Julia Pro V0.6.2.2 Package API Manual
User Manual: Pdf
Open the PDF directly: View PDF .
Page Count: 448
Download | ![]() |
Open PDF In Browser | View PDF |
JuliaPro v0.6.2.2 API Manual March 1, 2018 Julia Computing Inc. info@juliacomputing.com Contents 1 Distributions 1 2 StatsBase 46 3 PyPlot 81 4 IndexedTables 108 5 Images 139 6 Knet 155 7 DataFrames 171 8 DataStructures 185 9 JDBC 197 10 NNlib 208 11 ImageCore 214 12 Reactive 223 13 JuliaDB 230 14 Combinatorics 237 15 HypothesisTests 243 16 DataArrays 249 17 GLM 257 18 Documenter 263 19 ColorTypes 268 I II CONTENTS 20 Primes 273 21 Roots 279 22 ImageTransformations 284 23 PyCall 288 24 Gadfly 293 25 IterTools 298 26 Iterators 306 27 Polynomials 314 28 Colors 318 29 FileIO 322 30 Interact 326 31 FFTW 330 32 AxisArrays 334 33 QuadGK 338 34 BusinessDays 341 35 NLSolversBase 344 36 Dagger 347 37 ShowItLikeYouBuildIt 350 38 CoordinateTransformations 353 39 Graphics 355 40 MacroTools 358 41 ImageMorphology 361 42 Contour 363 43 Compose 365 44 CoupledFields 368 CONTENTS III 45 AxisAlgorithms 370 46 Libz 372 47 NullableArrays 375 48 ImageMetadata 377 49 LegacyStrings 379 50 BufferedStreams 381 51 MbedTLS 383 52 DataValues 385 53 OnlineStats 387 54 NearestNeighbors 389 55 IJulia 390 56 WebSockets 392 57 AutoGrad 394 58 ComputationalResources 396 59 Clustering 398 60 JuliaWebAPI 400 61 DecisionTree 402 62 Blosc 404 63 Missings 406 64 Parameters 408 65 HDF5 410 66 HttpServer 412 67 MappedArrays 414 68 TextParse 415 69 LossFunctions 417 IV CONTENTS 70 LearnBase 418 71 Juno 420 72 HttpParser 422 73 ImageAxes 423 74 Flux 424 75 IntervalSets 425 76 Media 426 77 Rotations 427 78 Mustache 428 79 TiledIteration 429 80 Distances 430 81 HttpCommon 431 82 StaticArrays 432 83 SweepOperator 433 84 PaddedViews 434 85 SpecialFunctions 435 86 NamedTuples 436 87 Loess 437 88 Nulls 438 89 WoodburyMatrices 439 90 Requests 440 91 MemPool 441 92 SimpleTraits 442 93 BinDeps 443 Chapter 1 Distributions 1.1 Base.LinAlg.scale! Base.LinAlg.scale! — Method. scale!{D<:AbstractMvLogNormal}(::Type{D},s::Symbol,m::AbstractVector,S::AbstractMatrix,::Abstract Calculate the scale parameter, as defined for the location parameter above and store the result in . source 1.2 Base.mean Base.mean — Method. mean(d::Union{UnivariateMixture, MultivariateMixture}) Compute the overall mean (expectation). source 1.3 Base.mean Base.mean — Method. mean(d::MatrixDistribution) Return the mean matrix of d. source 1 2 CHAPTER 1. 1.4 DISTRIBUTIONS Base.mean Base.mean — Method. mean(d::MultivariateDistribution) Compute the mean vector of distribution d. source 1.5 Base.mean Base.mean — Method. mean(d::UnivariateDistribution) Compute the expectation. source 1.6 Base.median Base.median — Method. median(d::UnivariateDistribution) Return the median value of distribution d. source 1.7 Base.median Base.median — Method. median(d::MvLogNormal) Return the median vector of the lognormal distribution. which is strictly smaller than the mean. source 1.8 Base.quantile Base.quantile — Method. quantile(d::UnivariateDistribution, q::Real) Evaluate the inverse cumulative distribution function at q. See also: cquantile, invlogcdf, and invlogccdf. source 1.9. BASE.STD 1.9 3 Base.std Base.std — Method. std(d::UnivariateDistribution) Return the standard deviation of distribution d, i.e. sqrt(var(d)). source 1.10 Base.var Base.var — Method. var(d::UnivariateMixture) Compute the overall variance (only for U nivariateM ixture). source 1.11 Base.var Base.var — Method. var(d::MultivariateDistribution) Compute the vector of element-wise variances for distribution d. source 1.12 Base.var Base.var — Method. var(d::UnivariateDistribution) Compute the variance. (A generic std is provided as std(d) = sqrt(var(d))) source 1.13 Distributions.TruncatedNormal Distributions.TruncatedNormal — Method. TruncatedNormal(mu, sigma, l, u) The truncated normal distribution is a particularly important one in the family of truncated distributions. We provide additional support for this type with TruncatedNormal which calls Truncated(Normal(mu, sigma), l, u). Unlike the general case, truncated normal distributions support mean, mode, modes, var, std, and entropy. source 4 CHAPTER 1. 1.14 DISTRIBUTIONS Distributions.ccdf Distributions.ccdf — Method. ccdf(d::UnivariateDistribution, x::Real) The complementary cumulative function evaluated at x, i.e. 1 - cdf(d, x). source 1.15 Distributions.cdf Distributions.cdf — Method. cdf(d::UnivariateDistribution, x::Real) Evaluate the cumulative probability at x. See also ccdf, logcdf, and logccdf. source 1.16 Distributions.cf Distributions.cf — Method. cf(d::UnivariateDistribution, t) Evaluate the characteristic function of distribution d. source 1.17 Distributions.components Distributions.components — Method. components(d::AbstractMixtureModel) Get a list of components of the mixture model d. source 1.18 Distributions.cquantile Distributions.cquantile — Method. cquantile(d::UnivariateDistribution, q::Real) The complementary quantile value, i.e. quantile(d, 1-q). source 1.19. DISTRIBUTIONS.FAILPROB 1.19 5 Distributions.failprob Distributions.failprob — Method. failprob(d::UnivariateDistribution) Get the probability of failure. source 1.20 Distributions.fit mle Distributions.fit mle — Method. fit_mle(D, x, w) Fit a distribution of type D to a weighted data set x, with weights given by w. Here, w should be an array with length n, where n is the number of samples contained in x. source 1.21 Distributions.fit mle Distributions.fit mle — Method. fit_mle(D, x) Fit a distribution of type D to a given data set x. • For univariate distribution, x can be an array of arbitrary size. • For multivariate distribution, x should be a matrix, where each column is a sample. source 1.22 Distributions.insupport Distributions.insupport — Method. insupport(d::MultivariateMixture, x) Evaluate whether x is within the support of mixture distribution d. source 6 CHAPTER 1. 1.23 DISTRIBUTIONS Distributions.insupport Distributions.insupport — Method. insupport(d::MultivariateDistribution, x::AbstractArray) If x is a vector, it returns whether x is within the support of d. If x is a matrix, it returns whether every column in x is within the support of d. source 1.24 Distributions.insupport Distributions.insupport — Method. insupport(d::UnivariateDistribution, x::Any) When x is a scalar, it returns whether x is within the support of d (e.g., insupport(d, x) = minimum(d) <= x <= maximum(d)). When x is an array, it returns whether every element in x is within the support of d. Generic fallback methods are provided, but it is often the case that insupport can be done more efficiently, and a specialized insupport is thus desirable. You should also override this function if the support is composed of multiple disjoint intervals. source 1.25 Distributions.invcov Distributions.invcov — Method. invcov(d::AbstractMvNormal) Return the inversed covariance matrix of d. source 1.26 Distributions.invlogccdf Distributions.invlogccdf — Method. invlogcdf(d::UnivariateDistribution, lp::Real) The inverse function of logcdf. source 1.27. DISTRIBUTIONS.INVLOGCDF 1.27 7 Distributions.invlogcdf Distributions.invlogcdf — Method. invlogcdf(d::UnivariateDistribution, lp::Real) The inverse function of logcdf. source 1.28 Distributions.isleptokurtic Distributions.isleptokurtic — Method. isleptokurtic(d) Return whether d is leptokurtic (i.e kurtosis(d) < 0). source 1.29 Distributions.ismesokurtic Distributions.ismesokurtic — Method. ismesokurtic(d) Return whether d is mesokurtic (i.e kurtosis(d) == 0). source 1.30 Distributions.isplatykurtic Distributions.isplatykurtic — Method. isplatykurtic(d) Return whether d is platykurtic (i.e kurtosis(d) > 0). source 1.31 Distributions.location! Distributions.location! — Method. location!{D<:AbstractMvLogNormal}(::Type{D},s::Symbol,m::AbstractVector,S::AbstractMatrix,::Abstr Calculate the location vector (as above) and store the result in source 8 CHAPTER 1. 1.32 DISTRIBUTIONS Distributions.location Distributions.location — Method. location(d::UnivariateDistribution) Get the location parameter. source 1.33 Distributions.location Distributions.location — Method. location(d::MvLogNormal) Return the location vector of the distribution (the mean of the underlying normal distribution). source 1.34 Distributions.location Distributions.location — Method. location{D<:AbstractMvLogNormal}(::Type{D},s::Symbol,m::AbstractVector,S::AbstractMatri Calculate the location vector (the mean of the underlying normal distribution). • If s == :meancov, then m is taken as the mean, and S the covariance matrix of a lognormal distribution. • If s == :mean | :median | :mode, then m is taken as the mean, median or mode of the lognormal respectively, and S is interpreted as the scale matrix (the covariance of the underlying normal distribution). It is not possible to analytically calculate the location vector from e.g., median + covariance, or from mode + covariance. source 1.35 Distributions.logccdf Distributions.logccdf — Method. logccdf(d::UnivariateDistribution, x::Real) The logarithm of the complementary cumulative function values evaluated at x, i.e. log(ccdf(x)). source 1.36. DISTRIBUTIONS.LOGCDF 1.36 9 Distributions.logcdf Distributions.logcdf — Method. logcdf(d::UnivariateDistribution, x::Real) The logarithm of the cumulative function value(s) evaluated at x, i.e. log(cdf(x)). source 1.37 Distributions.logdetcov Distributions.logdetcov — Method. logdetcov(d::AbstractMvNormal) Return the log-determinant value of the covariance matrix. source 1.38 Distributions.logpdf Distributions.logpdf — Method. logpdf(d::Union{UnivariateMixture, MultivariateMixture}, x) Evaluate the logarithm of the (mixed) probability density function over x. Here, x can be a single sample or an array of multiple samples. source 1.39 Distributions.logpdf Distributions.logpdf — Method. logpdf(d::MultivariateDistribution, x::AbstractArray) Return the logarithm of probability density evaluated at x. • If x is a vector, it returns the result as a scalar. • If x is a matrix with n columns, it returns a vector r of length n, where r[i] corresponds to x[:,i]. logpdf!(r, d, x) will write the results to a pre-allocated array r. source 10 CHAPTER 1. 1.40 DISTRIBUTIONS Distributions.logpdf Distributions.logpdf — Method. logpdf(d::UnivariateDistribution, x::Real) Evaluate the logarithm of probability density (mass) at x. Whereas there is a fallback implemented logpdf(d, x) = log(pdf(d, x)). Relying on this fallback is not recommended in general, as it is prone to overflow or underflow. source 1.41 Distributions.logpdf Distributions.logpdf — Method. logpdf(d::MatrixDistribution, AbstractMatrix) Compute the logarithm of the probability density at the input matrix x. source 1.42 Distributions.mgf Distributions.mgf — Method. mgf(d::UnivariateDistribution, t) Evaluate the moment generating function of distribution d. source 1.43 Distributions.ncategories Distributions.ncategories — Method. ncategories(d::UnivariateDistribution) Get the number of categories. source 1.44 Distributions.nsamples Distributions.nsamples — Method. nsamples(s::Sampleable) The number of samples contained in A. Multiple samples are often organized into an array, depending on the variate form. source 1.45. DISTRIBUTIONS.NTRIALS 1.45 11 Distributions.ntrials Distributions.ntrials — Method. ntrials(d::UnivariateDistribution) Get the number of trials. source 1.46 Distributions.pdf Distributions.pdf — Method. pdf(d::Union{UnivariateMixture, MultivariateMixture}, x) Evaluate the (mixed) probability density function over x. Here, x can be a single sample or an array of multiple samples. source 1.47 Distributions.pdf Distributions.pdf — Method. pdf(d::MultivariateDistribution, x::AbstractArray) Return the probability density of distribution d evaluated at x. • If x is a vector, it returns the result as a scalar. • If x is a matrix with n columns, it returns a vector r of length n, where r[i] corresponds to x[:,i] (i.e. treating each column as a sample). pdf!(r, d, x) will write the results to a pre-allocated array r. source 1.48 Distributions.pdf Distributions.pdf — Method. pdf(d::UnivariateDistribution, x::Real) Evaluate the probability density (mass) at x. See also: logpdf. source 12 CHAPTER 1. 1.49 DISTRIBUTIONS Distributions.pdf Distributions.pdf — Method. pdf(d::MatrixDistribution, x::AbstractArray) Compute the probability density at the input matrix x. source 1.50 Distributions.probs Distributions.probs — Method. probs(d::AbstractMixtureModel) Get the vector of prior probabilities of all components of d. source 1.51 Distributions.rate Distributions.rate — Method. rate(d::UnivariateDistribution) Get the rate parameter. source 1.52 Distributions.sampler Distributions.sampler — Method. sampler(d::Distribution) -> Sampleable Samplers can often rely on pre-computed quantities (that are not parameters themselves) to improve efficiency. If such a sampler exists, it can be provide with this sampler method, which would be used for batch sampling. The general fallback is sampler(d::Distribution) = d. source 1.53 Distributions.scale Distributions.scale — Method. scale(d::UnivariateDistribution) Get the scale parameter. source 1.54. DISTRIBUTIONS.SCALE 1.54 13 Distributions.scale Distributions.scale — Method. scale(d::MvLogNormal) Return the scale matrix of the distribution (the covariance matrix of the underlying normal distribution). source 1.55 Distributions.scale Distributions.scale — Method. scale{D<:AbstractMvLogNormal}(::Type{D},s::Symbol,m::AbstractVector,S::AbstractMatrix) Calculate the scale parameter, as defined for the location parameter above. source 1.56 Distributions.shape Distributions.shape — Method. shape(d::UnivariateDistribution) Get the shape parameter. source 1.57 Distributions.sqmahal Distributions.sqmahal — Method. sqmahal(d, x) Return the squared Mahalanobis distance from x to the center of d, w.r.t. the covariance. When x is a vector, it returns a scalar value. When x is a matrix, it returns a vector of length size(x,2). sqmahal!(r, d, x) with write the results to a pre-allocated array r. source 1.58 Distributions.succprob Distributions.succprob — Method. succprob(d::UnivariateDistribution) Get the probability of success. source 14 CHAPTER 1. 1.59 DISTRIBUTIONS StatsBase.dof StatsBase.dof — Method. dof(d::UnivariateDistribution) Get the degrees of freedom. source 1.60 StatsBase.entropy StatsBase.entropy — Method. entropy(d::MultivariateDistribution, b::Real) Compute the entropy value of distribution d, w.r.t. a given base. source 1.61 StatsBase.entropy StatsBase.entropy — Method. entropy(d::MultivariateDistribution) Compute the entropy value of distribution d. source 1.62 StatsBase.entropy StatsBase.entropy — Method. entropy(d::UnivariateDistribution, b::Real) Compute the entropy value of distribution d, w.r.t. a given base. source 1.63 StatsBase.entropy StatsBase.entropy — Method. entropy(d::UnivariateDistribution) Compute the entropy value of distribution d. source 1.64. STATSBASE.KURTOSIS 1.64 15 StatsBase.kurtosis StatsBase.kurtosis — Method. kurtosis(d::Distribution, correction::Bool) Computes excess kurtosis by default. Proper kurtosis can be returned with correction=false source 1.65 StatsBase.kurtosis StatsBase.kurtosis — Method. kurtosis(d::UnivariateDistribution) Compute the excessive kurtosis. source 1.66 StatsBase.loglikelihood StatsBase.loglikelihood — Method. loglikelihood(d::MultivariateDistribution, x::AbstractMatrix) The log-likelihood of distribution d w.r.t. all columns contained in matrix x. source 1.67 StatsBase.loglikelihood StatsBase.loglikelihood — Method. loglikelihood(d::UnivariateDistribution, X::AbstractArray) The log-likelihood of distribution d w.r.t. all samples contained in array x. source 1.68 StatsBase.mode StatsBase.mode — Method. mode(d::UnivariateDistribution) Returns the first mode. source 16 CHAPTER 1. 1.69 DISTRIBUTIONS StatsBase.mode StatsBase.mode — Method. mode(d::MvLogNormal) Return the mode vector of the lognormal distribution, which is strictly smaller than the mean and median. source 1.70 StatsBase.modes StatsBase.modes — Method. modes(d::UnivariateDistribution) Get all modes (if this makes sense). source 1.71 StatsBase.params! StatsBase.params! — Method. params!{D<:AbstractMvLogNormal}(::Type{D},m::AbstractVector,S::AbstractMatrix,::Abstrac Calculate (scale,location) for a given mean and covariance, and store the results in and source 1.72 StatsBase.params StatsBase.params — Method. params(d::UnivariateDistribution) Return a tuple of parameters. Let d be a distribution of type D, then D(params(d)...) will construct exactly the same distribution as d. source 1.73 StatsBase.params StatsBase.params — Method. params{D<:AbstractMvLogNormal}(::Type{D},m::AbstractVector,S::AbstractMatrix) Return (scale,location) for a given mean and covariance source 1.74. STATSBASE.SKEWNESS 1.74 17 StatsBase.skewness StatsBase.skewness — Method. skewness(d::UnivariateDistribution) Compute the skewness. source 1.75 Distributions.AbstractMvNormal Distributions.AbstractMvNormal — Type. The Multivariate normal distribution is a multidimensional generalization of the normal distribution. The probability density function of a d-dimensional multivariate normal distribution with mean vector µ and covariance matrix Σ is: f (x; µ, Σ) = 1 (2π)d/2 |Σ|1/2 1 exp − (x − µ)T Σ−1 (x − µ) 2 We realize that the mean vector and the covariance often have special forms in practice, which can be exploited to simplify the computation. For example, the mean vector is sometimes just a zero vector, while the covariance matrix can be a diagonal matrix or even in the form of σI. To take advantage of such special cases, we introduce a parametric type MvNormal, defined as below, which allows users to specify the special structure of the mean and covariance. [] immutable MvNormal{Cov¡:AbstractPDMat,Mean¡:Union{Vector,ZeroVector}} ¡: AbstractMvNormal ::Mean ::Cov end Here, the mean vector can be an instance of either Vector or ZeroVector, where the latter is simply an empty type indicating a vector filled with zeros. The covariance can be of any subtype of AbstractPDMat. Particularly, one can use PDMat for full covariance, PDiagMat for diagonal covariance, and ScalMat for the isotropic covariance – those in the form of σI. (See the Julia package PDMats for details). We also define a set of alias for the types using different combinations of mean vectors and covariance: [] const IsoNormal = MvNormal{ScalMat, Vector{Float64}} const DiagNormal = MvNormal{PDiagMat, Vector{Float64}} const FullNormal = MvNormal{PDMat, Vector{Float64}} const ZeroMeanIsoNormal = MvNormal{ScalMat, ZeroVector{Float64}} const ZeroMeanDiagNormal = MvNormal{PDiagMat, ZeroVector{Float64}} const ZeroMeanFullNormal = MvNormal{PDMat, ZeroVector{Float64}} source 18 CHAPTER 1. 1.76 DISTRIBUTIONS Distributions.Arcsine Distributions.Arcsine — Type. Arcsine(a,b) The Arcsine distribution has probability density function f (x) = 1 π p (x − a)(b − x) , x ∈ [a, b] [] Arcsine() Arcsine distribution with support [0, 1] Arcsine(b) Arcsine distribution with support [0, b] Arcsine(a, b) Arcsine distribution with support [a, b] params(d) Get the parameters, i.e. (a, b) minimum(d) Get the lower bound, i.e. a maximum(d) Get the upper bound, i.e. b location(d) Get the left bound, i.e. a scale(d) Get the span of the support, i.e. b - a External links • Arcsine distribution on Wikipedia source 1.77 Distributions.Bernoulli Distributions.Bernoulli — Type. Bernoulli(p) A Bernoulli distribution is parameterized by a success rate p, which takes value 1 with probability p and 0 with probability 1-p. ( P (X = k) = 1−p p for k = 0, for k = 1. [] Bernoulli() Bernoulli distribution with p = 0.5 Bernoulli(p) Bernoulli distribution with success rate p params(d) Get the parameters, i.e. (p,) succprob(d) Get the success rate, i.e. p failprob(d) Get the failure rate, i.e. 1 - p External links: • Bernoulli distribution on Wikipedia source 1.78. DISTRIBUTIONS.BETA 1.78 19 Distributions.Beta Distributions.Beta — Type. Beta(,) The Beta distribution has probability density function f (x; α, β) = 1 xα−1 (1 − x)β−1 , B(α, β) x ∈ [0, 1] The Beta distribution is related to the Gamma distribution via the property that if X ∼ Gamma(α) and Y ∼ Gamma(β) independently, then X/(X + Y ) ∼ Beta(α, β). [] Beta() equivalent to Beta(1, 1) Beta(a) equivalent to Beta(a, a) Beta(a, b) Beta distribution with shape parameters a and b params(d) Get the parameters, i.e. (a, b) External links • Beta distribution on Wikipedia source 1.79 Distributions.BetaBinomial Distributions.BetaBinomial — Type. BetaBinomial(n,,) A Beta-binomial distribution is the compound distribution of the Binomial distribution where the probability of success p is distributed according to the Beta. It has three parameters: n, the number of trials and two shape parameters , n P (X = k) = B(k + α, n − k + β)/B(α, β), k for k = 0, 1, 2, . . . , n. [] BetaBinomial(n, a, b) BetaBinomial distribution with n trials and shape parameters a, b params(d) Get the parameters, i.e. (n, a, b) ntrials(d) Get the number of trials, i.e. n External links: • Beta-binomial distribution on Wikipedia source 20 CHAPTER 1. 1.80 DISTRIBUTIONS Distributions.BetaPrime Distributions.BetaPrime — Type. BetaPrime(,) The Beta prime distribution has probability density function f (x; α, β) = 1 xα−1 (1 + x)−(α+β) , B(α, β) x>0 The Beta prime distribution is related to the Beta distribution via the relaX ∼ BetaPrime(α, β) tion ship that if X ∼ Beta(α, β) then 1−X [] BetaPrime() equivalent to BetaPrime(1, 1) BetaPrime(a) equivalent to BetaPrime(a, a) BetaPrime(a, b) Beta prime distribution with shape parameters a and b params(d) Get the parameters, i.e. (a, b) External links • Beta prime distribution on Wikipedia source 1.81 Distributions.Binomial Distributions.Binomial — Type. Binomial(n,p) A Binomial distribution characterizes the number of successes in a sequence of independent trials. It has two parameters: n, the number of trials, and p, the probability of success in an individual trial, with the distribution: n k P (X = k) = p (1 − p)n−k , for k = 0, 1, 2, . . . , n. k [] Binomial() Binomial distribution with n = 1 and p = 0.5 Binomial(n) Binomial distribution for n trials with success rate p = 0.5 Binomial(n, p) Binomial distribution for n trials with success rate p params(d) Get the parameters, i.e. (n, p) ntrials(d) Get the number of trials, i.e. n succprob(d) Get the success rate, i.e. p failprob(d) Get the failure rate, i.e. 1 - p External links: • Binomial distribution on Wikipedia source 1.82. DISTRIBUTIONS.BIWEIGHT 1.82 21 Distributions.Biweight Distributions.Biweight — Type. Biweight(, ) source 1.83 Distributions.Categorical Distributions.Categorical — Type. Categorical(p) A Categorical distribution is parameterized by a probability vector p (of length K). P (X = k) = p[k] for k = 1, 2, . . . , K. [] Categorical(p) Categorical distribution with probability vector p params(d) Get the parameters, i.e. (p,) probs(d) Get the probability vector, i.e. p ncategories(d) Get the number of categories, i.e. K Here, p must be a real vector, of which all components are nonnegative and sum to one. Note: The input vector p is directly used as a field of the constructed distribution, without being copied. External links: • Categorical distribution on Wikipedia source 1.84 Distributions.Cauchy Distributions.Cauchy — Type. Cauchy(, ) The Cauchy distribution with location and scale has probability density function 1 f (x; µ, σ) = πσ 1 + x−µ 2 σ [] Cauchy() Standard Cauchy distribution, i.e. Cauchy(0, 1) Cauchy(u) Cauchy distribution with location u and unit scale, i.e. Cauchy(u, 1) Cauchy(u, b) Cauchy distribution with location u and scale b params(d) Get the parameters, i.e. (u, b) location(d) Get the location parameter, i.e. u scale(d) Get the scale parameter, i.e. b External links • Cauchy distribution on Wikipedia source 22 CHAPTER 1. 1.85 DISTRIBUTIONS Distributions.Chi Distributions.Chi — Type. Chi() The Chi distribution degrees of freedom has probability density function f (x; k) = 2 1 21−k/2 xk−1 e−x /2 , Γ(k/2) x>0 It is the distribution of the square-root of a Chisq variate. [] Chi(k) Chi distribution with k degrees of freedom params(d) Get the parameters, i.e. (k,) dof(d) Get the degrees of freedom, i.e. k External links • Chi distribution on Wikipedia source 1.86 Distributions.Chisq Distributions.Chisq — Type. Chisq() The Chi squared distribution (typically written ) with degrees of freedom has the probability density function f (x; k) = xk/2−1 e−x/2 , 2k/2 Γ(k/2) x > 0. If is an integer, then it is the distribution of the sum of squares of independent standard Normal variates. [] Chisq(k) Chi-squared distribution with k degrees of freedom params(d) Get the parameters, i.e. (k,) dof(d) Get the degrees of freedom, i.e. k External links • Chi-squared distribution on Wikipedia source 1.87. DISTRIBUTIONS.COSINE 1.87 23 Distributions.Cosine Distributions.Cosine — Type. Cosine(, ) A raised Cosine distribution. External link: • Cosine distribution on wikipedia source 1.88 Distributions.Dirichlet Distributions.Dirichlet — Type. Dirichlet The Dirichlet distribution is often used the conjugate prior for Categorical or Multinomial distributions. The probability density function of a Dirichlet distribution with parameter α = (α1 , . . . , αk ) is: k f (x; α) = 1 Y αi −1 x , B(α) i=1 i with B(α) = Qk Γ(αi ) i=1 , Pk Γ α i i=1 x1 + · · · + xk = 1 [] Let alpha be a vector Dirichlet(alpha) Dirichlet distribution with parameter vector alpha Let a be a positive scalar Dirichlet(k, a) Dirichlet distribution with parameter a * ones(k) source 1.89 Distributions.DiscreteUniform Distributions.DiscreteUniform — Type. DiscreteUniform(a,b) A Discrete uniform distribution is a uniform distribution over a consecutive sequence of integers between a and b, inclusive. P (X = k) = 1/(b − a + 1) for k = a, a + 1, . . . , b. [] DiscreteUniform(a, b) a uniform distribution over {a, a+1, ..., b} params(d) Get the parameters, i.e. (a, b) span(d) Get the span of the support, i.e. (b - a + 1) probval(d) Get the probability value, i.e. 1 / (b - a + 1) minimum(d) Return a maximum(d) Return b External links 24 CHAPTER 1. DISTRIBUTIONS • Discrete uniform distribution on Wikipedia source 1.90 Distributions.Epanechnikov Distributions.Epanechnikov — Type. Epanechnikov(, ) source 1.91 Distributions.Erlang Distributions.Erlang — Type. Erlang(,) The Erlang distribution is a special case of a Gamma distribution with integer shape parameter. [] Erlang() Erlang distribution with unit shape and unit scale, i.e. Erlang(1, 1) Erlang(a) Erlang distribution with shape parameter a and unit scale, i.e. Erlang(a, 1) Erlang(a, s) Erlang distribution with shape parameter a and scale b External links • Erlang distribution on Wikipedia source 1.92 Distributions.Exponential Distributions.Exponential — Type. Exponential() The Exponential distribution with scale parameter has probability density function 1 −x e θ, x > 0 θ [] Exponential() Exponential distribution with unit scale, i.e. Exponential(1) Exponential(b) Exponential distribution with scale b params(d) Get the parameters, i.e. (b,) scale(d) Get the scale parameter, i.e. b rate(d) Get the rate parameter, i.e. 1 / b External links f (x; θ) = • Exponential distribution on Wikipedia source 1.93. DISTRIBUTIONS.FDIST 1.93 25 Distributions.FDist Distributions.FDist — Type. FDist(1, 2) The F distribution has probability density function 1 f (x; ν1 , ν2 ) = xB(ν1 /2, ν2 /2) s (ν1 x)ν1 · ν2ν2 , (ν1 x + ν2 )ν1 +ν2 x>0 It is related to the Chisq distribution via the property that if X1 ∼ Chisq(ν1 ) and X2 ∼ Chisq(ν2 ), then (X1 /ν1 )/(X2 /ν2 ) ∼ FDist(ν1 , ν2 ). [] FDist(1, 2) F-Distribution with parameters 1 and 2 params(d) Get the parameters, i.e. (1, 2) External links • F distribution on Wikipedia source 1.94 Distributions.Frechet Distributions.Frechet — Type. Frechet(,) The Frchet distribution with shape and scale has probability density function f (x; α, θ) = α x −α−1 −(x/θ)−α e , θ θ x>0 [] Frechet() Frchet distribution with unit shape and unit scale, i.e. Frechet(1, 1) Frechet(a) Frchet distribution with shape a and unit scale, i.e. Frechet(a, 1) Frechet(a, b) Frchet distribution with shape a and scale b params(d) Get the parameters, i.e. (a, b) shape(d) Get the shape parameter, i.e. a scale(d) Get the scale parameter, i.e. b External links • Frchet distribution on Wikipedia source 26 CHAPTER 1. 1.95 DISTRIBUTIONS Distributions.Gamma Distributions.Gamma — Type. Gamma(,) The Gamma distribution with shape parameter and scale has probability density function f (x; α, θ) = xα−1 e−x/θ , Γ(α)θα x>0 [] Gamma() Gamma distribution with unit shape and unit scale, i.e. Gamma(1, 1) Gamma() Gamma distribution with shape and unit scale, i.e. Gamma(, 1) Gamma(, ) Gamma distribution with shape and scale params(d) Get the parameters, i.e. (, ) shape(d) Get the shape parameter, i.e. scale(d) Get the scale parameter, i.e. External links • Gamma distribution on Wikipedia source 1.96 Distributions.GeneralizedExtremeValue Distributions.GeneralizedExtremeValue — Type. GeneralizedExtremeValue(, , ) The Generalized extreme value distribution with shape parameter , scale and location has probability density function f (x; ξ, σ, µ) = −1/ξ−1 x−µ ξ exp − 1 + σ x−µ 1 exp − exp − x−µ σ exp − σ σ ( 1 σ 1+ n x−µ σ −1/ξ o ξ for ξ 6= 0 for ξ = 0 for h σ , +∞ for ξ > 0 µ − ξ x ∈ (−∞, +∞) i for ξ = 0 −∞, µ − σ for ξ < 0 ξ [] GeneralizedExtremeValue(m, s, k) Generalized Pareto distribution with shape k, scale s and location m. params(d) Get the parameters, i.e. (m, s, k) location(d) Get the location parameter, i.e. m scale(d) Get the scale parameter, i.e. s shape(d) Get the shape parameter, i.e. k (sometimes called c) External links 1.97. DISTRIBUTIONS.GENERALIZEDPARETO 27 • Generalized extreme value distribution on Wikipedia source 1.97 Distributions.GeneralizedPareto Distributions.GeneralizedPareto — Type. GeneralizedPareto(, , ) The Generalized Pareto distribution with shape parameter , scale and location has probability density function ( f (x; µ, σ, ξ) = x−µ − ξ1 −1 1 σ (1 + ξ σ ) 1 − (x−µ) σ σe for ξ 6= 0 for ξ = 0 ( , x∈ [µ, ∞] [µ, µ − σ/ξ] for ξ ≥ 0 for ξ < 0 [] GeneralizedPareto() Generalized Pareto distribution with unit shape and unit scale, i.e. GeneralizedPareto(0, 1, 1) GeneralizedPareto(k, s) Generalized Pareto distribution with shape k and scale s, i.e. GeneralizedPareto(0, k, s) GeneralizedPareto(m, k, s) Generalized Pareto distribution with shape k, scale s and location m. params(d) Get the parameters, i.e. (m, s, k) location(d) Get the location parameter, i.e. m scale(d) Get the scale parameter, i.e. s shape(d) Get the shape parameter, i.e. k External links • Generalized Pareto distribution on Wikipedia source 1.98 Distributions.Geometric Distributions.Geometric — Type. Geometric(p) A Geometric distribution characterizes the number of failures before the first success in a sequence of independent Bernoulli trials with success rate p. P (X = k) = p(1 − p)k , for k = 0, 1, 2, . . . . [] Geometric() Geometric distribution with success rate 0.5 Geometric(p) Geometric distribution with success rate p params(d) Get the parameters, i.e. (p,) succprob(d) Get the success rate, i.e. p failprob(d) Get the failure rate, i.e. 1 - p External links • Geometric distribution on Wikipedia source 28 CHAPTER 1. 1.99 DISTRIBUTIONS Distributions.Gumbel Distributions.Gumbel — Type. Gumbel(, ) The Gumbel distribution with location and scale has probability density function f (x; µ, θ) = 1 −(z+ez ) e , θ with z = x−µ θ [] Gumbel() Gumbel distribution with zero location and unit scale, i.e. Gumbel(0, 1) Gumbel(u) Gumbel distribution with location u and unit scale, i.e. Gumbel(u, 1) Gumbel(u, b) Gumbel distribution with location u and scale b params(d) Get the parameters, i.e. (u, b) location(d) Get the location parameter, i.e. u scale(d) Get the scale parameter, i.e. b External links • Gumbel distribution on Wikipedia source 1.100 Distributions.Hypergeometric Distributions.Hypergeometric — Type. Hypergeometric(s, f, n) A Hypergeometric distribution describes the number of successes in n draws without replacement from a finite population containing s successes and f failures. P (X = k) = s k f n−k s+f n , for k = max(0, n − f ), . . . , min(n, s). [] Hypergeometric(s, f, n) Hypergeometric distribution for a population with s successes and f failures, and a sequence of n trials. params(d) Get the parameters, i.e. (s, f, n) External links • Hypergeometric distribution on Wikipedia source 1.101. DISTRIBUTIONS.INVERSEGAMMA 1.101 29 Distributions.InverseGamma Distributions.InverseGamma — Type. InverseGamma(, ) The inverse gamma distribution with shape parameter and scale has probability density function f (x; α, θ) = θα x−(α+1) − θ e x, Γ(α) x>0 It is related to the Gamma distribution: if X ∼ Gamma(α, β), then ‘1 / X ∼ InverseGamma(α, βˆ{−1})“. [] InverseGamma() Inverse Gamma distribution with unit shape and unit scale, i.e. InverseGamma(1, 1) InverseGamma(a) Inverse Gamma distribution with shape a and unit scale, i.e. InverseGamma(a, 1) InverseGamma(a, b) Inverse Gamma distribution with shape a and scale b params(d) Get the parameters, i.e. (a, b) shape(d) Get the shape parameter, i.e. a scale(d) Get the scale parameter, i.e. b External links • Inverse gamma distribution on Wikipedia source 1.102 Distributions.InverseGaussian Distributions.InverseGaussian — Type. InverseGaussian(,) The inverse Gaussian distribution with mean and shape has probability density function r −λ(x − µ)2 λ f (x; µ, λ) = exp , x>0 2πx3 2µ2 x [] InverseGaussian() Inverse Gaussian distribution with unit mean and unit shape, i.e. InverseGaussian(1, 1) InverseGaussian(mu), Inverse Gaussian distribution with mean mu and unit shape, i.e. InverseGaussian(u, 1) InverseGaussian(mu, lambda) Inverse Gaussian distribution with mean mu and shape lambda params(d) Get the parameters, i.e. (mu, lambda) mean(d) Get the mean parameter, i.e. mu shape(d) Get the shape parameter, i.e. lambda External links • Inverse Gaussian distribution on Wikipedia source 30 CHAPTER 1. 1.103 DISTRIBUTIONS Distributions.InverseWishart Distributions.InverseWishart — Type. InverseWishart(nu, P) The [Inverse Wishart distribution](http://en.wikipedia.org/wiki/Inverse-Wishart distribution is usually used a the conjugate prior for the covariance matrix of a multivariate normal distribution, which is characterized by a degree of freedom , and a base matrix . source 1.104 Distributions.KSDist Distributions.KSDist — Type. KSDist(n) Distribution of the (two-sided) Kolmogorov-Smirnoff statistic p Dn = sup |F̂n (x) − F (x)| (n) x Dn converges a.s. to the Kolmogorov distribution. source 1.105 Distributions.KSOneSided Distributions.KSOneSided — Type. KSOneSided(n) Distribution of the one-sided Kolmogorov-Smirnov test statistic: Dn+ = sup(F̂n (x) − F (x)) x source 1.106 Distributions.Kolmogorov Distributions.Kolmogorov — Type. Kolmogorov() Kolmogorov distribution defined as sup |B(t)| t∈[0,1] where B(t) is a Brownian bridge used in the Kolmogorov–Smirnov test for large n. source 1.107. DISTRIBUTIONS.LAPLACE 1.107 31 Distributions.Laplace Distributions.Laplace — Type. Laplace(,) The Laplace distribution with location and scale has probability density function 1 |x − µ| f (x; µ, β) = exp − 2β β [] Laplace() Laplace distribution with zero location and unit scale, i.e. Laplace(0, 1) Laplace(u) Laplace distribution with location u and unit scale, i.e. Laplace(u, 1) Laplace(u, b) Laplace distribution with location u ans scale b params(d) Get the parameters, i.e. (u, b) location(d) Get the location parameter, i.e. u scale(d) Get the scale parameter, i.e. b External links • Laplace distribution on Wikipedia source 1.108 Distributions.Levy Distributions.Levy — Type. Levy(, ) The Lvy distribution with location and scale has probability density function r f (x; µ, σ) = σ σ , exp − 2π(x − µ)3 2(x − µ) x>µ [] Levy() Levy distribution with zero location and unit scale, i.e. Levy(0, 1) Levy(u) Levy distribution with location u and unit scale, i.e. Levy(u, 1) Levy(u, c) Levy distribution with location u ans scale c params(d) Get the parameters, i.e. (u, c) location(d) Get the location parameter, i.e. u External links • Lvy distribution on Wikipedia source 32 CHAPTER 1. 1.109 DISTRIBUTIONS Distributions.LocationScale Distributions.LocationScale — Type. LocationScale(,,) A location-scale transformed distribution with location parameter , scale parameter , and given distribution . f (x) = 1 x− [] LocationScale(,,) location-scale transformed distribution params(d) Get the parameters, i.e. (, , and the base distribution) location(d) Get the location parameter scale(d) Get the scale parameter External links Location-Scale family on Wikipedia source 1.110 Distributions.LogNormal Distributions.LogNormal — Type. LogNormal(,) The log normal distribution is the distribution of the exponential of a Normal variate: if X ∼ Normal(µ, σ) then exp(X) ∼ LogNormal(µ, σ). The probability density function is 1 (log(x) − µ)2 f (x; µ, σ) = √ exp − , 2σ 2 x 2πσ 2 x>0 [] LogNormal() Log-normal distribution with zero log-mean and unit scale LogNormal(mu) Log-normal distribution with log-mean mu and unit scale LogNormal(mu, sig) Log-normal distribution with log-mean mu and scale sig params(d) Get the parameters, i.e. (mu, sig) meanlogx(d) Get the mean of log(X), i.e. mu varlogx(d) Get the variance of log(X), i.e. sig2 stdlogx(d)Getthestandarddeviationof log(X External links • Log normal distribution on Wikipedia source 1.111. DISTRIBUTIONS.LOGISTIC 1.111 33 Distributions.Logistic Distributions.Logistic — Type. Logistic(,) The Logistic distribution with location and scale has probability density function 1 x−µ 2 f (x; µ, θ) = sech 4θ 2θ [] Logistic() Logistic distribution with zero location and unit scale, i.e. Logistic(0, 1) Logistic(u) Logistic distribution with location u and unit scale, i.e. Logistic(u, 1) Logistic(u, b) Logistic distribution with location u ans scale b params(d) Get the parameters, i.e. (u, b) location(d) Get the location parameter, i.e. u scale(d) Get the scale parameter, i.e. b External links • Logistic distribution on Wikipedia source 1.112 Distributions.MixtureModel Distributions.MixtureModel — Method. MixtureModel(components, [prior]) Construct a mixture model with a vector of components and a prior probability vector. If no prior is provided then all components will have the same prior probabilities. source 1.113 Distributions.MixtureModel Distributions.MixtureModel — Method. MixtureModel(C, params, [prior]) Construct a mixture model with component type C, a vector of parameters for constructing the components given by params, and a prior probability vector. If no prior is provided then all components will have the same prior probabilities. source 34 1.114 CHAPTER 1. DISTRIBUTIONS Distributions.Multinomial Distributions.Multinomial — Type. The Multinomial distribution generalizes the binomial distribution. Consider n independent draws from a Categorical distribution over a finite set of size k, and let X = (X1 , ..., Xk ) where Xi represents the number of times the element i occurs, then the distribution of X is a multinomial distribution. Each sample of a multinomial distribution is a k-dimensional integer vector that sums to n. The probability mass function is given by f (x; n, p) = k Y n! pxi , x1 ! · · · xk ! i=1 i x1 + · · · + xk = n [] Multinomial(n, p) Multinomial distribution for n trials with probability vector p Multinomial(n, k) Multinomial distribution for n trials with equal probabilities over 1:k source 1.115 Distributions.MvLogNormal Distributions.MvLogNormal — Type. MvLogNormal(d::MvNormal) The Multivariate lognormal distribution is a multidimensional generalization of the lognormal distribution. If X ∼ N (µ, Σ) has a multivariate normal distribution then Y = exp(X) has a multivariate lognormal distribution. Mean vector µ and covariance matrix Σ of the underlying normal distribution are known as the location and scale parameters of the corresponding lognormal distribution. source 1.116 Distributions.MvNormal Distributions.MvNormal — Type. MvNormal Generally, users don’t have to worry about these internal details. We provide a common constructor MvNormal, which will construct a distribution of appropriate type depending on the input arguments. MvNormal(sig) Construct a multivariate normal distribution with zero mean and covariance represented by sig. 1.117. DISTRIBUTIONS.MVNORMALCANON 35 MvNormal(mu, sig) Construct a multivariate normal distribution with mean mu and covariance represented by sig. MvNormal(d, sig) Construct a multivariate normal distribution of dimension d, with zero mean, and an isotropic covariance as abs2(sig) * eye(d). Arguments • mu::Vector{T<:Real}: The mean vector. • d::Real: dimension of distribution. • sig: The covariance, which can in of either of the following forms (with T<:Real): 1. subtype of AbstractPDMat 2. symmetric matrix of type Matrix{T} 3. vector of type Vector{T}: indicating a diagonal covariance as diagm(abs2(sig)). 4. real-valued number: indicating an isotropic covariance as abs2(sig) * eye(d). Note: The constructor will choose an appropriate covariance form internally, so that special structure of the covariance can be exploited. source 1.117 Distributions.MvNormalCanon Distributions.MvNormalCanon — Type. MvNormalCanon Multivariate normal distribution is an exponential family distribution, with two canonical parameters: the potential vector h and the precision matrix J. The relation between these parameters and the conventional representation (i.e. the one using mean µ and covariance Σ) is: h = Σ−1 µ, and J = Σ−1 The canonical parameterization is widely used in Bayesian analysis. We provide a type MvNormalCanon, which is also a subtype of AbstractMvNormal to represent a multivariate normal distribution using canonical parameters. Particularly, MvNormalCanon is defined as: [] immutable MvNormalCanon{P¡:AbstractPDMat,V¡:Union{Vector,ZeroVector}} ¡: AbstractMvNormal ::V the mean vector h::V potential vector, i.e. inv() * J::P precision matrix, i.e. inv() end 36 CHAPTER 1. DISTRIBUTIONS We also define aliases for common specializations of this parametric type: [] const FullNormalCanon = MvNormalCanon{PDMat, Vector{Float64}} const DiagNormalCanon = MvNormalCanon{PDiagMat, Vector{Float64}} const IsoNormalCanon = MvNormalCanon{ScalMat, Vector{Float64}} const ZeroMeanFullNormalCanon = MvNormalCanon{PDMat, ZeroVector{Float64}} const ZeroMeanDiagNormalCanon = MvNormalCanon{PDiagMat, ZeroVector{Float64}} const ZeroMeanIsoNormalCanon = MvNormalCanon{ScalMat, ZeroVector{Float64}} A multivariate distribution with canonical parameterization can be constructed using a common constructor MvNormalCanon as: MvNormalCanon(h, J) Construct a multivariate normal distribution with potential vector h and precision matrix represented by J. MvNormalCanon(J) Construct a multivariate normal distribution with zero mean (thus zero potential vector) and precision matrix represented by J. MvNormalCanon(d, J) Construct a multivariate normal distribution of dimension d, with zero mean and a precision matrix as J * eye(d). Arguments • d::Int: dimension of distribution • h::Vector{T<:Real}: the potential vector, of type Vector{T} with T<:Real. • J: the representation of the precision matrix, which can be in either of the following forms (T<:Real): 1. an instance of a subtype of AbstractPDMat 2. a square matrix of type Matrix{T} 3. a vector of type Vector{T}: indicating a diagonal precision matrix as diagm(J). 4. a real number: indicating an isotropic precision matrix as J * eye(d). Note: MvNormalCanon share the same set of methods as MvNormal. source 1.118. DISTRIBUTIONS.NEGATIVEBINOMIAL 1.118 37 Distributions.NegativeBinomial Distributions.NegativeBinomial — Type. NegativeBinomial(r,p) A Negative binomial distribution describes the number of failures before the rth success in a sequence of independent Bernoulli trials. It is parameterized by r, the number of successes, and p, the probability of success in an individual trial. k+r−1 r P (X = k) = p (1 − p)k , for k = 0, 1, 2, . . . . k The distribution remains well-defined for any positive r, in which case P (X = k) = Γ(k + r) r p (1 − p)k , k!Γ(r) for k = 0, 1, 2, . . . . [] NegativeBinomial() Negative binomial distribution with r = 1 and p = 0.5 NegativeBinomial(r, p) Negative binomial distribution with r successes and success rate p params(d) Get the parameters, i.e. (r, p) succprob(d) Get the success rate, i.e. p failprob(d) Get the failure rate, i.e. 1 - p External links: • Negative binomial distribution on Wikipedia source 1.119 Distributions.NoncentralBeta Distributions.NoncentralBeta — Type. NoncentralBeta(, , ) source 1.120 Distributions.NoncentralChisq Distributions.NoncentralChisq — Type. NoncentralChisq(, ) The noncentral chi-squared distribution with degrees of freedom and noncentrality parameter has the probability density function f (x; ν, λ) = √ 1 −(x+λ)/2 x ν/4−1/2 e Iν/2−1 ( λx), 2 λ x>0 38 CHAPTER 1. DISTRIBUTIONS It is the distribution of the sum of squares of independent Normal variates with individual means µi and λ= ν X µ2i i=1 [] NoncentralChisq(, ) Noncentral chi-squared distribution with degrees of freedom and noncentrality parameter params(d) Get the parameters, i.e. (, ) External links • Noncentral chi-squared distribution on Wikipedia source 1.121 Distributions.NoncentralF Distributions.NoncentralF — Type. NoncentralF(1, 2, ) source 1.122 Distributions.NoncentralT Distributions.NoncentralT — Type. NoncentralT(, ) source 1.123 Distributions.Normal Distributions.Normal — Type. Normal(,) The Normal distribution with mean and standard deviation has probability density function (x − µ)2 1 exp − f (x; µ, σ) = √ 2σ 2 2πσ 2 [] Normal() standard Normal distribution with zero mean and unit variance Normal(mu) Normal distribution with mean mu and unit variance Normal(mu, sig) Normal distribution with mean mu and variance sig2 params(d) Get the parameters, i.e. (mu, sig) mean(d) Get the mean, i.e. mu std(d) Get the standard deviation, i.e. sig External links 1.124. DISTRIBUTIONS.NORMALCANON 39 • Normal distribution on Wikipedia source 1.124 Distributions.NormalCanon Distributions.NormalCanon — Type. NormalCanon(, ) Canonical Form of Normal distribution source 1.125 Distributions.NormalInverseGaussian Distributions.NormalInverseGaussian — Type. NormalInverseGaussian(,,,) The Normal-inverse Gaussian distribution with location , tail heaviness , asymmetry parameter and scale has probability density function p αδK1 α δ 2 + (x − µ)2 p f (x; µ, α, β, δ) = eδγ+β(x−µ) π δ 2 + (x − µ)2 where Kj denotes a modified Bessel function of the third kind. External links • Normal-inverse Gaussian distribution on Wikipedia source 1.126 Distributions.Pareto Distributions.Pareto — Type. Pareto(,) The Pareto distribution with shape and scale has probability density function αθα , x≥θ xα+1 [] Pareto() Pareto distribution with unit shape and unit scale, i.e. Pareto(1, 1) Pareto(a) Pareto distribution with shape a and unit scale, i.e. Pareto(a, 1) Pareto(a, b) Pareto distribution with shape a and scale b params(d) Get the parameters, i.e. (a, b) shape(d) Get the shape parameter, i.e. a scale(d) Get the scale parameter, i.e. b External links f (x; α, θ) = 40 CHAPTER 1. DISTRIBUTIONS • Pareto distribution on Wikipedia source 1.127 Distributions.Poisson Distributions.Poisson — Type. Poisson() A Poisson distribution descibes the number of independent events occurring within a unit time interval, given the average rate of occurrence . λk −λ e , for k = 0, 1, 2, . . . . k! [] Poisson() Poisson distribution with rate parameter 1 Poisson(lambda) Poisson distribution with rate parameter lambda params(d) Get the parameters, i.e. (,) mean(d) Get the mean arrival rate, i.e. External links: P (X = k) = • Poisson distribution on Wikipedia source 1.128 Distributions.PoissonBinomial Distributions.PoissonBinomial — Type. PoissonBinomial(p) A Poisson-binomial distribution describes the number of successes in a sequence of independent trials, wherein each trial has a different success rate. It is parameterized by a vector p (of length K), where K is the total number of trials and p[i] corresponds to the probability of success of the ith trial. P (X = k) = X Y A∈Fk i∈A p[i] Y (1 − p[j]), for k = 0, 1, 2, . . . , K, j∈Ac where Fk is the set of all subsets of k integers that can be selected from {1, 2, 3, ..., K}. [] PoissonBinomial(p) Poisson Binomial distribution with success rate vector p params(d) Get the parameters, i.e. (p,) succprob(d) Get the vector of success rates, i.e. p failprob(d) Get the vector of failure rates, i.e. 1-p External links: • Poisson-binomial distribution on Wikipedia source 1.129. DISTRIBUTIONS.RAYLEIGH 1.129 41 Distributions.Rayleigh Distributions.Rayleigh — Type. Rayleigh() The Rayleigh distribution with scale has probability density function f (x; σ) = x − x22 e 2σ , σ2 x>0 It is related to the Normal distribution via the property that if X, Y ∼ √ Normal(0, σ), independently, then X 2 + Y 2 ∼ Rayleigh(σ). [] Rayleigh() Rayleigh distribution with unit scale, i.e. Rayleigh(1) Rayleigh(s) Rayleigh distribution with scale s params(d) Get the parameters, i.e. (s,) scale(d) Get the scale parameter, i.e. s External links • Rayleigh distribution on Wikipedia source 1.130 Distributions.Semicircle Distributions.Semicircle — Type. Semicircle(r) The Wigner semicircle distribution with radius parameter r has probability density function f (x; r) = 2 p 2 r − x2 , πr2 x ∈ [−r, r]. [] Semicircle(r) Wigner semicircle distribution with radius r params(d) Get the radius parameter, i.e. (r,) External links • Wigner semicircle distribution on Wikipedia source 42 CHAPTER 1. 1.131 DISTRIBUTIONS Distributions.Skellam Distributions.Skellam — Type. Skellam(1, 2) A Skellam distribution describes the difference between two independent Poisson variables, respectively with rate 1 and 2. P (X = k) = e−(µ1 +µ2 ) µ1 µ2 k/2 √ Ik (2 µ1 µ2 ) for integer k where Ik is the modified Bessel function of the first kind. [] Skellam(mu1, mu2) Skellam distribution for the difference between two Poisson variables, respectively with expected values mu1 and mu2. params(d) Get the parameters, i.e. (mu1, mu2) External links: • Skellam distribution on Wikipedia source 1.132 Distributions.SymTriangularDist Distributions.SymTriangularDist — Type. SymTriangularDist(,) The Symmetric triangular distribution with location and scale has probability density function 1 x−µ f (x; µ, σ) = 1− , µ−σ ≤x≤µ+σ σ σ [] SymTriangularDist() Symmetric triangular distribution with zero location and unit scale SymTriangularDist(u) Symmetric triangular distribution with location u and unit scale SymTriangularDist(u, s) Symmetric triangular distribution with location u and scale s params(d) Get the parameters, i.e. (u, s) location(d) Get the location parameter, i.e. u scale(d) Get the scale parameter, i.e. s source 1.133 Distributions.TDist Distributions.TDist — Type. TDist() 1.134. DISTRIBUTIONS.TRIANGULARDIST 43 The Students T distribution with degrees of freedom has probability density function 1 f (x; d) = √ dB(1/2, d/2) − d+1 2 x2 1+ d [] TDist(d) t-distribution with d degrees of freedom params(d) Get the parameters, i.e. (d,) dof(d) Get the degrees of freedom, i.e. d External links Student’s T distribution on Wikipedia source 1.134 Distributions.TriangularDist Distributions.TriangularDist — Type. TriangularDist(a,b,c) The triangular distribution with lower limit a, upper limit b and mode c has probability density function 0 for x < a, 2(x−a) (b−a)(c−a) for a ≤ x ≤ c, f (x; a, b, c) = 2(b−x) for c < x ≤ b, (b−a)(b−c) 0 for b < x, [] TriangularDist(a, b) Triangular distribution with lower limit a, upper limit b, and mode (a+b)/2 TriangularDist(a, b, c) Triangular distribution with lower limit a, upper limit b, and mode c params(d) Get the parameters, i.e. (a, b, c) minimum(d) Get the lower bound, i.e. a maximum(d) Get the upper bound, i.e. b mode(d) Get the mode, i.e. c External links • Triangular distribution on Wikipedia source 1.135 Distributions.Triweight Distributions.Triweight — Type. Triweight(, ) source 44 CHAPTER 1. 1.136 DISTRIBUTIONS Distributions.Truncated Distributions.Truncated — Type. Truncated(d, l, u): Construct a truncated distribution. Arguments • d::UnivariateDistribution: The original distribution. • l::Real: The lower bound of the truncation, which can be a finite value or -Inf. • u::Real: The upper bound of the truncation, which can be a finite value of Inf. source 1.137 Distributions.Uniform Distributions.Uniform — Type. Uniform(a,b) The continuous uniform distribution over an interval [a, b] has probability density function f (x; a, b) = 1 , b−a a≤x≤b [] Uniform() Uniform distribution over [0, 1] Uniform(a, b) Uniform distribution over [a, b] params(d) Get the parameters, i.e. (a, b) minimum(d) Get the lower bound, i.e. a maximum(d) Get the upper bound, i.e. b location(d) Get the location parameter, i.e. a scale(d) Get the scale parameter, i.e. b - a External links • Uniform distribution (continuous) on Wikipedia source 1.138 Distributions.VonMises Distributions.VonMises — Type. VonMises(, ) 1.139. DISTRIBUTIONS.WEIBULL 45 The von Mises distribution with mean and concentration has probability density function f (x; µ, κ) = 1 exp (κ cos(x − µ)) 2πI0 (κ) [] VonMises() von Mises distribution with zero mean and unit concentration VonMises() von Mises distribution with zero mean and concentration VonMises(, ) von Mises distribution with mean and concentration External links • von Mises distribution on Wikipedia source 1.139 Distributions.Weibull Distributions.Weibull — Type. Weibull(,) The Weibull distribution with shape and scale has probability density function α x α−1 −(x/θ)α e , x≥0 θ θ [] Weibull() Weibull distribution with unit shape and unit scale, i.e. Weibull(1, 1) Weibull(a) Weibull distribution with shape a and unit scale, i.e. Weibull(a, 1) Weibull(a, b) Weibull distribution with shape a and scale b params(d) Get the parameters, i.e. (a, b) shape(d) Get the shape parameter, i.e. a scale(d) Get the scale parameter, i.e. b External links f (x; α, θ) = • Weibull distribution on Wikipedia source 1.140 Distributions.Wishart Distributions.Wishart — Type. Wishart(nu, S) The Wishart distribution is a multidimensional generalization of the Chisquare distribution, which is characterized by a degree of freedom , and a base matrix S. source Chapter 2 StatsBase 2.1 Base.stdm Base.stdm — Method. stdm(v, w::AbstractWeights, m, [dim]; corrected=false) Compute the standard deviation of a real-valued array x with a known mean m, optionally over a dimension dim. Observations in x are weighted using weight vector w. The uncorrected (when corrected=false) sample standard deviation is defined as: v u n u 1 X 2 tP wi (xi − m) w i=1 where n is the length of the input. The unbiased estimate (when corrected=true) of the population standard deviation is computed by replacing P1w with a factor dependent on the type of weights used: • AnalyticWeights: • FrequencyWeights: P w− P1 2 P w / w P1 w−1 • ProbabilityWeights: nP (n−1) w where n equals count(!iszero, w) • Weights: ArgumentError (bias correction not supported) source 46 2.2. BASE.VARM 2.2 47 Base.varm Base.varm — Method. varm(x, w::AbstractWeights, m, [dim]; corrected=false) Compute the variance of a real-valued array x with a known mean m, optionally over a dimension dim. Observations in x are weighted using weight vector w. The uncorrected (when corrected=false) sample variance is defined as: n 1 X 2 P wi (xi − m) w i=1 where n is the length of the input. The unbiased estimate (when corrected=true) of the population variance is computed by replacing P1w with a factor dependent on the type of weights used: • AnalyticWeights: • FrequencyWeights: P w− P1 2 P w / w P1 w−1 • ProbabilityWeights: nP (n−1) w where n equals count(!iszero, w) • Weights: ArgumentError (bias correction not supported) source 2.3 StatsBase.L1dist StatsBase.L1dist — Method. L1dist(a, b) Compute the L1 distance between two arrays: alent of sum(abs, a - b). source 2.4 Pn i=1 |ai −bi |. Efficient equiv- StatsBase.L2dist StatsBase.L2dist — Method. L2dist(a, b) Compute the L2 distance between two arrays: equivalent of sqrt(sumabs2(a - b)). source pPn i=1 |ai − bi |2 . Efficient 48 CHAPTER 2. 2.5 STATSBASE StatsBase.Linfdist StatsBase.Linfdist — Method. Linfdist(a, b) Compute the L distance, also called the Chebyshev distance, between two arrays: maxi∈1:n |ai − bi |. Efficient equivalent of maxabs(a - b). source 2.6 StatsBase.addcounts! StatsBase.addcounts! — Method. addcounts!(r, x, levels::UnitRange{<:Int}, [wv::AbstractWeights]) Add the number of occurrences in x of each value in levels to an existing array r. If a weighting vector wv is specified, the sum of weights is used rather than the raw counts. source 2.7 StatsBase.addcounts! StatsBase.addcounts! — Method. addcounts!(dict, x[, wv]; alg = :auto) Add counts based on x to a count map. New entries will be added if new values come up. If a weighting vector wv is specified, the sum of the weights is used rather than the raw counts. alg can be one of: • :auto (default): if StatsBase.radixsort safe(eltype(x)) == true then use :radixsort, otherwise use :dict. • :radixsort: if radixsort safe(eltype(x)) == true then use the radix sort algorithm to sort the input vector which will generally lead to shorter running time. However the radix sort algorithm creates a copy of the input vector and hence uses more RAM. Choose :dict if the amount of available RAM is a limitation. • :dict: use Dict-based method which is generally slower but uses less RAM and is safe for any data type. source 2.8. STATSBASE.ADJR2 2.8 49 StatsBase.adjr2 StatsBase.adjr2 — Method. adjr2(obj::StatisticalModel, variant::Symbol) adjr(obj::StatisticalModel, variant::Symbol) Adjusted coefficient of determination (adjusted R-squared). For linear models, the adjusted R is defined as 1−(1−(1−R2 )(n−1)/(n−p)), with R2 the coefficient of determination, n the number of observations, and p the number of coefficients (including the intercept). This definition is generally known as the Wherry Formula I. For other models, one of the several pseudo R definitions must be chosen via variant. The only currently supported variant is :MacFadden, defined as 1 − (log L − k)/ log L0. In this formula, L is the likelihood of the model, L0 that of the null model (the model including only the intercept). These two quantities are taken to be minus half deviance of the corresponding models. k is the number of consumed degrees of freedom of the model (as returned by dof). source 2.9 StatsBase.aic StatsBase.aic — Method. aic(obj::StatisticalModel) Akaike’s Information Criterion, defined as −2 log L+2k, with L the likelihood of the model, and k its number of consumed degrees of freedom (as returned by dof). source 2.10 StatsBase.aicc StatsBase.aicc — Method. aicc(obj::StatisticalModel) Corrected Akaike’s Information Criterion for small sample sizes (Hurvich and Tsai 1989), defined as −2 log L+2k +2k(k −1)/(n−k −1), with L the likelihood of the model, k its number of consumed degrees of freedom (as returned by dof), and n the number of observations (as returned by nobs). source 50 2.11 CHAPTER 2. STATSBASE StatsBase.autocor! StatsBase.autocor! — Method. autocor!(r, x, lags; demean=true) Compute the autocorrelation function (ACF) of a vector or matrix x at lags and store the result in r. demean denotes whether the mean of x should be subtracted from x before computing the ACF. If x is a vector, r must be a vector of the same length as x. If x is a matrix, r must be a matrix of size (length(lags), size(x,2)), and where each column in the result will correspond to a column in x. The output is normalized by the variance of x, i.e. so that the lag 0 autocorrelation is 1. See autocov! for the unnormalized form. source 2.12 StatsBase.autocor StatsBase.autocor — Method. autocor(x, [lags]; demean=true) Compute the autocorrelation function (ACF) of a vector or matrix x, optionally specifying the lags. demean denotes whether the mean of x should be subtracted from x before computing the ACF. If x is a vector, return a vector of the same length as x. If x is a matrix, return a matrix of size (length(lags), size(x,2)), where each column in the result corresponds to a column in x. When left unspecified, the lags used are the integers from 0 to min(size(x,1)-1, 10*log10(size(x,1))). The output is normalized by the variance of x, i.e. so that the lag 0 autocorrelation is 1. See autocov for the unnormalized form. source 2.13 StatsBase.autocov! StatsBase.autocov! — Method. autocov!(r, x, lags; demean=true) Compute the autocovariance of a vector or matrix x at lags and store the result in r. demean denotes whether the mean of x should be subtracted from x before computing the autocovariance. If x is a vector, r must be a vector of the same length as x. If x is a matrix, r must be a matrix of size (length(lags), size(x,2)), and where each column in the result will correspond to a column in x. 2.14. STATSBASE.AUTOCOV 51 The output is not normalized. See autocor! for a method with normalization. source 2.14 StatsBase.autocov StatsBase.autocov — Method. autocov(x, [lags]; demean=true) Compute the autocovariance of a vector or matrix x, optionally specifying the lags at which to compute the autocovariance. demean denotes whether the mean of x should be subtracted from x before computing the autocovariance. If x is a vector, return a vector of the same length as x. If x is a matrix, return a matrix of size (length(lags), size(x,2)), where each column in the result corresponds to a column in x. When left unspecified, the lags used are the integers from 0 to min(size(x,1)-1, 10*log10(size(x,1))). The output is not normalized. See autocor for a function with normalization. source 2.15 StatsBase.aweights StatsBase.aweights — Method. aweights(vs) Construct an AnalyticWeights vector from array vs. See the documentation for AnalyticWeights for more details. source 2.16 StatsBase.bic StatsBase.bic — Method. bic(obj::StatisticalModel) Bayesian Information Criterion, defined as −2 log L+k log n, with L the likelihood of the model, k its number of consumed degrees of freedom (as returned by dof), and n the number of observations (as returned by nobs). source 52 CHAPTER 2. 2.17 STATSBASE StatsBase.coef StatsBase.coef — Method. coef(obj::StatisticalModel) Return the coefficients of the model. source 2.18 StatsBase.coefnames StatsBase.coefnames — Method. coefnames(obj::StatisticalModel) Return the names of the coefficients. source 2.19 StatsBase.coeftable StatsBase.coeftable — Method. coeftable(obj::StatisticalModel) Return a table of class CoefTable with coefficients and related statistics. source 2.20 StatsBase.competerank StatsBase.competerank — Method. competerank(x; lt = isless, rev::Bool = false) Return the standard competition ranking (“1224” ranking) of an array. The lt keyword allows providing a custom “less than” function; use rev=true to reverse the sorting order. Items that compare equal are given the same rank, then a gap is left in the rankings the size of the number of tied items - 1. Missing values are assigned rank missing. source 2.21 StatsBase.confint StatsBase.confint — Method. confint(obj::StatisticalModel) Compute confidence intervals for coefficients. source 2.22. STATSBASE.COR2COV 2.22 53 StatsBase.cor2cov StatsBase.cor2cov — Method. cor2cov(C, s) Compute the covariance matrix from the correlation matrix C and a vector of standard deviations s. Use StatsBase.cor2cov! for an in-place version. source 2.23 StatsBase.corkendall StatsBase.corkendall — Method. corkendall(x, y=x) Compute Kendall’s rank correlation coefficient, . x and y must both be either matrices or vectors. source 2.24 StatsBase.corspearman StatsBase.corspearman — Method. corspearman(x, y=x) Compute Spearman’s rank correlation coefficient. If x and y are vectors, the output is a float, otherwise it’s a matrix corresponding to the pairwise correlations of the columns of x and y. source 2.25 StatsBase.counteq StatsBase.counteq — Method. counteq(a, b) Count the number of indices at which the elements of the arrays a and b are equal. source 54 CHAPTER 2. 2.26 STATSBASE StatsBase.countmap StatsBase.countmap — Method. countmap(x; alg = :auto) Return a dictionary mapping each unique value in x to its number of occurrences. • :auto (default): if StatsBase.radixsort safe(eltype(x)) == true then use :radixsort, otherwise use :dict. • :radixsort: if radixsort safe(eltype(x)) == true then use the radix sort algorithm to sort the input vector which will generally lead to shorter running time. However the radix sort algorithm creates a copy of the input vector and hence uses more RAM. Choose :dict if the amount of available RAM is a limitation. • :dict: use Dict-based method which is generally slower but uses less RAM and is safe for any data type. source 2.27 StatsBase.countne StatsBase.countne — Method. countne(a, b) Count the number of indices at which the elements of the arrays a and b are not equal. source 2.28 StatsBase.counts StatsBase.counts — Function. counts(x, [wv::AbstractWeights]) counts(x, levels::UnitRange{<:Integer}, [wv::AbstractWeights]) counts(x, k::Integer, [wv::AbstractWeights]) Count the number of times each value in x occurs. If levels is provided, only values falling in that range will be considered (the others will be ignored without raising an error or a warning). If an integer k is provided, only values in the range 1:k will be considered. If a weighting vector wv is specified, the sum of the weights is used rather than the raw counts. The output is a vector of length length(levels). source 2.29. STATSBASE.COV2COR 2.29 55 StatsBase.cov2cor StatsBase.cov2cor — Method. cov2cor(C, s) Compute the correlation matrix from the covariance matrix C and a vector of standard deviations s. Use Base.cov2cor! for an in-place version. source 2.30 StatsBase.crosscor! StatsBase.crosscor! — Method. crosscor!(r, x, y, lags; demean=true) Compute the cross correlation between real-valued vectors or matrices x and y at lags and store the result in r. demean specifies whether the respective means of x and y should be subtracted from them before computing their cross correlation. If both x and y are vectors, r must be a vector of the same length as lags. If either x is a matrix and y is a vector, r must be a matrix of size (length(lags), size(x, 2)); if x is a vector and y is a matrix, r must be a matrix of size (length(lags), size(y, 2)). If both x and y are matrices, r must be a three-dimensional array of size (length(lags), size(x, 2), size(y, 2)). The output is normalized by sqrt(var(x)*var(y)). See crosscov! for the unnormalized form. source 2.31 StatsBase.crosscor StatsBase.crosscor — Method. crosscor(x, y, [lags]; demean=true) Compute the cross correlation between real-valued vectors or matrices x and y, optionally specifying the lags. demean specifies whether the respective means of x and y should be subtracted from them before computing their cross correlation. If both x and y are vectors, return a vector of the same length as lags. Otherwise, compute cross covariances between each pairs of columns in x and y. When left unspecified, the lags used are the integers from -min(size(x,1)-1, 10*log10(size(x,1))) to min(size(x,1), 10*log10(size(x,1))). The output is normalized by sqrt(var(x)*var(y)). See crosscov for the unnormalized form. source 56 2.32 CHAPTER 2. STATSBASE StatsBase.crosscov! StatsBase.crosscov! — Method. crosscov!(r, x, y, lags; demean=true) Compute the cross covariance function (CCF) between real-valued vectors or matrices x and y at lags and store the result in r. demean specifies whether the respective means of x and y should be subtracted from them before computing their CCF. If both x and y are vectors, r must be a vector of the same length as lags. If either x is a matrix and y is a vector, r must be a matrix of size (length(lags), size(x, 2)); if x is a vector and y is a matrix, r must be a matrix of size (length(lags), size(y, 2)). If both x and y are matrices, r must be a three-dimensional array of size (length(lags), size(x, 2), size(y, 2)). The output is not normalized. See crosscor! for a function with normalization. source 2.33 StatsBase.crosscov StatsBase.crosscov — Method. crosscov(x, y, [lags]; demean=true) Compute the cross covariance function (CCF) between real-valued vectors or matrices x and y, optionally specifying the lags. demean specifies whether the respective means of x and y should be subtracted from them before computing their CCF. If both x and y are vectors, return a vector of the same length as lags. Otherwise, compute cross covariances between each pairs of columns in x and y. When left unspecified, the lags used are the integers from -min(size(x,1)-1, 10*log10(size(x,1))) to min(size(x,1), 10*log10(size(x,1))). The output is not normalized. See crosscor for a function with normalization. source 2.34 StatsBase.crossentropy StatsBase.crossentropy — Method. crossentropy(p, q, [b]) Compute the cross entropy between p and q, optionally specifying a real number b such that the result is scaled by 1/log(b). source 2.35. STATSBASE.DENSERANK 2.35 57 StatsBase.denserank StatsBase.denserank — Method. denserank(x) Return the dense ranking (“1223” ranking) of an array. The lt keyword allows providing a custom “less than” function; use rev=true to reverse the sorting order. Items that compare equal receive the same ranking, and the next subsequent rank is assigned with no gap. Missing values are assigned rank missing. source 2.36 StatsBase.describe StatsBase.describe — Method. describe(a) Pretty-print the summary statistics provided by summarystats: the mean, minimum, 25th percentile, median, 75th percentile, and maximum. source 2.37 StatsBase.deviance StatsBase.deviance — Method. deviance(obj::StatisticalModel) Return the deviance of the model relative to a reference, which is usually when applicable the saturated model. It is equal, up to a constant, to −2 log L, with L the likelihood of the model. source 2.38 StatsBase.dof StatsBase.dof — Method. dof(obj::StatisticalModel) Return the number of degrees of freedom consumed in the model, including when applicable the intercept and the distribution’s dispersion parameter. source 58 CHAPTER 2. 2.39 STATSBASE StatsBase.dof residual StatsBase.dof residual — Method. dof_residual(obj::RegressionModel) Return the residual degrees of freedom of the model. source 2.40 StatsBase.ecdf StatsBase.ecdf — Method. ecdf(X) Return an empirical cumulative distribution function (ECDF) based on a vector of samples given in X. Note: this is a higher-level function that returns a function, which can then be applied to evaluate CDF values on other samples. source 2.41 StatsBase.entropy StatsBase.entropy — Method. entropy(p, [b]) Compute the entropy of an array p, optionally specifying a real number b such that the entropy is scaled by 1/log(b). source 2.42 StatsBase.findat StatsBase.findat — Method. findat(a, b) For each element in b, find its first index in a. If the value does not occur in a, the corresponding index is 0. source 2.43 StatsBase.fit! StatsBase.fit! — Method. Fit a statistical model in-place. source 2.44. STATSBASE.FIT 2.44 59 StatsBase.fit StatsBase.fit — Method. Fit a statistical model. source 2.45 StatsBase.fit StatsBase.fit — Method. fit(Histogram, data[, weight][, edges]; closed=:right, nbins) Fit a histogram to data. Arguments • data: either a vector (for a 1-dimensional histogram), or a tuple of vectors of equal length (for an n-dimensional histogram). • weight: an optional AbstractWeights (of the same length as the data vectors), denoting the weight each observation contributes to the bin. If no weight vector is supplied, each observation has weight 1. • edges: a vector (typically an AbstractRange object), or tuple of vectors, that gives the edges of the bins along each dimension. If no edges are provided, these are determined from the data. Keyword arguments • closed=:right: if :left, the bin intervals are left-closed [a,b); if :right (the default), intervals are right-closed (a,b]. • nbins: if no edges argument is supplied, the approximate number of bins to use along each dimension (can be either a single integer, or a tuple of integers). Examples [] Univariate h = fit(Histogram, rand(100)) h = fit(Histogram, rand(100), 0:0.1:1.0) h = fit(Histogram, rand(100), nbins=10) h = fit(Histogram, rand(100), weights(rand(100)), 0:0.1:1.0) h = fit(Histogram, [20], 0:20:100) h = fit(Histogram, [20], 0:20:100, closed=:left) Multivariate h = fit(Histogram, (rand(100),rand(100))) h = fit(Histogram, (rand(100),rand(100)),nbins=10) source 60 CHAPTER 2. 2.46 STATSBASE StatsBase.fitted StatsBase.fitted — Method. fitted(obj::RegressionModel) Return the fitted values of the model. source 2.47 StatsBase.fweights StatsBase.fweights — Method. fweights(vs) Construct a FrequencyWeights vector from a given array. See the documentation for FrequencyWeights for more details. source 2.48 StatsBase.genmean StatsBase.genmean — Method. genmean(a, p) Return the generalized/power mean with exponent p of a real-valued array, 1 Pn i.e. n1 i=1 api p , where n = length(a). It is taken to be the geometric mean when p == 0. source 2.49 StatsBase.geomean StatsBase.geomean — Method. geomean(a) Return the geometric mean of a real-valued array. source 2.50 StatsBase.gkldiv StatsBase.gkldiv — Method. gkldiv(a, b) PnCompute the generalized Kullback-Leibler divergence between two arrays: i=1 (ai log(ai /bi ) − ai + bi ). Efficient equivalent of sum(a*log(a/b)-a+b). source 2.51. STATSBASE.HARMMEAN 2.51 61 StatsBase.harmmean StatsBase.harmmean — Method. harmmean(a) Return the harmonic mean of a real-valued array. source 2.52 StatsBase.indexmap StatsBase.indexmap — Method. indexmap(a) Construct a dictionary that maps each unique value in a to the index of its first occurrence in a. source 2.53 StatsBase.indicatormat StatsBase.indicatormat — Method. indicatormat(x, c=sort(unique(x)); sparse=false) Construct a boolean matrix I of size (length(c), length(x)). Let ci be the index of x[i] in c. Then I[ci, i] = true and all other elements are false. source 2.54 StatsBase.indicatormat StatsBase.indicatormat — Method. indicatormat(x, k::Integer; sparse=false) Construct a boolean matrix I of size (k, length(x)) such that I[x[i], i] = true and all other elements are set to false. If sparse is true, the output will be a sparse matrix, otherwise it will be dense (default). Examples julia> using StatsBase julia> indicatormat([1 2 2], 2) 23 Array{Bool,2}: true false false false true true source 62 2.55 CHAPTER 2. STATSBASE StatsBase.inverse rle StatsBase.inverse rle — Method. inverse_rle(vals, lens) Reconstruct a vector from its run-length encoding (see rle). vals is a vector of the values and lens is a vector of the corresponding run lengths. source 2.56 StatsBase.iqr StatsBase.iqr — Method. iqr(v) Compute the interquartile range (IQR) of an array, i.e. the 75th percentile minus the 25th percentile. source 2.57 StatsBase.kldivergence StatsBase.kldivergence — Method. kldivergence(p, q, [b]) Compute the Kullback-Leibler divergence of q from p, optionally specifying a real number b such that the divergence is scaled by 1/log(b). source 2.58 StatsBase.kurtosis StatsBase.kurtosis — Method. kurtosis(v, [wv::AbstractWeights], m=mean(v)) Compute the excess kurtosis of a real-valued array v, optionally specifying a weighting vector wv and a center m. source 2.59 StatsBase.levelsmap StatsBase.levelsmap — Method. levelsmap(a) Construct a dictionary that maps each of the n unique values in a to a number between 1 and n. source 2.60. STATSBASE.LOGLIKELIHOOD 2.60 63 StatsBase.loglikelihood StatsBase.loglikelihood — Method. loglikelihood(obj::StatisticalModel) Return the log-likelihood of the model. source 2.61 StatsBase.mad! StatsBase.mad! — Method. StatsBase.mad!(v; center=median!(v), normalize=true) Compute the median absolute deviation (MAD) of v around center (by default, around the median), overwriting v in the process. If normalize is set to true, the MAD is multiplied by 1 / quantile(Normal(), 3/4) 1.4826, in order to obtain a consistent estimator of the standard deviation under the assumption that the data is normally distributed. source 2.62 StatsBase.mad StatsBase.mad — Method. mad(v; center=median(v), normalize=true) Compute the median absolute deviation (MAD) of v around center (by default, around the median). If normalize is set to true, the MAD is multiplied by 1 / quantile(Normal(), 3/4) 1.4826, in order to obtain a consistent estimator of the standard deviation under the assumption that the data is normally distributed. source 2.63 StatsBase.maxad StatsBase.maxad — Method. maxad(a, b) Return the maximum absolute deviation between two arrays: maxabs(a b). source 64 2.64 CHAPTER 2. STATSBASE StatsBase.mean and cov StatsBase.mean and cov — Function. mean_and_cov(x, [wv::AbstractWeights]; vardim=1, corrected=false) -> (mean, cov) Return the mean and covariance matrix as a tuple. A weighting vector wv can be specified. vardim that designates whether the variables are columns in the matrix (1) or rows (2). Finally, bias correction is applied to the covariance calculation if corrected=true. See cov documentation for more details. source 2.65 StatsBase.mean and std StatsBase.mean and std — Method. mean_and_std(x, [w::AbstractWeights], [dim]; corrected=false) -> (mean, std) Return the mean and standard deviation of a real-valued array x, optionally over a dimension dim, as a tuple. A weighting vector w can be specified to weight the estimates. Finally, bias correction is applied to the standard deviation calculation if corrected=true. See std documentation for more details. source 2.66 StatsBase.mean and var StatsBase.mean and var — Method. mean_and_var(x, [w::AbstractWeights], [dim]; corrected=false) -> (mean, var) Return the mean and variance of a real-valued array x, optionally over a dimension dim, as a tuple. Observations in x can be weighted using weight vector w. Finally, bias correction is be applied to the variance calculation if corrected=true. See var documentation for more details. source 2.67 StatsBase.meanad StatsBase.meanad — Method. meanad(a, b) Return the mean absolute deviation between two arrays: mean(abs(a b)). source 2.68. STATSBASE.MODE 2.68 65 StatsBase.mode StatsBase.mode — Method. mode(a, [r]) Return the mode (most common number) of an array, optionally over a specified range r. If several modes exist, the first one (in order of appearance) is returned. source 2.69 StatsBase.model response StatsBase.model response — Method. model_response(obj::RegressionModel) Return the model response (a.k.a. the dependent variable). source 2.70 StatsBase.modelmatrix StatsBase.modelmatrix — Method. modelmatrix(obj::RegressionModel) Return the model matrix (a.k.a. the design matrix). source 2.71 StatsBase.modes StatsBase.modes — Method. modes(a, [r])::Vector Return all modes (most common numbers) of an array, optionally over a specified range r. source 2.72 StatsBase.moment StatsBase.moment — Method. moment(v, k, [wv::AbstractWeights], m=mean(v)) Return the kth order central moment of a real-valued array v, optionally specifying a weighting vector wv and a center m. source 66 2.73 CHAPTER 2. STATSBASE StatsBase.msd StatsBase.msd — Method. msd(a, b) Return the mean squared deviation between two arrays: mean(abs2(a b)). source 2.74 StatsBase.nobs StatsBase.nobs — Method. nobs(obj::StatisticalModel) Return the number of independent observations on which the model was fitted. Be careful when using this information, as the definition of an independent observation may vary depending on the model, on the format used to pass the data, on the sampling plan (if specified), etc. source 2.75 StatsBase.nquantile StatsBase.nquantile — Method. nquantile(v, n) Return the n-quantiles of a real-valued array, i.e. the values which partition v into n subsets of nearly equal size. Equivalent to quantile(v, [0:n]/n). For example, nquantiles(x, 5) returns a vector of quantiles, respectively at [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]. source 2.76 StatsBase.nulldeviance StatsBase.nulldeviance — Method. nulldeviance(obj::StatisticalModel) Return the deviance of the null model, that is the one including only the intercept. source 2.77. STATSBASE.NULLLOGLIKELIHOOD 2.77 67 StatsBase.nullloglikelihood StatsBase.nullloglikelihood — Method. loglikelihood(obj::StatisticalModel) Return the log-likelihood of the null model corresponding to model obj. This is usually the model containing only the intercept. source 2.78 StatsBase.ordinalrank StatsBase.ordinalrank — Method. ordinalrank(x; lt = isless, rev::Bool = false) Return the ordinal ranking (“1234” ranking) of an array. The lt keyword allows providing a custom “less than” function; use rev=true to reverse the sorting order. All items in x are given distinct, successive ranks based on their position in sort(x; lt = lt, rev = rev). Missing values are assigned rank missing. source 2.79 StatsBase.pacf ! StatsBase.pacf! — Method. pacf!(r, X, lags; method=:regression) Compute the partial autocorrelation function (PACF) of a matrix X at lags and store the result in r. method designates the estimation method. Recognized values are :regression, which computes the partial autocorrelations via successive regression models, and :yulewalker, which computes the partial autocorrelations using the Yule-Walker equations. r must be a matrix of size (length(lags), size(x, 2)). source 2.80 StatsBase.pacf StatsBase.pacf — Method. pacf(X, lags; method=:regression) 68 CHAPTER 2. STATSBASE Compute the partial autocorrelation function (PACF) of a real-valued vector or matrix X at lags. method designates the estimation method. Recognized values are :regression, which computes the partial autocorrelations via successive regression models, and :yulewalker, which computes the partial autocorrelations using the Yule-Walker equations. If x is a vector, return a vector of the same length as lags. If x is a matrix, return a matrix of size (length(lags), size(x, 2)), where each column in the result corresponds to a column in x. source 2.81 StatsBase.percentile StatsBase.percentile — Method. percentile(v, p) Return the pth percentile of a real-valued array v, i.e. quantile(x, p / 100). source 2.82 StatsBase.predict StatsBase.predict — Function. predict(obj::RegressionModel, [newX]) Form the predicted response of model obj. An object with new covariate values newX can be supplied, which should have the same type and structure as that used to fit obj; e.g. for a GLM it would generally be a DataFrame with the same variable names as the original predictors. source 2.83 StatsBase.predict! StatsBase.predict! — Function. predict! In-place version of predict. source 2.84. STATSBASE.PROPORTIONMAP 2.84 69 StatsBase.proportionmap StatsBase.proportionmap — Method. proportionmap(x) Return a dictionary mapping each unique value in x to its proportion in x. source 2.85 StatsBase.proportions StatsBase.proportions — Method. proportions(x, k::Integer, [wv::AbstractWeights]) Return the proportion of integers in 1 to k that occur in x. source 2.86 StatsBase.proportions StatsBase.proportions — Method. proportions(x, levels=span(x), [wv::AbstractWeights]) Return the proportion of values in the range levels that occur in x. Equivalent to counts(x, levels) / length(x). If a weighting vector wv is specified, the sum of the weights is used rather than the raw counts. source 2.87 StatsBase.psnr StatsBase.psnr — Method. psnr(a, b, maxv) Compute the peak signal-to-noise ratio between two arrays a and b. maxv is the maximum possible value either array can take. The PSNR is computed as 10 * log10(maxv^2 / msd(a, b)). source 2.88 StatsBase.pweights StatsBase.pweights — Method. pweights(vs) Construct a ProbabilityWeights vector from a given array. See the documentation for ProbabilityWeights for more details. source 70 CHAPTER 2. 2.89 STATSBASE StatsBase.r2 StatsBase.r2 — Method. r2(obj::StatisticalModel, variant::Symbol) r(obj::StatisticalModel, variant::Symbol) Coefficient of determination (R-squared). For a linear model, the R is defined as ESS/T SS, with ESS the explained sum of squares and T SS the total sum of squares, and variant can be omitted. For other models, one of several pseudo R definitions must be chosen via variant. Supported variants are: • :MacFadden (a.k.a. likelihood ratio index), defined as 1 − log L/ log L0. • :CoxSnell, defined as 1 − (L0/L)2/n • :Nagelkerke, defined as (1 − (L0/L)2/n )/(1 − L02/n ), with n the number of observations (as returned by nobs). In the above formulas, L is the likelihood of the model, L0 that of the null model (the model including only the intercept). These two quantities are taken to be minus half deviance of the corresponding models. source 2.90 StatsBase.renyientropy StatsBase.renyientropy — Method. renyientropy(p, ) Compute the Rnyi (generalized) entropy of order of an array p. source 2.91 StatsBase.residuals StatsBase.residuals — Method. residuals(obj::RegressionModel) Return the residuals of the model. source 2.92. STATSBASE.RLE 2.92 71 StatsBase.rle StatsBase.rle — Method. rle(v) -> (vals, lens) Return the run-length encoding of a vector as a tuple. The first element of the tuple is a vector of values of the input and the second is the number of consecutive occurrences of each element. Examples julia> using StatsBase julia> rle([1,1,1,2,2,3,3,3,3,2,2,2]) ([1, 2, 3, 2], [3, 2, 4, 3]) source 2.93 StatsBase.rmsd StatsBase.rmsd — Method. rmsd(a, b; normalize=false) Return the root mean squared deviation between two optionally normalized arrays. The root mean squared deviation is computed as sqrt(msd(a, b)). source 2.94 StatsBase.sample! StatsBase.sample! — Method. sample!([rng], a, [wv::AbstractWeights], x; replace=true, ordered=false) Draw a random sample of length(x) elements from an array a and store the result in x. A polyalgorithm is used for sampling. Sampling probabilities are proportional to the weights given in wv, if provided. replace dictates whether sampling is performed with replacement and order dictates whether an ordered sample, also called a sequential sample, should be taken. Optionally specify a random number generator rng as the first argument (defaults to Base.GLOBAL RNG). source 72 2.95 CHAPTER 2. STATSBASE StatsBase.sample StatsBase.sample — Method. sample([rng], a, [wv::AbstractWeights]) Select a single random element of a. Sampling probabilities are proportional to the weights given in wv, if provided. Optionally specify a random number generator rng as the first argument (defaults to Base.GLOBAL RNG). source 2.96 StatsBase.sample StatsBase.sample — Method. sample([rng], wv::AbstractWeights) Select a single random integer in 1:length(wv) with probabilities proportional to the weights given in wv. Optionally specify a random number generator rng as the first argument (defaults to Base.GLOBAL RNG). source 2.97 StatsBase.sample StatsBase.sample — Method. sample([rng], a, [wv::AbstractWeights], n::Integer; replace=true, ordered=false) Select a random, optionally weighted sample of size n from an array a using a polyalgorithm. Sampling probabilities are proportional to the weights given in wv, if provided. replace dictates whether sampling is performed with replacement and order dictates whether an ordered sample, also called a sequential sample, should be taken. Optionally specify a random number generator rng as the first argument (defaults to Base.GLOBAL RNG). source 2.98 StatsBase.sample StatsBase.sample — Method. sample([rng], a, [wv::AbstractWeights], dims::Dims; replace=true, ordered=false) 2.99. STATSBASE.SAMPLEPAIR 73 Select a random, optionally weighted sample from an array a specifying the dimensions dims of the output array. Sampling probabilities are proportional to the weights given in wv, if provided. replace dictates whether sampling is performed with replacement and order dictates whether an ordered sample, also called a sequential sample, should be taken. Optionally specify a random number generator rng as the first argument (defaults to Base.GLOBAL RNG). source 2.99 StatsBase.samplepair StatsBase.samplepair — Method. samplepair([rng], a) Draw a pair of distinct elements from the array a without replacement. Optionally specify a random number generator rng as the first argument (defaults to Base.GLOBAL RNG). source 2.100 StatsBase.samplepair StatsBase.samplepair — Method. samplepair([rng], n) Draw a pair of distinct integers between 1 and n without replacement. Optionally specify a random number generator rng as the first argument (defaults to Base.GLOBAL RNG). source 2.101 StatsBase.scattermat StatsBase.scattermat — Function. scattermat(X, [wv::AbstractWeights]; mean=nothing, vardim=1) Compute the scatter matrix, which is an unnormalized covariance matrix. A weighting vector wv can be specified to weight the estimate. Arguments • mean=nothing: a known mean value. nothing indicates that the mean is unknown, and the function will compute the mean. Specifying mean=0 indicates that the data are centered and hence there’s no need to subtract the mean. 74 CHAPTER 2. STATSBASE • vardim=1: the dimension along which the variables are organized. When vardim = 1, the variables are considered columns with observations in rows; when vardim = 2, variables are in rows with observations in columns. source 2.102 StatsBase.sem StatsBase.sem — Method. sem(a) Return the standard error of the mean of a, i.e. sqrt(var(a) / length(a)). source 2.103 StatsBase.skewness StatsBase.skewness — Method. skewness(v, [wv::AbstractWeights], m=mean(v)) Compute the standardized skewness of a real-valued array v, optionally specifying a weighting vector wv and a center m. source 2.104 StatsBase.span StatsBase.span — Method. span(x) Return the span of an integer array, i.e. the range minimum(x):maximum(x). The minimum and maximum of x are computed in one-pass using extrema. source 2.105 StatsBase.sqL2dist StatsBase.sqL2dist — Method. sqL2dist(a, b) Compute the squared L2 distance between two arrays: ficient equivalent of sumabs2(a - b). source Pn i=1 |ai − bi |2 . Ef- 2.106. STATSBASE.STDERR 2.106 75 StatsBase.stderr StatsBase.stderr — Method. stderr(obj::StatisticalModel) Return the standard errors for the coefficients of the model. source 2.107 StatsBase.summarystats StatsBase.summarystats — Method. summarystats(a) Compute summary statistics for a real-valued array a. Returns a SummaryStats object containing the mean, minimum, 25th percentile, median, 75th percentile, and maxmimum. source 2.108 StatsBase.tiedrank StatsBase.tiedrank — Method. tiedrank(x) Return the tied ranking, also called fractional or “1 2.5 2.5 4” ranking, of an array. The lt keyword allows providing a custom “less than” function; use rev=true to reverse the sorting order. Items that compare equal receive the mean of the rankings they would have been assigned under ordinal ranking. Missing values are assigned rank missing. source 2.109 StatsBase.trim! StatsBase.trim! — Method. trim!(x; prop=0.0, count=0) A variant of trim that modifies x in place. source 76 CHAPTER 2. 2.110 STATSBASE StatsBase.trim StatsBase.trim — Method. trim(x; prop=0.0, count=0) Return a copy of x with either count or proportion prop of the highest and lowest elements removed. To compute the trimmed mean of x use mean(trim(x)); to compute the variance use trimvar(x) (see trimvar). Example [] julia¿ trim([1,2,3,4,5], prop=0.2) 3-element Array{Int64,1}: 2 3 4 source 2.111 StatsBase.trimvar StatsBase.trimvar — Method. trimvar(x; prop=0.0, count=0) Compute the variance of the trimmed mean of x. This function uses the Winsorized variance, as described in Wilcox (2010). source 2.112 StatsBase.variation StatsBase.variation — Method. variation(x, m=mean(x)) Return the coefficient of variation of an array x, optionally specifying a precomputed mean m. The coefficient of variation is the ratio of the standard deviation to the mean. source 2.113 StatsBase.vcov StatsBase.vcov — Method. vcov(obj::StatisticalModel) Return the variance-covariance matrix for the coefficients of the model. source 2.114. STATSBASE.WEIGHTS 2.114 77 StatsBase.weights StatsBase.weights — Method. weights(vs) Construct a Weights vector from array vs. See the documentation for Weights for more details. source 2.115 StatsBase.winsor! StatsBase.winsor! — Method. winsor!(x; prop=0.0, count=0) A variant of winsor that modifies vector x in place. source 2.116 StatsBase.winsor StatsBase.winsor — Method. winsor(x; prop=0.0, count=0) Return a copy of x with either count or proportion prop of the lowest elements of x replaced with the next-lowest, and an equal number of the highest elements replaced with the previous-highest. To compute the Winsorized mean of x use mean(winsor(x)). Example [] julia¿ winsor([1,2,3,4,5], prop=0.2) 5-element Array{Int64,1}: 2 2 3 4 4 source 2.117 StatsBase.wmean StatsBase.wmean — Method. wmean(v, w::AbstractVector) Compute the weighted mean of an array v with weights w. source 78 2.118 CHAPTER 2. STATSBASE StatsBase.wmedian StatsBase.wmedian — Method. wmedian(v, w) Compute the weighted median of an array v with weights w, given as either a vector or an AbstractWeights vector. source 2.119 StatsBase.wquantile StatsBase.wquantile — Method. wquantile(v, w, p) Compute the pth quantile(s) of v with weights w, given as either a vector or an AbstractWeights vector. source 2.120 StatsBase.wsample! StatsBase.wsample! — Method. wsample!([rng], a, w, x; replace=true, ordered=false) Select a weighted sample from an array a and store the result in x. Sampling probabilities are proportional to the weights given in w. replace dictates whether sampling is performed with replacement and order dictates whether an ordered sample, also called a sequential sample, should be taken. Optionally specify a random number generator rng as the first argument (defaults to Base.GLOBAL RNG). source 2.121 StatsBase.wsample StatsBase.wsample — Method. wsample([rng], [a], w) Select a weighted random sample of size 1 from a with probabilities proportional to the weights given in w. If a is not present, select a random weight from w. Optionally specify a random number generator rng as the first argument (defaults to Base.GLOBAL RNG). source 2.122. STATSBASE.WSAMPLE 2.122 79 StatsBase.wsample StatsBase.wsample — Method. wsample([rng], [a], w, n::Integer; replace=true, ordered=false) Select a weighted random sample of size n from a with probabilities proportional to the weights given in w if a is present, otherwise select a random sample of size n of the weights given in w. replace dictates whether sampling is performed with replacement and order dictates whether an ordered sample, also called a sequential sample, should be taken. Optionally specify a random number generator rng as the first argument (defaults to Base.GLOBAL RNG). source 2.123 StatsBase.wsample StatsBase.wsample — Method. wsample([rng], [a], w, dims::Dims; replace=true, ordered=false) Select a weighted random sample from a with probabilities proportional to the weights given in w if a is present, otherwise select a random sample of size n of the weights given in w. The dimensions of the output are given by dims. Optionally specify a random number generator rng as the first argument (defaults to Base.GLOBAL RNG). source 2.124 StatsBase.wsum! StatsBase.wsum! — Method. wsum!(R, A, w, dim; init=true) Compute the weighted sum of A with weights w over the dimension dim and store the result in R. If init=false, the sum is added to R rather than starting from zero. source 2.125 StatsBase.wsum StatsBase.wsum — Method. wsum(v, w::AbstractVector, [dim]) Compute the weighted sum of an array v with weights w, optionally over the dimension dim. source 80 2.126 CHAPTER 2. STATSBASE StatsBase.zscore! StatsBase.zscore! — Method. zscore!([Z], X, , ) Compute the z-scores of an array X with mean and standard deviation . z-scores are the signed number of standard deviations above the mean that an observation lies, i.e. (x − )/. If a destination array Z is provided, the scores are stored in Z and it must have the same shape as X. Otherwise X is overwritten. source 2.127 StatsBase.zscore StatsBase.zscore — Method. zscore(X, [, ]) Compute the z-scores of X, optionally specifying a precomputed mean and standard deviation . z-scores are the signed number of standard deviations above the mean that an observation lies, i.e. (x − )/. and should be both scalars or both arrays. The computation is broadcasting. In particular, when and are arrays, they should have the same size, and size(, i) == 1 || size(, i) == size(X, i) for each dimension. source Chapter 3 PyPlot 3.1 Base.step Base.step — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“step”,)) source 3.2 PyPlot.Axes3D PyPlot.Axes3D — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fb9228), (“Axes3D”,)) source 3.3 PyPlot.acorr PyPlot.acorr — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“acorr”,)) source 3.4 PyPlot.annotate PyPlot.annotate — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“annotate”,)) source 81 82 3.5 CHAPTER 3. PYPLOT PyPlot.arrow PyPlot.arrow — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“arrow”,)) source 3.6 PyPlot.autoscale PyPlot.autoscale — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“autoscale”,)) source 3.7 PyPlot.autumn PyPlot.autumn — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“autumn”,)) source 3.8 PyPlot.axes PyPlot.axes — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“axes”,)) source 3.9 PyPlot.axhline PyPlot.axhline — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“axhline”,)) source 3.10 PyPlot.axhspan PyPlot.axhspan — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“axhspan”,)) source 3.11. PYPLOT.AXIS 3.11 83 PyPlot.axis PyPlot.axis — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“axis”,)) source 3.12 PyPlot.axvline PyPlot.axvline — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“axvline”,)) source 3.13 PyPlot.axvspan PyPlot.axvspan — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“axvspan”,)) source 3.14 PyPlot.bar PyPlot.bar — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“bar”,)) source 3.15 PyPlot.bar3D PyPlot.bar3D — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fb9228), (“Axes3D”, “bar3d”)) source 3.16 PyPlot.barbs PyPlot.barbs — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“barbs”,)) source 84 3.17 CHAPTER 3. PYPLOT PyPlot.barh PyPlot.barh — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“barh”,)) source 3.18 PyPlot.bone PyPlot.bone — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“bone”,)) source 3.19 PyPlot.box PyPlot.box — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“box”,)) source 3.20 PyPlot.boxplot PyPlot.boxplot — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“boxplot”,)) source 3.21 PyPlot.broken barh PyPlot.broken barh — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“broken barh”,)) source 3.22 PyPlot.cla PyPlot.cla — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“cla”,)) source 3.23. PYPLOT.CLABEL 3.23 85 PyPlot.clabel PyPlot.clabel — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“clabel”,)) source 3.24 PyPlot.clf PyPlot.clf — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“clf”,)) source 3.25 PyPlot.clim PyPlot.clim — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“clim”,)) source 3.26 PyPlot.cohere PyPlot.cohere — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“cohere”,)) source 3.27 PyPlot.colorbar PyPlot.colorbar — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“colorbar”,)) source 3.28 PyPlot.colors PyPlot.colors — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“colors”,)) source 86 3.29 CHAPTER 3. PYPLOT PyPlot.contour PyPlot.contour — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“contour”,)) source 3.30 PyPlot.contour3D PyPlot.contour3D — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fb9228), (“Axes3D”, “contour3D”)) source 3.31 PyPlot.contourf PyPlot.contourf — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“contourf”,)) source 3.32 PyPlot.contourf3D PyPlot.contourf3D — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fb9228), (“Axes3D”, “contourf3D”)) source 3.33 PyPlot.cool PyPlot.cool — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“cool”,)) source 3.34 PyPlot.copper PyPlot.copper — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“copper”,)) source 3.35. PYPLOT.CSD 3.35 87 PyPlot.csd PyPlot.csd — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“csd”,)) source 3.36 PyPlot.delaxes PyPlot.delaxes — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“delaxes”,)) source 3.37 PyPlot.disconnect PyPlot.disconnect — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“disconnect”,)) source 3.38 PyPlot.draw PyPlot.draw — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“draw”,)) source 3.39 PyPlot.errorbar PyPlot.errorbar — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“errorbar”,)) source 3.40 PyPlot.eventplot PyPlot.eventplot — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“eventplot”,)) source 88 3.41 CHAPTER 3. PYPLOT PyPlot.figaspect PyPlot.figaspect — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“figaspect”,)) source 3.42 PyPlot.figimage PyPlot.figimage — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“figimage”,)) source 3.43 PyPlot.figlegend PyPlot.figlegend — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“figlegend”,)) source 3.44 PyPlot.figtext PyPlot.figtext — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“figtext”,)) source 3.45 PyPlot.figure PyPlot.figure — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fc52f0), ()) source 3.46 PyPlot.fill between PyPlot.fill between — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“fill between”,)) source 3.47. PYPLOT.FILL BETWEENX 3.47 89 PyPlot.fill betweenx PyPlot.fill betweenx — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“fill betweenx”,)) source 3.48 PyPlot.findobj PyPlot.findobj — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“findobj”,)) source 3.49 PyPlot.flag PyPlot.flag — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“flag”,)) source 3.50 PyPlot.gca PyPlot.gca — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“gca”,)) source 3.51 PyPlot.gcf PyPlot.gcf — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fc5400), ()) source 3.52 PyPlot.gci PyPlot.gci — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“gci”,)) source 90 3.53 CHAPTER 3. PYPLOT PyPlot.get cmap PyPlot.get cmap — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002586f2f0), ()) source 3.54 PyPlot.get current fig manager PyPlot.get current fig manager — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“get current fig manager”,)) source 3.55 PyPlot.get figlabels PyPlot.get figlabels — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“get figlabels”,)) source 3.56 PyPlot.get fignums PyPlot.get fignums — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“get fignums”,)) source 3.57 PyPlot.get plot commands PyPlot.get plot commands — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“get plot commands”,)) source 3.58 PyPlot.ginput PyPlot.ginput — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“ginput”,)) source 3.59. PYPLOT.GRAY 3.59 91 PyPlot.gray PyPlot.gray — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“gray”,)) source 3.60 PyPlot.grid PyPlot.grid — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“grid”,)) source 3.61 PyPlot.hexbin PyPlot.hexbin — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“hexbin”,)) source 3.62 PyPlot.hist2D PyPlot.hist2D — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“hist2d”,)) source 3.63 PyPlot.hlines PyPlot.hlines — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“hlines”,)) source 3.64 PyPlot.hold PyPlot.hold — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“hold”,)) source 92 3.65 CHAPTER 3. PYPLOT PyPlot.hot PyPlot.hot — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“hot”,)) source 3.66 PyPlot.hsv PyPlot.hsv — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“hsv”,)) source 3.67 PyPlot.imread PyPlot.imread — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“imread”,)) source 3.68 PyPlot.imsave PyPlot.imsave — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“imsave”,)) source 3.69 PyPlot.imshow PyPlot.imshow — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“imshow”,)) source 3.70 PyPlot.ioff PyPlot.ioff — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“ioff”,)) source 3.71. PYPLOT.ION 3.71 93 PyPlot.ion PyPlot.ion — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“ion”,)) source 3.72 PyPlot.ishold PyPlot.ishold — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“ishold”,)) source 3.73 PyPlot.jet PyPlot.jet — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“jet”,)) source 3.74 PyPlot.legend PyPlot.legend — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“legend”,)) source 3.75 PyPlot.locator params PyPlot.locator params — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“locator params”,)) source 3.76 PyPlot.loglog PyPlot.loglog — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“loglog”,)) source 94 3.77 CHAPTER 3. PYPLOT PyPlot.margins PyPlot.margins — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“margins”,)) source 3.78 PyPlot.matshow PyPlot.matshow — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“matshow”,)) source 3.79 PyPlot.mesh PyPlot.mesh — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fb9228), (“Axes3D”, “plot wireframe”)) source 3.80 PyPlot.minorticks off PyPlot.minorticks off — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“minorticks off”,)) source 3.81 PyPlot.minorticks on PyPlot.minorticks on — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“minorticks on”,)) source 3.82 PyPlot.over PyPlot.over — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“over”,)) source 3.83. PYPLOT.PAUSE 3.83 95 PyPlot.pause PyPlot.pause — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“pause”,)) source 3.84 PyPlot.pcolor PyPlot.pcolor — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“pcolor”,)) source 3.85 PyPlot.pcolormesh PyPlot.pcolormesh — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“pcolormesh”,)) source 3.86 PyPlot.pie PyPlot.pie — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“pie”,)) source 3.87 PyPlot.pink PyPlot.pink — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“pink”,)) source 3.88 PyPlot.plot PyPlot.plot — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“plot”,)) source 96 3.89 CHAPTER 3. PYPLOT PyPlot.plot3D PyPlot.plot3D — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fb9228), (“Axes3D”, “plot3D”)) source 3.90 PyPlot.plot date PyPlot.plot date — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“plot date”,)) source 3.91 PyPlot.plot surface PyPlot.plot surface — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fb9228), (“Axes3D”, “plot surface”)) source 3.92 PyPlot.plot trisurf PyPlot.plot trisurf — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fb9228), (“Axes3D”, “plot trisurf”)) source 3.93 PyPlot.plot wireframe PyPlot.plot wireframe — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fb9228), (“Axes3D”, “plot wireframe”)) source 3.94 PyPlot.plotfile PyPlot.plotfile — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“plotfile”,)) source 3.95. PYPLOT.POLAR 3.95 97 PyPlot.polar PyPlot.polar — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“polar”,)) source 3.96 PyPlot.prism PyPlot.prism — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“prism”,)) source 3.97 PyPlot.psd PyPlot.psd — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“psd”,)) source 3.98 PyPlot.quiver PyPlot.quiver — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“quiver”,)) source 3.99 PyPlot.quiverkey PyPlot.quiverkey — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“quiverkey”,)) source 3.100 PyPlot.rc PyPlot.rc — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“rc”,)) source 98 3.101 CHAPTER 3. PYPLOT PyPlot.rc context PyPlot.rc context — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“rc context”,)) source 3.102 PyPlot.rcdefaults PyPlot.rcdefaults — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“rcdefaults”,)) source 3.103 PyPlot.register cmap PyPlot.register cmap — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002586f268), ()) source 3.104 PyPlot.rgrids PyPlot.rgrids — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“rgrids”,)) source 3.105 PyPlot.savefig PyPlot.savefig — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“savefig”,)) source 3.106 PyPlot.sca PyPlot.sca — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“sca”,)) source 3.107. PYPLOT.SCATTER 3.107 99 PyPlot.scatter PyPlot.scatter — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“scatter”,)) source 3.108 PyPlot.scatter3D PyPlot.scatter3D — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fb9228), (“Axes3D”, “scatter3D”)) source 3.109 PyPlot.sci PyPlot.sci — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“sci”,)) source 3.110 PyPlot.semilogx PyPlot.semilogx — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“semilogx”,)) source 3.111 PyPlot.semilogy PyPlot.semilogy — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“semilogy”,)) source 3.112 PyPlot.set cmap PyPlot.set cmap — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“set cmap”,)) source 100 3.113 CHAPTER 3. PYPLOT PyPlot.setp PyPlot.setp — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“setp”,)) source 3.114 PyPlot.specgram PyPlot.specgram — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“specgram”,)) source 3.115 PyPlot.spectral PyPlot.spectral — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“spectral”,)) source 3.116 PyPlot.spring PyPlot.spring — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“spring”,)) source 3.117 PyPlot.spy PyPlot.spy — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“spy”,)) source 3.118 PyPlot.stackplot PyPlot.stackplot — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“stackplot”,)) source 3.119. PYPLOT.STEM 3.119 101 PyPlot.stem PyPlot.stem — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“stem”,)) source 3.120 PyPlot.streamplot PyPlot.streamplot — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“streamplot”,)) source 3.121 PyPlot.subplot PyPlot.subplot — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“subplot”,)) source 3.122 PyPlot.subplot2grid PyPlot.subplot2grid — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“subplot2grid”,)) source 3.123 PyPlot.subplot tool PyPlot.subplot tool — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“subplot tool”,)) source 3.124 PyPlot.subplots PyPlot.subplots — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“subplots”,)) source 102 3.125 CHAPTER 3. PYPLOT PyPlot.subplots adjust PyPlot.subplots adjust — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“subplots adjust”,)) source 3.126 PyPlot.summer PyPlot.summer — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“summer”,)) source 3.127 PyPlot.suptitle PyPlot.suptitle — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“suptitle”,)) source 3.128 PyPlot.surf PyPlot.surf — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fb9228), (“Axes3D”, “plot surface”)) source 3.129 PyPlot.table PyPlot.table — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“table”,)) source 3.130 PyPlot.text PyPlot.text — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“text”,)) source 3.131. PYPLOT.TEXT2D 3.131 103 PyPlot.text2D PyPlot.text2D — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fb9228), (“Axes3D”, “text2D”)) source 3.132 PyPlot.text3D PyPlot.text3D — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fb9228), (“Axes3D”, “text3D”)) source 3.133 PyPlot.thetagrids PyPlot.thetagrids — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“thetagrids”,)) source 3.134 PyPlot.tick params PyPlot.tick params — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“tick params”,)) source 3.135 PyPlot.ticklabel format PyPlot.ticklabel format — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“ticklabel format”,)) source 3.136 PyPlot.tight layout PyPlot.tight layout — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“tight layout”,)) source 104 3.137 CHAPTER 3. PYPLOT PyPlot.title PyPlot.title — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“title”,)) source 3.138 PyPlot.tricontour PyPlot.tricontour — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“tricontour”,)) source 3.139 PyPlot.tricontourf PyPlot.tricontourf — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“tricontourf”,)) source 3.140 PyPlot.tripcolor PyPlot.tripcolor — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“tripcolor”,)) source 3.141 PyPlot.triplot PyPlot.triplot — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“triplot”,)) source 3.142 PyPlot.twinx PyPlot.twinx — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“twinx”,)) source 3.143. PYPLOT.TWINY 3.143 105 PyPlot.twiny PyPlot.twiny — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“twiny”,)) source 3.144 PyPlot.vlines PyPlot.vlines — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“vlines”,)) source 3.145 PyPlot.waitforbuttonpress PyPlot.waitforbuttonpress — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“waitforbuttonpress”,)) source 3.146 PyPlot.winter PyPlot.winter — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“winter”,)) source 3.147 PyPlot.xkcd PyPlot.xkcd — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“xkcd”,)) source 3.148 PyPlot.xlabel PyPlot.xlabel — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“xlabel”,)) source 106 3.149 CHAPTER 3. PYPLOT PyPlot.xlim PyPlot.xlim — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“xlim”,)) source 3.150 PyPlot.xscale PyPlot.xscale — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“xscale”,)) source 3.151 PyPlot.xticks PyPlot.xticks — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“xticks”,)) source 3.152 PyPlot.ylabel PyPlot.ylabel — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“ylabel”,)) source 3.153 PyPlot.ylim PyPlot.ylim — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“ylim”,)) source 3.154 PyPlot.yscale PyPlot.yscale — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“yscale”,)) source 3.155. PYPLOT.YTICKS 3.155 107 PyPlot.yticks PyPlot.yticks — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x000000002573e818), (“yticks”,)) source 3.156 PyPlot.zlabel PyPlot.zlabel — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fb9228), (“Axes3D”, “set zlabel”)) source 3.157 PyPlot.zlim PyPlot.zlim — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fb9228), (“Axes3D”, “set zlim”)) source 3.158 PyPlot.zscale PyPlot.zscale — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fb9228), (“Axes3D”, “set zscale”)) source 3.159 PyPlot.zticks PyPlot.zticks — Method. PyPlot.LazyHelp(PyCall.PyObject(Ptr{PyCall.PyObject struct} @0x0000000031fb9228), (“Axes3D”, “set zticks”)) source Chapter 4 IndexedTables 4.1 Base.Sort.select Base.Sort.select — Method. select(t::Table, which::Selection) Select all or a subset of columns, or a single column from the table. Selection is a type union of many types that can select from a table. It can be: 1. Integer – returns the column at this position. 2. Symbol – returns the column with this name. 3. Pair{Selection => Function} – selects and maps a function over the selection, returns the result. 4. AbstractArray – returns the array itself. This must be the same length as the table. 5. Tuple of Selection – returns a table containing a column for every selector in the tuple. The tuple may also contain the type Pair{Symbol, Selection}, which the selection a name. The most useful form of this when introducing a new column. Examples: Selection with Integer – returns the column at this position. julia> tbl = table([0.01, 0.05], [2,1], [3,4], names=[:t, :x, :y], pkey=:t) Table with 2 rows, 3 columns: t x y 0.01 0.05 2 1 3 4 108 4.1. BASE.SORT.SELECT 109 julia> select(tbl, 2) 2-element Array{Int64,1}: 2 1 Selection with Symbol – returns the column with this name. julia> select(tbl, :t) 2-element Array{Float64,1}: 0.01 0.05 Selection with Pair{Selection => Function} – selects some columns and maps a function over it, then returns the mapped column. julia> select(tbl, :t=>t->1/t) 2-element Array{Float64,1}: 100.0 20.0 Selection with AbstractArray – returns the array itself. julia> select(tbl, [3,4]) 2-element Array{Int64,1}: 3 4 Selection with Tuple– returns a table containing a column for every selector in the tuple. julia> select(tbl, (2,1)) Table with 2 rows, 2 columns: x t 2 1 0.01 0.05 julia> vx = select(tbl, (:x, :t)=>p->p.x/p.t) 2-element Array{Float64,1}: 200.0 20.0 julia> select(tbl, (:x,:t=>-)) Table with 2 rows, 2 columns: x t 1 2 -0.05 -0.01 110 CHAPTER 4. INDEXEDTABLES Note that since tbl was initialized with t as the primary key column, selections that retain the key column will retain its status as a key. The same applies when multiple key columns are selected. Selection with a custom array in the tuple will cause the name of the columns to be removed and replaced with integers. julia> select(tbl, (:x, :t, [3,4])) Table with 2 rows, 3 columns: 1 2 3 2 1 0.01 0.05 3 4 This is because the third column’s name is unknown. In general if a column’s name cannot be determined, then selection returns an iterable of tuples rather than named tuples. In other words, it strips column names. To specify a new name to a custom column, you can use Symbol => Selection selector. julia> select(tbl, (:x,:t,:z=>[3,4])) Table with 2 rows, 3 columns: x t z 2 1 0.01 0.05 3 4 julia> select(tbl, (:x, :t, :minust=>:t=>-)) Table with 2 rows, 3 columns: x t minust 2 1 0.01 0.05 -0.01 -0.05 julia> select(tbl, (:x, :t, :vx=>(:x,:t)=>p->p.x/p.t)) Table with 2 rows, 3 columns: x t vx 2 1 0.01 0.05 200.0 20.0 source 4.2 DataValues.dropna DataValues.dropna — Function. dropna(t[, select]) Drop rows which contain NA values. 4.3. INDEXEDTABLES.AGGREGATE! 111 julia> t = table([0.1, 0.5, NA,0.7], [2,NA,4,5], [NA,6,NA,7], names=[:t,:x,:y]) Table with 4 rows, 3 columns: t x y 0.1 0.5 #NA 0.7 2 #NA 4 5 #NA 6 #NA 7 julia> dropna(t) Table with 1 rows, 3 columns: t x y 0.7 5 7 Optionally select can be speicified to limit columns to look for NAs in. julia> dropna(t, :y) Table with 2 rows, 3 columns: t x y 0.5 0.7 #NA 5 6 7 julia> t1 = dropna(t, (:t, :x)) Table with 2 rows, 3 columns: t x y 0.1 0.7 2 5 #NA 7 Any columns whose NA rows have been dropped will be converted to nonna array type. In our last example, columns t and x got converted from Array{DataValue{Int}} to Array{Int}. Similarly if the vectors are of type DataValueArray{T} (default for loadtable) they will be converted to Array{T}. [] julia¿ typeof(column(dropna(t,:x), :x)) Array{Int64,1} source 4.3 IndexedTables.aggregate! IndexedTables.aggregate! — Method. aggregate!(f::Function, arr::NDSparse) Combine adjacent rows with equal indices using the given 2-argument reduction function, in place. source 112 CHAPTER 4. 4.4 INDEXEDTABLES IndexedTables.asofjoin IndexedTables.asofjoin — Method. asofjoin(left::NDSparse, right::NDSparse) asofjoin is most useful on two time-series. It joins rows from left with the “most recent” value from right. julia> x = ndsparse((["ko","ko", "xrx","xrx"], Date.(["2017-11-11", "2017-11-12", "2017-11-11", "2017-11-12"])), [1,2,3,4]); julia> y = ndsparse((["ko","ko", "xrx","xrx"], Date.(["2017-11-12", "2017-11-13", "2017-11-10", "2017-11-13"])), [5,6,7,8]) julia> asofjoin(x,y) 2-d NDSparse with 4 values (Int64): 1 2 "ko" "ko" "xrx" "xrx" 2017-11-11 2017-11-12 2017-11-11 2017-11-12 1 5 7 7 source 4.5 IndexedTables.colnames IndexedTables.colnames — Function. colnames(itr) Returns the names of the “columns” in itr. Examples: julia> colnames([1,2,3]) 1-element Array{Int64,1}: 1 julia> colnames(Columns([1,2,3], [3,4,5])) 2-element Array{Int64,1}: 1 2 julia> colnames(table([1,2,3], [3,4,5])) 2-element Array{Int64,1}: 4.6. INDEXEDTABLES.COLUMNS 113 1 2 julia> colnames(Columns(x=[1,2,3], y=[3,4,5])) 2-element Array{Symbol,1}: :x :y julia> colnames(table([1,2,3], [3,4,5], names=[:x,:y])) 2-element Array{Symbol,1}: :x :y julia> colnames(ndsparse(Columns(x=[1,2,3]), Columns(y=[3,4,5]))) 2-element Array{Symbol,1}: :x :y julia> colnames(ndsparse(Columns(x=[1,2,3]), [3,4,5])) 2-element Array{Any,1}: :x 1 2 julia> colnames(ndsparse(Columns(x=[1,2,3]), [3,4,5])) 2-element Array{Any,1}: :x 2 julia> colnames(ndsparse(Columns([1,2,3], [4,5,6]), Columns(x=[6,7,8]))) 3-element Array{Any,1}: 1 2 :x julia> colnames(ndsparse(Columns(x=[1,2,3]), Columns([3,4,5],[6,7,8]))) 3-element Array{Any,1}: :x 2 3 source 4.6 IndexedTables.columns IndexedTables.columns — Function. 114 CHAPTER 4. INDEXEDTABLES columns(itr[, select::Selection]) Select one or more columns from an iterable of rows as a tuple of vectors. select specifies which columns to select. See Selection convention for possible values. If unspecified, returns all columns. itr can be NDSparse, Columns and AbstractVector, and their distributed counterparts. Examples julia> t = table([1,2],[3,4], names=[:x,:y]) Table with 2 rows, 2 columns: x y 1 2 3 4 julia> columns(t) (x = [1, 2], y = [3, 4]) julia> columns(t, :x) 2-element Array{Int64,1}: 1 2 julia> columns(t, (:x,)) (x = [1, 2]) julia> columns(t, (:y,:x=>-)) (y = [3, 4], x = [-1, -2]) source 4.7 IndexedTables.columns IndexedTables.columns — Method. columns(itr, which) Returns a vector or a tuple of vectors from the iterator. source 4.8 IndexedTables.convertdim IndexedTables.convertdim — Method. convertdim(x::NDSparse, d::DimName, xlate; agg::Function, vecagg::Function, name) Apply function or dictionary xlate to each index in the specified dimension. If the mapping is many-to-one, agg or vecagg is used to aggregate the results. 4.9. INDEXEDTABLES.DIMLABELS 115 If agg is passed, it is used as a 2-argument reduction function over the data. If vecagg is passed, it is used as a vector-to-scalar function to aggregate the data. name optionally specifies a new name for the translated dimension. source 4.9 IndexedTables.dimlabels IndexedTables.dimlabels — Method. dimlabels(t::NDSparse) Returns an array of integers or symbols giving the labels for the dimensions of t. ndims(t) == length(dimlabels(t)). source 4.10 IndexedTables.flatten IndexedTables.flatten — Method. flatten(t::Table, col) Flatten col column which may contain a vector of vectors while repeating the other fields. Examples: julia> x = table([1,2], [[3,4], [5,6]], names=[:x, :y]) Table with 2 rows, 2 columns: x y 1 2 [3, 4] [5, 6] julia> flatten(x, 2) Table with 4 rows, 2 columns: x y 1 1 2 2 3 4 5 6 julia> x = table([1,2], [table([3,4],[5,6], names=[:a,:b]), table([7,8], [9,10], names=[:a,:b])], names=[:x, :y]); julia> flatten(x, :y) Table with 4 rows, 3 columns: x a b 1 3 5 116 1 2 2 CHAPTER 4. 4 7 8 INDEXEDTABLES 6 9 10 source 4.11 IndexedTables.flush! IndexedTables.flush! — Method. flush!(arr::NDSparse) Commit queued assignment operations, by sorting and merging the internal temporary buffer. source 4.12 IndexedTables.groupby IndexedTables.groupby — Function. groupby(f, t[, by::Selection]; select::Selection, flatten) Group rows by by, and apply f to each group. f can be a function or a tuple of functions. The result of f on each group is put in a table keyed by unique by values. flatten will flatten the result and can be used when f returns a vector instead of a single scalar value. Examples julia> t=table([1,1,1,2,2,2], [1,1,2,2,1,1], [1,2,3,4,5,6], names=[:x,:y,:z]); julia> groupby(mean, t, :x, select=:z) Table with 2 rows, 2 columns: x mean 1 2 2.0 5.0 julia> groupby(identity, t, (:x, :y), select=:z) Table with 4 rows, 3 columns: x y identity 1 1 2 2 1 2 1 2 [1, 2] [3] [5, 6] [4] julia> groupby(mean, t, (:x, :y), select=:z) Table with 4 rows, 3 columns: 4.12. INDEXEDTABLES.GROUPBY x y mean 1 1 2 2 1 2 1 2 1.5 3.0 5.5 4.0 117 multiple aggregates can be computed by passing a tuple of functions: julia> groupby((mean, std, var), t, :y, select=:z) Table with 2 rows, 4 columns: y mean std var 1 2 3.5 3.5 2.38048 0.707107 5.66667 0.5 julia> groupby(@NT(q25=z->quantile(z, 0.25), q50=median, q75=z->quantile(z, 0.75)), t, :y, select=:z) Table with 2 rows, 4 columns: y q25 q50 q75 1 2 1.75 3.25 3.5 3.5 5.25 3.75 Finally, it’s possible to select different inputs for different functions by using a named tuple of slector => function pairs: julia> groupby(@NT(xmean=:z=>mean, ystd=(:y=>-)=>std), t, :x) Table with 2 rows, 3 columns: x xmean ystd 1 2 2.0 5.0 0.57735 0.57735 By default, the result of groupby when f returns a vector or iterator of values will not be expanded. Pass the flatten option as true to flatten the grouped column: julia> t = table([1,1,2,2], [3,4,5,6], names=[:x,:y]) julia> groupby((:normy => x->Iterators.repeated(mean(x), length(x)),), t, :x, select=:y, flatten=true) Table with 4 rows, 2 columns: x normy 1 1 2 2 3.5 3.5 5.5 5.5 118 CHAPTER 4. INDEXEDTABLES The keyword option usekey = true allows to use information from the indexing column. f will need to accept two arguments, the first being the key (as a Tuple or NamedTuple) the second the data (as Columns). julia> t = table([1,1,2,2], [3,4,5,6], names=[:x,:y]) julia> groupby((:x_plus_mean_y => (key, d) -> key.x + mean(d),), t, :x, select=:y, usekey = true) Table with 2 rows, 2 columns: x x_plus_mean_y 1 2 4.5 7.5 source 4.13 IndexedTables.groupjoin IndexedTables.groupjoin — Method. groupjoin([f, ] left, right; how,) Join left and right creating groups of values with matching keys. Inner join Inner join is the default join (when how is unspecified). It looks up keys from left in right and only joins them when there is a match. This generates the “intersection” of keys from left and right. One-to-many and many-to-many matches If the same key appears multiple times in either table (say, m and n times respectively), each row with a key from left is matched with each row from right with that key. The resulting group has mn output elements. julia> l = table([1,1,1,2], [1,2,2,1], [1,2,3,4], names=[:a,:b,:c], pkey=(:a, :b)) Table with 4 rows, 3 columns: a b c 1 1 1 2 1 2 2 1 1 2 3 4 julia> r = table([0,1,1,2], [1,2,2,1], [1,2,3,4], names=[:a,:b,:d], pkey=(:a, :b)) Table with 4 rows, 3 columns: a b d 0 1 1 4.13. INDEXEDTABLES.GROUPJOIN 1 1 2 2 2 1 119 2 3 4 julia> groupjoin(l,r) Table with 2 rows, 3 columns: a b groups 1 2 2 1 NamedTuples._NT_c_d{Int64,Int64}[(c = 2, d = 2), (c = 2, d = 3), (c = 3, d = 2), (c = 3, d NamedTuples._NT_c_d{Int64,Int64}[(c = 4, d = 4)] Left join Left join looks up rows from right where keys match that in left. If there are no such rows in right, an NA value is used for every selected field from right. julia> groupjoin(l,r, how=:left) Table with 3 rows, 3 columns: a b groups 1 1 2 1 2 1 NamedTuples._NT_c_d{Int64,Int64}[] NamedTuples._NT_c_d{Int64,Int64}[(c = 2, d = 2), (c = 2, d = 3), (c = 3, d = 2), (c = 3, d NamedTuples._NT_c_d{Int64,Int64}[(c = 4, d = 4)] Outer join Outer (aka Union) join looks up rows from right where keys match that in left, and also rows from left where keys match those in left, if there are no matches on either side, a tuple of NA values is used. The output is guarranteed to contain julia> groupjoin(l,r, how=:outer) Table with 4 rows, 3 columns: a b groups 0 1 1 2 1 1 2 1 NamedTuples._NT_c_d{Int64,Int64}[] NamedTuples._NT_c_d{Int64,Int64}[] NamedTuples._NT_c_d{Int64,Int64}[(c = 2, d = 2), (c = 2, d = 3), (c = 3, d = 2), (c = 3, d NamedTuples._NT_c_d{Int64,Int64}[(c = 4, d = 4)] Options • how::Symbol – join method to use. Described above. • lkey::Selection – fields from left to match on • rkey::Selection – fields from right to match on 120 CHAPTER 4. INDEXEDTABLES • lselect::Selection – fields from left to use as input to use as output columns, or input to f if it is specified. By default, this is all fields not selected in lkey. • rselect::Selection – fields from left to use as input to use as output columns, or input to f if it is specified. By default, this is all fields not selected in rkey. julia> groupjoin(l,r, lkey=:a, rkey=:a, lselect=:c, rselect=:d, how=:outer) Table with 3 rows, 2 columns: a groups 0 1 2 NamedTuples._NT_c_d{Int64,Int64}[] NamedTuples._NT_c_d{Int64,Int64}[(c = 1, d = 2), (c = 1, d = 3), (c = 2, d = 2), (c NamedTuples._NT_c_d{Int64,Int64}[(c = 4, d = 4)] source 4.14 IndexedTables.groupreduce IndexedTables.groupreduce — Function. groupreduce(f, t[, by::Selection]; select::Selection) Group rows by by, and apply f to reduce each group. f can be a function, OnlineStat or a struct of these as described in reduce. Recommended: see documentation for reduce first. The result of reducing each group is put in a table keyed by unique by values, the names of the output columns are the same as the names of the fields of the reduced tuples. Examples julia> t=table([1,1,1,2,2,2], [1,1,2,2,1,1], [1,2,3,4,5,6], names=[:x,:y,:z]); julia> groupreduce(+, t, :x, select=:z) Table with 2 rows, 2 columns: x + 1 2 6 15 julia> groupreduce(+, t, (:x, :y), select=:z) Table with 4 rows, 3 columns: x y + 1 1 2 1 2 1 3 3 11 4.15. INDEXEDTABLES.INSERTCOL 2 2 121 4 julia> groupreduce((+, min, max), t, (:x, :y), select=:z) Table with 4 rows, 5 columns: x y + min max 1 1 2 2 1 2 1 2 3 3 11 4 1 3 5 4 2 3 6 4 If f is a single function or a tuple of functions, the output columns will be named the same as the functions themselves. To change the name, pass a named tuple: julia> groupreduce(@NT(zsum=+, zmin=min, zmax=max), t, (:x, :y), select=:z) Table with 4 rows, 5 columns: x y zsum zmin zmax 1 1 2 2 1 2 1 2 3 3 11 4 1 3 5 4 2 3 6 4 Finally, it’s possible to select different inputs for different reducers by using a named tuple of slector => function pairs: julia> groupreduce(@NT(xsum=:x=>+, negysum=(:y=>-)=>+), t, :x) Table with 2 rows, 3 columns: x xsum negysum 1 2 3 6 -4 -4 source 4.15 IndexedTables.insertcol IndexedTables.insertcol — Method. insertcol(t, position::Integer, name, x) Insert a column x named name at position. Returns a new table. julia> t = table([0.01, 0.05], [2,1], [3,4], names=[:t, :x, :y], pkey=:t) Table with 2 rows, 3 columns: t x y 122 CHAPTER 4. 0.01 0.05 2 1 INDEXEDTABLES 3 4 julia> insertcol(t, 2, :w, [0,1]) Table with 2 rows, 4 columns: t w x y 0.01 0.05 0 1 2 1 3 4 source 4.16 IndexedTables.insertcolafter IndexedTables.insertcolafter — Method. insertcolafter(t, after, name, col) Insert a column col named name after after. Returns a new table. julia> t = table([0.01, 0.05], [2,1], [3,4], names=[:t, :x, :y], pkey=:t) Table with 2 rows, 3 columns: t x y 0.01 0.05 2 1 3 4 julia> insertcolafter(t, :t, :w, [0,1]) Table with 2 rows, 4 columns: t w x y 0.01 0.05 0 1 2 1 3 4 source 4.17 IndexedTables.insertcolbefore IndexedTables.insertcolbefore — Method. insertcolbefore(t, before, name, col) Insert a column col named name before before. Returns a new table. julia> t = table([0.01, 0.05], [2,1], [3,4], names=[:t, :x, :y], pkey=:t) Table with 2 rows, 3 columns: t x y 0.01 2 3 4.18. INDEXEDTABLES.NCOLS 0.05 1 123 4 julia> insertcolbefore(t, :x, :w, [0,1]) Table with 2 rows, 4 columns: t w x y 0.01 0.05 0 1 2 1 3 4 source 4.18 IndexedTables.ncols IndexedTables.ncols — Function. ncols(itr) Returns the number of columns in itr. julia> ncols([1,2,3]) 1 julia> d = ncols(rows(([1,2,3],[4,5,6]))) 2 julia> ncols(table(([1,2,3],[4,5,6]))) 2 julia> ncols(table(@NT(x=[1,2,3],y=[4,5,6]))) 2 julia> ncols(ndsparse(d, [7,8,9])) 3 source 4.19 IndexedTables.ndsparse IndexedTables.ndsparse — Function. ndsparse(indices, data; agg, presorted, copy, chunks) Construct an NDSparse array with the given indices and data. Each vector in indices represents the index values for one dimension. On construction, the indices and data are sorted in lexicographic order of the indices. Arguments: • agg::Function: If indices contains duplicate entries, the corresponding data items are reduced using this 2-argument function. 124 CHAPTER 4. INDEXEDTABLES • presorted::Bool: If true, the indices are assumed to already be sorted and no sorting is done. • copy::Bool: If true, the storage for the new array will not be shared with the passed indices and data. If false (the default), the passed arrays will be copied only if necessary for sorting. The only way to guarantee sharing of data is to pass presorted=true. • chunks::Integer: distribute the table into chunks (Integer) chunks (a safe bet is nworkers()). Not distributed by default. See Distributed docs. Examples: 1-dimensional NDSparse can be constructed with a single array as index. julia> x = ndsparse(["a","b"],[3,4]) 1-d NDSparse with 2 values (Int64): 1 "a" "b" 3 4 julia> keytype(x), eltype(x) (Tuple{String}, Int64) A dimension will be named if constructed with a named tuple of columns as index. julia> x = ndsparse(@NT(date=Date.(2014:2017)), [4:7;]) 1-d NDSparse with 4 values (Int64): date 2014-01-01 2015-01-01 2016-01-01 2017-01-01 4 5 6 7 julia> x[Date("2015-01-01")] 5 julia> keytype(x), eltype(x) (Tuple{Date}, Int64) Multi-dimensional NDSparse can be constructed by passing a tuple of index columns: julia> x = ndsparse((["a","b"],[3,4]), [5,6]) 2-d NDSparse with 2 values (Int64): 1 2 4.19. INDEXEDTABLES.NDSPARSE "a" "b" 3 4 125 5 6 julia> keytype(x), eltype(x) (Tuple{String,Int64}, Int64) julia> x["a", 3] 5 The data itself can also contain tuples (these are stored in columnar format, just like in table.) julia> x = ndsparse((["a","b"],[3,4]), ([5,6], [7.,8.])) 2-d NDSparse with 2 values (2-tuples): 1 2 3 4 "a" "b" 3 4 5 6 7.0 8.0 julia> x = ndsparse(@NT(x=["a","a","b"],y=[3,4,4]), @NT(p=[5,6,7], q=[8.,9.,10.])) 2-d NDSparse with 3 values (2 field named tuples): x y p q "a" "a" "b" 3 4 4 5 6 7 8.0 9.0 10.0 julia> keytype(x), eltype(x) (Tuple{String,Int64}, NamedTuples._NT_p_q{Int64,Float64}) julia> x["a", :] 2-d NDSparse with 2 values (2 field named tuples): x y p q "a" "a" 3 4 5 6 8.0 9.0 Passing a chunks option to ndsparse, or constructing with a distributed array will cause the result to be distributed. Use distribute function to distribute an array. julia> x = ndsparse(@NT(date=Date.(2014:2017)), [4:7.;], chunks=2) 1-d Distributed NDSparse with 4 values (Float64) in 2 chunks: date 126 CHAPTER 4. 2014-01-01 2015-01-01 2016-01-01 2017-01-01 INDEXEDTABLES 4.0 5.0 6.0 7.0 julia> x = ndsparse(@NT(date=Date.(2014:2017)), distribute([4:7.0;], 2)) 1-d Distributed NDSparse with 4 values (Float64) in 2 chunks: date 2014-01-01 2015-01-01 2016-01-01 2017-01-01 4.0 5.0 6.0 7.0 Distribution is done to match the first distributed column from left to right. Specify chunks to override this. source 4.20 IndexedTables.pairs IndexedTables.pairs — Method. pairs(arr::NDSparse, indices...) Similar to where, but returns an iterator giving index=>value pairs. index will be a tuple. source 4.21 IndexedTables.pkeynames IndexedTables.pkeynames — Method. pkeynames(t::Table) Names of the primary key columns in t. Example julia> t = table([1,2], [3,4]); julia> pkeynames(t) () julia> t = table([1,2], [3,4], pkey=1); julia> pkeynames(t) (1,) julia> t = table([2,1],[1,3],[4,5], names=[:x,:y,:z], pkey=(1,2)); 4.22. INDEXEDTABLES.PKEYNAMES 127 julia> pkeys(t) 2-element IndexedTables.Columns{NamedTuples._NT_x_y{Int64,Int64},NamedTuples._NT_x_y{Array{Int64, (x = 1, y = 3) (x = 2, y = 1) source 4.22 IndexedTables.pkeynames IndexedTables.pkeynames — Method. pkeynames(t::NDSparse) Names of the primary key columns in t. Example julia> x = ndsparse([1,2],[3,4]) 1-d NDSparse with 2 values (Int64): 1 1 2 3 4 julia> pkeynames(x) (1,) source 4.23 IndexedTables.pkeys IndexedTables.pkeys — Method. pkeys(itr::Table) Primary keys of the table. If Table doesn’t have any designated primary key columns (constructed without pkey argument) then a default key of tuples (1,):(n,) is generated. Example julia> a = table(["a","b"], [3,4]) # no pkey Table with 2 rows, 2 columns: 1 2 128 CHAPTER 4. "a" "b" INDEXEDTABLES 3 4 julia> pkeys(a) 2-element Columns{Tuple{Int64}}: (1,) (2,) julia> a = table(["a","b"], [3,4], pkey=1) Table with 2 rows, 2 columns: 1 2 "a" "b" 3 4 julia> pkeys(a) 2-element Columns{Tuple{String}}: ("a",) ("b",) source 4.24 IndexedTables.popcol IndexedTables.popcol — Method. popcol(t, col) Remove the column col from the table. Returns a new table. julia> t = table([0.01, 0.05], [2,1], [3,4], names=[:t, :x, :y], pkey=:t) Table with 2 rows, 3 columns: t x y 0.01 0.05 2 1 3 4 julia> popcol(t, :x) Table with 2 rows, 2 columns: t y 0.01 0.05 3 4 source 4.25. INDEXEDTABLES.PUSHCOL 4.25 129 IndexedTables.pushcol IndexedTables.pushcol — Method. pushcol(t, name, x) Push a column x to the end of the table. name is the name for the new column. Returns a new table. Example: julia> t = table([0.01, 0.05], [2,1], [3,4], names=[:t, :x, :y], pkey=:t) Table with 2 rows, 3 columns: t x y 0.01 0.05 2 1 3 4 julia> pushcol(t, :z, [1//2, 3//4]) Table with 2 rows, 4 columns: t x y z 0.01 0.05 2 1 3 4 1//2 3//4 source 4.26 IndexedTables.reducedim vec IndexedTables.reducedim vec — Method. reducedim vec(f::Function, arr::NDSparse, dims) Like reducedim, except uses a function mapping a vector of values to a scalar instead of a 2-argument scalar function. source 4.27 IndexedTables.reindex IndexedTables.reindex — Function. reindex(t::Table, by[, select]) Reindex t by columns selected in by. Keeps columns selected by select as non-indexed columns. By default all columns not mentioned in by are kept. Use selectkeys to reindex and NDSparse object. julia> t = table([2,1],[1,3],[4,5], names=[:x,:y,:z], pkey=(1,2)) julia> reindex(t, (:y, :z)) Table with 2 rows, 3 columns: y z x 130 1 3 CHAPTER 4. 4 5 INDEXEDTABLES 2 1 julia> pkeynames(t) (:y, :z) julia> reindex(t, (:w=>[4,5], :z)) Table with 2 rows, 4 columns: w z x y 4 5 5 4 1 2 3 1 julia> pkeynames(t) (:w, :z) source 4.28 IndexedTables.renamecol IndexedTables.renamecol — Method. renamecol(t, col, newname) Set newname as the new name for column col in t. Returns a new table. julia> t = table([0.01, 0.05], [2,1], names=[:t, :x]) Table with 2 rows, 2 columns: t x 0.01 0.05 2 1 julia> renamecol(t, :t, :time) Table with 2 rows, 2 columns: time x 0.01 0.05 2 1 source 4.29 IndexedTables.rows IndexedTables.rows — Function. rows(itr[, select::Selection]) 4.30. INDEXEDTABLES.SETCOL 131 Select one or more fields from an iterable of rows as a vector of their values. select specifies which fields to select. See Selection convention for possible values. If unspecified, returns all columns. itr can be NDSparse, Columns and AbstractVector, and their distributed counterparts. Examples julia> t = table([1,2],[3,4], names=[:x,:y]) Table with 2 rows, 2 columns: x y 1 2 3 4 julia> rows(t) 2-element IndexedTables.Columns{NamedTuples._NT_x_y{Int64,Int64},NamedTuples._NT_x_y{Array{Int64, (x = 1, y = 3) (x = 2, y = 4) julia> rows(t, :x) 2-element Array{Int64,1}: 1 2 julia> rows(t, (:x,)) 2-element IndexedTables.Columns{NamedTuples._NT_x{Int64},NamedTuples._NT_x{Array{Int64,1}}}: (x = 1) (x = 2) julia> rows(t, (:y,:x=>-)) 2-element IndexedTables.Columns{NamedTuples._NT_y_x{Int64,Int64},NamedTuples._NT_y_x{Array{Int64, (y = 3, x = -1) (y = 4, x = -2) Note that vectors of tuples returned are Columns object and have columnar internal storage. source 4.30 IndexedTables.setcol IndexedTables.setcol — Method. setcol(t::Table, col::Union{Symbol, Int}, x::Selection) Sets a x as the column identified by col. Returns a new table. setcol(t::Table, map::Pair...) Set many columns at a time. Examples: 132 CHAPTER 4. INDEXEDTABLES julia> t = table([1,2], [3,4], names=[:x, :y]) Table with 2 rows, 2 columns: x y 1 2 3 4 julia> setcol(t, 2, [5,6]) Table with 2 rows, 2 columns: x y 1 2 5 6 x can be any selection that transforms existing columns. julia> setcol(t, :x, :x => x->1/x) Table with 2 rows, 2 columns: x y 1.0 0.5 5 6 setcol will result in a re-sorted copy if a primary key column is replaced. julia> t = table([0.01, 0.05], [1,2], [3,4], names=[:t, :x, :y], pkey=:t) Table with 2 rows, 3 columns: t x y 0.01 0.05 1 2 3 4 julia> t2 = setcol(t, :t, [0.1,0.05]) Table with 2 rows, 3 columns: t x y 0.05 0.1 2 1 4 3 julia> t == t2 false source 4.31 IndexedTables.stack IndexedTables.stack — Method. 4.32. INDEXEDTABLES.SUMMARIZE 133 stack(t, by = pkeynames(t); select = excludecols(t, by), variable = :variable, value = :value) Reshape a table from the wide to the long format. Columns in by are kept as indexing columns. Columns in select are stacked. In addition to the id columns, two additional columns labeled variable and value are added, containg the column identifier and the stacked columns. Examples julia> t = table(1:4, [1, 4, 9, 16], [1, 8, 27, 64], names = [:x, :xsquare, :xcube], pkey = :x); julia> stack(t) Table with 8 rows, 3 columns: x variable value 1 1 2 2 3 3 4 4 :xsquare :xcube :xsquare :xcube :xsquare :xcube :xsquare :xcube 1 1 4 8 9 27 16 64 source 4.32 IndexedTables.summarize IndexedTables.summarize — Function. summarize(f, t, by = pkeynames(t); select = excludecols(t, by)) Apply summary functions column-wise to a table. Return a NamedTuple in the non-grouped case and a table in the grouped case. Examples julia> t = table([1, 2, 3], [1, 1, 1], names = [:x, :y]); julia> summarize((mean, std), t) (x_mean = 2.0, y_mean = 1.0, x_std = 1.0, y_std = 0.0) julia> s = table(["a","a","b","b"], [1,3,5,7], [2,2,2,2], names = [:x, :y, :z], pkey = :x); julia> summarize(mean, s) Table with 2 rows, 3 columns: x y z "a" "b" 2.0 6.0 2.0 2.0 134 CHAPTER 4. INDEXEDTABLES Use a NamedTuple to have different names for the summary functions: julia> summarize(@NT(m = mean, s = std), t) (x_m = 2.0, y_m = 1.0, x_s = 1.0, y_s = 0.0) Use select to only summarize some columns: julia> summarize(@NT(m = mean, s = std), t, select = :x) (m = 2.0, s = 1.0) source 4.33 IndexedTables.table IndexedTables.table — Function. table(cols::AbstractVector...; names, ) Create a table with columns given by cols. julia> a = table([1,2,3], [4,5,6]) Table with 3 rows, 2 columns: 1 2 1 2 3 4 5 6 names specify names for columns. If specified, the table will be an iterator of named tuples. julia> b = table([1,2,3], [4,5,6], names=[:x, :y]) Table with 3 rows, 2 columns: x y 1 2 3 4 5 6 table(cols::Union{Tuple, NamedTuple}; ) Convert a struct of columns to a table of structs. julia> table(([1,2,3], [4,5,6])) == a true julia> table(@NT(x=[1,2,3], y=[4,5,6])) == b true table(cols::Columns; ) Construct a table from a vector of tuples. See rows. 4.33. INDEXEDTABLES.TABLE 135 julia> table(Columns([1,2,3], [4,5,6])) == a true julia> table(Columns(x=[1,2,3], y=[4,5,6])) == b true table(t::Union{Table, NDSparse}; ) Copy a Table or NDSparse to create a new table. The same primary keys as the input are used. julia> b == table(b) true table(iter; ) Construct a table from an iterable table. Options: • pkey: select columns to act as the primary key. By default, no columns are used as primary key. • presorted: is the data pre-sorted by primary key columns? If so, skip sorting. false by default. Irrelevant if chunks is specified. • copy: creates a copy of the input vectors if true. true by default. Irrelavant if chunks is specified. • chunks: distribute the table into chunks (Integer) chunks (a safe bet is nworkers()). Table is not distributed by default. See Distributed docs. Examples: Specifying pkey will cause the table to be sorted by the columns named in pkey: julia> b = table([2,3,1], [4,5,6], names=[:x, :y], pkey=:x) Table with 3 rows, 2 columns: x y 1 2 3 6 4 5 julia> b = table([2,1,2,1],[2,3,1,3],[4,5,6,7], names=[:x, :y, :z], pkey=(:x,:y)) Table with 4 rows, 3 columns: x y z 1 1 2 2 3 3 1 2 5 7 6 4 136 CHAPTER 4. INDEXEDTABLES Note that the keys do not have to be unique. chunks option creates a distributed table. chunks can be: 1. An integer – number of chunks to create 2. An vector of k integers – number of elements in each of the k chunks. 3. The distribution of another array. i.e. vec.subdomains where vec is a distributed array. julia> t = table([2,3,1,4], [4,5,6,7], names=[:x, :y], pkey=:x, chunks=2) Distributed Table with 4 rows in 2 chunks: x y 1 2 3 4 6 4 5 7 A distributed table will be constructed if one of the arrays passed into table constructor is a distributed array. A distributed Array can be constructed using distribute: julia> x = distribute([1,2,3,4], 2); julia> t = table(x, [5,6,7,8], names=[:x,:y]) Distributed Table with 4 rows in 2 chunks: x y 1 2 3 4 5 6 7 8 julia> table(columns(t)..., [9,10,11,12], names=[:x,:y,:z]) Distributed Table with 4 rows in 2 chunks: x y z 1 2 3 4 5 6 7 8 9 10 11 12 4.34. INDEXEDTABLES.UNSTACK 137 Distribution is done to match the first distributed column from left to right. Specify chunks to override this. source 4.34 IndexedTables.unstack IndexedTables.unstack — Method. unstack(t, by = pkeynames(t); variable = :variable, value = :value) Reshape a table from the long to the wide format. Columns in by are kept as indexing columns. Keyword arguments variable and value denote which column contains the column identifier and which the corresponding values. Examples julia> t = table(1:4, [1, 4, 9, 16], [1, 8, 27, 64], names = [:x, :xsquare, :xcube], pkey = :x); julia> long = stack(t) Table with 8 rows, 3 columns: x variable value 1 1 2 2 3 3 4 4 :xsquare :xcube :xsquare :xcube :xsquare :xcube :xsquare :xcube 1 1 4 8 9 27 16 64 julia> unstack(long) Table with 4 rows, 3 columns: x xsquare xcube 1 2 3 4 1 4 9 16 1 8 27 64 source 4.35 IndexedTables.update! IndexedTables.update! — Method. update!(f::Function, arr::NDSparse, indices...) Replace data values x with f(x) at each location that matches the given indices. source 138 4.36 CHAPTER 4. INDEXEDTABLES IndexedTables.where IndexedTables.where — Method. where(arr::NDSparse, indices...) Returns an iterator over data items where the given indices match. Accepts the same index arguments as getindex. source Chapter 5 Images 5.1 ColorTypes.blue ColorTypes.blue — Function. b = blue(img) extracts the blue channel from an RGB image img source 5.2 ColorTypes.green ColorTypes.green — Function. g = green(img) extracts the green channel from an RGB image img source 5.3 ColorTypes.red ColorTypes.red — Function. r = red(img) extracts the red channel from an RGB image img source 5.4 Images.adjust gamma Images.adjust gamma — Method. gamma_corrected_img = adjust_gamma(img, gamma) Returns a gamma corrected image. The adjust gamma function can handle a variety of input types. The returned image depends on the input type. If the input is an Image then the resulting image is of the same type and has the same properties. 139 140 CHAPTER 5. IMAGES For coloured images, the input is converted to YIQ type and the Y channel is gamma corrected. This is the combined with the I and Q channels and the resulting image converted to the same type as the input. source 5.5 Images.bilinear interpolation Images.bilinear interpolation — Method. P = bilinear_interpolation(img, r, c) Bilinear Interpolation is used to interpolate functions of two variables on a rectilinear 2D grid. The interpolation is done in one direction first and then the values obtained are used to do the interpolation in the second direction. source 5.6 Images.blob LoG Images.blob LoG — Method. blob_LoG(img, scales, [edges], [shape]) -> Vector{BlobLoG} Find “blobs” in an N-D image using the negative Lapacian of Gaussians with the specifed vector or tuple of values. The algorithm searches for places where the filtered image (for a particular ) is at a peak compared to all spatially- and -adjacent voxels, where is scales[i] * shape for some i. By default, shape is an ntuple of 1s. The optional edges argument controls whether peaks on the edges are included. edges can be true or false, or a N+1-tuple in which the first entry controls whether edge- values are eligible to serve as peaks, and the remaining N entries control each of the N dimensions of img. Citation: Lindeberg T (1998), “Feature Detection with Automatic Scale Selection”, International Journal of Computer Vision, 30(2), 79–116. See also: BlobLoG. source 5.7 Images.boxdiff Images.boxdiff — Method. sum = boxdiff(integral_image, ytop:ybot, xtop:xbot) sum = boxdiff(integral_image, CartesianIndex(tl_y, tl_x), CartesianIndex(br_y, br_x)) sum = boxdiff(integral_image, tl_y, tl_x, br_y, br_x) 5.8. IMAGES.CANNY 141 An integral image is a data structure which helps in efficient calculation of sum of pixels in a rectangular subset of an image. It stores at each pixel the sum of all pixels above it and to its left. The sum of a window in an image can be directly calculated using four array references of the integral image, irrespective of the size of the window, given the yrange and xrange of the window. Given an integral image A C - * * * * * * - * * * * * * - * * * * * * - * * * * * * - * * * * * * - * * * * * * - B * * * * * D - - The sum of pixels in the area denoted by * is given by S = D + A - B - C. source 5.8 Images.canny Images.canny — Method. canny_edges = canny(img, (upper, lower), sigma=1.4) Performs Canny Edge Detection on the input image. Parameters : (upper, lower) : Bounds for hysteresis thresholding sigma : Specifies the standard deviation of the gaussian filter Example [] imgedg = canny(img, (Percentile(80), Percentile(20))) source 5.9 Images.clahe Images.clahe — Method. hist_equalised_img = clahe(img, nbins, xblocks = 8, yblocks = 8, clip = 3) Performs Contrast Limited Adaptive Histogram Equalisation (CLAHE) on the input image. It differs from ordinary histogram equalization in the respect that the adaptive method computes several histograms, each corresponding to a distinct section of the image, and uses them to redistribute the lightness values of the image. It is therefore suitable for improving the local contrast and enhancing the definitions of edges in each region of an image. 142 CHAPTER 5. IMAGES In the straightforward form, CLAHE is done by calculation a histogram of a window around each pixel and using the transformation function of the equalised histogram to rescale the pixel. Since this is computationally expensive, we use interpolation which gives a significant rise in efficiency without compromising the result. The image is divided into a grid and equalised histograms are calculated for each block. Then, each pixel is interpolated using the closest histograms. The xblocks and yblocks specify the number of blocks to divide the input image into in each direction. nbins specifies the granularity of histogram calculation of each local region. clip specifies the value at which the histogram is clipped. The excess in the histogram bins with value exceeding clip is redistributed among the other bins. source 5.10 Images.cliphist Images.cliphist — Method. clipped_hist = cliphist(hist, clip) Clips the histogram above a certain value clip. The excess left in the bins exceeding clip is redistributed among the remaining bins. source 5.11 Images.complement Images.complement — Method. y = complement(x) Take the complement 1-x of x. If x is a color with an alpha channel, the alpha channel is left untouched. source 5.12 Images.component boxes Images.component boxes — Method. component boxes(labeled array) -> an array of bounding boxes for each label, including the background label 0 source 5.13. IMAGES.COMPONENT CENTROIDS 5.13 143 Images.component centroids Images.component centroids — Method. component centroids(labeled array) -> an array of centroids for each label, including the background label 0 source 5.14 Images.component indices Images.component indices — Method. component indices(labeled array) -> an array of pixels for each label, including the background label 0 source 5.15 Images.component lengths Images.component lengths — Method. component lengths(labeled array) -> an array of areas (2D), volumes (3D), etc. for each label, including the background label 0 source 5.16 Images.component subscripts Images.component subscripts — Method. component subscripts(labeled array) -> an array of pixels for each label, including the background label 0 source 5.17 Images.convexhull Images.convexhull — Method. chull = convexhull(img) Computes the convex hull of a binary image and returns the vertices of convex hull as a CartesianIndex array. source 5.18 Images.corner2subpixel Images.corner2subpixel — Method. corners = corner2subpixel(responses::AbstractMatrix,corner_indicator::AbstractMatrix{Bool}) -> Vector{HomogeneousPoint{Float64,3}} 144 CHAPTER 5. IMAGES Refines integer corner coordinates to sub-pixel precision. The function takes as input a matrix representing corner responses and a boolean indicator matrix denoting the integer coordinates of a corner in the image. The output is a vector of type HomogeneousPoint storing the sub-pixel coordinates of the corners. The algorithm computes a correction factor which is added to the original integer coordinates. In particular, a univariate quadratic polynomial is fit separately to the x-coordinates and y-coordinates of a corner and its immediate east/west, and north/south neighbours. The fit is achieved using a local coordinate system for each corner, where the origin of the coordinate system is a given corner, and its immediate neighbours are assigned coordinates of minus one and plus one. The corner and its two neighbours form a system of three equations. For example, let x1 = −1, x2 = 0 and x3 = 1 denote the local x coordinates of the west, center and east pixels and let the vector b = [r1 , r2 , r3 ] denote the corresponding corner response values. With 2 x1 x1 1 A = x22 x2 1 , x23 x3 1 the coefficients of the quadratic polynomial can be found by solving the system of equations b = Ax. The result is given by x = A−1 b. The vertex of the quadratic polynomial yields a sub-pixel estimate of the true corner position. For example, for a univariate quadratic polynomial px2 +qx+r, the x-coordinate of the vertex is −q 2p . Hence, the refined sub-pixel coordinate is −q equal to: c + 2p , where c is the integer coordinate. !!! note Corners on the boundary of the image are not refined to sub-pixel precision. source 5.19 Images.entropy Images.entropy — Method. entropy(log, img) entropy(img; [kind=:shannon]) Compute the entropy of a grayscale image defined as -sum(p.*log(p)). The base of the logarithm (a.k.a. entropy unit) is one of the following: • :shannon (log base 2, default), or use log = log2 • :nat (log base e), or use log = log • :hartley (log base 10), or use log = log10 source 5.20. IMAGES.FASTCORNERS 5.20 145 Images.fastcorners Images.fastcorners — Method. fastcorners(img, n, threshold) -> corners Performs FAST Corner Detection. n is the number of contiguous pixels which need to be greater (lesser) than intensity + threshold (intensity - threshold) for a pixel to be marked as a corner. The default value for n is 12. source 5.21 Images.findlocalmaxima Images.findlocalmaxima — Function. findlocalmaxima(img, [region, edges]) -> Vector{CartesianIndex} Returns the coordinates of elements whose value is larger than all of their immediate neighbors. region is a list of dimensions to consider. edges is a boolean specifying whether to include the first and last elements of each dimension, or a tuple-of-Bool specifying edge behavior for each dimension separately. source 5.22 Images.findlocalminima Images.findlocalminima — Function. Like findlocalmaxima, but returns the coordinates of the smallest elements. source 5.23 Images.gaussian pyramid Images.gaussian pyramid — Method. pyramid = gaussian_pyramid(img, n_scales, downsample, sigma) Returns a gaussian pyramid of scales n scales, each downsampled by a factor downsample and sigma for the gaussian kernel. source 5.24 Images.harris Images.harris — Method. harris_response = harris(img; [k], [border], [weights]) Performs Harris corner detection. The covariances can be taken using either a mean weighted filter or a gamma kernel. source 146 5.25 CHAPTER 5. IMAGES Images.hausdorff distance Images.hausdorff distance — Method. hausdorff distance(imgA, imgB) is the modified Hausdorff distance between binary images (or point sets). References Dubuisson, M-P; Jain, A. K., 1994. A Modified Hausdorff Distance for Object-Matching. source 5.26 Images.histeq Images.histeq — Method. hist_equalised_img = histeq(img, nbins) hist_equalised_img = histeq(img, nbins, minval, maxval) Returns a histogram equalised image with a granularity of approximately nbins number of bins. The histeq function can handle a variety of input types. The returned image depends on the input type. If the input is an Image then the resulting image is of the same type and has the same properties. For coloured images, the input is converted to YIQ type and the Y channel is equalised. This is the combined with the I and Q channels and the resulting image converted to the same type as the input. If minval and maxval are specified then intensities are equalized to the range (minval, maxval). The default values are 0 and 1. source 5.27 Images.histmatch Images.histmatch — Function. hist_matched_img = histmatch(img, oimg, nbins) Returns a grayscale histogram matched image with a granularity of nbins number of bins. img is the image to be matched and oimg is the image having the desired histogram to be matched to. source 5.28 Images.imROF Images.imROF — Method. imgr = imROF(img, , iterations) 5.29. IMAGES.IMADJUSTINTENSITY 147 Perform Rudin-Osher-Fatemi (ROF) filtering, more commonly known as Total Variation (TV) denoising or TV regularization. is the regularization coefficient for the derivative, and iterations is the number of relaxation iterations taken. 2d only. See https://en.wikipedia.org/wiki/Total variation denoising and Chambolle, A. (2004). “An algorithm for total variation minimization and applications”. Journal of Mathematical Imaging and Vision. 20: 89–97 source 5.29 Images.imadjustintensity Images.imadjustintensity — Method. imadjustintensity(img [, (minval,maxval)]) -> Image Map intensities over the interval (minval,maxval) to the interval [0,1]. This is equivalent to map(ScaleMinMax(eltype(img), minval, maxval), img). (minval,maxval) defaults to extrema(img). source 5.30 Images.imcorner Images.imcorner — Method. corners = imcorner(img; [method]) corners = imcorner(img, threshold, percentile; [method]) Performs corner detection using one of the following methods 1. harris 2. shi_tomasi 3. kitchen_rosenfeld The parameters of the individual methods are described in their documentation. The maxima values of the resultant responses are taken as corners. If a threshold is specified, the values of the responses are thresholded to give the corner pixels. The threshold is assumed to be a percentile value unless percentile is set to false. source 5.31 Images.imcorner subpixel Images.imcorner subpixel — Method. corners = imcorner_subpixel(img; [method]) -> Vector{HomogeneousPoint{Float64,3}} corners = imcorner_subpixel(img, threshold, percentile; [method]) -> Vector{HomogeneousPoint{Float64,3}} 148 CHAPTER 5. IMAGES Same as imcorner, but estimates corners to sub-pixel precision. Sub-pixel precision is achieved by interpolating the corner response values using the 4-connected neighbourhood of a maximum response value. See corner2subpixel for more details of the interpolation scheme. source 5.32 Images.imedge Images.imedge — Function. grad_y, grad_x, mag, orient = imedge(img, kernelfun=KernelFactors.ando3, border="replic Edge-detection filtering. kernelfun is a valid kernel function for imgradients, defaulting to KernelFactors.ando3. border is any of the boundary conditions specified in padarray. Returns a tuple (grad y, grad x, mag, orient), which are the horizontal gradient, vertical gradient, and the magnitude and orientation of the strongest edge, respectively. source 5.33 Images.imhist Images.imhist — Method. edges, count = imhist(img, nbins) edges, count = imhist(img, nbins, minval, maxval) Generates a histogram for the image over nbins spread between (minval, maxval]. If minval and maxval are not given, then the minimum and maximum values present in the image are taken. edges is a vector that specifies how the range is divided; count[i+1] is the number of values x that satisfy edges[i] <= x < edges[i+1]. count[1] is the number satisfying x < edges[1], and count[end] is the number satisfying x >= edges[end]. Consequently, length(count) == length(edges)+1. source 5.34 Images.imstretch Images.imstretch — Method. imgs = imstretch(img, m, slope) enhances or reduces (for slope > 1 or < 1, respectively) the contrast near saturation (0 and 1). This is essentially a symmetric gamma-correction. For a pixel of brightness p, the new intensity is 1/(1+(m/(p+eps))^slope). This assumes the input img has intensities between 0 and 1. source 5.35. IMAGES.INTEGRAL IMAGE 5.35 149 Images.integral image Images.integral image — Method. integral_img = integral_image(img) Returns the integral image of an image. The integral image is calculated by assigning to each pixel the sum of all pixels above it and to its left, i.e. the rectangle from (1, 1) to the pixel. An integral image is a data structure which helps in efficient calculation of sum of pixels in a rectangular subset of an image. See boxdiff for more information. source 5.36 Images.kitchen rosenfeld Images.kitchen rosenfeld — Method. kitchen_rosenfeld_response = kitchen_rosenfeld(img; [border]) Performs Kitchen Rosenfeld corner detection. The covariances can be taken using either a mean weighted filter or a gamma kernel. source 5.37 Images.label components Images.label components — Function. label = label_components(tf, [connectivity]) label = label_components(tf, [region]) Find the connected components in a binary array tf. There are two forms that connectivity can take: • It can be a boolean array of the same dimensionality as tf, of size 1 or 3 along each dimension. Each entry in the array determines whether a given neighbor is used for connectivity analyses. For example, connectivity = trues(3,3) would use 8-connectivity and test all pixels that touch the current one, even the corners. • You can provide a list indicating which dimensions are used to determine connectivity. For example, region = [1,3] would not test neighbors along dimension 2 for connectivity. This corresponds to just the nearest neighbors, i.e., 4-connectivity in 2d and 6-connectivity in 3d. The default is region = 1:ndims(A). The output label is an integer array, where 0 is used for background pixels, and each connected region gets a different integer index. source 150 5.38 CHAPTER 5. IMAGES Images.magnitude Images.magnitude — Method. m = magnitude(grad_x, grad_y) Calculates the magnitude of the gradient images given by grad x and grad y. Equivalent to sqrt(gradx .2 + grady .2 ). Returns a magnitude image the same size as grad x and grad y. source 5.39 Images.magnitude phase Images.magnitude phase — Method. magnitude_phase(grad_x, grad_y) -> m, p Convenience function for calculating the magnitude and phase of the gradient images given in grad x and grad y. Returns a tuple containing the magnitude and phase images. See magnitude and phase for details. source 5.40 Images.maxabsfinite Images.maxabsfinite — Method. m = maxabsfinite(A) calculates the maximum absolute value in A, ignoring any values that are not finite (Inf or NaN). source 5.41 Images.maxfinite Images.maxfinite — Method. m = maxfinite(A) calculates the maximum value in A, ignoring any values that are not finite (Inf or NaN). source 5.42 Images.meanfinite Images.meanfinite — Method. M = meanfinite(img, region) calculates the mean value along the dimensions listed in region, ignoring any non-finite values. source 5.43. IMAGES.MINFINITE 5.43 151 Images.minfinite Images.minfinite — Method. m = minfinite(A) calculates the minimum value in A, ignoring any values that are not finite (Inf or NaN). source 5.44 Images.ncc Images.ncc — Method. C = ncc(A, B) computes the normalized cross-correlation of A and B. source 5.45 Images.orientation Images.orientation — Method. orientation(grad_x, grad_y) -> orient Calculate the orientation angle of the strongest edge from gradient images given by grad x and grad y. Equivalent to atan2(grad x, grad y). When both grad x and grad y are effectively zero, the corresponding angle is set to zero. source 5.46 Images.otsu threshold Images.otsu threshold — Method. thres = otsu_threshold(img) thres = otsu_threshold(img, bins) Computes threshold for grayscale image using Otsu’s method. Parameters: • img = Grayscale input image • bins = Number of bins used to compute the histogram. floating-point images. source Needed for 152 5.47 CHAPTER 5. IMAGES Images.phase Images.phase — Method. phase(grad_x, grad_y) -> p Calculate the rotation angle of the gradient given by grad x and grad y. Equivalent to atan2(-grad y, grad x), except that when both grad x and grad y are effectively zero, the corresponding angle is set to zero. source 5.48 Images.sad Images.sad — Method. s = sad(A, B) computes the sum-of-absolute differences over arrays/images A and B source 5.49 Images.sadn Images.sadn — Method. s = sadn(A, B) computes the sum-of-absolute differences over arrays/images A and B, normalized by array size source 5.50 Images.shepp logan Images.shepp logan — Method. phantom = shepp_logan(N,[M]; highContrast=true) output the NxM Shepp-Logan phantom, which is a standard test image usually used for comparing image reconstruction algorithms in the field of computed tomography (CT) and magnetic resonance imaging (MRI). If the argument M is omitted, the phantom is of size NxN. When setting the keyword argument highConstrast to false, the CT version of the phantom is created. Otherwise, the high contrast MRI version is calculated. source 5.51 Images.shi tomasi Images.shi tomasi — Method. shi_tomasi_response = shi_tomasi(img; [border], [weights]) 5.52. IMAGES.SSD 153 Performs Shi Tomasi corner detection. The covariances can be taken using either a mean weighted filter or a gamma kernel. source 5.52 Images.ssd Images.ssd — Method. s = ssd(A, B) computes the sum-of-squared differences over arrays/images A and B source 5.53 Images.ssdn Images.ssdn — Method. s = ssdn(A, B) computes the sum-of-squared differences over arrays/images A and B, normalized by array size source 5.54 Images.thin edges Images.thin edges — Method. thinned = thin_edges(img, gradientangle, [border]) thinned, subpix = thin_edges_subpix(img, gradientangle, [border]) thinned, subpix = thin_edges_nonmaxsup(img, gradientangle, [border]; [radius::Float64=1.35], [the thinned, subpix = thin_edges_nonmaxsup_subpix(img, gradientangle, [border]; [radius::Float64=1.35 Edge thinning for 2D edge images. Currently the only algorithm available is non-maximal suppression, which takes an edge image and its gradient angle, and checks each edge point for local maximality in the direction of the gradient. The returned image is non-zero only at maximal edge locations. border is any of the boundary conditions specified in padarray. In addition to the maximal edge image, the subpix versions of these functions also return an estimate of the subpixel location of each local maxima, as a 2D array or image of Graphics.Point objects. Additionally, each local maxima is adjusted to the estimated value at the subpixel location. Currently, the nonmaxsup functions are identical to the first two function calls, except that they also accept additional keyword arguments. radius indicates the step size to use when searching in the direction of the gradient; values between 1.2 and 1.5 are suggested (default 1.35). theta indicates the step size to use when discretizing angles in the gradientangle image, in radians (default: 1 degree in radians = pi/180). Example: 154 CHAPTER 5. g = rgb2gray(rgb_image) gx, gy = imgradients(g) mag, grad_angle = magnitude_phase(gx,gy) mag[mag .< 0.5] = 0.0 # Threshold magnitude image thinned, subpix = thin_edges_subpix(mag, grad_angle) source IMAGES Chapter 6 Knet 6.1 Knet.accuracy Knet.accuracy — Method. accuracy(model, data, predict; average=true) Compute accuracy(predict(model,x), y) for (x,y) in data and return the ratio (if average=true) or the count (if average=false) of correct answers. source 6.2 Knet.accuracy Knet.accuracy — Method. accuracy(scores, answers, d=1; average=true) Given an unnormalized scores matrix and an Integer array of correct answers, return the ratio of instances where the correct answer has the maximum score. d=1 means instances are in columns, d=2 means instances are in rows. Use average=false to return the number of correct answers instead of the ratio. source 6.3 Knet.batchnorm Knet.batchnorm — Function. batchnorm(x[, moments, params]; kwargs...) performs batch normalization to x with optional scaling factor and bias stored in params. 2d, 4d and 5d inputs are supported. Mean and variance are computed over dimensions (2,), (1,2,4) and (1,2,3,5) for 2d, 4d and 5d arrays, respectively. 155 156 CHAPTER 6. KNET moments stores running mean and variance to be used in testing. It is optional in the training mode, but mandatory in the test mode. Training and test modes are controlled by the training keyword argument. params stores the optional affine parameters gamma and beta. bnparams function can be used to initialize params. Example # Inilization, C is an integer moments = bnmoments() params = bnparams(C) ... # size(x) -> (H, W, C, N) y = batchnorm(x, moments, params) # size(y) -> (H, W, C, N) Keywords eps=1e-5: The epsilon parameter added to the variance to avoid division by 0. training: When training is true, the mean and variance of x are used and moments argument is modified if it is provided. When training is false, mean and variance stored in the moments argument are used. Default value is true when at least one of x and params is AutoGrad.Rec, false otherwise. source 6.4 Knet.bilinear Knet.bilinear — Method. Bilinear interpolation filter weights; used for initializing deconvolution layers. Adapted from https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/surgery.py#L33 Arguments: T : Data Type fw: Width upscale factor fh: Height upscale factor IN: Number of input filters ON: Number of output filters Example usage: w = bilinear(Float32,2,2,128,128) source 6.5 Knet.bnmoments Knet.bnmoments — Method. bnmoments(;momentum=0.1, mean=nothing, var=nothing, meaninit=zeros, varinit=ones) can be used directly load moments from data. meaninit and varinit are called if mean and var are nothing. Type and size of the mean and 6.6. KNET.BNPARAMS 157 var are determined automatically from the inputs in the batchnorm calls. A BNMoments object is returned. BNMoments A high-level data structure used to store running mean and running variance of batch normalization with the following fields: momentum::AbstractFloat: A real number between 0 and 1 to be used as the scale of last mean and variance. The existing running mean or variance is multiplied by (1-momentum). mean: The running mean. var: The running variance. meaninit: The function used for initialize the running mean. Should either be nothing or of the form (eltype, dims...)->data. zeros is a good option. varinit: The function used for initialize the running variance. Should either be nothing or (eltype, dims...)->data. ones is a good option. source 6.6 Knet.bnparams Knet.bnparams — Method. bnparams(etype, channels) creates a single 1d array that contains both scale and bias of batchnorm, where the first half is scale and the second half is bias. bnparams(channels) calls bnparams with etype=Float64, following Julia convention source 6.7 Knet.conv4 Knet.conv4 — Method. conv4(w, x; kwargs...) Execute convolutions or cross-correlations using filters specified with w over tensor x. Currently KnetArray{Float32/64,4/5} and Array{Float32/64,4} are supported as w and x. If w has dimensions (W1,W2,...,I,O) and x has dimensions (X1,X2,...,I,N), the result y will have dimensions (Y1,Y2,...,O,N) where Yi=1+floor((Xi+2*padding[i]-Wi)/stride[i]) Here I is the number of input channels, O is the number of output channels, N is the number of instances, and Wi,Xi,Yi are spatial dimensions. padding and stride are keyword arguments that can be specified as a single number (in which case they apply to all dimensions), or an array/tuple with entries for each spatial dimension. Keywords 158 CHAPTER 6. KNET • padding=0: the number of extra zeros implicitly concatenated at the start and at the end of each dimension. • stride=1: the number of elements to slide to reach the next filtering window. • upscale=1: upscale factor for each dimension. • mode=0: 0 for convolution and 1 for cross-correlation. • alpha=1: can be used to scale the result. • handle: handle to a previously created cuDNN context. Defaults to a Knet allocated handle. source 6.8 Knet.deconv4 Knet.deconv4 — Method. y = deconv4(w, x; kwargs...) Simulate 4-D deconvolution by using transposed convolution operation. Its forward pass is equivalent to backward pass of a convolution (gradients with respect to input tensor). Likewise, its backward pass (gradients with respect to input tensor) is equivalent to forward pass of a convolution. Since it swaps forward and backward passes of convolution operation, padding and stride options belong to output tensor. See this report for further explanation. Currently KnetArray{Float32/64,4} and Array{Float32/64,4} are supported as w and x. If w has dimensions (W1,W2,...,O,I) and x has dimensions (X1,X2,...,I,N), the result y will have dimensions (Y1,Y2,...,O,N) where Yi = Wi+stride[i](Xi-1)-2 padding[i] Here I is the number of input channels, O is the number of output channels, N is the number of instances, and Wi,Xi,Yi are spatial dimensions. padding and stride are keyword arguments that can be specified as a single number (in which case they apply to all dimensions), or an array/tuple with entries for each spatial dimension. Keywords • padding=0: the number of extra zeros implicitly concatenated at the start and at the end of each dimension. • stride=1: the number of elements to slide to reach the next filtering window. • mode=0: 0 for convolution and 1 for cross-correlation. • alpha=1: can be used to scale the result. 6.9. KNET.DROPOUT 159 • handle: handle to a previously created cuDNN context. Defaults to a Knet allocated handle. source 6.9 Knet.dropout Knet.dropout — Method. dropout(x, p) Given an array x and probability 0<=p<=1, just return x if testing, return an array y in which each element is 0 with probability p or x[i]/(1-p) with probability 1-p if training. Training mode is detected automatically based on the type of x, which is AutoGrad.Rec during gradient calculation. Use the keyword argument training::Bool to change the default mode and seed::Number to set the random number seed for reproducible results. See (Srivastava et al. 2014) for a reference. source 6.10 Knet.gaussian Knet.gaussian — Method. gaussian(a...; mean=0.0, std=0.01) Return a Gaussian array with a given mean and standard deviation. The a arguments are passed to randn. source 6.11 Knet.goldensection Knet.goldensection — Method. goldensection(f,n;kwargs) => (fmin,xmin) Find the minimum of f using concurrent golden section search in n dimensions. See Knet.goldensection demo() for an example. f is a function from a Vector{Float64} of length n to a Number. It can return NaN for out of range inputs. Goldensection will always start with a zero vector as the initial input to f, and the initial step size will be 1 in each dimension. The user should define f to scale and shift this input range into a vector meaningful for their application. For positive inputs like learning rate or hidden size, you can use a transformation such as x0*exp(x) where x is a value goldensection passes to f and x0 is your initial guess for this value. This will effectively start the search at x0, then move with multiplicative steps. 160 CHAPTER 6. KNET I designed this algorithm combining ideas from Golden Section Search and Hill Climbing Search. It essentially runs golden section search concurrently in each dimension, picking the next step based on estimated gain. Keyword arguments • dxmin=0.1: smallest step size. • accel=: acceleration rate. Golden ratio =1.618... is best. • verbose=false: use true to print individual steps. • history=[]: cache of [(x,f(x)),...] function evaluations. source 6.12 Knet.gpu Knet.gpu — Function. gpu() returns the id of the active GPU device or -1 if none are active. gpu(true) resets all GPU devices and activates the one with the most available memory. gpu(false) resets and deactivates all GPU devices. gpu(d::Int) activates the GPU device d if 0 <= d < gpuCount(), otherwise deactivates devices. gpu(true/false) resets all devices. If there are any allocated KnetArrays their pointers will be left dangling. Thus gpu(true/false) should only be used during startup. If you want to suspend GPU use temporarily, use gpu(-1). gpu(d::Int) does not reset the devices. You can select a previous device and find allocated memory preserved. However trying to operate on arrays of an inactive device will result in error. source 6.13 Knet.hyperband Knet.hyperband — Function. hyperband(getconfig, getloss, maxresource=27, reduction=3) Hyperparameter optimization using the hyperband algorithm from (Lisha et al. 2016). You can try a simple MNIST example using Knet.hyperband demo(). Arguments • getconfig() returns random configurations with a user defined type and distribution. • getloss(c,n) returns loss for configuration c and number of resources (e.g. epochs) n. 6.14. KNET.INVX 161 • maxresource is the maximum number of resources any one configuration should be given. • reduction is an algorithm parameter (see paper), 3 is a good value. source 6.14 Knet.invx Knet.invx — Function. invx(x) = (1./x) source 6.15 Knet.knetgc Knet.knetgc — Function. knetgc(dev=gpu()) cudaFree all pointers allocated on device dev that were previously allocated and garbage collected. Normally Knet holds on to all garbage collected pointers for reuse. Try this if you run out of GPU memory. source 6.16 Knet.logp Knet.logp — Method. logp(x,[dims]) Treat entries in x as as unnormalized log probabilities and return normalized log probabilities. dims is an optional argument, if not specified the normalization is over the whole x, otherwise the normalization is performed over the given dimensions. In particular, if x is a matrix, dims=1 normalizes columns of x and dims=2 normalizes rows of x. source 6.17 Knet.logsumexp Knet.logsumexp — Method. logsumexp(x,[dims]) 162 CHAPTER 6. KNET Compute log(sum(exp(x),dims)) in a numerically stable manner. dims is an optional argument, if not specified the summation is over the whole x, otherwise the summation is performed over the given dimensions. In particular if x is a matrix, dims=1 sums columns of x and dims=2 sums rows of x. source 6.18 Knet.mat Knet.mat — Method. mat(x) Reshape x into a two-dimensional matrix. This is typically used when turning the output of a 4-D convolution result into a 2-D input for a fully connected layer. For 1-D inputs returns reshape(x, (length(x),1)). For inputs with more than two dimensions of size (X1,X2,...,XD), returns reshape(x, (X1*X2*...*X[D-1],XD)) source 6.19 Knet.minibatch Knet.minibatch — Method. minibatch(x, y, batchsize; shuffle, partial, xtype, ytype) Return an iterable of minibatches [(xi,yi). . . ] given data tensors x, y and batchsize. The last dimension of x and y should match and give the number of instances. Keyword arguments: • shuffle=false: Shuffle the instances before minibatching. • partial=false: If true include the last partial minibatch < batchsize. • xtype=typeof(x): Convert xi in minibatches to this type. • ytype=typeof(y): Convert yi in minibatches to this type. source 6.20. KNET.MINIBATCH 6.20 163 Knet.minibatch Knet.minibatch — Method. minibatch(x, batchsize; shuffle, partial, xtype, ytype) Return an iterable of minibatches [x1,x2,. . . ] given data tensor x and batchsize. The last dimension of x gives the number of instances. Keyword arguments: • shuffle=false: Shuffle the instances before minibatching. • partial=false: If true include the last partial minibatch < batchsize. • xtype=typeof(x): Convert xi in minibatches to this type. source 6.21 Knet.nll Knet.nll — Method. nll(model, data, predict; average=true) Compute nll(predict(model,x), y) for (x,y) in data and return the per-instance average (if average=true) or total (if average=false) negative log likelihood. source 6.22 Knet.nll Knet.nll — Method. nll(scores, answers, d=1; average=true) Given an unnormalized scores matrix and an Integer array of correct answers, return the per-instance negative log likelihood. d=1 means instances are in columns, d=2 means instances are in rows. Use average=false to return the sum instead of per-instance average. source 6.23 Knet.optimizers Knet.optimizers — Method. optimizers(model, otype; options...) 164 CHAPTER 6. KNET Given parameters of a model, initialize and return corresponding optimization parameters for a given optimization type otype and optimization options options. This is useful because each numeric array in model needs its own distinct optimization parameter. optimizers makes the creation of optimization parameters that parallel model parameters easy when all of them use the same type and options. source 6.24 Knet.pool Knet.pool — Method. pool(x; kwargs...) Compute pooling of input values (i.e., the maximum or average of several adjacent values) to produce an output with smaller height and/or width. Currently 4 or 5 dimensional KnetArrays with Float32 or Float64 entries are supported. If x has dimensions (X1,X2,...,I,N), the result y will have dimensions (Y1,Y2,...,I,N) where Yi=1+floor((Xi+2*padding[i]-window[i])/stride[i]) Here I is the number of input channels, N is the number of instances, and Xi,Yi are spatial dimensions. window, padding and stride are keyword arguments that can be specified as a single number (in which case they apply to all dimensions), or an array/tuple with entries for each spatial dimension. Keywords: • window=2: the pooling window size for each dimension. • padding=0: the number of extra zeros implicitly concatenated at the start and at the end of each dimension. • stride=window: the number of elements to slide to reach the next pooling window. • mode=0: 0 for max, 1 for average including padded values, 2 for average excluding padded values. • maxpoolingNanOpt=0: Nan numbers are not propagated if 0, they are propagated if 1. • alpha=1: can be used to scale the result. • handle: Handle to a previously created cuDNN context. Defaults to a Knet allocated handle. source 6.25. KNET.RELU 6.25 165 Knet.relu Knet.relu — Function. relu(x) = max(0,x) source 6.26 Knet.rnnforw Knet.rnnforw — Method. rnnforw(r, w, x[, hx, cx]; batchSizes, hy, cy) Returns a tuple (y,hyout,cyout,rs) given rnn r, weights w, input x and optionally the initial hidden and cell states hx and cx (cx is only used in LSTMs). r and w should come from a previous call to rnninit. Both hx and cx are optional, they are treated as zero arrays if not provided. The output y contains the hidden states of the final layer for each time step, hyout and cyout give the final hidden and cell states for all layers, rs is a buffer the RNN needs for its gradient calculation. The boolean keyword arguments hy and cy control whether hyout and cyout will be output. By default hy = (hx!=nothing) and cy = (cx!=nothing && r.mode==2), i.e. a hidden state will be output if one is provided as input and for cell state we also require an LSTM. If hy/cy is false, hyout/cyout will be nothing. batchSizes can be an integer array that specifies non-uniform batch sizes as explained below. By default batchSizes=nothing and the same batch size, size(x,2), is used for all time steps. The input and output dimensions are: • x: (X,[B,T]) • y: (H/2H,[B,T]) • hx,cx,hyout,cyout: (H,B,L/2L) • batchSizes: nothing or Vector{Int}(T) where X is inputSize, H is hiddenSize, B is batchSize, T is seqLength, L is numLayers. x can be 1, 2, or 3 dimensional. If batchSizes==nothing, a 1-D x represents a single instance, a 2-D x represents a single minibatch, and a 3-D x represents a sequence of identically sized minibatches. If batchSizes is an array of (non-increasing) integers, it gives us the batch size for each time step in the sequence, in which case sum(batchSizes) should equal div(length(x),size(x,1)). y has the same dimensionality as x, differing only in its first dimension, which is H if the RNN is unidirectional, 2H if bidirectional. Hidden vectors hx, cx, hyout, cyout all have size (H,B1,L) for unidirectional RNNs, and (H,B1,2L) for bidirectional RNNs where B1 is the size of the first minibatch. source 166 CHAPTER 6. 6.27 KNET Knet.rnninit Knet.rnninit — Method. rnninit(inputSize, hiddenSize; opts...) Return an (r,w) pair where r is a RNN struct and w is a single weight array that includes all matrices and biases for the RNN. Keyword arguments: • rnnType=:lstm Type of RNN: One of :relu, :tanh, :lstm, :gru. • numLayers=1: Number of RNN layers. • bidirectional=false: Create a bidirectional RNN if true. • dropout=0.0: Dropout probability. Ignored if numLayers==1. • skipInput=false: Do not multiply the input with a matrix if true. • dataType=Float32: Data type to use for weights. • algo=0: Algorithm to use, see CUDNN docs for details. • seed=0: Random number seed. Uses time() if 0. • winit=xavier: Weight initialization method for matrices. • binit=zeros: Weight initialization method for bias vectors. • ‘usegpu=(gpu()>=0): GPU used by default if one exists. RNNs compute the output h[t] for a given iteration from the recurrent input h[t-1] and the previous layer input x[t] given matrices W, R and biases bW, bR from the following equations: :relu and :tanh: Single gate RNN with activation function f: h[t] = f(W * x[t] .+ R * h[t-1] .+ bW .+ bR) :gru: Gated recurrent unit: i[t] r[t] n[t] h[t] = = = = sigm(Wi * x[t] .+ Ri * h[t-1] sigm(Wr * x[t] .+ Rr * h[t-1] tanh(Wn * x[t] .+ r[t] .* (Rn (1 - i[t]) .* n[t] .+ i[t] .* .+ bWi .+ bRi) # input gate .+ bWr .+ bRr) # reset gate * h[t-1] .+ bRn) .+ bWn) # new gate h[t-1] :lstm: Long short term memory unit with no peephole connections: i[t] f[t] o[t] n[t] c[t] h[t] = = = = = = sigm(Wi sigm(Wf sigm(Wo tanh(Wn f[t] .* o[t] .* source * x[t] .+ Ri * * x[t] .+ Rf * * x[t] .+ Ro * * x[t] .+ Rn * c[t-1] .+ i[t] tanh(c[t]) h[t-1] .+ h[t-1] .+ h[t-1] .+ h[t-1] .+ .* n[t] bWi bWf bWo bWn .+ .+ .+ .+ bRi) bRf) bRo) bRn) # # # # # input gate forget gate output gate new gate cell output 6.28. KNET.RNNPARAM 6.28 167 Knet.rnnparam Knet.rnnparam — Method. rnnparam{T}(r::RNN, w::KnetArray{T}, layer, id, param) Return a single weight matrix or bias vector as a slice of w. Valid layer values: • For unidirectional RNNs 1:numLayers • For bidirectional RNNs 1:2*numLayers, forw and back layers alternate. Valid id values: • For RELU and TANH RNNs, input = 1, hidden = 2. • For GRU reset = 1,4; update = 2,5; newmem = 3,6; 1:3 for input, 4:6 for hidden • For LSTM inputgate = 1,5; forget = 2,6; newmem = 3,7; output = 4,8; 1:4 for input, 5:8 for hidden Valid param values: • Return the weight matrix (transposed!) if param==1. • Return the bias vector if param==2. The effect of skipInput: Let I=1 for RELU/TANH, 1:3 for GRU, 1:4 for LSTM • For skipInput=false (default), rnnparam(r,w,1,I,1) is a (inputSize,hiddenSize) matrix. • For skipInput=true, rnnparam(r,w,1,I,1) is nothing. • For bidirectional, the same applies to rnnparam(r,w,2,I,1): the first back layer. source 6.29 Knet.rnnparams Knet.rnnparams — Method. rnnparams(r::RNN, w) Split w into individual parameters and return them as an array. The order of params returned (subject to change): 168 CHAPTER 6. KNET • All weight matrices come before all bias vectors. • Matrices and biases are sorted lexically based on (layer,id). • See @doc rnnparam for valid layer and id values. • Input multiplying matrices are nothing if r.inputMode = 1. source 6.30 Knet.setseed Knet.setseed — Method. setseed(n::Integer) Run srand(n) on both cpu and gpu. source 6.31 Knet.sigm Knet.sigm — Function. sigm(x) = (1./(1+exp(-x))) source 6.32 Knet.unpool Knet.unpool — Method. Unpooling; reverse of pooling. x == pool(unpool(x;o...); o...) source 6.33 Knet.update! Knet.update! — Function. update!(weights, gradients, params) update!(weights, gradients; lr=0.001, gclip=0) Update the weights using their gradients and the optimization algorithm parameters specified by params. The 2-arg version defaults to the Sgd algorithm with learning rate lr and gradient clip gclip. gclip==0 indicates no clipping. The weights and possibly gradients and params are modified in-place. 6.33. KNET.UPDATE! 169 weights can be an individual numeric array or a collection of arrays represented by an iterator or dictionary. In the individual case, gradients should be a similar numeric array of size(weights) and params should be a single object. In the collection case, each individual weight array should have a corresponding params object. This way different weight arrays can have their own optimization state, different learning rates, or even different optimization algorithms running in parallel. In the iterator case, gradients and params should be iterators of the same length as weights with corresponding elements. In the dictionary case, gradients and params should be dictionaries with the same keys as weights. Individual optimization parameters can be one of the following types. The keyword arguments for each type’s constructor and their default values are listed as well. • Sgd(;lr=0.001, gclip=0) • Momentum(;lr=0.001, gclip=0, gamma=0.9) • Nesterov(;lr=0.001, gclip=0, gamma=0.9) • Rmsprop(;lr=0.001, gclip=0, rho=0.9, eps=1e-6) • Adagrad(;lr=0.1, gclip=0, eps=1e-6) • Adadelta(;lr=0.01, gclip=0, rho=0.9, eps=1e-6) • Adam(;lr=0.001, gclip=0, beta1=0.9, beta2=0.999, eps=1e-8) Example: w = rand(d) g = lossgradient(w) update!(w, g) update!(w, g; lr=0.1) update!(w, g, Sgd(lr=0.1)) # # # # # an individual weight array gradient g has the same shape as w update w in-place with Sgd() update w in-place with Sgd(lr=0.1) update w in-place with Sgd(lr=0.1) w = (rand(d1), rand(d2)) g = lossgradient2(w) p = (Adam(), Sgd()) update!(w, g, p) # # # # a tuple of weight arrays g will also be a tuple p has params for each w[i] update each w[i] in-place with g[i],p[i] w = Any[rand(d1), rand(d2)] g = lossgradient3(w) p = Any[Adam(), Sgd()] update!(w, g, p) # # # # any iterator can be used g will be similar to w p should be an iterator of same length update each w[i] in-place with g[i],p[i] w = Dict(:a => rand(d1), :b => rand(d2)) # dictionaries can be used g = lossgradient4(w) p = Dict(:a => Adam(), :b => Sgd()) update!(w, g, p) 170 CHAPTER 6. KNET source 6.34 Knet.xavier Knet.xavier — Method. xavier(a...) Xavier initialization. The a arguments are passed to rand. See (Glorot and Bengio 2010) for a description. Caffe implements this slightly differently. Lasagne calls it GlorotUniform. source Chapter 7 DataFrames 7.1 DataFrames.aggregate DataFrames.aggregate — Method. Split-apply-combine that applies a set of functions over columns of an AbstractDataFrame or GroupedDataFrame [] aggregate(d::AbstractDataFrame, cols, fs) aggregate(gd::GroupedDataFrame, fs) Arguments • d : an AbstractDataFrame • gd : a GroupedDataFrame • cols : a column indicator (Symbol, Int, Vector{Symbol}, etc.) • fs : a function or vector of functions to be applied to vectors within groups; expects each argument to be a column vector Each fs should return a value or vector. All returns must be the same length. Returns • ::DataFrame Examples [] df = DataFrame(a = repeat([1, 2, 3, 4], outer=[2]), b = repeat([2, 1], outer=[4]), c = randn(8)) aggregate(df, :a, sum) aggregate(df, :a, [sum, mean]) aggregate(groupby(df, :a), [sum, mean]) df —¿ groupby(:a) —¿ [sum, mean] equivalent source 171 172 CHAPTER 7. 7.2 DATAFRAMES DataFrames.by DataFrames.by — Method. Split-apply-combine in one step; apply f to each grouping in d based on columns col [] by(d::AbstractDataFrame, cols, f::Function) by(f::Function, d::AbstractDataFrame, cols) Arguments • d : an AbstractDataFrame • cols : a column indicator (Symbol, Int, Vector{Symbol}, etc.) • f : a function to be applied to groups; expects each argument to be an AbstractDataFrame f can return a value, a vector, or a DataFrame. For a value or vector, these are merged into a column along with the cols keys. For a DataFrame, cols are combined along columns with the resulting DataFrame. Returning a DataFrame is the clearest because it allows column labeling. A method is defined with f as the first argument, so do-block notation can be used. by(d, cols, f) is equivalent to combine(map(f, groupby(d, cols))). Returns • ::DataFrame Examples [] df = DataFrame(a = repeat([1, 2, 3, 4], outer=[2]), b = repeat([2, 1], outer=[4]), c = randn(8)) by(df, :a, d -¿ sum(d[:c])) by(df, :a, d -¿ 2 * d[:c]) by(df, :a, d -¿ DataFrame(cs um = sum(d[: c]), cm ean = mean(d[: c])))by(df, : a, d− > DataF rame(c = d[: c], cm ean = mean(d[: c])))by(df, [: a, : b])dodDataF rame(m = m source 7.3 DataFrames.coefnames DataFrames.coefnames — Method. coefnames(mf::ModelFrame) Returns a vector of coefficient names constructed from the Terms member and the types of the evaluation columns. source 7.4. DATAFRAMES.COLWISE 7.4 173 DataFrames.colwise DataFrames.colwise — Method. Apply a function to each column in an AbstractDataFrame or GroupedDataFrame [] colwise(f::Function, d) colwise(d) Arguments • f : a function or vector of functions • d : an AbstractDataFrame of GroupedDataFrame If d is not provided, a curried version of groupby is given. Returns • various, depending on the call Examples [] df = DataFrame(a = repeat([1, 2, 3, 4], outer=[2]), b = repeat([2, 1], outer=[4]), c = randn(8)) colwise(sum, df) colwise(sum, groupby(df, :a)) source 7.5 DataFrames.combine DataFrames.combine — Method. Combine a GroupApplied object (rudimentary) [] combine(ga::GroupApplied) Arguments • ga : a GroupApplied Returns • ::DataFrame Examples [] df = DataFrame(a = repeat([1, 2, 3, 4], outer=[2]), b = repeat([2, 1], outer=[4]), c = randn(8)) combine(map(d -¿ mean(d[:c]), gd)) source 7.6 DataFrames.completecases! DataFrames.completecases! — Method. Delete rows with NA’s. [] completecases!(df::AbstractDataFrame) Arguments 174 CHAPTER 7. DATAFRAMES • df : the AbstractDataFrame Result • ::AbstractDataFrame : the updated version See also completecases. Examples [] df = DataFrame(i = 1:10, x = rand(10), y = rand([”a”, ”b”, ”c”], 10)) df[[1,4,5], :x] = NA df[[9,10], :y] = NA completecases!(df) source 7.7 DataFrames.completecases DataFrames.completecases — Method. Indexes of complete cases (rows without NA’s) [] completecases(df::AbstractDataFrame) Arguments • df : the AbstractDataFrame Result • ::Vector{Bool} : indexes of complete cases See also completecases!. Examples [] df = DataFrame(i = 1:10, x = rand(10), y = rand([”a”, ”b”, ”c”], 10)) df[[1,4,5], :x] = NA df[[9,10], :y] = NA completecases(df) source 7.8 DataFrames.eltypes DataFrames.eltypes — Method. Column elemental types [] eltypes(df::AbstractDataFrame) Arguments • df : the AbstractDataFrame Result • ::Vector{Type} : the elemental type of each column Examples [] df = DataFrame(i = 1:10, x = rand(10), y = rand([”a”, ”b”, ”c”], 10)) eltypes(df) source 7.9. DATAFRAMES.GROUPBY 7.9 175 DataFrames.groupby DataFrames.groupby — Method. A view of an AbstractDataFrame split into row groups [] groupby(d::AbstractDataFrame, cols) groupby(cols) Arguments • d : an AbstractDataFrame • cols : an If d is not provided, a curried version of groupby is given. Returns • ::GroupedDataFrame : a grouped view into d Details An iterator over a GroupedDataFrame returns a SubDataFrame view for each grouping into d. A GroupedDataFrame also supports indexing by groups and map. See the following for additional split-apply-combine operations: • by : split-apply-combine using functions • aggregate : split-apply-combine; applies functions in the form of a cross product • combine : combine (obviously) • colwise : apply a function to each column in an AbstractDataFrame or GroupedDataFrame Piping methods |> are also provided. See the DataFramesMeta package for more operations on GroupedDataFrames. Examples [] df = DataFrame(a = repeat([1, 2, 3, 4], outer=[2]), b = repeat([2, 1], outer=[4]), c = randn(8)) gd = groupby(df, :a) gd[1] last(gd) vcat([g[:b] for g in gd]...) for g in gd println(g) end map(d -¿ mean(d[:c]), gd) returns a GroupApplied object combine(map(d -¿ mean(d[:c]), gd)) df —¿ groupby(:a) —¿ [sum, length] df —¿ groupby([:a, :b]) —¿ [sum, length] source 7.10 DataFrames.head DataFrames.head — Function. Show the first or last part of an AbstractDataFrame [] head(df::AbstractDataFrame, r::Int = 6) tail(df::AbstractDataFrame, r::Int = 6) Arguments 176 CHAPTER 7. DATAFRAMES • df : the AbstractDataFrame • r : the number of rows to show Result • ::AbstractDataFrame : the first or last part of df Examples [] df = DataFrame(i = 1:10, x = rand(10), y = rand([”a”, ”b”, ”c”], 10)) head(df) tail(df) source 7.11 DataFrames.melt DataFrames.melt — Method. Stacks a DataFrame; convert from a wide to long format; see stack. source 7.12 DataFrames.meltdf DataFrames.meltdf — Method. A stacked view of a DataFrame (long format); see stackdf source 7.13 DataFrames.names! DataFrames.names! — Method. Set column names [] names!(df::AbstractDataFrame, vals) Arguments • df : the AbstractDataFrame • vals : column names, normally a Vector{Symbol} the same length as the number of columns in df • allow duplicates : if false (the default), an error will be raised if duplicate names are found; if true, duplicate names will be suffixed with i (i starting at 1 for the first duplicate). Result • ::AbstractDataFrame : the updated result Examples [] df = DataFrame(i = 1:10, x = rand(10), y = rand([”a”, ”b”, ”c”], 10)) names!(df, [:a, :b, :c]) names!(df, [:a, :b, :a]) throws ArgumentError names!(df, [:a, :b, :a], allowd uplicates = true)renamessecond : ato : a1 source 7.14. DATAFRAMES.NONUNIQUE 7.14 177 DataFrames.nonunique DataFrames.nonunique — Method. Indexes of complete cases (rows without NA’s) [] nonunique(df::AbstractDataFrame) nonunique(df::AbstractDataFrame, cols) Arguments • df : the AbstractDataFrame • cols : a column indicator (Symbol, Int, Vector{Symbol}, etc.) specifying the column(s) to compare Result • ::Vector{Bool} : indicates whether the row is a duplicate of some prior row See also unique and unique!. Examples [] df = DataFrame(i = 1:10, x = rand(10), y = rand([”a”, ”b”, ”c”], 10)) df = vcat(df, df) nonunique(df) nonunique(df, 1) source 7.15 DataFrames.readtable DataFrames.readtable — Method. Read data from a tabular-file format (CSV, TSV, . . . ) [] readtable(filename, [keyword options]) Arguments • filename::AbstractString : the filename to be read Keyword Arguments • header::Bool – Use the information from the file’s header line to determine column names. Defaults to true. • separator::Char – Assume that fields are split by the separator character. If not specified, it will be guessed from the filename: .csv defaults to ,, .tsv defaults to , .wsv defaults to . • quotemark::Vector{Char} – Assume that fields contained inside of two quotemark characters are quoted, which disables processing of separators and linebreaks. Set to Char[] to disable this feature and slightly improve performance. Defaults to ["]. • decimal::Char – Assume that the decimal place in numbers is written using the decimal character. Defaults to .. 178 CHAPTER 7. DATAFRAMES • nastrings::Vector{String} – Translate any of the strings into this vector into an NA. Defaults to ["", "NA"]. • truestrings::Vector{String} – Translate any of the strings into this vector into a Boolean true. Defaults to ["T", "t", "TRUE", "true"]. • falsestrings::Vector{String} – Translate any of the strings into this vector into a Boolean false. Defaults to ["F", "f", "FALSE", "false"]. • makefactors::Bool – Convert string columns into PooledDataVector’s for use as factors. Defaults to false. • nrows::Int – Read only nrows from the file. Defaults to -1, which indicates that the entire file should be read. • names::Vector{Symbol} – Use the values in this array as the names for all columns instead of or in lieu of the names in the file’s header. Defaults to [], which indicates that the header should be used if present or that numeric names should be invented if there is no header. • eltypes::Vector – Specify the types of all columns. Defaults to []. • allowcomments::Bool – Ignore all text inside comments. Defaults to false. • commentmark::Char – Specify the character that starts comments. Defaults to #. • ignorepadding::Bool – Ignore all whitespace on left and right sides of a field. Defaults to true. • skipstart::Int – Specify the number of initial rows to skip. Defaults to 0. • skiprows::Vector{Int} – Specify the indices of lines in the input to ignore. Defaults to []. • skipblanks::Bool – Skip any blank lines in input. Defaults to true. • encoding::Symbol – Specify the file’s encoding as either :utf8 or :latin1. Defaults to :utf8. • normalizenames::Bool – Ensure that column names are valid Julia identifiers. For instance this renames a column named "a b" to "a b" which can then be accessed with :a b instead of Symbol("a b"). Defaults to true. Result • ::DataFrame 7.16. DATAFRAMES.RENAME 179 Examples [] df = readtable(”data.csv”) df = readtable(”data.tsv”) df = readtable(”data.wsv”) df = readtable(”data.txt”, separator = ’ ’) df = readtable(”data.txt”, header = false) source 7.16 DataFrames.rename DataFrames.rename — Function. Rename columns [] rename!(df::AbstractDataFrame, from::Symbol, to::Symbol) rename!(df::AbstractDataFrame, d::Associative) rename!(f::Function, df::AbstractDataFrame) rename(df::AbstractDataFrame, from::Symbol, to::Symbol) rename(f::Function, df::AbstractDataFrame) Arguments • df : the AbstractDataFrame • d : an Associative type that maps the original name to a new name • f : a function that has the old column name (a symbol) as input and new column name (a symbol) as output Result • ::AbstractDataFrame : the updated result Examples [] df = DataFrame(i = 1:10, x = rand(10), y = rand([”a”, ”b”, ”c”], 10)) rename(x -¿ Symbol(uppercase(string(x))), df) rename(df, Dict(:i=¿:A, :x=¿:X)) rename(df, :y, :Y) rename!(df, Dict(:i=¿:A, :x=¿:X)) source 7.17 DataFrames.rename! DataFrames.rename! — Function. Rename columns [] rename!(df::AbstractDataFrame, from::Symbol, to::Symbol) rename!(df::AbstractDataFrame, d::Associative) rename!(f::Function, df::AbstractDataFrame) rename(df::AbstractDataFrame, from::Symbol, to::Symbol) rename(f::Function, df::AbstractDataFrame) Arguments • df : the AbstractDataFrame • d : an Associative type that maps the original name to a new name • f : a function that has the old column name (a symbol) as input and new column name (a symbol) as output 180 CHAPTER 7. DATAFRAMES Result • ::AbstractDataFrame : the updated result Examples [] df = DataFrame(i = 1:10, x = rand(10), y = rand([”a”, ”b”, ”c”], 10)) rename(x -¿ Symbol(uppercase(string(x))), df) rename(df, Dict(:i=¿:A, :x=¿:X)) rename(df, :y, :Y) rename!(df, Dict(:i=¿:A, :x=¿:X)) source 7.18 DataFrames.stack DataFrames.stack — Method. Stacks a DataFrame; convert from a wide to long format [] stack(df::AbstractDataFrame, measurev ars, idv ars)stack(df :: AbstractDataF rame, measurev ars) Arguments • df : the AbstractDataFrame to be stacked • measure vars : the columns to be stacked (the measurement variables), a normal column indexing type, like a Symbol, Vector{Symbol}, Int, etc.; for melt, defaults to all variables that are not id vars • id vars : the identifier columns that are repeated during stacking, a normal column indexing type; for stack defaults to all variables that are not measure vars If neither measure vars or id vars are given, measure vars defaults to all floating point columns. Result • ::DataFrame : the long-format dataframe with column :value holding the values of the stacked columns (measure vars), with column :variable a Vector of Symbols with the measure vars name, and with columns for each of the id vars. See also stackdf and meltdf for stacking methods that return a view into the original DataFrame. See unstack for converting from long to wide format. Examples [] d1 = DataFrame(a = repeat([1:3;], inner = [4]), b = repeat([1:4;], inner = [3]), c = randn(12), d = randn(12), e = map(string, ’a’:’l’)) d1s = stack(d1, [:c, :d]) d1s2 = stack(d1, [:c, :d], [:a]) d1m = melt(d1, [:a, :b, :e]) source 7.19. DATAFRAMES.STACKDF 7.19 181 DataFrames.stackdf DataFrames.stackdf — Method. A stacked view of a DataFrame (long format) Like stack and melt, but a view is returned rather than data copies. [] stackdf(df::AbstractDataFrame, measurev ars, idv ars)stackdf (df :: AbstractDataF rame, measurev ars)meltdf (d Arguments • df : the wide AbstractDataFrame • measure vars : the columns to be stacked (the measurement variables), a normal column indexing type, like a Symbol, Vector{Symbol}, Int, etc.; for melt, defaults to all variables that are not id vars • id vars : the identifier columns that are repeated during stacking, a normal column indexing type; for stack defaults to all variables that are not measure vars Result • ::DataFrame : the long-format dataframe with column :value holding the values of the stacked columns (measure vars), with column :variable a Vector of Symbols with the measure vars name, and with columns for each of the id vars. The result is a view because the columns are special AbstractVectors that return indexed views into the original DataFrame. Examples [] d1 = DataFrame(a = repeat([1:3;], inner = [4]), b = repeat([1:4;], inner = [3]), c = randn(12), d = randn(12), e = map(string, ’a’:’l’)) d1s = stackdf(d1, [:c, :d]) d1s2 = stackdf(d1, [:c, :d], [:a]) d1m = meltdf(d1, [:a, :b, :e]) source 7.20 DataFrames.tail DataFrames.tail — Function. Show the first or last part of an AbstractDataFrame [] head(df::AbstractDataFrame, r::Int = 6) tail(df::AbstractDataFrame, r::Int = 6) Arguments • df : the AbstractDataFrame • r : the number of rows to show Result 182 CHAPTER 7. DATAFRAMES • ::AbstractDataFrame : the first or last part of df Examples [] df = DataFrame(i = 1:10, x = rand(10), y = rand([”a”, ”b”, ”c”], 10)) head(df) tail(df) source 7.21 DataFrames.unique! DataFrames.unique! — Function. Delete duplicate rows [] unique(df::AbstractDataFrame) unique(df::AbstractDataFrame, cols) unique!(df::AbstractDataFram unique!(df::AbstractDataFrame, cols) Arguments • df : the AbstractDataFrame • cols : column indicator (Symbol, Int, Vector{Symbol}, etc.) specifying the column(s) to compare. Result • ::AbstractDataFrame : the updated version of df with unique rows. When cols is specified, the return DataFrame contains complete rows, retaining in each case the first instance for which df[cols] is unique. See also nonunique. Examples [] df = DataFrame(i = 1:10, x = rand(10), y = rand([”a”, ”b”, ”c”], 10)) df = vcat(df, df) unique(df) doesn’t modify df unique(df, 1) unique!(df) modifies df source 7.22 DataFrames.unstack DataFrames.unstack — Method. Unstacks a DataFrame; convert from a long to wide format [] unstack(df::AbstractDataFrame, rowkey, colkey, value) unstack(df::AbstractDataFrame, colkey, value) unstack(df::AbstractDataFrame) Arguments • df : the AbstractDataFrame to be unstacked • rowkey : the column with a unique key for each row, if not given, find a key by grouping on anything not a colkey or value 7.23. DATAFRAMES.WRITETABLE 183 • colkey : the column holding the column names in wide format, defaults to :variable • value : the value column, defaults to :value Result • ::DataFrame : the wide-format dataframe Examples [] wide = DataFrame(id = 1:12, a = repeat([1:3;], inner = [4]), b = repeat([1:4;], inner = [3]), c = randn(12), d = randn(12)) long = stack(wide) wide0 = unstack(long) wide1 = unstack(long, :variable, :value) wide2 = unstack(long, :id, :variable, :value) Note that there are some differences between the widened results above. source 7.23 DataFrames.writetable DataFrames.writetable — Method. Write data to a tabular-file format (CSV, TSV, . . . ) [] writetable(filename, df, [keyword options]) Arguments • filename::AbstractString : the filename to be created • df::AbstractDataFrame : the AbstractDataFrame to be written Keyword Arguments • separator::Char – The separator character that you would like to use. Defaults to the output of getseparator(filename), which uses commas for files that end in .csv, tabs for files that end in .tsv and a single space for files that end in .wsv. • quotemark::Char – The character used to delimit string fields. Defaults to ". • header::Bool – Should the file contain a header that specifies the column names from df. Defaults to true. • nastring::AbstractString – What to write in place of missing data. Defaults to "NA". Result • ::DataFrame Examples [] df = DataFrame(A = 1:10) writetable(”output.csv”, df) writetable(”output.dat”, df, separator = ’,’, header = false) writetable(”output.dat”, df, quotemark = ”, separator = ’,’) writetable(”output.dat”, df, header = false) source 184 CHAPTER 7. 7.24 DATAFRAMES StatsBase.describe StatsBase.describe — Method. Summarize the columns of an AbstractDataFrame [] describe(df::AbstractDataFrame) describe(io, df::AbstractDataFrame) Arguments • df : the AbstractDataFrame • io : optional output descriptor Result • nothing Details If the column’s base type derives from Number, compute the minimum, first quantile, median, mean, third quantile, and maximum. NA’s are filtered and reported separately. For boolean columns, report trues, falses, and NAs. For other types, show column characteristics and number of NAs. Examples [] df = DataFrame(i = 1:10, x = rand(10), y = rand([”a”, ”b”, ”c”], 10)) describe(df) source 7.25 StatsBase.model response StatsBase.model response — Method. StatsBase.model_response(mf::ModelFrame) Extract the response column, if present. DataVector or PooledDataVector columns are converted to Arrays source Chapter 8 DataStructures 8.1 Base.pop! Base.pop! — Method. pop!(sc, k) Deletes the item with key k in SortedDict or SortedSet sc and returns the value that was associated with k in the case of SortedDict or k itself in the case of SortedSet. A KeyError results if k is not in sc. Time: O(c log n) source 8.2 Base.pop! Base.pop! — Method. pop!(sc, k) Deletes the item with key k in SortedDict or SortedSet sc and returns the value that was associated with k in the case of SortedDict or k itself in the case of SortedSet. A KeyError results if k is not in sc. Time: O(c log n) source 8.3 Base.pop! Base.pop! — Method. pop!(ss) Deletes the item with first key in SortedSet ss and returns the key. A BoundsError results if ss is empty. Time: O(c log n) source 185 186 CHAPTER 8. 8.4 DATASTRUCTURES Base.push! Base.push! — Method. push!(sc, k) Argument sc is a SortedSet and k is a key. This inserts the key into the container. If the key is already present, this overwrites the old value. (This is not necessarily a no-op; see below for remarks about the customizing the sort order.) The return value is sc. Time: O(c log n) source 8.5 Base.push! Base.push! — Method. push!(sc, k=>v) Argument sc is a SortedDict or SortedMultiDict and k=>v is a key-value pair. This inserts the key-value pair into the container. If the key is already present, this overwrites the old value. The return value is sc. Time: O(c log n) source 8.6 Base.push! Base.push! — Method. push!(sc, k=>v) Argument sc is a SortedDict or SortedMultiDict and k=>v is a key-value pair. This inserts the key-value pair into the container. If the key is already present, this overwrites the old value. The return value is sc. Time: O(c log n) source 8.7 DataStructures.back DataStructures.back — Method. back(q::Deque) Returns the last element of the deque q. source 8.8. DATASTRUCTURES.COMPARE 8.8 187 DataStructures.compare DataStructures.compare — Method. compare(m::SAContainer, s::IntSemiToken, t::IntSemiToken) Determines the relative positions of the data items indexed by (m,s) and (m,t) in the sorted order. The return value is -1 if (m,s) precedes (m,t), 0 if they are equal, and 1 if (m,s) succeeds (m,t). s and t are semitokens for the same container m. source 8.9 DataStructures.counter DataStructures.counter — Method. counter(seq) Returns an Accumulator object containing the elements from seq. source 8.10 DataStructures.dec! DataStructures.dec! — Method. dec!(ct, x, [v=1]) Decrements the count for x by v (defaulting to one) source 8.11 DataStructures.deque DataStructures.deque — Method. deque(T) Create a deque of type T. source 8.12 DataStructures.dequeue! DataStructures.dequeue! — Method. dequeue!(pq) Remove and return the lowest priority key from a priority queue. 188 CHAPTER 8. DATASTRUCTURES julia> a = PriorityQueue(["a","b","c"],[2,3,1],Base.Order.Forward) PriorityQueue{String,Int64,Base.Order.ForwardOrdering} with 3 entries: "c" => 1 "b" => 3 "a" => 2 julia> dequeue!(a) "c" julia> a PriorityQueue{String,Int64,Base.Order.ForwardOrdering} with 2 entries: "b" => 3 "a" => 2 source 8.13 DataStructures.dequeue! DataStructures.dequeue! — Method. dequeue!(s::Queue) Removes an element from the front of the queue s and returns it. source 8.14 DataStructures.dequeue pair! DataStructures.dequeue pair! — Method. dequeue_pair!(pq) Remove and return a the lowest priority key and value from a priority queue as a pair. julia> a = PriorityQueue(["a","b","c"],[2,3,1],Base.Order.Forward) PriorityQueue{String,Int64,Base.Order.ForwardOrdering} with 3 entries: "c" => 1 "b" => 3 "a" => 2 julia> dequeue_pair!(a) "c" => 1 julia> a PriorityQueue{String,Int64,Base.Order.ForwardOrdering} with 2 entries: "b" => 3 "a" => 2 source 8.15. DATASTRUCTURES.ENQUEUE! 8.15 189 DataStructures.enqueue! DataStructures.enqueue! — Method. enqueue!(pq, k, v) Insert the a key k into a priority queue pq with priority v. source 8.16 DataStructures.enqueue! DataStructures.enqueue! — Method. enqueue!(s::Queue, x) Inserts the value x to the end of the queue s. source 8.17 DataStructures.enqueue! DataStructures.enqueue! — Method. enqueue!(pq, k=>v) Insert the a key k into a priority queue pq with priority v. julia> a = PriorityQueue(PriorityQueue("a"=>1, "b"=>2, "c"=>3)) PriorityQueue{String,Int64,Base.Order.ForwardOrdering} with 3 entries: "c" => 3 "b" => 2 "a" => 1 julia> enqueue!(a, "d"=>4) PriorityQueue{String,Int64,Base.Order.ForwardOrdering} with 4 entries: "c" => 3 "b" => 2 "a" => 1 "d" => 4 source 8.18 DataStructures.find root DataStructures.find root — Method. find_root{T}(s::DisjointSets{T}, x::T) Finds the root element of the subset in s which has the element x as a member. source 190 CHAPTER 8. 8.19 DATASTRUCTURES DataStructures.front DataStructures.front — Method. front(q::Deque) Returns the first element of the deque q. source 8.20 DataStructures.heapify DataStructures.heapify — Function. heapify(v, ord::Ordering=Forward) Returns a new vector in binary heap order, optionally using the given ordering. julia> a = [1,3,4,5,2]; julia> heapify(a) 5-element Array{Int64,1}: 1 2 4 5 3 julia> heapify(a, Base.Order.Reverse) 5-element Array{Int64,1}: 5 3 4 1 2 source 8.21 DataStructures.heapify! DataStructures.heapify! — Function. heapify!(v, ord::Ordering=Forward) In-place heapify. source 8.22. DATASTRUCTURES.HEAPPOP! 8.22 191 DataStructures.heappop! DataStructures.heappop! — Function. heappop!(v, [ord]) Given a binary heap-ordered array, remove and return the lowest ordered element. For efficiency, this function does not check that the array is indeed heap-ordered. source 8.23 DataStructures.heappush! DataStructures.heappush! — Function. heappush!(v, x, [ord]) Given a binary heap-ordered array, push a new element x, preserving the heap property. For efficiency, this function does not check that the array is indeed heap-ordered. source 8.24 DataStructures.in same set DataStructures.in same set — Method. in_same_set(s::IntDisjointSets, x::Integer, y::Integer) Returns true if x and y belong to the same subset in s and false otherwise. source 8.25 DataStructures.inc! DataStructures.inc! — Method. inc!(ct, x, [v=1]) Increments the count for x by v (defaulting to one) source 192 CHAPTER 8. 8.26 DATASTRUCTURES DataStructures.isheap DataStructures.isheap — Function. isheap(v, ord::Ordering=Forward) Return true if an array is heap-ordered according to the given order. julia> a = [1,2,3] 3-element Array{Int64,1}: 1 2 3 julia> isheap(a,Base.Order.Forward) true julia> isheap(a,Base.Order.Reverse) false source 8.27 DataStructures.nlargest DataStructures.nlargest — Method. Returns the n largest elements of arr. Equivalent to sort(arr, lt = >)[1:min(n, end)] source 8.28 DataStructures.nsmallest DataStructures.nsmallest — Method. Returns the n smallest elements of arr. Equivalent to sort(arr, lt = <)[1:min(n, end)] source 8.29 DataStructures.orderobject DataStructures.orderobject — Method. orderobject(sc) Returns the order object used to construct the container. Time: O(1) source 8.30. DATASTRUCTURES.ORDEROBJECT 8.30 193 DataStructures.orderobject DataStructures.orderobject — Method. orderobject(sc) Returns the order object used to construct the container. Time: O(1) source 8.31 DataStructures.orderobject DataStructures.orderobject — Method. orderobject(sc) Returns the order object used to construct the container. Time: O(1) source 8.32 DataStructures.ordtype DataStructures.ordtype — Method. ordtype(sc) Returns the order type for SortedDict, SortedMultiDict and SortedSet. This function may also be applied to the type itself. Time: O(1) source 8.33 DataStructures.ordtype DataStructures.ordtype — Method. ordtype(sc) Returns the order type for SortedDict, SortedMultiDict and SortedSet. This function may also be applied to the type itself. Time: O(1) source 8.34 DataStructures.ordtype DataStructures.ordtype — Method. ordtype(sc) Returns the order type for SortedDict, SortedMultiDict and SortedSet. This function may also be applied to the type itself. Time: O(1) source 194 8.35 CHAPTER 8. DATASTRUCTURES DataStructures.packcopy DataStructures.packcopy — Method. packcopy(sc) This returns a copy of sc in which the data is packed. When deletions take place, the previously allocated memory is not returned. This function can be used to reclaim memory after many deletions. Time: O(cn log n) source 8.36 DataStructures.packcopy DataStructures.packcopy — Method. packcopy(sc) This returns a copy of sc in which the data is packed. When deletions take place, the previously allocated memory is not returned. This function can be used to reclaim memory after many deletions. Time: O(cn log n) source 8.37 DataStructures.packcopy DataStructures.packcopy — Method. packcopy(sc) This returns a copy of sc in which the data is packed. When deletions take place, the previously allocated memory is not returned. This function can be used to reclaim memory after many deletions. Time: O(cn log n) source 8.38 DataStructures.packdeepcopy DataStructures.packdeepcopy — Method. packdeepcopy(sc) This returns a packed copy of sc in which the keys and values are deepcopied. This function can be used to reclaim memory after many deletions. Time: O(cn log n) source 8.39. DATASTRUCTURES.PACKDEEPCOPY 8.39 195 DataStructures.packdeepcopy DataStructures.packdeepcopy — Method. packdeepcopy(sc) This returns a packed copy of sc in which the keys and values are deepcopied. This function can be used to reclaim memory after many deletions. Time: O(cn log n) source 8.40 DataStructures.packdeepcopy DataStructures.packdeepcopy — Method. packdeepcopy(sc) This returns a packed copy of sc in which the keys and values are deepcopied. This function can be used to reclaim memory after many deletions. Time: O(cn log n) source 8.41 DataStructures.peek DataStructures.peek — Method. peek(pq) Return the lowest priority key from a priority queue without removing that key from the queue. source 8.42 DataStructures.reset! DataStructures.reset! — Method. reset!(ct::Accumulator, x) Resets the count of x to zero. Returns its former count. source 8.43 DataStructures.top DataStructures.top — Method. top(h::BinaryHeap) Returns the element at the top of the heap h. source 196 CHAPTER 8. 8.44 DATASTRUCTURES DataStructures.top with handle DataStructures.top with handle — Method. top_with_handle(h::MutableBinaryHeap) Returns the element at the top of the heap h and its handle. source 8.45 DataStructures.update! DataStructures.update! — Method. update!{T}(h::MutableBinaryHeap{T}, i::Int, v::T) Replace the element at index i in heap h with v. This is equivalent to h[i]=v. source Chapter 9 JDBC 9.1 Base.close Base.close — Method. Closes the JDBCConnection conn. Throws a JDBCError if connection is null. Returns nothing. source 9.2 Base.close Base.close — Method. Close the JDBCCursor csr. Throws a JDBCError if cursor is not initialized. Returns nothing. source 9.3 Base.connect Base.connect — Method. Open a JDBC Connection to the specified host. The username and password can be optionally passed as a Dictionary props of the form Dict("user" => "username", "passwd" => "password"). The JDBC connector location can be optionally passed as connectorpath, if it is not added to the java class path. Returns a JDBCConnection instance. source 9.4 Base.isopen Base.isopen — Method. Returns a boolean indicating whether connection conn is open. 197 198 CHAPTER 9. JDBC source 9.5 DBAPI.DBAPIBase.connection DBAPI.DBAPIBase.connection — Method. Return the corresponding connection for a given cursor. source 9.6 DBAPI.DBAPIBase.cursor DBAPI.DBAPIBase.cursor — Method. Create a new database cursor. Returns a JDBCCursor instance. source 9.7 DBAPI.DBAPIBase.execute! DBAPI.DBAPIBase.execute! — Method. Run a query on a database. The results of the query are not returned by this function but are accessible through the cursor. parameters can be any iterable of positional parameters, or of some T<:Associative for keyword/named parameters. Throws a JDBCError if query caused an error, cursor is not initialized or connection is null. Returns nothing. source 9.8 DBAPI.DBAPIBase.rows DBAPI.DBAPIBase.rows — Method. Create a row iterator. This method returns an instance of an iterator type which returns one row on each iteration. Each row returnes a Tuple{. . . }. Throws a JDBCError if execute! was not called on the cursor or connection is null. Returns a JDBCRowIterator instance. source 9.9 JDBC.commit JDBC.commit — Method. 9.10. JDBC.COMMIT 199 Commit any pending transaction to the database. Throws a JDBCError if connection is null. Returns nothing. source 9.10 JDBC.commit JDBC.commit — Method. commit(connection::JConnection) Commits the transaction Args • connection: The connection object Returns None source 9.11 JDBC.createStatement JDBC.createStatement — Method. createStatement(connection::JConnection) Initializes a Statement Args • connection: The connection object Returns The JStatement object source 9.12 JDBC.execute JDBC.execute — Method. execute(stmt::JStatement, query::AbstractString) Executes the auery based on JStatement or any of its sub-types Args • stmt: The JStatement object or any of its sub-types • query: The query to be executed Returns A boolean indicating whether the execution was successful or not source 200 CHAPTER 9. 9.13 JDBC JDBC.execute JDBC.execute — Method. execute(stmt::@compat(Union{JPreparedStatement, JCallableStatement})) Executes the auery based on the Prepared Statement or Callable Statement Args • stmt: The Prepared Statement or the Callable Statement object Returns A boolean indicating whether the execution was successful or not source 9.14 JDBC.executeQuery JDBC.executeQuery — Method. executeQuery(stmt::JStatement, query::AbstractString) Executes the auery and returns the results as a JResultSet object. Args • stmt: The Statement object • query: The query to be executed Returns The result set as a JResultSet object source 9.15 JDBC.executeQuery JDBC.executeQuery — Method. executeQuery(stmt::@compat(Union{JPreparedStatement, JCallableStatement})) Executes the auery based on a JPreparedStatement object or a JCallableStatement object Args • stmt: The JPreparedStatement object or JCallableStatement object Returns The result set as a JResultSet object source 9.16. JDBC.EXECUTEUPDATE 9.16 201 JDBC.executeUpdate JDBC.executeUpdate — Method. executeUpdate(stmt::JStatement, query::AbstractString) Executes the update auery and returns the status of the execution of the query Args • stmt: The Statement object • query: The query to be executed Returns An integer representing the status of the execution source 9.17 JDBC.executeUpdate JDBC.executeUpdate — Method. executeUpdate(stmt::@compat(Union{JPreparedStatement, JCallableStatement})) Executes the update auery based on a JPreparedStatement object or a JCallableStatement object Args • stmt: The JPreparedStatement object or JCallableStatement object Returns An integer indicating the status of the execution of the query source 9.18 JDBC.getColumnCount JDBC.getColumnCount — Method. getColumnCount(rsmd::JResultSetMetaData) Returns the number of columns based on the JResultSetMetaData object Args • rsmd: The JResultSetMetaData object Returns The number of columns. source 202 CHAPTER 9. 9.19 JDBC JDBC.getColumnName JDBC.getColumnName — Method. getColumnName(rsmd::JResultSetMetaData, col::Integer) Returns the column’s name based on the JResultSetMetaData object and the column number Args • rsmd: The JResultSetMetaData object • col: The column number Returns The column name source 9.20 JDBC.getColumnType JDBC.getColumnType — Method. getColumnType(rsmd::JResultSetMetaData, col::Integer) Returns the column’s data type based on the JResultSetMetaData object and the column number Args • rsmd: The JResultSetMetaData object • col: The column number Returns The column type as an integer source 9.21 JDBC.getDate JDBC.getDate — Method. getDate(rs::@compat(Union{JResultSet, JCallableStatement}), fld::AbstractString) Returns the Date object based on the result set or a callable statement. The value is extracted based on the column name. Args • stmt: The JResultSet or JCallableStatement object • fld: The column name Returns The Date object. source 9.22. JDBC.GETDATE 9.22 203 JDBC.getDate JDBC.getDate — Method. getDate(rs::@compat(Union{JResultSet, JCallableStatement}), fld::Integer) Returns the Date object based on the result set or a callable statement. The value is extracted based on the column number. Args • stmt: The JResultSet or JCallableStatement object • fld: The column number Returns The Date object. source 9.23 JDBC.getMetaData JDBC.getMetaData — Method. getMetaData(rs::JResultSet) Returns information about the types and properties of the columns in the ResultSet object Args • stmt: The JResultSet object Returns The JResultSetMetaData object. source 9.24 JDBC.getResultSet JDBC.getResultSet — Method. getResultSet(stmt::JStatement) Returns the result set based on the previous execution of the query based on a JStatement Args • stmt: The JStatement object Returns The JResultSet object. source 204 CHAPTER 9. 9.25 JDBC JDBC.getTableMetaData JDBC.getTableMetaData — Method. Get the metadata (column name and type) for each column of the table in the result set rs. Returns an array of (column name, column type) tuples. source 9.26 JDBC.getTime JDBC.getTime — Method. getTime(rs::@compat(Union{JResultSet, JCallableStatement}), fld::AbstractString) Returns the Time object based on the result set or a callable statement. The value is extracted based on the column name. Args • stmt: The JResultSet or JCallableStatement object • fld: The column name Returns The Time object. source 9.27 JDBC.getTime JDBC.getTime — Method. getTime(rs::@compat(Union{JResultSet, JCallableStatement}), fld::Integer) Returns the Time object based on the result set or a callable statement. The value is extracted based on the column number. Args • stmt: The JResultSet or JCallableStatement object • fld: The column number Returns The Time object. source 9.28. JDBC.GETTIMESTAMP 9.28 205 JDBC.getTimestamp JDBC.getTimestamp — Method. getTimestamp(rs::@compat(Union{JResultSet, JCallableStatement}), fld::AbstractString) Returns the Timestamp object based on the result set or a callable statement. The value is extracted based on the column name. Args • stmt: The JResultSet or JCallableStatement object • fld: The column name Returns The Timestamp object. source 9.29 JDBC.getTimestamp JDBC.getTimestamp — Method. getTimestamp(rs::@compat(Union{JResultSet, JCallableStatement}), fld::Integer) Returns the Timestamp object based on the result set or a callable statement. The value is extracted based on the column number. Args • stmt: The JResultSet or JCallableStatement object • fld: The column number Returns The Timestamp object. source 9.30 JDBC.prepareCall JDBC.prepareCall — Method. prepareCall(connection::JConnection, query::AbstractString) Prepares the Callable Statement for the given query Args • connection: The connection object • query: The query string Returns The JCallableStatement object source 206 CHAPTER 9. 9.31 JDBC JDBC.prepareStatement JDBC.prepareStatement — Method. prepareStatement(connection::JConnection, query::AbstractString) Prepares the Statement for the given query Args • connection: The connection object • query: The query string Returns The JPreparedStatement object source 9.32 JDBC.rollback JDBC.rollback — Method. Roll back to the start of any pending transaction. Throws a JDBCError if connection is null. Returns nothing. source 9.33 JDBC.rollback JDBC.rollback — Method. rollback(connection::JConnection) Rolls back the transactions. Args • connection: The connection object Returns None source 9.34 JDBC.setAutoCommit JDBC.setAutoCommit — Method. setAutoCommit(connection::JConnection, x::Bool) 9.35. JDBC.SETFETCHSIZE 207 Set the Auto Commit flag to either true or false. If set to false, commit has to be called explicitly Args • connection: The connection object Returns None source 9.35 JDBC.setFetchSize JDBC.setFetchSize — Method. setFetchSize(stmt::@compat(Union{JStatement, JPreparedStatement, JCallableStatement }), x::Intege Sets the fetch size in a JStatement or a JPreparedStatement object or a JCallableStatement object. The number of records that are returned in subsequent query executions are determined by what is set here. Args • stmt: The JPreparedStatement object or JCallableStatement object • x: The number of records to be returned Returns None source Chapter 10 NNlib 10.1 NNlib.elu NNlib.elu — Function. elu(x, = 1) = x > 0 ? x : * (exp(x) - 1) Exponential Linear Unit activation function. See Fast and Accurate Deep Network Learning by Exponential Linear Units. You can also specify the coefficient explicitly, e.g. elu(x, 1). 3 -1 -3 0 3 source 208 10.2. NNLIB.LEAKYRELU 10.2 209 NNlib.leakyrelu NNlib.leakyrelu — Function. leakyrelu(x) = max(0.01x, x) Leaky Rectified Linear Unit activation function. You can also specify the coefficient explicitly, e.g. leakyrelu(x, 0.01). 3 -1 -3 0 3 source 10.3 NNlib.logsoftmax NNlib.logsoftmax — Function. logsoftmax(xs) = log.(exp.(xs) ./ sum(exp.(xs))) logsoftmax computes the log of softmax(xs) and it is more numerically stable than softmax function in computing the cross entropy loss. source 10.4 NNlib.log NNlib.log — Method. log(x) Return log((x)) which is computed in a numerically stable way. 210 CHAPTER 10. NNLIB julia> log(0.) -0.6931471805599453 julia> log.([-100, -10, 100.]) 3-element Array{Float64,1}: -100.0 -10.0 -0.0 source 10.5 NNlib.relu NNlib.relu — Method. relu(x) = max(0, x) Rectified Linear Unit activation function. 3 0 -3 0 3 source 10.6 NNlib.selu NNlib.selu — Method. selu(x) = * (x 0 ? x : * (exp(x) - 1)) 1.0507 1.6733 Scaled exponential linear units. See Self-Normalizing Neural Networks. 4 -2 -3 0 3 source 10.7. NNLIB.SOFTMAX 10.7 211 NNlib.softmax NNlib.softmax — Function. softmax(xs) = exp.(xs) ./ sum(exp.(xs)) Softmax takes log-probabilities (any real vector) and returns a probability distribution that sums to 1. If given a matrix it will treat it as a batch of vectors, with each column independent. julia> softmax([1,2,3.]) 3-element Array{Float64,1}: 0.0900306 0.244728 0.665241 source 10.8 NNlib.softplus NNlib.softplus — Method. softplus(x) = log(exp(x) + 1) See Deep Sparse Rectifier Neural Networks. 4 0 -3 source 0 3 212 CHAPTER 10. 10.9 NNLIB NNlib.softsign NNlib.softsign — Method. softsign(x) = x / (1 + |x|) See Quadratic Polynomials Learn Better Image Features. 1 -1 -3 0 3 source 10.10 NNlib.swish NNlib.swish — Method. swish(x) = x * (x) Self-gated actvation function. See Swish: a Self-Gated Activation Function. 3 10.11. NNLIB. 213 -1 -3 0 3 source 10.11 NNlib. NNlib. — Method. (x) = 1 / (1 + exp(-x)) Classic sigmoid activation function. 1 0 -3 source 0 3 Chapter 11 ImageCore 11.1 ImageCore.assert timedim last ImageCore.assert timedim last — Method. assert_timedim_last(img) Throw an error if the image has a time dimension that is not the last dimension. source 11.2 ImageCore.channelview ImageCore.channelview — Method. channelview(A) returns a view of A, splitting out (if necessary) the color channels of A into a new first dimension. This is almost identical to ChannelView(A), except that if A is a ColorView, it will simply return the parent of A, or will use reinterpret when appropriate. Consequently, the output may not be a ChannelView array. Of relevance for types like RGB and BGR, the channels of the returned array will be in constructor-argument order, not memory order (see reinterpret if you want to use memory order). source 11.3 ImageCore.clamp01 ImageCore.clamp01 — Method. clamp01(x) -> y 214 11.4. IMAGECORE.CLAMP01NAN 215 Produce a value y that lies between 0 and 1, and equal to x when x is already in this range. Equivalent to clamp(x, 0, 1) for numeric values. For colors, this function is applied to each color channel separately. See also: clamp01nan. source 11.4 ImageCore.clamp01nan ImageCore.clamp01nan — Method. clamp01nan(x) -> y Similar to clamp01, except that any NaN values are changed to 0. See also: clamp01. source 11.5 ImageCore.colorsigned ImageCore.colorsigned — Method. colorsigned() colorsigned(colorneg, colorpos) -> f colorsigned(colorneg, colorcenter, colorpos) -> f Define a function that maps negative values (in the range [-1,0]) to the linear colormap between colorneg and colorcenter, and positive values (in the range [0,1]) to the linear colormap between colorcenter and colorpos. The default colors are: • colorcenter: white • colorneg: green1 • colorpos: magenta See also: scalesigned. source 11.6 ImageCore.colorview ImageCore.colorview — Method. colorview(C, gray1, gray2, ...) -> imgC 216 CHAPTER 11. IMAGECORE Combine numeric/grayscale images gray1, gray2, etc., into the separate color channels of an array imgC with element type C<:Colorant. As a convenience, the constant zeroarray fills in an array of matched size with all zeros. Example [] imgC = colorview(RGB, r, zeroarray, b) creates an image with r in the red chanel, b in the blue channel, and nothing in the green channel. See also: StackedView. source 11.7 ImageCore.colorview ImageCore.colorview — Method. colorview(C, A) returns a view of the numeric array A, interpreting successive elements of A as if they were channels of Colorant C. This is almost identical to ColorView{C}(A), except that if A is a ChannelView, it will simply return the parent of A, or use reinterpret when appropriate. Consequently, the output may not be a ColorView array. Of relevance for types like RGB and BGR, the elements of A are interpreted in constructor-argument order, not memory order (see reinterpret if you want to use memory order). Example [] A = rand(3, 10, 10) img = colorview(RGB, A) source 11.8 ImageCore.coords spatial ImageCore.coords spatial — Method. coords spatial(img) Return a tuple listing the spatial dimensions of img. Note that a better strategy may be to use ImagesAxes and take slices along the time axis. source 11.9 ImageCore.float32 ImageCore.float32 — Function. float32.(img) 11.10. IMAGECORE.FLOAT64 217 converts the raw storage type of img to Float32, without changing the color space. source 11.10 ImageCore.float64 ImageCore.float64 — Function. float64.(img) converts the raw storage type of img to Float64, without changing the color space. source 11.11 ImageCore.indices spatial ImageCore.indices spatial — Method. indices_spatial(img) Return a tuple with the indices of the spatial dimensions of the image. Defaults to the same as indices, but using ImagesAxes you can mark some axes as being non-spatial. source 11.12 ImageCore.n0f16 ImageCore.n0f16 — Function. n0f16.(img) converts the raw storage type of img to N0f16, without changing the color space. source 11.13 ImageCore.n0f8 ImageCore.n0f8 — Function. n0f8.(img) converts the raw storage type of img to N0f8, without changing the color space. source 218 CHAPTER 11. 11.14 IMAGECORE ImageCore.n2f14 ImageCore.n2f14 — Function. n2f14.(img) converts the raw storage type of img to N2f14, without changing the color space. source 11.15 ImageCore.n4f12 ImageCore.n4f12 — Function. n4f12.(img) converts the raw storage type of img to N4f12, without changing the color space. source 11.16 ImageCore.n6f10 ImageCore.n6f10 — Function. n6f10.(img) converts the raw storage type of img to N6f10, without changing the color space. source 11.17 ImageCore.nimages ImageCore.nimages — Method. nimages(img) Return the number of time-points in the image array. Defaults to 1. Use ImagesAxes if you want to use an explicit time dimension. source 11.18. IMAGECORE.NORMEDVIEW 11.18 219 ImageCore.normedview ImageCore.normedview — Method. normedview([T], img::AbstractArray{Unsigned}) returns a “view” of img where the values are interpreted in terms of Normed number types. For example, if img is an Array{UInt8}, the view will act like an Array{N0f8}. Supply T if the element type of img is UInt16, to specify whether you want a N6f10, N4f12, N2f14, or N0f16 result. source 11.19 ImageCore.permuteddimsview ImageCore.permuteddimsview — Method. permuteddimsview(A, perm) returns a “view” of A with its dimensions permuted as specified by perm. This is like permutedims, except that it produces a view rather than a copy of A; consequently, any manipulations you make to the output will be mirrored in A. Compared to the copy, the view is much faster to create, but generally slower to use. source 11.20 ImageCore.pixelspacing ImageCore.pixelspacing — Method. pixelspacing(img) -> (sx, sy, ...) Return a tuple representing the separation between adjacent pixels along each axis of the image. Defaults to (1,1,. . . ). Use ImagesAxes for images with anisotropic spacing or to encode the spacing using physical units. source 11.21 ImageCore.rawview ImageCore.rawview — Method. rawview(img::AbstractArray{FixedPoint}) returns a “view” of img where the values are interpreted in terms of their raw underlying storage. For example, if img is an Array{N0f8}, the view will act like an Array{UInt8}. source 220 11.22 CHAPTER 11. IMAGECORE ImageCore.scaleminmax ImageCore.scaleminmax — Method. scaleminmax(min, max) -> f scaleminmax(T, min, max) -> f Return a function f which maps values less than or equal to min to 0, values greater than or equal to max to 1, and uses a linear scale in between. min and max should be real values. Optionally specify the return type T. If T is a colorant (e.g., RGB), then scaling is applied to each color channel. Examples Example 1 [] julia¿ f = scaleminmax(-10, 10) (::9) (generic function with 1 method) julia¿ f(10) 1.0 julia¿ f(-10) 0.0 julia¿ f(5) 0.75 Example 2 [] julia¿ c = RGB(255.0,128.0,0.0) RGB{Float64}(255.0,128.0,0.0) julia¿ f = scaleminmax(RGB, 0, 255) (::13) (generic function with 1 method) julia¿ f(c) RGB{Float64}(1.0,0.5019607843137255,0.0) See also: takemap. source 11.23 ImageCore.scalesigned ImageCore.scalesigned — Method. scalesigned(maxabs) -> f Return a function f which scales values in the range [-maxabs, maxabs] (clamping values that lie outside this range) to the range [-1, 1]. See also: colorsigned. source 11.24 ImageCore.scalesigned ImageCore.scalesigned — Method. scalesigned(min, center, max) -> f Return a function f which scales values in the range [min, center] to [-1,0] and [center,max] to [0,1]. Values smaller than min/max get clamped to min/max, respectively. See also: colorsigned. source 11.25. IMAGECORE.SDIMS 11.25 221 ImageCore.sdims ImageCore.sdims — Method. sdims(img) Return the number of spatial dimensions in the image. Defaults to the same as ndims, but with ImagesAxes you can specify that some axes correspond to other quantities (e.g., time) and thus not included by sdims. source 11.26 ImageCore.size spatial ImageCore.size spatial — Method. size_spatial(img) Return a tuple listing the sizes of the spatial dimensions of the image. Defaults to the same as size, but using ImagesAxes you can mark some axes as being non-spatial. source 11.27 ImageCore.spacedirections ImageCore.spacedirections — Method. spacedirections(img) -> (axis1, axis2, ...) Return a tuple-of-tuples, each axis[i] representing the displacement vector between adjacent pixels along spatial axis i of the image array, relative to some external coordinate system (“physical coordinates”). By default this is computed from pixelspacing, but you can set this manually using ImagesMeta. source 11.28 ImageCore.takemap ImageCore.takemap — Function. takemap(f, A) -> fnew takemap(f, T, A) -> fnew Given a value-mapping function f and an array A, return a “concrete” mapping function fnew. When applied to elements of A, fnew should return valid values for storage or display, for example in the range from 0 to 1 (for grayscale) 222 CHAPTER 11. IMAGECORE or valid colorants. fnew may be adapted to the actual values present in A, and may not produce valid values for any inputs not in A. Optionally one can specify the output type T that fnew should produce. Example: [] julia¿ A = [0, 1, 1000]; julia¿ f = takemap(scaleminmax, A) (::7) (generic function with 1 method) julia¿ f.(A) 3-element Array{Float64,1}: 0.0 0.001 1.0 source Chapter 12 Reactive 12.1 Base.filter Base.filter — Method. filter(f, default, signal) remove updates from the signal where f returns false. The filter will hold the value default until f(value(signal)) returns true, when it will be updated to value(signal). source 12.2 Base.map Base.map — Method. map(f, s::Signal...) -> signal Transform signal s by applying f to each element. For multiple signal arguments, apply f elementwise. source 12.3 Base.merge Base.merge — Method. merge(inputs...) Merge many signals into one. Returns a signal which updates when any of the inputs update. If many signals update at the same time, the value of the youngest (most recently created) input signal is taken. source 223 224 12.4 CHAPTER 12. REACTIVE Base.push! Base.push! — Function. push!(signal, value, onerror=Reactive.print error) Queue an update to a signal. The update will be propagated when all currently queued updates are done processing. The third (optional) argument, onerror, is a callback triggered when the update ends in an error. The callback receives 4 arguments, onerror(sig, val, node, capex), where sig and val are the Signal and value that push! was called with, respectively, node is the Signal whose action triggered the error, and capex is a CapturedException with the fields ex which is the original exception object, and processed bt which is the backtrace of the exception. The default error callback will print the error and backtrace to STDERR. source 12.5 Reactive.async map Reactive.async map — Method. tasks, results = async_map(f, init, input...;typ=typeof(init), onerror=Reactive.print_e Spawn a new task to run a function when input signal updates. Returns a signal of tasks and a results signal which updates asynchronously with the results. init will be used as the default value of results. onerror is the callback to be called when an error occurs, by default it is set to a callback which prints the error to STDERR. It’s the same as the onerror argument to push! but is run in the spawned task. source 12.6 Reactive.bind! Reactive.bind! — Function. ‘bind!(dest, src, twoway=true; initial=true)‘ for every update to src also update dest with the same value and, if twoway is true, vice-versa. If initial is false, dest will only be updated to src’s value when src next updates, otherwise (if initial is true) both dest and src will take src’s value immediately. source 12.7 Reactive.bound dests Reactive.bound dests — Method. 12.8. REACTIVE.BOUND SRCS 225 bound dests(src::Signal) returns a vector of all signals that will update when src updates, that were bound using bind!(dest, src) source 12.8 Reactive.bound srcs Reactive.bound srcs — Method. bound srcs(dest::Signal) returns a vector of all signals that will cause an update to dest when they update, that were bound using bind!(dest, src) source 12.9 Reactive.debounce Reactive.debounce — Method. debounce(dt, input, f=(acc,x)->x, init=value(input), reinit=x->x; typ=typeof(init), name=auto_name!(string("debounce ",dt,"s"), input)) Creates a signal that will delay updating until dt seconds have passed since the last time input has updated. By default, the debounce signal holds the last update of the input signal since the debounce signal last updated. This behavior can be changed by the f, init and reinit arguments. The init and f functions are similar to init and f in foldp. reinit is called after the debounce sends an update, to reinitialize the initial value for accumulation, it gets one argument, the previous accumulated value. For example y = debounce(0.2, x, push!, Int[], ->Int[]) will accumulate a vector of updates to the integer signal x and push it after x is inactive (doesn’t update) for 0.2 seconds. source 12.10 Reactive.delay Reactive.delay — Method. delay(input, default=value(input)) Schedule an update to happen after the current update propagates throughout the signal graph. Returns the delayed signal. source 226 CHAPTER 12. 12.11 REACTIVE Reactive.droprepeats Reactive.droprepeats — Method. droprepeats(input) Drop updates to input whenever the new value is the same as the previous value of the signal. source 12.12 Reactive.every Reactive.every — Method. every(dt) A signal that updates every dt seconds to the current timestamp. Consider using fpswhen or fps if you want specify the timing signal by frequency, rather than delay. source 12.13 Reactive.filterwhen Reactive.filterwhen — Method. filterwhen(switch::Signal{Bool}, default, input) Keep updates to input only when switch is true. If switch is false initially, the specified default value is used. source 12.14 Reactive.flatten Reactive.flatten — Method. flatten(input::Signal{Signal}; typ=Any) Flatten a signal of signals into a signal which holds the value of the current signal. The typ keyword argument specifies the type of the flattened signal. It is Any by default. source 12.15. REACTIVE.FOLDP 12.15 227 Reactive.foldp Reactive.foldp — Method. foldp(f, init, inputs...) Fold over past values. Accumulate a value as the input signals change. init is the initial value of the accumulator. f should take 1 + length(inputs) arguments: the first is the current accumulated value and the rest are the current input signal values. f will be called when one or more of the inputs updates. It should return the next accumulated value. source 12.16 Reactive.fps Reactive.fps — Method. fps(rate) Same as fpswhen(Input(true), rate) source 12.17 Reactive.fpswhen Reactive.fpswhen — Method. fpswhen(switch, rate) returns a signal which when switch signal is true, updates rate times every second. If rate is not possible to attain because of slowness in computing dependent signal values, the signal will self adjust to provide the best possible rate. source 12.18 Reactive.preserve Reactive.preserve — Method. preserve(signal::Signal) prevents signal from being garbage collected as long as any of its parents are around. Useful for when you want to do some side effects in a signal. e.g. preserve(map(println, x)) - this will continue to print updates to x, until x goes out of scope. foreach is a shorthand for map with preserve. source 228 CHAPTER 12. 12.19 REACTIVE Reactive.previous Reactive.previous — Method. previous(input, default=value(input)) Create a signal which holds the previous value of input. You can optionally specify a different initial value. source 12.20 Reactive.remote map Reactive.remote map — Method. remoterefs, results = remote_map(procid, f, init, input...;typ=typeof(init), onerror=Re Spawn a new task on process procid to run a function when input signal updates. Returns a signal of remote refs and a results signal which updates asynchronously with the results. init will be used as the default value of results. onerror is the callback to be called when an error occurs, by default it is set to a callback which prints the error to STDERR. It’s the same as the onerror argument to push! but is run in the spawned task. source 12.21 Reactive.rename! Reactive.rename! — Method. rename!(s::Signal, name::String) Change a Signal’s name source 12.22 Reactive.sampleon Reactive.sampleon — Method. sampleon(a, b) Sample the value of b whenever a updates. source 12.23 Reactive.throttle Reactive.throttle — Method. throttle(dt, input, f=(acc,x)->x, init=value(input), reinit=x->x; typ=typeof(init), name=auto_name!(string("throttle ",dt,"s"), input), leadi 12.24. REACTIVE.UNBIND! 229 Throttle a signal to update at most once every dt seconds. By default, the throttled signal holds the last update of the input signal during each dt second time window. This behavior can be changed by the f, init and reinit arguments. The init and f functions are similar to init and f in foldp. reinit is called when a new throttle time window opens to reinitialize the initial value for accumulation, it gets one argument, the previous accumulated value. For example y = throttle(0.2, x, push!, Int[], ->Int[]) will create vectors of updates to the integer signal x which occur within 0.2 second time windows. If leading is true, the first update from input will be sent immediately by the throttle signal. If it is false, the first update will happen dt seconds after input’s first update New in v0.4.1: throttle’s behaviour from previous versions is now available with the debounce signal type. source 12.24 Reactive.unbind! Reactive.unbind! — Function. ‘unbind!(dest, src, twoway=true)‘ remove a link set up using bind! source 12.25 Reactive.unpreserve Reactive.unpreserve — Method. unpreserve(signal::Signal) allow signal to be garbage collected. See also preserve. source Chapter 13 JuliaDB 13.1 Dagger.compute Dagger.compute — Method. compute(t::DNDSparse; allowoverlap, closed) Computes any delayed-evaluations in the DNDSparse. The computed data is left on the worker processes. Subsequent operations on the results will reuse the chunks. If allowoverlap is false then the computed data is re-sorted if required to have no chunks with overlapping index ranges if necessary. If closed is true then the computed data is re-sorted if required to have no chunks with overlapping OR continuous boundaries. See also collect. !!! warning compute(t) requires at least as much memory as the size of the result of the computing t. You usually don’t need to do this for the whole dataset. If the result is expected to be big, try compute(save(t, "output dir")) instead. See save for more. source 13.2 Dagger.distribute Dagger.distribute — Function. distribute(itable::NDSparse, nchunks::Int=nworkers()) Distributes an NDSparse object into a DNDSparse of nchunks chunks of approximately equal size. Returns a DNDSparse. source 230 13.3. DAGGER.DISTRIBUTE 13.3 231 Dagger.distribute Dagger.distribute — Method. distribute(t::Table, chunks) Distribute a table in chunks pieces. Equivalent to table(t, chunks=chunks). source 13.4 Dagger.distribute Dagger.distribute — Method. distribute(itable::NDSparse, rowgroups::AbstractArray) Distributes an NDSparse object into a DNDSparse by splitting it up into chunks of rowgroups elements. rowgroups is a vector specifying the number of rows in the chunks. Returns a DNDSparse. source 13.5 Dagger.load Dagger.load — Method. load(dir::AbstractString; tomemory) Load a saved DNDSparse from dir directory. Data can be saved using the save function. source 13.6 Dagger.save Dagger.save — Method. save(t::Union{DNDSparse, DNDSparse}, outputdir::AbstractString) Saves a distributed dataset to disk. Saved data can be loaded with load. source 13.7 IndexedTables.convertdim IndexedTables.convertdim — Method. convertdim(x::DNDSparse, d::DimName, xlate; agg::Function, name) 232 CHAPTER 13. JULIADB Apply function or dictionary xlate to each index in the specified dimension. If the mapping is many-to-one, agg is used to aggregate the results. name optionally specifies a name for the new dimension. xlate must be a monotonically increasing function. See also reducedim and aggregate source 13.8 IndexedTables.leftjoin IndexedTables.leftjoin — Method. leftjoin(left::DNDSparse, right::DNDSparse, [op::Function]) Keeps only rows with indices in left. If rows of the same index are present in right, then they are combined using op. op by default picks the value from right. source 13.9 IndexedTables.naturaljoin IndexedTables.naturaljoin — Method. naturaljoin(op, left::DNDSparse, right::DNDSparse, ascolumns=false) Returns a new DNDSparse containing only rows where the indices are present both in left AND right tables. The data columns are concatenated. The data of the matching rows from left and right are combined using op. If op returns a tuple or NamedTuple, and ascolumns is set to true, the output table will contain the tuple elements as separate data columns instead as a single column of resultant tuples. source 13.10 IndexedTables.naturaljoin IndexedTables.naturaljoin — Method. naturaljoin(left::DNDSparse, right::DNDSparse, [op]) Returns a new DNDSparse containing only rows where the indices are present both in left AND right tables. The data columns are concatenated. source 13.11. INDEXEDTABLES.REDUCEDIM VEC 13.11 233 IndexedTables.reducedim vec IndexedTables.reducedim vec — Method. reducedim_vec(f::Function, t::DNDSparse, dims) Like reducedim, except uses a function mapping a vector of values to a scalar instead of a 2-argument scalar function. See also reducedim and aggregate vec. source 13.12 JuliaDB.loadndsparse JuliaDB.loadndsparse — Method. loadndsparse(files::Union{AbstractVector,String}; ) Load an NDSparse from CSV files. files is either a vector of file paths, or a directory name. Options: • indexcols::Vector – columns to use as indexed columns. (by default a 1:n implicit index is used.) • datacols::Vector – non-indexed columns. (defaults to all columns but indexed columns). Specify this to only load a subset of columns. In place of the name of a column, you can specify a tuple of names – this will treat any column with one of those names as the same column, but use the first name in the tuple. This is useful when the same column changes name between CSV files. (e.g. vendor id and VendorId) All other options are identical to those in loadtable source 13.13 JuliaDB.loadtable JuliaDB.loadtable — Method. loadtable(files::Union{AbstractVector,String}; ) Load a table from CSV files. files is either a vector of file paths, or a directory name. Options: • output::AbstractString – directory name to write the table to. By default data is loaded directly to memory. Specifying this option will allow you to load data larger than the available memory. • indexcols::Vector – columns to use as primary key columns. (defaults to []) 234 CHAPTER 13. JULIADB • datacols::Vector – non-indexed columns. (defaults to all columns but indexed columns). Specify this to only load a subset of columns. In place of the name of a column, you can specify a tuple of names – this will treat any column with one of those names as the same column, but use the first name in the tuple. This is useful when the same column changes name between CSV files. (e.g. vendor id and VendorId) • distributed::Bool – should the output dataset be loaded as a distributed table? If true, this will use all available worker processes to load the data. (defaults to true if workers are available, false if not) • chunks::Int – number of chunks to create when loading distributed. (defaults to number of workers) • delim::Char – the delimiter character. (defaults to ,). Use spacedelim=true to split by spaces. • spacedelim::Bool: parse space-delimited files. delim has no effect if true. • quotechar::Char – quote character. (defaults to ") • escapechar::Char – escape character. (defaults to ") • filenamecol::Union{Symbol, Pair} – create a column containing the file names from where each row came from. This argument gives a name to the column. By default, basename(name) of the name is kept, and “.csv” suffix will be stripped. To provide a custom function to apply on the names, use a name => Function pair. By default, no file name column will be created. • header exists::Bool – does header exist in the files? (defaults to true) • colnames::Vector{String} – specify column names for the files, use this with (header exists=false, otherwise first row is discarded). By default column names are assumed to be present in the file. • samecols – a vector of tuples of strings where each tuple contains alternative names for the same column. For example, if some files have the name “vendor id” and others have the name “VendorID”, pass samecols=[("VendorID", "vendor id")]. • colparsers – either a vector or dictionary of data types or an AbstractToken object from TextParse package. By default, these are inferred automatically. See type detect rows option below. • type detect rows: number of rows to use to infer the initial colparsers defaults to 20. • nastrings::Vector{String} – strings that are to be considered NA. (defaults to TextParse.NA STRINGS) 13.14. JULIADB.PARTITIONPLOT 235 • skiplines begin::Char – skip some lines in the beginning of each file. (doesn’t skip by default) • usecache::Bool: (vestigial) source 13.14 JuliaDB.partitionplot JuliaDB.partitionplot — Function. partitionplot(table, y; stat=Extrema(), nparts=100, by=nothing, dropmissing=false) partitionplot(table, x, y; stat=Extrema(), nparts=100, by=nothing, dropmissing=false) Plot a summary of variable y against x (1:length(y) if not specified). Using nparts approximately-equal sections along the x-axis, the data in y over each section is summarized by stat. source 13.15 JuliaDB.rechunk JuliaDB.rechunk — Function. rechunk(t::Union{DNDSparse, DNDSparse}[, by[, select]]; ) Reindex and sort a distributed dataset by keys selected by by. Optionally select specifies which non-indexed fields are kept. By default this is all fields not mentioned in by for Table and the value columns for NDSparse. Options: • chunks – how to distribute the data. This can be: 1. An integer – number of chunks to create 2. An vector of k integers – number of elements in each of the k chunks. sum(k) must be same as length(t) 3. The distribution of another array. i.e. vec.subdomains where vec is a distributed array. • merge::Function – a function which merges two sub-table or sub-ndsparse into one NDSparse. They may have overlaps in their indices. • splitters::AbstractVector – specify keys to split by. To create n chunks you would need to pass n-1 splitters and also the chunks=n option. • chunks sorted::Bool – are the chunks sorted locally? If true, this skips sorting or re-indexing them. 236 CHAPTER 13. JULIADB • affinities::Vector{<:Integer} – which processes (Int pid) should each output chunk be created on. If unspecified all workers are used. • closed::Bool – if true, the same key will not be present in multiple chunks (although sorted). true by default. • nsamples::Integer – number of keys to randomly sample from each chunk to estimate splitters in the sorting process. (See samplesort). Defaults to 2000. • batchsize::Integer – how many chunks at a time from the input should be loaded into memory at any given time. This will essentially sort in batches of batchsize chunks. source 13.16 JuliaDB.tracktime JuliaDB.tracktime — Method. tracktime(f) Track the time spent on different processes in different categories in running f. source Chapter 14 Combinatorics 14.1 Base.factorial Base.factorial — Method. computes n!/k! source 14.2 Combinatorics.bellnum Combinatorics.bellnum — Method. Returns the n-th Bell number source 14.3 Combinatorics.catalannum Combinatorics.catalannum — Method. Returns the n-th Catalan number source 14.4 Combinatorics.character Combinatorics.character — Method. Computes character () of the partition in the th irrep of the symmetric group Sn Implements the Murnaghan-Nakayama algorithm as described in: Dan Bernstein, “The computational complexity of rules for the character table of Sn”, Journal of Symbolic Computation, vol. 37 iss. 6 (2004), pp 727-748. doi:10.1016/j.jsc.2003.11.001 source 237 238 14.5 CHAPTER 14. COMBINATORICS Combinatorics.combinations Combinatorics.combinations — Method. Generate all combinations of n elements from an indexable object. Because the number of combinations can be very large, this function returns an iterator object. Use collect(combinations(array,n)) to get an array of all combinations. source 14.6 Combinatorics.combinations Combinatorics.combinations — Method. generate combinations of all orders, chaining of order iterators is eager, but sequence at each order is lazy source 14.7 Combinatorics.derangement Combinatorics.derangement — Method. The number of permutations of n with no fixed points (subfactorial) source 14.8 Combinatorics.integer partitions Combinatorics.integer partitions — Method. Lists the partitions of the number n, the order is consistent with GAP source 14.9 Combinatorics.isrimhook Combinatorics.isrimhook — Method. Checks if skew diagram is a rim hook source 14.10 Combinatorics.isrimhook Combinatorics.isrimhook — Method. Takes two elements of a partition sequence, with a to the left of b source 14.11. COMBINATORICS.LASSALLENUM 14.11 239 Combinatorics.lassallenum Combinatorics.lassallenum — Method. Computes Lassalle’s sequence OEIS entry A180874 source 14.12 Combinatorics.leglength Combinatorics.leglength — Method. Strictly speaking, defined for rim hook only, but here we define it for all skew diagrams source 14.13 Combinatorics.levicivita Combinatorics.levicivita — Method. Levi-Civita symbol of a permutation. Returns 1 is the permutation is even, -1 if it is odd and 0 otherwise. The parity is computed by using the fact that a permutation is odd if and only if the number of even-length cycles is odd. source 14.14 Combinatorics.multiexponents Combinatorics.multiexponents — Method. multiexponents(m, n) Returns the exponents in the multinomial expansion (x + x + . . . + x). For example, the expansion (x + x + x) = x + xx + xx + . . . has the exponents: julia> collect(multiexponents(3, 2)) 6-element Array{Any,1}: [2, 0, 0] [1, 1, 0] [1, 0, 1] [0, 2, 0] [0, 1, 1] [0, 0, 2] source 240 14.15 CHAPTER 14. COMBINATORICS Combinatorics.multinomial Combinatorics.multinomial — Method. Multinomial coefficient where n = sum(k) source 14.16 Combinatorics.multiset combinations Combinatorics.multiset combinations — Method. generate all combinations of size t from an array a with possibly duplicated elements. source 14.17 Combinatorics.multiset permutations Combinatorics.multiset permutations — Method. generate all permutations of size t from an array a with possibly duplicated elements. source 14.18 Combinatorics.nthperm! Combinatorics.nthperm! — Method. In-place version of nthperm. source 14.19 Combinatorics.nthperm Combinatorics.nthperm — Method. Compute the kth lexicographic permutation of the vector a. source 14.20 Combinatorics.nthperm Combinatorics.nthperm — Method. Return the k that generated permutation p. Note that nthperm(nthperm([1:n], k)) == k for 1 <= k <= factorial(n). source 14.21. COMBINATORICS.PARITY 14.21 241 Combinatorics.parity Combinatorics.parity — Method. Computes the parity of a permutation using the levicivita function, so you can ask iseven(parity(p)). If p is not a permutation throws an error. source 14.22 Combinatorics.partitions Combinatorics.partitions — Method. Generate all set partitions of the elements of an array into exactly m subsets, represented as arrays of arrays. Because the number of partitions can be very large, this function returns an iterator object. Use collect(partitions(array,m)) to get an array of all partitions. The number of partitions into m subsets is equal to the Stirling number of the second kind and can be efficiently computed using length(partitions(array,m)). source 14.23 Combinatorics.partitions Combinatorics.partitions — Method. Generate all set partitions of the elements of an array, represented as arrays of arrays. Because the number of partitions can be very large, this function returns an iterator object. Use collect(partitions(array)) to get an array of all partitions. The number of partitions to generate can be efficiently computed using length(partitions(array)). source 14.24 Combinatorics.partitions Combinatorics.partitions — Method. Generate all arrays of m integers that sum to n. Because the number of partitions can be very large, this function returns an iterator object. Use collect(partitions(n,m)) to get an array of all partitions. The number of partitions to generate can be efficiently computed using length(partitions(n,m)). source 14.25 Combinatorics.partitions Combinatorics.partitions — Method. Generate all integer arrays that sum to n. Because the number of partitions can be very large, this function returns an iterator object. Use collect(partitions(n)) to get an array of all partitions. The number of partitions to generate can be efficiently computed using length(partitions(n)). 242 CHAPTER 14. COMBINATORICS source 14.26 Combinatorics.partitionsequence Combinatorics.partitionsequence — Method. Computes essential part of the partition sequence of lambda source 14.27 Combinatorics.permutations Combinatorics.permutations — Method. Generate all size t permutations of an indexable object. source 14.28 Combinatorics.permutations Combinatorics.permutations — Method. Generate all permutations of an indexable object. Because the number of permutations can be very large, this function returns an iterator object. Use collect(permutations(array)) to get an array of all permutations. source 14.29 Combinatorics.prevprod Combinatorics.prevprod — Method. Q Previous integer not greater than n that can be written as kipi for integers p1 , p2 , etc. For a list of integers i1, i2, i3, find the largest i1ˆn1 * i2ˆn2 * i3ˆn3 <= x for integer n1, n2, n3 source 14.30 Combinatorics.with replacement combinations Combinatorics.with replacement combinations — Method. generate all combinations with replacement of size t from an array a. source Chapter 15 HypothesisTests 15.1 HypothesisTests.ChisqTest HypothesisTests.ChisqTest — Method. ChisqTest(x[, y][, theta0 = ones(length(x))/length(x)]) Perform a PowerDivergenceTest with = 1, i.e. in the form of Pearson’s chi-squared statistic. If y is not given and x is a matrix with one row or column, or x is a vector, then a goodness-of-fit test is performed (x is treated as a one-dimensional contingency table). In this case, the hypothesis tested is whether the population probabilities equal those in theta0, or are all equal if theta0 is not given. If x is a matrix with at least two rows and columns, it is taken as a twodimensional contingency table. Otherwise, x and y must be vectors of the same length. The contingency table is calculated using counts function from the StatsBase package. Then the power divergence test is conducted under the null hypothesis that the joint distribution of the cell counts in a 2-dimensional contingency table is the product of the row and column marginals. Note that the entries of x (and y if provided) must be non-negative integers. Implements: pvalue, confint source 15.2 HypothesisTests.MannWhitneyUTest HypothesisTests.MannWhitneyUTest — Method. MannWhitneyUTest(x::AbstractVector{<:Real}, y::AbstractVector{<:Real}) Perform a Mann-Whitney U test of the null hypothesis that the probability that an observation drawn from the same population as x is greater than an observation drawn from the same population as y is equal to the probability that 243 244 CHAPTER 15. HYPOTHESISTESTS an observation drawn from the same population as y is greater than an observation drawn from the same population as x against the alternative hypothesis that these probabilities are not equal. The Mann-Whitney U test is sometimes known as the Wilcoxon rank-sum test. When there are no tied ranks and 50 samples, or tied ranks and 10 samples, MannWhitneyUTest performs an exact Mann-Whitney U test. In all other cases, MannWhitneyUTest performs an approximate Mann-Whitney U test. Behavior may be further controlled by using ExactMannWhitneyUTest or ApproximateMannWhitneyUTest directly. Implements: pvalue source 15.3 HypothesisTests.MultinomialLRT HypothesisTests.MultinomialLRT — Method. MultinomialLRT(x[, y][, theta0 = ones(length(x))/length(x)]) Perform a PowerDivergenceTest with = 0, i.e. in the form of the likelihood ratio test statistic. If y is not given and x is a matrix with one row or column, or x is a vector, then a goodness-of-fit test is performed (x is treated as a one-dimensional contingency table). In this case, the hypothesis tested is whether the population probabilities equal those in theta0, or are all equal if theta0 is not given. If x is a matrix with at least two rows and columns, it is taken as a twodimensional contingency table. Otherwise, x and y must be vectors of the same length. The contingency table is calculated using counts function from the StatsBase package. Then the power divergence test is conducted under the null hypothesis that the joint distribution of the cell counts in a 2-dimensional contingency table is the product of the row and column marginals. Note that the entries of x (and y if provided) must be non-negative integers. Implements: pvalue, confint source 15.4 HypothesisTests.SignedRankTest HypothesisTests.SignedRankTest — Method. SignedRankTest(x::AbstractVector{<:Real}) SignedRankTest(x::AbstractVector{<:Real}, y::AbstractVector{T<:Real}) Perform a Wilcoxon signed rank test of the null hypothesis that the distribution of x (or the difference x - y if y is provided) has zero median against the alternative hypothesis that the median is non-zero. 15.5. HYPOTHESISTESTS.PVALUE 245 When there are no tied ranks and 50 samples, or tied ranks and 15 samples, SignedRankTest performs an exact signed rank test. In all other cases, SignedRankTest performs an approximate signed rank test. Behavior may be further controlled by using ExactSignedRankTest or ApproximateSignedRankTest directly. Implements: pvalue, confint source 15.5 HypothesisTests.pvalue HypothesisTests.pvalue — Function. pvalue(test::HypothesisTest; tail = :both) Compute the p-value for a given significance test. If tail is :both (default), then the p-value for the two-sided test is returned. If tail is :left or :right, then a one-sided test is performed. source 15.6 HypothesisTests.pvalue HypothesisTests.pvalue — Method. pvalue(x::FisherExactTest; tail = :both, method = :central) Compute the p-value for a given Fisher exact test. The one-sided p-values are based on Fisher’s non-central hypergeometric distribution f(i) with odds ratio : X p (left) = f(i) ia p (right) = X f(i) ia For tail = :both, possible values for method are: • :central (default): Central interval, i.e. the p-value is two times the minimum of the one-sided p-values. • :minlike: Minimum likelihood interval, i.e. the p-value is computed by summing all tables with the same marginals that are equally or less probable: p= X f(i)f(a) References f(i) 246 CHAPTER 15. HYPOTHESISTESTS • Gibbons, J.D., Pratt, J.W., P-values: Interpretation and Methodology, American Statistican, 29(1):20-25, 1975. • Fay, M.P., Supplementary material to “Confidence intervals that match Fisher’s exact or Blaker’s exact tests”. Biostatistics, Volume 11, Issue 2, 1 April 2010, Pages 373–374, link source 15.7 HypothesisTests.testname HypothesisTests.testname — Method. testname(::HypothesisTest) Returns the string value, e.g. “Binomial test” or “Sign Test”. source 15.8 StatsBase.confint StatsBase.confint — Function. confint(test::HypothesisTest, alpha = 0.05; tail = :both) Compute a confidence interval C with coverage 1-alpha. If tail is :both (default), then a two-sided confidence interval is returned. If tail is :left or :right, then a one-sided confidence interval is returned. !!! note Most of the implemented confidence intervals are strongly consistent, that is, the confidence interval with coverage 1-alpha does not contain the test statistic under h0 if and only if the corresponding test rejects the null hypothesis h0 : = 0 : $$ C (x, 1 ) = \{ : p_ (x) > \}, $$ where $p_$ is the [‘pvalue‘](HypothesisTests.md#HypothesisTests.pvalue) of the correspo source 15.9 StatsBase.confint StatsBase.confint — Function. confint(test::BinomialTest, alpha = 0.05; tail = :both, method = :clopper_pearson) 15.10. STATSBASE.CONFINT 247 Compute a confidence interval with coverage 1-alpha for a binomial proportion using one of the following methods. Possible values for method are: • :clopper pearson (default): Clopper-Pearson interval is based on the binomial distribution. The empirical coverage is never less than the nominal coverage of 1-alpha; it is usually too conservative. • :wald: Wald (or normal approximation) interval relies on the standard approximation of the actual binomial distribution by a normal distribution. Coverage can be erratically poor for success probabilities close to zero or one. • :wilson: Wilson score interval relies on a normal approximation. In contrast to :wald, the standard deviation is not approximated by an empirical estimate, resulting in good empirical coverages even for small numbers of draws and extreme success probabilities. • :jeffrey: Jeffreys interval is a Bayesian credible interval obtained by using a non-informative Jeffreys prior. The interval is very similar to the Wilson interval. • :agresti coull: Agresti-Coull interval is a simplified version of the Wilson interval; both are centered around the same value. The Agresti Coull interval has higher or equal coverage. • :arcsine: Confidence interval computed using the arcsine transformation to make var(p) independent of the probability p. References • Brown, L.D., Cai, T.T., and DasGupta, A. Interval estimation for a binomial proportion. Statistical Science, 16(2):101–117, 2001. External links • Binomial confidence interval on Wikipedia source 15.10 StatsBase.confint StatsBase.confint — Function. confint(x::FisherExactTest, alpha::Float64=0.05; tail=:both, method=:central) Compute a confidence interval with coverage 1 - alpha. One-sided intervals are based on Fisher’s non-central hypergeometric distribution. For tail = :both, the only method implemented yet is the central interval (:central). !!! note Since the p-value is not necessarily unimodal, the corresponding confidence region might not be an interval. References 248 CHAPTER 15. HYPOTHESISTESTS • Gibbons, J.D, Pratt, J.W. P-values: Interpretation and Methodology, American Statistican, 29(1):20-25, 1975. • Fay, M.P., Supplementary material to “Confidence intervals that match Fisher’s exact or Blaker’s exact tests”. Biostatistics, Volume 11, Issue 2, 1 April 2010, Pages 373–374, link source 15.11 StatsBase.confint StatsBase.confint — Function. confint(test::PowerDivergenceTest, alpha = 0.05; tail = :both, method = :sison_glaz) Compute a confidence interval with coverage 1-alpha for multinomial proportions using one of the following methods. Possible values for method are: • :sison glaz (default): Sison-Glaz intervals • :bootstrap: Bootstrap intervals • :quesenberry hurst: Quesenberry-Hurst intervals • :gold: Gold intervals (asymptotic simultaneous intervals) References • Agresti, Alan. Categorical Data Analysis, 3rd Edition. Wiley, 2013. • Sison, C.P and Glaz, J. Simultaneous confidence intervals and sample size determination for multinomial proportions. Journal of the American Statistical Association, 90:366-369, 1995. • Quesensberry, C.P. and Hurst, D.C. Large Sample Simultaneous Confidence Intervals for Multinational Proportions. Technometrics, 6:191-195, 1964. • Gold, R. Z. Tests Auxiliary to 2 Tests in a Markov Chain. Annals of Mathematical Statistics, 30:56-74, 1963. source Chapter 16 DataArrays 16.1 DataArrays.PooledDataVecs DataArrays.PooledDataVecs — Method. PooledDataVecs(v1, v2) -> (pda1, pda2) Return a tuple of PooledDataArrays created from the data in v1 and v2, respectively, but sharing a common value pool. source 16.2 DataArrays.compact DataArrays.compact — Method. compact(d::PooledDataArray) Return a PooledDataArray with the smallest possible reference type for the data in d. !!! note If the reference type is already the smallest possible for the data, the input array is returned, i.e. the function aliases the input. Examples julia> p = @pdata(repeat(["A", "B"], outer=4)) 8-element DataArrays.PooledDataArray{String,UInt32,1}: "A" "B" "A" "B" "A" "B" "A" 249 250 CHAPTER 16. DATAARRAYS "B" julia> compact(p) # second type parameter compacts to UInt8 (only need 2 unique values) 8-element DataArrays.PooledDataArray{String,UInt8,1}: "A" "B" "A" "B" "A" "B" "A" "B" source 16.3 DataArrays.cut DataArrays.cut — Method. cut(x::AbstractVector, breaks::Vector) -> PooledDataArray cut(x::AbstractVector, ngroups::Integer) -> PooledDataArray Divide the range of x into intervals based on the cut points specified in breaks, or into ngroups intervals of approximately equal length. Examples julia> cut([1, 2, 3, 4], [1, 3]) 4-element DataArrays.PooledDataArray{String,UInt32,1}: "[1,3]" "[1,3]" "[1,3]" "(3,4]" source 16.4 DataArrays.data DataArrays.data — Method. data(a::AbstractArray) -> DataArray Convert a to a DataArray. Examples 16.5. DATAARRAYS.DROPNA 251 julia> data([1, 2, 3]) 3-element DataArrays.DataArray{Int64,1}: 1 2 3 julia> data(@data [1, 2, NA]) 3-element DataArrays.DataArray{Int64,1}: 1 2 NA source 16.5 DataArrays.dropna DataArrays.dropna — Method. dropna(v::AbstractVector) -> AbstractVector Return a copy of v with all NA elements removed. Examples julia> dropna(@data [NA, 1, NA, 2]) 2-element Array{Int64,1}: 1 2 julia> dropna([4, 5, 6]) 3-element Array{Int64,1}: 4 5 6 source 16.6 DataArrays.getpoolidx DataArrays.getpoolidx — Method. getpoolidx(pda::PooledDataArray, val) Return the index of val in the value pool for pda. If val is not already in the value pool, pda is modified to include it in the pool. source 252 CHAPTER 16. 16.7 DATAARRAYS DataArrays.gl DataArrays.gl — Method. gl(n::Integer, k::Integer, l::Integer = n*k) -> PooledDataArray Generate a PooledDataArray with n levels and k replications, optionally specifying an output length l. If specified, l must be a multiple of n*k. Examples julia> gl(2, 1) 2-element DataArrays.PooledDataArray{Int64,UInt8,1}: 1 2 julia> gl(2, 1, 4) 4-element DataArrays.PooledDataArray{Int64,UInt8,1}: 1 2 1 2 source 16.8 DataArrays.isna DataArrays.isna — Method. isna(x) -> Bool Determine whether x is missing, i.e. NA. Examples julia> isna(1) false julia> isna(NA) true source 16.9 DataArrays.isna DataArrays.isna — Method. isna(a::AbstractArray, i) -> Bool 16.10. DATAARRAYS.LEVELS 253 Determine whether the element of a at index i is missing, i.e. NA. Examples julia> X = @data [1, 2, NA]; julia> isna(X, 2) false julia> isna(X, 3) true source 16.10 DataArrays.levels DataArrays.levels — Method. levels(da::DataArray) -> DataVector Return a vector of the unique values in da, excluding any NAs. levels(a::AbstractArray) -> Vector Equivalent to unique(a). Examples julia> levels(@data [1, 2, NA]) 2-element DataArrays.DataArray{Int64,1}: 1 2 source 16.11 DataArrays.padna DataArrays.padna — Method. padna(dv::AbstractDataVector, front::Integer, back::Integer) -> DataVector Pad dv with NA values. front is an integer number of NAs to add at the beginning of the array and back is the number of NAs to add at the end. Examples julia> padna(@data([1, 2, 3]), 1, 2) 6-element DataArrays.DataArray{Int64,1}: NA 1 254 CHAPTER 16. DATAARRAYS 2 3 NA NA source 16.12 DataArrays.reorder DataArrays.reorder — Method. reorder(x::PooledDataArray) -> PooledDataArray Return a PooledDataArray containing the same data as x but with the value pool sorted. source 16.13 DataArrays.replace! DataArrays.replace! — Method. replace!(x::PooledDataArray, from, to) Replace all occurrences of from in x with to, modifying x in place. source 16.14 DataArrays.setlevels! DataArrays.setlevels! — Method. setlevels!(x::PooledDataArray, newpool::Union{AbstractVector, Dict}) Set the value pool for the PooledDataArray x to newpool, modifying x in place. The values can be replaced using a mapping specified in a Dict or with an array, since the order of the levels is used to identify values. The pool can be enlarged to contain values not present in the data, but it cannot be reduced to exclude present values. Examples julia> p = @pdata repeat(["A", "B"], inner=3) 6-element DataArrays.PooledDataArray{String,UInt32,1}: "A" "A" "A" "B" "B" 16.15. DATAARRAYS.SETLEVELS 255 "B" julia> setlevels!(p, Dict("A"=>"C")); julia> p # has been modified 6-element DataArrays.PooledDataArray{String,UInt32,1}: "C" "C" "C" "B" "B" "B" source 16.15 DataArrays.setlevels DataArrays.setlevels — Method. setlevels(x::PooledDataArray, newpool::Union{AbstractVector, Dict}) Create a new PooledDataArray based on x but with the new value pool specified by newpool. The values can be replaced using a mapping specified in a Dict or with an array, since the order of the levels is used to identify values. The pool can be enlarged to contain values not present in the data, but it cannot be reduced to exclude present values. Examples julia> p = @pdata repeat(["A", "B"], inner=3) 6-element DataArrays.PooledDataArray{String,UInt32,1}: "A" "A" "A" "B" "B" "B" julia> p2 = setlevels(p, ["C", "D"]) # could also be Dict("A"=>"C", "B"=>"D") 6-element DataArrays.PooledDataArray{String,UInt32,1}: "C" "C" "C" "D" "D" "D" 256 CHAPTER 16. DATAARRAYS julia> p3 = setlevels(p2, ["C", "D", "E"]) 6-element DataArrays.PooledDataArray{String,UInt32,1}: "C" "C" "C" "D" "D" "D" julia> p3.pool # the pool can contain values not in the array 3-element Array{String,1}: "C" "D" "E" source Chapter 17 GLM 17.1 GLM.canonicallink GLM.canonicallink — Function. canonicallink(D::Distribution) Return the canonical link for distribution D, which must be in the exponential family. Examples julia> canonicallink(Bernoulli()) GLM.LogitLink() source 17.2 GLM.devresid GLM.devresid — Method. devresid(D, y, ) Return the squared deviance residual of from y for distribution D The deviance of a GLM can be evaluated as the sum of the squared deviance residuals. This is the principal use for these values. The actual deviance residual, say for plotting, is the signed square root of this value [] sign(y - ) * sqrt(devresid(D, y, )) Examples julia> showcompact(devresid(Normal(), 0, 0.25)) 0.0625 julia> showcompact(devresid(Bernoulli(), 1, 0.75)) 0.575364 257 # abs2(y - ) # -2log() when y == 1 258 CHAPTER 17. julia> showcompact(devresid(Bernoulli(), 0, 0.25)) 0.575364 GLM # -2log1p(-) = -2log(1-) when y == source 17.3 GLM.ftest GLM.ftest — Method. ftest(mod::LinearModel...; atol=0::Real) For each sequential pair of linear predictors in mod, perform an F-test to determine if the first one fits significantly better than the next. A table is returned containing residual degrees of freedom (DOF), degrees of freedom, difference in DOF from the preceding model, sum of squared residuals (SSR), difference in SSR from the preceding model, R, difference in R from the preceding model, and F-statistic and p-value for the comparison between the two models. !!! note This function can be used to perform an ANOVA by testing the relative fit of two models to the data Optional keyword argument atol controls the numerical tolerance when testing whether the models are nested. Examples Suppose we want to compare the effects of two or more treatments on some result. Because this is an ANOVA, our null hypothesis is that Result ~ 1 fits the data as well as Result ~ 1 + Treatment. julia> dat = DataFrame(Treatment=[1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2.], Result=[1.1, 1.2, 1, 2.2, 1.9, 2, .9, 1, 1, 2.2, 2, 2], Other=[1, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 1]); julia> mod = lm(@formula(Result ~ 1 + Treatment), dat); julia> nullmod = lm(@formula(Result ~ 1), dat); julia> bigmod = lm(@formula(Result ~ 1 + Treatment + Other), dat); julia> ft = ftest(mod.model, nullmod.model) Res. DOF DOF DOF SSR SSR R R F* p(>F) Model 1 10 3 0.1283 0.9603 Model 2 11 2 -1 3.2292 -3.1008 0.0000 0.9603 241.6234 <1e-7 julia> ftest(bigmod.model, mod.model, nullmod.model) Res. DOF DOF DOF SSR SSR R R Model 1 9 4 0.1038 0.9678 F* p(>F) 17.4. GLM.GLMVAR Model 2 Model 3 10 11 259 3 2 -1 0.1283 -0.0245 0.9603 0.0076 2.1236 0.1790 -1 3.2292 -3.1008 0.0000 0.9603 241.6234 <1e-7 source 17.4 GLM.glmvar GLM.glmvar — Function. glmvar(D::Distribution, ) Return the value of the variance function for D at The variance of D at is the product of the dispersion parameter, , which does not depend on and the value of glmvar. In other words glmvar returns the factor of the variance that depends on . Examples julia> = inv(6):inv(3):1; showcompact(collect()) [0.166667, 0.5, 0.833333] julia> showcompact(glmvar.(Normal(), )) # constant for Normal() [1.0, 1.0, 1.0] julia> showcompact(glmvar.(Bernoulli(), )) # * (1 - ) for Bernoulli() [0.138889, 0.25, 0.138889] julia> showcompact(glmvar.(Poisson(), )) # for Poisson() [0.166667, 0.5, 0.833333] source 17.5 GLM.inverselink GLM.inverselink — Function. inverselink(L::Link, ) Return a 3-tuple of the inverse link, the derivative of the inverse link, and when appropriate, the variance function *(1 - ). The variance function is returned as NaN unless the range of is (0, 1) Examples julia> showcompact(inverselink(LogitLink(), 0.0)) (0.5, 0.25, 0.25) julia> showcompact(inverselink(CloglogLink(), 0.0)) (0.632121, 0.367879, 0.232544) julia> showcompact(inverselink(LogLink(), 2.0)) (7.38906, 7.38906, NaN) source 260 CHAPTER 17. 17.6 GLM GLM.linkfun GLM.linkfun — Function. linkfun(L::Link, ) Return , the value of the linear predictor for link L at mean . Examples julia> = inv(10):inv(5):1 0.1:0.2:0.9 julia> show(linkfun.(LogitLink(), )) [-2.19722, -0.847298, 0.0, 0.847298, 2.19722] source 17.7 GLM.linkinv GLM.linkinv — Function. linkinv(L::Link, ) Return , the mean value, for link L at linear predictor value . Examples julia> = inv(10):inv(5):1; showcompact(collect()) [0.1, 0.3, 0.5, 0.7, 0.9] julia> = logit.(); showcompact() [-2.19722, -0.847298, 0.0, 0.847298, 2.19722] julia> showcompact(linkinv.(LogitLink(), )) [0.1, 0.3, 0.5, 0.7, 0.9] source 17.8 GLM.mueta GLM.mueta — Function. mueta(L::Link, ) Return the derivative of linkinv, d/d, for link L at linear predictor value . Examples julia> showcompact(mueta(LogitLink(), 0.0)) 0.25 julia> showcompact(mueta(CloglogLink(), 0.0)) 0.367879 julia> showcompact(mueta(LogLink(), 2.0)) 7.38906 source 17.9. GLM.MUSTART 17.9 261 GLM.mustart GLM.mustart — Function. mustart(D::Distribution, y, wt) Return a starting value for . For some distributions it is appropriate to set = y to initialize the IRLS algorithm but for others, notably the Bernoulli, the values of y are not allowed as values of and must be modified. Examples julia> showcompact(mustart(Bernoulli(), 0.0, 1)) 0.25 julia> showcompact(mustart(Bernoulli(), 1.0, 1)) 0.75 julia> showcompact(mustart(Binomial(), 0.0, 10)) 0.0454545 julia> showcompact(mustart(Normal(), 0.0, 1)) 0.0 source 17.10 GLM.update! GLM.update! — Method. update!{T<:FPVector}(r::GlmResp{T}, linPr::T) Update the mean, working weights and working residuals, in r given a value of the linear predictor, linPr. source 17.11 GLM.wrkresp GLM.wrkresp — Method. wrkresp(r::GlmResp) The working response, r.eta + r.wrkresid - r.offset. source 17.12 StatsBase.deviance StatsBase.deviance — Method. deviance(obj::LinearModel) For linear models, the deviance is equal to the residual sum of squares (RSS). source 262 17.13 CHAPTER 17. GLM StatsBase.nobs StatsBase.nobs — Method. nobs(obj::LinearModel) nobs(obj::GLM) For linear and generalized linear models, returns the number of rows, or, when prior weights are specified, the sum of weights. source 17.14 StatsBase.nulldeviance StatsBase.nulldeviance — Method. nulldeviance(obj::LinearModel) For linear models, the deviance of the null model is equal to the total sum of squares (TSS). source 17.15 StatsBase.predict StatsBase.predict — Function. predict(mm::LinearModel, newx::AbstractMatrix, interval_type::Symbol, level::Real = 0.9 Specifying interval type will return a 3-column matrix with the prediction and the lower and upper confidence bounds for a given level (0.95 equates alpha = 0.05). Valid values of interval type are :confint delimiting the uncertainty of the predicted relationship, and :predint delimiting estimated bounds for new data points. source 17.16 StatsBase.predict StatsBase.predict — Method. predict(mm::AbstractGLM, newX::AbstractMatrix; offset::FPVector=Vector{eltype(newX)}(0) Form the predicted response of model mm from covariate values newX and, optionally, an offset. source Chapter 18 Documenter 18.1 Documenter.deploydocs Documenter.deploydocs — Method. deploydocs( root = target = repo = branch = latest = osname = julia = deps = make = ) " ", "site", " ", "gh-pages", "master", "linux", "nightly", , , Converts markdown files generated by makedocs to HTML and pushes them to repo. This function should be called from within a package’s docs/make.jl file after the call to makedocs, like so [] using Documenter, PACKAGEN AM Emakedocs(options...)deploydocs(repo =”github.com/...”) Keywords root has the same purpose as the root keyword for makedocs. target is the directory, relative to root, where generated HTML content should be written to. This directory must be added to the repository’s .gitignore file. The default value is "site". repo is the remote repository where generated HTML content should be pushed to. Do not specify any protocol - “https://” or “git@” should not be present. This keyword must be set and will throw an error when left undefined. For example this package uses the following repo value: [] repo = ”github.com/JuliaDocs/Documenter.jl.git” 263 264 CHAPTER 18. DOCUMENTER branch is the branch where the generated documentation is pushed. If the branch does not exist, a new orphaned branch is created automatically. It defaults to "gh-pages". latest is the branch that “tracks” the latest generated documentation. By default this value is set to "master". osname is the operating system which will be used to deploy generated documentation. This defaults to "linux". This value must be one of those specified in the os: section of the .travis.yml configuration file. julia is the version of Julia that will be used to deploy generated documentation. This defaults to "nightly". This value must be one of those specified in the julia: section of the .travis.yml configuration file. deps is the function used to install any dependencies needed to build the documentation. By default this function installs pygments and mkdocs using the Deps.pip function: [] deps = Deps.pip(”pygments”, ”mkdocs”) make is the function used to convert the markdown files to HTML. By default this just runs mkdocs build which populates the target directory. See Also The Hosting Documentation section of the manual provides a step-by-step guide to using the deploydocs function to automatically generate docs and push then to GitHub. source 18.2 Documenter.hide Documenter.hide — Method. [] hide(root, children) Allows a subsection of pages to be hidden from the navigation menu. root will be linked to in the navigation menu, with the title determined as usual. children should be a list of pages (note that it can not be hierarchical). Usage [] makedocs( ..., pages = [ ..., hide(”Hidden section” =¿ ”hiddeni ndex.md”, [”hidden1.md”,”Hidden source 18.3 Documenter.hide Documenter.hide — Method. [] hide(page) Allows a page to be hidden in the navigation menu. It will only show up if it happens to be the current page. The hidden page will still be present in the linear page list that can be accessed via the previous and next page links. The title of the hidden page can be overriden using the => operator as usual. Usage 18.4. DOCUMENTER.MAKEDOCS [] makedocs( ..., ”page2.md”) ] ) source 18.4 pages = [ ..., 265 hide(”page1.md”), hide(”Title” =¿ Documenter.makedocs Documenter.makedocs — Method. makedocs( root source build clean doctest modules repo ) = = = = = = = " ", "src", "build", true, true, Module[], "", Combines markdown files and inline docstrings into an interlinked document. In most cases makedocs should be run from a make.jl file: [] using Documenter makedocs( keywords... ) which is then run from the command line with: [] juliamake.jl The folder structure that makedocs expects looks like: docs/ build/ src/ make.jl Keywords root is the directory from which makedocs should run. When run from a make.jl file this keyword does not need to be set. It is, for the most part, needed when repeatedly running makedocs from the Julia REPL like so: julia> makedocs(root = Pkg.dir("MyPackage", "docs")) source is the directory, relative to root, where the markdown source files are read from. By convention this folder is called src. Note that any nonmarkdown files stored in source are copied over to the build directory when makedocs is run. build is the directory, relative to root, into which generated files and folders are written when makedocs is run. The name of the build directory is, by convention, called build, though, like with source, users are free to change this to anything else to better suit their project needs. 266 CHAPTER 18. DOCUMENTER clean tells makedocs whether to remove all the content from the build folder prior to generating new content from source. By default this is set to true. doctest instructs makedocs on whether to try to test Julia code blocks that are encountered in the generated document. By default this keyword is set to true. Doctesting should only ever be disabled when initially setting up a newly developed package where the developer is just trying to get their package and documentation structure correct. After that, it’s encouraged to always make sure that documentation examples are runnable and produce the expected results. See the Doctests manual section for details about running doctests. modules specifies a vector of modules that should be documented in source. If any inline docstrings from those modules are seen to be missing from the generated content then a warning will be printed during execution of makedocs. By default no modules are passed to modules and so no warnings will appear. This setting can be used as an indicator of the “coverage” of the generated documentation. For example Documenter’s make.jl file contains: [] makedocs( modules = [Documenter], ... ) and so any docstring from the module Documenter that is not spliced into the generated documentation in build will raise a warning. repo specifies a template for the “link to source” feature. If you are using GitHub, this is automatically generated from the remote. If you are using a different host, you can use this option to tell Documenter how URLs should be generated. The following placeholders will be replaced with the respective value of the generated link: • {commit} Git branch or tag name, or commit hash • {path} Path to the file in the repository • {line} Line (or range of lines) in the source file For example if you are using GitLab.com, you could use [] makedocs(repo = ”https://gitlab.com/user/project/blob/{commit}{path}L{line}”) Experimental keywords In addition to standard arguments there is a set of non-finalized experimental keyword arguments. The behaviour of these may change or they may be removed without deprecation when a minor version changes (i.e. except in patch releases). checkdocs instructs makedocs to check whether all names within the modules defined in the modules keyword that have a docstring attached have the docstring also listed in the manual (e.g. there’s a @docs blocks with that docstring). Possible values are :all (check all names) and :exports (check only exported names). The default value is :none, in which case no checks are performed. If strict is also enabled then the build will fail if any missing docstrings are encountered. 18.4. DOCUMENTER.MAKEDOCS 267 linkcheck – if set to true makedocs uses curl to check the status codes of external-pointing links, to make sure that they are up-to-date. The links and their status codes are printed to the standard output. If strict is also enabled then the build will fail if there are any broken (400+ status code) links. Default: false. linkcheck ignore allows certain URLs to be ignored in linkcheck. The values should be a list of strings (which get matched exactly) or Regex objects. By default nothing is ignored. strict – makedocs fails the build right before rendering if it encountered any errors with the document in the previous build phases. Non-MkDocs builds Documenter also has (experimental) support for native HTML and LaTeX builds. These can be enabled using the format keyword and they generally require additional keywords be defined, depending on the format. These keywords are also currently considered experimental. format allows the output format to be specified. Possible values are :html, :latex and :markdown (default). Other keywords related to non-MkDocs builds (assets, sitename, analytics, authors, pages, version) should be documented at the respective *Writer modules (Writers.HTMLWriter, Writers.LaTeXWriter). See Also A guide detailing how to document a package using Documenter’s makedocs is provided in the Usage section of the manual. source Chapter 19 ColorTypes 19.1 ColorTypes.alpha ColorTypes.alpha — Method. alpha(p) extracts the alpha component of a color. For a color without an alpha channel, it will always return 1. source 19.2 ColorTypes.alphacolor ColorTypes.alphacolor — Function. alphacolor(RGB) returns ARGB, i.e., the corresponding transparent color type with storage order (alpha, color). source 19.3 ColorTypes.base color type ColorTypes.base color type — Method. base color type is similar to color type, except it “strips off” the element type. For example, color_type(RGB{N0f8}) == RGB{N0f8} base_color_type(RGB{N0f8}) == RGB This can be very handy if you want to switch element types. For example: c64 = base_color_type(c){Float64}(color(c)) converts c into a Float64 representation (potentially discarding any alphachannel information). source 268 19.4. COLORTYPES.BASE COLORANT TYPE 19.4 269 ColorTypes.base colorant type ColorTypes.base colorant type — Method. base colorant type is similar to base color type, but it preserves the “alpha” portion of the type. For example, base_color_type(ARGB{N0f8}) == RGB base_colorant_type(ARGB{N0f8}) == ARGB If you just want to switch element types, this is the safest default and the easiest to use: c64 = base_colorant_type(c){Float64}(c) source 19.5 ColorTypes.blue ColorTypes.blue — Method. blue(c) returns the blue component of an AbstractRGB opaque or transparent color. source 19.6 ColorTypes.ccolor ColorTypes.ccolor — Method. ccolor (“concrete color”) helps write flexible methods. The idea is that users may write convert(HSV, c) or even convert(Array{HSV}, A) without specifying the element type explicitly (e.g., convert(Array{HSV{Float32}}, A)). ccolor implements the logic “choose the user’s eltype if specified, otherwise retain the eltype of the source object.” However, when the source object has FixedPoint element type, and the destination only supports AbstractFloat, we choose Float32. Usage: ccolor(desttype, srctype) -> concrete desttype Example: convert{C<:Colorant}(::Type{C}, p::Colorant) = cnvt(ccolor(C,typeof(p)), p) where cnvt is the function that performs explicit conversion. source 270 CHAPTER 19. 19.7 COLORTYPES ColorTypes.color ColorTypes.color — Method. color(c) extracts the opaque color component from a Colorant (e.g., omits the alpha channel, if present). source 19.8 ColorTypes.color type ColorTypes.color type — Method. color type(c) or color type(C) (c being a color instance and C being the type) returns the type of the Color object (without alpha channel). This, and related functions like base color type, base colorant type, and ccolor are useful for manipulating types for writing generic code. For example, color_type(RGB) == RGB color_type(RGB{Float32}) == RGB{Float32} color_type(ARGB{N0f8}) == RGB{N0f8} source 19.9 ColorTypes.coloralpha ColorTypes.coloralpha — Function. coloralpha(RGB) returns RGBA, i.e., the corresponding transparent color type with storage order (color, alpha). source 19.10 ColorTypes.comp1 ColorTypes.comp1 — Method. comp1(c) extracts the first component you’d pass to the constructor of the corresponding object. For most color types without an alpha channel, this is just the first field, but for types like BGR that reverse the internal storage order this provides the value that you’d use to reconstruct the color. Specifically, for any Color{T,3}, c == typeof(c)(comp1(c), comp2(c), comp3(c)) returns true. source 19.11. COLORTYPES.COMP2 19.11 271 ColorTypes.comp2 ColorTypes.comp2 — Method. comp2(c) extracts the second constructor argument (see comp1). source 19.12 ColorTypes.comp3 ColorTypes.comp3 — Method. comp3(c) extracts the third constructor argument (see comp1). source 19.13 ColorTypes.gray ColorTypes.gray — Method. gray(c) returns the gray component of a grayscale opaque or transparent color. source 19.14 ColorTypes.green ColorTypes.green — Method. green(c) returns the green component of an AbstractRGB opaque or transparent color. source 19.15 ColorTypes.mapc ColorTypes.mapc — Method. mapc(f, rgb) -> rgbf mapc(f, rgb1, rgb2) -> rgbf mapc applies the function f to each color channel of the input color(s), returning an output color in the same colorspace. Examples: julia> mapc(x->clamp(x,0,1), RGB(-0.2,0.3,1.2)) RGB{Float64}(0.0,0.3,1.0) julia> mapc(max, RGB(0.1,0.8,0.3), RGB(0.5,0.5,0.5)) RGB{Float64}(0.5,0.8,0.5) julia> mapc(+, RGB(0.1,0.8,0.3), RGB(0.5,0.5,0.5)) RGB{Float64}(0.6,1.3,0.8) 272 CHAPTER 19. COLORTYPES source 19.16 ColorTypes.mapreducec ColorTypes.mapreducec — Method. mapreducec(f, op, v0, c) Reduce across color channels of c with the binary operator op, first applying f to each channel. v0 is the neutral element used to initiate the reduction. For grayscale, mapreducec(f, op, v0, c::Gray) = op(v0, f(comp1(c))) whereas for RGB mapreducec(f, op, v0, c::RGB) = op(f(comp3(c)), op(f(comp2(c)), op(v0, f(comp1(c))))) If c has an alpha channel, it is always the last one to be folded into the reduction. source 19.17 ColorTypes.red ColorTypes.red — Method. red(c) returns the red component of an AbstractRGB opaque or transparent color. source 19.18 ColorTypes.reducec ColorTypes.reducec — Method. reducec(op, v0, c) Reduce across color channels of c with the binary operator op. v0 is the neutral element used to initiate the reduction. For grayscale, reducec(op, v0, c::Gray) = op(v0, comp1(c)) whereas for RGB reducec(op, v0, c::RGB) = op(comp3(c), op(comp2(c), op(v0, comp1(c)))) If c has an alpha channel, it is always the last one to be folded into the reduction. source Chapter 20 Primes 20.1 Primes.factor Primes.factor — Method. factor(ContainerType, n::Integer) -> ContainerType Return the factorization of n stored in a ContainerType, which must be a subtype of Associative or AbstractArray, a Set, or an IntSet. [] julia¿ factor(DataStructures.SortedDict, 100) DataStructures.SortedDict{Int64,Int64,Base.Order.ForwardOrderi with 2 entries: 2 =¿ 2 5 =¿ 2 When ContainerType <: AbstractArray, this returns the list of all prime factors of n with multiplicities, in sorted order. [] julia¿ factor(Vector, 100) 4-element Array{Int64,1}: 2 2 5 5 julia¿ prod(factor(Vector, 100)) == 100 true When ContainerType == Set, this returns the distinct prime factors as a set. [] julia¿ factor(Set, 100) Set([2,5]) source 20.2 Primes.factor Primes.factor — Method. factor(n::Integer) -> Primes.Factorization Compute the prime factorization of an integer n. The returned object, of type Factorization, is an associative container whose keys correspond to the factors, in sorted order. The value associated with each key indicates the multiplicity (i.e. the number of times the factor appears in the factorization). [] julia¿ factor(100) 2252 273 274 CHAPTER 20. PRIMES For convenience, a negative number n is factored as -1*(-n) (i.e. -1 is considered to be a factor), and 0 is factored as 0^1: [] julia¿ factor(-9) -1 32 julia¿ factor(0) 0 julia¿ collect(factor(0)) 1-element Array{Pair{Int64,Int64},1}: 0=¿1 source 20.3 Primes.ismersenneprime Primes.ismersenneprime — Method. ismersenneprime(M::Integer; [check::Bool = true]) -> Bool Lucas-Lehmer deterministic test for Mersenne primes. M must be a Mersenne number, i.e. of the form M = 2^p - 1, where p is a prime number. Use the keyword argument check to enable/disable checking whether M is a valid Mersenne number; to be used with caution. Return true if the given Mersenne number is prime, and false otherwise. julia> ismersenneprime(2^11 - 1) false julia> ismersenneprime(2^13 - 1) true source 20.4 Primes.isprime Primes.isprime — Function. isprime(x::BigInt, [reps = 25]) -> Bool Probabilistic primality test. Returns true if x is prime with high probability (pseudoprime); and false if x is composite (not prime). The false positive rate is about 0.25^reps. reps = 25 is considered safe for cryptographic applications (Knuth, Seminumerical Algorithms). [] julia¿ isprime(big(3)) true source 20.5 Primes.isprime Primes.isprime — Method. isprime(n::Integer) -> Bool Returns true if n is prime, and false otherwise. [] julia¿ isprime(3) true source 20.6. PRIMES.ISRIESELPRIME 20.6 275 Primes.isrieselprime Primes.isrieselprime — Method. isrieselprime(k::Integer, Q::Integer) -> Bool Lucas-Lehmer-Riesel deterministic test for N of the form N = k * Q, with 0 < k < Q, Q = 2^n - 1 and n > 0, also known as Riesel primes. Returns true if R is prime, and false otherwise or if the combination of k and n is not supported. julia> isrieselprime(1, 2^11 - 1) false # == ismersenneprime(2^11 - 1) julia> isrieselprime(3, 2^607 - 1) true source 20.7 Primes.nextprime Primes.nextprime — Function. nextprime(n::Integer, i::Integer=1) The i-th smallest prime not less than n (in particular, nextprime(p) == p if p is prime). If i < 0, this is equivalent to prevprime(n, -i). Note that for n::BigInt, the returned number is only a pseudo-prime (the function isprime is used internally). See also prevprime. julia> nextprime(4) 5 julia> nextprime(5) 5 julia> nextprime(4, 2) 7 julia> nextprime(5, 2) 7 source 276 CHAPTER 20. 20.8 PRIMES Primes.prevprime Primes.prevprime — Function. prevprime(n::Integer, i::Integer=1) The i-th largest prime not greater than n (in particular prevprime(p) == p if p is prime). If i < 0, this is equivalent to nextprime(n, -i). Note that for n::BigInt, the returned number is only a pseudo-prime (the function isprime is used internally). See also nextprime. julia> prevprime(4) 3 julia> prevprime(5) 5 julia> prevprime(5, 2) 3 source 20.9 Primes.prime Primes.prime — Method. prime{T}(::Type{T}=Int, i::Integer) The i-th prime number. julia> prime(1) 2 julia> prime(3) 5 source 20.10 Primes.primes Primes.primes — Method. primes([lo,] hi) Returns a collection of the prime numbers (from lo, if specified) up to hi. source 20.11. PRIMES.PRIMESMASK 20.11 277 Primes.primesmask Primes.primesmask — Method. primesmask([lo,] hi) Returns a prime sieve, as a BitArray, of the positive integers (from lo, if specified) up to hi. Useful when working with either primes or composite numbers. source 20.12 Primes.prodfactors Primes.prodfactors — Function. prodfactors(factors) Compute n (or the radical of n when factors is of type Set or IntSet) where factors is interpreted as the result of factor(typeof(factors), n). Note that if factors is of type AbstractArray or Primes.Factorization, then prodfactors is equivalent to Base.prod. julia> prodfactors(factor(100)) 100 source 20.13 Primes.radical Primes.radical — Method. radical(n::Integer) Compute the radical of n, i.e. the largest square-free divisor of n. This is equal to the product of the distinct prime numbers dividing n. julia> radical(2*2*3) 6 source 278 20.14 CHAPTER 20. PRIMES Primes.totient Primes.totient — Method. totient(n::Integer) -> Integer Compute the Euler totient function (n), which counts the number of positive integers less than or equal to n that are relatively prime to n (that is, the number of positive integers m n with gcd(m, n) == 1). The totient function of n when n is negative is defined to be totient(abs(n)). source 20.15 Primes.totient Primes.totient — Method. totient(f::Factorization{T}) -> T Compute the Euler totient function of the number whose prime factorization is given by f. This method may be preferable to totient(::Integer) when the factorization can be reused for other purposes. source Chapter 21 Roots 21.1 Roots.D Roots.D — Function. Take derivative of order k of a function. Arguments: • f::Function: a mathematical function from R to R. • k::Int=1: A non-negative integer specifying the order of the derivative. Values larger than 8 can be slow to compute. Wrapper around derivative function in ForwardDiff source 21.2 Roots.find zero Roots.find zero — Method. Find a zero of a univariate function using one of several different methods. Positional arugments: • f a function, callable object, or tuple of same. A tuple is used to pass in derivatives, as desired. Most methods are derivative free. Some (Newton, Halley) may have derivative(s) computed using the ForwardDiff pacakge. • x0 an initial starting value. Typically a scalar, but may be a two-element tuple or array for bisection methods. The value float.(x0) is passed on. • method one of several methods, see below. Keyword arguments: • xabstol=zero(): declare convergence if |x n - x {n-1}| <= max(xabstol, max(1, |x n|) * xreltol) 279 280 CHAPTER 21. ROOTS • xreltol=eps(): • abstol=zero(): declare convergence if |f(x n)| <= max(abstol, max(1, |x n|) * reltol) • reltol: • bracket: Optional. A bracketing interval for the sought after root. If given, a hybrid algorithm may be used where bisection is utilized for steps that would go out of bounds. (Using a FalsePosition method instead would be suggested.) • maxevals::Int=40: stop trying after maxevals steps • maxfnevals::Int=typemax(Int): stop trying after maxfnevals function evaluations • verbose::Bool=false: If true show information about algorithm and a trace. Returns: Returns xn if the algorithm converges. If the algorithm stops, returns xn if |f(xn)| ˆ(2/3), where = reltol, otherwise a ConvergenceFailed error is thrown. Exported methods: Bisection(); Order0() (heuristic, slow more robust); Order1() (also Secant()); Order2() (also Steffensen()); Order5() (KSS); Order8() (Thukral); Order16() (Thukral); FalsePosition(i) (false position, i in 1..12); Not exported: Secant(), use Order1() Steffensen() use Order2() Newton() (use newton() function) Halley() (use halley() function) The order 0 method is more robust to the initial starting point, but can utilize many more function calls. The higher order methods may be of use when greater precision is desired.‘ Examples: f(x) = x^5 find_zero(f, find_zero(f, find_zero(f, x - 1 1.0, Order5()) 1.0, Steffensen()) # also Order2() (1.0, 2.0), FalsePosition()) source 21.3 Roots.fzero Roots.fzero — Method. Find zero of a function within a bracket Uses a modified bisection method for non big arguments Arguments: 21.4. ROOTS.FZERO 281 • f A scalar function or callable object • a left endpont of interval • b right endpont of interval • xtol optional additional tolerance on sub-bracket size. For a bracket to be valid, it must be that f(a)*f(b) < 0. For Float64 values, the answer is such that f(prevfloat(x)) * f(nextfloat(x)) < 0 unless a non-zero value of xtol is specified in which case, it stops when the sub-bracketing produces an bracket with length less than max(xtol, abs(x1)*xtolrel). For Big values, which defaults to the algorithm of Alefeld, Potra, and Shi, a default tolerance is used for the sub-bracket length that can be enlarged with xtol. If a==-Inf it is replaced with nextfloat(a); if b==Inf it is replaced with prevfloat(b). Example: ‘fzero(sin, 3, 4)‘ # find pi ‘fzero(sin, [big(3), 4]) find pi with more digits source 21.4 Roots.fzero Roots.fzero — Method. Find zero of a function using an iterative algorithm • f: a scalar function or callable object • x0: an initial guess, finite valued. Keyword arguments: • ftol: tolerance for a guess abs(f(x)) < ftol • xtol: stop if abs(xold - xnew) <= xtol + max(1, |xnew|)*xtolrel • xtolrel: see xtol • maxeval: maximum number of steps • verbose: Boolean. Set true to trace algorithm • order: Can specify order of algorithm. 0 is most robust, also 1, 2, 5, 8, 16. • kwargs... passed on to different algorithms. There are maxfneval when order is 1,2,5,8, or 16 and beta for orders 2,5,8,16, This is a polyalgorithm redirecting different algorithms based on the value of order. source 282 CHAPTER 21. 21.5 ROOTS Roots.fzero Roots.fzero — Method. Find zero using Newton’s method. source 21.6 Roots.fzero Roots.fzero — Method. Find a zero with bracket specified via [a,b], as fzero(sin, [3,4]). source 21.7 Roots.fzero Roots.fzero — Method. Find a zero within a bracket with an initial guess to possibly speed things along. source 21.8 Roots.fzeros Roots.fzeros — Method. fzeros(f, a, b) Attempt to find all zeros of f within an interval [a,b]. Simple algorithm that splits [a,b] into subintervals and checks each for a root. For bracketing subintervals, bisection is used. Otherwise, a derivativefree method is used. If there are a large number of zeros found relative to the number of subintervals, the number of subintervals is increased and the process is re-run. There are possible issues with close-by zeros and zeros which do not cross the origin (non-simple zeros). Answers should be confirmed graphically, if possible. source 21.9 Roots.halley Roots.halley — Method. Implementation of Halley’s method. xn1 = xn - 2f(xn)*f(xn) / (2*f(xn)^2 - f(xn) * f(xn)) Arguments: • f::Function – function to find zero of • fp::Function=D(f) – derivative of f. Defaults to automatic derivative • fpp:Function=D(f,2) – second derivative of f. 21.10. ROOTS.NEWTON 283 • x0::Real – initial guess Keyword arguments: • ftol. Stop iterating when |f(xn)| <= max(1, |xn|) * ftol. • xtol. Stop iterating when |xn+1 - xn| <= xtol + max(1, |xn|) * xtolrel • xtolrel. Stop iterating when |xn+1 - xn| <= xtol + max(1, |xn|) * xtolrel • maxeval. Stop iterating if more than this many steps, throw error. • verbose::Bool=false Set to true to see trace. source 21.10 Roots.newton Roots.newton — Method. Implementation of Newton’s method: x n1 = x n - f(x n)/ f(x n) Arguments: • f::Function – function to find zero of • fp::Function=D(f) – derivative of f. Defaults to automatic derivative • x0::Number – initial guess. For Newton’s method this may be complex. Keyword arguments: • ftol. Stop iterating when |f(xn)| <= max(1, |xn|) * ftol. • xtol. Stop iterating when |xn+1 - xn| <= xtol + max(1, |xn|) * xtolrel • xtolrel. Stop iterating when |xn+1 - xn| <= xtol + max(1, |xn|) * xtolrel • maxeval. Stop iterating if more than this many steps, throw error. • maxfneval. Stop iterating if more than this many function calls, throw error. • verbose::Bool=false Set to true to see trace. source 21.11 Roots.secant method Roots.secant method — Method. secant_method(f, x0, x1; [kwargs...]) Solve for zero of f(x) = 0 using the secant method. Not exported. Use find zero with Order1(). source Chapter 22 ImageTransformations 22.1 ImageTransformations.imresize ImageTransformations.imresize — Method. imresize(img, sz) -> imgr imresize(img, inds) -> imgr Change img to be of size sz (or to have indices inds). This interpolates the values at sub-pixel locations. If you are shrinking the image, you risk aliasing unless you low-pass filter img first. For example: = map((o,n)->0.75*o/n, size(img), sz) kern = KernelFactors.gaussian() # from ImageFiltering imgr = imresize(imfilter(img, kern, NA()), sz) See also restrict. source 22.2 ImageTransformations.invwarpedview ImageTransformations.invwarpedview — Method. invwarpedview(img, tinv, [indices], [degree = Linear()], [fill = NaN]) -> wv Create a view of img that lazily transforms any given index I passed to wv[I] to correspond to img[inv(tinv)(I)]. While technically this approach is known as backward mode warping, note that InvWarpedView is created by supplying the forward transformation. The given transformation tinv must accept a SVector as input and support inv(tinv). A useful package to create a wide variety of such transformations is CoordinateTransformations.jl. When invoking wv[I], values for img must be reconstructed at arbitrary locations inv(tinv)(I). InvWarpedView serves as a wrapper around WarpedView 284 22.3. IMAGETRANSFORMATIONS.RESTRICT 285 which takes care of interpolation and extrapolation. The parameters degree and fill can be used to specify the b-spline degree and the extrapolation scheme respectively. The optional parameter indices can be used to specify the domain of the resulting wv. By default the indices are computed in such a way that wv contains all the original pixels in img. source 22.3 ImageTransformations.restrict ImageTransformations.restrict — Method. restrict(img[, region]) -> imgr Reduce the size of img by two-fold along the dimensions listed in region, or all spatial coordinates if region is not specified. It anti-aliases the image as it goes, so is better than a naive summation over 2x2 blocks. See also imresize. source 22.4 ImageTransformations.warp ImageTransformations.warp — Method. warp(img, tform, [indices], [degree = Linear()], [fill = NaN]) -> imgw Transform the coordinates of img, returning a new imgw satisfying imgw[I] = img[tform(I)]. This approach is known as backward mode warping. The transformation tform must accept a SVector as input. A useful package to create a wide variety of such transformations is CoordinateTransformations.jl. Reconstruction scheme During warping, values for img must be reconstructed at arbitrary locations tform(I) which do not lie on to the lattice of pixels. How this reconstruction is done depends on the type of img and the optional parameter degree. When img is a plain array, then on-grid b-spline interpolation will be used. It is possible to configure what degree of b-spline to use with the parameter degree. For example one can use degree = Linear() for linear interpolation, degree = Constant() for nearest neighbor interpolation, or degree = Quadratic(Flat()) for quadratic interpolation. In the case tform(I) maps to indices outside the original img, those locations are set to a value fill (which defaults to NaN if the element type supports it, and 0 otherwise). The parameter fill also accepts extrapolation schemes, such as Flat(), Periodic() or Reflect(). For more control over the reconstruction scheme — and how beyond-the-edge points are handled — pass img as an AbstractInterpolation or AbstractExtrapolation from Interpolations.jl. 286 CHAPTER 22. IMAGETRANSFORMATIONS The meaning of the coordinates The output array imgw has indices that would result from applying inv(tform) to the indices of img. This can be very handy for keeping track of how pixels in imgw line up with pixels in img. If you just want a plain array, you can “strip” the custom indices with parent(imgw). Examples: a 2d rotation (see JuliaImages documentation for pictures) julia> using Images, CoordinateTransformations, TestImages, OffsetArrays julia> img = testimage("lighthouse"); julia> indices(img) (Base.OneTo(512),Base.OneTo(768)) # Rotate around the center of ‘img‘ julia> tfm = recenter(RotMatrix(-pi/4), center(img)) AffineMap([0.707107 0.707107; -0.707107 0.707107], [-196.755,293.99]) julia> imgw = warp(img, tfm); julia> indices(imgw) (-196:709,-68:837) # Alternatively, specify the origin in the image itself julia> img0 = OffsetArray(img, -30:481, -384:383); # origin near top of image julia> rot = LinearMap(RotMatrix(-pi/4)) LinearMap([0.707107 -0.707107; 0.707107 0.707107]) julia> imgw = warp(img0, rot); julia> indices(imgw) (-293:612,-293:611) julia> imgr = parent(imgw); julia> indices(imgr) (Base.OneTo(906),Base.OneTo(905)) source 22.5 ImageTransformations.warpedview ImageTransformations.warpedview — Method. 22.5. IMAGETRANSFORMATIONS.WARPEDVIEW 287 warpedview(img, tform, [indices], [degree = Linear()], [fill = NaN]) -> wv Create a view of img that lazily transforms any given index I passed to wv[I] to correspond to img[tform(I)]. This approach is known as backward mode warping. The given transformation tform must accept a SVector as input. A useful package to create a wide variety of such transformations is CoordinateTransformations.jl. When invoking wv[I], values for img must be reconstructed at arbitrary locations tform(I) which do not lie on to the lattice of pixels. How this reconstruction is done depends on the type of img and the optional parameter degree. When img is a plain array, then on-grid b-spline interpolation will be used, where the pixel of img will serve as the coeficients. It is possible to configure what degree of b-spline to use with the parameter degree. The two possible values are degree = Linear() for linear interpolation, or degree = Constant() for nearest neighbor interpolation. In the case tform(I) maps to indices outside the domain of img, those locations are set to a value fill (which defaults to NaN if the element type supports it, and 0 otherwise). Additionally, the parameter fill also accepts extrapolation schemes, such as Flat(), Periodic() or Reflect(). The optional parameter indices can be used to specify the domain of the resulting WarpedView. By default the indices are computed in such a way that the resulting WarpedView contains all the original pixels in img. To do this inv(tform) has to be computed. If the given transformation tform does not support inv, then the parameter indices has to be specified manually. warpedview is essentially a non-coping, lazy version of warp. As such, the two functions share the same interface, with one important difference. warpedview will insist that the resulting WarpedView will be a view of img (i.e. parent(warpedview(img, ...)) === img). Consequently, warpedview restricts the parameter degree to be either Linear() or Constant(). source Chapter 23 PyCall 23.1 PyCall.PyNULL PyCall.PyNULL — Method. PyNULL() Return a PyObject that has a NULL underlying pointer, i.e. it doesn’t actually refer to any Python object. This is useful for initializing PyObject global variables and array elements before an actual Python object is available. For example, you might do const myglobal = PyNULL() and later on (e.g. in a module init function), reassign myglobal to point to an actual object with copy!(myglobal, someobject). This procedure will properly handle Python’s reference counting (so that the Python object will not be freed until you are done with myglobal). source 23.2 PyCall.PyReverseDims PyCall.PyReverseDims — Method. PyReverseDims(array) Passes a Julia array to Python as a NumPy row-major array (rather than Julia’s native column-major order) with the dimensions reversed (e.g. a 234 Julia array is passed as a 432 NumPy row-major array). This is useful for Python libraries that expect row-major data. source 23.3 PyCall.PyTextIO PyCall.PyTextIO — Method. 288 23.4. PYCALL.PYBUILTIN 289 PyTextIO(io::IO) PyObject(io::IO) Julia IO streams are converted into Python objects implementing the RawIOBase interface, so they can be used for binary I/O in Python source 23.4 PyCall.pybuiltin PyCall.pybuiltin — Method. pybuiltin(s::AbstractString) Look up a string or symbol s among the global Python builtins. If s is a string it returns a PyObject, while if s is a symbol it returns the builtin converted to PyAny. source 23.5 PyCall.pybytes PyCall.pybytes — Method. pybytes(b::Union{String,Vector{UInt8}}) Convert b to a Python bytes object. This differs from the default PyObject(b) conversion of String to a Python string (which may fail if b does not contain valid Unicode), or from the default conversion of a Vector{UInt8} to a bytearray object (which is mutable, unlike bytes). source 23.6 PyCall.pycall PyCall.pycall — Method. pycall(o::Union{PyObject,PyPtr}, returntype::TypeTuple, args...; kwargs...) Call the given Python function (typically looked up from a module) with the given args. . . (of standard Julia types which are converted automatically to the corresponding Python types if possible), converting the return value to returntype (use a returntype of PyObject to return the unconverted Python object reference, or of PyAny to request an automated conversion) source 290 CHAPTER 23. 23.7 PYCALL PyCall.pyeval PyCall.pyeval — Function. pyeval(s::AbstractString, returntype::TypeTuple=PyAny, locals=PyDict{AbstractString, Py input_type=Py_eval_input; kwargs...) This evaluates s as a Python string and returns the result converted to rtype (which defaults to PyAny). The remaining arguments are keywords that define local variables to be used in the expression. For example, pyeval("x + y", x=1, y=2) returns 3. source 23.8 PyCall.pygui PyCall.pygui — Method. pygui() Return the current GUI toolkit as a symbol. source 23.9 PyCall.pygui start PyCall.pygui start — Function. pygui_start(gui::Symbol = pygui()) Start the event loop of a certain toolkit. The argument gui defaults to the current default GUI, but it could be :wx, :gtk, :gtk3, :tk, or :qt. source 23.10 PyCall.pygui stop PyCall.pygui stop — Function. pygui_stop(gui::Symbol = pygui()) Stop any running event loop for gui. The gui argument defaults to current default GUI. source 23.11. PYCALL.PYIMPORT 23.11 291 PyCall.pyimport PyCall.pyimport — Method. pyimport(s::AbstractString) Import the Python module s (a string or symbol) and return a pointer to it (a PyObject). Functions or other symbols in the module may then be looked up by s[name] where name is a string (for the raw PyObject) or symbol (for automatic type-conversion). Unlike the @pyimport macro, this does not define a Julia module and members cannot be accessed with s.name source 23.12 PyCall.pyimport conda PyCall.pyimport conda — Function. pyimport_conda(modulename, condapkg, [channel]) Returns the result of pyimport(modulename) if possible. If the module is not found, and PyCall is configured to use the Conda Python distro (via the Julia Conda package), then automatically install condapkg via Conda.add(condapkg) and then re-try the pyimport. Other Anaconda-based Python installations are also supported as long as their conda program is functioning. If PyCall is not using Conda and the pyimport fails, throws an exception with an error message telling the user how to configure PyCall to use Conda for automated installation of the module. The third argument, channel is an optional Anaconda “channel” to use for installing the package; this is useful for packages that are not included in the default Anaconda package listing. source 23.13 PyCall.pytype mapping PyCall.pytype mapping — Method. pytype_mapping(pytype, jltype) Given a Python type object pytype, tell PyCall to convert it to jltype in PyAny(object) conversions. source 292 23.14 CHAPTER 23. PYCALL PyCall.pytype query PyCall.pytype query — Function. pytype_query(o::PyObject, default=PyObject) Given a Python object o, return the corresponding native Julia type (defaulting to default) that we convert o to in PyAny(o) conversions. source 23.15 PyCall.pywrap PyCall.pywrap — Function. pywrap(o::PyObject) This returns a wrapper w that is an anonymous module which provides (read) access to converted versions of o’s members as w.member. For example, @pyimport module as name is equivalent to const name = pywrap(pyimport("module")) If the Python module contains identifiers that are reserved words in Julia (e.g. function), they cannot be accessed as w.member; one must instead use w.pymember(:member) (for the PyAny conversion) or w.pymember(“member”) (for the raw PyObject). source Chapter 24 Gadfly 24.1 Compose.draw Compose.draw — Method. draw(backend::Compose.Backend, p::Plot) A convenience version of Compose.draw without having to call render Args • backend: The Compose.Backend object • p: The Plot object source 24.2 Compose.hstack Compose.hstack — Method. hstack(ps::Union{Plot,Context}...) hstack(ps::Vector) Arrange plots into a horizontal row. Use context() as a placeholder for an empty panel. Heterogeneous vectors must be typed. See also vstack, gridstack, subplot grid. Examples “‘ p1 = plot(x=[1,2], y=[3,4], Geom.line); p2 = Compose.context(); hstack(p1, p2) hstack(Union{Plot,Compose.Context}[p1, p2]) source 293 294 CHAPTER 24. 24.3 GADFLY Compose.vstack Compose.vstack — Method. vstack(ps::Union{Plot,Context}...) vstack(ps::Vector) Arrange plots into a vertical column. Use context() as a placeholder for an empty panel. Heterogeneous vectors must be typed. See also hstack, gridstack, subplot grid. Examples “‘ p1 = plot(x=[1,2], y=[3,4], Geom.line); p2 = Compose.context(); vstack(p1, p2) vstack(Union{Plot,Compose.Context}[p1, p2]) source 24.4 Gadfly.layer Gadfly.layer — Method. layer(data_source::@compat(Union{AbstractDataFrame, (@compat Void)}), elements::ElementOrFunction...; mapping...) Creates layers based on elements Args • data source: The data source as a dataframe • elements: The elements • mapping: mapping Returns An array of layers source 24.5 Gadfly.plot Gadfly.plot — Method. function plot(data_source::@compat(Union{(@compat Void), AbstractMatrix, AbstractDataFr mapping::Dict, elements::ElementOrFunctionOrLayers...) The old fashioned (pre named arguments) version of plot. This version takes an explicit mapping dictionary, mapping aesthetics symbols to expressions or columns in the data frame. Args: • data source: Data to be bound to aesthetics. 24.6. GADFLY.PLOT 295 • mapping: Dictionary of aesthetics symbols (e.g. :x, :y, :color) to names of columns in the data frame or other expressions. • elements: Geometries, statistics, etc. Returns: A Plot object. source 24.6 Gadfly.plot Gadfly.plot — Method. function plot(data_source::@compat(Union{AbstractMatrix, AbstractDataFrame}), elements::ElementOrFunctionOrLayers...; mapping...) Create a new plot. Grammar of graphics style plotting consists of specifying a dataset, one or more plot elements (scales, coordinates, geometries, etc), and binding of aesthetics to columns or expressions of the dataset. For example, a simple scatter plot would look something like: plot(my data, Geom.point, x=“time”, y=“price”) Where “time” and “price” are the names of columns in my data. Args: • data source: Data to be bound to aesthetics. • elements: Geometries, statistics, etc. • mapping: Aesthetics symbols (e.g. :x, :y, :color) mapped to names of columns in the data frame or other expressions. source 24.7 Gadfly.render Gadfly.render — Method. render(plot::Plot) Render a plot based on the Plot object Args • plot: Plot to be rendered. Returns A Compose context containing the rendered plot. source 296 CHAPTER 24. 24.8 GADFLY Gadfly.set default plot format Gadfly.set default plot format — Method. set_default_plot_format(fmt::Symbol) Sets the default plot format source 24.9 Gadfly.set default plot size Gadfly.set default plot size — Method. set_default_plot_size(width::Compose.MeasureOrNumber, height::Compose.MeasureOrNumber) Sets preferred canvas size when rendering a plot without an explicit call to draw source 24.10 Gadfly.spy Gadfly.spy — Method. spy(M::AbstractMatrix, elements::ElementOrFunction...; mapping...) Simple heatmap plots of matrices. It is a wrapper around the plot() function using the rectbin geometry. It also applies a sane set of defaults to make sure that the plots look nice by default. Specifically • the aspect ratio of the coordinate system is fixed Coord.cartesian(fixed=true), so that the rectangles become squares • the axes run from 0.5 to N+0.5, because the first row/column is drawn to (0.5, 1.5) and the last one to (N-0.5, N+0.5). • the y-direction is flipped, so that the [1,1] of a matrix is in the top left corner, as is customary • NaNs are not drawn. spy leaves “holes” instead into the heatmap. Args: • M: A matrix. 24.11. GADFLY.STYLE 297 Returns: A plot object. Known bugs: • If the matrix is only NaNs, then it throws an ArgumentError, because an empty collection gets passed to the plot function / rectbin geometry. source 24.11 Gadfly.style Gadfly.style — Method. Set some attributes in the current Theme. See Theme for available field. source 24.12 Gadfly.title Gadfly.title — Method. title(ctx::Context, str::String, props::Property...) -> Context Add a title string to a group of plots, typically created with vstack, hstack, or gridstack. Examples p1 = plot(x=[1,2], y=[3,4], Geom.line); p2 = plot(x=[1,2], y=[4,3], Geom.line); title(hstack(p1,p2), "my latest data", Compose.fontsize(18pt), fill(colorant"red")) source Chapter 25 IterTools 25.1 IterTools.chain IterTools.chain — Method. chain(xs...) Iterate through any number of iterators in sequence. julia> for i in chain(1:3, [’a’, ’b’, ’c’]) @show i end i = 1 i = 2 i = 3 i = ’a’ i = ’b’ i = ’c’ source 25.2 IterTools.distinct IterTools.distinct — Method. distinct(xs) Iterate through values skipping over those already encountered. julia> for i in distinct([1,1,2,1,2,4,1,2,3,4]) @show i end i = 1 298 25.3. ITERTOOLS.GROUPBY 299 i = 2 i = 4 i = 3 source 25.3 IterTools.groupby IterTools.groupby — Method. groupby(f, xs) Group consecutive values that share the same result of applying f. julia> for i in groupby(x -> x[1], ["face", "foo", "bar", "book", "baz", "zzz"]) @show i end i = String["face","foo"] i = String["bar","book","baz"] i = String["zzz"] source 25.4 IterTools.imap IterTools.imap — Method. imap(f, xs1, [xs2, ...]) Iterate over values of a function applied to successive values from one or more iterators. julia> for i in imap(+, [1,2,3], [4,5,6]) @show i end i = 5 i = 7 i = 9 source 25.5 IterTools.iterate IterTools.iterate — Method. iterate(f, x) 300 CHAPTER 25. ITERTOOLS Iterate over successive applications of f, as in x, f(x), f(f(x)), f(f(f(x))), ... Use Base.take() to obtain the required number of elements. julia> for i in take(iterate(x -> 2x, 1), 5) @show i end i = 1 i = 2 i = 4 i = 8 i = 16 julia> for i in take(iterate(sqrt, 100), 6) @show i end i = 100 i = 10.0 i = 3.1622776601683795 i = 1.7782794100389228 i = 1.333521432163324 i = 1.1547819846894583 source 25.6 IterTools.ncycle IterTools.ncycle — Method. ncycle(xs, n) Cycle through iter n times. julia> for i in ncycle(1:3, 2) @show i end i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 source 25.7. ITERTOOLS.NTH 25.7 301 IterTools.nth IterTools.nth — Method. nth(xs, n) Return the nth element of xs. This is mostly useful for non-indexable collections. julia> mersenne = Set([3, 7, 31, 127]) Set([7,31,3,127]) julia> nth(mersenne, 3) 3 source 25.8 IterTools.partition IterTools.partition — Method. partition(xs, n, [step]) Group values into n-tuples. julia> for i in partition(1:9, 3) @show i end i = (1,2,3) i = (4,5,6) i = (7,8,9) If the step parameter is set, each tuple is separated by step values. julia> for i in partition(1:9, 3, 2) @show i end i = (1,2,3) i = (3,4,5) i = (5,6,7) i = (7,8,9) julia> for i in partition(1:9, 3, 3) @show i end i = (1,2,3) i = (4,5,6) 302 CHAPTER 25. ITERTOOLS i = (7,8,9) julia> for i in partition(1:9, 2, 3) @show i end i = (1,2) i = (4,5) i = (7,8) source 25.9 IterTools.peekiter IterTools.peekiter — Method. peekiter(xs) Lets you peek at the head element of an iterator without updating the state. julia> it = peekiter(["face", "foo", "bar", "book", "baz", "zzz"]) IterTools.PeekIter{Array{String,1}}(String["face","foo","bar","book","baz","zzz"]) julia> s = start(it) (2,Nullable{String}("face")) julia> @show peek(it, s) peek(it,s) = Nullable{String}("face") Nullable{String}("face") julia> @show peek(it, s) peek(it,s) = Nullable{String}("face") Nullable{String}("face") julia> x, s = next(it, s) ("face",(3,Nullable{String}("foo"),false)) julia> @show x x = "face" "face" julia> @show peek(it, s) peek(it,s) = Nullable{String}("foo") Nullable{String}("foo") source 25.10. ITERTOOLS.PRODUCT 25.10 303 IterTools.product IterTools.product — Method. product(xs...) Iterate over all combinations in the Cartesian product of the inputs. julia> for p in product(1:3,4:5) @show p end p = (1,4) p = (2,4) p = (3,4) p = (1,5) p = (2,5) p = (3,5) source 25.11 IterTools.repeatedly IterTools.repeatedly — Method. repeatedly(f, n) Call function f n times, or infinitely if n is omitted. [] julia¿ t() = (sleep(0.1); Dates.millisecond(now())) t (generic function with 1 method) julia¿ collect(repeatedly(t, 5)) 5-element Array{Any,1}: 993 97 200 303 408 source 25.12 IterTools.subsets IterTools.subsets — Method. subsets(xs) subsets(xs, k) Iterate over every subset of the collection xs. You can restrict the subsets to a specific size k. julia> for i in subsets([1, 2, 3]) @show i end i = Int64[] i = [1] 304 i i i i i i CHAPTER 25. = = = = = = ITERTOOLS [2] [1,2] [3] [1,3] [2,3] [1,2,3] julia> for i in subsets(1:4, 2) @show i end i = [1,2] i = [1,3] i = [1,4] i = [2,3] i = [2,4] i = [3,4] source 25.13 IterTools.takenth IterTools.takenth — Method. takenth(xs, n) Iterate through every nth element of xs. julia> collect(takenth(5:15,3)) 3-element Array{Int64,1}: 7 10 13 source 25.14 IterTools.takestrict IterTools.takestrict — Method. takestrict(xs, n::Int) Like take(), an iterator that generates at most the first n elements of xs, but throws an exception if fewer than n items are encountered in xs. 25.14. ITERTOOLS.TAKESTRICT julia> a = :1:2:11 1:2:11 julia> collect(takestrict(a, 3)) 3-element Array{Int64,1}: 1 3 5 source 305 Chapter 26 Iterators 26.1 Iterators.chain Iterators.chain — Method. chain(xs...) Iterate through any number of iterators in sequence. julia> for i in chain(1:3, [’a’, ’b’, ’c’]) @show i end i = 1 i = 2 i = 3 i = ’a’ i = ’b’ i = ’c’ source 26.2 Iterators.distinct Iterators.distinct — Method. distinct(xs) Iterate through values skipping over those already encountered. julia> for i in distinct([1,1,2,1,2,4,1,2,3,4]) @show i end i = 1 306 26.3. ITERATORS.GROUPBY 307 i = 2 i = 4 i = 3 source 26.3 Iterators.groupby Iterators.groupby — Method. groupby(f, xs) Group consecutive values that share the same result of applying f. julia> for i in groupby(x -> x[1], ["face", "foo", "bar", "book", "baz", "zzz"]) @show i end i = String["face","foo"] i = String["bar","book","baz"] i = String["zzz"] source 26.4 Iterators.imap Iterators.imap — Method. imap(f, xs1, [xs2, ...]) Iterate over values of a function applied to successive values from one or more iterators. julia> for i in imap(+, [1,2,3], [4,5,6]) @show i end i = 5 i = 7 i = 9 source 26.5 Iterators.iterate Iterators.iterate — Method. iterate(f, x) 308 CHAPTER 26. ITERATORS Iterate over successive applications of f, as in f(x), f(f(x)), f(f(f(x))), .... Use Base.take() to obtain the required number of elements. julia> for i in take(iterate(x -> 2x, 1), 5) @show i end i = 1 i = 2 i = 4 i = 8 i = 16 julia> for i in take(iterate(sqrt, 100), 6) @show i end i = 100 i = 10.0 i = 3.1622776601683795 i = 1.7782794100389228 i = 1.333521432163324 i = 1.1547819846894583 source 26.6 Iterators.ncycle Iterators.ncycle — Method. ncycle(xs, n) Cycle through iter n times. julia> for i in ncycle(1:3, 2) @show i end i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 source 26.7. ITERATORS.NTH 26.7 309 Iterators.nth Iterators.nth — Method. nth(xs, n) Return the nth element of xs. This is mostly useful for non-indexable collections. julia> mersenne = Set([3, 7, 31, 127]) Set([7,31,3,127]) julia> nth(mersenne, 3) 3 source 26.8 Iterators.partition Iterators.partition — Method. partition(xs, n, [step]) Group values into n-tuples. julia> for i in partition(1:9, 3) @show i end i = (1,2,3) i = (4,5,6) i = (7,8,9) If the step parameter is set, each tuple is separated by step values. julia> for i in partition(1:9, 3, 2) @show i end i = (1,2,3) i = (3,4,5) i = (5,6,7) i = (7,8,9) julia> for i in partition(1:9, 3, 3) @show i end i = (1,2,3) i = (4,5,6) 310 CHAPTER 26. ITERATORS i = (7,8,9) julia> for i in partition(1:9, 2, 3) @show i end i = (1,2) i = (4,5) i = (7,8) source 26.9 Iterators.peekiter Iterators.peekiter — Method. peekiter(xs) Lets you peek at the head element of an iterator without updating the state. julia> it = peekiter(["face", "foo", "bar", "book", "baz", "zzz"]) Iterators.PeekIter{Array{String,1}}(String["face","foo","bar","book","baz","zzz"]) julia> s = start(it) (2,Nullable{String}("face")) julia> @show peek(it, s) peek(it,s) = Nullable{String}("face") Nullable{String}("face") julia> @show peek(it, s) peek(it,s) = Nullable{String}("face") Nullable{String}("face") julia> x, s = next(it, s) ("face",(3,Nullable{String}("foo"),false)) julia> @show x x = "face" "face" julia> @show peek(it, s) peek(it,s) = Nullable{String}("foo") Nullable{String}("foo") source 26.10. ITERATORS.PRODUCT 26.10 311 Iterators.product Iterators.product — Method. product(xs...) Iterate over all combinations in the Cartesian product of the inputs. julia> for p in product(1:3,4:5) @show p end p = (1,4) p = (2,4) p = (3,4) p = (1,5) p = (2,5) p = (3,5) source 26.11 Iterators.repeatedly Iterators.repeatedly — Method. repeatedly(f, n) Call function f n times, or infinitely if n is omitted. [] julia¿ t() = (sleep(0.1); Dates.millisecond(now())) t (generic function with 1 method) julia¿ collect(repeatedly(t, 5)) 5-element Array{Any,1}: 993 97 200 303 408 source 26.12 Iterators.subsets Iterators.subsets — Method. subsets(xs) subsets(xs, k) Iterate over every subset of the collection xs. You can restrict the subsets to a specific size k. julia> for i in subsets([1, 2, 3]) @show i end i = Int64[] i = [1] 312 i i i i i i CHAPTER 26. = = = = = = ITERATORS [2] [1,2] [3] [1,3] [2,3] [1,2,3] julia> for i in subsets(1:4, 2) @show i end i = [1,2] i = [1,3] i = [1,4] i = [2,3] i = [2,4] i = [3,4] source 26.13 Iterators.takenth Iterators.takenth — Method. takenth(xs, n) Iterate through every nth element of xs. julia> collect(takenth(5:15,3)) 3-element Array{Int64,1}: 7 10 13 source 26.14 Iterators.takestrict Iterators.takestrict — Method. takestrict(xs, n::Int) Like take(), an iterator that generates at most the first n elements of xs, but throws an exception if fewer than n items are encountered in xs. 26.14. ITERATORS.TAKESTRICT julia> a = :1:2:11 1:2:11 julia> collect(takestrict(a, 3)) 3-element Array{Int64,1}: 1 3 5 source 313 Chapter 27 Polynomials 27.1 Polynomials.coeffs Polynomials.coeffs — Method. coeffs(p::Poly) Return the coefficient vector [a 0, a 1, ..., a n] of a polynomial p. source 27.2 Polynomials.degree Polynomials.degree — Method. degree(p::Poly) Return the degree of the polynomial p, i.e. the highest exponent in the polynomial that has a nonzero coefficient. source 27.3 Polynomials.poly Polynomials.poly — Method. poly(r) Construct a polynomial from its roots. Compare this to the Poly type constructor, which constructs a polynomial from its coefficients. If r is a vector, the constructed polynomial is (x − r1 )(x − r2 ) · · · (x − rn ). If r is a matrix, the constructed polynomial is (x − e1 ) · · · (x − en ), where ei is the ith eigenvalue of r. Examples 314 27.4. POLYNOMIALS.POLYDER 315 [] julia¿ poly([1, 2, 3]) The polynomial (x - 1)(x - 2)(x - 3) Poly(-6 + 11x 6x2+x3) julia¿ poly([1 2; 3 4]) The polynomial (x - 5.37228)(x + 0.37228) Poly(1.9999999999999998 - 5.0x + 1.0x2) source 27.4 Polynomials.polyder Polynomials.polyder — Method. polyder(p::Poly, k=1) Compute the kth derivative of the polynomial p. Examples [] julia¿ polyder(Poly([1, 3, -1])) Poly(3 - 2x) julia¿ polyder(Poly([1, 3, -1]), 2) Poly(-2) source 27.5 Polynomials.polyfit Polynomials.polyfit — Function. polyfit(x, y, n=length(x)-1, sym=:x) Fit a polynomial of degree n through the points specified by x and y, where n <= length(x) - 1, using least squares fit. When n=length(x)-1 (the default), the interpolating polynomial is returned. The optional fourth argument can be used to specify the symbol for the returned polynomial. Examples [] julia¿ xs = linspace(0, pi, 5); julia¿ ys = map(sin, xs); julia¿ polyfit(xs, ys, 2) Poly(-0.004902082150108854 + 1.242031920509868x - 0.39535103925413095x2) source 27.6 Polynomials.polyint Polynomials.polyint — Method. polyint(p::Poly, a::Number, b::Number) Compute the definite integral of the polynomial p over the interval [a,b]. Examples [] julia¿ polyint(Poly([1, 0, -1]), 0, 1) 0.6666666666666667 source 316 CHAPTER 27. 27.7 POLYNOMIALS Polynomials.polyint Polynomials.polyint — Method. polyint(p::Poly, k::Number=0) Integrate the polynomial p term by term, optionally adding a constant term k. The order of the resulting polynomial is one higher than the order of p. Examples [] julia¿ polyint(Poly([1, 0, -1])) Poly(1.0x - 0.3333333333333333x3) julia¿ polyint(Poly([1, 0, -1]), 2) Poly(2.0 + 1.0x - 0.3333333333333333x3) source 27.8 Polynomials.polyval Polynomials.polyval — Method. polyval(p::Poly, x::Number) Evaluate the polynomial p at x using Horner’s method. Poly objects are callable, using this function. Examples [] julia¿ p = Poly([1, 0, -1]) Poly(1 - x2) julia¿ polyval(p, 1) 0 julia¿ p(1) 0 source 27.9 Polynomials.printpoly Polynomials.printpoly — Method. printpoly(io::IO, p::Poly, mimetype = MIME"text/plain"(); descending_powers=false) Print a human-readable representation of the polynomial p to io. The MIME types “text/plain” (default), “text/latex”, and “text/html” are supported. By default, the terms are in order of ascending powers, matching the order in coeffs(p); specifying descending powers=true reverses the order. Examples julia> printpoly(STDOUT, Poly([1,2,3], :y)) 1 + 2*y + 3*y^2 julia> printpoly(STDOUT, Poly([1,2,3], :y), descending_powers=true) 3*y^2 + 2*y + 1 source 27.10. POLYNOMIALS.ROOTS 27.10 317 Polynomials.roots Polynomials.roots — Method. roots(p::Poly) Return the roots (zeros) of p, with multiplicity. The number of roots returned is equal to the order of p. The returned roots may be real or complex. Examples [] julia¿ roots(Poly([1, 0, -1])) 2-element Array{Float64,1}: -1.0 1.0 julia¿ roots(Poly([1, 0, 1])) 2-element Array{Complex{Float64},1}: 0.0+1.0im 0.0-1.0im julia¿ roots(Poly([0, 0, 1])) 2-element Array{Float64,1}: 0.0 0.0 julia¿ roots(poly([1,2,3,4])) 4-element Array{Float64,1}: 4.0 3.0 2.0 1.0 source 27.11 Polynomials.variable Polynomials.variable — Method. variable(p::Poly) variable([T::Type,] var) variable() Return the indeterminate of a polynomial, i.e. its variable, as a Poly object. When passed no arguments, this is equivalent to variable(Float64, :x). Examples [] julia¿ variable(Poly([1, 2], :x)) Poly(x) julia¿ variable(:y) Poly(1.0y) julia¿ variable() Poly(1.0x) julia¿ variable(Float32, :x) Poly(1.0f0x) source Chapter 28 Colors 28.1 Base.hex Base.hex — Method. hex(c) Print a color as a RGB hex triple, or a transparent paint as an ARGB hex quadruplet. source 28.2 Colors.MSC Colors.MSC — Method. MSC(h) MSC(h, l) Calculates the most saturated color for any given hue h by finding the corresponding corner in LCHuv space. Optionally, the lightness l may also be specified. source 28.3 Colors.colordiff Colors.colordiff — Method. colordiff(a, b) colordiff(a, b, metric) 318 28.4. COLORS.COLORMAP 319 Compute an approximate measure of the perceptual difference between colors a and b. Optionally, a metric may be supplied, chosen among DE 2000 (the default), DE 94, DE JPC79, DE CMC, DE BFD, DE AB, DE DIN99, DE DIN99d, DE DIN99o. source 28.4 Colors.colormap Colors.colormap — Function. colormap(cname, [N; mid, logscale, kvs...]) Returns a predefined sequential or diverging colormap computed using the algorithm by Wijffelaars, M., et al. (2008). Sequential colormaps cname choices are Blues, Greens, Grays, Oranges, Purples, and Reds. Diverging colormap choices are RdBu. Optionally, you can specify the number of colors N (default 100). Keyword arguments include the position of the middle point mid (default 0.5) and the possibility to switch to log scaling with logscale (default false). source 28.5 Colors.colormatch Colors.colormatch — Method. colormatch(wavelength) colormatch(matchingfunction, wavelength) Evaluate the CIE standard observer color match function. Args: • matchingfunction (optional): a type used to specify the matching function. Choices include CIE1931 CMF (the default, the CIE 1931 2 matching function), CIE1964 CMF (the CIE 1964 10 color matching function), CIE1931J CMF (Judd adjustment to CIE1931 CMF), CIE1931JV CMF (JuddVos adjustment to CIE1931 CMF). • wavelen: Wavelength of stimulus in nanometers. Returns: XYZ value of perceived color. source 28.6 Colors.deuteranopic Colors.deuteranopic — Method. 320 CHAPTER 28. COLORS deuteranopic(c) deuteranopic(c, p) Convert a color to simulate deuteranopic color deficiency (lack of the middlewavelength photopigment). See the description of protanopic for detail about the arguments. source 28.7 Colors.distinguishable colors Colors.distinguishable colors — Method. distinguishable_colors(n, [seed]; [transform, lchoices, cchoices, hchoices]) Generate n maximally distinguishable colors. This uses a greedy brute-force approach to choose n colors that are maximally distinguishable. Given seed color(s), and a set of possible hue, chroma, and lightness values (in LCHab space), it repeatedly chooses the next color as the one that maximizes the minimum pairwise distance to any of the colors already in the palette. Args: • n: Number of colors to generate. • seed: Initial color(s) included in the palette. Default is Vector{RGB{N0f8}}(0). Keyword arguments: • transform: Transform applied to colors before measuring distance. Default is the identity; other choices include deuteranopic to simulate colorblindness. • lchoices: Possible lightness values (default linspace(0,100,15)) • cchoices: Possible chroma values (default linspace(0,100,15)) • hchoices: Possible hue values (default linspace(0,340,20)) Returns: A Vector of colors of length n, of the type specified in seed. source 28.8 Colors.protanopic Colors.protanopic — Method. protanopic(c) protanopic(c, p) Convert a color to simulate protanopic color deficiency (lack of the longwavelength photopigment). c is the input color; the optional argument p is the fraction of photopigment loss, in the range 0 (no loss) to 1 (complete loss). source 28.9. COLORS.TRITANOPIC 28.9 321 Colors.tritanopic Colors.tritanopic — Method. tritanopic(c) tritanopic(c, p) Convert a color to simulate tritanopic color deficiency (lack of the shortwavelength photogiment). See protanopic for more detail about the arguments. source 28.10 Colors.weighted color mean Colors.weighted color mean — Method. weighted_color_mean(w1, c1, c2) Returns the color w1*c1 + (1-w1)*c2 that is the weighted mean of c1 and c2, where c1 has a weight 0 w1 1. source 28.11 Colors.whitebalance Colors.whitebalance — Method. whitebalance(c, src_white, ref_white) Whitebalance a color. Input a source (adopted) and destination (reference) white. E.g., if you have a photo taken under florencent lighting that you then want to appear correct under regular sunlight, you might do something like whitebalance(c, WP F2, WP D65). Args: • c: An observed color. • src white: Adopted or source white corresponding to c • ref white: Reference or destination white. Returns: A whitebalanced color. source Chapter 29 FileIO 29.1 Base.info Base.info — Method. info(fmt) returns the magic bytes/extension information for DataFormat fmt. source 29.2 FileIO.add format FileIO.add format — Method. add format(fmt, magic, extention) registers a new DataFormat. For example: add_format(format"PNG", (UInt8[0x4d,0x4d,0x00,0x2b], UInt8[0x49,0x49,0x2a,0x00]), [".ti add_format(format"PNG", [0x89,0x50,0x4e,0x47,0x0d,0x0a,0x1a,0x0a], ".png") add_format(format"NRRD", "NRRD", [".nrrd",".nhdr"]) Note that extensions, magic numbers, and format-identifiers are case-sensitive. source 29.3 FileIO.add loader FileIO.add loader — Function. add loader(fmt, :Package) triggers using Package before loading format fmt source 322 29.4. FILEIO.ADD SAVER 29.4 323 FileIO.add saver FileIO.add saver — Function. add saver(fmt, :Package) triggers using Package before saving format fmt source 29.5 FileIO.del format FileIO.del format — Method. del format(fmt::DataFormat) deletes fmt from the format registry. source 29.6 FileIO.file extension FileIO.file extension — Method. file extension(file) returns the file extension associated with File file. source 29.7 FileIO.file extension FileIO.file extension — Method. file extension(file) returns a nullable-string for the file extension associated with Stream stream. source 29.8 FileIO.filename FileIO.filename — Method. filename(file) returns the filename associated with File file. source 29.9 FileIO.filename FileIO.filename — Method. filename(stream) returns a nullable-string of the filename associated with Stream stream. source 324 CHAPTER 29. 29.10 FILEIO FileIO.load FileIO.load — Method. • load(filename) loads the contents of a formatted file, trying to infer the format from filename and/or magic bytes in the file. • load(strm) loads from an IOStream or similar object. In this case, the magic bytes are essential. • load(File(format"PNG",filename)) specifies the format directly, and bypasses inference. • load(f; options...) passes keyword arguments on to the loader. source 29.11 FileIO.magic FileIO.magic — Method. magic(fmt) returns the magic bytes of format fmt source 29.12 FileIO.query FileIO.query — Method. query(filename) returns a File object with information about the format inferred from the file’s extension and/or magic bytes. source 29.13 FileIO.query FileIO.query — Method. query(io, [filename]) returns a Stream object with information about the format inferred from the magic bytes. source 29.14 FileIO.save FileIO.save — Method. • save(filename, data...) saves the contents of a formatted file, trying to infer the format from filename. 29.15. FILEIO.SKIPMAGIC 325 • save(Stream(format"PNG",io), data...) specifies the format directly, and bypasses inference. • save(f, data...; options...) passes keyword arguments on to the saver. source 29.15 FileIO.skipmagic FileIO.skipmagic — Method. skipmagic(s) sets the position of Stream s to be just after the magic bytes. For a plain IO object, you can use skipmagic(io, fmt). source 29.16 FileIO.stream FileIO.stream — Method. stream(s) returns the stream associated with Stream s source 29.17 FileIO.unknown FileIO.unknown — Method. unknown(f) returns true if the format of f is unknown. source Chapter 30 Interact 30.1 Interact.button Interact.button — Method. button(label; value=nothing, signal) Create a push button. Optionally specify the label, the value emitted when then button is clicked, and/or the (Reactive.jl) signal coupled to this button. source 30.2 Interact.checkbox Interact.checkbox — Method. checkbox(value=false; label="", signal) Provide a checkbox with the specified starting (boolean) value. Optional provide a label for this widget and/or the (Reactive.jl) signal coupled to this widget. source 30.3 Interact.dropdown Interact.dropdown — Method. dropdown(choices; label="", value, typ, icons, tooltips, signal) Create a “dropdown” widget. choices can be a vector of options. Optionally specify the starting value (defaults to the first choice), the typ of elements 326 30.4. INTERACT.RADIOBUTTONS 327 in choices, supply custom icons, provide tooltips, and/or specify the (Reactive.jl) signal coupled to this widget. Examples a = dropdown(["one", "two", "three"]) To link a callback to the dropdown, use f = dropdown(["turn red"=>colorize_red, "turn green"=>colorize_green]) map(g->g(image), signal(f)) source 30.4 Interact.radiobuttons Interact.radiobuttons — Method. radiobuttons: see the help for dropdown source 30.5 Interact.selection Interact.selection — Method. selection: see the help for dropdown source 30.6 Interact.selection slider Interact.selection slider — Method. selection slider: see the help for dropdown If the slider has numeric (<:Real) values, and its signal is updated, it will update to the nearest value from the range/choices provided. To disable this behaviour, so that the widget state will only update if an exact match for signal value is found in the range/choice, use syncnearest=false. source 30.7 Interact.set! Interact.set! — Method. set!(w::Widget, fld::Symbol, val) Set the value of a widget property and update all displayed instances of the widget. If val is a Signal, then updates to that signal will be reflected in widget instances/views. If fld is :value, val is also push!ed to signal(w) source 328 30.8 CHAPTER 30. INTERACT Interact.slider Interact.slider — Method. slider(range; value, signal, label="", readout=true, continuous_update=true) Create a slider widget with the specified range. Optionally specify the starting value (defaults to the median of range), provide the (Reactive.jl) signal coupled to this slider, and/or specify a string label for the widget. source 30.9 Interact.textarea Interact.textarea — Method. textarea(value=""; label="", signal) Creates an extended text-entry area. Optionally provide a label and/or the (Reactive.jl) signal associated with this widget. The signal updates when you type. source 30.10 Interact.textbox Interact.textbox — Method. textbox(value=""; label="", typ=typeof(value), range=nothing, signal) Create a box for entering text. value is the starting value; if you don’t want to provide an initial value, you can constrain the type with typ. Optionally provide a label, specify the allowed range (e.g., -10.0:10.0) for numeric entries, and/or provide the (Reactive.jl) signal coupled to this text box. source 30.11 Interact.togglebutton Interact.togglebutton — Method. togglebutton(label=""; value=false, signal) Create a toggle button. Optionally specify the label, the initial state (value=false is off, value=true is on), and/or provide the (Reactive.jl) signal coupled to this button. source 30.12. INTERACT.TOGGLEBUTTONS 30.12 329 Interact.togglebuttons Interact.togglebuttons — Method. togglebuttons: see the help for dropdown source 30.13 Interact.vselection slider Interact.vselection slider — Method. vselection slider(args...; kwargs...) Shorthand for selection slider(args...; orientation="vertical", kwargs...) source 30.14 Interact.vslider Interact.vslider — Method. vslider(args...; kwargs...) Shorthand for slider(args...; orientation="vertical", kwargs...) source Chapter 31 FFTW 31.1 Base.DFT.FFTW.dct Base.DFT.FFTW.dct — Function. dct(A [, dims]) Performs a multidimensional type-II discrete cosine transform (DCT) of the array A, using the unitary normalization of the DCT. The optional dims argument specifies an iterable subset of dimensions (e.g. an integer, range, tuple, or array) to transform along. Most efficient if the size of A along the transformed dimensions is a product of small primes; see nextprod. See also plan dct for even greater efficiency. source 31.2 Base.DFT.FFTW.dct! Base.DFT.FFTW.dct! — Function. dct!(A [, dims]) Same as dct!, except that it operates in-place on A, which must be an array of real or complex floating-point values. source 31.3 Base.DFT.FFTW.idct Base.DFT.FFTW.idct — Function. idct(A [, dims]) 330 31.4. BASE.DFT.FFTW.IDCT! 331 Computes the multidimensional inverse discrete cosine transform (DCT) of the array A (technically, a type-III DCT with the unitary normalization). The optional dims argument specifies an iterable subset of dimensions (e.g. an integer, range, tuple, or array) to transform along. Most efficient if the size of A along the transformed dimensions is a product of small primes; see nextprod. See also plan idct for even greater efficiency. source 31.4 Base.DFT.FFTW.idct! Base.DFT.FFTW.idct! — Function. idct!(A [, dims]) Same as idct!, but operates in-place on A. source 31.5 Base.DFT.FFTW.plan dct Base.DFT.FFTW.plan dct — Function. plan_dct(A [, dims [, flags [, timelimit]]]) Pre-plan an optimized discrete cosine transform (DCT), similar to plan fft except producing a function that computes dct. The first two arguments have the same meaning as for dct. source 31.6 Base.DFT.FFTW.plan dct! Base.DFT.FFTW.plan dct! — Function. plan_dct!(A [, dims [, flags [, timelimit]]]) Same as plan dct, but operates in-place on A. source 31.7 Base.DFT.FFTW.plan idct Base.DFT.FFTW.plan idct — Function. plan_idct(A [, dims [, flags [, timelimit]]]) Pre-plan an optimized inverse discrete cosine transform (DCT), similar to plan fft except producing a function that computes idct. The first two arguments have the same meaning as for idct. source 332 CHAPTER 31. 31.8 FFTW Base.DFT.FFTW.plan idct! Base.DFT.FFTW.plan idct! — Function. plan_idct!(A [, dims [, flags [, timelimit]]]) Same as plan idct, but operates in-place on A. source 31.9 Base.DFT.FFTW.plan r2r Base.DFT.FFTW.plan r2r — Function. plan_r2r(A, kind [, dims [, flags [, timelimit]]]) Pre-plan an optimized r2r transform, similar to plan fft except that the transforms (and the first three arguments) correspond to r2r and r2r!, respectively. source 31.10 Base.DFT.FFTW.plan r2r! Base.DFT.FFTW.plan r2r! — Function. plan_r2r!(A, kind [, dims [, flags [, timelimit]]]) Similar to plan fft, but corresponds to r2r!. source 31.11 Base.DFT.FFTW.r2r Base.DFT.FFTW.r2r — Function. r2r(A, kind [, dims]) Performs a multidimensional real-input/real-output (r2r) transform of type kind of the array A, as defined in the FFTW manual. kind specifies either a discrete cosine transform of various types (FFTW.REDFT00, FFTW.REDFT01, FFTW.REDFT10, or FFTW.REDFT11), a discrete sine transform of various types (FFTW.RODFT00, FFTW.RODFT01, FFTW.RODFT10, or FFTW.RODFT11), a real-input DFT with halfcomplex-format output (FFTW.R2HC and its inverse FFTW.HC2R), or a discrete Hartley transform (FFTW.DHT). The kind argument may be an array or tuple in order to specify different transform types along the different dimensions of A; kind[end] is used for any unspecified dimensions. See the FFTW manual for precise definitions of these transform types, at http://www.fftw.org/doc. 31.12. BASE.DFT.FFTW.R2R! 333 The optional dims argument specifies an iterable subset of dimensions (e.g. an integer, range, tuple, or array) to transform along. kind[i] is then the transform type for dims[i], with kind[end] being used for i > length(kind). See also plan r2r to pre-plan optimized r2r transforms. source 31.12 Base.DFT.FFTW.r2r! Base.DFT.FFTW.r2r! — Function. r2r!(A, kind [, dims]) Same as r2r, but operates in-place on A, which must be an array of real or complex floating-point numbers. source Chapter 32 AxisArrays 32.1 AxisArrays.axes AxisArrays.axes — Method. axes(A::AxisArray) -> (Axis...) axes(A::AxisArray, ax::Axis) -> Axis axes(A::AxisArray, dim::Int) -> Axis Returns the tuple of axis vectors for an AxisArray. If an specific Axis is specified, then only that axis vector is returned. Note that when extracting a single axis vector, axes(A, Axis{1})) is type-stable and will perform better than axes(A)[1]. For an AbstractArray without Axis information, axes returns the default axes, i.e., those that would be produced by AxisArray(A). source 32.2 AxisArrays.axisdim AxisArrays.axisdim — Method. axisdim(::AxisArray, ::Axis) -> Int axisdim(::AxisArray, ::Type{Axis}) -> Int Given an AxisArray and an Axis, return the integer dimension of the Axis within the array. source 32.3 AxisArrays.axisnames AxisArrays.axisnames — Method. 334 32.4. AXISARRAYS.AXISVALUES axisnames(A::AxisArray) axisnames(::Type{AxisArray{...}}) axisnames(ax::Axis...) axisnames(::Type{Axis{...}}...) 335 -> -> -> -> (Symbol...) (Symbol...) (Symbol...) (Symbol...) Returns the axis names of an AxisArray or list of Axises as a tuple of Symbols. source 32.4 AxisArrays.axisvalues AxisArrays.axisvalues — Method. axisvalues(A::AxisArray) axisvalues(ax::Axis...) -> (AbstractVector...) -> (AbstractVector...) Returns the axis values of an AxisArray or list of Axises as a tuple of vectors. source 32.5 AxisArrays.collapse AxisArrays.collapse — Method. collapse(::Type{Val{N}}, collapse(::Type{Val{N}}, collapse(::Type{Val{N}}, collapse(::Type{Val{N}}, As::AxisArray...) -> AxisArray labels::Tuple, As::AxisArray...) -> AxisArray ::Type{NewArrayType}, As::AxisArray...) -> AxisArray ::Type{NewArrayType}, labels::Tuple, As::AxisArray...) -> AxisArray Collapses AxisArrays with N equal leading axes into a single AxisArray. All additional axes in any of the arrays are collapsed into a single additional axis of type Axis{:collapsed, CategoricalVector{Tuple}}. Arguments • ::Type{Val{N}}: the greatest common dimension to share between all input arrays. The remaining axes are collapsed. All N axes must be common to each input array, at the same dimension. Values from 0 up to the minimum number of dimensions across all input arrays are allowed. • labels::Tuple: (optional) an index for each array in As used as the leading element in the index tuples in the :collapsed axis. Defaults to 1:length(As). • ::Type{NewArrayType<:AbstractArray{ , N+1}}: (optional) the desired underlying array type for the returned AxisArray. • As::AxisArray...: AxisArrays to be collapsed together. 336 CHAPTER 32. AXISARRAYS Examples julia> price_data = AxisArray(rand(10), Axis{:time}(Date(2016,01,01):Day(1):Date(2016,0 1-dimensional AxisArray{Float64,1,...} with axes: :time, 2016-01-01:1 day:2016-01-10 And data, a 10-element Array{Float64,1}: 0.885014 0.418562 0.609344 0.72221 0.43656 0.840304 0.455337 0.65954 0.393801 0.260207 julia> size_data = AxisArray(rand(10,2), Axis{:time}(Date(2016,01,01):Day(1):Date(2016, 2-dimensional AxisArray{Float64,2,...} with axes: :time, 2016-01-01:1 day:2016-01-10 :measure, Symbol[:area, :volume] And data, a 102 Array{Float64,2}: 0.159434 0.456992 0.344521 0.374623 0.522077 0.313256 0.994697 0.320953 0.95104 0.900526 0.921854 0.729311 0.000922581 0.148822 0.449128 0.761714 0.650277 0.135061 0.688773 0.513845 julia> collapsed = collapse(Val{1}, (:price, :size), price_data, size_data) 2-dimensional AxisArray{Float64,2,...} with axes: :time, 2016-01-01:1 day:2016-01-10 :collapsed, Tuple{Symbol,Vararg{Symbol,N} where N}[(:price,), (:size, :area), (:siz And data, a 103 Array{Float64,2}: 0.885014 0.159434 0.456992 0.418562 0.344521 0.374623 0.609344 0.522077 0.313256 0.72221 0.994697 0.320953 0.43656 0.95104 0.900526 0.840304 0.921854 0.729311 0.455337 0.000922581 0.148822 0.65954 0.449128 0.761714 32.5. AXISARRAYS.COLLAPSE 0.393801 0.260207 0.650277 0.688773 0.135061 0.513845 julia> collapsed[Axis{:collapsed}(:size)] == size_data true source 337 Chapter 33 QuadGK 33.1 Base.quadgk Base.quadgk — Method. quadgk(f, a,b,c...; reltol=sqrt(eps), abstol=0, maxevals=10^7, order=7, norm=vecnorm) Numerically integrate the function f(x) from a to b, and optionally over additional intervals b to c and so on. Keyword options include a relative error tolerance reltol (defaults to sqrt(eps) in the precision of the endpoints), an absolute error tolerance abstol (defaults to 0), a maximum number of function evaluations maxevals (defaults to 10^7), and the order of the integration rule (defaults to 7). Returns a pair (I,E) of the estimated integral I and an estimated upper bound on the absolute error E. If maxevals is not exceeded then E <= max(abstol, reltol*norm(I)) will hold. (Note that it is useful to specify a positive abstol in cases where norm(I) may be zero.) The endpoints a et cetera can also be complex (in which case the integral is performed over straight-line segments in the complex plane). If the endpoints are BigFloat, then the integration will be performed in BigFloat precision as well. !!! note It is advisable to increase the integration order in rough proportion to the precision, for smooth integrands. More generally, the precision is set by the precision of the integration endpoints (promoted to floating-point types). The integrand f(x) can return any numeric scalar, vector, or matrix type, or in fact any type supporting +, -, multiplication by real values, and a norm (i.e., any normed vector space). Alternatively, a different norm can be specified by passing a norm-like function as the norm keyword argument (which defaults to vecnorm). !!! note Only one-dimensional integrals are provided by this function. For multi-dimensional integration (cubature), there are many different algorithms 338 33.2. QUADGK.GAUSS 339 (often much better than simple nested 1d integrals) and the optimal choice tends to be very problem-dependent. See the Julia external-package listing for available algorithms for multidimensional integration or other specialized tasks (such as integrals of highly oscillatory or singular functions). The algorithm is an adaptive Gauss-Kronrod integration technique: the integral in each interval is estimated using a Kronrod rule (2*order+1 points) and the error is estimated using an embedded Gauss rule (order points). The interval with the largest error is then subdivided into two intervals and the process is repeated until the desired error tolerance is achieved. These quadrature rules work best for smooth functions within each interval, so if your function has a known discontinuity or other singularity, it is best to subdivide your interval to put the singularity at an endpoint. For example, if f has a discontinuity at x=0.7 and you want to integrate from 0 to 1, you should use quadgk(f, 0,0.7,1) to subdivide the interval at the point of discontinuity. The integrand is never evaluated exactly at the endpoints of the intervals, so it is possible to integrate functions that diverge at the endpoints as long as the singularity is integrable (for example, a log(x) or 1/sqrt(x) singularity). For real-valued endpoints, the starting and/or ending points may be infinite. (A coordinate transformation is performed internally to map the infinite interval to a finite one.) source 33.2 QuadGK.gauss QuadGK.gauss — Method. gauss([T,] N) Return a pair (x, w) of N quadrature points x[i] and weights w[i] to integrate functions on the interval (-1, 1), i.e. sum(w .* f.(x)) approximates the integral. Uses the method described in Trefethen & Bau, Numerical Linear Algebra, to find the N-point Gaussian quadrature in O(N) operations. T is an optional parameter specifying the floating-point type, defaulting to Float64. Arbitrary precision (BigFloat) is also supported. source 33.3 QuadGK.kronrod QuadGK.kronrod — Method. kronrod([T,] n) Compute 2n+1 Kronrod points x and weights w based on the description in Laurie (1997), appendix A, simplified for a=0, for integrating on [-1,1]. Since the rule is symmetric, this only returns the n+1 points with x <= 0. The 340 CHAPTER 33. QUADGK function Also computes the embedded n-point Gauss quadrature weights gw (again for x <= 0), corresponding to the points x[2:2:end]. Returns (x,w,wg) in O(n) operations. T is an optional parameter specifying the floating-point type, defaulting to Float64. Arbitrary precision (BigFloat) is also supported. Given these points and weights, the estimated integral I and error E can be computed for an integrand f(x) as follows: x, w, wg = kronrod(n) fx = f(x[end]) # f(0) x = x[1:end-1] # the x < 0 Kronrod points fx = f.(x) .+ f.((-).(x)) # f(x < 0) + f(x > 0) I = sum(fx .* w[1:end-1]) + fx * w[end] if isodd(n) E = abs(sum(fx[2:2:end] .* wg[1:end-1]) + fx*wg[end] - I) else E = abs(sum(fx[2:2:end] .* wg[1:end])- I) end source Chapter 34 BusinessDays 34.1 BusinessDays.advancebdays BusinessDays.advancebdays — Method. advancebdays(calendar, dt, bdays_count) Increments given date dt by bdays count. Decrements it if bdays count is negative. bdays count can be a Int, Vector{Int} or a UnitRange. Computation starts by next Business Day if dt is not a Business Day. source 34.2 BusinessDays.bdayscount BusinessDays.bdayscount — Method. bdays(calendar, dt0, dt1) Counts the number of Business Days between dt0 and dt1. Returns instances of Dates.Day. Computation is always based on next Business Day if given dates are not Business Days. source 34.3 BusinessDays.firstbdayofmonth BusinessDays.firstbdayofmonth — Method. firstbdayofmonth(calendar, dt) firstbdayofmonth(calendar, yy, mm) Returns the first business day of month. source 341 342 CHAPTER 34. 34.4 BUSINESSDAYS BusinessDays.isbday BusinessDays.isbday — Method. isbday(calendar, dt) Returns false for weekends or holidays. Returns true otherwise. source 34.5 BusinessDays.isholiday BusinessDays.isholiday — Method. isholiday(calendar, dt) Checks if dt is a holiday based on a given calendar of holidays. calendar can be an instance of HolidayCalendar, a Symbol or an AbstractString. Returns boolean values. source 34.6 BusinessDays.isweekday BusinessDays.isweekday — Method. isweekday(dt) Returns true for Monday to Friday. Returns false otherwise. source 34.7 BusinessDays.isweekend BusinessDays.isweekend — Method. isweekend(dt) Returns true for Saturdays or Sundays. Returns false otherwise. source 34.8 BusinessDays.lastbdayofmonth BusinessDays.lastbdayofmonth — Method. lastbdayofmonth(calendar, dt) lastbdayofmonth(calendar, yy, mm) Returns the last business day of month. source 34.9. BUSINESSDAYS.LISTBDAYS 34.9 343 BusinessDays.listbdays BusinessDays.listbdays — Method. listbdays(calendar, dt0::Date, dt1::Date) Vector{Date} Returns the list of business days between dt0 and dt1. source 34.10 BusinessDays.listholidays BusinessDays.listholidays — Method. listholidays(calendar, dt0::Date, dt1::Date) Vector{Date} Returns the list of holidays between dt0 and dt1. source 34.11 BusinessDays.tobday BusinessDays.tobday — Method. tobday(calendar, dt; [forward=true]) Adjusts dt to next Business Day if it’s not a Business Day. If isbday(dt), returns dt. source Chapter 35 NLSolversBase 35.1 Base.LinAlg.gradient Base.LinAlg.gradient — Method. Evaluates the gradient value at x This does not update obj.DF. source 35.2 Base.LinAlg.gradient Base.LinAlg.gradient — Method. Get the ith element of the most recently evaluated gradient of obj. source 35.3 Base.LinAlg.gradient Base.LinAlg.gradient — Method. Get the most recently evaluated gradient of obj. source 35.4 NLSolversBase.complex to real NLSolversBase.complex to real — Method. Convert a complex array of size dims to a real array of size 2 x dims source 35.5 NLSolversBase.gradient! NLSolversBase.gradient! — Method. 344 35.6. NLSOLVERSBASE.HESSIAN Evaluates the gradient value at x. Stores the value in obj.DF. source 35.6 NLSolversBase.hessian NLSolversBase.hessian — Method. Get the most recently evaluated Hessian of obj source 35.7 NLSolversBase.jacobian NLSolversBase.jacobian — Method. Get the most recently evaluated Jacobian of obj. source 35.8 NLSolversBase.real to complex NLSolversBase.real to complex — Method. Convert a real array of size 2 x dims to a complex array of size dims source 35.9 NLSolversBase.value!! NLSolversBase.value!! — Method. Force (re-)evaluation of the objective value at x. Returns f(x) and stores the value in obj.F source 35.10 NLSolversBase.value! NLSolversBase.value! — Method. Evaluates the objective value at x. Returns f(x) and stores the value in obj.F source 35.11 NLSolversBase.value NLSolversBase.value — Method. Evaluates the objective value at x. Returns f(x), but does not store the value in obj.F source 345 346 35.12 CHAPTER 35. NLSolversBase.value NLSolversBase.value — Method. Get the most recently evaluated objective value of obj. source NLSOLVERSBASE Chapter 36 Dagger 36.1 Dagger.alignfirst Dagger.alignfirst — Method. alignfirst(a) Make a subdomain a standalone domain. For example, alignfirst(ArrayDomain(11:25, 21:100)) # => ArrayDomain((1:15), (1:80)) source 36.2 Dagger.cached stage Dagger.cached stage — Method. A memoized version of stage. It is important that the tasks generated for the same DArray have the same identity, for example: A = rand(Blocks(100,100), Float64, 1000, 1000) compute(A+A’) must not result in computation of A twice. source 36.3 Dagger.compute Dagger.compute — Method. A DArray object may contain a thunk in it, in which case we first turn it into a Thunk object and then compute it. source 347 348 CHAPTER 36. 36.4 DAGGER Dagger.compute Dagger.compute — Method. Compute a Thunk - creates the DAG, assigns ranks to nodes for tie breaking and runs the scheduler. source 36.5 Dagger.domain Dagger.domain — Function. domain(x::T) Returns metadata about x. This metadata will be in the domain field of a Chunk object when an object of type T is created as the result of evaluating a Thunk. source 36.6 Dagger.domain Dagger.domain — Method. The domain of an array is a ArrayDomain source 36.7 Dagger.domain Dagger.domain — Method. If no domain method is defined on an object, then we use the UnitDomain on it. A UnitDomain is indivisible. source 36.8 Dagger.load Dagger.load — Method. load(ctx, file_path) Load an Union{Chunk, Thunk} from a file. source 36.9. DAGGER.LOAD 36.9 349 Dagger.load Dagger.load — Method. load(ctx, ::Type{Chunk}, fpath, io) Load a Chunk object from a file, the file path is required for creating a FileReader object source 36.10 Dagger.save Dagger.save — Method. save(io::IO, val) Save a value into the IO buffer. In the case of arrays and sparse matrices, this will save it in a memory-mappable way. load(io::IO, t::Type, domain) will load the object given its domain source 36.11 Dagger.save Dagger.save — Method. save(ctx, chunk::Union{Chunk, Thunk}, file_path::AbsractString) Save a chunk to a file at file path. source 36.12 Dagger.save Dagger.save — Method. special case distmem writing - write to disk on the process with the chunk. source Chapter 37 ShowItLikeYouBuildIt 37.1 ShowItLikeYouBuildIt.showarg ShowItLikeYouBuildIt.showarg — Method. showarg(stream::IO, x) Show x as if it were an argument to a function. This function is used in the printing of “type summaries” in terms of sequences of function calls on objects. The fallback definition is to print x as ::$(typeof(x)), representing argument x in terms of its type. However, you can specialize this function for specific types to customize printing. Example A SubArray created as view(a, :, 3, 2:5), where a is a 3-dimensional Float64 array, has type SubArray{Float64,2,Array{Float64,3},Tuple{Colon,Int64,UnitRange{Int64}},false} and this type will be printed in the summary. To change the printing of this object to view(::Array{Float64,3}, Colon(), 3, 2:5) you could define function ShowItLikeYouBuildIt.showarg(io::IO, v::SubArray) print(io, "view(") showarg(io, parent(v)) print(io, ", ", join(v.indexes, ", ")) print(io, ’)’) end 350 37.2. SHOWITLIKEYOUBUILDIT.SUMMARY BUILD 351 Note that we’re calling showarg recursively for the parent array type. Printing the parent as ::Array{Float64,3} is the fallback behavior, assuming no specialized method for Array has been defined. More generally, this would display as view(, Colon(), 3, 2:5) where is the output of showarg for a. This printing might be activated any time v is a field in some other container, or if you specialize Base.summary for SubArray to call summary build. See also: summary build. source 37.2 ShowItLikeYouBuildIt.summary build ShowItLikeYouBuildIt.summary build — Function. summary_build(A::AbstractArray, [cthresh]) Return a string representing A in terms of the sequence of function calls that might be used to create A, along with information about A’s size or indices and element type. This function should never be called directly, but instead used to specialize Base.summary for specific AbstractArray subtypes. For example, if you want to change the summary of SubArray, you might define Base.summary(v::SubArray) = summary_build(v) This function goes hand-in-hand with showarg. If you have defined a showarg method for SubArray as in the documentation for showarg, then the summary of a SubArray might look like this: 34 view(::Array{Float64,3}, :, 3, 2:5) with element type Float64 instead of this: 34 SubArray{Float64,2,Array{Float64,3},Tuple{Colon,Int64,UnitRange{Int64}},false} The optional argument cthresh is a “complexity threshold”; objects with type descriptions that are less complex than the specified threshold will be printed using the traditional type-based summary. The default value is n+1, where n is the number of parameters in typeof(A). The complexity is calculated with type complexity. You can choose a cthresh of 0 if you want to ensure that your showarg version is always used. See also: showarg, type complexity. source 352 37.3 CHAPTER 37. SHOWITLIKEYOUBUILDIT ShowItLikeYouBuildIt.type complexity ShowItLikeYouBuildIt.type complexity — Method. type_complexity(T::Type) -> c Return an integer c representing a measure of the “complexity” of type T. For unnested types, c = n+1 where n is the number of parameters in type T. However, type complexity calls itself recursively on the parameters, so if the parameters have their own parameters then the complexity of the type will be (potentially much) higher than this. Examples # Array{Float64,2} julia> a = rand(3,5); julia> type_complexity(typeof(a)) 3 julia> length(typeof(a).parameters)+1 3 # Create an object that has type: # SubArray{Int64,2,Base.ReshapedArray{Int64,2,UnitRange{Int64},Tuple{}},Tuple{StepRa julia> r = reshape(1:9, 3, 3); julia> v = view(r, 1:2:3, :); julia> type_complexity(typeof(v)) 15 julia> length(typeof(v).parameters)+1 6 The second example indicates that the total complexity of v’s type is considerably higher than the complexity of just its “outer” SubArray type. source Chapter 38 CoordinateTransformations 38.1 CoordinateTransformations.cameramap CoordinateTransformations.cameramap — Method. cameramap() cameramap(scale) cameramap(scale, offset) Create a transformation that takes points in real space (e.g. 3D) and projects them through a perspective transformation onto the focal plane of an ideal (pinhole) camera with the given properties. The scale sets the scale of the screen. For a standard digital camera, this would be scale = focal length / pixel size. Non-square pixels are supported by providing a pair of scales in a tuple, scale = (scale x, scale y). Positive scales represent a camera looking in the +z axis with a virtual screen in front of the camera (the x,y coordinates are not inverted compared to 3D space). Note that points behind the camera (with negative z component) will be projected (and inverted) onto the image coordinates and it is up to the user to cull such points as necessary. The offset = (offset x, offset y) is used to define the origin in the imaging plane. For instance, you may wish to have the point (0,0) represent the top-left corner of your imaging sensor. This measurement is in the units after applying scale (e.g. pixels). (see also PerspectiveMap) source 38.2 CoordinateTransformations.compose CoordinateTransformations.compose — Method. compose(trans1, trans2) 353 354 trans1 CHAPTER 38. COORDINATETRANSFORMATIONS trans2 Take two transformations and create a new transformation that is equivalent to successively applying trans2 to the coordinate, and then trans1. By default will create a ComposedTransformation, however this method can be overloaded for efficiency (e.g. two affine transformations naturally compose to a single affine transformation). source 38.3 CoordinateTransformations.recenter CoordinateTransformations.recenter — Method. recenter(trans::Union{AbstractMatrix,Transformation}, origin::AbstractVector) -> ctrans Return a new transformation ctrans such that point origin serves as the origin-of-coordinates for trans. Translation by origin occurs both before and after applying trans, so that if trans is linear we have ctrans(origin) == origin As a consequence, recenter only makes sense if the output space of trans is isomorphic with the input space. For example, if trans is a rotation matrix, then ctrans rotates space around origin. source 38.4 CoordinateTransformations.transform deriv CoordinateTransformations.transform deriv — Method. transform_deriv(trans::Transformation, x) A matrix describing how differentials on the parameters of x flow through to the output of transformation trans. source 38.5 CoordinateTransformations.transform deriv params CoordinateTransformations.transform deriv params — Method. transform_deriv_params(trans::AbstractTransformation, x) A matrix describing how differentials on the parameters of trans flow through to the output of transformation trans given input x. source Chapter 39 Graphics 39.1 Graphics.aspect ratio Graphics.aspect ratio — Method. aspect_ratio(bb::BoundingBox) -> r Compute the ratio r of the height and width of bb. source 39.2 Graphics.deform Graphics.deform — Method. deform(bb::BoundingBox, l, r, t, b) -> bbnew Add l (left), r (right), t (top), and b (bottom) to the edges of a BoundingBox. source 39.3 Graphics.inner canvas Graphics.inner canvas — Method. inner_canvas(c::GraphicsContext, device::BoundingBox, user::BoundingBox) inner_canvas(c::GraphicsContext, x, y, w, h, l, r, t, b) Create a rectangular drawing area inside device (represented in devicecoordinates), giving it user-coordinates user. Any drawing that occurs outside this box is clipped. x, y, w, and h are an alternative parametrization of device, and l, r, t, b parametrize user. See also: set coordinates. source 355 356 CHAPTER 39. 39.4 GRAPHICS Graphics.isinside Graphics.isinside — Method. isinside(bb::BoundingBox, p::Point) -> tf::Bool isinside(bb::BoundingBox, x, y) -> tf::Bool Determine whether the point lies within bb. source 39.5 Graphics.rotate Graphics.rotate — Method. rotate(bb::BoundingBox, angle, o) -> bbnew Rotate bb around o by angle, returning the BoundingBox that encloses the vertices of the rotated box. source 39.6 Graphics.rotate Graphics.rotate — Method. rotate(p::Vec2, angle::Real, o::Vec2) -> pnew Rotate p around o by angle. source 39.7 Graphics.set coordinates Graphics.set coordinates — Method. set_coordinates(c::GraphicsContext, device::BoundingBox, user::BoundingBox) set_coordinates(c::GraphicsContext, user::BoundingBox) Set the device->user coordinate transformation of c so that device, expressed in “device coordinates” (pixels), is equivalent to user as expressed in “user coordinates”. If device is omitted, it defaults to the full span of c, BoundingBox(0, width(c), 0, height(c)). See also get matrix, set matrix. source 39.8. GRAPHICS.SHIFT 39.8 Graphics.shift Graphics.shift — Method. shift(bb::BoundingBox, x, y) -> bbnew Shift center by (x,y), keeping width & height fixed. source 357 Chapter 40 MacroTools 40.1 MacroTools.inexpr MacroTools.inexpr — Method. inexpr(expr, x) Simple expression match; will return true if the expression x can be found inside expr. inexpr(:(2+2), 2) == true source 40.2 MacroTools.isdef MacroTools.isdef — Method. Test for function definition expressions. source 40.3 MacroTools.isexpr MacroTools.isexpr — Method. isexpr(x, ts...) Convenient way to test the type of a Julia expression. Expression heads and types are supported, so for example you can call isexpr(expr, String, :string) to pick up on all string-like expressions. source 358 40.4. MACROTOOLS.NAMIFY 40.4 359 MacroTools.namify MacroTools.namify — Method. An easy way to get pull the (function/type) name out of expressions like foo{T} or Bar{T} <: Vector{T}. source 40.5 MacroTools.prettify MacroTools.prettify — Method. prettify(ex) Makes generated code generaly nicer to look at. source 40.6 MacroTools.rmlines MacroTools.rmlines — Method. rmlines(x) Remove the line nodes from a block or array of expressions. Compare quote end vs rmlines(quote end) source 40.7 MacroTools.splitarg MacroTools.splitarg — Method. splitarg(arg) Match function arguments (whether from a definition or a function call) such as x::Int=2 and return (arg name, arg type, is splat, default). arg name and default are nothing when they are absent. For example: [] ¿ map(splitarg, (:(f(a=2, x::Int=nothing, y, args...))).args[2:end]) 4-element Array{Tuple{Symbol,Symbol,Bool,Any},1}: (:a, :Any, false, 2) (:x, :Int, false, :nothing) (:y, :Any, false, nothing) (:args, :Any, true, nothing) source 360 CHAPTER 40. 40.8 MACROTOOLS MacroTools.splitdef MacroTools.splitdef — Method. splitdef(fdef) Match any function definition [] function name{params}(args; kwargs)::rtype where {whereparams} body end and return Dict(:name=>..., :args=>..., etc.). The definition can be rebuilt by calling MacroTools.combinedef(dict), or explicitly with rtype = get(dict, :rtype, :Any) all_params = [get(dict, :params, [])..., get(dict, :whereparams, [])...] :(function $(dict[:name]){$(all_params...)}($(dict[:args]...); $(dict[:kwargs]...))::$rtype $(dict[:body]) end) source 40.9 MacroTools.unblock MacroTools.unblock — Method. unblock(expr) Remove outer begin blocks from an expression, if the block is redundant (i.e. contains only a single expression). source Chapter 41 ImageMorphology 41.1 ImageMorphology.bothat ImageMorphology.bothat — Function. imgbh = bothat(img, [region]) performs bottom hat of an image, which is defined as its morphological closing minus the original image. region allows you to control the dimensions over which this operation is performed. source 41.2 ImageMorphology.closing ImageMorphology.closing — Function. imgc = closing(img, [region]) performs the closing morphology operation, equivalent to erode(dilate(img)). region allows you to control the dimensions over which this operation is performed. source 41.3 ImageMorphology.dilate ImageMorphology.dilate — Function. imgd = dilate(img, [region]) perform a max-filter over nearest-neighbors. The default is 8-connectivity in 2d, 27-connectivity in 3d, etc. You can specify the list of dimensions that you want to include in the connectivity, e.g., region = [1,2] would exclude the third dimension from filtering. source 361 362 41.4 CHAPTER 41. IMAGEMORPHOLOGY ImageMorphology.erode ImageMorphology.erode — Function. imge = erode(img, [region]) perform a min-filter over nearest-neighbors. The default is 8-connectivity in 2d, 27-connectivity in 3d, etc. You can specify the list of dimensions that you want to include in the connectivity, e.g., region = [1,2] would exclude the third dimension from filtering. source 41.5 ImageMorphology.morphogradient ImageMorphology.morphogradient — Function. imgmg = morphogradient(img, [region]) returns morphological gradient of the image, which is the difference between the dilation and the erosion of a given image. region allows you to control the dimensions over which this operation is performed. source 41.6 ImageMorphology.morpholaplace ImageMorphology.morpholaplace — Function. imgml = morpholaplace(img, [region]) performs Morphological Laplacian of an image, which is defined as the arithmetic difference between the internal and the external gradient. region allows you to control the dimensions over which this operation is performed. source 41.7 ImageMorphology.opening ImageMorphology.opening — Function. imgo = opening(img, [region]) performs the opening morphology operation, equivalent to dilate(erode(img)). region allows you to control the dimensions over which this operation is performed. source 41.8 ImageMorphology.tophat ImageMorphology.tophat — Function. imgth = tophat(img, [region]) performs top hat of an image, which is defined as the image minus its morphological opening. region allows you to control the dimensions over which this operation is performed. source Chapter 42 Contour 42.1 Contour.contour Contour.contour — Method. contour(x, y, z, level::Number) Trace a single contour level, indicated by the argument level. You’ll usually call lines on the output of contour, and then iterate over the result. source 42.2 Contour.contours Contour.contours — Method. contours(x,y,z,levels) Trace the contour levels indicated by the levels argument. source 42.3 Contour.contours Contour.contours — Method. contours returns a set of isolines. You’ll usually call levels on the output of contours. source 42.4 Contour.contours Contour.contours — Method. contours(x,y,z,Nlevels::Integer) Trace Nlevels contour levels at heights chosen by the library (using the contourlevels function). source 363 364 42.5 CHAPTER 42. CONTOUR Contour.contours Contour.contours — Method. contours(x,y,z) Trace 10 automatically chosen contour levels. source 42.6 Contour.coordinates Contour.coordinates — Method. coordinates(c) Returns the coordinates of the vertices of the contour line as a tuple of lists. source 42.7 Contour.level Contour.level — Method. level(c) Indicates the z-value at which the contour level c was traced. source 42.8 Contour.levels Contour.levels — Method. Turns the output of contours into an iterable with each of the traced contour levels. Each of the objects support level and coordinates. source 42.9 Contour.lines Contour.lines — Method. lines(c) Extracts an iterable collection of isolines from a contour level. Use coordinates to get the coordinates of a line. source Chapter 43 Compose 43.1 Compose.circle Compose.circle — Function. circle(xs, ys, rs) Arguments can be passed in arrays in order to perform multiple drawing operations. source 43.2 Compose.circle Compose.circle — Function. circle(x, y, r) Define a circle with its center at (x,y) and a radius of r. source 43.3 Compose.circle Compose.circle — Method. circle() Define a circle in the center of the current context with a diameter equal to the width of the context. source 365 366 CHAPTER 43. 43.4 COMPOSE Compose.polygon Compose.polygon — Method. polygon(points) Define a polygon. points is an array of (x,y) tuples that specify the corners of the polygon. source 43.5 Compose.rectangle Compose.rectangle — Function. rectangle(x0s, y0s, widths, heights) Arguments can be passed in arrays in order to perform multiple drawing operations at once. source 43.6 Compose.rectangle Compose.rectangle — Function. rectangle(x0, y0, width, height) Define a rectangle of size widthxheight with its top left corner at the point (x, y). source 43.7 Compose.rectangle Compose.rectangle — Method. rectangle() Define a rectangle that fills the current context completely. source 43.8 Compose.text Compose.text — Function. text(x, y, value [,halign::HAlignment [,valign::VAlignment [,rot::Rotation]]]) 43.9. COMPOSE.TEXT 367 Draw the text value at the position (x,y) relative to the current context. The default alignment of the text is hleft vbottom. The vertical and horizontal alignment is specified by passing hleft, hcenter or hright and vtop, vcenter or vbottom as values for halgin and valgin respectively. source 43.9 Compose.text Compose.text — Function. text(xs, ys, values [,haligns::HAlignment [,valigns::VAlignment [,rots::Rotation]]]) Arguments can be passed in arrays in order to perform multiple drawing operations at once. source Chapter 44 CoupledFields 44.1 CoupledFields.CVfn CoupledFields.CVfn — Method. CVfn{T<:Matrix{Float64}}(parm::T, X::T, Y::T, modelfn::Function, kerneltype::DataType; Cross-validation function source 44.2 CoupledFields.Rsq adj CoupledFields.Rsq adj — Method. Rsq_adj{T<:Array{Float64}}(Tx::T, Ty::T, df::Int): Cross-validation metric source 44.3 CoupledFields.bf CoupledFields.bf — Method. bf(x::Vector{Float64}, df::Int): Compute a piecewise linear basis matrix for the vector x. source 368 44.4. COUPLEDFIELDS.CCA 44.4 369 CoupledFields.cca CoupledFields.cca — Method. cca{T<:Matrix{Float64}}(v::Array{Float64}, X::T,Y::T): Regularized Canonical Correlation Analysis using SVD. source 44.5 CoupledFields.gKCCA CoupledFields.gKCCA — Method. gKCCA(par::Array{Float64}, X::Matrix{Float64}, Y::Matrix{Float64}, kpars::KernelParameters): Compute the projection matrices and components for gKCCA. source 44.6 CoupledFields.gradvecfield CoupledFields.gradvecfield — Method. gradvecfield{N<:Float64, T<:Matrix{Float64}}(par::Array{N}, X::T, Y::T, kpars::KernelParameters ) Compute the gradient vector or gradient matrix at each instance of the X and Y fields, by making use of a kernel feature space. source 44.7 CoupledFields.whiten CoupledFields.whiten — Method. whiten(x::Matrix{Float64}, d::Float64; lat=nothing): Whiten matrix d (0-1) Percentage variance of components to retain. lat Latitudinal area-weighting. source Chapter 45 AxisAlgorithms 45.1 AxisAlgorithms.A ldiv B md! AxisAlgorithms.A ldiv B md! — Method. A ldiv B md!(dest, F, src, dim) solves a tridiagonal system along dimension dim of src, storing the result in dest. Currently, F must be an LUfactorized tridiagonal matrix. If desired, you may safely use the same array for both src and dest, so that this becomes an in-place algorithm. source 45.2 AxisAlgorithms.A ldiv B md AxisAlgorithms.A ldiv B md — Method. A ldiv B md(F, src, dim) solves F for slices b of src along dimension dim, storing the result along the same dimension of the output. Currently, F must be an LU-factorized tridiagonal matrix or a Woodbury matrix. source 45.3 AxisAlgorithms.A mul B md! AxisAlgorithms.A mul B md! — Method. A mul B md!(dest, M, src, dim) computes M*x for slices x of src along dimension dim, storing the result in dest. M must be an AbstractMatrix. This uses an in-place naive algorithm. source 45.4 AxisAlgorithms.A mul B md AxisAlgorithms.A mul B md — Method. 370 45.5. AXISALGORITHMS.A MUL B PERM! 371 A mul B md(M, src, dim) computes M*x for slices x of src along dimension dim, storing the resulting vector along the same dimension of the output. M must be an AbstractMatrix. This uses an in-place naive algorithm. source 45.5 AxisAlgorithms.A mul B perm! AxisAlgorithms.A mul B perm! — Method. A mul B perm!(dest, M, src, dim) computes M*x for slices x of src along dimension dim, storing the result in dest. M must be an AbstractMatrix. This uses permutedims to make dimension dim into the first dimension, performs a standard matrix multiplication, and restores the original dimension ordering. In many cases, this algorithm exhibits the best cache behavior. source 45.6 AxisAlgorithms.A mul B perm AxisAlgorithms.A mul B perm — Method. A mul B perm(M, src, dim) computes M*x for slices x of src along dimension dim, storing the resulting vector along the same dimension of the output. M must be an AbstractMatrix. This uses permutedims to make dimension dim into the first dimension, performs a standard matrix multiplication, and restores the original dimension ordering. In many cases, this algorithm exhibits the best cache behavior. source Chapter 46 Libz 46.1 Libz.ZlibDeflateInputStream Libz.ZlibDeflateInputStream — Method. ZlibDeflateInputStream(input[; ]) Construct a zlib deflate input stream to compress gzip/zlib data. Arguments • input: a byte vector, IO object, or BufferedInputStream containing data to compress. • bufsize::Integer=8192: input and output buffer size. • gzip::Bool=true: if true, data is gzip compressed; if false, zlib compressed. • level::Integer=6: compression level in 1-9. • mem level::Integer=8: memory to use for compression in 1-9. • strategy=Z DEFAULT STRATEGY: compression strategy; see zlib documentation. source 46.2 Libz.ZlibDeflateOutputStream Libz.ZlibDeflateOutputStream — Method. ZlibDeflateOutputStream(output[; ]) Construct a zlib deflate output stream to compress gzip/zlib data. Arguments 372 46.3. LIBZ.ZLIBINFLATEINPUTSTREAM 373 • output: a byte vector, IO object, or BufferedInputStream to which compressed data should be written. • bufsize::Integer=8192: input and output buffer size. • gzip::Bool=true: if true, data is gzip compressed; if false, zlib compressed. • level::Integer=6: compression level in 1-9. • mem level::Integer=8: memory to use for compression in 1-9. • strategy=Z DEFAULT STRATEGY: compression strategy; see zlib documentation. source 46.3 Libz.ZlibInflateInputStream Libz.ZlibInflateInputStream — Method. ZlibInflateInputStream(input[; ]) Construct a zlib inflate input stream to decompress gzip/zlib data. Arguments • input: a byte vector, IO object, or BufferedInputStream containing compressed data to inflate. • bufsize::Integer=8192: input and output buffer size. • gzip::Bool=true: if true, data is gzip compressed; if false, zlib compressed. • reset on end::Bool=true: on stream end, try to find the start of another stream. source 46.4 Libz.ZlibInflateOutputStream Libz.ZlibInflateOutputStream — Method. ZlibInflateOutputStream(output[; ]) Construct a zlib inflate output stream to decompress gzip/zlib data. Arguments • output: a byte vector, IO object, or BufferedInputStream to which decompressed data should be written. 374 CHAPTER 46. LIBZ • bufsize::Integer=8192: input and output buffer size. • gzip::Bool=true: if true, data is gzip compressed; if false, zlib compressed. source 46.5 Libz.adler32 Libz.adler32 — Function. adler32(data) Compute the Adler-32 checksum over the data input. data can be BufferedInputStream or Vector{UInt8}. source 46.6 Libz.crc32 Libz.crc32 — Function. crc32(data) Compute the CRC-32 checksum over the data input. data can be BufferedInputStream or Vector{UInt8}. source Chapter 47 NullableArrays 47.1 NullableArrays.dropnull! NullableArrays.dropnull! — Method. dropnull!(X::NullableVector) Remove null entries of X in-place and return a Vector view of the unwrapped Nullable entries. source 47.2 NullableArrays.dropnull! NullableArrays.dropnull! — Method. dropnull!(X::AbstractVector) Remove null entries of X in-place and return a Vector view of the unwrapped Nullable entries. If no nulls are present, this is a no-op and X is returned. source 47.3 NullableArrays.dropnull NullableArrays.dropnull — Method. dropnull(X::AbstractVector) Return a vector containing only the non-null entries of X, unwrapping Nullable entries. A copy is always returned, even when X does not contain any null values. source 375 376 CHAPTER 47. 47.4 NULLABLEARRAYS NullableArrays.nullify! NullableArrays.nullify! — Method. nullify!(X::NullableArray, I...) This is a convenience method to set the entry of X at index I to be null source 47.5 NullableArrays.padnull! NullableArrays.padnull! — Method. padnull!(X::NullableVector, front::Integer, back::Integer) Insert front null entries at the beginning of X and add back null entries at the end of X. Returns X. source 47.6 NullableArrays.padnull NullableArrays.padnull — Method. padnull(X::NullableVector, front::Integer, back::Integer) return a copy of X with front null entries inserted at the beginning of the copy and back null entries inserted at the end. source Chapter 48 ImageMetadata 48.1 ImageAxes.data ImageAxes.data — Method. data(img::ImageMeta) -> array Extract the data from img, omitting the properties dictionary. array shares storage with img, so changes to one affect the other. See also: properties. source 48.2 ImageMetadata.copyproperties ImageMetadata.copyproperties — Method. copyproperties(img::ImageMeta, data) -> imgnew Create a new “image,” copying the properties dictionary of img but using the data of the AbstractArray data. Note that changing the properties of imgnew does not affect the properties of img. See also: shareproperties. source 48.3 ImageMetadata.properties ImageMetadata.properties — Method. properties(imgmeta) -> props Extract the properties dictionary props for imgmeta. props shares storage with img, so changes to one affect the other. See also: data. source 377 378 CHAPTER 48. 48.4 IMAGEMETADATA ImageMetadata.shareproperties ImageMetadata.shareproperties — Method. shareproperties(img::ImageMeta, data) -> imgnew Create a new “image,” reusing the properties dictionary of img but using the data of the AbstractArray data. The two images have synchronized properties; modifying one also affects the other. See also: copyproperties. source 48.5 ImageMetadata.spatialproperties ImageMetadata.spatialproperties — Method. spatialproperties(img) Return a vector of strings, containing the names of properties that have been declared “spatial” and hence should be permuted when calling permutedims. Declare such properties like this: img["spatialproperties"] = ["spacedirections"] source Chapter 49 LegacyStrings 49.1 LegacyStrings.utf16 LegacyStrings.utf16 — Function. utf16(::Union{Ptr{UInt16},Ptr{Int16}} [, length]) Create a string from the address of a NUL-terminated UTF-16 string. A copy is made; the pointer can be safely freed. If length is specified, the string does not have to be NUL-terminated. source 49.2 LegacyStrings.utf16 LegacyStrings.utf16 — Method. utf16(s) Create a UTF-16 string from a byte array, array of UInt16, or any other string type. (Data must be valid UTF-16. Conversions of byte arrays check for a byte-order marker in the first two bytes, and do not include it in the resulting string.) Note that the resulting UTF16String data is terminated by the NUL codepoint (16-bit zero), which is not treated as a character in the string (so that it is mostly invisible in Julia); this allows the string to be passed directly to external functions requiring NUL-terminated data. This NUL is appended automatically by the utf16(s) conversion function. If you have a UInt16 array A that is already NUL-terminated valid UTF-16 data, then you can instead use UTF16String(A) to construct the string without making a copy of the data and treating the NUL as a terminator rather than as part of the string. source 379 380 49.3 CHAPTER 49. LEGACYSTRINGS LegacyStrings.utf32 LegacyStrings.utf32 — Function. utf32(::Union{Ptr{Char},Ptr{UInt32},Ptr{Int32}} [, length]) Create a string from the address of a NUL-terminated UTF-32 string. A copy is made; the pointer can be safely freed. If length is specified, the string does not have to be NUL-terminated. source 49.4 LegacyStrings.utf32 LegacyStrings.utf32 — Method. utf32(s) Create a UTF-32 string from a byte array, array of Char or UInt32, or any other string type. (Conversions of byte arrays check for a byte-order marker in the first four bytes, and do not include it in the resulting string.) Note that the resulting UTF32String data is terminated by the NUL codepoint (32-bit zero), which is not treated as a character in the string (so that it is mostly invisible in Julia); this allows the string to be passed directly to external functions requiring NUL-terminated data. This NUL is appended automatically by the utf32(s) conversion function. If you have a Char or UInt32 array A that is already NUL-terminated UTF-32 data, then you can instead use UTF32String(A) to construct the string without making a copy of the data and treating the NUL as a terminator rather than as part of the string. source Chapter 50 BufferedStreams 50.1 BufferedStreams.anchor! BufferedStreams.anchor! — Method. Set the buffer’s anchor to its current position. source 50.2 BufferedStreams.fillbuffer! BufferedStreams.fillbuffer! — Method. Refill the buffer, optionally moving and retaining part of the data. source 50.3 BufferedStreams.isanchored BufferedStreams.isanchored — Method. Return true if the stream is anchored. source 50.4 BufferedStreams.peek BufferedStreams.peek — Method. Return the next byte from the input stream without advancing the position. source 50.5 BufferedStreams.peekbytes! BufferedStreams.peekbytes! — Function. Fills buffer with bytes from stream’s buffer without advancing the position. 381 382 CHAPTER 50. BUFFEREDSTREAMS Unless the buffer is empty, we do not re-fill it. Therefore the number of bytes read is limited to the minimum of nb and the remaining bytes in the buffer. source 50.6 BufferedStreams.takeanchored! BufferedStreams.takeanchored! — Method. Copy and return a byte array from the anchor up to, but not including the current position, also removing the anchor. source 50.7 BufferedStreams.upanchor! BufferedStreams.upanchor! — Method. Remove and return a buffer’s anchor. source Chapter 51 MbedTLS 51.1 MbedTLS.decrypt MbedTLS.decrypt — Function. decrypt(cipher, key, msg, [iv]) -> Vector{UInt8} Decrypt a message using the given cipher. The cipher can be specified as • a generic cipher (like CIPHER AES) • a specific cipher (like CIPHER AES 256 CBC) • a Cipher object key is the symmetric key used for cryptography, given as either a String or a Vector{UInt8}. It must be the right length for the chosen cipher; for example, CIPHER AES 256 CBC requires a 32-byte (256-bit) key. msg is the message to be encoded. It should either be convertible to a String or be a Vector{UInt8}. iv is the initialization vector, whose size must match the block size of the cipher (eg, 16 bytes for AES) and correspond to the iv used by the encryptor. By default, it will be set to all zeros. source 51.2 MbedTLS.digest MbedTLS.digest — Function. digest(kind::MDKind, msg::Vector{UInt8}, [key::Vector{UInt8}]) -> Vector{UInt8} Perform a digest of the given type on the given message (a byte array), return a byte array with the digest. If an optional key is given, perform an HMAC digest. source 383 384 CHAPTER 51. 51.3 MBEDTLS MbedTLS.digest! MbedTLS.digest! — Function. digest!(kind::MDKind, msg::Vector{UInt8}, [key::Vector{UInt8}, ], buffer::Vector{UInt8}) In-place version of digest that stores the digest to buffer. It is the user’s responsibility to ensure that buffer is long enough to contain the digest. get size(kind::MDKind) returns the appropriate size. source 51.4 MbedTLS.encrypt MbedTLS.encrypt — Function. encrypt(cipher, key, msg, [iv]) -> Vector{UInt8} Encrypt a message using the given cipher. The cipher can be specified as • a generic cipher (like CIPHER AES) • a specific cipher (like CIPHER AES 256 CBC) • a Cipher object key is the symmetric key used for cryptography, given as either a String or a Vector{UInt8}. It must be the right length for the chosen cipher; for example, CIPHER AES 256 CBC requires a 32-byte (256-bit) key. msg is the message to be encoded. It should either be convertible to a String or be a Vector{UInt8}. iv is the initialization vector, whose size must match the block size of the cipher (eg, 16 bytes for AES). By default, it will be set to all zeros, which is not secure. For security reasons, it should be set to a different value for each encryption operation. source Chapter 52 DataValues 52.1 DataValues.dropna! DataValues.dropna! — Method. dropna!(X::DataValueVector) Remove missing entries of X in-place and return a Vector view of the unwrapped DataValue entries. source 52.2 DataValues.dropna! DataValues.dropna! — Method. dropna!(X::AbstractVector) Remove missing entries of X in-place and return a Vector view of the unwrapped DataValue entries. If no missing values are present, this is a no-op and X is returned. source 52.3 DataValues.dropna DataValues.dropna — Method. dropna(X::AbstractVector) Return a vector containing only the non-missing entries of X, unwrapping DataValue entries. A copy is always returned, even when X does not contain any missing values. source 385 386 52.4 CHAPTER 52. DATAVALUES DataValues.padna! DataValues.padna! — Method. padna!(X::DataValueVector, front::Integer, back::Integer) Insert front null entries at the beginning of X and add back null entries at the end of X. Returns X. source 52.5 DataValues.padna DataValues.padna — Method. padna(X::DataValueVector, front::Integer, back::Integer) return a copy of X with front null entries inserted at the beginning of the copy and back null entries inserted at the end. source Chapter 53 OnlineStats 53.1 OnlineStats.mapblocks OnlineStats.mapblocks — Function. mapblocks(f::Function, b::Int, data, dim::ObsDimension = Rows()) Map data in batches of size b to the function f. If data includes an AbstractMatrix, the batches will be based on rows or columns, depending on dim. Most usage is through Julia’s do block syntax. Examples s = Series(Mean()) mapblocks(10, randn(100)) do yi fit!(s, yi) info("nobs: $(nobs(s))") end x = [1 2 3 4; 1 2 3 4; 1 2 3 4; 1 2 3 4] mapblocks(println, 2, x) mapblocks(println, 2, x, Cols()) source 53.2 OnlineStats.series OnlineStats.series — Method. 387 388 CHAPTER 53. ONLINESTATS series(o::OnlineStat...; kw...) series(wt::Weight, o::OnlineStat...; kw...) series(data, o::OnlineStat...; kw...) series(data, wt::Weight, o::OnlineStat...; kw...) Create a Series or AugmentedSeries based on whether keyword arguments filter and transform are present. Example series(-rand(100), Mean(), Variance(); filter = isfinite, transform = abs) source 53.3 StatsBase.confint StatsBase.confint — Function. confint(b::Bootstrap, coverageprob = .95) Return a confidence interval for a Bootstrap b. source 53.4 StatsBase.fit! StatsBase.fit! — Method. fit!(s::Series, data) Update a Series with more data. Examples # Univariate Series s = Series(Mean()) fit!(s, randn(100)) # Multivariate Series x = randn(100, 3) s = Series(CovMatrix(3)) fit!(s, x) # Same as fit!(s, x, Rows()) fit!(s, x’, Cols()) # Model Series x, y = randn(100, 10), randn(100) s = Series(LinReg(10)) fit!(s, (x, y)) source Chapter 54 NearestNeighbors 54.1 NearestNeighbors.injectdata NearestNeighbors.injectdata — Method. injectdata(datafreetree, data) -> tree Returns the KDTree/BallTree wrapped by datafreetree, set up to use data for the points data. source 54.2 NearestNeighbors.inrange NearestNeighbors.inrange — Method. inrange(tree::NNTree, points, radius [, sortres=false]) -> indices Find all the points in the tree which is closer than radius to points. If sortres = true the resulting indices are sorted. source 54.3 NearestNeighbors.knn NearestNeighbors.knn — Method. knn(tree::NNTree, points, k [, sortres=false]) -> indices, distances Performs a lookup of the k nearest neigbours to the points from the data in the tree. If sortres = true the result is sorted such that the results are in the order of increasing distance to the point. skip is an optional predicate to determine if a point that would be returned should be skipped. source 389 Chapter 55 IJulia 55.1 IJulia.installkernel IJulia.installkernel — Method. installkernel(name, options...; specname=replace(lowercase(name), " ", "-") Install a new Julia kernel, where the given options are passed to the julia executable, and the user-visible kernel name is given by name followed by the Julia version. Internally, the Jupyter name for the kernel (for the jupyter kernelspec command is given by the optional keyword specname (which defaults to name, converted to lowercase with spaces replaced by hyphens), followed by the Julia version number. Both the kernelspec command (a Cmd object) and the new kernel name are returned by installkernel. For example: kernelspec, kernelname = installkernel("Julia O3", "-O3") creates a new Julia kernel in which julia is launched with the -O3 optimization flag. The returned kernelspec command will be something like jupyter kernelspec (perhaps with different path), and kernelname will be something like julia-O3-0.6 (in Julia 0.6). You could uninstall the kernel by running e.g. run(‘$kernelspec remove -f $kernelname‘) source 55.2 IJulia.notebook IJulia.notebook — Method. notebook(; dir=homedir(), detached=false) 390 55.2. IJULIA.NOTEBOOK 391 The notebook() function launches the Jupyter notebook, and is equivalent to running jupyter notebook at the operating-system command-line. The advantage of launching the notebook from Julia is that, depending on how Jupyter was installed, the user may not know where to find the jupyter executable. By default, the notebook server is launched in the user’s home directory, but this location can be changed by passing the desired path in the dir keyword argument. e.g. notebook(dir=pwd()) to use the current directory. By default, notebook() does not return; you must hit ctrl-c or quit Julia to interrupt it, which halts Jupyter. So, you must leave the Julia terminal open for as long as you want to run Jupyter. Alternatively, if you run notebook(detached=true), the jupyter notebook will launch in the background, and will continue running even after you quit Julia. (The only way to stop Jupyter will then be to kill it in your operating system’s process manager.) source Chapter 56 WebSockets 56.1 Base.close Base.close — Method. close(ws::WebSocket) Send a close message. source 56.2 Base.read Base.read — Method. read(ws::WebSocket) Read one non-control message from a WebSocket. Any control messages that are read will be handled by the handle control frame function. This function will not return until a full non-control message has been read. If the other side doesn’t ever complete its message, this function will never return. Only the data (contents/body/payload) of the message will be returned from this function. source 56.3 Base.write Base.write — Method. Write binary data; will be sent as one frame. source 392 56.4. BASE.WRITE 56.4 Base.write Base.write — Method. Write text data; will be sent as one frame. source 56.5 WebSockets.send ping WebSockets.send ping — Method. Send a ping message, optionally with data. source 56.6 WebSockets.send pong WebSockets.send pong — Method. Send a pong message, optionally with data. source 393 Chapter 57 AutoGrad 57.1 AutoGrad.getval AutoGrad.getval — Method. getval(x) Unbox x if it is a boxed value (Rec), otherwise return x. source 57.2 AutoGrad.grad AutoGrad.grad — Function. grad(fun, argnum=1) Take a function fun(X...)->Y and return another function gfun(X...)->dXi which computes its gradient with respect to positional argument number argnum. The function fun should be scalar-valued. The returned function gfun takes the same arguments as fun, but returns the gradient instead. The gradient has the same type and size as the target argument which can be a Number, Array, Tuple, or Dict. source 57.3 AutoGrad.gradcheck AutoGrad.gradcheck — Method. gradcheck(f, w, x...; kwargs...) 394 57.4. AUTOGRAD.GRADLOSS 395 Numerically check the gradient of f(w,x...;o...) with respect to its first argument w and return a boolean result. The argument w can be a Number, Array, Tuple or Dict which in turn can contain other Arrays etc. Only the largest 10 entries in each numerical gradient array are checked by default. If the output of f is not a number, gradcheck constructs and checks a scalar function by taking its dot product with a random vector. Keywords • gcheck=10: number of largest entries from each numeric array in gradient dw=(grad(f))(w,x...;o...) compared to their numerical estimates. • verbose=false: print detailed messages if true. • kwargs=[]: keyword arguments to be passed to f. • delta=atol=rtol=cbrt(eps(w)): tolerance parameters. See isapprox for their meaning. source 57.4 AutoGrad.gradloss AutoGrad.gradloss — Function. gradloss(fun, argnum=1) Another version of grad where the generated function returns a (gradient,value) pair. source Chapter 58 ComputationalResources 58.1 ComputationalResources.addresource ComputationalResources.addresource — Method. addresource(T) Add T to the list of available resources. For example, addresource(OpenCLLibs) would indicate that you have a GPU and the OpenCL libraries installed. source 58.2 ComputationalResources.haveresource ComputationalResources.haveresource — Method. haveresource(T) Returns true if T is an available resource. For example, haveresource(OpenCLLibs) tests whether the OpenCLLibs have been added as an available resource. This function is typically used inside a module’s init function. Example: [] The i nitf unctionf orM yP ackage: f unctioni nit ) ...otherinitializationcode,possiblysettingtheLOADP AT Hif haveresource(OpenC ( source 58.3 ComputationalResources.rmresource ComputationalResources.rmresource — Method. rmresource(T) 396 58.3. COMPUTATIONALRESOURCES.RMRESOURCE 397 Remove T from the list of available resources. For example, rmresource(OpenCLLibs) would indicate that any future package loads should avoid loading their specializations for OpenCL. source Chapter 59 Clustering 59.1 Clustering.dbscan Clustering.dbscan — Method. dbscan(points, radius ; leafsize = 20, min_neighbors = 1, min_cluster_size = 1) -> clus Cluster points using the DBSCAN (density-based spatial clustering of applications with noise) algorithm. Arguments • points: matrix of points • radius::Real: query radius Keyword Arguments • leafsize::Int: number of points binned in each leaf node in the KDTree • min neighbors::Int: minimum number of neighbors to be a core point • min cluster size::Int: minimum number of points to be a valid cluster Output • Vector{DbscanCluster}: an array of clusters with the id, size core indices and boundary indices Example: [] points = randn(3, 10000) clusters = dbscan(points, 0.05, minn eighbors = 3, minc lusters ize =20)clusterswithlessthan20pointswillbediscarded source 398 59.2. CLUSTERING.MCL 59.2 399 Clustering.mcl Clustering.mcl — Method. mcl(adj::Matrix; [keyword arguments])::MCLResult Identify clusters in the weighted graph using Markov Clustering Algorithm (MCL). Arguments • adj::Matrix{Float64}: adjacency matrix that defines the weighted graph to cluster • add loops::Bool: whether edges of weight 1.0 from the node to itself should be appended to the graph (enabled by default) • expansion::Number: MCL expansion constant (2) • inflation::Number: MCL inflation constant (2.0) • save final matrix::Bool: save final equilibrium state in the result, otherwise leave it empty; disabled by default, could be useful if MCL doesn’t converge • max iter::Integer: max number of MCL iterations • tol::Number: MCL adjacency matrix convergence threshold • prune tol::Number: pruning threshold • display::Symbol: :none for no output or :verbose for diagnostic messages See original MCL implementation. Ref: Stijn van Dongen, “Graph clustering by flow simulation”, 2001 source Chapter 60 JuliaWebAPI 60.1 JuliaWebAPI.apicall JuliaWebAPI.apicall — Method. Calls a remote api cmd with args... and data.... The response is formatted as specified by the formatter specified in conn. source 60.2 JuliaWebAPI.fnresponse JuliaWebAPI.fnresponse — Method. extract and return the response data as a direct function call would have returned but throw error if the call was not successful. source 60.3 JuliaWebAPI.httpresponse JuliaWebAPI.httpresponse — Method. construct an HTTP Response object from the API response source 60.4 JuliaWebAPI.process JuliaWebAPI.process — Method. start processing as a server source 400 60.5. JULIAWEBAPI.REGISTER 60.5 401 JuliaWebAPI.register JuliaWebAPI.register — Method. Register a function as API call. TODO: validate method belongs to module? source Chapter 61 DecisionTree 61.1 DecisionTree.apply adaboost stumps proba DecisionTree.apply adaboost stumps proba — Method. apply_adaboost_stumps_proba(stumps::Ensemble, coeffs, features, labels::Vector) computes P(L=label|X) for each row in features. It returns a N row x n labels matrix of probabilities, each row summing up to 1. col labels is a vector containing the distinct labels (eg. [“versicolor”, “virginica”, “setosa”]). It specifies the column ordering of the output matrix. source 61.2 DecisionTree.apply forest proba DecisionTree.apply forest proba — Method. apply_forest_proba(forest::Ensemble, features, col_labels::Vector) computes P(L=label|X) for each row in features. It returns a N row x n labels matrix of probabilities, each row summing up to 1. col labels is a vector containing the distinct labels (eg. [“versicolor”, “virginica”, “setosa”]). It specifies the column ordering of the output matrix. source 61.3 DecisionTree.apply tree proba DecisionTree.apply tree proba — Method. apply_tree_proba(::Node, features, col_labels::Vector) 402 61.3. DECISIONTREE.APPLY TREE PROBA 403 computes P(L=label|X) for each row in features. It returns a N row x n labels matrix of probabilities, each row summing up to 1. col labels is a vector containing the distinct labels (eg. [“versicolor”, “virginica”, “setosa”]). It specifies the column ordering of the output matrix. source Chapter 62 Blosc 62.1 Blosc.compress Blosc.compress — Function. compress(data; level=5, shuffle=true, itemsize) Return a Vector{UInt8} of the Blosc-compressed data, where data is an array or a string. The level keyword indicates the compression level (between 0=no compression and 9=max), shuffle indicates whether to use Blosc’s shuffling preconditioner, and the shuffling preconditioner is optimized for arrays of binary items of size (in bytes) itemsize (defaults to sizeof(eltype(data)) for arrays and the size of the code units for strings). source 62.2 Blosc.compress! Blosc.compress! — Function. compress!(dest::Vector{UInt8}, src; kws...) Like compress(src; kws...), but writes to a pre-allocated array dest of bytes. The return value is the size in bytes of the data written to dest, or 0 if the buffer was too small. source 62.3 Blosc.decompress! Blosc.decompress! — Method. decompress!(dest::Vector{T}, src::Vector{UInt8}) 404 62.4. BLOSC.DECOMPRESS 405 Like decompress, but uses a pre-allocated destination buffer dest, which is resized as needed to store the decompressed data from src. source 62.4 Blosc.decompress Blosc.decompress — Method. decompress(T::Type, src::Vector{UInt8}) Return the compressed buffer src as an array of element type T. source Chapter 63 Missings 63.1 Missings.allowmissing Missings.allowmissing — Method. allowmissing(x::AbstractArray) Return an array equal to x allowing for missing values, i.e. with an element type equal to Union{eltype(x), Missing}. When possible, the result will share memory with x (as with convert). See also: disallowmissing source 63.2 Missings.disallowmissing Missings.disallowmissing — Method. disallowmissing(x::AbstractArray) Return an array equal to x not allowing for missing values, i.e. with an element type equal to Missings.T(eltype(x)). When possible, the result will share memory with x (as with convert). If x contains missing values, a MethodError is thrown. See also: allowmissing source 63.3 Missings.levels Missings.levels — Method. levels(x) 406 63.3. MISSINGS.LEVELS 407 Return a vector of unique values which occur or could occur in collection x, omitting missing even if present. Values are returned in the preferred order for the collection, with the result of sort as a default. Contrary to unique, this function may return values which do not actually occur in the data, and does not preserve their order of appearance in x. source Chapter 64 Parameters 64.1 Parameters.reconstruct Parameters.reconstruct — Method. Make a new instance of a type with the same values as the input type except for the fields given in the associative second argument or as keywords. [] struct A; a; b end a = A(3,4) b = reconstruct(a, [(:b, 99)]) ==A(3,99) source 64.2 Parameters.type2dict Parameters.type2dict — Method. Transforms a type-instance into a dictionary. julia> type T a b end julia> type2dict(T(4,5)) Dict{Symbol,Any} with 2 entries: :a => 4 :b => 5 source 64.3 Parameters.with kw Parameters.with kw — Function. This function is called by the @with kw macro and does the syntax transformation from: 408 64.3. PARAMETERS.WITH KW 409 [] @withk wstructM M {R}r :: R =1000.a :: Rend into [] struct MM{R} r::R a::R MM{R}(r,a) where {R} = new(r,a) MM{R}(;r=1000., a=error(”no default for a”)) where {R} = MM{R}(r,a) inner kw, type-paras are required when calling end MM(r::R,a::R) where {R} = MM{R}(r,a) default outer positional constructor MM(;r=1000,a=error(”no default for a”)) = MM(r,a) outer kw, so no type-paras are needed when calling MM(m::MM; kws...) = reconstruct(mm,kws) MM(m::MM, di::Union{Associative, Tuple{Symbol,Any}}) = reconstruct(mm, di) macro unpackM M (varname)esc(quoter = varname.ra = varname.aend)endmacropackM M ( source Chapter 65 HDF5 65.1 HDF5.h5open HDF5.h5open — Function. h5open(filename::AbstractString, mode::AbstractString="r"; swmr=false) Open or create an HDF5 file where mode is one of: • “r” read only • “r+” read and write • “w” read and write, create a new file (destroys any existing contents) Pass swmr=true to enable (Single Writer Multiple Reader) SWMR write access for “w” and “r+”, or SWMR read access for “r”. source 65.2 HDF5.h5open HDF5.h5open — Method. function h5open(f::Function, args...; swmr=false) Apply the function f to the result of h5open(args...;kwargs...) and close the resulting HDF5File upon completion. For example with a do block: h5open("foo.h5","w") do h5 h5["foo"]=[1,2,3] end source 410 65.3. HDF5.ISHDF5 65.3 411 HDF5.ishdf5 HDF5.ishdf5 — Method. ishdf5(name::AbstractString) Returns true if name is a path to a valid hdf5 file, false otherwise. source 65.4 HDF5.set dims! HDF5.set dims! — Method. set_dims!(dset::HDF5Dataset, new_dims::Dims) Change the current dimensions of a dataset to new dims, limited by max dims = get dims(dset)[2]. Reduction is possible and leads to loss of truncated data. source Chapter 66 HttpServer 66.1 Base.run Base.run — Method. run starts server Functionality: • Accepts incoming connections and instantiates each Client. • Manages the client.id pool. • Spawns a new Task for each connection. • Blocks forever. Method accepts following keyword arguments: • host - binding address • port - binding port • ssl - SSL configuration. Use this argument to enable HTTPS support. Can be either an MbedTLS.SSLConfig object that already has associated certificates, or a tuple of an MbedTLS.CRT (certificate) and MbedTLS.PKContext (private key)). In the latter case, a configuration with reasonable defaults will be used. • socket - named pipe/domain socket path. Use this argument to enable Unix socket support. It’s available only on Unix. Network options are ignored. Compatibility: • for backward compatibility use run(server::Server, port::Integer) 412 66.2. BASE.WRITE 413 Example: server = Server() do req, res "Hello world" end # start server on localhost run(server, host=IPv4(127,0,0,1), port=8000) # or run(server, 8000) source 66.2 Base.write Base.write — Method. Converts a Response to an HTTP response string source 66.3 HttpServer.setcookie! HttpServer.setcookie! — Function. Sets a cookie with the given name, value, and attributes on the given response object. source Chapter 67 MappedArrays 67.1 MappedArrays.mappedarray MappedArrays.mappedarray — Method. mappedarray(f, A) creates a view of the array A that applies f to every element of A. The view is read-only (you can get values but not set them). source 67.2 MappedArrays.mappedarray MappedArrays.mappedarray — Method. mappedarray((f, finv), A) creates a view of the array A that applies f to every element of A. The inverse function, finv, allows one to also set values of the view and, correspondingly, the values in A. source 67.3 MappedArrays.of eltype MappedArrays.of eltype — Method. of_eltype(T, A) of_eltype(val::T, A) creates a view of A that lazily-converts the element type to T. source 414 Chapter 68 TextParse 68.1 TextParse.csvread TextParse.csvread — Function. csvread(file::Union{String,IO}, delim=’,’; ...) Read CSV from file. Returns a tuple of 2 elements: 1. A tuple of columns each either a Vector, DataValueArray or PooledArray 2. column names if header exists=true, empty array otherwise Arguments: • file: either an IO object or file name string • delim: the delimiter character • spacedelim: (Bool) parse space-delimited files. delim has no effect if true. • quotechar: character used to quote strings, defaults to " • escapechar: character used to escape quotechar in strings. (could be the same as quotechar) • pooledstrings: whether to try and create PooledArray of strings • nrows: number of rows in the file. Defaults to 0 in which case we try to estimate this. • skiplines begin: skips specified number of lines at the beginning of the file • header exists: boolean specifying whether CSV file contains a header 415 416 CHAPTER 68. TEXTPARSE • nastrings: strings that are to be considered NA. Defaults to TextParse.NA STRINGS • colnames: manually specified column names. Could be a vector or a dictionary from Int index (the column) to String column name. • colparsers: Parsers to use for specified columns. This can be a vector or a dictionary from column name / column index (Int) to a “parser”. The simplest parser is a type such as Int, Float64. It can also be a dateformat"...", see CustomParser if you want to plug in custom parsing behavior • type detect rows: number of rows to use to infer the initial colparsers defaults to 20. source Chapter 69 LossFunctions 69.1 LearnBase.scaled LearnBase.scaled — Method. scaled(loss::SupervisedLoss, K) Returns a version of loss that is uniformly scaled by K. This function dispatches on the type of loss in order to choose the appropriate type of scaled loss that will be used as the decorator. For example, if typeof(loss) <: DistanceLoss then the given loss will be boxed into a ScaledDistanceLoss. Note: If typeof(K) <: Number, then this method will poison the typeinference of the calling scope. This is because K will be promoted to a type parameter. For a typestable version use the following signature: scaled(loss, Val{K}) source 69.2 LossFunctions.weightedloss LossFunctions.weightedloss — Method. weightedloss(loss, weight) Returns a weighted version of loss for which the value of the positive class is changed to be weight times its original, and the negative class 1 - weight times its original respectively. Note: If typeof(weight) <: Number, then this method will poison the type-inference of the calling scope. This is because weight will be promoted to a type parameter. For a typestable version use the following signature: weightedloss(loss, Val{weight}) source 417 Chapter 70 LearnBase 70.1 LearnBase.grad LearnBase.grad — Function. Return the gradient of the learnable parameters w.r.t. some objective source 70.2 LearnBase.grad! LearnBase.grad! — Function. Do a backward pass, updating the gradients of learnable parameters and/or inputs source 70.3 LearnBase.inputdomain LearnBase.inputdomain — Function. Returns an AbstractSet representing valid input values source 70.4 LearnBase.targetdomain LearnBase.targetdomain — Function. Returns an AbstractSet representing valid output/target values source 70.5 LearnBase.transform! LearnBase.transform! — Function. 418 70.5. LEARNBASE.TRANSFORM! Do a forward pass, and return the output source 419 Chapter 71 Juno 71.1 Juno.clearconsole Juno.clearconsole — Method. clearconsole() Clear the console if Juno is used; does nothing otherwise. source 71.2 Juno.input Juno.input — Function. input(prompt = "") -> "..." Prompt the user to input some text, and return it. Optionally display a prompt. source 71.3 Juno.selector Juno.selector — Method. selector([xs...]) -> x Allow the user to select one of the xs. xs should be an iterator of strings. Currently there is no fallback in other environments. source 420 71.4. JUNO.STRUCTURE 71.4 421 Juno.structure Juno.structure — Method. structure(x) Display x’s underlying representation, rather than using its normal display method. For example, structure(:(2x+1)) displays the Expr object with its head and args fields instead of printing the expression. source Chapter 72 HttpParser 72.1 HttpParser.http method str HttpParser.http method str — Method. Returns a string version of the HTTP method. source 72.2 HttpParser.http parser execute HttpParser.http parser execute — Method. Run a request through a parser with specific callbacks on the settings instance. source 72.3 HttpParser.http parser init HttpParser.http parser init — Function. Intializes the Parser object with the correct memory. source 72.4 HttpParser.parse url HttpParser.parse url — Method. Parse a URL source 422 Chapter 73 ImageAxes 73.1 ImageAxes.istimeaxis ImageAxes.istimeaxis — Method. istimeaxis(ax) Test whether the axis ax corresponds to time. source 73.2 ImageAxes.timeaxis ImageAxes.timeaxis — Method. timeaxis(A) Return the time axis, if present, of the array A, and nothing otherwise. source 73.3 ImageAxes.timedim ImageAxes.timedim — Method. timedim(img) -> d::Int Return the dimension of the array used for encoding time, or 0 if not using an axis for this purpose. Note: if you want to recover information about the time axis, it is generally better to use timeaxis. source 423 Chapter 74 Flux 74.1 Flux.GRU Flux.GRU — Method. GRU(in::Integer, out::Integer, = tanh) Gated Recurrent Unit layer. Behaves like an RNN but generally exhibits a longer memory span over sequences. See this article for a good overview of the internals. source 74.2 Flux.LSTM Flux.LSTM — Method. LSTM(in::Integer, out::Integer, = tanh) Long Short Term Memory recurrent layer. Behaves like an RNN but generally exhibits a longer memory span over sequences. See this article for a good overview of the internals. source 74.3 Flux.RNN Flux.RNN — Method. RNN(in::Integer, out::Integer, = tanh) The most basic recurrent layer; essentially acts as a Dense layer, but with the output fed back into the input each time step. source 424 Chapter 75 IntervalSets 75.1 IntervalSets.:.. IntervalSets.:.. — Method. iv = l..r Construct a ClosedInterval iv spanning the region from l to r. source 75.2 IntervalSets.: IntervalSets.: — Method. iv = centerhalfwidth Construct a ClosedInterval iv spanning the region from center - halfwidth to center + halfwidth. source 75.3 IntervalSets.width IntervalSets.width — Method. w = width(iv) Calculate the width (max-min) of interval iv. Note that for integers l and r, width(l..r) = length(l:r) - 1. source 425 Chapter 76 Media 76.1 Media.getdisplay Media.getdisplay — Method. getdisplay(T) Find out what output device T will display on. source 76.2 Media.media Media.media — Method. media(T) gives the media type of the type T. The default is Textual. media(Gadfly.Plot) == Media.Plot source 76.3 Media.setdisplay Media.setdisplay — Method. setdisplay([input], T, output) Display T objects using output when produced by input. T is an object type or media type, e.g. Gadfly.Plot or Media.Graphical. display(Editor(), Image, Console()) source 426 Chapter 77 Rotations 77.1 Rotations.isrotation Rotations.isrotation — Method. isrotation(r) isrotation(r, tol) Check whether r is a 33 rotation matrix, where r * r is within tol of the identity matrix (using the Frobenius norm). (tol defaults to 1000 * eps(eltype(r)).) source 77.2 Rotations.rotation between Rotations.rotation between — Method. rotation_between(from, to) Compute the quaternion that rotates vector from so that it aligns with vector to, along the geodesic (shortest path). source 427 Chapter 78 Mustache 78.1 Mustache.render Mustache.render — Method. Render a set of tokens with a view, using optional io object to print or store. Arguments • io::IO: Optional IO object. • tokens: Either Mustache tokens, or a string to parse into tokens • view: A view provides a context to look up unresolved symbols demarcated by mustache braces. A view may be specified by a dictionary, a module, a composite type, a vector, or keyword arguments. source 78.2 Mustache.render from file Mustache.render from file — Method. Renders a template from filepath and view. If it has seen the file before then it finds the compiled MustacheTokens in TEMPLATES rather than calling parse a second time. source 428 Chapter 79 TiledIteration 79.1 TiledIteration.padded tilesize TiledIteration.padded tilesize — Method. padded_tilesize(T::Type, kernelsize::Dims, [ncache=2]) -> tilesize::Dims Calculate a suitable tile size to approximately maximize the amount of productive work, given a stencil of size kernelsize. The element type of the array is T. Optionally specify ncache, the number of such arrays that you’d like to have fit simultaneously in L1 cache. This favors making the first dimension larger, since the first dimension corresponds to individual cache lines. Examples julia> padded tilesize(UInt8, (3,3)) (768,18) julia> padded tilesize(UInt8, (3,3), 4) (512,12) julia> padded tilesize(Float64, (3,3)) (96,18) julia> padded tilesize(Float32, (3,3,3)) (64,6,6) source 429 Chapter 80 Distances 80.1 Distances.renyi divergence Distances.renyi divergence — Function. RenyiDivergence(::Real) renyi_divergence(P, Q, ::Real) Create a Rnyi premetric of order . Rnyi defined a spectrum of divergence measures generalising the Kullback– Leibler divergence (see KLDivergence). The divergence is not a semimetric as it is not symmetric. It is parameterised by a parameter , and is equal to Kullback–Leibler divergence at = 1: At = 0, R0 (P |Q) = −log(sumi:pi >0 (qi )) At = 1, R1 (P |Q) = sumi:pi >0 (pi log(pi /qi )) At = , R(P |Q) = log(supi:pi >0 (pi /qi )) ( Otherwise R(P |Q) = log(sumi:pi >0 ((pi )/(qi − 1)))/( − 1) Example: julia> x = reshape([0.1, 0.3, 0.4, 0.2], 2, 2); julia> pairwise(RenyiDivergence(0), x, x) 22 Array{Float64,2}: 0.0 0.0 0.0 0.0 julia> pairwise(Euclidean(2), x, x) 22 Array{Float64,2}: 0.0 0.577315 0.655407 0.0 source 430 Chapter 81 HttpCommon 81.1 HttpCommon.escapeHTML HttpCommon.escapeHTML — Method. escapeHTML(i::String) Returns a string with special HTML characters escaped: &, <, >, “, ’ source 81.2 HttpCommon.parsequerystring HttpCommon.parsequerystring — Method. parsequerystring(query::String) Convert a valid querystring to a Dict: q = "foo=bar&baz=%3Ca%20href%3D%27http%3A%2F%2Fwww.hackershool.com%27%3Ehello%20world%21%3C%2Fa%3 parsequerystring(q) # Dict{String,String} with 2 entries: # "baz" => "hello world!" # "foo" => "bar" source 431 Chapter 82 StaticArrays 82.1 StaticArrays.similar type StaticArrays.similar type — Function. similar_type(static_array) similar_type(static_array, T) similar_type(array, ::Size) similar_type(array, T, ::Size) Returns a constructor for a statically-sized array similar to the input array (or type) static array/array, optionally with different element type T or size Size. If the input array is not a StaticArray then the Size is mandatory. This differs from similar() in that the resulting array type may not be mutable (or define setindex!()), and therefore the returned type may need to be constructed with its data. Note that the (optional) size must be specified as a static Size object (so the compiler can infer the result statically). New types should define the signature similar type{A<:MyType,T,S}(::Type{A},::Type{T},::Siz if they wish to overload the default behavior. source 432 Chapter 83 SweepOperator 83.1 SweepOperator.sweep! SweepOperator.sweep! — Method. Symmetric sweep operator Symmetric sweep operator of the matrix A on element k. A is overwritten. inv = true will perform the inverse sweep. Only the upper triangle is read and swept. sweep!(A, k, inv = false) Providing a Range, rather than an Integer, sweeps on each element in the range. sweep!(A, first:last, inv = false) Example: [] x = randn(100, 10) xtx = x’x sweep!(xtx, 1) sweep!(xtx, 1, true) source 433 Chapter 84 PaddedViews 84.1 PaddedViews.paddedviews PaddedViews.paddedviews — Method. Aspad = paddedviews(fillvalue, A1, A2, ....) Pad the arrays A1, A2, . . . , to a common size or set of axes, chosen as the span of axes enclosing all of the input arrays. Example: [] julia¿ a1 = reshape([1,2], 2, 1) 21 Array{Int64,2}: 1 2 julia¿ a2 = [1.0,2.0]’ 12 Array{Float64,2}: 1.0 2.0 julia¿ a1p, a2p = paddedviews(0, a1, a2); julia¿ a1p 22 PaddedViews.PaddedView{Int64,2,Tuple{Base.OneTo{Int64},Base.OneTo{Int64}},Arra 1020 julia¿ a2p 22 PaddedViews.PaddedView{Float64,2,Tuple{Base.OneTo{Int64},Base.OneTo{Int64}},A 1.0 2.0 0.0 0.0 source 434 Chapter 85 SpecialFunctions 85.1 SpecialFunctions.cosint SpecialFunctions.cosint — Function. cosint(x) Compute the cosine integral function of x, defined by Ci(x) := γ + log x + R x cos t−1 dt for real x > 0, where γ is the Euler-Mascheroni constant. t 0 source 85.2 SpecialFunctions.sinint SpecialFunctions.sinint — Function. sinint(x) Compute the sine integral function of x, defined by Si(x) := real x. source 435 Rx 0 sin t t dt for Chapter 86 NamedTuples 86.1 NamedTuples.delete NamedTuples.delete — Method. Create a new NamedTuple with the specified element removed. source 86.2 NamedTuples.setindex NamedTuples.setindex — Method. Create a new NamedTuple with the new value set on it, either overwriting the old value or appending a new value. This copies the underlying data. source 436 Chapter 87 Loess 87.1 Loess.loess Loess.loess — Method. loess(xs, ys, normalize=true, span=0.75, degreee=2) Fit a loess model. Args: xs: A n by m matrix with n observations from m independent predictors ys: A length n response vector. normalize: Normalize the scale of each predicitor. (default true when m > 1) span: The degree of smoothing, typically in [0,1]. Smaller values result in smaller local context in fitting. degree: Polynomial degree. Returns: A fit LoessModel. source 437 Chapter 88 Nulls 88.1 Nulls.levels Nulls.levels — Method. levels(x) Return a vector of unique values which occur or could occur in collection x, omitting null even if present. Values are returned in the preferred order for the collection, with the result of sort as a default. Contrary to unique, this function may return values which do not actually occur in the data, and does not preserve their order of appearance in x. source 438 Chapter 89 WoodburyMatrices 89.1 WoodburyMatrices.liftFactor WoodburyMatrices.liftFactor — Method. liftFactor(A) More stable version of inv(A). Returns a function which computs the inverse on evaluation, i.e. liftFactor(A)(x) is the same as inv(A)*x. source 439 Chapter 90 Requests 90.1 Requests.save Requests.save — Function. save(r::Response, path=".") Saves the data in the response in the directory path. If the path is a directory, then the filename is automatically chosen based on the response headers. Returns the full pathname of the saved file. source 440 Chapter 91 MemPool 91.1 MemPool.savetodisk MemPool.savetodisk — Method. Allow users to specifically save something to disk. This does not free the data from memory, nor does it affect size accounting. source 441 Chapter 92 SimpleTraits 92.1 SimpleTraits.istrait SimpleTraits.istrait — Method. This function checks whether a trait is fulfilled by a specific set of types. istrait(Tr1{Int,Float64}) => return true or false source 442 Chapter 93 BinDeps 93.1 BinDeps.glibc version BinDeps.glibc version — Method. glibc_version() For Linux-based systems, return the version of glibc in use. For non-glibc Linux and other platforms, returns nothing. source 443
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : No Page Count : 448 Page Mode : UseOutlines Author : Title : Subject : Creator : LaTeX with hyperref package Producer : pdfTeX-1.40.18 Create Date : 2018:03:01 01:34:38Z Modify Date : 2018:03:01 01:34:38Z Trapped : False PTEX Fullbanner : This is MiKTeX-pdfTeX 2.9.6354 (1.40.18)EXIF Metadata provided by EXIF.tools