Nordic ID NUR21W UHF RFID Radio Module NUR2-1W User Manual

Nordic ID Oy UHF RFID Radio Module NUR2-1W

User Manual

 1  2017-09-07 NUR2-1W HW Implementation Guide v1.0             NUR2-1W HW IMPLEMENTATION GUIDE
 2  2017-09-07 NUR2-1W HW Implementation Guide v1.0      Change history:  Version  Date  Author  Remarks 1.0  12.6.2017  Toni Heijari  First released version 1.1  15.06.2017  Rauno Nikkilä  EU standards updated 1.2  09.08.2017  Rauno Nikkilä  Output  power  values  updated  in  page  7. Modulation info added into page 16. 1.3  07.09.2017  Rauno Nikkilä   Modifications to chapters 11.2, 11.3 and 11.4
 3  2017-09-07 NUR2-1W HW Implementation Guide v1.0     Table of contents  1 GENERAL DESCRIPTION ......................................................................................................................... 5 1.1 Block diagram .................................................................................................................................... 5 1.2 Key features ...................................................................................................................................... 5 1.3 Typical application schematics .......................................................................................................... 6 2 ELECTRICAL CHARACTERISTICS ........................................................................................................................ 7 2.1 Absolute maximum ratings ................................................................................................................ 7 2.2 DC characteristics ............................................................................................................................. 7 2.3 RF characteristics .............................................................................................................................. 7 2.4 Performance characteristics .............................................................................................................. 8 3 PIN ASSIGNMENTS ......................................................................................................................................... 9 3.1 Pin designation .................................................................................................................................. 9 3.2 Pin mapping ....................................................................................................................................... 9 3.3 Signal description ............................................................................................................................ 11 4 OEM DESIGN CONSIDERATIONS .................................................................................................................... 13 4.1 RF output and antenna requirements ............................................................................................. 13 4.1.1 Layout recommendations .................................................................................................. 13 4.1.2 Transmission line .............................................................................................................. 14 4.2 Power supply ................................................................................................................................... 14 4.3 USB device port............................................................................................................................... 15 5 RF PARAMETERS .......................................................................................................................................... 16 5.1 TX level ............................................................................................................................................ 16 5.2 Receiver sensitivity .......................................................................................................................... 16 5.3 Modulation ....................................................................................................................................... 16 5.4 LINK pROFILES (TBD) ................................................................................................................... 16 5.5 Region ............................................................................................................................................. 17 6 READING PARAMETERS ................................................................................................................................ 19 6.1 Q-value ............................................................................................................................................ 19 6.2 Session ............................................................................................................................................ 19 6.3 Rounds ............................................................................................................................................ 20 6.4 Selecting the right reading parameters ........................................................................................... 20 6.5 RSSI FILTERS ................................................................................................................................ 21 6.6 Dynamic Power save modes (TBD) ................................................................................................ 22 7 GPIO CONFIGURATIONS ............................................................................................................................... 23 7.1 Input / output.................................................................................................................................... 23 7.2 Predefined functions ........................................................................................................................ 23
 4  2017-09-07 NUR2-1W HW Implementation Guide v1.0  8 DIAGNOSTIC FUNCTIONS .............................................................................................................................. 24 8.1 Reflected power measurements...................................................................................................... 24 8.2 Channel scanner (TBD) ................................................................................................................... 24 8.3 Received signal strength (RSSI) ..................................................................................................... 25 9 DIMENSIONS ............................................................................................................................................... 25 9.1 Mechanical dimensions ................................................................................................................... 25 9.2 Land pattern .................................................................................................................................... 27 9.3 Paste stencil .................................................................................................................................... 29 9.4 Packing tray dimensions ................................................................................................................. 31 10 SMT ASSEMBLY PROCESS AND THERMAL PROCESSING ................................................................................... 32 10.1 Storage conditions ........................................................................................................................... 32 10.2 Soldering process ............................................................................................................................ 33 11 REGULATORY AGENCIES INFORMATION ........................................................................................................ 35 11.1 European Union and EFTA countries ............................................................................................. 35 User’s Guide Requirements ................................................................................................................ 35 Labeling Requirements ....................................................................................................................... 38 Approved Antennas ........................................................................................................................... 38 11.2 FCC ................................................................................................................................................. 39 User’s Guide Requirements ................................................................................................................ 41 Labeling Requirements ....................................................................................................................... 42 Approved Antennas ........................................................................................................................... 42 11.3 Industry Canada .............................................................................................................................. 43 Labelling Requirements for the Host device ......................................................................................... 44 certified Antennas ............................................................................................................................. 44 11.4 Industrie Canada ............................................................................................................................. 45 Exigences applicables aux appareils hôtes ............................................................................................ 46 TYPES D'ANTENNES ACCEPTABLES ....................................................................................................... 46
 5  2017-09-07 NUR2-1W HW Implementation Guide v1.0   1 GENERAL DESCRIPTION  NUR2-1W  is  a  next  generation  compact  UHF  RFID  module.  It  is  compatible  with  ISO18000-63  (EPC C1G2)  standard.  Module  fulfills ETSI,  FCC  and  IC  radio  regulations.    It  is  also  compatible  with  DRM (dense reader mode) requirements. Maximum output power is +30dBm and it can be adjusted via SW API with 1 dB steps. Maximum sensitivity is -81 dBm.   1.1 BLOCK DIAGRAM  Figure 1. Block diagram of the module   1.2 KEY FEATURES   SMT compatible module with small footprint  ISO 18000-63 (EPC C1G2) full protocol support + custom commands   Low power consumption with high noise rejection  DRM compatible  High performance with +30dBm output power, adjustable by 1dB steps  Approved by ETSI, FCC and IC telecommunication organizations  UART and USB 2.0 communication  6 programmable GPIO with event trigger  Increased sensitivity with automatic leakage cancelation
 6  2017-09-07 NUR2-1W HW Implementation Guide v1.0  1.3 TYPICAL APPLICATION SCHEMATICS   Typical application schematic including: USB connection with ESD protection circuitry, NUR2-1W module and SMA RF-connector.                 Figure 2. A simple application schematic.
 7  2017-09-07 NUR2-1W HW Implementation Guide v1.0   2 ELECTRICAL CHARACTERISTICS 2.1 ABSOLUTE MAXIMUM RATINGS  Violating  these  values  may  cause  damage  to  the  module.  Also,  correct  operation  is  not  guaranteed  if operating outside these values. NUR2-1W is ESD sensitive component so it must be handled with care.    Table 1. Absolute maximum ratings of the module. Absolute maximum ratings  Value Operating temperature  -20°C to +55°C Storage temperature (package unopened)  -30°C to +85°C Supply voltage and enable  +6.0V GPIO pins  +4.0V Other pins  +4.0V  2.2 DC CHARACTERISTICS  Table 2. DC characteristics (VCC_4V0_IN = 4.0V @ +25°C). Symbol  Parameter  Min  Typ  Max  Units Vext  Supply voltage  3.8  4.0  5.5  V Iext  Supply current  -  1.5  2  A Isource  GPIO source current  -  -  4  mA Isink  GPIO  sink current  -  -  4  mA Vlow  GPIO input low-level voltage  -  -  0.8  V Vhigh  GPIO input high-level voltage   2.0  -  -  V Ven  Module enable voltage  1.2  -  Supply  V  2.3 RF CHARACTERISTICS  Table 3. RF characteristics (VCC_4V0_IN = 4.0V @ +25°C). Symbol  Parameter  Min  Typ  Max  Units Sens  Receiver sensitivity*  -  -  -81  dBm Pout  Output power  1  -  30  dBm Padj  Power adjustment step  -  1  -  dB S11  VSWR requirement  -  -  1,5:1  @50Ω Drt  Reader to tag data rates   -  40 / 80  -  kbps Dtr  Tag to reader data rates  62  150  400  kbps
 8  2017-09-07 NUR2-1W HW Implementation Guide v1.0  *Sensitivity is measured at the RF-port of the module.   2.4 PERFORMANCE CHARACTERISTICS  The performance of the reader module is highly dependent on the test environment, reader antenna and tag performance. Interferences from other radio sources operating in the same frequency may decrease the performance.  Also,  the  tag  antenna  and  the  tag  IC  may  have  significant  effect  on  the  values  presented below. Selected radio and inventory parameters do have a big influence to reading performance as well.  Table 4. Performance characteristics (VCC_4V0_IN = 4.0V @ +25°C). Symbol  Parameter  Min  Typ  Max  Units Rdist  Typical reading distance with 5 dBi antenna*  -  10  -  m Rrate  Typical reading rate (Tari25 / Tari6.25)  -  300  800  tags/s Otemp  Operation temperature  -20  -  +55  °C Hrel  Relative humidity   10  -  95  %  *Measured with Smartrac Belt R6 tag.
 9  2017-09-07 NUR2-1W HW Implementation Guide v1.0   3 PIN ASSIGNMENTS 3.1 PIN DESIGNATION   Figure 3. Through top view.   3.2 PIN MAPPING  Table 5. Pin mapping of the module.  Pin number  Signal name  Pin type  Description 1  GPIO_6  Bidirectional  3.3V GPIO 2  GPIO_5  Bidirectional  3.3V GPIO  3  GPIO_4  Bidirectional  3.3V GPIO  4  GPIO_3  Bidirectional  3.3V GPIO  5  GPIO_2  Bidirectional  3.3V GPIO  6  GPIO_1  Bidirectional  3.3V GPIO  7  ERASE/DNU  Input  DNU (do not use) 8  DRXD  Input  Data from Host to Module
 10  2017-09-07 NUR2-1W HW Implementation Guide v1.0  9  DTXD  Output  Data from module to Host 10  USB_DN  Bidirectional  USB – (device port) 11  USB_DP  Bidirectional  USB + (device port) 12  USB_5V  Input  Used only for USB detection 13  VCC_3V3_OUT  Supply output  DNU (only for testing purposes) 14  MODULE_EN  Input  Driving high will enable the module 15  GND  Supply input  Ground 16  RFU  Not connected  RFU (do not connect) 17  VCC_4V0_IN  Supply input  Supply voltage input 18  RFU/NC  Bidirectional  RFU (do not connect) 19  RFU/NC  Bidirectional  RFU (do not connect) 20  GND  Supply input  Ground 21  GND  Supply input  Ground 22  GND  Supply input  Ground 23  GND  Supply input  Ground 24  GND  Supply input  Ground 25  GND  Supply input  Ground 26  GND  Supply input  Ground 27  RF_OUT1_INNER  Bidirectional  RFU (do not connect) 28  GND  Supply input  Ground 29  DNU/RF_OUT2_INNER Bidirectional  RFU (do not connect) 30  GND  Supply input  Ground 31  NC  Not connected  internally not connected  32  NC  Not connected  internally not connected 33-46  GND  Supply input  Ground 47  RF_OUT1  Bidirectional  50Ω RF output/input 48  GND  Supply input  Ground 49  DNU/RF_OUT2  Bidirectional  RFU (do not connect) 50  GND  Bidirectional  Ground
 11  2017-09-07 NUR2-1W HW Implementation Guide v1.0   3.3 SIGNAL DESCRIPTION   Table 6. Signal description. Signal name: GND                        Pin number(s): 15, 20-26, 28, 30, 33-46, 48, 50 These pins are used for grounding and to improve the thermal performance. They should be connected to Host board GND net.  Signal name: GPIO_X     Pin number(s): 1-6 These pins are used as general purpose IO. They can be configured via SW API as input or output ports. IO voltage level is 3.3V. GPIOs have source current capability of 4mA and sink current capability of 4mA.   Signal name: ERASE                                        Pin number(s): 7 This pin is used for production testing purposes only. Should not be connected. Signal name: DRXD                        Pin number(s): 8 This pin is used for module UART input signal. Logic level is 3.3V. If UART is used for communication the pin should be connected to the Host MCU serial TX port.  Signal name: DTXD                        Pin number(s): 9 This pin is used for module UART output signal. Logic level is 3.3V. If UART is used for communication the pin should be connected to the Host MCU serial RX port.  Signal name: USB_DN     Pin number(s): 10 This pin is used as USB_D- device port. It is advised to use external ESD protection component if connected to user accessible USB connector.  Signal name: USB_DP     Pin number(s): 11 This pin is used as USB_D+ device port. It is advised to use external ESD protection component if connected to user accessible USB connector.  Signal name: USB_5V                                    Pin number(s): 12 This pin is only used for USB connection detection. It is advised to use external ESD protection component if connected to user accessible USB connector. Current is not drawn from this input pin.  Signal name: VCC_3V3_OUT                       Pin number(s): 13 This pin is connected to internal power regulator output. The pin is used for production testing and it should not be used. Signal name: MODULE_EN                       Pin number(s): 14 Driving this pin to high will enable the NUR-10W module. It is internally connected to onboard voltage regulator’s enable input. The trigger level is 1.2V and the reader module will wake up in 50ms. If the external power switch is used to toggle ON and OFF, this pin can be connected directly to VCC_3V6_IN.
 12  2017-09-07 NUR2-1W HW Implementation Guide v1.0  Signal name: NC                                          Pin number(s): 16, 31, 32 These pins are internally not connected.   Signal name: VCC_4V0_IN                       Pin number(s): 17 This pin is used for power supply input for NUR-10W module. It is recommended to use 200µF (low ESR) 100nF and 100pF capacitor near the VCC_4V0_IN input pin to maintain stable operating voltage for the reader module.   Signal name: RFU / DNU pins       Pin number(s): 18, 19, 27, 29, 49 These pins are reserved for future use. Do not connect these pins. Signal name: RF                          Pin number(s): 47 50Ω impedance RF output / input pin. Trace to this pin should be also matched to 50 Ω. See more details from the design considerations section.
 13  2017-09-07 NUR2-1W HW Implementation Guide v1.0   4 OEM DESIGN CONSIDERATIONS  4.1   RF OUTPUT AND ANTENNA REQUIREMENTS  The RF output  /  input  impedance  is  50Ω  so  the  trace  leaving  from  the  RF  pin  shall  be kept in that same impedance level to avoid reflections and mismatch of the RF signal. From the RFID reader module’s point of view it is important that the used antenna has a low VSWR value. The VSWR shall be better than 1.5:1 in order to avoid decrease in the sensitivity performance of the receiver because of the TX power reflecting back  from the  antenna. In the NUR2-1W  module,  there  is also an automatic  leakage  cancellation system that decreases the effect of the reflected signal, and it also improves the isolation of the RX signal from the TX  signal.  The  automatic  leakage  cancellation  is  automatically  on  when  module  is  operating  in  normal mode.   4.1.1 LAYOUT RECOMMENDATIONS  Figure 4. RF output layout of the reference design.   Because NUR2-1W is a wireless device, the RF section must be the top priority in terms of layout. It is very important that layout is made by following the proper RF design guidelines to get to optimal performance from the device. Poor layout can decrease the output power, sensitivity and cause mask violations.  Component places; R2, R3 and R12 are for additional output matching. Additional matching is not used in a reference design. Thus values are as follow: R3 = No assembly, R12 = No  assembly and R2 =  100pF 0402 capacitor.
 14  2017-09-07 NUR2-1W HW Implementation Guide v1.0  4.1.2 TRANSMISSION LINE  The RF signal from the module is routed to antenna connector using a grounded CPW structure. This is to achieve the maximum isolation and RF shielding to RF lines. Also GND vias should be added along the line to give additional shielding.   Figure 5. Grounded CPW with via stitching.   Table 7. Recommended PCB values for 4-layer board (L2 is the GND plane for transmission line) Parameter  Value  Unit W  0.35  mm S  0.2  mm H  0.18  mm Er  4    General recommendations: 1. RF traces must have 50 Ohm impedance because module is only rated to operate in 50 Ohm systems. 2. RF trace bends must be gradual and not have any sharp corners. 3. Grounded CPW structure must have GND via stitching.  4. Only connect antennas which are approved.  4.2   POWER SUPPLY  The  NUR2-1W  has  internal  linear  power  regulators  for  getting  better  power  supply  noise  rejection. However, it is still important to supply low noise and stable power to the NUR2-1W module. The voltage ripple should be kept under 200mVpp and it is recommended to add a minimum of 200µF low ESR, 100nF and 100pF capacitors next to the VCC_4V0_IN pin.   VCC_3V3_OUT is internal regulator output and it is used for production testing purposes. This pin should not be used to power external circuits.
 15  2017-09-07 NUR2-1W HW Implementation Guide v1.0   4.3   USB DEVICE PORT  USB_DP, USB_DN and USB_5V pins are used to provide 2.0 compliant USB device port. It is advised to use external  ESD  protection  component  if  connected  to  user  accessible  USB  connector.  Below  is  the  typical schematics used with NUR2-1W module.   Figure 6. Typical schematics for USB connection with ESD protection.    Table 8. Used components. Ref  Description  Manufacturer  Part code U1  ESD protection  ST Microelectronics  USBLC6-2SC6 L1  Common mode choke  Murata  DLW21SN371SQ2L
 16  2017-09-07 NUR2-1W HW Implementation Guide v1.0   5 RF PARAMETERS  5.1   TX LEVEL  The maximum output power is +30dBm (1000mW). The power can be adjusted by 1dB steps. In total, there are  30  steps  meaning  the  minimum  output  power  value  is  +1dBm  that  equals  to  1mW  of  power.  When using higher output power levels the antennas VSWR value becomes more and more important factor. High output power combined with antenna with poor VSWR leads to a situation where significant portion of the power is reflected back to the receiver.     5.2   RECEIVER SENSITIVITY  The  maximum  sensitivity  of  the  module is -81dBm. The receiver  can handle  +15dBm  of  power  reflecting back to RF_OUT1 pin without having a big impact on the performance. The receiver architecture uses direct conversion and it has an integrated AGC (automatic gain controller). Baseband is made using a DSP.  5.3 MODULATION  It  is  possible  to  use  ASK  (amplitude  shift  keying)  or  PR-ASK  (phase  reversed  amplitude  shift  keying) modulation.  Tags  that  are  compliant  with  ISO18000-6C  (EPC  C1G2)  must  support  both  of  these modulations. The PR-ASK modulation can transfer energy more efficiently to the tag because RF envelope is high more than it is using ASK modulation. By default the modulation is set to PR-ASK.    5.4   LINK PROFILES (TBD)  TBD  Table 9. Available link profiles.  Link profile   TBD  TBD 1  x  x 2  x  x 3  x  x
 17  2017-09-07 NUR2-1W HW Implementation Guide v1.0  5.5   REGION  The  NUR2-1W  has  predefined  region  settings  defining  frequency  and  channel  sets  for  operating  under different radio regulations. Globally the regulations vary depending on the country or part of the world. The below table shows the available options for the region and the respective frequency band they use. Note that the antenna also needs to be working on that same frequency.    Table 10. Pre-programmed countries / regions. Number  Country / region  Frequency / channel BW 0  ETSI / Europe  865.6 – 867.6 MHz / 200kHz  1  FCC / North-America  902 – 928 MHz / 500 kHz
 18  2017-09-07 NUR2-1W HW Implementation Guide v1.0          If you want to use custom frequencies or hop tables you need to feed parameter described below.   Table 11.  Custom hop table parameters.   Parameter  Value  Description Frequency entry  840 000 – 960 000 [kHz]  Defines  the  center  frequency  of the first transmit channel.  Channel count  1 - 100  Defines  the  number  of  transmit channels Channel spacing  25 * n [kHz]  Defines  the  frequency  between transmit channels.   Channel time  minimum 100 ms  Defines  the  time  that  reading  is ON at the same channel Wait time  maximum 1000 ms  Defines the time that transmitter is silent between frequency hops Tari  1=12.5us 2=25us  Defines the Tari value LF  160 000, 256 000 or 320 000 Defines  the  maximum  link frequency that is used
 19  2017-09-07 NUR2-1W HW Implementation Guide v1.0   6 READING PARAMETERS  6.1   Q-VALUE  The Q-value defines the amount of open response slots that tags can use per one inventory round. Number of slots can be calculated by formula 2Q. It is advised to use twice as much slots compared to amount of tags that you have in your readers reading field simultaneously. Selectable values are 0 – 15 and value 0 means automatic Q-value adjustment. When Q=0 is used reader will automatically increase the Q-value when lots of collisions are noticed and decreased the value when there are only few collisions. By default, the Q-value is set to 0.  Table 12.  Relation between the Q-value and the number of open slots per round. Q-value  slots  Q-value  slots 0  automatic  8  256 1  2  9  512 2  4  10  1024 3  8  11  2048 4  16  12  4096 5  32  13  8192 6  64  14  16384 7  128               15  32768   6.2   SESSION  There are four session options which you can use when initializing inventory round. Every session has two target states A and B. By default, Gen2 tags are at state A if tag has not been read recently. When tag is read it flips to state B and doesn’t reply to readers query. The table below describes the persistence of tag’s state machine when using  different session values.  For  example,  when using session  0  the  tag  will  come back  to  state  A  immediately  when  tag  power is lost.  Usually tag  loses  the  power  when  reader  stops  the inventory round or chances the channel. Persistence when tag power is ON is not defined by the ISO18000-6C when using session settings S0, S2 and S3. With session 1 the tag will keep it state over 500ms but less than 5s. With session values 2 and 3 tags will keep it states over 2s when tag power is lost. Time can vary depending what tag IC is used.
 20  2017-09-07 NUR2-1W HW Implementation Guide v1.0     Table 13.  Persistence characteristics of gen2 tags. Flag  Persistence: tag power ON  Persistence: tag power OFF S0  indefinite  none S1  500ms < t < 5s  500ms < t < 5s S2  indefinite  t > 2s S3  indefinite  t > 2s   By changing the target setting from A target to B target reader is able to read also tags that has flipped its state to B state. This would happen if tags would have been read recently using Session 1 2 or 3. NUR2-1W module also supports dual target mode. In that mode reader will change the target mode between inventory rounds. By default, target mode A is used.     6.3   ROUNDS  The  rounds  setting  defines  how  many  query  rounds  is  done  inside  one  inventory  round.  After  every inventory round the reader will send data to the Host. Selectable values are 0 – 10. Zero meaning automatic rounds adjustment. The automatic adjustment decides after every query round whether another round is necessary based on the number of data collisions. By default, rounds setting is set to 0. This setting can help the reader to find all the tags that are in the readers reading field when using session 0. Because tags that are found  in  query round  1 doesn’t replay  in  the following  query rounds. When using  session 1/2/3  this does not make any significant difference because tags that are read are quiet anyway.       Table 14. Relation between inventory round and query round.  Inventory round Round 1  Round 2  round 3  …  Round 10   6.4   SELECTING THE RIGHT READING PARAMETERS  One approach is to test how many tags are in the readers reading field simultaneously. Keep the reader still at the position that is as close to real reading environment as possible and see how many tags are found. Based on that amount choose your open slot number to be 1.5 – 2 times larger (refer to the section 6.1). If reader will face many different tag populations auto-Q setting will be a good choice.
 21  2017-09-07 NUR2-1W HW Implementation Guide v1.0   Besides Q-value  one important  parameter is session.  In general,  it  could  be stated that  if the size of tag population is measured in thousands rather than in hundreds it is wise to use sessions 2 or 3. Because then every  tag  will  be  read  only  once  and  that  makes  large  tag  population  much  faster  and  easier  to  read.  Rounds 1 setting is also advised to be used with session 1 or 2 or 3. With session 0 it might be useful to use higher rounds value than 1 to be able to find all the individual tags. By default, automatic (0) rounds setting is used.   The selected link profile will have also an effect the read speed.   Table 15. Guideline settings to be used with different tag populations. Settings  Tag population  Simultaneously in the field  Session 0, auto Q, auto Rounds   1 – 100  1 – 100 Session 1, auto Q, Rounds 1  100 – 1 000   under 500 Session 2/3, auto Q, Rounds 1  100 – 1 000  over 500 Session 2/3, auto Q, Rounds 1  over 1 000  over 500    6.5   RSSI FILTERS  NUR2-1W module has internal RSSI filters which can be used to limit the read area. By applying the filters, you can set the limits which tag replay must met in order to be registered. MIN RSSI –value means that tag replay  signal  needs  to  be  equal  or  stronger  then the defined value. Otherwise tag is not  read.  MAX  RSSI value in other hand means that signal strength must be lower than the filter value.
 22  2017-09-07 NUR2-1W HW Implementation Guide v1.0  Figure 8. Read range limited by RSSI filter (100mW TX power and 0dBi antenna gain)    6.6 DYNAMIC POWER SAVE MODES (TBD)  TBD
 23  2017-09-07 NUR2-1W HW Implementation Guide v1.0   7 GPIO CONFIGURATIONS  NUR2-1W  has  5  programmable  GPIOs. All  of  them  can  be  used  as  an  input  or  output.  They  can  be  also configured to have different predefined functions.   7.1   INPUT / OUTPUT  All  GPIOs  can  be  configured  via  SW  API  to  be  inputs  or  outputs.  IO  voltage  level  is  3.3V  and  maximum source current is 4mA and sink current 4mA. When configured as input SW API can check what the state (high / low) of the GPIO pin is. When GPIO is configured as an output the SW API can drive the GPIO pin to high or low.    7.2   PREDEFINED FUNCTIONS  Table 16. NUR2-1W module GPIOs options.          RFON (GPIO type: OUTPUT) When  GPIO  is configured  as  “RFON”  it  drives high  state always  when  power  amplifier  is turned  on.  This function can be used for example driving LED indicator.    Antenna control 1 (GPIO type: OUTPUT) When GPIO is configured as “antenna control 1” it can be used for controlling external multiplexer on the Host  board  to  switch  between  two  antennas.  Via  the  SW  API  it’s  possible  to  select  which  antennas  are enabled and used or let the module automatically switch between them.     I/O  Function  Action  Trigger Output  -  -  - Output  RFON  -  - Output  Antenna control 1  -  - Output  Antenna control 2  -  - Input  -  -  -
 24  2017-09-07 NUR2-1W HW Implementation Guide v1.0  Table 17. 2 Port antenna control truth table. Case (selected antenna)  antenna control 1 0 (antenna 1)  low 1 (antenna 2)  high  Antenna control 1 & 2 (GPIO type: OUTPUT) If you want to connect up to 4 antennas and multiplex those using NUR2-1W module you need to configure 2  GPIOs  to  control  the  antenna  switch. In  this  case  you  define  one  GPIO to  be  “antenna  control  1”  and second  one  to  be  “antenna  control  2”.  Via  the  SW  API  it’s  possible  to  select  which  of  the  connected antennas are enabled and used or let the module automatically switch between them.  Table 18. 4 Port antenna control truth table.       8 DIAGNOSTIC FUNCTIONS  8.1   REFLECTED POWER MEASUREMENTS  This measurement can be used to check what is the matching of the antenna(s) and feed line(s). When this function  is  triggered  will  NUR2-1W  module  put  carrier  wave  ON  at  full  power  and  then  measure  the absolute power level that is coming to receiver port. There is a fixed difference in actual reflected power level and the level reported by the module. You can calculate the real reflected power level using  below formula:  Reflected power level = (Reported reflected power level by the module) +(25)     8.2   CHANNEL SCANNER (TBD)  TBD .       Case (selected antenna)  antenna control 1  antenna control 2 0 (antenna 1)  low  low 1 (antenna 2)  high  low 2 (antenna 3)  low  high 3 (antenna 4)  high  high
 25  2017-09-07 NUR2-1W HW Implementation Guide v1.0  8.3   RECEIVED SIGNAL STRENGTH (RSSI)  When reading a tag NUR2-1W module also returns received signal strength indication values if wanted. Two values are returned per one tag. One is the absolute power level (dBm) and second is the scaled power level value of the tags backscatter signal. Scaled RSSI value is 0 – 100.          9 DIMENSIONS  9.1   MECHANICAL DIMENSIONS
 26  2017-09-07 NUR2-1W HW Implementation Guide v1.0
 27  2017-09-07 NUR2-1W HW Implementation Guide v1.0  9.2   LAND PATTERN
 28  2017-09-07 NUR2-1W HW Implementation Guide v1.0
 29  2017-09-07 NUR2-1W HW Implementation Guide v1.0    9.3   PASTE STENCIL
 30  2017-09-07 NUR2-1W HW Implementation Guide v1.0
 31  2017-09-07 NUR2-1W HW Implementation Guide v1.0   9.4   PACKING TRAY DIMENSIONS          All measures are in mm.
 32  2017-09-07 NUR2-1W HW Implementation Guide v1.0    10 SMT ASSEMBLY PROCESS AND THERMAL PROCESSING   NUR2-1W  module  contains single  sided  assembly  of  SMT components  reflow-soldered  on  multilayer  HDI (high density interconnections) glass-fiber re-enforced epoxy printed board. The bottom side terminations are  ENIG  (NiP/Au)  plated.  Soldering  alloy  used  for  attaching  module  components  is  eutectic  SnAgCu. Module internal components soldering has been optimized for minimal thermal stress.    NUR2-1W modules shall be delivered in a special tray packing to protect modules against mechanical, ESD and moisture related stresses. Due to high density interconnections technology, module total water content has to be below 0.1%-w prior to any thermal processing above water boiling point.   The board assembly process of NUR module on motherboard will introduce re-flow of module components. Thus, to avoid degradation of solder joint interfaces, the module has to be stored and soldered according to the guidelines given below.    10.1   STORAGE CONDITIONS  Long-term storage   Store modules in unopened vacuum packs in a dry cabinet under following environmental conditions Temperature  +15…+27°C (optimal) Temperature gradient  max. 2°C/hour Relative humidity  <15% within specified temperature range  Opened  and  broken  packages  have  to  be  re-sealed.  If  open  time  (floor  life  out  of  pack)  has  been exceeded, or moisture content detected, modules have to be baked prior to re-sealing vacuum pack.  Short-term storage (typically same as production environment) Temperature  +20…+27°C  Temperature gradient  max. 2°C/hour Relative humidity  <15% within specified temperature range  Modules may be stored in a dry cabinet without protective packing according to IPC/JEDEC J-STD-033B.1, table 7-1.
 33  2017-09-07 NUR2-1W HW Implementation Guide v1.0    MSL level and open time MSL level  5 Open time (floor life out of the bag) 48h   10.2   SOLDERING PROCESS  Boundary conditions Acceptable soldering methods  Convection reflow in air or nitrogen atmosphere  Condensation reflow soldering (vapor phase) Recommended stencil thickness  125um ±10um Pad design on motherboard  See recommended pad pattern Stencil openings  See recommended stencil pattern Recommended solder alloy  SnAg3.8±0.2Cu0.7±0.2 Note! If using under-eutectic solder alloys, such as SAC305, it may be necessary to increase reflow peak temperature by 5-10°C, due to higher mp. and lower fluidity of non-eutectic SnAgCu alloys. This will increase thermal stress to module and motherboard greatly. Convection reflow oven heater configuration Double sided heating required in reflow, recommended in preheating zones. Maximum absorbed moisture content prior to thermal processing 0.1%-w (Test method IPC-TM-650, 2.6.28) Moisture content and/or moisture absorption rate, Printed Board Recommended moisture reduction condition +60°C/12h vacuum pack removed during drying, re-seal after drying, unless modules will be used within allowed open time after drying Moisture and solvent contamination  No moisture or solvent contamination allowed in solder paste or on solderable surfaces  Recommended reflow conditions Preheating phase  -max. duration 180s -end temperature 190-200°C
 34  2017-09-07 NUR2-1W HW Implementation Guide v1.0  -delta T on assembly max. 10°C at end of preheating Soldering phase  -total duration 190s -max. time above 217°C (mp.) 30s -Tpeak max. 235°C, measured at module bottom -Tpeak max. 225°C, measured at motherboard surface, under module Cooling  Two-stage, double sided cooling recommended  1st stage: 2-5°C/s cooling until melting point 2nd stage: 1-3°C/s after melting point
 35  2017-09-07 NUR2-1W HW Implementation Guide v1.0                          11 REGULATORY AGENCIES INFORMATION  When OEM prefers to leverage Nordic ID’s grants and certifications of the NUR2-1W UHF RFID module, the host  device  documentation  shall  include  regulatory  compliance  information  on  the  NUR2-1W  module. Corresponding to the applicable regulatory agencies the following sections outline regulatory  compliance information  needed  in  the  user  documentation  and  external  labels  for  the  host  devices  into  which  the NUR2-1W is integrated.  When leveraging Nordic ID’s grants and certifications, antenna shall be taken into account in view of the fact that the NUR2-1W module has met the essential regulatory requirements with the antennas listed in the context of particular regulatory compliance information (Approved Antennas). Using the antenna that is an  approved  one,  OEM  integrator  may  demonstrate  with  less  effort  that  the  device  with  the  integrated NUR2-1W module is in compliance with the requirements.    11.1   EUROPEAN UNION AND EFTA COUNTRIES  USER’S GUIDE REQUIREMENTS  This apparatus  is  in  compliance  with  the  essential  requirements  of  the  Radio  Equipment  Directive  (RED) 2014/53/EU. In order to prove presumption of conformity with the essential requirements of the the Radio Equipment Directive (RED) 2014/53/EU, following requirements and test methods have been applied to the apparatus:  article 3.2: ETSI EN 302 208 v3.1.1 - Radio spectrum matters for Radio Frequency Identification (RFID) equipment operating in the band 865 MHz to 868 MHz with power levels up to 2W  article 3.1b: ETSI EN 301 489-1 v2.2.0 - Common ElectroMagnetic Compatibility (EMC) requirements  article 3.1b: ETSI EN 301 489-3 v2.1.1 - Specific ElectroMagnetic Compatibility (EMC) conditions for Short-Range Devices (SRD) operating on frequencies between 9 kHz and 246 GHz  article 3.1a: EN 60950-1:2006 + A1:2010 + A11:2009+A12:2011+ A2:2013 - General requirements for Safety of Information Technology Equipment EN 62479: 2010 - Human exposure
 36  2017-09-07 NUR2-1W HW Implementation Guide v1.0  EN 62311: 2008 - Human exposure limits  This apparatus is in compliance with EU Directive 2011/65/EU, Reduction of Hazardous Substances (RoHS).   Česky [Czech] [Nordic ID] tímto prohlašuje, že tento [RFID Radio module NUR2-1W] je ve shodě sezákladními požadavky a dalšími příslušnými ustanoveními směrnice 2014/53/ES.  Dansk [Danish] Undertegnede [Nordic ID] erklærer herved, at følgende udstyr [RFID Radio module NUR2-1W] overholder de væsentlige krav og øvrige relevante krav i direktiv 2014/53/EF.  Deutsch [German] Hiermit erklärt [Nordic ID], dass sich das Gerät [RFID Radio module NUR2-1W] in Übereinstimmung mit den grundlegenden  Anforderungen  und  den  übrigen  einschlägigen  Bestimmungen  der  Richtlinie  2014/53/EG befindet. Eesti [Estonian] Käesolevaga  kinnitab  [Nordic  ID]  seadme  [RFID  Radio  module  NUR2-1W]  vastavust  direktiivi  2014/53/EÜ põhinõuetele ja nimetatud direktiivist tulenevatele teistele asjakohastele sätetele.  English  Hereby, [Nordic ID], declares that this [RFID Radio module NUR2-1W] is in compliance  with the essential requirements and other relevant provisions of Directive 2014/53/EU.  Español [Spanish] Por  medio  de  la  presente  [Nordic  ID]  declara  que  el  [RFID  Radio  module  NUR2-1W]  cumple  con  los requisitos esenciales y cualesquiera otras disposiciones aplicables o exigibles de la Directiva 2014/53/EU.  Ελληνική [Greek] ΜΕ ΤΗΝ  ΠΑΡΟΥΣΑ  [Nordic  ID]  ΔΗΛΩΝΕΙ ΟΤΙ [RFID Radio  module  NUR2-1W]  ΣΥΜΜΟΡΦΩΝΕΤΑΙ  ΠΡΟΣ  ΤΙΣ ΟΥΣΙΩΔΕΙΣ ΑΠΑΙΤΗΣΕΙΣ ΚΑΙ ΤΙΣ ΛΟΙΠΕΣ ΣΧΕΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΤΗΣ ΟΔΗΓΙΑΣ 2014/53/ΕΚ.
 37  2017-09-07 NUR2-1W HW Implementation Guide v1.0  Français [French] Par  la  présente  [Nordic  ID]  déclare  que  l'appareil  [RFID  Radio  module  NUR2-1W]  est  conforme  aux exigences essentielles et aux autres dispositions pertinentes de la directive 2014/53/EU.   Italiano [Italian] Con  la  presente  [Nordic  ID]  dichiara  che  questo  [RFID  Radio  module  NUR2-1W]  è  conforme  ai  requisiti essenziali ed alle altre disposizioni pertinenti stabilite dalla direttiva 2014/53/EU.  Latviski [Latvian] Ar  šo  [Nordic  ID]  deklarē,  ka  [RFID  Radio  module  NUR2-1W]  atbilst  Direktīvas  2014/53/EK  būtiskajām prasībām un citiem ar to saistītajiem noteikumiem.  Lietuvių [Lithuanian] Šiuo [Nordic  ID]  deklaruoja, kad  šis  [RFID  Radio  module NUR2-1W] atitinka  esminius  reikalavimus  ir  kitas 2014/53/EB Direktyvos nuostatas.  Nederlands  [Dutch] Hierbij verklaart [Nordic ID] dat het toestel [RFID Radio module NUR2-1W] in overeenstemming is met de essentiële eisen en de andere relevante bepalingen van richtlijn 2014/53/EG.  Malti [Maltese] Hawnhekk, [Nordic ID], jiddikjara li dan [RFID Radio module NUR2-1W] jikkonforma mal-ħtiġijiet essenzjali u ma provvedimenti oħrajn relevanti li hemm fid-Dirrettiva 2014/53/EU.  Magyar [Hungarian] Alulírott,  [Nordic  ID]  nyilatkozom,  hogy  a  [RFID  Radio  module  NUR2-1W]  megfelel  a  vonatkozó  alapvetõ követelményeknek és az 2014/53/EU irányelv egyéb elõírásainak.  Polski [Polish] Niniejszym [Nordic ID] oświadcza, że [RFID Radio module NUR2-1W] jest zgodny z zasadniczymi wymogami oraz pozostałymi stosownymi postanowieniami Dyrektywy 2014/53/EU.
 38  2017-09-07 NUR2-1W HW Implementation Guide v1.0   Português [Portuguese] [Nordic ID] declara que este [RFID Radio module NUR2-1W] está conforme com os requisitos essenciais e outras disposições da Directiva 2014/53/EU.  Slovensko [Slovenian] [Nordic  ID]  izjavlja,  da  je  ta  [RFID  Radio  module  NUR2-1W]  v  skladu  z  bistvenimi  zahtevami  in  ostalimi relevantnimi določili direktive 2014/53/ES.  Slovensky [Slovak] [Nordic ID] týmto vyhlasuje, že [RFID Radio module NUR2-1W] spĺňa základné požiadavky a všetky príslušné ustanovenia Smernice 2014/53/ES.  Suomi [Finnish] [Nordic ID] vakuuttaa täten että [RFID Radio module NUR2-1W] tyyppinen laite on direktiivin 2014/53/EY oleellisten vaatimusten ja sitä koskevien direktiivin muiden ehtojen mukainen.  Svenska [Swedish] Härmed  intygar  [Nordic  ID]  att  denna  [RFID  Radio  module  NUR2-1W]  står  i  överensstämmelse  med  de väsentliga egenskapskrav och övriga relevanta bestämmelser som framgår av direktiv 2014/53/EG.  LABELING REQUIREMENTS  The 'CE' marking must be in a visible area on the OEM product.   APPROVED ANTENNAS  Maximum allowed ERP power is 33dBm. NUR2-1W has maximum output power of 30dBm. Meaning that 5dBi is the maximum allowed antenna gain without cable losses.  Formula how to calculate maximum allowed antenna gain: 30 dBm – 2.15 (dipole gain) + [antenna gain dBi] – [cable attenuation dB] < 33dBm  Beamwidth restrictions:  For transmissions ≤500 mW e.r.p. there shall be no restriction on beam width.
 39  2017-09-07 NUR2-1W HW Implementation Guide v1.0  For transmissions of > 500 mW e.r.p. to ≤ 1 000 mW e.r.p. beam widths shall be ≤ 180º For transmissions of > 1 000 mW e.r.p. to 2 000 mW e.r.p. beam widths shall be ≤ 90º    11.2   FCC  This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part  15  of  the  FCC  Rules.  These  limits  are  designed  to  provide  reasonable  protection  against  harmful interference  in  a  residential  installation.  This  equipment  generates  uses  and  can  radiate radio  frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio  communications.  However,  there  is  no  guarantee  that  interference  will  not  occur  in  a  particular installation. If this equipment does cause harmful interference to radio or television reception, which can be  determined  by  turning  the  equipment  off  and  on,  the  user  is  encouraged  to  try  to  correct  the interference by one of the following measures:  Reorient or relocate the receiving antenna.  Increase the separation between the equipment and receiver.  Connect  the  equipment  into  an  outlet  on  a  circuit  different  from  that  to  which  the  receiver  is connected.  Consult the dealer or an experienced radio/TV technician for help.  This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.  Note User of the module cannot change the region setting of the module. When FCC region is set, the module operates in frequency band of 902 – 928Mhz.   FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.  This NUR2-1W transmitter module is authorized to be used in other devices only by OEM Integrators under the following conditions: 1. The module can be used only with the approved antenna types (see the section of Approved antennas below) having the antenna gains of 5dBi and 6dBi at the maximum. The approved antennas need the following minimum separation distances when installed:
 40  2017-09-07 NUR2-1W HW Implementation Guide v1.0  Product  Uncontrolled/general population  Occupational / controlled environments NUR2-1W + antenna with 5dBi max. gain RF exposure evaluation is not required at 20.4cm separation distance @915MHZ RF exposure evaluation is not required at 20cm separation distance @915MHZ  NUR2-1W + antenna with 6dBi max. gain RF exposure evaluation is not required at 22.8cm separation distance @915MHZ RF exposure evaluation is not required at 20cm separation distance @915MHZ  Table 11.2.1 Note. The antenna must be installed such that the minimum separation distance can be maintained between the antenna (radiator) and user’s/nearby people’s body at all times.  If the antenna being one of the approved antenna types has lower antenna gain than the type’s maximum one, the minimum separation distance (d in cm) can be calculated by giving the EIRP (in mW) of the configuration and the maximum permissible exposure (S = 0.61 mWcm-2) to the following formula: d = √(EIRP/(4πS)). However, despite the fact that the result of the calculation can be below 20 cm, the separation distance of 20 cm is always the minimum.  The EIRP (EIRPdBm =  Po  -  Ll  + G ) needed for the calculation of minimum separation distance consists of the following factors:   Po = (Maximum peak output of NUR2-1W transmitter + measurement uncertainty) =  +  (dBm)     Ll   = (Line losses) =  known value (dB)  G   = (Antenna gain) = known value (dBi)  2. The transmitter module must not be co-located with any other transmitter, except with those that are within the limits shown in the NUR2-1W filing.  3. The transmitter module can only be used with a host antenna circuit trace layout design in strict compliance with the OEM instructions provided.  When  the  conditions  above  are  met,  typically  no  radio  transmitter  testing  of  NUR2-1W  is  required. However,  the  OEM  integrators  have  responsibility  for  testing  their  end-product  for  other  compliance requirements, for example digital device emissions, PC peripheral requirements.  The  antenna  used  with  the  NUR2-1W  transmitter  module  shall  comply  with  the  gain  limit  of  6  dBi.  The antennas  having  higher  gain  may  be  used,  if  cable  loss  compensates  the  exceeded  antenna  gain.  For example, 2dB antenna cable loss reduces the EIRP of the configuration so that 8dBi antenna may be used. If the cable loss does not cancel out the exceeded gain then the transmitter’s conducted output power shall be reduced so that the EIRP of the configuration is kept inside the limits of 4W.
 41  2017-09-07 NUR2-1W HW Implementation Guide v1.0  Note. In the event that these conditions can’t be met (for certain configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID can’t be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.  The OEM integrator must be aware not to provide information to the end user regarding how to install or remove this RF module in the user manual of the end product.  For the User’s Guide the required FCC statements outlined in the User’s Guide Requirements section must be in a prominent location.   USER’S GUIDE REQUIREMENTS  The texts in quotation marks below are the required FCC statements in the user’s guide. The note given in brackets is not an FCC statement but it gives the required information on the first required FCC statement.   “To  comply  with  FCC’s  RF  radiation  exposure  requirements  in  general  population  environment,  the antenna(s) used for this transmitter must be installed such that a minimum separation distances of ‘d’ cm (shown in table 11.2.1) is maintained between the radiator (antenna) & user’s/nearby people’s body at all times and must not be co-located or operating in conjunction with any other antenna or transmitter.”  (Note: Use the following formula to find the ‘d’ in cm: d = √(EIRP/(4πS)); let ‘EIRP’ have the maximum EIRP (in mW) of your transmitter configuration, and let ‘S’ have the 0.61 (in mW/cm2) value. In addition, the ‘d’ value  cannot  be  below  separation  distances  shown  in  table  11.2.1,  although  the  formula  would  yield smaller minimum separation distance d. See also the EIRP factors mentioned above.)  “To comply with FCC’s RF radiation exposure requirements in controlled environment, the antenna(s) used for this transmitter must be installed such that a minimum separation distances of ‘d’ cm (shown in table 11.2.1) is maintained between the radiator (antenna) & user’s/nearby people’s body at all times and must not be co-located or operating in conjunction with any other antenna or transmitter.”  (Note: Use the following formula to find the ‘d’ in cm: d = √(EIRP/(4πS)); let ‘EIRP’ have the maximum EIRP (in mW) of your transmitter configuration, and let ‘S’ have the 3.050 (in mW/cm2) value. In addition, the ‘d’ value  cannot  be  below  separation  distances  shown  in  table  11.2.1,  although  the  formula  would  yield smaller minimum separation distance d. See also the EIRP factors mentioned above.)
 42  2017-09-07 NUR2-1W HW Implementation Guide v1.0  “This device complies with Part 15 of the FCC Rules”  “Any changes or modifications to the transmitting module not expressly approved by Nordic ID Oy could void the user’s authority to operate this equipment”  LABELING REQUIREMENTS  The end product must be labeled with the following identification information in a visible area: “Contains Transmitter Module FCC ID: SCCNUR21W” or  “Contains FCC ID: SCCNUR21W”   APPROVED ANTENNAS           Option 1: Manufacturer:       Nordic ID Antenna Description:     4 Patch antenna-array            Frequency range:      902 – 928 MHz  Manufacturer Part Number:   ARx5_antenna Gain:         6dBi    Option 2: Manufacturer:       Nordic ID Antenna Description:     Cross Dipole antenna with reflector  Frequency range:      902 – 928 MHz Manufacturer Product Name:   Medea_ACD_antenna Gain:         5dBi            Option 3: Manufacturer:       TBD Antenna Description:     TBD  Frequency range:      TBD Manufacturer Product Name:   TBD Gain:         TBD
 43  2017-09-07 NUR2-1W HW Implementation Guide v1.0   11.3 INDUSTRY CANADA  This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.  Under  Industry  Canada  regulations,  this  radio  transmitter  may  only  operate  using  an  antenna  of  a type  and  maximum  (or  lesser)  gain  approved  for  the  transmitter  by  Industry  Canada.  To  reduce potential  radio  interference  to  other  users,  the  antenna  type  and  its  gain  should  be  so  chosen  that the  equivalent  isotropic  radiated  power  (e.i.r.p.)  is  not  more  than  that  necessary  for  successful communication.   To leverage the Nordic ID’s IC grant, the device with the integrated NUR2-1W module shall be met the following conditions: 1. The antennas being the approved types with the maximum gain of 5dBi and of 6dBi shall be installed so that the device’s user or nearby people or passing people cannot compromise the minimum separation distances shown in table 11.3.1, respectively, in any situation. If the antenna being one of the approved antenna types has lower antenna gain than the type’s maximum one, the minimum separation distance in general public environment (d in cm) can be calculated by giving the EIRP of the configuration and the exposure limit (S = 0.276 mWcm2) to the following formula: d = √(EIRP/(4πS)). For controlled environment (d in cm) can be calculated by giving the EIRP of the configuration and the exposure limit (S = 0.629 mWcm-2) to the following formula: d = √(EIRP/(4πS)).    Product  Uncontrolled/general population  Occupational / controlled environments NUR2-1W + antenna with 5dBi max. gain RF exposure evaluation is not required at 30.2 cm separation distance @915MHZ RF exposure evaluation is not required at 20cm separation distance @915MHZ  NUR2-1W + antenna with 6dBi max. gain RF exposure evaluation is not required at 33.9cm separation distance @915MHZ RF exposure evaluation is not required at 20cm separation distance @915MHZ  Table 11.3.1  The EIRP (EIRPdBm =  Po  -  Ll  + G ) needed for the calculation of minimum separation distance consists of the following factors:   Po = (Maximum peak output of NUR2-1W transmitter + measurement uncertainty) = + (dBm)     Ll   = (Line losses) =  known value (dB)  G   = (Antenna gain) = known value (dBi)
 44  2017-09-07 NUR2-1W HW Implementation Guide v1.0  2. The antenna(s) used with the NUR2-1W  module must not be co located in conjunction with any other transmitter or its antenna that is capable of transmitting at the same time, except the transmitter-antenna configurations that are within the limits of the NUR2-1W’s IC grant.   3. The design  of  an  antenna  circuit  trace layout  in  a  host shall comply  with the OEM  design  instructions provided.  When  the  conditions  above  are  met,  typically  no  transmitter  testing  is  required,  although  the  OEM integrator shall demonstrate that the end-product is in compliance with the other regulatory requirements.  There is no user’s documentation requirements other than that the required FCC statements outlined in the FCC section are in a prominent place in the user’s guide.  Note User of the module cannot change the region setting of the module. When FCC region is set, the module operates in frequency band of 902 – 928Mhz.    LABELLING REQUIREMENTS FOR THE HOST DEVICE  The end product must be labeled with the following identification information in a visible area: “Contains IC: 5137A-NUR21W”  CERTIFIED ANTENNAS  This radio transmitter 5137A-NUR21W has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain and required antenna impedance for each antenna type  indicated.  Antenna  types  not  included  in  this  list,  having  a  gain  greater  than  the  maximum  gain indicated for that type, are strictly prohibited for use with this device.               Option 1: Manufacturer:       Nordic ID Antenna Description:     4 Patch antenna-array            Frequency range:      902 – 928 MHz  Manufacturer Part Number:   ARx5_antenna Gain:         6dBi
 45  2017-09-07 NUR2-1W HW Implementation Guide v1.0  Option 2: Manufacturer:       Nordic ID Antenna Description:     Cross Dipole antenna with reflector  Frequency range:      902 – 928 MHz Manufacturer Product Name:   Medea_ACD_antenna Gain:         5dBi     11.4 INDUSTRIE CANADA  Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.  Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante..   Le module émetteur NUR2-1W estautorisé à êtreutilisé avec d’autresappareilsuniquement par des intégrateurs OEM sous les conditions suivantes : 1. Les antennes étant les types approuvés avec le gain maximal de 5dBi et de 6dBi doivent être installés de sorte que l'utilisateur du périphérique ou les personnes proches ou les personnes passantes ne puissent pas compromettre les distances minimales de séparation indiquées dans le tableau 11.3.1, respectivement, dans n'importe quelle situation. Si l'antenne étant l'un des types d'antennes approuvés a un gain d'antenne inférieur à celui du maximum du type, la distance minimale de séparation dans l'environnement public général (d en cm) peut être calculée en donnant le PIRE de la configuration et la limite d'exposition (S = 0,276 mWcm2) à la formule suivante: d = √ (PIRE / (4πS)). Pour l'environnement contrôlé (d en cm), on peut calculer en donnant le PIRE de la configuration et la limite d'exposition (S = 0,629 mWcm-2) à la formule suivante: d = √ (EIRP / (4πS)).
 46  2017-09-07 NUR2-1W HW Implementation Guide v1.0  La PIRE (PIREdBm = Po - Ll + G) nécessaire pour le calcul de la distance minimale de séparation se compose des facteurs suivants :   Po (Puissance de crête maximale de l’émetteur NUR2-1W + incertitude de mesure) =  + (dBm)     Ll   (Pertes en lignes) = valeur connue (dB)  G   (Gain d’antenne) = valeur connue (dBi)  2. Le module émetteur ne doit pas êtrecolocalisé avec d´autre(s) transmetteur(s), saufsice(s) dernier(s) répond(ent) avec ceux qui sontdans les limitesindiquéesdansl´application de NUR2-1W.  3. Le module émetteurpeutêtreuniquementutilisé avec unschéma du design de configuration de la piste du circuit de l’antennehôteenrespectantstrictement les instructions OEM fournies.  Lorsque les conditions ci-dessus sont remplies, aucun test radio de l’émetteur NUR2-1W ne sera généralement nécessaire, même si l’intégrateur OEM devra démontrer que le produit final est en conformité avec les autres exigences réglementaires.  Il n’existe aucune exigence de documentation de l’utilisateur autre que le fait que les déclarations obligatoires FCC dans la section FCC soient bien en vue dans le guide de l’utilisateur.  Observation:  L’utilisateur du module ne pourra pas changer les paramètres région du module. Quand le paramètre région FCC est sélectionné, le module fonctionne sur la bande de fréquence 902-928Mhz.  EXIGENCES APPLICABLES AUX APPAREILS HÔTES Le produit fini doit disposer d´étiquette mentionnant les information suivantes d´identification sur une surface visible: “Contains IC: 5137A-NUR21W”   TYPES D'ANTENNES ACCEPTABLES Le présent émetteur radio (IC: 5137A-NUR21W) a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés ci-dessous et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.  Option 1: Manufacturer:       Nordic ID Antenna Description:     4 Patch antenna-array
 47  2017-09-07 NUR2-1W HW Implementation Guide v1.0  Frequency range:      902 – 928 MHz  Manufacturer Part Number:   ARx5_antenna Gain:         6dBi         Option 2: Manufacturer:       Nordic ID Antenna Description:     Cross Dipole antenna with reflector  Frequency range:      902 – 928 MHz Manufacturer Product Name:   Medea_ACD_antenna Gain:        5dBi

Navigation menu