PBE Europe as Axell Wireless 55-165703 55-165703 Cell Enhancer User Manual 80 330501HBKM
Axell Wireless 55-165703 Cell Enhancer 80 330501HBKM
Contents
- 1. Manual 1 of 5
- 2. manual 2 of 5
- 3. manual 3 of 5
- 4. manual 4 of 5
- 5. manual 5 of 5
manual 5 of 5
14.3.5. Attenuator 25W, 60dB (10-002960) In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain. Attenuator 25W, 60dB (10-002960) is a fixed attenuator providing 60dB of signal attenuation. 10-002960 Specification PARAMETER Frequency Range Power Handling Attenuation Attenuation Accuracy Return Loss to 2.2GHz Nominal Impedance RF Conectors Finish Temperature operational range storage SPECIFICATION DC to 2.5GHz 25 W 60 dB ± 0.5dB 18dB 50 Ω N male to N female Matt Black Anodise -20%C to +55%C -20%C to +70%C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 250 of 500 15 ATTENUATOR SHELF (ITAC) 3 (55-165506) Attenuator Shelf (ITAC) 3 (55-165506) list of major components Section 15.3.1. 15.3.2. 15.3.3. 15.3.4. 15.3.5. Component Part 05-002602 05-003007 09-000902 10-000901 10-002960 Component Part Description 900MHz Splitter/Combiner 4 Port Hybrid Coupler Dummy load Switched Attenuator 0.25W, 0 - 15dB Attenuator 25W, 60dB Qty. Per Assembly STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 251 of 500 15.1. Attenuator Shelf (ITAC) 3 (55-165506) outline drawing Drawing number 55-1655106 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 252 of 500 15.2 Attenuator Shelf (ITAC) 3 (55-165506) system diagram Drawing number 55-165586 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 253 of 500 15.3. Attenuator Shelf (ITAC) 3 (55-165506) major components 15.3.1. 900MHz Splitter/Combiner (05-002602) The Splitter/Combiner used is a device for accurately matching two or more RF signals to single or multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the VSWR and insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate 50Ω load. Being passive devices, the splitters should have an extremely long operational life and require no maintenance. Should a unit be suspect, it is usually most time efficient to replace the whole module rather than attempt repair or re-tuning. 05-002602 Specification PARAMETER Frequency Narrowband range Broadband Narrowband Bandwidth Broadband Input ports Output ports Narrowband Insertion loss Broadband Return loss input & output Impedance Narrowband Isolation Broadband MTFB Splitting Power rating Combining Connectors Weight Size 15.3.2. SPECIFICATION 815 – 960MHz 800 – 1200MHz 145MHz 400MHz 3.3dB 3.5dB 1.3:1 50Ω >20dB >18dB >180,000 hours 20Watts 0.5Watt SMA female 200g (approximately) 54 x 44 x 21mm 4 Port Hybrid Coupler (05-003007) This transmitter hybrid coupler is a device for accurately matching two or more RF signals to single or multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate 50Ω load. In this specific instance one port of 4 Port Hybrid Coupler (05-003007) is terminated with Dummy load 09-000902 (see below). 05-003007 Specification PARAMETER Frequency range: Bandwidth: Rejection: Insertion loss: Connectors: Weight: operational Temperature range: storage SPECIFICATION 700-900MHz 200MHz >14dB 6.5dB (in band, typical) SMA <1.0kg -10%C to +60%C -20%C to +70%C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 254 of 500 15.3.3. Dummy Load (09-000902) When a combiner system is used to split or combine RF signals, in many cases it is most cost effective to use a standard stock item 4, 6 or 8 port device where, in fact, only a 3 or 6 port device is needed. In this case 4 Port Hybrid Coupler (05-003007) has one of its ports terminated with Dummy load (09-000902) in order to preserve the correct impedance of the device over the specified frequency range. 09-000902 specification PARAMETER Frequency Range Power Rating VSWR Impedance Temperature Range RF Connectors Dimension Weight Finish RF Connector Environmental MTBF 15.3.4. SPECIFICATION 0 - 2500 MHz 25 Watts continuous Better than 1.1:1 50 Ohms -20 to +60°C N Type female 110.3mm x 38.1mm x 485 grams Black Anodised N Type male IP66 >180,000 hours Switched Attenuator 0.25W, 0 - 15dB (10-000901) In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain. 10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output. 10-000901 Specification PARAMETER Attenuation Values Attenuation Steps Power Handling Attenuation Accuracy Frequency Range Impedance Connectors VSWR Weight Temperature operation range storage SPECIFICATION 0-15dB 1, 2, 4 and 8dB 0.25 Watt ± 1.0 dB DC to 1GHz 50Ω SMA 1.3:1 0.2kg -20°C to +60°C -40°C to +70°C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 255 of 500 15.3.5. Attenuator 25W, 60dB (10-002960) In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain. Attenuator 25W, 60dB (10-002960) is a fixed attenuator providing 60dB of signal attenuation. 10-002960 Specification PARAMETER Frequency Range Power Handling Attenuation Attenuation Accuracy Return Loss to 2.2GHz Nominal Impedance RF Conectors Finish Temperature operational range storage SPECIFICATION DC to 2.5GHz 25 W 60 dB ± 0.5dB 18dB 50 Ω N male to N female Matt Black Anodise -20%C to +55%C -20%C to +70%C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 256 of 500 16. CONVENTION PLACE STATION LINE AMPLIFIER (80-330556) C01-CR-05 Description of Convention Place Station Line Amp. (80-330556) From the top of the rack 55-165709 55-165703 55-165704 Convention Place Station Line Amp. (80-330556) list of major components Section 16.3.1. 16.3.2. 16.3.3. Component Part 55-165703 55-165704 55-165709 Component Part Description 800MHz Line Amplifier 700MHz LINE AMP + FILTERS (INT AMP) Convention Place Station Splitter Qty. Per Assembly STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 257 of 500 16.1. Convention Place Station Line Amp. (80-330556) Rack elevation Drawing number 80-330556 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 258 of 500 16.2. Convention Place Station Line Amp. (80-330556) System diagram Drawing number 80-330586 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 259 of 500 16.3. Convention Place Station Line Amp. (80-330556) Alarm wiring diagram Drawing number 80-330526 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 260 of 500 16.4 Convention Place Station Line Amp. (80-330556) Sub Components 16.4.1. 800MHz Line Amplifier (55-165703) 800MHz Line Amplifier (55-165703) List of Major Components 800MHz Line Amplifier (55-165703) List of Major Components Section 16.4.1.3. 16.4.1.4. 16.4.1.5. 16.4.1.6. 16.4.1.7. 16.4.1.8. 16.4.1.9. 16.4.1.10. 16.4.1.11. 16.4.1.12. 16.4.1.13. 16.4.1.14. Component Part 02-007206 07-015105 10-000901 11-006702 12-018002 12-021901 17-001109* 17-001117* 17-001201* 20-001601 80-008901 94-100004 96-200047 96-300052 Component Part Description Bandpass Filter Wideband Asymmetric Coupler Switched Attenuator 0.25W, 0 - 15dB Low Noise Amplifier Power Amplifier (20W 800MHz ) Low Power Amplifier AGC Detector Assembly (Logarithmic) AGC Detector Assembly AGC Attenuator Assembly 12V (Dual) Relay Board 12V (Single) Relay Board Dual Diode Assembly DC/DC Converter 12V Switch-Mode PSU Qty. Per Assembly *The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 800MHz Line Amplifier (55-165703); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 261 of 500 16.4.1.1. 800MHz Line Amplifier (55-165703) Outline Drawing Drawing number 55-1657103 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 262 of 500 16.4.1.2. 800MHz Line Amplifier (55-165703) System Diagram Drawing number 55-165783 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 263 of 500 16.4.1.3. Bandpass Filter (02-007206) The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports. Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning. No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously. 02-007206 Specification PARAMETER Response type Frequency range Bandwidth Number of sections Insertion loss VSWR Connectors Power handling Temperature operation range storage Weight SPECIFICATION Chebyshev 800 - 950MHz * 25MHz * 1.2 dB better than 1.2:1 SMA female 100W max -20°C to +60°C -40°C to +70°C 3 kg (typical) *tuned to Customer's specification 16.4.1.4. Wideband Asymmetric Coupler (07-015105) The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case 30dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only. 07-015105 Specification PARAMETER Construction Frequency Through loss Coupling level Isolation Weight Connectors Temperature operation range storage SPECIFICATION Inductive air gap 800-2500MHz 0.4dB (typical) -30dB ±0.5dB N/A <1.0kg SMA, female -20°C to +60°C -40°C to +70°C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 264 of 500 16.4.1.5. Switched Attenuator 0.25W, 0 - 15dB (10-000901) In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain. 10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output. 10-000901 Specification PARAMETER Attenuation Values Attenuation Steps Power Handling Attenuation Accuracy Frequency Range Impedance Connectors VSWR Weigh Temperature operation range storage SPECIFICATION 0-15dB 1, 2, 4 and 8dB 0.25 Watt ± 1.0 dB DC to 1GHz 50Ω SMA 1.3:1 0.2kg -20°C to +60°C -40°C to +70°C 16.4.1.6. Low Noise Amplifier (11-006702) The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into the main alarm system. 11-006702 Specification PARAMETER Frequency range: Bandwidth: Gain: 1dB Compression point: OIP3: Input/Output return loss: Noise figure: Power consumption: Supply voltage: Connectors: operational: Temperature range: storage: Size: Weight: SPECIFICATION 800 – 1000MHz <200MHz 29dB (typical) 20dBm 33dBm >18dB 1.3dB (typical) 180mA @ 24V DC 10-24V DC SMA female -10°C to +60°C -20°C to +70°C 90 x 55 x 30.2mm 290gms (approximately) STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 265 of 500 Low Noise Amplifier (11-006702) ‘D’ Connector Pin-out details Connector pin Signal +Ve input (10-24V) GND Alarm RelayO/P bad Alarm Relay common Alarm Relay good No connection TTL voltage set TTL alarm/0V (good) O/C good/0V bad 9-Way Pin-Out Graphical Representation 16.4.1.7. Power Amplifier (12-018002) This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It has built in a Current Fault Alarm Function. Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function. 12-018002 Specification PARAMETER Frequency range: Small signal gain: Gain flatness: I/O Return loss: 1dB compression point: OIP3: Supply voltage: Supply current: Temperature operational: range storage: Weight: SPECIFICATION 800-960MHz 30dB ±1.2dB >18dB 42.8dBm 56dBm 24V DC 5.0Amps (Typical) -10°C to +60°C -20°C to +70°C <2kg (no heatsink) STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 266 of 500 Power Amplifier (12-018002) 7-Way Connector Pin-outs Connector Pin A1 (large pin) A2 (large pin) Signal +24V DC GND Alarm relay common TTL alarm/0V good Alarm relay contact (bad) Alarm relay contact (good) O/C good/0V bad (TTL) 16.4.1.8. Low Power Amplifier (12-021901) The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life. Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function. There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced. Low Power Amplifier (12-021901) Specification PARAMETER Frequency range Bandwidth Maximum RF output Gain 1dB compression point 3rd order intercept point Noise Figure VSWR Connectors Supply Temperature operational range storage Weight Size SPECIFICATION 800-960MHz* 20MHz * >1.0 Watt 15dB +30.5dBm +43dBm <6dB better than 1.5:1 SMA female 500mA @ 10-15V DC -10°C to +60°C -20°C to +70°C 0.5 kg 167x52x25mm * Tuned to Customer’s specification STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 267 of 500 Low Power Amplifier (12-021901) 7-Way Connector Pin-outs Connector Pin A1 (large pin) A2 (large pin) Signal +24V DC GND Alarm relay common TTL alarm/0V good Alarm relay contact (bad) Alarm relay contact (good) O/C good/0V bad (TTL) 16.4.1.9. Automatic Gain Control 17-001109 17-001117 17-001201 AGC Detector Assembly (Logarithmic) AGC Detector Assembly AGC Attenuator Assembly The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 800MHz Line Amplifier (55-165703); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink 800MHz Line Amplifier (55-165703) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17-001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification. 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board. Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided. The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur. STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 268 of 500 The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal. This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit. For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value. AGC Specification (both types) PARAMETER Frequency range Attenuation range Attenuation steps VSWR RF Connectors Power attenuator handling detector/amp Temperature operation range storage attenuator pcb Size detector/amp pcb attenuator Weight detector/amp SPECIFICATION up to 1000MHz 3 to 30dB continuously variable better than 1.2:1 SMA female 1W >30W (or as required) -10°C to +60°C -20°C to +70°C 50 x 42 x 21mm 54 x 42 x 21mm 90grams 100grams 16.4.1.10. 12V (Dual) Relay Board (20-001601) The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with two dual pole change-over relays with completely isolated wiring, accessed via screw terminals. Both relays are provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It’s common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system. 20-001601 Specification PARAMETER SPECIFICATION Operating voltage: 8 to 30V (floating earth) Alarm threshold: Vcc - 1.20 volt +15% Alarm output relay contacts: Max. switch current: 1.0Amp Max. switch volts: 120Vdc/60VA Max. switch power: 24W/60VA Min. switch load: 10.0µA/10.0mV Relay isolation: 1.5kV Mechanical life: >2x107 operations Relay approval: BT type 56 Connector details: Screw terminals Temperature operational: -10°C to +60°C range storage: -20°C to +70°C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 269 of 500 16.4.1.11. 12V (Single) Relay Board (80-008901) The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector. The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It’s common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system. 80-008901 Specification PARAMETER SPECIFICATION Operating voltage 8 to 30V (floating earth) Alarm threshold Vcc - 1.20 volt +15% Alarm output relay contacts: Max. switch current 1.0Amp Max. switch volts 120Vdc/60VA Max. switch power 24W/60VA Min. switch load 10.0µA/10.0mV Relay isolation 1.5kV Mechanical life >2x107 operations Relay approval BT type 56 Connector details Screw terminals Temperature operational -10°C to +60°C range storage -20°C to +70°C 16.4.1.12. Dual Diode Assembly (94-100004) The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs . They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries. STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 270 of 500 16.4.1.13. DC/DC Converter 96-200047 96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts) output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in this case 12V. In the event of failure this unit should not be repaired, only replaced. 96-200047 Specification PARAMETER DC Input Voltage range DC Output voltage Max. current load Temperature Operation range Storage Working Humidity SPECIFICATION 19 to 36V 12V ± 1% 12.5Amps -10°C to +60°C -20°C to +85°C 20 to 90% RHNC 16.4.1.14. 12V Switch-Mode PSU (96-300052) No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 12.2V. The adjustment potentiometer will be found close to the DC output terminals. All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator. 96-300052 Specification AC Input Supply 110 or 220V nominal Voltage 85 - 265V AC (absolute limits) Frequency 47 to 63Hz DC Output Supply 12V DC (nominal) Voltage 10.5-13.8V (absolute limits) Current 12.5A STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 271 of 500 16.4.2 700MHz Line Amplifier (55-165704) Description of 700MHz Line Amplifier (55-165704) 700MHz Line Amplifier (55-165704) List of Major Components Section 16.4.2.3. 16.4.2.4. 16.4.2.5. 16.4.2.6. 16.4.2.7. 16.4.2.8. 16.4.2.9. 16.4.2.10. 16.4.2.11. 16.4.2.12. 16.4.2.13. Component Part 02-007206 07-015105 10-000901 11-006702 12-018002 12-021901 17-001109* 17-001117* 17-001201* 80-008901 94-100004 96-200047 96-300052 Component Part Description Bandpass Filter Wideband Asymmetric Coupler Switched Attenuator 0.25W, 0 - 15dB Low Noise Amplifier Power Amplifier (20W 800MHz ) Low Power Amplifier AGC Detector Assembly (Logarithmic) AGC Detector Assembly AGC Attenuator Assembly 12V (Single) Relay Board Dual Diode Assembly DC/DC Converter 12V Switch-Mode PSU Qty. Per Assembly *The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 800MHz Line Amplifier (55-165703); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 272 of 500 16.4.2.1. 700MHz Line Amplifier (55-165704) Outline Drawing Drawing number 55-1657104 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 273 of 500 16.4.2.2. 700MHz Line Amplifier (55-165704) System Diagram Drawing number 55-165784 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 274 of 500 16.4.2.3. Bandpass Filter (02-007206) The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports. Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning. No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously. 02-007206 Specification PARAMETER Response type Frequency range Bandwidth Number of sections Insertion loss VSWR Connectors Power handling Temperature operation range storage Weight SPECIFICATION Chebyshev 800 - 950MHz * 25MHz * 1.2 dB better than 1.2:1 SMA female 100W max -20°C to +60°C -40°C to +70°C 3 kg (typical) *tuned to Customer's specification 16.4.2.4. Wideband Asymmetric Coupler (07-015105) The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case 30dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only. 07-015105 Specification PARAMETER Construction Frequency Through loss Coupling level Isolation Weight Connectors Temperature operation range storage SPECIFICATION Inductive air gap 800-2500MHz 0.4dB (typical) -30dB ±0.5dB N/A <1.0kg SMA, female -20°C to +60°C -40°C to +70°C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 275 of 500 16.4.2.5. Switched Attenuator 0.25W, 0 - 15dB (10-000901) In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain. 10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output. 10-000901 Specification PARAMETER Attenuation Values Attenuation Steps Power Handling Attenuation Accuracy Frequency Range Impedance Connectors VSWR Weigh Temperature operation range storage SPECIFICATION 0-15dB 1, 2, 4 and 8dB 0.25 Watt ± 1.0 dB DC to 1GHz 50Ω SMA 1.3:1 0.2kg -20°C to +60°C -40°C to +70°C 16.4.2.6. Low Noise Amplifier (11-006702) The Gallium-Arsenide low noise amplifiers used in 700MHz Line Amplifier (55-165704) are double stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into the main alarm system. 11-006702 Specification PARAMETER Frequency range: Bandwidth: Gain: 1dB Compression point: OIP3: Input/Output return loss: Noise figure: Power consumption: Supply voltage: Connectors: operational: Temperature range: storage: Size: Weight: SPECIFICATION 800 – 1000MHz <200MHz 29dB (typical) 20dBm 33dBm >18dB 1.3dB (typical) 180mA @ 24V DC 10-24V DC SMA female -10°C to +60°C -20°C to +70°C 90 x 55 x 30.2mm 290gms (approximately) STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 276 of 500 Low Noise Amplifier (11-006702) ‘D’ Connector Pin-out details Connector pin Signal +Ve input (10-24V) GND Alarm RelayO/P bad Alarm Relay common Alarm Relay good No connection TTL voltage set TTL alarm/0V (good) O/C good/0V bad 9-Way Pin-Out Graphical Representation 16.4.2.7. Power Amplifier (12-018002) This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It has built in a Current Fault Alarm Function. Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function. Technical Specification PARAMETER Frequency range: Small signal gain: Gain flatness: I/O Return loss: 1dB compression point: OIP3: Supply voltage: Supply current: Temperature operational: range storage: Weight: SPECIFICATION 800-960MHz 30dB ±1.2dB >18dB 42.8dBm 56dBm 24V DC 5.0Amps (Typical) -10°C to +60°C -20°C to +70°C <2kg (no heatsink) STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 277 of 500 Power Amplifier (12-018002) 7-Way Connector Pin-outs Connector Pin A1 (large pin) A2 (large pin) Signal +24V DC GND Alarm relay common TTL alarm/0V good Alarm relay contact (bad) Alarm relay contact (good) O/C good/0V bad (TTL) 16.4.2.8. Low Power Amplifier (12-021901) The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life. Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function. There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced. Low Power Amplifier (12-021901) Specification PARAMETER Frequency range Bandwidth Maximum RF output Gain 1dB compression point 3rd order intercept point Noise Figure VSWR Connectors Supply Temperature operational range storage Weight Size SPECIFICATION 800-960MHz* 20MHz * >1.0 Watt 15dB +30.5dBm +43dBm <6dB better than 1.5:1 SMA female 500mA @ 10-15V DC -10°C to +60°C -20°C to +70°C 0.5 kg 167x52x25mm * Tuned to Customer’s specification STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 278 of 500 Low Power Amplifier (12-021901) 7-Way Connector Pin-outs Connector Pin A1 (large pin) A2 (large pin) Signal +24V DC GND Alarm relay common TTL alarm/0V good Alarm relay contact (bad) Alarm relay contact (good) O/C good/0V bad (TTL) 16.4.2.9. Automatic Gain Control 17-001109 17-001117 17-001201 AGC Detector Assembly (Logarithmic) AGC Detector Assembly AGC Attenuator Assembly The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 700MHz Line Amplifier (55-165704); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink 700MHz Line Amplifier (55-165704) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17-001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification. 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board. Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided. The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur. STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 279 of 500 The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal. This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit. For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value. AGC Specification (both types) PARAMETER Frequency range Attenuation range Attenuation steps VSWR RF Connectors Power attenuator handling detector/amp Temperature operation range storage attenuator pcb Size detector/amp pcb attenuator Weight detector/amp SPECIFICATION up to 1000MHz 3 to 30dB continuously variable better than 1.2:1 SMA female 1W >30W (or as required) -10°C to +60°C -20°C to +70°C 50 x 42 x 21mm 54 x 42 x 21mm 90grams 100grams 16.4.2.10. 12V (Single) Relay Board (80-008901) The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector. The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It’s common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system. 80-008901 Specification PARAMETER SPECIFICATION Operating voltage 8 to 30V (floating earth) Alarm threshold Vcc - 1.20 volt +15% Alarm output relay contacts: Max. switch current 1.0Amp Max. switch volts 120Vdc/60VA Max. switch power 24W/60VA Min. switch load 10.0µA/10.0mV Relay isolation 1.5kV Mechanical life >2x107 operations Relay approval BT type 56 Connector details Screw terminals Temperature operational -10°C to +60°C range storage -20°C to +70°C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 280 of 500 16.4.2.11. Dual Diode Assembly (94-100004) The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs . They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries. 16.4.2.12. DC/DC Converter 96-200047 96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts) output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in this case 12V. In the event of failure this unit should not be repaired, only replaced. 96-200047 Specification PARAMETER DC Input Voltage range DC Output voltage Max. current load Temperature Operation range Storage Working Humidity SPECIFICATION 19 to 36V 12V ± 1% 12.5Amps -10°C to +60°C -20°C to +85°C 20 to 90% RHNC 16.3.2.13. 12V Switch-Mode PSU (96-300052) No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 12.2V. The adjustment potentiometer will be found close to the DC output terminals. All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator. 96-300052 Specification AC Input Supply 110 or 220V nominal Voltage 85 - 265V AC (absolute limits) Frequency 47 to 63Hz DC Output Supply 12V DC (nominal) Voltage 10.5-13.8V (absolute limits) Current 12.5A STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 281 of 500 16.4.3. Convention Place Station Splitter (55-165709) 2U rack mount tray Convention Place Station Splitter (55-165709) major components Section 16.4.3.3. 16.4.3.4. Component Part 05-002602 07-015102 Component Part Description 900MHz Splitter/Combiner Wideband Asymmetric Coupler Qty. Per Assembly STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 282 of 500 16.4.3.1. Convention Place Station Splitter (55-165709) outline drawing Drawing number 55-1657109 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 283 of 500 16.4.3.2. Convention Place Station Splitter (55-165709) system diagram Drawing number 55-165789 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 284 of 500 16.4.3.3. 900MHz Splitter/Combiner (05-002602) The Splitter/Combiner used is a device for accurately matching two or more RF signals to single or multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the VSWR and insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate 50Ω load. Being passive devices, the splitters should have an extremely long operational life and require no maintenance. Should a unit be suspect, it is usually most time efficient to replace the whole module rather than attempt repair or re-tuning. 05-002602 Specification PARAMETER Frequency Narrowband: range: Broadband: Narrowband: Bandwidth: Broadband: Input ports: Output ports: Narrowband: Insertion loss: Broadband: Return loss input & output: Impedance: Narrowband: Isolation: Broadband: MTFB: Splitting: Power rating: Combining: Connectors: Weight: Size: SPECIFICATION 815 – 960MHz 800 – 1200MHz 145MHz 400MHz 3.3dB 3.5dB 1.3:1 50Ω >20dB >18dB >180,000 hours 20Watts 0.5Watt SMA female 200g (approximately) 54 x 44 x 21mm 16.4.3.4. Wideband Asymmetric Coupler (07-015102) The purpose of Wideband Asymmetric Coupler (07-015102) is to tap off a known portion (in this case 10dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only. 07-015102 Specification PARAMETER Frequency Range Coupling Value Main Line Insertion Loss VSWR Directivity Power Rating RF Connectors Temperature operation range storage SPECIFICATION 800 - 2500 MHz 10 dB ± 1.0 dB <1.6 dB 1.4:1 >18 dB 200 Watts ‘N’ female -20°C to +60°C -40°C to +70°C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 285 of 500 17. INTERNATIONAL (NO NPSPAC) LINE AMPLIFIER (80-330557) Rack C09-CR-06 International (no NPSPAC) Line Amp. (80-330557) list of major components Section 17.4.1. 17.4.2. 17.4.3. Component Part 55-165705 55-165706 55-165710 Component Part Description 800MHz Line Amplifier (NO NSP) 700MHz Line Amplifier (NO NSP) International Station Splitter Qty. Per Assembly STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 286 of 500 17.1. International (no NPSPAC) Line Amp. (80-330557) Rack elevation Drawing number 80-330557 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 287 of 500 17.2. International (no NPSPAC) Line Amp. (80-330557) System diagram Drawing number 80-330587 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 288 of 500 17.3. International (no NPSPAC) Line Amp. (80-330557) Alarm wiring diagram Drawing number 80-330527 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 289 of 500 17.4. International (no NPSPAC) Line Amp. (80-330557) major components 17.4.1. 800MHz Line Amplifier (no NPSPAC) (55-165705) 800MHz Line Amplifier (no NPSPAC) (55-165705) List of Major Components section 17.4.1.3. 17.4.1.4. 17.4.1.5. 17.4.1.6. 17.4.1.7. 17.4.1.8. 17.4.1.9. 17.4.1.10. 17.4.1.11. 17.4.1.12. 17.4.1.13. 17.4.1.14. Component Part 02-007201 02-007206 07-015105 10-000901 11-006702 12-018002 12-021901 17-001109* 17-001117* 17-001201* 80-008901 94-100004 96-200047 96-300052 Component Part Description Bandpass Filter Bandpass Filter Wideband Asymmetric Coupler Switched Attenuator 0.25W, 0 - 15dB Low Noise Amplifier Power Amplifier Low Power Amplifier AGC Detector Assembly (Logarithmic) AGC Detector Assembly AGC Attenuator Assembly 12V (Single) Relay Board Dual Diode Assembly DC/DC Converter 12V Switch-Mode PSU (96-300052) Qty. Per Assembly *The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 800MHz Line Amplifier (no NPSPAC) (55-165705); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 290 of 500 17.4.1.1. 800MHz Line Amplifier (no NPSPAC) (55-165705) Outline Drawing Drawing number 55-1657105 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 291 of 500 14.4.1.2. 800MHz Line Amplifier (no NPSPAC) (55-165705) System Diagram Drawing number 55-165785 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 292 of 500 17.4.1.3. Bandpass Filter (02-012701) The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of combline design and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports. Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning. No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously. 02-012701 Specification PARAMETER SPECIFICATION Frequency range 1805 – 1880 MHz * Insertion loss <0.6 dB >60 dB over 1710 – 1785 MHz Rejection >40 dB over 1905 – 2170 MHz Return loss > 20 dB Power handling 200W (CW) Temperature operation -20°C to +60°C range storage -40°C to +70°C Size 227 x 95 x 60mm (case only) * tuned to customer’s specification 17.4.1.4. Bandpass Filter (02-007206) The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports. Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning. No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously. 02-007206 Specification PARAMETER Response type Frequency range Bandwidth Number of sections Insertion loss VSWR Connectors Power handling Temperature operation range storage Weight SPECIFICATION Chebyshev 800 - 950MHz * 25MHz * 1.2 dB better than 1.2:1 SMA female 100W max -20°C to +60°C -40°C to +70°C 3 kg (typical) *tuned to Customer's specification STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 293 of 500 17.4.1.5. Wideband Asymmetric Coupler (07-015105) The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case 30dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only. 07-015105 Specification PARAMETER Construction Frequency Through loss Coupling level Isolation Weight Connectors Temperature operation range storage SPECIFICATION Inductive air gap 800-2500MHz 0.4dB (typical) -30dB ±0.5dB N/A <1.0kg SMA, female -20°C to +60°C -40°C to +70°C 17.4.1.6. Switched Attenuator 0.25W, 0 - 15dB (10-000901) In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain. 10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output. 10-000901 Specification PARAMETER Attenuation Values Attenuation Steps Power Handling Attenuation Accuracy Frequency Range Impedance Connectors VSWR Weigh Temperature operation range storage SPECIFICATION 0-15dB 1, 2, 4 and 8dB 0.25 Watt ± 1.0 dB DC to 1GHz 50Ω SMA 1.3:1 0.2kg -20°C to +60°C -40°C to +70°C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 294 of 500 17.4.1.7. Low Noise Amplifier (11-006702) The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into the main alarm system. 11-006702 Specification PARAMETER Frequency range Bandwidth Gain 1dB Compression point OIP3 Input/Output return loss Noise figure Power consumption Supply voltage Connectors operational Temperature range: storage Size Weight SPECIFICATION 800 – 1000MHz <200MHz 29dB (typical) 20dBm 33dBm >18dB 1.3dB (typical) 180mA @ 24V DC 10-24V DC SMA female -10°C to +60°C -20°C to +70°C 90 x 55 x 30.2mm 290gms (approximately) Low Noise Amplifier (11-006702) ‘D’ Connector Pin-out details Connector pin Signal +Ve input (10-24V) GND Alarm RelayO/P bad Alarm Relay common Alarm Relay good No connection TTL voltage set TTL alarm/0V (good) O/C good/0V bad 9-Way Pin-Out Graphical Representation STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 295 of 500 17.4.1.8. Power Amplifier (12-018002) This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It has built in a Current Fault Alarm Function. Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function. 12-018002 Specification PARAMETER Frequency range: Small signal gain: Gain flatness: I/O Return loss: 1dB compression point: OIP3: Supply voltage: Supply current: Temperature operational: range storage: Weight: SPECIFICATION 800-960MHz 30dB ±1.2dB >18dB 42.8dBm 56dBm 24V DC 5.0Amps (Typical) -10°C to +60°C -20°C to +70°C <2kg (no heatsink) Power Amplifier (12-018002) 7-Way Connector Pin-outs Connector Pin A1 (large pin) A2 (large pin) Signal +24V DC GND Alarm relay common TTL alarm/0V good Alarm relay contact (bad) Alarm relay contact (good) O/C good/0V bad (TTL) STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 296 of 500 17.4.1.9. Low Power Amplifier (12-021901) The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life. Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function. There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced. Low Power Amplifier (12-021901) Specification PARAMETER Frequency range Bandwidth Maximum RF output Gain 1dB compression point 3rd order intercept point Noise Figure VSWR Connectors Supply Temperature operational range storage Weight Size SPECIFICATION 800-960MHz* 20MHz * >1.0 Watt 15dB +30.5dBm +43dBm <6dB better than 1.5:1 SMA female 500mA @ 10-15V DC -10°C to +60°C -20°C to +70°C 0.5 kg 167x52x25mm * Tuned to Customer’s specification Low Power Amplifier (12-021901) 7-Way Connector Pin-outs Connector Pin A1 (large pin) A2 (large pin) Signal +24V DC GND Alarm relay common TTL alarm/0V good Alarm relay contact (bad) Alarm relay contact (good) O/C good/0V bad (TTL) STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 297 of 500 7.4.1.10. Automatic Gain Control 17-001109 17-001117 17-001201 AGC Detector Assembly (Logarithmic) AGC Detector Assembly AGC Attenuator Assembly The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 800MHz Line Amplifier (no NPSPAC) (55-165705); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink 800MHz Line Amplifier (no NPSPAC) (55-165705) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification. 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board. Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided. The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur. The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal. This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit. For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value. STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 298 of 500 AGC Specification (both types) PARAMETER Frequency range Attenuation range Attenuation steps VSWR RF Connectors Power attenuator handling detector/amp Temperature operation range storage attenuator pcb Size detector/amp pcb attenuator Weight detector/amp SPECIFICATION up to 1000MHz 3 to 30dB continuously variable better than 1.2:1 SMA female 1W >30W (or as required) -10°C to +60°C -20°C to +70°C 50 x 42 x 21mm 54 x 42 x 21mm 90grams 100grams 17.4.1.11. 12V (Single) Relay Board (80-008901) The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector. The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It’s common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system. 80-008901 Specification PARAMETER SPECIFICATION Operating voltage 8 to 30V (floating earth) Alarm threshold Vcc - 1.20 volt +15% Alarm output relay contacts: Max. switch current 1.0Amp Max. switch volts 120Vdc/60VA Max. switch power 24W/60VA Min. switch load 10.0µA/10.0mV Relay isolation 1.5kV Mechanical life >2x107 operations Relay approval BT type 56 Connector details Screw terminals Temperature operational -10°C to +60°C range storage -20°C to +70°C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 299 of 500 17.4.1.12. Dual Diode Assembly (94-100004) The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs . They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries. 17.4.1.13. DC/DC Converter 96-200047 96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts) output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in this case 12V. In the event of failure this unit should not be repaired, only replaced. 96-200047 Specification PARAMETER DC Input Voltage range DC Output voltage Max. current load Temperature Operation range Storage Working Humidity SPECIFICATION 19 to 36V 12V ± 1% 12.5Amps -10°C to +60°C -20°C to +85°C 20 to 90% RHNC 17.4.1.14. 12V Switch-Mode PSU (96-300052) No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 12.2V. The adjustment potentiometer will be found close to the DC output terminals. All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator. 96-300052 Specification AC Input Supply 110 or 220V nominal Voltage 85 - 265V AC (absolute limits) Frequency 47 to 63Hz DC Output Supply 12V DC (nominal) Voltage 10.5-13.8V (absolute limits) Current 12.5A STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 300 of 500 17.4.2. 700MHz Line Amplifier (no NPSPAC) (55-165706) 700MHz Line Amplifier (no NPSPAC) (55-165706) List of Major Components Section 17.4.2.3. 17.4.2.4. 17.4.2.5. 17.4.2.6. 17.4.2.7. 17.4.2.8. 17.4.1.9. 17.4.2.10. 17.4.2.11. 17.4.2.12. 17.4.2.13. 17.4.2.14. Component Part 02-007201 02-007206 07-015105 10-000901 11-006702 12-018002 12-021901 17-001109 17-001117 17-001201 80-008901 94-100004 96-200047 96-300052 Component Part Description Bandpass Filter Bandpass Filter Wideband Asymmetric Coupler Switched Attenuator 0.25W, 0 - 15dB Low Noise Amplifier Power Amplifier Low Power Amplifier AGC Detector Assembly (Logarithmic) AGC Detector Assembly AGC Attenuator Assembly 12V (Single) Relay Board Dual Diode Assembly DC/DC Converter 12V Switch-Mode PSU (96-300052) Qty. Per Assembly *The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 700MHz Line Amplifier (no NPSPAC) (55-165705); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 301 of 500 17.4.2.1. 700MHz Line Amplifier (no NPSPAC) (55-165706) Outline Drawing Drawing number 55-1657106 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 302 of 500 17.4.2.2. 700MHz Line Amplifier (no NPSPAC) (55-165706) System Diagram Drawing number 55-165786 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 303 of 500 17.4.2.3. Bandpass Filter (02-012701) The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of combline design and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports. Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning. No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously. 02-012701 Specification PARAMETER SPECIFICATION Frequency range 1805 – 1880 MHz * Insertion loss <0.6 dB >60 dB over 1710 – 1785 MHz Rejection >40 dB over 1905 – 2170 MHz Return loss > 20 dB Power handling 200W (CW) Temperature operation -20°C to +60°C range storage -40°C to +70°C Size 227 x 95 x 60mm (case only) * tuned to customer’s specification 17.4.2.4. Bandpass Filter (02-007206) The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports. Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning. No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously. 02-007206 Specification PARAMETER Response type Frequency range Bandwidth Number of sections Insertion loss VSWR Connectors Power handling Temperature operation range storage Weight SPECIFICATION Chebyshev 800 - 950MHz * 25MHz * 1.2 dB better than 1.2:1 SMA female 100W max -20°C to +60°C -40°C to +70°C 3 kg (typical) *tuned to Customer's specification STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 304 of 500 17.4.2.5. Wideband Asymmetric Coupler (07-015105) The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case 30dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only. 07-015105 Specification PARAMETER Construction Frequency Through loss Coupling level Isolation Weight Connectors Temperature operation range storage SPECIFICATION Inductive air gap 800-2500MHz 0.4dB (typical) -30dB ±0.5dB N/A <1.0kg SMA, female -20°C to +60°C -40°C to +70°C 17.4.2.6. Switched Attenuator 0.25W, 0 - 15dB (10-000901) In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain. 10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output. 10-000901 Specification PARAMETER Attenuation Values Attenuation Steps Power Handling Attenuation Accuracy Frequency Range Impedance Connectors VSWR Weigh Temperature operation range storage SPECIFICATION 0-15dB 1, 2, 4 and 8dB 0.25 Watt ± 1.0 dB DC to 1GHz 50Ω SMA 1.3:1 0.2kg -20°C to +60°C -40°C to +70°C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 305 of 500 17.4.2.7. Low Noise Amplifier (11-006702) The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into the main alarm system. 11-006702 Specification PARAMETER Frequency range Bandwidth Gain 1dB Compression point OIP3 Input/Output return loss Noise figure Power consumption Supply voltage Connectors operational Temperature range: storage Size Weight SPECIFICATION 800 – 1000MHz <200MHz 29dB (typical) 20dBm 33dBm >18dB 1.3dB (typical) 180mA @ 24V DC 10-24V DC SMA female -10°C to +60°C -20°C to +70°C 90 x 55 x 30.2mm 290gms (approximately) Low Noise Amplifier (11-006702) ‘D’ Connector Pin-out details Connector pin Signal +Ve input (10-24V) GND Alarm RelayO/P bad Alarm Relay common Alarm Relay good No connection TTL voltage set TTL alarm/0V (good) O/C good/0V bad 9-Way Pin-Out Graphical Representation STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 306 of 500 17.4.2.8. Power Amplifier (12-018002) This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It has built in a Current Fault Alarm Function. Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function. 12-018002 Specification PARAMETER Frequency range: Small signal gain: Gain flatness: I/O Return loss: 1dB compression point: OIP3: Supply voltage: Supply current: Temperature operational: range storage: Weight: SPECIFICATION 800-960MHz 30dB ±1.2dB >18dB 42.8dBm 56dBm 24V DC 5.0Amps (Typical) -10°C to +60°C -20°C to +70°C <2kg (no heatsink) Power Amplifier (12-018002) 7-Way Connector Pin-outs Connector Pin A1 (large pin) A2 (large pin) Signal +24V DC GND Alarm relay common TTL alarm/0V good Alarm relay contact (bad) Alarm relay contact (good) O/C good/0V bad (TTL) STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 307 of 500 17.4.2.9. Low Power Amplifier (12-021901) The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life. Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function. There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced. Low Power Amplifier (12-021901) Specification PARAMETER Frequency range Bandwidth Maximum RF output Gain 1dB compression point 3rd order intercept point Noise Figure VSWR Connectors Supply Temperature operational range storage Weight Size SPECIFICATION 800-960MHz* 20MHz * >1.0 Watt 15dB +30.5dBm +43dBm <6dB better than 1.5:1 SMA female 500mA @ 10-15V DC -10°C to +60°C -20°C to +70°C 0.5 kg 167x52x25mm * Tuned to Customer’s specification Low Power Amplifier (12-021901) 7-Way Connector Pin-outs Connector Pin A1 (large pin) A2 (large pin) Signal +24V DC GND Alarm relay common TTL alarm/0V good Alarm relay contact (bad) Alarm relay contact (good) O/C good/0V bad (TTL) STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 308 of 500 7.4.2.10. Automatic Gain Control 17-001109 17-001117 17-001201 AGC Detector Assembly (Logarithmic) AGC Detector Assembly AGC Attenuator Assembly The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 700MHz Line Amplifier (no NPSPAC) (55-165705); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink 700MHz Line Amplifier (no NPSPAC) (55-165705) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification. 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board. Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided. The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur. The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal. This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit. For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value. STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 309 of 500 AGC Specification (both types) PARAMETER Frequency range Attenuation range Attenuation steps VSWR RF Connectors Power attenuator handling detector/amp Temperature operation range storage attenuator pcb Size detector/amp pcb attenuator Weight detector/amp SPECIFICATION up to 1000MHz 3 to 30dB continuously variable better than 1.2:1 SMA female 1W >30W (or as required) -10°C to +60°C -20°C to +70°C 50 x 42 x 21mm 54 x 42 x 21mm 90grams 100grams 17.4.2.11. 12V (Single) Relay Board (80-008901) The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector. The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It’s common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system. 80-008901 Specification PARAMETER SPECIFICATION Operating voltage 8 to 30V (floating earth) Alarm threshold Vcc - 1.20 volt +15% Alarm output relay contacts Max. switch current 1.0Amp Max. switch volts 120Vdc/60VA Max. switch power 24W/60VA Min. switch load 10.0µA/10.0mV Relay isolation 1.5kV Mechanical life >2x107 operations Relay approval BT type 56 Connector details Screw terminals Temperature operational -10°C to +60°C range storage -20°C to +70°C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 310 of 500 17.4.2.12. Dual Diode Assembly (94-100004) The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs . They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries. 17.4.2.13. DC/DC Converter 96-200047 96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts) output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in this case 12V. In the event of failure this unit should not be repaired, only replaced. 96-200047 Specification PARAMETER DC Input Voltage range DC Output voltage Max. current load Temperature Operation range Storage Working Humidity SPECIFICATION 19 to 36V 12V ± 1% 12.5Amps -10°C to +60°C -20°C to +85°C 20 to 90% RHNC 17.4.2.14. 12V Switch-Mode PSU (96-300052) No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 12.2V. The adjustment potentiometer will be found close to the DC output terminals. All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator. 96-300052 Specification AC Input Supply 110 or 220V nominal Voltage 85 - 265V AC (absolute limits) Frequency 47 to 63Hz DC Output Supply 12V DC (nominal) Voltage 10.5-13.8V (absolute limits) Current 12.5A STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 311 of 500 17.4.3. International Station Splitter (55-165710) 2U Rack mount tray International Station Splitter (55-165710) List of major Components Section 17.4.3.3. 17.4.3.4. 17.4.3.5. Component Part 05-002602 05-009909 07-015102 Component Part Description 900MHZ SPLITTER/COMBINER, 20W 4 WAY POWER SPLITTER 70/10/10/10 Wideband Asymmetric Coupler Qty. Per Assembly STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 312 of 500 17.4.3.1. International Station Splitter (55-165710) Outline drawing Drawing number 55-1657110 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 313 of 500 17.4.3.2. International Station Splitter (55-165710) System Diagram Drawing number 55-165790 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 314 of 500 17.4.3.3. 900MHz Splitter/Combiner (05-002602) The Splitter/Combiner used is a device for accurately matching two or more RF signals to single or multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the VSWR and insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate 50Ω load. Being passive devices, the splitters should have an extremely long operational life and require no maintenance. Should a unit be suspect, it is usually most time efficient to replace the whole module rather than attempt repair or re-tuning. 05-002602 Specification PARAMETER Frequency Narrowband range Broadband Narrowband Bandwidth Broadband Input ports Output ports Narrowband Insertion loss Broadband Return loss input & output Impedance Narrowband Isolation Broadband MTFB Splitting Power rating Combining Connectors Weight Size SPECIFICATION 815 – 960MHz 800 – 1200MHz 145MHz 400MHz 3.3dB 3.5dB 1.3:1 50Ω >20dB >18dB >180,000 hours 20Watts 0.5Watt SMA female 200g (approximately) 54 x 44 x 21mm 17.4.3.4. 05-009909 – BSB to provide spec ***///*** STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 315 of 500 17.4.3.5. Wideband Asymmetric Coupler (07-015102) The purpose of Wideband Asymmetric Coupler (07-015102) is to tap off a known portion (in this case 10dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only. 07-015102 Specification PARAMETER Frequency Range Coupling Value Main Line Insertion Loss VSWR Directivity Power Rating RF Connectors Temperature operation range storage SPECIFICATION 800 - 2500 MHz 10 dB ± 1.0 dB <1.6 dB 1.4:1 >18 dB 200 Watts ‘N’ female -20°C to +60°C -40°C to +70°C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 316 of 500 18. UNIVERSITY STATION CROSS PASSAGE A (80-330590-1) Wallmount case number C06-CR-01 University Station Cross Passage A (80-330590-1) Section 18.3.1. 18.3.2. 18.3.3. 18.3.4. Component Part 07-015102 12-018002 55-165701 55-165702 Component Part Description Wideband Asymmetric Coupler Power Amplifier 800MHz Line Amplifier 700MHz Line Amplifier Qty Per Assembly STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 317 of 500 18.1. University Station Cross Passage A (80-330590-1) System Diagram Drawing number 80-330592-1 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 318 of 500 18.2. University Station Cross Passage A (80-330590-1) Alarm Wiring Diagram Drawing Number 80-330530-1 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 319 of 500 18.3. University Station Cross Passage A (80-330590-1) Major Sub Components 18.3.1. Wideband Asymmetric Coupler (07-015102) The purpose of Wideband Asymmetric Coupler (07-015102) is to tap off a known portion (in this case 10dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only. 07-015102 Specification PARAMETER Frequency Range Coupling Value Main Line Insertion Loss VSWR Directivity Power Rating RF Connectors Temperature operation range storage 18.3.2. SPECIFICATION 800 - 2500 MHz 10 dB ± 1.0 dB <1.6 dB 1.4:1 >18 dB 200 Watts ‘N’ female -20°C to +60°C -40°C to +70°C Power Amplifier (12-018002) This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It has built in a Current Fault Alarm Function. Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function. 12-018002 Specification PARAMETER Frequency range Small signal gain Gain flatness I/O Return loss 1dB compression point OIP3 Supply voltage Supply current Temperature operational range storage Weight SPECIFICATION 800-960MHz 30dB ±1.2dB >18dB 42.8dBm 56dBm 24V DC 5.0Amps (Typical) -10°C to +60°C -20°C to +70°C <2kg (no heatsink) STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 320 of 500 Power Amplifier (12-018002) 7-Way Connector Pin-outs Connector Pin A1 (large pin) A2 (large pin) Signal +24V DC GND Alarm relay common TTL alarm/0V good Alarm relay contact (bad) Alarm relay contact (good) O/C good/0V bad (TTL) STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 321 of 500 18.3.3. 800MHz Line Amplifier (55-165701) 5U rack mount case 800MHz Line Amplifier (55-165701) List of Major Components Section 18.3.3.3. 18.3.3.4. 18.3.3.5. 18.3.3.6. 18.3.3.7. 18.3.3.8. 18.3.3.9. 18.3.3.10. 18.3.3.11. 18.3.3.12. Component Part 02-007206 07-015105 10-000901 11-006702 12-021901 17-001109* 17-001117* 17-001201* 80-008901 94-100004 96-200047 96-300052 Component Part Description Bandpass Filter Wideband Asymmetric Coupler Switched Attenuator 0.25W, 0 - 15dB Low Noise Amplifier Low Power Amplifier AGC Detector Assembly (Logarithmic) AGC Detector Assembly AGC Attenuator Assembly 12V (Single) Relay Board Dual Diode Assembly DC/DC Converter 12V Switch-Mode PSU Qty Per Assembly *The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 800MHz Line Amplifier (55-165701); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the down link STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 322 of 500 18.3.3.1. 800MHz Line Amplifier (55-165701) Outline Drawing Drawing number 55-1657101 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 323 of 500 18.3.3.2. 800MHz Line Amplifier (55-165701) System Diagram Drawing number 55-165781 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 324 of 500 18.3.3.3. Bandpass Filter (02-007206) The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports. Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning. No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously. 02-007206 Specification PARAMETER Response type Frequency range Bandwidth Number of sections Insertion loss VSWR Connectors Power handling Temperature operation range storage Weight SPECIFICATION Chebyshev 800 - 950MHz * 25MHz * 1.2 dB better than 1.2:1 SMA female 100W max -20°C to +60°C -40°C to +70°C 3 kg (typical) *tuned to Customer's specification 18.3.3.4. Wideband Asymmetric Coupler (07-015105) The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case 30dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only. 07-015105 Specification PARAMETER Construction Frequency Through loss Coupling level Isolation Weight Connectors Temperature operation range storage SPECIFICATION Inductive air gap 800-2500MHz 0.4dB (typical) -30dB ±0.5dB N/A <1.0kg SMA, female -20°C to +60°C -40°C to +70°C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 325 of 500 18.3.3.5. Switched Attenuator 0.25W, 0 - 15dB (10-000901) In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain. 10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output. 10-000901 Specification PARAMETER Attenuation Values Attenuation Steps Power Handling Attenuation Accuracy Frequency Range Impedance Connectors VSWR Weigh Temperature operation range storage SPECIFICATION 0-15dB 1, 2, 4 and 8dB 0.25 Watt ± 1.0 dB DC to 1GHz 50Ω SMA 1.3:1 0.2kg -20°C to +60°C -40°C to +70°C 18.3.3.6. Low Noise Amplifier (11-006702) The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into the main alarm system. 11-006702 Specification PARAMETER Frequency range Bandwidth Gain 1dB Compression point OIP3 Input/Output return loss Noise figure Power consumption Supply voltage Connectors operational Temperature range: storage Size Weight SPECIFICATION 800 – 1000MHz <200MHz 29dB (typical) 20dBm 33dBm >18dB 1.3dB (typical) 180mA @ 24V DC 10-24V DC SMA female -10°C to +60°C -20°C to +70°C 90 x 55 x 30.2mm 290gms (approximately) STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 326 of 500 Low Noise Amplifier (11-006702) ‘D’ Connector Pin-out details Connector pin Signal +Ve input (10-24V) GND Alarm RelayO/P bad Alarm Relay common Alarm Relay good No connection TTL voltage set TTL alarm/0V (good) O/C good/0V bad 9-Way Pin-Out Graphical Representation 18.3.3.7. Low Power Amplifier (12-021901) The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life. Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function. There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced. Low Power Amplifier (12-021901) Specification PARAMETER Frequency range Bandwidth Maximum RF output Gain 1dB compression point 3rd order intercept point Noise Figure VSWR Connectors Supply Temperature operational range storage Weight Size SPECIFICATION 800-960MHz* 20MHz * >1.0 Watt 15dB +30.5dBm +43dBm <6dB better than 1.5:1 SMA female 500mA @ 10-15V DC -10°C to +60°C -20°C to +70°C 0.5 kg 167x52x25mm * Tuned to Customer’s specification STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 327 of 500 Low Power Amplifier (12-021901) 7-Way Connector Pin-outs Connector Pin A1 (large pin) A2 (large pin) 18.3.3.8. 17-001109 17-001117 17-001201 Signal +24V DC GND Alarm relay common TTL alarm/0V good Alarm relay contact (bad) Alarm relay contact (good) O/C good/0V bad (TTL) Automatic Gain Control AGC Detector Assembly (Logarithmic) AGC Detector Assembly AGC Attenuator Assembly The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 800MHz Line Amplifier (55-165701); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink 800MHz Line Amplifier (55-165701) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17-001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification. 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board. STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 328 of 500 Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided. The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur. The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal. This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit. For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value. AGC Specification (both types) PARAMETER Frequency range Attenuation range Attenuation steps VSWR RF Connectors Power attenuator handling detector/amp Temperature operation range storage attenuator pcb Size detector/amp pcb attenuator Weight detector/amp SPECIFICATION up to 1000MHz 3 to 30dB continuously variable better than 1.2:1 SMA female 1W >30W (or as required) -10°C to +60°C -20°C to +70°C 50 x 42 x 21mm 54 x 42 x 21mm 90grams 100grams 18.3.3.9. 12V (Single) Relay Board (80-008901) The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector. The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It’s common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system. STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 329 of 500 80-008901 Specification PARAMETER SPECIFICATION Operating voltage 8 to 30V (floating earth) Alarm threshold Vcc - 1.20 volt +15% Alarm output relay contacts Max. switch current 1.0Amp Max. switch volts 120Vdc/60VA Max. switch power 24W/60VA Min. switch load 10.0µA/10.0mV Relay isolation 1.5kV Mechanical life >2x107 operations Relay approval BT type 56 Connector details Screw terminals Temperature operational -10°C to +60°C range storage -20°C to +70°C 18.3.3.10. Dual Diode Assembly (94-100004) The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries. 18.3.3.11. DC/DC Converter 96-200047 96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts) output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in this case 12V. In the event of failure this unit should not be repaired, only replaced. 96-200047 Specification PARAMETER DC Input Voltage range DC Output voltage Max. current load Temperature Operation range Storage Working Humidity SPECIFICATION 19 to 36V 12V ± 1% 12.5Amps -10°C to +60°C -20°C to +85°C 20 to 90% RHNC STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 330 of 500 18.3.3.12. 12V Switch-Mode PSU (96-300052) No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 12.2V. The adjustment potentiometer will be found close to the DC output terminals. All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator. 96-300052 Specification AC Input Supply 110 or 220V nominal 85 - 265V AC (absolute limits) Frequency 47 to 63Hz DC Output Supply 12V DC (nominal) Voltage 10.5-13.8V (absolute limits) Current 12.5A Voltage STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 331 of 500 18.3.4. 700MHz Line Amplifier (55-165702) 5U rack mount case 700MHz Line Amplifier (55-165702) List of Major Components Section 18.3.4.3. 18.3.4.4. 18.3.4.5. 18.3.4.6. 18.3.4.7. 18.3.4.8. 18.3.4.9. 18.3.4.0. 18.3.4.11. 18.3.4.12. Component Part 02-007206 07-015105 10-000901 11-006702 12-021901 17-001109* 17-001117* 17-001201* 80-008901 94-100004 96-200047 96-300052 Component Part Description Bandpass Filter Wideband Asymmetric Coupler Switched Attenuator 0.25W, 0 - 15dB Low Noise Amplifier Low Power Amplifier AGC Detector Assembly (Logarithmic) AGC Detector Assembly AGC Attenuator Assembly 12V (Single) Relay Board Dual Diode Assembly DC/DC Converter 12V Switch-Mode PSU Qty Per Assembly *The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 700MHz Line Amplifier (55-165702); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the down link STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 332 of 500 18.3.4.1. 700MHz Line Amplifier (55-165702) Outline Drawing Drawing Number 55-1657102 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 333 of 500 18.3.4.2. 700MHz Line Amplifier (55-165702) System Diagram Drawing Number 55-165782 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 334 of 500 18.3.4.3. Bandpass Filter (02-007206) The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports. Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning. No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously. 02-007206 Specification PARAMETER Response type Frequency range Bandwidth Number of sections Insertion loss VSWR Connectors Power handling Temperature operation range storage Weight SPECIFICATION Chebyshev 800 - 950MHz * 25MHz * 1.2 dB better than 1.2:1 SMA female 100W max -20°C to +60°C -40°C to +70°C 3 kg (typical) *tuned to Customer's specification 18.3.4.4. Wideband Asymmetric Coupler (07-015105) The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case 30dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only. 07-015105 Specification PARAMETER Construction Frequency Through loss Coupling level Isolation Weight Connectors Temperature operation range storage SPECIFICATION Inductive air gap 800-2500MHz 0.4dB (typical) -30dB ±0.5dB N/A <1.0kg SMA, female -20°C to +60°C -40°C to +70°C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 335 of 500 18.3.4.5. Switched Attenuator 0.25W, 0 - 15dB (10-000901) In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain. 10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output. 10-000901 Specification PARAMETER Attenuation Values Attenuation Steps Power Handling Attenuation Accuracy Frequency Range Impedance Connectors VSWR Weigh Temperature operation range storage SPECIFICATION 0-15dB 1, 2, 4 and 8dB 0.25 Watt ± 1.0 dB DC to 1GHz 50Ω SMA 1.3:1 0.2kg -20°C to +60°C -40°C to +70°C 18.3.4.6. Low Noise Amplifier (11-006702) The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into the main alarm system. 11-006702 Specification PARAMETER Frequency range Bandwidth Gain 1dB Compression point OIP3 Input/Output return loss Noise figure Power consumption Supply voltage Connectors operational Temperature range: storage Size Weight SPECIFICATION 800 – 1000MHz <200MHz 29dB (typical) 20dBm 33dBm >18dB 1.3dB (typical) 180mA @ 24V DC 10-24V DC SMA female -10°C to +60°C -20°C to +70°C 90 x 55 x 30.2mm 290gms (approximately) STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 336 of 500 Low Noise Amplifier (11-006702) ‘D’ Connector Pin-out details Connector pin Signal +Ve input (10-24V) GND Alarm RelayO/P bad Alarm Relay common Alarm Relay good No connection TTL voltage set TTL alarm/0V (good) O/C good/0V bad 9-Way Pin-Out Graphical Representation 18.3.4.7. Low Power Amplifier (12-021901) The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life. Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function. There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced. Low Power Amplifier (12-021901) Specification PARAMETER Frequency range Bandwidth Maximum RF output Gain 1dB compression point 3rd order intercept point Noise Figure VSWR Connectors Supply Temperature operational range storage Weight Size SPECIFICATION 800-960MHz* 20MHz * >1.0 Watt 15dB +30.5dBm +43dBm <6dB better than 1.5:1 SMA female 500mA @ 10-15V DC -10°C to +60°C -20°C to +70°C 0.5 kg 167x52x25mm * Tuned to Customer’s specification STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 337 of 500 Low Power Amplifier (12-021901) 7-Way Connector Pin-outs Connector Pin A1 (large pin) A2 (large pin) 18.3.4.8. 17-001109 17-001117 17-001201 Signal +24V DC GND Alarm relay common TTL alarm/0V good Alarm relay contact (bad) Alarm relay contact (good) O/C good/0V bad (TTL) Automatic Gain Control AGC Detector Assembly (Logarithmic) AGC Detector Assembly AGC Attenuator Assembly The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 700MHz Line Amplifier (55-165702); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink 700MHz Line Amplifier (55-165702) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17-001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification. 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board. STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 338 of 500 Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided. The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur. The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal. This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit. For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value. AGC Specification (both types) PARAMETER Frequency range Attenuation range Attenuation steps VSWR RF Connectors Power attenuator handling detector/amp Temperature operation range storage attenuator pcb Size detector/amp pcb attenuator Weight detector/amp SPECIFICATION up to 1000MHz 3 to 30dB continuously variable better than 1.2:1 SMA female 1W >30W (or as required) -10°C to +60°C -20°C to +70°C 50 x 42 x 21mm 54 x 42 x 21mm 90grams 100grams 18.3.4.9. 12V (Single) Relay Board (80-008901) The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector. The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It’s common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system. STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 339 of 500 80-008901 Specification PARAMETER SPECIFICATION Operating voltage 8 to 30V (floating earth) Alarm threshold Vcc - 1.20 volt +15% Alarm output relay contacts Max. switch current 1.0Amp Max. switch volts 120Vdc/60VA Max. switch power 24W/60VA Min. switch load 10.0µA/10.0mV Relay isolation 1.5kV Mechanical life >2x107 operations Relay approval BT type 56 Connector details Screw terminals Temperature operational -10°C to +60°C range storage -20°C to +70°C 18.3.4.10. Dual Diode Assembly (94-100004) The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries. 18.3.4.11. DC/DC Converter 96-200047 96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts) output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in this case 12V. In the event of failure this unit should not be repaired, only replaced. 96-200047 Specification PARAMETER DC Input Voltage range DC Output voltage Max. current load Temperature Operation range Storage Working Humidity SPECIFICATION 19 to 36V 12V ± 1% 12.5Amps -10°C to +60°C -20°C to +85°C 20 to 90% RHNC STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 340 of 500 18.3.4.12. 12V Switch-Mode PSU (96-300052) No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 12.2V. The adjustment potentiometer will be found close to the DC output terminals. All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator. 96-300052 Specification AC Input Supply 110 or 220V nominal 85 - 265V AC (absolute limits) Frequency 47 to 63Hz DC Output Supply 12V DC (nominal) Voltage 10.5-13.8V (absolute limits) Current 12.5A Voltage STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 341 of 500 19. UNIVERSITY STATION CROSS PASSAGE B (80-330590-2) Wallmount case number C06-CR-02 University Station Cross Passage B (80-330590-2) Section 19.3.1. 19.3.2. 19.3.3. 19.3.4. Component Part 07-015102 12-018002 55-165701 55-165702 Component Part Description Wideband Asymmetric Coupler Power Amplifier 800MHz Line Amplifier 700MHz Line Amplifier Qty Per Assembly STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 342 of 500 19.1. University Station Cross Passage B (80-330590-2) System Diagram Drawing number 80-330592-2 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 343 of 500 19.2. University Station Cross Passage B (80-330590-2) Alarm Wiring Diagram Drawing Number 80-330530-2 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 344 of 500 19.3. University Station Cross Passage B (80-330590-2) Major Sub Components 19.3.1. Wideband Asymmetric Coupler (07-015102) The purpose of Wideband Asymmetric Coupler (07-015102) is to tap off a known portion (in this case 10dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only. 07-015102 Specification PARAMETER Frequency Range Coupling Value Main Line Insertion Loss VSWR Directivity Power Rating RF Connectors Temperature operation range storage 19.3.2. SPECIFICATION 800 - 2500 MHz 10 dB ± 1.0 dB <1.6 dB 1.4:1 >18 dB 200 Watts ‘N’ female -20°C to +60°C -40°C to +70°C Power Amplifier (12-018002) This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It has built in a Current Fault Alarm Function. Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function. 12-018002 Specification PARAMETER Frequency range Small signal gain Gain flatness I/O Return loss 1dB compression point OIP3 Supply voltage Supply current Temperature operational range storage Weight SPECIFICATION 800-960MHz 30dB ±1.2dB >18dB 42.8dBm 56dBm 24V DC 5.0Amps (Typical) -10°C to +60°C -20°C to +70°C <2kg (no heatsink) STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 345 of 500 Power Amplifier (12-018002) 7-Way Connector Pin-outs Connector Pin A1 (large pin) A2 (large pin) Signal +24V DC GND Alarm relay common TTL alarm/0V good Alarm relay contact (bad) Alarm relay contact (good) O/C good/0V bad (TTL) STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 346 of 500 19.3.3. 800MHz Line Amplifier (55-165701) 5U rack mount case 800MHz Line Amplifier (55-165701) List of Major Components Section 19.3.3.3. 19.3.3.4. 19.3.3.5. 19.3.3.6. 19.3.3.7. 19.3.3.8. 19.3.3.9. 19.3.3.10. 19.3.3.11. 19.3.3.12. Component Part 02-007206 07-015105 10-000901 11-006702 12-021901 17-001109 17-001117 17-001201 80-008901 94-100004 96-200047 96-300052 Component Part Description Bandpass Filter Wideband Asymmetric Coupler Switched Attenuator 0.25W, 0 - 15dB Low Noise Amplifier Low Power Amplifier AGC Detector Assembly (Logarithmic) AGC Detector Assembly AGC Attenuator Assembly 12V (Single) Relay Board Dual Diode Assembly DC/DC Converter 12V Switch-Mode PSU Qty Per Assembly *The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 800MHz Line Amplifier (55-165701); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the down link STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 347 of 500 19.3.3.1. 800MHz Line Amplifier (55-165701) Outline Drawing Drawing number 55-1657101 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 348 of 500 19.3.3.2. 800MHz Line Amplifier (55-165701) System Diagram Drawing number 55-165781 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 349 of 500 19.3.3.3. Bandpass Filter (02-007206) The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports. Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning. No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously. 02-007206 Specification PARAMETER Response type Frequency range Bandwidth Number of sections Insertion loss VSWR Connectors Power handling Temperature operation range storage Weight SPECIFICATION Chebyshev 800 - 950MHz * 25MHz * 1.2 dB better than 1.2:1 SMA female 100W max -20°C to +60°C -40°C to +70°C 3 kg (typical) *tuned to Customer's specification 19.3.3.4. Wideband Asymmetric Coupler (07-015105) The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case 30dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only. 07-015105 Specification PARAMETER Construction Frequency Through loss Coupling level Isolation Weight Connectors Temperature operation range storage SPECIFICATION Inductive air gap 800-2500MHz 0.4dB (typical) -30dB ±0.5dB N/A <1.0kg SMA, female -20°C to +60°C -40°C to +70°C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 350 of 500 19.3.3.5. Switched Attenuator 0.25W, 0 - 15dB (10-000901) In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain. 10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output. 10-000901 Specification PARAMETER Attenuation Values Attenuation Steps Power Handling Attenuation Accuracy Frequency Range Impedance Connectors VSWR Weigh Temperature operation range storage SPECIFICATION 0-15dB 1, 2, 4 and 8dB 0.25 Watt ± 1.0 dB DC to 1GHz 50Ω SMA 1.3:1 0.2kg -20°C to +60°C -40°C to +70°C 19.3.3.6. Low Noise Amplifier (11-006702) The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into the main alarm system. 11-006702 Specification PARAMETER Frequency range Bandwidth Gain 1dB Compression point OIP3 Input/Output return loss Noise figure Power consumption Supply voltage Connectors operational Temperature range: storage Size Weight SPECIFICATION 800 – 1000MHz <200MHz 29dB (typical) 20dBm 33dBm >18dB 1.3dB (typical) 180mA @ 24V DC 10-24V DC SMA female -10°C to +60°C -20°C to +70°C 90 x 55 x 30.2mm 290gms (approximately) STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 351 of 500 Low Noise Amplifier (11-006702) ‘D’ Connector Pin-out details Connector pin Signal +Ve input (10-24V) GND Alarm RelayO/P bad Alarm Relay common Alarm Relay good No connection TTL voltage set TTL alarm/0V (good) O/C good/0V bad 9-Way Pin-Out Graphical Representation 19.3.3.7. Low Power Amplifier (12-021901) The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life. Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function. There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced. Low Power Amplifier (12-021901) Specification PARAMETER Frequency range Bandwidth Maximum RF output Gain 1dB compression point 3rd order intercept point Noise Figure VSWR Connectors Supply Temperature operational range storage Weight Size SPECIFICATION 800-960MHz* 20MHz * >1.0 Watt 15dB +30.5dBm +43dBm <6dB better than 1.5:1 SMA female 500mA @ 10-15V DC -10°C to +60°C -20°C to +70°C 0.5 kg 167x52x25mm * Tuned to Customer’s specification STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 352 of 500 Low Power Amplifier (12-021901) 7-Way Connector Pin-outs Connector Pin A1 (large pin) A2 (large pin) 19.3.3.8. 17-001109 17-001117 17-001201 Signal +24V DC GND Alarm relay common TTL alarm/0V good Alarm relay contact (bad) Alarm relay contact (good) O/C good/0V bad (TTL) Automatic Gain Control AGC Detector Assembly (Logarithmic) AGC Detector Assembly AGC Attenuator Assembly The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 800MHz Line Amplifier (55-165701); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink 800MHz Line Amplifier (55-165701) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17-001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification. 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board. STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 353 of 500 Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided. The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur. The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal. This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit. For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value. AGC Specification (both types) PARAMETER Frequency range Attenuation range Attenuation steps VSWR RF Connectors Power attenuator handling detector/amp Temperature operation range storage attenuator pcb Size detector/amp pcb attenuator Weight detector/amp SPECIFICATION up to 1000MHz 3 to 30dB continuously variable better than 1.2:1 SMA female 1W >30W (or as required) -10°C to +60°C -20°C to +70°C 50 x 42 x 21mm 54 x 42 x 21mm 90grams 100grams 19.3.3.9. 12V (Single) Relay Board (80-008901) The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector. The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It’s common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system. STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 354 of 500 80-008901 Specification PARAMETER SPECIFICATION Operating voltage 8 to 30V (floating earth) Alarm threshold Vcc - 1.20 volt +15% Alarm output relay contacts Max. switch current 1.0Amp Max. switch volts 120Vdc/60VA Max. switch power 24W/60VA Min. switch load 10.0µA/10.0mV Relay isolation 1.5kV Mechanical life >2x107 operations Relay approval BT type 56 Connector details Screw terminals Temperature operational -10°C to +60°C range storage -20°C to +70°C 19.3.3.10. Dual Diode Assembly (94-100004) The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries. 19.3.3.11. DC/DC Converter 96-200047 96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts) output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in this case 12V. In the event of failure this unit should not be repaired, only replaced. 96-200047 Specification PARAMETER DC Input Voltage range DC Output voltage Max. current load Temperature Operation range Storage Working Humidity SPECIFICATION 19 to 36V 12V ± 1% 12.5Amps -10°C to +60°C -20°C to +85°C 20 to 90% RHNC STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 355 of 500 19.3.3.12. 12V Switch-Mode PSU (96-300052) No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 12.2V. The adjustment potentiometer will be found close to the DC output terminals. All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator. 96-300052 Specification AC Input Supply 110 or 220V nominal 85 - 265V AC (absolute limits) Frequency 47 to 63Hz DC Output Supply 12V DC (nominal) Voltage 10.5-13.8V (absolute limits) Current 12.5A Voltage STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 356 of 500 19.3.4. 700MHz Line Amplifier (55-165702) 5U rack mount case 700MHz Line Amplifier (55-165702) List of Major Components Section 19.3.4.3. 19.3.4.4. 19.3.4.5. 19.3.4.6. 19.3.4.7. 19.3.4.8. 19.3.4.9. 19.3.4.10. 19.3.4.11. 19.3.4.12. Component Part 02-007206 07-015105 10-000901 11-006702 12-021901 17-001109* 17-001117* 17-001201* 80-008901 94-100004 96-200047 96-300052 Component Part Description 900MHZ 8POLE 25MHz+ B/W "SMA" ASYMMETRIC CPLR 30dB 800-2500MHz GA SW ATT 0-15dB 0.25W SMA F 800-1000MHz LNA 29dB (cw RELAY) KIT Low Power Amplifier AGC Detector Assembly (Logarithmic) AGC Detector Assembly AGC Attenuator Assembly 12V RELAY PCB ASSEMBLY STPS12045TV 60A DUAL DIODE DC/DC Converter JWS150-12/A PSU (COUTANT LAMBDA) Qty Per Assembly *The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 700MHz Line Amplifier (55-165702); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 357 of 500 19.3.4.1. 700MHz Line Amplifier (55-165702) Outline Drawing Drawing Number 55-1657102 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 358 of 500 19.3.4.2. 700MHz Line Amplifier (55-165702) System Diagram Drawing Number 55-165782 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 359 of 500 19.3.4.3. Bandpass Filter (02-007206) The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports. Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning. No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously. 02-007206 Specification PARAMETER Response type Frequency range Bandwidth Number of sections Insertion loss VSWR Connectors Power handling Temperature operation range storage Weight SPECIFICATION Chebyshev 800 - 950MHz * 25MHz * 1.2 dB better than 1.2:1 SMA female 100W max -20°C to +60°C -40°C to +70°C 3 kg (typical) *tuned to Customer's specification 19.3.4.4. Wideband Asymmetric Coupler (07-015105) The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case 30dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only. 07-015105 Specification PARAMETER Construction Frequency Through loss Coupling level Isolation Weight Connectors Temperature operation range storage SPECIFICATION Inductive air gap 800-2500MHz 0.4dB (typical) -30dB ±0.5dB N/A <1.0kg SMA, female -20°C to +60°C -40°C to +70°C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 360 of 500 19.3.4.5. Switched Attenuator 0.25W, 0 - 15dB (10-000901) In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain. 10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output. 10-000901 Specification PARAMETER Attenuation Values Attenuation Steps Power Handling Attenuation Accuracy Frequency Range Impedance Connectors VSWR Weigh Temperature operation range storage SPECIFICATION 0-15dB 1, 2, 4 and 8dB 0.25 Watt ± 1.0 dB DC to 1GHz 50Ω SMA 1.3:1 0.2kg -20°C to +60°C -40°C to +70°C 19.3.4.6. Low Noise Amplifier (11-006702) The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into the main alarm system. 11-006702 Specification PARAMETER Frequency range Bandwidth Gain 1dB Compression point OIP3 Input/Output return loss Noise figure Power consumption Supply voltage Connectors operational Temperature range: storage Size Weight SPECIFICATION 800 – 1000MHz <200MHz 29dB (typical) 20dBm 33dBm >18dB 1.3dB (typical) 180mA @ 24V DC 10-24V DC SMA female -10°C to +60°C -20°C to +70°C 90 x 55 x 30.2mm 290gms (approximately) STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 361 of 500 Low Noise Amplifier (11-006702) ‘D’ Connector Pin-out details Connector pin Signal +Ve input (10-24V) GND Alarm RelayO/P bad Alarm Relay common Alarm Relay good No connection TTL voltage set TTL alarm/0V (good) O/C good/0V bad 9-Way Pin-Out Graphical Representation 19.3.4.7. Low Power Amplifier (12-021901) The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life. Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function. There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced. Low Power Amplifier (12-021901) Specification PARAMETER Frequency range Bandwidth Maximum RF output Gain 1dB compression point 3rd order intercept point Noise Figure VSWR Connectors Supply Temperature operational range storage Weight Size SPECIFICATION 800-960MHz* 20MHz * >1.0 Watt 15dB +30.5dBm +43dBm <6dB better than 1.5:1 SMA female 500mA @ 10-15V DC -10°C to +60°C -20°C to +70°C 0.5 kg 167x52x25mm * Tuned to Customer’s specification STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 362 of 500 Low Power Amplifier (12-021901) 7-Way Connector Pin-outs Connector Pin A1 (large pin) A2 (large pin) 19.3.4.8. 17-001109 17-001117 17-001201 Signal +24V DC GND Alarm relay common TTL alarm/0V good Alarm relay contact (bad) Alarm relay contact (good) O/C good/0V bad (TTL) Automatic Gain Control AGC Detector Assembly (Logarithmic) AGC Detector Assembly AGC Attenuator Assembly The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 700MHz Line Amplifier (55-165702); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink 700MHz Line Amplifier (55-165702) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17-001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification. 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board. STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 363 of 500 Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided. The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur. The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal. This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit. For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value. AGC Specification (both types) PARAMETER Frequency range Attenuation range Attenuation steps VSWR RF Connectors Power attenuator handling detector/amp Temperature operation range storage attenuator pcb Size detector/amp pcb attenuator Weight detector/amp SPECIFICATION up to 1000MHz 3 to 30dB continuously variable better than 1.2:1 SMA female 1W >30W (or as required) -10°C to +60°C -20°C to +70°C 50 x 42 x 21mm 54 x 42 x 21mm 90grams 100grams 19.3.4.9. 12V (Single) Relay Board (80-008901) The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector. The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It’s common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system. STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 364 of 500 80-008901 Specification PARAMETER SPECIFICATION Operating voltage 8 to 30V (floating earth) Alarm threshold Vcc - 1.20 volt +15% Alarm output relay contacts Max. switch current 1.0Amp Max. switch volts 120Vdc/60VA Max. switch power 24W/60VA Min. switch load 10.0µA/10.0mV Relay isolation 1.5kV Mechanical life >2x107 operations Relay approval BT type 56 Connector details Screw terminals Temperature operational -10°C to +60°C range storage -20°C to +70°C 19.3.4.10. Dual Diode Assembly (94-100004) The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries. 19.3.4.11. DC/DC Converter 96-200047 96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts) output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in this case 12V. In the event of failure this unit should not be repaired, only replaced. 96-200047 Specification PARAMETER DC Input Voltage range DC Output voltage Max. current load Temperature Operation range Storage Working Humidity SPECIFICATION 19 to 36V 12V ± 1% 12.5Amps -10°C to +60°C -20°C to +85°C 20 to 90% RHNC STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 365 of 500 19.3.4.12. 12V Switch-Mode PSU (96-300052) No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 12.2V. The adjustment potentiometer will be found close to the DC output terminals. All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator. 96-300052 Specification AC Input Supply 110 or 220V nominal 85 - 265V AC (absolute limits) Frequency 47 to 63Hz DC Output Supply 12V DC (nominal) Voltage 10.5-13.8V (absolute limits) Current 12.5A Voltage STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 366 of 500 20 CONVENTION PLACE STATION 700MHZ BDA (80-330554-1) Rack number CR1-CR-06 Convention Place Station 700MHz BDA (80-330554-1) List of major Components Section 20.3.1. 20.3.2. 20.3.3. Component Part 50-132103 50-132105 50-132106 Component Part Description 700MHz Output Duplexer/Combiner 700MHz 5 Cavity Combiner System 700MHz 4 Cavity Combiner System Qty Per Assembly STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 367 of 500 20.1 Convention Place Station 700MHz BDA (80-330554-1) Outline Drawing Drawing number 80-330554 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 368 of 500 20.2. Convention Place Station 700MHz BDA (80-330554-1) System Diagram Drawing number 80-330584-1 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 369 of 500 20.3 Convention Place Station 700MHz BDA (80-330554-1) Major Components 20.3.1. 700MHz Output Duplexer/Combiner (50-132103) 3U rack mount tray 700MHz Output Duplexer/Combiner (50-132103) List of Major Components Section 20.3.1.3. 20.3.1.4. 20.3.1.5. 20.3.1.6. Component Part 02-007206 05-003007 07-015105 09-000902 Component Part Description Bandpass Filter 4 Port Hybrid Coupler Wideband Asymmetric Coupler Dummy Load Qty Per Assembly STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 370 of 500 20.3.1.1. 700MHz Output Duplexer/Combiner (50-132103) outline drawing Drawing number 50-1321103 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 371 of 500 20.3.1.2. 700MHz Output Duplexer/Combiner (50-132103) system diagram Drawing number 50-132183 STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 372 of 500 20.3.1.3. Bandpass Filter (02-007206) The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports. Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning. No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously. 02-007206 Specification PARAMETER Response type Frequency range Bandwidth Number of sections Insertion loss VSWR Connectors Power handling Temperature operation range storage Weight SPECIFICATION Chebyshev 800 - 950MHz * 25MHz * 1.2 dB better than 1.2:1 SMA female 100W max -20°C to +60°C -40°C to +70°C 3 kg (typical) *tuned to Customer's specification 20.3.1.4. 4 Port Hybrid Coupler (05-003007) This transmitter hybrid coupler is a device for accurately matching two or more RF signals to single or multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate 50Ω load. In this specific instance one port of 4 Port Hybrid Coupler (05-003007) is terminated with Dummy Load 09-000902 (see below). 05-003007 Specification PARAMETER Frequency range Bandwidth Rejection Insertion loss Connectors Weight Temperature operational range storage SPECIFICATION 700-900MHz 200MHz >14dB 6.5dB (in band, typical) SMA <1.0kg -10%C to +60%C -20%C to +70%C STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 373 of 500 20.3.1.5. Wideband Asymmetric Coupler (07-015105) The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case 30dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only. 07-015105 Specification PARAMETER Construction Frequency Through loss Coupling level Isolation Weight Connectors Temperature operation range storage SPECIFICATION Inductive air gap 800-2500MHz 0.4dB (typical) -30dB ±0.5dB N/A <1.0kg SMA, female -20°C to +60°C -40°C to +70°C 20.3.1.6. Dummy Load 09-000902 When a combiner system is used to split or combine RF signals, in many cases it is most cost effective to use a standard stock item 4, 6 or 8 port device where, in fact, only a 3 or 6 port device is needed. In this case 4 Port Hybrid Coupler (05-003007) has one of its ports terminated with an appropriate Dummy Load in order to preserve the correct impedance of the device over the specified frequency range. 09-000902 specification PARAMETER Frequency Range Power Rating VSWR Impedance Temperature Range RF Connectors Dimension Weight Finish RF Connector Environmental MTBF SPECIFICATION 0 - 2500 MHz 25 Watts continuous Better than 1.1:1 50 Ohms -20 to +60°C N Type female 110.3mm x 38.1mm x 485 grams Black Anodised N Type male IP66 >180,000 hours STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 374 of 500 20.3.2. 700MHz 5 Cavity Combiner System (50-132105) 700MHz 5 Cavity Combiner System (50-132105) consists of 5 Dielectric Cavity Resonators mounted on two 3U rack mount panels, three on one panel and two on the other 700MHz 5 Cavity Combiner System (50-132105) List of Major Components section 20.3.2.3. Component Part 04-003402 Component Part Description Dielectric Cavity Resonator Qty Per Assembly STTRS DOCUMENTATION Document Number 80-330501HBKM – Issue A - Draft Page 375 of 500
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : No Page Count : 126 XMP Toolkit : XMP toolkit 2.9.1-13, framework 1.6 About : uuid:fa4d6466-7963-42de-aef9-898663f31788 Modify Date : 2008:06:23 15:14:17+01:00 Create Date : 2008:06:23 15:13:31+01:00 Metadata Date : 2008:06:23 15:14:17+01:00 Document ID : uuid:acdddd14-26d3-4b48-8244-854f2a6a4366 Format : application/pdf Title : Microsoft Word - 80-330501HBKM.DOC Creator : PScript5.dll Version 5.2 Author : shodgkinson Producer : Acrobat Distiller 6.0 (Windows)EXIF Metadata provided by EXIF.tools