Conduit Bending Basics (Iron 2177 Installation

2177-Installationsheet 2177-InstallationSheet 2177-InstallationSheet 092644 Batch4 unilog cesco-content

2014-07-15

: Pdf 2177-Installation 2177-Installation 092644 Batch4 unilog

Open the PDF directly: View PDF PDF.
Page Count: 12

DownloadConduit Bending Basics (Iron  2177-Installation
Open PDF In BrowserView PDF
Conduit Bender Guide
Conduit Bending Basics:
The line of Klein Tools conduit benders have been designed for performance and durability exceeding
the expectations of today’s professional. It is recommended to familiarize yourself with bending
concepts, techniques and learn the bender’s functionality to provide you a positive experience while
greatly improving the overall outcome of your project.
Conduit come in two types, EMT and Rigid conduits and can be found in various sizes. Klein Tools
provides conduit benders for EMT in ½”, ¾”, 1” and 1-¼” conduit and ½”, ¾”, and 1” Rigid conduit.
To aid bending when performing a ground or air bend, the benders are marked with different alignment
symbols to help the operator create the bends necessary to accomplish any project. The symbols found
on the Klein Tools benders are the arrow, the teardrop, the star point and angle markings. These
markings are found on various sides of the bender head.
Center of Bend Rim Notches
Uses: Locates the center of a
saddle bend.
Klein Tools
Ductile Iron Series:
½” EMT: #56203
¾” EMT: #56204
1” EMT: #56205
1-¼” EMT: #56211
Klein Tools
Aluminum Series:
½” EMT: #56206
¾” EMT: #56207

Star Point
Uses: Back bends.

Angle Marks
Uses: Offset, saddle bends
and various installation
situations

Arrow
Uses: Stub-up, Offset
and outer marking of
saddle bends.
Stub Height
Uses: Number to use
for bender take-up.

The 4 most common bends to know how to make are the 90° Stub-Up, Back to Back, Offset and the 3
Point Saddle bends. It is common to use a combination of the bender markings when making certain
tube profiles. Knowing the proper technique and method of making the bends will allow you to
accomplish most projects efficiently.
Things to remember while bending:
1. A proper bend is made by rolling the conduit about the bender in the conduit’s cradle using all foot pressure.
2. Use the correct size bender for the conduit size being bent.
3. Some over bending may be required to allow for spring back of the conduit. The resting condition of the conduit is to be at
the final angle desired.
4. Measure and properly mark your conduit using the tables and information provided.
5. Floor bending: Make sure conduit is secure so it does not slide prior to bending. Apply ample foot pressure to the benders
heel while minimizing the use of the handle as a lever but more of a guide.
6. Air Bending: Make sure handle’s hilt is secure on ground and is reinforced by your foot so it does not slide out. Make sure
you are balanced and apply force close to the tool and your body controlling the tubing as you bend it around the bender’s
cradle making sure the conduit does not slide in the bender head.
7. To prevent injury, always wear protective gear and do not over exert.

1

90° Stub-Up Bend:
The stub bend is made by bending a piece of conduit into an L shape or 90° bend by placing the free end
(short end) of the tube to a predetermined length as indicated in the diagram below. This is the most
common bend and is a building block for other bends. Common uses for this bend are: Running conduit
into electrical boxes, running conduit up or down walls, running conduit into walls through floors and
ceilings and making inner and outer corner turns.

Bender Take Up Table
90° Stub-Up Bend

Conduit
Size

Stub
Height
Amount to subtract
from Measurement

½” EMT
¾” EMT
and ½” Rigid
1” EMT
and ¾” Rigid
1-¼” EMT
and 1” Rigid

5”
6”
8”
11”

1.

Determine the overall free end height of the conduit you want after the bend.
From the overall free height, subtract the stub height listed in the Bender Take-Up Table for the
conduit size you are bending. Klein Tools has provided the correct stub height on each bender head.
3. On the conduit, measure from the free end to be bent up the calculated number and mark the
conduit.
2.

As an example, to bend 3/4” EMT conduit have a free end height
of 8.5”, the table indicates to subtract 6” from the 8.5” which
leave 2.5” from the end to bend up to make the mark. Tip:
Advanced benders can lay a tape measure next to the conduit and perform the
bending operations if the bend does not call for high degree of accuracy.

4. Always use the proper size conduit bender for the conduit size being
bent. The conduit will not bend properly and/or will be damaged if a
mismatch of bender and conduit size is used. Place the bender onto the
tubing with the hook pointed towards the free end to be bent upwards.
Make sure the conduit is resting properly in the bender’s hook and
lineup the arrow symbol with the mark you placed on the tubing.

2

5. Keeping the conduit flat, apply ample foot pressure to the bender’s heel minimizing the use of
the handle as a lever, rolling up the free end into the 90° position checking the degree with a
level. When done properly the free end will be at the desired height and the arrow will be at
the stub height as indicated.
In some installations there will be a need to cut down the
unbent side of the conduit to another desired length to fit
the installation. Use a tube cutter for smooth precise
cutting and burr removal to ensure the safety of the
electrical wiring when pulled through. A hacksaw can be
substituted as long as the tubing’s cut edge is prepared
properly.
Klein Tools Tube Cutter: #88975 & 88977
Klein Tools Hacksaw: #701-10, 701 -12 &701 -S
Klein Tools Level: #931-6RE & 931-7RE

3

Back to Back Bends:
The back to back bend is the next style of bend that is needed while running electrical conduit. In reality
the concept is formulated by the need to know the distance from the back edge of a 90° bend to a fixed
point down the conduit to mark for other bend operations to meet the installation requirement. As you
will see it builds on the 90° stub bend and when done the most common use of this bend will look like
an elongated U.
You will need to know this bend method when you want to fit conduit between two parallel surfaces
such as two walls or joists while keeping the U’s outer edges of the legs touching the two surfaces. This
allows for proper anchoring and a nice clean appearance.

1. Determine the distance between
the two parallel surfaces to get the
dimension for back to back bend.

2. The first bend for the back to back bend is the 90°
stub-up bend. Follow the steps from the 90° StubUp section to create the ideal bend for the
connection on the first side.
3. From the back edge of the 90° stub-up bend,
measure the distance found in step 1 and make
your mark on the conduit.
4. Place the bender on the conduit with the bender’s hook facing the free end of the tube to be
bent opposite the original bend side. Make sure the conduit is resting properly in the bender’s
cradle and lineup the Star Point Symbol with the mark you placed on the tubing.

4

5.

Keeping the conduit flat, apply ample foot pressure to the bender’s heel, with minimal use of
the handle as a lever, rolling up the free end into the 90° position checking the degree with a
level. It is very important to keep the first 90° bend in the same plane as the new bend. If not
the two legs of the U will be skewed and will not produce the desired shape. If this happens,
some correcting can be done to properly align the legs depending on how out of shape they are.
When the bend is done properly the conduit will lay flat and will fit inside the two surfaces
measured.

In some installations there will be a need to cut down the unbent side of the conduit to another desired length to fit the installation. Use a tube
cutter for smooth precise cutting and burr removal to ensure the safety of the electrical wiring when pulled through. A hacksaw can be
substituted as long as the tubing’s cut edge is prepared properly.

Klein Tools Tube Cutter: #88975 & 88977
Klein Tools Hacksaw: #701-10, 701 -12 &701 -S
Klein Tools Level: #931-6RE & 931-7RE

If the back to back distance is short (a tight U) so the bender has problems fitting to make the
second bend, you may compensate by subtracting the stub height from the measured distance to fit
the gap then follow step 3 to mark the calculated number on the conduit. But this time you would
put the bender on the conduit with the hook facing the first bend and line up the Arrow Symbol as
demonstrated in the Stub-Up section, step 5, with the conduit mark and proceed to make the bend
as in step 5 rolling up the previously bent end up into the 90° position giving you the desired
dimension. Caution should be taken when creating the second bend. With this technique the first bend will be coming at
the operator as the second bend is made.

5

Offset Bends:
An offset bend is a style of bend that is built independently of the 90° stub and the Back to Back
bend and is an important bend to know when running conduit. It is common to shift the conduit a
certain distance while continuing to run parallel in the same direction as the pre-shift portion of the
conduit. There are many situations that call for an offset bend. The most common uses of this bend
are: staggered joists, running tight on a wall and offset into an electrical box and changes in
elevation.

Offset Formula Table
Angle of
Bend
10° X 10°
22½° X
22½°
30° X 30°
45° X 45°
60° X 60°

Constant
Multiplier
6
2.6

Shrink Per
Inch of Offset
1/16 = .063
3/16 = .188

2.0
1.4
1.2

1/4 = .250
3/8 = .375
1/2 = .500

1. Determine/measure the offset distance necessary to clear the obstacle and how far away the
offset will need to be bent from the end of the conduit.

2.

Decide what angle you wish to make the offset bend and determine the proper values from the
Offset Formula Table. Calculate the proper values to mark on the conduit to clear the obstacle
and fit in the gap measured.

Offset Formula Table
Angle of
Bend
45° X 45°

Constant
Multiplier
1.4

Shrink Per
Inch of Offset
3/8 = .375

As an example, the offset distance of the obstacle is 6” and
the distance to obstacle is 20”. The installation allows for
a 45° X 45° offset bend. Note: The choice of degree is
usually the installer’s choice and most of the time the
installation location will determine what degree will fit.

6

3. From the table use the 45° X 45° offset row for the values to calculate the series of markings
necessary to make the proper bend. To find out where to place the first mark on the conduit,
multiply the measured Offset Distance to clear the obstacle by the tables Shrink/Inch that will
occur to the conduit after all the bends are made due to that offset distance or:
(Offset Distance) X (Shrink/Inch) = Total Shrink.
Example: 6” X .375 = 2.25” of total shrink.

This value is then added to the measured Distance to Obstacle number or:
(Distance to Obstacle) + (Total Shrink) = First Mark Distance.

Example: 20” + 2.25” = 22.25” to make first mark.

To calculate the second mark needed on the conduit, multiply the measured Offset Distance by
the Constant Multiplier of the table or:

(Offset Distance) X (Constant Multiplier) = Second Mark Distance (Distance between Marks).

st

nd

Example: 6” X 1.4 = 8.4” between 1 & 2 mark.

This calculated value is how far apart to make your marks from each other on the conduit and
where to make your 45° bends.

4.

Using the technique to align the
bender on the conduit as
described under the Stub-Up
Section 5, Place the bender on
the conduit with the hook
facing away from the second
mark and line up the Arrow
Symbol up with the first mark.
7

Keeping the conduit flat, apply ample foot
pressure to the bender’s heel minimizing the use
of the handle as a lever, smoothly rolling up the
free end until the 45° mark is reached. When
done properly the free end will be at a 45° angle
from the original plane.
5.

Note: Some over bending may be required to allow for
spring back of the conduit. The resting condition of the
conduit is to be at the final angle desired.

6. Keeping the bender and conduit together flip the
two parts upside down and put the bender’s handle
hilt on the floor, balancing the conduit in the air,
allow the conduit to rotate 180° in the cradle. Slide
the conduit down so the first bend is moving away
from the bender head, aligning the second mark as
outlined before using the Arrow Symbols (See StubUp section, note 5).

7.
The second bend of the offset is
accomplished by performing an air-bend. Make
sure the handle hilt is secure on ground and is
reinforced by your foot so it does not slide out.
Make sure you are balanced and apply force close
to the tool and your body controlling the tubing as
you bend it around the bender’s cradle. Bend the
free end until the 45° mark is reached.
It is very important to keep the first 45° bend in the same plane as the new bend will be. If not, the two
legs of the offset will be skewed and will not produce the desired shape. If this happens, some
correcting can be done to properly align the legs depending on how out of shape they are. When the
bend is done properly the conduit will lay flat and fit inside the measured distance to and clear the
obstacle.
In some installations there will be a need to cut down
the unbent side of the conduit to another desired
length to fit the installation. Use a tube cutter for
smooth precise cutting and burr removal to ensure the
safety of the electrical wiring when pulled through. A
hacksaw can be substituted as long as the tubing’s cut
edge is prepared properly.
Klein Tools Tube Cutter: #88975 & 88977
Klein Tools Hacksaw: #701-10, 701 -12 &701 -S

8

Three Point Saddle Bend:
The three point saddle bend is a variant of the offset bend since it is an offset bend that returns to the
original in-line run after clearing an obstacle. This bend is intended to bridge over obstacles such as
existing conduit or plumbing running perpendicular to the intended conduit installation.

1.

Determine/measure the offset distance necessary to clear the obstacle and how far away the
saddle bend will need to be from the edge of the conduit. Unlike the offset bend you must
measure to the center of the obstacle to bridge over.

2. Choose the angle that will be used for the center bend. The other two return bends will be 1/2
the center angle chosen. If the center angle is 45°, the two return bends will be 22.5°. Use the
table to calculate the distance between bends and how much shrink is to occur to the conduit
due to the bends.

Degree of
Bend:

3 Point Saddle Bend Table
45° Center
60° Center
Bend
Bend
22.5° Return Bends

Obstruction
Height

Shrink
Amount

Distance off
Center Mark

30° Return Bends
Shrink
Amount

Distance off
Center Mark

Every inch Add:

3/16”

2-1/2”

1/4”

2”

1”
2”
3”
4”
5”
6”

3/16”
3/8”
9/16”
3/4”
15/16”
1-1/8”

2-1/2”
5”
7-1/2”
10”
12-1/2”
15”

1/4”
1/2”
3/4”
1”
1-1/4”
1-1/2”

2”
4”
6”
8”
10”
12”

Example: As an example, the offset
distance of an obstacle is 2” and the
distance to obstacle’s center point is 20”.
The installation allows for a 45° saddle
bend. Note: The choice of degree is usually
the installer’s choice and most of the time
the installation location will determine what
degree will fit.

3. Calculate the value needed to place your first mark on the conduit. This number is determined
by the Measured Distance to Center Point of the obstacle plus the Shrink from the 3 Point
Saddle Bend Table that will occur.
(Measured Distance to Center Point) + (Shrink) = Center Mark
Example: 20” + 3/8” = 20-3/8”

9

4. Using the Distance off Center Mark values found in the table to clear a 2” obstacle, simply mark
that distance from the center line in both directions or subtract this number from the center
mark value for the first return bend mark and add that number to the center mark value to
obtain the second return bend mark distance.
(Center Mark) – (Distance off Center Mark) = 1st Return Bend Mark
Example: (20-3/8”) – 5” = 15-3/8”

(Center Mark) + (Distance off Center Mark) = 2nd Return Bend Mark
Example: (20-3/8”) + 5” = 25-3/8”

5.

Mark the conduit accordingly.

6. Place the bender on the conduit and
position the appropriate Center of
Bend Rim Notch on the center mark in
the orientation shown.

60°

45°

30°

10

7. Keeping the conduit flat, apply ample foot
pressure to the bender’s heel minimizing the
use of the handle as a lever, smoothly rolling
up the free end until the 45° mark is reached.
Note: Some over bending may be required to allow for spring
back of the conduit. The resting condition of the conduit is to
be at the final angle desired.

8. Keeping the bender and conduit together, flip
the two parts upside down and put the bender’s
handle hilt on the floor, balancing the conduit in the
air, allow the conduit to rotate 180° in the cradle.
Slide the conduit down so the first bend is moving
away from the bender head, aligning the 1st return
bend mark with the Arrow Symbol (See Stub-Up
section, note 5).
Note: Some over bending may be required to allow for spring back of the conduit. The resting condition of the
conduit is to be at the final angle desired.

9. The second bend of the saddle bend is
accomplished by performing an air-bend.
Make sure handle hilt is secure on ground
and is reinforced by your foot so it does
not slide out. Make sure you are
balanced and apply force close to the tool
and your body controlling the tubing as
you bend it around the bender’s cradle.
Bend the free end until the 22.5° mark is
reached.

11

10.
Remove bender and place it back on the
conduit on the other side of the center bend with the
hook facing the center bend as before aligning Arrow
Symbol (See Stub-Up section, note 5). On the 2nd
return bend mark.
Note: Some over bending may be required to allow for spring back
of the conduit. The resting condition of the conduit is to be at the
final angle desired

11.
The last bend of the saddle bend
is made again by performing an airbend. Make sure handle hilt is secure
on ground and is reinforced by your foot
so it does not slide out. Make sure you
are balanced and apply force close to
the tool and your body controlling the
tubing as you bend it around the
bender’s cradle. Bend the free end until
the 22.5° mark is reached.

It is very important to keep all the bends in the same plane. If not, the offset will be skewed and will
not produce the desired shape. If this happens some correcting can be done to properly align the legs
depending on how out of shape they are. When the bend is done properly the conduit will lay flat and
will fit the measured distance to obstacle, clear the object and return to the original line continuing the
run as desired.

In some installations there will be a need to cut down the unbent side of the conduit to another desired length to fit the installation. Use a tube
cutter for smooth precise cutting and burr removal to ensure the safety of the electrical wiring when pulled through. A hacksaw can be
substituted as long as the tubing’s cut edge is prepared properly.
Klein Tools Tube Cutter: #88975 & 88977
Klein Tools Hacksaw: #701-10, 701 -12 &701 -S

12



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : Yes
Author                          : wjw
Create Date                     : 2012:03:20 15:13:13-05:00
Modify Date                     : 2012:03:23 08:24:52-05:00
Subject                         : 
XMP Toolkit                     : Adobe XMP Core 5.2-c001 63.139439, 2010/09/27-13:37:26
Producer                        : GPL Ghostscript 8.70
Keywords                        : 
Creator Tool                    : PDFCreator Version 1.0.2
Metadata Date                   : 2012:03:23 08:24:52-05:00
Document ID                     : d32ef2f8-7524-11e1-0000-ffb22445e8d9
Instance ID                     : uuid:1c9a713b-bb19-4097-9425-486b96430a8a
Format                          : application/pdf
Title                           : Conduit Bending Basics  (Iron
Creator                         : wjw
Description                     : 
Description (x-repair)          : 
Page Layout                     : SinglePage
Page Mode                       : UseOutlines
Page Count                      : 12
EXIF Metadata provided by EXIF.tools

Navigation menu