TMCM 1630 TMCL Firmware Manual Rev2.04

TMCM-1630_TMCL_Firmware_Manual_Rev2.04

User Manual: Pdf

Open the PDF directly: View PDF PDF.
Page Count: 56

MODULE FOR BLDC MOTORS MODULE
TRINAMIC Motion Control GmbH & Co. KG
Hamburg, Germany
www.trinamic.com
Firmware Version V2.08
TMCL™ FIRMWARE MANUAL
+ + TMCM-1630
1-Axis BLDC
Controller / Driver
10A / 48V
RS232 / CAN or
RS485 / USB
+ +
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 2
www.trinamic.com
Table of Contents
1 Features ........................................................................................................................................................................... 4
2 Overview ......................................................................................................................................................................... 5
3 Putting the TMCM-1630 into Operation .................................................................................................................. 6
3.1 Starting up ............................................................................................................................................................. 6
3.2 Operating the Module in Direct Mode ........................................................................................................... 8
4 TMCL and TMCL-IDE .................................................................................................................................................... 10
4.1 Binary Command Format ................................................................................................................................ 10
4.2 Reply Format ....................................................................................................................................................... 11
4.2.1 Status Codes ................................................................................................................................................. 11
4.3 Standalone Applications .................................................................................................................................. 12
4.4 Testing with a Simple TMCL Program ......................................................................................................... 12
4.5 TMCL Command Overview .............................................................................................................................. 13
4.5.1 Motion Commands ...................................................................................................................................... 13
4.5.2 Parameter Commands ................................................................................................................................ 13
4.5.3 Control Commands ..................................................................................................................................... 13
4.5.4 I/O Port Commands .................................................................................................................................... 13
4.5.5 Calculation Commands .............................................................................................................................. 14
4.6 Commands ........................................................................................................................................................... 15
4.6.1 ROR (rotate right)......................................................................................................................................... 15
4.6.2 ROL (rotate left) ............................................................................................................................................ 16
4.6.3 MST (motor stop) ......................................................................................................................................... 17
4.6.4 MVP (move to position) ............................................................................................................................. 18
4.6.5 SAP (set axis parameter) ........................................................................................................................... 19
4.6.6 GAP (get axis parameter) ........................................................................................................................... 20
4.6.7 STAP (store axis parameter) ..................................................................................................................... 21
4.6.8 RSAP (restore axis parameter) ................................................................................................................. 22
4.6.9 SGP (set global parameter) ....................................................................................................................... 23
4.6.10 GGP (get global parameter) ...................................................................................................................... 24
4.6.11 STGP (store global parameter) ................................................................................................................. 24
4.6.12 RSGP (restore global parameter) ............................................................................................................. 25
4.6.13 SIO (set output) and GIO (get input / output) ................................................................................... 26
4.6.14 CALC (calculate) ............................................................................................................................................ 28
4.6.15 COMP (compare) ........................................................................................................................................... 29
4.6.16 JC (jump conditional).................................................................................................................................. 30
4.6.17 JA (jump always).......................................................................................................................................... 31
4.6.18 CSUB (call subroutine) ................................................................................................................................ 32
4.6.19 WAIT (wait for an event to occur) ......................................................................................................... 33
4.6.20 STOP (stop TMCL program execution) ................................................................................................... 34
4.6.21 CALCX (calculate using the X register) .................................................................................................. 35
4.6.22 AAP (accumulator to axis parameter) .................................................................................................... 36
4.6.23 AGP (accumulator to global parameter) ............................................................................................... 37
4.6.24 Customer Specific TMCL Command Extension (user functions 0… 7) ........................................... 37
4.6.25 Command 136 Get Firmware Version ................................................................................................ 38
5 Axis Parameter Overview (SAP, GAP, STAP, RSAP, AAP) ................................................................................. 39
5.1 Axis Parameter Sorted by Functionality ...................................................................................................... 43
6 Global Parameter Overview (SGP, GGP, STGP, RSGP) ....................................................................................... 47
6.1 Bank 0 ................................................................................................................................................................... 47
6.2 Bank 2 ................................................................................................................................................................... 48
7 Motor Regulation ........................................................................................................................................................ 49
7.1 Structure of the Cascaded Motor Regulation Modes............................................................................... 49
7.2 Current Regulation ............................................................................................................................................ 50
7.3 Velocity Regulation ........................................................................................................................................... 51
7.4 Velocity Ramp Generator ................................................................................................................................. 52
7.5 Position Regulation ........................................................................................................................................... 52
8 Temperature Calculation........................................................................................................................................... 54
9 I²t Monitoring .............................................................................................................................................................. 54
10 Life Support Policy ..................................................................................................................................................... 55
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 3
www.trinamic.com
11 Revision History .......................................................................................................................................................... 56
11.1 Firmware Revision ............................................................................................................................................. 56
11.2 Document Revision ........................................................................................................................................... 56
12 References..................................................................................................................................................................... 56
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 4
www.trinamic.com
1 Features
The TMCM-1630 is a highly integrated single axis BLDC servo controller module with several interface-options.
The highly integrated module (size: 50mm x 92.5 mm) has been designed in order to be plugged onto a
baseboard. It integrates velocity and position control and offers hall sensor and incremental encoder (a/b/n)
inputs. The module can be used in standalone operation or remote controlled.
Applications
- Demanding single and multi-axis BLDC motor solutions
Electrical data
- Supply voltage: +24V DC or +48V DC nominal (+12… +55V DC max.)
- Motor current: up to 10A RMS (programmable) peak
Integrated motion controller
- High performance ARM Cortex™-M3 microcontroller for system control and communication protocol
handling
Integrated motor driver
- High performance integrated pre-driver (TMC603A)
- High-efficient operation, low power dissipation (MOSFETs with low RDS(ON))
- Dynamic current control
- Integrated protection
- On the fly alteration of motion parameters (e.g. position, velocity, acceleration)
Interfaces
- Two standard assembly options:
- RS232 and CAN (2.0B up to 1Mbit/s)
- RS485 and USB
- 2 analogue and 2 digital inputs
- 3 open drain outputs
Motor type
- Block commutated 3 phase BLDC motors with optional hall sensors / optional encoder
- Motor power from a few Watts to nearly 500W
- Motor velocity up to 100,000 RPM (electrical field)
- Common supply voltages of 12V DC, 24V DC, 36V DC and 48V DC supported
- Coil current up to 10A peak
Software
- TMCL standalone operation or remote controlled operation
- TMCL program memory (non volatile) for up to 2048 TMCL commands
- TMCL PC-based application development software TMCL-IDE and TMCL-BLDC available for free
Other
- Two double-row 2.54mm connectors
- ROHS compliant
- Size: 50x92.5mm²
Please see separate TMCM-1630 Hardware Manual for additional information
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 5
www.trinamic.com
2 Overview
The software running on the microprocessor of the TMCM-1630 consists of two parts, a boot loader and the
firmware itself. Whereas the boot loader is installed during production and testing at TRINAMIC and remains
untouched throughout the whole lifetime, the firmware can be updated by the user. New versions can be
downloaded free of charge from the TRINAMIC website (http://www.trinamic.com).
The firmware is related to the standard TMCL firmware [TMCL] with regard to protocol and commands. The
module is based on the ARM Cortex-M3 microcontroller and the high performance pre-driver TMC603 and
supports the standard TMCL with a special range of values.
The new FOC firmware V2.02 is field oriented control software for brushless DC applications. It is developed
for high-performance motor applications which can operate smoothly over the full velocity range, can generate
full torque at zero speed and is capable of fast acceleration and deceleration. This saves energy and quiets
rotating machinery.
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 6
www.trinamic.com
3 Putting the TMCM-1630 into Operation
Here you can find basic information for putting your module into operation. The text contains a simple
example for a TMCL program and a short description of operating the module in direct mode.
THINGS YOU NEED:
- TMCM-1630
- Interface suitable to your TMCM-1630 with cables
- Nominal supply voltage +24V DC or +48V DC for your module
- Encoder optional
- BLDC motor
- TMCL-IDE program and PC
PRECAUTIONS
- Do not mix up connections or short-circuit pins.
- Avoid bounding I/O wires with motor power wires as this may cause noise picked up from the motor supply.
- The power supply has to be buffered by a capacitor. Otherwise the module will be damaged!
- Do not exceed the maximum power supply of 55V DC.
- Do not connect or disconnect the motor while powered!
- Start with power supply OFF!
3.1 Starting up
The following figure shows how the connectors have to be used.
+5V
Torque
Dir_IN
Stop_IN
LED_Curlim
GND
Enc_A+
Enc_B+
1
3
5
7
Enc_N+
CANL/USBD-
CANH/USBD+
USB_+VB
GND
19
21
23
25
9
11
13
15
17
Velocity
GND
Tacho
LED_Temp
+5V
GND
Enc_A-
Enc_B-
2
4
6
8
Enc_N-
RXD/485-
TXD/485+
n.c.
GND
20
22
24
26
10
12
14
16
18
Hall1
+5V
GND
GND
GND
+VM
+VM
U
25
23
21
19
U
V
V
W
W
7
5
3
1
17
15
13
11
9
Hall2
Hall3
GND
GND
GND
+VM
+VM
U
26
24
22
20
U
V
V
W
W
8
6
4
2
18
16
14
12
10
Figure 3.1: Connectors of the TMCM-1630
Domain
Connector type
Mating connector type
I/Os, interfaces,
encoder
TSM-113-03-L-DV-K-A, 2x13 poles, double
row, 2.54mm pitch, SMD vertical, Samtec
SSW, SSQ, SSM, BSW, ESW, ESQ, BCS, SLW,
CES, HLE , IDSS and IDSD series, Samtec
Power, motor
TSM-113-03-L-DV-K-A, 2x13 poles, double
row, 2.54mm pitch, SMD vertical, Samtec
SSW, SSQ, SSM, BSW, ESW, ESQ, BCS, SLW,
CES, HLE , IDSS and IDSD series, Samtec
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 7
www.trinamic.com
1. Connect the motor, power supply and hall sensors
1. Connect the motor and the power supply as follows:
Label
Description
Pin
Label
Description
W
Motor coil W
2
W
Motor coil W
W
Motor coil W
4
W
Motor coil W
V
Motor coil V
6
V
Motor coil V
V
Motor coil V
8
V
Motor coil V
U
Motor coil U
10
U
Motor coil U
U
Motor coil U
12
U
Motor coil U
VM
Module driver supply voltage
14
VM
Module driver supply voltage
VM
Module driver supply voltage
16
VM
Module driver supply voltage
GND
Module ground (power supply and
signal ground)
18
GND
Module ground (power supply
and signal ground)
GND
Module ground (power supply and
signal ground)
20
GND
Module ground (power supply
and signal ground)
GND
Module ground (power supply and
signal ground)
22
GND
Module ground (power supply
and signal ground)
+5V
+5V output (100mA max.) for
encoder and/or hall sensor supply
24
HALL3
Hall sensor 3 signal input
HALL1
Hall sensor 1 signal input
26
HALL2
Hall sensor 2 signal input
2. Connect the interface, IOs and the encoder as follows:
Label
Description
Pin
Label
Description
+5V
5V analog reference as used by the
internal DAC.
Max. load 0.5mA
2
Velocity
Used for velocity control in
standalone operation by
supplying external 0 - 10V
signal
Torque
Used for max. motor current /
torque control in standalone
operation by supplying external 0-
10V signal
4
GND
Module ground (power supply
and signal ground)
Dir_IN
5V TTL input. Tie to GND to inverse
motor direction, leave open or tie
to 5V otherwise.
6
Tacho
This pin outputs a tacho
impulse, i.e. toggles on each
hall sensor change
Stop_IN
Emergency stop. Tie this pin to
GND to stop the motor (same as
the Motor OFF switch on PCB). The
motor can be restarted via the
interface, or by cycling the power
supply
8
LED-Temp
5V TTL output: Toggling with
3Hz when temperature pre-
warning threshold is exceeded,
high when module shut down
due to overtemperature
LED-Curlim
High, when module goes into
current limiting mode
10
+5V
5V output as reference for
external purpose
GND
GND reference
12
GND
GND reference
Enc_A+
Encoder A+ channel
14
Enc_A-
Encoder A- channel
Enc_B+
Encoder B+ channel
16
Enc_B-
Encoder B- channel
Since the two connectors of the TMCM-1630 are similar be careful not to connect the module turned
around. When powered up this would damage the module. Be sure to place the connectors exactly to
their opponents. A deviation of only one pin row can damage the module also.
Start with power supply OFF!
Since the two connectors of the TMCM-1630 are similar be careful not to connect the module turned
around. When powered up this would damage the module. Be sure to place the connectors exactly to
their opponents. A deviation of only one pin row can damage the module also.
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 8
www.trinamic.com
Enc_N+
Encoder N+ channel
18
Enc_N-
Encoder N- channel
CANL/USBD-
CAN low /
USB D- bus line
20
RXD/
485-
RXD signal for RS232 /
inverting signal for RS485
CANH/USBD+
CAN high /
USB D+ bus line
22
TXD/
485+
TXD signal for RS232 /
non inverting signal for RS485
USB_+VB
Use to detect availability of
attached host system (e.g. PC)
24
n.c.
GND
GND reference
26
GND
GND reference
3. Switch ON the power supply
The power LED is ON now.
If this does not occur, switch power OFF and check your connections as well as the power
supply.
4. Start the TMCL-IDE software development environment
The TMCL-IDE is available on the TechLibCD and on www.trinamic.com.
Installing the TMCL-IDE
Make sure the COM port you intend to use is not blocked by another program.
Open TMCL-IDE by clicking TMCL.exe.
Choose Setup and Options and thereafter the Connection tab. Choose Type. The TMCL-IDE shows
you which Port the module uses. Click OK.
Figure 3.2: Setup menu Figure 3.3: Connection tab of TMCL-IDE
3.2 Operating the Module in Direct Mode
1. Start TMCL Direct Mode.
Direct Mode
2. If the communication is established the TMCM-1630 is automatically detected. If the module is not
detected, please check all points above (cables, interface, power supply, COM port, baud rate).
3. Issue a command by choosing instruction, type (if necessary), motor, and value and click execute
to send it to the module.
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 9
www.trinamic.com
Figure 3.4: TMCL direct mode window
Examples:
- ROR rotate right, motor 0, value 500 -> Click Execute. The first motor is rotating now.
- MST motor stop, motor 0 -> Click Execute. The first motor stops now.
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 10
www.trinamic.com
4 TMCL and TMCL-IDE
The TMCM-1630 module supports TMCL direct mode (binary commands) and standalone TMCL program
execution. You can store up to 2048 TMCL instructions on it.
In direct mode the TMCL communication over USB, CAN, RS232, and RS485 follows a strict master/slave
relationship. That is, a host computer (e.g. PC/PLC) acting as the interface bus master will send a command to
the module. The TMCL interpreter on it will then interpret this command, do the initialization of the motion
controller, read inputs and write outputs or whatever is necessary according to the specified command. As
soon as this step has been done, the module will send a reply back over the interface to the bus master. The
master should not transfer the next command till then. Normally, the module will just switch to transmission
and occupy the bus for a reply, otherwise it will stay in receive mode. It will not send any data over the
interface without receiving a command first. This way, any collision on the bus will be avoided when there
are more than two nodes connected to a single bus.
The Trinamic Motion Control Language (TMCL) provides a set of structured motion control commands. Every
motion control command can be given by a host computer or can be stored on the TMCM-1630 to form
programs that run standalone on the module. For this purpose there are not only motion control commands
but also commands to control the program structure (like conditional jumps, compare and calculating).
Every command has a binary representation and a mnemonic:
- The binary format is used to send commands from the host to a module in direct mode.
- The mnemonic format is used for easy usage of the commands when developing standalone TMCL
applications with the TMCL-IDE (IDE means Integrated Development Environment).
There is also a set of configuration variables for the axis and for global parameters which allow individual
configuration of nearly every function of a module. This manual gives a detailed description of all TMCL
commands and their usage.
4.1 Binary Command Format
When commands are sent from a host to a module, the binary format has to be used. Every command consists
of a one-byte command field, a one-byte type field, a one-byte motor/bank field and a four-byte value field.
So the binary representation of a command always has seven bytes.
When a command is to be sent via RS232, USB or RS485 interface, it has to be enclosed by an address byte
at the beginning and a checksum byte at the end. In this case it consists of nine bytes.
The binary command format for RS232/RS485/USB is structured as follows:
Bytes
Meaning
1
Module address
1
Command number
1
Type number
1
Motor or Bank number
4
Value (MSB first!)
1
Checksum
- When using CAN bus, the first byte (reply address) and the last byte (checksum) are left out.
- Do not send the next command before you have received the reply!
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 11
www.trinamic.com
Checksum calculation
As mentioned above, the checksum is calculated by adding up all bytes (including the module address byte)
using 8-bit addition. Here is an example for the calculation:
- in C:
unsigned char i, Checksum;
unsigned char Command[9];
//Set the “Command” array to the desired command
Checksum = Command[0];
for(i=1; i<8; i++)
Checksum+=Command[i];
Command[8]=Checksum; //insert checksum as last byte of the command
//Now, send the command back to the module
4.2 Reply Format
Every time a command has been sent to a module, the module sends a reply.
The reply format for RS232/RS485/USB is structured as follows:
Bytes
Meaning
1
Reply address
1
Module address
1
Status (e.g. 100 means no error)
1
Command number
4
Value (MSB first!)
1
Checksum
- The checksum is calculated by adding up all the other bytes using an 8-bit addition.
- When using CAN bus, the first byte (reply address) and the last byte (checksum) are left out.
- Do not send the next command before you have received the reply!
4.2.1 Status Codes
The reply contains a status code.
The status code can have one of the following values:
Code
Meaning
100
Successfully executed, no error
101
Command loaded into TMCL
program EEPROM
1
Wrong checksum
2
Invalid command
3
Wrong type
4
Invalid value
5
Configuration EEPROM locked
6
Command not available
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 12
www.trinamic.com
4.3 Standalone Applications
The module is equipped with an EEPROM for storing TMCL applications. You can use the TMCL-IDE for
developing standalone TMCL applications. You can load your program down into the EEPROM and then it will
run on the module. The TMCL-IDE contains an editor and a TMCL assembler where the commands can be
entered using their mnemonic format. They will be assembled automatically into their binary representations.
Afterwards this code can be downloaded into the module to be executed there.
4.4 Testing with a Simple TMCL Program
Open the file test2.tmc of the TMCL-IDE. The following source code appears on the screen:
Assemble
Download Run
Stop
Figure 4.1: Assemble, download, stop, and run icons of TMCL-IDE
1. Click on icon Assemble to convert the example into binary code.
2. Then download the program to the TMCM-1630 module via the icon Download.
3. Press icon Run. The desired program will be executed.
4. Click Stop button to stop the program.
For further information about the TMCL-IDE and TMCL programming techniques please refer to the TMCL-IDE
User Manual on TRINAMICs website.
TRINAMIC offers two software tools for BLDC applications: the TMCM-BLDC and the BLDC tool of the
TMCL-IDE. Whereas the TMCM-BLDC is used for testing different configurations in all modes of operation
the TMCL-IDE is mainly designed for conceiving programs and firmware updates. New versions of the
TMCM-BLDC and the TMCL-IDE can be downloaded free of charge from the TRINAMIC website
(http://www.trinamic.com).
//A simple example for using TMCL and TMCL-IDE
Loop:
ROL 0, 4000 //rotate left with 4000 rev/min
WAIT TICKS, 0, 2000
ROR 0, 4000 //rotate right with 4000 rev/min
WAIT TICKS, 0, 2000
JA Loop
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 13
www.trinamic.com
4.5 TMCL Command Overview
The following section provides a short overview of the TMCL commands supported by the TMCM-1630.
4.5.1 Motion Commands
These commands control the motion of the motor. They are the most important commands and can be used
in direct mode or in standalone mode.
Mnemonic
Command number
Meaning
ROL
2
Rotate left
ROR
1
Rotate right
MVP
4
Move to position
MST
3
Motor stop
4.5.2 Parameter Commands
These commands are used to set, read and store axis parameters or global parameters. Axis parameters can
be set independently for the axis, whereas global parameters control the behavior of the module itself. These
commands can also be used in direct mode and in standalone mode.
Mnemonic
Command number
Meaning
SAP
5
Set axis parameter
GAP
6
Get axis parameter
STAP
7
Store axis parameter into EEPROM
RSAP
8
Restore axis parameter from EEPROM
SGP
9
Set global parameter
GGP
10
Get global parameter
STGP
11
Store global parameter into EEPROM
RSGP
12
Restore global parameter from EEPROM
4.5.3 Control Commands
These commands are used to control the program flow (loops, conditions, jumps etc.). It does not make sense
to use them in direct mode. They are intended for standalone mode only.
Mnemonic
Command number
Meaning
JA
22
Jump always
JC
21
Jump conditional
COMP
20
Compare accumulator with constant value
CSUB
23
Call subroutine
RSUB
24
Return from subroutine
WAIT
27
Wait for a specified event
STOP
28
End of a TMCL program
4.5.4 I/O Port Commands
These commands control the external I/O ports and can be used in direct mode and in standalone mode.
Mnemonic
Command number
Meaning
SIO
14
Set output
GIO
15
Get input
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 14
www.trinamic.com
4.5.5 Calculation Commands
These commands are intended to be used for calculations within TMCL applications in standalone mode, only.
For calculating purposes there are an accumulator (or accu or A register) and an X register. When executed in
a TMCL program (in standalone mode), all TMCL commands that read a value store the result in the accumulator.
The X register can be used as an additional memory when doing calculations. It can be loaded from the
accumulator.
Mnemonic
Command number
Meaning
CALC
19
Calculate using the accumulator and a constant value
CALCX
33
Calculate using the accumulator and the X register
AAP
34
Copy accumulator to an axis parameter
AGP
35
Copy accumulator to a global parameter
MIXING STANDALONE PROGRAM EXECUTION AND DIRECT MODE
It is possible to use some commands in direct mode while a standalone program is active. When a command
which reads out a value is executed (direct mode) the accumulator will not be affected. While a TMCL program
is running standalone on the module, a host can still send commands like GAP and GGP to it (e.g. to query
the actual position of the motor) without affecting the flow of the TMCL program running standalone on the
module.
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 15
www.trinamic.com
4.6 Commands
The module specific commands are explained in more detail on the following pages. They are listed according
to their command number.
4.6.1 ROR (rotate right)
The motor will be instructed to rotate with a specified velocity in right direction (increasing the position
counter).
Internal function: First, velocity mode is selected. Then, the velocity value is transferred to axis parameter #2
(target velocity).
Related commands: ROL, MST, SAP, GAP
Mnemonic: ROR 0, <velocity>
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE <velocity>
1
don’t care
0
-200000… +200000
Reply in direct mode:
STATUS
COMMAND
VALUE
100 OK
1
don’t care
Example:
Rotate right, velocity = 350
Mnemonic: ROR 0, 350
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$01
$00
$00
$00
$00
$01
$5e
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 16
www.trinamic.com
4.6.2 ROL (rotate left)
The motor will be instructed to rotate with a specified velocity (opposite direction compared to ROR, decreasing
the position counter).
Internal function: First, velocity mode is selected. Then, the velocity value is transferred to axis parameter #2
(target velocity).
Related commands: ROR, MST, SAP, GAP
Mnemonic: ROL 0, <velocity>
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE <velocity>
2
don’t care
0
-200000… +200000
Reply in direct mode:
STATUS
COMMAND
VALUE
100 OK
2
don’t care
Example:
Rotate left, velocity = 1200
Mnemonic: ROL 0, 1200
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$02
$00
$00
$00
$00
$04
$b0
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 17
www.trinamic.com
4.6.3 MST (motor stop)
The motor will be instructed to stop.
Internal function: The axis parameter target velocity is set to zero.
Related commands: ROL, ROR, SAP, GAP
Mnemonic: MST 0
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
3
don’t care
0
don’t care
Reply in direct mode:
STATUS
COMMAND
VALUE
100 OK
3
don’t care
Example:
Stop motor
Mnemonic: MST 0
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$03
$00
$00
$00
$00
$00
$00
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 18
www.trinamic.com
4.6.4 MVP (move to position)
The motor will be instructed to move to a specified relative or absolute position. It uses the
acceleration/deceleration ramp and the positioning speed programmed into the unit. This command is non-
blocking (like all commands). A reply will be sent immediately after command interpretation. Further
commands may follow without waiting for the motor reaching its end position. The maximum velocity and
acceleration are defined by axis parameters #4 and #11.
TWO OPERATION TYPES ARE AVAILABLE:
- Moving to an absolute position in the range from -2147483648… +2147483647.
- Starting a relative movement by means of an offset to the actual position. In this case, the new
resulting position value must not exceed the above mentioned limits, too.
Internal function: A new position value is transferred to the axis parameter #0 target position.
Related commands: SAP, GAP, and MST
Mnemonic: MVP <ABS|REL>, 0, <position|offset value>
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
4
0 ABS absolute
0
<position>
-2147483648
+2147483647
1 REL relative
0
<offset>
-2147483648
+2147483647
Reply in direct mode:
STATUS
COMMAND
VALUE
100 OK
4
don’t care
Example MVP ABS:
Move motor to (absolute) position 9000
Mnemonic: MVP ABS, 0, 9000
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$04
$00
$00
$00
$00
$23
$28
Example MVP REL:
Move motor from current position 1000 steps backward (move relative -1000)
Mnemonic: MVP REL, 0, -1000
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$00
$04
$01
$00
$ff
$ff
$fc
$18
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 19
www.trinamic.com
4.6.5 SAP (set axis parameter)
Most of the motion control parameters of the module can be specified by using the SAP command. The
settings will be stored in SRAM and therefore are volatile. Thus, information will be lost after power off.
Please use command STAP (store axis parameter) in order to store any setting permanently.
Related commands: GAP, STAP, and RSAP
Mnemonic: SAP <parameter number>, 0, <value>
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
5
<parameter number>
0
<value>
Reply in direct mode:
STATUS
COMMAND
VALUE
100 OK
5
don’t care
A list of all parameters which can be used for the SAP command is shown in section 5.
Example:
Set the absolute maximum current to 2000mA
Mnemonic: SAP 6, 0, 2000
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$05
$06
$00
$00
$00
$07
$D0
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 20
www.trinamic.com
4.6.6 GAP (get axis parameter)
Most parameters of the TMCM-1630 can be adjusted individually. They can be read out using the GAP command.
Related commands: SAP, STAP, and RSAP
Mnemonic: GAP <parameter number>, 0
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
6
<parameter number>
0
don’t care
Reply in direct mode:
STATUS
COMMAND
VALUE
100 OK
6
don’t care
A list of all parameters which can be used for the GAP command is shown in section 5.
Example:
Get the actual position of motor
Mnemonic: GAP 1, 0
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$06
$01
$00
$00
$00
$00
$00
Reply:
Byte Index
0
1
2
3
4
5
6
7
Function
Host-
address
Target-
address
Status
Instructio
n
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$00
$01
$64
$06
$00
$00
$02
$c7
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 21
www.trinamic.com
4.6.7 STAP (store axis parameter)
The STAP command stores an axis parameter previously set with a Set Axis Parameter command (SAP)
permanently. Most parameters are automatically restored after power up.
Internal function: An axis parameter value stored in SRAM will be transferred to EEPROM and loaded from
EEPORM after next power up.
Related commands: SAP, RSAP, and GAP
Mnemonic: STAP <parameter number>, 0
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
7
<parameter number>
0
don’t care*
* The value operand of this function has no effect. Instead, the currently used value (e.g. selected by SAP) is saved.
Reply in direct mode:
STATUS
COMMAND
VALUE
100 OK
7
don’t care
A list of all parameters which can be used for the STAP command is shown in section 5.
Example:
Store the maximum speed
Mnemonic: STAP 4, 0
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$07
$04
$00
$00
$00
$00
$00
Note: The STAP command will not have any effect when the configuration EEPROM is locked. The error
code 5 (configuration EEPROM locked) will be returned in this case.
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 22
www.trinamic.com
4.6.8 RSAP (restore axis parameter)
For all configuration related axis parameters non-volatile memory locations are provided. By default, most
parameters are automatically restored after power up. A single parameter that has been changed before can
be reset by this instruction also.
Internal function: The specified parameter is copied from the configuration EEPROM memory to its RAM
location.
Related commands: SAP, STAP, and GAP
Mnemonic: RSAP <parameter number>, 0
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
8
<parameter number>
0
don’t care
Reply in direct mode:
STATUS
COMMAND
VALUE
100 OK
8
don’t care
A list of all parameters which can be used for the RSAP command is shown in section 5.
Example:
Restore the maximum current
Mnemonic: RSAP 6, 0
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$08
$06
$00
$00
$00
$00
$00
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 23
www.trinamic.com
4.6.9 SGP (set global parameter)
Global parameters are related to the host interface, peripherals or other application specific variables. The
different groups of these parameters are organized in banks to allow a larger total number for future products.
Currently, bank 0 is used for global parameters and bank 2 is intended for user variables.
Related commands: GGP, STGP, RSGP
Mnemonic: SGP <parameter number>, <bank number>, <value>
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
9
<parameter number>
<bank number>
<value>
Reply in direct mode:
STATUS
VALUE
100 OK
don’t care
A list of all parameters which can be used for the SGP command is shown in section 6.
Example:
Set variable 0 at bank 2 to 100
Mnemonic: SGP, 0, 2, 100
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$09
$00
$02
$00
$00
$00
$64
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 24
www.trinamic.com
4.6.10 GGP (get global parameter)
All global parameters can be read with this function.
Related commands: SGP, STGP, RSGP
Mnemonic: GGP <parameter number>, <bank number>
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
10
<parameter number>
<bank number>
don’t care
Reply in direct mode:
STATUS
VALUE
100 OK
<value>
A list of all parameters which can be used for the GGP command is shown in section 6.
Example:
Get variable 0 from bank 2
Mnemonic: GGP, 0, 2
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$0a
$00
$02
$00
$00
$00
$00
4.6.11 STGP (store global parameter)
Some global parameters are located in RAM memory, so modifications are lost at power down. This instruction
copies a value from its RAM location to the configuration EEPROM and enables permanent storing. Most
parameters are automatically restored after power up.
Related commands: SGP, GGP, RSGP
Mnemonic: STGP <parameter number>, <bank number>
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
11
<parameter number>
<bank number>
don’t care
Reply in direct mode:
STATUS
VALUE
100 OK
don’t care
A list of all parameters which can be used for the STGP command is shown in section 6.
Example:
Copy variable 0 at bank 2 to the configuration EEPROM
Mnemonic: STGP, 0, 2
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$0b
$00
$02
$00
$00
$00
$00
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 25
www.trinamic.com
4.6.12 RSGP (restore global parameter)
This instruction copies a value from the configuration EEPROM to its RAM location and so recovers the
permanently stored value of a RAM-located parameter. Most parameters are automatically restored after power
up.
Related commands: SGP, GGP, STGP
Mnemonic: RSGP <parameter number>, <bank number>
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
12
<parameter number>
<bank number>
don’t care
Reply in direct mode:
STATUS
VALUE
100 OK
don’t care
A list of all parameters which can be used for the RSGP command is shown in section 6.
Example:
Copy variable 0 at bank 2 from the configuration EEPROM to the RAM location
Mnemonic: RSGP, 0, 2
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$0c
$00
$02
$00
$00
$00
$00
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 26
www.trinamic.com
4.6.13 SIO (set output) and GIO (get input / output)
The TMCM-1630 provides two commands for dealing with inputs and outputs:
- SIO sets the status of the general digital output either to low (0) or to high (1).
- With GIO the status of all general purpose inputs of the module can be read out. The command reads
out a digital or analogue input port. Digital lines will read 0 and 1, while the ADC channel delivers 12
bit in the range of 0… 4095.
CORRELATION BETWEEN I/OS AND BANKS
Inputs/ Outputs
Bank
Description
Digital inputs
Bank 0
Digital inputs are accessed in bank 0.
Analogue inputs
Bank 1
Analog inputs are accessed in bank 1.
Digital outputs
Bank 2
The states of the OUT lines (that have been set by SIO commands)
can be read back using bank 2.
4.6.13.1 SIO (set output)
Bank 2 is used for setting the status of the general digital output either to low (0) or to high (1).
Internal function: the passed value is transferred to the specified output line.
Related commands: GIO, WAIT
Mnemonic: SIO <port number>, <bank number>, <value>
Binary representation:
INSTRUCTION NO.
TYPE
MOT/BANK
VALUE
14
<port number>
<bank number>
2
<value>
0/1
Reply structure:
STATUS
VALUE
100 OK
don’t care
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$0e
$07
$02
$00
$00
$00
$01
4.6.13.2 GIO (get input/output)
GIO can be used in direct mode or in standalone mode.
GIO IN STANDALONE MODE
In standalone mode the requested value is copied to the accumulator (accu) for further processing purposes
such as conditioned jumps.
GIO IN DIRECT MODE
In direct mode the value is output in the value field of the reply without affecting the accumulator. The actual
status of a digital output line can also be read.
Internal function: the specified line is read.
Related commands: SIO, WAIT
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 27
www.trinamic.com
Mnemonic: GIO <port number>, <bank number>
Binary representation:
INSTRUCTION NO.
TYPE
MOT/BANK
VALUE
15
<port number>
<bank number>
don’t care
Reply in direct mode:
STATUS
VALUE
100 OK
<status of the port>
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$0f
$00
$01
$00
$00
$00
$00
Reply:
Byte Index
0
1
2
3
4
5
6
7
Function
Host-
address
Target-
address
Status
Instructio
n
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$02
$01
$64
$0f
$00
$00
$01
$2e
+5V
Torque
Dir_IN
Stop_IN
LED_Curlim
GND
Enc_A+
Enc_B+
1
3
5
7
Enc_N+
CANL/USBD-
CANH/USBD+
USB_+VB
GND
19
21
23
25
9
11
13
15
17
Velocity
GND
Tacho
LED_Temp
+5V
GND
Enc_A-
Enc_B-
2
4
6
8
Enc_N-
RXD/485-
TXD/485+
n.c.
GND
20
22
24
26
10
12
14
16
18
Hall1
+5V
GND
GND
GND
+VM
+VM
U
25
23
21
19
U
V
V
W
W
7
5
3
1
17
15
13
11
9
Hall2
Hall3
GND
GND
GND
+VM
+VM
U
26
24
22
20
U
V
V
W
W
8
6
4
2
18
16
14
12
10
Figure 4.2 Connector of TMCM-1630
PROVIDED SIO AND GIO COMMANDS
Pin
Digital
Analog
GIO <port>, <bank>
SIO <port>, <bank>, <value>
Value range
2
-
x
GIO 0, 1 (velocity)
-
0… 4095
3
-
x
GIO 1, 1 (torque)
-
0… 4095
-
-
x
GIO 2, 1 (Phase A)
-
0… 4095
-
-
x
GIO 3, 1 (Phase B)
-
0… 4095
-
-
x
GIO 4, 1 (Phase C)
-
0… 4095
-
-
x
GIO 5, 1 (VSupply)
-
0… 4095
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 28
www.trinamic.com
-
-
x
GIO 6, 1 (Temp)
-
0… 4095
5
x
-
GIO 0, 0 (DIR_IN)
-
0/1
6
x
-
GIO 0, 2 (tacho)
SIO 0, 2, <value>
0/1
7
x
-
GIO 1, 0 (STOP_IN)
-
0/1
THE FOLLOWING PROGRAM WILL SHOW THE STATES OF THE INPUT LINES ON THE OUTPUT LINES:
Loop: GIO 255, 0
SIO 255, 2,-1
JA Loop
4.6.14 CALC (calculate)
A value in the accumulator variable, previously read by a function such as GAP (get axis parameter), can be
modified with this instruction. Nine different arithmetic functions can be chosen and one constant operand
value must be specified. The result is written back to the accumulator, for further processing like comparisons
or data transfer.
Related commands: CALCX, COMP, JC, AAP, AGP, GAP, GGP, GIO
Mnemonic: CALC <op>, <value>
Binary representation:
COMMAND
TYPE <op>
MOT/BANK
VALUE
19
0 ADD add to accu
1 SUB subtract from accu
2 MUL multiply accu by
3 DIV divide accu by
4 MOD modulo divide by
5 AND logical and accu with
6 OR logical or accu with
7 XOR logical exor accu with
8 NOT logical invert accu
9 LOAD load operand to accu
don’t care
<operand>
Example:
Multiply accu by -5000
Mnemonic: CALC MUL, -5000
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$13
$02
$00
$FF
$FF
$EC
$78
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 29
www.trinamic.com
4.6.15 COMP (compare)
The specified number is compared to the value in the accumulator register. The result of the comparison can
be used for example by the conditional jump (JC) instruction. This command is intended for use in standalone
operation, only. The host address and the reply are required to take the instruction to the TMCL program
memory while the TMCL program downloads. It does not make sense to use this command in direct mode.
Internal function: The specified value is compared to the internal accumulator, which holds the value of a
preceding get or calculate instruction (see GAP/GGP/CALC/CALCX). The internal arithmetic status flags are set
according to the comparison result.
Related commands: JC (jump conditional), GAP, GGP, CALC, CALCX
Mnemonic: COMP <value>
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
20
don’t care
don’t care
<comparison value>
Example:
Jump to the address given by the label when the position of the motor #0 is greater or equal to 1000.
GAP 1, 0, 0 //get axis parameter, type: no. 1 (actual position), motor: 0, value: 0 don’t care
COMP 1000 //compare actual value to 1000
JC GE, Label //jump, type: 5 greater/equal, the label must be defined somewhere else in the
program
Binary format of the COMP 1000 command:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$14
$00
$00
$00
$00
$03
$e8
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 30
www.trinamic.com
4.6.16 JC (jump conditional)
The JC instruction enables a conditional jump to a fixed address in the TMCL program memory, if the specified
condition is met. The conditions refer to the result of a preceding comparison. This function is for standalone
operation only. The host address and the reply are required to take the instruction to the TMCL program
memory while the TMCL program downloads. It is not possible to use this command in direct mode.
Internal function: The TMCL program counter is set to the passed value if the arithmetic status flags are in
the appropriate state(s).
Related commands: JA, COMP, WAIT
Mnemonic: JC <condition>, <label>
where <condition>=ZE|NZ|EQ|NE|GT|GE|LT|LE|ETO|EAL
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
21
0 ZE - zero
1 NZ - not zero
2 EQ - equal
3 NE - not equal
4 GT - greater
5 GE - greater/equal
6 LT - lower
7 LE - lower/equal
8 ETO - time out error
9 EAL - external alarm
don’t care
<jump address>
Example:
Jump to address given by the label when the position of the motor is greater than or equal to 1000.
GAP 1, 0, 0 //get axis parameter, type: no. 1 (actual position), motor: 0, value: 0 don’t care
COMP 1000 //compare actual value to 1000
JC GE, Label //jump, type: 5 greater/equal
...
...
Label: ROL 0, 1000
Binary format of JC GE, Label when Label is at address 10:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$15
$05
$00
$00
$00
$00
$0a
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 31
www.trinamic.com
4.6.17 JA (jump always)
Jump to a fixed address in the TMCL program memory. This command is intended for standalone operation,
only. The host address and the reply are required to take the instruction to the TMCL program memory while
the TMCL program downloads. This command cannot be used in direct mode.
Internal function: The TMCL program counter is set to the passed value.
Related commands: JC, WAIT, CSUB
Mnemonic: JA <Label>
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
22
don’t care
don’t care
<jump address>
Example:
An infinite loop in TMCL
Loop: MVP ABS, 0, 10000
WAIT POS, 0, 0
MVP ABS, 0, 0
WAIT POS, 0, 0
JA Loop //Jump to the label Loop
Binary format of JA Loop assuming that the label Loop is at address 20:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$16
$00
$00
$00
$00
$00
$14
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 32
www.trinamic.com
4.6.18 CSUB (call subroutine)
For implementing subroutines there are two commands:
- CSUB calls a subroutine in the TMCL program memory. It is intended for standalone operation, only.
The host address and the reply are required to take the instruction to the TMCL program memory
while the TMCL program downloads. This command cannot be used in direct mode.
- RSUB is used for returning from a subroutine to the next command behind the CSUB command.
4.6.18.1 CSUB (call subroutine)
Internal function: The actual TMCL program counter value is saved to an internal stack, afterwards overwritten
with the passed value. The number of entries in the internal stack is limited to 8. This also limits nesting of
subroutine calls to 8. The command will be ignored if there is no more stack space left.
Related commands: RSUB, JA
Mnemonic: CSUB <Label>
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
23
don’t care
don’t care
<subroutine address>
Binary format of the CSUB SubW command assuming that the label SubW is at address 100:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$17
$00
$00
$00
$00
$00
$64
4.6.18.2 RSUB (return from subroutine)
Internal function: The TMCL program counter is set to the last value of the stack. The command will be
ignored if the stack is empty.
Related command: CSUB
Mnemonic: RSUB
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
24
don’t care
don’t care
don’t care
Binary format of RSUB:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$18
$00
$00
$00
$00
$00
$00
Example: Call a subroutine
Loop: MVP ABS, 0, 10000
CSUB SubW //Save program counter and jump to label SubW (see below)
MVP ABS, 0, 0
JA Loop
SubW: WAIT POS, 0, 0
WAIT TICKS, 0, 50
RSUB //Continue with the command following the CSUB command (in this
example: MVP ABS).
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 33
www.trinamic.com
4.6.19 WAIT (wait for an event to occur)
This instruction interrupts the execution of the TMCL program until the specified condition is met. This
command is intended for standalone operation only. The host address and the reply are only used to take the
instruction to the TMCL program memory while the TMCL program downloads. This command is not to be
used in direct mode.
THERE ARE DIFFERENT WAIT CONDITIONS THAT CAN BE USED:
TICKS: Wait until the number of timer ticks specified by the <ticks> parameter has been reached.
POS: Wait until the target position of the motor specified by the <motor> parameter has been reached. An
optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.
The timeout flag (ETO) will be set after a timeout limit has been reached. You can then use a JC ETO command
to check for such errors or clear the error using the CLE command.
Internal function: The TMCL program counter is held until the specified condition is met.
Related commands: JC, CLE
Mnemonic: WAIT <condition>, <motor number>, <ticks>
where <condition> is TICKS|POS
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
27
0 TICKS - timer ticks*
don’t care
<no. of ticks*>
1 POS - target position reached
<motor number>
0
<no. of ticks* for timeout>,
0 for no timeout
* One tick is 10msec (in standard firmware).
Example:
Wait for motor to reach its target position, without timeout
Mnemonic: WAIT POS, 0, 0
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$1b
$01
$01
$00
$00
$00
$00
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 34
www.trinamic.com
4.6.20 STOP (stop TMCL program execution)
This function stops executing a TMCL program. The host address and the reply are only used to transfer the
instruction to the TMCL program memory.
Every standalone TMCL program needs the STOP command at its end. It is not to be used in direct mode.
Internal function: TMCL instruction fetching is stopped.
Related commands: none
Mnemonic: STOP
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
28
don’t care
don’t care
don’t care
Example:
Stop TMCL execution
Mnemonic: STOP
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$1c
$00
$00
$00
$00
$00
$00
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 35
www.trinamic.com
4.6.21 CALCX (calculate using the X register)
This instruction is very similar to CALC, but the second operand comes from the X register. The X register can
be loaded with the LOAD or the SWAP type of this instruction. The result is written back to the accumulator
for further processing like comparisons or data transfer.
Related commands: CALC, COMP, JC, AAP, AGP
Mnemonic: CALCX <operation>
Binary representation:
COMMAND
TYPE <operation>
MOT/BANK
VALUE
33
0 ADD add X register to accu
1 SUB subtract X register from accu
2 MUL multiply accu by X register
3 DIV divide accu by X-register
4 MOD modulo divide accu by x-register
5 AND logical and accu with X-register
6 OR logical or accu with X-register
7 XOR logical exor accu with X-register
8 NOT logical invert X-register
9 LOAD load accu to X-register
10 SWAP swap accu with X-register
don’t care
don’t care
Example:
Multiply accu by X-register
Mnemonic: CALCX MUL
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$21
$02
$00
$00
$00
$00
$00
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 36
www.trinamic.com
4.6.22 AAP (accumulator to axis parameter)
The content of the accumulator register is transferred to the specified axis parameter. For practical use, the
accumulator has to be loaded e.g. by a preceding GAP instruction. The accumulator may have been modified
by the CALC or CALCX (calculate) instruction.
Related commands: AGP, SAP, GAP, SGP, GGP, CALC, CALCX
Mnemonic: AAP <parameter number>, 0
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
34
<parameter number>
0
<don't care>
Reply in direct mode:
STATUS
VALUE
100 OK
don’t care
See chapter 5 for a complete list of axis parameters.
Example:
Positioning a motor by a potentiometer connected to analogue input #0:
Start: GIO 0, 1 // get value of analogue input line 0
CALC MUL, 4 // multiply by 4
AAP 0, 0 // transfer result to target position of motor 0
JA Start // jump back to start
Binary format of the AAP 0, 0 command:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$22
$00
$00
$00
$00
$00
$00
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 37
www.trinamic.com
4.6.23 AGP (accumulator to global parameter)
The content of the accumulator register is transferred to the specified global parameter. For practical use, the
accumulator has to be loaded e.g. by a preceding GAP instruction. The accumulator may have been modified
by the CALC or CALCX (calculate) instruction.
- Note that the global parameters in bank 0 are mostly EEPROM-only and thus should not be modified
automatically by a standalone application.
- See chapter Fehler! Verweisquelle konnte nicht gefunden werden. for a complete list of global parameters.
Related commands: AAP, SGP, GGP, SAP, GAP
Mnemonic: AGP <parameter number>, <bank number>
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
35
<parameter number>
<bank number>
don’t care
Reply in direct mode:
STATUS
VALUE
100 OK
don’t care
Example:
Copy accumulator to TMCL user variable #3
Mnemonic: AGP 3, 2
Binary:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$23
$03
$02
$00
$00
$00
$00
4.6.24 Customer Specific TMCL Command Extension (user functions 0… 7)
The user definable functions UF0… UF7 are predefined functions without topic for user specific purposes. A
user function UF command uses three parameters. Please contact TRINAMIC for a customer specific
programming.
Internal function: Call user specific functions implemented in C by TRINAMIC.
Related commands: none
Mnemonic: UF0… UF7 <parameter number>
Binary representation:
COMMAND
TYPE
MOT/BANK
VALUE
64… 71
user defined
user defined
user defined
Reply in direct mode:
Byte Index
0
1
2
3
4
5
6
7
Function
Target-
address
Target-
address
Status
Instructio
n
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$02
$01
user
defined
64… 71
user
defined
user
defined
user
defined
user
defined
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 38
www.trinamic.com
4.6.25 Command 136 Get Firmware Version
Command 136 is used for reading out the module type and firmware version as a string or in binary format.
(Motor/Bank and Value are ignored.)
Other control functions can be used with axis parameters.
Command
Type
Parameter
Description
Access
136
0 string
1 binary
Firmware version
Get the module type and firmware revision as a
string or in binary format. (Motor/Bank and Value
are ignored.)
read
TYPE SET TO 0 - REPLY AS A STRING:
Byte index
Contents
1
Host Address
2… 9
Version string (8 characters, e.g. 1630V202)
There is no checksum in this reply format!
TYPE SET TO 1 - VERSION NUMBER IN BINARY FORMAT:
The version number is output in the value field.
Byte index in value field
Contents
1
Version number, low byte
2
Version number, high byte
3
Type number, low byte
4
Type number, high byte
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 39
www.trinamic.com
5 Axis Parameter Overview (SAP, GAP, STAP, RSAP, AAP)
The following section describes all axis parameters that can be used with the SAP, GAP, STAP and RSAP
commands.
MEANING OF THE LETTERS IN COLUMN ACCESS:
Access
type
Related
command(s)
Description
R
GAP
Parameter readable
W
SAP, AAP
Parameter writable
E
STAP, RSAP
Parameter automatically restored from EEPROM after reset or power-on. These
parameters can be stored permanently in EEPROM using STAP command and
also explicitly restored (copied back from EEPROM into RAM) using RSAP.
Number
Axis Parameter
Description
Range [Unit]
Access
0
Target position
The target position of a currently executed ramp.
-2147483648
+2147483647
RW
1
Actual position
Set/get the position counter without moving the
motor.
-2147483648
+2147483647
RW
2
Target speed
Set/get the desired target velocity.
-200000… +200000
[rpm]
RW
3
Actual speed
The actual velocity of the motor.
-2147483648
+2147483647
[rpm]
R
4
Max. absolute
ramp velocity
The maximum velocity used for velocity ramp in
velocity mode and positioning mode. Set this
value to a realistic velocity which the motor can
reach!
0 +200000
[rpm]
RWE
6
Max current
Set/get the max allowed motor current.
*This value can be temporarily exceeded marginal due to the
operation of the current regulator.
0… +20000
[mA]
RWE
7
MVP Target
reached velocity
Maximum velocity at which end position can be
set. Prevents issuing of end position when the
target is passed at high velocity.
0 +200000 [rpm]
RWE
9
Motor halted
velocity
If the actual speed is below this value the motor
halted flag will be set.
0 +200000 [rpm]
RWE
10
MVP target
reached
distance
Maximum distance at which the position end flag
is set.
0… +100000
RWE
11
Acceleration
Acceleration parameter for ROL, ROR, and the
velocity ramp of MVP.
0… +100000
[RPM/s]
RWE
13
Ramp generator
speed
The actual speed of the velocity ramp used for
positioning and velocity mode.
-2147483648
+2147483647
[rpm]
R
25
Thermal
winding time
constant
Thermal winding time constant for the used
motor. Used for I²t monitoring.
0… +4294967295
[ms]
RWE
26
I²t limit
An actual I²t sum that exceeds this limit leads to
increasing the I²t exceed counter.
0… +4294967295
RWE
27
I²t sum
Actual sum of the I²t monitor.
0… +4294967295
R
28
I²t exceed
counter
Counts how often an I²t sum was higher than the
I²t limit.
0… +4294967295
RWE
29
Clear I²t
exceeded flag
Clear the flag that indicates that the I²t sum has
exceeded the I²t limit.
(ignored)
W
30
Minute counter
Counts the module operational time in minutes.
0… +4294967295
[min]
RWE
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 40
www.trinamic.com
Number
Axis Parameter
Description
Range [Unit]
Access
31
BLDC
re-initialization
Restart the timer and initialize encoder.
(ignored)
W
133
PID regulation
loop delay
Delay of the position and velocity regulator
0… +10
[ms]
RWE
134
Current
regulation loop
delay
Delay of the PID current regulator.
0… +10
[50µs]
RWE
146
Activate ramp
1: Activate velocity ramp generator for position
and velocity mode. (Allows usage of acceleration
and positioning velocity for MVP command.)
0/1
RWE
150
Actual motor
current
Get actual motor current.
-2147483648
+2147483647 [mA]
R
151
Actual voltage
Actual supply voltage.
0… +4294967295
R
152
Actual driver
temperature
Actual temperature of the motor driver.
0… +4294967295
R
155
Target current
Get desired target current or set target current to
activate current regulation mode. (+= turn motor
in right direction; -= turn motor in left direction)
-20000… +20000
[mA]
RW
156
Error/Status
flags
Bit 0: Overcurrent flag. This flag is set if the max.
current limit is exceeded.
Bit 1: Undervoltage flag. This flag is set if supply
voltage is too low for motor operation.
Bit 2: Overvoltage flag. This flag is set if the
motor becomes switched off due to overvoltage.
Bit 3: Overtemperature flag. This flag is set if
overtemperature limit is exceeded.
Bit 4: Motor halted flag. This flag is set if motor
has been switched off.
Bit 5: Hall error flag. This flag is set upon a hall
error.
Bit 6: TMC603 error flag
Bit 7: unused
Bit 8: unused
Bit 9: Velocity mode active flag
Bit 10: Position mode active flag.
Bit 11: Torque mode active flag.
Bit 12: unused
Bit 13: unused
Bit 14: Position end flag. This flag is set if the
motor has been stopped at the target position.
Bit 15: unused
Bit 16: unused
Bit 17: I²t exceeded flag. This flag is set if the I²t
sum exceeded the I²t limit of the motor.
(reset by SAP 29 after the time specified by the
I²t thermal winding time constant)
Flag 0 to 15 are automatically reset. Only flag 17
must be cleared manually.
0…+4294967295
R
159
Commutation
mode
0: Block based on hall sensor
6: FOC based on hall sensor
7: FOC based on encoder
8: FOC controlled
0, 6, 7, 8
RWE
161
Encoder set
NULL
1: set position counter to zero at next N channel
event.
0/1
RWE
162
Switch set NULL
1: set position counter to zero at next switch
event.
0/1
RWE
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 41
www.trinamic.com
Number
Axis Parameter
Description
Range [Unit]
Access
163
Encoder clear
set NULL
1: set position counter to zero only once
0: always at an N channel event
0/1
RWE
164
Activate stop
switch
Bit 0
Left stop switch
enable
When this bit is set
the motor will be
stopped if it is
moving in negative
direction and the left
stop switch input
becomes active
Bit 1
Right stop switch
enable
When this bit is set
the motor will be
stopped if it is
moving in positive
direction and the
right stop switch
input becomes
active
Please see parameter 166 for selecting the stop
switch input polarity.
0… 3
RWE
165
Actual encoder
commutation
offset
This value represents the internal commutation
offset.
(0 … max. encoder steps per rotation)
0… 65535
RWE
166
Stop switch
polarity
Bit 0
Left stop switch
polarity
Bit set: Left stop
switch input is high
active
Bit clear: Left stop
switch input is low
active
Bit 1
Right stop switch
polarity
Bit set: Right stop
switch input is high
active
Bit clear: Right stop
switch input is low
active
0… 3
RWE
172
P parameter for
current PID
P parameter of current PID regulator.
0… 65535
RWE
173
I parameter for
current PID
I parameter of current PID regulator.
0… 65535
RWE
177
Start current
Motor current for controlled commutation. This
parameter is used in commutation mode.
0… +20000
[mA]
RWE
200
Current PID
error
Actual error of current PID regulator
-2147483648
+2147483647
R
201
Current PID
error sum
Sum of errors of current PID regulator
-2147483648
+2147483647
R
210
Actual hall
angle
Actual hall angle value
-32767… +32767
R
211
Actual encoder
angle
Actual encoder angle value
-32767… +32767
R
212
Actual
controlled
angle
Actual controlled angle value
-32767… +32767
R
226
Position PID
error
Actual error of position PID regulator
-2147483648
+2147483647
R
228
Velocity PID
error
Actual error of velocity PID regulator
-2147483648
+2147483647
R
229
Velocity PID
error sum
Sum of errors of velocity PID regulator
-2147483648
+2147483647
R
230
P parameter for
position PID
P parameter of position PID regulator.
0… 65535
RWE
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 42
www.trinamic.com
Number
Axis Parameter
Description
Range [Unit]
Access
234
P parameter for
velocity PID
P parameter of velocity PID regulator.
0… 65535
RWE
235
I parameter for
velocity PID
I parameter of velocity PID regulator.
0… 65535
RWE
241
Sine
initialization
speed
Velocity during initialization in init sine mode 2.
Refer to axis parameter 249, too.
-200000… +200000
[rpm]
RWE
244
Init sine delay
Duration for sine initialization sequence. This
parameter should be set in a way, that the motor
has stopped mechanical oscillations after the
specified time.
0… 10000
[ms]
RWE
245
Overvoltage
protection
1: Enable overvoltage protection.
0/1
RWE
249
Init sine mode
0: Initialization in controlled sine commutation
(determines the encoder offset)
1: Initialization in block commutation using hall
sensors
2: Initialization in controlled sine commutation
(use the previous set encoder offset)
0, 1, 2
RWE
250
Encoder steps
Encoder steps per rotation.
0… +65535
RWE
251
Encoder
direction
Set the encoder direction in a way, that ROR
increases position counter.
0/1
RWE
253
Number of
motor poles
Number of motor poles.
+2… +254
RWE
254
Hall sensor
invert
1: Hall sensor invert. Invert the hall scheme, e.g.
used by some Maxon motors.
0/1
RWE
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 43
www.trinamic.com
5.1 Axis Parameter Sorted by Functionality
The following section describes all axis parameters that can be used with the SAP, GAP, STAP and RSAP
commands.
MEANING OF THE LETTERS IN COLUMN ACCESS:
Access
type
Related
command(s)
Description
R
GAP
Parameter readable
W
SAP, AAP
Parameter writable
E
STAP, RSAP
Parameter automatically restored from EEPROM after reset or power-on. These
parameters can be stored permanently in EEPROM using STAP command and
also explicitly restored (copied back from EEPROM into RAM) using RSAP.
MOTOR / MODULE SETTINGS
Number
Axis Parameter
Description
Range [Unit]
Access
253
Number of
motor poles
Number of motor poles.
+2… +254
RWE
25
Thermal
winding time
constant
Thermal winding time constant for the used
motor. Used for I²t monitoring.
0… +4294967295
[ms]
RWE
26
I²t limit
An actual I²t sum that exceeds this limit leads to
increasing the I²t exceed counter.
0… +4294967295
RWE
27
I²t sum
Actual sum of the I²t monitor.
0… +4294967295
R
28
I²t exceed
counter
Counts how often an I²t sum was higher than the
I²t limit.
0… +4294967295
RWE
29
Clear I²t
exceeded flag
Clear the flag that indicates that the I²t sum has
exceeded the I²t limit.
(ignored)
W
30
Minute counter
Counts the module operational time in minutes.
0… +4294967295
[min]
RWE
245
Overvoltage
protection
1: Enable overvoltage protection.
0/1
RWE
ENCODER / INITIALIZATION SETTINGS
Number
Axis Parameter
Description
Range [Unit]
Access
31
BLDC
re-initialization
1: restart the timer and initialize encoder.
(Ignored)
W
159
Commutation
mode
0: Block based on hall sensor
6: FOC based on hall sensor
7: FOC based on encoder
8: FOC controlled
0, 6, 7, 8
RWE
165
Actual encoder
commutation
offset
This value represents the internal commutation
offset.
(0 … max. encoder steps per rotation)
0… 65535
RWE
177
Start current
Motor current for controlled commutation. This
parameter is used in commutation mode.
0… +20000
[mA]
RWE
210
Actual hall
angle
Actual hall angle value
-32767… +32767
R
211
Actual encoder
angle
Actual encoder angle value
-32767… +32767
R
212
Actual
controlled
angle
Actual controlled angle value
-32767… +32767
R
241
Sine
initialization
speed
Velocity during initialization in init sine mode 2.
Refer to axis parameter 249, too.
-200000… +200000
[rpm]
RWE
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 44
www.trinamic.com
Number
Axis Parameter
Description
Range [Unit]
Access
244
Init sine delay
Duration for sine initialization sequence. This
parameter should be set in a way, that the motor
has stopped mechanical oscillations after the
specified time.
0… 10000
[ms]
RWE
249
Init sine mode
0: Initialization in controlled sine commutation
(determines the encoder offset)
1: Initialization in block commutation using hall
sensors
2: Initialization in controlled sine commutation
(use the previous set encoder offset)
0… 2
RWE
250
Encoder steps
Encoder steps per rotation.
0… +65535
RWE
251
Encoder
direction
Set the encoder direction in a way, that ROR
increases position counter.
0/1
RWE
254
Hall sensor
invert
1: Hall sensor invert. Invert the hall scheme, e.g.
used by some Maxon motors.
0/1
RWE
TORQUE REGULATION MODE
Number
Axis Parameter
Description
Range [Unit]
Access
6
Max current
Set/get the max allowed motor current.
This value can be temporarily exceeded marginal due to the
operation of the current regulator.
0… +20000
[mA]
RWE
150
Actual motor
current
Get actual motor current.
-2147483648
+2147483647 [mA]
R
155
Target current
Get desired target current or set target current to
activate current regulation mode. (+= turn motor
in right direction; -= turn motor in left direction)
-20000… +20000
[mA]
RW
134
Current
regulation loop
delay
Delay of the PID current regulator.
0… +10
[50µs]
RWE
172
P parameter for
current PID
P parameter of current PID regulator.
0… 65535
RWE
173
I parameter for
current PID
I parameter of current PID regulator.
0… 65535
RWE
200
Current PID
error
Actual error of current PID regulator
-2147483648
+2147483647
R
201
Current PID
error sum
Sum of errors of current PID regulator
-2147483648
+2147483647
R
VELOCITY REGULATION MODE
Number
Axis Parameter
Description
Range [Unit]
Access
2
Target speed
Set/get the desired target velocity.
-2147483648
+2147483647
[rpm]
RW
3
Actual speed
The actual velocity of the motor.
-2147483648
+2147483647
[rpm]
R
9
Motor halted
velocity
If the actual speed is below this value the motor
halted flag will be set.
0 +200000 [rpm]
RWE
133
PID regulation
loop delay
Delay of the position and velocity
0… +10
[ms]
RWE
234
P parameter for
velocity PID
P parameter of velocity PID regulator.
0… +10
[50µs]
RWE
228
Velocity PID
error
Actual error of PID velocity regulator
-2147483648
+2147483647
R
229
Velocity PID
error sum
Sum of errors of PID velocity regulator
-2147483648
+2147483647
R
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 45
www.trinamic.com
VELOCITY RAMP PARAMETER
Number
Axis Parameter
Description
Range [Unit]
Access
4
Max. absolute
ramp velocity
The maximum velocity used for velocity ramp in
velocity mode and positioning mode. Set this
value to a realistic velocity which the motor can
reach!
0 +200000
[rpm]
RWE
11
Acceleration
Acceleration parameter for ROL, ROR, and the
velocity ramp of MVP.
0… +100000
[RPM/s]
RWE
13
Ramp generator
speed
The actual speed of the velocity ramp used for
positioning and velocity mode.
-2147483648
+2147483647
[rpm]
R
146
Activate ramp
1: Activate velocity ramp generator for position
PID control. (Allows usage of acceleration and
positioning velocity for MVP command.)
0/1
RWE
POSITION REGULATION MODE
Number
Axis Parameter
Description
Range [Unit]
Access
1
Actual position
Set/get the position counter without moving the
motor.
-2147483648
+2147483647
RW
0
Target position
The target position of a currently executed ramp.
-2147483648
+2147483647
RW
7
MVP Target
reached velocity
Maximum velocity at which end position flag can
be set. Prevents issuing of end position when the
target is passed at high velocity.
0 +200000 [rpm]
RWE
10
MVP target
reached
distance
Maximum distance at which the position end flag
is set.
0… +100000
RWE
161
Encoder set
NULL
1: set position counter to zero at next N channel
event.
0/1
RWE
162
Switch set NULL
1: set position counter to zero at next switch
event.
0/1
RWE
163
Encoder clear
set NULL
1: set position counter to zero only once
0: always at an N channel event
0/1
RWEP
164
Activate stop
switch
Bit 0
Left stop switch
enable
When this bit is set
the motor will be
stopped if it is
moving in negative
direction and the left
stop switch input
becomes active
Bit 1
Right stop switch
enable
When this bit is set
the motor will be
stopped if it is
moving in positive
direction and the
right stop switch
input becomes
active
Please see parameter 166 for selecting the stop
switch input polarity.
0… 3
RWE
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 46
www.trinamic.com
Number
Axis Parameter
Description
Range [Unit]
Access
166
Stop switch
polarity
Bit 0
Left stop switch
polarity
Bit set: Left stop
switch input is high
active
Bit clear: Left stop
switch input is low
active
Bit 1
Right stop switch
polarity
Bit set: Right stop
switch input is high
active
Bit clear: Right stop
switch input is low
active
0… 3
RWE
230
P parameter for
position PID
P parameter of position PID regulator. (
0… 65535
RWE
226
Position PID
error
Actual error of PID position regulator
-2147483648
+2147483647
R
STATUS INFORMATION
Number
Axis Parameter
Description
Range [Unit]
Access
151
Actual voltage
Actual supply voltage.
0… +4294967295
R
152
Actual driver
temperature
Actual temperature of the motor driver.
0… +4294967295
R
156
Error/Status
flags
Bit 0: Overcurrent flag. This flag is set if the max.
current limit is exceeded.
Bit 1: Undervoltage flag. This flag is set if supply
voltage is too low for motor operation.
Bit 2: Overvoltage flag. This flag is set if the
motor becomes switched off due to overvoltage.
Bit 3: Overtemperature flag. This flag is set if
overtemperature limit is exceeded.
Bit 4: Motor halted flag. This flag is set if motor
has been switched off.
Bit 5: Hall error flag. This flag is set upon a hall
error.
Bit 6: TMC603 error flag
Bit 7: unused
Bit 8: unused
Bit 9: Velocity mode active flag
Bit 10: Position mode active flag.
Bit 11: Torque mode active flag.
Bit 12: unused
Bit 13: unused
Bit 14: Position end flag. This flag is set if the
motor has been stopped at the target position.
Bit 15: unused
Bit 16: unused
Bit 17: I²t exceeded flag. This flag is set if the I²t
sum exceeded the I²t limit of the motor.
(reset by SAP 29 after the time specified by the
I²t thermal winding time constant)
Flag 0 to 15 are automatically reset. Only flag 17
must be cleared manually.
0…+4294967295
R
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 47
www.trinamic.com
6 Global Parameter Overview (SGP, GGP, STGP, RSGP)
The following section describes all global parameters that can be used with the SGP, GGP, STGP and RSGP
commands.
TWO BANKS ARE USED FOR GLOBAL PARAMETERS:
- Bank 0 (global configuration of the module)
- Bank 2 (user TMCL variables)
6.1 Bank 0
PARAMETERS 64… 255
Parameters below 63 configure stuff like the serial address of the module RS485 baud rate or the telegram
pause time. Change these parameters to meet your needs. The best and easiest way to do this is to use the
appropriate functions of the TMCL-IDE. The parameters between 64 and 85 are stored in EEPROM only. A SGP
command on such a parameter will always store it permanently and no extra STGP command is needed.
Take care when changing these parameters, and use the appropriate functions of the TMCL-IDE to do it in an
interactive way.
MEANING OF THE LETTERS IN COLUMN ACCESS:
Access
type
Related
command(s)
Description
R
GGP
Parameter readable
W
SGP, AGP
Parameter writable
E
STGP, RSGP
Parameter automatically restored from EEPROM after reset or power-on.
GLOBAL PARAMETERS OF BANK 0
Number
Global
parameter
Description
Range
Access
64
EEPROM magic
Setting this parameter to a different value as $E4 will cause
re-initialization of the axis and global parameters (to
factory defaults) after the next power up. This is useful in
case of miss-configuration.
0… 255
RWE
65
RS485 baud rate
0
9600 baud
Default
1
14400 baud
2
19200 baud
3
28800 baud
4
38400 baud
5
57600 baud
6
76800 baud
Not supported by Windows!
7
115200 baud
0… 7
RWE
66
Serial address
The module (target) address for RS485 and virtual COM
port
0… 255
RWE
73
Configuration
EEPROM lock
flag
Write: 1234 to lock the EEPROM, 4321 to unlock it.
Read: 1=EEPROM locked, 0=EEPROM unlocked.
0/1
RWE
75
Telegram pause
time
Pause time before the reply via RS485 is sent.
0… 255
RWE
76
Serial host
address
Host address used in the reply telegrams sent back via
RS485.
0… 255
RWE
77
Auto start
mode
0: Do not start TMCL application after power up (default).
1: Start TMCL application automatically after power up.
Note: the current initialization has to be finished first.
0/1
RWE
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 48
www.trinamic.com
Number
Global
parameter
Description
Range
Access
81
TMCL code
protection
Protect a TMCL program against disassembling or
overwriting.
0 no protection
1 protection against disassembling
2 protection against overwriting
3 protection against disassembling and overwriting
If you switch off the protection against disassembling, the
program will be erased first!
Changing this value from 1 or 3 to 0 or 2, the TMCL
program will be wiped off.
0, 1, 2, 3
RWE
85
Do not restore
user variables
0 user variables are restored (default)
1 user variables are not restored
0/1
RWE
128
TMCL
application
status
0 stop
1 run
2 step
3 reset
0… 3
R
129
Download
mode
0 normal mode
1 download mode
Attention:
Download mode can only be used if the motor has been
stopped first. Otherwise the download mode setting will
be disallowed.
During download mode the motor driver will be
deactivated and the actuator will be turned off.
0/1
R
130
TMCL program
counter
The index of the currently executed TMCL instruction.
o… 2047
R
132
Tick timer
A 32 bit counter that gets incremented by one every
millisecond. It can also be reset to any start value.
0…
+4294967295
RW
255
Suppress reply
0 reply (default)
1 no reply
0/1
RW
6.2 Bank 2
Bank 2 contains general purpose 32 bit variables for the use in TMCL applications. They are located in RAM
and can be stored to EEPROM. After booting, their values are automatically restored to the RAM.
Up to 256 user variables are available.
MEANING OF THE LETTERS IN COLUMN ACCESS:
Access
type
Related
command(s)
Description
R
GGP
Parameter readable
W
SGP, AGP
Parameter writable
E
STGP, RSGP
Parameter automatically restored from EEPROM after reset or power-on.
GLOBAL PARAMETERS OF BANK 2
Number
Global parameter
Description
Range
Access
0… 55
General purpose variable #0… 55
for use in TMCL applications
-231…+231
(int32)
RWE
56… 255
General purpose variables #56… #255
for use in TMCL applications
-231…+231
(int32)
RW
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 49
www.trinamic.com
7 Motor Regulation
7.1 Structure of the Cascaded Motor Regulation Modes
The TMCM-1630 supports a current, velocity, and position PID regulation mode for motor control in different
application areas. These regulation modes are cascaded as shown in figure 12.1. The individual modes are
explained in the following sections.
motor
current
measurement
hall sensor
or encoder
FOC based
current PID
current
PID
values
max
target
current
(SAP 6)
target
current
target
current
(SAP 155)
target
position
(SAP 0)
actual current
velocity
PID
actual velocity
velocity
PID
values
max
target
velocity
(SAP 4)
ramp generator
velocity
ramp
generator
accelerat.
(SAP 11)
enable/
disable
ramp
(SAP 146)
position
PID
target
velocity
target
velocity
(SAP 2)
position
PID
values
actual position
current regulation mode
velocity regulation mode
position regulation mode
actual commutation angle
7.1 Cascaded regulation
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 50
www.trinamic.com
7.2 Current Regulation
The current regulation mode uses a PID regulator to adjust a desired motor current. This target current can
be set by axis parameter 155. The maximal target current is limited by axis parameter 6.
The PID regulation uses three basic parameters: The P and I value as well as the timing control value.
TIMING CONTROL VALUE
The timing control value (current regulation loop multiplier, axis parameter 134) determines how often the
current regulation is invoked. It is given in multiple of 50µs:
    
 = resulting delay between two current regulation loops
 = current regulation loop multiplier parameter
For most applications it is recommended to leave this parameter unchanged at its default of 2*50µs. Higher
values may be necessary for very slow and less dynamic drives.
STRUCTURE OF THE CURRENT REGULATOR
IACTUAL
˗
ITARGET +
PPARAM/256
X
IPARAM/65536
X+Clip
-32768..
+32767
SVPWM
Clip
IMax
Clip
ICLIP
eSUM
Figure 7.2 Current regulation
Parameter
Description
IACTUAL
Actual motor current (GAP 150)
ITARGET
Target motor current (SAP 155)
IMax
Max. motor current (SAP 6)
eSUM
Error sum for integral calculation (GAP 201)
PPARAM
Current P parameter (SAP 172)
IPARAM
Current I parameter (SAP 173)
PARAMETERIZING THE CURRENT REGULATOR SET
1. Set the P parameter and the I parameter to zero.
2. Start the motor by using a low target current (e.g. 1000 mA).
3. Modify the current P parameter. Start from a low value and go to a higher value, until the actual
current nearly reaches 50% of the desired target current.
4. Do the same with the current I parameter.
For all tests set the motor current limitation to a realistic value, so that your power supply does not become
overloaded during acceleration phases. If your power supply reaches current limitation, the unit may reset or
undetermined regulation results may occur.
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 51
www.trinamic.com
7.3 Velocity Regulation
Based on the current regulation the motor velocity can be controlled by the velocity PID regulator.
TIMING CONTROL VALUE
Also, the velocity PID regulator uses a timing control value (PID regulation loop delay, axis parameter 133)
which determines how often the PID regulator is invoked. It is given in multiple of 1ms:
   
 = resulting delay between two PID calculations
 = PID regulation loop delay parameter
For most applications it is recommended to leave this parameter unchanged at its default value of 1ms.
Higher values may be necessary for very slow and less dynamic drives.
STRUCTURE OF THE VELOCITY REGULATOR
vACTUAL
vRAMPGEN
IPARAM / 65536
PPARAM / 256
Clip
ICLIP
eSUM
Clip
IMax
ITARGET
Clip
VMax
Figure 7.3 Velocity regulation
Parameter
Description
vACTUAL
Actual motor velocity (GAP 3)
vRAMPGEN
Target velocity of ramp generator (SAP 2, GAP 13)
vMax
Max. target velocity (SAP 4)
eSUM
Error sum for integral calculation (GAP 229)
PPARAM
Velocity P parameter (SAP 234)
IPARAM
Velocity I parameter (SAP 235)
IMax
Max. target current (SAP 6)
ITarget
Target current for current PID regulator (GAP 155)
PARAMETERIZING THE VELOCITY REGULATOR SET
1. Set the velocity I parameter to zero.
2. Start the motor by using a medium target velocity (e.g. 2000 rpm).
3. Modify the velocity P parameter. Start from a low value and go to a higher value, until the actual
motor speed reaches 80 or 90% of the target velocity.
4. The lasting 10 or 20% speed difference can be reduced by slowly increasing the velocity I parameter.
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 52
www.trinamic.com
7.4 Velocity Ramp Generator
For a controlled start up of the motor's velocity a velocity ramp generator can be activated/deactivated by axis
parameter 146. The ramp generator uses the maximal allowed motor velocity (axis parameter 4), the acceleration
(axis parameter 11) und the desired target velocity (axis parameter 2) to calculate a ramp generator velocity for
the following velocity PID regulator.
7.5 Position Regulation
Based on current and velocity regulators the TMCM-1630 supports a positioning mode based on encoder or
hall sensor position. During positioning the velocity ramp generator can be activated to enable motor
positioning with controlled acceleration or it can be disabled to support motor positioning with max allowed
speed.
The PID regulation uses two basic parameters: the P regulation and a timing control value.
TIMING CONTROL VALUE
The timing control value (PID regulation loop parameter - axis parameter 133) determines how often the PID
regulator is invoked. It is given in multiple of 1ms:
   
 = the resulting delay between two position regulation loops
 = PID regulation loop multiplier parameter
For most applications it is recommended to leave the timing control value unchanged at its default of 1ms.
Higher values may be necessary for very slow and less dynamic drives.
STRUCTURE OF THE POSITION REGULATOR
nACTUAL
nTARGET PPARAM/256
Clip
VMAX
VTARGET
Clip
±65535
Figure 7.4 Positioning regulation
Parameter
Description
nACTUAL
Actual motor position (GAP 1)
nTARGET
Target motor position (SAP 0)
PPARAM
Position P parameter (SAP 130, SAP 230)
VMAX
Max. allowed velocity (SAP 4)
VTARGET
New target velocity for ramp generator (GAP 13)
PARAMETERIZING THE POSITION REGULATION
Based on the velocity regulator only the position regulator P has to be parameterized.
1. Disable the velocity ramp generator and set position P parameter to zero.
2. Choose a target position and increase the position P parameter until the motor reaches the target
position approximately.
3. Switch on the velocity ramp generator. Based on the max. positioning velocity (axis parameter 4) and
the acceleration value (axis parameter 11) the ramp generator automatically calculates the slow down
point, i.e. the point at which the velocity has to be reduced in order to stop at the desired target
position.
4. Reaching the target position is signaled by setting the position end flag.
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 53
www.trinamic.com
NOTE:
- In order to minimize the time until this flag becomes set, the positioning tolerance MVP target reached
distance can be chosen with axis parameter 10.
- Since the motor typically is assumed not to signal target reached when the target was just passed in a short
moment at a high velocity, additionally the maximum target reached velocity (MVP target reached velocity)
can be defined by axis parameter 7.
- A value of zero for axis parameter 7 is the most universal, since it implies that the motor stands still at the
target. But when a fast rising of the position end flag is desired, a higher value for the MVP target reached
velocity parameter will save a lot of time. The best value should be tried out in the actual application.
CORRELATION OF AXIS PARAMETERS 10 AND 7, THE TARGET POSITION, AND THE POSITION END FLAG
|Velocity|
Position
Target position
(set via MVP)
Max. positioning
velocity
MVP target reached distance
Slow-down-distance
Motor regulated by
Velocity PID
Motor regulated by
combination of
Velocity and Position
PID
Acceleration
MVP target
reached velocity
Target reached flag
only set when velocity
and position are in
this area.
Figure 7.5 Positioning algorithm
Depending on motor and mechanics a low oscillation is normal. This can be reduced to at least +/-1 encoder
steps. Without oscillation the regulation cannot keep the position!
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 54
www.trinamic.com
8 Temperature Calculation
Axis parameter 152 delivers the actual ADC value of the motor driver. This ADC value can be converted to a
temperature in °C as follows:
  
  
 
  
  
 
    °
Example 1: Example 2:
ADC = 1000 ADC = 1200
RNTC ≈ 6.81 RNTC ≈ 5.31
T ≈ 35° T ≈ 42°
9 t Monitoring
The I²t monitor determines the sum of the square of the motor current over a given time. The integrating
time is motor specific. In the datasheet of the motor this time is described as thermal winding time constant
and can be set for each module using axis parameter 25. The number of measurement values within this time
depends on how often the current regulation and thus the I²t monitoring is invoked. The value of the actual
I²t sum can be read by axis parameter 27. With axis parameter 26 the default value for the I²t limit can be
changed (default: 211200). If the actual I²t sum exceeds the I²t limit of the motor, flag 17 (in axis parameter
156) is set and the motor pwm is set to zero as long as the I²t exceed flag is set. The actual regulation mode
will not be changed. Furthermore, the I²t exceed counter is increased once every second as long as the actual
I²t sum exceeds the I²t limit. The I²t exceed flag can be cleared manually using parameter 29 but only after
the cool down time given by the thermal winding time constant has passed. The I²t exceed flag will not be
reset automatically. The I²t limit can be determined as follows:
 
 
  
is the desired average current
 is the thermal winding time constant given by the motor datasheet
Example:
I²t limits for an average current of a) 1A, b) 2A, c) 3A and d) 4A over a thermal winding time of 13,2s.
a)  
 
  
b)  
 
  
c)  
 
  
d)  
 
  
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 55
www.trinamic.com
10 Life Support Policy
TRINAMIC Motion Control GmbH & Co. KG does not authorize or
warrant any of its products for use in life support systems, without
the specific written consent of TRINAMIC Motion Control GmbH &
Co. KG.
Life support systems are equipment intended to support or sustain
life, and whose failure to perform, when properly used in
accordance with instructions provided, can be reasonably expected
to result in personal injury or death.
© TRINAMIC Motion Control GmbH & Co. KG 2013.
Information given in this data sheet is believed to be accurate and
reliable. However neither responsibility is assumed for the
consequences of its use nor for any infringement of patents or
other rights of third parties, which may result from its use.
Specifications are subject to change without notice.
TMCM-1630 TMCL Firmware V2.08 Manual (Rev. 2.04 / 2017-JULY-10) 56
www.trinamic.com
11 Revision History
11.1 Firmware Revision
Version
Date
Author
Description
1.0
2011-MAY-16
OK
First version
1.46
2011-SEP-27
ED
New version including hallFX parameters
1.47
2012-JAN-26
ED
hallFX parameters corrected
1.48
2012-DEC-12
ED
Axis parameter 178 added.
2.05
2013-APR-14
ED
New FOC version, several changes. (hallFX removed)
2.07
2014-Jun-04
ED
- Axis parameter 238 deleted (Mass inertia constant)
- Axis parameter 239 deleted (BEMF constant)
- Axis parameter 240 deleted (Motor coil resistance)
- Bug during Encoder-initialization (mode 2) with inverted
encoder-signals fixed
- readability for encoder-, and hall-angle during controlled
mode added
2.08
2016-FEB-16
ED
- removed motor noise when using telegram-pause-time
- added Block-Hall commutation mode
- added getter for Phase_A, Phase_B, Phase_C, VSupply, and
Temp adc values
- ignore module address when using USB connection
(module remains always accessible)
- allow encoder initialization in positioning mode
- updated USB-VID/-PID
11.2 Document Revision
Version
Date
Author
Description
2.00
2013-APR-02
SD
Manual for new Field Orientated Control (FOC) firmware
- Commands SIO and GIO added.
- Axis parameters updated.
- Motor regulation updated.
- Axis parameter 209 deleted.
- Axis parameter 241 (sine initialization speed) added.
- Axis parameter 31 (BLDC re-initialization) added.
- Axis parameter 212 (actual controlled angle) new.
- Axis parameter 159 updated: new FOC controlled mode.
- Global parameter 77 (auto start mode) updated.
- Global parameter 129 (download mode) updated.
- Several axis parameter value ranges updated.
2.01
2014-JUN-04
ED
- Axis parameter 238 deleted (Mass inertia constant)
- Axis parameter 239 deleted (BEMF constant)
- Axis parameter 240 deleted (Motor coil resistance)
2.02
2015-MAR-09
JP
Removed more outputs option.
2.03
2016-FEB-16
ED
Added Block-Hall to Axis parameter 159.
Updated GIO command table.
2.04
2017-JULY-10
ED
Removed hallFX.
12 References
[TMCM-1630] TMCM-1630 Hardware Manual
[BB-1630] BB-1630 Hardware Manual
[TMCL-IDE] TMCL-IDE User Manual
[TMC603] TMC603 Datasheet
Please refer to our homepage http://www.trinamic.com.

Navigation menu