Quectel Wireless Solutions 201708EC25E LTE Module User Manual XMR201708EC25E Uesr Manual Rev2
Quectel Wireless Solutions Company Limited LTE Module XMR201708EC25E Uesr Manual Rev2
User Manual
EC C25Hardw warre Des sign LTE Module Series Rev. EC25_Ha ardware_ _Design_ _V1.3 Date: 2017-01-24 ww ww.quectel.c com LTE Module Series EC25Hardware Design Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters: Quectel Wireless Solutions Co., Ltd. Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233 Tel: +86 21 5108 6236 Email:info@quectel.com Or our local office.For more information, please visit: http://www.quectel.com/support/salesupport.aspx For technical support, or to report documentation errors, please visit: http://www.quectel.com/support/techsupport.aspx Or email to: Support@quectel.com GENERAL NOTES QUECTEL OFFERS THEINFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. THE INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE. COPYRIGHT THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN. Copyright © Quectel Wireless Solutions Co., Ltd. 2017. All rights reserved. EC25_Hardware_DesignConfidential / Released 1 / 90 LTE Module Series EC25Hardware Design About the Document History Revision Date Author Description 1.0 2016-04-01 Woody WU Initial 1. 2. 1.1 2016-09-22 Lyndon LIU/ Frank WANG Updated EC25 series frequency bands in Table 1. Updated transmitting power, supported maximum baud rate of main UART/internal protocols/USB drivers of USB interface, firmware upgrade and temperature range in Table 2. 3. Updated timing of turning on module in Figure 12. 4. Updated timing of turning off module in Figure 13. 5. Updated timing of resetting module in Figure 16. 6. Updated supported baud rates of main UART in Chapter 3.11. 7. Added notes for ADC interface in Chapter 3.13. 8. Updated GNSS performance in Table 21. 9. Updated operating frequencies of module in Table 23. 10. Added current consumption in Chapter 6.4. 11. Updated RF output power in Chapter 6.5. 12. Added RF receiving sensitivity in Chapter 6.6. 1. 2. 3. 4. 1.2 2016-11-04 Lyndon LIU/ Michael ZHANG 1.3 2017-01-24 Lyndon LIU/ Frank WANG 5. 6. 7. 8. 9. Added SGMII and WLAN interfaces in Table 2. Updated function diagram in Figure 1. Updated pin assignment (Top View) in Figure 2. Added description of SGMII and WLAN interfaces in Table 4. Added SGMII interface in Chapter 3.17. Added WLAN interface in Chapter 3.18. Added USB_BOOT interface in Chapter 3.19. Added reference design of RF layout in Chapter 5.1.4. Added note about SIMO in Chapter 6.6. 1. 2. Updated function diagram in Figure 1. Updated pin assignment (top view) in Figure 2. EC25_Hardware_DesignConfidential / Released 2 / 90 LTE Module Series EC25Hardware Design 3. 4. 5. 6. 7. 8. EC25_Hardware_DesignConfidential / Released Added BT interface in Chapter 3.18.2. Updated GNSS performance in Table 24. Updated reference circuit of wireless connectivity interfaces with FC20 module in Figure 29. Updated current consumption of EC25-E module in Table 33. Updated EC25-A conducted RF receiving sensitivity in Table 38. AddedEC25-J conducted RF receiving sensitivity in Table 40. 3 / 90 LTE Module Series EC25Hardware Design Contents About the Document ................................................................................................................................ 2 Contents .................................................................................................................................................... 4 Table Index ............................................................................................................................................... 6 Figure Index .............................................................................................................................................. 8 Introduction ..................................................................................................................................... 10 1.1. Safety Information ..................................................................................................................11 Product Concept ............................................................................................................................. 12 2.1. General Description .............................................................................................................. 12 2.2. Key Features ......................................................................................................................... 13 2.3. Functional Diagram ............................................................................................................... 15 2.4. Evaluation Board ................................................................................................................... 16 Application Interface ....................................................................................................................... 17 3.1. General Description .............................................................................................................. 17 3.2. Pin Assignment ..................................................................................................................... 18 3.3. Pin Description ...................................................................................................................... 19 3.4. Operating Modes .................................................................................................................. 28 3.5. Power Saving ........................................................................................................................ 28 3.5.1. Sleep Mode.................................................................................................................. 28 3.5.1.1. UART Application ............................................................................................... 28 3.5.1.2. USB Application with USB Remote Wakeup Function ....................................... 29 3.5.1.3. USB Application with USB Suspend/Resume and RI Function .......................... 30 3.5.1.4. USB Application without USB Suspend Function............................................... 31 3.5.2. Airplane Mode.............................................................................................................. 31 3.6. Power Supply ........................................................................................................................ 32 3.6.1. Power Supply Pins....................................................................................................... 32 3.6.2. Decrease Voltage Drop ................................................................................................ 33 3.6.3. Reference Design for Power Supply ............................................................................ 34 3.6.4. Monitor the Power Supply ............................................................................................ 34 3.7. Turn on and off Scenarios ..................................................................................................... 34 3.7.1. Turn on Module Using the PWRKEY ........................................................................... 34 3.7.2. Turn off Module ............................................................................................................ 36 3.7.2.1. Turn off Module Using the PWRKEY Pin ........................................................... 36 3.7.2.2. Turn off Module Using AT Command ................................................................. 37 3.8. Reset the Module .................................................................................................................. 37 3.9. USIM Card Interface ............................................................................................................. 39 3.10. USB Interface ........................................................................................................................ 41 3.11. UART Interfaces.................................................................................................................... 43 3.12. PCM and I2C Interfaces ........................................................................................................ 45 3.13. ADC Function ........................................................................................................................ 47 3.14. Network Status Indication ..................................................................................................... 48 EC25_Hardware_DesignConfidential / Released 4 / 90 LTE Module Series EC25Hardware Design 3.15. STATUS ................................................................................................................................ 49 3.16. Behavior of the RI ................................................................................................................. 50 3.17. SGMII Interface ..................................................................................................................... 51 3.18. Wireless Connectivity Interfaces ........................................................................................... 53 3.18.1. WLAN Interface ........................................................................................................... 55 3.18.2. BT Interface* ................................................................................................................ 56 3.19. USB_BOOT Interface............................................................................................................ 56 GNSS Receiver ................................................................................................................................ 58 4.1. General Description .............................................................................................................. 58 4.2. GNSS Performance .............................................................................................................. 58 4.3. Layout Guidelines ................................................................................................................. 59 Antenna Interfaces .......................................................................................................................... 60 5.1. Main/Rx-diversity Antenna Interface ..................................................................................... 60 5.1.1. Pin Definition................................................................................................................ 60 5.1.2. Operating Frequency ................................................................................................... 60 5.1.3. Reference Design of RF Antenna Interface ................................................................. 61 5.1.4. Reference Design of RF Layout................................................................................... 62 5.2. GNSS Antenna Interface ....................................................................................................... 64 5.3. Antenna Installation .............................................................................................................. 65 5.3.1. Antenna Requirement .................................................................................................. 65 5.3.2. Recommended RF Connector for Antenna Installation ................................................ 66 Electrical, Reliability and Radio Characteristics .......................................................................... 68 6.1. Absolute Maximum Ratings .................................................................................................. 68 6.2. Power Supply Ratings ........................................................................................................... 69 6.3. Operating Temperature ......................................................................................................... 69 6.4. Current Consumption ............................................................................................................ 70 6.5. RF Output Power .................................................................................................................. 73 6.6. RF Receiving Sensitivity ....................................................................................................... 74 6.7. Electrostatic Discharge ......................................................................................................... 76 Mechanical Dimensions.................................................................................................................. 77 7.1. Mechanical Dimensions of the Module.................................................................................. 77 7.2. Recommended Footprint....................................................................................................... 79 7.3. Design Effect Drawings of the Module .................................................................................. 80 Storage, Manufacturing and Packaging ........................................................................................ 81 8.1. Storage ................................................................................................................................. 81 8.2. Manufacturing and Soldering ................................................................................................ 82 8.3. Packaging ............................................................................................................................. 83 10 11 12 Appendix A References .................................................................................................................. 84 Appendix B GPRS Coding Schemes ............................................................................................. 88 Appendix C GPRS Multi-slot Classes ............................................................................................ 89 Appendix D EDGE Modulation and Coding Schemes .................................................................. 90 EC25_Hardware_DesignConfidential / Released 5 / 90 LTE Module Series EC25Hardware Design Table Index TABLE 1: FREQUENCY BANDS OF EC25 SERIES MODULE........................................................................ 12 TABLE 2: KEY FEATURES OF EC25 MODULE ............................................................................................... 13 TABLE 3: I/O PARAMETERS DEFINITION ....................................................................................................... 19 TABLE 4: PIN DESCRIPTION ........................................................................................................................... 19 TABLE 5: OVERVIEW OF OPERATING MODES ............................................................................................. 28 TABLE 6: VBAT AND GND PINS....................................................................................................................... 32 TABLE 7: PWRKEY PIN DESCRIPTION .......................................................................................................... 35 TABLE 8: RESET_N PIN DESCRIPTION ......................................................................................................... 37 TABLE 9: PIN DEFINITION OF THE USIM CARD INTERFACE ...................................................................... 39 TABLE 10: PIN DESCRIPTION OF USB INTERFACE ..................................................................................... 41 TABLE 11: PIN DEFINITION OF THE MAIN UART INTERFACE ..................................................................... 43 TABLE 12: PIN DEFINITION OF THE DEBUG UART INTERFACE ................................................................. 43 TABLE 13:LOGIC LEVELS OF DIGITAL I/O ..................................................................................................... 44 TABLE 14: PIN DEFINITION OF PCM AND I2C INTERFACES ....................................................................... 46 TABLE 15: PIN DEFINITION OF THE ADC ...................................................................................................... 48 TABLE 16: CHARACTERISTIC OF THE ADC .................................................................................................. 48 TABLE 17: PIN DEFINITION OF NETWORK CONNECTION STATUS/ACTIVITY INDICATOR...................... 48 TABLE 18: WORKING STATE OF THE NETWORK CONNECTION STATUS/ACTIVITY INDICATOR ........... 49 TABLE 19: PIN DEFINITION OF STATUS ........................................................................................................ 50 TABLE 20: BEHAVIOR OF THE RI ................................................................................................................... 50 TABLE 21: PIN DEFINITION OF THE SGMII INTERFACE .............................................................................. 51 TABLE 22: PIN DEFINITION OF WIRELESS CONNECTIVITY INTERFACES ................................................ 53 TABLE 23: PIN DEFINITION OF USB_BOOT INTERFACE ............................................................................. 56 TABLE 24: GNSS PERFORMANCE ................................................................................................................. 58 TABLE 25: PIN DEFINITION OF THE RF ANTENNA ....................................................................................... 60 TABLE 26: MODULE OPERATING FREQUENCIES ........................................................................................ 60 TABLE 27: PIN DEFINITION OF GNSS ANTENNA INTERFACE..................................................................... 64 TABLE 28: GNSS FREQUENCY ....................................................................................................................... 64 TABLE 29: ANTENNA REQUIREMENTS.......................................................................................................... 65 TABLE 30: ABSOLUTE MAXIMUM RATINGS .................................................................................................. 68 TABLE 31: THE MODULE POWER SUPPLY RATINGS .................................................................................. 69 TABLE 32: OPERATING TEMPERATURE........................................................................................................ 69 TABLE 33: EC25-E CURRENT CONSUMPTION ............................................................................................. 70 TABLE 34: EC25-A CURRENT CONSUMPTION ............................................................................................. 72 TABLE 35: GNSS CURRENT CONSUMPTION OF EC25 SERIES MODULE ................................................. 73 TABLE 36: RF OUTPUT POWER ..................................................................................................................... 73 TABLE 37: EC25-E CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 74 TABLE 38: EC25-A CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 74 TABLE 39: EC25-V CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 75 TABLE 40: EC25-J CONDUCTED RF RECEIVING SENSITIVITY................................................................... 75 TABLE 41: ELECTROSTATICS DISCHARGE CHARACTERISTICS ............................................................... 76 EC25_Hardware_DesignConfidential / Released 6 / 90 LTE Module Series EC25Hardware Design TABLE 42: RELATED DOCUMENTS ................................................................................................................ 84 TABLE 43: TERMS AND ABBREVIATIONS ...................................................................................................... 84 TABLE 44: DESCRIPTION OF DIFFERENT CODING SCHEMES .................................................................. 88 TABLE 45: GPRS MULTI-SLOT CLASSES ...................................................................................................... 89 TABLE 46: EDGE MODULATION AND CODING SCHEMES ........................................................................... 90 EC25_Hardware_DesignConfidential / Released 7 / 90 LTE Module Series EC25Hardware Design Figure Index FIGURE 1: FUNCTIONAL DIAGRAM ............................................................................................................... 16 FIGURE 2: PIN ASSIGNMENT (TOP VIEW) .................................................................................................... 18 FIGURE 3: SLEEP MODE APPLICATION VIA UART ....................................................................................... 29 FIGURE 4: SLEEP MODE APPLICATION WITH USB REMOTE WAKEUP .................................................... 30 FIGURE 5: SLEEP MODE APPLICATION WITH RI ......................................................................................... 30 FIGURE 6: SLEEP MODE APPLICATION WITHOUT SUSPEND FUNCTION ................................................ 31 FIGURE 7: POWER SUPPLY LIMITS DURING BURST TRANSMISSION ...................................................... 33 FIGURE 8: STAR STRUCTURE OF THE POWER SUPPLY............................................................................ 33 FIGURE 9: REFERENCE CIRCUIT OF POWER SUPPLY .............................................................................. 34 FIGURE 10: TURN ON THE MODULE USING DRIVING CIRCUIT ................................................................. 35 FIGURE 11: TURN ON THE MODULE USING KEYSTROKE .......................................................................... 35 FIGURE 12: TIMING OF TURNING ON MODULE ........................................................................................... 36 FIGURE 13: TIMING OF TURNING OFF MODULE ......................................................................................... 37 FIGURE 14: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT ...................................... 38 FIGURE 15: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON ...................................................... 38 FIGURE 16: TIMING OF RESETTING MODULE ............................................................................................. 38 FIGURE 17: REFERENCE CIRCUIT OF USIM CARD INTERFACE WITH AN 8-PIN USIM CARD CONNECTOR .................................................................................................................................................... 40 FIGURE 18: REFERENCE CIRCUIT OF USIM CARD INTERFACE WITH A 6-PIN USIM CARD CONNECTOR ........................................................................................................................................................................... 40 FIGURE 19: REFERENCE CIRCUIT OF USB APPLICATION ......................................................................... 42 FIGURE 20: REFERENCE CIRCUIT WITH TRANSLATOR CHIP ................................................................... 44 FIGURE 21: REFERENCE CIRCUIT WITH TRANSISTOR CIRCUIT .............................................................. 45 FIGURE 22: PRIMARY MODE TIMING ............................................................................................................ 46 FIGURE 23: AUXILIARY MODE TIMING .......................................................................................................... 46 FIGURE 24: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC .................................... 47 FIGURE 25: REFERENCE CIRCUIT OF THE NETWORK INDICATOR .......................................................... 49 FIGURE 26: REFERENCE CIRCUITS OF STATUS ......................................................................................... 50 FIGURE 27: SIMPLIFIED BLOCK DIAGRAM FOR ETHERNET APPLICATION ............................................. 52 FIGURE 28: REFERENCE CIRCUIT OF SGMII INTERFACE WITH PHY AR8033 APPLICATION................. 52 FIGURE 29: REFERENCE CIRCUIT OF WIRELESS CONNECTIVITY INTERFACES WITH FC20 MODULE ........................................................................................................................................................................... 55 FIGURE 30: REFERENCE CIRCUIT OF USB_BOOT INTERFACE ................................................................ 57 FIGURE 31: REFERENCE CIRCUIT OF RF ANTENNA INTERFACE ............................................................. 61 FIGURE 32: MICROSTRIP LINE DESIGN ON A 2-LAYER PCB ...................................................................... 62 FIGURE 33: COPLANAR WAVEGUIDE LINE DESIGN ON A 2-LAYER PCB .................................................. 62 FIGURE 34: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE GROUND) .......................................................................................................................................................... 63 FIGURE 35: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE GROUND) .......................................................................................................................................................... 63 FIGURE 36: REFERENCE CIRCUIT OF GNSS ANTENNA ............................................................................. 64 EC25_Hardware_DesignConfidential / Released 8 / 90 LTE Module Series EC25Hardware Design FIGURE 37: DIMENSIONS OF THE UF.L-R-SMT CONNECTOR (UNIT: MM) ................................................ 66 FIGURE 38: MECHANICALS OF UF.L-LP CONNECTORS ............................................................................. 66 FIGURE 39: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM) ........................................................... 67 FIGURE 40: MODULE TOP AND SIDE DIMENSIONS..................................................................................... 77 FIGURE 41: MODULE BOTTOM DIMENSIONS (BOTTOM VIEW) ................................................................. 78 FIGURE 42: RECOMMENDED FOOTPRINT (TOP VIEW) .............................................................................. 79 FIGURE 43: TOP VIEW OF THE MODULE ...................................................................................................... 80 FIGURE 44: BOTTOM VIEW OF THE MODULE .............................................................................................. 80 FIGURE 45: REFLOW SOLDERING THERMAL PROFILE .............................................................................. 82 FIGURE 46: TAPE AND REEL SPECIFICATIONS ........................................................................................... 83 EC25_Hardware_DesignConfidential / Released 9 / 90 LTE Module Series EC25Hardware Design Introduction This document defines the EC25module and describes its air interface and hardware interface which are connected with your application. This document can help you quickly understand module interface specifications, electrical and mechanical details, as well as other related information of EC25 module. Associated with application note and user guide, you can use EC25 module to design and set up mobile applications easily. EC25_Hardware_DesignConfidential / Released 10 / 90 LTE Module Series EC25Hardware Design 1.1. Safety Information The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating EC25 module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectelassumes no liability for the customer’s failure to comply with these precautions. Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. You must comply with laws and regulations restricting the use of wireless devices while driving. Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden, so as to prevent interference with communication systems. Consult the airline staff about the use of wireless devices on boarding the aircraft, if your device offers an Airplane Mode which must be enabled prior to boarding an aircraft. Switch off your wireless device when in hospitals,clinics or other health care facilities. These requests are desinged to prevent possible interference with sensitive medical equipment. Cellular terminals or mobiles operatingover radio frequency signal and cellular network cannot be guaranteed to connect in all conditions, for example no mobile fee or with an invalid USIM/SIM card. While you are in this condition and need emergent help, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength. Your cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency energy. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment. In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc. EC25_Hardware_DesignConfidential / Released 11 / 90 LTE Module Series EC25Hardware Design Product Concept 2.1. General Description EC25 is a series of LTE-FDD/LTE-TDD/WCDMA/GSM wireless communication module with receive diversity, which provides data connectivity on LTE-FDD,LTE-TDD,DC-HSPA+, HSPA+, HSDPA, HSUPA, WCDMA,EDGE andGPRSnetworks. It also provides GNSS1) and voice functionality2) for your specific application.EC25 contains fivevariants:EC25-E, EC25-A, EC25-V, EC25-Jand EC25-AU. You can choose a dedicated type based on the region or operator. The following table shows the frequency bands of EC25 series module. Table 1: Frequency Bands of EC25 Series Module Modules2) LTE Bands 3G Bands GSM Rxdiversity EC25-E FDD:B1/B3/B5/B7/B8/ B20 TDD: B38/B40/B41 WCDMA: B1/B5/B8 900/1800 Supported EC25-A FDD: B2/B4/B12 WCDMA: B2/B4/B5 Not supported Supported EC25-V FDD: B4/B13 Not supported Not supported Supported EC25-J FDD: B1/B3/B8/B18/B19/ B26 TDD: B41 WCDMA: B1/B6/B8/ B19 Not supported Supported FDD: B1/B2/B3/B4/B5/B7/ B8/B28 TDD: B40 WCDMA: B1/B2/B5/B8 850/900/ 1800/1900 Supported 3) EC25-AU GNSS1) GPS, GLONASS, BeiDou/ Compass, Galileo, QZSS NOTES 1. 1) 2. 2) 3. GNSS function is optional. EC25 series module (EC25-E/EC25-A/EC25-V/EC25-J/EC25-AU) includes Data-only and Telematics versions. Data-only version does not support voice function, while Telematics version supports it. 3) B2 band on EC25-AU module does not support Rx-diversity. EC25_Hardware_DesignConfidential / Released 12 / 90 LTE Module Series EC25Hardware Design With a tiny profile of 32.0mm ×29.0mm ×2.4mm, EC25 can meet almost all requirements for M2M applications such as automotive, metering, tracking system, security, router, wireless POS, mobile computing device, PDA phone, tablet PC, etc. EC25 is an SMD type module which can be embedded in applications through its 144-pin pads, including 80 LCC signal pads and 64 other pads. 2.2. Key Features The following table describes the detailed features of EC25 module. Table 2: Key Features of EC25 Module Feature Details Power Supply Supply voltage: 3.3V~4.3VTypical supply voltage: 3.8V Transmitting Power Class 4 (33dBm±2dB) for GSM900 Class 1 (30dBm±2dB) for DCS1800 Class E2 (27dBm±3dB) for GSM900 8-PSK Class E2 (26dBm±3dB) for DCS1800 8-PSK Class 3 (23dBm+1/-3dB) for WCDMA bands Class 3 (23dBm+1/-3dB) for LTE-FDD band5 Class 3 (22.5dBm+1/-3dB) for LTE-FDD band7 Class 3 (23dBm+1/-3dB) for LTE-TDD bands LTE Features Support up to non-CA CAT4 Support 1.4 to 20MHz RF bandwidth Support MIMO in DL direction FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) WCDMA Features Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSKmodulation 3GPP R6 CAT6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 CAT24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps GSMFeatures GPRS: Support GPRS multi-slot class 12 (12 by default) Coding scheme: CS-1, CS-2, CS-3 and CS-4 Maximum of four Rx time slots per frame EDGE: Support EDGE multi-slot class 12 (12 by default) EC25_Hardware_DesignConfidential / Released 13 / 90 LTE Module Series EC25Hardware Design Support GMSK and 8-PSK for different MCS (Modulation and Coding Scheme) Downlink coding schemes: CS 1-4 and MCS 1-9 Uplink coding schemes: CS 1-4 and MCS 1-9 Internet Protocol Features SupportTCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/HTTPS*/SMTP*/MMS* /FTPS*/SMTPS*/SSL*protocols Support the protocols PAP (Password Authentication Protocol) and CHAP (Challenge Handshake Authentication Protocol) usually used for PPP connections SMS Text and PDU mode Point to point MO and MT SMS cell broadcast SMS storage: ME by default USIM Interface Support USIM/SIM card: 1.8V, 3.0V Audio Features Support one digital audio interface: PCM interface GSM: HR/FR/EFR/AMR/AMR-WB WCDMA: AMR/AMR-WB LTE: AMR/AMR-WB Support echo cancellation and noise suppression PCM Interface Used for audio function with external codec Support 8-bit A-law*, μ-law*and 16-bit linear data formats Support long frame synchronization and short frame synchronization Support master and slave modes, but must be the master in long frame synchronization USB Interface UART Interface Compliant with USB 2.0 specification (slave only);the data transfer rate can reach up to 480Mbps Used for AT command communication, data transmission, GNSS NMEA output, software debugging, firmware upgrade and voiceover USB* Support USB drivers for: Windows XP, Windows Vista, Windows 7, Windows 8/8.1, Windows 10, Linux 2.6 or later, Android 4.0/4.2/4.4/5.0/5.1/6.0 Main UART: Used for AT command communication and data transmission Baud rate reach up to 3000000bps, 115200bps by default Support RTS and CTS hardware flow control Debug UART: Used for Linux console, log output 115200bps baud rate SGMII Interface Support 10/100/1000Mbps Ethernet connectivity Wireless Connectivity Interfaces Support a low-power SDIO 3.0 interface for WLAN and UART/PCM interface for Bluetooth* EC25_Hardware_DesignConfidential / Released 14 / 90 LTE Module Series EC25Hardware Design Rx-diversity Support LTE/WCDMA Rx-diversity GNSS Features Gen8CLite of Qualcomm Protocol: NMEA 0183 AT Commands Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT commands Network Indication Two pins including NET_MODE and NET_STATUS to indicate network connectivity status Antenna Interface Including main antenna interface (ANT_MAIN), Rx-diversityantenna interface (ANT_DIV) and GNSS antenna interface (ANT_GNSS) Physical Characteristics Size: 32.0±0.15×29.0±0.15×2.4±0.2mm Weight: approx. 4.9g Temperature Range Operation temperature range: -35°C ~ +75°C1) Extended temperature range: -40°C ~ +85°C2) Firmware Upgrade USB interface and DFOTA* RoHS All hardware components are fully compliant with EU RoHS directive NOTES 1. 2. 1) Within operation temperature range, the module is 3GPP compliant. Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like Pout might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP compliant again. 3. “*” means under development. 2) 2.3. Functional Diagram The following figure shows a block diagram of EC25 and illustrates the major functional parts. EC25_Hardware_DesignConfidential / Released 15 / 90 LTE Module Series EC25Hardware Design Power management Baseband DDR+NAND flash Radio frequency Peripheral interfaces ANT_MAIN ANT_GNSS ANT_DIV Switch SAW Switch Duplex LNA SAW VBAT_RF APT PA PRx DRx Tx NAND DDR2 SDRAM Transceiver IQ VBAT_BB PMIC Control Control PWRKEY Baseband RESET_N ADCs 19.2M XO STATUS VDD_EXT USB USIM PCM SGMII WLAN I2C UART GPIOs BT Figure 1: Functional Diagram 2.4. Evaluation Board In order to help youto develop applications with EC25, Quectel supplies an evaluation board (EVB), USB data cable, earphone, antenna and other peripherals to control or test the module. EC25_Hardware_DesignConfidential / Released 16 / 90 LTE Module Series EC25Hardware Design Application Interface 3.1. General Description EC25 is equipped with 80-pin SMT pads plus 64-pin ground pads and reserved pads that can beconnected to cellular application platform. Sub-interfaces included in these pads are described in detail in the following chapters: Power supply USIM interface USB interface UART interfaces PCM interface ADC interface Status indication SGMII interface Wireless connectivityinterfaces USB_BOOT interface EC25_Hardware_DesignConfidential / Released 17 / 90 LTE Module Series EC25Hardware Design 3.2. Pin Assignment The following figure shows the pin assignment of EC25 module. WAKEUP_IN1) 54 GND AP_READY 53 GND RESERVED 52 GND W_DISABLE# 51 GND NET_MODE1) 50 GND NET_STATUS VDD_EXT RESERVED 141 RESERVED 142 GND GND USIM_GND 10 DBG_RXD 11 DBG_TXD 12 USIM_PRESENCE 13 USIM_VDD 14 USIM_DATA 15 USIM_CLK 16 USIM_RST 17 RESERVED 18 129 117 130 118 131 108 103 99 85 90 95 119 132 120 133 121 134 122 135 123 136 124 137 125 138 126 139 127 140 128 109 104 100 86 91 96 49 ANT_MAIN 48 GND 144 RESERVED 143 RESERVED 82 79 76 73 110 105 83 80 77 74 87 92 84 81 78 75 111 112 106 107 101 102 88 93 97 94 98 89 GND Pins Signal Pins RESERVED Pins WLAN Pins Power Pins Bluetooth Pins 47 ANT_GNSS 46 GND 45 ADC0 44 ADC1 43 RESERVED 42 I2C_SDA 41 I2C_SCL 40 BT_CTS 39 BT_RXD 38 BT_TXD 37 BT_RTS SGMII Pins Figure 2: Pin Assignment (Top View) NOTES 1. 2. 3. 4. 1) meansthat these pins cannot be pulled up before startup. PWRKEY output voltage is 0.8V because of the diode drop in the Qualcomm chipset. Pads 119~126 are SGMII function pins. Pads 37~40, 118, 127 and 129~139 are wireless connectivity interfaces, among which pads 127 and 129~138 are WLAN function pins, and others are Bluetooth (BT) function pins. BT function is under development. 2) EC25_Hardware_DesignConfidential / Released 18 / 90 LTE Module Series EC25Hardware Design 5. 6. 7. 8. Pads 24~27 are multiplexing pins used for audio design on EC25 module and BT function on FC20 module. Keep all RESERVEDpins and unused pins unconnected. GND pads 85~112 should be connected to ground in the design, and RESERVED pads 73~84should not be designed in schematic and PCB decal. ※ “ ”means these interface functions are only supported on Telematics version. 3.3. Pin Description The following tables show the pin definition of EC25 modules. Table 3: I/O Parameters Definition Type Description IO Bidirectional DI Digital input DO Digital output PI Power input PO Power output AI Analog input AO Analog output OD Open drain Table 4: Pin Description Power Supply Pin Name VBAT_BB VBAT_RF Pin No. 59,60 57,58 I/O Description DC Characteristics Comment PI Power supply for module baseband part Vmax=4.3V Vmin=3.3V Vnorm=3.8V It must be able to provide sufficient current up to 0.8A. PI Power supply for module RF part Vmax=4.3V Vmin=3.3V Vnorm=3.8V It must be able to provide sufficient current up to 1.8A in a EC25_Hardware_DesignConfidential / Released 19 / 90 LTE Module Series EC25Hardware Design bursttransmission. VDD_EXT PO GND 8,9,19,22,3 6,46,48,50 ~54,56,72, 85~112 Provide 1.8V for external circuit Vnorm=1.8V IOmax=50mA Power supply for external GPIO’s pull up circuits. Ground Turn on/off Pin Name PWRKEY RESET_N Pin No. Description DC Characteristics Comment Turnon/off the module VIHmax=2.1V VIHmin=1.3V VILmax=0.5V The output voltage is 0.8V because of the diode drop in the Qualcomm chipset. DI Reset the module VIHmax=2.1V VIHmin=1.3V VILmax=0.5V I/O Description DC Characteristics Comment OD Indicate the module operating status The drive current should be less than 0.9mA. Require external pull-up. If unused, keep it open. DO Indicate the module network registration mode VOHmin=1.35V VOLmax=0.45V 1.8V power domain. Cannot be pulled up before startup. If unused, keep it open. DO Indicate the module network activity status VOHmin=1.35V VOLmax=0.45V 1.8V power domain. If unused, keep it open. Pin No. I/O Description DC Characteristics Comment PI USB detection Vmax=5.25V Vmin=3.0V Vnorm=5.0V IO USB differential data bus Compliant with USB 2.0 standard specification. 21 20 I/O DI Status Indication Pin Name STATUS NET_MODE NET_ STATUS Pin No. 61 USB Interface Pin Name USB_VBUS USB_DP 71 69 EC25_Hardware_DesignConfidential / Released 20 / 90 Require differential impedance of 90ohm. LTE Module Series EC25Hardware Design USB_DM 70 IO USB differential data bus Compliant with USB 2.0 standard specification. Require differential impedance of 90ohm. I/O Description DC Characteristics Comment USIM Interface Pin Name Pin No. USIM_GND 10 Specified ground for USIM card For 1.8V USIM: Vmax=1.9V Vmin=1.7V USIM_VDD USIM_DATA USIM_CLK USIM_RST USIM_ PRESENCE 14 15 16 17 13 PO IO DO DO DI Power supply for USIM card For 3.0V USIM: Vmax=3.05V Vmin=2.7V IOmax=50mA For 1.8V USIM: VILmax=0.6V VIHmin=1.2V VOLmax=0.45V VOHmin=1.35V Data signal of USIM card For 3.0V USIM: VILmax=1.0V VIHmin=1.95V VOLmax=0.45V VOHmin=2.55V Clock signal of USIM card Reset signal of USIM card USIM card insertion detection EC25_Hardware_DesignConfidential / Released Either 1.8V or 3.0V is supported by the module automatically. For 1.8V USIM: VOLmax=0.45V VOHmin=1.35V For 3.0V USIM: VOLmax=0.45V VOHmin=2.55V For 1.8V USIM: VOLmax=0.45V VOHmin=1.35V For 3.0V USIM: VOLmax=0.45V VOHmin=2.55V VILmin=-0.3V VILmax=0.6V 21 / 90 1.8V power domain. If unused, keep it LTE Module Series EC25Hardware Design VIHmin=1.2V VIHmax=2.0V open. Description DC Characteristics Comment 1.8V power domain. If unused, keep it open. UART Interface Pin Name Pin No. I/O RI 62 DO Ring indicator VOLmax=0.45V VOHmin=1.35V DCD 63 DO Data carrier detection VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. Clear to send VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. Request to send VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. Pull-up by default. Low level wakes up the module. If unused, keep it open. CTS RTS 64 65 DO DI DTR 66 DI Data terminal ready,sleep mode control TXD 67 DO Transmit data VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. DI Receive data VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. I/O Description DC Characteristics Comment Transmit data VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. Receive data VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. RXD 68 Debug UART Interface Pin Name DBG_TXD DBG_RXD Pin No. 12 11 DO DI EC25_Hardware_DesignConfidential / Released 22 / 90 LTE Module Series EC25Hardware Design ADC Interface Pin Name ADC0 ADC1 Pin No. I/O Description DC Characteristics Comment AI General purpose analog to digital converter Voltage range: 0.3V to VBAT_BB If unused, keep it open. 44 AI General purpose analog to digital converter Voltage range: 0.3V to VBAT_BB If unused, keep it open. Pin No. I/O Description DC Characteristics Comment PCM data input VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. PCM data output VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. PCM data frame synchronization signal VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open. 1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open. Comment 45 PCM Interface Pin Name PCM_IN PCM_OUT PCM_SYNC PCM_CLK 24 25 26 DI DO IO 27 IO PCM clock VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V Pin No. I/O Description DC Characteristics OD I2C serial clock Used for external codec. External pull-up resistor is required. 1.8V only. If unused, keep it open. I2C serial dataUsed for external codec. External pull-up resistor is required. 1.8V only. If unused, keep it open. I2C Interface Pin Name I2C_SCL I2C_SDA 41 42 OD EC25_Hardware_DesignConfidential / Released 23 / 90 LTE Module Series EC25Hardware Design SGMII Interface Pin Name Pin No. EPHY_RST_ 119 EPHY_INT_N 120 SGMII_ MDATA SGMII_ MCLK 121 122 I/O Description DC Characteristics For 1.8V: VOLmax=0.45V VOHmin=1.4V DO Ethernet PHY reset For 2.85V: VOLmax=0.35V VOHmin=2.14V DI IO DO Ethernet PHY interrupt SGMII MDIO (Management Data Input/Output) data SGMII MDIO (Management Data Input/Output) clock VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V For 1.8V: VOLmax=0.45V VOHmin=1.4V VILmax=0.58V VIHmin=1.27V For 2.85V: VOLmax=0.35V VOHmin=2.14V VILmax=0.71V VIHmin=1.78V For 1.8V: VOLmax=0.45V VOHmin=1.4V For2.85V: VOLmax=0.35V VOHmin=2.14V Comment 1.8V/2.85V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V/2.85V power domain. If unused, keep it open. 1.8V/2.85V power domain. If unused, keep it open. 128 PO SGMII MDIO pull-up power source Configurable power source. 1.8V/2.85V power domain. External pull-up for SGMII MDIO pins. If unused, keep it open. SGMII_TX_M 123 AO SGMII transmission - minus If unused, keep it open. SGMII_TX_P 124 AO SGMII transmission If unused, keep it USIM2_VDD EC25_Hardware_DesignConfidential / Released 24 / 90 LTE Module Series EC25Hardware Design - plus open. SGMII_RX_P 125 AI SGMII receiving - plus If unused, keep it open. SGMII_RX_M 126 AI SGMII receiving -minus If unused, keep it open. Wireless Connectivity Interfaces Pin Name SDC1_ DATA3 SDC1_ DATA2 SDC1_ DATA1 SDC1_ DATA0 Pin No. 129 130 131 132 I/O IO IO IO IO Description DC Characteristics Comment SDIO data bus D3 VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. SDIO data bus D2 VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. SDIO data bus D1 VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. SDIO data bus D0 VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. SDC1_CLK 133 DO SDIO clock VOLmax=0.45V VOHmin=1.35V SDC1_CMD 134 DO SDIO command VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. PM_ENABLE 127 DO External power control VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. WAKE_ON_ WIRELESS DI Wake up the host (EC25 module) by VILmin=-0.3V VILmax=0.6V 1.8V power domain. Active low. 135 EC25_Hardware_DesignConfidential / Released 25 / 90 LTE Module Series EC25Hardware Design FC20 module. VIHmin=1.2V VIHmax=2.0V If unused, keep it open. WLAN function control via FC20 module VOLmax=0.45V VOHmin=1.35V 1.8V power domain. Active high. If unused, keep it open. DI LTE/WLAN&BT coexistence signal VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. COEX_UART 138 _TX DO LTE/WLAN&BT coexistence signal VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. WLAN_SLP_ 118 CLK DO WLAN sleep clock WLAN_EN 136 COEX_UART 137 _RX DO If unused, keep it open. DI BT UART request to send VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. DO BT UART transmit data VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. DI BT UART receive data VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. DO BT UART clear to send VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. 139 DO BT function control via FC20 module VOLmax=0.45V VOHmin=1.35V 1.8V power domain. If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment ANT_DIV 35 AI Diversity antenna 50ohm impedance If unused, keep it open. ANT_MAIN 49 IO Main antenna 50ohm impedance ANT_GNSS 47 AI GNSS antenna 50 ohm impedance BT_RTS* BT_TXD* BT_RXD* BT_CTS* BT_EN* 37 38 39 40 RF Interface GPIO Pins EC25_Hardware_DesignConfidential / Released 26 / 90 If unused, keep it open. LTE Module Series EC25Hardware Design Pin Name WAKEUP_IN W_DISABLE# AP_READY Pin No. I/O DI Description Sleep mode control DC Characteristics Comment VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. Cannot be pulled up before startup. Low level wakes up the module. If unused, keep it open. 1.8V power domain. Pull-up by default. In low voltage level, module can enter into airplane mode. If unused, keep it open. DI Airplane mode control VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V DI Application processor sleep state detection VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. I/O Description DC Characteristics Comment DI Force the module to boot from USB port VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. I/O Description DC Characteristics Comment USB_BOOT Interface Pin Name USB_BOOT Pin No. 115 RESERVED Pins Pin Name Pin No. RESERVED 3, 18, 23, 28~34, 43, 55, 73~84, 113, 114, 116, 117, 140~144 Keep these pins unconnected. Reserved NOTES 1. “*” means under development. 2. Pads 24~27 are multiplexing pins used for audio design on EC25 module and BT function on FC20 module. EC25_Hardware_DesignConfidential / Released 27 / 90 LTE Module Series EC25Hardware Design 3.4. Operating Modes The table below briefly summarizes the various operating modes referred in the following chapters. Table 5: Overview of Operating Modes Mode Normal Operation Details Idle Software is active. The module hasregistered onthe network, and it is ready to send and receive data. Talk/Data Network connection is ongoing. In this mode, the power consumption is decided by network settingand data transfer rate. Minimum Functionality Mode AT+CFUN command can set the module to a minimum functionality mode without removing the power supply. In this case, both RF function and USIM card will be invalid. Airplane Mode AT+CFUN command or W_DISABLE# pin can set the module to airplane mode. In this case, RF function will be invalid. Sleep Mode In this mode, the current consumption of the module will be reduced to the minimal level. During this mode, the module can still receive paging message, SMS, voice call and TCP/UDP data from the network normally. Power Down Mode In this mode, the power management unit shuts down the power supply. Software is not active. The serial interface is not accessible. Operating voltage (connected to VBAT_RF and VBAT_BB) remains applied. 3.5. Power Saving 3.5.1. Sleep Mode EC25 is able to reduce its current consumption to a minimum value during the sleep mode. The following section describes power saving procedure of EC25 module. 3.5.1.1. UART Application If the host communicates with module via UART interface, the following preconditions can let the module enter into sleep mode. Execute AT+QSCLK=1command to enable sleep mode. Drive DTR to high level. EC25_Hardware_DesignConfidential / Released 28 / 90 LTE Module Series EC25Hardware Design The following figure shows the connection between the module and the host. Figure 3: Sleep Mode Application via UART Driving the host DTR to low level will wake up the module. When EC25 has URC to report, RI signal will wake up the host. Refer to Chapter 3.16 for details about RI behavior. AP_READY will detect the sleep state of the host (can be configured to high level or low level detection). Please refer to AT+QCFG=“apready”command for details. NOTE AT+QCFG=“apready”commandis under development. 3.5.1.2. USB Application with USB Remote Wakeup Function If the host supports USB suspend/resume and remote wakeup function, the followingthreepreconditions must be met tolet the module enter into the sleep mode. Execute AT+QSCLK=1command to enable the sleep mode. Ensure the DTR is held in high level or keep it open. The host’s USB bus, which is connected with the module’s USB interface, enters into suspended state. EC25_Hardware_DesignConfidential / Released 29 / 90 LTE Module Series EC25Hardware Design The following figure shows the connection between the module and the host. Figure 4: Sleep ModeApplication with USB Remote Wakeup Sending data to EC25through USB will wake up the module. When EC25has URC to report, the module will send remote wake-up signals viaUSB bus so as to wake up the host. 3.5.1.3. USB Application with USB Suspend/Resume and RI Function If the host supports USB suspend/resume, but does not support remote wake-up function, the RI signal is needed to wake up the host. There are threepreconditions to let the module enter into the sleep mode. Execute AT+QSCLK=1command to enable the sleep mode. Ensure the DTR is held in high level or keep it open. The host’s USB bus, which is connected with the module’s USB interface, enters into suspended state. The following figure shows the connection between the module and the host. Figure 5: Sleep Mode Application with RI EC25_Hardware_DesignConfidential / Released 30 / 90 LTE Module Series EC25Hardware Design Sending data to EC25through USB will wake up the module. When EC25has URC to report, RI signal will wake up the host. 3.5.1.4. USB Application without USB Suspend Function If the host does not support USB suspend function, you should disconnect USB_VBUS with additional control circuit to let the module enter into sleep mode. Execute AT+QSCLK=1commandto enable the sleep mode. Ensure the DTR is held in high level or keep it open. Disconnect USB_VBUS. The following figure shows the connection between the module and the host. Module Host GPIO USB_VBUS Power Switch VDD USB_DP USB_DP USB_DM USB_DM RI EINT AP_READY GPIO GND GND Figure 6: Sleep Mode Application without Suspend Function Switching on the power switch to supply power to USB_VBUS will wake up the module. NOTE Please pay attention to the level match shown in dotted line between the module and the host.Refer to document [1] for more details about EC25 power management application. 3.5.2. Airplane Mode When the module enters into airplane mode, the RF function does not work, and all AT commands correlative with RF function will be inaccessible. This mode can be set via the following ways. EC25_Hardware_DesignConfidential / Released 31 / 90 LTE Module Series EC25Hardware Design Hardware: The W_DISABLE# pin is pulled up by default; driving it to low level will let the module enter into airplane mode. Software: AT+CFUNcommand provides the choice of the functionality level. AT+CFUN=0: Minimum functionality mode; both USIM and RF functions are disabled. AT+CFUN=1: Full functionality mode (by default). AT+CFUN=4: Airplane mode. RF function is disabled. NOTES 1. The W_DISABLE# control function is disabled in firmware by default. It can be enabled 2. byAT+QCFG=“airplanecontrol”command. This commandis under development. The execution of AT+CFUN command will not affect GNSS function. 3.6. Power Supply 3.6.1. Power Supply Pins EC25 provides four VBAT pins dedicated to connect with the external power supply. There are two separate voltage domains for VBAT. Two VBAT_RF pins for module RF part Two VBAT_BB pins for module baseband part The following table shows the details of VBAT pins and ground pins. Table 6: VBAT and GND Pins Pin Name Pin No. Description Min. Typ. Max. Unit VBAT_RF 57,58 Power supply for module RF part 3.3 3.8 4.3 VBAT_BB 59,60 Power supply for module baseband part 3.3 3.8 4.3 GND 8,9,19,22, 36,46, 48,50~54,56, Ground EC25_Hardware_DesignConfidential / Released 32 / 90 LTE Module Series EC25Hardware Design 72, 85~112 3.6.2. Decrease Voltage Drop The power supply range of the module is from 3.3Vto4.3V. Please make sure that the input voltage will never drop below 3.3V. The following figure shows the voltage drop during burst transmission in 2G network. The voltage drop will be less in 3G and 4G networks. Burst Transmission Burst Transmission VBAT Min.3.3V Ripple Drop Figure 7: Power Supply Limits during Burst Transmission To decrease voltage drop, a bypass capacitor of about 100µF with low ESR should be used, and a multi-layer ceramic chip (MLCC) capacitor array should also be used toprovide the low ESR. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star structure. The width of VBAT_BB trace should be no less than 1mm; andthe width of VBAT_RF trace should be no less than 2mm.In principle, the longer the VBAT trace is, the wider it will be. Three ceramic capacitors (100nF, 33pF, 10pF) are recommended to be applied to the VBAT pins. These capacitors should be placed close to the VBAT pins. In addition, in order to get a stable power source, it is suggested that you should use a zener diode of which reverse zener voltage is 5.1V and dissipation power is more than 0.5W. The following figure shows the star structure of the power supply. Figure 8: Star Structure of the Power Supply EC25_Hardware_DesignConfidential / Released 33 / 90 LTE Module Series EC25Hardware Design 3.6.3. Reference Design for Power Supply Power design for the module is very important, asthe performance of the module largely depends on the power source. The power supply is capable of providing sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is suggested that you shoulduse an LDO to supply power for the module. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is preferred to be used as thepower supply. The following figure shows a reference design for +5V input power source. The typical output of the power supplyis about 3.8V and the maximum load current is 3A. Figure 9: Reference Circuit of Power Supply NOTE In order to avoid damaging internal flash, please do not switch off the power supply when the module works normally. Only after the module is shutdown by PWRKEY or AT command, the power supply can be cut off. 3.6.4. Monitor the Power Supply AT+CBC command can be used to monitor the VBAT_BB voltage value. For more details, please refer to document [2]. 3.7. Turn on and off Scenarios 3.7.1. Turn on Module Using the PWRKEY The following table shows the pin definition of PWRKEY. EC25_Hardware_DesignConfidential / Released 34 / 90 LTE Module Series EC25Hardware Design Table 7: PWRKEY Pin Description Pin Name PWRKEY Pin No. 21 Description DC Characteristics Comment Turn on/off the module VIHmax=2.1V VIHmin=1.3V VILmax=0.5V The output voltage is 0.8V because of the diode drop in the Qualcomm chipset. When EC25 is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin to a low level for at least 100ms. It is recommended to use an open drain/collector driver to control the PWRKEY.After STATUS pin (require external pull-up) outputting a low level, PWRKEY pin can be released. A simple reference circuit is illustrated in the following figure. Figure 10: Turn on the Module Using Driving Circuit The other way to control the PWRKEY is using a button directly. When pressing the key, electrostatic strike may generate from finger. Therefore, aTVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shownin the following figure. Figure 11: Turn on the Module Using Keystroke EC25_Hardware_DesignConfidential / Released 35 / 90 LTE Module Series EC25Hardware Design The turn on scenario is illustrated in the following figure. Figure 12: Timing of Turning on Module NOTE Please make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is no less than 30ms. 3.7.2. Turn off Module The following procedures can be used to turn off the module: Normal power down procedure: Turn off the module using the PWRKEY pin. Normal power down procedure: Turn off the module using AT+QPOWDcommand. 3.7.2.1. Turn off Module Using the PWRKEY Pin Driving the PWRKEY pin to a low level voltage for at least 650ms, the module will execute power-down procedure after the PWRKEY is released. The power-down scenario is illustrated inthe following figure. EC25_Hardware_DesignConfidential / Released 36 / 90 LTE Module Series EC25Hardware Design Figure 13: Timing of Turning off Module 3.7.2.2. Turn off Module Using AT Command It is also a safe way to use AT+QPOWDcommand to turn off the module, which is similar to turning off the module via PWRKEY pin. Please refer todocument [2] for details about AT+QPOWD command. NOTE Inorder to avoid damaging internal flash, please do not switch off the power supply when the module works normally. Only after the module is shutdown by PWRKEY or AT command, the power supply can be cut off. 3.8. Reset the Module The RESET_N pin can be used to reset the module.The module can be reset by driving RESET_N to a low level voltage for time between 150ms and 460ms. Table 8: RESET_N Pin Description Pin Name RESET_N Pin No. 20 Description DC Characteristics Reset the module VIHmax=2.1V VIHmin=1.3V VILmax=0.5V EC25_Hardware_DesignConfidential / Released 37 / 90 Comment LTE Module Series EC25Hardware Design The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET_N. Figure 14: Reference Circuit of RESET_N by Using Driving Circuit Figure 15: Reference Circuit of RESET_N by Using Button The reset scenario is illustrated inthe following figure. Figure 16: Timing of Resetting Module EC25_Hardware_DesignConfidential / Released 38 / 90 LTE Module Series EC25Hardware Design NOTES 1. 2. Use RESET_N only when turning off the module by AT+QPOWDcommand and PWRKEY pin failed. Ensure that there is no large capacitance on PWRKEY and RESET_N pins. 3.9. USIM Card Interface The USIM card interface circuitrymeets ETSI and IMT-2000 SIM interface requirements. Both 1.8V and 3.0V USIM cards are supported. Table 9: Pin Definition of the USIM Card Interface Pin Name Pin No. I/O Description Comment Either 1.8V or 3.0V is supported by the module automatically. USIM_VDD 14 PO Power supply for USIM card USIM_DATA 15 IO Data signal of USIM card USIM_CLK 16 DO Clock signal of USIM card USIM_RST 17 DO Reset signal of USIM card USIM_ PRESENCE 13 DI USIM card insertion detection USIM_GND 10 Specified ground for USIM card EC25 supports USIM card hot-plug via the USIM_PRESENCE pin. The function supports low level and high level detections, and isdisabled by default. Please refer to document [2] about AT+QSIMDET command for details. EC25_Hardware_DesignConfidential / Released 39 / 90 LTE Module Series EC25Hardware Design The following figure shows a reference design for USIM card interface with an 8-pin USIM card connector. Figure 17: Reference Circuit of USIM Card Interface with an 8-Pin USIM Card Connector If USIM card detection function is not needed, please keep USIM_PRESENCE unconnected. Areference circuit for USIM card interface witha 6-pin USIM card connector is illustrated inthe following figure. Figure 18: Reference Circuit of USIM Card Interface with a 6-Pin USIM Card Connector EC25_Hardware_DesignConfidential / Released 40 / 90 LTE Module Series EC25Hardware Design In order to enhance the reliability and availability of the USIM card in your application, please follow the criteria below in USIM circuit design: Keep layout of USIM card as close to the module as possible. Keep the trace length as less than 200mm as possible. Keep USIM card signals away from RF and VBAT traces. Assure the ground between the module and the USIM card connector short and wide. Keep thetrace width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential. To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away fromeach other and shield them with surrounded ground. In order to offer good ESD protection, it is recommended to add a TVS diode array whose parasitic capacitance should not be more than 50pF. The 22ohmresistors should be added in series between the module and the USIM card so as to suppress EMI spurious transmission and enhance ESD protection. The 33pFcapacitors are used for filtering interference of GSM900.Please note that the USIM peripheral circuit should be close to the USIM card connector. The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace and sensitive occasion areapplied, and should be placed close to the USIM card connector. 3.10. USB Interface EC25 contains one integrated Universal Serial Bus (USB) transceiver which complies with the USB 2.0 specification and supports high-speed (480Mbps) and full-speed (12Mbps)modes. The USB interface is used for AT command communication, data transmission, GNSS NMEA sentences output, software debugging, firmware upgrade and voice over USB*. The following table shows the pin definition of USB interface. Table 10: Pin Description of USB Interface Pin Name Pin No. I/O Description Comment USB Signal Part USB_DP 69 IO USB differential data bus (positive) Require differential impedance of 90Ω USB_DM 70 IO USB differential data bus (minus) Require differential impedance of 90Ω USB_VBUS 71 PI Used for detecting the USB connection Typical 5.0V GND 72 Ground For more details about the USB 2.0 specifications, please visithttp://www.usb.org/home. EC25_Hardware_DesignConfidential / Released 41 / 90 LTE Module Series EC25Hardware Design The USB interface is recommended to be reserved for firmware upgrade in your design. The following figure shows areference circuit of USB interface. Figure 19: Reference Circuit of USB Application In order to ensurethe integrity of USB data line signal, components R1, R2, R3 and R4 must be placed close to the module, and also these resistors should be placed close to each other. The extra stubs of trace must be as short as possible. In order to ensure the USB interface design corresponding with the USB 2.0 specification, please comply with the following principles: It is important to route the USB signal traces as differential pairs with total grounding. The impedance of USB differential trace is 90ohm. Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is important to route the USB differential traces in inner-layer with ground shielding onnot only upper and lower layers but also right and left sides. Pay attention to the influence of junction capacitance of ESD protection components on USB data lines. Typically, the capacitance value should be less than 2pF. Keep the ESD protection components to the USB connector as close as possible. NOTES 1. 2. EC25 module can only be used as a slave device. “*” means under development. EC25_Hardware_DesignConfidential / Released 42 / 90 LTE Module Series EC25Hardware Design 3.11. UART Interfaces The module provides two UART interfaces: the main UART interface and the debug UART interface. The following shows their features. The main UART interface supports4800, 9600, 19200,38400,57600,115200,230400,460800,921600 and3000000bps baud rates, and the default is 115200bps. This interface is used for data transmission and AT command communication. The debug UART interface supports 115200bps baud rate. It is used forLinux console and log output. The following tables show the pin definition. Table 11: Pin Definition of the Main UART Interface Pin Name Pin No. I/O Description Comment RI 62 DO Ring indicator 1.8V power domain DCD 63 DO Data carrier detection 1.8V power domain CTS 64 DO Clear to send 1.8V power domain RTS 65 DI Request to send 1.8V power domain DTR 66 DI Sleep mode control 1.8V power domain TXD 67 DO Transmit data 1.8V power domain RXD 68 DI Receive data 1.8V power domain Table 12: Pin Definition of the Debug UART Interface Pin Name Pin No. I/O Description Comment DBG_TXD 12 DO Transmit data 1.8V power domain DBG_RXD 11 DI Receive data 1.8V power domain The logic levels are described in the following table. EC25_Hardware_DesignConfidential / Released 43 / 90 LTE Module Series EC25Hardware Design Table 13:Logic Levels of Digital I/O Parameter Min. Max. Unit VIL -0.3 0.6 VIH 1.2 2.0 VOL 0.45 VOH 1.35 1.8 The module provides 1.8V UART interface. A level translator should be used if your application is equipped with a 3.3V UART interface. A level translator TXS0108EPWR provided by Texas Instrument is recommended. The following figure shows a reference design. Figure 20: Reference Circuit with Translator Chip Please visit http://www.ti.comfor more information. Another example with transistor translation circuit is shown as below. Thecircuit design of dotted line section can refer to the design of solid line section, in terms of both module input and output circuit designs, but please pay attention to the direction of connection. EC25_Hardware_DesignConfidential / Released 44 / 90 LTE Module Series EC25Hardware Design Figure 21: Reference Circuit with Transistor Circuit NOTE Transistor circuit solution is not suitable for applications with high baud rates exceeding 460Kbps. 3.12. PCM and I2C Interfaces EC25 provides one Pulse Code Modulation (PCM) digital interface for audio design, which supports the following modes: Primary mode (short frame synchronization, works as both master and slave) Auxiliary mode (long frame synchronization, works as master only) In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC falling edge represents the MSB. In this mode, PCM_CLK supports 128,256,512,1024 and2048kHz for different speech codecs. In auxiliary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge.The PCM_SYNC rising edge represents the MSB. In this mode, PCM interface operates with a 128kHz PCM_CLK and an 8kHz, 50% duty cycle PCM_SYNC only. EC25 supports 8-bit A-law* andμ-law*, and also 16-bit linear data formats. The following figures show theprimary mode’s timing relationship with 8kHz PCM_SYNC and 2048kHz PCM_CLK, as well asthe auxiliary mode’s timing relationship with 8kHz PCM_SYNC and 128kHz PCM_CLK. EC25_Hardware_DesignConfidential / Released 45 / 90 LTE Module Series EC25Hardware Design Figure 22: Primary Mode Timing Figure 23: Auxiliary Mode Timing The following table shows the pin definition of PCM and I2C interfaces which can be applied on audio codec design. Table 14: Pin Definition of PCM and I2C Interfaces Pin Name Pin No. I/O Description Comment PCM_IN 24 DI PCM data input 1.8V power domain PCM_OUT 25 DO PCM data output 1.8V power domain PCM_SYNC 26 IO PCM data frame sync signal 1.8V power domain EC25_Hardware_DesignConfidential / Released 46 / 90 LTE Module Series EC25Hardware Design PCM_CLK 27 IO PCM data bit clock 1.8V power domain I2C_SCL 41 OD I2C serial clock Require external pull-up to 1.8V I2C_SDA 42 OD I2C serial data Require external pull-up to 1.8V Clock and mode can be configured by AT command, and the default configuration is master mode using short frame synchronization format with 2048kHzPCM_CLK and 8kHz PCM_SYNC.Please refer to document [2] about AT+QDAIcommand for details. The following figure shows areference design of PCM interface with external codec IC. Figure 24: Reference Circuit of PCM Application with Audio Codec NOTES 1. 2. 3. “*” means under development. It is recommended to reserve RC (R=22ohm, C=22pF) circuit on the PCM lines, especially for PCM_CLK. EC25 works as a master device pertaining to I2C interface. 3.13. ADC Function The module provides two analog-to-digital converters (ADC).AT+QADC=0command can be used toread the voltage value on ADC0 pin. AT+QADC=1command can be used to read the voltage value on ADC1 pin. For more details about these AT commands, please refer todocument [2]. In order to improve the accuracy of ADC, the trace of ADC should be surrounded by ground. EC25_Hardware_DesignConfidential / Released 47 / 90 LTE Module Series EC25Hardware Design Table 15: Pin Definition of the ADC Pin Name Pin No. Description ADC0 45 General purpose analog to digital converter ADC1 44 General purpose analog to digital converter The following table describes the characteristic of the ADC function. Table 16: Characteristic of the ADC Parameter Min. ADC0 Voltage Range ADC1 Voltage Range Typ. Max. Unit 0.3 VBAT_BB 0.3 VBAT_BB 15 bits ADC Resolution NOTES 1. 2. 3. ADC input voltage must not exceed VBAT_BB. It is prohibited to supply any voltage to ADC pinswhen VBAT is removed. It is recommended to use resistor divider circuit for ADC application. 3.14. Network Status Indication The network indication pins can be used to drive network status indication LEDs. The module provides two pins which are NET_MODE and NET_STATUS. The following tables describe pin definition and logic level changes in different network status. Table 17: Pin Definition of Network Connection Status/Activity Indicator Pin Name Pin No. I/O Description Comment NET_MODE1) DO Indicate the module network registration mode. 1.8V power domain NET_STATUS DO Indicate the module network activity status. 1.8V power domain EC25_Hardware_DesignConfidential / Released 48 / 90 LTE Module Series EC25Hardware Design NOTE 1) meansthat this pin cannot be pulled up before startup. Table 18: Working State of the Network Connection Status/Activity Indicator Pin Name Logic Level Changes Network Status Always High Registered on LTE network Always Low Others Flicker slowly (200ms High/1800ms Low) Network searching Flicker slowly (1800ms High/200ms Low) Idle Flicker quickly (125ms High/125ms Low) Data transfer is ongoing Always High Voice calling NET_MODE NET_STATUS A reference circuit is shown in the following figure. Figure 25: Reference Circuit of the Network Indicator 3.15. STATUS The STATUS pin is an open drain output for indicating the module’s operation status. You can connect it to a GPIO of DTE with a pulled up resistor, or as LED indication circuit as below. When the module is turned on normally, the STATUS will present the low state. Otherwise, the STATUS will present high-impedance state. EC25_Hardware_DesignConfidential / Released 49 / 90 LTE Module Series EC25Hardware Design Table 19: Pin Definition of STATUS Pin Name STATUS Pin No. 61 I/O Description Comment OD Indicate the module operation status Require external pull-up The following figure shows different circuitdesigns of STATUS, and you can choose either one according to your application demands. Figure 26: Reference Circuits of STATUS 3.16. Behavior of the RI AT+QCFG=“risignaltype”,“physical”command can be used to configure RI behavior. No matter on which port URC is presented, URC will trigger the behavior of RI pin. NOTE URC can be output from UART port, USB AT port and USB modem port by AT+QURCCFG command. The default port is USB AT port. In addition, RI behavior can be configured flexibly. The default behavior of the RI is shown as below. Table 20: Behavior of the RI State Response Idle RI keeps in high level URC RI outputs 120ms low pulse when new URC returns EC25_Hardware_DesignConfidential / Released 50 / 90 LTE Module Series EC25Hardware Design The RI behavior can be changed by AT+QCFG=“urc/ri/ring” command. Please refer to document [2] for details. 3.17. SGMII Interface EC25 includes an integrated Ethernet MAC with an SGMII interface and twomanagement interfaces,key features of the SGMII interface are shown below: IEEE802.3 compliance Full duplex at 1000Mbps Half/full duplex for 10/100Mbps Support VLAN tagging Support IEEE1588 and Precision Time Protocol(PTP) Can be used to connect toexternal Ethernet PHY like AR8033, or to an external switch Management interfaces support dual voltage 1.8V/2.85V The following table shows the pin definition of SGMII interface. Table 21: Pin Definition of the SGMII Interface Pin Name Pin No. I/O Description Comment EPHY_RST_N 119 DO Ethernet PHY reset 1.8V/2.85V power domain EPHY_INT_N 120 DI Ethernet PHY interrupt 1.8V power domain SGMII_MDATA 121 IO SGMII MDIO(Management Data Input/Output) data 1.8V/2.85V power domain SGMII_MCLK DO SGMII MDIO (Management Data Input/Output) clock 1.8V/2.85V power domain PO SGMII MDIO pull-up power source Configurable power source. 1.8V/2.85V power domain. External pull-up power source for SGMII MDIO pins. SGMII_TX_M 123 AO SGMII transmission-minus Connect with a 0.1uF capacitor, close to the PHY side. SGMII_TX_P 124 AO SGMII transmission-plus Connect with a 0.1uF capacitor, close to the PHY side. Control Signal Part USIM2_VDD 122 128 SGMII Signal Part EC25_Hardware_DesignConfidential / Released 51 / 90 LTE Module Series EC25Hardware Design SGMII_RX_P 125 AI SGMII receiving-plus Connect with a 0.1uF capacitor, close to EC25 module. SGMII_RX_M 126 AI SGMII receiving-minus Connect with a 0.1uF capacitor, close to EC25 module. The following figure shows the simplified block diagram for Ethernet application. Figure 27: Simplified Block Diagram for Ethernet Application The following figure shows a reference design ofSGMII interface with PHY AR8033 application. Module R1 10K R2 1.5K VDD_EXT AR8033 USIM2_VDD EPHY_INT_N INT EPHY_RST_N Control RSTN SGMII_MDATA MDIO SGMII_MCLK MDC USIM2_VDD USIM2_VDD SGMII_RX_P C1 0.1uF SGMII_RX_M C2 0.1uF Close to Module SOP SON SGMII Data SGMII_TX_P 0.1uF C3 SIP SGMII_TX_M 0.1uF C4 SIN Close to AR8033 Figure 28: Reference Circuit of SGMII Interface with PHY AR8033 Application In order to enhance the reliability and availability in your application, please follow the criteria below in the Ethernet PHY circuit design: Keep SGMII data and control signals away from RF and VBAT trace. Keep the maximum trace length less than 10inch and keep skew on the differential pairs less than EC25_Hardware_DesignConfidential / Released 52 / 90 LTE Module Series EC25Hardware Design 20mil. The differential impedance of SGMII data trace is 100ohm±10%. To minimize crosstalk, the distance between separate adjacent pairs that are on the same layer must be equal to or larger than 40mil. NOTE For more information about SGMII application, please refer to document [5]and document [7]. 3.18. Wireless Connectivity Interfaces EC25supports a low-power SDIO 3.0 interface for WLAN and a UART/PCM interface for BT. The following table shows the pin definition of wireless connectivity interfaces. Table 22: Pin Definition of Wireless Connectivity Interfaces Pin Name Pin No. I/O Description Comment SDC1_DATA3 129 IO SDIO data bus D3 1.8V power domain SDC1_DATA2 130 IO SDIO data bus D2 1.8V power domain SDC1_DATA1 131 IO SDIO data bus D1 1.8V power domain SDC1_DATA0 132 IO SDIO data bus D0 1.8V power domain SDC1_CLK 133 DO SDIO clock 1.8V power domain SDC1_CMD 134 IO SDIO command 1.8V power domain WLAN_EN 136 DO WLAN function control via FC20 module. Active high. 1.8V power domain WLAN Part Coexistence and Control Part PM_ENABLE 127 DO External power control 1.8V power domain WAKE_ON_ WIRELESS 135 DI Wake up the host (EC25 module) by FC20 module. 1.8V power domain COEX_UART_RX 137 DI LTE/WLAN&BT coexistence signal 1.8V power domain EC25_Hardware_DesignConfidential / Released 53 / 90 LTE Module Series EC25Hardware Design COEX_UART_TX 138 DO LTE/WLAN&BT coexistence signal WLAN_SLP_CLK 118 DO WLAN sleep clock 1.8V power domain BT Part* BT_RTS* 37 DI BT UART request to send 1.8V power domain BT_TXD* 38 DO BT UART transmit data 1.8V power domain BT_RXD* 39 DI BT UART receive data 1.8V power domain BT_CTS* 40 DO BT UART clear to send 1.8V power domain PCM_IN1) 24 DI PCM data input 1.8V power domain PCM_OUT1) 25 DO PCM data output 1.8V power domain PCM_SYNC1) 26 IO PCM data frame sync signal 1.8V power domain PCM_CLK1) 27 IO PCM data bit clock 1.8V power domain BT_EN* 139 DO BT function control via FC20 module. Active high. 1.8V power domain NOTES 1. “*” means under development. 2. 1) Pads 24~27 are multiplexing pins used for audio design on EC25 module and BT function on FC20 module. The following figure shows a reference design of Wireless Connectivity interfaces with QuectelFC20 module. EC25_Hardware_DesignConfidential / Released 54 / 90 LTE Module Series EC25Hardware Design Module WLAN FC20 Module SDC1_DATA3 SDIO_D3 SDC1_DATA2 SDIO_D2 SDC1_DATA1 SDIO_D1 SDC1_DATA0 SDIO_D0 SDC1_CLK SDIO_CLK SDC1_CMD SDIO_CMD WLAN_EN WLAN_EN 32KHz_IN WLAN_SLP_CLK WAKE_ON_WIRELESS WAKE_ON_WIRELESS COEX & Control COEX_UART_RX LTE_UART_TXD COEX_UART_TX LTE_UART_RXD PM_ENABLE DCDC/LDO BT_EN BT_EN BT VDD_3V3 BT_RTS BT_UART_RTS BT_CTS BT_UART_CTS BT_TXD BT_UART_RXD BT_RXD BT_UART_TXD PCM_IN PCM_OUT PCM_OUT PCM_IN PCM_CLK PCM_CLK PCM_SYNC PCM_SYNC Figure 29: Reference Circuit of Wireless Connectivity Interfaces with FC20 Module NOTES 1. 2. 3. FC20 module can only be used as a slave device, When BT function is enabled on EC25 module, PCM_SYNC and PCM_CLK pins are only used to output signals. For more information about wireless connectivity interfaces application, please refer to document [5]. 3.18.1. WLAN Interface EC25 provides a low power SDIO 3.0 interface and control interface for WLAN design. SDIO interface supports the following modes: Single data rate(SDR) mode (up to 200MHz) Double data rate(DDR) mode (up to 52MHz) EC25_Hardware_DesignConfidential / Released 55 / 90 LTE Module Series EC25Hardware Design As SDIO signals are very high-speed, in order to ensure the SDIO interface design corresponds with the SDIO 3.0 specification, please comply with the following principles: It is important to route the SDIO signal traces with total grounding. The impedance of SDIOsignal trace is 50ohm(±10%). Protect other sensitive signals/circuits(RF, analog signals, etc.) from SDIO corruption and protect SDIO signals from noisy signals (clocks, DCDCs, etc.). It is recommended to keep matching lengthbetween CLK andDATA/CMD less than 1mm and total routing length less than 50mm. Keep termination resistorswithin 15~24ohm on clock lines near the module and keep the route distance from the module clock pins to termination resistorsless than 5mm. Make sure the adjacent trace spacing is 2x line width and bus capacitance is less than 15pF. 3.18.2. BT Interface* EC25 supportsa dedicated UART interface and a PCM interface for BT application. Further information about BT interface will be added in future version of this document. NOTE “*” means under development. 3.19. USB_BOOT Interface EC25 provides a USB_BOOT pin. During development or factory production, USB_BOOT pin can force the module to boot from USB port for firmware upgrade. Table 23: Pin Definition of USB_BOOT Interface Pin Name USB_BOOT Pin No. 115 I/O Description Comment DI Force the module to boot from USB port 1.8V power domain. Active high. If unused, keep it open. EC25_Hardware_DesignConfidential / Released 56 / 90 LTE Module Series EC25Hardware Design The following figure shows a reference circuit of USB_BOOT interface. Figure 30: Reference Circuit of USB_BOOT Interface EC25_Hardware_DesignConfidential / Released 57 / 90 LTE Module Series EC25Hardware Design GNSS Receiver 4.1. General Description EC25 includes a fully integrated global navigation satellite system solution that supports Gen8C-Lite of Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS). EC25 supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update rate via USB interface by default. By default, EC25 GNSS engine is switched off. It has to be switched on via AT command. For more details about GNSS engine technology and configurations, please refer to document [3]. 4.2. GNSS Performance The following table shows GNSS performance of EC25. Table 24: GNSS Performance Parameter Sensitivity (GNSS) Description Conditions Typ. Unit Cold start Autonomous -146 dBm Reacquisition Autonomous -157 dBm Tracking Autonomous -157 dBm Autonomous 35 XTRA enabled 18 Autonomous 26 XTRA enabled 2.2 Autonomous 2.5 Cold start @open sky TTFF (GNSS) Warm start @open sky Hot start EC25_Hardware_DesignConfidential / Released 58 / 90 LTE Module Series EC25Hardware Design Accuracy (GNSS) @open sky XTRA enabled 1.8 CEP-50 Autonomous @open sky <1.5 NOTES 1. 2. 3. Tracking sensitivity: the lowest GNSSsignal value at the antenna port on which the module can keep on positioning for 3 minutes. Reacquisition sensitivity: the lowest GNSS signal value at the antenna port on which the module can fix position again within 3 minutes after loss of lock. Cold start sensitivity: the lowest GNSS signal value at the antenna port on which the module fixes position within 3 minutes after executing cold start command. 4.3. Layout Guidelines The following layout guidelines should be taken into account in your design. Maximize the distance among GNSS antenna, main antenna and Rx-diversity antenna. Digital circuits such as USIM card, USB interface, camera module, display connector and SD card should be kept away from the antennas. Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar isolation and protection. Keep 50ohm characteristic impedance for the ANT_GNSS trace. Please refer to Chapter 5 for GNSS antenna reference design and antenna installation information. EC25_Hardware_DesignConfidential / Released 59 / 90 LTE Module Series EC25Hardware Design Antenna Interfaces EC25 antenna interfaces include a main antenna interface,anRx-diversity antennainterface which is used toresist the fall of signals caused by high speed movement and multipath effect, and a GNSS antenna interface. The antenna interfaces have an impedance of 50ohm. 5.1. Main/Rx-diversityAntenna Interface 5.1.1. Pin Definition The pin definition of main antenna and Rx-diversityantenna interfaces are shown below. Table 25: Pin Definition of the RF Antenna Pin Name Pin No. I/O Description Comment ANT_MAIN 49 IO Main antenna pad 50ohmimpedance ANT_DIV 35 AI Receive diversityantenna pad 50ohm impedance 5.1.2. Operating Frequency Table 26: Module Operating Frequencies 3GPP Band Transmit Receive Unit B1 1920~1980 2110~2170 MHz B2 (1900) 1850~1910 1930~1990 MHz B3 (1800) 1710~1785 1805~1880 MHz B4 1710~1755 2110~2155 MHz B5 (850) 824~849 869~894 MHz B6 830~840 875~885 MHz EC25_Hardware_DesignConfidential / Released 60 / 90 LTE Module Series EC25Hardware Design B7 2500~2570 2620~2690 MHz B8 (900) 880~915 925~960 MHz B12 699~716 729~746 MHz B13 777~787 746~756 MHz B18 815~830 860~875 MHz B19 830~845 875~890 MHz B20 832~862 791~821 MHz B26 814~849 859~894 MHz B28 703~748 758~803 MHz B38 2570~2620 2570~2620 MHz B40 2300~2400 2300~2400 MHz B41 2555~2655 2555~2655 MHz 5.1.3. Reference Design of RF Antenna Interface Areference design of ANT_MAIN and ANT_DIVantenna pads is shown as below. It should reserve a π-type matching circuit for better RF performance. The capacitors are not mounted by default. Figure 31: Reference Circuit of RF Antenna Interface EC25_Hardware_DesignConfidential / Released 61 / 90 LTE Module Series EC25Hardware Design NOTES 1. 2. 3. Keep a proper distance between the main antenna and theRx-diversityantenna to improve the receiving sensitivity. ANT_DIV function is enabledby default. Place theπ-type matching components (R1, C1, C2, R2, C3, C4) as close to the antenna as possible. 5.1.4. Reference Design of RF Layout For user’s PCB, the characteristic impedance of all RF traces should be controlled as 50 ohm. The impedance of the RF traces is usually determined by the trace width (W), the materials’ dielectric constant, the distance between signal layer and reference ground (H), and the clearance between RF trace and ground (S). Microstrip line or coplanar waveguide line is typically used in RF layout for characteristic impedance control. The following are reference designs of microstrip line or coplanar waveguide line with different PCB structures Figure 32: Microstrip Line Design on a 2-layer PCB Figure 33: Coplanar Waveguide Line Design on a 2-layer PCB EC25_Hardware_DesignConfidential / Released 62 / 90 LTE Module Series EC25Hardware Design Figure 34: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground) Figure 35: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground) In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design: Use impedance simulation tool to control the characteristic impedanceof RF tracesas 50ohm. The GND pins adjacent to RF pins should not be hot welded, and should be fully connected to ground. The distance between the RF pinsand the RFconnector should be as short as possible, and all the right angle traces should be changed to curved ones. There should be clearance area under the signal pin of the antenna connector or solder joint. The reference ground of RF traces should be complete. Meanwhile, adding some ground viasaround RF traces and the reference ground could help to improve RF performance. The distance between the ground viasand RF traces should be no less than two times the width of RF signal traces (2*W). For more details about RF layout, please refer to document [6]. EC25_Hardware_DesignConfidential / Released 63 / 90 LTE Module Series EC25Hardware Design 5.2. GNSS Antenna Interface The following tables show pin definition and frequency specification of GNSS antenna interface. Table 27: Pin Definition of GNSS Antenna Interface Pin Name Pin No. I/O Description Comment ANT_GNSS 47 AI GNSS antenna 50ohmimpedance Table 28: GNSS Frequency Type Frequency Unit GPS/Galileo/QZSS 1575.42±1.023 MHz GLONASS 1597.5~1605.8 MHz BeiDou 1561.098±2.046 MHz A reference design of GNSS antenna is shown as below. Figure 36: Reference Circuit of GNSS Antenna NOTES 1. 2. An external LDO can be selected to supply power according to the active antenna requirement. If the module is designed with a passive antenna, then the VDD circuit is not needed. EC25_Hardware_DesignConfidential / Released 64 / 90 LTE Module Series EC25Hardware Design 5.3. Antenna Installation 5.3.1. Antenna Requirement The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna. Table 29: Antenna Requirements Type Requirements GNSS Frequency range: 1561~1615MHz Polarization: RHCP or linear VSWR: <2 (Typ.) Passive antenna gain: >0dBi Active antenna noise figure: <1.5dB Active antenna gain: >-2dBi Active antenna embedded LNA gain: 20dB (Typ.) Active antenna total gain: >18dBi (Typ.) GSM/WCDMA/LTE VSWR:≤2 Gain (dBi): 1 Max input power (W): 50 Input impedance (ohm): 50 Polarization type: Vertical Cable insertion loss: <1dB ( GSM900, WCDMA B5/B6/B8/B19, LTE B5/B8/B12/B13/B18/B20/B26/B28) Cable insertion loss: <1.5dB (GSM1800, WCDMA B1/B2/B4,LTE B1/B2/B3/B4) Cable insertion loss <2dB (LTE B7/B38/B40/B41) EC25_Hardware_DesignConfidential / Released 65 / 90 LTE Module Series EC25Hardware Design 5.3.2. Recommended RF Connector for Antenna Installation If RF connector is used for antenna connection, it is recommended to use UF.L-R-SMT connector provided by HIROSE. Figure 37: Dimensions of the UF.L-R-SMT Connector (Unit: mm) U.FL-LP serial connectors listed in the following figure can be used to match the UF.L-R-SMT. Figure 38:Mechanicals of UF.L-LP Connectors EC25_Hardware_DesignConfidential / Released 66 / 90 LTE Module Series EC25Hardware Design The following figure describes the space factor of mated connector. Figure 39:Space Factor of Mated Connector (Unit: mm) For more details, please visithttp://hirose.com. EC25_Hardware_DesignConfidential / Released 67 / 90 LTE Module Series EC25Hardware Design Electrical, Reliability and RadioCharacteristics 6.1. Absolute Maximum Ratings Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table. Table 30: Absolute Maximum Ratings Parameter Min. Max. Unit VBAT_RF/VBAT_BB -0.3 4.7 USB_VBUS -0.3 5.5 Peak Current of VBAT_BB 0.8 Peak Current of VBAT_RF 1.8 Voltage at Digital Pins -0.3 2.3 Voltage at ADC0 VBAT_BB Voltage at ADC1 VBAT_BB EC25_Hardware_DesignConfidential / Released 68 / 90 LTE Module Series EC25Hardware Design 6.2. Power Supply Ratings Table 31: The Module Power Supply Ratings Parameter Description Conditions Min. Typ. Max. Unit VBAT_BB and VBAT_RF Voltage must stay within the min/max values, including voltage drop, ripple and spikes. 3.3 3.8 4.3 Voltage drop during burst transmission Maximum power control level on GSM900. 400 mV IVBAT Peak supply current (during transmissionslot) Maximum power control level on GSM900. 1.8 2.0 USB_VBUS USB detection 5.0 5.25 VBAT 3.0 6.3. Operating Temperature The operating temperature is listed in the following table. Table 32: Operating Temperature Parameter Min. Typ. Max. Unit OperationTemperature Range1) -35 +25 +75 ºC Extended Operation Range2) -40 +85 ºC NOTES 1. 2. 1) Within operation temperature range, the module is 3GPP compliant. Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like Pout might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP compliant again. 2) EC25_Hardware_DesignConfidential / Released 69 / 90 LTE Module Series EC25Hardware Design 6.4. Current Consumption Table 33: EC25-E Current Consumption Parameter Description Conditions Typ. Unit OFF state Power down 20 uA AT+CFUN=0 (USB disconnected) 1.4 mA GSM DRX=2 (USB disconnected) 2.74 mA GSM DRX=9 (USB disconnected) 2.0 mA WCDMA PF=64 (USB disconnected) 2.7 mA WCDMA PF=128 (USB disconnected) 2.3 mA LTE-FDD PF=64 (USB disconnected) 2.0 mA LTE-FDD PF=128 (USB disconnected) 1.9 mA LTE-TDD PF=64 (USB disconnected) 4.2 mA LTE-TDD PF=128 (USB disconnected) 4.2 mA GSM DRX=5 (USB disconnected) 22.0 mA GSM DRX=5 (USB connected) 31.0 mA WCDMA PF=64 (USB disconnected) 31.0 mA WCDMA PF=64 (USB connected) 36.0 mA LTE-FDDPF=64 (USB disconnected) 22.0 mA LTE-FDDPF=64 (USB connected) 32.0 mA LTE-TDDPF=64 (USB disconnected) 22.0 mA LTE-TDDPF=64 (USB connected) 32.0 mA GSM900 4DL/1UL @32.18dBm 236.0 mA GSM900 3DL/2UL @32dBm 392.9 mA GSM900 2DL/3UL @30.2dBm 466.1 mA GSM900 1DL/4UL @29.3dBm 554.2 mA Sleep state IVBAT Idle state GPRS data transfer (GNSS OFF) EC25_Hardware_DesignConfidential / Released 70 / 90 LTE Module Series EC25Hardware Design EDGE data transfer (GNSS OFF) WCDMA datatransfer(GNSS OFF) LTE datatransfer(GNSS OFF) DCS1800 4DL/1UL @28.9dBm 181.3 mA DCS1800 3DL/2UL @28.9dBm 305.3 mA DCS1800 2DL/3UL @28.8dBm 420.1 mA DCS1800 1DL/4UL @28.6dBm 531.6 mA GSM900 4DL/1UL PCL=8 @26.5dBm 156.4 mA GSM900 3DL/2UL PCL=8 @26.5dBm 248.1 mA GSM900 2DL/3UL PCL=8 @26.4dBm 340.1 mA GSM900 1DL/4UL PCL=8 @26.3dBm 438.8 mA DCS1800 4DL/1UL PCL=2 @24.9dBm 158.1 mA DCS1800 3DL/2UL PCL=2 @24.8dBm 251.4 mA DCS1800 2DL/3UL PCL=2 @24.7dBm 340.4 mA DCS1800 1DL/4UL PCL=2 @24.5dBm 432.8 mA WCDMA B1 HSDPA@22.1dBm 663.7 mA WCDMA B1 HSUPA@23.85dBm 662.6 mA WCDMA B5 HSDPA@22.5dBm 708.6 mA WCDMA B5 HSUPA@22.3dBm 696.6 mA WCDMA B8 HSDPA@21.95dBm 595.5 mA WCDMA B8 HSUPA@21.92dBm 593.5 mA LTE-FDD B1 @23.25dBm 783.6 mA LTE-FDD B3 @23.35dBm 845.8 mA LTE-FDD B5 @23.04dBm 795.3 mA LTE-FDD B7 @23.37dBm 843 mA LTE-FDD B8 @23.45dBm 759.9 mA LTE-FDD B20 @23.35dBm 755.8 mA LTE-TDD B38 @23.41dBm 449.5 mA LTE-TDD B40 @23.17dBm 431.8 mA LTE-TDD B41 @23.37dBm 447.2 mA EC25_Hardware_DesignConfidential / Released 71 / 90 LTE Module Series EC25Hardware Design GSM voice call WCDMA voice call GSM900 PCL=5 @32.2dBm 231.7 mA DCS1800PCL=0 @23.35dBm 188.8 mA WCDMA B1 @22.89dBm 724.7 mA WCDMA B5 @22.92dBm 698.2 mA WCDMA B8 @22.82dBm 628.2 mA Table 34: EC25-A Current Consumption Parameter Description Conditions Typ. Unit OFF state Power down 20 uA AT+CFUN=0 (USB disconnected) 0.99 mA WCDMA PF=64 (USB disconnected) 2.0 mA WCDMA PF=128 (USB disconnected) 1.6 mA LTE-FDD PF=64 (USB disconnected) 2.4 mA LTE-FDD PF=128 (USB disconnected) 1.9 mA WCDMA PF=64 (USB disconnected) 22.0 mA WCDMA PF=64 (USB connected) 32.0 mA LTE-FDDPF=64 (USB disconnected) 22.0 mA LTE-FDDPF=64 (USB connected) 33.0 mA WCDMA B2 HSDPA@22.86dBm 600.0 mA WCDMA B2 HSUPA@22.51dBm 584.6 mA WCDMA B4 HSDPA@22.46dBm 578.7 mA WCDMA B4 HSUPA@22.27dBm 576.4 mA WCDMA B5 HSDPA@22.38dBm 492.0 mA WCDMA B5 HSUPA@21.07dBm 483.2 mA LTE-FDD B2 @23.17dBm 781.0 mA LTE-FDD B4 @23.05dBm 785.7 mA LTE-FDD B12 @23.3dBm 667.3 mA Sleep state Idle state IVBAT WCDMA datatransfer(GNSS OFF) LTE datatransfer(GNSS OFF) EC25_Hardware_DesignConfidential / Released 72 / 90 LTE Module Series EC25Hardware Design WCDMA voice call WCDMA B2 @23.61dBm 670.2 mA WCDMA B4 @23.21dBm 630.3 mA WCDMA B5 @23.34dBm 536.7 mA Table 35: GNSS Current Consumption of EC25 Series Module Parameter IVBAT (GNSS) Description Conditions Typ. Unit Searching Cold start @Passive Antenna 54.0 mA (AT+CFUN=0) Lost state @Passive Antenna 53.9 mA Instrument Environment 30.5 mA Open Sky @Passive Antenna 33.2 mA Open Sky @Active Antenna 40.8 mA Tracking (AT+CFUN=0) 6.5. RF Output Power The following table shows the RF output power of EC25 module. Table 36: RF Output Power Frequency Max. Min. GSM900 33dBm±2dB 5dBm±5dB DCS1800 30dBm±2dB 0dBm±5dB GSM900(8-PSK) 27dBm±3dB 5dBm±5dB DCS1800 26dBm±3dB 0dBm±5dB WCDMA bands 23dBm+1/-3dB <-50dBm LTE-FDD band5 23dBm+1/-3dB <-44dBm LTE-FDD band7 22.5dBm+1/-3dB <-44dBm LTE-TDD bands 23dBm+1/-3dB <-44dBm EC25_Hardware_DesignConfidential / Released 73 / 90 LTE Module Series EC25Hardware Design NOTE In GPRS 4 slots TX mode, the maximum output power is reduced by 3.0dB. The design conforms to the GSM specification as described in Chapter 13.16of 3GPP TS 51.010-1. 6.6. RF Receiving Sensitivity The following tables show conducted RF receiving sensitivity of EC25 series module. Table 37: EC25-E Conducted RF Receiving Sensitivity Frequency Primary Diversity SIMO1) 3GPP (SIMO) GSM900 -109.0dBm -102.0dBm DCS1800 -109.0dBm -102.0dbm WCDMA B1 -110.5dBm -106.7dBm WCDMA B5 -110.5dBm -104.7dBm WCDMA B8 -110.5dBm -103.7dBm LTE-FDD B1(10M) -98.0dBm -98.0dBm -101.5dBm -96.3dBm LTE-FDD B3(10M) -96.5dBm -98.5dBm -101.5dBm -93.3dBm LTE-FDD B5(10M) -98.0dBm -98.5dBm -101.0dBm -94.3dBm LTE-FDD B7(10M) -97.0dBm -94.5dBm -99.5dBm -94.3dBm LTE-FDD B8(10M) -97.0dBm -97.0dBm -101.0dBm -93.3dBm LTE-FDD B20(10M) -97.5dBm -99.0dBm -102.5dBm -93.3dBm LTE-TDD B38 (10M) -96.7dBm -97.0dBm -100.0dBm -96.3dBm LTE-TDD B40 (10M) -96.3dBm -98.0dBm -101.0dBm -96.3dBm LTE-TDD B41 (10M) -95.2dBm -95.7dBm -99.0dBm -94.3dBm Table 38: EC25-A Conducted RF Receiving Sensitivity Frequency Primary Diversity EC25_Hardware_DesignConfidential / Released 74 / 90 SIMO 3GPP (SIMO) LTE Module Series EC25Hardware Design WCDMA B2 -110.0dBm -104.7dBm WCDMA B4 -110.0dBm -106.7dBm WCDMA B5 -110.5dBm -104.7dBm LTE-FDD B2 (10M) -98.0dBm -98.0dBm -101.0dBm -94.3dBm LTE-FDD B4 (10M) -97.5dBm -99.0dBm -101.0dBm -96.3dBm LTE-FDD B12 (10M) -96.5dBm -98.0dBm -101.0dBm -93.3dBm Table 39: EC25-V Conducted RF Receiving Sensitivity Frequency Primary Diversity SIMO 3GPP (SIMO) LTE-FDD B4 (10M) -97.5dBm -99.0dBm -101.0dBm -96.3dBm LTE-FDD B13 (10M) -95.0dBm -97.0dBm -100.0dBm -93.3dBm Table 40: EC25-J Conducted RF Receiving Sensitivity Frequency Primary Diversity SIMO 3GPP (SIMO) WCDMA B1 -110.0dBm -106.7dBm WCDMA B6 -110.5dBm -106.7dBm WCDMA B8 -110.5dBm -106.7dBm WCDMA B19 -110.5dBm -106.7dBm LTE-FDD B1 (10M) -97.5dBm -98.7dBm -100.2dBm -96.3dBm LTE-FDD B3 (10M) -96.5dBm -97.1dBm -100.5dBm -93.3dBm LTE-FDD B8 (10M) -98.4dBm -99.0dBm -101.2dBm -93.3dBm LTE-FDD B18 (10M) -99.5dBm -99.0dBm -101.7dBm -96.3dBm LTE-FDD B19 (10M) -99.2dBm -99.0dBm -101.4dBm -96.3dBm LTE-FDD B26 (10M) -99.5dBm -99.0dBm -101.5dBm -93.8dBm LTE-TDD B41 (10M) -95.0dBm -95.7dBm -99.0dBm -94.3dBm EC25_Hardware_DesignConfidential / Released 75 / 90 LTE Module Series EC25Hardware Design NOTE 1) SIMO is a smart antenna technology that uses a single antenna at the transmitter side and two antennas at the receiver side, which can improve RX performance. 6.7. Electrostatic Discharge The module is not protected against electrostatics discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module. The following table shows the module electrostatics discharge characteristics. Table 41: Electrostatics Discharge Characteristics Tested Points Contact Discharge Air Discharge Unit VBAT, GND ±5 ±10 kV All Antenna Interfaces ±4 ±8 kV Other Interfaces ±0.5 ±1 kV EC25_Hardware_DesignConfidential / Released 76 / 90 LTE Module Series EC25Hardware Design Mechanical Dimensions This chapter describes the mechanical dimensions of the module.All dimensions are measured in mm. 7.1. Mechanical Dimensions of the Module (32+/-0.15) (29+/-0.15) 2.4+/-0.2 0.8 Figure 40: Module Top and Side Dimensions EC25_Hardware_DesignConfidential / Released 77 / 90 LTE Module Series EC25Hardware Design 32.0 1.30 3.85 3.5 1.90 3.35 5.96 1.30 2.0 2.0 0.82 3.0 1.15 2.15 1.8 2.8 29.0 1.8 4.88 1.05 1.10 1.6 4.8 6.75 1.10 1.7 2.49 1.9 3.2 3.4 3.2 3.4 2.4 3.45 3.2 0.8 3.5 4.4 1.5 Figure 41: Module Bottom Dimensions (Bottom View) EC25_Hardware_DesignConfidential / Released 78 / 90 LTE Module Series EC25Hardware Design 7.2. Recommended Footprint 24.70 1.80 1.10 3.00 2.00 2.00 1.10 7.80 1.90 3.45 3.40 3.85 2.00 4.80 1.80 3.00 0.50 2.80 0.50 4.80 0.50 4.80 Keepout area 15.60 0.50 3.50 1.90 3.20 1.30 3.20 3.40 3.40 3.20 32.0 3.40 4.80 0.80 2.50 1.00 Figure 42: Recommended Footprint (Top View) NOTES 1. 2. The keepout area should not be designed. For easy maintenance of the module, please keep about 3mm between the module and other components in thehost PCB. EC25_Hardware_DesignConfidential / Released 79 / 90 LTE Module Series EC25Hardware Design 7.3. Design Effect Drawings of the Module Figure 43: Top View of the Module Figure 44: Bottom View of the Module NOTE These are design effect drawings of EC25 module. For more accurate pictures, please refer to the module that you get from Quectel. EC25_Hardware_DesignConfidential / Released 80 / 90 LTE Module Series EC25Hardware Design Storage, Manufacturing and Packaging 8.1. Storage EC25 is stored in a vacuum-sealed bag. The storage restrictionsare shown as below. 1. Shelf life in vacuum-sealed bag: 12 months at <40ºC/90%RH. 2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other high temperature processes must be: Mounted within 72 hours at the factory environment of ≤30ºC/60%RH. Stored at <10% RH. 3. Devices require bake before mounting, if any circumstances below occurs: When the ambient temperature is 23ºC±5ºC and the humidity indicator card shows the humidity is >10% before opening the vacuum-sealed bag. Device mounting cannot be finished within 72 hours at factory conditions of ≤30ºC/60%RH. 4. If baking is required, devices may be baked for 48 hours at 125ºC±5ºC. NOTE As the plastic packagecannot be subjected to high temperature, it should be removed from devices before high temperature (125ºC) baking. If shorter baking time is desired, please refer to IPC/JEDECJ-STD-033 for baking procedure. EC25_Hardware_DesignConfidential / Released 81 / 90 LTE Module Series EC25Hardware Design 8.2. Manufacturing and Soldering Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properlyso as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, thethickness of stencil for the module is recommended to be 0.18mm. For more details, please refer todocument [4]. It is suggested that the peak reflow temperature is 235 ~ 245ºC (for SnAg3.0Cu0.5 alloy). The absolute max reflow temperature is 260ºC. To avoid damage to the module caused by repeated heating, it is suggested that the module should be mounted after reflow soldering for the other side of PCB has been completed. Recommended reflow soldering thermal profile is shown below: Figure 45: Reflow Soldering Thermal Profile EC25_Hardware_DesignConfidential / Released 82 / 90 LTE Module Series EC25Hardware Design 8.3. Packaging 0± .1 29.3± 0.15 0.35± 0.05 30.3± 0.15 1. 44.00± 0.3 20.20± 0.15 44.00± 0.1 2.00± 0.1 4.00± 0.1 30.3± 0.15 1.75± 0.1 EC25 is packaged in tap andreel carriers. One reel is 11.53m long and contains 250pcs modules. The figure below shows the package details, measured in mm. 4.2± 0.15 3.1± 0.15 32.5± 0.15 33.5± 0.15 32.5± 0.15 33.5± 0.15 48.5 13 100 44.5+0.20 -0.00 Figure 46: Tape and Reel Specifications EC25_Hardware_DesignConfidential / Released 83 / 90 LTE Module Series EC25Hardware Design Appendix A References Table 42: Related Documents SN Document Name Remark [1] Quectel_EC25_Power_Management_Application_ Note EC25 Power Management Application Note [2] Quectel_EC25&EC21_AT_Commands_Manual EC25 and EC21 AT Commands Manual [3] Quectel_EC25&EC21_GNSS_AT_Commands_ Manual EC25 and EC21 GNSS AT Commands Manual [4] Quectel_Module_Secondary_SMT_User_Guide Module Secondary SMT User Guide [5] Quectel_EC25_Reference_Design EC25 Reference Design [6] Quectel_RF_Layout_Application_Note RF Layout Application Note [7] Quectel_SGMII_Design_Application_Note SGMII Desgin Application Note Table 43: Terms and Abbreviations Abbreviation Description AMR Adaptive Multi-rate bps Bits Per Second CHAP Challenge Handshake Authentication Protocol CS Coding Scheme CSD Circuit Switched Data CTS Clear To Send DC-HSPA+ Dual-carrier High Speed Packet Access DFOTA Delta Firmware Upgrade Over The Air EC25_Hardware_DesignConfidential / Released 84 / 90 LTE Module Series EC25Hardware Design DL Downlink DTR Data Terminal Ready DTX Discontinuous Transmission EFR Enhanced Full Rate ESD Electrostatic Discharge FDD Frequency Division Duplex FR Full Rate GLONASS GLObalnaya NAvigatsionnaya Sputnikovaya Sistema, the Russian Global Navigation Satellite System GMSK Gaussian Minimum Shift Keying GNSS Global Navigation Satellite System GPS Global Positioning System GSM Global System for Mobile Communications HR Half Rate HSPA High Speed Packet Access HSDPA High Speed Downlink Packet Access HSUPA High Speed Uplink Packet Access I/O Input/Output Inorm Normal Current LED Light Emitting Diode LNA Low Noise Amplifier LTE Long Term Evolution MIMO Multiple Input Multiple Output MO Mobile Originated MS Mobile Station (GSM engine) MT Mobile Terminated EC25_Hardware_DesignConfidential / Released 85 / 90 LTE Module Series EC25Hardware Design PAP Password Authentication Protocol PCB Printed Circuit Board PDU Protocol Data Unit PPP Point-to-Point Protocol QAM Quadrature Amplitude Modulation QPSK Quadrature Phase Shift Keying RF Radio Frequency RHCP Right Hand Circularly Polarized Rx Receive SGMII Serial Gigabit Media IndependentInterface SIM Subscriber Identification Module SIMO Single Input Multiple Output SMS Short Message Service TDD Time Division Duplexing TDMA Time Division Multiple Access TD-SCDMA Time Division-Synchronous Code Division Multiple Access TX Transmitting Direction UL Uplink UMTS Universal Mobile Telecommunications System URC Unsolicited Result Code USIM Universal Subscriber Identity Module Vmax Maximum Voltage Value Vnorm Normal Voltage Value Vmin Minimum Voltage Value VIHmax Maximum Input High Level Voltage Value EC25_Hardware_DesignConfidential / Released 86 / 90 LTE Module Series EC25Hardware Design VIHmin Minimum Input High Level Voltage Value VILmax Maximum Input Low Level Voltage Value VILmin Minimum Input Low Level Voltage Value VImax Absolute Maximum Input Voltage Value VImin Absolute Minimum Input Voltage Value VOHmax Maximum Output High Level Voltage Value VOHmin Minimum Output High Level Voltage Value VOLmax Maximum Output Low Level Voltage Value VOLmin Minimum Output Low Level Voltage Value VSWR Voltage Standing Wave Ratio WCDMA Wideband Code Division Multiple Access WLAN Wireless Local Area Network EC25_Hardware_DesignConfidential / Released 87 / 90 LTE Module Series EC25Hardware Design 10 Appendix B GPRS Coding Schemes Table 44: Description of Different Coding Schemes Scheme CS-1 CS-2 CS-3 CS-4 Code Rate 1/2 2/3 3/4 USF Pre-coded USF 12 Radio Block excl.USF and BCS 181 268 312 428 BCS 40 16 16 16 Tail Coded Bits 456 588 676 456 Punctured Bits 132 220 Data Rate Kb/s 9.05 13.4 15.6 21.4 EC25_Hardware_DesignConfidential / Released 88 / 90 LTE Module Series EC25Hardware Design 11 Appendix C GPRS Multi-slot Classes Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications. The description of different multi-slot classes is shown in the following table. Table 45: GPRS Multi-slot Classes Multislot Class Downlink Slots Uplink Slots Active Slots 10 11 12 EC25_Hardware_DesignConfidential / Released 89 / 90 LTE Mo odule Sires EC25Hardw ware Design 12 Apppendixx D EDGE E E Mod dulationan nd Cod ding Schem mes Modu ulation and Coding Sch hemes Table 46: EDGE Coding Sch heme Mod dulation Coding Family 1 Timeslot 2 Tim meslot 4 Timeslot CS-1: GMSK 9.05kbps 18.1kkbps 36.2kbps CS-2: GMSK 13.4kbps 26.8kkbps 53.6kbps CS-3: GMSK 15.6kbps 31.2kkbps 62.4kbps CS-4: GMSK 21.4kbps 42.8kkbps 85.6kbps MCS-1 GMSK 8.80kbps 17.60 0kbps 35.20kbps MCS-2 GMSK 11.2kbps 22.4kkbps 44.8kbps MCS-3 GMSK 14.8kbps 29.6kkbps 59.2kbps MCS-4 GMSK 17.6kbps 35.2kkbps 70.4kbps MCS-5 8-PS SK 22.4kbps 44.8kkbps 89.6kbps MCS-6 8-PS SK 29.6kbps 59.2kkbps 118.4kbps MCS-7 8-PS SK 44.8kbps 89.6kkbps 179.2kbps MCS-8 8-PS SK 54.4kbps 108.8 8kbps 217.6kbps MCS-9 8-PS SK 59.2kbps 118.4 4kbps 236.8kbps EC25_Hard dware_DesiignConfiden ntial / Relea ased 90 /90
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : Yes Author : haojinhua Create Date : 2017:08:18 10:12:43+08:00 Modify Date : 2017:08:18 10:12:43+08:00 XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-20:48:00 Creator Tool : PScript5.dll Version 5.2.2 Format : application/pdf Title : Microsoft Word - XMR201708EC25E_Uesr Manual Rev2 Creator : haojinhua Producer : Acrobat Distiller 9.0.0 (Windows) Document ID : uuid:ad53b9a5-e186-4d0b-86e3-5d60fac983cb Instance ID : uuid:2ab3f091-8989-4d3e-a25a-0c37fbba9aa0 Page Count : 91EXIF Metadata provided by EXIF.tools