter.
Use the link at the top right of any page.
Click “PDF of This Chapter” link at the top right of any page in the chapter you want to
print. The PDF version of the chapter you were viewing opens in a browser window.
Note: Your computer must have the free Adobe Acrobat reader installed in order to view
and print PDF files. The Acrobat reader is available on the Adobe Web site at
http://www.adobe.com.
Click the print icon in the upper left of the window.
Tip: If your printer supports printing two pages on a single sheet of paper, you can save
paper and printer ink by selecting this feature.
Printing the Full Manual.
Use the PDF button in the toolbar at the top right of the browser window.
Click the PDF button on the upper right of the toolbar. The PDF version of the
chapter you were viewing opens in a browser window.
Click the print icon in the upper left of the window.
Tip: If your printer supports printing two pages on a single sheet of paper, you can save
paper and printer ink by selecting this feature.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
4About This Manual
July 2004 202-10036-01
Introduction 2-1
July 2004 202-10036-01
Chapter 2
Introduction
Congratulations on your purchase of the NETGEAR® 54 Mbps Wall-Plugged Router WGX102.
The WGX102 router provides connection for multiple computers to the Internet through an
external broadband access device (such as a cable modem or DSL modem) that is normally
intended for use by a single computer. This chapter describes the features of the NETGEAR 54
Mbps Wall-Plugged Router WGX102.
Key Features
The 54 Mbps Wall-Plugged Router WGX102 connects your local area network (LAN) to the
Internet through an XE102 Wall-Plugged Ethernet Bridge and an external access device such as a
cable modem or DSL modem.
The WGX102 router provides you with multiple Web content filtering options, plus browsing
activity reporting and instant alerts via e-mail. Parents and network administrators can establish
restricted access policies based on time-of-day, Web site addresses and address keywords, and
share high-speed cable/DSL Internet access for multiple computers. In addition to the Network
Address Translation (NAT) feature, the built-in firewall protects you from hackers.
With minimum setup, you can install and use the router within minutes, without the need to run
Ethernet cable throughout your home.
The WGX102 router provides the following features:
802.11g wireless networking, with the ability to operate in 802.11g-only, or 802.11b+g modes.
Easy, Web-based setup for installation and management.
Content Filtering and Site Blocking Security.
Note: This manual provides information on the complete features as of the date of
publication. Earlier versions of this product may not have all the features presented in
this manual. Go to http://kbserver.netgear.com/products/WGX102.asp where you will
find product firmware updates for your WGX102.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
2-2 Introduction
July 2004 202-10036-01
Ethernet connection to a wide area network (WAN) device, such as a cable modem or DSL
modem.
Extensive Protocol Support.
Login capability.
Front panel LEDs for easy monitoring of status and activity.
Flash memory for firmware upgrades.
802.11g Wireless Networking
The WGX102 router includes an 802.11g wireless access point, providing continuous, high-speed
54 Mbps access between your wireless and wall-plugged devices. The access point provides:
802.11g wireless networking at up to 54 Mbps.
802.11g wireless networking, with the ability to operate in 802.11g-only, 802.11b-only, or
802.11g and b modes, providing backwards compatibility with 802.11b devices or dedicating
the wireless network to the higher bandwidth 802.11g devices.
64-bit and 128-bit WEP encryption security.
WEP keys can be generated manually or by passphrase.
WPA-PSK support. Support for Wi-Fi Protected Access (WPA) data encryption which
provides strong data encryption and authentication based on a pre-shared key.
Wireless access can be restricted by MAC address.
Wireless network name broadcast can be turned off so that only devices that have the network
name (SSID) can connect.
A Powerful, True Firewall with Content Filtering
Unlike simple Internet sharing NAT routers, the WGX102 is a true firewall, using stateful packet
inspection to defend against hacker attacks. Its firewall features include:
Denial of Service (DoS) protection.
Automatically detects and thwarts DoS attacks such as Ping of Death, SYN Flood, LAND
Attack, and IP Spoofing.
Blocks unwanted traffic from the Internet to your LAN.
Blocks access from your LAN to Internet locations or services that you specify as off-limits.
Logs security incidents.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Introduction 2-3
July 2004 202-10036-01
The WGX102 will log security events such as blocked incoming traffic, port scans, attacks,
and administrator logins. You can configure the router to E-mail the log to you at specified
intervals. You can also configure the router to send immediate alert messages to your E-mail
address or E-mail pager whenever a significant event occurs.
The WGX102 prevents objectionable content from reaching your computers. The router
allows you to control access to Internet content by screening for keywords within Web
addresses. You can configure the router to log and report attempts to access objectionable
Internet sites.
Security
The WGX102 router is equipped with several features designed to maintain security, as described
in this section.
Computers Hidden by NAT
NAT opens a temporary path to the Internet for requests originating from the local network.
Requests originating from outside the LAN are discarded, preventing users outside the LAN
from finding and directly accessing the computers on the LAN.
Port Forwarding with NAT
Although NAT prevents Internet locations from directly accessing the computers on the LAN,
the router allows you to direct incoming traffic to specific computers based on the service port
number of the incoming request, or to one designated “DMZ” host computer. You can specify
forwarding of single ports or ranges of ports.
Extensive Protocol Support
The WGX102 router supports the Transmission Control Protocol/Internet Protocol
(TCP/IP) and Routing Information Protocol (RIP). For further information about TCP/IP, refer to
Appendix B, “Network, Routing, Firewall, and Basics.”
IP Address Sharing by NAT
The WGX102 router allows several networked computers to share an Internet account using
only a single IP address, which may be statically or dynamically assigned by your Internet
service provider (ISP). This technique, known as NAT, allows the use of an inexpensive
single-user ISP account.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
2-4 Introduction
July 2004 202-10036-01
Automatic Configuration of Attached computers by DHCP
The WGX102 router dynamically assigns network configuration information, including
IP, gateway, and domain name server (DNS) addresses, to attached computers on the LAN
using the Dynamic Host Configuration Protocol (DHCP). This feature greatly simplifies
configuration of computers on your local network.
DNS Proxy
When DHCP is enabled and no DNS addresses are specified, the router provides its own
address as a DNS server to the attached computers. The router obtains actual DNS addresses
from the ISP during connection setup and forwards DNS requests from the LAN.
PPP over Ethernet (PPPoE)
PPPoE is a protocol for connecting remote hosts to the Internet over a DSL connection by
simulating a dial-up connection. This feature eliminates the need to run a login program such
as Entersys or WinPOET on your computer.
Easy Installation and Management
You can install, configure, and operate the 54 Mbps Wall-Plugged Router WGX102 within
minutes after connecting it to the network. The following features simplify installation and
management tasks:
Browser-based management
Browser-based configuration allows you to easily configure your router from almost any type
of personal computer, such as Windows, Macintosh, or Linux. A user-friendly Setup Wizard is
provided and online help documentation is built into the browser-based Web Management
Interface.
Smart Wizard
The WGX102 router Smart Wizard automatically senses the type of Internet connection,
asking you only for the information required for your type of ISP account.
Firmware Update
The WGX102 router can be updated if a newer version of firmware is available. This lets you
take advantage of product enhancements for your WGX102 as soon as they become available.
Visual monitoring
The WGX102 router’s front panel LEDs provide an easy way to monitor its status and activity.
Maintenance and Support
NETGEAR offers the following features to help you maximize your use of the WGX102 router:
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Introduction 2-5
July 2004 202-10036-01
Flash memory for firmware upgrades.
Free technical support seven days a week, twenty-four hours a day, for 90 days from the date
of purchase.
Package Contents
The product package should contain the following items:
54 Mbps Wall-Plugged Router WGX102.
NETGEAR 54 Mbps Wall-Plugged Router WGX102 Resource CD (230-10091-01), including:
This guide.
The Installation Guide.
Application Notes and other helpful information.
54 Mbps Wall-Plugged Router WGX102 Installation Guide.
Registration, Warranty Card, and Support Information Card.
If any of the parts are incorrect, missing, or damaged, contact your NETGEAR dealer. Keep the
carton, including the original packing materials, in case you need to return the router for repair.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
2-6 Introduction
July 2004 202-10036-01
The Routers Front Panel
The front panel of the WGX102 router contains the status lights described below.
Figure 2-1: WGX102 Front Panel
You can use the status lights to verify connections. Viewed from left to right, the table below
describes the lights on the front panel of the router.
Table 2-1. Status Light Descriptions
Label Activity Description
Power On Green Solid
Off Power is supplied and the router.
Power is not supplied to the router.
Internet/
Home
Plug
On
Blink The Internet port has detected a link with an attached device.
Data is being transmitted or received by the Internet port.
Wireless On
Blinkf The Wireless port is initialized and the wireless feature is enabled.
Data is being transmitted or received by the wireless port.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Introduction 2-7
July 2004 202-10036-01
The Routers Label on the Rear Panel
The label on the rear panel of the WGX102 router contains the items listed below.
Figure 1-2: WGX102 Underside
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
2-8 Introduction
July 2004 202-10036-01
The Routers Bottom Panel
The Factory Default Reset push button on the bottom panel is for Restoring the Default
Configuration and Password.
A Road Map for ‘How to Get There From Here’
The introduction and adoption of any new technology can be a difficult process. Broadband
Internet service is considered so useful that more and more people want to set up networks in their
home to share a broadband connection. Wireless technology has removed one of the barriers to
networking—running wires. It allows more people to try networking while at the same time
exposes them to the inherent complexity of networking. General networking concepts, setup, and
maintenance can be difficult to understand. In addition, wireless technology adds issues, such as
range, interference, signal quality, and security to the picture.
To help overcome potential barriers to successfully using home networks, the table below
identifies how to accomplish such things as connecting to a wireless network, assuring appropriate
security measures are taken, browsing the Internet through your wireless connection, exchanging
files with other computers and using printers in the combined wireless and wired network.
Table 2-1. A Road Map for How to Get There From Here
If I Want To? What Do I Do? What’s Needed? How Do I?
Set up a
wireless
network
1. Set up the 54 Mbps
Wall-Plugged
Router WGX102
2. Identify the wireless
network name
(SSID) and, if used,
the wireless
security settings.
3. Set up the wireless
computers with the
settings from step
1.
A wireless network
A computer within the
operating range of the
wireless network. For
guidelines about the range
of wireless networks, see
“Observe Performance,
Placement, and Range
Guidelines” on page 4-1”.
To set up the WGX102, see
Chapter 3, “Connecting the
Router to the Internet” and follow
the instructions provided.
To learn about wireless
networking technology, see
Appendix 4, “Wireless
Configuration” for a general
introduction.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Introduction 2-9
July 2004 202-10036-01
Protect my
wireless
connection
from snooping,
hacking, or
information
theft.
1. Assure that the
wireless network
has security
features enabled.
2. Configure my
WGX102 with the
security settings of
the wireless
network.
3. Use Windows
security features.
A wireless network WEP or
WPA security enabled.
Wireless networking
equipment that supports
WEP or WPA, such as the
WGX102.
To learn about wireless
networking security, see
“Wireless Networking Basics” on
page D-1.
To use WEP security features,
see “Implement Appropriate
Wireless Security” on page 4-2
and configure your WGX102
accordingly.
Note: Secure Internet sites such as banks and online merchants use encryption security built into browsers
like Internet Explorer and Netscape. Any wireless networking security features you might implement are in
addition to those already in place on secure Internet sites.
Table 2-1. A Road Map for How to Get There From Here
If I Want To? What Do I Do? What’s Needed? How Do I?
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
2-10 Introduction
July 2004 202-10036-01
Share
Windows PC
files and
printers at
home in a
combined
wireless and
wired network.
Note: For
sharing files and
printers on other
types of
computers like
Macintosh or
Linux, refer to
the product
documentation
that came with
those
computers.
1. Use the Windows
Printers and Fax
features to locate
available printers in
the combined
wireless and wired
network in your
home.
2. Use the Windows
Add a Printer
wizard to add
access to a network
printer from the PC
you are using to
wirelessly connect
to the network.
3. From the File menu
of an application
such as Microsoft
Word, use the Print
Setup feature to
direct your print
output to the printer
in the network.
Windows computers (wired
and wireless) I am using to
connect to the network
need to be configured with
the Windows Client and
File and Print Sharing.
Windows computers (wired
and wireless) I am using to
connect to the network
need to be configured with
the same Windows
Workgroup or Domain
settings as the other
Windows computers in the
combined wireless and
wired network.
Any Windows networking
security access rights such
as login user name/
password that have been
assigned in the Windows
network must be provided
when Windows prompts for
such information.
If so-called Windows ‘peer
networking is being used,
the printer needs to be
enabled for sharing.
Windows Domain settings are
usually managed by corporate
computer support groups.
Windows Workgroup settings
are commonly managed by
individuals who want to set up
small networks in their homes, or
small offices.
For assistance with setting up
Windows networking, refer to the
PC Networking Tutorial on the
NETGEAR 54 Mbps
Wall-Plugged Router WGX102
Resource CD (230-10091-01)
and the Help information
provided in the Windows system
you are using.
For assistance with setting up
printers in Windows, refer to the
Help and Support information
that comes with the version of
the Windows operating systems
you are using.
Table 2-1. A Road Map for How to Get There From Here
If I Want To? What Do I Do? What’s Needed? How Do I?
Connecting the Router to the Internet 3-1
July 2004 202-10036-01
Chapter 3
Connecting the Router to the Internet
This chapter describes how to set up the router on your local area network (LAN) and connect to
the Internet. You will find out how to configure your 54 Mbps Wall-Plugged Router WGX102 for
Internet access using the Setup Wizard, or how to manually configure your Internet connection.
Follow these instructions to set up your router.
Prepare to Install Your Wireless Router
Observe the wireless placement and range guidelines in “Observe Performance, Placement,
and Range Guidelines” on page 4-1.
For Cable Modem Service: When you perform the wireless router setup steps be sure to use
the computer you first registered with your cable ISP.
For DSL Service: You may need information such as the DSL login name/e-mail address and
password in order to complete the wireless router setup.
Before proceeding with the wireless router installation, familiarize yourself with the contents of
the NETGEAR 54 Mbps Wall-Plugged Router WGX102 Resource CD (230-10091-01), especially
this manual and the animated tutorials for configuring networking on PCs.
First, Connect a Wall-Plugged Ethernet Bridge XE102
1. INSTALL THE WALL-PLUGGED ETHERENT BRIDGE
a. Turn off your computer.
b. Turn off the cable or DSL broadband modem.
c. Connect the Etherent cable from your cable or DSL modem to the Etherent port on the
XE102 Wall-Plugged Ethernet Bridge.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
3-2 Connecting the Router to the Internet
July 2004 202-10036-01
2. RESTART YOUR NETWORK IN THE CORRECT SEQUENCE
Warning: Failure to restart your network in the correct sequence could prevent you from
connecting to the Internet.
a. First, turn on the broadband modem and wait 2 minutes.
b. Now, turn on your computer.
Note: For DSL customers, if software logs you in to the Internet, do not run that software. You
may need to go to the Internet Explorer Tools menu, Internet Options, Connections tab page
where you can select “Never dial a connection.”
Figure 3-1: Verify the connections according to the status lights on the Ethernet Bridge
c. Check the Wall-Plugged Etherent Bridge status lights to verify the following:
Power: The power light should turn solid green. If it does not, see “Troubleshooting
Tips” on page 3-8.
• Test: The test light blinks when the router is first turned on, then goes off. If after 2
minutes it is still on, see “Troubleshooting Tips” on page 3-8.
Internet: The Internet port light should be lit. If not, make sure the Ethernet cable is
securely attached to the wireless router Internet port and the modem, and the modem
is powered on.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Connecting the Router to the Internet 3-3
July 2004 202-10036-01
Wireless: The Wireless light should be lit. If the Wireless light is not lit, see
“Troubleshooting Tips” on page 3-8.
LAN: A LAN light should be lit. Green indicates your computer is communicating at
100 Mbps; yellow indicates 10 Mbps. If a LAN light is not lit, check that the Ethernet
cable from the computer to the router is securely attached at both ends, and that the
computer is turned on.
Connect the Wireless Router to the Internet
1. CONNECT THE WIRELESS ROUTER, THE COMPUTER, AND THE MODEM
a. Turn off computer and modem again?
b. Locate the Ethernet cable (cable 1 in the diagram) that connects your PC to the modem.
Figure 3-2: Disconnect the Ethernet cable from the computer
c. Disconnect the cable at the computer end only, point A in the diagram above.
d. Look at the label on the bottom of the wireless router. Locate the Internet port. Securely
insert the Ethernet cable from your modem (cable 1 in the diagram below) into the
Ethernet port of the wireless router as shown in point B of the diagram below.
PRGHP
&DEOH
,QWHUQHW
FRPSXWHU
A
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
3-4 Connecting the Router to the Internet
July 2004 202-10036-01
Figure 3-3: Connect the wireless router to the modem
Note: Place the WGX102 router in a location which conforms to the “Observe
Performance, Placement, and Range Guidelines” on page 4-1. The stand provided with the
wireless router provides a convenient, space-saving way of installing the wireless router.
Avoid stacking it on other electronic equipment.
e. Securely insert the blue cable that came with your wireless router (the blue NETGEAR
cable in the diagram below) into a LAN port on the router such as LAN port 4 (point C in
the diagram), and the other end into the Ethernet port of your computer (point D in the
diagram).
Figure 3-4: Connect the computer to the wireless router
Your network cables are connected and you are ready to restart your network.
2. USE THE SMART WIZARD TO CONFIGURE THE WIRELESS ROUTER
PRGHP
&DEOH
,QWHUQHW
,QWHUQHW
SRUW
URXWHU
B
/$13RUWV

%OXH1(7*($5
&DEOH
,QWHUQHW
PRGHP
URXWHU
FRPSXWHU C
D
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Connecting the Router to the Internet 3-5
July 2004 202-10036-01
a. From the Ethernet connected PC you just set up, open a browser such as Internet Explorer
or Netscape® Navigator.
In its factory default state, the wireless router will automatically display the NETGEAR
Smart Wizard configuration assistant welcome page.
Figure 3-5: NETGEAR Smart Wizard configuration assistant
Note: If you do not see this page, clear the browser cache by going to the Internet Explorer
Tools menu, Internet Options, and clicking Delete Files, then selecting the Delete all
offline files check box and clicking OK.
If you still do not connect, type http://www.routerlogin.net in the browser address bar and
click Enter. Otherwise, to bypass this screen, see “How to Bypass the Configuration
Assistant” on page 3-12 and the “How to Manually Configure Your Internet Connection”
on page 3-13 topics in this chapter.
If you cannot connect to the wireless router, verify your computer networking setup. It
should be set to obtain both IP and DNS server addresses automatically, which is usually
so. For help with this, see Appendix C, “Preparing Your Network” or the animated
tutorials on the CD.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
3-6 Connecting the Router to the Internet
July 2004 202-10036-01
b. Click OK. Follow the prompts to proceed with the Smart Wizard configuration assistant to
connect to the Internet.
c. Follow the instructions on the screen to enable the wireless feature.
Figure 3-6: Enable the wireless feature
d. Enable your wireless network, click Next to proceed, then click Done to finish. If you
have trouble connecting to the Internet, see “Troubleshooting Tips” on page 3-8 to correct
basic problems.
Note: The Smart Wizard configuration assistant only appears when the router is in its
factory default state. After you configure the wireless router, it will not appear again. You
can always connect to the router to change its settings. To do so, open a browser such as
Internet Explorer and go to http://www.routerlogin.net. Then, when prompted, enter
admin as the user name and password for the password, both in lower case letters.
You are now connected to the Internet and the wireless feature of the wireless router is enabled!
Next, configure your wireless computer.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Connecting the Router to the Internet 3-7
July 2004 202-10036-01
Now, Set Up a Computer for Wireless Connectivity
You are now connected to the Internet and the wireless feature of the wireless router is enabled!
Next, configure your wireless computer.
1. CONFIGURE THE COMPUTERS WIRELESS ADAPTER SETTINGS
Figure 3-7: Configure wireless computer
NETGEAR, Inc. wireless adapters display a list of available wireless networks, and, when
wireless security is disabled, you simply choose yours from the list and connect.
For a non-NETGEAR wireless adapter, configure it to match your settings exactly. If you
changed the default Network Name (SSID), be sure to use the correct Network Name (SSID)
you set in the wireless router.
Warning: The Network Name (SSID) is case sensitive. Typing nETgear will not work.
2. VERIFY WIRELESS CONNECTIVITY
Verify wireless connectivity. Connect to the Internet or log in to the wireless router from a
computer with a wireless adapter. For wireless connectivity problems, see “Troubleshooting
Tips” on page 3-8.
You are now wirelessly connected to the Internet! Implement wireless security according to the
instructions in “Implement Appropriate Wireless Security” on page 4-2.
WIRELESS FEATURE DEFAULT SETTING
Network Name (SSID) NETGEAR
WEP Security Disabled
:LUHOHVV$GDSWHULQD
1RWHERRN&RPSXWHU
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
3-8 Connecting the Router to the Internet
July 2004 202-10036-01
Troubleshooting Tips
Here are some tips for correcting simple problems you may have.
Be sure to restart your network in this sequence:
1) Turn off the modem, wireless router, and computer; 2) Turn on the modem, wait two
minutes; 3) Turn on the wireless router and wait 1 minute; 4) Turn on the computer.
Make sure the Ethernet cables are securely plugged in.
The Internet status light on the wireless router will be lit if the Ethernet cable to the wireless
router from the modem is plugged in securely and the modem and wireless router are turned
on.
For each powered on computer connected to the wireless router with a securely plugged in
Ethernet cable, the corresponding wireless router LAN port status light will be lit. The label on
the bottom of the wireless router identifies the number of each LAN port.
Make sure the wireless settings in the computer and router match exactly.
The Wireless Network Name (SSID) and WEP settings of the router and wireless computer
must match exactly.
Make sure the network settings of the computer are correct.
LAN and wirelessly connected computers must be configured to obtain an IP address
automatically via DHCP. Please see Appendix C, “Preparing Your Network” or the animated
tutorials on the CD for help with this.
Some cable modem ISPs require you to use the MAC address of the computer registered on
the account. If so, in the Router MAC Address section of the Basic Settings menu, select “Use
this Computers MAC Address.” The router will then capture and use the MAC address of the
computer that you are now using. You must be using the computer that is registered with the
ISP. Click Apply to save your settings. Restart the network in the correct sequence.
Check the router status lights to verify correct router operation.
If the Power light does not turn solid green within 2 minutes after turning the router on, reset
the router according to the instructions in “Restoring the Default Configuration and Password”
on page 8-7.
If the Wireless light does not come on, verify that the wireless feature is turned on according to
the instructions in “Understanding Wireless Settings” on page 4-3.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Connecting the Router to the Internet 3-9
July 2004 202-10036-01
Overview of How to Access the Wireless Router
The table below describes how you access the wireless router, depending on the state of the
wireless router.
Table 3-1. Ways to access the router
Router State Access Options Description
Factory Default
Note: The wireless
router is supplied
in the factory
default state. Also,
the factory default
state is restored
when you use the
factory reset button.
See “Restoring the
Default
Configuration and
Password” on page
8-7 for more
information on this
feature.
Automatic Access via
the Smart Wizard
Configuration
Assistant
Any time a browser is opened on any computer connected to
the wireless router, the wireless router will
automatically connect to that browser and display the
Configuration Assistant welcome page.
There is no need to enter the wireless router URL in the
browser, or provide the login user name and password.
Manually enter a URL
to bypass the Smart
Wizard Configuration
Assistant
You can bypass the Smart Wizard Configuration Assistant
feature by typing
http://www.routerlogin.net/basicsetting.htm
in the browser address bar and clicking Enter. You will not be
prompted for a user name or password.
This will enable you to manually configure the wireless router
even when it is in the factory default state. When manually
configuring the router, you must complete the configuration
by clicking Apply when finished entering your settings. If you
do not do so, a browser on any PC connected to the router
will automatically display the router's Configuration Assistant
Welcome page rather than the browsers home page.
Configuration
Settings Have
Been Applied
Enter the standard
URL to access the
wireless router
Connect to the wireless router by typing either of these URLs
in the address field of your browser, then click Enter:
http://www.routerlogin.net
http://www.routerlogin.com
The wireless router will prompt you to enter the user name of
admin and the password. The default password is password.
Enter the IP address
of the wireless
router to access the
wireless router.
Connect to the wireless router by typing the IP address of the
wireless router in the address field of your browser, then click
Enter. 192.168.0.1 is the default IP address of the wireless
router. The wireless router will prompt you to enter the user
name of admin and the password. The default password is
password.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
3-10 Connecting the Router to the Internet
July 2004 202-10036-01
How to Log On to the Wireless Router After
Configuration Settings Have Been Applied
1. Connect to the wireless router by typing http://www.routerlogin.net in the address field of
your browser, then click Enter.
Figure 3-8: Login address
2. For security reasons, the router has its own user name and password. When prompted, enter
admin for the router user name and password for the router password, both in lower case
letters. To change the password, see “Changing the Administrator Password” on page 6-8.
Note: The router user name and password are not the same as any user name or password you
may use to log in to your Internet connection.
Figure 3-9: Login window
Once you have entered your user name and password, your Web browser should find the
WGX102 router and display the home page as shown in below.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Connecting the Router to the Internet 3-11
July 2004 202-10036-01
Figure 3-10: Login result: WGX102 home page
The browser will then display the WGX102 settings home page.
When the wireless router is connected to the Internet, click the Knowledge Base or the
Documentation link under the Web Support menu to view support information or the
documentation for the wireless router.
If you do not click Logout, the wireless router will wait 5 minutes after there is no activity before it
automatically logs you out.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
3-12 Connecting the Router to the Internet
July 2004 202-10036-01
How to Bypass the Configuration Assistant
1. When the wireless router is in the factory default state, type
http://www.routerlogin.net/basicsetting.htm in the address field of your browser, then click
Enter.
When the wireless router is in the factory default state, a user name and password are not
required.
2. The browser will then display the WGX102 settings home page shown in “Login result:
WGX102 home page” on page 3-11.
If you do not click Logout, the wireless router will wait 5 minutes after there is no activity
before it automatically logs you out.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Connecting the Router to the Internet 3-13
July 2004 202-10036-01
How to Manually Configure Your Internet Connection
You can manually configure your router using the menu below, or you can allow the Setup Wizard
to determine your configuration as described in the previous section.
Figure 3-11: Browser-based configuration Basic Settings menus
You can manually configure the router using the Basic Settings menu shown in Figure 3-11 using
these steps:
1. Connect to the wireless router by typing http://www.routerlogin.net in the address field of
your browser, then click Enter.
ISP Does Not Require Login ISP Does Require Login
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
3-14 Connecting the Router to the Internet
July 2004 202-10036-01
2. For security reasons, the wireless router has its own user name and password. When prompted,
enter admin for the router user name and password for the router password, both in lower
case letters.
3. Click Basic Settings on the Setup menu.
4. If your Internet connection does not require a login, click No at the top of the Basic Settings
menu and fill in the settings according to the instructions below. If your Internet connection
does require a login, click Yes, and skip to step 5.
a. Enter your Account Name (may also be called Host Name) and Domain Name.
These parameters may be necessary to access your ISP’s services such as mail or news
servers.
b. Internet IP Address:
If your ISP has assigned you a permanent, fixed (static) IP address for your computer,
select “Use static IP address”. Enter the IP address that your ISP assigned. Also enter the
netmask and the Gateway IP address. The Gateway is the ISP’s router to which your router
will connect.
c. Domain Name Server (DNS) Address:
If you know that your ISP does not automatically transmit DNS addresses to the router
during login, select “Use these DNS servers” and enter the IP address of your ISP’s
Primary DNS Server. If a Secondary DNS Server address is available, enter it also.
Note: If you enter an address here, restart the computers on your network so that these
settings take effect.
d. Routers MAC Address:
This section determines the Ethernet MAC address that will be used by the router on the
Internet port. Some ISPs will register the Ethernet MAC address of the network interface
card in your computer when your account is first opened. They will then only accept
traffic from the MAC address of that computer. This feature allows your router to
masquerade as that computer by “cloning” its MAC address.
To change the MAC address, select “Use this Computers MAC address.” The router
will then capture and use the MAC address of the computer that you are now using. You
must be using the one computer that is allowed by the ISP. Or, select “Use this MAC
address” and type it in here.
e. Click Apply to save your settings.
5. If your Internet connection does require a login, fill in the settings according to the instructions
below. Select Yes if you normally must launch a login program such as Enternet or WinPOET
in order to access the Internet.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Connecting the Router to the Internet 3-15
July 2004 202-10036-01
Note: After you finish setting up your router, you will no longer need to launch the ISP’s login
program on your computer in order to access the Internet. When you start an Internet
application, your router will automatically log you in.
a. Select your Internet service provider from the drop-down list.
Figure 3-12: Basic Settings ISP list
Note: Not all ISPs are listed here. The ones on this list have special requirements.
b. The screen will change according to the ISP settings requirements of the ISP you select.
c. Fill in the parameters for your Internet service provider.
d. Click Apply to save your settings. Click the Test button to verify you have Internet access.
Using the Smart Setup Wizard
You can use the Smart Setup Wizard to assist with manual configuration or to verify the Internet
connection. The Smart Setup Wizard is not the same as the Smart Wizard configuration assistant
(as illustrated in Figure 3-5) that only appears when the router is in its factory default state. After
you configure the wireless router, the Smart Wizard configuration assistant will not appear again.
To use the Smart Setup Wizard to assist with manual configuration or to verify the Internet
connection settings, follow this procedure.
1. Connect to the wireless router by typing http://www.routerlogin.net in the address field of
your browser, then click Enter.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
3-16 Connecting the Router to the Internet
July 2004 202-10036-01
2. For security reasons, the router has its own user name and password. When prompted, enter
admin for the router user name and password for the router password, both in lower case
letters. To change the password, see “Changing the Administrator Password” on page 6-8.
Note: The router user name and password are not the same as any user name or password you
may use to log in to your Internet connection.
Once you have entered your user name and password, your Web browser should find the
WGX102 router and display the home page as shown in “Login result: WGX102 home page”
on page 3-11.
3. Click Setup Wizard on the upper left of the main menu.
4. Click Next to proceed. Input your ISP settings, as needed.
5. At the end of the Setup Wizard, click the Test button to verify your Internet connection. If you
have trouble connecting to the Internet, use the Troubleshooting Tips “Troubleshooting Tips”
on page 3-8 to correct basic problems, or refer to Chapter 8, “Troubleshooting.”
NETGEAR Product Registration, Support, and Documentation
Register your product at http://www.NETGEAR.com/register. Registration is required before
you can use our telephone support service.
Product updates and Web support are always available by going to:
http://kbserver.netgear.com/products/WGR614v5.asp.
Documentation is available on the CD and at
http://kbserver.netgear.com/documentation/WGR614v5.asp.
When the wireless router is connected to the Internet, click the Knowledge Base or the
Documentation link under the Web Support menu to view support information or the
documentation for the wireless router.
Wireless Configuration 4-1
July 2004 202-10036-01
Chapter 4
Wireless Configuration
This chapter describes how to configure the wireless features of your WGX102 router. In planning
your wireless network, you should consider the level of security required. You should also select
the physical placement of your firewall in order to maximize the network speed. For further
information on wireless networking, refer to Appendix D, “Wireless Networking Basics.
Observe Performance, Placement, and Range Guidelines
The operating distance or range of your wireless connection can vary significantly based on the
physical placement of the wireless firewall. The latency, data throughput performance, and
notebook power consumption of wireless adapters also vary depending on your configuration
choices.
For best results, place your router:
Near the center of the area in which your computers will operate.
Away from sources of interference, such as computers, microwaves, and 2.4 GHz cordless
phones.
Away from large metal surfaces.
The time it takes to establish a wireless connection can vary depending on both your security
settings and placement. WEP connections can take slightly longer to establish. Also, WEP
encryption can consume more battery power on a notebook computer.
Note: Failure to follow these guidelines can result in significant performance
degradation or inability to wirelessly connect to the router. For complete range/
performance specifications, please see Appendix A, “Technical Specifications.”
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
4-2 Wireless Configuration
July 2004 202-10036-01
Implement Appropriate Wireless Security
Unlike wired network data, your wireless data transmissions can be received well beyond your
walls by anyone with a compatible adapter. For this reason, use the security features of your
wireless equipment. The WGX102 router provides highly effective security features which are
covered in detail in this chapter. Deploy the security features appropriate to your needs.
Figure 4-1: WGX102 wireless data security options
There are several ways you can enhance the security of your wireless network.
Restrict Access Based on MAC address. You can restrict access to only trusted computers so
that unknown computers cannot wirelessly connect to the WGX102. MAC address filtering
adds an obstacle against unwanted access to your network, but the data broadcast over the
wireless link is fully exposed.
Turn Off the Broadcast of the Wireless Network Name SSID. If you disable broadcast of
the SSID, only devices that have the correct SSID can connect. This nullifies the wireless
network ‘discovery’ feature of some products such as Windows XP, but the data is still fully
exposed to a determined snoop using specialized test equipment like wireless sniffers.
WEP. Wired Equivalent Privacy (WEP) data encryption provides data security. WEP Shared
Key authentication and WEP data encryption will block all but the most determined
eavesdropper.
Note: Indoors, computers can connect over 802.11b/g wireless networks at ranges of up
to 300 feet. Such distances can allow for others outside of your immediate area to access
your network.
:LUHOHVV'DWD
6HFXULW\2SWLRQV
5DQJHXSWRIRRWUDGLXV
2SHQV\VWHPHDV\EXWQRVHFXULW\
0$&DFFHVVOLVWQRGDWDVHFXULW\
:(3VHFXULW\EXWVRPHSHUIRUPDQFHLPSDFW
:3$36.YHU\VWURQJVHFXULW\
WGX102
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Wireless Configuration 4-3
July 2004 202-10036-01
WPA-PSK. Wi-Fi Protected Access (WPA) data encryption provides strong data security.
WPA-PSK will block eavesdropping. Because this is a new standard, wireless device driver
and software availability may be limited.
Understanding Wireless Settings
To configure the Wireless settings of your firewall, click the Wireless link in the main menu of the
browser interface. The Wireless Settings menu will appear, as shown below.
Figure 4-2: Wireless Settings menu
Name (SSID). The SSID is also known as the wireless network name. Enter a value of up to
32 alphanumeric characters. In a setting where there is more than one wireless network,
different wireless network names provide a means for separating the traffic. Any device you
want to participate in a particular wireless network will need to use this SSID for that network.
The WGX102 default SSID is: NETGEAR.
Region. This field identifies the region where the WGX102 can be used. It may not be legal to
operate the wireless features of the wireless router in a region other than one of those
identified in this field.
Channel. This field determines which operating frequency will be used. It should not be
necessary to change the wireless channel unless you notice interference problems with another
nearby access point. For more information on the wireless channel frequencies please refer to
“Wireless Channels” on page D-2.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
4-4 Wireless Configuration
July 2004 202-10036-01
Mode. This field determines which data communications protocol will be used. You can select
“g only,” “b only,” or “g and b.” “g only” dedicates the WGX102 to communicating with the
higher bandwidth 802.11g wireless devices exclusively. “b only” dedicates the WGX102 to
communicating with the higher bandwidth 802.11b wireless devices exclusively. The “g and
b” mode provides backward compatibility with the slower 802.11b wireless devices while still
enabling 802.11g communications.
Security Options. These options are the wireless security features you can enable. The table
below identifies the various basic wireless security options. A full explanation of these
standards is available in Appendix D, “Wireless Networking Basics.”
Table 4-1. Basic Wireless Security Options
Field Description
Automatic No wireless security.
WEP WEP offers the following options:
Open System
With Open Network Authentication and 64- or 128-bit WEP Data Encryption, the WGX102
does perform 64- or 128-bit data encryption but does not perform any authentication.
Shared Key
Shared Key authentication encrypts the SSID and data.
Choose the Encryption Strength (64- or 128-bit data encryption). Manually enter the key
values or enter a word or group of printable characters in the Passphrase box. Manually
entered keys are case sensitive but passphrase characters are not case sensitive.
Note: Not all wireless adapter configuration utilities support passphrase key generation.
•Auto
WPA-PSK WPA-Pre-shared Key does perform authentication, uses 128-bit data encryption and
dynamically changes the encryption keys making it nearly impossible to circumvent.
Enter a word or group of printable characters in the Password Phrase box. These characters
are case sensitive.
Note: Not all wireless adapter configuration utilities support WPA. Furthermore, client software
is required on the client. Windows XP and Windows 2000 with Service Pack 3 do include the
client software that supports WPA. Nevertheless, the wireless adapter hardware and driver
must also support WPA.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Wireless Configuration 4-5
July 2004 202-10036-01
To configure the advanced wireless settings of your firewall, click the Wireless Setup link in the
Advanced section of the main menu of the browser interface. The Wireless Settings menu will
appear, as shown below.
Figure 4-3: Advanced Wireless Settings menu
Allow Broadcast of Name (SSID). If you disable broadcast of the SSID, only devices that
have the correct SSID can connect. Disabling SSID broadcast nullifies the wireless network
‘discovery’ feature of some products such as Windows XP.
Wireless Card Access List. When the Trusted PCs Only radio button is selected, the
WGX102 checks the MAC address of the wireless station and only allows connections to
computers identified on the trusted computers list.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
4-6 Wireless Configuration
July 2004 202-10036-01
Information to Gather Before Changing Basic Wireless Settings
Before customizing your wireless settings, print this form and record the following information. If
you are working with an existing wireless network, the person who set up or is responsible for the
network will be able to provide this information. Otherwise, you will choose the settings for your
wireless network. Either way, record the settings for your wireless network in the spaces below.
Wireless Network Name (SSID): ______________________________ The SSID, identifies
the wireless network. You can use up to 32 alphanumeric characters. The SSID is case
sensitive. The SSID in the wireless adapter card must match the SSID of the wireless router. In
some configuration utilities (such as in Windows XP), the term “wireless network name” is
used instead of SSID.
If WEP Authentication is Used. Circle one: Open System, Shared Key, or Auto.
Note: If you select Shared Key, the other devices in the network will not connect unless they
are set to Shared Key as well and are configured with the correct key.
WEP Encryption key size. Choose one: 64-bit or 128-bit. Again, the encryption key size
must be the same for the wireless adapters and the wireless router.
Data Encryption (WEP) Keys. There are two methods for creating WEP data encryption
keys. Whichever method you use, record the key values in the spaces below.
Passphrase method. ______________________________ These characters are case
sensitive. Enter a word or group of printable characters and click the Generate Keys
button. Not all wireless devices support the passphrase method.
Manual method. These values are not case sensitive. For 64-bit WEP, enter 10 hex
digits (any combination of 0-9 or a-f). For 128-bit WEP, enter 26 hex digits.
Key 1: ___________________________________
Key 2: ___________________________________
Key 3: ___________________________________
Key 4: ___________________________________
If WPA-PSK Authentication is Used.
Passphrase: ______________________________ These characters are case sensitive.
Enter a word or group of printable characters. When you use WPA-PSK, the other devices
in the network will not connect unless they are set to WPA-PSK as well and are configured
with the correct Passphrase.
Use the procedures described in the following sections to configure the WGX102. Store this
information in a safe place.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Wireless Configuration 4-7
July 2004 202-10036-01
Default Factory Settings
When you first receive your WGX102, the default factory settings are shown below. You can
restore these defaults with the Factory Default Restore button on the rear panel. After you install
the WGX102 router, use the procedures below to customize any of the settings to better meet your
networking needs.
How to Set Up and Test Basic Wireless Connectivity
Follow the instructions below to set up and test basic wireless connectivity. Once you have
established basic wireless connectivity, you can enable security settings appropriate to your needs.
1. Log in to the WGX102 firewall at its default LAN address of http://www.routerlogin.net with
its default user name of admin and default password of password, or using whatever LAN
address and password you have set up.
FEATURE DEFAULT FACTORY SETTINGS
Wireless Access Point Enabled
Wireless Access List (MAC Filtering) All wireless stations allowed
SSID broadcast Enabled
SSID NETGEAR
11b/g RF Channel 11
Mode g and b
Authentication Type Open System
WEP Disabled
Note: If you use a wireless computer to configure WPA settings, you will be
disconnected when you click Apply. Reconfigure your wireless adapter to match the
new settings or access the wireless router from a wired computer to make any further
changes.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
4-8 Wireless Configuration
July 2004 202-10036-01
2. Click Wireless Settings in the main menu of the WGX102 firewall.
Figure 4-4: Wireless Settings menu
3. Choose a suitable descriptive name for the wireless network name (SSID). In the SSID box,
enter a value of up to 32 alphanumeric characters. The default SSID is NETGEAR.
Note: The SSID is case sensitive; NETGEAR is not the same as nETgear. Also, the SSID of
any wireless access adapters must match the SSID you configure in the 54 Mbps Wall-Plugged
Router WGX102. If they do not match, you will not get a wireless connection to the WGX102.
4. Set the Region. Select the region in which the wireless interface will operate.
5. Set the Channel. The default channel is 11.
This field determines which operating frequency will be used. It should not be necessary to
change the wireless channel unless you notice interference problems with another nearby
wireless router or access point. Select a channel that is not being used by any other wireless
networks within several hundred feet of your firewall. For more information on the wireless
channel frequencies please refer to “Wireless Channels” on page D-2.
6. For initial configuration and test, leave the Wireless Card Access List set to “Everyone” and
the Encryption Strength set to “Disabled.”
7. Click Apply to save your changes.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Wireless Configuration 4-9
July 2004 202-10036-01
8. Configure and test your computers for wireless connectivity.
Program the wireless adapter of your computers to have the same SSID and channel that you
configured in the router. Check that they have a wireless link and are able to obtain an IP
address by DHCP from the firewall.
Warning: The Network Name (SSID) is case sensitive. If NETGEAR is the Network Name
(SSID) in your wireless router, you must enter NETGEAR in your computer's wireless
settings. Typing nETgear will not work.
Once your computers have basic wireless connectivity to the firewall, you can configure the
advanced wireless security functions of the firewall.
How to Configure WEP
To configure WEP data encryption, follow these steps:
1. Log in to the WGX102 firewall at its default LAN address of http://www.routerlogin.net with
its default user name of admin and default password of password, or using whatever LAN
address and password you have set up.
2. Click Wireless Settings in the main menu of the WGX102 firewall.
3. From the Security Options menu, select WEP. The WEP options display.
Note: If you are configuring the firewall from a wireless computer and you change the
firewall’s SSID, channel, or security settings, you will lose your wireless connection
when you click on Apply. You must then change the wireless settings of your computer
to match the firewall’s new settings.
Note: If you use a wireless computer configure WEP settings, you will be disconnected
when you click on Apply. You must then either configure your wireless adapter to match
the wireless router WEP settings or access the wireless router from a wired computer to
make any further changes.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
4-10 Wireless Configuration
July 2004 202-10036-01
4. Select the Authentication Type and Encryptions strength from the drop-down lists.
Figure 4-5. Wireless Settings encryption menu
5. You can manually or automatically program the four data encryption keys. These values must
be identical on all computers and Access Points in your network.
Automatic - Enter a word or group of printable characters in the Passphrase box and click
the Generate button. The passphrase is case sensitive; NETGEAR is not the same as
nETgear. The four key boxes will be automatically populated with key values.
Manual - Enter ten hexadecimal digits (any combination of 0-9, a-f, or A-F). These entries
are not case sensitive; AA is the same as aa.
Select which of the four keys will be active.
Please refer to “WEP Wireless Security” on page D-4 for a full explanation of each of these
options, as defined by the IEEE 802.11 wireless communication standard.
6. Click Apply to save your settings.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Wireless Configuration 4-11
July 2004 202-10036-01
How to Configure WPA-PSK Wireless Security
Note: Not all wireless adapters support WPA. Furthermore, client software is also required.
Windows XP and Windows 2000 with service pack 3 do include WPA support. Nevertheless, the
wireless adapter hardware and driver must also support WPA. For instructions on configuring
wireless computers or PDAs for WPA-PSK security, consult the documentation for the product
you are using.
To configure WPA-PSK, follow these steps:
1. Click Security Settings in the Setup section of the main menu and select WPA-PSK for the
Security Type.
Figure 4-6: WPA Settings menu
2. Enter a word or group of 8-63 printable characters in the Password Phrase box.
3. Click Apply to save your settings.
How to Restrict Wireless Access by MAC Address
To restrict access based on MAC addresses, follow these steps:
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
4-12 Wireless Configuration
July 2004 202-10036-01
1. Log in to the WGX102 firewall at its default LAN address of http://www.routerlogin.net with
its default user name of admin and default password of password, or using whatever LAN
address and password you have set up.
2. Click Advanced Wireless Setup in the main menu of the WGX102 firewall.
3. From the Wireless Settings menu, click Setup Access List to display the Wireless Access
menu shown below.
Figure 4-7: Wireless Card Access List Setup
4. Click Add to add a wireless device to the wireless access control list. The Available Wireless
Cards list displays.
Note: When configuring the firewall from a wireless computer whose MAC address is
not in the Trusted PC list, if you select Turn Access Control On, you will lose your
wireless connection when you click on Apply. You must then access the wireless router
from a wired computer or from a wireless computer which is on the access control list to
make any further changes.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Wireless Configuration 4-13
July 2004 202-10036-01
5. Click the Turn Access Control On check box.
6. Then, either select from the list of available wireless cards the WGX102 has found in your
area, or enter the MAC address and device name for a device you plan to use. You can usually
find the MAC address printed on the wireless adapter.
Note: You can copy and paste the MAC addresses from the firewall’s Attached Devices menu
into the MAC Address box of this menu. To do this, configure each wireless computer to
obtain a wireless link to the firewall. The computer should then appear in the Attached
Devices menu.
7. Click Add to add this wireless device to the Wireless Card Access List. The screen changes
back to the list screen. Repeat these steps for each additional device you wish to add to the list.
8. Be sure to click Apply to save your wireless access control list settings.
Now, only devices on this list will be allowed to wirelessly connect to the WGX102.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
4-14 Wireless Configuration
July 2004 202-10036-01
Content Filtering 5-1
July 2004 202-10036-01
Chapter 5
Content Filtering
This chapter describes how to use the content filtering features of the 54 Mbps Wall-Plugged
Router WGX102 to protect your network. These features can be found by clicking on the Content
Filtering heading in the Main Menu of the browser interface.
Content Filtering Overview
The 54 Mbps Wall-Plugged Router WGX102 provides you with Web content filtering options,
plus browsing activity reporting and instant alerts via e-mail. Parents and network administrators
can establish restricted access policies based on time of day, Web addresses and Web address
keywords. You can also block Internet access by applications and services, such as chat or games.
To configure these features of your router, click on the subheadings under the Content Filtering
heading in the Main Menu of the browser interface. The subheadings are described below:
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
5-2 Content Filtering
July 2004 202-10036-01
Blocking Access to Internet Sites
The WGX102 router allows you to restrict access based on Web addresses and Web address
keywords. Up to 255 entries are supported in the Keyword list. The Block Sites menu is shown in
Figure 5-1 below:
Figure 5-1: Block Sites menu
To enable keyword blocking, select either “Per Schedule” or “Always”, then click Apply. If you
want to block by schedule, be sure that a time period is specified in the Schedule menu.
To add a keyword or domain, type it in the Keyword box, click Add Keyword, then click Apply.
To delete a keyword or domain, select it from the list, click Delete Keyword, then click Apply.
Keyword application examples:
If the keyword “XXX” is specified, the URL <http://www.badstuff.com/xxx.html> is blocked.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Content Filtering 5-3
July 2004 202-10036-01
If the keyword “.com” is specified, only Web sites with other domain suffixes (such as .edu or
.gov) can be viewed.
If you wish to block all Internet browsing access during a scheduled period, enter the keyword
“.” and set the schedule in the Schedule menu.
To specify a Trusted User, enter that PC’s IP address in the Trusted User box and click Apply.
You may specify one Trusted User, which is a PC that will be exempt from blocking and
logging. Since the Trusted User will be identified by an IP address, you should configure that
PC with a fixed IP address.
Blocking Access to Internet Services
The WGX102 router allows you to block the use of certain Internet services by PCs on your
network. This is called services blocking or port filtering. The Block Services menu is shown
below:
Figure 5-2: Block Services menu
Services are functions performed by server computers at the request of client computers. For
example, Web servers serve Web pages, time servers serve time and date information, and game
hosts serve data about other players’ moves. When a computer on your network sends a request for
service to a server computer on the Internet, the requested service is identified by a service or port
number. This number appears as the destination port number in the transmitted IP packets. For
example, a packet that is sent with destination port number 80 is an HTTP (Web server) request.
To enable service blocking, select either Per Schedule or Always, then click Apply. If you want to
block by schedule, be sure that a time period is specified in the Schedule menu.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
5-4 Content Filtering
July 2004 202-10036-01
To specify a service for blocking, click Add. The Add Services menu will appear, as shown below:
Figure 5-3: Add Services menu
From the Service Type list, select the application or service to be allowed or blocked. The list
already displays several common services, but you are not limited to these choices. To add any
additional services or applications that do not already appear, select User Defined.
Configuring a User Defined Service
To define a service, first you must determine which port number or range of numbers is used by
the application. The service numbers for many common protocols are defined by the Internet
Engineering Task Force (IETF) and published in RFC1700, “Assigned Numbers.” Service
numbers for other applications are typically chosen from the range 1024 to 65535 by the authors of
the application. This information can usually be determined by contacting the publisher of the
application or from user groups of newsgroups.
Enter the Starting Port and Ending Port numbers. If the application uses a single port number, enter
that number in both boxes.
If you know that the application uses either TCP or UDP, select the appropriate protocol. If you are
not sure, select Both.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Content Filtering 5-5
July 2004 202-10036-01
Configuring Services Blocking by IP Address Range
Under “Filter Services For”, you can block the specified service for a single computer, a range of
computers (having consecutive IP addresses), or all computers on your network.
Scheduling When Blocking Will Be Enforced
The WGX102 router allows you to specify when blocking will be enforced. The Schedule menu is
shown below:
Figure 5-4: Schedule menu
Use this schedule for blocking content. Check this box if you wish to enable a schedule for
Content Filtering. Click Apply.
Days to Block. Select days to block by checking the appropriate boxes. Select Everyday to
check the boxes for all days. Click Apply.
Time of Day to Block. Select a start and end time in 23:59 format. Select All day for 24 hour
blocking. Click Apply.
Be sure to select your Time Zone in the E-Mail menu.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
5-6 Content Filtering
July 2004 202-10036-01
Viewing Logs of Web Access or Attempted Web Access
The log is a detailed record of what Web sites you have accessed or attempted to access. Up to 128
entries are stored in the log. Log entries will only appear when keyword blocking is enabled, and
no log entries will be made for the Trusted User. An example is shown below:
Figure 5-5: Logs menu
Log entries are described in Table 5-1
Table 5-1. Log entry descriptions
Field Description
Number The index number of the content filter log entries. 128 entries
are available numbered from 0 to 127. The log will keep the
record of the latest 128 entries.
Date and Time The date and time the log entry was recorded.
Source IP The IP address of the initiating device for this log entry.
Action This field displays whether the access was blocked or allowed.
The name or IP address of the Web site or newsgroup visited or
attempted to access.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Content Filtering 5-7
July 2004 202-10036-01
Log action buttons are described in Table 5-2
Configuring E-Mail Alert and Web Access Log Notifications
In order to receive logs and alerts by E-mail, you must provide your E-mail information in the
E-Mail menu, shown below:
Figure 5-6: Email menu
Table 5-2. Log action buttons
Field Description
Refresh Click this button to refresh the log screen.
Clear Log Click this button to clear the log entries.
Send Log Click this button to E-mail the log immediately.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
5-8 Content Filtering
July 2004 202-10036-01
Turn e-mail notification on
Check this box if you wish to receive e-mail logs and alerts from the router.
Your outgoing mail server
Enter the name of your ISP’s outgoing (SMTP) mail server (such as mail.myISP.com). You
may be able to find this information in the configuration menu of your e-mail program. If you
leave this box blank, log and alert messages will not be sent via e-mail.
Send to this e-mail address
Enter the e-mail address to which logs and alerts are sent. This e-mail address will also be used
as the From address. If you leave this box blank, log and alert messages will not be sent via
e-mail.
You can specify that logs are automatically sent to the specified e-mail address with these options:
Send alert immediately
Check this box if you would like immediate notification of attempted access to a blocked site.
Send logs according to this schedule
Specifies how often to send the logs: Hourly, Daily, Weekly, or When Full.
Day for sending log
Specifies which day of the week to send the log. Relevant when the log is sent weekly or
daily.
Time for sending log
Specifies the time of day to send the log. Relevant when the log is sent daily or weekly.
If the Weekly, Daily or Hourly option is selected and the log fills up before the specified
period, the log is automatically e-mailed to the specified e-mail address. After the log is sent,
the log is cleared from the router’s memory. If the router cannot e-mail the log file, the log
buffer may fill up. In this case, the router overwrites the log and discards its contents.
The WGX102 router uses the Network Time Protocol (NTP) to obtain the current time and date
from one of several Network Time Servers on the Internet. In order to localize the time for your
log entries, you must specify your Time Zone:
•Time Zone
Select your local time zone. This setting will be used for the blocking schedule and for
time-stamping log entries.
Daylight Savings Time
Check this box if your time zone is currently under daylight savings time.
Maintenance 6-1
July 2004 202-10036-01
Chapter 6
Maintenance
This chapter describes how to use the maintenance features of your 54 Mbps Wall-Plugged Router
WGX102. These features can be found by clicking on the Maintenance heading in the Main Menu
of the browser interface.
Viewing Wireless Router Status Information
The Router Status menu provides status and usage information. From the Main Menu of the
browser interface, click on Maintenance, then select Router Status to view the System Status
screen, shown below.
Figure 6-1: Router Status screen
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
6-2 Maintenance
July 2004 202-10036-01
This screen shows the following parameters:
Table 6-1. Wireless Router Status Fields
Field Description
Account Name This field displays the Host Name assigned to the router.
Firmware Version This field displays the router firmware version.
Internet Port These parameters apply to the Internet (WAN) port of the router.
MAC Address This field displays the Media Access Control address being used by the
Internet (WAN) port of the router.
IP Address This field displays the IP address being used by the Internet (WAN) port
of the router. If no address is shown, the router cannot connect to the
Internet.
DHCP If set to None, the router is configured to use a fixed IP address on the
WAN.
If set to Client, the router is configured to obtain an IP address
dynamically from the ISP.
IP Subnet Mask This field displays the IP Subnet Mask being used by the Internet (WAN)
port of the router.
DNS This field displays the Domain Name Server addresses being used by
the router.
LAN Port These parameters apply to the Local (LAN) port of the router.
MAC Address This field displays the Media Access Control address being used by the
LAN port of the router.
IP Address This field displays the IP address being used by the Local (LAN) port of
the router. The default is 192.168.0.1
IP Subnet Mask This field displays the IP Subnet Mask being used by the Local (LAN)
port of the router. The default is 255.255.255.0
DHCP Identifies if the router’s built-in DHCP server is active for the LAN
attached devices.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Maintenance 6-3
July 2004 202-10036-01
Click on the “Connection Status” button to display the connection status, as shown below.
Figure 6-2: Connection Status screen
This screen shows the following statistics:.
Wireless Port These parameters apply to the Wireless port of the router.
MAC Address This field displays the Media Access Control address being used by the
Wireless port of the router.
Name (SSID) This field displays the wireless network name (SSID) being used by the
wireless port of the router. The default is NETGEAR.
Region This field displays the geographic region where the router being used. It
may be illegal to use the wireless features of the router in some parts of
the world.
Channel Identifies the channel of the wireless port being used. See “Wireless
Channels” on page D-2 for the frequencies used on each channel.
Table 6-2: Connection Status Items
Item Description
IP Address The WAN (Internet) IP Address assigned to the router.
Subnet Mask The WAN (Internet) Subnet Mask assigned to the router.
Table 6-1. Wireless Router Status Fields
Field Description
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
6-4 Maintenance
July 2004 202-10036-01
Click on the “Show Statistics” button to display router usage statistics, as shown below.
Figure 6-3: Router Statistics screen
This screen shows the following statistics:
Default Gateway The WAN (Internet) default gateway the router communicates with.
DHCP Server The IP address of the DHCP server which provided the IP configuration addresses.
DNS Server The IP address of the DNS server which provides network name to IP address
translation.
Lease Obtained When the DHCP lease was obtained.
Lease Expires When the DHCP lease was expires.
Release Click the Release button to release the DHCP lease.
Renew Click the Renew button to renew the DHCP lease.
Table 6-3: Router Statistics Items
Item Description
Port The statistics for the WAN (Internet) and LAN (local) ports. For each port, the screen
displays:
Status The link status of the port.
TxPkts The number of packets transmitted on this port since reset or manual clear.
RxPkts The number of packets received on this port since reset or manual clear.
Collisions The number of collisions on this port since reset or manual clear.
Tx B/s The current transmission (outbound) bandwidth used on the WAN and LAN ports.
Table 6-2: Connection Status Items
Item Description
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Maintenance 6-5
July 2004 202-10036-01
Viewing a List of Attached Devices
The Attached Devices menu contains a table of all IP devices that the router has discovered on the
local network. From the Main Menu of the browser interface, under the Maintenance heading,
select Attached Devices to view the table, shown below.
Figure 6-4: Attached Devices menu
For each device, the table shows the IP address, NetBIOS Host Name (if available), and Ethernet
MAC address. Note that if the router is rebooted, the table data is lost until the router rediscovers
the devices. To force the router to look for attached devices, click the Refresh button.
Configuration File Management
The configuration settings of the WGX102 router are stored within the router in a configuration
file. This file can be saved (backed up) to a user’s PC, retrieved (restored) from the users PC, or
cleared to factory default settings.
Rx B/s The current reception (inbound) bandwidth used on the WAN and LAN ports.
Up Time The amount of time since the router was last restarted.
Up Time The time elapsed since this port acquired the link.
Poll Interval Specifies the intervals at which the statistics are updated in this window. Click on Stop
to freeze the display.
Set Interval Enter a time and click the button to set the polling frequency.
Stop Click the Stop button to freeze the polling information.
Table 6-3: Router Statistics Items
Item Description
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
6-6 Maintenance
July 2004 202-10036-01
From the Main Menu of the browser interface, under the Maintenance heading, select the Settings
Backup heading to bring up the menu shown below.
Figure 6-5: Settings Backup menu
Three options are available, and are described in the following sections.
Restoring and Backing Up the Configuration
The Restore and Backup options in the Settings Backup menu allow you to save and retrieve a file
containing your router’s configuration settings.
To save your settings, click the Backup button. Your browser will extract the configuration file
from the router and will prompt you for a location on your PC to store the file. You can give the
file a meaningful name at this time, such as pacbell.cfg.
To restore your settings from a saved configuration file, enter the full path to the file on your PC or
click the Browse button to browse to the file. When you have located it, click the Restore button to
send the file to the router. The router will then reboot automatically.
Warning: Do not interrupt the reboot process.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Maintenance 6-7
July 2004 202-10036-01
Erasing the Configuration
It is sometimes desirable to restore the router to original default settings. This can be done by using
the Erase function, which will restore all factory settings. After an erase, the router's password will
be password, the LAN IP address will be 192.168.0.1, and the router's DHCP client will be
enabled.
To erase the configuration, click the Erase button.
To restore the factory default configuration settings without knowing the login password or IP
address, you must use the Default Reset button on the rear panel of the router. See “Restoring the
Default Configuration and Password” on page 8-7.
Upgrading the Router Software
The routing software of the WGX102 router is stored in FLASH memory, and can be upgraded as
new software is released by NETGEAR. Upgrade files can be downloaded from the NETGEAR
Web site. If the upgrade file is compressed (.ZIP file), you must first extract the file before sending
it to the router. The upgrade file can be sent to the router using your browser.
Note: The Web browser used to upload new firmware into the WGX102 router must support
HTTP uploads. NETGEAR recommends using Microsoft Internet Explorer or Netscape Navigator
3.0 or above.
From the Main Menu of the browser interface, under the Maintenance heading, select the Router
Upgrade link display the menu shown below.
Note: Before upgrading the router software, use the router backup utility to save your
configuration settings. Any router upgrade will revert the router settings back to the
factory defaults. After completing the upgrade, you can restore your settings from the
backup.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
6-8 Maintenance
July 2004 202-10036-01
Figure 6-6: Router Upgrade menu
To upload new firmware:
1. Download and unzip the new software file from NETGEAR.
2. In the Router Upgrade menu, click the Browse button and browse to the location of the
upgrade file
3. Click Upload.
Note: When uploading software to the WGX102 router, it is important not to interrupt the
Web browser by closing the window, clicking a link, or loading a new page. If the browser is
interrupted, it may corrupt the software. When the upload is complete, your router will
automatically restart. The upgrade process will typically take about one minute.
In some cases, you may need to reconfigure the router after upgrading.
Changing the Administrator Password
The default password for the routers Web Configuration Manager is password. NETGEAR
recommends that you change this password to a more secure password.
From the Main Menu of the browser interface, under the Maintenance heading, select Set
Password to bring up the menu shown below.
Note: Before changing the router password, use the router backup utility to save your
configuration settings. If after changing the password, you forget the new password you
assigned, you will have to reset the router back to the factory defaults to be able to log in
using the default password of password. This means you will have to restore all the
router configuration settings. If you ever have to reset the router back to the factory
defaults, you can restore your settings from the backup.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Maintenance 6-9
July 2004 202-10036-01
Figure 6-7: Set Password menu
To change the password, first enter the old password, then enter the new password twice. Click
Apply.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
6-10 Maintenance
July 2004 202-10036-01
Advanced Configuration of the Router 7-1
July 2004 202-10036-01
Chapter 7
Advanced Configuration of the Router
This chapter describes how to configure the advanced features of your 54 Mbps Wall-Plugged
Router WGX102. These features can be found under the Advanced heading in the Main Menu of
the browser interface.
.
Configuring Port Triggering
Port Triggering is an advanced feature that can be used to easily enable gaming and other internet
applications. Port Forwarding is typically used to enable similar functionality, but it is static and
has some limitations.
Note: If you use applications such as multi-player gaming, peer-to-peer connections, real time
communications such as instant messaging, or remote assistance (a feature in Windows XP), you
should also enable UPnP according to the instructions at “Using Universal Plug and Play (UPnP)“
on page 7-17.
Port Triggering opens an incoming port temporarily and does not require the server on the internet
to track your IP address if it is changed by DHCP, for example.
Port Triggering monitors outbound traffic. When the router detects traffic on the specified
outbound port, it remembers the IP address of the computer that sent the data and triggers the
incoming port. Incoming traffic on the triggered port is then forwarded to the triggering computer.
Using the Port Triggering page, you can make local computers or servers available to the Internet
for different services (for example, FTP or HTTP), to play Internet games (like Quake III), or to
use Internet applications (like CUseeMe).
Port Forwarding is designed for FTP, Web Server or other server based services. Once port
forwarding is set up, request from Internet will be forwarded to the proper server. On the contrary,
Note: If you are unfamiliar with networking and routing, refer to Appendix B,
“Network, Routing, Firewall, and Basics,” to become more familiar with the terms and
procedures used in this chapter.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
7-2 Advanced Configuration of the Router
July 2004 202-10036-01
port triggering will only allow request from Internet after a designated port is 'triggered'. Port
triggering applies to chat and Internet games.
Figure 7-1: Port Triggering Menu
Note: If Disable Port Triggering box is checked after configuring port triggering, port triggering
will be disabled but any port triggering configuration information you added to the router will be
retained even though it will not be used.
Port Triggering Timeout
Enter a value up to 9999 minutes. The Port Triggering Timeout value controls the inactivity
timer for the designated inbound port(s). The inbound port(s) will be closed when the
inactivity timer expires.
For Internet Games or Applications
Before starting, you'll need to know which service, application or game you'll be configuring.
Also, you'll need to have the outbound port (triggering port) address for this game or
application.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Advanced Configuration of the Router 7-3
July 2004 202-10036-01
Follow these steps to set up a computer to play Internet games or use Internet applications:
1. Click Add.
Figure 7-2: Add Port Trigger Menu
2. Enter a service name in the Service Name box.
3. Under Service User, selecting Any (default) will allow this service to be used by everyone in
your network. Otherwise, select Single address and enter the IP address of one computer to
restrict the service to a particular computer.
4. Select the Service Type.
5. Enter the outbound port number in Triggering Port box.
6. Enter the inbound connection port information such as Connection Type, Starting Port and
Ending Port boxes. This information can be obtained from the game or applications manual or
support Web site.
7. Click Apply to save your changes.
Configuring Port Forwarding to Local Servers
Although the router causes your entire local network to appear as a single machine to the Internet,
you can make a local server (for example, a Web server or game server) visible and available to the
Internet. This is done using the Port Forwarding menu. From the Main Menu of the browser
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
7-4 Advanced Configuration of the Router
July 2004 202-10036-01
interface, under Advanced, click on Port Forwarding to view the port forwarding menu, shown
below.
Figure 7-3: Port Forwarding Menu
Use the Port Forwarding menu to configure the router to forward incoming protocols to computers
on your local network. In addition to servers for specific applications, you can also specify a
Default DMZ Server to which all other incoming protocols are forwarded. The DMZ Server is
configured in the WAN Setup menu as discussed in “Configuring the WAN Setup Options“ on
page 7-7.
Before starting, you'll need to determine which type of service, application or game you'll provide
and the IP address of the computer that will provide each service. Be sure the computers IP
address never changes. To configure port forwarding to a local server:
1. From the Service & Game box, select the service or game that you will host on your network.
If the service does not appear in the list, refer to the following section, “Adding a Custom
Service”.
2. Enter the IP address of the local server in the corresponding Server IP Address box.
3. Click the Add button.
Note: To assure that the same computer always has the same IP address, use the reserved
IP address feature of your WGX102 router. See “Using Address Reservation“ on page
7-12 for instructions on how to use reserved IP addresses.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Advanced Configuration of the Router 7-5
July 2004 202-10036-01
Adding a Custom Service
To define a service, game or application that does not appear in the Services & Games list, you
must determine what port numbers are used by the service. For this information, you may need to
contact the manufacturer of the program that you wish to use. When you have the port number
information, follow these steps:
1. Click the Add Custom Service button.
Figure 7-4: Ports - Custom Services Menu
2. Type the service name in the Service Name box.
3. Type the beginning port number in the Starting Port box.
If the application uses only a single port; type the same port number in the Ending Port
box.
If the application uses a range of ports; type the ending port number of the range in the
Ending Port box.
4. Type the IP address of the computer in the Server IP Address box.
5. Click Apply to save your changes.
Editing or Deleting a Port Forwarding Entry
To edit or delete a Port Forwarding entry, follow these steps.
1. In the table, select the button next to the service name.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
7-6 Advanced Configuration of the Router
July 2004 202-10036-01
2. Click Edit or Delete.
Local Web and FTP Server Example
If a local computer with a private IP address of 192.168.0.33 acts as a Web and FTP server,
configure the Ports menu to forward HTTP (port 80) and FTP (port 21) to local address
192.168.0.33
In order for a remote user to access this server from the Internet, the remote user must know the IP
address that has been assigned by your ISP. If this address is 172.16.1.23, for example, an Internet
user can access your Web server by directing the browser to http://172.16.1.23. The assigned IP
address can be found in the Maintenance Status Menu, where it is shown as the WAN IP Address.
Some considerations for this application are:
If your account’s IP address is assigned dynamically by your ISP, the IP address may change
periodically as the DHCP lease expires.
If the IP address of the local computer is assigned by DHCP, it may change when the computer
is rebooted. To avoid this, you can manually configure the computer to use a fixed address.
Local computers must access the local server using the computers’ local LAN address
(192.168.0.33 in this example). Attempts by local computers to access the server using the
external IP address (172.16.1.23 in this example) will fail.
Multiple Computers for Half Life, KALI or Quake III Example
To set up an additional computer to play Half Life, KALI or Quake III:
1. Click the button of an unused port in the table.
2. Select the game again from the Services/Games list.
3. Change the beginning port number in the Start Port box.
For these games, use the supplied number in the default listing and add +1 for each additional
computer. For example, if you've already configured one computer to play Hexen II (using
port 26900), the second computer's port number would be 26901, and the third computer
would be 26902.
4. Type the same port number in the End Port box that you typed in the Start Port box.
5. Type the IP address of the additional computer in the Server IP Address box.
6. Click Apply.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Advanced Configuration of the Router 7-7
July 2004 202-10036-01
Some online games and videoconferencing applications are incompatible with NAT. The WGX102
router is programmed to recognize some of these applications and to work properly with them, but
there are other applications that may not function well. In some cases, one local computer can run
the application properly if that computers IP address is entered as the default in the PORTS Menu.
If one local computer acts as a game or videoconferencing host, enter its IP address as the default.
Configuring the WAN Setup Options
The WAN Setup options let you configure a DMZ server, change the MTU size and enable the
wireless router to respond to a Ping on the WAN port. These options are discussed below.
Figure 7-5: WAN Setup menu.
Connect Automatically, as Required
Normally, this option should be checked to enable it. An Internet connection will be made
automatically after each timeout, whenever Internet-bound traffic is detected. This provides
connection on demand and is potentially cost-saving in places in Europe for example where
Internet services charge by the minute.
If disabled, you must connect manually, using the “Connection Status” button on the Router Status
screen. This manual connection will stay up all the time without time outs.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
7-8 Advanced Configuration of the Router
July 2004 202-10036-01
Disabling the SPI Firewall
The SPI (Stateful Inspection) Firewall protects your LAN against Denial of Service attacks. This
should only be disabled in special circumstances.
Setting Up a Default DMZ Server
The default DMZ server feature is helpful when using some online games and videoconferencing
applications that are incompatible with NAT. The router is programmed to recognize some of these
applications and to work properly with them, but there are other applications that may not function
well. In some cases, one local computer can run the application properly if that computers IP
address is entered as the default DMZ server.
Incoming traffic from the Internet is normally discarded by the router unless the traffic is a
response to one of your local computers or a service that you have configured in the Ports menu.
Instead of discarding this traffic, you can have it forwarded to one computer on your network. This
computer is called the Default DMZ Server.
The WAN Setup menu, shown below lets you configure a Default DMZ Server.
To assign a computer or server to be a Default DMZ server, follow these steps:
1. Click WAN Setup link on the Advanced section of the main menu.
2. Type the IP address for that server. To remove the default DMZ server, replace the IP address
numbers with all zeros.
3. Click Apply.
Responding to Ping on Internet WAN Port
If you want the router to respond to a 'ping' from the Internet, click the ‘Respond to Ping on
Internet WAN Port’ check box. This should only be used as a diagnostic tool, since it allows your
router to be discovered. Don't check this box unless you have a specific reason to do so.
Note: DMZ servers pose a security risk. A computer designated as the default DMZ
server loses much of the protection of the firewall, and is exposed to exploits from the
Internet. If compromised, the DMZ server can be used to attack your network.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Advanced Configuration of the Router 7-9
July 2004 202-10036-01
Setting the MTU Size
The normal MTU (Maximum Transmit Unit) value for most Ethernet networks is 1500 Bytes,
1492 Bytes for PPPoE connections, or 1436 for PPTP connections. For some ISPs you may need to
reduce the MTU. But this is rarely required, and should not be done unless you are sure it is
necessary for your ISP connection.
Any packets sent through the router that are larger than the configured MTU size will be
repackaged into smaller packets to meet the MTU requirement. To change the MTU size:
1. Under MTU Size, enter a new size between 64 and 1500.
2. Click Apply to save the new configuration.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
7-10 Advanced Configuration of the Router
July 2004 202-10036-01
Using the LAN IP Setup Options
The second feature category under the Advanced heading is LAN IP Setup. This menu allows
configuration of LAN IP services such as DHCP and RIP. From the Main Menu of the browser
interface, under Advanced, click on LAN IP Setup to view the LAN IP Setup menu, shown below.
Figure 7-6: LAN IP Setup Menu
Configuring LAN TCP/IP Setup Parameters
The router is shipped preconfigured to use private IP addresses on the LAN side, and to act.as a
DHCP server. The router’s default LAN IP configuration is:
LAN IP addresses—192.168.0.1
Subnet mask—255.255.255.0
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Advanced Configuration of the Router 7-11
July 2004 202-10036-01
These addresses are part of the IETF-designated private address range for use in private networks,
and should be suitable in most applications. If your network has a requirement to use a different IP
addressing scheme, you can make those changes in this menu.
The LAN IP parameters are:
IP Address
This is the LAN IP address of the router.
IP Subnet Mask
This is the LAN Subnet Mask of the router. Combined with the IP address, the IP Subnet Mask
allows a device to know which other addresses are local to it, and which must be reached
through a gateway or router.
RIP Direction
RIP (Router Information Protocol) allows a router to exchange routing information with other
routers. The RIP Direction selection controls how the router sends and receives RIP packets.
Both is the default.
When set to Both or Out Only, the router will broadcast its routing table periodically.
When set to Both or In Only, it will incorporate the RIP information that it receives.
When set to None, it will not send any RIP packets and will ignore any RIP packets
received.
RIP Version
This controls the format and the broadcasting method of the RIP packets that the router sends.
(It recognizes both formats when receiving.) By default, this is set for RIP-1.
RIP-1 is universally supported. RIP-1 is probably adequate for most networks, unless you
have an unusual network setup.
RIP-2 carries more information. RIP-2B uses subnet broadcasting.
Note: If you change the LAN IP address of the router while connected through the
browser, you will be disconnected. You must then open a new connection to the new IP
address and log in again.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
7-12 Advanced Configuration of the Router
July 2004 202-10036-01
Using the Router as a DHCP server
By default, the router will function as a DHCP (Dynamic Host Configuration Protocol) server,
allowing it to assign IP, DNS server, and default gateway addresses to all computers connected to
the router's LAN. The assigned default gateway address is the LAN address of the router. IP
addresses will be assigned to the attached computers from a pool of addresses specified in this
menu. Each pool address is tested before it is assigned to avoid duplicate addresses on the LAN.
For most applications, the default DHCP and TCP/IP settings of the router are satisfactory. See “IP
Configuration by DHCP” on page B-10 for an explanation of DHCP and information about how to
assign IP addresses for your network.
If another device on your network will be the DHCP server, or if you will manually configure the
network settings of all of your computers, clear the ‘Use router as DHCP server’ check box.
Otherwise, leave it checked.
Specify the pool of IP addresses to be assigned by setting the Starting IP Address and Ending IP
Address. These addresses should be part of the same IP address subnet as the routers LAN IP
address. Using the default addressing scheme, you should define a range between 192.168.0.2 and
192.168.0.253, although you may wish to save part of the range for devices with fixed addresses.
The router will deliver the following parameters to any LAN device that requests DHCP:
An IP Address from the range you have defined
Subnet Mask
Gateway IP Address (the routers LAN IP address)
Primary DNS Server (if you entered a Primary DNS address in the Basic Settings menu;
otherwise, the routers LAN IP address)
Secondary DNS Server (if you entered a Secondary DNS address in the Basic Settings menu
Using Address Reservation
When you specify a reserved IP address for a computer on the LAN, that computer will always
receive the same IP address each time it access the routers DHCP server. Reserved IP addresses
should be assigned to servers that require permanent IP settings.
To reserve an IP address:
1. Click the Add button.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Advanced Configuration of the Router 7-13
July 2004 202-10036-01
2. In the IP Address box, type the IP address to assign to the computer or server.
(choose an IP address from the routers LAN subnet, such as 192.168.0.X)
3. Type the MAC Address of the computer or server.
(Tip: If the computer is already present on your network, you can copy its MAC address from
the Attached Devices menu and paste it here.)
4. Click Apply to enter the reserved address into the table.
Note: The reserved address will not be assigned until the next time the computer contacts the
router's DHCP server. Reboot the computer or access its IP configuration and force a DHCP
release and renew.
To edit or delete a reserved address entry:
1. Click the button next to the reserved address you want to edit or delete.
2. Click Edit or Delete.
Using a Dynamic DNS Service
If your network has a permanently assigned IP address, you can register a domain name and have
that name linked with your IP address by public Domain Name Servers (DNS). However, if your
Internet account uses a dynamically assigned IP address, you will not know in advance what your
IP address will be, and the address can change frequently. In this case, you can use a commercial
dynamic DNS service, who will allow you to register your domain to their IP address, and will
forward traffic directed at your domain to your frequently-changing IP address.
The router contains a client that can connect to many popular dynamic DNS services. You can
select one of these services and obtain an account with them. Then, whenever your ISP-assigned
IP address changes, your router will automatically contact your dynamic DNS service provider,
log in to your account, and register your new IP address.
From the Main Menu of the browser interface, under Advanced, click on Dynamic DNS. To
configure Dynamic DNS:
Note: If your ISP assigns a private WAN IP address (such as 192.168.x.x or 10.x.x.x),
the dynamic DNS service will not work because private addresses will not be routed on
the Internet.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
7-14 Advanced Configuration of the Router
July 2004 202-10036-01
1. Register for an account with one of the dynamic DNS service providers whose names appear
in the ‘Select Service Provider’ box. For example, for dyndns.org, go to www.dyndns.org.
2. Select the Use a dynamic DNS service check box.
3. Select the name of your dynamic DNS Service Provider.
4. Type the Host Name (or domain name) that your dynamic DNS service provider gave you.
5. Type the User Name for your dynamic DNS account.
6. Type the Password (or key) for your dynamic DNS account.
7. If your dynamic DNS provider allows the use of wildcards in resolving your URL, you may
select the Use wildcards check box to activate this feature.
For example, the wildcard feature will cause *.yourhost.dyndns.org to be aliased to the same
IP address as yourhost.dyndns.org
8. Click Apply to save your configuration.
Configuring Static Routes
Static Routes provide additional routing information to your router. Under normal circumstances,
the router has adequate routing information after it has been configured for Internet access, and
you do not need to configure additional static routes. You must configure static routes only for
unusual cases such as multiple routers or multiple IP subnets located on your network.
From the Main Menu of the browser interface, under Advanced, click on Static Routes to view the
Static Route menu, shown below.
Figure 7-7. Static Route Summary Table
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Advanced Configuration of the Router 7-15
July 2004 202-10036-01
To add or edit a Static Route:
1. Click the Add button to open the Add/Edit Menu, shown below.
Figure 7-8. Static Route Entry and Edit Menu
2. Type a route name for this static route in the Route Name box under the table.
(This is for identification purposes only.)
3. Select Private if you want to limit access to the LAN only. The static route will not be reported
in RIP.
4. Select Active to make this route effective.
5. Type the Destination IP Address of the final destination.
6. Type the IP Subnet Mask for this destination.
If the destination is a single host, type 255.255.255.255.
7. Type the Gateway IP Address, which must be a router on the same LAN segment as the router.
8. Type a number between 1 and 15 as the Metric value.
This represents the number of routers between your network and the destination. Usually, a
setting of 2 or 3 works, but if this is a direct connection, set it to 1.
9. Click Apply to have the static route entered into the table.
As an example of when a static route is needed, consider the following case:
Your primary Internet access is through a cable modem to an ISP.
You have an ISDN router on your home network for connecting to the company where
you are employed. This routers address on your LAN is 192.168.0.100.
Your company’s network is 134.177.0.0.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
7-16 Advanced Configuration of the Router
July 2004 202-10036-01
When you first configured your router, two implicit static routes were created. A default route was
created with your ISP as the gateway, and a second static route was created to your local network
for all 192.168.0.x addresses. With this configuration, if you attempt to access a device on the
134.177.0.0 network, your router will forward your request to the ISP. The ISP forwards your
request to the company where you are employed, and the request will likely be denied by the
company’s firewall.
In this case you must define a static route, telling your router that 134.177.0.0 should be accessed
through the ISDN router at 192.168.0.100. The static route would look like Figure 7-8.
In this example:
The Destination IP Address and IP Subnet Mask fields specify that this static route applies to
all 134.177.x.x addresses.
The Gateway IP Address fields specifies that all traffic for these addresses should be
forwarded to the ISDN router at 192.168.0.100.
A Metric value of 1 will work since the ISDN router is on the LAN.
Private is selected only as a precautionary security measure in case RIP is activated.
Enabling Remote Management Access
Using the Remote Management page, you can allow a user or users on the Internet to configure,
upgrade and check the status of your WGX102 router.
To configure your router for Remote Management:
1. Select the Turn Remote Management On check box.
2. Specify what external addresses will be allowed to access the routers remote management.
Note: For enhanced security, restrict access to as few external IP addresses as practical.
a. To allow access from any IP address on the Internet, select Everyone.
Note: Be sure to change the router's default configuration password to a very secure
password. The ideal password should contain no dictionary words from any language,
and should be a mixture of letters (both upper and lower case), numbers, and symbols.
Your password can be up to 30 characters.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Advanced Configuration of the Router 7-17
July 2004 202-10036-01
b. To allow access from a range of IP addresses on the Internet, select IP address range.
Enter a beginning and ending IP address to define the allowed range.
c. To allow access from a single IP address on the Internet, select Only this computer.
Enter the IP address that will be allowed access.
3. Specify the Port Number that will be used for accessing the management interface.
Web browser access normally uses the standard HTTP service port 80. For greater security,
change the remote management Web interface to a custom port by entering that number in the
box provided. Choose a number between 1024 and 65535, but do not use the number of any
common service port. The default is 8080, which is a common alternate for HTTP.
4. Click Apply to have your changes take effect.
Note: When accessing your router from the Internet, you will type your router's WAN IP address
into your browser's Address (in IE) or Location (in Netscape) box, followed by a colon (:) and the
custom port number. For example, if your external address is 134.177.0.123 and you use port
number 8080, you must enter http://134.177.0.123:8080 in your browser.
Using Universal Plug and Play (UPnP)
Universal Plug and Play (UPnP) helps devices, such as Internet appliances and computers,
access the network and connect to other devices as needed. UPnP devices can
automatically discover the services from other registered UPnP devices on the network.
Figure 7-9. UPnP Menu
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
7-18 Advanced Configuration of the Router
July 2004 202-10036-01
From the Main Menu of the browser interface, under Advanced, click on UPnP. Set up UPnP
according to the guidelines below.
Turn UPnP On: UPnP can be enabled or disabled for automatic device configuration. The default
setting for UPnP is disabled. If disabled, the router will not allow any device to automatically
control the resources, such as port forwarding (mapping), of the router.
Note: If you use applications such as multi-player gaming, peer-to-peer connections, real time
communications such as instant messaging, or remote assistance (a feature in Windows XP), you
should enable UPnP.
Advertisement Period: The Advertisement Period is how often the router will broadcast its UPnP
information. This value can range from 1 to 1440 minutes. The default period is 30 minutes.
Shorter durations will ensure that control points have current device status at the expense of
additional network traffic. Longer durations may compromise the freshness of the device status
but can significantly reduce network traffic.
Advertisement Time To Live: The time to live for the advertisement is measured in hops (steps)
for each UPnP packet sent. The time to live hop count is the number of steps a broadcast packet is
allowed to propagate for each UPnP advertisement before it disappears. The number of hops can
range from 1 to 255. The default value for the advertisement time to live is 4 hops, which should
be fine for most home networks. If you notice that some devices are not being updated or reached
correctly, then it may be necessary to increase this value a little.
UPnP Portmap Table: The UPnP Portmap Table displays the IP address of each UPnP device
that is currently accessing the router and which ports (Internal and External) that device has
opened. The UPnP Portmap Table also displays what type of port is opened and if that port is still
active for each IP address.
Troubleshooting 8-1
July 2004 202-10036-01
Chapter 8
Troubleshooting
This chapter gives information about troubleshooting your 54 Mbps Wall-Plugged Router
WGX102. After each problem description, instructions are provided to help you diagnose and
solve the problem.
Basic Functioning
After you turn on power to the router, the following sequence of events should occur:
1. When power is first applied, verify that the Power light is on.
2. After approximately 10 seconds, verify that:
a. The power light is solid green.
b. The LAN port lights are lit for any local ports that are connected.
c. The Internet port light is lit.
If a port’s light is lit, a link has been established to the connected device. If a LAN port is
connected to a 100 Mbps device, verify that the port’s light is green. If the port is 10 Mbps, the
light will be amber.
If any of these conditions does not occur, refer to the appropriate following section.
Power Light Not On
If the Power and other lights are off when your router is turned on:
Make sure that the power cord is properly connected to your router and that the power supply
adapter is properly connected to a functioning power outlet.
Check that you are using the 12 V DC 1A power adapter supplied by NETGEAR for this
product.
If the error persists, you have a hardware problem and should contact technical support.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
8-2 Troubleshooting
July 2004 202-10036-01
Lights Never Turn Off
When the router is turned on, the lights turns on for about 10 seconds and then turn off. If all the
lights stay on, there is a fault within the router.
If all lights are still on one minute after power up:
Cycle the power to see if the router recovers.
Clear the routers configuration to factory defaults. This will set the routers IP address to
192.168.0.1. This procedure is explained in “Restoring the Default Configuration and
Password” on page 8-7.
If the error persists, you might have a hardware problem and should contact technical support.
LAN or WAN Port Lights Not On
If either the LAN lights or Internet light do not light when the Ethernet connection is made, check
the following:
Make sure that the Ethernet cable connections are secure at the router and at the hub or
workstation.
Make sure that power is turned on to the connected hub or workstation.
Be sure you are using the correct cable:
When connecting the routers Internet port to a cable or DSL modem, use the cable that
was supplied with the cable or DSL modem. This cable could be a standard
straight-through Ethernet cable or an Ethernet crossover cable.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Troubleshooting 8-3
July 2004 202-10036-01
Troubleshooting the Web Configuration Interface
If you are unable to access the routers Web Configuration interface from a computer on your local
network, check the following:
Check the Ethernet connection between the computer and the router as described in the
previous section.
Make sure your computers IP address is on the same subnet as the router. If you are using the
recommended addressing scheme, your computers address should be in the range of
192.168.0.2 to 192.168.0.254. Refer to “Verifying TCP/IP Properties” on page C-8 or
“Verifying TCP/IP Properties for Macintosh Computers” on page C-19 to find your
computers IP address. Follow the instructions in Appendix C to configure your computer.
Note: If your computers IP address is shown as 169.254.x.x: Recent versions of Windows
and MacOS will generate and assign an IP address if the computer cannot reach a DHCP
server. These auto-generated addresses are in the range of 169.254.x.x. If your IP address is in
this range, check the connection from the computer to the router and reboot your computer.
If your routers IP address has been changed and you don’t know the current IP address, clear
the routers configuration to factory defaults. This will set the routers IP address to
192.168.0.1. This procedure is explained in “Restoring the Default Configuration and
Password” on page 8-7.
Make sure your browser has Java, JavaScript, or ActiveX enabled. If you are using Internet
Explorer, click Refresh to be sure the Java applet is loaded.
Try quitting the browser and launching it again.
Make sure you are using the correct login information. The factory default login name is
admin and the password is password. Make sure that CAPS LOCK is off when entering this
information.
If the router does not save changes you have made in the Web Configuration Interface, check the
following:
When entering configuration settings, be sure to click the APPLY button before moving to
another menu or tab, or your changes are lost.
Click the Refresh or Reload button in the Web browser. The changes may have occurred, but
the Web browser may be caching the old configuration.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
8-4 Troubleshooting
July 2004 202-10036-01
Troubleshooting the ISP Connection
If your router is unable to access the Internet, you should first determine whether the router is able
to obtain a WAN IP address from the ISP. Unless you have been assigned a static IP address, your
router must request an IP address from the ISP. You can determine whether the request was
successful using the Web Configuration Manager.
To check the WAN IP address:
1. Launch your browser and select an external site such as www.netgear.com
2. Access the Main Menu of the routers configuration at http://www.routerlogin.net.
3. Under the Maintenance heading, select Router Status
4. Check that an IP address is shown for the WAN Port
If 0.0.0.0 is shown, your router has not obtained an IP address from your ISP.
If your router is unable to obtain an IP address from the ISP, you may need to force your cable or
DSL modem to recognize your new router by performing the following procedure:
1. Turn off power to the cable or DSL modem.
2. Turn off power to your router.
3. Wait five minutes and reapply power to the cable or DSL modem.
4. When the modem’s lights indicate that it has reacquired sync with the ISP, reapply power to
your router.
5. Then restart your computer.
If your router is still unable to obtain an IP address from the ISP, the problem may be one of the
following:
Your ISP may require a login program.
Ask your ISP whether they require PPP over Ethernet (PPPoE) or some other type of login.
If your ISP requires a login, you may have incorrectly set the login name and password.
Your ISP may check for your computer's host name.
Assign the computer Host Name of your ISP account as the Account Name in the Basic
Settings menu.
Your ISP only allows one Ethernet MAC address to connect to Internet, and may check for
your computers MAC address. In this case:
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Troubleshooting 8-5
July 2004 202-10036-01
Inform your ISP that you have bought a new network device, and ask them to use the routers
MAC address.
OR
Configure your router to spoof your computers MAC address. This can be done in the Basic
Settings menu. Refer to “How to Bypass the Configuration Assistant” on page 3-12.
If your router can obtain an IP address, but your computer is unable to load any Web pages from
the Internet:
Your computer may not recognize any DNS server addresses.
A DNS server is a host on the Internet that translates Internet names (such as www addresses)
to numeric IP addresses. Typically your ISP will provide the addresses of one or two DNS
servers for your use. If you entered a DNS address during the router’s configuration, reboot
your computer and verify the DNS address as described in “Install or Verify Windows
Networking Components” on page C-9. Alternatively, you may configure your computer
manually with DNS addresses, as explained in your operating system documentation.
Your computer may not have the router configured as its TCP/IP gateway.
If your computer obtains its information from the router by DHCP, reboot the computer and
verify the gateway address as described in “Install or Verify Windows Networking
Components” on page C-9.
Troubleshooting a TCP/IP Network Using a Ping Utility
Most TCP/IP terminal devices and routers contain a ping utility that sends an echo request packet
to the designated device. The device then responds with an echo reply. Troubleshooting a TCP/IP
network is made very easy by using the ping utility in your computer or workstation.
Testing the LAN Path to Your Router
You can ping the router from your computer to verify that the LAN path to your router is set up
correctly.
To ping the router from a running Windows 95 or later:
1. From the Windows toolbar, click on the Start button and select Run.
2. In the field provided, type Ping followed by the IP address of the router, as in this example:
ping 192.168.0.1
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
8-6 Troubleshooting
July 2004 202-10036-01
3. Click on OK.
You should see a message like this one:
Pinging <IP address> with 32 bytes of data
If the path is working, you see this message:
Reply from < IP address >: bytes=32 time=NN ms TTL=xxx
If the path is not working, you see this message:
Request timed out
If the path is not functioning correctly, you could have one of the following problems:
Wrong physical connections
Make sure the LAN port LED is on. If the LED is off, follow the instructions in “LAN
or WAN Port Lights Not On” on page 8-2.
Check that the corresponding Link LEDs are on for your network interface card and
for the hub ports (if any) that are connected to your workstation and router.
Wrong network configuration
Verify that the Ethernet card driver software and TCP/IP software are both installed
and configured on your computer or workstation.
Verify that the IP address for your router and your workstation are correct and that the
addresses are on the same subnet.
Testing the Path from Your Computer to a Remote Device
After verifying that the LAN path works correctly, test the path from your computer to a remote
device. From the Windows run menu, type:
PING -n 10 <IP address>
where <IP address> is the IP address of a remote device such as your ISP’s DNS server.
If the path is functioning correctly, replies as in the previous section are displayed. If you do not
receive replies:
Check that your computer has the IP address of your router listed as the default gateway. If
the IP configuration of your computer is assigned by DHCP, this information will not be
visible in your computer’s Network Control Panel. Verify that the IP address of the router
is listed as the default gateway as described in “Install or Verify Windows Networking
Components” on page C-9.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Troubleshooting 8-7
July 2004 202-10036-01
Check to see that the network address of your computer (the portion of the IP address
specified by the netmask) is different from the network address of the remote device.
Check that your cable or DSL modem is connected and functioning.
If your ISP assigned a host name to your computer, enter that host name as the Account
Name in the Basic Settings menu.
Your ISP could be rejecting the Ethernet MAC addresses of all but one of your computers.
Many broadband ISPs restrict access by only allowing traffic from the MAC address of
your broadband modem, but some ISPs additionally restrict access to the MAC address of
a single computer connected to that modem. If this is the case, you must configure your
router to “clone” or “spoof” the MAC address from the authorized computer. Refer to
“How to Bypass the Configuration Assistant” on page 3-12.
Restoring the Default Configuration and Password
This section explains how to restore the factory default configuration settings, changing the
routers administration password to password and the IP address to 192.168.0.1. You can erase the
current configuration and restore factory defaults in two ways:
Use the Erase function of the router (see “Erasing the Configuration” on page 6-7).
Use the Default Reset button on the rear panel of the router. Use this method for cases when
the administration password or IP address is not known.
To restore the factory default configuration settings without knowing the administration password
or IP address, you must use the Default Reset button on the rear panel of the router.
1. Press and hold the Default Reset button until the power light blinks on (about 10 seconds).
2. Release the Default Reset button and wait for the router to reboot.
If the wireless router fails to restart or the power light continues to blink or turns solid amber,
the unit may be defective. If the error persists, you might have a hardware problem and should
contact technical support.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
8-8 Troubleshooting
July 2004 202-10036-01
Problems with Date and Time
The E-Mail menu in the Content Filtering section displays the current date and time of day. The
WGX102 router uses the Network Time Protocol (NTP) to obtain the current time from one of
several Network Time Servers on the Internet. Each entry in the log is stamped with the date and
time of day. Problems with the date and time function can include:
Date shown is January 1, 2000. Cause: The router has not yet successfully reached a Network
Time Server. Check that your Internet access settings are configured correctly. If you have just
completed configuring the router, wait at least five minutes and check the date and time again.
Time is off by one hour. Cause: The router does not automatically sense Daylight Savings
Time. In the E-Mail menu, check or uncheck the box marked “Adjust for Daylight Savings
Time”.
Technical Specifications A-1
July 2004 202-10036-01
Appendix A
Technical Specifications
This appendix provides technical specifications for the 54 Mbps Wall-Plugged Router WGX102.
Network Protocol and Standards Compatibility
Data and Routing Protocols: TCP/IP, RIP-1, RIP-2, DHCP
PPP over Ethernet (PPPoE)
Power Adapter
North America: 120V, 60 Hz, input
United Kingdom, Australia: 240V, 50 Hz, input
Europe: 230V, 50 Hz, input
Japan: 100V, 50/60 Hz, input
All regions (output): 12 V DC @ 1A output, 22W maximum
Physical Specifications
Dimensions: 28 x 175 x 119 mm (1.1 x 6.89 x 4.68 in.)
Weight: 0.3 kg (0.66 lb)
Environmental Specifications
Operating temperature: 0° to 40° C (32º to 104º F)
Operating humidity: 90% maximum relative humidity, noncondensing
Electromagnetic Emissions
Meets requirements of: FCC Part 15 Class B
VCCI Class B
EN 55 022 (CISPR 22), Class B
C-Tick N10947
Interface Specifications
LAN: 10BASE-T or 100BASE-Tx, RJ-45
WAN: 10BASE-T or 100BASE-Tx, RJ-45
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
A-2 Technical Specifications
July 2004 202-10036-01
Wireless
Radio Data Rates 1, 2, 5.5, 6, 9, 12, 18, 24, 36, 48, and 54 Mbps
Auto Rate Sensing
Frequency 2.4-2.5Ghz
Data Encoding: 802.11b: Direct Sequence Spread Spectrum (DSSS)
802.11g: Orthogonal Frequency Division Multiplexing (OFDM)
Maximum Computers Per Wireless
Network: Limited by the amount of wireless network traffic generated by each
node. Typically 30-70 nodes.
Operating Frequency Ranges: 2.412~2.462 GHz (US) 2.457~2.462 GHz (Spain)
2.412~2.484 GHz (Japan)2.457~2.472 GHz (France)
2.412~2.472 GHz (Europe ETSI)
802.11 Security: 40-bits (also called 64-bits) and 128-bits WEP and WPA
Network, Routing, Firewall, and Basics B-1
July 2004 202-10036-01
Appendix B
Network, Routing, Firewall, and Basics
This chapter provides an overview of IP networks, routing, and networking.
Related Publications
As you read this document, you may be directed to various RFC documents for further
information. An RFC is a Request For Comment (RFC) published by the Internet Engineering
Task Force (IETF), an open organization that defines the architecture and operation of the Internet.
The RFC documents outline and define the standard protocols and procedures for the Internet. The
documents are listed on the World Wide Web at www.ietf.org and are mirrored and indexed at
many other sites worldwide.
Basic Router Concepts
Large amounts of bandwidth can be provided easily and relatively inexpensively in a local area
network (LAN). However, providing high bandwidth between a local network and the Internet can
be very expensive. Because of this expense, Internet access is usually provided by a slower-speed
wide-area network (WAN) link such as a cable or DSL modem. In order to make the best use of the
slower WAN link, a mechanism must be in place for selecting and transmitting only the data traffic
meant for the Internet. The function of selecting and forwarding this data is performed by a router.
What is a Router?
A router is a device that forwards traffic between networks based on network layer information in
the data and on routing tables maintained by the router. In these routing tables, a router builds up a
logical picture of the overall network by gathering and exchanging information with other routers
in the network. Using this information, the router chooses the best path for forwarding network
traffic.
Routers vary in performance and scale, number of routing protocols supported, and types of
physical WAN connection they support. The 54 Mbps Wall-Plugged Router WGX102 is a small
office router that routes the IP protocol over a single-user broadband connection.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
B-2 Network, Routing, Firewall, and Basics
July 2004 202-10036-01
Routing Information Protocol
One of the protocols used by a router to build and maintain a picture of the network is the Routing
Information Protocol (RIP). Using RIP, routers periodically update one another and check for
changes to add to the routing table.
The WGX102 router supports both the older RIP-1 and the newer RIP-2 protocols. Among other
improvements, RIP-2 supports subnet and multicast protocols. RIP is not required for most home
applications.
IP Addresses and the Internet
Because TCP/IP networks are interconnected across the world, every machine on the Internet must
have a unique address to make sure that transmitted data reaches the correct destination. Blocks of
addresses are assigned to organizations by the Internet Assigned Numbers Authority (IANA).
Individual users and small organizations may obtain their addresses either from the IANA or from
an Internet service provider (ISP). You can contact IANA at www.iana.org.
The Internet Protocol (IP) uses a 32-bit address structure. The address is usually written in dot
notation (also called dotted-decimal notation), in which each group of eight bits is written in
decimal form, separated by decimal points.
For example, the following binary address:
11000011 00100010 00001100 00000111
is normally written as:
195.34.12.7
The latter version is easier to remember and easier to enter into your computer.
In addition, the 32 bits of the address are subdivided into two parts. The first part of the address
identifies the network, and the second part identifies the host node or station on the network. The
dividing point may vary depending on the address range and the application.
There are five standard classes of IP addresses. These address classes have different ways of
determining the network and host sections of the address, allowing for different numbers of hosts
on a network. Each address type begins with a unique bit pattern, which is used by the TCP/IP
software to identify the address class. After the address class has been determined, the software
can correctly identify the host section of the address. The follow figure shows the three main
address classes, including network and host sections of the address for each address type.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Network, Routing, Firewall, and Basics B-3
July 2004 202-10036-01
Figure B-1: Three Main Address Classes
The five address classes are:
Class A
Class A addresses can have up to 16,777,214 hosts on a single network. They use an eight-bit
network number and a 24-bit node number. Class A addresses are in this range:
1.x.x.x to 126.x.x.x.
Class B
Class B addresses can have up to 65,354 hosts on a network. A Class B address uses a 16-bit
network number and a 16-bit node number. Class B addresses are in this range:
128.1.x.x to 191.254.x.x.
Class C
Class C addresses can have 254 hosts on a network. Class C addresses use 24 bits for the
network address and eight bits for the node. They are in this range:
192.0.1.x to 223.255.254.x.
Class D
Class D addresses are used for multicasts (messages sent to many hosts). Class D addresses are
in this range:
224.0.0.0 to 239.255.255.255.
Class E
Class E addresses are for experimental use.
7261
C
lass A
N
etwork Node
C
lass B
C
lass C
Network Node
Network Node
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
B-4 Network, Routing, Firewall, and Basics
July 2004 202-10036-01
This addressing structure allows IP addresses to uniquely identify each physical network and each
node on each physical network.
For each unique value of the network portion of the address, the base address of the range (host
address of all zeros) is known as the network address and is not usually assigned to a host. Also,
the top address of the range (host address of all ones) is not assigned, but is used as the broadcast
address for simultaneously sending a packet to all hosts with the same network address.
Netmask
In each of the address classes previously described, the size of the two parts (network address and
host address) is implied by the class. This partitioning scheme can also be expressed by a netmask
associated with the IP address. A netmask is a 32-bit quantity that, when logically combined (using
an AND operator) with an IP address, yields the network address. For instance, the netmasks for
Class A, B, and C addresses are 255.0.0.0, 255.255.0.0, and 255.255.255.0, respectively.
For example, the address 192.168.170.237 is a Class C IP address whose network portion is the
upper 24 bits. When combined (using an AND operator) with the Class C netmask, as shown here,
only the network portion of the address remains:
11000000 10101000 10101010 11101101 (192.168.170.237)
combined with:
11111111 11111111 11111111 00000000 (255.255.255.0)
Equals:
11000000 10101000 10101010 00000000 (192.168.170.0)
As a shorter alternative to dotted-decimal notation, the netmask may also be expressed in terms of
the number of ones from the left. This number is appended to the IP address, following a backward
slash (/), as “/n.” In the example, the address could be written as 192.168.170.237/24, indicating
that the netmask is 24 ones followed by 8 zeros.
Subnet Addressing
By looking at the addressing structures, you can see that even with a Class C address, there are a
large number of hosts per network. Such a structure is an inefficient use of addresses if each end of
a routed link requires a different network number. It is unlikely that the smaller office LANs would
have that many devices. You can resolve this problem by using a technique known as subnet
addressing.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Network, Routing, Firewall, and Basics B-5
July 2004 202-10036-01
Subnet addressing allows us to split one IP network address into smaller multiple physical
networks known as subnetworks. Some of the node numbers are used as a subnet number instead.
A Class B address gives us 16 bits of node numbers translating to 64,000 nodes. Most
organizations do not use 64,000 nodes, so there are free bits that can be reassigned. Subnet
addressing makes use of those bits that are free, as shown below.
Figure B-2: Example of Subnetting a Class B Address
A Class B address can be effectively translated into multiple Class C addresses. For example, the
IP address of 172.16.0.0 is assigned, but node addresses are limited to 255 maximum, allowing
eight extra bits to use as a subnet address. The IP address of 172.16.97.235 would be interpreted as
IP network address 172.16, subnet number 97, and node number 235. In addition to extending
the number of addresses available, subnet addressing provides other benefits. Subnet addressing
allows a network manager to construct an address scheme for the network by using different
subnets for other geographical locations in the network or for other departments in the
organization.
Although the preceding example uses the entire third octet for a subnet address, note that you are
not restricted to octet boundaries in subnetting. To create more network numbers, you need only
shift some bits from the host address to the network address. For instance, to partition a Class C
network number (192.68.135.0) into two, you shift one bit from the host address to the network
address. The new netmask (or subnet mask) is 255.255.255.128. The first subnet has network
number 192.68.135.0 with hosts 192.68.135.1 to 129.68.135.126, and the second subnet has
network number 192.68.135.128 with hosts 192.68.135.129 to 192.68.135.254.
Note: The number 192.68.135.127 is not assigned because it is the broadcast address
of the first subnet. The number 192.68.135.128 is not assigned because it is the network
address of the second subnet.
7262
C
lass B
Network Subnet Node
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
B-6 Network, Routing, Firewall, and Basics
July 2004 202-10036-01
The following table lists the additional subnet mask bits in dotted-decimal notation. To use the
table, write down the original class netmask and replace the 0 value octets with the dotted-decimal
value of the additional subnet bits. For example, to partition your Class C network with subnet
mask 255.255.255.0 into 16 subnets (4 bits), the new subnet mask becomes 255.255.255.240.
The following table displays several common netmask values in both the dotted-decimal and the
masklength formats.
Configure all hosts on a LAN segment to use the same netmask for the following reasons:
Table 8-1. Netmask Notation Translation Table for One Octet
Number of Bits Dotted-Decimal Value
1 128
2 192
3 224
4 240
5 248
6 252
7 254
8 255
Table 8-2. Netmask Formats
Dotted-Decimal Masklength
255.0.0.0 /8
255.255.0.0 /16
255.255.255.0 /24
255.255.255.128 /25
255.255.255.192 /26
255.255.255.224 /27
255.255.255.240 /28
255.255.255.248 /29
255.255.255.252 /30
255.255.255.254 /31
255.255.255.255 /32
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Network, Routing, Firewall, and Basics B-7
July 2004 202-10036-01
So that hosts recognize local IP broadcast packets
When a device broadcasts to its segment neighbors, it uses a destination address of the local
network address with all ones for the host address. In order for this scheme to work, all devices
on the segment must agree on which bits comprise the host address.
So that a local router or bridge recognizes which addresses are local and which are remote
Private IP Addresses
If your local network is isolated from the Internet (for example, when using NAT), you can assign
any IP addresses to the hosts without problems. However, the IANA has reserved the following
three blocks of IP addresses specifically for private networks:
10.0.0.0 - 10.255.255.255
172.16.0.0 - 172.31.255.255
192.168.0.0 - 192.168.255.255
Choose your private network number from this range. The DHCP server of the WGX102 router is
preconfigured to automatically assign private addresses.
Regardless of your particular situation, do not create an arbitrary IP address; always follow the
guidelines explained here. For more information about address assignment, refer to RFC 1597,
Address Allocation for Private Internets, and RFC 1466, Guidelines for Management of IP
Address Space. The Internet Engineering Task Force (IETF) publishes RFCs on its Web site at
www.ietf.org.
Single IP Address Operation Using NAT
In the past, if multiple computers on a LAN needed to access the Internet simultaneously, you had
to obtain a range of IP addresses from the ISP. This type of Internet account is more costly than a
single-address account typically used by a single user with a modem, rather than a router. The
WGX102 router employs an address-sharing method called Network Address Translation (NAT).
This method allows several networked computers to share an Internet account using only a single
IP address, which may be statically or dynamically assigned by your ISP.
The router accomplishes this address sharing by translating the internal LAN IP addresses to a
single address that is globally unique on the Internet. The internal LAN IP addresses can be either
private addresses or registered addresses. For more information about IP address translation, refer
to RFC 1631, The IP Network Address Translator (NAT).
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
B-8 Network, Routing, Firewall, and Basics
July 2004 202-10036-01
The following figure illustrates a single IP address operation.
Figure B-3: Single IP Address Operation Using NAT
This scheme offers the additional benefit of firewall-like protection because the internal LAN
addresses are not available to the Internet through the translated connection. All incoming
inquiries are filtered out by the router. This filtering can prevent intruders from probing your
system. However, using port forwarding, you can allow one computer (for example, a Web server)
on your local network to be accessible to outside users.
MAC Addresses and Address Resolution Protocol
An IP address alone cannot be used to deliver data from one LAN device to another. To send data
between LAN devices, you must convert the IP address of the destination device to its media
access control (MAC) address. Each device on an Ethernet network has a unique MAC address,
which is a 48-bit number assigned to each device by the manufacturer. The technique that
associates the IP address with a MAC address is known as address resolution. Internet Protocol
uses the Address Resolution Protocol (ARP) to resolve MAC addresses.
7786EA
1
92.168.0.2
1
92.168.0.3
1
92.168.0.4
1
92.168.0.5
192.168.0.1 172.21.15.105
Private IP addresses
assigned by user
Internet
IP addresses
assigned by ISP
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Network, Routing, Firewall, and Basics B-9
July 2004 202-10036-01
If a device sends data to another station on the network and the destination MAC address is not yet
recorded, ARP is used. An ARP request is broadcast onto the network. All stations on the network
receive and read the request. The destination IP address for the chosen station is included as part of
the message so that only the station with this IP address responds to the ARP request. All other
stations discard the request.
Related Documents
The station with the correct IP address responds with its own MAC address directly to the sending
device. The receiving station provides the transmitting station with the required destination MAC
address. The IP address data and MAC address data for each station are held in an ARP table. The
next time data is sent, the address can be obtained from the address information in the table.
For more information about address assignment, refer to the IETF documents RFC 1597, Address
Allocation for Private Internets, and RFC 1466, Guidelines for Management of IP Address Space.
For more information about IP address translation, refer to RFC 1631, The IP Network Address
Translator (NAT).
Domain Name Server
Many of the resources on the Internet can be addressed by simple descriptive names such as
www.NETGEAR.com. This addressing is very helpful at the application level, but the descriptive
name must be translated to an IP address in order for a user to actually contact the resource. Just as
a telephone directory maps names to phone numbers, or as an ARP table maps IP addresses to
MAC addresses, a domain name system (DNS) server maps descriptive names of network
resources to IP addresses.
When a computer accesses a resource by its descriptive name, it first contacts a DNS server to
obtain the IP address of the resource. The computer sends the desired message using the IP
address. Many large organizations, such as ISPs, maintain their own DNS servers and allow their
customers to use the servers to look up addresses.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
B-10 Network, Routing, Firewall, and Basics
July 2004 202-10036-01
IP Configuration by DHCP
When an IP-based local area network is installed, each computer must be configured with an
IP address. If the computers need to access the Internet, they should also be configured with a
gateway address and one or more DNS server addresses. As an alternative to manual
configuration, there is a method by which each computer on the network can automatically obtain
this configuration information. A device on the network may act as a Dynamic Host Configuration
Protocol (DHCP) server. The DHCP server stores a list or pool of IP addresses, along with other
information (such as gateway and DNS addresses) that it may assign to the other devices on the
network. The WGX102 router has the capacity to act as a DHCP server.
The WGX102 router also functions as a DHCP client when connecting to the ISP. The firewall can
automatically obtain an IP address, subnet mask, DNS server addresses, and a gateway address if
the ISP provides this information by DHCP.
Internet Security and Firewalls
When your LAN connects to the Internet through a router, an opportunity is created for outsiders
to access or disrupt your network. A NAT router provides some protection because by the very
nature of the process, the network behind the router is shielded from access by outsiders on the
Internet. However, there are methods by which a determined hacker can possibly obtain
information about your network or at the least can disrupt your Internet access. A greater degree of
protection is provided by a firewall router.
What is a Firewall?
A firewall is a device that protects one network from another, while allowing communication
between the two. A firewall incorporates the functions of the NAT router, while adding features for
dealing with a hacker intrusion or attack. Several known types of intrusion or attack can be
recognized when they occur. When an incident is detected, the firewall can log details of the
attempt, and can optionally send E-mail to an administrator notifying them of the incident. Using
information from the log, the administrator can take action with the ISP of the hacker. In some
types of intrusions, the firewall can fend off the hacker by discarding all further packets from the
hackers IP address for a period of time.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Network, Routing, Firewall, and Basics B-11
July 2004 202-10036-01
Stateful Packet Inspection
Unlike simple Internet sharing routers, a firewall uses a process called stateful packet inspection to
ensure secure firewall filtering to protect your network from attacks and intrusions. Since
user-level applications such as FTP and Web browsers can create complex patterns of network
traffic, it is necessary for the firewall to analyze groups of network connection states. Using
Stateful Packet Inspection, an incoming packet is intercepted at the network layer and then
analyzed for state-related information associated with all network connections. A central cache
within the firewall keeps track of the state information associated with all network connections.
All traffic passing through the firewall is analyzed against the state of these connections in order to
determine whether or not it will be allowed to pass through or rejected.
Denial of Service Attack
A hacker may be able to prevent your network from operating or communicating by launching a
Denial of Service (DoS) attack. The method used for such an attack can be as simple as merely
flooding your site with more requests than it can handle. A more sophisticated attack may attempt
to exploit some weakness in the operating system used by your router or gateway. Some operating
systems can be disrupted by simply sending a packet with incorrect length information.
Ethernet Cabling
Although Ethernet networks originally used thick or thin coaxial cable, most installations currently
use unshielded twisted pair (UTP) cabling. The UTP cable contains eight conductors, arranged in
four twisted pairs, and terminated with an RJ45 type connector. A normal straight-through UTP
Ethernet cable follows the EIA568B standard wiring as described below in Table B-1.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
B-12 Network, Routing, Firewall, and Basics
July 2004 202-10036-01
Category 5 Cable Quality
Category 5 distributed cable that meets ANSI/EIA/TIA-568-A building wiring standards can be a
maximum of 328 feet (ft.) or 100 meters (m) in length, divided as follows:
20 ft. (6 m) between the hub and the patch panel (if used)
295 ft. (90 m) from the wiring closet to the wall outlet
10 ft. (3 m) from the wall outlet to the desktop device
The patch panel and other connecting hardware must meet the requirements for 100 Mbps
operation (Category 5). Only 0.5 inch (1.5 cm) of untwist in the wire pair is allowed at any
termination point.
A twisted pair Ethernet network operating at 10 Mbits/second (10BASE-T) will often tolerate low
quality cables, but at 100 Mbits/second (10BASE-Tx) the cable must be rated as Category 5, or
Cat 5, by the Electronic Industry Association (EIA). This rating will be printed on the cable jacket.
A Category 5 cable will meet specified requirements regarding loss and crosstalk. In addition,
there are restrictions on maximum cable length for both 10 and 100 Mbits/second networks.
Table B-1. UTP Ethernet cable wiring, straight-through
Pin Wire color Signal
1 Orange/White Transmit (Tx) +
2 Orange Transmit (Tx) -
3 Green/White Receive (Rx) +
4Blue
5 Blue/White
6 Green Receive (Rx) -
7 Brown/White
8Brown
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Network, Routing, Firewall, and Basics B-13
July 2004 202-10036-01
Inside Twisted Pair Cables
For two devices to communicate, the transmitter of each device must be connected to the receiver
of the other device. The crossover function is usually implemented internally as part of the
circuitry in the device. Computers and workstation adapter cards are usually media-dependent
interface ports, called MDI or uplink ports. Most repeaters and switch ports are configured as
media-dependent interfaces with built-in crossover ports, called MDI-X or normal ports. Auto
Uplink technology automatically senses which connection, MDI or MDI-X, is needed and makes
the right connection.
Figure B-4 illustrates straight-through twisted pair cable.
Figure B-4: Straight-Through Twisted-Pair Cable
Figure B-5 illustrates crossover twisted pair cable.
Figure B-5: Crossover Twisted-Pair Cable
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
B-14 Network, Routing, Firewall, and Basics
July 2004 202-10036-01
Figure B-6: Category 5 UTP Cable with Male RJ-45 Plug at Each End
Note: Flat “silver satin” telephone cable may have the same RJ-45 plug. However, using telephone
cable results in excessive collisions, causing the attached port to be partitioned or disconnected
from the network.
Uplink Switches, Crossover Cables, and MDI/MDIX Switching
In the wiring table above, the concept of transmit and receive are from the perspective of the
computer, which is wired as Media Dependant Interface (MDI). In this wiring, the computer
transmits on pins 1 and 2. At the hub, the perspective is reversed, and the hub receives on pins 1
and 2. This wiring is referred to as Media Dependant Interface - Crossover (MDI-X).
When connecting a computer to a computer, or a hub port to another hub port, the transmit pair
must be exchanged with the receive pair. This exchange is done by one of two mechanisms. Most
hubs provide an Uplink switch which will exchange the pairs on one port, allowing that port to be
connected to another hub using a normal Ethernet cable. The second method is to use a crossover
cable, which is a special cable in which the transmit and receive pairs are exchanged at one of the
two cable connectors. Crossover cables are often unmarked as such, and must be identified by
comparing the two connectors. Since the cable connectors are clear plastic, it is easy to place them
side by side and view the order of the wire colors on each. On a straight-through cable, the color
order will be the same on both connectors. On a crossover cable, the orange and green pairs will be
exchanged from one connector to the other.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Network, Routing, Firewall, and Basics B-15
July 2004 202-10036-01
The WGX102 router incorporates Auto UplinkTM technology (also called MDI/MDIX). Each
LOCAL Ethernet port will automatically sense whether the Ethernet cable plugged into the port
should have a normal connection (e.g. connecting to a computer) or an uplink connection (e.g.
connecting to a router, switch, or hub). That port will then configure itself to the correct
configuration. This feature also eliminates the need to worry about crossover cables, as Auto
UplinkTM will accommodate either type of cable to make the right connection.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
B-16 Network, Routing, Firewall, and Basics
July 2004 202-10036-01
Preparing Your Network C-1
July 2004 202-10036-01
Appendix C
Preparing Your Network
This appendix describes how to prepare your network to connect to the Internet through the 54
Mbps Wall-Plugged Router WGX102 and how to verify the readiness of broadband Internet
service from an Internet service provider (ISP).
What You Need To Use a Router with a Broadband Modem
You need to prepare these three things before you begin:
Cabling and Computer Hardware
To use the WGX102 router on your network, each computer must have an 802.11g or 802.11b
wireless adapter or an installed Ethernet Network Interface Card (NIC) and an Ethernet cable. If
the computer will connect to your network using an Ethernet NIC at 100 Mbps, you must use a
Category 5 (Cat 5) cable such as the one provided with your router. For an explanation of Ethernet
cabling, see “Ethernet Cabling“ on page B-11. The cable or DSL broadband modem must provide
a standard 10 Mbps (10BASE-T) or 100 Mbps (100BASE-Tx) Ethernet interface.
Computer Network Configuration Requirements
The WGX102 includes a built-in Web Configuration Manager. To access the configuration menus
on the WGX102, your must use a Java-enabled Web browser program which supports HTTP
uploads such as Microsoft Internet Explorer or Netscape Navigator. Use Internet Explorer or
Netscape Navigator 4.0 or above.
Note: If an ISP technician configured your computer during the installation of a
broadband modem, or if you configured it using instructions provided by your ISP, you
may need to copy the current configuration information for use in the configuration of
your firewall. Write down this information before reconfiguring your computers. Refer
to “Obtaining ISP Configuration Information for Windows Computers” on page C-21 or
“Obtaining ISP Configuration Information for Macintosh Computers” on page C-22 for
further information.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
C-2 Preparing Your Network
July 2004 202-10036-01
For the initial setup of your router, you will need to connect a computer to the router. This
computer has to be set to automatically get its TCP/IP configuration from the router via DHCP.
Note: For help with DHCP configuration, please use the Windows TCP/IP Configuration
Tutorials on the NETGEAR 54 Mbps Wall-Plugged Router WGX102 Resource CD
(230-10091-01), or in this appendix.
Internet Configuration Requirements
Depending on how your Internet service set up your account, you may need one or more of these
configuration parameters to connect your router to the Internet:
Host and Domain Names
ISP Login Name and Password
ISP Domain Name Server (DNS) Addresses
Fixed IP Address which is also known as Static IP Address
Where Do I Get the Internet Configuration Parameters?
There are several ways you can gather the required Internet connection information.
Your Internet service provides all the information needed to connect to the Internet. If you
cannot locate this information, you can ask your Internet service to provide it or you can try
one of the options below.
If you have a computer already connected using the Internet, you can gather the configuration
information from that computer.
For Windows 95/98/ME, open the Network control panel, select the TCP/IP entry for the
Ethernet adapter, and click Properties. Record all the settings for each tab page.
For Windows 2000/XP, open the Local Area Network Connection, select the TCP/IP entry
for the Ethernet adapter, and click Properties. Record all the settings for each tab page.
For Macintosh computers, record the settings in the TCP/IP or Network control panel.
You may also refer to the NETGEAR 54 Mbps Wall-Plugged Router WGX102 Resource CD
(230-10091-01) for the NETGEAR Router ISP Guide which provides Internet connection
information for many ISPs.
Once you locate your Internet configuration parameters, you may want to record them on the page
below.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Preparing Your Network C-3
July 2004 202-10036-01
Record Your Internet Connection Information
Print this page. Fill in the configuration parameters from your Internet Service Provider (ISP).
ISP Login Name: The login name and password are case sensitive and must be entered exactly as
given by your ISP. Some ISPs use your full e-mail address as the login name. The Service Name is
not required by all ISPs. If you connect using a login name and password, enter the following:
Login Name: ______________________________
Password: ____________________________
Service Name: _____________________________
Fixed or Static IP Address: If you have a static IP address, record the following information. For
example, 169.254.141.148 could be a valid IP address.
Fixed or Static Internet IP Address: ______ ______ ______ ______
Gateway IP Address: ______ ______ ______ ______
Subnet Mask: ______ ______ ______ ______
ISP DNS Server Addresses: If you were given DNS server addresses, fill in the following:
Primary DNS Server IP Address: ______ ______ ______ ______
Secondary DNS Server IP Address: ______ ______ ______ ______
Host and Domain Names: Some ISPs use a specific host or domain name like CCA7324-A or
home. If you haven’t been given host or domain names, you can use the following examples as a
guide:
If your main e-mail account with your ISP is aaa@yyy.com, then use aaa as your host name.
Your ISP might call this your account, user, host, computer, or system name.
If your ISP’s mail server is mail.xxx.yyy.com, then use xxx.yyy.com as the domain name.
ISP Host Name: _________________________ ISP Domain Name: _______________________
For Wireless Access: See the configuration worksheet at “Information to Gather Before Changing
Basic Wireless Settings“ on page 4-6.
Preparing Your Computers for TCP/IP Networking
Computers access the Internet using a protocol called TCP/IP (Transmission Control Protocol/
Internet Protocol). Each computer on your network must have TCP/IP installed and selected as its
networking protocol. If a Network Interface Card (NIC) is already installed in your computer, then
TCP/IP is probably already installed as well.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
C-4 Preparing Your Network
July 2004 202-10036-01
Most operating systems include the software components you need for networking with TCP/IP:
•Windows
® 95 or later includes the software components for establishing a TCP/IP network.
Windows 3.1 does not include a TCP/IP component. You need to purchase a third-party TCP/
IP application package such as NetManage Chameleon.
Macintosh Operating System 7 or later includes the software components for establishing a
TCP/IP network.
All versions of UNIX or Linux include TCP/IP components. Follow the instructions provided
with your operating system or networking software to install TCP/IP on your computer.
In your IP network, each computer and the firewall must be assigned a unique IP addresses. Each
computer must also have certain other IP configuration information such as a subnet mask
(netmask), a domain name server (DNS) address, and a default gateway address. In most cases,
you should install TCP/IP so that the computer obtains its specific network configuration
information automatically from a DHCP server during bootup. For a detailed explanation of the
meaning and purpose of these configuration items, refer to “Appendix B, “Network, Routing,
Firewall, and Basics.”
The WGX102 router is shipped preconfigured as a DHCP server. The firewall assigns the
following TCP/IP configuration information automatically when the PCs are rebooted:
PC or workstation IP addresses—192.168.0.2 through 192.168.0.254
Subnet mask—255.255.255.0
Gateway address (the firewall)—192.168.0.1
These addresses are part of the IETF-designated private address range for use in private networks.
Configuring Windows 95, 98, and Me for TCP/IP Networking
As part of the PC preparation process, you need to manually install and configure TCP/IP on each
networked PC. Before starting, locate your Windows CD; you may need to insert it during the
TCP/IP installation process.
Install or Verify Windows Networking Components
To install or verify the necessary components for IP networking:
1. On the Windows taskbar, click the Start button, point to Settings, and then click Control Panel.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Preparing Your Network C-5
July 2004 202-10036-01
2. Double-click the Network icon.
The Network window opens, which displays a list of installed components:
You must have an Ethernet adapter, the TCP/IP protocol, and Client for Microsoft Networks.
If you need to install a new adapter, follow these steps:
a. Click the Add button.
b. Select Adapter, and then click Add.
c. Select the manufacturer and model of your Ethernet adapter, and then click OK.
If you need TCP/IP:
a. Click the Add button.
b. Select Protocol, and then click Add.
Note: It is not necessary to remove any other network components shown in the
Network window in order to install the adapter, TCP/IP, or Client for Microsoft
Networks.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
C-6 Preparing Your Network
July 2004 202-10036-01
c. Select Microsoft.
d. Select TCP/IP, and then click OK.
If you need Client for Microsoft Networks:
a. Click the Add button.
b. Select Client, and then click Add.
c. Select Microsoft.
d. Select Client for Microsoft Networks, and then click OK.
3. Restart your PC for the changes to take effect.
Enabling DHCP to Automatically Configure TCP/IP Settings in
Windows 95B, 98, and Me
After the TCP/IP protocol components are installed, each PC must be assigned specific
information about itself and resources that are available on its network. The simplest way to
configure this information is to allow the PC to obtain the information from a DHCP server in the
network.
You will find there are many similarities in the procedures for different Windows systems
when using DHCP to configure TCP/IP.
The following steps will walk you through the configuration process for each of these
versions of Windows.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Preparing Your Network C-7
July 2004 202-10036-01
Locate your Network Neighborhood icon.
If the Network Neighborhood icon is on the Windows desktop, position your mouse
pointer over it and right-click your mouse button.
If the icon is not on the desktop,
Click Start on the task bar located at the bottom left of the window.
Choose Settings, and then Control Panel.
Locate the Network Neighborhood icon and click on it. This will open the Network
panel as shown below.
Verify the following settings as shown:
Client for Microsoft Network exists
Ethernet adapter is present
TCP/IP is present
Primary Network Logon is set to
Windows logon
Click on the Properties button. The
following TCP/IP Properties window will
display.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
C-8 Preparing Your Network
July 2004 202-10036-01
Selecting Windows’ Internet Access Method
1. On the Windows taskbar, click the Start button, point to Settings, and then click Control Panel.
2. Double-click the Internet Options icon.
3. Select “I want to set up my Internet connection manually” or “I want to connect through a
Local Area Network” and click Next.
4. Select “I want to connect through a Local Area Network” and click Next.
5. Uncheck all boxes in the LAN Internet Configuration screen and click Next.
6. Proceed to the end of the Wizard.
Verifying TCP/IP Properties
After your PC is configured and has rebooted, you can check the TCP/IP configuration using the
utility winipcfg.exe:
1. On the Windows taskbar, click the Start button, and then click Run.
By default, the IP Address tab is open on
this window.
Verify the following:
Obtain an IP address automatically is
selected. If not selected, click in the radio
button to the left of it to select it. This
setting is required to enable the DHCP server
to automatically assign an IP address.
Click OK to continue.
Restart the PC.
Repeat these steps for each PC with this
version of Windows on your network.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Preparing Your Network C-9
July 2004 202-10036-01
2. Type winipcfg, and then click OK.
The IP Configuration window opens, which lists (among other things), your IP address, subnet
mask, and default gateway.
3. From the drop-down box, select your Ethernet adapter.
The window is updated to show your settings, which should match the values below if you are
using the default TCP/IP settings that NETGEAR recommends for connecting through a
router or gateway:
The IP address is between 192.168.0.2 and 192.168.0.254
The subnet mask is 255.255.255.0
The default gateway is 192.168.0.1
Configuring Windows NT4, 2000 or XP for IP Networking
As part of the PC preparation process, you may need to install and configure
TCP/IP on each networked PC. Before starting, locate your Windows CD; you may need to insert
it during the TCP/IP installation process.
Install or Verify Windows Networking Components
To install or verify the necessary components for IP networking:
1. On the Windows taskbar, click the Start button, point to Settings, and then click Control Panel.
2. Double-click the Network and Dialup Connections icon.
3. If an Ethernet adapter is present in your PC, you should see an entry for Local Area
Connection. Double-click that entry.
4. Select Properties.
5. Verify that ‘Client for Microsoft Networks’ and ‘Internet Protocol (TCP/IP)’ are present. If
not, select Install and add them.
6. Select ‘Internet Protocol (TCP/IP)’, click Properties, and verify that “Obtain an IP address
automatically is selected.
7. Click OK and close all Network and Dialup Connections windows.
8. Then, restart your PC.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
C-10 Preparing Your Network
July 2004 202-10036-01
DHCP Configuration of TCP/IP in Windows XP, 2000, or NT4
You will find there are many similarities in the procedures for different Windows systems when
using DHCP to configure TCP/IP.
The following steps will walk you through the configuration process for each of these versions of
Windows.
DHCP Configuration of TCP/IP in Windows XP
Locate your Network Neighborhood icon.
Select Control Panel from the Windows XP new Start Menu.
Select the Network Connections icon on the Control Panel. This will take you to the next
step.
Now the Network Connection window
displays.
The Connections List that shows all the
network connections set up on the PC,
located to the right of the window.
Right-click on the Connection you will
use and choose Status.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Preparing Your Network C-11
July 2004 202-10036-01
Now you should be at the Local Area
Network Connection Status window. This
box displays the connection status, duration,
speed, and activity statistics.
Administrator logon access rights are needed
to use this window.
Click the Properties button to view details
about the connection.
The TCP/IP details are presented on the
Support tab page.
Select Internet Protocol, and click
Properties to view the configuration
information.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
C-12 Preparing Your Network
July 2004 202-10036-01
DHCP Configuration of TCP/IP in Windows 2000
Once again, after you have installed the network card, TCP/IP for Windows 2000 is configured.
TCP/IP should be added by default and set to DHCP without your having to configure it.
However, if there are problems, follow these steps to configure TCP/IP with DHCP for Windows
2000.
Verify that the Obtain an IP address
automatically radio button is selected.
Verify that Obtain DNS server address
automatically radio button is selected.
Click the OK button.
This completes the DHCP configuration of TCP/
IP in Windows XP.
Repeat these steps for each PC with this version
of Windows on your network.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Preparing Your Network C-13
July 2004 202-10036-01
Click on the My Network Places icon on the Windows desktop. This will bring up a window
called Network and Dial-up Connections.
Right click on Local Area Connection and select Properties.
•The Local Area Connection Properties
dialog box appears.
Verify that you have the correct Ethernet
card selected in the Connect using: box.
Verify that at least the following two items
are displayed and selected in the box of
“Components checked are used by this
connection:”
Client for Microsoft Networks and
Internet Protocol (TCP/IP)
Click OK.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
C-14 Preparing Your Network
July 2004 202-10036-01
With Internet Protocol (TCP/IP) selected,
click on Properties to open the Internet
Protocol (TCP/IP) Properties dialogue box.
Verify that
Obtain an IP address automatically is
selected.
Obtain DNS server address
automatically is selected.
Click OK to return to Local Area
Connection Properties.
Click OK again to complete the
configuration process for Windows 2000.
Restart the PC.
Repeat these steps for each PC with this version
of Windows on your network.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Preparing Your Network C-15
July 2004 202-10036-01
DHCP Configuration of TCP/IP in Windows NT4
Once you have installed the network card, you need to configure the TCP/IP environment for
Windows NT 4.0. Follow this procedure to configure TCP/IP with DHCP in Windows NT 4.0.
Choose Settings from the Start Menu, and then select Control Panel.
This will display Control Panel window.
Double-click the Network icon in the
Control Panel window.
The Network panel will display.
Select the Protocols tab to continue.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
C-16 Preparing Your Network
July 2004 202-10036-01
Highlight the TCP/IP Protocol in the
Network Protocols box, and click on the
Properties button.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Preparing Your Network C-17
July 2004 202-10036-01
Verifying TCP/IP Properties for Windows XP, 2000, and NT4
To check your PC’s TCP/IP configuration:
1. On the Windows taskbar, click the Start button, and then click Run.
The Run window opens.
2. Type cmd and then click OK.
A command window opens
3. Type ipconfig /all
Your IP Configuration information will be listed, and should match the values below if you are
using the default TCP/IP settings that NETGEAR recommends for connecting through a
router or gateway:
The IP address is between 192.168.0.2 and 192.168.0.254
The subnet mask is 255.255.255.0
•The TCP/IP Properties dialog box now
displays.
Click the IP Address tab.
Select the radio button marked Obtain an IP
address from a DHCP server.
Click OK. This completes the configuration
of TCP/IP in Windows NT.
Restart the PC.
Repeat these steps for each PC with this version
of Windows on your network.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
C-18 Preparing Your Network
July 2004 202-10036-01
The default gateway is 192.168.0.1
4. Type exit
Configuring the Macintosh for TCP/IP Networking
Beginning with Macintosh Operating System 7, TCP/IP is already installed on the Macintosh. On
each networked Macintosh, you will need to configure TCP/IP to use DHCP.
MacOS 8.6 or 9.x
1. From the Apple menu, select Control Panels, then TCP/IP.
The TCP/IP Control Panel opens:
2. From the “Connect via” box, select your Macintosh’s Ethernet interface.
3. From the “Configure” box, select Using DHCP Server.
You can leave the DHCP Client ID box empty.
4. Close the TCP/IP Control Panel.
5. Repeat this for each Macintosh on your network.
MacOS X
1. From the Apple menu, choose System Preferences, then Network.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Preparing Your Network C-19
July 2004 202-10036-01
2. If not already selected, select Built-in Ethernet in the Configure list.
3. If not already selected, Select Using DHCP in the TCP/IP tab.
4. Click Save.
Verifying TCP/IP Properties for Macintosh Computers
After your Macintosh is configured and has rebooted, you can check the TCP/IP configuration by
returning to the TCP/IP Control Panel. From the Apple menu, select Control Panels, then TCP/IP.
The panel is updated to show your settings, which should match the values below if you are using
the default TCP/IP settings that NETGEAR recommends:
The IP Address is between 192.168.0.2 and 192.168.0.254
The Subnet mask is 255.255.255.0
The Router address is 192.168.0.1
If you do not see these values, you may need to restart your Macintosh or you may need to switch
the “Configure” setting to a different option, then back again to “Using DHCP Server”.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
C-20 Preparing Your Network
July 2004 202-10036-01
Verifying the Readiness of Your Internet Account
For broadband access to the Internet, you need to contract with an Internet service provider (ISP)
for a single-user Internet access account using a cable modem or DSL modem. This modem must
be a separate physical box (not a card) and must provide an Ethernet port intended for connection
to a Network Interface Card (NIC) in a computer. Your firewall does not support a USB-connected
broadband modem.
For a single-user Internet account, your ISP supplies TCP/IP configuration information for one
computer. With a typical account, much of the configuration information is dynamically assigned
when your PC is first booted up while connected to the ISP, and you will not need to know that
dynamic information.
In order to share the Internet connection among several computers, your firewall takes the place of
the single PC, and you need to configure it with the TCP/IP information that the single PC would
normally use. When the firewall’s Internet port is connected to the broadband modem, the firewall
appears to be a single PC to the ISP. The firewall then allows the PCs on the local network to
masquerade as the single PC to access the Internet through the broadband modem. The method
used by the firewall to accomplish this is called Network Address Translation (NAT) or IP
masquerading.
Are Login Protocols Used?
Some ISPs require a special login protocol, in which you must enter a login name and password in
order to access the Internet. If you normally log in to your Internet account by running a program
such as WinPOET or EnterNet, then your account uses PPP over Ethernet (PPPoE).
When you configure your router, you will need to enter your login name and password in the
routers configuration menus. After your network and firewall are configured, the firewall will
perform the login task when needed, and you will no longer need to run the login program from
your PC. It is not necessary to uninstall the login program.
What Is Your Configuration Information?
More and more, ISPs are dynamically assigning configuration information. However, if your ISP
does not dynamically assign configuration information but instead used fixed configurations, your
ISP should have given you the following basic information for your account:
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Preparing Your Network C-21
July 2004 202-10036-01
An IP address and subnet mask
A gateway IP address, which is the address of the ISP’s router
One or more domain name server (DNS) IP addresses
Host name and domain suffix
For example, your account’s full server names may look like this:
mail.xxx.yyy.com
In this example, the domain suffix is xxx.yyy.com.
If any of these items are dynamically supplied by the ISP, your firewall automatically acquires
them.
If an ISP technician configured your PC during the installation of the broadband modem, or if you
configured it using instructions provided by your ISP, you need to copy the configuration
information from your PC’s Network TCP/IP Properties window or Macintosh TCP/IP Control
Panel before reconfiguring your PC for use with the firewall. These procedures are described next.
Obtaining ISP Configuration Information for Windows Computers
As mentioned above, you may need to collect configuration information from your PC so that you
can use this information when you configure the WGX102 router. Following this procedure is only
necessary when your ISP does not dynamically supply the account information.
To get the information you need to configure the firewall for Internet access:
1. On the Windows taskbar, click the Start button, point to Settings, and then click Control Panel.
2. Double-click the Network icon.
The Network window opens, which displays a list of installed components.
3. Select TCP/IP, and then click Properties.
The TCP/IP Properties dialog box opens.
4. Select the IP Address tab.
If an IP address and subnet mask are shown, write down the information. If an address is
present, your account uses a fixed (static) IP address. If no address is present, your account
uses a dynamically-assigned IP address. Click “Obtain an IP address automatically”.
5. Select the Gateway tab.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
C-22 Preparing Your Network
July 2004 202-10036-01
If an IP address appears under Installed Gateways, write down the address. This is the ISP’s
gateway address. Select the address and then click Remove to remove the gateway address.
6. Select the DNS Configuration tab.
If any DNS server addresses are shown, write down the addresses. If any information appears
in the Host or Domain information box, write it down. Click Disable DNS.
7. Click OK to save your changes and close the TCP/IP Properties dialog box.
You are returned to the Network window.
8. Click OK.
9. Reboot your PC at the prompt. You may also be prompted to insert your Windows CD.
Obtaining ISP Configuration Information for Macintosh
Computers
As mentioned above, you may need to collect configuration information from your Macintosh so
that you can use this information when you configure the WGX102 router. Following this
procedure is only necessary when your ISP does not dynamically supply the account information.
To get the information you need to configure the firewall for Internet access:
1. From the Apple menu, select Control Panels, then TCP/IP.
The TCP/IP Control Panel opens, which displays a list of configuration settings. If the
“Configure” setting is “Using DHCP Server”, your account uses a dynamically-assigned IP
address. In this case, close the Control Panel and skip the rest of this section.
2. If an IP address and subnet mask are shown, write down the information.
3. If an IP address appears under Router address, write down the address. This is the ISP’s
gateway address.
4. If any Name Server addresses are shown, write down the addresses. These are your ISP’s DNS
addresses.
5. If any information appears in the Search domains information box, write it down.
6. Change the “Configure” setting to “Using DHCP Server”.
7. Close the TCP/IP Control Panel.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Preparing Your Network C-23
July 2004 202-10036-01
Restarting the Network
Once you’ve set up your computers to work with the firewall, you must reset the network for the
devices to be able to communicate correctly. Restart any computer that is connected to the firewall.
After configuring all of your computers for TCP/IP networking and restarting them, and
connecting them to the local network of your WGX102 router, you are ready to access and
configure the firewall.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
C-24 Preparing Your Network
July 2004 202-10036-01
Wireless Networking Basics D-1
July 2004 202-10036-01
Appendix D
Wireless Networking Basics
Wireless Networking Overview
The WGX102 router conforms to the Institute of Electrical and Electronics Engineers (IEEE)
802.11g standard for wireless LANs (WLANs). On an 802.11 wireless link, data is encoded using
direct-sequence spread-spectrum (DSSS) technology and is transmitted in the unlicensed radio
spectrum at 2.5GHz. The maximum data rate for the 802.11g wireless link is 54 Mbps, but it will
automatically back down from 54 Mbps when the radio signal is weak or when interference is
detected.
The 802.11 standard is also called Wireless Ethernet or Wi-Fi by the Wireless Ethernet
Compatibility Alliance (WECA, see http://www.wi-fi.net), an industry standard group promoting
interoperability among 802.11 devices. The 802.11 standard offers two methods for configuring a
wireless network - ad hoc and infrastructure.
Infrastructure Mode
With a wireless access point, you can operate the wireless LAN in the infrastructure mode. This
mode provides wireless connectivity to multiple wireless network devices within a fixed range or
area of coverage, interacting with wireless nodes via an antenna.
In the infrastructure mode, the wireless access point converts airwave data into wired Ethernet
data, acting as a bridge between the wired LAN and wireless clients. Connecting multiple access
points via a wired Ethernet backbone can further extend the wireless network coverage. As a
mobile computing device moves out of the range of one access point, it moves into the range of
another. As a result, wireless clients can freely roam from one access point domain to another and
still maintain seamless network connection.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
D-2 Wireless Networking Basics
July 2004 202-10036-01
Ad Hoc Mode (Peer-to-Peer Workgroup)
In an ad hoc network, computers are brought together as needed; thus, there is no structure or fixed
points to the network - each node can generally communicate with any other node. There is no
access point involved in this configuration. This mode enables you to quickly set up a small
wireless workgroup and allows workgroup members to exchange data or share printers as
supported by Microsoft networking in the various Windows operating systems. Some vendors also
refer to ad hoc networking as peer-to-peer group networking.
In this configuration, network packets are directly sent and received by the intended transmitting
and receiving stations. As long as the stations are within range of one another, this is the easiest
and least expensive way to set up a wireless network.
Network Name: Extended Service Set Identification (ESSID)
The Extended Service Set Identification (ESSID) is one of two types of Service Set Identification
(SSID). In an ad hoc wireless network with no access points, the Basic Service Set Identification
(BSSID) is used. In an infrastructure wireless network that includes an access point, the ESSID is
used, but may still be referred to as SSID.
An SSID is a thirty-two character (maximum) alphanumeric key identifying the name of the
wireless local area network. Some vendors refer to the SSID as network name. For the wireless
devices in a network to communicate with each other, all devices must be configured with the
same SSID.
Wireless Channels
IEEE 802.11g/b wireless nodes communicate with each other using radio frequency signals in the
ISM (Industrial, Scientific, and Medical) band between 2.4 GHz and 2.5 GHz. Neighboring
channels are 5 MHz apart. However, due to spread spectrum effect of the signals, a node sending
signals using a particular channel will utilize frequency spectrum 12.5 MHz above and below the
center channel frequency. As a result, two separate wireless networks using neighboring channels
(for example, channel 1 and channel 2) in the same general vicinity will interfere with each other.
Applying two channels that allow the maximum channel separation will decrease the amount of
channel cross-talk, and provide a noticeable performance increase over networks with minimal
channel separation. In the USA, 1-11 channel are available.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Wireless Networking Basics D-3
July 2004 202-10036-01
The radio frequency channels used are listed in Table D-1:
Note: The available channels supported by the wireless products in various countries are different.
The preferred channel separation between the channels in neighboring wireless networks is 25
MHz (5 channels). This means that you can apply up to three different channels within your
wireless network. There are only 11 usable wireless channels in the United States. It is
recommended that you start using channel 1 and grow to use channel 6, and 11 when necessary, as
these three channels do not overlap.
Table D-1. 802.11g Radio Frequency Channels
Channel Center Frequency Frequency Spread
1 2412 MHz 2399.5 MHz - 2424.5 MHz
2 2417 MHz 2404.5 MHz - 2429.5 MHz
3 2422 MHz 2409.5 MHz - 2434.5 MHz
4 2427 MHz 2414.5 MHz - 2439.5 MHz
5 2432 MHz 2419.5 MHz - 2444.5 MHz
6 2437 MHz 2424.5 MHz - 2449.5 MHz
7 2442 MHz 2429.5 MHz - 2454.5 MHz
8 2447 MHz 2434.5 MHz - 2459.5 MHz
9 2452 MHz 2439.5 MHz - 2464.5 MHz
10 2457 MHz 2444.5 MHz - 2469.5 MHz
11 2462 MHz 2449.5 MHz - 2474.5 MHz
12 2467 MHz 2454.5 MHz - 2479.5 MHz
13 2472 MHz 2459.5 MHz - 2484.5 MHz
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
D-4 Wireless Networking Basics
July 2004 202-10036-01
WEP Wireless Security
The absence of a physical connection between nodes makes the wireless links vulnerable to
eavesdropping and information theft. To provide a certain level of security, the IEEE 802.11
standard has defined two types of authentication methods, Open System and Shared Key. With
Open System authentication, a wireless computer can join any network and receive any messages
that are not encrypted. With Shared Key authentication, only those computers that possess the
correct authentication key can join the network. By default, IEEE 802.11 wireless devices operate
in an Open System network. Recently, Wi-Fi, the Wireless Ethernet Compatibility Alliance
(http://www.wi-fi.net) developed the Wi-Fi Protected Access (WPA), a new strongly enhanced
Wi-Fi security. WPA will soon be incorporated into the IEEE 802.11 standard. WEP and WPA are
discussed below.
WEP Authentication
The 802.11 standard defines several services that govern how two 802.11 devices communicate.
The following events must occur before an 802.11 Station can communicate with an Ethernet
network through an access point such as the one built in to the WGX102:
1. Turn on the wireless station.
2. The station listens for messages from any access points that are in range.
3. The station finds a message from an access point that has a matching SSID.
4. The station sends an authentication request to the access point.
5. The access point authenticates the station.
6. The station sends an association request to the access point.
7. The access point associates with the station.
8. The station can now communicate with the Ethernet network through the access point.
An access point must authenticate a station before the station can associate with the access point or
communicate with the network. The IEEE 802.11 standard defines two types of WEP
authentication: Open System and Shared Key.
Open System Authentication allows any device to join the network, assuming that the device
SSID matches the access point SSID. Alternatively, the device can use the “ANY” SSID
option to associate with any available access point within range, regardless of its SSID.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Wireless Networking Basics D-5
July 2004 202-10036-01
Shared Key Authentication requires that the station and the access point have the same WEP
Key to authenticate. These two authentication procedures are described below.
WEP Open System Authentication
This process is illustrated in below.
Figure D-1: 802.11 open system authentication
The following steps occur when two devices use Open System Authentication:
1. The station sends an authentication request to the access point.
2. The access point authenticates the station.
3. The station associates with the access point and joins the network.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
D-6 Wireless Networking Basics
July 2004 202-10036-01
WEP Shared Key Authentication
This process is illustrated in below.
Figure D-2: 802.11 shared key authentication
The following steps occur when two devices use Shared Key Authentication:
1. The station sends an authentication request to the access point.
2. The access point sends challenge text to the station.
3. The station uses its configured 64-bit or 128-bit default key to encrypt the challenge text, and
sends the encrypted text to the access point.
4. The access point decrypts the encrypted text using its configured WEP Key that corresponds
to the station’s default key. The access point compares the decrypted text with the original
challenge text. If the decrypted text matches the original challenge text, then the access point
and the station share the same WEP Key and the access point authenticates the station.
5. The station connects to the network.
If the decrypted text does not match the original challenge text (i.e., the access point and station do
not share the same WEP Key), then the access point will refuse to authenticate the station and the
station will be unable to communicate with either the 802.11 network or Ethernet network.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Wireless Networking Basics D-7
July 2004 202-10036-01
Key Size and Configuration
The IEEE 802.11 standard supports two types of WEP encryption: 40-bit and 128-bit.
The 64-bit WEP data encryption method, allows for a five-character (40-bit) input. Additionally,
24 factory-set bits are added to the forty-bit input to generate a 64-bit encryption key. (The 24
factory-set bits are not user-configurable). This encryption key will be used to encrypt/decrypt all
data transmitted via the wireless interface. Some vendors refer to the 64-bit WEP data encryption
as 40-bit WEP data encryption since the user-configurable portion of the encryption key is 40 bits
wide.
The 128-bit WEP data encryption method consists of 104 user-configurable bits. Similar to the
forty-bit WEP data encryption method, the remaining 24 bits are factory set and not user
configurable. Some vendors allow passphrases to be entered instead of the cryptic hexadecimal
characters to ease encryption key entry.
128-bit encryption is stronger than 40-bit encryption, but 128-bit encryption may not be available
outside of the United States due to U.S. export regulations.
When configured for 40-bit encryption, 802.11 products typically support up to four WEP Keys.
Each 40-bit WEP Key is expressed as 5 sets of two hexadecimal digits (0-9 and A-F). For
example, “12 34 56 78 90” is a 40-bit WEP Key.
When configured for 128-bit encryption, 802.11g products typically support four WEP Keys but
some manufacturers support only one 128-bit key. The 128-bit WEP Key is expressed as 13 sets of
two hexadecimal digits (0-9 and A-F). For example, “12 34 56 78 90 AB CD EF 12 34 56 78 90”
is a 128-bit WEP Key.
Typically, 802.11 access points can store up to four 128-bit WEP Keys but some 802.11 client
adapters can only store one. Therefore, make sure that your 802.11 access and client adapters
configurations match.
Whatever keys you enter for an AP, you must also enter the same keys for the client adapter in the
same order. In other words, WEP key 1 on the AP must match WEP key 1 on the client adapter,
WEP key 2 on the AP must match WEP key 2 on the client adapter, etc.
Note: The AP and the client adapters can have different default WEP Keys as long as the keys are
in the same order. In other words, the AP can use WEP key 2 as its default key to transmit while a
client adapter can use WEP key 3 as its default key to transmit. The two devices will communicate
as long as the AP’s WEP key 2 is the same as the client’s WEP key 2 and the AP’s WEP key 3 is
the same as the client’s WEP key 3.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
D-8 Wireless Networking Basics
July 2004 202-10036-01
How to Use WEP Parameters
Wired Equivalent Privacy (WEP) data encryption is used when the wireless devices are configured
to operate in Shared Key authentication mode. There are two shared key methods implemented in
most commercially available products, 64-bit and 128-bit WEP data encryption.
Before enabling WEP on an 802.11 network, you must first consider what type of encryption you
require and the key size you want to use. Typically, there are three WEP Encryption options
available for 802.11 products:
1. Do Not Use WEP: The 802.11 network does not encrypt data. For authentication purposes, the
network uses Open System Authentication.
2. Use WEP for Encryption: A transmitting 802.11 device encrypts the data portion of every
packet it sends using a configured WEP Key. The receiving 802.11g device decrypts the data using
the same WEP Key. For authentication purposes, the 802.11g network uses Open System
Authentication.
3. Use WEP for Authentication and Encryption: A transmitting 802.11 device encrypts the data
portion of every packet it sends using a configured WEP Key. The receiving 802.11 device
decrypts the data using the same WEP Key. For authentication purposes, the 802.11 network uses
Shared Key Authentication.
Note: Some 802.11 access points also support Use WEP for Authentication Only (Shared Key
Authentication without data encryption). However, the WGX102 does not offer this option.
WPA Wireless Security
Wi-Fi Protected Access (WPA) is a specification of standards-based, interoperable security
enhancements that increase the level of data protection and access control for existing and future
wireless LAN systems.
The IEEE introduced the WEP as an optional security measure to secure 802.11g (Wi-Fi) WLANs,
but inherent weaknesses in the standard soon became obvious. In response to this situation, the
Wi-Fi Alliance announced a new security architecture in October 2002 that remedies the short
comings of WEP. This standard, formerly known as Safe Secure Network (SSN), is designed to
work with existing 802.11 products and offers forward compatibility with 802.11i, the new
wireless security architecture being defined in the IEEE.
WPA offers the following benefits:
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Wireless Networking Basics D-9
July 2004 202-10036-01
Enhanced data privacy
Robust key management
Data origin authentication
Data integrity protection
The Wi-Fi Alliance is now performing interoperability certification testing on Wi-Fi Protected
Access products. Starting August of 2003, all new Wi-Fi certified products will have to support
WPA. NETGEAR will implement WPA on client and access point products and make this
available in the second half of 2003. Existing Wi-Fi certified products will have one year to add
WPA support or they will loose their Wi-Fi certification.
The 802.11i standard is currently in draft form, with ratification due at the end of 2003. While the
new IEEE 802.11i standard is being ratified, wireless vendors have agreed on WPA as an
interoperable interim standard.
How Does WPA Compare to WEP?
WEP is a data encryption method and is not intended as a user authentication mechanism. WPA
user authentication is implemented using 802.1x and the Extensible Authentication Protocol
(EAP). Support for 802.1x authentication is required in WPA. In the 802.11 standard, 802.1x
authentication was optional. For details on EAP specifically, refer to IETF's RFC 2284.
With 802.11 WEP, all access points and client wireless adapters on a particular wireless LAN must
use the same encryption key. A major problem with the 802.11 standard is that the keys are
cumbersome to change. If you don't update the WEP keys often, an unauthorized person with a
sniffing tool can monitor your network for less than a day and decode the encrypted messages.
Products based on the 802.11 standard alone offer system administrators no effective method to
update the keys.
For 802.11, WEP encryption is optional. For WPA, encryption using Temporal Key Integrity
Protocol (TKIP) is required. TKIP replaces WEP with a new encryption algorithm that is stronger
than the WEP algorithm, but that uses the calculation facilities present on existing wireless devices
to perform encryption operations. TKIP provides important data encryption enhancements
including a per-packet key mixing function, a message integrity check (MIC) named Michael, an
extended initialization vector (IV) with sequencing rules, and a re-keying mechanism. Through
these enhancements, TKIP addresses all of known WEP vulnerabilities.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
D-10 Wireless Networking Basics
July 2004 202-10036-01
How Does WPA Compare to IEEE 802.11i?
WPA will be forward compatible with the IEEE 802.11i security specification currently under
development. WPA is a subset of the current 802.11i draft and uses certain pieces of the 802.11i
draft that are ready to bring to market today, such as 802.1x and TKIP. The main pieces of the
802.11i draft that are not included in WPA are secure IBSS (Ad-Hoc mode), secure fast handoff
(for specialized 802.11 VoIP phones), as well as enhanced encryption protocols such as
AES-CCMP. These features are either not yet ready for market or will require hardware upgrades
to implement.
What are the Key Features of WPA Security?
The following security features are included in the WPA standard:
WPA Authentication
WPA Encryption Key Management
Temporal Key Integrity Protocol (TKIP)
–Michael
message integrity code (MIC)
AES Support
Support for a Mixture of WPA and WEP Wireless Clients
These features are discussed below.
WPA addresses most of the known WEP vulnerabilities and is primarily intended for wireless
infrastructure networks as found in the enterprise. This infrastructure includes stations, access
points, and authentication servers (typically RADIUS servers). The RADIUS server holds (or has
access to) user credentials (e.g., user names and passwords) and authenticates wireless users
before they gain access to the network.
The strength WPA comes from an integrated sequence of operations that encompass 802.1X/EAP
authentication and sophisticated key management and encryption techniques. Its major operations
include:
Network security capability determination. This occurs at the 802.11 level and is
communicated through WPA information elements in Beacon, Probe Response, and (Re)
Association Requests. Information in these elements includes the authentication method
(802.1X or Pre-shared key) and the preferred cipher suite (WEP, TKIP, or AES).
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Wireless Networking Basics D-11
July 2004 202-10036-01
The primary information conveyed in the Beacon frames is the authentication method and the
cipher suite. Possible authentication methods include 802.1X and Pre-shared key. Pre-shared
key is an authentication method that uses a statically configured pass phrase on both the
stations and the access point. This obviates the need for an authentication server, which in
many home and small office environments will not be available nor desirable. Possible cipher
suites include: WEP, TKIP, and AES (Advanced Encryption Standard). We’ll talk more TKIP
and AES when addressing data privacy below.
Authentication. EAP over 802.1X is used for authentication. Mutual authentication is gained
by choosing an EAP type supporting this feature and is required by WPA. 802.1X port access
control prevents full access to the network until authentication completes. 802.1X
EAPOL-Key packets are used by WPA to distribute per-session keys to those stations
successfully authenticated.
The supplicant in the station uses the authentication and cipher suite information contained in
the information elements to decide which authentication method and cipher suite to use. For
example, if the access point is using the Pre-shared key method then the supplicant need not
authenticate using full-blown 802.1X. Rather, the supplicant must simply prove to the access
point that it is in possession of the pre-shared key. If the supplicant detects that the service set
does not contain a WPA information element then it knows it must use pre-WPA 802.1X
authentication and key management in order to access the network.
Key management. WPA features a robust key generation/management system that integrates
the authentication and data privacy functions. Keys are generated after successful
authentication and through a subsequent 4-way handshake between the station and Access
Point (AP).
Data Privacy (Encryption). Temporal Key Integrity Protocol (TKIP) is used to wrap WEP in
sophisticated cryptographic and security techniques to overcome most of its weaknesses.
Data integrity. TKIP includes a message integrity code (MIC) at the end of each plaintext
message to ensure messages are not being spoofed.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
D-12 Wireless Networking Basics
July 2004 202-10036-01
WPA Authentication: Enterprise-level User
Authentication via 802.1x/EAP and RADIUS
Figure D-3: WPA Overview
IEEE 802.1x offers an effective framework for authenticating and controlling user traffic to a
protected network, as well as providing a vehicle for dynamically varying data encryption keys via
EAP from a RADIUS server, for example. This framework enables using a central authentication
server, which employs mutual authentication so that a rogue wireless user does not join the
network.
It's important to note that 802.1x doesn't provide the actual authentication mechanisms. When
using 802.1x, the EAP type, such as Transport Layer Security (EAP-TLS) or EAP Tunneled
Transport Layer Security (EAP-TTLS) defines how the authentication takes place.
Note: For environments with a Remote Authentication Dial-In User Service (RADIUS)
infrastructure, WPA supports Extensible Authentication Protocol (EAP). For environments
without a RADIUS infrastructure, WPA supports the use of a preshared key.
Together, these technologies provide a framework for strong user authentication.
Windows XP implements 802.1x natively, and several Netgear switch and wireless access point
products support 802.1x.
WPA
enabled
wireless
client with
“supplicant”
Certificate
Authority
(eg Win
Server,
VeriSign,
etc)
TCP/IP
Ports Closed
Until RADIUS Server
Wired Network with Optional
802.1x Port Based Network
Access Control
WPA enabled
Access Point
using
pre-shared key
or
802.1x
TCP/IP
Ports Opened
After
Authenticated
Wireless LAN
Login
Authentication
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Wireless Networking Basics D-13
July 2004 202-10036-01
Figure D-4: 802.1x Authentication Sequence
The AP sends Beacon Frames with WPA information element to the stations in the service set.
Information elements include the required authentication method (802.1x or Pre-shared key) and
the preferred cipher suite (WEP, TKIP, or AES). Probe Responses (AP to station) and Association
Requests (station to AP) also contain WPA information elements.
1. Initial 802.1x communications begin with an unauthenticated supplicant (i.e., client device)
attempting to connect with an authenticator (i.e., 802.11 access point). The client sends an
EAP-start message. This begins a series of message exchanges to authenticate the client.
2. The access point replies with an EAP-request identity message.
1
2
3
4
56
7
Client with a WPA-
enabled wireless
adapter and supplicant
(Win XP, Funk,
Meetinghouse, etc.)
For example, a
WPA-enabled AP
For example, a
RADIUS server
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
D-14 Wireless Networking Basics
July 2004 202-10036-01
3. The client sends an EAP-response packet containing the identity to the authentication server.
The access point responds by enabling a port for passing only EAP packets from the client to
an authentication server located on the wired side of the access point. The access point blocks
all other traffic, such as HTTP, DHCP, and POP3 packets, until the access point can verify the
client's identity using an authentication server (e.g., RADIUS).
4. The authentication server uses a specific authentication algorithm to verify the client's identity.
This could be through the use of digital certificates or some other EAP authentication type.
5. The authentication server will either send an accept or reject message to the access point.
6. The access point sends an EAP-success packet (or reject packet) to the client.
7. If the authentication server accepts the client, then the access point will transition the client's
port to an authorized state and forward additional traffic.
The important part to know at this point is that the software supporting the specific EAP type
resides on the authentication server and within the operating system or application “supplicant”
software on the client devices. The access point acts as a “pass through” for 802.1x messages,
which means that you can specify any EAP type without needing to upgrade an 802.1x-compliant
access point. As a result, you can update the EAP authentication type to such devices as token
cards (Smart Cards), Kerberos, one-time passwords, certificates, and public key authentication or
as newer types become available and your requirements for security change.
WPA Data Encryption Key Management
With 802.1x, the rekeying of unicast encryption keys is optional. Additionally, 802.11 and 802.1x
provide no mechanism to change the global encryption key used for multicast and broadcast
traffic. With WPA, rekeying of both unicast and global encryption keys is required.
For the unicast encryption key, the Temporal Key Integrity Protocol (TKIP) changes the key for
every frame, and the change is synchronized between the wireless client and the wireless access
point (AP). For the global encryption key, WPA includes a facility (the Information Element) for
the wireless AP to advertise the changed key to the connected wireless clients.
If configured to implement dynamic key exchange, the 802.1x authentication server can return
session keys to the access point along with the accept message. The access point uses the session
keys to build, sign and encrypt an EAP key message that is sent to the client immediately after
sending the success message. The client can then use contents of the key message to define
applicable encryption keys. In typical 802.1x implementations, the client can automatically change
encryption keys as often as necessary to minimize the possibility of eavesdroppers having enough
time to crack the key in current use.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Wireless Networking Basics D-15
July 2004 202-10036-01
Temporal Key Integrity Protocol (TKIP)
WPA uses TKIP to provide important data encryption enhancements including a per-packet key
mixing function, a message integrity check (MIC) named Michael, an extended initialization
vector (IV) with sequencing rules, and a re-keying mechanism. TKIP also provides for the
following:
The verification of the security configuration after the encryption keys are determined.
The synchronized changing of the unicast encryption key for each frame.
The determination of a unique starting unicast encryption key for each preshared key
authentication.
Michael
With 802.11 and WEP, data integrity is provided by a 32-bit integrity check value (ICV) that is
appended to the 802.11 payload and encrypted with WEP. Although the ICV is encrypted, you can
use cryptanalysis to change bits in the encrypted payload and update the encrypted ICV without
being detected by the receiver.
With WPA, a method known as Michael specifies a new algorithm that calculates an 8-byte
message integrity code (MIC) using the calculation facilities available on existing wireless
devices. The MIC is placed between the data portion of the IEEE 802.11 frame and the 4-byte ICV.
The MIC field is encrypted together with the frame data and the ICV.
Michael also provides replay protection. A new frame counter in the IEEE 802.11 frame is used to
prevent replay attacks.
AES Support
One of the encryption methods supported by WPA beside TKIP is the advanced encryption
standard (AES), although AES support will not be required initially for Wi-Fi certification. This is
viewed as the optimal choice for security conscience organizations, but the problem with AES is
that it requires a fundamental redesign of the NIC’s hardware in both the station and the access
point. TKIP was a pragmatic compromise that allows organizations to deploy better security while
AES capable equipment is being designed, manufactured, and incrementally deployed.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
D-16 Wireless Networking Basics
July 2004 202-10036-01
Is WPA Perfect?
WPA is not without its vulnerabilities. Specifically, it is susceptible to denial of service (DoS)
attacks. If the access point receives two data packets that fail the Message Integrity Code (MIC)
check within 60 seconds of each other then the network is under an active attack, and as a result,
the access point employs counter measures, which includes disassociating each station using the
access point. This prevents an attacker from gleaning information about the encryption key and
alerts administrators, but it also causes users to lose network connectivity for 60 seconds. More
than anything else, this may just prove that no single security tactic is completely invulnerable.
WPA is a definite step forward in WLAN security over WEP and has to be thought of as a single
part of an end-to-end network security strategy.
Product Support for WPA
Starting in August, 2003, NETGEAR, Inc. wireless Wi-Fi certified products will support the WPA
standard. NETGEAR, Inc. wireless products that had their Wi-Fi certification approved before
August, 2003 will have one year to add WPA so as to maintain their Wi-Fi certification.
WPA requires software changes to the following:
Wireless access points
Wireless network adapters
Wireless client programs
Supporting a Mixture of WPA and WEP Wireless Clients
To support the gradual transition of WEP-based wireless networks to WPA, a wireless AP can
support both WEP and WPA clients at the same time. During the association, the wireless AP
determines which clients use WEP and which clients use WPA. The disadvantage to supporting a
mixture of WEP and WPA clients is that the global encryption key is not dynamic. This is because
WEP-based clients cannot support it. All other benefits to the WPA clients, such as integrity, are
maintained.
However, a mixed mode supporting WPA and non-WPA clients would offer network security that
is no better than that obtained with a non-WPA network, and thus this mode of operation is
discouraged.
Changes to Wireless Access Points
Wireless access points must have their firmware updated to support the following:
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
Wireless Networking Basics D-17
July 2004 202-10036-01
The new WPA information element
To advertise their support of WPA, wireless APs send the beacon frame with a new 802.11
WPA information element that contains the wireless AP's security configuration (encryption
algorithms and wireless security configuration information).
The WPA two-phase authentication
Open system, then 802.1x (EAP with RADIUS or preshared key).
TKIP
Michael
AES (optional)
To upgrade your wireless access points to support WPA, obtain a WPA firmware update from your
wireless AP vendor and upload it to your wireless AP.
Changes to Wireless Network Adapters
Wireless network adapters must have their firmware updated to support the following:
The new WPA information element
Wireless clients must be able to process the WPA information element and respond with a
specific security configuration.
The WPA two-phase authentication
Open system, then 802.1x (EAP or preshared key).
TKIP
Michael
AES (optional)
To upgrade your wireless network adapters to support WPA, obtain a WPA update from your
wireless network adapter vendor and update the wireless network adapter driver.
For Windows wireless clients, you must obtain an updated network adapter driver that supports
WPA. For wireless network adapter drivers that are compatible with Windows XP (Service Pack 1)
and Windows Server 2003, the updated network adapter driver must be able to pass the adapter's
WPA capabilities and security configuration to the Wireless Zero Configuration service.
Microsoft has worked with many wireless vendors to embed the WPA firmware update in the
wireless adapter driver. So, to update you Windows wireless client, all you have to do is obtain the
new WPA-compatible driver and install the driver. The firmware is automatically updated when
the wireless network adapter driver is loaded in Windows.
Reference Manual for the 54 Mbps Wall-Plugged Router WGX102
D-18 Wireless Networking Basics
July 2004 202-10036-01
Changes to Wireless Client Programs
Wireless client programs must be updated to permit the configuration of WPA authentication (and
preshared key) and the new WPA encryption algorithms (TKIP and the optional AES component).
To obtain the Microsoft WPA client program, visit the following Microsoft Web site.
June 2004 202-10036-01
Glossary 1
Glossary
Use the list below to find definitions for technical terms used in this manual.
List of Glossary Terms
10BASE-T
IEEE 802.3 specification for 10 Mbps Ethernet over twisted pair wiring.
100BASE-Tx
IEEE 802.3 specification for 100 Mbps Ethernet over twisted pair wiring.
802.1x
802.1x defines port-based, network access control used to provide authenticated network access and
automated data encryption key management.
The IEEE 802.1x draft standard offers an effective framework for authenticating and controlling user traffic
to a protected network, as well as dynamically varying encryption keys. 802.1x uses a protocol called EAP
(Extensible Authentication Protocol) and supports multiple authentication methods, such as token cards,
Kerberos, one-time passwords, certificates, and public key authentication. For details on EAP specifically,
refer to IETF's RFC 2284.
802.11a
IEEE specification for wireless networking at 54 Mbps operating in unlicensed radio bands over 5GHz.
802.11b
IEEE specification for wireless networking at 11 Mbps using direct-sequence spread-spectrum (DSSS)
technology and operating in the unlicensed radio spectrum at 2.5GHz.
802.11g
A soon to be ratified IEEE specification for wireless networking at 54 Mbps using direct-sequence
spread-spectrum (DSSS) technology and operating in the unlicensed radio spectrum at 2.5GHz. 802.11g is
backwards compatible with 802.11b.
ADSL
Short for asymmetric digital subscriber line, a technology that allows data to be sent over existing copper
telephone lines at data rates of from 1.5 to 9 Mbps when receiving data (known as the downstream rate) and
from 16 to 640 Kbps when sending data (known as the upstream rate).
Reference Manual for the 54 Mbps Wireless Router WGR614 v5
2Glossary
June 2004 202-10036-01
ADSL requires a special ADSL modem. ADSL is growing in popularity as more areas around the world
gain access.
AES
Advanced Encryption Standard, a symmetric 128-bit block data encryption technique.
It is an iterated block cipher with a variable block length and a variable key length. The block length and the
key length can be independently specified to 128, 192 or 256 bits.The U.S government adopted the
algorithm as its encryption technique in October 2000, replacing the DES encryption it used. AES works at
multiple network layers simultaneously.
ARP
Address Resolution Protocol, a TCP/IP protocol used to convert an IP address into a physical address (called
a DLC address), such as an Ethernet address.
A host wishing to obtain a physical address broadcasts an ARP request onto the TCP/IP network. The host
on the network that has the IP address in the request then replies with its physical hardware address. There is
also Reverse ARP (RARP) which can be used by a host to discover its IP address. In this case, the host
broadcasts its physical address and a RARP server replies with the host's IP address.
Auto Uplink
Auto UplinkTM technology (also called MDI/MDIX) eliminates the need to worry about crossover vs.
straight-through Ethernet cables. Auto UplinkTM will accommodate either type of cable to make the right
connection.
Cat 5
Category 5 unshielded twisted pair (UTP) cabling. An Ethernet network operating at 10 Mbits/second
(10BASE-T) will often tolerate low quality cables, but at 100 Mbits/second (10BASE-Tx) the cable must be
rated as Category 5, or Cat 5 or Cat V, by the Electronic Industry Association (EIA).
This rating will be printed on the cable jacket. Cat 5 cable contains eight conductors, arranged in four
twisted pairs, and terminated with an RJ45 type connector. In addition, there are restrictions on maximum
cable length for both 10 and 100 Mbits/second networks.
Denial of Service attack
DoS. A hacker attack designed to prevent your computer or network from operating or communicating.
DHCP
An Ethernet protocol specifying how a centralized DHCP server can assign network configuration
information to multiple DHCP clients. The assigned information includes IP addresses, DNS addresses, and
gateway (router) addresses.
DMZ
A Demilitarized Zone is used by a company that wants to host its own Internet services without sacrificing
unauthorized access to its private network.
Reference Manual for the 54 Mbps Wireless Router WGR614 v5
Glossary 3
June 2004 202-10036-01
The DMZ sits between the Internet and an internal network's line of defense, usually some combination of
firewalls and bastion hosts. Typically, the DMZ contains devices accessible to Internet traffic, such as Web
(HTTP) servers, FTP servers, SMTP (e-mail) servers and DNS servers.
DNS
Short for Domain Name System (or Service), an Internet service that translates domain names into IP
addresses.
Because domain names are alphabetic, they're easier to remember. The Internet however, is really based on
IP addresses. Every time you use a domain name, therefore, a DNS service must translate the name into the
corresponding IP address. For example, the domain name www.example.com might translate to
198.105.232.4. The DNS system is, in fact, its own network. If one DNS server doesn't know how to
translate a particular domain name, it asks another one, and so on, until the correct IP address is returned.
Domain Name
A descriptive name for an address or group of addresses on the Internet. Domain names are of the form of a
registered entity name plus one of a number of predefined top level suffixes such as .com, .edu, .uk, etc. For
example, in the address mail.NETGEAR.com, mail is a server name and NETGEAR.com is the domain.
DoS
A hacker attack designed to prevent your computer or network from operating or communicating.
DSL
Short for digital subscriber line, but is commonly used in reference to the asymmetric version of this
technology (ADSL) that allows data to be sent over existing copper telephone lines at data rates of from 1.5
to 9 Mbps when receiving data (known as the downstream rate) and from 16 to 640 Kbps when sending data
(known as the upstream rate).
ADSL requires a special ADSL modem. ADSL is growing in popularity as more areas around the world
gain access.
DSLAM
DSL Access Multiplexor. The piece of equipment at the telephone company central office that provides the
ADSL signal.
Dynamic Host Configuration Protocol
DHCP. An Ethernet protocol specifying how a centralized DHCP server can assign network configuration
information to multiple DHCP clients. The assigned information includes IP addresses, DNS addresses, and
gateway (router) addresses.
EAP
Extensible Authentication Protocol is a general protocol for authentication that supports multiple
authentication methods.
EAP, an extension to PPP, supports such authentication methods as token cards, Kerberos, one-time
passwords, certificates, public key authentication and smart cards. In wireless communications using EAP, a
user requests connection to a WLAN through an AP, which then requests the identity of the user and
Reference Manual for the 54 Mbps Wireless Router WGR614 v5
4Glossary
June 2004 202-10036-01
transmits that identity to an authentication server such as RADIUS. The server asks the AP for proof of
identity, which the AP gets from the user and then sends back to the server to complete the authentication.
EAP is defined by RFC 2284.
ESP
Encapsulating Security Payload.
ESSID
The Extended Service Set Identification (ESSID) is a thirty-two character (maximum) alphanumeric key
identifying the wireless local area network.
Gateway
A local device, usually a router, that connects hosts on a local network to other networks.
IETF
Internet Engineering Task Force. Working groups of the IETF propose standard protocols and procedures for
the Internet, which are published as RFCs (Request for Comment) at www.ietf.org.
An open international community of network designers, operators, vendors, and researchers concerned with
the evolution of the Internet architecture and the smooth operation of the Internet.
IP
Internet Protocol is the main internetworking protocol used in the Internet. Used in conjunction with the
Transfer Control Protocol (TCP) to form TCP/IP.
IP Address
A four-byte number uniquely defining each host on the Internet, usually written in dotted-decimal notation
with periods separating the bytes (for example, 134.177.244.57).
Ranges of addresses are assigned by Internic, an organization formed for this purpose.
IPX
Short for Internetwork Packet Exchange, a networking protocol used by the Novell NetWare operating
systems.
Like UDP/IP, IPX is a datagram protocol used for connectionless communications. Higher-level protocols,
such as SPX and NCP, are used for additional error recovery services.
ISP
Internet service provider.
Internet Protocol
The main internetworking protocol used in the Internet. Used in conjunction with the Transfer Control
Protocol (TCP) to form TCP/IP.
LAN
A communications network serving users within a limited area, such as one floor of a building.
Reference Manual for the 54 Mbps Wireless Router WGR614 v5
Glossary 5
June 2004 202-10036-01
LDAP
A set of protocols for accessing information directories.
Lightweight Directory Access Protocol
LDAP. A set of protocols for accessing information directories.
LDAP is based on the standards contained within the X.500 standard, but is significantly simpler. And
unlike X.500, LDAP supports TCP/IP, which is necessary for any type of Internet access. Because it's a
simpler version of X.500, LDAP is sometimes called X.500-lite.
local area network
LAN. A communications network serving users within a limited area, such as one floor of a building.
A LAN typically connects multiple personal computers and shared network devices such as storage and
printers. Although many technologies exist to implement a LAN, Ethernet is the most common for
connecting personal computers.
MAC address
The Media Access Control address is a unique 48-bit hardware address assigned to every network interface
card. Usually written in the form 01:23:45:67:89:ab.
Mbps
Megabits per second.
MDI/MDIX
In cable wiring, the concept of transmit and receive are from the perspective of the computer, which is wired
as a Media Dependant Interface (MDI). In MDI wiring, a computer transmits on pins 1 and 2. At the hub,
switch, router, or access point, the perspective is reversed, and the hub receives on pins 1 and 2. This wiring
is referred to as Media Dependant Interface - Crossover (MDI-X). See also AES.
Maximum Receive Unit
The size in bytes of the largest packet that can be sent or received.
Maximum Transmit Unit
The size in bytes of the largest packet that can be sent or received.
Most Significant Bit or Most Significant Byte
MSB. The portion of a number, address, or field that is farthest left when written as a single number in
conventional hexadecimal ordinary notation. The part of the number having the most value.
MRU
The size in bytes of the largest packet that can be sent or received.
MSB
MSB. The portion of a number, address, or field that is farthest left when written as a single number in
conventional hexadecimal ordinary notation. The part of the number having the most value.
Reference Manual for the 54 Mbps Wireless Router WGR614 v5
6Glossary
June 2004 202-10036-01
MTU
The size in bytes of the largest packet that can be sent or received.
NAT
A technique by which several hosts share a single IP address for access to the Internet.
NetBIOS
The Network Basic Input Output System is an application programming interface (API) for sharing services
and information on local-area networks (LANs).
Provides for communication between stations of a network where each station is given a name. These names
are alphanumeric names, up to 16 characters in length.
Network Address Translation
NAT. A technique by which several hosts share a single IP address for access to the Internet.
NIC
Network Interface Card. An adapter in a computer which provides connectivity to a network.
NID
Network Interface Device. The point of demarcation, where the telephone line comes into the house.
packet
A block of information sent over a network. A packet typically contains a source and destination network
address, some protocol and length information, a block of data, and a checksum.
Perfect Forward Secrecy
Perfect Forward Secrecy (PFS) provides additional security by means of a Diffie-Hellman shared secret
value. With PFS, if one key is compromised, previous and subsequent keys are secure because they are not
derived from previous keys.
PKIX
PKIX. The most widely used standard for defining digital certificates.
Point-to-Point Protocol
PPP. A protocol allowing a computer using TCP/IP to connect directly to the Internet.
PPP
A protocol allowing a computer using TCP/IP to connect directly to the Internet.
PPPoA
PPPoA. PPP over ATM is a protocol for connecting remote hosts to the Internet over an always-on
connection by simulating a dial-up connection.
Reference Manual for the 54 Mbps Wireless Router WGR614 v5
Glossary 7
June 2004 202-10036-01
PPPoE
PPPoE. PPP over Ethernet is a protocol for connecting remote hosts to the Internet over an always-on
connection by simulating a dial-up connection.
PPP over ATM
PPPoA. PPP over ATM is a protocol for connecting remote hosts to the Internet over an always-on
connection by simulating a dial-up connection.
PPP over Ethernet
PPPoE. PPP over Ethernet is a protocol for connecting remote hosts to the Internet over an always-on
connection by simulating a dial-up connection.
PPTP
Point-to-Point Tunneling Protocol. A method for establishing a virtual private network (VPN) by embedding
Microsoft’s network protocol into Internet packets.
PSTN
Public Switched Telephone Network.
RADIUS
Short for Remote Authentication Dial-In User Service, RADIUS is an authentication system.
Using RADIUS, you must enter your user name and password before gaining access to a network. This
information is passed to a RADIUS server, which checks that the information is correct, and then authorizes
access. Though not an official standard, the RADIUS specification is maintained by a working group of the
IETF.
RFC
Request For Comment. Refers to documents published by the Internet Engineering Task Force (IETF)
proposing standard protocols and procedures for the Internet. RFCs can be found at www.ietf.org.
RIP
A protocol in which routers periodically exchange information with one another so that they can determine
minimum distance paths between sources and destinations.
router
A device that forwards data between networks. An IP router forwards data based on IP source and
destination addresses.
Routing Information Protocol
RIP. A protocol in which routers periodically exchange information with one another so that they can
determine minimum distance paths between sources and destinations.
Reference Manual for the 54 Mbps Wireless Router WGR614 v5
8Glossary
June 2004 202-10036-01
SSID
A Service Set Identification is a thirty-two character (maximum) alphanumeric key identifying a wireless
local area network. For the wireless devices in a network to communicate with each other, all devices must
be configured with the same SSID.
This is typically the configuration parameter for a wireless PC card. It corresponds to the ESSID in the
wireless Access Point and to the wireless network name. See also Wireless Network Name and ESSID.
Subnet Mask
A mask used to determine what subnet an IP address belongs to. Subnetting enables a network administrator
to further divide an IP address into two or more subnets.
An IP address has two components, the network address and the host address. For example, consider the IP
address 150.215.017.009. Assuming this is part of a Class B network, the first two numbers (150.215)
represent the Class B network address, and the second two numbers (017.009) identify a particular host on
this network.
Subnetting enables the network administrator to further divide the host part of the address into two or more
subnets. In this case, a part of the host address is reserved to identify the particular subnet. This is easier to
see if we show the IP address in binary format. The full address is: 10010110.11010111.00010001.00001001
The Class B network part is: 10010110.11010111
and the host address is 00010001.00001001
If this network is divided into 14 subnets, however, then the first 4 bits of the host address (0001) are
reserved for identifying the subnet.
The subnet mask is the network address plus the bits reserved for identifying the subnetwork. (By
convention, the bits for the network address are all set to 1, though it would also work if the bits were set
exactly as in the network address.) In this case, therefore, the subnet mask would be
11111111.11111111.11110000.00000000. It's called a mask because it can be used to identify the subnet to
which an IP address belongs by performing a bitwise AND operation on the mask and the IP address. The
result is the subnetwork address: Subnet Mask 255.255.240.000 11111111.11111111.11110000.00000000
IP Address 150.215.017.009 10010110.11010111.00010001.00001001
Subnet Address 150.215.016.000 10010110.11010111.00010000.00000000
The subnet address, therefore, is 150.215.016.000.
TCP/IP
The main internetworking protocols used in the Internet. The Internet Protocol (IP) used in conjunction with
the Transfer Control Protocol (TCP) form TCP/IP.
TLS
Short for Transport Layer Security, TLS is a protocol that guarantees privacy and data integrity between
client/server applications communicating over the Internet.
The TLS protocol is made up of two layers. The TLS Record Protocol ensures that a connection is private by
using symmetric data encryption and ensures that the connection is reliable. The second TLS layer is the
TLS Handshake Protocol, which allows authentication between the server and client and the negotiation of
Reference Manual for the 54 Mbps Wireless Router WGR614 v5
Glossary 9
June 2004 202-10036-01
an encryption algorithm and cryptographic keys before data is transmitted or received. Based on Netscape’s
SSL 3.0, TLS supercedes and is an extension of SSL. TLS and SSL are not interoperable.
Universal Plug and Play
UPnP. A networking architecture that provides compatibility among networking technology. UPnP
compliant routers provide broadband users at home and small businesses with a seamless way to participate
in online games, videoconferencing and other peer-to-peer services.
UTP
Unshielded twisted pair is the cable used by 10BASE-T and 100BASE-Tx Ethernet networks.
WAN
Wide Area Network. A long distance link used to extend or connect remotely located local area networks.
The Internet is a large WAN.
WEB Proxy Server
A Web proxy server is a specialized HTTP server that allows clients access to the Internet from behind a
firewall.
The proxy server listens for requests from clients within the firewall and forwards these requests to remote
Internet servers outside the firewall. The proxy server reads responses from the external servers and then
sends them to internal client clients.
WEP
Wired Equivalent Privacy is a data encryption protocol for 802.11b wireless networks.
All wireless nodes and access points on the network are configured with a 64-bit or 128-bit Shared Key for
data encryption.
wide area network
WAN. A long distance link used to extend or connect remotely located local area networks. The Internet is a
large WAN.
Wi-Fi
A trade name for the 802.11b wireless networking standard, given by the Wireless Ethernet Compatibility
Alliance (WECA, see http://www.wi-fi.net), an industry standards group promoting interoperability among
802.11b devices.
Windows Internet Naming Service
WINS. Windows Internet Naming Service is a server process for resolving Windows-based computer names
to IP addresses.
If a remote network contains a WINS server, your Windows PCs can gather information from that WINS
server about its local hosts. This allows your PCs to browse that remote network using the Windows
Network Neighborhood feature.
Reference Manual for the 54 Mbps Wireless Router WGR614 v5
10 Glossary
June 2004 202-10036-01
WINS
WINS. Windows Internet Naming Service is a server process for resolving Windows-based computer names
to IP addresses.
Wireless Network Name (SSID)
Wireless Network Name (SSID) is the name assigned to a wireless network. This is the same as the SSID or
ESSID configuration parameter.
WPA
Wi-Fi Protected Access (WPA) is a specification of standards-based, interoperable security enhancements
that increase the level of data protection and access control for existing and future wireless LAN systems.
Index 1
Numerics
802.11b D-1
A
Account Name 3-14, 6-2
Address Resolution Protocol B-8
ad-hoc mode D-2
Auto MDI/MDI-X B-15, G-2
Auto Uplink B-15, G-2
B
backup configuration 6-6
Basic Wireless Connectivity 4-7
Basic Wireless Settings 4-11
BSSID D-2
C
Cabling B-11
Cat5 cable B-12, C-1, G-2
configuration
automatic by DHCP 2-4
backup 6-6
erasing 6-7
restore 6-8
router, initial 3-1
content filtering 2-2, 5-1
conventions
typography 1-1
crossover cable 8-2, B-14, B-15, G-2
customer support 1-ii
D
date and time 8-8
Daylight Savings Time 8-8
daylight savings time 5-8
Default DMZ Server 7-8
Denial of Service (DoS) protection 2-2
denial of service attack B-11
DHCP B-10
DHCP Client ID C-18
DMZ 2-3, 7-4, 7-8
DMZ Server 7-8
DNS Proxy 2-4
DNS server C-22
DNS, dynamic 7-13
domain C-22
Domain Name 3-14
domain name server (DNS) B-9
DoS attack B-11
Dynamic DNS 7-13
E
EnterNet C-20
erase configuration 6-7
ESSID 4-8, D-2
Ethernet cable B-11
F
factory settings, restoring 6-7
firewall features 2-2
Flash memory, for firmware upgrade 2-2
front panel 2-6, 2-7
Index
2Index
fully qualified domain name (FQDN) 4-5
G
gateway address C-22
H
Half Life 7-6
host name 3-14
I
IANA
contacting B-2
IETF B-1
Web site address B-7
infrastructure mode D-2
installation 2-4
Internet account
address information C-20
establishing C-20
IP addresses C-21, C-22
and NAT B-7
and the Internet B-2
assigning B-2, B-9
auto-generated 8-3
private B-7
translating B-9
IP configuration by DHCP B-10
IP networking
for Macintosh C-18
for Windows C-4, C-9
K
KALI 7-6
L
LAN IP Setup Menu 7-10
LEDs
troubleshooting 8-2
log
sending 5-7
log entries 5-6
Logout 3-11, 3-12
M
MAC address 8-7, B-8
spoofing 3-14, 8-5
Macintosh C-21
configuring for IP networking C-18
DHCP Client ID C-18
Obtaining ISP Configuration Information C-22
masquerading C-20
MDI/MDI-X B-15, G-2
MDI/MDI-X wiring B-14, G-5
metric 7-15
N
NAT C-20
NAT. See Network Address Translation
netmask
translation table B-6
Network Address Translation 2-3, B-7, C-20
Network Time Protocol 5-8, 8-8
NTP 5-8, 8-8
O
Open System authentication D-4
P
package contents 2-5
Passphrase 4-4, 4-6, 4-10, 4-11
passphrase 2-2
password
restoring 8-7
PC, using to configure C-23
ping 7-8
placement 4-1
port filtering 5-3
Port Forwarding 7-3
Index 3
port forwarding behind NAT B-8
Port Forwarding Menu 7-2, 7-3, 7-4, 7-5
port numbers 5-3
PPP over Ethernet 2-4, C-20
PPPoE C-20
Primary DNS Server 3-14
protocols
Address Resolution B-8
DHCP B-10
Routing Information 2-3, B-2
support 2-2
publications, related B-1
Q
Quake 7-6
R
range 4-1
rear panel 2-7
remote management 7-16
reserved IP adresses 7-12
restore configuration 6-8
restore factory settings 6-7
Restrict Wireless Access by MAC Address 4-11
RFC
1466 B-7, B-9
1597 B-7, B-9
1631 B-7, B-9
finding B-7
RIP (Router Information Protocol) 7-11
router concepts B-1
Router Status 6-1
Routing Information Protocol 2-3, B-2
S
Scope of Document 1-1
Secondary DNS Server 3-14
security 2-1, 2-3
service numbers 5-4
Setup Wizard 3-1
Shared Key authentication D-4
SMTP 5-8
spoof MAC address 8-5
SSID 2-8, 4-3, 4-8, 4-9, D-2
stateful packet inspection 2-2, B-11
Static Routes 7-13
Status Light 2-6
subnet addressing B-4
subnet mask B-5, C-21, C-22
T
TCP/IP
configuring C-1
network, troubleshooting 8-5
TCP/IP properties
verifying for Macintosh C-19
verifying for Windows C-8, C-17
time of day 8-8
time zone 5-8
time-stamping 5-8
troubleshooting 8-1
Trusted Host 5-3
U
Uplink switch B-14
USB C-20
W
WAN 7-7
WEP 2-8, D-8
Wi-Fi D-1, D-4
Windows, configuring for IP routing C-4, C-9
winipcfg utility C-8
WinPOET C-20
Wired Equivalent Privacy. See WEP
Wireless Access C-3
Wireless Ethernet D-1
4Index
wireless network name 2-8
Wireless Performance 4-1
Wireless Range Guidelines 4-1
Wireless Security 4-2
World Wide Web 1-ii
WPA-PSK 4-4
WPA-PSK Password Phrase 4-4

Navigation menu