Psion 32D73552356781 Voice/Data FM Modulated Transceivers User Manual Users manual from mail

Psion Inc Voice/Data FM Modulated Transceivers Users manual from mail

Users manual from mail

Download: Psion 32D73552356781 Voice/Data FM Modulated Transceivers User Manual Users manual from mail
Mirror Download [FCC.gov]Psion 32D73552356781 Voice/Data FM Modulated Transceivers User Manual Users manual from mail
Document ID2980
Application ID37Q1ndynsJU5P4R9UYeQdw==
Document DescriptionUsers manual from mail
Short Term ConfidentialNo
Permanent ConfidentialNo
SupercedeNo
Document TypeUser Manual
Display FormatAdobe Acrobat PDF - pdf
Filesize87.7kB (1096237 bits)
Date Submitted1998-06-17 00:00:00
Date Available1998-08-17 00:00:00
Creation Date2001-07-17 12:38:28
Producing SoftwareAcrobat Distiller 4.0 for Windows
Document Lastmod2001-07-17 12:38:29
Document TitleUsers manual from mail

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.1
2.2
3.1
3.2
3.3
3.4
4.1
4.2
TABLE OF CONTENTS
GENERAL INFORMATION
SCOPE OF MANUAL .............................................
EQUIPMENT DESCRIPTION. .............
GENERAL ..........................
DM3474 SYNTHESIZE! PROGRAMMING
TRANSCEIVER IDENTIFICATION .................
PART NUMBER BREAKDOWN ....................
ACCESSORIES .................
FACTORY CUSTOMER SERVICE
PRODUCT WARRANTY .......
REPLACEMENT PARTS.
FACTORY RETURNS ..............................................................
INSTALLATION
FIRE-INSTALLATION CHECKS ............................................................... 2-1
INTERFACING WITH DATA EQUIPMENT -1
DM3474 ONLY .............................................................................. 2-1
PROGRAMMING
.3-1
.3-1
3-1
.. 3—1
. 3-1
INTRODUCTION ...........................................................
DM3474 SYNTHESIZER DATA PROTOCOL .
D-WORD ...............................
B-WORD .
A-WORD ........................
RECEIVE TO TRANSMI'I‘ SEQUENC . .
TRANSMIT TO RECEIVE SEQUENCE ......................................................... 3-4
CIRCUIT DESCRIPTION
GENERAL .................................................................................. 4-1
INTRODUCTION . . . .
SYNTHBIZER . . . .
RECEIVER ......
TRANSMITTER .
SYNTHESIZER .
INTRODUCTION ....................
VOLTAGE-CONTROLLED OSCILLATOR ...........
VCO AND REFERENCE OSCILLATOR MODULATION .
CASCODE AMPLIFIERS (QBS I/QSSZ) ...............
AMPLIFIER (Q853) ..............
VOLTAGE FILTER (0832) . .. .
VCO FREQUENCY SHIFT (Q831) ..........
SYNTHESIZER INTEGRATED CIRCUIT (USO )
LOCK DETECT ..........................
RECEIVER CIRCUIT DESCRIPTION .....
MAL FILTFJI (DOI), RF AMPLIFIFR (020
MIXER (U221), FIRST LO AMPLIFIER (QSOI) ..................
AMPLIFIER (Q222). CRYSTAL FILTER (2221/1222). IF AMP (Q22 )
SECOND LO AMP/TRIPLER (Q401). SECOND IF FILTER (0901) .................................... 4-6
4.4
5.1
5.2
53
5.4
6.1
6.2
TABLE OF CONTENTS
SECOND MIXER/DETECTOR (11241) .. . .
TRANSMITTER CIRCUIT DESCRIPTION . ‘ 4-7
BUFFER (Q85 1) ................... . .
PRE-DRIVER (QSOI). DRIVER (Q521
»5V POWER CONTROL SUPPLY . . . ‘
FINAL (Q54I)‘ POWER CONTROL (U542)
ANTBINA SWITCH (CI256Iv CR562) .....
SERVICING
GENERAL .........
PERIODIC CHECKS A
SURFACE-MOUNTED . .................. 5-1
SCHEMATIC DIAGRAMS AND COMPONENT LAYOUTS 4 . 5-1
REPLACEMENT PARTS LIST ......... . . 5-1
TCXO MODULE NOT SERVICEABLE . 4 . 5-1
SYNTHESIZER SERVICING 4 4 5-1
INTRODUCTION ......... 5-1
REHERENCE OSCILLATOR 5-1
VCO ................ 5-1
SYNTI-IESIER (0801). 5-2
RFEEIVER SERVICING . 5-2
SUPPLY VOLTAGE? AND C . 5-2
MIXER/DETECTOR (UZOI) ........... 5-2
RF AMPLIFIER (Q201) AND FIRST MIXER (Q221). 5-3
RF AND IF AMPLIFIERS, FIRST MIXER . . . 5—3
TRANSMITTER SERVICING. . . 1 5-3
SUPPLY VOLTAGE? AND CURRENT . . 1 . 5-3
ALIGNMENT PROCEDURE AND PERFORMANCE TESTS
GENERAL ...................
D134” TRANSCEIVER ONLY
FREQUENCY AND CONTROL LINE VOLTAGE CHECK .
ZW TRANSMITTER POWER ALIGNMENT .
LOW POWER ALIGNMENT ............
MODULATION FLATNESS ALIGNMENT
RECEIVER ALIGNMENT ......
I]: AND AUDIO ADJUSTMENTS
PARTS LIST
SCHEMATICS AND COMPONENT LAYOUTS
VCO COMPONENT LAYOUT.
TRANSCEIVER COMPONENT
TRANSCEIVER SCHEMATIC ...........
"\
2-1
3-1
3-3
3-4
3-5
3-6
4-1
4-2
4-3
5-1
5-2
6-1
6-2
6-3
84
8~2
8-3
8—4
1—1
LIST OF FIGURES
A-WORD ......................
SERIAL INPUT WORD FORMAT . ........
RX T0 TX TIMING DIAGRAM .
TX 10 RX WING DIAGRAM .......
DATA TRANSCEIVER BLOCK DIAGRAM ,
UBOl SYNTHESIER BLOCK DIAGRAM.
U2“ BLOCK DIAGRAM .............
RECEIVER SERVICING FLOWCHART . .. .
TRANSMITTER SERVICING FLOWCHART . .
TRANSMITTER TEST SETUP ....................
RECEIVER TEST SETUP .......
ALIGNMENT FONTS DIAGRAM .............
VCO COMPONENT LAYOUT (COMPONENT SIDE VIEW) .......
TRANSCEIVHI COMPONENT LAYOUT (COMPONENT SIDE VIE ) .
TRANSCEIVER COMPONENT LAYOUT (OPPOSITE COMPONENT SIDE VIEW)
TRANSCEIVER SCHEMATIC ..................................................
LIST OF TABLES
ACCESSORIES
“Ln-cm“. m. U! v”
The following are general specifications intended for use in testing and servicing this transceivert For current ad»
vertised specifications, refer to the specification sheet available from the Marketing Department. Specifications are
subject to change without notice.
GENERAL
Frequency Range
Frequency Control
Channel Spacing
Mode of Operation
Operating Voltage
Regulated Supply Voltages
RF Input/Output
Power and Data Interface
Operating Temperature
Maximum Dimensions
Weight (w/o Loader Bd)
FCC Compliance
RECEIVER
Bandwidth
Frequency Stability
Sensitivity - 12 dB SINAD
RF Input Impedance
Selectivity
Spurious and Image Rejection
Inter-modulation
FM Hum and Noise
Conducwd Spurious
Receive Cm-rent Drain
Receive Attack Time
Audio
Distortion
Output Level DM3474
Response
DM3474
Minimum Load Impedance
TRANSMITTER
Bandwidth
Frequency Stability
TCXO Coupling
RF Power Output
RF Output Impedance
Modulation Distortion
Duty Cycle
Transmitta’ Attack Time
Spurious and Harmonic FM
FM Hum and Noise
Audio Response
Data Input Impedance
Modulation Response
Current Drain
403-512 MHZ
Synthesized
12.5/20/25 kHz
Simplex or Half Duplex
+7.5V DC 110%
+5V DC i570
MCX Jack
14-pin in-line socket, 100 mil center
-30" to +60” C (-22° to +140H F)
2.83" L (7.19 cm), 2.19" W (5.56 cm), 0.64" H (1.70 cm)
2.3 oz (65 g)
DM3474 customer must apply
16 MHz
1:1 .5 PPM
0.45 LN
50 ohms
-70 dB
-60 dB (1245 kHz), -70 (13 (2005 kHz)
-70 dB
-40 (15 (12.5 kHz), 45 dB (20/25 kHz)
-57 dBm
< 70 mA nominal
< 7 ms (dependent on synthesim loading implementation)
< 3%
600-1200 mV P-P or 200-400 mV RMS (1 kHz at £3 kHz)
fidBfiomDCtoSkHzGefemrceto 1 kHz)
lkohms
16 MHz
115 PPM
DC
2W nominal adjustable to 500 mW (—X.X0)
500 mW nominal adjustable to 75 mW (with Low Power Kit)
50 ohms
< 3%
50%, 60 seconds maximum transmit
< 7 ms (dependent on synthesizer implementation)
-37 dBm
—40 dB 12.5 kHz, -45 dB 25 kHz
1:15 dB from DC to 5 kHz (reference to 1 kHz)
Programmable to t] dB at the RF band edges via 1201, pin 14,
100k ohm
i] dB from DC to 5 kHz (reference to 1 kHz)
< 800 mA 8! 2w, +7.SV DC
January 1996
1-5 Part No. 001-3474-001
__—__.—__—________———-————————'
hLNhKAL INPUKMAI IUN
This page intentionally lefi blank.
January I996
Pm ND. 00l-3474-00I 1-6
SECTION 2 INSTALLATION
2.1 I’M-INSTALLATION CIECKS
Field alignment should not be required before the
3474 is inmlled. However, it is still good practice to
check the performance to ensure that no damage
occurred during shipment. Performance tests are
locamd in Section 6.2.
2.2 INTERFACWG WITH DATA EQUIPMENT
2.2.1 DMJ474 ONLY
Connector 1201 on the data transceiver PC hoard
provides the interface with the data equipment. This is
a l4-pin female connector with .025" square pins on
0.1 " centers (Dupont 76308-1 14). An interface cable
diagram and pin designations are shown in Figure 2-1.
This cable is not included with the data transceiver.
The following is a general description of the vari-
ous J201 input and output signals.
Pin 1 (Ground) - Chassis ground.
Pin 2 (+7.5V DC Continuous) . This voltage should
be stabilized near +7.5V DC, Variations from +6V to
+9V can change power output as much as 6 dB.
Pin 3 (+7.SV DC Transmit) - This input should be
+7.5V DC in transmit mode only.
Pin 4 (+5V DC Reoeive Control line) - This input
should be +5V DC in the receive mode only, 5 0.3 V
DC in Tx, input impedance 2 10k ohms.
Pin 5 (+5V DC Continuous) - This voltage should be
stabilized near +5V DC.
Pin 6 (Tx Input) - Provides a response of ti .5 dB from
DC to 5 kHz. The sensitivity is approximately 7 kHz
deviation pervolt RMS. When this input is used, a
temperature compensated 2.5V DC bias is required be-
cause variations in voltage cause the frequency to
change. In addition, the transceiver regulatory compli-
ance must be applied for with the customer supplied
modulation limiting/filter circuit and chassis.
Pin 7 (Synthesizer Lock) - Output from synthesizer
lock depot circuit. Low = unlocked, high = locked.
Pin 8 (Synthesizer Enable) - Latch enable signal. A
rising edge on this input latches the data loaded into
synthesizer 1C USO].
Pin 9 (Synthesizer Data) - Serial data line used for
programming synthesizer lC USO].
Pin 10 (Synthesizer C10ek)~ Software generated seri-
al clock. Data is valid on the rising edge of this signal.
Pin 11 (Currier Detect) - This output is not used atthis
time.
Pin 12 (R881 Output) - The RSSl (Receive Signal
Strength Indicator) output provides a voltage that in-
creases in proportion to the strength of the RF input
signal.
Pin 13 (Rx Output) » The data output level is 600-
l200 rnillivolts P-P (200-400 mV RMS) with a modu-
lation signal of 1 kHz at 60% ofmaximum deviation.
The output is DC coupled and referenced to +2.5V DC.
Load impedance should be lOk—lOOk ohms.
January 1996
Part No. 001-3474-001
INSTALLATION
cmmER DETECT
RSSV OUT
Figure 2-1 DM3474 INTERFACE CABLE
January |996
Pin No. 00134744)!" 2-2
SECTION 4 CIRCUIT DESCRIPTION
4.1 GENERAL
4.1 .1 INTRODUCTION
The main subassemblies of this transceiver are
the RF board, VCO board, TCXO. A block diagram
ofthe transceiver is located in Figure 4-1.
The VCO board is enclosed by a metal shield and
soldered directly to the RF board. The VCO is not
serviceable.
The 3474 is available with a reference oscillator
stability of 11.5 PPM. The TCXO (Temperature
Compensated Crystal Oscillator) is soldered directly
to the RF board.
4.1 .2 SY'NTHESlZER
The VCO (Voltage-controlled oscillator) output
signal is the receiver first injection frequency in the
Receive mode and the transmit frequency in the
Transmit mode. The first injection frequency is 52.95
MHz above the receive frequency. The frequency of
this oscillator is controlled by a DC voltage produced
by the phase detector in synthesizer chip U801.
Channels are selected by programming counters
in USO] to divide by a certain number. This program-
ming is performed over a serial bus formed by the
Synth Clock, Synth Enable, and Synth Data pins of
1201. This programming is performed by user sup-
plied hardware and sofiware (see Section 3).
The frequency stability of the synthesizer in both
the receive and transmit modes is established by the
stability of the reference oscillator described in the
preceding section. These oscillators are stable over a
temperature range of-30" to +60° C (-22° to +l40° F).
4.1.3 RECEIVER
The receiver is a double-conversion type with
intermediate frequencies of 52.95 MHz / 450 kHz.
Two helical bandpass filters reject the image, half IF,
injection, and other unwanted frequencies. A four»
pole crystal filter enhances receiver selectivity
441.4 TRANSMITTER
The transmitter produces a nominal RF power
output of 2W adjustable to 500 mW (-XXO) or 500
mW adjustable to 75 mW (with Low Power Kit). Fre-
quency modulation of the transmit signal occurs in the
synthesizer. Transmit audio processing circuitry is
contained in the customersupplied equipment.
4.2 SYNTHESIZER
4.2.1 INTRODUCTlON
A block diagram of the synthesizer is shown in
Figure 4-1 and a block diagram of Synthesizer 1C
U801 is shown in Figure 4-2. As stated previously,
the synthesizer output signal is produced by a VCO
(voltage controlled oscillator). The VCO frequency
is controlled by a DC voltage produced by the phase
detector in Ullol. The phase detector senses the phase
and frequency of the two input signals and causes the
VCO control voltage to increase or decrease if they
are not the same. The VCO is then "locked" on fre-
quency.
Programming of the synthesizer provides the data
necessary for the internal prescaler and counters. One
input signal is the reference frequency. This frequency
is produced by the 1745 MHz reference oscillator
(T CXO). The other input signal is the VCO
frequency.
January 1996
Part No. 001-3474-001
____________—_______————————-————————
PROGRAMMING
The Fractional-N increment (NF) is a 3~bit word
that is channel dependent. NF is used to program the
sub-channels below the 50 kHz Loop Reference fre—
quency. FCM = 50 kHz and if FMOD = 8, then the
chtional-N increment is: 50 kHz + 8 = 6.25 kHz
To program an 18.75 kHz channel:
NF=18.75 kHz+6.25 kHz
NF=3
NMl and NMZ are calculated as follows:
Example:
Calculate NM] and NM2 it: Receive 454.500 MHz.
L0 = 454.5 + 52.95 = 507.45 MHz
(52.95 MHz IF with High Side lnjecticn)
N = RX L0 -'r FCM = 507.45 5 0.05 = 10149
(FMC = loop Reference Frequency)
NMZ =64xFRAC[N+64]
=64xFRAC [10149+64]
N=(NM1+2)X64+NM2X65 =64x0.57813
Where: =37
N=mldivisionratio NM] =1NTEGER[N+64]-2-NM2
=158-2—37
NM] = Number of main divider cycles when = [19
prescaler modulus equals 64
NM2 = Number of main divider cycles when
prescaler modulus equals 65
51751 2 3 4 s s 7 s 9lOll1213l4151617l6192021222324
l 0 l 0 O 0 0 O 1 0 1 O 1 l 1 0 0 0 | O D 0 (7/1 l
\ l
L. ‘f_, ‘ \_Y_J
ADDRESS NR (REFERENCE DIVIDE)
, 350 row 50 kHz REFERENCE
SM (ALWAYS 00)
EM (ALWAYS 1)
5A(NCI'Y USED)
EA (ALWAYS o)
FMOD (l-MDWLUS a, 0 = MODULUS 5)
LONG (1:32 BIT WORD, 0-24 BIT WORD)
Figure3-1 D-WORD
ENS] z 3 4 5 6 7 a 9ion12|3u|51e171315202|222324
1010 o o o o 3/10/10/10/10/10/10/l0/l o o o o o o 01
\ \ , \ J 1 1 l I
v Y v l
ADDRESS NOT USED ON CK CL
(ALWAYS 00007 (CHARGE PUMF CURRENT SE‘TTWC) Bwanv ACCELERATION
(CHANNEL DEPENDENT‘ FACTOR (ALWAYS 000000)
PR (PRESCALER TvPE) (Dl=DUAL MODULUS)
Flgure34 B-WORD
January 1996
Pan No. 001-3474-001 3—2
CIRCUIT DESCRIPTION
m.
n .. m, m; r.
e, ..
T 2 z i: n moo 1
"N "155/71 "mun ”(scum
mm , a...
my“... m... W
l—.
m.
m.
mm.
m [or
., l I
arr“ -=‘2‘2
m...
unmet
must
Figure 4-2 11801 SYNTHESIZER BLOCK DIAGRAM
4.2.2 VOLTAGE-CONTROLLED OSCILLATOR
QscilletaLcQBiO)
The VCO is formed by Q850, several capacitors
and varactor diodes, and a ceramic resonator. It oscil-
lates at the transmit frequency in transmit mode and
first injection frequency in the receive mode (approxi-
mately 450 MHz in transmit and 500 MHz in receive).
Biasing of 0850 is provided by R862, R867 and
R868. An AC voltage divider formed by C859, C861
and C862 initiates and maintains oscillation and also
matches 0850 to the tank circuit. The ceramic resona-
tor is grounded at one end to provide shunt inductance
to the tank circuit.
4-3
Emmnqxcontmlandflodulatinn
The VCO frequency is controlled in part by DC
voltage across varactor diodes CR854, CRBSS, CR856
and CR85 I. As voltage across a reverse-biased varac-
tor diode increases, its capacitance decreases. There—
fore, VCO fi'equency increases as the control voltage
increases. CR854/CR855 and CRBSG/CRSSI are par-
alleled varactors to divide the capacitance and
improve Iiniarity, The varactors are biased at -2V to
adjust to the voltage output of USO] . The control line
is isolated from tank circuit RF by choke L851 and
L854 and decoupling capacitor C854. The amount of
frequency change produced by CR854/CR855/CR856/
CRSSI is controlled by series capacitor C353.
January I996
Part No. 001-3474-00l
PROGRAMMING
3.3 RECEIVE T0 TRANSMIT SEQUENCE
3.4 TRANSMIT TO RECEIVE SEQUENCE
Refer to Figure 3-5. Refer to Figure 36. As‘
1. Synthesizer is loaded (B and A 24-Bit words orone l. 7.5 TX is turned OFF. For best TX adjacent chan-
Iong 32-bit A-Word). nel power performance this could be shaped.
2. The state of the SRCL line does not have to be 2. The synthesizer loud process could begin slightly
changed until the last bit is sent. However, RX vw'll before, but when the last bit is stroked in the synthe-
cease as soon as it is changed. sizer it will become unlocked. For ETSI specs, the
TX should be turned OFF "omfrequency".
3. The SYNTH ENABLE line should he held HIGH
for 2 to 3 milliseconds nfierthe last word is sent. 3. The SRCL line should switch from low to high
This puts the frequency synthesizer in a SPEEDUP AFTER the 7.5 TX is switched. The SRCL not only
MODE and slightly improves lock times. turns the RX circuits on but also Pin Shifis the
VCO.
4. Alter the last word is strobed in, 7 milliseconds
(worst case) should elapse before 75 TX is turned 4. For quickest lock times the SYNTH ENABLE line
ON. 111is allows the synthesizer to come within 1 on the last load word should be held high for 2 to 3
kHz of the desired frequency. milliseconds It MUST NOT be Iefi high as the syn-
thesizer in the SPEEDUP mode has poor noise per-
formance and would degade die RX performance.
m _
°~"_:-IEI£ELEEE A.
Figure 3-5 RX T0 TX TIMING DIAGRAM
Dekey is a length of time to allow the TX to T0 RX TIMING DIA
power down whilethesynthesizer is still in lock. This Fm" 3'6 TX Gm“ '
is needed to meet ETSl (European Telecommunicm
tions Standards Institute) adjacent power specifica-
tions. Dekey is approximately 3 ms in length. The .
7.5 TX should be ramped or optimally filtered in such mdfixfiixiy 7 ms
3 way as to reduce the Sinxlx power spreading. Ramp is approximately 3 ms
Speedup will slightly improve lock times and is l to
2 ms, '
IMPORTANT _
Ifrhz receiver is to be operated or 510-512 Ila-[z (-810), a spurious condition may occur to degrade the
receiver sensitivity 2 to 3 dB. If this degradation is unacceptable, [he synthesizer can be reprogrammed to a com-
parison frequency (FCM of31.25 kHz (so that a multipIe of this would not be 52.95 11012) and a modulus ’\
(FMOD) of 5 with a reference divide (NR) of 560. These parameters place the spurious at harmonics of 3 1.25 kHz
(instead of 50 kHz) outside the parsbarld of the IF fillers where the sensitivity is not degraded.
January [996
Part No. 001-3474—00l
low impedance to RF; and when it is reverse biased, it
presents a very high impedance. The capacitive leg is
switched in when in transmit and out when in receive.
When 120], pin 4 is high'in receive, (2834 is
turned off, QIO] is turned on and the collector voltage
goes low. A low on the base on102 tums the tran-
sistor on and fire regulated +5.5V on the emitter is on
the collector for the receive circuitry. With a low on
the base of 083] the transistor is off and the collector
is high. With a high on the collector onB31 and a
low on the emitter of Q834, this reverse biases CR850
for a high impedance.
The capacitive leg is formed by C85], CRSSO,
C852 and C376. When 120], pin 4 is low in transmit,
0834 is tumed on and ahigh is on the emitter, 0101 is
turned off and the collector voltage goes high. A high
on the base on102 tnms the transistor offend the
regulated +5.5V is removed from the receive circuitry.
With a high on the base of Q83] the transistor is on
and the collector is low. With a low on the collector
on83I and a high on the emitter of Q834, this for-
ward biases CR850 and provides an RF ground
through C851 and C852/C876 are effectively con-
nected to the tank circuit. This decreases the resonant
frequency of the tank circuit.
4.2.8 SYN’I'I-ESIZER INTEGRATED CIRCUIT
(U801)
lntroductim
Synthesizer chip USO] is shown in Figure 4-2.
This device contains the following circuits: R (refer-
ence), Fmional-N, NMI and NM2; phase and lock
detectors, prescaler and counter programming cir-
cuitry. The basic operation was described in Section
4.2.1.
ChanneLEmgmmming
Frequencies are selected by programming the K
Fractional-N, NM] and NM2 in USO] to divide by a
certain number. These counters are programmed by a
user supplied programming circuit. More infonna~
tion on programming is located in Section 3.
CIRCUIT DESCRIPTION
As previously stated, the counter divide numbers
are chosen so that when the VCO is oscillating on the
correct fi'equency, the VCO—derived input to the phase
detector is the same frequency as the reference oscilla-
tor-derived frequency.
The VCO frequency is divided by the internal
prescalerand the main divider to produce the input to
the phase detector.
4.2.9 DOCK DETEJCT
When the synthesizer is locked on frequency, the
SYNTI-I LOCK output of U801 , pin 18 (1201, pin 7) is
a high voltage. Then when the synthesizer is
unlocked, the output is a low voltage. Lock is defined
as a phase difference of less than ] cycle of the
TCXO.
4.3 RECEIVER CIRCUIT DESCRIPTION
4.3.1 I-EELICAL FILTER (2201), RF AMPLIFIER
(Q201)
Capacitor C201 couples the receive signal from
the antenna switch to helical filter 220]. (The antenna
switch is described in Section 4.4.5.) Z201 is a band-
pass filter tuned to pass only a narrow band of fre-
quencies to the receiver. This attenuates the image
and other unwanted frequencies. The helicals are flac-
tory set and should not be tuned.
Impedmce matching between the helical filter
and RF amplifier Q20I is provided by C203, C204
and L201. Q201 amplifies the receive signal to
recover filter losses and also to increase receiver sen-
sitivity. Biasing for Q20] is provided by R201, R202
and R203; and C208/C209 provide RF bypass. CR20I
protects the base-emitterjunction of 020] from exceSv
sive negative voltages that may occur during high sig4
nal conditions. Additional filtering of the receive sig»
nal is provided by 2202. L202, and C205 provide
impedance matching between 020] and 2202. ResisA
tor R204 is used to lower the Q of L202 to make it less
fiequency selective.
January 1996
Part No. 0014474410]
ClRCUlT DESCRIPTION
5252
5558
$3
5535.
Ski
awn
so 5.
E>§T Tau? A _.g r as T as T
é...“ 3: 5,2 5,535
3.5
. S, qutEwZ/xmh
(is. .v , .. ., v
‘ <
E: _ _ a; as
> 533 as; mm>_uomm
23 x,
a, :s r A 5:51 _ T as T0. gs T a:
53: f; it x .= 1-3 m. 5—15 153.0 nuts ZN: unn Lx 4.2 La 55 k.
2. as Q...
4-2
Figure 4-1 DATA TRANSCEIVER BLOCK DIAGRAM
Pan No. 00l-3474-00]
January 1996
Limiter-Amplifier
The output on24l/Z242 is applied to a limiter-
arnplifier circuit in U241. This circuit amplifies the
450 kHz signal and any noise present; then limits this
signal to a specific value. When the 450 kHz signal
level is high, noise pulses tend to get clipped off by
the limiter; however, when the 450 kHz signal level is
low, the noise passes through. C242, C243 decouple
the 450 kHz signal.
Maw
From the limiter stage the signal is fed to the
quadrature detector. An external phaseshifi network
connected to pin 8 shifis the phase of one of the detec-
tor inpus 90° at 450 kHz (all other inputs are
unshified in phase). When modulation occurs, the fre-
quency of the IF signal changes at an audio rate as
does the phase of the shified input The detector,
which has no output with a 90° phase shifi, converts
this phase shifi into an audio signal. L242 is tuned to
provide maximum undistorted output from the detec-
tor. R242 is used to lower die Q of L242. From the
detector the audio and data signal is fed out on pin 9.
Audio/Dag Amplifier
The audio/data output of U241 on pin 9 is fed to
the audio amplifier U261. U261 amplifies the
detected audio/data signal and shifis the DC bias level
to 2.5V. The gain is set at approximately 1.5 by
R261/R262. R263 and R264 provide 1! 1.9V DC ref-
erence bias voltage. The audio output of U261 is
applied to 1201, pin 13.
ReceiveSi alStren Indicator RSSI
U241, pin 13 is an output for the RSS] circuit
which provides a current proportional to the strength
of the 450 kHz IF signal. The voltage developed
across R241 is applied to J201, pin 12.
4.4 TRANSMITTER CIRCUIT DESCRH’TION
4.4.1 BUFFER (0851)
The output signal is applied to a SO-ohm pad
formed by R851, R852, and R853, This pad provides
attenuation and isolation. Q851 provides amplifica-
CIRCUIT DESCRIPTION
tion and also additional isolation between the VCO
and transmitter. Biasing for this stage is provided by
R854, and decoupling of RF signals is provided by
C852 . Impedance matching with the transmitter is
provided by L501 and C502, and impedance matching
with the receiver is provided by L301, C302.
4.4.2 PRE-DRIVER (Q501), DRIVER (Q521)
Pre—driver 0501 is biased class A by R50] and
R502 and R506. L501 and C502 match 0501 to
0851. C520 and C508 bypass RF from the DC line,
and R503 provides supply voltage isolation. R507 ties
the +7.5V supply to the circuit for high power applica-
n'ons and R508 ties the circuit to +5V for low power
applican'ons. Impedance matching between Q501
and Q521 is provided by L502, L503 and C511. R504
and C504 provide negative feedback to prevent
osciallation.
Driver 0521 is biased nearly Class C by R52]
and R522. Impedance matching with 0541 is pro-
vided by L521, C525, C527, L522 and C526.
4.4.3 -5V POWER CONTROL SUPPLY
The 17.5 MHz from the TCXO is coupled
through C902 to 0901. Bias for 0901 is provided by
R903, R904, R901, R902 and R905. C901 and C903
provide RF decoupling. The amplified signal rectified
by CR901/CR902 to produce a -5V DC source. C909
stabilizes the voltage level and C910 and C91 1 pro-
vide RF decoupling. This -5V source is used in the
transmit power control circuit U542.
4.4.4 FINAL (0541), POWER CONTROL (11542)
Q541 is biased for Class C operation. The output
is matched to the low-pass filter by L541, C552, and
several capacitors. The supply voltage is isolated
from RF by ferrite bead EP54I.
Power control is provided by U542. The 5.5V
transmit supply is passed by U54Z to power adjust
R542. The other end of R542 is the rectified -5V from
090] . This negative voltage is required when low
power is used to pinch off Q541 to the required out-
put
January 1996
Part No. 00l-3474-001
CIRCUIT DESCRIPTION
The -2V applied to the VCO is derived from the
TCXO frequency that is amplified by Q833, rectified
by CR831 and filtered by C844, C845, C846 and
C847 on the RF board.
The VCO frequency is modulated using a similar
method. The transmit audio/data signal is applied
across varactor diode CR852 which varies the VCO
frequency at an audio rate. Series capacitors C856!
C870 set the amount of deviation produced along with
CR853 and C858. R854 provides a DC ground on the
anodes of CR852/CR853, and isolation is provided by
R852 and C855.
The DC voltage across CR853 provides compen-
sation to keep modulation relatively flat over he
entire bandwidth of the VCO. This compensation is
required because modulation tends to increase as the
VCO frequency gets higher (capacitance of CR854/
CR855/0R856ICR851 gets lower). CR853 also bal-
ances the modulation signals applied to the VCO and
TCXO. An external voltage from 1201, pin 14 can
also adjust the modulation.
The DC voltage applied across CR853 comes
from the modulation adjust control R810. R81 1
applies a DC biasing voltage to CR852; C814 pro-
vides DC blocking; and C818 attenuates AC signals
applied through R81 I. RF isolation is provided by
C858, R853, C817 and R812.
4.2.3 VCO AND REFERENCE OSCILLATOR
MODULATION
Both the VCO and reference oscillator (TCXO)
are modulated in order to achieve the required fre-
quency response. If only the VCO was modulated, the
phase detector in U801 would sense the frequency
change and increase or decrease the VCO control volt-
age to counteract the change (especially at the lower
audio frequencies). If only the reference oscillator
frequency is modulated, the VCO frequency would
not change fag enough (especially at the higher audio
frequencies). Modulating both VCO and reference
oscillators produces a flat audio response. Potentiom-
eter R810 sets the VCO modulation sensitivity so that
it is equal to the reference oscillator modulation
sensitivity.
January 1996
Pan No. Dill-$474-001
4.2.4 CASCODE AMPLIFIERS (0851/0352)
Tile output signal on the collector of Q850 is cou-
pled by L861/C864 to buffer amplifier Q851IQ852.
This is a shared-bias amplifier which provides ampli-
fication and also isolation between the VCO and the
stages which follow. The signal is direct coupled
from the collector on852 to the emitter of Q851.
The resistors in this circuit provide biasing and stabili-
zation, and C865 and C866 are bypass capacitors.
4.2.5 AMPLIFIER (Q853)
Amplifier 0853 provides amplification and isola-
tion between the VCO and receiver and transmitter.
C868 provides matching between the amplifiers.
Bias for 0853 is provided by R871, R872 and R874.
inductor L856 and capacitor C873 provide impedance
matching on the output.
4.2.6 VOLTAGE FILTER (Q832)
Q832 is a capacitance multiplier to provide filter-
ing of the 4.6V supply to the VCO. R836 provides
transistor bias and C834 provides the capacitance that
is multiplied. lfa noise pulse or other voltage change
appears on the collector, the base voltage does not
change significantly because of0834. Themfore,
base current does not change and transistor current
remains constant. CR832 decreases the charge time of
C834 when power is turned on. This shortens the
startup time ofthe VCO. C841, C840 and C855 are
RF decoupling capacitors.
4.2.7 vco FREQUENCY SHIFT (£2831)
The VCO must be capable of producing frequen-
cies from approximately 403-56435 MHz to produce
the required receive injection and transmit frequen-
cies. If this large of a shifi was achieved by varying
the VCO control voltage, the VCO gain would be
undesirably high. Therefore, capacitance is switched
in and out of the tank circuit to provide a coarse shifi
in frequency.
This switching is controlled by the TIR pin shifi
on 1201, pin 4, QB} 1/0834 and pin diode CR850.
When a pin diode is forward biased, it presents a vary
SECTION 5 SERVICING
5.1 GENERAL
5.1.1 PERIODIC CHECKS
This transceiver should be put on a regular main-
tenance scledule and an accurate performance record
maintained. Important checks are receiver sensitivity
and transmitter frequency, modulation, and power out-
put. A procedure for these and other tests is located in
Section 6. It is recommended that transceiver perfor-
mance be checked annually even though periodic
checks are not required by the FCC. During the first
year, make an additional check or two to ensure no
TCXO frequency drilting has banned.
5.1 .2 SURFACErMOUNTED COMPONENTS
A large number of the components used on the
transceiver board are the surface-mounted type. Since
these components are relatively small in size and are
soldered directly to the PC board, care must be used
when they are replaced to prevent damage to the com-
ponent or PC board. Surface-mounted components
should not be reused because they may be damaged by
the unsoldering process.
5.1.3 SCHEMATIC DIAGRAMS AND COMPO-
NENT LAYOUTS
Schemtic diagrams and component layouts of
the PC boards used in this transceiver are located in
Section 8. A component locator guide is also pro-
vided to aid in component location.
514 REPLACEMENT PARTS LIST
A replacement parts list with all the pans used in
this transceiver is located in Section 7. Parts are listed
alphanumerically according to designator. For infor-
mation on ordering parts, refer to Section LS.
5.15 TCXO MODULE NOT SERVICEABLE
The il .5 PPM TCXO module is not field ser-
viceable. Pan changes require a factory recalibration
to ensure that the oscillator stays within its 1:15 PPM
tolerance.
5.2 SYN'l'I-IESIZER SERVICING
5.2.l NTRODUCTION
When there is a synthesizer malfunction, the
VCO is not locked on frequency. When an unlocked
VCO is detected by the lock detector circuic USO],
pin 18 goes low (OV).
NOTE: The user-supplied circuitry must disable the
transmitter and receiver when an aur—oj-Ioclr condi—
tion is indicated.
When the VCO is unlocked, the fkand fv inpus
to the phase detector are usually not in phase (see Sec-
tion 4.1.2). The phase detector in U801 then causes
the VCO control voltage to go to the high or low end
of its operating range. This in turn cause- the VCO to
oscillate at the high or low end of its fi-equency range.
As shown in Figure 4-1, a loop is formed by
VCO Q850, amplifier Q851/Q852, and the RF [N of
U801. Therefore, if any of these components begin to
malfimction, improper signals appear throughout the
loop. However, correct operation of the counters can
still be verified by measuring the input and output fre-
quencies to check the divide number.
Proceed as follows to check the synthesizer IIO
signals to determine if it is operating properly.
5.2.2 REFERENCE OSCILLATOR
Check the signal at U801, pin 8. lt should be
17.5 MHz at a level ofappmximately 1.5V P-P. lfthe
TCXO module is defective, it is not serviceable and
must be replaced with a new module as described in
Section 5.1.5.
5.2.3 VCO
Output Level
The output level on853 can be measured with
an RF voltmeter or some other type of high impedance
meter. The minimum level afier a power splitter at
R85] should be -10 dBm.
January 1996
Part No. 001-3474—001
CIRCUIT DESCRIPTION
4.3.2 MIXER (U22l), FIRST LO AMPLIFIER
(0301)
First mixer U221 mixes the receive frequency
with the first injection frequency to produce the 52.95
MHz first IF. Since high-side injection is used, the
injection frequency is 52.95 MHz above the receive
frequency. The RF signal is coupled to the mixer
through 021 1.
The first injection frequency from the VCO is
coupled to the first local oscillator amplifier Q301
through C301. L301 and C302 match Q301 to the
VCO. Bias for 0301 is provided by R301, R302 and
R303, and C303 decouples RF signals. Impedance
matching to the mix: is provided by L302, R304 and
C304.
4.3.3 AMPLIFIER (0222), CRYSTAL FILTER
(2221/2222), IF AMP (12221)
The output of U221 is coupled to hufl'er Q222.
C222, R229 and Q222 match the 50 ohm output of
U221. Bias for Q222 is provided by R228 and R229.
The output of 0271 is matched to crystal filter Z221
via L222, C223 and R230. This filter presents a low
impedance to 52.95 MHz and attenuates the receive,
injection. and other frequencies outside the 52.95
MHz passbnnd.
D2] and 2222 form a 2-section, 4—pole crystal
filter with a center frequency of 52.95 MHz and a -3
dB passband 0“ kHz (12.5 kHzBW) or 15 kHz (20/
25 kHz BW). This filter establishes the receiver selec-
tivity by attenuating the adjacent channel and other
signals close to the receive frequency. C232, C224,
and L223 adjust the coupling ofthe filter. L224, C225
and C227 provide impedance matching between the
filter and 0221.
IF amplifier 0221 amplifies the 52.95 MHz lF
signal to recover filter losses and improves receiver
sensitivity. Biasing for 0221 is provided by R222,
R223, R225 and R226 and C228, C229 decouple RF
signals. The output of Q221 is coupled to the detector
by C230.
January 1996
Part No. 00I-3474-00]
4.3.4 SECOND LO AMP/TRIPLER (Q401), SEC-
OND IF FILTER (0901)
The input frequency to 0401 is 17.5 MHz from
TCXO Y801 coupled through C402. Bias for 0401 is
provided by R401, R402, R403 and R404. C403,
C404 decouple RF from the amplifier. L401, L402,
C405, C406 and C407 pass the third harmonic of the
input (52.5 MHz) to U241. pin 1. The output of the
amplifier is coupled to U24I, pin 1 by C241, and
C410 and L404 provided low frequency decoupling.
4.3.5 SECOND MIXER/DETECTOR (U241)
Oscillator and Mixer
As shown in Figure 4-3, U241 contains the sec-
ond oscillator, second mixer, limiter, detector, and
squelch circuitry. The 52.95 MHz l'F signal is mixed
with a 52.5 Miz signal produced by second L0
amplifier Q401 from TCXO Y801.
mm”. al>_._ Wm
Figure 4-3 U241 BLOCK DIAGRAM
Second IF Filter
The output of the internal double-balanced mixer
is the difference between 52.95 MHz and 52.5 MHz
which is 450 kHz. This 450 kHz signal is fed out on
pin 3 and applied to second IF filters 2241 and Z242.
These filters have passbands of9 kHz (12.5 kHz BW),
15 kHz (20 kHz BW) or 20 kHz (25 kHz BW) at the
-6 dB points and are used to attenuate wideband noise.
’\
3LKVILINl-
5.3.3 RF AMPLIFIER (Q201) AND FIRST MIXER
/\ (0221)
Refer to the schematic diagram for signal levels “mm
and test points for measuring levels. “53mg?“ _ $va
53.4 RF AND IF AMPLIFIERS, FIRST MIXER »- ‘ " mun—j
Check the DC voltages shown on the schematic
diagram. Ifthey are normal, inject a signal at the 453151151 ,, 35555: to, 1
input and output ofeuch sage using 5 .0| of coupling _, —"-
capacitor. if the stage is producing gain, the injection cum otvullnn
level on the input of a stage should be less than that “mm "m
requiled on the output to produce the same SINAD at mm mm
the receive output. mu n was u JZBI, m r
5.4 TRANSMITTER SERVICING filmsh‘fifi'
cum mm
D" FIE“
5.4.1 SUPPLY VOLTAGES AND CURRENT mus, o,
unmet vexu
Measure the supply voltages on the following
pins of interface connector 1201:
f‘ Figure 5-2 TRANSMITTER SERVICING
, Pin 2 - 7.5V DC FLOWCHART
Pin 3 - 7.5V DC
Pin 4 - 0.0V DC (while mnsmitting)
Pin 5 - 5.0V DC
Pin 6 - 2.5V DC Transmit lnll .5V P-P max
Place a DC ammeter in the supply line to the
transceiver and the following maximum sun-ems
should be measured:
Pin 2 - 650 mA
Pin 3 « 250 mA
Pin 5 - l2 mA
January l996
5—3 Pan No. 001-347-1410]
________________________.________——-—————
CIRCUIT DESCRIPTION
The low-pass filter consists of L561, C561, L562,
C562, L563, C563 and L564. The filter attenuates
spurious frequencies oceun'ing above the transmit fre-
quency band. The transmit signal is then fed through
the antenna switch to antennajack 1501.
4.4.5 ANTENNA SWITCH (CR561, CR562)
The antenna switching circuit switches the
antenna to the receiver in the receive mode and the
transmitter in the transmit mode. In the transmit
mode, +7.5V is applied to L565 and current flows
drrough diode CR561, L566, diode CR562, and R562!
R563. When a diode is forward biased, it presents a
low impedance to the RF signal; conversely, when it is
reverse biased (or not condueting), it presents a high
impedance (small capacitance). Therefore, when
January l996
Part No. 00l-3474-00]
4-8
CR561 is forward biased, the transmit signal has a
low-impedance path to the antenna through coupling
capacitor C568.
C567, L566, and C570 form a discrete quarter-
wave line. When CR561 is forward biased, this quar-
ter-wave line is effectively AC grounded on one end
by C570. When a quarter-wave line is grounded on
one end, the other end presents a high impedance to
the quarter-wave frequency. This blocks the transmit
signal from the receiver. C569 matches the antenna to
50 ohms in transmit and receive.
In the receive mode, no power is applied to L565,
so all the diodes are "off". The receive signal then has
a high-impedance path into the transmitter and a low-
impedance path into the receiver because the quarter-
wave line is not grounded.
SECTION 6 ALIGNMENT PROCEDURE AND PERFORMANCE TESTS
6.1 GENERAL
Receiver or transmitter alignment may he neces-
sary if repairs are made that could affect Inning.
Alignment points diagrams are located in Figure 6-3
or component layouts are located in Section 8.
Fabricate test cables by referring to Figure 2-1.
This cable should include power and ground, a trans-
mit keying switch that shorts the keying line to
ground, data input and data output. The test setup
must apply the various supply voltages and load the
synthesizer with channel information.
6.2 D134” TRANSCEIVER ONLY
6.2.1 FREQUENCY AND CONTROL LINE VOLT-
AGE CHECK
]. Connect the test setup shown in Figure 6-1. Set the
power supply for +7.5V DC. See Figure 2-1 for
interface cable.
2. Load the synthesizer with the channel frequency
(see Section 3.2).
3. Connect a DC voltmeter at the junction of R808/
C815 to measure the VCO control line voltage for a
meter reading of 20.50 - 54.90V DC (see Figure 6—
3).
4. Key the transmitter.
5. Measure the VCO control line voltage for a meter
reading of 20.75 - 55.00V DC
6. Unkey the transmitter.
6.2.2 2W TRANSMITTER POWER ALIGNMENT
1. Connect the test setup shown in Figure 6-1. A DC
ammeter capable of measuring up to 1.5A should be
installed in the supply line.
2. Load the synthesizer with the center channel
frequency.
. Key the transmitter and make sure that the supply
voltage at the RF board is 7.5V.
(Do not transmit for extended periods.)
. Adjust C553 counterclockwise for minimum
current.
. Connect a voltmeter to the junction of R542/R543.
. Adjust R542 clockwise for 2.30V DC (+0/-0.1V
DC).
. Readjust C553 counterclockwise for minimum
current.
. Tune C527 clockwise for maximum power.
. Tune C553 clockwise for 2.0W (10.1W). Current
should be less than 900 mA. (Power output should
be I.6-2.4W and current less than 900 mA from
403-512 MHz.)
10.Monitor the frequency with a frequency counter and
adjust TCXO (Y 301) for the channel frequency
$100 Hz.
n mmm
v .. n ..
a. -O
tannins-Alums
sinner mm
an. so «- nrncrcn
Figure 6-1 TRANSMITTER TEST SETUP
January 1996
Pan No. 001-3474-001
SERVICING
Connollohage 5.3.2 MIXER/DETECTOR (U201)
Check the DC voltage at C815 with a channel Data Output
near the center of the band. If the VCO is locked on
frequency, this should be n steady DC voltage near Using a .01 p.F coupling capacitor, inject at
3V. If it is not locked on frequency, it should be near U241, pin 16, a 52.95 MHz, 1 mV signal, modulated
the lower or upper end of its range (OV or 5.5V). with 1 kHz at :l: 3 kHz deviation. The audio output
level at U241, pin 9 should be approximately
QuipuLquuency 400 mV RMS.
Check the VCO frequency at R851. If the VCO The data output on 1201, pin 13 should be
is locked on frequency, it should be stable on the 600 mV to 1.2V P-P or 212 mV to 424 mV RMS with
transmit channel frequency. If the VCO is not locked the preceding injection signal.
on frequency, the VCO control voltage is probably
near OV or 5.5V. RSSI O_urgi_it
5.2.4 SYNTHESIZER (U801) The RSSI output on 1201, pin 12 should be
greater than 100 mV at 12 dB SINAD and less than
Lock Detector 2.5V with 1 mV input If either of the preceding mea-
surements is not correct, there may be a problem with
When the VCO is locked on frequency, the lock U24l .
detect output on 1201, pin 7 should be high.
unsuu cunnrm
AND VOLTAGE
5.3 RECEIVER SERVICING
, .. item to stetlon 5.1
cnscx ruses Aim
To isolate a receiver problem to a specific sec- mt trmss couurcnws
tion, refer to the troubleshooting flowchart in Figure
5-1. Tests referenced in the flowchart are described in afflict? mgr,“
the following information.
. REFER ro srcnou 5.3.2
cutcx uzu
NOTE: Supply voltages are provided by the user.
cute: AUDIO
cram v
. REFER In srcno» 5.3.5
5.3.1 SUPPLY VOLTAGES AND CURRENT
nevus: DEFECTIVE coummr
Measure the supply voltages on the following
pins at interface connector 1201:
Pin 4 - 5.0V DC Receive
Pin 5 - 5.0V DC
arms ptucnvr snot
cnsu nr AlP
we must MIXER
Place a DC ammeter in the supply line to the
(sacrum 5.5.x)
transceiver and the following maximum currents
should be musured:
Pin 4 - 10 m Figure 5-1 RECEIVER SERVICING FLOW-
Pin 5 - 50 mA CHART
January 1996
Pan No. 001-3474-001 5-2
2. Measure the receive current drain. (T ypically cur-
rent should be <80 mA.)
3. Preset tuning slugs of L222/L224 to the full clock-
wise position (slug in all the way).
4. Preset C232 to center position (slot in-line with axis
of part).
5, Reodjust L224 counterclockwise 2 turns.
6.2.6 IF AND AUDIO ADJUSTMENTS
1. Load the synthesizer with the channel frequency
2. Set the RF signal generator for this frequency with
a 1 kHztone (modulated output shown below) at a
level of—47 dBm (1000 uV) and inject into JSOL
1.5 kszeviation (-X10 12.5 kHzBW Radio)
2.4 kHz deviation (—X20 20.0 kHz BW Radio)
3.0 kHz deviation (-X30 25.0 kHz BW Radio)
NOTE: Wntain these deviation levels throughout
the test when memuringAC levels, SHVAD and %
distortion.
3. Adjust L242 for 2.5V DC (10.05V DC) at the
receive audio output.
4. Set the RF signal generator level to -105 dBm,
"unmodulated".
5. Set the generator frequency 3 kHz below channel
center (-X10) or 5 kHz below channel center (-X20/
-X30).
6-3
ALIGNMENT PROCEDURE AND PERFORMANCE
6. Adjust C232, then L222 for peak RSSl voltage.
NOTE: Use 2 VscaIe on DVM.
7. Set the RF signal generator frequency back to chan-
nel centerat -47 dBm with standard deviation level.
8. Adjust L224 for minimum distortion.
Set die RF signal generator to 405 dBm, "unmodu-
laud".
lO.Adjust L222 for peak RSS] voltage,
NOTE: Use 2Vsca1e on DVM
ll.Adjust deviation to the level in Step 2. Record the
RMS voltage level RMS. (Typically 300
mV 150 mV.)
12.Record the percent distortion %. (Typi-
cany <$%.)
13.Adjust the RF input level until 12 dB SINAD is
measured. (Typically <0.45 uV).
14. Adjust the generator RF level to -120 dBm and
measure DC (RSSl) voltage on J201, pin 12. (Typ-
ically s 0.90V DC.)
I5.Adjust the generator RF level to -60 dBm and mea-
sure DC (RSSI) voltage on 1201, pin 12. (Typically
2 2.40V DC.)
January 1996
Part No. 001—3474-00l
SERVICING
January I996
Pm No. 001-3474-00I
This page intentionally Iefi blank.
5-4
‘\
SECTION 7 PARTS LIST
SYMROL PART
MEMBER DESCEIEIZIDN MEMBER
HIGH-SPEC DATA TRANSCEIVER
PART NO. 242-3474-XXO
A 801 VCO 403-419 MHz 023-3474—240
A 801 VCO 419-435 MHz 023—3474-340
A 801 VCO 435-451 MHz 023-3474—440
A 801 VCO 450—466 MHZ 023-3474-540
A 801 VCO 464—480 MHz 023-3474-640
A 801 VCO 480—496 MHz 023-3474-740
A 801 VCO 496-512 MHz 023-3474-840
C 101 68 pF 15% NPO 0603 510-3674-680
C 102 68 pF 1:5% NPO 0603 510-3674-680
C 103 68 pF $5% NPO 0603 510-3674-680
C 104 68 pF 1594: NPO 0603 510-3674-680
C 105 68 pF 115V» NPO 0603 510-3674-680
C 106 68 1)? t5% NPO 0603 510-3674-680
C 107 68 pF fl% NPO 0603 510-3674—680
C 108 68 pF :1:5% NPO 0603 510-3674—680
C 109 68 pF 15°16 NPO 0603 510-3674-680
C 110 68 pF :1:5% NPO 0603 510-3674-680
C 1 1 1 68 pF :1:5% NPO 0603 510-3674—680
C 112 68 pF :1:5% NPO 0603 510-3674—680
C 113 68 pF :1:5% NPO 0603 510-3674-680
C 114 1 pf 16V SMDmmalum 510—2625—109
C l 15 68 pF 15V.» NPO 0603 510-3674-680
C 116 .01 uFilO'M: X7R 0603 510-3675—103
C 117 1 pf 16V SMD tanulum 510-2625-109
C 1 18 68 pF 15% NPO 0603 510-3674-680
C 123 68 pF 1:5% NPO 0603 5103674—680
C 124 1 pF16V SMD tantalum 510-2625-109
C 125 1 "I: 16V SMD tantalum 510-2625-109
C 126 .01 M" 1:10% X7R 0603 510-3675-103
C 201 68 pF 15% NPO 0603 510-3674-680
C 202 68 pF t5% NPO 0603 510-3674-680
C 203 68 pF t5% NPO 0603 510-3674-680
C 204 8.2 pF 11:0.I% NPO 0603 510-3673-829
(403—419 MHz)
6.2 pF 20.1% NPO 0603 510»3673-629
(435—480 MHz)
5.6 pF t0.1% NPO 0603 510-3673-569
(480-512 MHz)
C 205 20 pF 3-5% NPO 0603 510—3674-200
SYMBOL
MEMBER DESCRIBE“!!!
C 206
C 207
C 208
C 209
C 210
C222
C223
C224
C225
C226
C227
C 228
C 229
C 230
C 232
C 233
C 234
C 235
C 241
C 242
C 243
C 245
C 246
C 247
C 248
C 261
C 262
C 263
C 301
C 302
68 pF 15% NPO 0603
68 pF t5% NPO 0603
68 pF :1:5% NPO 0603
220 pF 15% NPO 0603
4.7 pF t0.1% NPO 0603
(403435 MHz)
3.6 pF 10.1% NPO 0603
(435—480 MHz)
3 pF 10.1% NPO 0603
(480—512 MHz)
.01 MP 15% X7R 0603 chip
3.9 pF t0.1% NPO 0603
4.7 pF £0.1'V- NPO 0603
401 11171le X7R 0603
(12.5 kHz BW)
39 pF d:5% NPO 0603
(2025 kHz BW)
.01 ”F 11096 X7R 0603
8.2 pF 10.1% NPO 0603
(12.5 kHz BW)
12 pF t5% NPO 0603
(20—25 kHz BW)
.01 pF i10% X7R 0603
.01 uF 110% X7R 0603
.01 “F 110% X7R 0603
15-5 pF oemmic SMD
.01 “F 110% X7R 0603
.01 pF 110% X7R 0603
68 pF 1596 NPO 0603
.01 “F $1096 X7R 0603
.1uFiS% X7R 1206
.1 uF d:5% X7R 1206
.01 pF 110% X7R 0603
1 111“ 16V SMD tantalum
.01 pF 110% X7R 0603
.01 pF i10% X7R 0603
27 pF tS‘Vo NPO 0603
68 pF 15% NPO 0603
.IpI-‘15% X7R1206
68 pF :5% NPO 0603
10 pF 10.1%NPO 0603
(403—435 MHz)
8.2 pF 10.194. NPO 0603
(435-466 MHz)
PART
NDMBER
5 1 0-3674—680
S 1 0-3674—680
5 1 0-3674-680
5 1 0-3674-221
510-3673-479
510-3673-369
5 10—36734300
510-3675—103
510-3673-399
510-3673—479
510-3675-103
5 l 0-3674-390
510-3675-103
510-3673-829
510-3674-120
510-3675-103
5103675403
510-3675-103
512-1602—001
5 10—3675- 103
510-3675-103
510-3674—680
510-3675-103
510-3609-104
510-3609-104
510-3675-103
510-2625-109
510-3675-103
510-3675-103
510-3674-270
5104674-680
5 1 0-3609- 104
510-3674-680
510-3673-101
510-3673-829
January 1996
Part No. 001 -3474—001
ALIGNMENT PROCEDURE AND PERFORMANCE TESTS
6.2.3 LOW POWER ALIGNMENT
1. Connect the test setup shown in Figure 6-1.
2. Load the synthesizer with the center channel
fi'equency.
3. Connect a voltmeter to the junction ofR542/R543.
4. Adjust R542 clockwise for -1.5V DC (tOJV DC).
5. Tune C527 clockwise for maximum power,
6. Tune C553 clockwise for minimum power.
7. Adjust R542 for the required power level.
8. Tune C527 for power balance at frequencies which
are as close as possible to :l-5 MHz from the center
of the channel frequency.
9. Re-udjust R542 for the power level required if
necessary.
10.Munitor the frequency widt a frequency counter and
adjust TCXO (not) for the channel fi'equency
1100 Hz.
6.2.4 MODULATION FLATNESS ALIGNMENT
l. Inject a 220 Hz square-wave tone at approximately
0.35V P-P, biased at 2.5V DC on 1201, pin 6.
2. Transmit into the modulation analyzer and observe
modulation output on the oscilloscope. Set the
modulation analyzer high pass filtering offend no
less than a 15 kHz low pass filter.
3. Adjust R810 for a flat square-wave on the
oscilloscope.
4. lnject a I kHz sine-wave on 1201, pin 6, biased at
2.5V DC, at the level below according to the
bandwidth:
0.200V RMS for 12.5 kHz BW (-X10 Radios)
0.330V RMS for 20.0 kHz BW (-X20 Radios)
0.400V RMS for 25.0 kHz BW (-X30 Radios)
5. Switch on TX Modulation. Set the modulation ana-
lyzer for 3 kHz low pass filtering.
January 1996
Part No. 001-3474—001
6. The transmit deviation should measure between:
ill/11.9 kHz for 12.5 kHz BW (-X10 Radios)
119/110 kHz for 20.0 kHz BW (-X20 Radios)
124/118 kHz for 25.0 kHz BW (vX30 Radios)
7. Set a 0 dB reference on the Audio Analyzer.
8. Input a 100 Hz sine-wave. The level should be
within 11.5 dB of the 1 kHz reference.
9. Remove transmit modulation and unkey the
transmitter.
10. Connect a DC voltmeter at thejunction of R807/
R85 5.
ll.Adjust R855 to 2.10V DC (10.05V DC).
nmllulnn
nutm-
Figure 6-2 RECEIVER TEST SETUP
6.2.5 RECEIVER ALIGNMENT
C A U T I O N
Do not key the transmitter with the generator con-
nected because severe generator damage may resuIt.
1. Connect the test setup shown in Figure 6-2. Adjust
the power supply for +7.5V DC.
SYMBOL
NUMBER nnscmnmu
C 552
C 553
C 554
C 555
C 555
C 560
C 561
C 562
C 563
3.9 pF 1:5% NPO 0805
25-10 pF ceramic SMD
68 pF 11:5% NPO 0603
33 pF tS’A NPO 0603
(4034110 MHz)
39 pF 1:5% NPO 0603
(480-512 MHz)
22 pF :1:5% NPO 0603
7.5 pF 1971: NFC 0805
(403419 MHz)
6.2 pF 1m NPO 0805
(419435 MHz)
5.6 pF $596 NPO 0805
(435-451 MHz)
5.1 pF 15°41 NPO 0805
(450-466 MHz)
4.7 [JP 15% NPO 0805
(464-480 MHz)
4.3 pF 15V» NPO 0805
(480-496 MHz)
3.9 pF 15% NPO 0805
(496-512 MHz)
3.2 pF 15°41 NPO 0805
(403419 MHz)
7.5 pF fl% NPO 0805
(419-435 MHz)
6.8 pF 1570 NPO 0805
(435451 MHz)
6.2 pF 15% NPO 0805
(450-480 MHz)
5.6 [JP 1576 NPO 0805
(480—496 MHz)
5.1 pF 15% NPO 0805
(496-5 12MHz)
1 1 pF 15% NPO 0805
(403-419 MHz)
10 pl“ 15% NPO 0805
(403-419 MHz)
3.2 pF 15°41 NPO 0305
(43 5451 MHz)
7.5 pF tS'Vn NPO 0805
(450-466 MHz)
68 pF 15V» NPO 0805
(464—480 MHz)
6.2 pF 15% NPO 0805
(480-496 MHz)
5.6 pF :1:S% NPO 0805
(496-512 MHz)
PART
HUME“
5 1 0—3601-399
5 1 2-1602-002
S 10-3674-680
5 10-3674-330
5 l 0~3674—390
510-3674-220
510-3601-759
510-3601-629
510—3601—569
510-3601-519
510-3601-479
510~3601~439
510-3601—399
510-3601-829
510-3601-759
510-3601—689
510—3601—629
510—3601—569
510-3601-519
510-3601-110
510-3601-100
510-3601-829
510-3601-759
510-3601-689
5103601-629
510-3601—569
7-3
SYMBOL
MIME]! DEW
C 564
C 565
C 567
C 567
C 568
C 569
C 570
C801
C802
C803
C804
C805
C806
C807
C808
C809
C810
C811
C812
C813
C814
C815
C817
C818
C819
C831
C832
C833
C834
.01 w 110% X7R 0603
68 [JP 1504 NPO 0603
10 pF ¢5% NPO 0805
(403419 MHz)
7.5 pF 1504 NPO 01105
(419-435 MHz)
5.6 pF 1554 NPO 0805
(435-466 MHz)
5.1 pF 5554. NPO 0305
(464496 MHz)
43 pF 151/- NPO 0305
(496-512 MHz)
47 pF 15°41 NPO 0603
9.1 pF t5% N'PO 0805
(403419 MHz)
6.8 pF 1596 NPO 0805
(419435 MHz)
5.6 pf 5504 NFC 0805
(435451 MHz)
5.1 pF i5% NPO 0805
(451466 MHz)
4.7 pF 1504 NFC 0305
(464-512 MHz)
33 pF 15% mo 0603
.01 0; 110414. X7R 0603
0101: 110-4. xm 0603
.01|LF:1:10% X7R 0603
3.3 pF 50.144 NPO 0603
.01 Mr 111m xm 0603
68 pF 5m NPO 0603
01 ur 111m xm 0603
68 pF 554 NPO 0603
100 pF 15% NPO 0805
.1 01- 150. X7R 1206
001 pF 1109. X7R 0603
0047 pp 11044 X7R 0305
001 “F 11044. X7R 0603
1 pl: 16V SMD tantalum
0047 ”F 11W- X7R 0805
68 p? 1504 NFC 0603
1 uF 16V SMD tantalum
3.9 pF 10.104 NPO 0603
.01 pF t]0% X7R 0603
.01 pF t]0% X7R 0603
68 pF 1:5% NPO 0603
4.7 01: 10V SMD mnmlum
PARTS LIST
PART
NUMBER
510-3675-103
510-3674-680
510-3601-100
510-3601—759
510—3601-569
510~3601>519
510-3601439
510-3674—470
510-3601-919
510-3601-689
5104601669
510~360|-569
510-3601-479
510-3674—330
510-3675—103
510-3675-103
510-3675-103
510-3673-339
510-3675-103
510-3674-680
510—3675—103
510-3674-680
510—3601-101
510-3609-104
510-3675—102
5104605472
5104675402
5 10-2625-109
510-3605—472
510-3674-680
510-2625-109
510-3673-399
510-3675-103
510-3675-103
510-3674-680
510-2624—479
Innuary 1996
Part No. 001-3474-001
ALIGNMENT PROCEDURE AND PERFORMANCE TESTS
R543/R542
R807/R855 J
°"(—0875/R808
W016
IOBA
0188
IOZF
Figure 6-3 ALIGNMENT POINTS DIAGRAM
January 1996
Part No. oomnwon 6.4
SYMBOL
NUMBER 1113121111510]!
L 541
L 561
L 562
L 563
L 564
L 565
L 566
L801
L851
L901
18.5 nH S-mm SMD air core
185 1111 S-mm SMD air core
35.5 n1-1 9—mm SMD air core
35.5 1111 940m SMD air core
18.5 nH 5—tum SMD air core
1 pH SMD inductor
12.5 nH SMD air core
39 “H 110% SMD NHY0805
1 pH SMD inductor
.68 pH SMD inductor
MPBOI VCO can
MPKO2 Top shield, transmitter
MP803 Bottom shield, transmitter
M'1’804 Bottom shield
MPSOS Bollom shield
MPBOG Crysml film shield
PCOOl PCboard
Q 101
Q 102
Q 103
Q201
0711
0222
0301
Q40|
Qsol
Q521
Q54I
Q 831
Q 832
Q 833
Q 834
Q 851
0901
NP‘N amplifier SOT-23
PNP digital w/res SOT-23
NFN amplifier SOT-23
NPN low noise SOT-23
VHF/UHF amp SOT~23
Si N-chnl J'FET SOT
NP'N low noise SOT-23
VHF/UH]: amp SOT-23
NPN low noise SOT-23
NPN .2-2 61-11 80-8
RF FET
NP'N amplifier SOT-23
Si NPN gen purp sw/amp
VHF/UHF amp SOT-23
PNP digital w/res SOT—23
Bi-pclar MMIC SOT-143
VHF/UHF amp SOT-23
PART
HUMMER
542-0030—005
542-0030-005
542-0030—009
542-0030-009
542-0030-005
542-9001-109
542-0030-004
54249003-397
542-9001-109
542-9001-688
0 1 7-2225-75 l
01 7-2225-761
017-2225-762
01 7-2225-763
01 7-2225-764
017-2225-699
035~3474—030
576-0003-61 6
576—0003-62]
5 76-0003-61 6
576—0003-636
576—0003-634
57000064119
576—0003-636
576-0003-634
576-0003—636
576-0003-604
576-0006—450
576-0003-616
576-0001-300
576-0003—634
576-0003-621
576-0003-638
5 76-0003-634
7-5
SYMBOL
NUMBER DEW
R 120
R 121
R 201
R 202
R 203
R 204
R 222
R 223
R 224
R 225
R 226
R 227
R 228
R 229
R 230
R 241
R 242
R 243
R 261
R 262
R 263
R 264
R 265
R 301
R 302
R 303
R 304
R 401
R 402
R 403
R 404
R 501
R 502
R 503
R 504
100k ohm 3:5% .063W 0603
330k ohm 1570 063“! 0603
82 ohm 15% 063W 0603
161: ohm 3534. .063W 0603
3.9k ohm 394. .063W 0603
130 ohm fi% .063W 0603
330 ohm fi% 063W 0603
22k ohm 1534. 063W 0603
1k ohm zsv/o .063W 0603
15k ohm 15% 063W 0603
470 ohm fi'Vo .063W 0603
270 ohm 15% .063W 0603
100 ohm 3:5% .063W 0603
330 ohm 3536 063W 0603
2.7k ohm 15% .063W 0603
(12.5 kHz BW)
1.8k ohm 15% .063W 0603
(2025 kHz BW)
56k ohm 15% .063W 0603
27k ohm 15% .063W 0603
270 ohm 152.1 .063W 0603
200k ohm 15% .063W 0603
(12.5 kHz BW)
120k ohm 151/11 .063w 0603
(20 kHz BW)
100k ohm 35% .063W 0603
(25 kHz BW)
100k ohm ¢5% .063W 0603
10k ohm 15% .063W 0603
18k ohm t5% .063W 0603
10 ohm 15% .063W 0603
3.316 ohm tS‘Vn 063W 0603
1.8k ohm 15% .063W 0603
180 ohm 15% .063W 0603
1k ohm 15% 063W 0603
10 ohm 15% 063W 0603
15k ohm 15% .063W 0603
2.7k ohm :l:5% 063W 0603
330 ohm 15% .063W 0603
2.2k ohm 594» 063W 0603
2.2k ohm 1:5% .063W 0603
10 ohm :5% .O63W 0603
560 ohm 2:5% 063W 0603
PARTS LIST
PA RT
NUMBER
569-0155-104
569-0155-334
569-0155-820
569-0155-163
569-0155-392
569-0155-181
569-0155-331
569-0155-223
569-0155-102
569-0155-153
569-0155-471
569-0155-271
569-0155-101
569-0155-331
569-0155-272
569-0155-182
569-0155-563
569-0155-273
569—0 1 55-27 1
569—01 55-204
569-0155-124
569-0155-104
569-0155-104
569-0155-103
56941155483
569-0155-100
569-0155—332
569—0155-182
569-0155-181
569-0155-102
569-0155-100
569-0155-153
569-0155-272
569-0155-331
569-0155—222
569—0155-222
569-0155-100
569—0155-561
January 1996
Pan No. 001-3474-001
PARTS LIST
SYMBOL
MEMBER DEMON
C 302
C 302
C 303
C 304
C 305
C 306
C 309
C401
C402
C403
C404
C405
C 406
C 407
C 408
C 410
C 501
C 502
C503
C504
C505
C506
C507
C508
C509
C510
C511
6.8 pF 10.136 NPO 0603
(464496 MHz)
6.2 pF 1017. NFC 0603
(496-512 MHz)
4.7 131" 10.196 NPO 0603
68 pF 15% NPO 0603
4.7 pF 10.136 NPO 0603
(403435 MHz)
33 pF 10.136 NPO 0603
(435-496 MHz)
3.3 pF 10.l% NPO 0603
(496-512 MHz)
.01 111 11094 X7R 0603
68 pF 15V. NPO 0603
1 01 16V SMD madam
.01 pf 1109’- X7R 0603
.01 1117110‘56X7R 0603
.01 uF 110%X7R 0603
101 pP 11036 X7R 0603
100 pF 15%N1’O 0603
6.8 pF 10.1%NPO 0603
100 pF 1594 NPO 0603
101 MP 110% X7R 0603
.1 uF15% X7R 1206
68 pF 15% NPO 0603
7.5 pF 10.196 NPO 0603
(435-451 MHz)
6.8 pF 10.196 NPO 0603
(450-480 MHz)
68 pF 1594. NPO 0603
470 pF 15%N1>o 0603
.01 01 11W. X7R 0603
68 pF 15% NPO 0603
68 pF 1m NPO 0603
68 pF 15% MPG 0603
68 p1' 15% NPO 0603
120 pF 1514 NFC 0603
6.8 pF 10.184 NPO 0603
(403-419 MHz)
5.6 pF 10.|%N1>o 0603
(419-435 MHz)
5.1 pF 10.1% NPO 0603
(435451 MHz)
3.9 131" 10,17, NPO 0603
(450-480 MHz)
January 1996
Part No. 001-3474—001
PART
MEMBER
510-3673-689
5 1 0-3673-689
5 1 03673479
510—3674—680
5 1 0-3673-479
510-3673-339
510-3673-339
510-3675403
510-3674-680
510—2625-109
510-3675-103
510-3675-103
510-3675-103
510-3675-103
510-3674-101
510-3673-689
510-3674-101
510—3675-103
5 1 0—3609- 104
510-3674-680
5 1 0-3673-759
5104673-689
510-3674-680
510-3674—471
5 I 0-3675-103
51053671680
510-3674-680
510-3674—680
510-3674-680
510-3674-121
510-3673-689
510-3673-569
510-3673-519
510-3673-399
SYMBOL
NUMBER DESCRIHIQE
C 520
C 521
C 522
C 523
C 524
C 525
C 526
C 527
C 541
C 542
C 543
C 544
C 545
C 546
C 547
C 548
C 549
C 550
C551
2.2 pF 10.l% NPO 0603
(480-496 MHz)
1 pF 10.I% NPO 0603
(496512 MHz)
22 pF 15% NPO 0603
68 pf 15% NPO 0603
.01 11.1: 1105/11 X7R 0603
68 pl" 15% NPO 0603
470 pF 15% NPO 0603
27 pF 15% N'PO 0603
22 pF 15% NPO 0603
(403—419 MHz)
18 pF 1011%NP0 0603
(419435 MHz)
15 pF i5% NPO 0603
(435-512 MHz)
2.5-10 pF SMD ceramic
68 pF 15% NPO 0603
.01 1.1.17 11091- X7R 0603
68 pF 1556 NPO 0603
.01 pl? 110?» X7R 0603
68 pF 15°/6 NPO 0603
68 pF 15% NPO 0603
68 pF 15°/a NPO 0603
1 pF 16V SMD tantalum
.01 uF 110% X7R 0603
36 pF 15% NPO 0805
(403-451 MHz)
30 1:1“ 15% NPO 0805
(450-466 MHz)
27 pF 15% NPO 0805
(464-480 M111)
20 pF 15% NPO 0805
(480-496 MHz)
18 pF 15% NPO 0805
(496-5 12 MHz)
33 pF 1$% NPO 0805
(403-419 MHz)
27 pF 15% NPO 0805
(419435 MHz)
24 pF 1S% NPO 0805
(435-451 MHz)
18 pF 15% NPO 0805
(450-480 MHz)
16 pF 1554: NFC 0805
(480-496 MHz)
15 pF 15% NPO 0805
(496-512 MHz)
PART
MEMBER
510-3673-229
510-3673-100
510—3674-220
510-3674-680
510-3675-103
510-3674-680
510-3674—471
5 1 0-3674—270
5 l 0-3674-220
510-3673-180
510-3674-150
512-1602-002
510-3674-680
510-3675-103
510-3674-680
510-3675-103
510-3674-680
510-3674-680
510-3674-680
510-2625-109
510-3675-103
510-3601-360
510-3601-300
510-3601-270
510-3601-200
510-3601-180
510-3601-330
510-3601-270
510-3601-240
510-3601-180
510-3601-160
510-3601-150
”x
SYMBOL PART
mm mm MEMBER
z 202 443 MHz helical filter SMD 5324003042
(435451 MHz)
2 202 459 MHz helical filter SMD 532-1005-044
(450466 MHz)
2 202 472 MHz helical filter SMD 532-1005-045
(464480 MHz)
z 221 52.95 MHz 4—pole 8 kHz BW 532-0009-011
(12.5 kHz bandwidth)
z 221 52.95 MHz 4-pole 15 kHz BW 532-0009-009
(20 kHz and 25 kHz bandwidth)
z 222 52.95 MHz 4-pole 8 kHz BW 532-0009-011
(12.5 kHz bandwidth)
2 222 52.95 MHz 4-pale 15 kHz BW 532-0009-009
(20 kHz and 25 kHz bandwidth)
2 241 450 kHz, 9 kHz BW 532-2004-015
(12.5 kHz bandwidth)
2 241 Ceramic data finer 532-2004-016
(20 kHz bandwidth)
2 241 450 kHz. 20 kHz BW 5322004013
(25 kHz bandwidth)
z 242 450 kHz, 9 kHz BW 532-2004-015
(12.5 kHz bandwidth)
z 242 Ceramic data filter 532-2004-016
(20 kHz bandwidth)
2 242 450 11117, 20 kHz BW 5322004013
(25 kHz bandwidth)
vco
PART NO. 023-6474-x40
c 850 68 pF 15% N80 0603 510-3674-680
c 851 9.1pl=10.1-/.N800603 510-3673-919
(403419 MHz)
82 pF 10.191. N80 0603 5103673-829
(419466 MHz)
68 pF 15% NPO 0603 5103674680
(466-512 MHz)
c 852 7.5 pF 10.194. N80 0603 5103673-759
c 853 12 pF 1594. NPO 0603 SID-3674420
(403419 MHz)
10 pF 15% NPO 0603 5103674120
(419451 MHz)
9.1 pF 10.1%N800603 5103673-919
(464-480 MHz)
8.2 pF 10.196 N80 0603 510-3673-829
(435451 MHz)
8.2 pF 10.1% N80 0603 5103673-829
(480496 MHz)
7—7
PARIS LlSl
SYMBOL PART
NUMBER DBMS 1!!le
c 854 100p815%N80 0603 510-367440]
c 855 68 pF 15% N80 0603 5103674680
c 856 2.7 pF 10.19. N80 0603 510-3673-279
c 858 68 pF 1594. NPO 0603 510-3674-680
c 859 8.2 pF 10.19. N80 0603 5103673-829
(403-419 MHz)
7.5 pF 10.19. N80 0603 510-3673-759
(419466 111112)
6.8 pF 1084. N80 0603 510-3673-689
(464-480 MHz)
c 859 82 pF 10.194. N80 0603 5103673-829
(480-496 1141-12)
c 860 1 pF 10.194. N80 0603 510-3673-109
(403419/435451 MHz Only)
c 861 82 pF 10.1% NPO 0603 510-3673-829
(403435 MHz)
6.8 pF 10.1% N80 0603 5103673-689
(435451 MHz)
82 pF 10.1% N80 0603 510-3673-829
(450461 MHz)
5.6 pF 10.191. N80 0603 5103673-569
(464-480 MHz)
6.8 pF 10.194. NPO 0603 5103673-689
(480496 MHz)
0 862 6.8 pF 10.1% NPO 0603 5103673-689
c 863 100 pF 10.1%N1=0 0603 5103673-101
(403419 MHz)
68 pF 1596 N80 0603 5103674-680
(410512 MHz)
1: 864 10 pF 1019. NFC 0603 510-3673-100
c 865 100 pF 10.1%N800603 510-3673-101
(403-419 MHz)
68 pF 1591. N80 0603 510-3674-680
(419.512 MHz)
100 pF 10.1%N80 0603 510-3673-101
(403-419 MHz)
68 pF 1596 N80 0603 51 03674-6110
(419-512 MHz)
c 867 100 pF 10.1%N80 0603 510-3673-101
(403-419 MHz)
68 pF 159. N80 0603 510-3674-680
(419.512 MHz)
c 868 2.4 pF 10.l% N80 0603 510-3673-249
(403419 MHz)
2.2 pF 10.19. N80 0603 5103673229
(419435 MHz)
1.8 pF 10.196 NPO 0603 510-3673-189
(435466 MHz)
January 1996
Pan No. 001-3474—00l
PARTS LIST
SYMBOL
NUMBER 1155531211111!
C 835
C 836
C 837
C 838
C 839
C 840
C 841
C 842
C 844
C 845
C 846
C 847
C 848
C 849
C 850
C 851
C 852
C 853
C 855
C901
C902
C903
C904
C905
C906
C907
C908
C909
C910
C911
CR201
CR561
.0111r 310114 X7R 0603
011m 11094 xm 0603
.01 10-- 110114 xm 0603
68 pF 15% NPO 0603
.01uF110‘/.X7R 0603
63 pF 3536 NPO 0603
.01 111: 110V" xm 0603
.0111F 11m xm 0603
1 1117 16V SMD tantalum
01111-11036 xm 0603
68 1117 15% mo 0603
.01 ur 11096 X7R 0603
68 pF 1m NPO 0603
68 pF 1m NPO 0603
613 pF tS‘Vo NPO 0603
611 pF 1m NPO 0603
68 pF :5% NPO 0603
1 up 16V SMD mntnhxm
68 pF 3m NPO 0603
.01 ur 31094 X7R 0603
27 pF 15% NPO 0603
.01 up 31W. X7R 0603
220 pF 1m NPO 0805
270 pF 159/11 NPO 0305
.01 pr 1109/11 X7R 0603
.01 up 11034 X7R 0603
.0111F3110°/. X7R 0603
1 ur 16V SMD tantalum
.01 ur 31036 X7R 0603
63 pF 1514 NPO 0603
Switching diode SOT—23
Pin switch diode SOT-23
CR562 Pin switch diode SOT-23
CR831
CR901
Dual switch diode SOT-23
Dual switch diode SOT—23
CR902 Dual switch diode SOT-23
EP200 Mini cer crystal pin insulator
EP501
Ferrite bead SMD
January 1996
Part No. 001 -3474-001
PART
NUMBER
5 1 0-3675- 1 03
5 1 0-3675- 103
5 1 0-3 675- 103
5 10-3674-680
5 I 0-3675- I 03
510-3674-680
510-3675-103
510-3675-103
5 10-2625-109
5 10-3675-1 03
510-3674—680
510-3675-103
5 1 0-3 674-680
510-3674-680
510-3674-680
5 1 0-3674-680
5 1 0-3674-680
5 10-2625-109
5 l 0-3674—680
510-3675—103
510-3674—270
510-3675-103
510-3601-221
510-3601-271
510-3675-103
510-3675- 103
510-3675—103
510-2625-109
510—3675—103
510-3674-680
523-1 504-002
523—1504-001
523-1504-001
523-1 5044123
523-1504-023
523-1504-023
010-0345-280
5 I 12503-0111
7-4
SYMBOL PART
NUMBER DESIJUBIIQN NUMBER
EP541 Ferrite bead SNfl) 517-2503-001
1201
J501
L 201
L 202
L 222
L 201
L 202
L 223
L 224
L 242
L 301
L 301
L 302
L 401
L 402
L 404
L501
L 502
L 503
L521
L522
14-pin single row receptacle 515-7110-214
Straight terminu] PC bd mt 515-3013—030
Inductor LL2012 FISN 542-9003-157
10 nH 110% SMD "NI-“10805 542-9003-107
1 111-1 16%5mm variable 542-1012—015
15 111-1 110% SMD 0805 542-9003-157
(403-466 MHz)
12 nH 3:10% SMD 0805 542-9003-127
(464-512 MHz)
12 nH i10% SMD 0805 542-9003-127
.82 pH SMD inductor 542-9001-828
1 pH i6%5mm variable 542-1012-015
680 pH quad coil 542-5102-001
Inductor LL2012 F12N 542-9003-127
(403-435 MHz)
Inductor LL2012 FION 542-9003-107
(435-512 MHz)
Inductor LL2012 F15N 542-9003—157
82 nH 1105/11 SMD 0805 542-9003-827
82 nH 1100/6 SMD 0805 542-9003-827
1 pH SMD inductor 542-9001-109
18 nH inductor LL2012 Fl SN 542—9003—187
(435-451 MHz)
15 nH inductor LL2012 F15N 542-9003-157
(450—480 MHz)
1 pH SMD inductor 542-900I-109
15 111-1 inductor LL2012 F15N 542-9003-157
(403—496 MHz)
12 nH inductor LL2012 F12N 542-9003-127
(496—5 12 MHz)
43 111-1 lO—turn SMD air core 5420030010
3.9 111-1 inductor LL2012 F3N9 542-9003-396
(403419 MHz)
3.3 nH inductor LL2012 F3N3 542-9003-336
(419-466 MHz)
2.7 1111 inductor LL2012 F2N7 542-9003-276
(464-496 MHz)
22 nH inductor LL2012 F2N2 542-9003-226
(496612 MHz)
SYMBOL PART
NUMBER nascmmuu NUMBER
Coaxial xmit line 1095 MHz 542-9004-007
(480—496 MHz Only)
Coaxial xmit line 1180 MHz 542-9004-008
(496-512 MHz Only)
7-9
PARTS LIS'I
January 1996
Pan No, oar-3474001
PARTS LIST
SYMBOL
NUMBER M
R 506
R 521
R 522
R 524
R 541
R 542
R 543
R 546
R 547
R 548
R 549
R 562
R 563
R 564
R 801
R 802
R 804
R 805
R 806
R 807
R 808
R 810
R 811
R 812
R 813
R 831
R 834
R 835
R 836
R 838
R 839
R 840
R 841
R 842
R 843
R 844
R 851
100 ohm t5% .063W 0603
1k ohm fl‘K .063W 0603
150 ohm 11-596 1063W 0603
220 ohm 1596 .063W 0603
220k ohm :l:5% .063W 0603
IM ohm SMD trimmer
10k ohm 1556 .063W 0603
47 ohm 1596 1063W 0603
100k ohm i596 063W 0603
330k ohm i5% .063W 0603
560k ohm fl‘fi .063W 0603
620 ohm 15% .063W 0603
620 ohm 1594 .063W 0603
47k ohm 1595 .063W 0603
10k ohm 15% .063W 0603
10k ohm 15% .063W 0603
10 ohm iS‘Vu .063W 0603
27k ohm 1:57:- .063W 0603
12k ohm 159‘ .063W 0603
4.7k ohm 15% .063W 0603
18k ohm £594 .063W 0603
220k ohm SMD trimmer
27k ohm :l:5% .063W 0603
(435-451 MHz)
18k ohm 157. .063W 0603
(450466 MHz)
27k ohm 1594: .063W 0603
(435—451 MHz)
10k ohm $596 .063W 0603
100k ohm 15% 063W 0603
10k ohm 15% .063W 0603
10k ohm 15% .063W 0603
1.5k ohm 157» 063W 0603
10k ohm i556 .063W 0603
100 ohm 15% 063W 0603
680 ohm i594: .063W 0603
22k ohm 1594: .063W 0603
15k ohm 15% 063W 0603
470 ohm i594 .063W 0603
10 ohm :l:5% 063W 0603
680 ohm 15% .063W 0603
270 ohm 159?- .063W 0603
(403—435 MHz)
150 ohm 1556 .063W 0603
(435-480 MHz)
270 ohm 15V.) .063W 0603
(480-512 MHz)
January 1996
Part No. 001 -3474—001
PART
NUMBER
569—0155-101
569-0155-102
569-0155-151
569—0155-221
569-0155-224
562-0130-105
569-0155-103
569-0155-470
569-0155- 104
569-0155-334
569-0155-564
569-0155-621
569-0155-621
569-0155-473
569—0155-103
569-0155-103
569-0155-100
569—0155-273
569-0155-123
569-0155-472
569-0155-183
562-0130-224
569-0155-273
569-01 55-183
569-0155—273
569—0155-103
569-0155-104
569-0155-103
569-0155-103
569-0155-152
569-0155-103
569-0155-101
569-01 55-681
569-0155-223
569-0155-153
569-0155-471
569-0155-100
569-0155-681
569-0155-271
569-0155-151
569-0155-271
74
SYMBOL PART
NUMBER DESCRIEHQN NUMBER
R 852 18 ohm $594: .063W 0603 569-0155-180
(403-435 MHz)
39 ohm 15% .063W 0603 569-0155-390
(435-480 MHz)
18 ohm 3:5% .063W 0603 569-0155-180
(480-512 MHz)
R 853 270 ohm fi% .063W 0603 569-0155-271
(403435 MHz)
150 ohm i5% .063W 0603 569-0155-151
(435-480 MHz)
270 ohm 25?- .063W 0603 569—0155-271
(480-512 MHz)
R 854 82 ohm :l:5% .063W 0603 569-0155-820
R 855 100k ohm SND trimmer 562-0130-104
R 856 4.7k ohm :l:5% .063W 0603 569-0155-472
R 857 4.7k ohm 11:5% .063W 0603 569-015-472
R 858 4.71: ohm :l:5% .063W 0603 569-0155-472
R 860 100 ohm t5% .063W 0603 569-0155—101
R 901 22k ohm 15% .063W 0603 569-015-223
R 902 15k ohm 15% .063W 0603 569-0155-153
R 903 100 ohm t5% .063W 0603 569-0155-101
R 904 330 ohm :l:5% .063W 0603 569-0155-331
R 905 220 ohm t5% 063W 0603 569-0155-221
R 906 10 ohm :1:5% .063W 0603 569-0155-100
R 907 2.2k ohm 15% 063W 0603 569-0155-222
U 101 5.5V regulator 80—6 544-2603-086
U 122 +5V regulamr micropower SO 544-2003-067
U 221 Double balanced mixer 544—0007-014
U 241 FM 1F MC3371D S0—l6 544-2002-031
U 261 Single op amp SOT-23-5 544-2016-001
U 542 Single op amp SOT23-5 544-2016-001
U 801 Fractional-N synthesizer 544-3954—027
Y 801 17.5 MHz TCXO 1:1 .5 PPM 518-7009-521
Z 201 443 MHz helical filter SMD 532-1005-042
(435—451 MHz)
Z 201 459 MHz helical filter SMD 532-1005-044
(450-466 MHz)
Z 201 472 MHz helical filter SMD 532-1005-045
(464-480 MHz)
PARTS LIST
This page intentionally lefi blank.
January 1996
Pan Nu. 001-3474-00I 7—10
PARTS LIST
SYMBOL
MEIER M
1.2 pF 10.134 NPO 0603
(464480 MHz)
1.8 pF 106m. NPO 0603
(480-496 MHz)
1 pF 10m. NPO 0603
100 pF 157. NPO 0603
100 pF 15V. NPO 0603
3.3 pF 10.1'/6NPO 0603
(403419 MHz)
3.3 pF 10.1%NPO 0603
(419-435 MHz)
3.3 pF 10.156 NPO 0603
(435—496 MHz)
10 pF 10.196 NPO 0603
(403-419 MHz)
9.1 pF iO.1%NP00603
(419435 MHz)
8.2 pF 10m NPO 0603
(435.496 MHz)
1.2 pF mm NPO 0603
(403-435 MHz)
1pF 10.1%NPO 0603
(435-496 MHz)
10 pF 10.1%N'PO 0603
(403-435 MHz Only)
C 870
C 871
C 873
C 874
C 874
C 876
C 877
C 878
CR850 Pin switch diodg SOT-23
CR851 Varnctor SOD-323 BBS35
CR852 Varactor diode SOD—123
CR853 Vmctor diode SOD-123
CR854 Vamctor SOD-323 BB535
CR855 Varnctor SOD-323 BB535
CR856 Varactor SOD-323 BB535
L 851 82 nHilO’Vo SMD 0805
L 852 82 "H 3:10?- SMD 0805
(435-466 MHz)
150 nH 11056 SMD 0805
(464-480 MHz)
22 nH 110% SMD 0805
(403-480 MHz)
18 11}! 110-14, SMD 0805
(480-512 MHz)
82 nH i10°/0 SMD 0805
(435466 MHz)
150 nI-l tIO‘A SMD 0805
(464-480 MHz)
L 853
L 854
January 1996
Pitt N04 001-3474—001
PART
NUMBER
5 I 0-3673-129
5 1 0~3673- 1 89
5 10-3673- 109
510-3674-10 l
510-3674-101
510-3673-339
51 0-3673-339
5 1 0-3673-339
5 1 0-3673- 1 00
5 1 0—3673-91 9
5 1 0.3673-829
5 10-3673-129
510-3673-109
510-3673-100
523-1 504-00 1
523—5005-022
523~5005-020
523—5005-020
523-5005-022
523»5005-022
523v5005-022
542-9003-827
542~9003-8Z7
542-9003- I 58
542—9003—227
542-9003- I 87
542-9003-827
542—9003» 1 58
7-8
SYMBOL
NUMBER DECRMJDN
L 855
L 856
L861
Q 850
Q 851
Q 852
Q 853
R 851
R 852
R 853
R 854
R 856
R 857
R 858
R 862
R 863
R 864
R 865
R 866
R 867
R 868
R 869
R 870
R 871
R 872
R 874
R 875
Z 850
PART
NUMBER
56 111-1 inductor LL2012 F56N 542-9003-567
27 111-1 110% SMD 0805
(403.435 MHz)
22 nl-l _+_10% SMD 0805
(435-480 MHz)
18 111-1 11054. SMD 0805
(480-512 MHz)
12 nH inductorLL2012 FlZN
(435-480 MHz)
15 It}! inductor LL2012 F12N
(480-512 MHz)
NPN transistor NE85619
NPN transistor NE85619
NPN transistnr NE85619
NPN transistor NE85619
10k ohm tS‘A; .063W 0603
47k ohm 15% .063W 0603
47k ohm 15% .063W 0603
10 ohm :l:5% 063W 0603
10 ohm :l:5% .063W 0603
6.8k ohm iS% .063W 0603
1k ohm :t:5% 063W 0603
10k ohm 15% .063W 0603
10 ohm 15% .063W 0603
10k ohm 15°41 .063W 0603
10k Ohm 15% .063W 0603
470 ohm 15% .063W 0603
12k ohm 15% .063W 0603
390 ohm 15% .063W 0603
270 ohm t5% .063W 0603
18 ohm 15% .063W 0603
3.916 ohm i5% 063W 0603
1.8k ohm 15% 063W 0603
680 ohm 15% .063W 0603
270 ohm t5% .063W 0603
542-9003-277
542-9003-227
542-9003-187
542-9003- 127
542-9003-1 57
576—0003-65 1
576-0003-65 1
576-0003-651
576-0003-65 1
569-0155-103
569-0155-473
569-0155-473
569-0155-100
569-0155-100
569-0155—682
569-0155-102
569-0155-103
569-0155-100
569-0155-103
569-0155-103
569-0155-471
569-0155-123
569-0155-391
569-0155—271
569-0155-180
569-0155-392
569-0155-182
569-0155-681
569—0155-271
Coaxial xmit line ind 835 MHz 542-9004-002
(403419 MHz Only)
Coaxial xmit line ind 885 MHz 542-9004-003
(419435 MHz Only)
Coaxial xmit line ind 935 MHz 542-9004—004
(435—451 MHz Only)
Coaxial xmit line ind 985 MHz 542-9004-005
(450466 MHz Only)
Coaxial xmit line 1035 MHz 542-9004-006
(464480 MHz Only)
fl

Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.2
Linearized                      : Yes
Create Date                     : 2001:07:17 12:38:28
Producer                        : Acrobat Distiller 4.0 for Windows
Modify Date                     : 2001:07:17 12:38:29+01:00
Page Count                      : 36
EXIF Metadata provided by EXIF.tools
FCC ID Filing: GM332D73552356781

Navigation menu