Matrix Manual Calculus
User Manual: Pdf
Open the PDF directly: View PDF
.
Page Count: 3
| Download | |
| Open PDF In Browser | View PDF |
Matrix Reference Manual Matrix Calculus Go to: Introduction, Notation, Index Contents Notation Derivatives of Linear Products Derivatives of Quadratic Products Notation d/dx (y) is a vector whose (i) element is dy(i)/dx d/dx (y) is a vector whose (i) element is dy/dx(i) d/dx (yT) is a matrix whose (i,j) element is dy(j)/dx(i) d/dx (Y) is a matrix whose (i,j) element is dy(i,j)/dx d/dX (y) is a matrix whose (i,j) element is dy/dx(i,j) Note that the Hermitian transpose is not used because complex conjugates are not analytic. In the expressions below matrices and vectors A, B, C do not depend on X. Derivatives of Linear Products d/dx (AYB) =A * d/dx (Y) * B d/dx (Ay) =A * d/dx (y) d/dx (xTA) =A d/dx (xT) =I d/dx (xTa) = d/dx (aTx) = a d/dX (aTXb) = abT d/dX (aTXa) = d/dX (aTXTa) = aaT d/dX (aTXTb) = baT d/dx (YZ) =Y * d/dx (Z) + d/dx (Y) * Z Derivatives of Quadratic Products d/dx (Ax+b)TC(Dx+e) = ATC(Dx+e) + DTCT(Ax+b) d/dx (xTCx) = (C+CT)x [C: symmetric]: d/dx (xTCx) = 2Cx d/dx (xTx) = 2x d/dx (Ax+b)T (Dx+e) = AT (Dx+e) + DT (Ax+b) d/dx (Ax+b)T (Ax+b) = 2AT (Ax+b) [C: symmetric]: d/dx (Ax+b)TC(Ax+b) = 2ATC(Ax+b) d/dX (aTXTXb) = X(abT + baT) d/dX (aTXTXa) = 2XaaT d/dX (aTXTCXb) = CTXabT + CXbaT d/dX (aTXTCXa) = (C + CT)XaaT [C:Symmetric] d/dX (aTXTCXa) = 2CXaaT d/dX ((Xa+b)TC(Xa+b)) = (C+CT)(Xa+b)aT Derivatives of Cubic Products d/dx (xTAxxT) = (A+AT)xxT+xTAxI Derivatives of Inverses d/dx (Y-1) = -Y-1d/dx (Y)Y-1 Derivative of Trace Note: matrix dimensions must result in an n*n argument for tr(). d/dX (tr(X)) = I d/dX (tr(Xk)) =k(Xk-1)T d/dX (tr(AXk)) = SUMr=0:k-1(XrAXk-r-1)T d/dX (tr(AX-1B)) = -(X-1BAX-1)T d/dX (tr(AX-1)) =d/dX (tr(X-1A)) = -X-TATX-T d/dX (tr(ATXBT)) = d/dX (tr(BXTA)) = AB d/dX (tr(XAT)) = d/dX (tr(ATX)) =d/dX (tr(XTA)) = d/dX (tr(AXT)) = A d/dX (tr(AXBXT)) = ATXBT + AXB d/dX (tr(XAXT)) = X(A+AT) d/dX (tr(XTAX)) = XT(A+AT) d/dX (tr(AXTX)) = (A+AT)X d/dX (tr(AXBX)) = ATXTBT + BTXTAT [C:symmetric] d/dX (tr((XTCX)-1A) = d/dX (tr(A (XTCX)-1) = -(CX(XTCX)-1)(A+AT)(XTCX)-1 [B,C:symmetric] d/dX (tr((XTCX)-1(XTBX)) = d/dX (tr( (XTBX)(XTCX)-1) = -2(CX(XTCX)-1)XTBX(XTCX)-1 + 2BX(XTCX)-1 Derivative of Determinant Note: matrix dimensions must result in an n*n argument for det(). d/dX (det(X)) = d/dX (det(XT)) = det(X)*X-T d/dX (det(AXB)) = det(AXB)*X-T d/dX (ln(det(AXB))) = X-T d/dX (det(Xk)) = k*det(Xk)*X-T d/dX (ln(det(Xk))) = kX-T [Real] d/dX (det(XTCX)) = det(XTCX)*(C+CT)X(XTCX)-1 [C: Real,Symmetric] d/dX (det(XTCX)) = 2det(XTCX)* CX(XTCX)-1 [C: Real,Symmetricc] d/dX (ln(det(XTCX))) = 2CX(XTCX)-1 Jacobian If y is a function of x, then dyT/dx is the Jacobian matrix of y with respect to x. Its determinant, |dyT/dx|, is the Jacobian of y with respect to x and represents the ratio of the hyper-volumes dy and dx. The Jacobian occurs when changing variables in an integration: Integral(f(y)dy)=Integral(f(y(x)) |dyT/dx| dx). Hessian matrix If f is a function of x then the symmetric matrix d2f/dx2 = d/dxT(df/dx) is the Hessian matrix of f(x). A value of x for which df/dx = 0 corresponds to a minimum, maximum or saddle point according to whether the Hessian is positive definite, negative definite or indefinite. d2/dx2 (aTx) = 0 d2/dx2 (Ax+b)TC(Dx+e) = ATCD + DTCTA d2/dx2 (xTCx) = C+CT d2/dx2 (xTx) = 2I d2/dx2 (Ax+b)T (Dx+e) = ATD + DTA d2/dx2 (Ax+b)T (Ax+b) = 2ATA [C: symmetric]: d2/dx2 (Ax+b)TC(Ax+b) = 2ATCA The Matrix Reference Manual is written by Mike Brookes, Imperial College, London, UK. Please send any comments or suggestions to mike.brookes@ic.ac.uk
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.4 Linearized : No Page Count : 3 Creator : Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.90 Safari/537.36 Producer : Skia/PDF m60 Create Date : 2017:08:21 16:51:30+00:00 Modify Date : 2017:08:21 16:51:30+00:00EXIF Metadata provided by EXIF.tools