PBE Europe as Axell Wireless 55-165704 55-165704 Cell Enhancer User Manual 80 330501HBKM

Axell Wireless 55-165704 Cell Enhancer 80 330501HBKM

manual 2 of 5

Download: PBE Europe as Axell Wireless 55-165704 55-165704 Cell Enhancer User Manual 80 330501HBKM
Mirror Download [FCC.gov]PBE Europe as Axell Wireless 55-165704 55-165704 Cell Enhancer User Manual 80 330501HBKM
Document ID966123
Application IDxviSnFNEIxMIcfbbi2yS/Q==
Document Descriptionmanual 2 of 5
Short Term ConfidentialNo
Permanent ConfidentialNo
SupercedeNo
Document TypeUser Manual
Display FormatAdobe Acrobat PDF - pdf
Filesize475.84kB (5948005 bits)
Date Submitted2008-07-07 00:00:00
Date Available2008-07-07 00:00:00
Creation Date2008-06-23 15:09:06
Producing SoftwareAcrobat Distiller 6.0 (Windows)
Document Lastmod2008-06-23 15:10:02
Document TitleMicrosoft Word - 80-330501HBKM.DOC
Document CreatorPScript5.dll Version 5.2
Document Author: shodgkinson

Power Amplifier (12-018002) 7-Way Connector Pin-outs
Connector Pin
A1 (large pin)
A2 (large pin)
Signal
+24V DC
GND
Alarm relay common
TTL alarm/0V good
Alarm relay contact (bad)
Alarm relay contact (good)
O/C good/0V bad (TTL)
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 125 of 500
9.4.3.
800MHz Line Amplifier (Ext. Amp.) (55-165401)
800MHz Line Amplifier (Ext. Amp.) (55-165401) list of major components
section
9.4.3.3.
9.4.3.4.
9.4.3.5.
9.4.3.6.
9.4.3.7.
9.4.3.8.
9.4.3.9.
9.4.3.10.
9.4.3.11.
9.4.3.12.
9.4.3.13.
Component
Part
02-007206
07-015105
10-000901
11-006702
12-018002K
12-021901
17-001109
17-001117
17-001201
80-008901
94-100004
96-200047
96-300052
Component Part Description
Bandpass Filter
Wideband Asymmetric Coupler
Switched Attenuator 0.25W, 0 - 15dB
Low Noise Amplifier
Power Amplifier
Low Power Amplifier
AGC Detector Assembly (Logarithmic)
AGC Detector Assembly
AGC Attenuator Assembly
12V (Single) Relay Board
Dual Diode Assembly
DC/DC Converter
12V Switch-Mode PSU
Qty. Per
Assembly
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 126 of 500
9.4.3.1. 800MHz Line Amplifier (Ext. Amp.) (55-165401) outline drawing
Drawing number 55-1654101
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 127 of 500
9.4.3.2. 800MHz Line Amplifier (Ext. Amp.) (55-165401) system diagram
Drawing number 55-165481
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 128 of 500
9.4.3.3.
Bandpass Filter (02-007206)
The bandpass filters are multi-section designs with a bandwidth dependent upon the passband
frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with
a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are
carefully aligned during manufacture in order to optimise the insertion loss, VSWR and
intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface
ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports.
Being passive devices, the bandpass filters should have an extremely long operational life and require
no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module
rather than attempt repair or re-tuning.
No adjustments should be attempted without full network sweep analysis facilities to monitor both
insertion loss and VSWR simultaneously.
02-007206 Specification
PARAMETER
Response type
Frequency range
Bandwidth
Number of sections
Insertion loss
VSWR
Connectors
Power handling
Temperature
operation
range
storage
Weight
9.4.3.4.
SPECIFICATION
Chebyshev
800 - 950MHz *
25MHz *
1.2 dB
better than 1.2:1
SMA female
100W max
-20°C to +60°C
-40°C to +70°C
3 kg (typical)
*tuned to Customer's specification
Wideband Asymmetric Coupler (07-015105)
The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case
30dB) of RF signal from transmission lines and to combine them, for example through splitter units for
different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all
ports/interfaces throughout the specified frequency range. They are known formally as directional
couplers as they couple power from the RF mainline in one direction only.
07-015105 Specification
PARAMETER
Construction
Frequency
Through loss
Coupling level
Isolation
Weight
Connectors
Temperature
operation
range
storage
SPECIFICATION
Inductive air gap
800-2500MHz
0.4dB (typical)
-30dB ±0.5dB
N/A
<1.0kg
SMA, female
-20°C to +60°C
-40°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 129 of 500
9.4.3.5.
Switched Attenuator 0.25W, 0 - 15dB (10-000901)
In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive.
Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the
gain.
10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the
four miniature toggle switches on the top of each unit. Each switch is clearly marked with the
attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are
designed to maintain an accurate 50Ω impedance over their operating frequency at both input and
output.
10-000901 Specification
PARAMETER
Attenuation Values
Attenuation Steps
Power Handling
Attenuation Accuracy
Frequency Range
Impedance
Connectors
VSWR
Weight
Temperature operation
range
storage
9.4.3.6.
SPECIFICATION
0-15dB
1, 2, 4 and 8dB
0.25 Watt
± 1.0 dB
DC to 1GHz
50Ω
SMA
1.3:1
0.2kg
-20°C to +60°C
-40°C to +70°C
Low Noise Amplifier (11-006702)
The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double
stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure
excellent linearity and extremely low noise over a very wide dynamic range. The active devices are
very moderately rated to provide a long trouble-free working life. There are no adjustments on these
amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This
amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is
easily integrated into the main alarm system.
11-006702 Specification
PARAMETER
Frequency range
Bandwidth
Gain
1dB Compression point
OIP3
Input/Output return loss
Noise figure
Power consumption
Supply voltage
Connectors
Temperature operational
range
storage
Size
Weight
SPECIFICATION
800 – 1000MHz
<200MHz
29dB (typical)
20dBm
33dBm
>18dB
1.3dB (typical)
180mA @ 24V DC
10-24V DC
SMA female
-10°C to +60°C
-20°C to +70°C
90 x 55 x 30.2mm
290gms (approximately)
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 130 of 500
Low Noise Amplifier (11-006702) ‘D’ Connector Pin-out details
Connector pin
Signal
+Ve input (10-24V)
GND
Alarm RelayO/P bad
Alarm Relay common
Alarm Relay good
No connection
TTL voltage set
TTL alarm/0V (good)
O/C good/0V bad
9-Way Pin-Out Graphical Representation
9.4.3.7.
Power Amplifier (12-018002)
This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced
configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It
has built in a Current Fault Alarm Function.
Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and
a D-Type connector for the power supply and the Current Fault Alarm Function.
12-018002 Specification
PARAMETER
Frequency range:
Small signal gain:
Gain flatness:
I/O Return loss:
1dB compression point:
OIP3:
Supply voltage:
Supply current:
Temperature
operational:
range
storage:
Weight:
SPECIFICATION
800-960MHz
30dB
±1.2dB
>18dB
42.8dBm
56dBm
24V DC
5.0Amps (Typical)
-10°C to +60°C
-20°C to +70°C
<2kg (no heatsink)
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 131 of 500
Power Amplifier (12-018002) 7-Way Connector Pin-outs
Connector Pin
A1 (large pin)
A2 (large pin)
9.4.3.8.
Signal
+24V DC
GND
Alarm relay common
TTL alarm/0V good
Alarm relay contact (bad)
Alarm relay contact (good)
O/C good/0V bad (TTL)
Low Power Amplifier (12-021901)
The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used
in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are
very moderately rated to provide a long trouble-free working life.
Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and
a D-Type connector for the power supply and the Current Fault Alarm Function.
There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier
should be replaced.
Low Power Amplifier (12-021901) Specification
PARAMETER
Frequency range
Bandwidth
Maximum RF output
Gain
1dB compression point
3rd order intercept point
Noise Figure
VSWR
Connectors
Supply
Temperature operational
range
storage
Weight
Size
SPECIFICATION
800-960MHz*
20MHz *
>1.0 Watt
15dB
+30.5dBm
+43dBm
<6dB
better than 1.5:1
SMA female
500mA @ 10-15V DC
-10°C to +60°C
-20°C to +70°C
0.5 kg
167x52x25mm
* Tuned to Customer’s specification
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 132 of 500
Low Power Amplifier (12-021901) 7-Way Connector Pin-outs
Connector Pin
A1 (large pin)
A2 (large pin)
9.4.3.9.
17-001109
17-001117
17-001201
Signal
+24V DC
GND
Alarm relay common
TTL alarm/0V good
Alarm relay contact (bad)
Alarm relay contact (good)
O/C good/0V bad (TTL)
Automatic Gain Control
AGC Detector Assembly (Logarithmic)
AGC Detector Assembly
AGC Attenuator Assembly
The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control
(AGC) system used in 800MHz Line Amplifier (Ext. Amp.) (55-165401); 17-001117 and 17-001201
are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink
800MHz Line Amplifier (Ext. Amp.) (55-165401) is fitted with two differing types of Automatic Gain
Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the
downlink path
The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator.
The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the
attenuator is situated in the RF path between the 1st and 2nd stages of amplification.
17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired
for use in the downlink
The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB.
The attenuation is controlled by a DC voltage which is derived from the associated detector controller
board.
Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level
being delivered by the power amplifier, and when a certain threshold is reached it begins to increase
the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading
of the power amplifier is avoided.
The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this
AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any
circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as
system degradation will occur.
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 133 of 500
The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion
of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode
rectifier, the output of which is a DC voltage proportional to the RF input signal.
This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output,
which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at
some earlier point in the RF circuit.
For small signals, below AGC onset, the output control line will be close to 12V and the AGC
attenuator will have minimum attenuation. As the signal level increases the control line voltage will
fall, increasing the attenuator value and keeping the system output level at a constant value.
AGC Specification (both types)
PARAMETER
Frequency range
Attenuation range
Attenuation steps
VSWR
RF Connectors
Power
attenuator
handling
detector/amp
Temperature
operation
range
storage
attenuator pcb
Size
detector/amp pcb
attenuator
Weight
detector/amp
SPECIFICATION
up to 1000MHz
3 to 30dB
continuously variable
better than 1.2:1
SMA female
1W
>30W (or as required)
-10°C to +60°C
-20°C to +70°C
50 x 42 x 21mm
54 x 42 x 21mm
90grams
100grams
9.4.3.10. 12V (Single) Relay Board (80-008901)
The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is
equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed
via a 15 way in-line connector. The relay is provided with polarity protection diodes and diodes for
suppressing the transients caused by "flywheel effect" which can destroy switching transistors or
induce spikes on neighbouring circuits. It’s common use is to amalgamate all the alarm signals into
one, volts-free relay contact pair for the main alarm system.
80-008901 Specification
PARAMETER
SPECIFICATION
Operating voltage 8 to 30V (floating earth)
Alarm threshold Vcc - 1.20 volt +15%
Alarm output relay contacts:
Max. switch current 1.0Amp
Max. switch volts 120Vdc/60VA
Max. switch power 24W/60VA
Min. switch load 10.0µA/10.0mV
Relay isolation 1.5kV
Mechanical life >2x107 operations
Relay approval BT type 56
Connector details Screw terminals
Temperature
operational -10°C to +60°C
range
storage -20°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 134 of 500
9.4.3.11. Dual Diode Assembly (94-100004)
The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so
that the main DC rail within the equipment can be sourced from either a mains driven PSU, or
externally through an XLR connector or from dual mains driven PSUs . They are very heavy-duty
diodes and they prevent any reverse current from flowing back to their source or the alternative
supply rail. Combining diodes such as these will also be used if the equipment is to be powered from
external back-up batteries.
9.4.3.12. DC/DC Converter 96-200047
96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts)
output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in
this case 12V. In the event of failure this unit should not be repaired, only replaced.
96-200047 Specification
PARAMETER
DC Input Voltage range
DC Output voltage
Max. current load
Temperature
Operation
range
Storage
Working Humidity
SPECIFICATION
19 to 36V
12V ± 1%
12.5Amps
-10°C to +60°C
-20°C to +85°C
20 to 90% RHNC
9.4.3.12. 12V Switch-Mode PSU (96-300052)
No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from
the power supply may be measured on its output terminals. This is typically set to 12.2V. The
adjustment potentiometer will be found close to the DC output terminals.
All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal
AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by
the operator.
96-300052 Specification
AC Input Supply
110 or 220V nominal
Voltage 85 - 265V AC
(absolute limits)
Frequency 47 to 63Hz
DC Output Supply
12V DC (nominal)
Voltage
10.5-13.8V (absolute limits)
Current 12.5A
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 135 of 500
10.
UNIVERSITY STATION MASTER SITE 1 (80-330552-1)
Rack C05-CR-06
55-165601
55-165602
55-165502
98-800001
98-700002
55-165507
55-165601
55-165602
55-165711
University Station Master Site 1 (80-330552-1) list of major components
section
10.4.1.
10.4.2.
10.4.3.
10.4.4.
10.4.5.
10.4.6.
10.4.7.
Component Part
55-165502
55-165507
55-165601
55-165602
55-165711
98-700002
98-800001
Component Part Description
800MHz FO HUB Splitter/Combiner
Fibre Optic Splitter
800MHz FO Hub Amplifier + Filters
700MHz FO Hub Amplifier
UNIVERSITY ST. SPLITTER 1
Optical A/B Switch FC/APC
F/O Link Subsystem
Qty. Per Assembly
800MHz FO Hub Amplifier (55-165601)
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 136 of 500
10.1. University Station Master Site 1 (80-330552-1) Rack elevation
Drawing number 80-330552
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 137 of 500
10.2. University Station Master Site 1 (80-330552-1) system diagram
Drawing number 80-330582-1
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 138 of 500
10.3. University Station Master Site 1 (80-330552-1) Alarm Wiring Diagram
Drawing number 80-330522-1
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 139 of 500
10.4 University Station Master Site 1 (80-330552-1) Major Components
10.4.1.
800MHz FO HUB Splitter/Combiner (55-165502)
800MHz FO HUB SPLITTER/COMB (55-165502) List of major components
section
10.4.1.3.
10.4.1.4.
Component
Part
05-002602
05-003302
Component Part Description
900MHZ SPLITTER/COMBINER, 20W
Four Way Splitter/Combiner
Qty. Per
Assembly
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 140 of 500
10.4.1.1. 800MHz FO HUB SPLITTER/COMB (55-165502) Outline Drawing
Drawing number 55-1655102
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 141 of 500
10.4.1.2. 800MHz FO HUB SPLITTER/COMB (55-165502) System Diagram
Drawing number 55-165582
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 142 of 500
10.4.1.3. 900MHz Splitter/Combiner (05-002602)
The Splitter/Combiner used is a device for accurately matching two or more RF signals to single or
multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the
VSWR and insertion losses are kept to a minimum. Any unused ports should be terminated with an
appropriate 50Ω load.
Being passive devices, the splitters should have an extremely long operational life and require no
maintenance. Should a unit be suspect, it is usually most time efficient to replace the whole module
rather than attempt repair or re-tuning.
05-002602 Specification
PARAMETER
Frequency
Narrowband:
range:
Broadband:
Narrowband:
Bandwidth:
Broadband:
Input ports:
Output ports:
Narrowband:
Insertion loss:
Broadband:
Return loss input & output:
Impedance:
Narrowband:
Isolation:
Broadband:
MTFB:
Splitting:
Power rating:
Combining:
Connectors:
Weight:
Size:
SPECIFICATION
815 – 960MHz
800 – 1200MHz
145MHz
400MHz
3.3dB
3.5dB
1.3:1
50Ω
>20dB
>18dB
>180,000 hours
20Watts
0.5Watt
SMA female
200g (approximately)
54 x 44 x 21mm
10.4.1.4. Four Way Splitter/Combiner (05-003302)
The Splitter/Combiner used is a device for accurately matching two or more RF signals to single or
multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the
VSWR and insertion losses are kept to a minimum. Any unused ports should be terminated with an
appropriate 50Ω load.
Four Way Splitter (05-003302) Specification
PARAMETER
Frequency range
Bandwidth
Rejection
Insertion loss
Connectors
Weight
Temperature
operational
range
storage
SPECIFICATION
700-980MHz
180MHz
>14dB
<7.0dB (in band)
N type, female
<1.5kg
-20%C to +60%C
-40%C to +70%C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 143 of 500
10.4.2.
Fibre Optic Splitter (55-165507)
Fibre Optic Splitter (55-165507) is a 1U rack mount tray containing an optical splitter/coupler
Fibre Optic Splitter (55-165507) List of Major Sub Components
Component
Part
98-100001
Component Part Description
Single Mode Optical Splitter/Coupler
Qty. Per
Assembly
10.4.2.1. Single Mode Optical Splitter/Coupler (98-100001)
Single Mode Optical Splitter/Couplers are used whenever it is necessary to split or combine outputs
from optical transmitters or inputs to receivers. Operators should be aware that a small insertion loss
(typically 3-4dB) is common with these type of couplers.
Single Mode Optical Splitter/Coupler (98-100001) It is an O.E.M unit featuring almost negligible
insertion loss to the F/O signal. Extreme caution should be exercised when handling these devices.
Special attention should be shown to the connectors; repair of a broken Splitter/Coupler is not
possible; replacement is the only option.
In the Fibre Optic Splitter (55-165507) in University Station Master Site 1 (80-330552-1), Single Mode
Optical Splitter/Coupler (98-100001) is used to split the optical signal from the FO TX module in F/O
Link Subsystem (98-700001) into two equal paths.
10.4.3.
Section
10.4.3.3.
10.4.3.4.
10.4.3.5.
10.4.3.6.
10.4.3.7.
10.4.3.8.
10.4.3.9.
10.4.3.10.
10.4.3.11.
10.4.3.12.
10.4.3.13.
10.4.3.14.
10.4.3.15.
800MHz FO Hub Amplifier + Filters (55-165601)
Component
Part
02-007206
07-015105
10-000701
11-005902K
11-006702K
12-018002K
12-021901
17-001109*
17-001117*
17-001201*
20-001601
80-008901
94-100004
96-200047
96-300052
Component Part Description
900MHZ 8POLE 25MHz+ B/W "SMA"
ASYMMETRIC CPLR 30dB 800-2500MHz GA
SW ATT 0-30dB 0.25W SMA F
900MHz LOW NOISE AMP WITH RELAY KIT
800-1000MHz LNA 29dB (cw RELAY) KIT
PA 800-960MHz 20W CLASS A KIT
Low Power Amplifier
AGC Detector Assembly (Logarithmic)
AGC Detector Assembly
AGC Attenuator Assembly
12V RELAY BOARD
12V RELAY PCB ASSEMBLY
STPS12045TV 60A DUAL DIODE
DC/DC Converter
JWS150-12/A PSU (COUTANT LAMBDA)
Qty. Per
Assembly
*The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control
(AGC) system used in 800MHz FO Hub Amplifier + Filters (55-165601); 17-001117 and 17-001201
are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the down link
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 144 of 500
10.4.3.1. 800MHz FO Hub Amplifier + Filters (55-165601) outline drawing
drawing number 55-1656101
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 145 of 500
10.4.3.2. 800MHz FO Hub Amplifier + Filters (55-165601) system diagram
drawing number 55-165681
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 146 of 500
10.4.3.3. Bandpass Filter (02-007206)
The bandpass filters are multi-section designs with a bandwidth dependent upon the passband
frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with
a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are
carefully aligned during manufacture in order to optimise the insertion loss, VSWR and
intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface
ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports.
Being passive devices, the bandpass filters should have an extremely long operational life and require
no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module
rather than attempt repair or re-tuning.
No adjustments should be attempted without full network sweep analysis facilities to monitor both
insertion loss and VSWR simultaneously.
02-007206 Specification
PARAMETER
Response type
Frequency range
Bandwidth
Number of sections
Insertion loss
VSWR
Connectors
Power handling
Temperature
operation
range
storage
Weight
SPECIFICATION
Chebyshev
800 - 950MHz *
25MHz *
1.2 dB
better than 1.2:1
SMA female
100W max
-20°C to +60°C
-40°C to +70°C
3 kg (typical)
*tuned to Customer's specification
10.4.3.4. Wideband Asymmetric Coupler (07-015105)
The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case
30dB) of RF signal from transmission lines and to combine them, for example through splitter units for
different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all
ports/interfaces throughout the specified frequency range. They are known formally as directional
couplers as they couple power from the RF mainline in one direction only.
07-015105 Specification
PARAMETER
Construction
Frequency
Through loss
Coupling level
Isolation
Weight
Connectors
Temperature
operation
range
storage
SPECIFICATION
Inductive air gap
800-2500MHz
0.4dB (typical)
-30dB ±0.5dB
N/A
<1.0kg
SMA, female
-20°C to +60°C
-40°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 147 of 500
10.4.3.5. Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)
In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive.
Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the
gain.
Switched Attenuator 10-000701 provides attenuation from 0 to 30dB in 2 dB steps The attenuation is
simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly
marked with the attenuation it provides, and the total attenuation in line is the sum of the values
switched in. They are designed to maintain an accurate 50Ω impedance over their operating
frequency at both input and output.
10-000701 Specification
PARAMETER
Attenuation Values
Attenuation Steps
Power Handling
Attenuation Accuracy
Frequency Range
Impedance
Connectors
VSWR
Weight
Temperature
operation
range
storage
SPECIFICATION
0-30dB
2, 4, 8 and 16dB
0.25 Watt
± 1.0 dB
DC to 1GHz
50Ω
SMA
1.3:1
0.2kg
-20°C to +60°C
-40°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 148 of 500
10.4.3.6. Low Noise Amplifier (11-005902)
The Gallium-Arsenide low noise amplifier used in the unit is a double stage, solid-state low noise
amplifier. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low
noise over a very wide dynamic range. The active devices are very moderately rated to provide a long
trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a
failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm
system which gives a volt-free relay contact type alarm that is easily integrated into any alarm system.
There is a Current Fault Alarm Function, which indicates failure of each one or both RF transistors by
a various alarm output options. The amplifier is housed in an aluminium case (Iridite NCP finish) with
SMA connectors for the RF input/output and a 9way D-type for DC and alarm outputs.
11-005902 Specification
PARAMETER
Frequency range:
Bandwidth:
Gain:
1dB compression point:
OIP3:
Input/output return loss:
Noise figure:
Power consumption:
Supply voltage:
Connectors:
Temperature
operational:
range
storage:
Size:
Weight:
SPECIFICATION
800 – 960MHz *
<170MHz
19.5dB (typical)
21dBm
33dBm
>20dB
1dB (typical)
190mA @ 24V DC
10-24V DC
SMA female
-10°C to +60°C
-40°C to +70°C
90 x 55 x 30.2mm
0.28kg
*tuned to Customer's specification
LNA ‘D’ Connector Pin-out details
Connector pin
Signal
+Ve input (10-24V)
GND
Alarm relay O/P bad
Alarm relay common
Alarm relay good
No connection
TTL voltage set
TTL alarm/0V (good)
O/C good/0V bad
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 149 of 500
10.4.3.7. Low Noise Amplifier (11-006702)
The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double
stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure
excellent linearity and extremely low noise over a very wide dynamic range. The active devices are
very moderately rated to provide a long trouble-free working life. There are no adjustments on these
amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This
amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is
easily integrated into the main alarm system.
11-006702 Specification
PARAMETER
Frequency range:
Bandwidth:
Gain:
1dB Compression point:
OIP3:
Input/Output return loss:
Noise figure:
Power consumption:
Supply voltage:
Connectors:
operational:
Temperature range:
storage:
Size:
Weight:
SPECIFICATION
800 – 1000MHz
<200MHz
29dB (typical)
20dBm
33dBm
>18dB
1.3dB (typical)
180mA @ 24V DC
10-24V DC
SMA female
-10°C to +60°C
-20°C to +70°C
90 x 55 x 30.2mm
290gms (approximately)
Low Noise Amplifier (11-006702) ‘D’ Connector Pin-out details
Connector pin
Signal
+Ve input (10-24V)
GND
Alarm RelayO/P bad
Alarm Relay common
Alarm Relay good
No connection
TTL voltage set
TTL alarm/0V (good)
O/C good/0V bad
9-Way Pin-Out Graphical Representation
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 150 of 500
10.4.3.8. Power Amplifier (12-018002)
This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced
configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It
has built in a Current Fault Alarm Function.
Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and
a D-Type connector for the power supply and the Current Fault Alarm Function.
12-018002 Specification
PARAMETER
Frequency range:
Small signal gain:
Gain flatness:
I/O Return loss:
1dB compression point:
OIP3:
Supply voltage:
Supply current:
Temperature
operational:
range
storage:
Weight:
SPECIFICATION
800-960MHz
30dB
±1.2dB
>18dB
42.8dBm
56dBm
24V DC
5.0Amps (Typical)
-10°C to +60°C
-20°C to +70°C
<2kg (no heatsink)
Power Amplifier (12-018002) 7-Way Connector Pin-outs
Connector Pin
A1 (large pin)
A2 (large pin)
Signal
+24V DC
GND
Alarm relay common
TTL alarm/0V good
Alarm relay contact (bad)
Alarm relay contact (good)
O/C good/0V bad (TTL)
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 151 of 500
10.4.3.9. Low Power Amplifier (12-021901)
The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used
in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are
very moderately rated to provide a long trouble-free working life.
Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and
a D-Type connector for the power supply and the Current Fault Alarm Function.
There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier
should be replaced.
Low Power Amplifier (12-021901) Specification
PARAMETER
Frequency range
Bandwidth
Maximum RF output
Gain
1dB compression point
3rd order intercept point
Noise Figure
VSWR
Connectors
Supply
Temperature operational
range
storage
Weight
Size
SPECIFICATION
800-960MHz*
20MHz *
>1.0 Watt
15dB
+30.5dBm
+43dBm
<6dB
better than 1.5:1
SMA female
500mA @ 10-15V DC
-10°C to +60°C
-20°C to +70°C
0.5 kg
167x52x25mm
* Tuned to Customer’s specification
Low Power Amplifier (12-021901) 7-Way Connector Pin-outs
Connector Pin
A1 (large pin)
A2 (large pin)
Signal
+24V DC
GND
Alarm relay common
TTL alarm/0V good
Alarm relay contact (bad)
Alarm relay contact (good)
O/C good/0V bad (TTL)
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 152 of 500
10.4.3.10. Automatic Gain Control
17-001109
17-001117
17-001201
AGC Detector Assembly (Logarithmic)
AGC Detector Assembly
AGC Attenuator Assembly
The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control
(AGC) system used in 800MHz FO Hub Amplifier + Filters (55-165601); 17-001117 and 17-001201
are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the down link
800MHz FO Hub Amplifier + Filters (55-165601) is fitted with two differing types of Automatic Gain
Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the
downlink path
The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator.
The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the
attenuator is situated in the RF path between the 1st and 2nd stages of amplification.
17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired
for use in the down link
The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB.
The attenuation is controlled by a DC voltage which is derived from the associated detector controller
board.
Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level
being delivered by the power amplifier, and when a certain threshold is reached it begins to increase
the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading
of the power amplifier is avoided.
The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this
AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any
circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as
system degradation will occur.
The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion
of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode
rectifier, the output of which is a DC voltage proportional to the RF input signal.
This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output,
which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at
some earlier point in the RF circuit.
For small signals, below AGC onset, the output control line will be close to 12V and the AGC
attenuator will have minimum attenuation. As the signal level increases the control line voltage will
fall, increasing the attenuator value and keeping the system output level at a constant value.
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 153 of 500
AGC Specification (both types)
PARAMETER
Frequency range
Attenuation range
Attenuation steps
VSWR
RF Connectors
Power
attenuator
handling
detector/amp
Temperature
operation
range
storage
attenuator pcb
Size
detector/amp pcb
attenuator
Weight
detector/amp
SPECIFICATION
up to 1000MHz
3 to 30dB
continuously variable
better than 1.2:1
SMA female
1W
>30W (or as required)
-10°C to +60°C
-20°C to +70°C
50 x 42 x 21mm
54 x 42 x 21mm
90grams
100grams
10.4.3.11. 12V (Dual) Relay Board (20-001601)
The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is
equipped with two dual pole change-over relays with completely isolated wiring, accessed via screw
terminals. Both relays are provided with polarity protection diodes and diodes for suppressing the
transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on
neighbouring circuits. It’s common use is to amalgamate all the alarm signals into one, volts-free relay
contact pair for the main alarm system.
20-001601 Specification
PARAMETER
SPECIFICATION
Operating voltage: 8 to 30V (floating earth)
Alarm threshold: Vcc - 1.20 volt +15%
Alarm output relay contacts:
Max. switch current: 1.0Amp
Max. switch volts: 120Vdc/60VA
Max. switch power: 24W/60VA
Min. switch load: 10.0µA/10.0mV
Relay isolation: 1.5kV
Mechanical life: >2x107 operations
Relay approval: BT type 56
Connector details: Screw terminals
Temperature
operational: -10°C to +60°C
range
storage: -20°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 154 of 500
10.4.3.12. 12V (Single) Relay Board (80-008901)
The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is
equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed
via a 15 way in-line connector.
The relay is provided with polarity protection diodes and diodes for suppressing the transients caused
by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits.
It’s common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the
main alarm system.
80-008901 Specification
PARAMETER
SPECIFICATION
Operating voltage 8 to 30V (floating earth)
Alarm threshold Vcc - 1.20 volt +15%
Alarm output relay contacts:
Max. switch current 1.0Amp
Max. switch volts 120Vdc/60VA
Max. switch power 24W/60VA
Min. switch load 10.0µA/10.0mV
Relay isolation 1.5kV
Mechanical life >2x107 operations
Relay approval BT type 56
Connector details Screw terminals
Temperature
operational -10°C to +60°C
range
storage -20°C to +70°C
10.4.3.13. Dual Diode Assembly (94-100004)
The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so
that the main DC rail within the equipment can be sourced from either a mains driven PSU, or
externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty
diodes and they prevent any reverse current from flowing back to their source or the alternative
supply rail. Combining diodes such as these will also be used if the equipment is to be powered from
external back-up batteries.
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 155 of 500
10.4.3.14. DC/DC Converter 96-200047
96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts)
output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in
this case 12V. In the event of failure this unit should not be repaired, only replaced.
96-200047 Specification
PARAMETER
DC Input Voltage range
DC Output voltage
Max. current load
Temperature
Operation
range
Storage
Working Humidity
SPECIFICATION
19 to 36V
12V ± 1%
12.5Amps
-10°C to +60°C
-20°C to +85°C
20 to 90% RHNC
10.4.3.15. 12V Switch-Mode PSU (96-300052)
No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from
the power supply may be measured on its output terminals. This is typically set to 12.2V. The
adjustment potentiometer will be found close to the DC output terminals.
All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal
AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by
the operator.
96-300052 Specification
AC Input Supply
110 or 220V nominal
85 - 265V AC (absolute limits)
Frequency 47 to 63Hz
DC Output Supply
12V DC (nominal)
Voltage
10.5-13.8V (absolute limits)
Current 12.5A
Voltage
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 156 of 500
10.4.4.
700MHz FO Hub Amplifier (55-165602)
700MHz FO Hub Amplifier (55-165602) List of major components
Section
10.4.4.3.
10.4.4.4.
10.4.4.5.
10.4.4.6.
10.4.4.7.
10.4.4.8.
10.4.4.9.
10.4.4.10.
10.4.4.11.
10.4.4.12.
10.4.4.13.
10.4.4.14.
10.4.4.15.
Component
Part
02-007206
07-015105
10-000701
11-005902
11-006702
12-018002
12-021901
17-001109
17-001117
17-001201
20-001601
80-008901
94-100004
96-200047
96-300052
Component Part Description
900MHZ 8POLE 25MHz+ B/W "SMA"
ASYMMETRIC CPLR 30dB 800-2500MHz GA
SW ATT 0-30dB 0.25W SMA F
900MHz LOW NOISE AMP WITH RELAY KIT
800-1000MHz LNA 29dB (cw RELAY) KIT
PA 800-960MHz 20W CLASS A KIT
Low Power Amplifier
AGC Detector Assembly (Logarithmic)
AGC Detector Assembly
AGC Attenuator Assembly
12V RELAY BOARD
12V RELAY PCB ASSEMBLY
STPS12045TV 60A DUAL DIODE
DC/DC Converter
JWS150-12/A PSU (COUTANT LAMBDA)
Qty. Per
Assembly
*The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control
(AGC) system used in 700MHz FO Hub Amplifier (55-165602); 17-001117 and 17-001201 are paired
for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 157 of 500
10.4.4.1. 700MHz FO Hub Amplifier (55-165602) Outline Drawing
drawing number 55-1656102
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 158 of 500
10.4.4.2. 700MHz FO Hub Amplifier (55-165602) system diagram
drawing number 55-165682
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 159 of 500
10.4.4.3. Bandpass Filter (02-007206)
The bandpass filters are multi-section designs with a bandwidth dependent upon the passband
frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with
a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are
carefully aligned during manufacture in order to optimise the insertion loss, VSWR and
intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface
ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports.
Being passive devices, the bandpass filters should have an extremely long operational life and require
no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module
rather than attempt repair or re-tuning.
No adjustments should be attempted without full network sweep analysis facilities to monitor both
insertion loss and VSWR simultaneously.
02-007206 Specification
PARAMETER
Response type
Frequency range
Bandwidth
Number of sections
Insertion loss
VSWR
Connectors
Power handling
Temperature
operation
range
storage
Weight
SPECIFICATION
Chebyshev
800 - 950MHz *
25MHz *
1.2 dB
better than 1.2:1
SMA female
100W max
-20°C to +60°C
-40°C to +70°C
3 kg (typical)
*tuned to Customer's specification
10.4.4.4. Wideband Asymmetric Coupler (07-015105)
The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case
30dB) of RF signal from transmission lines and to combine them, for example through splitter units for
different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all
ports/interfaces throughout the specified frequency range. They are known formally as directional
couplers as they couple power from the RF mainline in one direction only.
07-015105 Specification
PARAMETER
Construction
Frequency
Through loss
Coupling level
Isolation
Weight
Connectors
Temperature
operation
range
storage
SPECIFICATION
Inductive air gap
800-2500MHz
0.4dB (typical)
-30dB ±0.5dB
N/A
<1.0kg
SMA, female
-20°C to +60°C
-40°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 160 of 500
10.4.4.5. Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)
In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive.
Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the
gain.
Switched Attenuator 10-000701 provides attenuation from 0 to 30dB in 2 dB steps The attenuation is
simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly
marked with the attenuation it provides, and the total attenuation in line is the sum of the values
switched in. They are designed to maintain an accurate 50Ω impedance over their operating
frequency at both input and output.
10-000701 Specification
PARAMETER
Attenuation Values
Attenuation Steps
Power Handling
Attenuation Accuracy
Frequency Range
Impedance
Connectors
VSWR
Weight
Temperature
operation
range
storage
SPECIFICATION
0-30dB
2, 4, 8 and 16dB
0.25 Watt
± 1.0 dB
DC to 1GHz
50Ω
SMA
1.3:1
0.2kg
-20°C to +60°C
-40°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 161 of 500
10.4.4.6. Low Noise Amplifier (11-005902)
The Gallium-Arsenide low noise amplifier used in the unit is a double stage, solid-state low noise
amplifier. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low
noise over a very wide dynamic range. The active devices are very moderately rated to provide a long
trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a
failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm
system which gives a volt-free relay contact type alarm that is easily integrated into any alarm system.
There is a Current Fault Alarm Function, which indicates failure of each one or both RF transistors by
a various alarm output options. The amplifier is housed in an aluminium case (Iridite NCP finish) with
SMA connectors for the RF input/output and a 9way D-type for DC and alarm outputs.
11-005902 Specification
PARAMETER
Frequency range:
Bandwidth:
Gain:
1dB compression point:
OIP3:
Input/output return loss:
Noise figure:
Power consumption:
Supply voltage:
Connectors:
Temperature
operational:
range
storage:
Size:
Weight:
SPECIFICATION
800 – 960MHz *
<170MHz
19.5dB (typical)
21dBm
33dBm
>20dB
1dB (typical)
190mA @ 24V DC
10-24V DC
SMA female
-10°C to +60°C
-40°C to +70°C
90 x 55 x 30.2mm
0.28kg
*tuned to Customer's specification
LNA ‘D’ Connector Pin-out details
Connector pin
Signal
+Ve input (10-24V)
GND
Alarm relay O/P bad
Alarm relay common
Alarm relay good
No connection
TTL voltage set
TTL alarm/0V (good)
O/C good/0V bad
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 162 of 500
10.4.4.7. Low Noise Amplifier (11-006702)
The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double
stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure
excellent linearity and extremely low noise over a very wide dynamic range. The active devices are
very moderately rated to provide a long trouble-free working life. There are no adjustments on these
amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This
amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is
easily integrated into the main alarm system.
11-006702 Specification
PARAMETER
Frequency range:
Bandwidth:
Gain:
1dB Compression point:
OIP3:
Input/Output return loss:
Noise figure:
Power consumption:
Supply voltage:
Connectors:
operational:
Temperature range:
storage:
Size:
Weight:
SPECIFICATION
800 – 1000MHz
<200MHz
29dB (typical)
20dBm
33dBm
>18dB
1.3dB (typical)
180mA @ 24V DC
10-24V DC
SMA female
-10°C to +60°C
-20°C to +70°C
90 x 55 x 30.2mm
290gms (approximately)
Low Noise Amplifier (11-006702) ‘D’ Connector Pin-out details
Connector pin
Signal
+Ve input (10-24V)
GND
Alarm RelayO/P bad
Alarm Relay common
Alarm Relay good
No connection
TTL voltage set
TTL alarm/0V (good)
O/C good/0V bad
9-Way Pin-Out Graphical Representation
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 163 of 500
10.4.4.8. Power Amplifier (12-018002)
This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced
configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It
has built in a Current Fault Alarm Function.
Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and
a D-Type connector for the power supply and the Current Fault Alarm Function.
12-018002 Specification
PARAMETER
Frequency range:
Small signal gain:
Gain flatness:
I/O Return loss:
1dB compression point:
OIP3:
Supply voltage:
Supply current:
Temperature
operational:
range
storage:
Weight:
SPECIFICATION
800-960MHz
30dB
±1.2dB
>18dB
42.8dBm
56dBm
24V DC
5.0Amps (Typical)
-10°C to +60°C
-20°C to +70°C
<2kg (no heatsink)
Power Amplifier (12-018002) 7-Way Connector Pin-outs
Connector Pin
A1 (large pin)
A2 (large pin)
Signal
+24V DC
GND
Alarm relay common
TTL alarm/0V good
Alarm relay contact (bad)
Alarm relay contact (good)
O/C good/0V bad (TTL)
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 164 of 500
10.4.4.9. Low Power Amplifier (12-021901)
The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used
in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are
very moderately rated to provide a long trouble-free working life.
Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and
a D-Type connector for the power supply and the Current Fault Alarm Function.
There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier
should be replaced.
Low Power Amplifier (12-021901) Specification
PARAMETER
Frequency range
Bandwidth
Maximum RF output
Gain
1dB compression point
3rd order intercept point
Noise Figure
VSWR
Connectors
Supply
Temperature operational
range
storage
Weight
Size
SPECIFICATION
800-960MHz*
20MHz *
>1.0 Watt
15dB
+30.5dBm
+43dBm
<6dB
better than 1.5:1
SMA female
500mA @ 10-15V DC
-10°C to +60°C
-20°C to +70°C
0.5 kg
167x52x25mm
* Tuned to Customer’s specification
Low Power Amplifier (12-021901) 7-Way Connector Pin-outs
Connector Pin
A1 (large pin)
A2 (large pin)
Signal
+24V DC
GND
Alarm relay common
TTL alarm/0V good
Alarm relay contact (bad)
Alarm relay contact (good)
O/C good/0V bad (TTL)
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 165 of 500
10.4.4.10. Automatic Gain Control
17-001109
17-001117
17-001201
AGC Detector Assembly (Logarithmic)
AGC Detector Assembly
AGC Attenuator Assembly
The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control
(AGC) system used in 700MHz FO Hub Amplifier (55-165602); 17-001117 and 17-001201 are paired
for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink
700MHz FO Hub Amplifier (55-165602) is fitted with two differing types of Automatic Gain Control
(AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17-001117) is
fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path
The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator.
The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the
attenuator is situated in the RF path between the 1st and 2nd stages of amplification.
17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired
for use in the downlink
The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB.
The attenuation is controlled by a DC voltage which is derived from the associated detector controller
board.
Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level
being delivered by the power amplifier, and when a certain threshold is reached it begins to increase
the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading
of the power amplifier is avoided.
The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this
AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any
circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as
system degradation will occur.
The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion
of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode
rectifier, the output of which is a DC voltage proportional to the RF input signal.
This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output,
which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at
some earlier point in the RF circuit.
For small signals, below AGC onset, the output control line will be close to 12V and the AGC
attenuator will have minimum attenuation. As the signal level increases the control line voltage will
fall, increasing the attenuator value and keeping the system output level at a constant value.
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 166 of 500
AGC Specification (both types)
PARAMETER
Frequency range
Attenuation range
Attenuation steps
VSWR
RF Connectors
Power
attenuator
handling
detector/amp
Temperature
operation
range
storage
attenuator pcb
Size
detector/amp pcb
attenuator
Weight
detector/amp
SPECIFICATION
up to 1000MHz
3 to 30dB
continuously variable
better than 1.2:1
SMA female
1W
>30W (or as required)
-10°C to +60°C
-20°C to +70°C
50 x 42 x 21mm
54 x 42 x 21mm
90grams
100grams
10.4.4.11. 12V (Dual) Relay Board (20-001601)
The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is
equipped with two dual pole change-over relays with completely isolated wiring, accessed via screw
terminals. Both relays are provided with polarity protection diodes and diodes for suppressing the
transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on
neighbouring circuits. It’s common use is to amalgamate all the alarm signals into one, volts-free relay
contact pair for the main alarm system.
20-001601 Specification
PARAMETER
SPECIFICATION
Operating voltage: 8 to 30V (floating earth)
Alarm threshold: Vcc - 1.20 volt +15%
Alarm output relay contacts:
Max. switch current: 1.0Amp
Max. switch volts: 120Vdc/60VA
Max. switch power: 24W/60VA
Min. switch load: 10.0µA/10.0mV
Relay isolation: 1.5kV
Mechanical life: >2x107 operations
Relay approval: BT type 56
Connector details: Screw terminals
Temperature
operational: -10°C to +60°C
range
storage: -20°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 167 of 500
10.4.4.12. 12V (Single) Relay Board (80-008901)
The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is
equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed
via a 15 way in-line connector.
The relay is provided with polarity protection diodes and diodes for suppressing the transients caused
by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits.
It’s common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the
main alarm system.
80-008901 Specification
PARAMETER
SPECIFICATION
Operating voltage 8 to 30V (floating earth)
Alarm threshold Vcc - 1.20 volt +15%
Alarm output relay contacts:
Max. switch current 1.0Amp
Max. switch volts 120Vdc/60VA
Max. switch power 24W/60VA
Min. switch load 10.0µA/10.0mV
Relay isolation 1.5kV
Mechanical life >2x107 operations
Relay approval BT type 56
Connector details Screw terminals
Temperature
operational -10°C to +60°C
range
storage -20°C to +70°C
10.4.4.13. Dual Diode Assembly (94-100004)
The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so
that the main DC rail within the equipment can be sourced from either a mains driven PSU, or
externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty
diodes and they prevent any reverse current from flowing back to their source or the alternative
supply rail. Combining diodes such as these will also be used if the equipment is to be powered from
external back-up batteries.
10.4.4.14. DC/DC Converter 96-200047
96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts)
output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in
this case 12V. In the event of failure this unit should not be repaired, only replaced.
96-200047 Specification
PARAMETER
DC Input Voltage range
DC Output voltage
Max. current load
Temperature
Operation
range
Storage
Working Humidity
SPECIFICATION
19 to 36V
12V ± 1%
12.5Amps
-10°C to +60°C
-20°C to +85°C
20 to 90% RHNC
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 168 of 500
10.4.4.15. 12V Switch-Mode PSU (96-300052)
No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from
the power supply may be measured on its output terminals. This is typically set to 12.2V. The
adjustment potentiometer will be found close to the DC output terminals.
All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal
AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by
the operator.
96-300052 Specification
AC Input Supply
110 or 220V nominal
85 - 265V AC (absolute limits)
Frequency 47 to 63Hz
DC Output Supply
12V DC (nominal)
Voltage
10.5-13.8V (absolute limits)
Current 12.5A
Voltage
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 169 of 500
10.4.5.
University Station Splitter 1 (55-165711)
University Station Splitter 1 (55-165711) list of major components
section
10.4.5.3.
10.4.5.4.
Component
Part
05-003005
07-015102
Component Part Description
3 PORT THC 900MHz
ASYMMETRIC CPLR 10dB 800-2500MHz GA
Qty. Per
Assembly
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 170 of 500
63.0
33.0
AA
PORT JB1
PORT JB2
PORT JC1
PORT JC2
ORIGINAL ISSUE
PL
17/10/2007
PB
PL
17/10/2007
GD
24/09/07
490.00
523.0
543
PORT I1
1:2
10.0
PORT I2
3.00
PORT JA3
83.0
180.0
Document Number 80-330501HBKM – Issue A - Draft
100.00
PORT JA1
150.00
PORT JA2
55-1657111
UNIVERSITY STATION. SPLITTER 1
OUTLINE DRAWING
MATERIAL : CHASSIS - ALUMINIUM
FINISH : IRIDITE
CONNECTORS : 'N' TYPE SOCKET
PRODUCT NUMBER : 55-165711
5x HOLES SUITABLE FOR M5 FIXINGS
AA
drawing number 55-1657111
10.4.5.1. University Station Splitter 1 (55-165711) outline drawing
STTRS DOCUMENTATION
Page 171 of 500
10.4.5.2. University Station Splitter 1 (55-165711) system diagram
drawing number 55-165791
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 172 of 500
10.4.5.3. 2-Way Splitter/Combiner (05-003005)
This printed circuit based Splitter/Combiner is a device for accurately matching two or more RF
signals to single or multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and
ensuring that the VSWR and insertion losses are kept to a minimum. Any unused ports should be
terminated with an appropriate 50Ω load.
(05-003005) Specification
PARAMETER
Frequency Range
Input Ports
Output Ports
Insertion Loss
Isolation
VSWR
Power Rating as a Splitter
Power Rating as a Combiner
Mechanical
Weight
RF Connectors
Dimensions
Temperature
range:
SPECIFICATION
800 - 1000 MHz
<3.3 dB
>18 dB
1.3:1
50 Watts
5 Watts
Wall mount case
<1.5kg
‘N’ female
70mm x 63mm x 21mm
(excludes connectors)
operational -20%C to +60%C
storage -40%C to +70%C
10.4.5.4. Wideband Asymmetric Coupler (07-015102)
The purpose of Wideband Asymmetric Coupler (07-015102) is to tap off a known portion (in this case
10dB) of RF signal from transmission lines and to combine them, for example through splitter units for
different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all
ports/interfaces throughout the specified frequency range. They are known formally as directional
couplers as they couple power from the RF mainline in one direction only.
07-015102 Specification
PARAMETER
Frequency Range
Coupling Value
Main Line Insertion Loss
VSWR
Directivity
Power Rating
RF Connectors
Temperature
operation
range
storage
SPECIFICATION
800 - 2500 MHz
10 dB ± 1.0 dB
<1.6 dB
1.4:1
>18 dB
200 Watts
‘N’ female
-20°C to +60°C
-40°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 173 of 500
10.4.6.
Optical AB Switch FC/APC (98-700002)
Optical A/B Switch FC/APC (98-700002) an O.E.M. sourced Fibre Optic relay supplied as a 1U rack
mount tray. 98-700002 allows for the automatic switching between two optical inputs to provide a
common optical output. Manual selection of the input is also possible via toggle switches on the front
panel.
98-700002 Specification
PARAMETER
SPECIFICATION
Electrical Characteristics
Power Supply Voltage 100 - 240 VAC
Power Supply Frequency 50 - 60 Hz
Optical Characteristics
Operating Wavelength 1200 – 1610nm
Optical Input Range +20 dBm
Optical Insertion Loss 2.0 dB
Optical Trip Threshold/Meter Range -35 - +20 dBm
Optical Switch Speed 15ms
Backreflection Tolerance -50dB
Environmental and Physical Characteristics
Optical Connectors FC/APC
Operating Temp. Range +10 to +40°C
Storage Temp. Range -40 to +80 °C
Humidity 5 to 90 % RHNC
Weight 2.2 kg (6 lbs)
Dimensions 483 x 361 x 44mm (19.0 x 14.2 x 1.72 in.)
10.4.7.
F/O Link Subsystem (98-800001)
F/O Link Subsystem (98-800001) is an O.E.M. sourced Optical Tranceiver package containing
discreet TX and RX modules and supplied as a 1U rack mount tray
Parameter
Optical Output Power
Wavelength, peak
Frequency Response, 50 to 2.2 GHz
Input and Output VSWR
Link Gain (2)
Output Noise Floor (1)
Input 3rd Order Intercept (1)
Operating Temperature
Storage Temperature
Maximum RF Input to Transmitter
Maximum Optical Input to Receiver
A.C. Supply Voltage
Dimensions
(1)
(2)
Specification
4 mW
1310 1550 nm
± 1.5 dB
1.5:1
0 dB
-137 dBm/Hz
30 dBm
−30 to +75°C
−40 to +85°C
+20 dBm
6 mW
90 – 265 VAC
483 x 457 x 44mm (19.0 x 18 x 1.72 in.)
SFDR, Noise and IP3 specified with 5 dB optical loss.
Link Gain specified with 1 meter fiber.
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 174 of 500
11.
UNIVERSITY STATION MASTER SITE 2 (80-330552-2)
Rack C05-CR-07
55-165601
55-165602
55-165603
98-800001
98-700002
55-165507
55-165601
55-165602
55-165711
University Station Master Site 2 (80-330552-2) list of major components
Section
11.4.1.
11.4.2.
11.4.3.
11.4.4.
11.4.5.
11.4.6.
11.4.7.
Component
Part
55-165507
55-165601
55-165602
55-165603
55-165712
98-700002
98-800001
Component Part Description
Fibre Optic Splitter
800MHz FO HUB AMP + FILTERS
700MHz FO Hub Amplifier
700MHz FO HUB Splitter/Combiner
UNIVERSITY ST. SPLITTER 2
Optical A/B Switch FC/APC
F/O Link Subsystem
Qty. Per Assembly
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 175 of 500
11.1. University Station Master Site 2 (80-330552-1) Rack elevation
Drawing number 80-330552
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 176 of 500
11.2. University Station Master Site 2 (80-330552-1) system diagram
Drawing number 80-330582-1
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 177 of 500
11.3. University Station Master Site 2 (80-330552-1) Alarm Wiring Diagram
Drawing number 80-330522-1
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 178 of 500
11.4 University Station Master Site 2 (80-330552-1) Major Components
11.4.1.
Fibre Optic Splitter (55-165507)
Fibre Optic Splitter (55-165507) is a 1U rack mount tray containing an optical splitter/coupler
Fibre Optic Splitter (55-165507) List of Major Sub Components
Component
Part
98-100001
Component Part Description
Single Mode Optical Splitter/Coupler
Qty. Per
Assembly
11.4.1.1. Single Mode Optical Splitter/Coupler (98-100001)
Single Mode Optical Splitter/Couplers are used whenever it is necessary to split or combine outputs
from optical transmitters or inputs to receivers. Operators should be aware that a small insertion loss
(typically 3-4dB) is common with these type of couplers.
Single Mode Optical Splitter/Coupler (98-100001) It is an O.E.M unit featuring almost negligible
insertion loss to the F/O signal. Extreme caution should be exercised when handling these devices.
Special attention should be shown to the connectors; repair of a broken Splitter/Coupler is not
possible; replacement is the only option.
In the Fibre Optic Splitter (55-165507) in University Station Master Site 1 (80-330552-1), Single Mode
Optical Splitter/Coupler (98-100001) is used to split the optical signal from the FO TX module in F/O
Link Subsystem (98-700001) into two equal paths.
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 179 of 500
11.4.2.
Section
11.4.2.3.
11.4.2.4.
11.4.2.5.
11.4.2.6.
11.4.2.7.
11.4.2.8.
11.4.2.9.
11.4.2.10.
11.4.2.11.
11.4.2.12.
11.4.2.13.
11.4.2.14.
11.4.2.15.
800MHz FO Hub Amplifier + Filters (55-165601)
Component
Part
02-007206
07-015105
10-000701
11-005902K
11-006702K
12-018002K
12-021901
17-001109*
17-001117*
17-001201*
20-001601
80-008901
94-100004
96-200047
96-300052
Component Part Description
900MHZ 8POLE 25MHz+ B/W "SMA"
ASYMMETRIC CPLR 30dB 800-2500MHz GA
SW ATT 0-30dB 0.25W SMA F
900MHz LOW NOISE AMP WITH RELAY KIT
800-1000MHz LNA 29dB (cw RELAY) KIT
PA 800-960MHz 20W CLASS A KIT
Low Power Amplifier
AGC Detector Assembly (Logarithmic)
AGC Detector Assembly
AGC Attenuator Assembly
12V RELAY BOARD
12V RELAY PCB ASSEMBLY
STPS12045TV 60A DUAL DIODE
DC/DC Converter
JWS150-12/A PSU (COUTANT LAMBDA)
Qty. Per
Assembly
*The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control
(AGC) system used in 800MHz FO Hub Amplifier + Filters (55-165601); 17-001117 and 17-001201
are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the down link
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 180 of 500
11.4.2.1. 800MHz FO Hub Amplifier + Filters (55-165601) outline drawing
drawing number 55-1656101
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 181 of 500
11.4.2.2. 800MHz FO Hub Amplifier + Filters (55-165601) system diagram
drawing number 55-165681
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 182 of 500
11.4.2.3. Bandpass Filter (02-007206)
The bandpass filters are multi-section designs with a bandwidth dependent upon the passband
frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with
a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are
carefully aligned during manufacture in order to optimise the insertion loss, VSWR and
intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface
ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports.
Being passive devices, the bandpass filters should have an extremely long operational life and require
no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module
rather than attempt repair or re-tuning.
No adjustments should be attempted without full network sweep analysis facilities to monitor both
insertion loss and VSWR simultaneously.
02-007206 Specification
PARAMETER
Response type
Frequency range
Bandwidth
Number of sections
Insertion loss
VSWR
Connectors
Power handling
Temperature
operation
range
storage
Weight
SPECIFICATION
Chebyshev
800 - 950MHz *
25MHz *
1.2 dB
better than 1.2:1
SMA female
100W max
-20°C to +60°C
-40°C to +70°C
3 kg (typical)
*tuned to Customer's specification
11.4.2.4. Wideband Asymmetric Coupler (07-015105)
The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case
30dB) of RF signal from transmission lines and to combine them, for example through splitter units for
different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all
ports/interfaces throughout the specified frequency range. They are known formally as directional
couplers as they couple power from the RF mainline in one direction only.
07-015105 Specification
PARAMETER
Construction
Frequency
Through loss
Coupling level
Isolation
Weight
Connectors
Temperature
operation
range
storage
SPECIFICATION
Inductive air gap
800-2500MHz
0.4dB (typical)
-30dB ±0.5dB
N/A
<1.0kg
SMA, female
-20°C to +60°C
-40°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 183 of 500
11.4.2.5. Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)
In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive.
Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the
gain.
Switched Attenuator 10-000701 provides attenuation from 0 to 30dB in 2 dB steps The attenuation is
simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly
marked with the attenuation it provides, and the total attenuation in line is the sum of the values
switched in. They are designed to maintain an accurate 50Ω impedance over their operating
frequency at both input and output.
10-000701 Specification
PARAMETER
Attenuation Values
Attenuation Steps
Power Handling
Attenuation Accuracy
Frequency Range
Impedance
Connectors
VSWR
Weight
Temperature
operation
range
storage
SPECIFICATION
0-30dB
2, 4, 8 and 16dB
0.25 Watt
± 1.0 dB
DC to 1GHz
50Ω
SMA
1.3:1
0.2kg
-20°C to +60°C
-40°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 184 of 500
11.4.2.6. Low Noise Amplifier (11-005902)
The Gallium-Arsenide low noise amplifier used in the unit is a double stage, solid-state low noise
amplifier. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low
noise over a very wide dynamic range. The active devices are very moderately rated to provide a long
trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a
failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm
system which gives a volt-free relay contact type alarm that is easily integrated into any alarm system.
There is a Current Fault Alarm Function, which indicates failure of each one or both RF transistors by
a various alarm output options. The amplifier is housed in an aluminium case (Iridite NCP finish) with
SMA connectors for the RF input/output and a 9way D-type for DC and alarm outputs.
11-005902 Specification
PARAMETER
Frequency range:
Bandwidth:
Gain:
1dB compression point:
OIP3:
Input/output return loss:
Noise figure:
Power consumption:
Supply voltage:
Connectors:
Temperature
operational:
range
storage:
Size:
Weight:
SPECIFICATION
800 – 960MHz *
<170MHz
19.5dB (typical)
21dBm
33dBm
>20dB
1dB (typical)
190mA @ 24V DC
10-24V DC
SMA female
-10°C to +60°C
-40°C to +70°C
90 x 55 x 30.2mm
0.28kg
*tuned to Customer's specification
LNA ‘D’ Connector Pin-out details
Connector pin
Signal
+Ve input (10-24V)
GND
Alarm relay O/P bad
Alarm relay common
Alarm relay good
No connection
TTL voltage set
TTL alarm/0V (good)
O/C good/0V bad
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 185 of 500
11.4.2.7. Low Noise Amplifier (11-006702)
The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double
stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure
excellent linearity and extremely low noise over a very wide dynamic range. The active devices are
very moderately rated to provide a long trouble-free working life. There are no adjustments on these
amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This
amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is
easily integrated into the main alarm system.
11-006702 Specification
PARAMETER
Frequency range:
Bandwidth:
Gain:
1dB Compression point:
OIP3:
Input/Output return loss:
Noise figure:
Power consumption:
Supply voltage:
Connectors:
operational:
Temperature range:
storage:
Size:
Weight:
SPECIFICATION
800 – 1000MHz
<200MHz
29dB (typical)
20dBm
33dBm
>18dB
1.3dB (typical)
180mA @ 24V DC
10-24V DC
SMA female
-10°C to +60°C
-20°C to +70°C
90 x 55 x 30.2mm
290gms (approximately)
Low Noise Amplifier (11-006702) ‘D’ Connector Pin-out details
Connector pin
Signal
+Ve input (10-24V)
GND
Alarm RelayO/P bad
Alarm Relay common
Alarm Relay good
No connection
TTL voltage set
TTL alarm/0V (good)
O/C good/0V bad
9-Way Pin-Out Graphical Representation
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 186 of 500
11.4.2.8. Power Amplifier (12-018002)
This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced
configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It
has built in a Current Fault Alarm Function.
Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and
a D-Type connector for the power supply and the Current Fault Alarm Function.
12-018002 Specification
PARAMETER
Frequency range:
Small signal gain:
Gain flatness:
I/O Return loss:
1dB compression point:
OIP3:
Supply voltage:
Supply current:
Temperature
operational:
range
storage:
Weight:
SPECIFICATION
800-960MHz
30dB
±1.2dB
>18dB
42.8dBm
56dBm
24V DC
5.0Amps (Typical)
-10°C to +60°C
-20°C to +70°C
<2kg (no heatsink)
Power Amplifier (12-018002) 7-Way Connector Pin-outs
Connector Pin
A1 (large pin)
A2 (large pin)
Signal
+24V DC
GND
Alarm relay common
TTL alarm/0V good
Alarm relay contact (bad)
Alarm relay contact (good)
O/C good/0V bad (TTL)
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 187 of 500
11.4.2.9. Low Power Amplifier (12-021901)
The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used
in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are
very moderately rated to provide a long trouble-free working life.
Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and
a D-Type connector for the power supply and the Current Fault Alarm Function.
There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier
should be replaced.
Low Power Amplifier (12-021901) Specification
PARAMETER
Frequency range
Bandwidth
Maximum RF output
Gain
1dB compression point
3rd order intercept point
Noise Figure
VSWR
Connectors
Supply
Temperature operational
range
storage
Weight
Size
SPECIFICATION
800-960MHz*
20MHz *
>1.0 Watt
15dB
+30.5dBm
+43dBm
<6dB
better than 1.5:1
SMA female
500mA @ 10-15V DC
-10°C to +60°C
-20°C to +70°C
0.5 kg
167x52x25mm
* Tuned to Customer’s specification
Low Power Amplifier (12-021901) 7-Way Connector Pin-outs
Connector Pin
A1 (large pin)
A2 (large pin)
Signal
+24V DC
GND
Alarm relay common
TTL alarm/0V good
Alarm relay contact (bad)
Alarm relay contact (good)
O/C good/0V bad (TTL)
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 188 of 500
11.4.2.10. Automatic Gain Control
17-001109
17-001117
17-001201
AGC Detector Assembly (Logarithmic)
AGC Detector Assembly
AGC Attenuator Assembly
The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control
(AGC) system used in 800MHz FO Hub Amplifier + Filters (55-165601); 17-001117 and 17-001201
are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the down link
800MHz FO Hub Amplifier + Filters (55-165601) is fitted with two differing types of Automatic Gain
Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the
downlink path
The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator.
The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the
attenuator is situated in the RF path between the 1st and 2nd stages of amplification.
17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired
for use in the down link
The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB.
The attenuation is controlled by a DC voltage which is derived from the associated detector controller
board.
Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level
being delivered by the power amplifier, and when a certain threshold is reached it begins to increase
the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading
of the power amplifier is avoided.
The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this
AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any
circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as
system degradation will occur.
The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion
of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode
rectifier, the output of which is a DC voltage proportional to the RF input signal.
This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output,
which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at
some earlier point in the RF circuit.
For small signals, below AGC onset, the output control line will be close to 12V and the AGC
attenuator will have minimum attenuation. As the signal level increases the control line voltage will
fall, increasing the attenuator value and keeping the system output level at a constant value.
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 189 of 500
AGC Specification (both types)
PARAMETER
Frequency range
Attenuation range
Attenuation steps
VSWR
RF Connectors
Power
attenuator
handling
detector/amp
Temperature
operation
range
storage
attenuator pcb
Size
detector/amp pcb
attenuator
Weight
detector/amp
SPECIFICATION
up to 1000MHz
3 to 30dB
continuously variable
better than 1.2:1
SMA female
1W
>30W (or as required)
-10°C to +60°C
-20°C to +70°C
50 x 42 x 21mm
54 x 42 x 21mm
90grams
100grams
11.4.2.11. 12V (Dual) Relay Board (20-001601)
The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is
equipped with two dual pole change-over relays with completely isolated wiring, accessed via screw
terminals. Both relays are provided with polarity protection diodes and diodes for suppressing the
transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on
neighbouring circuits. It’s common use is to amalgamate all the alarm signals into one, volts-free relay
contact pair for the main alarm system.
20-001601 Specification
PARAMETER
SPECIFICATION
Operating voltage: 8 to 30V (floating earth)
Alarm threshold: Vcc - 1.20 volt +15%
Alarm output relay contacts:
Max. switch current: 1.0Amp
Max. switch volts: 120Vdc/60VA
Max. switch power: 24W/60VA
Min. switch load: 10.0µA/10.0mV
Relay isolation: 1.5kV
Mechanical life: >2x107 operations
Relay approval: BT type 56
Connector details: Screw terminals
Temperature
operational: -10°C to +60°C
range
storage: -20°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 190 of 500
11.4.2.12. 12V (Single) Relay Board (80-008901)
The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is
equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed
via a 15 way in-line connector.
The relay is provided with polarity protection diodes and diodes for suppressing the transients caused
by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits.
It’s common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the
main alarm system.
80-008901 Specification
PARAMETER
SPECIFICATION
Operating voltage 8 to 30V (floating earth)
Alarm threshold Vcc - 1.20 volt +15%
Alarm output relay contacts:
Max. switch current 1.0Amp
Max. switch volts 120Vdc/60VA
Max. switch power 24W/60VA
Min. switch load 10.0µA/10.0mV
Relay isolation 1.5kV
Mechanical life >2x107 operations
Relay approval BT type 56
Connector details Screw terminals
Temperature
operational -10°C to +60°C
range
storage -20°C to +70°C
11.4.2.13. Dual Diode Assembly (94-100004)
The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so
that the main DC rail within the equipment can be sourced from either a mains driven PSU, or
externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty
diodes and they prevent any reverse current from flowing back to their source or the alternative
supply rail. Combining diodes such as these will also be used if the equipment is to be powered from
external back-up batteries.
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 191 of 500
11.4.2.14. DC/DC Converter 96-200047
96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts)
output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in
this case 12V. In the event of failure this unit should not be repaired, only replaced.
96-200047 Specification
PARAMETER
DC Input Voltage range
DC Output voltage
Max. current load
Temperature
Operation
range
Storage
Working Humidity
SPECIFICATION
19 to 36V
12V ± 1%
12.5Amps
-10°C to +60°C
-20°C to +85°C
20 to 90% RHNC
11.4.2.15. 12V Switch-Mode PSU (96-300052)
No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from
the power supply may be measured on its output terminals. This is typically set to 12.2V. The
adjustment potentiometer will be found close to the DC output terminals.
All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal
AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by
the operator.
96-300052 Specification
AC Input Supply
110 or 220V nominal
85 - 265V AC (absolute limits)
Frequency 47 to 63Hz
DC Output Supply
12V DC (nominal)
Voltage
10.5-13.8V (absolute limits)
Current 12.5A
Voltage
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 192 of 500
11.4.3.
700MHz FO Hub Amplifier (55-165602)
700MHz FO Hub Amplifier (55-165602) List of major components
Section
11.4.3.3.
11.4.3.4.
11.4.3.5.
11.4.3.6.
11.4.3.7.
11.4.3.8.
11.4.3.9.
11.4.3.10.
11.4.3.11.
11.4.3.12.
11.4.3.13.
11.4.3.14.
11.4.3.15.
Component
Part
02-007206
07-015105
10-000701
11-005902
11-006702
12-018002
12-021901
17-001109
17-001117
17-001201
20-001601
80-008901
94-100004
96-200047
96-300052
Component Part Description
900MHZ 8POLE 25MHz+ B/W "SMA"
ASYMMETRIC CPLR 30dB 800-2500MHz GA
SW ATT 0-30dB 0.25W SMA F
900MHz LOW NOISE AMP WITH RELAY KIT
800-1000MHz LNA 29dB (cw RELAY) KIT
PA 800-960MHz 20W CLASS A KIT
Low Power Amplifier
AGC Detector Assembly (Logarithmic)
AGC Detector Assembly
AGC Attenuator Assembly
12V RELAY BOARD
12V RELAY PCB ASSEMBLY
STPS12045TV 60A DUAL DIODE
DC/DC Converter
JWS150-12/A PSU (COUTANT LAMBDA)
Qty. Per
Assembly
*The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control
(AGC) system used in 700MHz FO Hub Amplifier (55-165602); 17-001117 and 17-001201 are paired
for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 193 of 500
11.4.3.1. 700MHz FO Hub Amplifier (55-165602) outline drawing
drawing number 55-1656102
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 194 of 500
11.4.3.2. 700MHz FO Hub Amplifier (55-165602) system diagram
drawing number 55-165682
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 195 of 500
11.4.3.3. Bandpass Filter (02-007206)
The bandpass filters are multi-section designs with a bandwidth dependent upon the passband
frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with
a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are
carefully aligned during manufacture in order to optimise the insertion loss, VSWR and
intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface
ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports.
Being passive devices, the bandpass filters should have an extremely long operational life and require
no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module
rather than attempt repair or re-tuning.
No adjustments should be attempted without full network sweep analysis facilities to monitor both
insertion loss and VSWR simultaneously.
02-007206 Specification
PARAMETER
Response type
Frequency range
Bandwidth
Number of sections
Insertion loss
VSWR
Connectors
Power handling
Temperature
operation
range
storage
Weight
SPECIFICATION
Chebyshev
800 - 950MHz *
25MHz *
1.2 dB
better than 1.2:1
SMA female
100W max
-20°C to +60°C
-40°C to +70°C
3 kg (typical)
*tuned to Customer's specification
11.4.3.4. Wideband Asymmetric Coupler (07-015105)
The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case
30dB) of RF signal from transmission lines and to combine them, for example through splitter units for
different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all
ports/interfaces throughout the specified frequency range. They are known formally as directional
couplers as they couple power from the RF mainline in one direction only.
07-015105 Specification
PARAMETER
Construction
Frequency
Through loss
Coupling leve:
Isolation
Weight
Connectors
Temperature
operation
range
storage
SPECIFICATION
Inductive air gap
800-2500MHz
0.4dB (typical)
-30dB ±0.5dB
N/A
<1.0kg
SMA, female
-20°C to +60°C
-40°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 196 of 500
11.4.3.5. Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)
In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive.
Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the
gain.
Switched Attenuator 10-000701 provides attenuation from 0 to 30dB in 2 dB steps The attenuation is
simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly
marked with the attenuation it provides, and the total attenuation in line is the sum of the values
switched in. They are designed to maintain an accurate 50Ω impedance over their operating
frequency at both input and output.
10-000701 Specification
PARAMETER
Attenuation Values
Attenuation Steps
Power Handling
Attenuation Accuracy
Frequency Range
Impedance
Connectors
VSWR
Weight
Temperature
operation
range
storage
SPECIFICATION
0-30dB
2, 4, 8 and 16dB
0.25 Watt
± 1.0 dB
DC to 1GHz
50Ω
SMA
1.3:1
0.2kg
-20°C to +60°C
-40°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 197 of 500
11.4.3.6. Low Noise Amplifier (11-005902)
The Gallium-Arsenide low noise amplifier used in the unit is a double stage, solid-state low noise
amplifier. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low
noise over a very wide dynamic range. The active devices are very moderately rated to provide a long
trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a
failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm
system which gives a volt-free relay contact type alarm that is easily integrated into any alarm system.
There is a Current Fault Alarm Function, which indicates failure of each one or both RF transistors by
a various alarm output options. The amplifier is housed in an aluminium case (Iridite NCP finish) with
SMA connectors for the RF input/output and a 9way D-type for DC and alarm outputs.
11-005902 Specification
PARAMETER
Frequency range:
Bandwidth:
Gain:
1dB compression point:
OIP3:
Input/output return loss:
Noise figure:
Power consumption:
Supply voltage:
Connectors:
Temperature
operational:
range
storage:
Size:
Weight:
SPECIFICATION
800 – 960MHz *
<170MHz
19.5dB (typical)
21dBm
33dBm
>20dB
1dB (typical)
190mA @ 24V DC
10-24V DC
SMA female
-10°C to +60°C
-40°C to +70°C
90 x 55 x 30.2mm
0.28kg
*tuned to Customer's specification
LNA ‘D’ Connector Pin-out details
Connector pin
Signal
+Ve input (10-24V)
GND
Alarm relay O/P bad
Alarm relay common
Alarm relay good
No connection
TTL voltage set
TTL alarm/0V (good)
O/C good/0V bad
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 198 of 500
11.4.3.7. Low Noise Amplifier (11-006702)
The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double
stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure
excellent linearity and extremely low noise over a very wide dynamic range. The active devices are
very moderately rated to provide a long trouble-free working life. There are no adjustments on these
amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This
amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is
easily integrated into the main alarm system.
11-006702 Specification
PARAMETER
Frequency range:
Bandwidth:
Gain:
1dB Compression point:
OIP3:
Input/Output return loss:
Noise figure:
Power consumption:
Supply voltage:
Connectors:
operational:
Temperature range:
storage:
Size:
Weight:
SPECIFICATION
800 – 1000MHz
<200MHz
29dB (typical)
20dBm
33dBm
>18dB
1.3dB (typical)
180mA @ 24V DC
10-24V DC
SMA female
-10°C to +60°C
-20°C to +70°C
90 x 55 x 30.2mm
290gms (approximately)
Low Noise Amplifier (11-006702) ‘D’ Connector Pin-out details
Connector pin
Signal
+Ve input (10-24V)
GND
Alarm RelayO/P bad
Alarm Relay common
Alarm Relay good
No connection
TTL voltage set
TTL alarm/0V (good)
O/C good/0V bad
9-Way Pin-Out Graphical Representation
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 199 of 500
11.4.3.8. Power Amplifier (12-018002)
This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced
configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It
has built in a Current Fault Alarm Function.
Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and
a D-Type connector for the power supply and the Current Fault Alarm Function.
12-018002 Specification
PARAMETER
Frequency range:
Small signal gain:
Gain flatness:
I/O Return loss:
1dB compression point:
OIP3:
Supply voltage:
Supply current:
Temperature
operational:
range
storage:
Weight:
SPECIFICATION
800-960MHz
30dB
±1.2dB
>18dB
42.8dBm
56dBm
24V DC
5.0Amps (Typical)
-10°C to +60°C
-20°C to +70°C
<2kg (no heatsink)
Power Amplifier (12-018002) 7-Way Connector Pin-outs
Connector Pin
A1 (large pin)
A2 (large pin)
Signal
+24V DC
GND
Alarm relay common
TTL alarm/0V good
Alarm relay contact (bad)
Alarm relay contact (good)
O/C good/0V bad (TTL)
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 200 of 500
111.4.3.9. Low Power Amplifier (12-021901)
The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used
in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are
very moderately rated to provide a long trouble-free working life.
Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and
a D-Type connector for the power supply and the Current Fault Alarm Function.
There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier
should be replaced.
Low Power Amplifier (12-021901) Specification
PARAMETER
Frequency range
Bandwidth
Maximum RF output
Gain
1dB compression point
3rd order intercept point
Noise Figure
VSWR
Connectors
Supply
Temperature operational
range
storage
Weight
Size
SPECIFICATION
800-960MHz*
20MHz *
>1.0 Watt
15dB
+30.5dBm
+43dBm
<6dB
better than 1.5:1
SMA female
500mA @ 10-15V DC
-10°C to +60°C
-20°C to +70°C
0.5 kg
167x52x25mm
* Tuned to Customer’s specification
Low Power Amplifier (12-021901) 7-Way Connector Pin-outs
Connector Pin
A1 (large pin)
A2 (large pin)
Signal
+24V DC
GND
Alarm relay common
TTL alarm/0V good
Alarm relay contact (bad)
Alarm relay contact (good)
O/C good/0V bad (TTL)
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 201 of 500
11.4.3.10. Automatic Gain Control
17-001109
17-001117
17-001201
AGC Detector Assembly (Logarithmic)
AGC Detector Assembly
AGC Attenuator Assembly
The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control
(AGC) system used in 700MHz FO Hub Amplifier (55-165602); 17-001117 and 17-001201 are paired
for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink
700MHz FO Hub Amplifier (55-165602) is fitted with two differing types of Automatic Gain Control
(AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17-001117) is
fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path
The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator.
The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the
attenuator is situated in the RF path between the 1st and 2nd stages of amplification.
17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired
for use in the downlink
The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB.
The attenuation is controlled by a DC voltage which is derived from the associated detector controller
board.
Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level
being delivered by the power amplifier, and when a certain threshold is reached it begins to increase
the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading
of the power amplifier is avoided.
The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this
AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any
circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as
system degradation will occur.
The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion
of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode
rectifier, the output of which is a DC voltage proportional to the RF input signal.
This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output,
which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at
some earlier point in the RF circuit.
For small signals, below AGC onset, the output control line will be close to 12V and the AGC
attenuator will have minimum attenuation. As the signal level increases the control line voltage will
fall, increasing the attenuator value and keeping the system output level at a constant value.
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 202 of 500
AGC Specification (both types)
PARAMETER
Frequency range
Attenuation range
Attenuation steps
VSWR
RF Connectors
Power
attenuator
handling
detector/amp
Temperature
operation
range
storage
attenuator pcb
Size
detector/amp pcb
attenuator
Weight
detector/amp
SPECIFICATION
up to 1000MHz
3 to 30dB
continuously variable
better than 1.2:1
SMA female
1W
>30W (or as required)
-10°C to +60°C
-20°C to +70°C
50 x 42 x 21mm
54 x 42 x 21mm
90grams
100grams
11.4.3.11. 12V (Dual) Relay Board (20-001601)
The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is
equipped with two dual pole change-over relays with completely isolated wiring, accessed via screw
terminals. Both relays are provided with polarity protection diodes and diodes for suppressing the
transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on
neighbouring circuits. It’s common use is to amalgamate all the alarm signals into one, volts-free relay
contact pair for the main alarm system.
20-001601 Specification
PARAMETER
SPECIFICATION
Operating voltage: 8 to 30V (floating earth)
Alarm threshold: Vcc - 1.20 volt +15%
Alarm output relay contacts:
Max. switch current: 1.0Amp
Max. switch volts: 120Vdc/60VA
Max. switch power: 24W/60VA
Min. switch load: 10.0µA/10.0mV
Relay isolation: 1.5kV
Mechanical life: >2x107 operations
Relay approval: BT type 56
Connector details: Screw terminals
Temperature
operational: -10°C to +60°C
range
storage: -20°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 203 of 500
11.4.3.12. 12V (Single) Relay Board (80-008901)
The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is
equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed
via a 15 way in-line connector.
The relay is provided with polarity protection diodes and diodes for suppressing the transients caused
by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits.
It’s common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the
main alarm system.
80-008901 Specification
PARAMETER
SPECIFICATION
Operating voltage 8 to 30V (floating earth)
Alarm threshold Vcc - 1.20 volt +15%
Alarm output relay contacts:
Max. switch current 1.0Amp
Max. switch volts 120Vdc/60VA
Max. switch power 24W/60VA
Min. switch load 10.0µA/10.0mV
Relay isolation 1.5kV
Mechanical life >2x107 operations
Relay approval BT type 56
Connector details Screw terminals
Temperature
operational -10°C to +60°C
range
storage -20°C to +70°C
11.4.3.13. Dual Diode Assembly (94-100004)
The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so
that the main DC rail within the equipment can be sourced from either a mains driven PSU, or
externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty
diodes and they prevent any reverse current from flowing back to their source or the alternative
supply rail. Combining diodes such as these will also be used if the equipment is to be powered from
external back-up batteries.
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 204 of 500
11.4.3.14. DC/DC Converter 96-200047
96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts)
output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in
this case 12V. In the event of failure this unit should not be repaired, only replaced.
96-200047 Specification
PARAMETER
DC Input Voltage range
DC Output voltage
Max. current load
Temperature
Operation
range
Storage
Working Humidity
SPECIFICATION
19 to 36V
12V ± 1%
12.5Amps
-10°C to +60°C
-20°C to +85°C
20 to 90% RHNC
11.4.3.15. 12V Switch-Mode PSU (96-300052)
No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from
the power supply may be measured on its output terminals. This is typically set to 12.2V. The
adjustment potentiometer will be found close to the DC output terminals.
All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal
AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by
the operator.
96-300052 Specification
AC Input Supply
110 or 220V nominal
85 - 265V AC (absolute limits)
Frequency 47 to 63Hz
DC Output Supply
12V DC (nominal)
Voltage
10.5-13.8V (absolute limits)
Current 12.5A
Voltage
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 205 of 500
11.4.4.
700MHz FO HUB Splitter/Combiner (55-165603)
700MHz FO HUB Splitter/Combiner (55-165603) list of major components
section
Component
Part
11.4.4.2. 05-003302
Component Part Description
4 WAY SPLITTER GSM 900MHz
Qty. Per
Assembly
11.4.4.1.
700MHz FO HUB Splitter/Combiner (55-165603) system diagram
drawing number 55-165683
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 206 of 500
11.4.4.2. Four Way Splitter/Combiner (05-003302)
The Splitter/Combiner used is a device for accurately matching two or more RF signals to single or
multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the
VSWR and insertion losses are kept to a minimum. Any unused ports should be terminated with an
appropriate 50Ω load.
Four Way Splitter (05-003302) Specification
PARAMETER
Frequency range
Bandwidth
Rejection
Insertion loss
Connectors
Weight
Temperature operational
range
storage
SPECIFICATION
700-980MHz
180MHz
>14dB
<7.0dB (in band)
N type, female
<1.5kg
-20%C to +60%C
-40%C to +70%C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 207 of 500
11.4.5.
UNIVERSITY ST. SPLITTER 2 (55-165712)
UNIVERSITY ST. SPLITTER 2 (55-165712) List of major Components
section
11.4.5.3.
Component
Parts
07-015102
Component Part Description
Qty. Per
Assembly
ASYMMETRIC CPLR 10dB 800-2500MHz GA
11.4.5.1. University Station Splitter 2 (55-165712) outline drawing
drawing number 55-1657112
483
463.0
PORT JA2
PORT JB3
PORT JB2
180.0
100.00
150.00
PORT JA1
PORT JB1
10.0
420.00
65
PORT I1
3.00
83.0
PORT I2
5x FIXING HOLES SUITABLE
FOR M5 FIXINGS
PRODUCT NUMBER : 55-165712
MATERIAL: CHASSIS - ALUMINIUM
FINISH : IRIDITE
CONNECTORS : 'N' TYPE SOCKETS
AA
PL
ORIGINAL ISSUE
UNIVERSITY STATION. SPLITTER 2
20/09/07
OUTLINE DRAWING
PB
18/10/2007
GD
18/10/2007
1:2
55-1657112
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 208 of 500
PL
11.4.5.2. University Station Splitter 2 (55-165712) system diagram
drawing number 55-165792
11.4.5.3.
Wideband Asymmetric Coupler (07-015102)
The purpose of Wideband Asymmetric Coupler (07-015102) is to tap off a known portion (in this case
10dB) of RF signal from transmission lines and to combine them, for example through splitter units for
different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all
ports/interfaces throughout the specified frequency range. They are known formally as directional
couplers as they couple power from the RF mainline in one direction only.
07-015102 Specification
PARAMETER
Frequency Range
Coupling Value
Main Line Insertion Loss
VSWR
Directivity
Power Rating
RF Connectors
Temperature
operation
range
storage
SPECIFICATION
800 - 2500 MHz
10 dB ± 1.0 dB
<1.6 dB
1.4:1
>18 dB
200 Watts
‘N’ female
-20°C to +60°C
-40°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 209 of 500
11.4.6.
Optical AB Switch FC/APC (98-700002)
Optical A/B Switch FC/APC (98-700002) an O.E.M. sourced Fibre Optic relay supplied as a 1U rack
mount tray. 98-700002 allows for the automatic switching between two optical inputs to provide a
common optical output. Manual selection of the input is also possible via toggle switches on the front
panel.
98-700002 Specification
PARAMETER
SPECIFICATION
Electrical Characteristics
Power Supply Voltage 100 - 240 VAC
Power Supply Frequency 50 - 60 Hz
Optical Characteristics
Operating Wavelength 1200 – 1610nm
Optical Input Range +20 dBm
Optical Insertion Loss 2.0 dB
Optical Trip Threshold/Meter Range -35 - +20 dBm
Optical Switch Speed 15ms
Backreflection Tolerance -50dB
Environmental and Physical Characteristics
Optical Connectors FC/APC
Operating Temp. Range +10 to +40°C
Storage Temp. Range -40 to +80 °C
Humidity 5 to 90 % RHNC
Weight 2.2 kg (6 lbs)
Dimensions 483 x 361 x 44mm (19.0 x 14.2 x 1.72 in.)
11.4.7.
F/O Link Subsystem (98-800001)
F/O Link Subsystem (98-800001) is an O.E.M. sourced Optical Tranceiver package containing
discreet TX and RX modules and supplied as a 1U rack mount tray
Parameter
Optical Output Power
Wavelength, peak
Frequency Response, 50 to 2.2 GHz
Input and Output VSWR
Link Gain (2)
Output Noise Floor (1)
Input 3rd Order Intercept (1)
Operating Temperature
Storage Temperature
Maximum RF Input to Transmitter
Maximum Optical Input to Receiver
A.C. Supply Voltage
Dimensions
(1)
(2)
Specification
4 mW
1310 1550 nm
± 1.5 dB
1.5:1
0 dB
-137 dBm/Hz
30 dBm
−30 to +75°C
−40 to +85°C
+20 dBm
6 mW
90 – 265 VAC
483 x 457 x 44mm (19.0 x 18 x 1.72 in.)
SFDR, Noise and IP3 specified with 5 dB optical loss.
Link Gain specified with 1 meter fiber.
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 210 of 500
12.
WESTLAKE STATION LINE AMPLIFIER (80-330553)
rack number C03-CR-06
Westlake Station Line Amplifier (80-330553) list of major components
Section
12.4.1.
12.4.2.
12.4.3.
Component
Part
55-165703
55-165704
55-165707
Component Part Description
800MHz LINE AMP + FILTERS (INT AMP)
700MHz LINE AMP + FILTERS (INT AMP)
WESTLAKE ST. SPLITTER
Qty. Per
Assembly
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 211 of 500
12.1. Westlake Station Line Amplifier (80-330553) rack elevation
drawing number 80-330553
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 212 of 500
12.2. Westlake Station Line Amplifier (80-330553) system diagram
drawing number 80-330583
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 213 of 500
12.3. Westlake Station Line Amplifier (80-330553) alarm wiring diagram
drawing number 80-330523
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 214 of 500
12.4. Westlake Station Line Amplifier (80-330553) Sub Components
12.4.1.
800MHz Line Amplifier (55-165703)
800MHz Line Amplifier (55-165703) List of Major Components
Section
12.4.1.3.
12.4.1.4.
12.4.1.5.
12.4.1.6.
12.4.1.7.
12.4.1.8.
12.4.1.9.
12.4.1.10.
12.4.1.11.
12.4.1.12.
12.4.1.13.
12.4.1.14.
Component
Part
02-007206
07-015105
10-000901
11-006702
12-018002
12-021901
17-001109*
17-001117*
17-001201*
20-001601
80-008901
94-100004
96-200047
96-300052
Component Part Description
Bandpass Filter
Wideband Asymmetric Coupler
Switched Attenuator 0.25W, 0 - 15dB
Low Noise Amplifier
Power Amplifier (20W 800MHz )
Low Power Amplifier
AGC Detector Assembly (Logarithmic)
AGC Detector Assembly
AGC Attenuator Assembly
12V (Dual) Relay Board
12V (Single) Relay Board
Dual Diode Assembly
DC/DC Converter
12V Switch-Mode PSU
Qty. Per
Assembly
*The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control
(AGC) system used in 800MHz Line Amplifier (55-165703); 17-001117 and 17-001201 are paired for
use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 215 of 500
12.4.1.1. 800MHz Line Amplifier (55-165703) Outline Drawing
Drawing number 55-1657103
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 216 of 500
12.4.1.2. 800MHz Line Amplifier (55-165703) System Diagram
Drawing number 55-165783
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 217 of 500
12.4.1.3. Bandpass Filter (02-007206)
The bandpass filters are multi-section designs with a bandwidth dependent upon the passband
frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with
a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are
carefully aligned during manufacture in order to optimise the insertion loss, VSWR and
intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface
ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports.
Being passive devices, the bandpass filters should have an extremely long operational life and require
no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module
rather than attempt repair or re-tuning.
No adjustments should be attempted without full network sweep analysis facilities to monitor both
insertion loss and VSWR simultaneously.
02-007206 Specification
PARAMETER
Response type
Frequency range
Bandwidth
Number of sections
Insertion loss
VSWR
Connectors
Power handling
Temperature
operation
range
storage
Weight
SPECIFICATION
Chebyshev
800 - 950MHz *
25MHz *
1.2 dB
better than 1.2:1
SMA female
100W max
-20°C to +60°C
-40°C to +70°C
3 kg (typical)
*tuned to Customer's specification
12.4.1.4. Wideband Asymmetric Coupler (07-015105)
The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case
30dB) of RF signal from transmission lines and to combine them, for example through splitter units for
different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all
ports/interfaces throughout the specified frequency range. They are known formally as directional
couplers as they couple power from the RF mainline in one direction only.
07-015105 Specification
PARAMETER
Construction
Frequency
Through loss
Coupling level
Isolation
Weight
Connectors
Temperature
operation
range
storage
SPECIFICATION
Inductive air gap
800-2500MHz
0.4dB (typical)
-30dB ±0.5dB
N/A
<1.0kg
SMA, female
-20°C to +60°C
-40°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 218 of 500
12.4.1.5. Switched Attenuator 0.25W, 0 - 15dB (10-000901)
In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive.
Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the
gain.
10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the
four miniature toggle switches on the top of each unit. Each switch is clearly marked with the
attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are
designed to maintain an accurate 50Ω impedance over their operating frequency at both input and
output.
10-000901 Specification
PARAMETER
Attenuation Values
Attenuation Steps
Power Handling
Attenuation Accuracy
Frequency Range
Impedance
Connectors
VSWR
Weigh
Temperature operation
range
storage
SPECIFICATION
0-15dB
1, 2, 4 and 8dB
0.25 Watt
± 1.0 dB
DC to 1GHz
50Ω
SMA
1.3:1
0.2kg
-20°C to +60°C
-40°C to +70°C
12.4.1.6. Low Noise Amplifier (11-006702)
The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double
stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure
excellent linearity and extremely low noise over a very wide dynamic range. The active devices are
very moderately rated to provide a long trouble-free working life. There are no adjustments on these
amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This
amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is
easily integrated into the main alarm system.
11-006702 Specification
PARAMETER
Frequency range:
Bandwidth:
Gain:
1dB Compression point:
OIP3:
Input/Output return loss:
Noise figure:
Power consumption:
Supply voltage:
Connectors:
operational:
Temperature range:
storage:
Size:
Weight:
SPECIFICATION
800 – 1000MHz
<200MHz
29dB (typical)
20dBm
33dBm
>18dB
1.3dB (typical)
180mA @ 24V DC
10-24V DC
SMA female
-10°C to +60°C
-20°C to +70°C
90 x 55 x 30.2mm
290gms (approximately)
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 219 of 500
Low Noise Amplifier (11-006702) ‘D’ Connector Pin-out details
Connector pin
Signal
+Ve input (10-24V)
GND
Alarm RelayO/P bad
Alarm Relay common
Alarm Relay good
No connection
TTL voltage set
TTL alarm/0V (good)
O/C good/0V bad
9-Way Pin-Out Graphical Representation
12.4.1.7. Power Amplifier (12-018002)
This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced
configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It
has built in a Current Fault Alarm Function.
Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and
a D-Type connector for the power supply and the Current Fault Alarm Function.
12-018002 Specification
PARAMETER
Frequency range:
Small signal gain:
Gain flatness:
I/O Return loss:
1dB compression point:
OIP3:
Supply voltage:
Supply current:
Temperature
operational:
range
storage:
Weight:
SPECIFICATION
800-960MHz
30dB
±1.2dB
>18dB
42.8dBm
56dBm
24V DC
5.0Amps (Typical)
-10°C to +60°C
-20°C to +70°C
<2kg (no heatsink)
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 220 of 500
Power Amplifier (12-018002) 7-Way Connector Pin-outs
Connector Pin
A1 (large pin)
A2 (large pin)
Signal
+24V DC
GND
Alarm relay common
TTL alarm/0V good
Alarm relay contact (bad)
Alarm relay contact (good)
O/C good/0V bad (TTL)
12.4.1.8. Low Power Amplifier (12-021901)
The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used
in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are
very moderately rated to provide a long trouble-free working life.
Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and
a D-Type connector for the power supply and the Current Fault Alarm Function.
There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier
should be replaced.
Low Power Amplifier (12-021901) Specification
PARAMETER
Frequency range
Bandwidth
Maximum RF output
Gain
1dB compression point
3rd order intercept point
Noise Figure
VSWR
Connectors
Supply
Temperature operational
range
storage
Weight
Size
SPECIFICATION
800-960MHz*
20MHz *
>1.0 Watt
15dB
+30.5dBm
+43dBm
<6dB
better than 1.5:1
SMA female
500mA @ 10-15V DC
-10°C to +60°C
-20°C to +70°C
0.5 kg
167x52x25mm
* Tuned to Customer’s specification
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 221 of 500
Low Power Amplifier (12-021901) 7-Way Connector Pin-outs
Connector Pin
A1 (large pin)
A2 (large pin)
Signal
+24V DC
GND
Alarm relay common
TTL alarm/0V good
Alarm relay contact (bad)
Alarm relay contact (good)
O/C good/0V bad (TTL)
12.4.1.9. Automatic Gain Control
17-001109
17-001117
17-001201
AGC Detector Assembly (Logarithmic)
AGC Detector Assembly
AGC Attenuator Assembly
The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control
(AGC) system used in 800MHz Line Amplifier (55-165703); 17-001117 and 17-001201 are paired for
use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink
800MHz Line Amplifier (55-165703) is fitted with two differing types of Automatic Gain Control (AGC)
system, one linear, and one logarithmic. The AGC with logarithmic detector (17-001117) is fitted in the
uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path
The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator.
The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the
attenuator is situated in the RF path between the 1st and 2nd stages of amplification.
17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired
for use in the downlink
The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB.
The attenuation is controlled by a DC voltage which is derived from the associated detector controller
board.
Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level
being delivered by the power amplifier, and when a certain threshold is reached it begins to increase
the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading
of the power amplifier is avoided.
The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this
AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any
circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as
system degradation will occur.
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 222 of 500
The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion
of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode
rectifier, the output of which is a DC voltage proportional to the RF input signal.
This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output,
which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at
some earlier point in the RF circuit.
For small signals, below AGC onset, the output control line will be close to 12V and the AGC
attenuator will have minimum attenuation. As the signal level increases the control line voltage will
fall, increasing the attenuator value and keeping the system output level at a constant value.
AGC Specification (both types)
PARAMETER
Frequency range
Attenuation range
Attenuation steps
VSWR
RF Connectors
Power
attenuator
handling
detector/amp
Temperature
operation
range
storage
attenuator pcb
Size
detector/amp pcb
attenuator
Weight
detector/amp
SPECIFICATION
up to 1000MHz
3 to 30dB
continuously variable
better than 1.2:1
SMA female
1W
>30W (or as required)
-10°C to +60°C
-20°C to +70°C
50 x 42 x 21mm
54 x 42 x 21mm
90grams
100grams
12.4.1.10. 12V (Dual) Relay Board (20-001601)
The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is
equipped with two dual pole change-over relays with completely isolated wiring, accessed via screw
terminals. Both relays are provided with polarity protection diodes and diodes for suppressing the
transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on
neighbouring circuits. It’s common use is to amalgamate all the alarm signals into one, volts-free relay
contact pair for the main alarm system.
20-001601 Specification
PARAMETER
SPECIFICATION
Operating voltage: 8 to 30V (floating earth)
Alarm threshold: Vcc - 1.20 volt +15%
Alarm output relay contacts:
Max. switch current: 1.0Amp
Max. switch volts: 120Vdc/60VA
Max. switch power: 24W/60VA
Min. switch load: 10.0µA/10.0mV
Relay isolation: 1.5kV
Mechanical life: >2x107 operations
Relay approval: BT type 56
Connector details: Screw terminals
Temperature
operational: -10°C to +60°C
range
storage: -20°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 223 of 500
12.4.1.11. 12V (Single) Relay Board (80-008901)
The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is
equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed
via a 15 way in-line connector.
The relay is provided with polarity protection diodes and diodes for suppressing the transients caused
by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits.
It’s common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the
main alarm system.
80-008901 Specification
PARAMETER
SPECIFICATION
Operating voltage 8 to 30V (floating earth)
Alarm threshold Vcc - 1.20 volt +15%
Alarm output relay contacts:
Max. switch current 1.0Amp
Max. switch volts 120Vdc/60VA
Max. switch power 24W/60VA
Min. switch load 10.0µA/10.0mV
Relay isolation 1.5kV
Mechanical life >2x107 operations
Relay approval BT type 56
Connector details Screw terminals
Temperature
operational -10°C to +60°C
range
storage -20°C to +70°C
12.4.1.12. Dual Diode Assembly (94-100004)
The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so
that the main DC rail within the equipment can be sourced from either a mains driven PSU, or
externally through an XLR connector or from dual mains driven PSUs . They are very heavy-duty
diodes and they prevent any reverse current from flowing back to their source or the alternative
supply rail. Combining diodes such as these will also be used if the equipment is to be powered from
external back-up batteries.
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 224 of 500
12.4.1.13. DC/DC Converter 96-200047
96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts)
output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in
this case 12V. In the event of failure this unit should not be repaired, only replaced.
PARAMETER
DC Input Voltage range
DC Output voltage
Max. current load
Temperature
Operation
range
Storage
Working Humidity
SPECIFICATION
19 to 36V
12V ± 1%
12.5Amps
-10°C to +60°C
-20°C to +85°C
20 to 90% RHNC
12.4.1.14. 12V Switch-Mode PSU (96-300052)
No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from
the power supply may be measured on its output terminals. This is typically set to 12.2V. The
adjustment potentiometer will be found close to the DC output terminals.
All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal
AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by
the operator.
96-300052 Specification
AC Input Supply
110 or 220V nominal
Voltage 85 - 265V AC
(absolute limits)
Frequency 47 to 63Hz
DC Output Supply
12V DC (nominal)
Voltage
10.5-13.8V (absolute limits)
Current 12.5A
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 225 of 500
12.4.2
700MHz Line Amplifier (55-165704)
Description of 700MHz Line Amplifier (55-165704)
700MHz Line Amplifier (55-165704) List of Major Components
Section
12.4.2.3.
12.4.2.4.
12.4.2.5.
12.4.2.6.
12.4.2.7.
12.4.2.8.
12.4.2.9.
12.4.2.10.
12.4.2.11.
12.4.2.12.
12.4.2.13.
Component
Part
02-007206
07-015105
10-000901
11-006702
12-018002
12-021901
17-001109*
17-001117*
17-001201*
80-008901
94-100004
96-200047
96-300052
Component Part Description
Bandpass Filter
Wideband Asymmetric Coupler
Switched Attenuator 0.25W, 0 - 15dB
Low Noise Amplifier
Power Amplifier (20W 800MHz )
Low Power Amplifier
AGC Detector Assembly (Logarithmic)
AGC Detector Assembly
AGC Attenuator Assembly
12V (Single) Relay Board
Dual Diode Assembly
DC/DC Converter
12V Switch-Mode PSU
Qty. Per
Assembly
*The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control
(AGC) system used in 800MHz Line Amplifier (55-165703); 17-001117 and 17-001201 are paired for
use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 226 of 500
12.4.2.1. 700MHz Line Amplifier (55-165704) Outline Drawing
Drawing number 55-1657104
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 227 of 500
12.4.2.2. 700MHz Line Amplifier (55-165704) System Diagram
Drawing number 55-165784
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 228 of 500
12.4.2.3. Bandpass Filter (02-007206)
The bandpass filters are multi-section designs with a bandwidth dependent upon the passband
frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with
a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are
carefully aligned during manufacture in order to optimise the insertion loss, VSWR and
intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface
ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports.
Being passive devices, the bandpass filters should have an extremely long operational life and require
no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module
rather than attempt repair or re-tuning.
No adjustments should be attempted without full network sweep analysis facilities to monitor both
insertion loss and VSWR simultaneously.
02-007206 Specification
PARAMETER
Response type
Frequency range
Bandwidth
Number of sections
Insertion loss
VSWR
Connectors
Power handling
Temperature
operation
range
storage
Weight
SPECIFICATION
Chebyshev
800 - 950MHz *
25MHz *
1.2 dB
better than 1.2:1
SMA female
100W max
-20°C to +60°C
-40°C to +70°C
3 kg (typical)
*tuned to Customer's specification
12.4.2.4. Wideband Asymmetric Coupler (07-015105)
The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case
30dB) of RF signal from transmission lines and to combine them, for example through splitter units for
different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all
ports/interfaces throughout the specified frequency range. They are known formally as directional
couplers as they couple power from the RF mainline in one direction only.
07-015105 Specification
PARAMETER
Construction
Frequency
Through loss
Coupling level
Isolation
Weight
Connectors
Temperature
operation
range
storage
SPECIFICATION
Inductive air gap
800-2500MHz
0.4dB (typical)
-30dB ±0.5dB
N/A
<1.0kg
SMA, female
-20°C to +60°C
-40°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 229 of 500
12.4.2.5. Switched Attenuator 0.25W, 0 - 15dB (10-000901)
In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive.
Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the
gain.
10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the
four miniature toggle switches on the top of each unit. Each switch is clearly marked with the
attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are
designed to maintain an accurate 50Ω impedance over their operating frequency at both input and
output.
10-000901 Specification
PARAMETER
Attenuation Values
Attenuation Steps
Power Handling
Attenuation Accuracy
Frequency Range
Impedance
Connectors
VSWR
Weigh
Temperature operation
range
storage
SPECIFICATION
0-15dB
1, 2, 4 and 8dB
0.25 Watt
± 1.0 dB
DC to 1GHz
50Ω
SMA
1.3:1
0.2kg
-20°C to +60°C
-40°C to +70°C
12.4.2.6. Low Noise Amplifier (11-006702)
The Gallium-Arsenide low noise amplifiers used in 700MHz Line Amplifier (55-165704) are double
stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure
excellent linearity and extremely low noise over a very wide dynamic range. The active devices are
very moderately rated to provide a long trouble-free working life. There are no adjustments on these
amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This
amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is
easily integrated into the main alarm system.
11-006702 Specification
PARAMETER
Frequency range:
Bandwidth:
Gain:
1dB Compression point:
OIP3:
Input/Output return loss:
Noise figure:
Power consumption:
Supply voltage:
Connectors:
operational:
Temperature range:
storage:
Size:
Weight:
SPECIFICATION
800 – 1000MHz
<200MHz
29dB (typical)
20dBm
33dBm
>18dB
1.3dB (typical)
180mA @ 24V DC
10-24V DC
SMA female
-10°C to +60°C
-20°C to +70°C
90 x 55 x 30.2mm
290gms (approximately)
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 230 of 500
Low Noise Amplifier (11-006702) ‘D’ Connector Pin-out details
Connector pin
Signal
+Ve input (10-24V)
GND
Alarm RelayO/P bad
Alarm Relay common
Alarm Relay good
No connection
TTL voltage set
TTL alarm/0V (good)
O/C good/0V bad
9-Way Pin-Out Graphical Representation
12.4.2.7. Power Amplifier (12-018002)
This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced
configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It
has built in a Current Fault Alarm Function.
Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and
a D-Type connector for the power supply and the Current Fault Alarm Function.
Technical Specification
PARAMETER
Frequency range:
Small signal gain:
Gain flatness:
I/O Return loss:
1dB compression point:
OIP3:
Supply voltage:
Supply current:
Temperature
operational:
range
storage:
Weight:
SPECIFICATION
800-960MHz
30dB
±1.2dB
>18dB
42.8dBm
56dBm
24V DC
5.0Amps (Typical)
-10°C to +60°C
-20°C to +70°C
<2kg (no heatsink)
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 231 of 500
Power Amplifier (12-018002) 7-Way Connector Pin-outs
Connector Pin
A1 (large pin)
A2 (large pin)
Signal
+24V DC
GND
Alarm relay common
TTL alarm/0V good
Alarm relay contact (bad)
Alarm relay contact (good)
O/C good/0V bad (TTL)
12.4.2.8. Low Power Amplifier (12-021901)
The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used
in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are
very moderately rated to provide a long trouble-free working life.
Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and
a D-Type connector for the power supply and the Current Fault Alarm Function.
There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier
should be replaced.
Low Power Amplifier (12-021901) Specification
PARAMETER
Frequency range
Bandwidth
Maximum RF output
Gain
1dB compression point
3rd order intercept point
Noise Figure
VSWR
Connectors
Supply
Temperature operational
range
storage
Weight
Size
SPECIFICATION
800-960MHz*
20MHz *
>1.0 Watt
15dB
+30.5dBm
+43dBm
<6dB
better than 1.5:1
SMA female
500mA @ 10-15V DC
-10°C to +60°C
-20°C to +70°C
0.5 kg
167x52x25mm
* Tuned to Customer’s specification
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 232 of 500
Low Power Amplifier (12-021901) 7-Way Connector Pin-outs
Connector Pin
A1 (large pin)
A2 (large pin)
Signal
+24V DC
GND
Alarm relay common
TTL alarm/0V good
Alarm relay contact (bad)
Alarm relay contact (good)
O/C good/0V bad (TTL)
12.4.2.9. Automatic Gain Control
17-001109
17-001117
17-001201
AGC Detector Assembly (Logarithmic)
AGC Detector Assembly
AGC Attenuator Assembly
The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control
(AGC) system used in 700MHz Line Amplifier (55-165704); 17-001117 and 17-001201 are paired for
use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink
700MHz Line Amplifier (55-165704) is fitted with two differing types of Automatic Gain Control (AGC)
system, one linear, and one logarithmic. The AGC with logarithmic detector (17-001117) is fitted in the
uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path
The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator.
The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the
attenuator is situated in the RF path between the 1st and 2nd stages of amplification.
17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired
for use in the downlink
The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB.
The attenuation is controlled by a DC voltage which is derived from the associated detector controller
board.
Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level
being delivered by the power amplifier, and when a certain threshold is reached it begins to increase
the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading
of the power amplifier is avoided.
The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this
AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any
circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as
system degradation will occur.
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 233 of 500
The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion
of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode
rectifier, the output of which is a DC voltage proportional to the RF input signal.
This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output,
which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at
some earlier point in the RF circuit.
For small signals, below AGC onset, the output control line will be close to 12V and the AGC
attenuator will have minimum attenuation. As the signal level increases the control line voltage will
fall, increasing the attenuator value and keeping the system output level at a constant value.
AGC Specification (both types)
PARAMETER
Frequency range
Attenuation range
Attenuation steps
VSWR
RF Connectors
Power
attenuator
handling
detector/amp
Temperature
operation
range
storage
attenuator pcb
Size
detector/amp pcb
attenuator
Weight
detector/amp
SPECIFICATION
up to 1000MHz
3 to 30dB
continuously variable
better than 1.2:1
SMA female
1W
>30W (or as required)
-10°C to +60°C
-20°C to +70°C
50 x 42 x 21mm
54 x 42 x 21mm
90grams
100grams
12.4.2.10. 12V (Single) Relay Board (80-008901)
The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is
equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed
via a 15 way in-line connector.
The relay is provided with polarity protection diodes and diodes for suppressing the transients caused
by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits.
It’s common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the
main alarm system.
80-008901 Specification
PARAMETER
SPECIFICATION
Operating voltage 8 to 30V (floating earth)
Alarm threshold Vcc - 1.20 volt +15%
Alarm output relay contacts:
Max. switch current 1.0Amp
Max. switch volts 120Vdc/60VA
Max. switch power 24W/60VA
Min. switch load 10.0µA/10.0mV
Relay isolation 1.5kV
Mechanical life >2x107 operations
Relay approval BT type 56
Connector details Screw terminals
Temperature
operational -10°C to +60°C
range
storage -20°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 234 of 500
12.4.2.11. Dual Diode Assembly (94-100004)
The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so
that the main DC rail within the equipment can be sourced from either a mains driven PSU, or
externally through an XLR connector or from dual mains driven PSUs . They are very heavy-duty
diodes and they prevent any reverse current from flowing back to their source or the alternative
supply rail. Combining diodes such as these will also be used if the equipment is to be powered from
external back-up batteries.
12.4.2.12. DC/DC Converter 96-200047
96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts)
output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in
this case 12V. In the event of failure this unit should not be repaired, only replaced.
96-200047 Specification
PARAMETER
DC Input Voltage range
DC Output voltage
Max. current load
Temperature
Operation
range
Storage
Working Humidity
SPECIFICATION
19 to 36V
12V ± 1%
12.5Amps
-10°C to +60°C
-20°C to +85°C
20 to 90% RHNC
12.4.2.13. 12V Switch-Mode PSU (96-300052)
No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from
the power supply may be measured on its output terminals. This is typically set to 12.2V. The
adjustment potentiometer will be found close to the DC output terminals.
All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal
AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by
the operator.
96-300052 Specification
AC Input Supply
110 or 220V nominal
Voltage 85 - 265V AC
(absolute limits)
Frequency 47 to 63Hz
DC Output Supply
12V DC (nominal)
Voltage
10.5-13.8V (absolute limits)
Current 12.5A
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 235 of 500
12.4.3.
Westlake Station. Splitter (55-165707)
2U rack mount chassis
Westlake Station. Splitter (55-165707) list of major components
Section
12.4.3.3.
Component
Part
07-015102
Component Part Description
Wideband Asymmetric Coupler
Qty. Per
Assembly
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 236 of 500
12.4.3.1. Westlake Station. Splitter (55-165707) outline drawing
Drawing number 55-1657107
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 237 of 500
12.4.3.2. Westlake Station. Splitter (55-165707) system diagram
Drawing number 55-165787
12.4.3.3. Wideband Asymmetric Coupler (07-015102)
The purpose of Wideband Asymmetric Coupler (07-015102) is to tap off a known portion (in this case
10dB) of RF signal from transmission lines and to combine them, for example through splitter units for
different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all
ports/interfaces throughout the specified frequency range. They are known formally as directional
couplers as they couple power from the RF mainline in one direction only.
07-015102 Specification
PARAMETER
Frequency Range
Coupling Value
Main Line Insertion Loss
VSWR
Directivity
Power Rating
RF Connectors
Temperature
operation
range
storage
SPECIFICATION
800 - 2500 MHz
10 dB ± 1.0 dB
<1.6 dB
1.4:1
>18 dB
200 Watts
‘N’ female
-20°C to +60°C
-40°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 238 of 500
13
ATTENUATOR SHELF (ITAC) 1 (55-165506)
Attenuator Shelf (ITAC) 1 (55-165506) list of major components
Section
13.3.1.
13.3.2.
13.3.3.
13.3.4.
13.3.5.
Component
Part
05-002602
05-003007
09-000902
10-000901
10-002960
Component Part Description
900MHz Splitter/Combiner
4 Port Hybrid Coupler
Dummy load
Switched Attenuator 0.25W, 0 - 15dB
25W 2.5GHz 60dB ATTENUATOR N M/F
Qty. Per
Assembly
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 239 of 500
13.1. Attenuator Shelf (ITAC) 1 (55-165506) outline drawing
Drawing number 55-1655106
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 240 of 500
13.2 Attenuator Shelf (ITAC) 1 (55-165506) system diagram
Drawing number 55-165586
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 241 of 500
13.3. Attenuator Shelf (ITAC) 1 (55-165506) major components
13.3.1.
900MHz Splitter/Combiner (05-002602)
The Splitter/Combiner used is a device for accurately matching two or more RF signals to single or
multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the
VSWR and insertion losses are kept to a minimum. Any unused ports should be terminated with an
appropriate 50Ω load.
Being passive devices, the splitters should have an extremely long operational life and require no
maintenance. Should a unit be suspect, it is usually most time efficient to replace the whole module
rather than attempt repair or re-tuning.
05-002602 Specification
PARAMETER
Frequency
Narrowband
range
Broadband
Narrowband
Bandwidth
Broadband
Input ports
Output ports
Narrowband
Insertion loss
Broadband
Return loss input & output
Impedance
Narrowband
Isolation
Broadband
MTFB
Splitting
Power rating
Combining
Connectors
Weight
Size
13.3.2.
SPECIFICATION
815 – 960MHz
800 – 1200MHz
145MHz
400MHz
3.3dB
3.5dB
1.3:1
50Ω
>20dB
>18dB
>180,000 hours
20Watts
0.5Watt
SMA female
200g (approximately)
54 x 44 x 21mm
4 Port Hybrid Coupler (05-003007)
This transmitter hybrid coupler is a device for accurately matching two or more RF signals to single or
multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the
insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate
50Ω load. In this specific instance one port of 4 Port Hybrid Coupler (05-003007) is terminated with
Dummy load 09-000902 (see below).
05-003007 Specification
PARAMETER
Frequency range
Bandwidth
Rejection
Insertion loss
Connectors
Weight
Temperature operational
range
storage
SPECIFICATION
700-900MHz
200MHz
>14dB
6.5dB (in band, typical)
SMA
<1.0kg
-10%C to +60%C
-20%C to +70%C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 242 of 500
13.3.3.
Dummy load (09-000902)
When a combiner system is used to split or combine RF signals, in many cases it is most cost
effective to use a standard stock item 4, 6 or 8 port device where, in fact, only a 3 or 6 port device is
needed. In this case 4 Port Hybrid Coupler (05-003007) has one of its ports terminated with Dummy
load (09-000902) in order to preserve the correct impedance of the device over the specified
frequency range.
09-000902 specification
PARAMETER
Frequency Range
Power Rating
VSWR
Impedance
Temperature Range
RF Connectors
Dimension
Weight
Finish
RF Connector
Environmental
MTBF
13.3.4.
SPECIFICATION
0 - 2500 MHz
25 Watts continuous
Better than 1.1:1
50 Ohms
-20 to +60°C
N Type female
110.3mm x 38.1mm x
485 grams
Black Anodised
N Type male
IP66
>180,000 hours
Switched Attenuator 0.25W, 0 - 15dB (10-000901)
In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive.
Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the
gain.
10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the
four miniature toggle switches on the top of each unit. Each switch is clearly marked with the
attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are
designed to maintain an accurate 50Ω impedance over their operating frequency at both input and
output.
10-000901 Specification
PARAMETER
Attenuation Values
Attenuation Steps
Power Handling
Attenuation Accuracy
Frequency Range
Impedance
Connectors
VSWR
Weight
Temperature operation
range
storage
SPECIFICATION
0-15dB
1, 2, 4 and 8dB
0.25 Watt
± 1.0 dB
DC to 1GHz
50Ω
SMA
1.3:1
0.2kg
-20°C to +60°C
-40°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 243 of 500
13.3.5.
Attenuator 25W, 60dB (10-002960)
In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive.
Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the
gain. Attenuator 25W, 60dB (10-002960) is a fixed attenuator providing 60dB of signal attenuation.
10-002960 Specification
PARAMETER
Frequency Range
Power Handling
Attenuation
Attenuation Accuracy
Return Loss to 2.2GHz
Nominal Impedance
RF Conectors
Finish
Temperature operational
range
storage
SPECIFICATION
DC to 2.5GHz
25 W
60 dB
± 0.5dB
18dB
50 Ω
N male to N female
Matt Black Anodise
-20%C to +55%C
-20%C to +70%C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 244 of 500
14
ATTENUATOR SHELF (ITAC) 2 (55-165506)
Attenuator Shelf (ITAC) 2 (55-165506) list of major components
Section
13.3.1.
13.3.2.
13.3.3.
13.3.4.
13.3.5.
Component
Part
05-002602
05-003007
09-000902
10-000901
10-002960
Component Part Description
900MHz Splitter/Combiner
4 Port Hybrid Coupler
Dummy load
Switched Attenuator 0.25W, 0 - 15dB
Attenuator 25W, 60dB
Qty. Per
Assembly
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 245 of 500
14.1. Attenuator Shelf (ITAC) 2 (55-165506) outline drawing
Drawing number 55-1655106
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 246 of 500
14.2 Attenuator Shelf (ITAC) 2 (55-165506) system diagram
Drawing number 55-165586
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 247 of 500
14.3. Attenuator Shelf (ITAC) 2 (55-165506) major components
14.3.1.
900MHz Splitter/Combiner (05-002602)
The Splitter/Combiner used is a device for accurately matching two or more RF signals to single or
multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the
VSWR and insertion losses are kept to a minimum. Any unused ports should be terminated with an
appropriate 50Ω load.
Being passive devices, the splitters should have an extremely long operational life and require no
maintenance. Should a unit be suspect, it is usually most time efficient to replace the whole module
rather than attempt repair or re-tuning.
05-002602 Specification
PARAMETER
Frequency
Narrowband
range
Broadband
Narrowband
Bandwidth
Broadband
Input ports
Output ports
Narrowband
Insertion loss
Broadband
Return loss input & output
Impedance
Narrowband
Isolation
Broadband
MTFB
Splitting
Power rating
Combining
Connectors
Weight
Size
14.3.2.
SPECIFICATION
815 – 960MHz
800 – 1200MHz
145MHz
400MHz
3.3dB
3.5dB
1.3:1
50Ω
>20dB
>18dB
>180,000 hours
20Watts
0.5Watt
SMA female
200g (approximately)
54 x 44 x 21mm
4 Port Hybrid Coupler (05-003007)
This transmitter hybrid coupler is a device for accurately matching two or more RF signals to single or
multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the
insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate
50Ω load. In this specific instance one port of 4 Port Hybrid Coupler (05-003007) is terminated with
Dummy load 09-000902 (see below).
05-003007 Specification
PARAMETER
Frequency range:
Bandwidth:
Rejection:
Insertion loss:
Connectors:
Weight:
operational
Temperature
range:
storage
SPECIFICATION
700-900MHz
200MHz
>14dB
6.5dB (in band, typical)
SMA
<1.0kg
-10%C to +60%C
-20%C to +70%C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 248 of 500
14.3.3.
Dummy load 09-000902
When a combiner system is used to split or combine RF signals, in many cases it is most cost
effective to use a standard stock item 4, 6 or 8 port device where, in fact, only a 3 or 6 port device is
needed. In this case 4 Port Hybrid Coupler (05-003007) has one of its ports terminated with Dummy
load (09-000902) in order to preserve the correct impedance of the device over the specified
frequency range.
09-000902 specification
PARAMETER
Frequency Range
Power Rating
VSWR
Impedance
Temperature Range
RF Connectors
Dimension
Weight
Finish
RF Connector
Environmental
MTBF
14.3.4.
SPECIFICATION
0 - 2500 MHz
25 Watts continuous
Better than 1.1:1
50 Ohms
-20 to +60°C
N Type female
110.3mm x 38.1mm x
485 grams
Black Anodised
N Type male
IP66
>180,000 hours
Switched Attenuator 0.25W, 0 - 15dB (10-000901)
In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive.
Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the
gain.
10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the
four miniature toggle switches on the top of each unit. Each switch is clearly marked with the
attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are
designed to maintain an accurate 50Ω impedance over their operating frequency at both input and
output.
10-000901 Specification
PARAMETER
Attenuation Values
Attenuation Steps
Power Handling
Attenuation Accuracy
Frequency Range
Impedance
Connectors
VSWR
Weight
Temperature operation
range
storage
SPECIFICATION
0-15dB
1, 2, 4 and 8dB
0.25 Watt
± 1.0 dB
DC to 1GHz
50Ω
SMA
1.3:1
0.2kg
-20°C to +60°C
-40°C to +70°C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 249 of 500
14.3.5.
Attenuator 25W, 60dB (10-002960)
In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive.
Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the
gain. Attenuator 25W, 60dB (10-002960) is a fixed attenuator providing 60dB of signal attenuation.
10-002960 Specification
PARAMETER
Frequency Range
Power Handling
Attenuation
Attenuation Accuracy
Return Loss to 2.2GHz
Nominal Impedance
RF Conectors
Finish
Temperature operational
range
storage
SPECIFICATION
DC to 2.5GHz
25 W
60 dB
± 0.5dB
18dB
50 Ω
N male to N female
Matt Black Anodise
-20%C to +55%C
-20%C to +70%C
STTRS DOCUMENTATION
Document Number 80-330501HBKM – Issue A - Draft
Page 250 of 500

Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.5
Linearized                      : No
Page Count                      : 126
XMP Toolkit                     : XMP toolkit 2.9.1-13, framework 1.6
About                           : uuid:8484c565-ea16-49e7-8b0a-95c236840f7c
Modify Date                     : 2008:06:23 15:10:02+01:00
Create Date                     : 2008:06:23 15:09:06+01:00
Metadata Date                   : 2008:06:23 15:10:02+01:00
Document ID                     : uuid:8fe87c38-f6c5-4f30-bc56-6bb6d08f9470
Format                          : application/pdf
Title                           : Microsoft Word - 80-330501HBKM.DOC
Creator                         : PScript5.dll Version 5.2
Author                          : shodgkinson
Producer                        : Acrobat Distiller 6.0 (Windows)
EXIF Metadata provided by EXIF.tools
FCC ID Filing: NEO55-165704

Navigation menu