Omega Fma 4000 Users Manual Digital Mass Flow Meters
FMA 4000 M4651
FMA 4000 to the manual 8e447b1b-93bc-44fb-9470-bb8292ffe7d3
2015-02-05
: Omega Omega-Fma-4000-Users-Manual-496221 omega-fma-4000-users-manual-496221 omega pdf
Open the PDF directly: View PDF .
Page Count: 55
Download | ![]() |
Open PDF In Browser | View PDF |
User’s Guide Shop online at www.omega.com e-mail: info@omega.com FMA 4000 Digital Mass Flow Meters OMEGAnet ® Online Service www.omega.com Internet e-mail info@ omega.com Servicing North America: USA: ISO 9001 Certified Canada: One Omega Drive, Box 4047 Stamford CT 06907-0047 Tel: (203) 359-1660 e-mail: info@ omega.com 976 Bergar Laval (Quebec) H7L 5A1 Tel: (514) 856-6928 e-mail: info@ omega.ca FAX: (203) 359-7700 FAX: (514) 856-6886 For immediate technical or application assistance: USA and Canada: Sales Service: 1-800-826-6342 / 1-800-TC-OMEGA® Customer Service: 1-800-622-2378 / 1-800-622-BEST® Engineering Service: 1-800-872-9436 / 1-800-USA-WHEN® TELEX: 996404 EASYLINK: 62968934 CABLE: OMEGA Mexico: En Espan˜ ol: (001) 203-359-7803 FAX: (001) 203-359-7807 e-mail: espanol@ omega.com info@ omega.com.mx Servicing Europe: Benelux: Postbus 8034, 1180 LA Amstelveen, The Netherlands Tel: +31 (0)20 3472121 FAX: +31 (0)20 6434643 Toll Free in Benelux: 0800 0993344 e-mail: sales@ omegaeng.nl Czech Republic: Rude´ arm-dy 1868, 733 01 Karvin- 8 Tel: +420 (0)59 6311899 Toll Free: 0800-1-66342 France: FAX: +420 (0)59 6311114 e-mail: info@ omegashop.cz 11, rue Jacques Cartier, 78280 Guyancourt, France Tel: +33 (0)1 61 37 29 00 FAX: +33 (0)1 30 57 54 27 Toll Free in France: 0800 466 342 e-mail: sales@ omega.fr Germany/Austria: Daimlerstrasse 26, D-75392 Deckenpfronn, Germany Tel: +49 (0)7056 9398-0 Toll Free in Germany: 0800 639 7678 e-mail: info@ omega.de FAX: +49 (0)7056 9398-29 United Kingdom: One Omega Drive, River Bend Technology Centre ISO 9002 Certified Northbank, Irlam, Manchester M44 5BD United Kingdom Tel: +44 (0)161 777 6611 Toll Free in United Kingdom: 0800-488-48 FAX: +44 (0)161 777 6622 e-mail: sales@ omega.co.uk It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach Directives. OMEGA will add the CE mark to every appropriate device upon certification. The information contained in this document is believed to be correct, but OMEGA Engineering, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice. WARNING: These products are not designed for use in, and should not be used for, patient-connected applications. TABLE OF CONTENTS 1. UNPACKING THE FMA 4000 MASS FLOW METER...................................1 1 1.1 Inspect Package for External Damage................................................. 1 1.2 Unpack the Mass Flow Meter............................................................... 1 1.3 Returning Merchandise for Repair....................................................... 2. INSTALLATION........................................................................................ 1 2.1 Primary Gas Connections................................................................. 1 2.2 Electrical Connections...................................................................... 3 2.2.1 Power Supply Connections.............................................................. 3 2.2.2 Output Signals Connections..............................................................3 2.2.3 Communication Parameters and Connections...................................4 3. PRINCIPLE OF OPERATION................................................................... 6 4. SPECIFICATIONS................................................................................... 7 5. OPERATING INSTRUCTIONS.................................................................. 9 5.1 Preparation and Warm Up..................................................................9 5.2 Swamping Condition....................................................................... 10 11 5.3 FMA 4000 Parameters Settings........................................................... 5.3.1 Engineering Units Settings...............................................................11 12 5.3.2 Gas Table Settings.............................................................................. 5.3.3 Totalizer Settings............................................................................. 12 5.3.4 Flow Alarm Settings........................................................................ 13 5.3.5 Relay Assignment Settings..............................................................14 5.3.6 K Factors Settings........................................................................... 14 5.3.7 Zero Calibration............................................................................... 15 5.3.8 Self Diagnostic Alarm.......................................................................17 17 5.4 Analog output Signals configuration................................................... 6. MAINTENANCE.........................................................................................18 6.1 Introduction......................................................................................18 6.2 Flow Path Cleaning...........................................................................19 6.2.1 Restrictor Flow Element (RFE)........................................................ 19 6.2.2 FMA 4000 model............................................................................. 19 7. CALIBRATION PROCEDURES................................................................. 20 7.1 Flow Calibration...............................................................................20 7.2 Gas Calibration of FMA 4000 Mass Flow Meter................................21 7.2.1 Connections and Initial Warm Up.....................................................21 7.2.2 ZERO Check/Adjustment Adjustment................................................. 21 7.2.3 Gas Linearization Table Adjustment.................................................21 7.3 Analog output Calibration of FMA 4000 Mass Flow Meter.............. 23 7.3.1 Initial Setup.......................................................................................24 7.3.2 Gas flow 0-5 Vdc analog output calibration.................................... 25 7.3.3 Gas flow 4-20 mA analog output calibration................................... 25 8. RS485 / RS232 SOFTWARE INTERFACE COMMANDS......................... 26 8.1 General............................................................................................ 26 8.2 Commands Structure......................................................................... 26 8.3 ASCII Commands Set......................................................................... 28 9. TROUBLESHOOTING................................................................................34 9.1 Common Conditions........................................................................34 9.2 Troubleshooting Guide.....................................................................35 9.3 Technical Assistance....................................................................... 37 10. CALIBRATION CONVERSIONS FROM REFERENCE GASES................... 37 APPENDIX I OMEGA FMA 4000 EEPROM Variables.............................. 38 APPENDIX II INTERNAL USER SELECTABLE GAS FACTOR TABLE (INTERNAL “K” FACTORS)........................................................ 41 APPENDIX III GAS FACTOR TABLE (“K” FACTORS).................................... 42 APPENDIX IV COMPONENT DIAGRAM...................................................... 46 APPENDIX V DIMENSIONAL DRAWINGS................................................. 48 APPENDIX VI WARRANTY........................................................................... 50 TRADEMARKS Buna-N®-is a registered trademark of DuPont Dow Elastomers. Kalrez®-is a registered trademark of DuPont Dow Elastomers. Neoprene®-is a registered trademark of DuPont. Omega®-is a registered trademark of Omega Engineering Inc. 1. UNPACKING THE FMA 4000 MASS FLOW METER 1.1 Inspect Package for External Damage Your FMA 4000 Mass Flow Meter was carefully packed in a sturdy cardboard carton, with anti-static cushioning materials to withstand shipping shock. Upon receipt, inspect the package for possible external damage. In case of external damage to the package contact the shipping company immediately. 1.2 Unpack the Mass Flow Meter Open the carton carefully from the top and inspect for any sign of concealed shipping damage. In addition to contacting the shipping carrier please forward a copy of any damage report to Omega7 directly. When unpacking the instrument please make sure that you have all the items indicated on the Packing List. Please report any shortages promptly. 1.3 Returning Merchandise for Repair Please contact an OMEGA7 customer service representative and request a Return Authorization Number (AR). It is mandatory that any equipment returned for servicing be purged and neutralized of any dangerous contents including but not limited to toxic, bacterially infectious, corrosive or radioactive substances. No work shall be performed on a returned product unless the customer submits a fully executed, signed SAFETY CERTIFICATE. Please request form from the Service Manager. 2. INSTALLATION 2.1 Primary Gas Connections Please note that the FMA 4000 Mass Flow Meter will not operate with liquids. Only clean gases are allowed to be introduced into the instrument. If gases are contaminated they must be filtered to prevent the introduction of impediments into the sensor. 1 CAUTION: FMA 4000 TRANSDUCERS SHOULD NOT BE USED FOR MONITORING OXYGEN GAS UNLESS SPECIFICALLY CLEANED AND PREPARED FOR SUCH APPLICATION. For more information, contact Omega7. Attitude limit of the Mass Flow Meter is ±15F from calibration position (standard calibration is in horizontal position). This means that the gas flow path of the Flow Meter must be within this limit in order to maintain the original calibration accuracy. Should there be need for a different orientation of the meter, re-calibration may be necessary. It is also preferable to install the FMA 4000 transducer in a stable environment, free of frequent and sudden temperature changes, high moisture, and drafts. Prior to connecting gas lines inspect all parts of the piping system including ferrules and fittings for dust or other contaminant’s. When connecting the gas system to be monitored, be sure to observe the direction of gas flow as indicated by the arrow on the front of the meter. Insert tubing into the compression fittings until the ends of the properly sized tubing home flush against the shoulders of the fittings. Compression fittings are to be tightened to one and one quarter turns according to the manufacturer's instructions. Avoid over tightening which will seriously damage the Restrictor Flow Elements (RFE's)! CAUTION: For FMA 4000 model, the maximum pressure in the gas line should not exceed 500 PSIA (34.47 bars). Applying pressure above 500 PSIA (34.47 bars) will seriously damage the flow sensor. FMA 4000 transducers are supplied with either standard 1/4 inch, or optional 1/8 inch inlet and outlet compression fittings which should NOT be removed unless the meter is being cleaned or calibrated for a new flow range. Using a Helium Leak Detector or other equivalent method, perform a thorough leak test of the entire system. (All FMA 4000's are checked prior to shipment for leakage within stated limits. See specifications in this manual.) 2 2.2 Electrical Connections FMA 4000 is supplied with a 15 pin “D” connector. Pin diagram is presented in Figure b-1. 2.2.1 Power Supply Connections The power supply requirements for FMA 4000 transducers are: 11 to 26 Vdc, (unipolar power supply) DC Power (+) --------------- pin 7 of the 15 pin “D” connector DC Power (-) --------------- pin 5 of the 15 pin “D” connector CAUTION: Do not apply power voltage above 26Vdc. Doing so will cause FMA 4000 damage or faulty operation. 2.2.2 Output Signals Connections CAUTION: When connecting the load to the output terminals, do not exceed the rated values shown in the specifications. Failure to do so might cause damage to this device. Be sure to check if the wiring and the polarity of the power supply is correct before turning the power ON. Wiring error may cause damage or faulty operation. FMA 4000 Mass Flow Meters are equipped with either calibrated 0-5 or calibrated 4-20 mA output signals (jumper selectable). This linear output signal represents 0-100% of the flow meter’s full scale range. WARNING: The 4-20 mA current loop output is self-powered (non-isolated). Do NOT connect an external voltage source to the output signals. Flow 0-5 VDC or 4-20 mA output signal connection: Plus (+) -------------------------- pin 2 of the 15 pin “D” connector Minus (-) -------------------------- pin 1 of the 15 pin “D” connector To eliminate the possibility of noise interference, use a separate cable entry for the DC power and signal lines. 3 2.2.3 Communication Parameters and Connections The digital interface operates via RS485 (optional RS232) and provides access to applicable internal data including: flow, CPU temperature reading, auto zero, totalizer and alarm settings, gas table, conversion factors and engineering units selection, dynamic response compensation and linearization table adjustment. Communication Settings for RS485 / RS232 communication interface: Baud rate: Stop bit: Data bits: Parity: Flow Control: ...................... ...................... ...................... ...................... ...................... 9600 baud 1 8 None None RS485 communication interface connection: The RS485 converter/adapter must be configured for: multidrop, 2 wire, half duplex mode. The transmitter circuit must be enabled by TD or RTS (depending on which is available on the converter/adapter). Settings for the receiver circuit should follow the selection made for the transmitter circuit in order to eliminate echo. RS485 T(-) or R(-) ...................... pin 8 of the 15 pin “D” connector (TX-) RS485 T(+) or R(+) ...................... pin 15 of the 15 pin “D” connector (RX+) RS485 GND (if available) ...................... pin 9 of the 15 pin “D” connector (GND) RS232 communication interface connection: Crossover connection has to be established: RS232 RX (pin 2 on the DB9 connector) ..... pin 8 of the 15 pin “D” connector (TX) RS232 TX (pin 3 on the DB9 connector) ..... pin 15 of the 15 pin “D” connector (RX) RS232 GND (pin 5 on the DB9 connector) ..... pin 9 of the 15 pin “D” connector (GND) 4 Figure b.1 - FMA 4000 15 PIN “D” CONNECTOR CONFIGURATION PIN FMA 4000 FUNCTION 1 Common, Signal Ground For Pin 2 (4-20 mA return). 2 0-5 Vdc or 4-20mA Flow Signal Output. 3 Relay No. 2 - Normally Open Contact. 4 Relay No. 2 - Common Contact. 5 Common, Power Supply (- DC power for 11 to 26 Vdc). 6 Relay No. 1 - Common Contact. 7 Plus Power Supply (+ DC power for 11 to 26 Vdc). 8 RS485 (-) (Optional RS232 TX). 9 RS232 Signal GND (RS485 GND Optional). 10 Do not connect (Test/Maintenance terminal). 11 Relay No. 2 - Normally Closed Contact. 12 Relay No. 1 - Normally Open Contact. 13 Relay No. 1 - Normally Closed Contact. 14 Do not connect (Test/Maintenance terminal). 15 RS485 (+) (Optional RS232 RX). Shield Chassis Ground. IMPORTANT NOTES: Generally, “D” Connector numbering patterns are standardized. There are, however, some connectors with nonconforming patterns and the numbering sequence on your mating connector may or may not coincide with the numbering sequence shown in our pin configuration table above. It is imperative that you match the appropriate wires in accordance with the correct sequence regardless of the particular numbers displayed on the mating connector. Make sure power is OFF when connecting or disconnecting any cables in the system. The (+) and (-) power inputs are each protected by a 300mA M (medium time-lag) resettable fuse. If a shorting condition or polarity reversal occurs, the fuse will cut power to the flow transducer circuit. Disconnect the power to the unit, remove the faulty condition, and reconnect the power. The fuse will reset once the faulty condition has been removed. DC Power cable length may not exceed 9.5 feet (3 meters). Use of the FMA 4000 flow transducer in a manner other than that specified in this manual or in writing from Omega, may impair the protection provided by the equipment. 5 3. PRINCIPLE OF OPERATION The stream of gas entering the Mass Flow transducer is split by shunting a small portion of the flow through a capillary stainless steel sensor tube. The remainder of the gas flows through the primary flow conduit. The geometry of the primary conduit and the sensor tube are designed to ensure laminar flow in each branch. According to principles of fluid dynamics the flow rates of a gas in the two laminar flow conduits are proportional to one another. Therefore, the flow rates measured in the sensor tube are directly proportional to the total flow through the transducer. In order to sense the flow in the sensor tube, heat flux is introduced at two sections of the sensor tube by means of precision wound heater-sensor coils. Heat is transferred through the thin wall of the sensor tube to the gas flowing inside. As gas flow takes place heat is carried by the gas stream from the upstream coil to the downstream coil windings. The resultant temperature dependent resistance differential is detected by the electronic control circuit. The measured temperature gradient at the sensor windings is linearly proportional to the instantaneous rate of flow taking place. An output signal is generated that is a function of the amount of heat carried by the gases to indicate mass-molecular based flow rates. Additionally, the FMA 4000 Mass Flow Meter incorporates a Precision Analog Microcontroller (ARM7TDMI7 MCU) and non-volatile memory that stores all hardware specific variables and up to 10 different calibration tables. The flow rate can be displayed in 23 different volumetric or mass flow engineering units. Flow meter parameters and functions can be programmed remotely via the RS485/RS232 (optional) interface. FMA 4000 flow meters support various functions including: programmable flow totalizer, low, high or range flow alarm, automatic zero adjustment (activated via local button or communication interface), 2 programmable SPDT relays output, 0-5 Vdc / 4-20 mA analog outputs (jumper selectable), self diagnostic alarm, 36 internal and user defined K-factor. Optional local 2x16 LCD readout with adjustable back light provides flow rate and total volume reading in currently selected engineering units and diagnostic events indication. 6 4. SPECIFICATIONS FLOW MEDIUM: Please note that FMA 4000 Mass Flow Meters are designed to work only with clean gases. Never try to measure flow rates of liquids with any FMA 4000. CALIBRATIONS: Performed at standard conditions [14.7 psia (101.4 kPa) and 70FF (21.1FC)] unless otherwise requested or stated. ENVIRONMENTAL (PER IEC 664): Installation Level II; Pollution Degree II. FLOW ACCURACY (INCLUDING LINEARITY): ±1% of FS at calibration temperature and pressure. REPEATABILITY: ±0.15% of full scale. FLOW TEMPERATURE COEFFICIENT: 0.15% of full scale/ FC or better. FLOW PRESSURE COEFFICIENT: 0.01% of full scale/psi (6.895 kPa) or better. FLOW RESPONSE TIME: 1000ms time constant; approximately 2 seconds to within ±2% of set flow rate for 25% to 100% of full scale flow. MAXIMUM GAS PRESSURE: 500 psig (3447 kPa gauge). MAXIMUM PRESSURE DROP: 0.18 PSID (at 10 L/min flow). See Table IV for pressure drops associated with various models and flow rates. GAS AND AMBIENT TEMPERATURE: 41FF to 122 FF (5 FC to 50 FC). RELATIVE GAS HUMIDITY: Up to 70%. LEAK INTEGRITY: 1 x 10-9 sccs He maximum to the outside environment. ATTITUDE SENSITIVITY: Incremental deviation of up to 1% from stated accuracy, after rezeroing. OUTPUT SIGNALS: Linear 0-5 Vdc (3000 ohms min load impedance); Linear 4-20 mA (500 ohms maximum loop resistance). Maximum noise 20mV peak to peak (for 0-5 Vdc output). TRANSDUCER INPUT POWER: 11 to 26 Vdc, 100 mV maximum peak to peak output noise. Power consumption: +12Vdc (200 mA maximum); +24Vdc (100 mA maximum); Circuit board have built-in polarity reversal protection, 300mA resettable fuse provide power input protection. WETTED MATERIALS: Anodized aluminum, brass, 316 stainless steel, 416 stainless steel, FKM, O-rings; BUNA-N7, NEOPRENE7 or KALREZ7 O-rings are optional. 7 CAUTION: Omega makes no expressed or implied guarantees of corrosion resistance of mass flow meters as pertains to different flow media reacting with components of meters. It is the customers' sole responsibility to select the model suitable for a particular gas based on the fluid contacting (wetted) materials offered in the different models. INLET AND OUTLET CONNECTIONS: Model FMA 4000 standard 1/4" compression fittings. Optional 1/8" or 3/8" compression fittings and 1/4" VCR fittings are available. DISPLAY: Optional local 2x16 characters LCD with adjustable backlight (2 lines of text). CALIBRATION OPTIONS: Standard is one 10 points NIST calibration. Optional, up to 9 additional calibrations may be ordered at additional charge. CE COMPLIANCE: EMC Compliance with 89/336/EEC as amended. Emission Standard: EN 55011:1991, Group 1, Class A. Immunity Standard: EN 55082-1:1992. FLOW RANGES TABLE I FMA 4000 LOW FLOW MASS FLOW METER* CODE scc/min [N2] CODE std liters/min [N2] 00 0 to 5 07 0 to 1 01 0 to 10 08 0 to 2 02 0 to 20 09 0 to 5 03 0 to 50 10 0 to 10 04 0 to 100 05 0 to 200 06 0 to 500 *Flow rates are stated for Nitrogen at STP conditions [i.e. 70 FF (21.1 FC) at 1 atm]. For other gases use the K factor as a multiplier from APPENDIX III. TABLE IV PRESSURE DROPS MAXIMUM PRESSURE DROP MODEL FLOW RATE [std liters/min] [mm H2O] [psid] [kPa] FMA 4000 up to 10 130 0.18 1.275 MODEL WEIGHT SHIPPING WEIGHT FMA 4000 transmitter 2.20 lbs. (1.00 kg) 3.70 lbs. (1.68 kg) 8 5. OPERATING INSTRUCTIONS 5.1 Preparation and Warm Up It is assumed that the Mass Flow Meter has been correctly installed and thoroughly leak tested as described in section 2. Make sure the flow source is OFF. When applying power to a flow meter within the first two seconds, you will see on the LCD display: the product name, the software version, and revision of the EEPROM table (applicable for LCD option only). OMEGA FMA 4000 485 S: Ver1.4 Rev.A0 Figure b-2: FMA 4000 first Banner Screen Within the next two seconds, the RS485 network address, the analog output settings, and currently selected gas calibration table will be displayed (applicable for LCD option only). Ad: 11 Out: 0-5Vdc Gas# 1 AIR Figure b-3: FMA 4000 second Banner Screen Note: Actual content of the LCD screen may vary depending on the model and device configuration. After two seconds, the LSD display switches to the main screen with the following information: Mass Flow reading in current engineering units (upper line). Totalizer Volume reading in current volume or mass based engineering units (lower line). F: 50.0 L/min T: 75660.5 Ltr Figure b-4: FMA 4000 Main Screen 9 Note: Allow the Digital Mass Flow Meter to warm-up for a MINIMUM of 6 minutes. During initial powering of the FMA 4000 transducer, the flow output signal will be indicating a higher than usual output. This is an indication that the FMA 4000 transducer has not yet attained its minimum operating temperature. This condition will automatically cancel within a few minutes and the transducer should eventually indicate zero. Note: During the first 6 minutes of the initial powering of the FMA 4000 transducer, the status LED will emit CONSTANT UMBER light. For the FMA 4000 transducer with LCD option: If the LCD diagnostic is activated, the second line of the LCD will display the time remaining until the end of the warm up period (Minutes:Seconds format) and will alternatively switch to Totalizer reading indication every 2 seconds. F: 50.0 L/min ** WarmUp 2:39 ** Figure b-5: FMA 4000 Main Screen during Sensor Warm up period. 5.2 Note: After 6 minutes of the initial powering of the FMA 4000 the transducer, status LED will emit a constant GREEN light (normal operation, ready to measure). For FMA 4000 with LCD option, the screen will reflect flow and totalizer reading. (see Figure b-4). Swamping Condition If a flow of more than 10% above the maximum flow rate of the Mass Flow Meter is taking place, a condition known as “swamping” may occur. Readings of a “swamped” meter cannot be assumed to be either accurate or linear. Flow must be restored to below 110% of maximum meter range. Once flow rates are lowered to within calibrated range, the swamping condition will end. Operation of the meter above 110% of maximum calibrated flow may increase recovery time. 10 5.3 FMA 4000 Parameters Settings 5.3.1 Engineering Units Settings The FMA 4000 Mass Flow Meter is capable of displaying flow rate with 23 different Engineering Units. Digital interface commands (see paragraph 8.3 ASCII Command Set “FMA 4000 SOFTWARE INTERFACE COMMANDS”) are provided to: - get currently active Engineering Units set desired Engineering Units. The following Engineering Units are available: TABLE VI UNITS OF MEASUREMENT FLOW RATE ENGINEERING UNITS TOTALIZER ENGINEERING UNITS NUMBER INDEX 1 0 % %s Percent of full scale 2 1 mL/sec mL Milliliter per second 3 2 mL/min mL Milliliter per minute 4 3 mL/hr mL Milliliter per hour 5 4 L/sec Ltr Liter per second 6 5 L/ min Ltr Liter per minute 7 6 L/hr Ltr Liter per hour 7 m3/sec m3 Cubic meter per second 8 m3/ min m3 Cubic meter per minute 9 m3/hr m3 Cubic meter per hour 10 f 3/sec f3 Cubic feet per second 11 f 3/min f3 Cubic feet per minute 13 12 f 3/hr f3 Cubic feet per hour 14 13 g/sec g Grams per second 15 14 g/min g Grams per minute 16 15 g/hr g Grams per hour 17 16 kg/sec kg Kilograms per second 18 17 kg/min kg Kilograms per minute 19 18 kg/hr kg Kilograms per hour 20 19 Lb/sec Lb Pounds per second 21 20 Lb/min Lb Pounds per minute 22 21 Lb/hr Lb Pounds per hour 23 22 User UD User defined 8 9 10 11 12 11 DESCRIPTION Note: Once Flow Unit of Measure is changed, the Totalizer’s Volume/Mass based Unit of Measure will be changed automatically. 5.3.2 Gas Table Settings The FMA 4000 Mass Flow Meter is capable of storing calibration data for up to 10 different gases. Digital interface commands are provided to: - get currently active Gas Table number and Gas name set desired Gas Table. Note: By default the FMA 4000 is shipped with at least one valid calibration table (unless optional additional calibrations were ordered). If instead of the valid Gas name (for example NITROGEN), the LCD screen or digital interface displays Gas designator as “Uncalibrated”, then the user has chosen the Gas Table which was not calibrated. Using an “Uncalibrated” Gas Table will result in erroneous reading. 5.3.3 Totalizer Settings The total volume of the gas is calculated by integrating the actual gas flow rate with respect to the time. Digital interface commands are provided to: - reset the totalizer to ZERO start the totalizer at a preset flow assign action at a preset total volume start/stop (enable/disable) totalizing the flow read totalizer via digital interface The Totalizer has several attributes which may be configured by the user. These attributes control the conditions which cause the Totalizer to start integrating the gas flow and also to specify actions to be taken when the Total Volume is outside the specified limit. Note: Before enabling the Totalizer, ensure that all totalizer settings are configured properly. Totalizer Start values have to be entered in %F.S. engineering unit. The Totalizer will not totalize until the flow rate becomes equal to or more than the Totalizer Start value. Totalizer Stop values must be entered in currently active volume / mass based engineering units. If the Totalizer Stop at preset total volume feature is not required, then set Totalizer Stop value to zero. Totalizer action conditions become true when the totalizer reading and preset “Stop at Total” volumes are equal. 12 Local maintenance push button is available for manual Totalizer reset on the field. The maintenance push button is located on the right side of the flow meter inside the maintenance window above the 15 pin D-connector (see Figure c-1 “FMA 4000 configuration jumpers”). Note: In order to locally Reset Totalizer, the reset push button must be pressed during power up sequence. The following sequence is recommended: 1. 2. 3. 4. Disconnect FMA 4000 from the power. Press maintenance push button (do not release). Apply power to the FMA 4000 while holding down the maintenance push button. Release maintenance push button after 6 seconds. For FMA 4000 with optional LCD, when FMA 4000 Main Screen appears (see Figure b-4). 5.3.4 Flow Alarm Settings FMA 4000 provides the user with a flexible alarm/warning system that monitors the Gas Flow for conditions that fall outside configurable limits as well as visual feedback for the user via the status LED and LCD (only for devices with LCD option) or via a Relay contact closure. The flow alarm has several attributes which may be configured by the user via a digital interface. These attributes control the conditions which cause the alarm to occur and to specify actions to be taken when the flow rate is outside the specified conditions. Mode Enable /Disable Allows the user to Enable/Disable Flow Alarm. Low Alarm - The value of the monitored Flow in % F.S. below which is considered an alarm condition. Note: The value of the Low alarm must be less than the value of the High Alarm. High Alarm- The value of the monitored Flow in % F.S. above which is considered an alarm condition. Note: The value of the High alarm must be more than the value of the Low Alarm. Action Delay- The time in seconds that the Flow rate value must remain above the high limit or below the low limit before an alarm condition is indicated. Valid settings are in the range of 0 to 3600 seconds. 13 Latch Mode- 0123- Controls Latch feature when Relays are assigned to Alarm event. Following settings are available: Latch feature is disabled for both relays Latch feature is enabled for Relay#1 and disabled for Relay#2 Latch feature is enabled for Relay#2 and disabled for Relay#1 Latch feature is enabled for both relays. Note: If the alarm condition is detected, and the Relay is assigned to Alarm event, the corresponding Relay will be energized. Note: By default, flow alarm is non-latching. That means the alarm is indicated only while the monitored value exceeds the specified conditions. If Relay is assigned to the Alarm event, in some cases, the Alarm Latch feature may be desirable. The current Flow Alarm settings and status are available via digital interface (see paragraph 8.3 ASCII Command Set “FMA 4000 SOFTWARE INTERFACE COMMANDS”). 5.3.5 Relay Assignment Settings Two sets of dry contact relay outputs are provided to actuate user supplied equipment. These are programmable via digital interface such that the relays can be made to switch when a specified event occurs (e.g. when a low or high flow alarm limit is exceeded or when the totalizer reaches a specified value). The user can configure each Relay action from 6 different options: No Action Totalizer > Limit High Flow Alarm Low Flow Alarm Range between H&L Manual Enabled : (N) No assignment (relay is not assigned to any events and not energized). : (T) Totalizer reached preset limit volume. : (H) High Flow Alarm condition. : (L) Low Flow Alarm condition. : (R) Range between High and Low Flow Alarm condition. : (M) Activated regardless of the Alarm and Totalizer conditions. 5.3.6 K Factors Settings Conversion factors relative to Nitrogen for up to 36 gases are stored in the FMA 4000 (see APPENDIX II). In addition, provision is made for a user-defined conversion factor. Conversion factors may be applied to any of the ten gas calibrations via digital interface commands. 14 The available K Factor settings are: • • • Disabled (K = 1). Internal Index The index [0-35] from internal K factor table (see APPENDIX II). User Defined User defined conversion factor. Note: The conversion factors will not be applied for % F.S. engineering unit. 5.3.7 Zero Calibration The FMA 4000 includes an auto zero function that, when activated, automatically adjusts the mass flow sensor to read zero. The initial zero adjustment for your FMA 4000 was performed at the factory. It is not required to perform zero calibration unless the device has zero reading offset with no flow conditions. Note: Before performing Zero Calibration, make sure the device is powered up for at least 15 minutes and absolutely no flow condition is established. Shut off the flow of gas into the Digital Mass Flow Meter. To ensure that no seepage or leak occurs into the meter, it is good practice to temporarily disconnect the gas source. The Auto Zero may be initiated via digital communication interface or locally by pressing the maintenance push button, which is located on the right side of the flow meter inside the maintenance window above the 15 pin D-connector (see Figure c-1 “FMA 4000 configuration jumpers”). Note: The same maintenance push button is used for Auto Zero initiation and Totalizer reset. The internal diagnostic algorithm will prevent initiating Auto Zero function via the maintenance push button before the 6 minutes sensor warm up period has elapsed. To start Auto Zero locally, press the maintenance push button. The status LED will flash not periodically with the RED light. On the FMA 4000 with optional LCD, the following screen will appear: 15 AUTOZERO IS ON! Figure b-6: FMA 4000 Screen in the beginning of Auto Zero procedure. The Auto Zero procedure normally takes 1 - 2 minutes during which time the DP Zero counts and the Sensor reading changes approximately every 3 to 6 seconds. AUTOZERO IS ON! S: 405 DP: 512 Figure b-7: FMA 4000 during the Auto Zero procedure. The nominal value for a fully balanced sensor is 120 Counts. If the FMA 4000’s digital signal processor was able to adjust the Sensor reading within 120 ± 10 counts, then Auto Zero is considered successful. The status LED will return to a constant GREEN light and the screen below will appear: AutoZero is Done S: 122 DP: 544 Figure b-7: FMA 4000 during the Auto Zero procedure. Note: The actual value of the Sensor and DP counts will vary for each FMA 4000. If the device was unable to adjust the Sensor reading to within 120 ± 10 counts, then Auto Zero is considered as unsuccessful. The constant RED light will appear on the status LED. The user will be prompted with the “AutoZero ERROR!” screen. Note: For FMA 4000 with RS232 option all Auto Zero status info available via digital communication interface. 16 5.3.8 Self Diagnostic Alarm FMA 4000 series Mass Flow Meters are equipped with a self-diagnostic alarm which is available via multicolor LED, digital interface and on screen indication (for devices with optional LCD). The following diagnostic events are supported: NUMBER DIAGNOSTIC ALARM DESCRIPTION LED COLOR AND PATTERN Not periodically flashing RED PRIORITY LEVEL 1 Auto Zero procedure is running 2 FATAL ERROR (reset or maintenance service is required for Constant RED return in to the normal operation) 1 3 CPU Temperature too high (Electronics Overheating) Flashing RED/UMBER 2 4 Sensor in the warm up stage (first 6 minutes after power up sequence, normal operation, no critical diagnostic events present) Constant UMBER 3 5 Flow Sensor Temperature too low Flashing UMBER/OFF 4 6 Flow Sensor Temperature too high Flashing RED/OFF 5 7 Totalizer Reading hit preset limit Flashing GREEN/UMBER 6 8 Low flow Alarm conditions Flashing GREEN/OFF 7 9 High flow Alarm conditions Flashing GREEN/RED 8 10 Normal operation, no diagnostic events Constant GREEN 9 5.4 0 Note: [0] - Priority Level is highest (most important). When two or more diagnostic events are present at the same time, the event with the highest priority level will be indicated on the status LED and displayed on the LCD (if equipped). All diagnostic events may be accessed simultaneously via digital communication interface (see paragraph 8.3 “ASCII Command Set”). Analog Output Signals configuration FMA 4000 series Mass Flow Meters are equipped with calibrated 0-5 Vdc and 420 mA output signals. The set of the jumpers (J7A, J7B, J7C) located on the right side of the flow meter, inside of the maintenance window above the 15 pin D-connector (see Figure c-1 “FMA 4000 configuration jumpers”) are used to switch between 0-5 Vdc or 4-20 mA output signals (see Table VI). 17 Analog output signals of 0-5 Vdc and 4-20 mA are attained at the appropriate pins of the 15-pin “D” connector (see Figure b-1) on the side of the FMA 4000 transducer. Table VI Analog Output Jumper Configuration ANALOG SIGNAL OUTPUT Flow Rate Output Jumper Header J7 0-5 Vdc J7.A J7.B J7.C 4-20 mA 5-9 6-10 7-11 J7.A J7.B J7.C 1-5 2-6 3-7 See APPENDIX IV for actual jumpers layout on the PCB. Note: Digital output (communication) is simultaneously available with analog output. 6. MAINTENANCE 6.1 Introduction It is important that the Mass Flow Meter is only used with clean, filtered gases. Liquids may not be metered. Since the RTD sensor consists, in part, of a small capillary stainless steel tube, it is prone to occlusion due to impediments or gas crystallization. Other flow passages are also easily obstructed. Therefore, great care must be exercised to avoid the introduction of any potential flow impediment. To protect the instrument, a 50 micron (FMA 4000) filter is built into the inlet of the flow transducer. The filter screen and the flow paths may require occasional cleaning as described below. There is no other recommended maintenance required. It is good practice, however, to keep the meter away from vibration, hot or corrosive environments and excessive RF or magnetic interference. If periodic calibrations are required, they should be performed by qualified personnel and calibrating instruments, as described in section 7. It is recommended that units are returned to Omega® for repair service and calibration. CAUTION: TO PROTECT SERVICING PERSONNEL IT IS MANDATORY THAT ANY INSTRUMENT BEING SERVICED IS COMPLETELY PURGED AND NEUTRALIZED OF TOXIC, BACTERIOLOGICALLY INFECTED, CORROSIVE OR RADIOACTIVE CONTENTS. 18 6.2 Flow Path Cleaning Before attempting any disassembly of the unit for cleaning, try inspecting the flow paths by looking into the inlet and outlet ends of the meter for any debris that may be clogging the flow through the meter. Remove debris as necessary. If the flow path is clogged, proceed with steps below. Do not attempt to disassemble the sensor. If blockage of the sensor tube is not alleviated by flushing through with cleaning fluids, please return meter for servicing. 6.2.1 CAUTION: DISASSEMBLY MAY COMPROMISE CURRENT CALIBRATION. Restrictor Flow Element (RFE) The Restrictor Flow Element (RFE) is a precision flow divider inside the transducer which splits the inlet gas flow by a preset amount to the sensor and main flow paths. The particular RFE used in a given Mass Flow Meter depends on the gas and flow range of the instrument. 6.2.2 FMA 4000 Model Unscrew the inlet compression fitting of meter. Note that the Restrictor Flow Element (RFE) is connected to the inlet fitting. Carefully disassemble the RFE from the inlet connection. The 50 micron filter screen will now become visible. Push the screen out through the inlet fitting. Clean or replace each of the removed parts as necessary. If alcohol is used for cleaning, allow time for drying. Inspect the flow path inside the transducer for any visible signs of contaminant. If necessary, flush the flow path through with alcohol. Thoroughly dry the flow paths by flowing clean dry gas through. Carefully re-install the RFE and inlet fitting avoiding any twisting and deforming to the RFE. Be sure that no dust has collected on the O-ring seal. NOTE: OVER TIGHTENING WILL DEFORM AND RENDER THE RFE DEFECTIVE. IT IS ADVISABLE THAT AT LEAST ONE CALIBRATION POINT BE CHECKED AFTER RE-INSTALLING THE INLET FITTING. SEE SECTION (7.2.3). 19 7. 7.1 CALIBRATION PROCEDURES NOTE: REMOVAL OF THE FACTORY INSTALLED CALIBRATION SEALS AND/OR ANY ADJUSTMENTS MADE TO THE METER, AS DESCRIBED IN THIS SECTION, WILL VOID ANY CALIBRATION WARRANTY APPLICABLE. Flow Calibration Omega® Engineerings' Flow Calibration Laboratory offers professional calibration support for Mass Flow Meters using precision calibrators under strictly controlled conditions. NIST traceable calibrations are available. Calibrations can also be performed at customers' site using available standards. Factory calibrations are performed using NIST traceable precision volumetric calibrators incorporating liquid sealed frictionless actuators. Generally, calibrations are performed using dry nitrogen gas. The calibration can then be corrected to the appropriate gas desired based on relative correction [K] factors shown in the gas factor table (see APPENDIX III). A reference gas, other than nitrogen, may be used to better approximate the flow characteristics of certain gases. This practice is recommended when a reference gas is found with thermodynamic properties similar to the actual gas under consideration. The appropriate relative correction factor should be recalculated (see section 9). It is standard practice to calibrate Mass Flow Meters with dry nitrogen gas at 70.0 FF (21.1 FC), 20 psia (137.9 kPa absolute) inlet pressure and 0 psig outlet pressure. It is best to calibrate FMA 4000 transducers to actual operating conditions. Specific gas calibrations of non-toxic and non-corrosive gases are available for specific conditions. Please contact your Omega® for a price quotation. It is recommended that a flow calibrator be used which has at least four times better collective accuracy than that of the Mass Flow Meter to be calibrated. Equipment required for calibration includes: a flow calibration standard, PC with available RS485 / RS232 communication interface, a certified high sensitivity multi meter (for analog output calibration only), an insulated (plastic) screwdriver, a flow regulator (for example - metering needle valve) installed upstream from the Mass Flow Meter, and a pressure regulated source of dry filtered nitrogen gas (or other suitable reference gas). Using Omega® supplied calibration and maintenance software to simplify the calibration process is recommended. Gas and ambient temperature, as well as inlet and outlet pressure conditions, should be set up in accordance with actual operating conditions. 20 7.2 Gas Flow Calibration of FMA 4000 Mass Flow Meter All adjustments in this section are made from the outside of the meter via digital communication interface between a PC (terminal) and FMA 4000. There is no need to disassemble any part of the instrument or perform internal PCB component (potentiometers) adjustment. FMA 4000 Mass Flow Meters may be field recalibrated/checked for the same range they were originally factory calibrated for. When linearity adjustment is needed or flow range changes are being made, proceed to step 7.2.3. Flow range changes may require a different Restrictor Flow Element (RFE). Consult Omega® for more information. 7.2.1 Connections and Initial Warm Up Power up the Mass Flow Meter for at least 15 minutes prior to commencing the calibration procedure. Establish digital RS485 / RS232 communication between PC (communication terminal) and the FMA 4000. Start Omega® supplied calibration and maintenance software on the PC. 7.2.2 ZERO Check/Adjustment Using Omega® supplied calibration and maintenance software open Back Door access: Query/BackDoor/Open When software prompts with Warning, click the [YES] button. This will open the access to the rest of the Query menu. Start Sensor Compensated Average reading: Query/Read/ SensorCompAverage This will display Device Sensor Average ADC counts. With no flow conditions, the sensor Average reading must be in the range 120± 10 counts. If it is not, perform Auto Zero procedure (see section 5.3.10 “Zero Calibration”). 7.2.3 Gas Linearization Table Adjustment Note: Your FMA 4000 Digital Mass Flow Meter was calibrated at the factory for the specified gas and full scale flow range (see device’s front label). There is no need to adjust the gas linearization table unless linearity adjustment is needed, flow range has to be changed, or new additional calibration is required. Any alteration of the gas linearization table will VOID calibration warranty supplied with instrument. 21 Gas flow calibration parameters are separately stored in the Gas Dependent portion of the EEPROM memory for each of 10 calibration tables. See APPENDIX I for complete list of gas dependent variables. Note: Make sure the correct gas number and name selected are current. All adjustments made to the gas linearization table will be applied to the currently selected gas. Use Gas Select command via digital communication interface (see paragraph 8.3 ASCII Command Set “FMA 4000 SOFTWARE INTERFACE COMMANDS”) or Omega® supplied calibration and maintenance software to verify current gas table or select a new gas table. The FMA 4000 gas flow calibration involves building a table of the actual flow values (indexes 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134) and corresponding sensor readings (indexes 113, 115, 117, 118, 119, 121, 123, 125, 127, 129, 131, 133). Actual flow values are entered in normalized fraction format: 100.000 % F.S. corresponds to 1.000000 flow value and 0.000 % F.S. corresponds to 0.000000 flow value. The valid range for flow values is from 0.000000 to 1.000000 (note: FMA 4000 will accept up to 6 digits after decimal point). Sensor readings are entered in counts of 12 bits ADC output and should always be in the range of 0 to 4095. There are 11 elements in the table so the data should be obtained at an increment of 10.0 % of full scale (0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0 and 100.0 % F.S.). Note: Do not alter memory index 113 (must be 120 counts) and 114 (must be 0.0). These numbers represent zero flow calibration points and should not be changed. If a new gas table is going to be created, it is recommended to start calibration from 100% full scale. If only linearity adjustment is required, calibration can be started in any intermediate portion of the gas table. Using the flow regulator, adjust the flow rate to 100% of full scale flow. Check the flow rate indicated against the flow calibrator. Observe the flow reading on the FMA 4000. If the difference between calibrator and FMA 4000 flow reading is more than 0.5% F.S., make a correction in the sensor reading in the corresponding position of the linearization table (see Index 133). If the FMA 4000 flow reading is more than the calibrator reading, the number of counts in the index 133 must be decreased. If the FMA 4000 flow reading is less than the calibrator reading, the number of counts in the index 133 must be increased. Once Index 133 is adjusted with a new value, check the FMA 4000 flow rate against the calibrator and, if required, perform additional adjustments for Index 133. 22 If a simple communication terminal is used for communication with the FMA 4000, then “MW” (Memory Write) command from the software interface commands set may be used to adjust sensor value in the linearization table (see section 8.3 for complete software interface commands list). Memory Read “MR” command can be used to read the current value of the index. Assuming the FMA 4000 is configured with RS485 interface and has address “11”, the following example will first read the existing value of Index 133 and then write a new adjusted value: !11,MR,133[CR] - reads EEPROM address 133 !11,MW,133,3450[CR] - writes new sensor value (3450 counts) in to the index 133 Once 100% F.S. calibration is completed, the user can proceed with calibration for another 9 points of the linearization table by using the same approach. 7.3 Analog output Calibration of FMA 4000 Mass Flow Meter FMA 4000 series Mass Flow Meters are equipped with calibrated 0-5 Vdc and 4-20 mA output signals. The set of the jumpers (J7A, J7B, J7C) on the printed circuit board is used to switch between 0-5 Vdc and 4-20 mA output signals (Figure c-1 “FMA 4000 configuration jumpers”). J7A J7B J7C JCD ANALOG 0-5 VDC 5-9 6-10 7-11 OUTPUT 4-20 mA 1-5 2-6 3-7 RS485 TERMINAL RESISTOR OFF 8-12 ON 4-8 9 5 1 A 10 6 2 B 11 7 3 C FUNCTION AutoZero/Reset push button. 12 8 4 D Note: It is recommended to use Omega® supplied calibration and maintenance software for gas table calibration. This software includes an automated calibration procedure which may radically simplify reading and writing for the EEPROM linearization table. J7 Jumpers Figure c-1 FMA 4000 Analog Output Configuration Jumpers 23 The FMA 4000 analog output calibration involves calculation and storing of the offset and span variables in the EEPROM for each available output. The 0-5 Vdc output has only scale variable and 20 mA output has offset and scale variables. The following is a list of the Gas independent variables used for analog output computation: 7.3.1 Note: The analog output available on the FMA 4000 Digital Mass Flow Meter was calibrated at the factory for the specified gas and full scale flow range (see the device’s front label). There is no need to perform analog output calibration unless the EEPROM IC was replaced or offset/span adjustment is needed. Any alteration of the analog output scaling variables in the Gas independent table will VOID calibration warranty supplied with instrument. Note: It is recommended to use the Omega® supplied calibration and maintenance software for analog output calibration. This software includes an automated calibration procedure which may radically simplify calculation of the offsets and spans variables and, the reading and writing for the EEPROM table. Index Name Description 25 AoutScaleV 27 AoutScale_mA - DAC 4-20mA Analog Output Scale 28 AoutOffset_mA - DAC 4-20mA Analog Output Offset - DAC 0-5 Vdc Analog Output Scale Initial Setup Power up the Mass Flow Meter for at least 15 minutes prior to commencing the calibration procedure. Make sure absolutely no flow takes place through the meter. Establish digital RS485 / RS232 communication between PC (communication terminal) and FMA 4000. The commands provided below assume that calibration will be performed manually (w/o Omega® supplied calibration and maintenance software) and the device has RS485 address 11. If Omega® supplied calibration and maintenance software is used, skip the next section and follow the software prompts. 24 Enter Backdoor mode by typing: Unit will respond with: Disable DAC update by typing: Unit will respond with: !11,MW,1000,1[CR] !11,BackDoorEnabled: Y !11,WRITE,4,D[CR] !11,DisableUpdate: D 7.3.2 Gas flow 0-5 Vdc analog output calibration 1. 2. 3. 4. Install jumpers J7A, J7B and J7C on the PC board for 0-5 Vdc output (see Table VI). Connect a certified high sensitivity multi meter set for the voltage measurement to the pins 2 (+) and 1 (-) of the 15 pins D connector. Write 4000 counts to the DAC channel 1: !11,WRITE,1,4000[CR] Read voltage with the meter and calculate: 5. Save FlowOutScaleV in to the EEPROM: !11,MW,25,X[CR] Where: X – the calculated AoutScaleV value. 7.3.3 Gas flow 4-20 mA analog output calibration 1. 2. 3. 4. Install jumpers J7A, J7B and J7C on the PC board for 4-20 mA output (see Table VI). Connect a certified high sensitivity multi meter set for the current measurement to pins 2 (+) and 1 (-) of the 15 pins D connector. Write 4000 counts to the DAC channel 1: !11,WRITE,1,4000[CR] Read current with the meter and calculate: 5. 6. Write zero counts to the DAC channel 1: !11,WRITE,1,0CR] Read offset current with the meter and calculate: 7. Save AoutScale_mA in to the EEPROM: Save AoutOffset_mA in to the EEPROM: !11,MW,27,Y[CR] !11,MW,28,Z[CR] Where: Y – the calculated AoutScale_mA value. Z – the calculated AoutOffset_mA value. Note: When done with the analog output calibration make sure the DAC update is enabled and the BackDoor is closed (see command below). 25 Enable DAC update by typing: Unit will respond with: !11,WRITE,4,N[CR] !11,DisableUpdate: N Close BackDoor access by typing: Unit will respond with: !11,MW,1000,0[CR] !11,BackDoorEnabled: N 8. RS485 / RS232 SOFTWARE INTERFACE COMMANDS 8.1 General The standard FMA 4000 comes with an RS485 interface. For the optional RS232 interface, the start character (!) and two hexadecimal characters for the address must be omitted. The protocol described below allows for communications with the unit using either a custom software program or a “dumb terminal.” All values are sent as printable ASCII characters. For RS485 interface, the start character is always (!). The command string is terminated with a carriage return (line feeds are automatically stripped out by the FMA 4000). See section 2.2.3 for information regarding communication parameters and cable connections. 8.2 Commands Structure The structure of the command string: !, ,Arg1,Arg2,Arg3,Arg4 Where: ! Addr Start character ** RS485 device address in the ASCII representation of hexadecimal (00 through FF are valid).** Cmd The one or two character command from the table below. Arg1 to Arg4 The command arguments from the table below. Multiple arguments are comma delimited. CR Carriage Return character. Note: ** Default address for all units is 11. Do not submit start character and two character hexadecimal device address for RS232 option. Several examples of commands follow. All assume that the FMA 4000 has been configured for address 18 (12 hex) on the RS485 bus: 1. 2. 3. 4. To get current calibration tables: !12,G The FMA 4000 will reply: !12,G 0 AIR (Assuming Current Gas table is #0, calibrated for AIR ) To get current Alarm status: !12,A,R The FMA 4000 will reply: !12,N (Assuming no alarm conditions) To get a flow reading: !12,F The FMA 4000 will reply: !12,50.0 (Assuming the flow is at 50% FS) Set the high alarm limit to 85% of full scale flow rate: !12,A,H,85.0 The FMA 4000 will reply: !12,AH85.0 26 Note: Address 00 is reserved for global addressing. Do not assign, the global address for any device. When command with global address is sent, all devices on the RS485 bus execute the command but do not reply with an acknowledge message. The global address can be used to change RS485 address for a particular device with unknown address: 1. 2. Make sure only one device (which address must be changed) is connected to the RS485 network. Type the memory write command with global address: !00,MW,7,XX[CR] where XX, the new hexadecimal address, can be [01 – FF]. After assigning the new address, a device will accept commands with the new address. Note: Do not assign the same RS485 address for two or more devices on the same RS485 bus. If two or more devices with the same address are connected to the one RS485 network, a communication collision will take place on the bus and communication errors will occur. 27 28 Selects one of the ten primary gas calibration tables to use. Tables are entered via the MEM commands at time of calibration. 4 3 G N D G0 through G9, NO ARGUMENT (read status) N:D Or N:E NO ARGUMENT (read current mode of the N2 Roll back ) G0 through G9, N:D D (enable Roll back to N2)* 0 (gas 0)* to 9 (gas 9) N:E D:0x0,L:9,E 0x0 – diagnostic word 9 - current LED status E - LCD mode (enabled) NO ARGUMENT (read current status of the diagnostic word) E (enable Roll back to N2) D:D (Actual flow in current engineering units) Response D (disable LCD ** Diagnostic Messages) Argument 4 D:E Argument 3 E (enable LCD ** Diagnostic Messages) Argument 2 Note: An “*” indicates power up default settings. An “**” indicates optional feature not available on all models. Gas Select Roll back to Enable / Disable Roll back N2 feature. to N2 feature. 2 Enable / Disable LCD Diagnostic messages (only for LCD option). Request current status of the Diagnostic events, LED status and LCD diagnostic mode (enabled/disabled). Diagnostic F COMMAND SYNTAX No. Command Argument 1 Requests the current flow 1 sensor reading in current EU DESCRIPTION Flow COMMAND NAME OMEGA FMA 4000 SOFTWARE INTERFACE COMMANDS 8.3 ASCII Commands Set 29 Alarm conditions: Flow > High Limit = H Flow < Low Limit = L Low < Flow < High = N Sets / reads the status of the gas flow alarms. Note: High and Low limits have to be entered in the %F.S. High alarm value has to be more than Low alarm value. Flow Alarms 6 5 Starts /reads the status of the auto zero feature (Note: The Z,N command can be used only when absolutely no flow thru the meter and no earlier then 6 minutes after power up. It can take several minutes to complete. Unit will not respond to other commands when this is in progress.) No. Auto Zero COMMAND DESCRIPTION NAME A Command Z AD N H L AS:M,L,H,D,B where: M – mode (E/D) L – Low settings (%FS) H – High settings (%FS) D – Action Delay (sec) B – Latch mode (0-3) AB: where: D (disable alarm)* R (read current status) S (Read current settings) B Block (Latch) mode (0-disabled*) (1-enabl’d L) (2-enabl’d H) (3 –both L,H) AE Value = 0 - 3 (no alarm) (high alarm) (low alarm) AA: AL AH E (enable alarm) (0-100%FS) L (low flow limit) A (action delay in seconds) (0-3600 sec.) (0-100%FS) H (high flow limit) ZV, V (Display zero value) Response ZN ZNI, while Z,N is in progress. Argument 4 S (status while auto zero in progress) Argument 3 ZW (when done) Argument 2 W (Write Zero to EEPROM) Argument 1 N (do it now) COMMAND SYNTAX 30 Totalizer Relay Action NOTE: If Warm Up Delay option is set to E (enabled) the Totalizer will not totalize the flow during first 6 minutes after power up. Sets and controls action of the flow totalizer. Assigns action of the two SPDT relays. The coil is energized when the condition specified by an Argument 2 becomes true. Argument 2: N - no action, relay disabled* T - totalizer reading > limit H - high flow alarm L - low flow alarm R - Range between High & Low alarms M - Manual Relay overdrive S - Read current status COMMAND DESCRIPTION NAME 8 7 No. T R Command R1H or R2H R1L or R2L R1R or R2R R1M or R2M RxN, RxT, RxH, RxL, RxR , RxM H L R M S S (setting status) TS: Mode, Start, Limit, Warm Up TW:E or TW:D (in current EU) R (read current totalizer volume) E – enable D – disable* TE E (enable totalizer) W (Warm Up Delay) TD D (disable totalizer) TF TL (flow %FS) R1T or R2T T TZ R1N or R2N Argument 3 Argument 4 Response N* Argument 2 L (Limit gas volume in current E.U.) (gas volume) F (start totalizer at flow F.S.) Z (Reset to zero) 1 (relay 1) 2 (relay 2) Argument 1 COMMAND SYNTAX 31 9 K Factors See list of the internal K-factors in the operating manual. (NOTE: does not work with % F.S. engineering unit.) Applies a gas correction factor to the currently selected primary gas calibration table. No. COMMAND DESCRIPTION NAME K Command S (status) U (user specified factor) KU, (decimal correction factor) (0-1000) SK, , , where: Mode: D, I, U Index: 0-35 Value: K-Factor value KU, KI, , No argument (enable previously set user K-factor) Gas Index (0 -35) KI, , Argument 4 Response I (Internal K-factor) Argument 3 KD No argument (enable previously set internal K-factor) Argument 2 D*(disable, sets K=1) Argument 1 COMMAND SYNTAX 32 10 Units Note: The units of the totalizer output are not per unit time. Set the units of measure for gas flow and totalizer reading. No. COMMAND DESCRIPTION NAME U Command No Argument Returns current EU. Argument 1 % (% full scale)* mL/sec mL/min mL/hr L/sec L/min L/hr m3/sec m3/min m3/hr f3/sec f3/min f3/hr g/sec g/min g/hr kg/sec kg/min kg/hr Lb/sec Lb/min Lb/hr USER (user defined) COMMAND SYNTAX (conversion factor from L/min) Argument 2 Argument 4 S - seconds Y - use density M – minutes N – do not use H – hours (Time base) density Argument 3 U, Response U:% U:mL/sec U:mL/min U:mL/hr U:L/sec U:L/min U:L/hr U:m3/sec U:m3/min U:m3/hr U:f3/sec U:f3/min U:f3/hr U:g/sec U:g/min U:g/hr U:kg/sec U:kg/min U:kg/hr U:Lb/sec U:Lb/min U:Lb/hr U:USER, ,
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : No Page Count : 55 XMP Toolkit : XMP toolkit 2.9.1-14, framework 1.6 About : uuid:02c33954-eee8-4fb3-ad2e-d3fc133c61f5 Producer : Acrobat Distiller 6.0 (Windows) Keywords : FMA 4000..Digital Mass Flow Meters Creator Tool : PScript5.dll Version 5.2 Modify Date : 2008:08:29 14:50:53-04:00 Create Date : 2008:05:08 09:57:49-04:00 Metadata Date : 2008:08:29 14:50:53-04:00 Document ID : uuid:ee641cd8-9849-4a9d-8718-df6a72f4a5a9 Format : application/pdf Title : Digital Mass Flow Meters Creator : OMEGA® Author : OMEGA®EXIF Metadata provided by EXIF.tools