Quectel Wireless Solutions 201708EC25E LTE Module User Manual XMR201708EC25E Uesr Manual Rev2

Quectel Wireless Solutions Company Limited LTE Module XMR201708EC25E Uesr Manual Rev2

User Manual

Download: Quectel Wireless Solutions 201708EC25E LTE Module User Manual XMR201708EC25E Uesr Manual Rev2
Mirror Download [FCC.gov]Quectel Wireless Solutions 201708EC25E LTE Module User Manual XMR201708EC25E Uesr Manual Rev2
Document ID3543902
Application IDzurMVhT9/xIzR4HUfXiJLg==
Document DescriptionUser Manual
Short Term ConfidentialNo
Permanent ConfidentialNo
SupercedeYes
Document TypeUser Manual
Display FormatAdobe Acrobat PDF - pdf
Filesize177.69kB (2221166 bits)
Date Submitted2017-09-05 00:00:00
Date Available2017-09-05 00:00:00
Creation Date2017-08-18 10:12:43
Producing SoftwareAcrobat Distiller 9.0.0 (Windows)
Document Lastmod2017-08-18 10:12:43
Document TitleMicrosoft Word - XMR201708EC25E_Uesr Manual Rev2
Document CreatorPScript5.dll Version 5.2.2
Document Author: haojinhua

EC
C25Hardw
warre Des
sign
LTE Module
Series
Rev. EC25_Ha
ardware_
_Design_
_V1.3
Date: 2017-01-24
ww
ww.quectel.c
com
LTE Module Series
EC25Hardware Design
Our aim is to provide customers with timely and comprehensive service. For any
assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd.
Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233
Tel: +86 21 5108 6236
Email:info@quectel.com
Or our local office.For more information, please visit:
http://www.quectel.com/support/salesupport.aspx
For technical support, or to report documentation errors, please visit:
http://www.quectel.com/support/techsupport.aspx
Or email to: Support@quectel.com
GENERAL NOTES
QUECTEL OFFERS THEINFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION
PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT
TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT
MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT
ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR
RELIANCE UPON THE INFORMATION. THE INFORMATION SUPPLIED HEREIN IS SUBJECT TO
CHANGE WITHOUT PRIOR NOTICE.
COPYRIGHT
THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF
QUECTEL CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS
DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT
PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS
ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL
OR DESIGN.
Copyright © Quectel Wireless Solutions Co., Ltd. 2017. All rights reserved.
EC25_Hardware_DesignConfidential / Released
1 / 90
LTE Module Series
EC25Hardware Design
About the Document
History
Revision
Date
Author
Description
1.0
2016-04-01
Woody WU
Initial
1.
2.
1.1
2016-09-22
Lyndon LIU/
Frank WANG
Updated EC25 series frequency bands in Table 1.
Updated transmitting power, supported maximum
baud rate of main UART/internal protocols/USB
drivers of USB interface, firmware upgrade and
temperature range in Table 2.
3. Updated timing of turning on module in Figure 12.
4. Updated timing of turning off module in Figure 13.
5. Updated timing of resetting module in Figure 16.
6. Updated supported baud rates of main UART in
Chapter 3.11.
7. Added notes for ADC interface in Chapter 3.13.
8. Updated GNSS performance in Table 21.
9. Updated operating frequencies of module in Table 23.
10. Added current consumption in Chapter 6.4.
11. Updated RF output power in Chapter 6.5.
12. Added RF receiving sensitivity in Chapter 6.6.
1.
2.
3.
4.
1.2
2016-11-04
Lyndon LIU/
Michael ZHANG
1.3
2017-01-24
Lyndon LIU/
Frank WANG
5.
6.
7.
8.
9.
Added SGMII and WLAN interfaces in Table 2.
Updated function diagram in Figure 1.
Updated pin assignment (Top View) in Figure 2.
Added description of SGMII and WLAN interfaces in
Table 4.
Added SGMII interface in Chapter 3.17.
Added WLAN interface in Chapter 3.18.
Added USB_BOOT interface in Chapter 3.19.
Added reference design of RF layout in Chapter 5.1.4.
Added note about SIMO in Chapter 6.6.
1.
2.
Updated function diagram in Figure 1.
Updated pin assignment (top view) in Figure 2.
EC25_Hardware_DesignConfidential / Released
2 / 90
LTE Module Series
EC25Hardware Design
3.
4.
5.
6.
7.
8.
EC25_Hardware_DesignConfidential / Released
Added BT interface in Chapter 3.18.2.
Updated GNSS performance in Table 24.
Updated reference circuit of wireless connectivity
interfaces with FC20 module in Figure 29.
Updated current consumption of EC25-E module in
Table 33.
Updated EC25-A conducted RF receiving sensitivity
in Table 38.
AddedEC25-J conducted RF receiving sensitivity in
Table 40.
3 / 90
LTE Module Series
EC25Hardware Design
Contents
About the Document ................................................................................................................................ 2
Contents .................................................................................................................................................... 4
Table Index ............................................................................................................................................... 6
Figure Index .............................................................................................................................................. 8
Introduction ..................................................................................................................................... 10
1.1.
Safety Information ..................................................................................................................11
Product Concept ............................................................................................................................. 12
2.1.
General Description .............................................................................................................. 12
2.2.
Key Features ......................................................................................................................... 13
2.3.
Functional Diagram ............................................................................................................... 15
2.4.
Evaluation Board ................................................................................................................... 16
Application Interface ....................................................................................................................... 17
3.1.
General Description .............................................................................................................. 17
3.2.
Pin Assignment ..................................................................................................................... 18
3.3.
Pin Description ...................................................................................................................... 19
3.4.
Operating Modes .................................................................................................................. 28
3.5.
Power Saving ........................................................................................................................ 28
3.5.1.
Sleep Mode.................................................................................................................. 28
3.5.1.1. UART Application ............................................................................................... 28
3.5.1.2. USB Application with USB Remote Wakeup Function ....................................... 29
3.5.1.3. USB Application with USB Suspend/Resume and RI Function .......................... 30
3.5.1.4. USB Application without USB Suspend Function............................................... 31
3.5.2.
Airplane Mode.............................................................................................................. 31
3.6.
Power Supply ........................................................................................................................ 32
3.6.1.
Power Supply Pins....................................................................................................... 32
3.6.2.
Decrease Voltage Drop ................................................................................................ 33
3.6.3.
Reference Design for Power Supply ............................................................................ 34
3.6.4.
Monitor the Power Supply ............................................................................................ 34
3.7.
Turn on and off Scenarios ..................................................................................................... 34
3.7.1.
Turn on Module Using the PWRKEY ........................................................................... 34
3.7.2.
Turn off Module ............................................................................................................ 36
3.7.2.1. Turn off Module Using the PWRKEY Pin ........................................................... 36
3.7.2.2. Turn off Module Using AT Command ................................................................. 37
3.8.
Reset the Module .................................................................................................................. 37
3.9.
USIM Card Interface ............................................................................................................. 39
3.10. USB Interface ........................................................................................................................ 41
3.11. UART Interfaces.................................................................................................................... 43
3.12. PCM and I2C Interfaces ........................................................................................................ 45
3.13. ADC Function ........................................................................................................................ 47
3.14. Network Status Indication ..................................................................................................... 48
EC25_Hardware_DesignConfidential / Released
4 / 90
LTE Module Series
EC25Hardware Design
3.15. STATUS ................................................................................................................................ 49
3.16. Behavior of the RI ................................................................................................................. 50
3.17. SGMII Interface ..................................................................................................................... 51
3.18. Wireless Connectivity Interfaces ........................................................................................... 53
3.18.1. WLAN Interface ........................................................................................................... 55
3.18.2. BT Interface* ................................................................................................................ 56
3.19. USB_BOOT Interface............................................................................................................ 56
GNSS Receiver ................................................................................................................................ 58
4.1.
General Description .............................................................................................................. 58
4.2.
GNSS Performance .............................................................................................................. 58
4.3.
Layout Guidelines ................................................................................................................. 59
Antenna Interfaces .......................................................................................................................... 60
5.1.
Main/Rx-diversity Antenna Interface ..................................................................................... 60
5.1.1.
Pin Definition................................................................................................................ 60
5.1.2.
Operating Frequency ................................................................................................... 60
5.1.3.
Reference Design of RF Antenna Interface ................................................................. 61
5.1.4.
Reference Design of RF Layout................................................................................... 62
5.2.
GNSS Antenna Interface ....................................................................................................... 64
5.3.
Antenna Installation .............................................................................................................. 65
5.3.1.
Antenna Requirement .................................................................................................. 65
5.3.2.
Recommended RF Connector for Antenna Installation ................................................ 66
Electrical, Reliability and Radio Characteristics .......................................................................... 68
6.1.
Absolute Maximum Ratings .................................................................................................. 68
6.2.
Power Supply Ratings ........................................................................................................... 69
6.3.
Operating Temperature ......................................................................................................... 69
6.4.
Current Consumption ............................................................................................................ 70
6.5.
RF Output Power .................................................................................................................. 73
6.6.
RF Receiving Sensitivity ....................................................................................................... 74
6.7.
Electrostatic Discharge ......................................................................................................... 76
Mechanical Dimensions.................................................................................................................. 77
7.1.
Mechanical Dimensions of the Module.................................................................................. 77
7.2.
Recommended Footprint....................................................................................................... 79
7.3.
Design Effect Drawings of the Module .................................................................................. 80
Storage, Manufacturing and Packaging ........................................................................................ 81
8.1.
Storage ................................................................................................................................. 81
8.2.
Manufacturing and Soldering ................................................................................................ 82
8.3.
Packaging ............................................................................................................................. 83
10
11
12
Appendix A References .................................................................................................................. 84
Appendix B GPRS Coding Schemes ............................................................................................. 88
Appendix C GPRS Multi-slot Classes ............................................................................................ 89
Appendix D EDGE Modulation and Coding Schemes .................................................................. 90
EC25_Hardware_DesignConfidential / Released
5 / 90
LTE Module Series
EC25Hardware Design
Table Index
TABLE 1: FREQUENCY BANDS OF EC25 SERIES MODULE........................................................................ 12
TABLE 2: KEY FEATURES OF EC25 MODULE ............................................................................................... 13
TABLE 3: I/O PARAMETERS DEFINITION ....................................................................................................... 19
TABLE 4: PIN DESCRIPTION ........................................................................................................................... 19
TABLE 5: OVERVIEW OF OPERATING MODES ............................................................................................. 28
TABLE 6: VBAT AND GND PINS....................................................................................................................... 32
TABLE 7: PWRKEY PIN DESCRIPTION .......................................................................................................... 35
TABLE 8: RESET_N PIN DESCRIPTION ......................................................................................................... 37
TABLE 9: PIN DEFINITION OF THE USIM CARD INTERFACE ...................................................................... 39
TABLE 10: PIN DESCRIPTION OF USB INTERFACE ..................................................................................... 41
TABLE 11: PIN DEFINITION OF THE MAIN UART INTERFACE ..................................................................... 43
TABLE 12: PIN DEFINITION OF THE DEBUG UART INTERFACE ................................................................. 43
TABLE 13:LOGIC LEVELS OF DIGITAL I/O ..................................................................................................... 44
TABLE 14: PIN DEFINITION OF PCM AND I2C INTERFACES ....................................................................... 46
TABLE 15: PIN DEFINITION OF THE ADC ...................................................................................................... 48
TABLE 16: CHARACTERISTIC OF THE ADC .................................................................................................. 48
TABLE 17: PIN DEFINITION OF NETWORK CONNECTION STATUS/ACTIVITY INDICATOR...................... 48
TABLE 18: WORKING STATE OF THE NETWORK CONNECTION STATUS/ACTIVITY INDICATOR ........... 49
TABLE 19: PIN DEFINITION OF STATUS ........................................................................................................ 50
TABLE 20: BEHAVIOR OF THE RI ................................................................................................................... 50
TABLE 21: PIN DEFINITION OF THE SGMII INTERFACE .............................................................................. 51
TABLE 22: PIN DEFINITION OF WIRELESS CONNECTIVITY INTERFACES ................................................ 53
TABLE 23: PIN DEFINITION OF USB_BOOT INTERFACE ............................................................................. 56
TABLE 24: GNSS PERFORMANCE ................................................................................................................. 58
TABLE 25: PIN DEFINITION OF THE RF ANTENNA ....................................................................................... 60
TABLE 26: MODULE OPERATING FREQUENCIES ........................................................................................ 60
TABLE 27: PIN DEFINITION OF GNSS ANTENNA INTERFACE..................................................................... 64
TABLE 28: GNSS FREQUENCY ....................................................................................................................... 64
TABLE 29: ANTENNA REQUIREMENTS.......................................................................................................... 65
TABLE 30: ABSOLUTE MAXIMUM RATINGS .................................................................................................. 68
TABLE 31: THE MODULE POWER SUPPLY RATINGS .................................................................................. 69
TABLE 32: OPERATING TEMPERATURE........................................................................................................ 69
TABLE 33: EC25-E CURRENT CONSUMPTION ............................................................................................. 70
TABLE 34: EC25-A CURRENT CONSUMPTION ............................................................................................. 72
TABLE 35: GNSS CURRENT CONSUMPTION OF EC25 SERIES MODULE ................................................. 73
TABLE 36: RF OUTPUT POWER ..................................................................................................................... 73
TABLE 37: EC25-E CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 74
TABLE 38: EC25-A CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 74
TABLE 39: EC25-V CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 75
TABLE 40: EC25-J CONDUCTED RF RECEIVING SENSITIVITY................................................................... 75
TABLE 41: ELECTROSTATICS DISCHARGE CHARACTERISTICS ............................................................... 76
EC25_Hardware_DesignConfidential / Released
6 / 90
LTE Module Series
EC25Hardware Design
TABLE 42: RELATED DOCUMENTS ................................................................................................................ 84
TABLE 43: TERMS AND ABBREVIATIONS ...................................................................................................... 84
TABLE 44: DESCRIPTION OF DIFFERENT CODING SCHEMES .................................................................. 88
TABLE 45: GPRS MULTI-SLOT CLASSES ...................................................................................................... 89
TABLE 46: EDGE MODULATION AND CODING SCHEMES ........................................................................... 90
EC25_Hardware_DesignConfidential / Released
7 / 90
LTE Module Series
EC25Hardware Design
Figure Index
FIGURE 1: FUNCTIONAL DIAGRAM ............................................................................................................... 16
FIGURE 2: PIN ASSIGNMENT (TOP VIEW) .................................................................................................... 18
FIGURE 3: SLEEP MODE APPLICATION VIA UART ....................................................................................... 29
FIGURE 4: SLEEP MODE APPLICATION WITH USB REMOTE WAKEUP .................................................... 30
FIGURE 5: SLEEP MODE APPLICATION WITH RI ......................................................................................... 30
FIGURE 6: SLEEP MODE APPLICATION WITHOUT SUSPEND FUNCTION ................................................ 31
FIGURE 7: POWER SUPPLY LIMITS DURING BURST TRANSMISSION ...................................................... 33
FIGURE 8: STAR STRUCTURE OF THE POWER SUPPLY............................................................................ 33
FIGURE 9: REFERENCE CIRCUIT OF POWER SUPPLY .............................................................................. 34
FIGURE 10: TURN ON THE MODULE USING DRIVING CIRCUIT ................................................................. 35
FIGURE 11: TURN ON THE MODULE USING KEYSTROKE .......................................................................... 35
FIGURE 12: TIMING OF TURNING ON MODULE ........................................................................................... 36
FIGURE 13: TIMING OF TURNING OFF MODULE ......................................................................................... 37
FIGURE 14: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT ...................................... 38
FIGURE 15: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON ...................................................... 38
FIGURE 16: TIMING OF RESETTING MODULE ............................................................................................. 38
FIGURE 17: REFERENCE CIRCUIT OF USIM CARD INTERFACE WITH AN 8-PIN USIM CARD
CONNECTOR .................................................................................................................................................... 40
FIGURE 18: REFERENCE CIRCUIT OF USIM CARD INTERFACE WITH A 6-PIN USIM CARD CONNECTOR
........................................................................................................................................................................... 40
FIGURE 19: REFERENCE CIRCUIT OF USB APPLICATION ......................................................................... 42
FIGURE 20: REFERENCE CIRCUIT WITH TRANSLATOR CHIP ................................................................... 44
FIGURE 21: REFERENCE CIRCUIT WITH TRANSISTOR CIRCUIT .............................................................. 45
FIGURE 22: PRIMARY MODE TIMING ............................................................................................................ 46
FIGURE 23: AUXILIARY MODE TIMING .......................................................................................................... 46
FIGURE 24: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC .................................... 47
FIGURE 25: REFERENCE CIRCUIT OF THE NETWORK INDICATOR .......................................................... 49
FIGURE 26: REFERENCE CIRCUITS OF STATUS ......................................................................................... 50
FIGURE 27: SIMPLIFIED BLOCK DIAGRAM FOR ETHERNET APPLICATION ............................................. 52
FIGURE 28: REFERENCE CIRCUIT OF SGMII INTERFACE WITH PHY AR8033 APPLICATION................. 52
FIGURE 29: REFERENCE CIRCUIT OF WIRELESS CONNECTIVITY INTERFACES WITH FC20 MODULE
........................................................................................................................................................................... 55
FIGURE 30: REFERENCE CIRCUIT OF USB_BOOT INTERFACE ................................................................ 57
FIGURE 31: REFERENCE CIRCUIT OF RF ANTENNA INTERFACE ............................................................. 61
FIGURE 32: MICROSTRIP LINE DESIGN ON A 2-LAYER PCB ...................................................................... 62
FIGURE 33: COPLANAR WAVEGUIDE LINE DESIGN ON A 2-LAYER PCB .................................................. 62
FIGURE 34: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE
GROUND) .......................................................................................................................................................... 63
FIGURE 35: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE
GROUND) .......................................................................................................................................................... 63
FIGURE 36: REFERENCE CIRCUIT OF GNSS ANTENNA ............................................................................. 64
EC25_Hardware_DesignConfidential / Released
8 / 90
LTE Module Series
EC25Hardware Design
FIGURE 37: DIMENSIONS OF THE UF.L-R-SMT CONNECTOR (UNIT: MM) ................................................ 66
FIGURE 38: MECHANICALS OF UF.L-LP CONNECTORS ............................................................................. 66
FIGURE 39: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM) ........................................................... 67
FIGURE 40: MODULE TOP AND SIDE DIMENSIONS..................................................................................... 77
FIGURE 41: MODULE BOTTOM DIMENSIONS (BOTTOM VIEW) ................................................................. 78
FIGURE 42: RECOMMENDED FOOTPRINT (TOP VIEW) .............................................................................. 79
FIGURE 43: TOP VIEW OF THE MODULE ...................................................................................................... 80
FIGURE 44: BOTTOM VIEW OF THE MODULE .............................................................................................. 80
FIGURE 45: REFLOW SOLDERING THERMAL PROFILE .............................................................................. 82
FIGURE 46: TAPE AND REEL SPECIFICATIONS ........................................................................................... 83
EC25_Hardware_DesignConfidential / Released
9 / 90
LTE Module Series
EC25Hardware Design
Introduction
This document defines the EC25module and describes its air interface and hardware interface which are
connected with your application.
This document can help you quickly understand module interface specifications, electrical and
mechanical details, as well as other related information of EC25 module. Associated with application note
and user guide, you can use EC25 module to design and set up mobile applications easily.
EC25_Hardware_DesignConfidential / Released
10 / 90
LTE Module Series
EC25Hardware Design
1.1. Safety Information
The following safety precautions must be observed during all phases of the operation, such as usage,
service or repair of any cellular terminal or mobile incorporating EC25 module. Manufacturers of the cellular
terminal should send the following safety information to users and operating personnel, and incorporate
these guidelines into all manuals supplied with the product. If not so, Quectelassumes no liability for the
customer’s failure to comply with these precautions.
Full attention must be given to driving at all times in order to reduce the risk of an
accident. Using a mobile while driving (even with a handsfree kit) causes
distraction and can lead to an accident. You must comply with laws and regulations
restricting the use of wireless devices while driving.
Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is
switched off. The operation of wireless appliances in an aircraft is forbidden, so as
to prevent interference with communication systems. Consult the airline staff about
the use of wireless devices on boarding the aircraft, if your device offers an
Airplane Mode which must be enabled prior to boarding an aircraft.
Switch off your wireless device when in hospitals,clinics or other health care
facilities. These requests are desinged to prevent possible interference with
sensitive medical equipment.
Cellular terminals or mobiles operatingover radio frequency signal and cellular
network cannot be guaranteed to connect in all conditions, for example no mobile
fee or with an invalid USIM/SIM card. While you are in this condition and need
emergent help, please remember using emergency call. In order to make or
receive a call, the cellular terminal or mobile must be switched on and in a service
area with adequate cellular signal strength.
Your cellular terminal or mobile contains a transmitter and receiver. When it is ON,
it receives and transmits radio frequency energy. RF interference can occur if it is
used close to TV set, radio, computer or other electric equipment.
In locations with potentially explosive atmospheres, obey all posted signs to turn
off wireless devices such as your phone or other cellular terminals. Areas with
potentially explosive atmospheres include fuelling areas, below decks on boats,
fuel or chemical transfer or storage facilities, areas where the air contains
chemicals or particles such as grain, dust or metal powders, etc.
EC25_Hardware_DesignConfidential / Released
11 / 90
LTE Module Series
EC25Hardware Design
Product Concept
2.1. General Description
EC25 is a series of LTE-FDD/LTE-TDD/WCDMA/GSM wireless communication module with receive
diversity, which provides data connectivity on LTE-FDD,LTE-TDD,DC-HSPA+, HSPA+, HSDPA, HSUPA,
WCDMA,EDGE andGPRSnetworks. It also provides GNSS1) and voice functionality2) for your specific
application.EC25 contains fivevariants:EC25-E, EC25-A, EC25-V, EC25-Jand EC25-AU. You can choose
a dedicated type based on the region or operator. The following table shows the frequency bands of EC25
series module.
Table 1: Frequency Bands of EC25 Series Module
Modules2)
LTE Bands
3G Bands
GSM
Rxdiversity
EC25-E
FDD:B1/B3/B5/B7/B8/
B20
TDD: B38/B40/B41
WCDMA:
B1/B5/B8
900/1800
Supported
EC25-A
FDD: B2/B4/B12
WCDMA:
B2/B4/B5
Not supported
Supported
EC25-V
FDD: B4/B13
Not supported
Not supported
Supported
EC25-J
FDD: B1/B3/B8/B18/B19/
B26
TDD: B41
WCDMA:
B1/B6/B8/
B19
Not supported
Supported
FDD: B1/B2/B3/B4/B5/B7/
B8/B28
TDD: B40
WCDMA:
B1/B2/B5/B8
850/900/
1800/1900
Supported
3)
EC25-AU
GNSS1)
GPS,
GLONASS,
BeiDou/
Compass,
Galileo,
QZSS
NOTES
1.
1)
2.
2)
3.
GNSS function is optional.
EC25 series module (EC25-E/EC25-A/EC25-V/EC25-J/EC25-AU) includes Data-only and
Telematics versions. Data-only version does not support voice function, while Telematics version
supports it.
3)
B2 band on EC25-AU module does not support Rx-diversity.
EC25_Hardware_DesignConfidential / Released
12 / 90
LTE Module Series
EC25Hardware Design
With a tiny profile of 32.0mm ×29.0mm ×2.4mm, EC25 can meet almost all requirements for M2M
applications such as automotive, metering, tracking system, security, router, wireless POS, mobile
computing device, PDA phone, tablet PC, etc.
EC25 is an SMD type module which can be embedded in applications through its 144-pin pads, including
80 LCC signal pads and 64 other pads.
2.2. Key Features
The following table describes the detailed features of EC25 module.
Table 2: Key Features of EC25 Module
Feature
Details
Power Supply
Supply voltage: 3.3V~4.3VTypical supply voltage: 3.8V
Transmitting Power
Class 4 (33dBm±2dB) for GSM900
Class 1 (30dBm±2dB) for DCS1800
Class E2 (27dBm±3dB) for GSM900 8-PSK
Class E2 (26dBm±3dB) for DCS1800 8-PSK
Class 3 (23dBm+1/-3dB) for WCDMA bands
Class 3 (23dBm+1/-3dB) for LTE-FDD band5
Class 3 (22.5dBm+1/-3dB) for LTE-FDD band7
Class 3 (23dBm+1/-3dB) for LTE-TDD bands
LTE Features
Support up to non-CA CAT4
Support 1.4 to 20MHz RF bandwidth
Support MIMO in DL direction
FDD: Max 50Mbps (UL), 150Mbps (DL)
TDD: Max 35Mbps (UL), 130Mbps (DL)
WCDMA Features
Support 3GPP R8 DC-HSPA+
Support 16-QAM, 64-QAM and QPSKmodulation
3GPP R6 CAT6 HSUPA: Max 5.76Mbps (UL)
3GPP R8 CAT24 DC-HSPA+: Max 42Mbps (DL)
R99:
CSD: 9.6kbps, 14.4kbps
GSMFeatures
GPRS:
Support GPRS multi-slot class 12 (12 by default)
Coding scheme: CS-1, CS-2, CS-3 and CS-4
Maximum of four Rx time slots per frame
EDGE:
Support EDGE multi-slot class 12 (12 by default)
EC25_Hardware_DesignConfidential / Released
13 / 90
LTE Module Series
EC25Hardware Design
Support GMSK and 8-PSK for different MCS (Modulation and Coding
Scheme)
Downlink coding schemes: CS 1-4 and MCS 1-9
Uplink coding schemes: CS 1-4 and MCS 1-9
Internet Protocol Features
SupportTCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/HTTPS*/SMTP*/MMS*
/FTPS*/SMTPS*/SSL*protocols
Support the protocols PAP (Password Authentication Protocol) and CHAP
(Challenge Handshake Authentication Protocol) usually used for PPP
connections
SMS
Text and PDU mode
Point to point MO and MT
SMS cell broadcast
SMS storage: ME by default
USIM Interface
Support USIM/SIM card: 1.8V, 3.0V
Audio Features
Support one digital audio interface: PCM interface
GSM: HR/FR/EFR/AMR/AMR-WB
WCDMA: AMR/AMR-WB
LTE: AMR/AMR-WB
Support echo cancellation and noise suppression
PCM Interface
Used for audio function with external codec
Support 8-bit A-law*, μ-law*and 16-bit linear data formats
Support long frame synchronization and short frame synchronization
Support master and slave modes, but must be the master in long frame
synchronization
USB Interface
UART Interface
Compliant with USB 2.0 specification (slave only);the data transfer rate can
reach up to 480Mbps
Used for AT command communication, data transmission, GNSS NMEA
output, software debugging, firmware upgrade and voiceover USB*
Support USB drivers for: Windows XP, Windows Vista, Windows 7,
Windows 8/8.1, Windows 10, Linux 2.6 or later, Android
4.0/4.2/4.4/5.0/5.1/6.0
Main UART:
Used for AT command communication and data transmission
Baud rate reach up to 3000000bps, 115200bps by default
Support RTS and CTS hardware flow control
Debug UART:
Used for Linux console, log output
115200bps baud rate
SGMII Interface
Support 10/100/1000Mbps Ethernet connectivity
Wireless Connectivity
Interfaces
Support a low-power SDIO 3.0 interface for WLAN and UART/PCM
interface for Bluetooth*
EC25_Hardware_DesignConfidential / Released
14 / 90
LTE Module Series
EC25Hardware Design
Rx-diversity
Support LTE/WCDMA Rx-diversity
GNSS Features
Gen8CLite of Qualcomm
Protocol: NMEA 0183
AT Commands
Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT
commands
Network Indication
Two pins including NET_MODE and NET_STATUS to indicate network
connectivity status
Antenna Interface
Including main antenna interface (ANT_MAIN), Rx-diversityantenna
interface (ANT_DIV) and GNSS antenna interface (ANT_GNSS)
Physical Characteristics
Size: 32.0±0.15×29.0±0.15×2.4±0.2mm
Weight: approx. 4.9g
Temperature Range
Operation temperature range: -35°C ~ +75°C1)
Extended temperature range: -40°C ~ +85°C2)
Firmware Upgrade
USB interface and DFOTA*
RoHS
All hardware components are fully compliant with EU RoHS directive
NOTES
1.
2.
1)
Within operation temperature range, the module is 3GPP compliant.
Within extended temperature range, the module remains the ability to establish and maintain a
voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There
are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like
Pout might reduce in their value and exceed the specified tolerances. When the temperature returns to
the normal operating temperature levels, the module will meet 3GPP compliant again.
3. “*” means under development.
2)
2.3. Functional Diagram
The following figure shows a block diagram of EC25 and illustrates the major functional parts.
EC25_Hardware_DesignConfidential / Released
15 / 90
LTE Module Series
EC25Hardware Design





Power management
Baseband
DDR+NAND flash
Radio frequency
Peripheral interfaces
ANT_MAIN
ANT_GNSS
ANT_DIV
Switch
SAW
Switch
Duplex
LNA
SAW
VBAT_RF
APT
PA
PRx
DRx
Tx
NAND
DDR2
SDRAM
Transceiver
IQ
VBAT_BB
PMIC
Control
Control
PWRKEY
Baseband
RESET_N
ADCs
19.2M
XO
STATUS
VDD_EXT
USB USIM PCM SGMII WLAN
I2C
UART GPIOs
BT
Figure 1: Functional Diagram
2.4. Evaluation Board
In order to help youto develop applications with EC25, Quectel supplies an evaluation board (EVB), USB
data cable, earphone, antenna and other peripherals to control or test the module.
EC25_Hardware_DesignConfidential / Released
16 / 90
LTE Module Series
EC25Hardware Design
Application Interface
3.1. General Description
EC25 is equipped with 80-pin SMT pads plus 64-pin ground pads and reserved pads that can
beconnected to cellular application platform. Sub-interfaces included in these pads are described in detail
in the following chapters:










Power supply
USIM interface
USB interface
UART interfaces
PCM interface
ADC interface
Status indication
SGMII interface
Wireless connectivityinterfaces
USB_BOOT interface
EC25_Hardware_DesignConfidential / Released
17 / 90
LTE Module Series
EC25Hardware Design
3.2. Pin Assignment
The following figure shows the pin assignment of EC25 module.
WAKEUP_IN1)
54
GND
AP_READY
53
GND
RESERVED
52
GND
W_DISABLE#
51
GND
NET_MODE1)
50
GND
NET_STATUS
VDD_EXT
RESERVED
141
RESERVED
142
GND
GND
USIM_GND
10
DBG_RXD
11
DBG_TXD
12
USIM_PRESENCE
13
USIM_VDD
14
USIM_DATA
15
USIM_CLK
16
USIM_RST
17
RESERVED
18
129
117
130
118
131
108
103
99
85
90
95
119
132
120
133
121
134
122
135
123
136
124
137
125
138
126
139
127
140
128
109
104
100
86
91
96
49
ANT_MAIN
48
GND
144 RESERVED
143 RESERVED
82 79 76 73
110
105
83 80 77 74
87
92
84 81 78 75
111
112
106
107
101
102
88
93
97
94
98
89
GND Pins
Signal Pins
RESERVED Pins
WLAN Pins
Power Pins
Bluetooth Pins
47
ANT_GNSS
46
GND
45
ADC0
44
ADC1
43
RESERVED
42
I2C_SDA
41
I2C_SCL
40
BT_CTS
39
BT_RXD
38
BT_TXD
37
BT_RTS
SGMII Pins
Figure 2: Pin Assignment (Top View)
NOTES
1.
2.
3.
4.
1)
meansthat these pins cannot be pulled up before startup.
PWRKEY output voltage is 0.8V because of the diode drop in the Qualcomm chipset.
Pads 119~126 are SGMII function pins.
Pads 37~40, 118, 127 and 129~139 are wireless connectivity interfaces, among which pads 127 and
129~138 are WLAN function pins, and others are Bluetooth (BT) function pins. BT function is under
development.
2)
EC25_Hardware_DesignConfidential / Released
18 / 90
LTE Module Series
EC25Hardware Design
5.
6.
7.
8.
Pads 24~27 are multiplexing pins used for audio design on EC25 module and BT function on FC20
module.
Keep all RESERVEDpins and unused pins unconnected.
GND pads 85~112 should be connected to ground in the design, and RESERVED pads 73~84should
not be designed in schematic and PCB decal.
※
“ ”means these interface functions are only supported on Telematics version.
3.3. Pin Description
The following tables show the pin definition of EC25 modules.
Table 3: I/O Parameters Definition
Type
Description
IO
Bidirectional
DI
Digital input
DO
Digital output
PI
Power input
PO
Power output
AI
Analog input
AO
Analog output
OD
Open drain
Table 4: Pin Description
Power Supply
Pin Name
VBAT_BB
VBAT_RF
Pin No.
59,60
57,58
I/O
Description
DC Characteristics
Comment
PI
Power supply for
module baseband
part
Vmax=4.3V
Vmin=3.3V
Vnorm=3.8V
It must be able to
provide sufficient
current up to 0.8A.
PI
Power supply for
module RF part
Vmax=4.3V
Vmin=3.3V
Vnorm=3.8V
It must be able to
provide sufficient
current up to 1.8A in a
EC25_Hardware_DesignConfidential / Released
19 / 90
LTE Module Series
EC25Hardware Design
bursttransmission.
VDD_EXT
PO
GND
8,9,19,22,3
6,46,48,50
~54,56,72,
85~112
Provide 1.8V for
external circuit
Vnorm=1.8V
IOmax=50mA
Power supply for
external GPIO’s pull up
circuits.
Ground
Turn on/off
Pin Name
PWRKEY
RESET_N
Pin No.
Description
DC Characteristics
Comment
Turnon/off the
module
VIHmax=2.1V
VIHmin=1.3V
VILmax=0.5V
The output voltage is
0.8V because of the
diode drop in the
Qualcomm chipset.
DI
Reset the module
VIHmax=2.1V
VIHmin=1.3V
VILmax=0.5V
I/O
Description
DC Characteristics
Comment
OD
Indicate the module
operating status
The drive current
should be less than
0.9mA.
Require external
pull-up. If unused,
keep it open.
DO
Indicate the module
network registration
mode
VOHmin=1.35V
VOLmax=0.45V
1.8V power domain.
Cannot be pulled up
before startup.
If unused, keep it
open.
DO
Indicate the module
network activity
status
VOHmin=1.35V
VOLmax=0.45V
1.8V power domain.
If unused, keep it
open.
Pin No.
I/O
Description
DC Characteristics
Comment
PI
USB detection
Vmax=5.25V
Vmin=3.0V
Vnorm=5.0V
IO
USB differential data
bus
Compliant with USB
2.0 standard
specification.
21
20
I/O
DI
Status Indication
Pin Name
STATUS
NET_MODE
NET_
STATUS
Pin No.
61
USB Interface
Pin Name
USB_VBUS
USB_DP
71
69
EC25_Hardware_DesignConfidential / Released
20 / 90
Require differential
impedance of 90ohm.
LTE Module Series
EC25Hardware Design
USB_DM
70
IO
USB differential data
bus
Compliant with USB
2.0 standard
specification.
Require differential
impedance of 90ohm.
I/O
Description
DC Characteristics
Comment
USIM Interface
Pin Name
Pin No.
USIM_GND
10
Specified ground for
USIM card
For 1.8V USIM:
Vmax=1.9V
Vmin=1.7V
USIM_VDD
USIM_DATA
USIM_CLK
USIM_RST
USIM_
PRESENCE
14
15
16
17
13
PO
IO
DO
DO
DI
Power supply for
USIM card
For 3.0V USIM:
Vmax=3.05V
Vmin=2.7V
IOmax=50mA
For 1.8V USIM:
VILmax=0.6V
VIHmin=1.2V
VOLmax=0.45V
VOHmin=1.35V
Data signal of USIM
card
For 3.0V USIM:
VILmax=1.0V
VIHmin=1.95V
VOLmax=0.45V
VOHmin=2.55V
Clock signal of USIM
card
Reset signal of
USIM card
USIM card insertion
detection
EC25_Hardware_DesignConfidential / Released
Either 1.8V or 3.0V is
supported by the
module automatically.
For 1.8V USIM:
VOLmax=0.45V
VOHmin=1.35V
For 3.0V USIM:
VOLmax=0.45V
VOHmin=2.55V
For 1.8V USIM:
VOLmax=0.45V
VOHmin=1.35V
For 3.0V USIM:
VOLmax=0.45V
VOHmin=2.55V
VILmin=-0.3V
VILmax=0.6V
21 / 90
1.8V power domain.
If unused, keep it
LTE Module Series
EC25Hardware Design
VIHmin=1.2V
VIHmax=2.0V
open.
Description
DC Characteristics
Comment
1.8V power domain.
If unused, keep it
open.
UART Interface
Pin Name
Pin No.
I/O
RI
62
DO
Ring indicator
VOLmax=0.45V
VOHmin=1.35V
DCD
63
DO
Data carrier
detection
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
Clear to send
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
Request to send
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
Pull-up by default.
Low level wakes up
the module.
If unused, keep it
open.
CTS
RTS
64
65
DO
DI
DTR
66
DI
Data terminal
ready,sleep mode
control
TXD
67
DO
Transmit data
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
DI
Receive data
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
I/O
Description
DC Characteristics
Comment
Transmit data
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
Receive data
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
RXD
68
Debug UART Interface
Pin Name
DBG_TXD
DBG_RXD
Pin No.
12
11
DO
DI
EC25_Hardware_DesignConfidential / Released
22 / 90
LTE Module Series
EC25Hardware Design
ADC Interface
Pin Name
ADC0
ADC1
Pin No.
I/O
Description
DC Characteristics
Comment
AI
General purpose
analog to digital
converter
Voltage range:
0.3V to VBAT_BB
If unused, keep it
open.
44
AI
General purpose
analog to digital
converter
Voltage range:
0.3V to VBAT_BB
If unused, keep it
open.
Pin No.
I/O
Description
DC Characteristics
Comment
PCM data input
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
PCM data output
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
PCM data frame
synchronization
signal
VOLmax=0.45V
VOHmin=1.35V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
In master mode, it is
an output signal. In
slave mode, it is an
input signal.
If unused, keep it
open.
1.8V power domain.
In master mode, it is
an output signal. In
slave mode, it is an
input signal.
If unused, keep it
open.
Comment
45
PCM Interface
Pin Name
PCM_IN
PCM_OUT
PCM_SYNC
PCM_CLK
24
25
26
DI
DO
IO
27
IO
PCM clock
VOLmax=0.45V
VOHmin=1.35V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
Pin No.
I/O
Description
DC Characteristics
OD
I2C serial clock
Used for external
codec.
External pull-up
resistor is required.
1.8V only. If unused,
keep it open.
I2C serial dataUsed
for external codec.
External pull-up
resistor is required.
1.8V only. If unused,
keep it open.
I2C Interface
Pin Name
I2C_SCL
I2C_SDA
41
42
OD
EC25_Hardware_DesignConfidential / Released
23 / 90
LTE Module Series
EC25Hardware Design
SGMII Interface
Pin Name
Pin No.
EPHY_RST_
119
EPHY_INT_N 120
SGMII_
MDATA
SGMII_
MCLK
121
122
I/O
Description
DC Characteristics
For 1.8V:
VOLmax=0.45V
VOHmin=1.4V
DO
Ethernet PHY reset
For 2.85V:
VOLmax=0.35V
VOHmin=2.14V
DI
IO
DO
Ethernet PHY
interrupt
SGMII MDIO
(Management Data
Input/Output) data
SGMII MDIO
(Management Data
Input/Output) clock
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
For 1.8V:
VOLmax=0.45V
VOHmin=1.4V
VILmax=0.58V
VIHmin=1.27V
For 2.85V:
VOLmax=0.35V
VOHmin=2.14V
VILmax=0.71V
VIHmin=1.78V
For 1.8V:
VOLmax=0.45V
VOHmin=1.4V
For2.85V:
VOLmax=0.35V
VOHmin=2.14V
Comment
1.8V/2.85V power
domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
1.8V/2.85V power
domain.
If unused, keep it
open.
1.8V/2.85V power
domain.
If unused, keep it
open.
128
PO
SGMII MDIO pull-up
power source
Configurable power
source.
1.8V/2.85V power
domain.
External pull-up for
SGMII MDIO pins.
If unused, keep it
open.
SGMII_TX_M 123
AO
SGMII transmission
- minus
If unused, keep it
open.
SGMII_TX_P 124
AO
SGMII transmission
If unused, keep it
USIM2_VDD
EC25_Hardware_DesignConfidential / Released
24 / 90
LTE Module Series
EC25Hardware Design
- plus
open.
SGMII_RX_P 125
AI
SGMII receiving
- plus
If unused, keep it
open.
SGMII_RX_M 126
AI
SGMII receiving
-minus
If unused, keep it
open.
Wireless Connectivity Interfaces
Pin Name
SDC1_
DATA3
SDC1_
DATA2
SDC1_
DATA1
SDC1_
DATA0
Pin No.
129
130
131
132
I/O
IO
IO
IO
IO
Description
DC Characteristics
Comment
SDIO data bus D3
VOLmax=0.45V
VOHmin=1.35V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
SDIO data bus D2
VOLmax=0.45V
VOHmin=1.35V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
SDIO data bus D1
VOLmax=0.45V
VOHmin=1.35V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
SDIO data bus D0
VOLmax=0.45V
VOHmin=1.35V
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
1.8V power domain.
If unused, keep it
open.
SDC1_CLK
133
DO
SDIO clock
VOLmax=0.45V
VOHmin=1.35V
SDC1_CMD
134
DO
SDIO command
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
PM_ENABLE 127
DO
External power
control
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
WAKE_ON_
WIRELESS
DI
Wake up the host
(EC25 module) by
VILmin=-0.3V
VILmax=0.6V
1.8V power domain.
Active low.
135
EC25_Hardware_DesignConfidential / Released
25 / 90
LTE Module Series
EC25Hardware Design
FC20 module.
VIHmin=1.2V
VIHmax=2.0V
If unused, keep it
open.
WLAN function
control via FC20
module
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
Active high.
If unused, keep it
open.
DI
LTE/WLAN&BT
coexistence signal
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
COEX_UART
138
_TX
DO
LTE/WLAN&BT
coexistence signal
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
WLAN_SLP_
118
CLK
DO
WLAN sleep clock
WLAN_EN
136
COEX_UART
137
_RX
DO
If unused, keep it
open.
DI
BT UART request to
send
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
DO
BT UART transmit
data
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
DI
BT UART receive
data
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
DO
BT UART clear to
send
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
139
DO
BT function control
via FC20 module
VOLmax=0.45V
VOHmin=1.35V
1.8V power domain.
If unused, keep it
open.
Pin Name
Pin No.
I/O
Description
DC Characteristics
Comment
ANT_DIV
35
AI
Diversity antenna
50ohm impedance
If unused, keep it
open.
ANT_MAIN
49
IO
Main antenna
50ohm impedance
ANT_GNSS
47
AI
GNSS antenna
50 ohm impedance
BT_RTS*
BT_TXD*
BT_RXD*
BT_CTS*
BT_EN*
37
38
39
40
RF Interface
GPIO Pins
EC25_Hardware_DesignConfidential / Released
26 / 90
If unused, keep it
open.
LTE Module Series
EC25Hardware Design
Pin Name
WAKEUP_IN
W_DISABLE#
AP_READY
Pin No.
I/O
DI
Description
Sleep mode control
DC Characteristics
Comment
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
Cannot be pulled up
before startup.
Low level wakes up
the module.
If unused, keep it
open.
1.8V power domain.
Pull-up by default.
In low voltage level,
module can enter into
airplane mode.
If unused, keep it
open.
DI
Airplane mode
control
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
DI
Application
processor sleep
state detection
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
I/O
Description
DC Characteristics
Comment
DI
Force the module to
boot from USB port
VILmin=-0.3V
VILmax=0.6V
VIHmin=1.2V
VIHmax=2.0V
1.8V power domain.
If unused, keep it
open.
I/O
Description
DC Characteristics
Comment
USB_BOOT Interface
Pin Name
USB_BOOT
Pin No.
115
RESERVED Pins
Pin Name
Pin No.
RESERVED
3, 18, 23,
28~34, 43,
55, 73~84,
113, 114,
116, 117,
140~144
Keep these pins
unconnected.
Reserved
NOTES
1. “*” means under development.
2. Pads 24~27 are multiplexing pins used for audio design on EC25 module and BT function on FC20
module.
EC25_Hardware_DesignConfidential / Released
27 / 90
LTE Module Series
EC25Hardware Design
3.4. Operating Modes
The table below briefly summarizes the various operating modes referred in the following chapters.
Table 5: Overview of Operating Modes
Mode
Normal
Operation
Details
Idle
Software is active. The module hasregistered onthe network, and it is
ready to send and receive data.
Talk/Data
Network connection is ongoing. In this mode, the power consumption is
decided by network settingand data transfer rate.
Minimum
Functionality
Mode
AT+CFUN command can set the module to a minimum functionality mode without
removing the power supply. In this case, both RF function and USIM card will be
invalid.
Airplane Mode
AT+CFUN command or W_DISABLE# pin can set the module to airplane mode. In
this case, RF function will be invalid.
Sleep Mode
In this mode, the current consumption of the module will be reduced to the minimal
level. During this mode, the module can still receive paging message, SMS, voice call
and TCP/UDP data from the network normally.
Power Down
Mode
In this mode, the power management unit shuts down the power supply. Software is
not active. The serial interface is not accessible. Operating voltage (connected to
VBAT_RF and VBAT_BB) remains applied.
3.5. Power Saving
3.5.1. Sleep Mode
EC25 is able to reduce its current consumption to a minimum value during the sleep mode. The following
section describes power saving procedure of EC25 module.
3.5.1.1. UART Application
If the host communicates with module via UART interface, the following preconditions can let the module
enter into sleep mode.


Execute AT+QSCLK=1command to enable sleep mode.
Drive DTR to high level.
EC25_Hardware_DesignConfidential / Released
28 / 90
LTE Module Series
EC25Hardware Design
The following figure shows the connection between the module and the host.
Figure 3: Sleep Mode Application via UART



Driving the host DTR to low level will wake up the module.
When EC25 has URC to report, RI signal will wake up the host. Refer to Chapter 3.16 for details
about RI behavior.
AP_READY will detect the sleep state of the host (can be configured to high level or low level
detection). Please refer to AT+QCFG=“apready”command for details.
NOTE
AT+QCFG=“apready”commandis under development.
3.5.1.2. USB Application with USB Remote Wakeup Function
If the host supports USB suspend/resume and remote wakeup function, the followingthreepreconditions
must be met tolet the module enter into the sleep mode.



Execute AT+QSCLK=1command to enable the sleep mode.
Ensure the DTR is held in high level or keep it open.
The host’s USB bus, which is connected with the module’s USB interface, enters into suspended
state.
EC25_Hardware_DesignConfidential / Released
29 / 90
LTE Module Series
EC25Hardware Design
The following figure shows the connection between the module and the host.
Figure 4: Sleep ModeApplication with USB Remote Wakeup


Sending data to EC25through USB will wake up the module.
When EC25has URC to report, the module will send remote wake-up signals viaUSB bus so as to
wake up the host.
3.5.1.3. USB Application with USB Suspend/Resume and RI Function
If the host supports USB suspend/resume, but does not support remote wake-up function, the RI signal is
needed to wake up the host.
There are threepreconditions to let the module enter into the sleep mode.



Execute AT+QSCLK=1command to enable the sleep mode.
Ensure the DTR is held in high level or keep it open.
The host’s USB bus, which is connected with the module’s USB interface, enters into suspended
state.
The following figure shows the connection between the module and the host.
Figure 5: Sleep Mode Application with RI
EC25_Hardware_DesignConfidential / Released
30 / 90
LTE Module Series
EC25Hardware Design


Sending data to EC25through USB will wake up the module.
When EC25has URC to report, RI signal will wake up the host.
3.5.1.4. USB Application without USB Suspend Function
If the host does not support USB suspend function, you should disconnect USB_VBUS with additional
control circuit to let the module enter into sleep mode.



Execute AT+QSCLK=1commandto enable the sleep mode.
Ensure the DTR is held in high level or keep it open.
Disconnect USB_VBUS.
The following figure shows the connection between the module and the host.
Module
Host
GPIO
USB_VBUS
Power
Switch
VDD
USB_DP
USB_DP
USB_DM
USB_DM
RI
EINT
AP_READY
GPIO
GND
GND
Figure 6: Sleep Mode Application without Suspend Function
Switching on the power switch to supply power to USB_VBUS will wake up the module.
NOTE
Please pay attention to the level match shown in dotted line between the module and the host.Refer to
document [1] for more details about EC25 power management application.
3.5.2. Airplane Mode
When the module enters into airplane mode, the RF function does not work, and all AT commands
correlative with RF function will be inaccessible. This mode can be set via the following ways.
EC25_Hardware_DesignConfidential / Released
31 / 90
LTE Module Series
EC25Hardware Design
Hardware:
The W_DISABLE# pin is pulled up by default; driving it to low level will let the module enter into airplane
mode.
Software:
AT+CFUNcommand provides the choice of the functionality level.
 AT+CFUN=0: Minimum functionality mode; both USIM and RF functions are disabled.
 AT+CFUN=1: Full functionality mode (by default).
 AT+CFUN=4: Airplane mode. RF function is disabled.
NOTES
1.
The W_DISABLE# control function is disabled in firmware by default. It can be enabled
2.
byAT+QCFG=“airplanecontrol”command. This commandis under development.
The execution of AT+CFUN command will not affect GNSS function.
3.6. Power Supply
3.6.1. Power Supply Pins
EC25 provides four VBAT pins dedicated to connect with the external power supply. There are two
separate voltage domains for VBAT.


Two VBAT_RF pins for module RF part
Two VBAT_BB pins for module baseband part
The following table shows the details of VBAT pins and ground pins.
Table 6: VBAT and GND Pins
Pin Name
Pin No.
Description
Min.
Typ.
Max.
Unit
VBAT_RF
57,58
Power supply for module RF
part
3.3
3.8
4.3
VBAT_BB
59,60
Power supply for module
baseband part
3.3
3.8
4.3
GND
8,9,19,22,
36,46,
48,50~54,56,
Ground
EC25_Hardware_DesignConfidential / Released
32 / 90
LTE Module Series
EC25Hardware Design
72, 85~112
3.6.2. Decrease Voltage Drop
The power supply range of the module is from 3.3Vto4.3V. Please make sure that the input voltage will
never drop below 3.3V. The following figure shows the voltage drop during burst transmission in 2G
network. The voltage drop will be less in 3G and 4G networks.
Burst
Transmission
Burst
Transmission
VBAT
Min.3.3V
Ripple
Drop
Figure 7: Power Supply Limits during Burst Transmission
To decrease voltage drop, a bypass capacitor of about 100µF with low ESR should be used, and a
multi-layer ceramic chip (MLCC) capacitor array should also be used toprovide the low ESR. The main
power supply from an external application has to be a single voltage source and can be expanded to two
sub paths with star structure. The width of VBAT_BB trace should be no less than 1mm; andthe width of
VBAT_RF trace should be no less than 2mm.In principle, the longer the VBAT trace is, the wider it will be.
Three ceramic capacitors (100nF, 33pF, 10pF) are recommended to be applied to the VBAT pins. These
capacitors should be placed close to the VBAT pins. In addition, in order to get a stable power source, it is
suggested that you should use a zener diode of which reverse zener voltage is 5.1V and dissipation
power is more than 0.5W. The following figure shows the star structure of the power supply.
Figure 8: Star Structure of the Power Supply
EC25_Hardware_DesignConfidential / Released
33 / 90
LTE Module Series
EC25Hardware Design
3.6.3. Reference Design for Power Supply
Power design for the module is very important, asthe performance of the module largely depends on the
power source. The power supply is capable of providing sufficient current up to 2A at least. If the voltage
drop between the input and output is not too high, it is suggested that you shoulduse an LDO to supply
power for the module. If there is a big voltage difference between the input source and the desired output
(VBAT), a buck converter is preferred to be used as thepower supply.
The following figure shows a reference design for +5V input power source. The typical output of the power
supplyis about 3.8V and the maximum load current is 3A.
Figure 9: Reference Circuit of Power Supply
NOTE
In order to avoid damaging internal flash, please do not switch off the power supply when the module
works normally. Only after the module is shutdown by PWRKEY or AT command, the power supply can be
cut off.
3.6.4. Monitor the Power Supply
AT+CBC command can be used to monitor the VBAT_BB voltage value. For more details, please refer to
document [2].
3.7. Turn on and off Scenarios
3.7.1. Turn on Module Using the PWRKEY
The following table shows the pin definition of PWRKEY.
EC25_Hardware_DesignConfidential / Released
34 / 90
LTE Module Series
EC25Hardware Design
Table 7: PWRKEY Pin Description
Pin Name
PWRKEY
Pin No.
21
Description
DC Characteristics
Comment
Turn on/off the module
VIHmax=2.1V
VIHmin=1.3V
VILmax=0.5V
The output voltage is 0.8V
because of the diode drop in
the Qualcomm chipset.
When EC25 is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin to a
low level for at least 100ms. It is recommended to use an open drain/collector driver to control the
PWRKEY.After STATUS pin (require external pull-up) outputting a low level, PWRKEY pin can be
released. A simple reference circuit is illustrated in the following figure.
Figure 10: Turn on the Module Using Driving Circuit
The other way to control the PWRKEY is using a button directly. When pressing the key, electrostatic
strike may generate from finger. Therefore, aTVS component is indispensable to be placed nearby the
button for ESD protection. A reference circuit is shownin the following figure.
Figure 11: Turn on the Module Using Keystroke
EC25_Hardware_DesignConfidential / Released
35 / 90
LTE Module Series
EC25Hardware Design
The turn on scenario is illustrated in the following figure.
Figure 12: Timing of Turning on Module
NOTE
Please make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is no
less than 30ms.
3.7.2. Turn off Module
The following procedures can be used to turn off the module:


Normal power down procedure: Turn off the module using the PWRKEY pin.
Normal power down procedure: Turn off the module using AT+QPOWDcommand.
3.7.2.1. Turn off Module Using the PWRKEY Pin
Driving the PWRKEY pin to a low level voltage for at least 650ms, the module will execute power-down
procedure after the PWRKEY is released. The power-down scenario is illustrated inthe following figure.
EC25_Hardware_DesignConfidential / Released
36 / 90
LTE Module Series
EC25Hardware Design
Figure 13: Timing of Turning off Module
3.7.2.2. Turn off Module Using AT Command
It is also a safe way to use AT+QPOWDcommand to turn off the module, which is similar to turning off the
module via PWRKEY pin.
Please refer todocument [2] for details about AT+QPOWD command.
NOTE
Inorder to avoid damaging internal flash, please do not switch off the power supply when the module
works normally. Only after the module is shutdown by PWRKEY or AT command, the power supply can be
cut off.
3.8. Reset the Module
The RESET_N pin can be used to reset the module.The module can be reset by driving RESET_N to a
low level voltage for time between 150ms and 460ms.
Table 8: RESET_N Pin Description
Pin Name
RESET_N
Pin No.
20
Description
DC Characteristics
Reset the module
VIHmax=2.1V
VIHmin=1.3V
VILmax=0.5V
EC25_Hardware_DesignConfidential / Released
37 / 90
Comment
LTE Module Series
EC25Hardware Design
The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button
can be used to control the RESET_N.
Figure 14: Reference Circuit of RESET_N by Using Driving Circuit
Figure 15: Reference Circuit of RESET_N by Using Button
The reset scenario is illustrated inthe following figure.
Figure 16: Timing of Resetting Module
EC25_Hardware_DesignConfidential / Released
38 / 90
LTE Module Series
EC25Hardware Design
NOTES
1.
2.
Use RESET_N only when turning off the module by AT+QPOWDcommand and PWRKEY pin failed.
Ensure that there is no large capacitance on PWRKEY and RESET_N pins.
3.9. USIM Card Interface
The USIM card interface circuitrymeets ETSI and IMT-2000 SIM interface requirements. Both 1.8V and
3.0V USIM cards are supported.
Table 9: Pin Definition of the USIM Card Interface
Pin Name
Pin No.
I/O
Description
Comment
Either 1.8V or 3.0V is supported
by the module automatically.
USIM_VDD
14
PO
Power supply for USIM card
USIM_DATA
15
IO
Data signal of USIM card
USIM_CLK
16
DO
Clock signal of USIM card
USIM_RST
17
DO
Reset signal of USIM card
USIM_
PRESENCE
13
DI
USIM card insertion detection
USIM_GND
10
Specified ground for USIM card
EC25 supports USIM card hot-plug via the USIM_PRESENCE pin. The function supports low level and
high level detections, and isdisabled by default. Please refer to document [2] about AT+QSIMDET
command for details.
EC25_Hardware_DesignConfidential / Released
39 / 90
LTE Module Series
EC25Hardware Design
The following figure shows a reference design for USIM card interface with an 8-pin USIM card connector.
Figure 17: Reference Circuit of USIM Card Interface with an 8-Pin USIM Card Connector
If USIM card detection function is not needed, please keep USIM_PRESENCE unconnected. Areference
circuit for USIM card interface witha 6-pin USIM card connector is illustrated inthe following figure.
Figure 18: Reference Circuit of USIM Card Interface with a 6-Pin USIM Card Connector
EC25_Hardware_DesignConfidential / Released
40 / 90
LTE Module Series
EC25Hardware Design
In order to enhance the reliability and availability of the USIM card in your application, please follow the
criteria below in USIM circuit design:






Keep layout of USIM card as close to the module as possible. Keep the trace length as less than
200mm as possible.
Keep USIM card signals away from RF and VBAT traces.
Assure the ground between the module and the USIM card connector short and wide. Keep thetrace
width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential.
To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away fromeach other and
shield them with surrounded ground.
In order to offer good ESD protection, it is recommended to add a TVS diode array whose parasitic
capacitance should not be more than 50pF. The 22ohmresistors should be added in series between
the module and the USIM card so as to suppress EMI spurious transmission and enhance ESD
protection. The 33pFcapacitors are used for filtering interference of GSM900.Please note that the
USIM peripheral circuit should be close to the USIM card connector.
The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace
and sensitive occasion areapplied, and should be placed close to the USIM card connector.
3.10. USB Interface
EC25 contains one integrated Universal Serial Bus (USB) transceiver which complies with the USB 2.0
specification and supports high-speed (480Mbps) and full-speed (12Mbps)modes. The USB interface is
used for AT command communication, data transmission, GNSS NMEA sentences output, software
debugging, firmware upgrade and voice over USB*. The following table shows the pin definition of USB
interface.
Table 10: Pin Description of USB Interface
Pin Name
Pin No.
I/O
Description
Comment
USB Signal Part
USB_DP
69
IO
USB differential data bus (positive)
Require differential
impedance of 90Ω
USB_DM
70
IO
USB differential data bus (minus)
Require differential
impedance of 90Ω
USB_VBUS
71
PI
Used for detecting the USB connection
Typical 5.0V
GND
72
Ground
For more details about the USB 2.0 specifications, please visithttp://www.usb.org/home.
EC25_Hardware_DesignConfidential / Released
41 / 90
LTE Module Series
EC25Hardware Design
The USB interface is recommended to be reserved for firmware upgrade in your design. The following
figure shows areference circuit of USB interface.
Figure 19: Reference Circuit of USB Application
In order to ensurethe integrity of USB data line signal, components R1, R2, R3 and R4 must be placed
close to the module, and also these resistors should be placed close to each other. The extra stubs of
trace must be as short as possible.
In order to ensure the USB interface design corresponding with the USB 2.0 specification, please comply
with the following principles:




It is important to route the USB signal traces as differential pairs with total grounding. The impedance
of USB differential trace is 90ohm.
Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is
important to route the USB differential traces in inner-layer with ground shielding onnot only upper
and lower layers but also right and left sides.
Pay attention to the influence of junction capacitance of ESD protection components on USB data
lines. Typically, the capacitance value should be less than 2pF.
Keep the ESD protection components to the USB connector as close as possible.
NOTES
1.
2.
EC25 module can only be used as a slave device.
“*” means under development.
EC25_Hardware_DesignConfidential / Released
42 / 90
LTE Module Series
EC25Hardware Design
3.11. UART Interfaces
The module provides two UART interfaces: the main UART interface and the debug UART interface. The
following shows their features.


The main UART interface supports4800, 9600, 19200,38400,57600,115200,230400,460800,921600
and3000000bps baud rates, and the default is 115200bps. This interface is used for data
transmission and AT command communication.
The debug UART interface supports 115200bps baud rate. It is used forLinux console and log output.
The following tables show the pin definition.
Table 11: Pin Definition of the Main UART Interface
Pin Name
Pin No.
I/O
Description
Comment
RI
62
DO
Ring indicator
1.8V power domain
DCD
63
DO
Data carrier detection
1.8V power domain
CTS
64
DO
Clear to send
1.8V power domain
RTS
65
DI
Request to send
1.8V power domain
DTR
66
DI
Sleep mode control
1.8V power domain
TXD
67
DO
Transmit data
1.8V power domain
RXD
68
DI
Receive data
1.8V power domain
Table 12: Pin Definition of the Debug UART Interface
Pin Name
Pin No.
I/O
Description
Comment
DBG_TXD
12
DO
Transmit data
1.8V power domain
DBG_RXD
11
DI
Receive data
1.8V power domain
The logic levels are described in the following table.
EC25_Hardware_DesignConfidential / Released
43 / 90
LTE Module Series
EC25Hardware Design
Table 13:Logic Levels of Digital I/O
Parameter
Min.
Max.
Unit
VIL
-0.3
0.6
VIH
1.2
2.0
VOL
0.45
VOH
1.35
1.8
The module provides 1.8V UART interface. A level translator should be used if your application is
equipped with a 3.3V UART interface. A level translator TXS0108EPWR provided by Texas Instrument is
recommended. The following figure shows a reference design.
Figure 20: Reference Circuit with Translator Chip
Please visit http://www.ti.comfor more information.
Another example with transistor translation circuit is shown as below. Thecircuit design of dotted line
section can refer to the design of solid line section, in terms of both module input and output circuit
designs, but please pay attention to the direction of connection.
EC25_Hardware_DesignConfidential / Released
44 / 90
LTE Module Series
EC25Hardware Design
Figure 21: Reference Circuit with Transistor Circuit
NOTE
Transistor circuit solution is not suitable for applications with high baud rates exceeding 460Kbps.
3.12. PCM and I2C Interfaces
EC25 provides one Pulse Code Modulation (PCM) digital interface for audio design, which supports the
following modes:


Primary mode (short frame synchronization, works as both master and slave)
Auxiliary mode (long frame synchronization, works as master only)
In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising
edge. The PCM_SYNC falling edge represents the MSB. In this mode, PCM_CLK supports
128,256,512,1024 and2048kHz for different speech codecs.
In auxiliary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising
edge.The PCM_SYNC rising edge represents the MSB. In this mode, PCM interface operates with a
128kHz PCM_CLK and an 8kHz, 50% duty cycle PCM_SYNC only.
EC25 supports 8-bit A-law* andμ-law*, and also 16-bit linear data formats. The following figures show
theprimary mode’s timing relationship with 8kHz PCM_SYNC and 2048kHz PCM_CLK, as well asthe
auxiliary mode’s timing relationship with 8kHz PCM_SYNC and 128kHz PCM_CLK.
EC25_Hardware_DesignConfidential / Released
45 / 90
LTE Module Series
EC25Hardware Design
Figure 22: Primary Mode Timing
Figure 23: Auxiliary Mode Timing
The following table shows the pin definition of PCM and I2C interfaces which can be applied on audio
codec design.
Table 14: Pin Definition of PCM and I2C Interfaces
Pin Name
Pin No.
I/O
Description
Comment
PCM_IN
24
DI
PCM data input
1.8V power domain
PCM_OUT
25
DO
PCM data output
1.8V power domain
PCM_SYNC
26
IO
PCM data frame sync signal
1.8V power domain
EC25_Hardware_DesignConfidential / Released
46 / 90
LTE Module Series
EC25Hardware Design
PCM_CLK
27
IO
PCM data bit clock
1.8V power domain
I2C_SCL
41
OD
I2C serial clock
Require external pull-up to 1.8V
I2C_SDA
42
OD
I2C serial data
Require external pull-up to 1.8V
Clock and mode can be configured by AT command, and the default configuration is master mode using
short frame synchronization format with 2048kHzPCM_CLK and 8kHz PCM_SYNC.Please refer to
document [2] about AT+QDAIcommand for details.
The following figure shows areference design of PCM interface with external codec IC.
Figure 24: Reference Circuit of PCM Application with Audio Codec
NOTES
1.
2.
3.
“*” means under development.
It is recommended to reserve RC (R=22ohm, C=22pF) circuit on the PCM lines, especially for
PCM_CLK.
EC25 works as a master device pertaining to I2C interface.
3.13. ADC Function
The module provides two analog-to-digital converters (ADC).AT+QADC=0command can be used toread
the voltage value on ADC0 pin. AT+QADC=1command can be used to read the voltage value on ADC1
pin. For more details about these AT commands, please refer todocument [2].
In order to improve the accuracy of ADC, the trace of ADC should be surrounded by ground.
EC25_Hardware_DesignConfidential / Released
47 / 90
LTE Module Series
EC25Hardware Design
Table 15: Pin Definition of the ADC
Pin Name
Pin No.
Description
ADC0
45
General purpose analog to digital converter
ADC1
44
General purpose analog to digital converter
The following table describes the characteristic of the ADC function.
Table 16: Characteristic of the ADC
Parameter
Min.
ADC0 Voltage Range
ADC1 Voltage Range
Typ.
Max.
Unit
0.3
VBAT_BB
0.3
VBAT_BB
15
bits
ADC Resolution
NOTES
1.
2.
3.
ADC input voltage must not exceed VBAT_BB.
It is prohibited to supply any voltage to ADC pinswhen VBAT is removed.
It is recommended to use resistor divider circuit for ADC application.
3.14. Network Status Indication
The network indication pins can be used to drive network status indication LEDs. The module provides
two pins which are NET_MODE and NET_STATUS. The following tables describe pin definition and logic
level changes in different network status.
Table 17: Pin Definition of Network Connection Status/Activity Indicator
Pin Name
Pin No.
I/O
Description
Comment
NET_MODE1)
DO
Indicate the module network
registration mode.
1.8V power domain
NET_STATUS
DO
Indicate the module network activity
status.
1.8V power domain
EC25_Hardware_DesignConfidential / Released
48 / 90
LTE Module Series
EC25Hardware Design
NOTE
1)
meansthat this pin cannot be pulled up before startup.
Table 18: Working State of the Network Connection Status/Activity Indicator
Pin Name
Logic Level Changes
Network Status
Always High
Registered on LTE network
Always Low
Others
Flicker slowly (200ms High/1800ms Low)
Network searching
Flicker slowly (1800ms High/200ms Low)
Idle
Flicker quickly (125ms High/125ms Low)
Data transfer is ongoing
Always High
Voice calling
NET_MODE
NET_STATUS
A reference circuit is shown in the following figure.
Figure 25: Reference Circuit of the Network Indicator
3.15. STATUS
The STATUS pin is an open drain output for indicating the module’s operation status. You can connect it
to a GPIO of DTE with a pulled up resistor, or as LED indication circuit as below. When the module is
turned on normally, the STATUS will present the low state. Otherwise, the STATUS will present
high-impedance state.
EC25_Hardware_DesignConfidential / Released
49 / 90
LTE Module Series
EC25Hardware Design
Table 19: Pin Definition of STATUS
Pin Name
STATUS
Pin No.
61
I/O
Description
Comment
OD
Indicate the module operation status
Require external pull-up
The following figure shows different circuitdesigns of STATUS, and you can choose either one according
to your application demands.
Figure 26: Reference Circuits of STATUS
3.16. Behavior of the RI
AT+QCFG=“risignaltype”,“physical”command can be used to configure RI behavior.
No matter on which port URC is presented, URC will trigger the behavior of RI pin.
NOTE
URC can be output from UART port, USB AT port and USB modem port by AT+QURCCFG command.
The default port is USB AT port.
In addition, RI behavior can be configured flexibly. The default behavior of the RI is shown as below.
Table 20: Behavior of the RI
State
Response
Idle
RI keeps in high level
URC
RI outputs 120ms low pulse when new URC returns
EC25_Hardware_DesignConfidential / Released
50 / 90
LTE Module Series
EC25Hardware Design
The RI behavior can be changed by AT+QCFG=“urc/ri/ring” command. Please refer to document [2]
for details.
3.17. SGMII Interface
EC25 includes an integrated Ethernet MAC with an SGMII interface and twomanagement interfaces,key
features of the SGMII interface are shown below:







IEEE802.3 compliance
Full duplex at 1000Mbps
Half/full duplex for 10/100Mbps
Support VLAN tagging
Support IEEE1588 and Precision Time Protocol(PTP)
Can be used to connect toexternal Ethernet PHY like AR8033, or to an external switch
Management interfaces support dual voltage 1.8V/2.85V
The following table shows the pin definition of SGMII interface.
Table 21: Pin Definition of the SGMII Interface
Pin Name
Pin No.
I/O
Description
Comment
EPHY_RST_N 119
DO
Ethernet PHY reset
1.8V/2.85V power domain
EPHY_INT_N
120
DI
Ethernet PHY interrupt
1.8V power domain
SGMII_MDATA 121
IO
SGMII MDIO(Management Data
Input/Output) data
1.8V/2.85V power domain
SGMII_MCLK
DO
SGMII MDIO (Management Data
Input/Output) clock
1.8V/2.85V power domain
PO
SGMII MDIO pull-up power
source
Configurable power source.
1.8V/2.85V power domain.
External pull-up power source for
SGMII MDIO pins.
SGMII_TX_M 123
AO
SGMII transmission-minus
Connect with a 0.1uF capacitor,
close to the PHY side.
SGMII_TX_P 124
AO
SGMII transmission-plus
Connect with a 0.1uF capacitor,
close to the PHY side.
Control Signal Part
USIM2_VDD
122
128
SGMII Signal Part
EC25_Hardware_DesignConfidential / Released
51 / 90
LTE Module Series
EC25Hardware Design
SGMII_RX_P 125
AI
SGMII receiving-plus
Connect with a 0.1uF capacitor,
close to EC25 module.
SGMII_RX_M 126
AI
SGMII receiving-minus
Connect with a 0.1uF capacitor,
close to EC25 module.
The following figure shows the simplified block diagram for Ethernet application.
Figure 27: Simplified Block Diagram for Ethernet Application
The following figure shows a reference design ofSGMII interface with PHY AR8033 application.
Module
R1
10K
R2
1.5K
VDD_EXT
AR8033
USIM2_VDD
EPHY_INT_N
INT
EPHY_RST_N
Control
RSTN
SGMII_MDATA
MDIO
SGMII_MCLK
MDC
USIM2_VDD
USIM2_VDD
SGMII_RX_P
C1
0.1uF
SGMII_RX_M
C2
0.1uF
Close to Module
SOP
SON
SGMII Data
SGMII_TX_P
0.1uF
C3
SIP
SGMII_TX_M
0.1uF
C4
SIN
Close to AR8033
Figure 28: Reference Circuit of SGMII Interface with PHY AR8033 Application
In order to enhance the reliability and availability in your application, please follow the criteria below in the
Ethernet PHY circuit design:


Keep SGMII data and control signals away from RF and VBAT trace.
Keep the maximum trace length less than 10inch and keep skew on the differential pairs less than
EC25_Hardware_DesignConfidential / Released
52 / 90
LTE Module Series
EC25Hardware Design


20mil.
The differential impedance of SGMII data trace is 100ohm±10%.
To minimize crosstalk, the distance between separate adjacent pairs that are on the same layer must
be equal to or larger than 40mil.
NOTE
For more information about SGMII application, please refer to document [5]and document [7].
3.18. Wireless Connectivity Interfaces
EC25supports a low-power SDIO 3.0 interface for WLAN and a UART/PCM interface for BT.
The following table shows the pin definition of wireless connectivity interfaces.
Table 22: Pin Definition of Wireless Connectivity Interfaces
Pin Name
Pin No.
I/O
Description
Comment
SDC1_DATA3
129
IO
SDIO data bus D3
1.8V power domain
SDC1_DATA2
130
IO
SDIO data bus D2
1.8V power domain
SDC1_DATA1
131
IO
SDIO data bus D1
1.8V power domain
SDC1_DATA0
132
IO
SDIO data bus D0
1.8V power domain
SDC1_CLK
133
DO
SDIO clock
1.8V power domain
SDC1_CMD
134
IO
SDIO command
1.8V power domain
WLAN_EN
136
DO
WLAN function control via FC20
module. Active high.
1.8V power domain
WLAN Part
Coexistence and Control Part
PM_ENABLE
127
DO
External power control
1.8V power domain
WAKE_ON_
WIRELESS
135
DI
Wake up the host (EC25 module)
by FC20 module.
1.8V power domain
COEX_UART_RX 137
DI
LTE/WLAN&BT coexistence signal
1.8V power domain
EC25_Hardware_DesignConfidential / Released
53 / 90
LTE Module Series
EC25Hardware Design
COEX_UART_TX 138
DO
LTE/WLAN&BT coexistence signal
WLAN_SLP_CLK 118
DO
WLAN sleep clock
1.8V power domain
BT Part*
BT_RTS*
37
DI
BT UART request to send
1.8V power domain
BT_TXD*
38
DO
BT UART transmit data
1.8V power domain
BT_RXD*
39
DI
BT UART receive data
1.8V power domain
BT_CTS*
40
DO
BT UART clear to send
1.8V power domain
PCM_IN1)
24
DI
PCM data input
1.8V power domain
PCM_OUT1)
25
DO
PCM data output
1.8V power domain
PCM_SYNC1)
26
IO
PCM data frame sync signal
1.8V power domain
PCM_CLK1)
27
IO
PCM data bit clock
1.8V power domain
BT_EN*
139
DO
BT function control via FC20
module. Active high.
1.8V power domain
NOTES
1. “*” means under development.
2. 1) Pads 24~27 are multiplexing pins used for audio design on EC25 module and BT function on FC20
module.
The following figure shows a reference design of Wireless Connectivity interfaces with QuectelFC20
module.
EC25_Hardware_DesignConfidential / Released
54 / 90
LTE Module Series
EC25Hardware Design
Module
WLAN
FC20 Module
SDC1_DATA3
SDIO_D3
SDC1_DATA2
SDIO_D2
SDC1_DATA1
SDIO_D1
SDC1_DATA0
SDIO_D0
SDC1_CLK
SDIO_CLK
SDC1_CMD
SDIO_CMD
WLAN_EN
WLAN_EN
32KHz_IN
WLAN_SLP_CLK
WAKE_ON_WIRELESS
WAKE_ON_WIRELESS
COEX & Control
COEX_UART_RX
LTE_UART_TXD
COEX_UART_TX
LTE_UART_RXD
PM_ENABLE
DCDC/LDO
BT_EN
BT_EN
BT
VDD_3V3
BT_RTS
BT_UART_RTS
BT_CTS
BT_UART_CTS
BT_TXD
BT_UART_RXD
BT_RXD
BT_UART_TXD
PCM_IN
PCM_OUT
PCM_OUT
PCM_IN
PCM_CLK
PCM_CLK
PCM_SYNC
PCM_SYNC
Figure 29: Reference Circuit of Wireless Connectivity Interfaces with FC20 Module
NOTES
1.
2.
3.
FC20 module can only be used as a slave device,
When BT function is enabled on EC25 module, PCM_SYNC and PCM_CLK pins are only used to
output signals.
For more information about wireless connectivity interfaces application, please refer to document
[5].
3.18.1. WLAN Interface
EC25 provides a low power SDIO 3.0 interface and control interface for WLAN design.
SDIO interface supports the following modes:


Single data rate(SDR) mode (up to 200MHz)
Double data rate(DDR) mode (up to 52MHz)
EC25_Hardware_DesignConfidential / Released
55 / 90
LTE Module Series
EC25Hardware Design
As SDIO signals are very high-speed, in order to ensure the SDIO interface design corresponds with the
SDIO 3.0 specification, please comply with the following principles:





It is important to route the SDIO signal traces with total grounding. The impedance of SDIOsignal
trace is 50ohm(±10%).
Protect other sensitive signals/circuits(RF, analog signals, etc.) from SDIO corruption and protect
SDIO signals from noisy signals (clocks, DCDCs, etc.).
It is recommended to keep matching lengthbetween CLK andDATA/CMD less than 1mm and total
routing length less than 50mm.
Keep termination resistorswithin 15~24ohm on clock lines near the module and keep the route
distance from the module clock pins to termination resistorsless than 5mm.
Make sure the adjacent trace spacing is 2x line width and bus capacitance is less than 15pF.
3.18.2. BT Interface*
EC25 supportsa dedicated UART interface and a PCM interface for BT application.
Further information about BT interface will be added in future version of this document.
NOTE
“*” means under development.
3.19. USB_BOOT Interface
EC25 provides a USB_BOOT pin. During development or factory production, USB_BOOT pin can force
the module to boot from USB port for firmware upgrade.
Table 23: Pin Definition of USB_BOOT Interface
Pin Name
USB_BOOT
Pin No.
115
I/O
Description
Comment
DI
Force the module to boot from USB
port
1.8V power domain.
Active high.
If unused, keep it open.
EC25_Hardware_DesignConfidential / Released
56 / 90
LTE Module Series
EC25Hardware Design
The following figure shows a reference circuit of USB_BOOT interface.
Figure 30: Reference Circuit of USB_BOOT Interface
EC25_Hardware_DesignConfidential / Released
57 / 90
LTE Module Series
EC25Hardware Design
GNSS Receiver
4.1. General Description
EC25 includes a fully integrated global navigation satellite system solution that supports Gen8C-Lite of
Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS).
EC25 supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update rate via
USB interface by default.
By default, EC25 GNSS engine is switched off. It has to be switched on via AT command. For more
details about GNSS engine technology and configurations, please refer to document [3].
4.2. GNSS Performance
The following table shows GNSS performance of EC25.
Table 24: GNSS Performance
Parameter
Sensitivity
(GNSS)
Description
Conditions
Typ.
Unit
Cold start
Autonomous
-146
dBm
Reacquisition
Autonomous
-157
dBm
Tracking
Autonomous
-157
dBm
Autonomous
35
XTRA enabled
18
Autonomous
26
XTRA enabled
2.2
Autonomous
2.5
Cold start
@open sky
TTFF
(GNSS)
Warm start
@open sky
Hot start
EC25_Hardware_DesignConfidential / Released
58 / 90
LTE Module Series
EC25Hardware Design
Accuracy
(GNSS)
@open sky
XTRA enabled
1.8
CEP-50
Autonomous
@open sky
<1.5
NOTES
1.
2.
3.
Tracking sensitivity: the lowest GNSSsignal value at the antenna port on which the module can keep
on positioning for 3 minutes.
Reacquisition sensitivity: the lowest GNSS signal value at the antenna port on which the module can
fix position again within 3 minutes after loss of lock.
Cold start sensitivity: the lowest GNSS signal value at the antenna port on which the module fixes
position within 3 minutes after executing cold start command.
4.3. Layout Guidelines
The following layout guidelines should be taken into account in your design.




Maximize the distance among GNSS antenna, main antenna and Rx-diversity antenna.
Digital circuits such as USIM card, USB interface, camera module, display connector and SD card
should be kept away from the antennas.
Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar
isolation and protection.
Keep 50ohm characteristic impedance for the ANT_GNSS trace.
Please refer to Chapter 5 for GNSS antenna reference design and antenna installation information.
EC25_Hardware_DesignConfidential / Released
59 / 90
LTE Module Series
EC25Hardware Design
Antenna Interfaces
EC25 antenna interfaces include a main antenna interface,anRx-diversity antennainterface which is used
toresist the fall of signals caused by high speed movement and multipath effect, and a GNSS antenna
interface. The antenna interfaces have an impedance of 50ohm.
5.1. Main/Rx-diversityAntenna Interface
5.1.1. Pin Definition
The pin definition of main antenna and Rx-diversityantenna interfaces are shown below.
Table 25: Pin Definition of the RF Antenna
Pin Name
Pin No.
I/O
Description
Comment
ANT_MAIN
49
IO
Main antenna pad
50ohmimpedance
ANT_DIV
35
AI
Receive diversityantenna pad
50ohm impedance
5.1.2. Operating Frequency
Table 26: Module Operating Frequencies
3GPP Band
Transmit
Receive
Unit
B1
1920~1980
2110~2170
MHz
B2 (1900)
1850~1910
1930~1990
MHz
B3 (1800)
1710~1785
1805~1880
MHz
B4
1710~1755
2110~2155
MHz
B5 (850)
824~849
869~894
MHz
B6
830~840
875~885
MHz
EC25_Hardware_DesignConfidential / Released
60 / 90
LTE Module Series
EC25Hardware Design
B7
2500~2570
2620~2690
MHz
B8 (900)
880~915
925~960
MHz
B12
699~716
729~746
MHz
B13
777~787
746~756
MHz
B18
815~830
860~875
MHz
B19
830~845
875~890
MHz
B20
832~862
791~821
MHz
B26
814~849
859~894
MHz
B28
703~748
758~803
MHz
B38
2570~2620
2570~2620
MHz
B40
2300~2400
2300~2400
MHz
B41
2555~2655
2555~2655
MHz
5.1.3. Reference Design of RF Antenna Interface
Areference design of ANT_MAIN and ANT_DIVantenna pads is shown as below. It should reserve a
π-type matching circuit for better RF performance. The capacitors are not mounted by default.
Figure 31: Reference Circuit of RF Antenna Interface
EC25_Hardware_DesignConfidential / Released
61 / 90
LTE Module Series
EC25Hardware Design
NOTES
1.
2.
3.
Keep a proper distance between the main antenna and theRx-diversityantenna to improve the
receiving sensitivity.
ANT_DIV function is enabledby default.
Place theπ-type matching components (R1, C1, C2, R2, C3, C4) as close to the antenna as possible.
5.1.4. Reference Design of RF Layout
For user’s PCB, the characteristic impedance of all RF traces should be controlled as 50 ohm. The
impedance of the RF traces is usually determined by the trace width (W), the materials’ dielectric constant,
the distance between signal layer and reference ground (H), and the clearance between RF trace and
ground (S). Microstrip line or coplanar waveguide line is typically used in RF layout for characteristic
impedance control. The following are reference designs of microstrip line or coplanar waveguide line with
different PCB structures
Figure 32: Microstrip Line Design on a 2-layer PCB
Figure 33: Coplanar Waveguide Line Design on a 2-layer PCB
EC25_Hardware_DesignConfidential / Released
62 / 90
LTE Module Series
EC25Hardware Design
Figure 34: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground)
Figure 35: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground)
In order to ensure RF performance and reliability, the following principles should be complied with in RF
layout design:





Use impedance simulation tool to control the characteristic impedanceof RF tracesas 50ohm.
The GND pins adjacent to RF pins should not be hot welded, and should be fully connected to
ground.
The distance between the RF pinsand the RFconnector should be as short as possible, and all the
right angle traces should be changed to curved ones.
There should be clearance area under the signal pin of the antenna connector or solder joint.
The reference ground of RF traces should be complete. Meanwhile, adding some ground viasaround
RF traces and the reference ground could help to improve RF performance. The distance between
the ground viasand RF traces should be no less than two times the width of RF signal traces (2*W).
For more details about RF layout, please refer to document [6].
EC25_Hardware_DesignConfidential / Released
63 / 90
LTE Module Series
EC25Hardware Design
5.2. GNSS Antenna Interface
The following tables show pin definition and frequency specification of GNSS antenna interface.
Table 27: Pin Definition of GNSS Antenna Interface
Pin Name
Pin No.
I/O
Description
Comment
ANT_GNSS
47
AI
GNSS antenna
50ohmimpedance
Table 28: GNSS Frequency
Type
Frequency
Unit
GPS/Galileo/QZSS
1575.42±1.023
MHz
GLONASS
1597.5~1605.8
MHz
BeiDou
1561.098±2.046
MHz
A reference design of GNSS antenna is shown as below.
Figure 36: Reference Circuit of GNSS Antenna
NOTES
1.
2.
An external LDO can be selected to supply power according to the active antenna requirement.
If the module is designed with a passive antenna, then the VDD circuit is not needed.
EC25_Hardware_DesignConfidential / Released
64 / 90
LTE Module Series
EC25Hardware Design
5.3. Antenna Installation
5.3.1. Antenna Requirement
The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna.
Table 29: Antenna Requirements
Type
Requirements
GNSS
Frequency range: 1561~1615MHz
Polarization: RHCP or linear
VSWR: <2 (Typ.)
Passive antenna gain: >0dBi
Active antenna noise figure: <1.5dB
Active antenna gain: >-2dBi
Active antenna embedded LNA gain: 20dB (Typ.)
Active antenna total gain: >18dBi (Typ.)
GSM/WCDMA/LTE
VSWR:≤2
Gain (dBi): 1
Max input power (W): 50
Input impedance (ohm): 50
Polarization type: Vertical
Cable insertion loss: <1dB
( GSM900, WCDMA B5/B6/B8/B19,
LTE B5/B8/B12/B13/B18/B20/B26/B28)
Cable insertion loss: <1.5dB
(GSM1800, WCDMA B1/B2/B4,LTE B1/B2/B3/B4)
Cable insertion loss <2dB
(LTE B7/B38/B40/B41)
EC25_Hardware_DesignConfidential / Released
65 / 90
LTE Module Series
EC25Hardware Design
5.3.2. Recommended RF Connector for Antenna Installation
If RF connector is used for antenna connection, it is recommended to use UF.L-R-SMT connector
provided by HIROSE.
Figure 37: Dimensions of the UF.L-R-SMT Connector (Unit: mm)
U.FL-LP serial connectors listed in the following figure can be used to match the UF.L-R-SMT.
Figure 38:Mechanicals of UF.L-LP Connectors
EC25_Hardware_DesignConfidential / Released
66 / 90
LTE Module Series
EC25Hardware Design
The following figure describes the space factor of mated connector.
Figure 39:Space Factor of Mated Connector (Unit: mm)
For more details, please visithttp://hirose.com.
EC25_Hardware_DesignConfidential / Released
67 / 90
LTE Module Series
EC25Hardware Design
Electrical, Reliability and
RadioCharacteristics
6.1. Absolute Maximum Ratings
Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are
listed in the following table.
Table 30: Absolute Maximum Ratings
Parameter
Min.
Max.
Unit
VBAT_RF/VBAT_BB
-0.3
4.7
USB_VBUS
-0.3
5.5
Peak Current of VBAT_BB
0.8
Peak Current of VBAT_RF
1.8
Voltage at Digital Pins
-0.3
2.3
Voltage at ADC0
VBAT_BB
Voltage at ADC1
VBAT_BB
EC25_Hardware_DesignConfidential / Released
68 / 90
LTE Module Series
EC25Hardware Design
6.2. Power Supply Ratings
Table 31: The Module Power Supply Ratings
Parameter
Description
Conditions
Min.
Typ.
Max.
Unit
VBAT_BB and
VBAT_RF
Voltage must stay within the
min/max values, including
voltage drop, ripple and
spikes.
3.3
3.8
4.3
Voltage drop during
burst transmission
Maximum power control
level on GSM900.
400
mV
IVBAT
Peak supply current
(during
transmissionslot)
Maximum power control
level on GSM900.
1.8
2.0
USB_VBUS
USB detection
5.0
5.25
VBAT
3.0
6.3. Operating Temperature
The operating temperature is listed in the following table.
Table 32: Operating Temperature
Parameter
Min.
Typ.
Max.
Unit
OperationTemperature Range1)
-35
+25
+75
ºC
Extended Operation Range2)
-40
+85
ºC
NOTES
1.
2.
1)
Within operation temperature range, the module is 3GPP compliant.
Within extended temperature range, the module remains the ability to establish and maintain a
voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There
are also no effects on radio spectrum and no harm to radio network. Only one or more parameters
like Pout might reduce in their value and exceed the specified tolerances. When the temperature
returns to the normal operating temperature levels, the module will meet 3GPP compliant again.
2)
EC25_Hardware_DesignConfidential / Released
69 / 90
LTE Module Series
EC25Hardware Design
6.4. Current Consumption
Table 33: EC25-E Current Consumption
Parameter
Description
Conditions
Typ.
Unit
OFF state
Power down
20
uA
AT+CFUN=0 (USB disconnected)
1.4
mA
GSM DRX=2 (USB disconnected)
2.74
mA
GSM DRX=9 (USB disconnected)
2.0
mA
WCDMA PF=64 (USB disconnected)
2.7
mA
WCDMA PF=128 (USB disconnected)
2.3
mA
LTE-FDD PF=64 (USB disconnected)
2.0
mA
LTE-FDD PF=128 (USB disconnected)
1.9
mA
LTE-TDD PF=64 (USB disconnected)
4.2
mA
LTE-TDD PF=128 (USB disconnected)
4.2
mA
GSM DRX=5 (USB disconnected)
22.0
mA
GSM DRX=5 (USB connected)
31.0
mA
WCDMA PF=64 (USB disconnected)
31.0
mA
WCDMA PF=64 (USB connected)
36.0
mA
LTE-FDDPF=64 (USB disconnected)
22.0
mA
LTE-FDDPF=64 (USB connected)
32.0
mA
LTE-TDDPF=64 (USB disconnected)
22.0
mA
LTE-TDDPF=64 (USB connected)
32.0
mA
GSM900 4DL/1UL @32.18dBm
236.0
mA
GSM900 3DL/2UL @32dBm
392.9
mA
GSM900 2DL/3UL @30.2dBm
466.1
mA
GSM900 1DL/4UL @29.3dBm
554.2
mA
Sleep state
IVBAT
Idle state
GPRS data
transfer (GNSS
OFF)
EC25_Hardware_DesignConfidential / Released
70 / 90
LTE Module Series
EC25Hardware Design
EDGE data
transfer (GNSS
OFF)
WCDMA
datatransfer(GNSS
OFF)
LTE
datatransfer(GNSS
OFF)
DCS1800 4DL/1UL @28.9dBm
181.3
mA
DCS1800 3DL/2UL @28.9dBm
305.3
mA
DCS1800 2DL/3UL @28.8dBm
420.1
mA
DCS1800 1DL/4UL @28.6dBm
531.6
mA
GSM900 4DL/1UL PCL=8 @26.5dBm
156.4
mA
GSM900 3DL/2UL PCL=8 @26.5dBm
248.1
mA
GSM900 2DL/3UL PCL=8 @26.4dBm
340.1
mA
GSM900 1DL/4UL PCL=8 @26.3dBm
438.8
mA
DCS1800 4DL/1UL PCL=2 @24.9dBm
158.1
mA
DCS1800 3DL/2UL PCL=2 @24.8dBm
251.4
mA
DCS1800 2DL/3UL PCL=2 @24.7dBm
340.4
mA
DCS1800 1DL/4UL PCL=2 @24.5dBm
432.8
mA
WCDMA B1 HSDPA@22.1dBm
663.7
mA
WCDMA B1 HSUPA@23.85dBm
662.6
mA
WCDMA B5 HSDPA@22.5dBm
708.6
mA
WCDMA B5 HSUPA@22.3dBm
696.6
mA
WCDMA B8 HSDPA@21.95dBm
595.5
mA
WCDMA B8 HSUPA@21.92dBm
593.5
mA
LTE-FDD B1 @23.25dBm
783.6
mA
LTE-FDD B3 @23.35dBm
845.8
mA
LTE-FDD B5 @23.04dBm
795.3
mA
LTE-FDD B7 @23.37dBm
843
mA
LTE-FDD B8 @23.45dBm
759.9
mA
LTE-FDD B20 @23.35dBm
755.8
mA
LTE-TDD B38 @23.41dBm
449.5
mA
LTE-TDD B40 @23.17dBm
431.8
mA
LTE-TDD B41 @23.37dBm
447.2
mA
EC25_Hardware_DesignConfidential / Released
71 / 90
LTE Module Series
EC25Hardware Design
GSM
voice call
WCDMA voice call
GSM900 PCL=5 @32.2dBm
231.7
mA
DCS1800PCL=0 @23.35dBm
188.8
mA
WCDMA B1 @22.89dBm
724.7
mA
WCDMA B5 @22.92dBm
698.2
mA
WCDMA B8 @22.82dBm
628.2
mA
Table 34: EC25-A Current Consumption
Parameter
Description
Conditions
Typ.
Unit
OFF state
Power down
20
uA
AT+CFUN=0 (USB disconnected)
0.99
mA
WCDMA PF=64 (USB disconnected)
2.0
mA
WCDMA PF=128 (USB disconnected)
1.6
mA
LTE-FDD PF=64 (USB disconnected)
2.4
mA
LTE-FDD PF=128 (USB disconnected)
1.9
mA
WCDMA PF=64 (USB disconnected)
22.0
mA
WCDMA PF=64 (USB connected)
32.0
mA
LTE-FDDPF=64 (USB disconnected)
22.0
mA
LTE-FDDPF=64 (USB connected)
33.0
mA
WCDMA B2 HSDPA@22.86dBm
600.0
mA
WCDMA B2 HSUPA@22.51dBm
584.6
mA
WCDMA B4 HSDPA@22.46dBm
578.7
mA
WCDMA B4 HSUPA@22.27dBm
576.4
mA
WCDMA B5 HSDPA@22.38dBm
492.0
mA
WCDMA B5 HSUPA@21.07dBm
483.2
mA
LTE-FDD B2 @23.17dBm
781.0
mA
LTE-FDD B4 @23.05dBm
785.7
mA
LTE-FDD B12 @23.3dBm
667.3
mA
Sleep state
Idle state
IVBAT
WCDMA
datatransfer(GNSS
OFF)
LTE
datatransfer(GNSS
OFF)
EC25_Hardware_DesignConfidential / Released
72 / 90
LTE Module Series
EC25Hardware Design
WCDMA voice call
WCDMA B2 @23.61dBm
670.2
mA
WCDMA B4 @23.21dBm
630.3
mA
WCDMA B5 @23.34dBm
536.7
mA
Table 35: GNSS Current Consumption of EC25 Series Module
Parameter
IVBAT
(GNSS)
Description
Conditions
Typ.
Unit
Searching
Cold start @Passive Antenna
54.0
mA
(AT+CFUN=0)
Lost state @Passive Antenna
53.9
mA
Instrument Environment
30.5
mA
Open Sky @Passive Antenna
33.2
mA
Open Sky @Active Antenna
40.8
mA
Tracking
(AT+CFUN=0)
6.5. RF Output Power
The following table shows the RF output power of EC25 module.
Table 36: RF Output Power
Frequency
Max.
Min.
GSM900
33dBm±2dB
5dBm±5dB
DCS1800
30dBm±2dB
0dBm±5dB
GSM900(8-PSK)
27dBm±3dB
5dBm±5dB
DCS1800
26dBm±3dB
0dBm±5dB
WCDMA bands
23dBm+1/-3dB
<-50dBm
LTE-FDD band5
23dBm+1/-3dB
<-44dBm
LTE-FDD band7
22.5dBm+1/-3dB
<-44dBm
LTE-TDD bands
23dBm+1/-3dB
<-44dBm
EC25_Hardware_DesignConfidential / Released
73 / 90
LTE Module Series
EC25Hardware Design
NOTE
In GPRS 4 slots TX mode, the maximum output power is reduced by 3.0dB. The design conforms to the
GSM specification as described in Chapter 13.16of 3GPP TS 51.010-1.
6.6. RF Receiving Sensitivity
The following tables show conducted RF receiving sensitivity of EC25 series module.
Table 37: EC25-E Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO1)
3GPP (SIMO)
GSM900
-109.0dBm
-102.0dBm
DCS1800
-109.0dBm
-102.0dbm
WCDMA B1
-110.5dBm
-106.7dBm
WCDMA B5
-110.5dBm
-104.7dBm
WCDMA B8
-110.5dBm
-103.7dBm
LTE-FDD B1(10M)
-98.0dBm
-98.0dBm
-101.5dBm
-96.3dBm
LTE-FDD B3(10M)
-96.5dBm
-98.5dBm
-101.5dBm
-93.3dBm
LTE-FDD B5(10M)
-98.0dBm
-98.5dBm
-101.0dBm
-94.3dBm
LTE-FDD B7(10M)
-97.0dBm
-94.5dBm
-99.5dBm
-94.3dBm
LTE-FDD B8(10M)
-97.0dBm
-97.0dBm
-101.0dBm
-93.3dBm
LTE-FDD B20(10M)
-97.5dBm
-99.0dBm
-102.5dBm
-93.3dBm
LTE-TDD B38 (10M)
-96.7dBm
-97.0dBm
-100.0dBm
-96.3dBm
LTE-TDD B40 (10M)
-96.3dBm
-98.0dBm
-101.0dBm
-96.3dBm
LTE-TDD B41 (10M)
-95.2dBm
-95.7dBm
-99.0dBm
-94.3dBm
Table 38: EC25-A Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
EC25_Hardware_DesignConfidential / Released
74 / 90
SIMO
3GPP (SIMO)
LTE Module Series
EC25Hardware Design
WCDMA B2
-110.0dBm
-104.7dBm
WCDMA B4
-110.0dBm
-106.7dBm
WCDMA B5
-110.5dBm
-104.7dBm
LTE-FDD B2 (10M)
-98.0dBm
-98.0dBm
-101.0dBm
-94.3dBm
LTE-FDD B4 (10M)
-97.5dBm
-99.0dBm
-101.0dBm
-96.3dBm
LTE-FDD B12 (10M)
-96.5dBm
-98.0dBm
-101.0dBm
-93.3dBm
Table 39: EC25-V Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO
3GPP (SIMO)
LTE-FDD B4 (10M)
-97.5dBm
-99.0dBm
-101.0dBm
-96.3dBm
LTE-FDD B13 (10M)
-95.0dBm
-97.0dBm
-100.0dBm
-93.3dBm
Table 40: EC25-J Conducted RF Receiving Sensitivity
Frequency
Primary
Diversity
SIMO
3GPP (SIMO)
WCDMA B1
-110.0dBm
-106.7dBm
WCDMA B6
-110.5dBm
-106.7dBm
WCDMA B8
-110.5dBm
-106.7dBm
WCDMA B19
-110.5dBm
-106.7dBm
LTE-FDD B1 (10M)
-97.5dBm
-98.7dBm
-100.2dBm
-96.3dBm
LTE-FDD B3 (10M)
-96.5dBm
-97.1dBm
-100.5dBm
-93.3dBm
LTE-FDD B8 (10M)
-98.4dBm
-99.0dBm
-101.2dBm
-93.3dBm
LTE-FDD B18 (10M)
-99.5dBm
-99.0dBm
-101.7dBm
-96.3dBm
LTE-FDD B19 (10M)
-99.2dBm
-99.0dBm
-101.4dBm
-96.3dBm
LTE-FDD B26 (10M)
-99.5dBm
-99.0dBm
-101.5dBm
-93.8dBm
LTE-TDD B41 (10M)
-95.0dBm
-95.7dBm
-99.0dBm
-94.3dBm
EC25_Hardware_DesignConfidential / Released
75 / 90
LTE Module Series
EC25Hardware Design
NOTE
1)
SIMO is a smart antenna technology that uses a single antenna at the transmitter side and two antennas
at the receiver side, which can improve RX performance.
6.7. Electrostatic Discharge
The module is not protected against electrostatics discharge (ESD) in general. Consequently, it is subject
to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and
packaging procedures must be applied throughout the processing, handling and operation of any
application that incorporates the module.
The following table shows the module electrostatics discharge characteristics.
Table 41: Electrostatics Discharge Characteristics
Tested Points
Contact Discharge
Air Discharge
Unit
VBAT, GND
±5
±10
kV
All Antenna Interfaces
±4
±8
kV
Other Interfaces
±0.5
±1
kV
EC25_Hardware_DesignConfidential / Released
76 / 90
LTE Module Series
EC25Hardware Design
Mechanical Dimensions
This chapter describes the mechanical dimensions of the module.All dimensions are measured in mm.
7.1. Mechanical Dimensions of the Module
(32+/-0.15)
(29+/-0.15)
2.4+/-0.2
0.8
Figure 40: Module Top and Side Dimensions
EC25_Hardware_DesignConfidential / Released
77 / 90
LTE Module Series
EC25Hardware Design
32.0
1.30
3.85
3.5
1.90
3.35
5.96
1.30
2.0
2.0
0.82
3.0
1.15
2.15
1.8
2.8
29.0
1.8
4.88
1.05
1.10
1.6
4.8
6.75
1.10
1.7
2.49
1.9
3.2
3.4
3.2
3.4
2.4
3.45
3.2
0.8
3.5
4.4
1.5
Figure 41: Module Bottom Dimensions (Bottom View)
EC25_Hardware_DesignConfidential / Released
78 / 90
LTE Module Series
EC25Hardware Design
7.2. Recommended Footprint
24.70
1.80
1.10
3.00
2.00
2.00
1.10
7.80
1.90
3.45
3.40
3.85
2.00
4.80
1.80
3.00
0.50
2.80
0.50
4.80
0.50
4.80
Keepout area
15.60
0.50
3.50
1.90
3.20
1.30
3.20
3.40
3.40
3.20
32.0
3.40
4.80
0.80
2.50
1.00
Figure 42: Recommended Footprint (Top View)
NOTES
1.
2.
The keepout area should not be designed.
For easy maintenance of the module, please keep about 3mm between the module and other
components in thehost PCB.
EC25_Hardware_DesignConfidential / Released
79 / 90
LTE Module Series
EC25Hardware Design
7.3. Design Effect Drawings of the Module
Figure 43: Top View of the Module
Figure 44: Bottom View of the Module
NOTE
These are design effect drawings of EC25 module. For more accurate pictures, please refer to the
module that you get from Quectel.
EC25_Hardware_DesignConfidential / Released
80 / 90
LTE Module Series
EC25Hardware Design
Storage, Manufacturing and
Packaging
8.1. Storage
EC25 is stored in a vacuum-sealed bag. The storage restrictionsare shown as below.
1. Shelf life in vacuum-sealed bag: 12 months at <40ºC/90%RH.
2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other
high temperature processes must be:
 Mounted within 72 hours at the factory environment of ≤30ºC/60%RH.
 Stored at <10% RH.
3. Devices require bake before mounting, if any circumstances below occurs:
 When the ambient temperature is 23ºC±5ºC and the humidity indicator card shows the humidity
is >10% before opening the vacuum-sealed bag.
 Device mounting cannot be finished within 72 hours at factory conditions of ≤30ºC/60%RH.
4. If baking is required, devices may be baked for 48 hours at 125ºC±5ºC.
NOTE
As the plastic packagecannot be subjected to high temperature, it should be removed from devices before
high temperature (125ºC) baking. If shorter baking time is desired, please refer to IPC/JEDECJ-STD-033
for baking procedure.
EC25_Hardware_DesignConfidential / Released
81 / 90
LTE Module Series
EC25Hardware Design
8.2. Manufacturing and Soldering
Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the
stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted
properlyso as to produce a clean stencil surface on a single pass. To ensure the module soldering quality,
thethickness of stencil for the module is recommended to be 0.18mm. For more details, please refer
todocument [4].
It is suggested that the peak reflow temperature is 235 ~ 245ºC (for SnAg3.0Cu0.5 alloy). The absolute
max reflow temperature is 260ºC. To avoid damage to the module caused by repeated heating, it is
suggested that the module should be mounted after reflow soldering for the other side of PCB has been
completed. Recommended reflow soldering thermal profile is shown below:
Figure 45: Reflow Soldering Thermal Profile
EC25_Hardware_DesignConfidential / Released
82 / 90
LTE Module Series
EC25Hardware Design
8.3. Packaging
0±
.1
29.3± 0.15
0.35± 0.05
30.3± 0.15
1.
44.00± 0.3
20.20± 0.15
44.00± 0.1
2.00± 0.1
4.00± 0.1
30.3± 0.15
1.75± 0.1
EC25 is packaged in tap andreel carriers. One reel is 11.53m long and contains 250pcs modules. The
figure below shows the package details, measured in mm.
4.2± 0.15
3.1± 0.15
32.5± 0.15
33.5± 0.15
32.5± 0.15
33.5± 0.15
48.5
13
100
44.5+0.20
-0.00
Figure 46: Tape and Reel Specifications
EC25_Hardware_DesignConfidential / Released
83 / 90
LTE Module Series
EC25Hardware Design
Appendix A References
Table 42: Related Documents
SN
Document Name
Remark
[1]
Quectel_EC25_Power_Management_Application_
Note
EC25 Power Management Application
Note
[2]
Quectel_EC25&EC21_AT_Commands_Manual
EC25 and EC21 AT Commands Manual
[3]
Quectel_EC25&EC21_GNSS_AT_Commands_
Manual
EC25 and EC21 GNSS AT Commands
Manual
[4]
Quectel_Module_Secondary_SMT_User_Guide
Module Secondary SMT User Guide
[5]
Quectel_EC25_Reference_Design
EC25 Reference Design
[6]
Quectel_RF_Layout_Application_Note
RF Layout Application Note
[7]
Quectel_SGMII_Design_Application_Note
SGMII Desgin Application Note
Table 43: Terms and Abbreviations
Abbreviation
Description
AMR
Adaptive Multi-rate
bps
Bits Per Second
CHAP
Challenge Handshake Authentication Protocol
CS
Coding Scheme
CSD
Circuit Switched Data
CTS
Clear To Send
DC-HSPA+
Dual-carrier High Speed Packet Access
DFOTA
Delta Firmware Upgrade Over The Air
EC25_Hardware_DesignConfidential / Released
84 / 90
LTE Module Series
EC25Hardware Design
DL
Downlink
DTR
Data Terminal Ready
DTX
Discontinuous Transmission
EFR
Enhanced Full Rate
ESD
Electrostatic Discharge
FDD
Frequency Division Duplex
FR
Full Rate
GLONASS
GLObalnaya NAvigatsionnaya Sputnikovaya Sistema, the Russian Global
Navigation Satellite System
GMSK
Gaussian Minimum Shift Keying
GNSS
Global Navigation Satellite System
GPS
Global Positioning System
GSM
Global System for Mobile Communications
HR
Half Rate
HSPA
High Speed Packet Access
HSDPA
High Speed Downlink Packet Access
HSUPA
High Speed Uplink Packet Access
I/O
Input/Output
Inorm
Normal Current
LED
Light Emitting Diode
LNA
Low Noise Amplifier
LTE
Long Term Evolution
MIMO
Multiple Input Multiple Output
MO
Mobile Originated
MS
Mobile Station (GSM engine)
MT
Mobile Terminated
EC25_Hardware_DesignConfidential / Released
85 / 90
LTE Module Series
EC25Hardware Design
PAP
Password Authentication Protocol
PCB
Printed Circuit Board
PDU
Protocol Data Unit
PPP
Point-to-Point Protocol
QAM
Quadrature Amplitude Modulation
QPSK
Quadrature Phase Shift Keying
RF
Radio Frequency
RHCP
Right Hand Circularly Polarized
Rx
Receive
SGMII
Serial Gigabit Media IndependentInterface
SIM
Subscriber Identification Module
SIMO
Single Input Multiple Output
SMS
Short Message Service
TDD
Time Division Duplexing
TDMA
Time Division Multiple Access
TD-SCDMA
Time Division-Synchronous Code Division Multiple Access
TX
Transmitting Direction
UL
Uplink
UMTS
Universal Mobile Telecommunications System
URC
Unsolicited Result Code
USIM
Universal Subscriber Identity Module
Vmax
Maximum Voltage Value
Vnorm
Normal Voltage Value
Vmin
Minimum Voltage Value
VIHmax
Maximum Input High Level Voltage Value
EC25_Hardware_DesignConfidential / Released
86 / 90
LTE Module Series
EC25Hardware Design
VIHmin
Minimum Input High Level Voltage Value
VILmax
Maximum Input Low Level Voltage Value
VILmin
Minimum Input Low Level Voltage Value
VImax
Absolute Maximum Input Voltage Value
VImin
Absolute Minimum Input Voltage Value
VOHmax
Maximum Output High Level Voltage Value
VOHmin
Minimum Output High Level Voltage Value
VOLmax
Maximum Output Low Level Voltage Value
VOLmin
Minimum Output Low Level Voltage Value
VSWR
Voltage Standing Wave Ratio
WCDMA
Wideband Code Division Multiple Access
WLAN
Wireless Local Area Network
EC25_Hardware_DesignConfidential / Released
87 / 90
LTE Module Series
EC25Hardware Design
10 Appendix B GPRS Coding Schemes
Table 44: Description of Different Coding Schemes
Scheme
CS-1
CS-2
CS-3
CS-4
Code Rate
1/2
2/3
3/4
USF
Pre-coded USF
12
Radio Block excl.USF and BCS
181
268
312
428
BCS
40
16
16
16
Tail
Coded Bits
456
588
676
456
Punctured Bits
132
220
Data Rate Kb/s
9.05
13.4
15.6
21.4
EC25_Hardware_DesignConfidential / Released
88 / 90
LTE Module Series
EC25Hardware Design
11 Appendix C GPRS Multi-slot Classes
Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot
classes are product dependent, and determine the maximum achievable data rates in both the uplink and
downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots,
while the second number indicates the amount of uplink timeslots. The active slots determine the total
number of slots the GPRS device can use simultaneously for both uplink and downlink communications.
The description of different multi-slot classes is shown in the following table.
Table 45: GPRS Multi-slot Classes
Multislot Class
Downlink Slots
Uplink Slots
Active Slots
10
11
12
EC25_Hardware_DesignConfidential / Released
89 / 90
LTE Mo
odule Sires
EC25Hardw
ware Design
12 Apppendixx D EDGE
E E Mod
dulationan
nd
Cod
ding Schem
mes
Modu
ulation and Coding Sch
hemes
Table 46: EDGE
Coding Sch
heme
Mod
dulation
Coding Family
1 Timeslot
2 Tim
meslot
4 Timeslot
CS-1:
GMSK
9.05kbps
18.1kkbps
36.2kbps
CS-2:
GMSK
13.4kbps
26.8kkbps
53.6kbps
CS-3:
GMSK
15.6kbps
31.2kkbps
62.4kbps
CS-4:
GMSK
21.4kbps
42.8kkbps
85.6kbps
MCS-1
GMSK
8.80kbps
17.60
0kbps
35.20kbps
MCS-2
GMSK
11.2kbps
22.4kkbps
44.8kbps
MCS-3
GMSK
14.8kbps
29.6kkbps
59.2kbps
MCS-4
GMSK
17.6kbps
35.2kkbps
70.4kbps
MCS-5
8-PS
SK
22.4kbps
44.8kkbps
89.6kbps
MCS-6
8-PS
SK
29.6kbps
59.2kkbps
118.4kbps
MCS-7
8-PS
SK
44.8kbps
89.6kkbps
179.2kbps
MCS-8
8-PS
SK
54.4kbps
108.8
8kbps
217.6kbps
MCS-9
8-PS
SK
59.2kbps
118.4
4kbps
236.8kbps
EC25_Hard
dware_DesiignConfiden
ntial / Relea
ased 90 /90

Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.5
Linearized                      : Yes
Author                          : haojinhua
Create Date                     : 2017:08:18 10:12:43+08:00
Modify Date                     : 2017:08:18 10:12:43+08:00
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-20:48:00
Creator Tool                    : PScript5.dll Version 5.2.2
Format                          : application/pdf
Title                           : Microsoft Word - XMR201708EC25E_Uesr Manual Rev2
Creator                         : haojinhua
Producer                        : Acrobat Distiller 9.0.0 (Windows)
Document ID                     : uuid:ad53b9a5-e186-4d0b-86e3-5d60fac983cb
Instance ID                     : uuid:2ab3f091-8989-4d3e-a25a-0c37fbba9aa0
Page Count                      : 91
EXIF Metadata provided by EXIF.tools
FCC ID Filing: XMR201708EC25E

Navigation menu