Siemens RF310R02 RFID Reader 13.56 MHz User Manual SIMATIC RF300

Siemens AG RFID Reader 13.56 MHz SIMATIC RF300

User Manual part 1

SIMATIC RF300
___________________
___________________
___________________
___________________
___________________
___________________
___________________
___________________
___________________
___________________
___________________
SIMATIC Ident
RFID systems
SIMATIC RF300
System Manual
Note: This document is a draft document. This
document is not released for publication. Siemens
accepts no liability for
the completeness and
correctness of the contents
.
07/2016
C79000
-G8976-C345-0x
Introduction
1
Safety information
2
System overview
3
Planning the RF300 system
4
Readers
5
Antennas
6
RF300 transponder
7
ISO transponder
8
System integration
9
System diagnostics
10
Appendix
A
Siemens AG
Division Process Industries and Drives
Postfach 48 48
90026 NÜRNBERG
GERMANY
Document order number: C79000-G8976-C345
07/2016 Subject to change
Copyright © Siemens AG 2005 - 2016.
All rights reserved
Legal information
Warning notice system
This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.
DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.
WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.
CAUTION
indicates that minor personal injury can result if proper precautions are not taken.
NOTICE
indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.
Qualified Personnel
The product/system described in this documentation may be operated only by
personnel qualified
for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.
Proper use of Siemens products
Note the following:
WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.
Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.
Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 3
Table of contents
1 Introduction ........................................................................................................................................... 13
1.1 Navigating in the system manual ............................................................................................ 13
1.2 Preface .................................................................................................................................... 14
2 Safety information ................................................................................................................................. 17
3 System overview ................................................................................................................................... 21
3.1 RFID systems ......................................................................................................................... 21
3.2 SIMATIC RF300 ...................................................................................................................... 22
3.2.1 System overview of SIMATIC RF300 ..................................................................................... 22
3.2.2 RFID components and their function ...................................................................................... 23
3.2.3 Application areas of RF300 .................................................................................................... 31
3.3 System configuration .............................................................................................................. 32
3.3.1 Overview ................................................................................................................................. 32
3.3.2 Assembly line example: Use of RF300 transponders ............................................................. 32
3.3.3 Example of container and cardboard container handling: Use of ISO transponders ............. 34
4 Planning the RF300 system .................................................................................................................. 37
4.1 Fundamentals of application planning .................................................................................... 37
4.1.1 Selection criteria for SIMATIC RF300 components ................................................................ 37
4.1.2 Transmission window and read/write distance ....................................................................... 37
4.1.3 Width of the transmission window .......................................................................................... 40
4.1.4 Impact of secondary fields ...................................................................................................... 41
4.1.5 Setup help of the readers of the second generation ............................................................... 43
4.1.6 Permissible directions of motion of the transponder ............................................................... 44
4.1.7 Operation in static and dynamic mode ................................................................................... 45
4.1.8 Dwell time of the transponder ................................................................................................. 46
4.1.9 Communication between communications module, reader and transponder ........................ 47
4.2 Field data for transponders, readers and antennas ................................................................ 48
4.2.1 Field data of RF300 transponders .......................................................................................... 49
4.2.2 Field data of ISO transponders (MDS D) ................................................................................ 52
4.2.3 Field data of ISO transponders (MDS E) ................................................................................ 57
4.2.4 Minimum clearances ............................................................................................................... 59
4.3 Installation guidelines.............................................................................................................. 62
4.3.1 Overview ................................................................................................................................. 62
4.3.2 Reduction of interference due to metal ................................................................................... 62
4.3.3 Effects of metal on different transponders and readers .......................................................... 64
4.3.4 Impact on the transmission window by metal ......................................................................... 65
4.3.4.1 Impact on the transmission window by metal ......................................................................... 65
4.3.4.2 RF340R ................................................................................................................................... 69
4.3.4.3 RF350R ................................................................................................................................... 73
4.3.4.4 RF380R ................................................................................................................................... 85
4.3.4.5 RF382R ...................................................................................................................................
89
Table of contents
SIMATIC RF300
4 System Manual, 07/2016, C79000-G8976-C345-0x
4.4 Chemical resistance of the transponders .............................................................................. 90
4.4.1 Overview of the transponders and their housing materials ................................................... 90
4.4.2 Polyamide 12 ......................................................................................................................... 91
4.4.3 Polyphenylene sulfide (PPS) ................................................................................................. 93
4.4.4 Polycarbonate (PC) ................................................................................................................ 94
4.4.5 Polyvinyl chloride (PVC) ........................................................................................................ 95
4.4.6 Epoxy resin ............................................................................................................................ 96
4.4.7 PA6.6 GF30 ........................................................................................................................... 98
4.5 Guidelines for electromagnetic compatibility (EMC) .............................................................. 99
4.5.1 Overview ................................................................................................................................ 99
4.5.2 What does EMC mean? ....................................................................................................... 100
4.5.3 Basic rules ............................................................................................................................ 101
4.5.4 Propagation of electromagnetic interference ....................................................................... 102
4.5.5 Cabinet configuration ........................................................................................................... 106
4.5.6 Prevention of interference sources ...................................................................................... 109
4.5.7 Equipotential bonding .......................................................................................................... 110
4.5.8 Cable shielding..................................................................................................................... 111
5 Readers ............................................................................................................................................... 113
5.1 SIMATIC RF310R ................................................................................................................ 115
5.1.1 Features ............................................................................................................................... 115
5.1.2 RF310R ordering data ......................................................................................................... 115
5.1.3 Pin assignment RF310R with RS-422 interface .................................................................. 116
5.1.4 LED operating display .......................................................................................................... 116
5.1.5 Ensuring reliable data exchange .......................................................................................... 116
5.1.6 Metal-free area ..................................................................................................................... 117
5.1.7 Minimum distance between RF310R readers ...................................................................... 117
5.1.8 Technical specifications ....................................................................................................... 118
5.1.9 Approvals ............................................................................................................................. 120
5.1.10 Dimension drawing .............................................................................................................. 121
5.2 SIMATIC RF310R with Scanmode ...................................................................................... 122
5.2.1 Features ............................................................................................................................... 122
5.2.2 Ordering data for RF310R with Scanmode .......................................................................... 122
5.2.3 Pin assignment RF310R special version Scanmode RS-422 interface ............................... 123
5.2.4 LED operating display .......................................................................................................... 123
5.2.5 Ensuring reliable data exchange .......................................................................................... 123
5.2.6 Metal-free area ..................................................................................................................... 124
5.2.7 Minimum distance between several readers ....................................................................... 124
5.2.8 Technical specifications ....................................................................................................... 125
5.2.9 Approvals ............................................................................................................................. 127
5.2.10 Dimension drawing .............................................................................................................. 128
5.3 SIMATIC RF310R - second generation ............................................................................... 129
5.3.1 Features ............................................................................................................................... 129
5.3.2 Ordering data ....................................................................................................................... 129
5.3.3 Pin assignment of the RS-422 interface .............................................................................. 130
5.3.4 LED operating display .......................................................................................................... 130
5.3.5 Ensuring reliable data exchange .......................................................................................... 130
5.3.6 Metal-free area ..................................................................................................................... 131
5.3.7 Minimum distance between RF310R readers ...................................................................... 131
5.3.8 Technical specifications ....................................................................................................... 132
5.3.9 Approvals ............................................................................................................................. 134
Table of contents
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 5
5.3.10 Dimension drawing ............................................................................................................... 135
5.4 SIMATIC RF340R/RF350R .................................................................................................. 136
5.4.1 SIMATIC RF340R ................................................................................................................. 136
5.4.1.1 Features ................................................................................................................................ 136
5.4.1.2 Ordering data for RF340R .................................................................................................... 136
5.4.1.3 Pin assignment of RF340R RS422 interface ........................................................................ 137
5.4.1.4 LED operating display ........................................................................................................... 137
5.4.1.5 Ensuring reliable data exchange .......................................................................................... 137
5.4.1.6 Metal-free area ...................................................................................................................... 138
5.4.1.7 Minimum distance between RF340R readers ...................................................................... 138
5.4.1.8 Technical specifications ........................................................................................................ 139
5.4.1.9 Approvals .............................................................................................................................. 141
5.4.1.10 Dimension drawing ............................................................................................................... 142
5.4.2 SIMATIC RF350R ................................................................................................................. 143
5.4.2.1 Features ................................................................................................................................ 143
5.4.2.2 Ordering data for RF350R .................................................................................................... 143
5.4.2.3 Pin assignment of RF350R RS422 interface ........................................................................ 144
5.4.2.4 LED operating display ........................................................................................................... 144
5.4.2.5 Ensuring reliable data exchange .......................................................................................... 144
5.4.2.6 Metal-free area ...................................................................................................................... 144
5.4.2.7 Technical specifications ........................................................................................................ 145
5.4.2.8 Approvals .............................................................................................................................. 147
5.4.2.9 Dimension drawing ...............................................................................................................
148
5.4.3 Use of the reader in hazardous areas .................................................................................. 149
5.4.3.1 Use of the readers in hazardous areas for gases ................................................................. 150
5.4.3.2 Use of the readers in hazardous areas for dusts .................................................................. 150
5.4.3.3 Installation and operating conditions for the hazardous area ............................................... 151
5.5 SIMATIC RF340R/RF350R - second generation ................................................................. 152
5.5.1 SIMATIC RF340R - second generation ................................................................................ 152
5.5.1.1 Features ................................................................................................................................ 152
5.5.1.2 Ordering data ........................................................................................................................ 152
5.5.1.3 Pin assignment of the RS-422 interface ............................................................................... 153
5.5.1.4 LED operating display ........................................................................................................... 153
5.5.1.5 Ensuring reliable data exchange .......................................................................................... 153
5.5.1.6 Metal-free area ...................................................................................................................... 154
5.5.1.7 Minimum distance between RF340R readers ...................................................................... 154
5.5.1.8 Technical specifications ........................................................................................................ 155
5.5.1.9 Approvals .............................................................................................................................. 157
5.5.1.10 Dimension drawing ............................................................................................................... 158
5.5.2 SIMATIC RF350R - second generation ................................................................................ 159
5.5.2.1 Features ................................................................................................................................ 159
5.5.2.2 Ordering data ........................................................................................................................ 159
5.5.2.3 Pin assignment of the RS-422 interface ............................................................................... 160
5.5.2.4 LED operating display ........................................................................................................... 160
5.5.2.5 Ensuring reliable data exchange .......................................................................................... 160
5.5.2.6 Metal-free area ...................................................................................................................... 161
5.5.2.7 Technical specifications ........................................................................................................ 161
5.5.2.8 Approvals .............................................................................................................................. 163
5.5.2.9 Dimension drawing ............................................................................................................... 164
5.5.3 Use of the reader in hazardous areas .................................................................................. 165
5.6 SIMATIC RF380R ................................................................................................................. 166
Table of contents
SIMATIC RF300
6 System Manual, 07/2016, C79000-G8976-C345-0x
5.6.1 Features ............................................................................................................................... 166
5.6.2 RF380R ordering data ......................................................................................................... 166
5.6.3 Pin assignment of RF380R RS-232/RS-422 interface......................................................... 166
5.6.4 LED operating display .......................................................................................................... 167
5.6.5 Ensuring reliable data exchange .......................................................................................... 167
5.6.6 Metal-free area ..................................................................................................................... 168
5.6.7 Minimum distance between RF380R readers ...................................................................... 168
5.6.8 Technical specifications ....................................................................................................... 169
5.6.9 Approvals ............................................................................................................................. 171
5.6.10 Use of the reader in hazardous areas ................................................................................. 172
5.6.11 Use of the reader in hazardous areas for gases .................................................................. 173
5.6.12 Installation and operating conditions for the hazardous area .............................................. 173
5.6.13 Dimension drawing .............................................................................................................. 174
5.7 SIMATIC RF380R with Scanmode ...................................................................................... 175
5.7.1 Features ............................................................................................................................... 175
5.7.2 Ordering data for RF380R with Scanmode .......................................................................... 175
5.7.3 Pin assignment RF380R Scanmode RS-232 interface........................................................ 176
5.7.4 LED operating display .......................................................................................................... 176
5.7.5 Ensuring reliable data exchange .......................................................................................... 176
5.7.6 Metal-free area ..................................................................................................................... 177
5.7.7 Minimum distance between several RF380R Scanmode readers ....................................... 177
5.7.8 Technical specifications ....................................................................................................... 178
5.7.9 Approvals ............................................................................................................................. 180
5.7.10 Certificates and Approvals ................................................................................................... 181
5.7.11 Dimension drawing .............................................................................................................. 181
5.8 SIMATIC RF382R with Scanmode ...................................................................................... 182
5.8.1 Characteristics ..................................................................................................................... 182
5.8.2 RF382R with Scanmode ordering data ................................................................................ 182
5.8.3 Pin assignment RF382R Scanmode RS232 interface ......................................................... 183
5.8.4 LED operating display .......................................................................................................... 183
5.8.5 Ensuring reliable data exchange .......................................................................................... 183
5.8.6 Mounting on metal ............................................................................................................... 183
5.8.7 Minimum distance between several RF382R Scanmode readers ....................................... 184
5.8.8 Transmission window ........................................................................................................... 184
5.8.9 Technical specifications ....................................................................................................... 188
5.8.10 Approvals ............................................................................................................................. 189
5.8.11 Dimensional diagram ........................................................................................................... 191
6 Antennas ............................................................................................................................................. 193
6.1 Features ............................................................................................................................... 193
6.2 Ordering data ....................................................................................................................... 196
6.3 Ensuring reliable data exchange .......................................................................................... 196
6.4 Metal-free area ..................................................................................................................... 197
6.5 Minimum distance between antennas ................................................................................. 200
6.6 Technical specifications ....................................................................................................... 201
6.7 Dimensional drawings .......................................................................................................... 203
Table of contents
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 7
7 RF300 transponder ............................................................................................................................. 207
7.1 Memory configuration of the RF300 transponders ............................................................... 208
7.2 SIMATIC RF320T ................................................................................................................. 211
7.2.1 Features ................................................................................................................................ 211
7.2.2 Ordering data ........................................................................................................................ 211
7.2.3 Mounting on metal ................................................................................................................ 212
7.2.4 Technical data ....................................................................................................................... 213
7.2.5 Dimension drawing ............................................................................................................... 214
7.3 SIMATIC RF330T ................................................................................................................. 215
7.3.1 Features ................................................................................................................................ 215
7.3.2 Ordering data ........................................................................................................................ 215
7.3.3 Mounting on/in metal............................................................................................................. 216
7.3.4 Technical specifications ........................................................................................................ 217
7.3.5 Dimension drawing ............................................................................................................... 219
7.4 SIMATIC RF340T ................................................................................................................. 220
7.4.1 Features ................................................................................................................................ 220
7.4.2 Ordering data ........................................................................................................................ 220
7.4.3 Mounting on metal ................................................................................................................ 221
7.4.4 Technical specifications ........................................................................................................ 222
7.4.5 Dimension drawing ............................................................................................................... 223
7.5 SIMATIC RF350T ................................................................................................................. 224
7.5.1 Features ................................................................................................................................ 224
7.5.2 Ordering data ........................................................................................................................ 224
7.5.3 Mounting on metal ................................................................................................................ 224
7.5.4 Mounting options ................................................................................................................... 226
7.5.5 Technical data ....................................................................................................................... 227
7.5.6 Dimension drawing ............................................................................................................... 228
7.6 SIMATIC RF360T ................................................................................................................. 229
7.6.1 Features ................................................................................................................................ 229
7.6.2 Ordering data ........................................................................................................................ 229
7.6.3 Mounting on metal ................................................................................................................ 229
7.6.4 Technical data ....................................................................................................................... 232
7.6.5 Dimension drawing ............................................................................................................... 233
7.7 SIMATIC RF370T ................................................................................................................. 234
7.7.1 Features ................................................................................................................................ 234
7.7.2 Ordering data ........................................................................................................................ 234
7.7.3 Mounting on metal ................................................................................................................ 235
7.7.4 Mounting instructions ............................................................................................................ 236
7.7.5 Technical specifications ........................................................................................................ 236
7.7.6 Dimensional drawing............................................................................................................. 237
7.8 SIMATIC RF380T ................................................................................................................. 238
7.8.1 Features ................................................................................................................................ 238
7.8.2 Ordering data ........................................................................................................................ 238
7.8.3 Installation guidelines for RF380T ........................................................................................ 239
7.8.3.1 Mounting instructions ............................................................................................................ 239
7.8.3.2 Metal-free area ...................................................................................................................... 242
7.8.4 Configuring instructions ........................................................................................................ 243
7.8.4.1 Temperature dependence of the transmission window ........................................................ 243
Table of contents
SIMATIC RF300
8 System Manual, 07/2016, C79000-G8976-C345-0x
7.8.4.2 Temperature response in cyclic operation ........................................................................... 243
7.8.5 Use of the transponder in the Ex protection area ................................................................ 246
7.8.5.1 Use of the transponder in hazardous areas for gases ......................................................... 246
7.8.5.2 Installation and operating conditions for the hazardous area .............................................. 247
7.8.6 Cleaning the mobile data memory ....................................................................................... 247
7.8.7 Technical specifications ....................................................................................................... 247
7.8.8 Dimensional drawing ............................................................................................................ 249
8 ISO transponder .................................................................................................................................. 251
8.1 Memory configuration of ISO the transponders ................................................................... 252
8.2 MDS D100 ............................................................................................................................ 254
8.2.1 Characteristics ..................................................................................................................... 254
8.2.2 Ordering data ....................................................................................................................... 254
8.2.3 Metal-free area ..................................................................................................................... 254
8.2.4 Technical data ...................................................................................................................... 256
8.2.5 Dimension drawing .............................................................................................................. 258
8.3 MDS D117 ............................................................................................................................ 259
8.3.1 Features ............................................................................................................................... 259
8.3.2 Ordering data ....................................................................................................................... 259
8.3.3 Mounting in metal ................................................................................................................. 260
8.3.4 Technical specifications ....................................................................................................... 260
8.3.5 Dimension drawing .............................................................................................................. 261
8.4 MDS D124 ............................................................................................................................ 262
8.4.1 Characteristics ..................................................................................................................... 262
8.4.2 Ordering data ....................................................................................................................... 262
8.4.3 Mounting on metal ............................................................................................................... 263
8.4.4 Technical specifications ....................................................................................................... 264
8.4.5 Use of the MDS D124 in hazardous area ............................................................................ 265
8.4.6 Dimension drawing .............................................................................................................. 267
8.5 MDS D126 ............................................................................................................................ 268
8.5.1 Characteristics ..................................................................................................................... 268
8.5.2 Ordering data ....................................................................................................................... 268
8.5.3 Mounting on metal ............................................................................................................... 269
8.5.4 Technical specifications ....................................................................................................... 270
8.5.5 Dimension drawing .............................................................................................................. 271
8.6 MDS D127 ............................................................................................................................ 272
8.6.1 Features ............................................................................................................................... 272
8.6.2 Ordering data ....................................................................................................................... 272
8.6.3 Mounting in metal ................................................................................................................. 273
8.6.4 Technical specifications ....................................................................................................... 274
8.6.5 Dimension drawing .............................................................................................................. 275
8.7 MDS D139 ............................................................................................................................ 276
8.7.1 Characteristics ..................................................................................................................... 276
8.7.2 Ordering data ....................................................................................................................... 277
8.7.3 Mounting on metal ............................................................................................................... 277
8.7.4 Cleaning the mobile data memory ....................................................................................... 278
8.7.5 Technical specifications ....................................................................................................... 279
8.7.6 Use of the MDS D139 in hazardous areas .......................................................................... 280
8.7.7 Dimension drawings ............................................................................................................. 282
Table of contents
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 9
8.8 MDS D160 ............................................................................................................................ 283
8.8.1 Characteristics ...................................................................................................................... 283
8.8.2 Information for RF300 compatibility ...................................................................................... 283
8.8.3 Ordering data ........................................................................................................................ 283
8.8.4 Mounting on metal ................................................................................................................ 284
8.8.5 Technical specifications ........................................................................................................ 285
8.8.6 Dimension drawings .............................................................................................................. 287
8.9 MDS D165 ............................................................................................................................ 288
8.9.1 Features ................................................................................................................................ 288
8.9.2 Ordering data ........................................................................................................................ 288
8.9.3 Technical data ....................................................................................................................... 289
8.9.4 Dimension drawing ............................................................................................................... 290
8.10 MDS D200 ............................................................................................................................ 291
8.10.1 Features ................................................................................................................................ 291
8.10.2 Ordering data ........................................................................................................................ 291
8.10.3 Mounting on metal ................................................................................................................ 292
8.10.4 Technical data ....................................................................................................................... 293
8.10.5 Dimension drawing ............................................................................................................... 295
8.11 MDS D261 ............................................................................................................................ 296
8.11.1 Features ................................................................................................................................ 296
8.11.2 Ordering data ........................................................................................................................ 296
8.11.3 Technical data ....................................................................................................................... 297
8.11.4 Dimension drawing ...............................................................................................................
298
8.12 MDS D324 ............................................................................................................................ 299
8.12.1 Characteristics ...................................................................................................................... 299
8.12.2 Ordering data ........................................................................................................................ 299
8.12.3 Mounting on metal ................................................................................................................ 300
8.12.4 Technical specifications ........................................................................................................ 301
8.12.5 Dimension drawing ............................................................................................................... 302
8.13 MDS D339 ............................................................................................................................ 303
8.13.1 Characteristics ...................................................................................................................... 303
8.13.2 Ordering data ........................................................................................................................ 303
8.13.3 Mounting on metal ................................................................................................................ 304
8.13.4 Cleaning the mobile data memory ........................................................................................ 305
8.13.5 Technical specifications ........................................................................................................ 305
8.13.6 Use of the MDS D339 in hazardous areas ........................................................................... 307
8.13.7 Dimensional drawing............................................................................................................. 309
8.14 MDS D400 ............................................................................................................................ 310
8.14.1 Features ................................................................................................................................ 310
8.14.2 Ordering data ........................................................................................................................ 310
8.14.3 Mounting on metal ................................................................................................................ 311
8.14.4 Technical specifications ........................................................................................................ 312
8.14.5 Dimension drawing ............................................................................................................... 314
8.15 MDS D421 ............................................................................................................................ 315
8.15.1 Characteristics ...................................................................................................................... 315
8.15.2 Ordering data ........................................................................................................................ 315
8.15.3 Mounting on metal ................................................................................................................
316
8.15.4 Technical specifications ........................................................................................................ 318
8.15.5 Dimension drawing ............................................................................................................... 320
Table of contents
SIMATIC RF300
10 System Manual, 07/2016, C79000-G8976-C345-0x
8.16 MDS D422 ............................................................................................................................ 321
8.16.1 Characteristics ..................................................................................................................... 321
8.16.2 Ordering data ....................................................................................................................... 321
8.16.3 Mounting in metal ................................................................................................................. 322
8.16.4 Technical specifications ....................................................................................................... 323
8.16.5 Dimension drawing .............................................................................................................. 324
8.17 MDS D423 ............................................................................................................................ 325
8.17.1 Characteristics ..................................................................................................................... 325
8.17.2 Ordering data ....................................................................................................................... 325
8.17.3 Mounting on metal ............................................................................................................... 326
8.17.4 Technical specifications ....................................................................................................... 327
8.17.5 Dimensional drawing ............................................................................................................ 329
8.18 MDS D424 ............................................................................................................................ 330
8.18.1 Characteristics ..................................................................................................................... 330
8.18.2 Ordering data ....................................................................................................................... 330
8.18.3 Mounting on metal ............................................................................................................... 331
8.18.4 Technical specifications ....................................................................................................... 332
8.18.5 Dimension drawing .............................................................................................................. 333
8.19 MDS D425 ............................................................................................................................ 334
8.19.1 Characteristics ..................................................................................................................... 334
8.19.2 Ordering data ....................................................................................................................... 334
8.19.3 Application example ............................................................................................................. 335
8.19.4 Technical specifications ....................................................................................................... 335
8.19.5 Dimension drawing .............................................................................................................. 337
8.20 MDS D426 ............................................................................................................................ 338
8.20.1 Characteristics ..................................................................................................................... 338
8.20.2 Ordering data ....................................................................................................................... 338
8.20.3 Mounting on metal ............................................................................................................... 339
8.20.4 Technical specifications ....................................................................................................... 340
8.20.5 Dimension drawing .............................................................................................................. 341
8.21 MDS D428 ............................................................................................................................ 342
8.21.1 Characteristics ..................................................................................................................... 342
8.21.2 Ordering data ....................................................................................................................... 342
8.21.3 Application example ............................................................................................................. 343
8.21.4 Technical specifications ....................................................................................................... 343
8.21.5 Dimension drawing .............................................................................................................. 345
8.22 MDS D460 ............................................................................................................................ 346
8.22.1 Characteristics ..................................................................................................................... 346
8.22.2 Ordering data ....................................................................................................................... 346
8.22.3 Mounting on metal ............................................................................................................... 347
8.22.4 Technical specifications ....................................................................................................... 347
8.22.5 Dimension drawings ............................................................................................................. 349
8.23 MDS D521 ............................................................................................................................ 350
8.23.1 Characteristics ..................................................................................................................... 350
8.23.2 Ordering data ....................................................................................................................... 350
8.23.3 Mounting on metal ............................................................................................................... 350
8.23.4 Technical specifications ....................................................................................................... 353
8.23.5 Dimension drawing .............................................................................................................. 354
Table of contents
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 11
8.24 MDS D522 ............................................................................................................................ 355
8.24.1 Characteristics ...................................................................................................................... 355
8.24.2 Ordering data ........................................................................................................................ 355
8.24.3 Mounting in metal .................................................................................................................. 355
8.24.4 Technical specifications ........................................................................................................ 356
8.24.5 Dimension drawing ............................................................................................................... 357
8.25 MDS D522 special variant .................................................................................................... 358
8.25.1 Characteristics ...................................................................................................................... 358
8.25.2 Ordering data ........................................................................................................................ 358
8.25.3 Mounting in metal .................................................................................................................. 359
8.25.4 Installation instructions.......................................................................................................... 359
8.25.5 Technical specifications ........................................................................................................ 361
8.25.6 Dimensional drawing............................................................................................................. 362
8.26 MDS D524 ............................................................................................................................ 363
8.26.1 Characteristics ...................................................................................................................... 363
8.26.2 Ordering data ........................................................................................................................ 363
8.26.3 Mounting on metal ................................................................................................................ 364
8.26.4 Technical specifications ........................................................................................................ 365
8.26.5 Dimension drawing ............................................................................................................... 366
8.27 MDS D525 ............................................................................................................................ 367
8.27.1 Characteristics ...................................................................................................................... 367
8.27.2 Ordering data ........................................................................................................................ 367
8.27.3 Application example ..............................................................................................................
368
8.27.4 Technical specifications ........................................................................................................ 368
8.27.5 Dimension drawing ............................................................................................................... 370
8.28 MDS D526 ............................................................................................................................ 371
8.28.1 Characteristics ...................................................................................................................... 371
8.28.2 Ordering data ........................................................................................................................ 371
8.28.3 Mounting on metal ................................................................................................................ 372
8.28.4 Technical specifications ........................................................................................................ 373
8.28.5 Dimension drawing ............................................................................................................... 374
8.29 MDS D528 ............................................................................................................................ 375
8.29.1 Characteristics ...................................................................................................................... 375
8.29.2 Ordering data ........................................................................................................................ 375
8.29.3 Application example .............................................................................................................. 376
8.29.4 Technical specifications ........................................................................................................ 376
8.29.5 Dimension drawing ............................................................................................................... 378
9 System integration .............................................................................................................................. 379
9.1 Introduction ........................................................................................................................... 379
9.2 ASM 456 ............................................................................................................................... 382
9.3 ASM 475 ............................................................................................................................... 382
9.3.1 Features ................................................................................................................................ 382
9.3.2 Ordering data ........................................................................................................................ 383
9.3.3 Indicators .............................................................................................................................. 384
9.3.4 Configuration ......................................................................................................................... 386
9.3.5 Shield connection .................................................................................................................. 388
9.3.6 Technical data ....................................................................................................................... 389
Table of contents
SIMATIC RF300
12 System Manual, 07/2016, C79000-G8976-C345-0x
9.4 RF120C ................................................................................................................................ 391
9.5 RF160C ................................................................................................................................ 391
9.6 RF170C ................................................................................................................................ 392
9.7 RF180C ................................................................................................................................ 393
9.8 RF182C ................................................................................................................................ 394
10 System diagnostics .............................................................................................................................. 395
10.1 Error codes ........................................................................................................................... 395
10.2 Diagnostics functions - STEP 7 Classic ............................................................................... 397
10.2.1 Overview .............................................................................................................................. 397
10.2.2 Reader diagnostics with SLG STATUS ............................................................................... 398
10.2.3 Transponder diagnostics with MDS STATUS ...................................................................... 401
10.3 Diagnostics functions STEP 7 Basic / Professional ............................................................. 403
A Appendix ............................................................................................................................................. 405
A.1 Certificates and approvals ................................................................................................... 405
A.2 Accessories .......................................................................................................................... 407
A.2.1 Transponder holders ............................................................................................................ 407
A.2.2 MOBY Y adapter for MOBY I migration ............................................................................... 414
A.2.3 DVD "Ident Systems Software & Documentation" ............................................................... 416
A.3 Connecting cable ................................................................................................................. 417
A.3.1 RF3xxR reader (RS-422) with ASM 456 / RF160C / RF170C / RF180C / RF182C ............ 417
A.3.2 Reader RF3xxR (RS422) with ASM 475 ............................................................................. 419
A.3.3 Reader RF3xxR (RS-422) with RF120C .............................................................................. 420
A.3.4 Reader RF380R (RS232) - PC ............................................................................................ 421
A.4 Ordering data ....................................................................................................................... 423
A.5 Service & Support ................................................................................................................ 434
Index ................................................................................................................................................... 437
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 13
Introduction
1
1.1
Navigating in the system manual
Structure of the content
Content
Contents Detailed organization of the documentation, including the index of pages and chapters
Introduction
Purpose, structure and description of the important topics.
Safety Information Refers to all the valid technical safety aspects which have to be adhered to while installing,
commissioning and operating from the product/system view and with reference to statutory
regulations.
System overview
Overview of all RF identification systems, system overview of SIMATIC RF300
Planning the RF300 system Information about possible applications of SIMATIC RF300, support for application plan-
ning, tools for finding suitable SIMATIC RF300 components.
Reader
Description of readers which can be used for SIMATIC RF300
Antennas
Description of antennas which can be used for SIMATIC RF300
RF300 transponder
Description of RF300 transponders which can be used for SIMATIC RF300
ISO transponder
Description of ISO transponders which can be used for SIMATIC RF300
System integration Overview of the communications modules and function blocks that can be used for
SIMATIC RF300
System diagnostics
Description of system diagnostics available for SIMATIC RF300
Appendix Certificates and approvals
Accessories
Connecting cables
Ordering data
Service & Support
Introduction
1.2 Preface
SIMATIC RF300
14 System Manual, 07/2016, C79000-G8976-C345-0x
1.2
Preface
Purpose of this document
This system manual contains all the information needed to plan and configure the system.
It is intended both for programming and testing/debugging personnel who commission the
system themselves and connect it with other units (automation systems, further
programming devices), as well as for service and maintenance personnel who install
expansions or carry out fault/error analyses.
Scope of validity of this document
This documentation is valid for all variants of the SIMATIC RF300 system and describes the
devices shipped as of July 2016.
Additional information
You will find further information about the readers RF350M, RF310R Scanmode and
RF382R Scanmode in the relevant manuals.
Additional information (https://support.industry.siemens.com/cs/ww/en/ps/15033)
Registered trademarks
SIMATIC ®, SIMATIC RF ®, MOBY ®, RF MANAGER ® and SIMATIC Sensors ® are
registered trademarks of Siemens AG.
History
Currently released versions of the SIMATIC RF300 system manual:
Edition
Remark
05/2005
First Edition
11/2005 Revised edition, components added: RF310R with RS-422 interface, RF350T and
RF360T; ASM 452, ASM 456, ASM 473 and ASM 475
04/2006 Revised edition,
components added: RF340R as well as RF350R with the antenna types ANT 1, ANT 18
and ANT 30
12/2006 Revised edition,
components added: RF370T, RF380T and RF170C
07/2007 Revised edition,
degrees of protection changed for the RF300 readers
09/2007 Revised edition,
components added: RF380R and RF180C
06/2008
Revised edition
01/2009 Revised edition,
expanded by the reader functionalities "RF300 transponder" and "ISO transponder" for
the SIMATIC RF310R and SIMATIC RF380R readers
Introduction
1.2 Preface
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 15
Edition
Remark
03/2014 Revised edition,
expanded by the reader functionalities "RF300 transponder" and "ISO transponder" for
the SIMATIC RF340R and SIMATIC RF350R readers
Expanded by the following components:
Reader
RF310R with Scanmode, RF382R with Scanmode
Communications module
RF120C
Antennas
ANT 12 (in conjunction with RF350R) and ANT 8 (in conjunction with RF310M)
RF300 transponder
RF330T
ISO transponder
MDS D117, D126, D127, D165, D200, D261, D339, D400, D422, D423, D425, D426
07/2016 Revised and expanded edition
Expanded by the following components:
Readers of the second generation
RF310R, RF340R, RF350R
Reader
RF380R Scanmode
Antenna
ANT 3, ANT 3S
ISO transponder
MDS D5xx
MOBY E migration in SIMATIC RF300
MOBY Y adapter for MOBY I migration in SIMATIC RF300
Abbreviations and naming conventions
The following terms/abbreviations are used synonymously in this document:
Reader
Write/read device (SLG)
Transponder, tag
Data carrier, mobile data storage, (MDS)
Communications module (CM)
Interface module (ASM)
Introduction
1.2 Preface
SIMATIC RF300
16 System Manual, 07/2016, C79000-G8976-C345-0x
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 17
Safety information
2
SIMATIC RFID products comply with the salient safety specifications acc. to IEC, VDE, EN,
UL and CSA. If you have questions about the permissibility of the installation in the planned
environment, please contact your service representative.
WARNING
Opening the device
Do not open the device when when the power supply is on. Unauthorized opening of and
improper repairs to the device may result in substantial damage to equipment or risk of
personal injury to the user.
NOTICE
Alterations not permitted
Alterations to the devices are not permitted.
Failure to observe this requirement shall constitute a revocation of the radio equipment
approval, CE approval and manufacturer's warranty.
Installation instructions
NOTICE
Switch/fuse to disconnect the reader from the power supply
Make sure that the readers can be disconnected from the power supply with a switch or a
fuse. The function of the switch or fuse must be clearly recognizable.
Operating temperature
CAUTION
Danger of burns
Note that some outer components of the reader are made of metal. Depending on the
environmental conditions temperatures can occur on the device that are higher than the
maximum permitted operating temperature.
Safety information
SIMATIC RF300
18 System Manual, 07/2016, C79000-G8976-C345-0x
Repairs
WARNING
Repairs only by authorized qualified personnel
Repairs may only be carried out by authorized qualified personnel. Unauthorized opening of
and improper repairs to the device may result in substantial damage to equipment or risk of
personal injury to the user.
System expansions
Only install system expansions intended for this system. If you install other expansions, you
may damage the system or violate the safety requirements and regulations for radio
frequency interference suppression. Contact Technical Support or your local sales
department to find out which system expansions are suitable for installation.
NOTICE
Warranty conditions
If you cause system defects by installing or exchanging system expansion devices, the
warranty becomes void.
Safety distances
CAUTION
Safety distance between reader/antenna and persons
Note that for permanent exposure, the following safety distances must be adhered to:
RF310R: ≥ 80 mm
RF340R: ≥ 130 mm
RF350R + ANT 1: ≥ 140 mm
RF350R + ANT 3: ≥ 80 mm
RF350R + ANT 12: ≥ 25 mm
RF350R + ANT 18: ≥ 50 mm
RF350R + ANT 30: ≥ 80 mm
RF380R: ≥ 250 mm
RF382R: ≥ 130 mm
Note
Safety distance with pacemakers
A safety distance betwee
n reader/antenna and persons with pacemakers is not necessary.
Safety information
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 19
Security information
Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, solutions, machines, equipment and/or networks. They are
important components in a holistic industrial security concept. With this in mind, Siemens’
products and solutions undergo continuous development. Siemens recommends strongly
that you regularly check for product updates.
For the secure operation of Siemens products and solutions, it is necessary to take suitable
preventive action (e.g. cell protection concept) and integrate each component into a holistic,
state-of-the-art industrial security concept. Third-party products that may be in use should
also be considered. You will find more information about Industrial Security in:
Industrial security (http://www.siemens.com/industrialsecurity)
To stay informed about product updates as they occur, sign up for a product-specific
newsletter. You will find more information about this in
Product support (https://support.industry.siemens.com/cs/ww/en/ps/15247/pm)
Safety information
SIMATIC RF300
20 System Manual, 07/2016, C79000-G8976-C345-0x
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 21
System overview
3
3.1
RFID systems
RFID systems from Siemens control and optimize material flow. They identify reliably,
quickly and economically, are insensitive to contamination and store data directly on the
product or workpiece carrier.
Table 3- 1 Overview of SIMATIC RFID systems
Frequency range
HF
UHF
RFID system
SIMATIC RF200
SIMATIC RF300
MOBY D
SIMATIC RF600
Transmission frequen-
cy
13.56 MHz 13.56 MHz 13.56 MHz 865 ... 928 MHz 1)
Range, max.
650 mm
210 mm
380 mm
8 m
Protocols
(air interface)
ISO 15693
ISO 18000-3
ISO 15693
ISO 18000-3
RF300 (proprie-
tary)
ISO 15693
ISO 18000-3
EPCglobal Class 1
Gen 2
ISO 18000-6B
ISO 18000-6C
Standards, specifica-
tions, approvals
EN 300330, EN
301489, CE
FCC Part 15
UL/CSA
EN 300330, EN
301489, CE
FCC Part 15
UL/CSA
ATEX
EN 300330, EN
301489, CE
FCC Part 15
UL/CSA
ETSI EN 3002208,
CE
FCC
UL
Memory capacity,
max.
992 bytes (EEPROM)
8192 bytes (FRAM)
64 kB (EEPROM)
8192 bytes (FRAM)
922 bytes (EEPROM)
2000 bytes (FRAM)
496 bits (EPC),
3424 bytes
Maximum data transfer
rate for wireless
transmission
25.5 kbps 106 kbps 26.5 kbps 300 kbps
Multitag capability
With RF290R reader
only
Yes/No 2) Yes Yes
Special characteristics
Particularly com-
pact designs
For particularly
low-cost RFID so-
lutions
IO-Link for simple
identification tasks
High data trans-
mission speed
Extended diagnos-
tics options
High memory ca-
pacity
SIMATIC or PC/IT
integration
External antennas
for industrial appli-
cations
SIMATIC or PC/IT
integration
Data preprocessing
in the readers
Special antennas
for industrial appli-
cations
1)
Depends on the country of deployment and the frequency regulations that apply there
2) Multitag capability only with the readers of the second generation and in conjunction with ISO transponders.
System overview
3.2 SIMATIC RF300
SIMATIC RF300
22 System Manual, 07/2016, C79000-G8976-C345-0x
3.2
SIMATIC RF300
3.2.1
System overview of SIMATIC RF300
SIMATIC RF300 is an inductive identification system specially designed for use in industrial
production for the control and optimization of material flow.
Thanks to its compact dimensions, RF300 is the obvious choice where installation conditions
are restricted, especially for assembly lines, handling systems and workpiece carrier
systems. RF300 is suitable for both simple and demanding RFID applications and it stands
out for its persuasive price/performance ratio.
Scanmode applications
In applications without command control, the transponders are read automatically. The type
of data acquisition and transfer is preset in the reader using parameters.
Medium-performance applications
RF300 in conjunction with ISO transponders provides a cost-effective solution for medium-
performance applications.
High-performance applications
The high-performance components of RF300 in conjunction with the RF300 transponders
provide advantages in terms of high data transmission speeds and storage capacities.
SIMATIC RF300 - second generation
As of the delivery stage in the first quarter of 2017 an innovative second generation of the
readers RF310R, RF340R und RF350R is available. These readers apart from additional
performance characteristics are 100% compatible with the RF300s of the first generation.
The second generation of the RF380R comes later.
Additional performance features:
Additional transponder protocol ISO 14443 (air interface) for MDS E transponders
Automatic detection of different transponder types (RF300, ISO 15693, ISO 14443)
Emulation of MOBY I write/read devices (SLG 4x) in conjunction with RF300
transponders for simplified migration
Setup help integrated in the reader
The setup help serves the simple optimization of the reader-transponder positioning
during installation/commissioning. Further installation or software are not necessary. The
setup help becomes active directly after turning the device on.
Improved 5-color LED display
System overview
3.2 SIMATIC RF300
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 23
User-friendly parameter assignment and configuration with TIA Portal technological object
(as of STEP 7 Basic / Professional V14 SP 1)
Expanded functions for trained users:
Address information for the "INIT" command no longer necessary
Expanded "RESET" parameter
The MDS-STATUS "Mode 3" functions with all transponder types
Automatic antenna recognition with the reader RF350R (depending on the antenna)
Table 3- 2 Differences in the features
Feature
SIMATIC RF300
first generation
SIMATIC RF300
second generation
Transponder protocol RF300
Transponder protocol ISO
15693
Transponder protocol ISO
14443
--
MOBY I emulation to the con-
troller
--
Integrated setup help
--
LED display
1 x
2 x
RFID technological object
--
1)
1) With the TIA Portal as of STEP 7 Basic / Professional V14 SP 1
3.2.2
RFID components and their function
System components overview
Table 3- 3 RF300 system components
Component
Description
Communications
module
A communications module is used to integrate the RF identification system in
controllers/automation systems.
Reader The reader ensures inductive communication and power supply to the tran-
sponder, and handles the connection to the various controllers (e.g. SIMATIC
S7) through the communications module (e.g. ASM 456).
Transponder The transponder stores all data relevant for production and is used, for exam-
ple, instead of barcode.
System overview
3.2 SIMATIC RF300
SIMATIC RF300
24 System Manual, 07/2016, C79000-G8976-C345-0x
RF300 system components for high-performance applications
Figure 3-1 High performance system overview
Table 3- 4 Reader-transponder combination options for high-performance applications
Transponder
RF310R
RF340R
RF350R
with ANT 1
RF350R
with ANT 3
RF350R
with ANT 18
RF350R
with ANT 30
RF380R
RF320T
RF330T
RF340T
RF350T
--
RF360T
--
System overview
3.2 SIMATIC RF300
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 25
Transponder
RF310R
RF340R
RF350R
with ANT 1
RF350R
with ANT 3
RF350R
with ANT 18
RF350R
with ANT 30
RF380R
RF370T
1)
--
--
--
RF380T
-- -- -- --
1) as of reader version "AS ≥ D"
Combination possible
--
Combination not possible
Combination possible, but not recommended
System overview
3.2 SIMATIC RF300
SIMATIC RF300
26 System Manual, 07/2016, C79000-G8976-C345-0x
RF300 system components for medium-performance applications
Figure 3-2 System overview medium-performance
System overview
3.2 SIMATIC RF300
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 27
Table 3- 5 Reader-transponder combination options for medium-performance applications
Transponder /
MDS
RF310R
(RS-422)
RF340R
RF350R
with ANT
1
RF350R
with ANT
3
RF350R
with ANT
12
RF350R
with ANT
18
RF350R
with ANT
30
RF380R
MDS D100
--
--
--
MDS D117
-- -- -- -- -- --
MDS D124
MDS D126
--
--
--
MDS D127
--
--
--
--
--
--
MDS D139
--
--
--
MDS D160
MDS D165
--
--
--
MDS D200
--
--
--
MDS D261
--
--
--
MDS D324
--
MDS D339
1)
--
--
--
--
MDS D400
--
--
--
--
MDS D421
--
--
--
--
--
--
MDS D422
--
--
--
--
--
MDS D423
--
--
MDS D424
MDS D425
MDS D426
--
--
--
MDS D428
MDS D460
MDS D521
--
--
--
--
--
--
MDS D522
--
--
--
--
--
--
MDS D524
--
MDS D525
--
MDS D526
--
--
--
MDS D528
--
MDS E600
2)
--
--
--
MDS E611
2)
--
--
--
--
MDS E623
2)
--
--
--
--
--
--
MDS E624
2)
--
--
1)
as of reader version "AS ≥ D"
2) Product to be discontinued; only relevant for migration projects.
Combination possible
--
Combination not possible
Combination possible, but not recommended
System overview
3.2 SIMATIC RF300
SIMATIC RF300
28 System Manual, 07/2016, C79000-G8976-C345-0x
Note
Note on operation of the transponders MDS D5xx and MDS E6xx
Note that the transponders MDS D5xx and MDS E6xx can only be operated in conjunction
with the readers of t
he second generation (article number "6GT2801-xBAxx").
System overview
3.2 SIMATIC RF300
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 29
RF300 system components for Scanmode applications
Figure 3-3 Scanmode system overview
System overview
3.2 SIMATIC RF300
SIMATIC RF300
30 System Manual, 07/2016, C79000-G8976-C345-0x
Table 3- 6 Reader-transponder combination options for Scanmode applications
Transponder /
MDS
RF310R
RF380R
RF382R
MDS D100
--
MDS D124
MDS D126
--
MDS D139
--
MDS D160
MDS D165
--
MDS D200
--
MDS D261
--
MDS D324
MDS D339
--
MDS D400
--
MDS D423
--
MDS D424
MDS D425
--
MDS D426
--
MDS D428
--
MDS D460
MDS E610
1)
--
--
MDS E611
1)
--
--
MDS E624
1)
--
--
RF320T
--
RF330T
--
RF340T
--
RF350T
--
RF360T
--
RF370T
--
--
RF380T
--
--
1) Product to be discontinued; only relevant for migration projects.
Combination possible
--
Combination not possible
Combination possible, but not recommended
Note
Note on operation of the transponders MDS D5xx and MDS E6xx
Note that the transponders MDS D5xx and MDS E6xx can only be operated in conjuncti
on
with the readers of the second generation (article number "6GT2801
-xBAxx").
System overview
3.2 SIMATIC RF300
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 31
3.2.3
Application areas of RF300
SIMATIC RF300 is primarily used for non-contact identification of containers, palettes and
workpiece holders in a closed production circuit. The data carriers (transponders) remain in
the production chain and are not supplied with the products. SIMATIC RF300, with its
compact transponder and reader enclosure dimensions, is particularly suitable in confined
spaces.
Main applications
Mechanical engineering, automation systems, conveyor systems
Ancillary assembly lines in the automotive industry, component suppliers
Small assembly lines
Application examples
Production lines for engines, gearboxes, axles, etc.
Assembly lines for ABS systems, airbags, brake systems, doors, cockpits, etc.
Assembly lines for household electrical appliances, consumer electronics and electronic
communication equipment
Assembly lines for PCs, small-power motors, contactors, switches
Advantages
Reading and writing of large data volumes within a short time results in shorter production
cycle times and helps to boost productivity
Can be used in harsh environments thanks to rugged components with high degree of
protection
Simple system integration into TCP/IP networks, SIMATIC S7, PROFINET and
PROFIBUS (TIA) with little effort
Shorter commissioning times and fewer plant failures and downtimes thanks to integral
diagnostic functionalities
Cost savings thanks to maintenance-free components
System overview
3.3 System configuration
SIMATIC RF300
32 System Manual, 07/2016, C79000-G8976-C345-0x
3.3
System configuration
3.3.1
Overview
The SIMATIC RF300 system is characterized by a high level of standardization of its
components. This means that the system follows the TIA principle throughout: Totally
Integrated Automation. It provides maximum transparency at all levels with its reduced
interface overhead. This ensures optimum interaction between all system components.
The RF300 system with its flexible components offers many possibilities for system
configuration. This chapter shows you how you can use the RF300 components on the basis
of various example scenarios.
3.3.2
Assembly line example: Use of RF300 transponders
In assembly lines, such as in engine manufacturing, many work steps are completed in
succession. Automated or manual assembly work is carried out at the individual workstations
in relatively short periods of time. The special features of the RF300 transponders, which
stand out for their large data memory and high transmission speeds, bring about many
advantages in regard to the production unit numbers of such plants.
The possibility of saving large volumes of data means savings in terms of data management
on the HOST system and considerably contributes to data security (redundant data
management e.g. HOST database or controller and data carrier)
Advantages at a glance:
redundant data storage on the basis of large memory, availability of decentralized data
high data rate
data management savings on the host system
Features of the scenario
In this example scenario, engine blocks that are placed on metal pallets are conveyed on an
assembly line. The engines are assembled piece-by-piece at the individual workstations. The
RFID transponder of the type SIMATIC RF340T is mounted permanently on the underside of
the pallet. The transport speed is approx. 0.5 m/s.
In this scenario, it is an advantage that the transponder can be directly secured to metal on
the metal pallets. The small-dimensioned SIMATIC RF310R reader is integrated in the
conveyor elements in such a manner that it can communicate with the transponders from
below. Thus, it is not necessary to align the pallets or to attach several transponders.
The data of the entire production order (5000 bytes) is stored on the transponder. This data
is read at each workstation and changed or supplemented depending on the workstation,
and then written back again. Thus, the status of the engine block assembly can be
determined at any point in time, even if there is a failure at the HOST level.
Thanks to the extremely high data rate, a very short cycle time for the work steps can be
planned, which results in high end product unit numbers "engines".
System overview
3.3 System configuration
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 33
The entire production order that is saved on the transponder can also be read manually via
the WIN-LC terminal located at each workstation. This means that virtually no additional data
management is required on the control computer.
The production order data can also be read for servicing purposes via the mobile SIMATIC
RF350M reader.
Figure 3-4 Example of engine block production
System overview
3.3 System configuration
SIMATIC RF300
34 System Manual, 07/2016, C79000-G8976-C345-0x
3.3.3
Example of container and cardboard container handling: Use of ISO
transponders
Containers of varying sizes are conveyed to picking workstations in a delivery center. There,
the individual goods are removed and packed in cartons according to the delivery note.
These cartons are marked with low-cost transponder labels and sorted to small or large
packaging workstations (according to the delivery note) by being guided or transported via
the corresponding conveyor system. The containers are marked using the MDS D100 ISO
transponder.
Advantages at a glance:
Decision points in the conveyor system can be installed in a more favorable way
(mechanically)
Different sizes of containers with different depths can be identified due to the range
In contrast to bar codes, the transponders can also be written to
Different types of transponders can be processed using one and the same reader
Features of the scenario
In this example scenario, containers of varying sizes are conveyed on a conveyor system.
Only the unique identification number (8 bytes) is read. The containers to be picked are
sorted to the corresponding workstations. The maximum transport speed is 1.0 m/s.
In this scenario, it is an advantage that the RF380R reader can read and write the
transponders at different distances on the containers without a great deal of mechanical or
control system effort due to the reading range.
During the picking process, the goods are immediately placed in different containers or
packed in cartons depending on the destination (small packaging or large packaging station).
The containers are equipped with the MDS D100 ISO transponder. The low-cost "one-way
tag" (label) is used on the cartons: it is simply glued onto the carton. Thus the goods can be
identified at any time. Again, one and the same reader hardware is used for this. The
maximum transport speed is 0.8 m/s.
In addition, flexible identification is possible at each location and at any time using the mobile
SIMATIC RF350M reader.
System overview
3.3 System configuration
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 35
Figure 3-5 Example of container and cardboard container handling
System overview
3.3 System configuration
SIMATIC RF300
36 System Manual, 07/2016, C79000-G8976-C345-0x
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 37
Planning the RF300 system
4
4.1
Fundamentals of application planning
4.1.1
Selection criteria for SIMATIC RF300 components
Assess your application according to the following criteria, in order to choose the right
SIMATIC RF300 components:
Transmission distance (read/write distance)
Tracking tolerances
Static or dynamic data transfer
Data volume to be transferred
Speed in case of dynamic transfer
Metal-free rooms for transponders and readers
Ambient conditions such as relative humidity, temperature, chemical impacts, etc.
4.1.2
Transmission window and read/write distance
The reader generates an inductive alternating field. The antenna field is largest near to the
reader. The size of the field decreases strongly the further away from the reader. The
distribution of the antenna field depends on the structure and geometry of the antennas in
the reader and transponder.
For the transponder to function correctly, a minimum field strength at the transponder must
be achieved at a distance Sg from the reader or the antenna. The figures below show the
transmission window between transponder and reader or between transponder and antenna:
Planning the RF300 system
4.1 Fundamentals of application planning
SIMATIC RF300
38 System Manual, 07/2016, C79000-G8976-C345-0x
S
a
Operating distance between transponder and reader
Sg Limit distance (maximum clear distance between upper surface of the reader and the tran-
sponder, at which the transmission can still just function under normal conditions)
Lx Length of a transmission window in the x direction while maintaining the working distance (Lx
Ly with RF380R and RF382R)
Ly Length of a transmission window in the y direction while maintaining the working distance (Lx
Ly with RF380R and RF382R)
M
Field centerpoint
SP
Intersection of the axes of symmetry of the transponder
Figure 4-1 Transmission window and read/write distance reader
Planning the RF300 system
4.1 Fundamentals of application planning
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 39
Note
Transmission window with RF380R and RF382R
Note that the transmission window of the reader RF380R is not square (L
x ≠ Ly). To obtai
n as
large a transmission window as possible, make sure that the transponder only crosses the
reader in the x direction.
Sa
Operating distance between transponder and reader
Sg Limit distance (maximum clear distance between upper surface of the reader and the tran-
sponder, at which the transmission can still just function under normal conditions)
Ld
Diameter of a transmission window
SP
Intersection of the axes of symmetry of the transponder
Figure 4-2 Transmission window and read/write distance round antenna
Planning the RF300 system
4.1 Fundamentals of application planning
SIMATIC RF300
40 System Manual, 07/2016, C79000-G8976-C345-0x
The transponder can be used as soon as the intersection (SP) of the transponder enters the
area of the transmission window.
From the diagrams above, it can also be seen that operation is possible within the area
between Sa and Sg. The active operating area reduces as the distance increases, and
shrinks to a single point at distance Sg. Only static mode should thus be used in the area
between Sa and Sg.
Aids for calculating the field data
Note
Determining the operating distance, limit distance and transmission window
Remember that you can obtain the values S
a, Sg and L simply and quickly using the tool for
field data acquisition. You will find this on the DVD "Ident Systems, Software &
Documentation".
4.1.3
Width of the transmission window
Determining the width of the transmission window
The following approximation formula can be used for practical applications:
B:
Width of the transmission window
L:
Length of the transmission window
Tracking tolerances
The width of the transmission window (B) is particularly important for the mechanical tracking
tolerance. The formula for the dwell time is valid without restriction when B is observed.
Planning the RF300 system
4.1 Fundamentals of application planning
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 41
4.1.4
Impact of secondary fields
Secondary fields in the range from 0 mm to 30% of the limit distance (Sg) generally always
exist.
They should, however, only be used during configuration in exceptional cases, since the
read/write distances are very limited. Exact details of the secondary field geometry cannot be
given, since these values depend heavily on the operating distance and the application.
When working in dynamic mode, remember that during the transition from the secondary
field to the main field the presence of the tag is lost temporarily. It is therefore advisable to
select a distance > 30 % of Sg.
Main field
Secondary field
Figure 4-3 Gap in the field resulting from secondary fields
Planning the RF300 system
4.1 Fundamentals of application planning
SIMATIC RF300
42 System Manual, 07/2016, C79000-G8976-C345-0x
Secondary fields without shielding
The following graphic shows typical primary and secondary fields, if no shielding measures
are taken.
Main field
Secondary field
Figure 4-4 Secondary field without shielding
In this arrangement, the reader can also read tags via the secondary field. Shielding is
required in order to prevent unwanted reading via the secondary field, as shown and
described in the following.
Planning the RF300 system
4.1 Fundamentals of application planning
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 43
Secondary fields with shielding
The following graphic shows typical primary and secondary fields, with metal shielding this
time.
The metal shielding prevents the reader from detecting tags via the secondary field.
Main field
Secondary field
Figure 4-5 Secondary field with shielding
4.1.5
Setup help of the readers of the second generation
After turning on the reader (connection to the power supply) and the following startup phase,
the reader automatically changes to the "Setup" mode. The antenna (reader internal or
external) is also turned on.
In this status "search for transponders" the reader scans the antenna field for transponders
with all HF protocols (RF300, ISO 15693, ISO 14443). If a transponder is recognized in the
antenna field of the reader only the HF protocol of the recognized transponder type is used
and there is a change in the status to "Show quality". In this status you obtain direct
feedback of the communication with the transponder via the LED. If no transponder is
recognized for a longer period of time, the reader changes back to the "Search for
transponders" status.
When a "RESET" command is received, the reader changes back to the normal operation as
known from the RF300.
Planning the RF300 system
4.1 Fundamentals of application planning
SIMATIC RF300
44 System Manual, 07/2016, C79000-G8976-C345-0x
Meaning of the LED operating display in the "Setup" mode
The operational statuses of the reader are displayed by two LEDs. The LEDs can adopt the
colors white green, red, yellow or blue and the statuses off , on , flashing :
Table 4- 1 Display elements
LED
Meaning
The reader is turned off.
The reader is turned on and is searching for transponders.
The reader is in the "Setup" mode, in the "Search for transponders" status and
has not yet received a "RESET" command and is not ready.
/ There is transponder in the antenna field.
The reader is in the "Setup" mode, in the status "Show quality", has not yet re-
ceived a "RESET" command and is not ready.
Depending on the receive strength, the LED flashes or is lit permanently.
4.1.6
Permissible directions of motion of the transponder
Detection area and direction of motion of the transponder
The transponder and reader have no polarization axis, i.e. the transponder can come in from
any direction, assume any position as parallel as possible to the reader, and cross the
transmission window. The figure below shows the active area for various directions of
transponder motion:
Transmission window
Direction of motion of the transponder
Detection area L x W
Figure 4-6 Detection areas of the reader for different directions of transponder motion
Planning the RF300 system
4.1 Fundamentals of application planning
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 45
4.1.7
Operation in static and dynamic mode
Operation in static mode
If working in static mode, the transponder can be operated up to the limit distance (Sg). The
transponder must then be positioned exactly over the reader:
Figure 4-7 Operation in static mode
Operation in dynamic mode
When working in dynamic mode, the transponder moves past the reader. The transponder
can be used as soon as the intersection (SP) of the transponder enters the circle of the
transmission window. In dynamic mode, the operating distance (Sa) is of primary importance.
[Operating distances, see Chapter Field data for transponders, readers and antennas
(Page 48)]
Figure 4-8 Operation in dynamic mode
Planning the RF300 system
4.1 Fundamentals of application planning
SIMATIC RF300
46 System Manual, 07/2016, C79000-G8976-C345-0x
4.1.8
Dwell time of the transponder
The dwell time is the time in which the transponder remains within the transmission window
of a reader. The reader can exchange data with the transponder during this time.
The dwell time is calculated thus:
tV:
Dwell time of the transponder
L:
Length of the transmission window
v
Tag
:
Speed of the transponder (tag) in dynamic mode
0,8:
Constant factor used to compensate for temperature impacts and production tole
r-
ances
The dwell time can be of any duration in static mode. The dwell time must be sufficiently long
to allow communication with the transponder.
The dwell time is defined by the system environment in dynamic mode. The volume of data
to be transferred must be matched to the dwell time or vice versa. In general:
t
V::
Dwell time of the data memory within the field of the reader
t
K
:
Communication time between transponder and communication module
Planning the RF300 system
4.1 Fundamentals of application planning
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 47
4.1.9
Communication between communications module, reader and transponder
Aids for calculating the data transmission times
User-friendly calculation tools are available for the communications modules ASM 456,
RF160C, RF170C and RF180C to calculate data transfer times. The calculation tools can be
found on the DVD "Ident Systems Software & Documentation", article number 6GT2080-
2AA20.
Figure 4-9 User interface of the calculation tool for command processing time
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
SIMATIC RF300
48 System Manual, 07/2016, C79000-G8976-C345-0x
Aids for calculating the field data
You will also find a tool for calculating field data on the DVD "Ident Systems, Software &
Documentation". Using this tool, among other things you can calculate the operating
distance (Sa), limit distance (Sg) and transmission window (L).
Figure 4-10 User interface of the calculation tool for field data acquisition
4.2
Field data for transponders, readers and antennas
The following tables show the field data for all SIMATIC RF300 components of transponders
and readers. This makes the correct selection of a transponder and reader particularly easy.
All the technical specifications listed are typical data and are applicable for an ambient
temperature between 0 °C and +50 °C, a supply voltage between 22 and 27 VDC and a
metal-free environment.
Tolerances of ±20 % are permitted due to production or temperature
conditions.
If the entire voltage range at the reader of 20 VDC to 30 VDC and/or the entire temperature
range of transponders and readers is used, the field data is subject to further tolerances.
Note
Transmission gaps
If the minimum operating distance (S
a) is not observed, a transmission gap can occur in the
center of the field. Communication with the transponder is not possib
le in the transmission
gap.
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 49
Note
Possible reader-transponder combinations
The tables of the following section show the possible reader
-transponder combinations.
4.2.1
Field data of RF300 transponders
The limit distances (Sg) and operating distances (Sa) along with the length of the
transmission window for each reader-transponder combination are listed in the tables below.
In dynamic mode, make sure that rectangular transponders cross the antenna field in the
longitudinal direction.
Table 4- 2 Field data RF310R reader
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
RF320T
30
1...23
26
RF330T
30
2...18
21
RF340T
40 2...36 41
RF350T
45
2...47
53
RF360T
45
2...60
68
RF370T
70
2...45
60
All values are in mm
The values relate to the RF310R reader as of version "D".
Table 4- 3 Field data RF340R reader
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
RF320T
45
1...20
25
RF330T
40
2...20
24
RF340T
80
2...50
65
RF350T
80
2...60
75
RF360T
90
2...65
85
RF370T
85
5...60
80
RF380T
90
5...80
100
All values are in mm
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
SIMATIC RF300
50 System Manual, 07/2016, C79000-G8976-C345-0x
Table 4- 4 Field data RF350R reader / ANT 1
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
RF320T
45
1...30
40
RF330T
40 1...25 30
RF340T
80
2...55
70
RF350T
80
2...65
85
RF360T
90
2...75
100
RF370T
85
5...65
85
RF380T
90
5...90
110
All values are in mm
Table 4- 5 Field data RF350R reader / ANT 3
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
RF320T
??
1...16
20
RF330T
??
1...16
20
RF340T
??
2...32
40
RF350T
??
2...35
42
RF360T
??
2...40
50
All values are in mm
Table 4- 6 Field data RF350R reader / ANT 18
Diameter of the transmis-
sion window (Ld)
Operating distance (Sa)
Limit distance (Sg)
RF320T
10
0...10
15
RF330T
10
0...11
13
RF340T
20
0...20
25
All values are in mm
Table 4- 7 Field data RF350R reader / ANT 30
Diameter of the transmis-
sion window (Ld)
Operating distance (Sa)
Limit distance (Sg)
RF320T
15
0...15
20
RF330T
22
0...15
18
RF340T
25 0...30 35
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 51
Diameter of the transmis-
sion window (Ld)
Operating distance (Sa)
Limit distance (Sg)
RF350T
25
0...35
40
RF360T
?? 2...25 35
All values are in mm
Table 4- 8 Field data RF380R reader
Length of the transmission window
Operating distance
(Sa)
Limit distance (Sg)
in the x direction (Lx)
in the y direction (Ly)
RF320T
100
40
2...45
60
RF330T
120
30
5...45
52
RF340T
120
50
2...80
105
RF350T
140
60
2...100
125
RF360T
160
70
2...120
150
RF370T
160
65
5...100
135
RF380T
180
75
5...125
160
All values are in mm
The RF380R with MLFB 6GT2801-3AB10 allows the transmission output power to be set
with the aid of the "distance_limiting" input parameter (you will find more detailed information
in "Function manual FB 45
(https://support.industry.siemens.com/cs/ww/en/view/21738808)"). For this, values from
approx. 0.5 W to approx. 2.0 W can be set in 0.25 W increments. Depending on the setting,
the change to the transmission output power increases the performance in the lower
operating distance (low performance) or in the upper limit distance (high performance).
The "distance_limiting" range of values is from:
02 (= 0.5 W) through
05 (= 1.25 W; default value) to
08 (= 2 W).
Note
A 'distance_
limiting' value setting outside of the range of "02 to 08" leads to the default
setting 5 and does not generate an error message.
You will find more information on this subject in the chapter "
Minimum clearances (Page 59
)"
section "Minimum distance from reader to reader".
You will find precise information about the parameters in "Product Information "FB 45 and
FC 45 input parameters for RF300 and ISO
transponders"
(
https://support.industry.siemens.com/cs/ww/en/view/33315697)".
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
SIMATIC RF300
52 System Manual, 07/2016, C79000-G8976-C345-0x
4.2.2
Field data of ISO transponders (MDS D)
The limit distances (Sg) and operating distances (Sa) along with the length of the
transmission window for each reader-transponder combination are listed in the tables below.
Observe the following information for field data of ISO transponders:
A maximum median deviation of ±2 mm is possible in static mode (without affecting the
field data).
In dynamic mode, make sure that rectangular transponders cross the antenna field in the
longitudinal direction.
Table 4- 9 Field data RF310R reader
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
MDS D100
40
2...93
105
MDS D124
30 2...64 72
MDS D126
90
2...65
73
MDS D139
105 5...96 109
MDS D160
30
2...39
44
MDS D165
130
2...90
102
MDS D200
120
2...84
95
MDS D261
80
2...74
83
MDS D324
30
2...47
63
MDS D339
85
5...74
84
MDS D400
90
2...104
117
MDS D423
55
2...35
45
MDS D424
35
1...70
78
MDS D425
30
1...22
25
MDS D426
90
5...100
113
MDS D428
30
1...43
48
MDS D460
30
1...37
41
MDS D524
35
1...70
78
MDS D525
??
??
??
MDS D526
90
5...100
113
MDS D528
30 1...43 48
All values are in mm
The values relate to the RF310R reader as of version "D".
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 53
Table 4- 10 Field data RF340R reader
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
MDS D100
90
5...110
140
MDS D124
60 2...60 75
MDS D126
80
2...85
110
MDS D139
90
5...80
110
MDS D160
50
2...35
60
MDS D165
130
5...100
125
MDS D200
125
5...80
110
MDS D261
95
5...60
70
MDS D324
50
2...55
70
MDS D339
100
5...75
85
MDS D400
140
2...100
130
MDS D423
65
2...40
55
MDS D424
50
2...55
70
MDS D425
45
2...20
30
MDS D426
110
0...80
100
MDS D428
45
2...35
50
MDS D460
45
2...25
40
MDS D524
50
2...55
70
MDS D525
??
??
??
MDS D526
110
0...80
100
MDS D528
45 2...35 50
All values are in mm
Table 4- 11 Field data RF350R reader / ANT 1
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
MDS D100
80
5...110
140
MDS D124
55
2...65
85
MDS D126
150 2...90 120
MDS D139
75
5...85
115
MDS D160
50
2...35
60
MDS D165
140
5...100
120
MDS D200
130
5...95
115
MDS D261
100
5...80
95
MDS D324
50
2...70
90
MDS D339
110
5...90
105
MDS D400
140
2...110
140
MDS D423
85
2...50
70
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
SIMATIC RF300
54 System Manual, 07/2016, C79000-G8976-C345-0x
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
MDS D424
50
2...60
80
MDS D425
40 2...25 35
MDS D426
110
0...85
110
MDS D428
40
2...35
50
MDS D460
40
2...35
50
MDS D524
50
2...60
80
MDS D525
??
??
??
MDS D526
110
0...85
110
MDS D528
40
2...35
50
All values are in mm
Table 4- 12 Field data RF350R reader / ANT 3
Diameter of the transmis-
sion window (Ld)
Operating distance (Sa)
Limit distance (Sg)
MDS D124
??
0...35
42
MDS D160
??
1...16
20
MDS D324
??
2...32
40
MDS D422
??
1...12
15
MDS D423
??
0...24
30
MDS D424
??
0...42
48
MDS D425
??
0...16
20
MDS D428
??
0...25
32
MDS D460
??
0...18
25
All values are in mm
Table 4- 13 Field data RF350R reader / ANT 12
Diameter of the transmis-
sion window (Ld)
Operating distance (Sa)
Limit distance (Sg)
MDS D117
2
0...3
4
MDS D127
2
0...3
4
MDS D160
15
0...8
15
MDS D421
6
0...3
5
MDS D428
15
1...10
17
MDS D460
8
1...10
14
MDS D521
6
0...3
5
MDS D528
15
1...10
17
All values are in mm
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 55
Table 4- 14 Field data RF350R reader / ANT 18
Diameter of the transmis-
sion window (Ld)
Operating distance (Sa)
Limit distance (Sg)
MDS D117
3
0...4
5
MDS D124
27 2...24 34
MDS D127
3
0...4
5
MDS D160
20
1...18
27
MDS D324
25
1...22
28
MDS D421
10
0...6
8
MDS D422
20
1...10
13
MDS D424
25
1...27
35
MDS D425
17
1...10
14
MDS D428
17
1...12
14
MDS D460
15
1...12
18
MDS D521
??
??
??
MDS D522
20
1...10
13
MDS D524
25
1...27
35
MDS D525
??
??
??
MDS D528
17
1...12
14
All values are in mm
Table 4- 15 Field data RF350R reader / ANT 30
Diameter of the transmis-
sion window (Ld)
Operating distance (Sa)
Limit distance (Sg)
MDS D124
30
1...35
46
MDS D126
70
0...47
60
MDS D160
25
1...25
30
MDS D324
30
1...35
45
MDS D422
30
0...15
19
MDS D423
45
2...30
40
MDS D424
28
0...45
50
MDS D425
25 1...15 20
MDS D426
65
0...45
57
MDS D428
25
1...25
34
MDS D460
22
1...18
25
MDS D522
??
??
??
MDS D524
28
0...45
50
MDS D525
??
??
??
MDS D526
65
0...45
57
MDS D528
25
1...25
34
All values are in mm
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
SIMATIC RF300
56 System Manual, 07/2016, C79000-G8976-C345-0x
Table 4- 16 Field data RF380R reader
Length of the transmission window
Operating distance
(Sa)
Limit distance (Sg)
in the x direction (Lx)
in the y direction (Ly)
MDS D100
140
100
5...170
210
MDS D124
80
80
1...120
140
MDS D126
180 140 2...145 190
MDS D139
140
90
5...160
200
MDS D160
80
40
2...64
80
MDS D165
200
140
5...170
200
MDS D200
200
160
5...150
195
MDS D261
190
120
5..120
160
MDS D324
100
60
2...96
120
MDS D339
290
140
5...160
180
MDS D400
240
120
2...200
240
MDS D423
110
60
5...75
90
MDS D424
100
70
2...120
140
MDS D425
80
45
2...35
50
MDS D426
220
160
0...155
195
MDS D428
80
50
2…70
95
MDS D460
80
70
2…65
90
MDS D524
100
70
2...120
140
MDS D525
??
??
??
??
MDS D526
220
160
0...155
195
MDS D528
80
50
2…70
95
All values are in mm
Table 4- 17 Field data RF382R reader
Length of the transmission window
Operating distance
(Sa)
Limit distance (Sg)
in the x direction (Lx)
in the y direction
(Ly)
MDS D124
70 130 40...65 75
MDS D160
50
100
35...50
65
MDS D324
60 120 40...65 75
MDS D424
65
120
40...65
75
MDS D460
40
80
30...50
60
All values are in mm
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 57
4.2.3
Field data of ISO transponders (MDS E)
The limit distances (Sg) and operating distances (Sa) along with the length of the
transmission window for each reader-transponder combination are listed in the tables below.
Observe the following information for field data of ISO transponders:
A maximum median deviation of ±2 mm is possible in static mode (without affecting the
field data).
In dynamic mode, make sure that rectangular transponders cross the antenna field in the
longitudinal direction.
Note
Relenace of the MDS E transponders
The MDS E transponders are
products that will be discontinued. These are relevant for
migration projects in which existing RFID systems are replaced by SIMATIC RF300.
Table 4- 18 Field data RF310R reader
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
MDS E600
40
2...93
105
MDS E611
40
2...93
105
MDS E624
30
2...64
72
All values are in mm
The values relate to the RF310R reader as of version "D".
Table 4- 19 Field data RF340R reader
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
MDS E600
90
5...110
140
MDS E611
90
20...50
70
MDS E624
60
2...60
75
All values are in mm
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
SIMATIC RF300
58 System Manual, 07/2016, C79000-G8976-C345-0x
Table 4- 20 Field data RF350R reader / ANT 1
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
MDS E600
80
5...110
140
MDS E611
80 5...110 140
MDS E624
55
2...65
85
All values are in mm
Table 4- 21 Field data RF350R reader / ANT 12
Diameter of the transmis-
sion window (Ld)
Operating distance (Sa)
Limit distance (Sg)
MDS E623
6
0...3
5
All values are in mm
Table 4- 22 Field data RF350R reader / ANT 18
Diameter of the transmis-
sion window (Ld)
Operating distance (Sa)
Limit distance (Sg)
MDS E623
10
0...6
8
MDS E624
27
2...24
34
All values are in mm
Table 4- 23 Field data RF350R reader / ANT 30
Diameter of the transmis-
sion window (Ld)
Operating distance (Sa)
Limit distance (Sg)
MDS E624
30
1...35
46
All values are in mm
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 59
4.2.4
Minimum clearances
Minimum distance from transponder to transponder
The specified distances refer to a metal-free environment. For a metallic environment, the
specified minimum distances must be multiplied by a factor of 1.5. The transponders
designed specifically for installation in/on metal are an exception to this.
Table 4- 24 Minimum distances RF300 transponder
RF310R
RF340R
RF350R /
ANT 1
RF350R /
ANT 3
RF350R /
ANT 18
RF350R /
ANT 30
RF380R
RF320T
50
70
70
??
20
40
120
RF330T
40 50 50 ?? 20 30 120
RF340T
60
80
80
??
40
40
140
RF350T
60
80
80
??
--
50
150
RF360T
60
80
80
??
--
??
120
RF370T
--
80
80
--
--
--
130
RF380T
??
80
80
--
--
--
150
All values are in mm, relative to the operating distance (S
a) between reader and transponder, and between transponder
edge and transponder edge
Table 4- 25 Minimum distances ISO transponder
RF310R
RF340R
RF350R /
ANT 1
RF350R /
ANT 3
RF350R /
ANT 12
RF350R /
ANT 18
RF350R /
ANT 30
RF380R
RF382R 1)
MDS D100
120
≥ 240
240
--
--
--
--
420
--
MDS D117
--
--
--
--
20
30
--
--
--
MDS D124
100 180 180 ?? -- 50 80 360 ≥ 100,
150
MDS D126
120
140
140
--
--
--
100
400
--
MDS D127
--
--
--
--
25
30
--
--
--
MDS D139
--
200
≥ 200
--
--
--
80
450
--
MDS D160
120 150 ≥ 150 ?? 30 50 60 300 ≥ 100,
120
MDS D165
120
140
140
--
--
--
--
500
--
MDS D200
120
150
150
--
--
--
--
500
--
MDS D261
160
200
200
--
--
--
--
400
--
MDS D324
120 180 180 ?? -- 50 80 360 ≥ 100,
150
MDS D339
??
140
140
--
--
--
--
450
--
MDS D400
220
240
240
--
--
--
--
500
--
MDS D421
--
--
--
--
15
15
--
--
--
MDS D422
-- -- -- ?? -- 30 40 -- --
MDS D423
100
120
120
??
--
40
60
250
--
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
SIMATIC RF300
60 System Manual, 07/2016, C79000-G8976-C345-0x
RF310R
RF340R
RF350R /
ANT 1
RF350R /
ANT 3
RF350R /
ANT 12
RF350R /
ANT 18
RF350R /
ANT 30
RF380R
RF382R 1)
MDS D424
≥ 100 180 180 ?? -- 50 80 ≥ 360 ≥ 100,
180
MDS D425
70
100
100
??
--
--
60
250
--
MDS D426
120
120
140
--
--
30
60
400
--
MDS D428
≥ 100 ≥ 150 150 ?? 30 50 60 ≥ 300 --
MDS D460
≥ 100 ≥ 150 150 ?? 30 50 60 ≥ 300 ≥ 100,
120
MDS D521
--
--
--
--
15
15
--
--
--
MDS D522
--
--
--
--
--
30
40
--
--
MDS D524
≥ 100 180 180 -- -- 50 80 ≥ 360 ≥ 100,
180
MDS D525
70
100
100
??
--
--
60
250
--
MDS D526
120
120
140
--
--
30
60
400
--
MDS D528
≥ 100
≥ 150
150
--
30
50
60
≥ 300
--
MDS E600
2)
120 ≥ 240 240 -- -- -- -- -- --
MDS E611
2)
120 ≥ 240 240 -- -- -- -- -- --
MDS E623
2)
-- -- -- -- 15 15 -- -- --
MDS E624
2)
≥ 100 180 180 ?? -- 50 80 -- --
1)
The first value is the minimum distance of the transponders in the horizontal field, the second value is the minimum
distance of the transponders in the vertical field.
2)
Product to be discontinued; only relevant for migration projects.
All values are in mm, relative to the operating distance (S
a) between reader and transponder, and between transponder
edge and transponder edge
Minimum distance from reader to reader
Table 4- 26 Minimum distances reader
RF310R to
RF310R
RF340R to
RF340R
RF380R to
RF380R1)
RF382R to
RF382R
with 2 readers ≥ 150 ≥ 200 ≥ 400 ≥ 200
with several
readers
≥ 200 ≥ 250 ≥ 500 ≥ 200
All values are in mm
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 61
1) The permissible minimum distance between two RF380Rs depends on the transmit power
that is set. The specified minimum distance must be multiplied by the following factor,
depending on the output:
Table 4- 27 Effect on the minimum distance of the transmit power with RF380R
'distance_limiting' byte
Factor
02; 03
0.8
04; 05; 06 1.0
07; 08
1.2
Minimum distance from antenna to antenna
Table 4- 28 Minimum distances antennas
ANT 1
ANT 3
ANT 3S
ANT 8
ANT 12
ANT 18
ANT 30
≥ 100 ≥ 80 ≥ 20 ≥ 50 ≥ 70 ≥ 100 ≥ 100
All values are in mm
You will find detailed information on the minimum distances between antennas the section
"Minimum distance between antennas (Page 200)".
Note
Effect on inductive fields by not maintaining the minimum distances of the readers
If the values fall below the values specified in the "Minimum distance readers" and "Minimum
distances antennas"
tables , there is a risk of the function being affected by inductive fields.
In this case, the data transfer time would increase unpredictably or a command would be
aborted with an error.
Keeping to the values specified in the "Minimum distance readers"
and "Minimum distances
antennas" tables is therefore essential.
If the specified minimum distance cannot be complied with due to the physical configuration,
the SET-ANT command can be used to activate and deactivate the RF field of the reader.
The application software must be used to ensure that only one reader is active (antenna is
switched on) at a time.
Note
Please also observe the graphic representations of the minimum distances in the respective
chapters on readers.
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
62 System Manual, 07/2016, C79000-G8976-C345-0x
4.3
Installation guidelines
4.3.1
Overview
The transponder and reader complete with their antennas are inductive devices. Any type of
metal in the vicinity of these devices affects their functionality. Some points need to be
considered during planning and installation if the values described in the "Field data
(Page 48)" section are to retain their validity:
Minimum spacing between two readers or their antennas
Minimum distance between two adjacent data memories
Metal-free area for flush-mounting of readers or their antennas and transponders in metal
Mounting of multiple readers or their antennas on metal frames or racks
The following sections describe the impact on the operation of the RFID system when
mounted in the vicinity of metal.
4.3.2
Reduction of interference due to metal
Table 4- 29 Interference due to metal rack
Representation
Description
Problem:
A metal rack is located above the
transmission window of the reader.
This affects the entire field. In par-
ticular, the transmission window
between reader and transponder is
reduced.
Remedy:
The transmission window is no
longer affected if the transponder is
mounted differently.
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 63
Table 4- 30 Flush-mounting of transponders and readers
Representation
Description
Problem:
Flush-mounting of transponders and
readers is possible in principle.
However, the size of the transmis-
sion window is significantly reduced.
The following measures can be
used to counteract the reduction of
the window:
Remedy:
Enlargement of the non-metallic
spacer below the transponder
and/or reader.
The transponder and/or reader are
10 to 20 mm higher than the metal
surround.
(The value x ≥ 100 mm is valid, e.g.
for RF310R. It indicates that, for a
distance x ≥ 100 mm, the reader
can no longer be significantly affect-
ed by metal.)
Remedy:
Increase the distances a, b to metal.
The following rule of thumb can be
used:
Increase a, b by a factor of 2 to 3
over the values specified for
metal-free areas
Increasing a, b has a greater
effect for readers or transpond-
ers with a large limit distance
than for readers or transponders
with a small limit distance.
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
64 System Manual, 07/2016, C79000-G8976-C345-0x
Mounting of several readers on metal frames or racks
Any reader mounted on metal couples part of the field to the metal frame. There is normally
no interaction as long as the minimum distance D and metal-free areas a, b are maintained.
However, interaction may take place if an iron frame is positioned unfavorably. Longer data
transfer times or sporadic error messages at the communication module are the result.
Table 4- 31 Mounting several readers on metal frames or racks
Representation
Description
Problem:
Interaction between readers
Remedy:
Increase the distance D between the two readers.
Remedy:
Introduce one or more iron struts in order to short-
circuit the stray fields.
Remedy:
Insert a non-metallic spacer of 20 to 40 millimeter
thickness between the reader and the iron frame. This
will significantly reduce the induction of stray fields on
the rack:
4.3.3
Effects of metal on different transponders and readers
Mounting different transponders and readers on metal or flush-mounting
Certain conditions have to be observed when mounting the transponders and readers on
metal or flush-mounting. For more information, please refer to the descriptions of the
individual transponders and readers in the relevant section.
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 65
4.3.4
Impact on the transmission window by metal
In general, the following points should be considered when mounting RFID components:
Direct mounting on metal is allowed only in the case of specially approved transponders.
Flush-mounting of the components in metal reduces the field data; a test is recommended
in critical applications.
When working inside the transmission window, make sure that no metal rail (or similar
part) intersects the transmission field.
The metal rail would affect the field data.
With readers with a large antenna surface (e.g. RF260R) for reasons of communication
reliability, when the transponders are flush mounted in metal, a metal-free space around
the transponders is recommended. This metal-free space should match the size of the
antenna surface.
The impact of metal on the field data (Sg, Sa, L) is shown in a table in this section. The
values in the tables describe field data reduction and show the reduced range as a
percentage. The range relates to use in a non-metallic environment. A value of 100% means
no influence on the range.
Note
Possible reader-transponder combinations
The tables of the following section show the possible reader
-transponder combinations.
4.3.4.1
Impact on the transmission window by metal
With RF300 transponders
Table 4- 32 Reduction of field data due to metal, range as %: Transponder and RF310R
Transponder
RF310R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm all-
round)
RF320T
1)
Without metal
100
95
80
On metal; distance 20 mm
100
80
70
Flush-mounted in metal;
distance all round 20 mm
80 70 60
RF330T
Without metal
100
95
80
On metal; distance 0 mm
100
85
75
Flush-mounted in metal;
distance all round 10 mm
85 80 70
Flush-mounted in metal;
without surrounding clearance
30 30 25
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
66 System Manual, 07/2016, C79000-G8976-C345-0x
Transponder
RF310R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm all-
round)
RF340T
Without metal
100
95
80
On metal; distance 0 mm
80
80
80
Flush-mounted in metal;
distance all round 20 mm
70 70 70
RF350T
Without metal
100
95
85
On metal; distance 0 mm
70
65
65
Flush-mounted in metal;
distance all round 20 mm
60 60 60
RF360T
Without metal
100
95
85
On metal; distance 20 mm
100
95
75
Flush-mounted in metal;
distance all round 20 mm
60 60 60
RF370T
without metal
??
??
??
on metal; distance 0 mm
??
??
??
flush-mounted in metal;
distance all round 20 mm
?? ?? ??
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
With ISO transponders (MDS D)
Table 4- 33 Reduction of field data due to metal, range as %: Transponder and RF310R
Transponder
RF310R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm all-
round)
MDS D100
1)
Without metal
100
95
80
On metal; distance 20 mm
75
70
65
Flush-mounted in metal;
distance all round 20 mm
55 55 50
MDS D124
1)
Without metal
100
95
80
On metal; distance 15 mm
90
95
85
Flush-mounted in metal;
distance all round 20 mm
80 75 60
MDS D126
1)
Without metal
100
90
85
On metal; distance 25 mm
85
80
75
Flush-mounted in metal;
distance all round 50 mm
80 75 70
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 67
Transponder
RF310R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm all-
round)
MDS D139
1)
Without metal
100
90
80
On metal; distance 30 mm
100
90
80
Flush-mounted in metal;
distance all round 100 mm
100 90 80
MDS D160
1)
Without metal
100
90
80
On metal; distance 10 mm
75
75
75
MDS D165
Without metal
100
90
85
On metal; distance 25 mm
90
80
75
MDS D200
1)
Without metal
100
90
80
On metal; distance 20 mm
80
70
65
Flush-mounted in metal;
distance all round 20 mm
60 60 60
MDS D261
Without metal
100
80
85
On metal; distance 25 mm
90
75
80
MDS D324
1)
Without metal
100
95
75
On metal; distance 15 mm
80
80
75
Flush-mounted in metal;
distance all round 25 mm
80 75 70
MDS D339
without metal
??
??
??
on metal; distance 30 mm
??
??
??
flush-mounted in metal;
distance all round 100 mm
?? ?? ??
MDS D400
1)
Without metal
100
80
75
On metal; distance 20 mm
65
60
55
Flush-mounted in metal;
distance all round 20 mm
55 50 45
MDS D423
Without metal
100
95
90
On metal; distance 0 mm
150
2)
140
2)
140
2)
Flush-mounted in metal;
distance all round 0 mm
70 60 60
MDS D424
1)
Without metal
100
90
80
On metal; distance 15 mm
80
80
70
Flush-mounted in metal;
distance all round 25 mm
60 60 50
MDS D425
Without metal
100
100
95
On metal; distance 0 mm
90
85
80
MDS D426
1)
Without metal
100
90
80
On metal; distance 25 mm
85
80
70
Flush-mounted in metal;
distance all round 50 mm
80 75 65
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
68 System Manual, 07/2016, C79000-G8976-C345-0x
Transponder
RF310R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm all-
round)
MDS D428
Without metal
100
100
75
On metal; distance 0 mm
100
100
75
MDS D460
1) Without metal 100 100 80
On metal; distance 10 mm
80
80
60
MDS D524
1)
without metal
??
??
??
on metal; distance 15 mm
??
??
??
flush-mounted in metal;
distance all round 25 mm
?? ?? ??
MDS D525
without metal
??
??
??
on metal; distance 0 mm
??
??
??
MDS D526
1)
without metal
??
??
??
on metal; distance 25 mm
??
??
??
flush-mounted in metal;
distance all round 50 mm
?? ?? ??
MDS D528
without metal
??
??
??
on metal; distance 0 mm
??
??
??
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
2)
Values of > 100 % can occur if transponders were developed specifically for mounting in/on metal-
lic surroundings.
With ISO transponders (MDS E)
Table 4- 34 Reduction of field data due to metal, range as %: Transponder and RF310R
Transponder
RF310R reader
without metal
on metal
flush-mounted
in metal
(20 mm all-
round)
MDS E600
1)
without metal
100
95
80
on metal; distance 20 mm
75
70
65
flush-mounted in metal;
distance all round 20 mm
55 55 50
MDS E611
1) without metal 100 95 80
on metal; distance 20 mm
75
70
65
flush-mounted in metal;
distance all round 20 mm
55 55 50
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 69
Transponder
RF310R reader
without metal
on metal
flush-mounted
in metal
(20 mm all-
round)
MDS E624
1)
without metal
100
95
80
on metal; distance 15 mm
90
95
85
flush-mounted in metal;
distance all round 20 mm
80 75 60
1
) Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
4.3.4.2
RF340R
With RF300 transponders
Table 4- 35 Reduction of field data due to metal, range as %: Transponder and RF340R
Transponder
RF340R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm all-
round)
RF320T
Without metal
100
95
90
On metal; distance 20 mm
85
85
80
Flush-mounted in metal;
distance all round 20 mm
75 75 65
RF330T
1)
Without metal
100
95
90
On metal; distance 0 mm
90
90
80
Flush-mounted in metal;
distance all round 10 mm
65 65 60
RF340T
Without metal
100
95
80
On metal; distance 0 mm
65
65
55
Flush-mounted in metal;
distance all round 20 mm
60 60 55
RF350T
Without metal
100
90
85
On metal; distance 0 mm
75
70
70
Flush-mounted in metal;
distance all round 20 mm
55 55 45
RF360T
Without metal 100 95 80
On metal; distance 20 mm
75
70
65
Flush-mounted in metal;
distance all round 20 mm
70 60 50
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
70 System Manual, 07/2016, C79000-G8976-C345-0x
Transponder
RF340R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm all-
round)
RF370T
Without metal
100
95
80
On metal; distance 0 mm
95
90
75
Flush-mounted in metal;
distance all round 20 mm
70 65 65
RF380T
Without metal
100
95
75
On metal; distance 0 mm
100
95
70
Flush-mounted in metal; dis-
tance all-round 40 mm
80 75 60
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
With ISO transponders (MDS D)
Table 4- 36 Reduction of field data due to metal, range as %: Transponder and RF340R
Transponder
RF340R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm all-
round)
MDS D100
1)
Without metal
100
90
75
On metal; distance 20 mm
70
65
60
Flush-mounted in metal;
distance all round 20 mm
60 45 45
MDS D124
1)
Without metal
100
95
80
On metal; distance 15 mm
85
85
75
Flush-mounted in metal;
distance all round 20 mm
80 80 45
MDS D126
1)
Without metal
100
90
85
On metal; distance 25 mm
80
80
70
Flush-mounted in metal;
distance all round 50 mm
75 75 65
MDS D139
1)
Without metal
100
95
80
On metal; distance 30 mm
100
90
75
Flush-mounted in metal;
distance all round 100 mm
100 90 75
MDS D160
1)
Without metal
100
95
80
On metal; distance 10 mm
85
85
75
MDS D165
Without metal
100
95
85
On metal; distance 25 mm
90
80
75
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 71
Transponder
RF340R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm all-
round)
MDS D200
1)
Without metal
100
95
90
On metal; distance 20 mm
90
85
80
Flush-mounted in metal;
distance all round 20 mm
75 50 65
MDS D261
Without metal
100
100
100
On metal; distance 25 mm
70
95
90
MDS D324
1)
Without metal
100
95
80
On metal; distance 15 mm
90
85
75
Flush-mounted in metal;
distance all round 25 mm
80 80 60
MDS D339
Without metal
100
95
80
On metal; distance 30 mm
100
90
75
Flush-mounted in metal;
distance all round 100 mm
100 90 75
MDS D400
1)
Without metal
100
90
80
On metal; distance 20 mm
70
65
80
Flush-mounted in metal;
distance all round 20 mm
55 50 50
MDS D423
Without metal
100
95
85
On metal; distance 0 mm
120
2)
120
2)
115
2)
Flush-mounted in metal;
distance all round 0 mm
65 60 60
MDS D424
1) Without metal 100 95 80
On metal; distance 15 mm
85
85
75
Flush-mounted in metal;
distance all round 25 mm
75 75 70
MDS D425
Without metal
100
95
95
On metal; distance 0 mm 100 90 90
MDS D426
1)
Without metal
100
90
80
On metal; distance 25 mm
80
75
70
Flush-mounted in metal;
distance all round 50 mm
75 70 65
MDS D428
Without metal
100
95
80
On metal; distance 0 mm
95
80
75
MDS D460
1)
Without metal
100
95
95
On metal; distance 10 mm
85
85
85
MDS D524
1)
without metal
??
??
??
on metal; distance 15 mm
??
??
??
flush-mounted in metal;
distance all round 25 mm
?? ?? ??
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
72 System Manual, 07/2016, C79000-G8976-C345-0x
Transponder
RF340R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm all-
round)
MDS D525
without metal
??
??
??
on metal; distance 0 mm
??
??
??
MDS D526
1) without metal ?? ?? ??
on metal; distance 25 mm
??
??
??
flush-mounted in metal;
distance all round 50 mm
?? ?? ??
MDS D528
without metal
??
??
??
on metal; distance 0 mm
??
??
??
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
2)
Values of > 100 % can occur if transponders were developed specifically for mounting in/on metal-
lic surroundings.
With ISO transponders (MDS E)
Table 4- 37 Reduction of field data due to metal, range as %: Transponder and RF340R
Transponder
RF340R reader
without metal
on metal
flush-mounted
in metal
(20 mm all-
round)
MDS E600
1)
without metal
100
90
75
on metal; distance 20 mm
70
65
60
flush-mounted in metal;
distance all round 20 mm
60 45 45
MDS E611
1)
without metal
100
90
75
on metal; distance 20 mm
70
65
60
flush-mounted in metal;
distance all round 20 mm
60 45 45
MDS E624
1)
without metal
100
95
80
on metal; distance 15 mm
85
85
75
flush-mounted in metal;
distance all round 20 mm
80 80 45
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 73
4.3.4.3
RF350R
Reader RF350R with ANT 1 and with RF300 transponders
Table 4- 38 Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 1
Transponder
ANT 1 without
metal
ANT 1 on metal
ANT 1 flush-
mounted in
metal
(40 mm all-
round)
RF320T
1)
Without metal
100
90
90
On metal; distance 20 mm
85
85
75
Flush-mounted in metal;
distance all round 20 mm
75 75 65
RF330T
Without metal 100 90 90
On metal; distance 0 mm
95
85
75
Flush-mounted in metal;
distance all round 10 mm
65 60 60
RF340T
Without metal
100
90
90
On metal; distance 0 mm
65
65
60
Flush-mounted in metal;
distance all round 20 mm
60 60 55
RF350T
Without metal
100
90
85
On metal; distance 0 mm
75
70
65
Flush-mounted in metal;
distance all round 20 mm
55 55 45
RF360T
Without metal
100
90
85
On metal; distance 20 mm
75
75
65
Flush-mounted in metal;
distance all round 20 mm
65 60 50
RF370T
Without metal
100
90
85
On metal; distance 0 mm
95
88
75
Flush-mounted in metal;
distance all round 20 mm
70 65 65
RF380T
Without metal 100 90 80
On metal; distance 0 mm
100
90
70
Flush-mounted in metal;
distance all round 40 mm
80 75 60
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
74 System Manual, 07/2016, C79000-G8976-C345-0x
Reader RF350R with ANT 1 and with ISO transponders (MDS D)
Table 4- 39 Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 1
Transponder
ANT 1 without
metal
ANT 1 on metal
ANT 1 mounted
in metal
(40 mm all-
round)
MDS D100
1)
Without metal
100
85
80
On metal; distance 20 mm 70 60 65
Flush-mounted in metal;
distance all round 20 mm
60 45 45
MDS D124
1) Without metal 100 95 85
On metal; distance 15 mm
85
85
80
Flush-mounted in metal;
distance all round 20 mm
85 80 50
MDS D126
1)
Without metal
100
85
85
On metal; distance 25 mm
85
75
75
Flush-mounted in metal;
distance all round 50 mm
80 70 70
MDS D139
1)
Without metal
100
90
85
On metal; distance 30 mm
95
85
85
Flush-mounted in metal;
distance all round 100 mm
95 85 85
MDS D160
1)
Without metal
100
95
90
On metal; distance 10 mm
85
85
80
MDS D165
Without metal
100
85
85
On metal; distance 25 mm
90
80
75
MDS D200
1)
Without metal
100
85
80
On metal; distance 20 mm
85
75
75
Flush-mounted in metal;
distance all round 20 mm
75 65 65
MDS D261
Without metal
100
90
85
On metal; distance 25 mm
85
80
80
MDS D324
1)
Without metal
100
85
85
On metal; distance 15 mm 90 80 80
Flush-mounted in metal;
distance all round 25 mm
80 75 65
MDS D339
1)
Without metal
100
90
85
On metal; distance 30 mm
95
85
85
Flush-mounted in metal;
distance all round 100 mm
95 85 85
MDS D400
1)
Without metal
100
90
85
On metal; distance 20 mm
80
70
65
Flush-mounted in metal;
distance all round 20 mm
65 60 60
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 75
Transponder
ANT 1 without
metal
ANT 1 on metal
ANT 1 mounted
in metal
(40 mm all-
round)
MDS D423
Without metal
100
90
90
On metal; distance 0 mm 1152) 1152) 1152)
Flush-mounted in metal;
distance all round 0 mm
80 65 65
MDS D424
1) Without metal 100 90 75
On metal; distance 15 mm
85
80
75
Flush-mounted in metal;
distance all round 25 mm
75 70 70
MDS D425
Without metal
100
95
95
On metal; distance 0 mm
90
85
85
MDS D426
1)
Without metal
100
90
85
On metal; distance 25 mm
85
80
75
Flush-mounted in metal;
distance all round 50 mm
80 75 x
MDS D428
Without metal
100
90
85
On metal; distance 0 mm
85
80
80
MDS D460
1)
Without metal
100
90
80
On metal; distance 10 mm
85
80
75
MDS D524
1)
without metal
??
??
??
on metal; distance 15 mm
??
??
??
flush-mounted in metal;
distance all round 25 mm
?? ?? ??
MDS D525
without metal ?? ?? ??
on metal; distance 0 mm
??
??
??
MDS D526
1) without metal ?? ?? ??
on metal; distance 25 mm
??
??
??
flush-mounted in metal;
distance all round 50 mm
?? ?? ??
MDS D528
without metal
??
??
??
on metal; distance 0 mm
??
??
??
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
2)
Values of > 100 % can occur if transponders were developed specifically for mounting in/on metal-
lic surroundings.
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
76 System Manual, 07/2016, C79000-G8976-C345-0x
Reader RF350R with ANT 1 and with ISO transponders (MDS E)
Table 4- 40 Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 1
Transponder
ANT 1 without
metal
ANT 1 on metal
ANT 1 mounted
in metal
(40 mm all-
round)
MDS E600
1)
without metal
100
85
80
on metal; distance 20 mm 70 60 65
flush-mounted in metal;
distance all round 20 mm
60 45 45
MDS E611
1) without metal 100 85 80
on metal; distance 20 mm
70
60
65
flush-mounted in metal;
distance all round 20 mm
60 45 45
MDS E624
1)
without metal
100
95
85
on metal; distance 15 mm
85
85
80
flush-mounted in metal;
distance all round 20 mm
85 80 50
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
Reader RF350R with ANT 3 and with RF300 transponders
Table 4- 41 Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 3
Transponder
ANT 3 without
metal
ANT 3 on metal
ANT 3 flush-
mounted in
metal
(40 mm all-
round)
RF320T
1)
without metal
??
??
??
on metal; distance 20 mm
??
??
??
flush-mounted in metal;
distance all round 20 mm
?? ?? ??
RF330T
without metal
??
??
??
on metal; distance 0 mm
??
??
??
flush-mounted in metal;
distance all round 10 mm
?? ?? ??
RF340T
without metal ?? ?? ??
on metal; distance 0 mm
??
??
??
flush-mounted in metal;
distance all round 20 mm
?? ?? ??
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 77
Transponder
ANT 3 without
metal
ANT 3 on metal
ANT 3 flush-
mounted in
metal
(40 mm all-
round)
RF350T
without metal
??
??
??
on metal; distance 0 mm ?? ?? ??
flush-mounted in metal;
distance all round 20 mm
?? ?? ??
RF360T
without metal ?? ?? ??
on metal; distance 20 mm
??
??
??
flush-mounted in metal;
distance all round 20 mm
?? ?? ??
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
Reader RF350R with ANT 3 and with ISO transponders (MDS D)
Table 4- 42 Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 3
Transponder
ANT 3 without
metal
ANT 3 on metal
ANT 3 flush-
mounted in
metal
(40 mm all-
round)
MDS D124
1)
without metal
??
??
??
on metal; distance 15 mm
??
??
??
flush-mounted in metal;
distance all round 20 mm
?? ?? ??
MDS D160
1)
without metal
??
??
??
on metal; distance 10 mm
??
??
??
MDS D324
1)
without metal
??
??
??
on metal; distance 15 mm
??
??
??
flush-mounted in metal;
distance all round 25 mm
?? ?? ??
MDS D422
without metal
??
??
??
on metal, distance 0 mm
??
??
??
flush-mounted in metal;
distance all round 0 mm
?? ?? ??
MDS D423
without metal
??
??
??
on metal; distance 0 mm
??
??
??
flush-mounted in metal;
distance all round 0 mm
?? ?? ??
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
78 System Manual, 07/2016, C79000-G8976-C345-0x
Transponder
ANT 3 without
metal
ANT 3 on metal
ANT 3 flush-
mounted in
metal
(40 mm all-
round)
MDS D424
1)
without metal
??
??
??
on metal; distance 15 mm ?? ?? ??
flush-mounted in metal;
distance all round 25 mm
?? ?? ??
MDS D425
without metal ?? ?? ??
on metal; distance 0 mm
??
??
??
MDS D428
without metal
??
??
??
on metal; distance 0 mm
??
??
??
MDS D460
1)
without metal
??
??
??
on metal; distance 10 mm
??
??
??
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
2)
Values of > 100 % can occur if transponders were developed specifically for mounting in/on metal-
lic surroundings.
Reader RF350R with ANT 3 and with ISO transponders (MDS E)
Table 4- 43 Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 3
Transponder
ANT 3 without
metal
ANT 3 on metal
ANT 3 flush-
mounted in
metal
(40 mm all-
round)
MDS E624
1)
without metal
??
??
??
on metal; distance 15 mm
??
??
??
flush-mounted in metal;
distance all round 20 mm
?? ?? ??
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 79
Reader RF350R with ANT 12 and with ISO transponders (MDS D)
Table 4- 44 Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 12
Transponder
ANT 12 without metal
ANT 12 mounted in met-
al
(0 mm all-round)
MDS D117
Without metal
100
85
On metal; distance 0 mm 90 85
Flush-mounted in metal;
distance all round 0 mm
65 65
MDS D127
Without metal 100 85
On metal; distance 0 mm
95
85
Flush-mounted in metal;
distance all round 0 mm
65 65
MDS D160
1)
Without metal
100
80
On metal; distance 10 mm
100
80
MDS D421
Without metal
100
80
On metal; distance 0 mm
90
75
Flush-mounted in metal;
distance all round 0 mm
70 60
MDS D428
Without metal
100
75
On metal; distance 0 mm
95
75
MDS D460
1)
Without metal
100
80
On metal; distance 10 mm
100
80
MDS D521
without metal
??
??
on metal; distance 0 mm
??
??
flush-mounted in metal;
distance all round 0 mm
?? ??
MDS D528
without metal ?? ??
on metal; distance 0 mm
??
??
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
80 System Manual, 07/2016, C79000-G8976-C345-0x
Reader RF350R with ANT 12 and with ISO transponders (MDS E)
Table 4- 45 Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 12
Transponder
ANT 12 without metal
ANT 12 mounted in met-
al
(0 mm all-round)
MDS E623
without metal
100
80
on metal; distance 0 mm 90 75
flush-mounted in metal;
distance all round 0 mm
70 60
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
Reader RF350R with ANT 18 and with RF300 transponders
Table 4- 46 Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 18
Transponder
ANT 18 without metal
ANT 18 mounted in met-
al
(10 mm all-round)
RF320T
1)
Without metal
100
65
On metal; distance 20 mm
85
55
Flush-mounted in metal;
distance all round 20 mm
75 45
RF330T
Without metal
100
85
On metal; distance 0 mm
120
2)
100
Flush-mounted in metal;
distance all round 10 mm
1152) 95
Flush-mounted in metal;
without surrounding clearance
95 90
RF340T
Without metal
100
85
On metal; distance 0 mm
65
60
Flush-mounted in metal;
distance all round 20 mm
60 55
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
2)
Values of > 100 % can occur if transponders were developed specifically for mounting in/on metal-
lic surroundings.
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 81
Reader RF350R with ANT 18 and with ISO transponders (MDS D)
Table 4- 47 Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 18
Transponder
ANT 18 without metal
ANT 18 mounted in met-
al
(10 mm all-round)
MDS D124
1)
Without metal
100
85
On metal, distance 15 mm 85 75
Flush-mounted in metal;
distance all round 15 mm
85 45
MDS D127
Without metal 100 90
On metal, distance 0 mm
95
85
Flush-mounted in metal;
distance all round 0 mm
60 60
MDS D160
1)
Without metal
100
80
On metal, distance 10 mm
85
75
MDS D324
1)
Without metal
100
80
On metal; distance 15 mm
90
75
Flush-mounted in metal;
distance all round 25 mm
80 65
MDS D421
Without metal
100
85
On metal, distance 0 mm
90
65
Flush-mounted in metal;
distance all round 0 mm
40 20
MDS D422
Without metal
100
85
On metal, distance 0 mm
95
85
Flush-mounted in metal;
distance all round 0 mm
90 80
MDS D424
1)
Without metal
100
85
On metal 15 mm
85
80
Flush-mounted in metal;
distance all round 25 mm
75 75
MDS D425
Without metal
100
85
On metal, distance 0 mm
100
85
MDS D428
Without metal
100
95
On metal, distance 0 mm
95
95
MDS D460
1)
Without metal
100
95
On metal, distance 15 mm
95
95
MDS D521
without metal
??
??
on metal, distance 0 mm
??
??
flush-mounted in metal;
distance all round 0 mm
?? ??
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
82 System Manual, 07/2016, C79000-G8976-C345-0x
Transponder
ANT 18 without metal
ANT 18 mounted in met-
al
(10 mm all-round)
MDS D522
without metal
??
??
on metal, distance 0 mm ?? ??
flush-mounted in metal;
distance all round 0 mm
?? ??
MDS D524
1) without metal ?? ??
on metal 15 mm
??
??
flush-mounted in metal;
distance all round 25 mm
?? ??
MDS D525
without metal
??
??
on metal, distance 0 mm
??
??
MDS D528
without metal
??
??
on metal, distance 0 mm
??
??
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
Reader RF350R with ANT 18 and with ISO transponders (MDS E)
Table 4- 48 Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 18
Transponder
ANT 18 without metal
ANT 18 mounted in met-
al
(10 mm all-round)
MDS E623
without metal
100
85
on metal, distance 0 mm
90
65
flush-mounted in metal;
distance all round 0 mm
40 20
MDS E624
1)
without metal
100
85
on metal, distance 15 mm
85
75
flush-mounted in metal;
distance all round 15 mm
85 45
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 83
Reader RF350R with ANT 30 and with RF300 transponders
Table 4- 49 Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 30
Transponder
Mounting the antenna
ANT 30 without metal
ANT 30 mounted in met-
al
(20 mm all-round)
RF320T
1)
Without metal
100
90
On metal; distance 30 mm
85
75
Flush-mounted in metal;
distance all round 20 mm
75 65
RF330T
Without metal
100
90
On metal;
110
2)
100
Flush-mounted in metal;
distance all round 10 mm
1052) 95
Flush-mounted in metal;
without surrounding clearance
90 80
RF340T
Without metal
100
85
On metal; distance 30 mm
65
55
Flush-mounted in metal;
distance all round 20 mm
60 55
RF350T
Without metal
100
85
Directly on metal
75
65
Flush-mounted in metal;
distance all round 20 mm
55 45
RF360T
without metal
??
??
on metal; distance 20 mm
??
??
flush-mounted in metal;
distance all round 20 mm
?? ??
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
2)
Values of > 100 % can occur if transponders were developed specifically for mounting in/on metal-
lic surroundings.
Reader RF350R with ANT 30 and with ISO transponders (MDS D)
Table 4- 50 Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 30
Transponder
ANT 30 without metal
ANT 30 mounted in met-
al
(20 mm all-round)
MDS D124
1)
Without metal
100
85
On metal; distance 15 mm
85
75
Flush-mounted in metal;
distance all round 15 mm
80 45
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
84 System Manual, 07/2016, C79000-G8976-C345-0x
Transponder
ANT 30 without metal
ANT 30 mounted in met-
al
(20 mm all-round)
MDS D126
1)
Without metal
100
85
On metal; distance 25 mm 90 75
Flush-mounted in metal;
distance all round 50 mm
85 70
MDS D160
1) Without metal 100 80
On metal, distance 10 mm
85
75
MDS D324
1)
Without metal
100
80
On metal; distance 15 mm
90
70
Flush-mounted in metal;
distance all round 25 mm
80 65
MDS D422
Without metal
100
85
On metal, distance 0 mm
95
85
Flush-mounted in metal;
distance all round 0 mm
90 80
MDS D423
Without metal
100
80
On metal, distance 0 mm
125
2)
115
2)
Flush-mounted in metal;
distance all round 0 mm
80 70
MDS D424
1)
Without metal
100
85
On metal 15 mm
95
85
Flush-mounted in metal;
distance all round 25 mm
85 75
MDS D425
Without metal
100
80
On metal, distance 0 mm
95
80
MDS D426
1)
Without metal
100
85
On metal; distance 25 mm
90
75
Flush-mounted in metal;
distance all round 50 mm
80 70
MDS D428
Without metal
100
90
On metal, distance 0 mm
95
90
MDS D460
1)
Without metal
100
90
On metal, distance 10 mm
95
85
MDS D522
without metal
??
??
on metal, distance 0 mm
??
??
flush-mounted in metal;
distance all round 0 mm
?? ??
MDS D524
1)
without metal
??
??
on metal 15 mm
??
??
flush-mounted in metal;
distance all round 25 mm
?? ??
MDS D525
without metal
??
??
on metal, distance 0 mm ?? ??
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 85
Transponder
ANT 30 without metal
ANT 30 mounted in met-
al
(20 mm all-round)
MDS D526
1)
without metal
??
??
on metal; distance 25 mm ?? ??
flush-mounted in metal;
distance all round 50 mm
?? ??
MDS D528
without metal ?? ??
on metal, distance 0 mm
??
??
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
2)
Values of > 100 % can occur if transponders were developed specifically for mounting in/on metal-
lic surroundings.
Reader RF350R with ANT 30 and with ISO transponders (MDS E)
Table 4- 51 Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 30
Transponder
ANT 30 without metal
ANT 30 mounted in met-
al
(20 mm all-round)
MDS E624
1)
without metal
100
85
on metal; distance 15 mm
85
75
flush-mounted in metal;
distance all round 15 mm
80 45
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
4.3.4.4
RF380R
With RF300 transponders
Table 4- 52 Reduction of field data due to metal, range as %: Transponder and RF380R
Transponder
Reader RF380R (RF300 mode)
Without metal
On metal
Flush-mounted
in metal
(20 mm all-
round)
RF320T
1)
Without metal
100
95
90
On metal; distance 20 mm
85
75
70
Flush-mounted in metal;
distance all round 20 mm
60 55 50
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
86 System Manual, 07/2016, C79000-G8976-C345-0x
Transponder
Reader RF380R (RF300 mode)
Without metal
On metal
Flush-mounted
in metal
(20 mm all-
round)
RF330T
Without metal
100
90
80
On metal; distance 0 mm
70
65
60
RF340T
Without metal 100 90 80
On metal; distance 0 mm
70
65
60
Flush-mounted in metal;
distance all round 20 mm
60 60 55
RF350T
Without metal
100
85
80
On metal; distance 0 mm
70
65
60
Flush-mounted in metal;
distance all round 20 mm
55 50 45
RF360T
1)
Without metal
100
95
85
On metal; distance 20 mm
75
70
65
Flush-mounted in metal;
distance all round 20 mm
60 55 50
RF370T
Without metal
100
95
85
On metal; distance 0 mm
90
85
80
Flush-mounted in metal;
distance all round 20 mm
65 60 60
RF380T
Without metal
100
95
85
On metal; distance 0 mm
95
90
80
Flush-mounted in metal; dis-
tance all-round 40 mm
65 60 55
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
With ISO transponders (MDS D)
Table 4- 53 Reduction of field data due to metal, range as %: Transponder and RF380R
Transponder
Reader RF380R (ISO mode)
Without metal
On metal
Flush-mounted
in metal
(20 mm all-
round)
MDS D100
1)
Without metal
100
95
80
On metal; distance 20 mm
65
60
55
Flush-mounted in metal;
distance all round 20 mm
55 50 45
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 87
Transponder
Reader RF380R (ISO mode)
Without metal
On metal
Flush-mounted
in metal
(20 mm all-
round)
MDS D124
1)
Without metal
100
95
90
On metal; distance 15 mm
95
90
85
Flush-mounted in metal;
distance all round 20 mm
70 65 50
MDS D126
1)
Without metal
100
90
80
On metal; distance 25 mm
80
75
70
Flush-mounted in metal;
distance all round 50 mm
75 65 65
MDS D139
1)
Without metal
100
90
75
On metal; distance 30 mm
95
85
70
Flush-mounted in metal;
distance all round 100 mm
90 80 70
MDS D160
1)
Without metal
100
95
90
On metal; distance 10 mm
85
85
80
MDS D165
Without metal
100
90
80
On metal; distance 25 mm
80
75
70
MDS D200
1)
Without metal
100
90
80
On metal; distance 20 mm
80
75
70
Flush-mounted in metal;
distance all round 20 mm
65 60 55
MDS D261
Without metal
100
95
85
On metal; distance 25 mm
85
80
75
MDS D324
1)
Without metal
100
95
85
On metal; distance 15 mm
85
85
80
Flush-mounted in metal;
distance all round 25 mm
70 65 60
MDS D339
1)
Without metal
100
90
80
On metal; distance 30 mm
85
80
75
Flush-mounted in metal;
distance all round 100 mm
80 75 70
MDS D400
1)
Without metal
100
90
80
On metal; distance 20 mm
75
70
60
Flush-mounted in metal;
distance all round 20 mm
60 60 55
MDS D423
Without metal
100
95
85
On metal; distance 0 mm
100
100
90
flush-mounted in metal;
distance all round 10 mm
75 65 60
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
88 System Manual, 07/2016, C79000-G8976-C345-0x
Transponder
Reader RF380R (ISO mode)
Without metal
On metal
Flush-mounted
in metal
(20 mm all-
round)
MDS D424
1)
Without metal
100
90
75
On metal; distance 15 mm
75
75
60
Flush-mounted in metal;
distance all round 25 mm
60 55 40
MDS D425
Without metal
100
70
90
On metal; distance 0 mm
75
70
60
MDS D426
1)
Without metal
100
90
80
On metal; distance 25 mm
80
75
70
Flush-mounted in metal;
distance all round 50 mm
75 65 65
MDS D428
Without metal
100
90
80
On metal; distance 0 mm
85
80
65
MDS D460
1)
Without metal
100
95
80
On metal; distance 10 mm
80
75
60
MDS D524
1)
without metal
on metal 15 mm
flush-mounted in metal;
distance all round 25 mm
MDS D525
without metal
on metal; distance 0 mm
MDS D526
1)
without metal
on metal; distance 25 mm
flush-mounted in metal;
distance all round 50 mm
MDS D528
without metal
on metal, distance 0 mm
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
Planning the RF300 system
4.3 Installation guidelines
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 89
4.3.4.5
RF382R
Note
RF382R not suitable for metallic surroundings
The RF382R was not developed for reading transponders in a metallic environment.
With ISO transponders (MDS D)
Table 4- 54 Reduction of field data by metal (in %): Transponder and RF382R
Transponder
Reader RF382R (ISO mode)
Without metal
On metal
MDS D124
Without metal
100
110
1)
MDS D160
Without metal
100
100
MDS D324
Without metal
100
110
1)
MDS D424
Without metal
100
105
1)
MDS D460
Without metal
100
115
1)
1)
Values of > 100 % can occur if transponders were developed specifically for mounting in/on metal-
lic surroundings.
Planning the RF300 system
4.4 Chemical resistance of the transponders
SIMATIC RF300
90 System Manual, 07/2016, C79000-G8976-C345-0x
4.4
Chemical resistance of the transponders
4.4.1
Overview of the transponders and their housing materials
The following sections describe the resistance to chemicals of the various transponders.
Resistance to chemicals depends on the housing materials used to manufacture the
transponders.
The following table provides an overview of the housing materials of the transponders:
Table 4- 55 Overview of the housing materials of the transponders
Housing material
Transponder
Polyamide 12 RF340T
RF350T
RF370T
Polyphenylene sulfide (PPS) RF380T
MDS D117
MDS D124 (6GT2600-0AC10)
MDS D139
MDS D160
MDS D339
MDS D423
Polycarbonate (PC)
MDS D100 (6GT2600-0AD10)
Polyvinyl chloride (PVC) MDS D100 (6GT2600-0AD00-0AX0)
MDS D200
MDS D400
Epoxy resin RF320T
RF360T
MDS D124 (6GT2600-0AC00)
MDS D324
MDS D421
MDS D424
MDS D460
MDS D521
MDS D524
MDS E610
MDS E611
MDS E623
MDS E624
Planning the RF300 system
4.4 Chemical resistance of the transponders
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 91
Housing material
Transponder
PA6
MDS D127
PA6.6 GF30 MDS D126
MDS D422
MDS D425
MDS D426
MDS D428
MDS D522
MDS D525
MDS D526
MDS D528
Note
Chemical substances not listed
The following sections describe the resistance of the various transponders to specific
substances. If you require information about chemical substances th
at are not listed, contact
Customer Support.
4.4.2
Polyamide 12
The resistance of the plastic housing to chemicals used in the automobile sector (e.g.: oils,
greases, diesel fuel, gasoline, etc,) is not listed extra.
Table 4- 56 Chemical resistance - Polyamide 12
Substance
Test conditions
Rating
Concentration [%]
Temperature [°C]
Battery acid
30%
20 ℃
○○
Ammonia, gaseous
60 ℃
○○○○
Ammonia, w.
conc.
60 ℃
○○○○
10%
60 ℃
○○○○
Benzene
20 ℃
○○○○
60 ℃
○○○
Bleach solution (12.5% effective chlo-
rine)
20 ℃ ○○
Butane, gas, liquid
60 ℃
○○○○
Butyl acetate (acetic acid butyl ester)
60 ℃
○○○○
n(n)
20 ℃
○○○○
60 ℃
○○○
Calcium chloride, w.
20 ℃
○○○○
60 ℃
○○○
Planning the RF300 system
4.4 Chemical resistance of the transponders
SIMATIC RF300
92 System Manual, 07/2016, C79000-G8976-C345-0x
Substance
Test conditions
Rating
Concentration [%]
Temperature [°C]
Calcium nitrate, w.
c. s.
20 ℃
○○○○
c. s.
60 ℃
○○○
Chlorine 20 ℃ -
Chrome baths, tech.
20 ℃
-
Iron salts, w.
c. s.
60 ℃
○○○○
Acetic acid, w.
50%
20 ℃
-
Ethyl alcohol, w., undenaturated
95%
20 ℃
○○○○
95%
60 ℃
○○○
50%
60 ℃
○○○○
Formaldehyde, w.
30%
20 ℃
○○○
10%
20 ℃
○○○○
10%
60 ℃
○○○
Formalin
20 ℃
○○○
Glycerine
60 ℃
○○○○
Isopropyl alcohol
20 ℃
○○○○
60 ℃
○○○
Potassium hydroxide, w.
50%
60 ℃
○○○○
Lysol
20 ℃
○○
Magnesium salts, w.
c. s.
60 ℃
○○○○
Methyl alcohol, w.
50%
60 ℃
○○○○
Lactic acid, w.
50%
20 ℃
○○
10% 20 ℃ ○○○
10%
60 ℃
○○
Sodium carbonate, w. (soda)
c. s.
60 ℃
○○○○
Sodium chloride, w.
c. s.
60 ℃
○○○○
Sodium hydroxide
60 ℃
○○○○
Nickel salts, w.
c. s.
60 ℃
○○○○
Nitrobenzene
20 ℃
○○○
60 ℃
○○
Phosphoric acid
10%
20 ℃
Propane
60 ℃
○○○○
Mercury
60 ℃
○○○○
Nitric acid
10%
20 ℃
Hydrochloric acid
10%
20 ℃
Sulfur dioxide
low
60 ℃
○○○○
Sulfuric acid
25%
20 ℃
○○
10%
20 ℃
○○○
Hydrogen sulfide
low
60 ℃
○○○○
Carbon tetrachloride
60 ℃
○○○○
Toluene
20 ℃
○○○○
60 ℃
○○○
Planning the RF300 system
4.4 Chemical resistance of the transponders
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 93
Substance
Test conditions
Rating
Concentration [%]
Temperature [°C]
Detergent
high
60 ℃
○○○○
Plasticizer
60 ℃
○○○○
Explanation of the rating
○○○○
Resistant
○○○
Practically resistant
○○
Conditionally resistant
Less resistant
- Not resistant
w.
Water solution
c. s.
Cold saturated
4.4.3
Polyphenylene sulfide (PPS)
The data memory has special chemical resistance to solutions up to a temperature of 200
°C. A reduction in the mechanical properties has been observed in aqueous solutions of
hydrochloric acid (HCl) and nitric acid (HNO3) at 80 °C. The plastic housings are resistant to
all types of fuel including methanol.
Table 4- 57 Chemical resistance - polyphenylene sulfide (PPS)
Substance
Test conditions
Rating
Concentration [%]
Temperature [°C]
Acetone
55 ℃
○○○○
n-Butanol (butyl alcohol)
80 ℃
○○○○
Butanone-2 (methyl ethyl ketone)
60 ℃
○○○○
n-Butyl acetate
80 ℃
○○○○
Brake fluid
80 ℃
○○○○
Calcium chloride (saturated)
80 ℃
○○○○
Diesel fuel
80 ℃
○○○○
Diethyl ether
23 ℃
○○○○
Frigen 113
23 ℃
○○○○
Anti-freeze
120 ℃
○○○○
Kerosene
60 ℃
○○○○
Methanol 60 ℃ ○○○○
Engine oil
80 ℃
○○○○
Sodium chloride (saturated)
80 ℃
○○○○
Sodium hydroxide
30%
80 ℃
○○○○
Sodium hypochlorite
(30 or 180 days)
5%
80 ℃
○○
5% 80 ℃ -
Planning the RF300 system
4.4 Chemical resistance of the transponders
SIMATIC RF300
94 System Manual, 07/2016, C79000-G8976-C345-0x
Substance
Test conditions
Rating
Concentration [%]
Temperature [°C]
Sodium hydroxide solution
30%
90 ℃
○○○○
Nitric acid
10%
23 ℃
○○○○
Hydrochloric acid 10% 80 ℃ -
Sulfuric acid
10%
23 ℃
○○○○
10%
80 ℃
○○
30%
23 ℃
○○○○
Tested fuels
80 ℃
○○○○
FAM testing fluid
acc. to DIN 51 604-A
Toluene
80 ℃ ○○
1, 1, 1-Trichloroethane
Xylene
80 ℃ ○○○○
Zinc chloride (saturated)
80 ℃
○○
75 ℃
○○○○
Explanation of the rating
○○○○
Resistant
○○○
Practically resistant
○○
Conditionally resistant
Less resistant
-
Not resistant
4.4.4
Polycarbonate (PC)
Table 4- 58 Chemical resistance - polycarbonate (PPS)
Substance
Test conditions
Rating
Concentration [%]
Temperature [°C]
Mineral lubricants
○○
Aliphatic hydrocarbons
○○○○
Aromatic hydrocarbons
-
Gasoline
-
Weak mineral acids
○○○○
Strong mineral acids
○○
Weak organic acids ○○○○
Strong organic acids
○○
Oxidizing acids
-
Weak alkaline solutions
-
Strong alkaline solutions
-
Trichloroethylene
-
Planning the RF300 system
4.4 Chemical resistance of the transponders
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 95
Substance
Test conditions
Rating
Concentration [%]
Temperature [°C]
Perchloroethylene
-
Acetone
-
Alcohols ○○
Hot water (hydrolysis resistance)
-
Explanation of the rating
○○○○
Resistant
○○○
Practically resistant
○○ Conditionally resistant
Less resistant
-
Not resistant
4.4.5
Polyvinyl chloride (PVC)
Table 4- 59 Chemical resistance - polyvinyl chloride (PVC)
Substance
Test conditions
Rating
Concentration [%]
Temperature [°C]
Salt water
5%
○○○○
Sugared water
10%
○○○○
Acetic acid, w.
5%
○○○○
Sodium carbonate, w.
5%
○○○○
Ethyl alcohol, w.
60%
○○○○
Ethylene glycol
50%
○○○○
Fuel B
(acc. to ISO 1817)
○○○○
Human sweat
○○○○
Explanation of the rating
○○○○
Resistant
○○○
Practically resistant
○○
Conditionally resistant
Less resistant
-
Not resistant
Planning the RF300 system
4.4 Chemical resistance of the transponders
SIMATIC RF300
96 System Manual, 07/2016, C79000-G8976-C345-0x
4.4.6
Epoxy resin
Table 4- 60 Chemical Resistance - epoxy resin
Substance
Test conditions
Rating
Concentration [%]
Temperature [°C]
Allyl chloride
20 ℃
○○○○
Formic acid
50%
20 ℃
○○○○
100% 20 ℃ ○○
Ammonia, gaseous
20 ℃
○○○○
Ammonia, liquid, water-free 20 ℃ -
Ammonium hydroxide
10%
20 ℃
○○○○
Ethanol
40 ℃
○○○○
60 ℃
○○○○
Ethyl acrylate
20 ℃
○○○○
Ethyl glycol
60 ℃
○○○○
Gasoline, aroma-free
20 ℃
○○○○
Gasoline, containing benzene
20 ℃
○○○○
Benzoates (Na, Caamong others)
40 ℃
○○○○
Benzoic acid
20 ℃
○○○○
Benzene
20 ℃
○○○○
Borax
60 ℃
○○○
Boric acid
20 ℃
○○○○
Bromine, liquid
20 ℃
-
Bromides (K, Naamong others)
60 ℃
○○○○
Bromoform
100%
20 ℃
○○○○
Bromine water
20 ℃
-
Butadiene (1,3–) 20 ℃ ○○○○
Butane, gaseous
20 ℃
○○○○
Butanol
20 ℃
-
Butyric acid
100%
20 ℃
○○
Carbonates (ammonium, Naamong
others)
60 ℃ ○○○○
Chlorine, liquid
20 ℃
-
Chlorine, gaseous, dry
100%
20 ℃
-
Chlorobenzene
20 ℃
○○○○
Chlorides (ammonium, Naamong
others)
60 ℃ ○○○○
Chloroform
20 ℃
-
Chlorophyll
20 ℃
○○○○
Chlorosulfuric acid
100%
20
-
Chlorine water (saturated solution)
20 ℃
○○
Chromates (K, Naamong others)
Up to 50 %
40 ℃
○○○○
Chromic acid
Up to 30 %
20 ℃
-
Planning the RF300 system
4.4 Chemical resistance of the transponders
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 97
Substance
Test conditions
Rating
Concentration [%]
Temperature [°C]
Chromosulfuric acid
20 ℃
-
Citric acid
20 ℃
○○○○
Cyanamide 20 ℃ ○○○○
Cyanides (K, Naamong others)
60 ℃
○○○○
Dextrin, w.
60 ℃
○○○○
Diethyl ether
20 ℃
○○○○
Diethylene glycol
60 ℃
○○○○
Dimethyl ether
20 ℃
○○○○
Dioxane
20 ℃
-
Developer
40 ℃
○○○○
Acetic acid
100%
20 ℃
○○
Ethanol
60 ℃
○○○○
Fixing bath
40 ℃
○○○○
Fluorides (ammonium, K, Na
among others)
40 ℃ ○○○○
Hydrofluoric acid
Up to 40 %
20 ℃
○○○○
Formaldehyde
50%
20 ℃
○○○○
Formamide
100%
20 ℃
○○○○
Gluconic acid
20 ℃
○○○○
Glycerine
60 ℃
○○○○
Glycol 60 ℃ ○○○○
Urine
20 ℃
○○○○
Uric acid
20 ℃
○○○○
Hydroxides (ammonium...)
10%
20 ℃
○○○○
Hydroxides (Na, K–)
40%
20 ℃
○○○○
Hydroxides (alkaline earth metal)
60 ℃
○○○○
Hypochlorites (K, Naamong others)
60 ℃
○○○○
Iodides (K, Naamong others)
60 ℃
○○○○
Silicic acid
60 ℃
○○○○
Cresol
Up to 90 %
20 ℃
-
Methanol
100%
40 ℃
○○○○
Methylene chloride
20 ℃
-
Lactic acid
100%
20 ℃
○○
Mineral oils
40 ℃
○○○○
Nitrates (ammonium..., Kamong
others)
60 ℃ ○○○○
Nitroglycerin
20 ℃
-
Oxalic acid
20 ℃
○○○○
Phenol
1%
20 ℃
○○○○
Phosphates (ammonium..., Naamong
others)
60 ℃ ○○○○
Planning the RF300 system
4.4 Chemical resistance of the transponders
SIMATIC RF300
98 System Manual, 07/2016, C79000-G8976-C345-0x
Substance
Test conditions
Rating
Concentration [%]
Temperature [°C]
Phosphoric acid
50%
60 ℃
○○○○
85%
20 ℃
○○○○
Propanol 20 ℃ ○○○○
Nitric acid
25%
20 ℃
-
Hydrochloric acid
10%
20 ℃
-
Brine
60 ℃
-
Sulfur dioxide
100%
20 ℃
○○
Carbon disulfide
100%
20 ℃
-
Sulfuric acid
40%
20 ℃
-
Sulfurous acid
20 ℃
○○
Soap solution
60 ℃
○○○○
Sulphates (ammonium..., Naamong
others)
60 ℃ ○○○○
Sulfites (ammonium..., Naamong
others)
60 ℃ -
Tar, aroma-free
60 ℃
○○○○
Turpentine
20 ℃
○○○○
Trichloroethylene
20 ℃
-
Hydrogen peroxide
30%
20 ℃
○○○○
Tartaric acid
20 ℃
○○○○
Explanation of the rating
○○○○
Resistant
○○○ Practically resistant
○○
Conditionally resistant
Less resistant
-
Not resistant
4.4.7
PA6.6 GF30
Table 4- 61 Chemical resistance - PA6.6 GF30
Substance
Test conditions
Rating
Concentration [%]
Temperature [°C]
Mineral lubricants
○○○○
Aliphatic hydrocarbons
○○○○
Aromatic hydrocarbons
○○○○
Gasoline
○○○○
Weak mineral acids
○○○
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 99
Substance
Test conditions
Rating
Concentration [%]
Temperature [°C]
Strong mineral acids
-
Weak organic acids
○○
Strong organic acids -
Oxidizing acids
-
Weak alkaline solutions
○○
Strong alkaline solutions
-
Trichloroethylene
○○○○
Perchloroethylene
○○○○
Acetone
○○○○
Alcohols
○○○○
Hot water (hydrolysis resistance)
○○
Explanation of the rating
○○○○
Resistant
○○○
Practically resistant
○○
Conditionally resistant
Less resistant
-
Not resistant
4.5
Guidelines for electromagnetic compatibility (EMC)
4.5.1
Overview
These EMC Guidelines answer the following questions:
Why are EMC guidelines necessary?
What types of external interference have an impact on the system?
How can interference be prevented?
How can interference be eliminated?
Which standards relate to EMC?
Examples of interference-free plant design
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
SIMATIC RF300
100 System Manual, 07/2016, C79000-G8976-C345-0x
The description is intended for "qualified personnel":
Project engineers and planners who plan system configurations with RFID modules and
have to observe the necessary guidelines.
Fitters and service engineers who install the connecting cables in accordance with this
description or who rectify defects in this area in the event of interference.
Note
Failure to observe notices drawn to the reader's attention can result in dangerous
conditions in the plant or the destruction of individual components or the entire plant.
4.5.2
What does EMC mean?
The increasing use of electrical and electronic devices is accompanied by:
Higher component density
More switched power electronics
Increasing switching rates
Lower power consumption of components due to steeper switching edges
The higher the degree of automation, the greater the risk of interaction between devices.
Electromagnetic compatibility (EMC) is the ability of an electrical or electronic device to
operate satisfactorily in an electromagnetic environment without affecting or interfering with
the environment over and above certain limits.
EMC can be broken down into three different areas:
Internal immunity to interference:
Immunity to internal (own) electrical disturbance
External immunity to interference:
Immunity to external electromagnetic disturbances
Degree of interference emission:
Emission of interference and its effect on the electrical environment
All three areas are considered when testing an electrical device.
The RFID modules are tested for conformity with the limit values required by the CE and
R&TTE directives. Since the RFID modules are merely components of an overall system,
and sources of interference can arise as a result of combining different components, certain
directives have to be followed when setting up a plant.
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 101
EMC measures usually consist of a complete package of measures, all of which need to be
implemented in order to ensure that the plant is immune to interference.
Note
The plant manufacturer is responsible for the observance of the EMC direct
ives; the plant
operator is responsible for radio interference suppression in the overall plant.
All measures taken when setting up the plant prevent expensive retrospective modifications
and interference suppression measures.
The plant operator must compl
y with the locally applicable laws and regulations. They are
not covered in this document.
4.5.3
Basic rules
It is often sufficient to follow a few elementary rules in order to ensure electromagnetic
compatiblity (EMC).
The following rules must be observed:
Shielding by enclosure
Protect the device against external interference by installing it in a cabinet or housing.
The housing or enclosure must be connected to the chassis ground.
Use metal plates to shield against electromagnetic fields generated by inductances.
Use metal connector housings to shield data conductors.
Wide-area ground connection
Plan a meshed grounding concept.
Bond all passive metal parts to chassis ground, ensuring large-area and low-HF-
impedance contact.
Establish a large-area connection between the passive metal parts and the central
grounding point.
Don't forget to include the shielding bus in the chassis ground system. That means the
actual shielding busbars must be connected to ground by large-area contact.
Aluminium parts are not suitable for ground connections.
Plan the cable installation
Break the cabling down into cable groups and install these separately.
Always route power cables, signal cables and HF cables through separated ducts or in
separate bundles.
Feed the cabling into the cabinet from one side only and, if possible, on one level only.
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
SIMATIC RF300
102 System Manual, 07/2016, C79000-G8976-C345-0x
Route the signal cables as close as possible to chassis surfaces.
Twist the feed and return conductors of separately installed cables.
Routing HF cables:
avoid parallel routing of HF cables.
Do not route cables through the antenna field.
Shielding for the cables
Shield the data cables and connect the shield at both ends.
Shield the analog cables and connect the shield at one end, e.g. on the drive unit.
Always apply large-area connections between the cable shields and the shielding bus at
the cabinet inlet and make the contact with clamps.
Feed the connected shield through to the module without interruption.
Use braided shields, not foil shields.
Line and signal filter
Use only line filters with metal housings
Connect the filter housing to the cabinet chassis using a large-area low-HF-impedance
connection.
Never fix the filter housing to a painted surface.
Fix the filter at the control cabinet inlet or in the direction of the source.
4.5.4
Propagation of electromagnetic interference
Three components have to be present for interference to occur in a system:
Interference source
Coupling path
Interference sink
Figure 4-11 Propagation of interference
If one of the components is missing, e.g. the coupling path between the interference source
and the interference sink, the interference sink is unaffected, even if the interference source
is transmitting a high level of noise.
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 103
The EMC measures are applied to all three components, in order to prevent malfunctions
due to interference. When setting up a plant, the manufacturer must take all possible
measures in order to prevent the occurrence of interference sources:
Only devices fulfilling limit class A of VDE 0871 may be used in a plant.
Interference suppression measures must be introduced on all interference-emitting
devices. This includes all coils and windings.
The design of the system must be such that mutual interference between individual
components is precluded or kept as small as possible.
Information and tips for plant design are given in the following sections.
Interference sources
In order to achieve a high level of electromagnetic compatibility and thus a very low level of
disturbance in a plant, it is necessary to recognize the most frequent interference sources.
These must then be eliminated by appropriate measures.
Table 4- 62 Interference sources: origin and effect
Interference source
Interference results from
Effect on the interference sink
Contactors,
electronic valves
Contacts
System disturbances
Coils Magnetic field
Electrical motor
Collector
Electrical field
Winding
Magnetic field
Electric welding device
Contacts
Electrical field
Transformer Magnetic field, system disturbance,
transient currents
Power supply unit, switched-
mode
Circuit Electrical and magnetic field, system
disturbance
High-frequency appliances
Circuit
Electromagnetic field
Transmitter
(e.g. service radio)
Antenna Electromagnetic field
Ground or reference potential
difference
Voltage difference Transient currents
Operator Static charge
Electrical discharge currents, electrical
field
Power cable Current flow Electrical and magnetic field, system
disturbance
High-voltage cable
Voltage difference
Electrical field
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
SIMATIC RF300
104 System Manual, 07/2016, C79000-G8976-C345-0x
What interference can affect RFID?
Interference source
Cause
Remedy
Switched-mode power supply Interference emitted from the
current infeed
Replace the power supply
Interference injected through
the cables connected in
series
Cable is inadequately shield-
ed
Better cable shielding
The reader is not connected
to ground.
Ground the reader
HF interference over the
antennas
caused by another reader Position the antennas further
apart.
Erect suitable damping materials
between the antennas.
Reduce the power of the readers.
Please follow the instructions in the
section
Installation guidelines/reducing
the effects of metal
Coupling paths
A coupling path has to be present before the disturbance emitted by the interference source
can affect the system. There are four ways in which interference can be coupled in:
Figure 4-12 Ways in which interference can be coupled in
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 105
When RFID modules are used, different components in the overall system can act as a
coupling path:
Table 4- 63 Causes of coupling paths
Coupling path
Invoked by
Conductors and cables Incorrect or inappropriate installation
Missing or incorrectly connected shield
Inappropriate physical arrangement of cables
Control cabinet or housing Missing or incorrectly wired equalizing conductor
Missing or incorrect earthing
Inappropriate physical arrangement
Components not mounted securely
Unfavorable cabinet configuration
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
SIMATIC RF300
106 System Manual, 07/2016, C79000-G8976-C345-0x
4.5.5
Cabinet configuration
The influence of the user in the configuration of an electromagnetically compatible plant
encompasses cabinet configuration, cable installation, ground connections and correct
shielding of cables.
Note
For information about electromagnetically compatible cabinet configuration, please cons
ult
the installation guidelines for SIMATIC PLCs.
Shielding by enclosure
Magnetic and electrical fields and electromagnetic waves can be kept away from the
interference sink by using a metal enclosure. The easier the induced interference current can
flow, the greater the intrinsic weakening of the interference field. All enclosures and metal
panels in the cabinet should therefore be connected in a manner allowing good
conductance.
Figure 4-13 Shielding by enclosure
If the control cabinet panels are insulated from each other, a high-frequency-conducting
connection can be established using ribbon cables and high-frequency terminals or HF
conducting paste. The larger the area of the connection, the greater the high-frequency
conductivity. This is not possible using single-wire connections.
Prevention of interference by optimum configuration
Good interference suppression can be achieved by installing SIMATIC PLCs on conducting
mounting plates (unpainted). When setting up the control cabinet, interference can be
prevented easily by observing certain guidelines. Power components (transformers, drive
units, load power supply units) should be arranged separately from the control components
(relay control unit, SIMATIC S7).
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 107
As a rule:
The effect of the interference decreases as the distance between the interference source
and interference sink increases.
The interference can be further decreased by installing grounded shielding plates.
The load connections and power cables should be installed separately from the signal
cables with a minimum clearance of 10 cm.
Figure 4-14 Prevention of interference by optimum configuration
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
SIMATIC RF300
108 System Manual, 07/2016, C79000-G8976-C345-0x
Filtering of the supply voltage
External interference from the mains can be prevented by installing line filters. Correct
installation is extremely important, in addition to appropriate dimensioning. It is essential that
the line filter is mounted directly at the cabinet inlet. As a result, interference is filtered
promptly at the inlet, and is not conducted through the cabinet.
Figure 4-15 Filtering of the supply voltage
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 109
4.5.6
Prevention of interference sources
A high level of immunity to interference can be achieved by avoiding interference sources.
All switched inductances are frequent sources of interference in plants.
Suppression of inductance
Relays, contactors, etc. generate interference voltages and must therefore be suppressed
using one of the circuits below.
Even with small relays, interference voltages of up to 800 V occur on 24 V coils, and
interference voltages of several kV occur on 230 V coils when the coil is switched. The use
of freewheeling diodes or RC circuits prevents interference voltages and thus stray
interference on conductors installed parallel to the coil conductor.
Figure 4-16 Suppression of inductance
Note
All coils in the cabinet should be suppressed. The valves and motor brakes are frequently
forgotten. Fluorescent lamps in the control cabinet should be tested in particular.
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
SIMATIC RF300
110 System Manual, 07/2016, C79000-G8976-C345-0x
4.5.7
Equipotential bonding
Potential differences between different parts of a plant can arise due to the different design
of the plant components and different voltage levels. If the plant components are connected
across signal cables, transient currents flow across the signal cables. These transient
currents can corrupt the signals.
Proper equipotential bonding is thus essential.
The equipotential bonding conductor must have a sufficiently large cross section (at least
10 mm2).
The distance between the signal cable and the associated equipotential bonding
conductor must be as small as possible (antenna effect).
A fine-strand conductor must be used (better high-frequency conductivity).
When connecting the equipotential bonding conductors to the centralized equipotential
bonding strip (EBS), the power components and non-power components must be
combined.
The equipotential bonding conductors of the separate modules must lead directly to the
equipotential bonding strip.
Figure 4-17 Equipotential bonding (EBS = Equipotential bonding strip)
The better the equipotential bonding in a plant, the smaller the chance of interference due to
fluctuations in potential.
Equipotential bonding should not be confused with protective earthing of a plant. Protective
earthing prevents the occurrence of excessive contact voltages in the event of equipment
faults whereas equipotential bonding prevents the occurrence of differences in potential.
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 111
4.5.8
Cable shielding
Signal cables must be shielded in order to prevent coupling of interference.
The best shielding is achieved by installing the cables in steel tubes. However, this is only
necessary if the signal cable is routed through an environment prone to particular
interference. It is usually adequate to use cables with braided shields. In either case,
however, correct connection is vital for effective shielding.
Note
An unconnected or in
correctly connected shield has no shielding effect.
As a rule:
For analog signal cables, the shield should be connected at one end on the receiver side
For digital signals, the shield should be connected to the enclosure at both ends
Since interference signals are frequently within the HF range (> 10 kHz), a large-area HF-
proof shield contact is necessary
Figure 4-18 Cable shielding
The shielding bus should be connected to the control cabinet enclosure in a manner allowing
good conductance (large-area contact) and must be situated as close as possible to the
cable inlet. The cable insulation must be removed and the cable clamped to the shielding
bus (high-frequency clamp) or secured using cable ties. Care should be taken to ensure that
the connection allows good conductance.
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
SIMATIC RF300
112 System Manual, 07/2016, C79000-G8976-C345-0x
Figure 4-19 Connection of shielding bus
The shielding bus must be connected to the PE busbar.
If shielded cables have to be interrupted, the shield must be continued via the corresponding
connector housing. Only suitable connectors may be used for this purpose.
Figure 4-20 Interruption of shielded cables
If intermediate connectors, which do not have a suitable shield connection, are used, the
shield must be continued by fixing cable clamps at the point of interruption. This ensures a
large-area, HF-conducting contact.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 113
Readers
5
Features of the RF300 reader
The reader provides inductive communication with the transponders and serial connection to
the communications modules.
Communication between the transponder and reader takes place over inductive alternating
fields.
The transmittable data volume between reader and transponder depends on
the speed at which the transponder moves through the transmission window of the
reader.
the length of the transmission window,
the transponder type used (RF300- / ISO 15693- (MDS D)/ ISO 14443 transponder (MDS
E)),
the memory type (FRAM, EEPROM; with RF300 transponders).
ISO 15693 functionality
With all readers of the RF300 family, you can use ISO 15693 transponders. Note that the
readers for RF300, ISO 15963 or ISO 14443 operation must have parameters assigned. The
parameter assignment done with the aid of the RESET frame (INIT-Run).
For more detailed information on software parameter assignment refer to the manuals.
Function manual "Ident profile and Ident blocks
(https://support.industry.siemens.com/cs/ww/en/view/106368029)",
Product Information "FB 45 and FC 45 input parameters for RF300 and ISO transponders
(https://support.industry.siemens.com/cs/ww/en/view/33315697)",
Function manual "FB 45 (https://support.industry.siemens.com/cs/ww/en/view/21738808)"
as of version "AS ≥ A3".
Readers
SIMATIC RF300
114 System Manual, 07/2016, C79000-G8976-C345-0x
ISO 14443 functionality
With all readers of the second generation of the RF300 family, you can use ISO 14443
transponders. The RF300 readers of the second generation therefore replace the MOBY E
readers SLG 72 and SLG 75. Note that the readers for RF300, ISO 15963 or ISO 14443
operation must have parameters assigned. The parameter assignment done with the aid of
the RESET frame (INIT-Run).
The following commands are supported in ISO 14443 operation of the readers:
READ
WRITE
MDS-STATUS (mode 3)
INIT
REPEAT
Special ISO 14443 commands such as "INCREMENT", "DECREMENT" or "SET-VALUE"
are not supported.
Readers
5.1 SIMATIC RF310R
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 115
5.1
SIMATIC RF310R
5.1.1
Features
SIMATIC RF310R
Characteristics
Design RS-422 interface
Status display
Area of application Identification tasks on small assembly lines
in harsh industrial environments
5.1.2
RF310R ordering data
Table 5- 1 RF310R ordering data
Article number
RF310R with RS-422 interface (3964R)
horizontal base plate
6GT2801-1AB10
RF310R with RS-422 interface (3964R)
base plate turned through 90°
6GT2801-1AB10-0AX1
Readers
5.1 SIMATIC RF310R
SIMATIC RF300
116 System Manual, 07/2016, C79000-G8976-C345-0x
5.1.3
Pin assignment RF310R with RS-422 interface
Pin
Pin
Device end
8-pin M12
Assignment
1
+ 24 V
2 - Transmit
3
0 V
4
+ Transmit
5
+ Receive
6
- Receive
7
Unassigned
8
Earth (shield)
5.1.4
LED operating display
The operational statuses of the reader are displayed by the LEDs. The LED can adopt the
colors green, red or yellow and the statuses off
, on
, flashing
:
Table 5- 2 LED operating display on the reader
Color
Meaning
Operating voltage present, reader not initialized or antenna switched off
Operating voltage present, reader initialized and antenna switched on
1)
Transponder present
Error has occurred, the type of flashing corresponds to the error code in the
table in the section Error codes. The optical error display is only reset if the
corresponding reset parameter ("option_1", see FC 45 / FB 45 documentation,
section Input parameters) is set.
1) Only in the "with presence" mode.
5.1.5
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
Readers
5.1 SIMATIC RF310R
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 117
5.1.6
Metal-free area
The RF310R can be flush-mounted in metal. Please allow for a possible reduction in the field
data values.
Figure 5-1 Metal-free area for RF310R
To avoid any impact on the field data, the distance a should be ≥ 20 mm.
5.1.7
Minimum distance between RF310R readers
RF310R side by side
D
≥ 150 mm (with 2 readers)
D
≥ 200 mm (with more than 2 readers)
Figure 5-2 Minimum distance between RF310R readers
Readers
5.1 SIMATIC RF310R
SIMATIC RF300
118 System Manual, 07/2016, C79000-G8976-C345-0x
RF310R face-of-face
D
≥ 300 mm
Figure 5-3 Face-of-face distance between two RF310Rs
5.1.8
Technical specifications
Table 5- 3 Technical specifications of the RF310R reader with RS-422 interface
6GT2801-1AB10
Product type designation
SIMATIC RF310R
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
60 mm
Maximum data transmission speed
reader ↔ transponder
RF300 transponder ISO transponder
Read approx. 8000
bytes/s
approx. 1500
bytes/s
Write approx. 8000
bytes/s
approx. 1500
bytes/s
Transmission speed
19.2, 57.6, 115.2 kBd
Read/write distances of the reader See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
170 years
Interfaces
Electrical connector design
M12, 8-pin
Standard for interfaces for communication
RS-422
Antenna
integrated
Readers
5.1 SIMATIC RF310R
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 119
6GT2801-1AB10
Mechanical specifications
Housing
Material Plastic PA 12
Color Anthracite
Recommended distance to metal
0 mm
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
50 mA
Permitted ambient conditions
Ambient temperature
During operation -25 to +70 ℃
During transportation and storage -40 to +85 ℃
Degree of protection to EN 60529
IP67
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
75 x 55 x 30 mm
Weight
200 g
Type of mounting 4 x M5 screw;
1.5 Nm
Cable length for RS-422 interface, maximum
1000 m
LED display design 3-color LED
Standards, specifications, approvals
Proof of suitability Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA
Readers
5.1 SIMATIC RF310R
SIMATIC RF300
120 System Manual, 07/2016, C79000-G8976-C345-0x
5.1.9
Approvals
FCC information
Siemens SIMATIC RF310R (MLFB 6GT2801-1AB10); FCC ID NXW-RF310R
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
Readers
5.1 SIMATIC RF310R
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 121
5.1.10
Dimension drawing
Figure 5-4 Dimension drawing for RF310R
Dimensions in mm
Readers
5.2 SIMATIC RF310R with Scanmode
SIMATIC RF300
122 System Manual, 07/2016, C79000-G8976-C345-0x
5.2
SIMATIC RF310R with Scanmode
You will find detailed information on the SIMATIC RF310R with Scanmode on the Internet
(https://support.industry.siemens.com/cs/ww/en/ps/15034).
5.2.1
Features
SIMATIC RF310R special version
Scanmode
Characteristics
Design RS-422 interface
Status display
Area of application Identification tasks on small assembly lines in harsh
industrial environments
5.2.2
Ordering data for RF310R with Scanmode
Table 5- 4 Ordering data RF310R Scanmode
Article number
RF310R special version Scanmode with RS-422 interface 6GT2801-1AB20-0AX1
Readers
5.2 SIMATIC RF310R with Scanmode
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 123
5.2.3
Pin assignment RF310R special version Scanmode RS-422 interface
Pin
Pin
Device end
8-pin M12
Assignment
1
+ 24 V
2 - Transmit
3
0 V
4
+ Transmit
5
+ Receive
6
- Receive
7
Unassigned
8
Earth (shield)
5.2.4
LED operating display
The operational statuses of the reader are displayed by the LEDs. The LED can adopt the
colors green, red or yellow and the statuses off , on , flashing :
Table 5- 5 LED operating display on the reader
Color
Meaning
Operating voltage present, reader ready for operation
Transponder present
Red LED for error display is activated permanently if correct operation of the reader
cannot be guaranteed (e. g. faulty start, checksum error during operation).
5.2.5
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
Readers
5.2 SIMATIC RF310R with Scanmode
SIMATIC RF300
124 System Manual, 07/2016, C79000-G8976-C345-0x
5.2.6
Metal-free area
The RF310R special version can be flush-mounted in metal. Please allow for a possible
reduction in the field data values.
Figure 5-5 Metal-free area for RF310R special version
To avoid any impact on the field data, the distance a should be ≥ 20 mm.
5.2.7
Minimum distance between several readers
RF310R special version side by side
D
≥ 150 mm (with 2 readers)
D
≥ 200 mm (with more than 2 readers)
Figure 5-6 Minimum distance between RF310R readers
Readers
5.2 SIMATIC RF310R with Scanmode
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 125
RF310R special version face-to-face
D
≥ 300 mm
Figure 5-7 Face-to-face distance between two RF310R special version
5.2.8
Technical specifications
Table 5- 6 Technical specifications of the RF310R reader with Scanmode
6GT2801-1AB20-0AX1
Product type designation
SIMATIC RF310R Scanmode
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
60 mm
Maximum data transmission speed
reader ↔ transponder
RF300 transponder ISO transponder
Read approx. 8000
bytes/s
approx. 1500
bytes/s
Transmission speed
9.6, 19.2, 38.4, 57.6, 115.2 kBd
Read/write distances of the reader See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
170 years
Interfaces
Electrical connector design
M12, 8-pin
Standard for interfaces for communication
RS-422 (Scanmode)
Antenna
integrated
Mechanical specifications
Housing
Material Plastic PA 12
Color Anthracite
Recommended distance to metal 0 mm
Readers
5.2 SIMATIC RF310R with Scanmode
SIMATIC RF300
126 System Manual, 07/2016, C79000-G8976-C345-0x
6GT2801-1AB20-0AX1
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
50 mA
Permitted ambient conditions
Ambient temperature
During operation -25 to +70 ℃
During transportation and storage -40 to +85 ℃
Degree of protection to EN 60529
IP67
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
75 x 55 x 30 mm
Weight
170 g
Type of mounting 4 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
1000 m
LED display design
3-color LED
Standards, specifications, approvals
Proof of suitability Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA
Readers
5.2 SIMATIC RF310R with Scanmode
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 127
5.2.9
Approvals
FCC information
Siemens SIMATIC RF310R (MLFB 6GT2801-1AB20-0AX1); FCC ID NXW-RF310R
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
Readers
5.2 SIMATIC RF310R with Scanmode
SIMATIC RF300
128 System Manual, 07/2016, C79000-G8976-C345-0x
5.2.10
Dimension drawing
Figure 5-8 Dimension drawing RF310R special version Scanmode
Dimensions in mm
Readers
5.3 SIMATIC RF310R - second generation
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 129
5.3
SIMATIC RF310R - second generation
5.3.1
Features
SIMATIC RF310R
Characteristics
Design RS-422 interface
LED operating display
Area of application Identification tasks on small assembly lines in
harsh industrial environments
5.3.2
Ordering data
Table 5- 7 RF310R ordering data
Article number
RF310R with RS-422 interface (3964R) 6GT2801-1BA10
Readers
5.3 SIMATIC RF310R - second generation
SIMATIC RF300
130 System Manual, 07/2016, C79000-G8976-C345-0x
5.3.3
Pin assignment of the RS-422 interface
Table 5- 8 Pin assignment
Pin
Pin
Device end
8-pin M12
Assignment
1
+ 24 V
2 - Transmit
3
0 V
4
+ Transmit
5
+ Receive
6
- Receive
7
Unassigned
8
Earth (shield)
5.3.4
LED operating display
The operational statuses of the reader are displayed by two LEDs. The LEDs can adopt the
colors white green, red, yellow or blue and the statuses off , on , flashing :
Table 5- 9 Display elements
LED
Meaning
The reader is turned off.
The reader is turned on and is searching for transponders.
The reader is in the "Setup" mode, in the "Search for transponders" status and
has not yet received a "RESET" command and is not ready.
/ There is transponder in the antenna field.
The reader is in the "Setup" mode, in the status "Show quality", has not yet re-
ceived a "RESET" command and is not ready.
Depending on the signal strength, the LED flashes or is lit permanently.
The reader has received a "RESET" command.
There is transponder in the antenna field.
The reader is ready.
There is an error. The number of flashes provides information about the current
error.
You will find more information on error messages in the section "System diag-
nostics (Page 395)".
5.3.5
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
Readers
5.3 SIMATIC RF310R - second generation
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 131
5.3.6
Metal-free area
The RF310R can be flush-mounted in metal. Allow for a possible reduction in the field data.
To avoid any influence on the field data, the distance "a" should be kept to.
a ≥
20 mm
Figure 5-9 Metal-free area for RF310R
5.3.7
Minimum distance between RF310R readers
RF310R side by side
D ≥
150 mm (with 2 readers)
D ≥
200 mm (with more than 2 readers)
Figure 5-10 Minimum distance between RF310R readers
Readers
5.3 SIMATIC RF310R - second generation
SIMATIC RF300
132 System Manual, 07/2016, C79000-G8976-C345-0x
RF310R face-of-face
D ≥
300 mm
Figure 5-11 Face-of-face distance between two RF310Rs
5.3.8
Technical specifications
Table 5- 10 Technical specifications of the RF310R reader with RS-422 interface
6GT2801-1BA10
Product type designation
SIMATIC RF310R
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
60 mm
Maximum data transmission speed
reader ↔ transponder
RF300
transponder
ISO
transponder
(MDS D)
ISO tran-
sponder
(MDS E)
Read ≤ 8000
bytes/s
≤ 3300
bytes/s
≤ 3400
bytes/s
Write ≤ 8000
bytes/s
≤ 1700
bytes/s
≤ 800
bytes/s
Transmission speed
19.2, 57.6, 115.2 kBd
Read/write distances of the reader See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
273 years
Interfaces
Electrical connector design
M12, 8-pin
Standard for interfaces for communication
RS-422
Antenna
integrated
Readers
5.3 SIMATIC RF310R - second generation
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 133
6GT2801-1BA10
Mechanical specifications
Housing
Material Plastic PA 12
Color TI-Grey
Recommended distance to metal
0 mm
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
55 mA
Permitted ambient conditions
Ambient temperature
During operation -25 to +70 ℃
During transportation and storage -40 to +85 ℃
Degree of protection to EN 60529
IP67
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
75 x 55 x 30 mm
Weight
100 g
Type of mounting 4 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
1000 m
LED display design 2 LEDs, 5 colors
Standards, specifications, approvals
Proof of suitability Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA (IEC61010 /
IEC61010-2-201),
Ex approval
Readers
5.3 SIMATIC RF310R - second generation
SIMATIC RF300
134 System Manual, 07/2016, C79000-G8976-C345-0x
5.3.9
Approvals
FCC information
Siemens SIMATIC RF310R (MLFB 6GT2801-1BA10); FCC ID NXW-RF310R-03
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
Readers
5.3 SIMATIC RF310R - second generation
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 135
UL information (IEC61010-1 / IEC61010-2-201)
This standard applies to equipment designed to be safe at least under the following
conditions:
a) indoor use;
b) altitude up to 2 000 m;
c) temperature -25 °C to 70 °C;
d) maximum relative humidity 80 % for temperature up to 31 °C decreasing linearly to 50
% relative humidity at 40 °C;
e) TRANSIENT OVERVALTAGES up to the levels of OVERVALTAGE CATEGORY II,
NOTE 1: These levels of transient overvoltage are typical for equipment supplied from the
building wiring.
f) using a "NEC Class 2" power supply is required
5.3.10
Dimension drawing
Figure 5-12 Dimension drawing for RF310R
Dimensions in mm
Readers
5.4 SIMATIC RF340R/RF350R
SIMATIC RF300
136 System Manual, 07/2016, C79000-G8976-C345-0x
5.4
SIMATIC RF340R/RF350R
5.4.1
SIMATIC RF340R
5.4.1.1
Features
SIMATIC RF340R
Characteristics
Design RS-422 interface
Status display
Area of application Identification tasks on assembly lines in
harsh industrial environments
5.4.1.2
Ordering data for RF340R
Table 5- 11 Ordering data for RF340R
Article number
RF340R with RS-422 interface (3964R)
6GT2801-2AB10
Readers
5.4 SIMATIC RF340R/RF350R
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 137
5.4.1.3
Pin assignment of RF340R RS422 interface
Pin
Pin
Device end
8-pin M12
Assignment
1
+ 24 V
2
- Transmit
3
0 V
4 + Transmit
5
+ Receive
6
- Receive
7
Unassigned
8
Earth (shield)
5.4.1.4
LED operating display
The operational statuses of the reader are displayed by the LEDs. The LED can adopt the
colors green, red or yellow and the statuses off , on , flashing :
Table 5- 12 LED operating display on the reader
Color
Meaning
Operating voltage present, reader not initialized or antenna switched off
Operating voltage present, reader initialized and antenna switched on
1)
Transponder present
Error has occurred, the type of flashing corresponds to the error code in the
table in the section Error codes. The optical error display is only reset if the
corresponding reset parameter ("option_1", see FC 45 / FB 45 documentation,
section Input parameters) is set.
1) Only in the "with presence" mode.
5.4.1.5
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
Readers
5.4 SIMATIC RF340R/RF350R
SIMATIC RF300
138 System Manual, 07/2016, C79000-G8976-C345-0x
5.4.1.6
Metal-free area
The RF340R can be flush-mounted in metal. Please allow for a possible reduction in the field
data values.
Figure 5-13 Metal-free area for RF340R
To avoid any impact on the field data, the distance a should be ≥ 20 mm.
5.4.1.7
Minimum distance between RF340R readers
RF340R side by side
D
≥ 200 mm (with 2 readers)
D
≥ 250 mm (with more than 2 readers)
Figure 5-14 Minimum distance between RF340R readers
Readers
5.4 SIMATIC RF340R/RF350R
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 139
RF340R face-of-face
D
500 mm
Figure 5-15 Face-of-face distance between two RF340Rs
5.4.1.8
Technical specifications
Table 5- 13 Technical specifications of the RF340R reader
6GT2801-2AB10
Product type designation
SIMATIC RF340R
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
140 mm
Maximum data transmission speed
reader ↔ transponder
RF300 transponder ISO transponder
Read approx. 8000
bytes/s
approx. 1500
bytes/s
Write approx. 8000
bytes/s
approx. 1500
bytes/s
Transmission speed
19.2, 57.6, 115.2 kBd
Read/write distances of the reader See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
140 years
Interfaces
Electrical connector design
M12, 8-pin
Standard for interfaces for communication
RS-422 (3964R protocol)
Antenna
integrated
Readers
5.4 SIMATIC RF340R/RF350R
SIMATIC RF300
140 System Manual, 07/2016, C79000-G8976-C345-0x
6GT2801-2AB10
Mechanical specifications
Housing
Material Plastic PA 12
Color Anthracite
Recommended distance to metal
0 mm
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
100 mA
Permitted ambient conditions
Ambient temperature
During operation -25 to +70 ℃
During transportation and storage -40 to +85 ℃
Degree of protection to EN 60529
IP67
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
75 x 75 x 41 mm
Weight
250 g
Type of mounting 2 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
1000 m
LED display design 3-color LED
Standards, specifications, approvals
Proof of suitability Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA,
Ex approval
Readers
5.4 SIMATIC RF340R/RF350R
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 141
5.4.1.9
Approvals
FCC information
Siemens SIMATIC RF340R (MLFB 6GT2801-2AA10); FCC ID NXW-RF340R
Siemens SIMATIC RF340R (MLFB 6GT2801-2AB10); FCC ID NXW-RF340R01
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
Readers
5.4 SIMATIC RF340R/RF350R
SIMATIC RF300
142 System Manual, 07/2016, C79000-G8976-C345-0x
5.4.1.10
Dimension drawing
Figure 5-16 Dimension drawing for RF340R
Dimensions in mm
Readers
5.4 SIMATIC RF340R/RF350R
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 143
5.4.2
SIMATIC RF350R
5.4.2.1
Features
SIMATIC RF350R
Characteristics
Design Antenna connection
RS-422 interface
Status display
Area of application Identification tasks in assembly lines in harsh industrial
environments; for external antennas
(ANT 1, ANT 3, ANT 12, ANT 18, ANT 30)
Note
Reader requires external antennas
Note that the RF350R reader is designed only for operation with external antennas and only
works in conjunction with the antennas ANT 1, ANT 3, ANT 12, ANT 18 or ANT 30.
5.4.2.2
Ordering data for RF350R
Table 5- 14 Ordering data for RF350R
Article number
RF350R with RS-422 interface (3964R)
6GT2801-4AB10
Readers
5.4 SIMATIC RF340R/RF350R
SIMATIC RF300
144 System Manual, 07/2016, C79000-G8976-C345-0x
5.4.2.3
Pin assignment of RF350R RS422 interface
Pin
Pin
Device end
8-pin M12
Assignment
1
+ 24 V
2
- Transmit
3
0 V
4 + Transmit
5
+ Receive
6
- Receive
7
Unassigned
8
Earth (shield)
5.4.2.4
LED operating display
The operational statuses of the reader are displayed by the LEDs. The LED can adopt the
colors green, red or yellow and the statuses off , on , flashing :
Table 5- 15 LED operating display on the reader
Color
Meaning
Operating voltage present, reader not initialized or antenna switched off
Operating voltage present, reader initialized and antenna switched on
1)
Transponder present
Error has occurred, the type of flashing corresponds to the error code in the
table in the section Error codes. The optical error display is only reset if the
corresponding reset parameter ("option_1", see FC 45 / FB 45 documentation,
section Input parameters) is set.
1) Only in the "with presence" mode.
5.4.2.5
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
5.4.2.6
Metal-free area
The RF350R reader does not have an internal antenna. Operation is not affected by
mounting on metal or flush-mounting in metal. For information about the metal-free area
required by the external antennas, refer to the corresponding section of the chapter Auto-
Hotspot.
Readers
5.4 SIMATIC RF340R/RF350R
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 145
5.4.2.7
Technical specifications
Table 5- 16 Technical specifications of the RF350R reader
6GT2801-4AB10
Product type designation
SIMATIC RF350R
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
ANT 1 140 mm
ANT 3 50 mm
ANT 12 16 mm
ANT 18 35 mm
ANT 30 55 mm
Maximum data transmission speed
reader ↔ transponder
RF300 transponder ISO transponder
Read approx. 8000
bytes/s
approx. 1500
bytes/s
Write approx. 8000
bytes/s
approx. 1500
bytes/s
Transmission speed
19.2, 57.6, 115.2 kBd
Read/write distances of the reader See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
140 years
Interfaces
Electrical connector design
M12, 8-pin
Antenna connector design
M8, 4-pin
Standard for interfaces for communication
RS-422 (3964R protocol)
Antenna External, antennas ANT 1, ANT 3, ANT 12, ANT
18 or ANT 30
Mechanical specifications
Housing
Material Plastic PA 12
Color Anthracite
Recommended distance to metal
0 mm
Readers
5.4 SIMATIC RF340R/RF350R
SIMATIC RF300
146 System Manual, 07/2016, C79000-G8976-C345-0x
6GT2801-4AB10
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
100 mA
Permitted ambient conditions
Ambient temperature
During operation -25 to +70 ℃
During transportation and storage -40 to +85 ℃
Degree of protection to EN 60529
IP65
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
75 x 75 x 41 mm
Weight
250 g
Type of mounting 2 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
1000 m
LED display design
3-color LED
Standards, specifications, approvals
Proof of suitability Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA,
Ex approval
Readers
5.4 SIMATIC RF340R/RF350R
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 147
5.4.2.8
Approvals
FCC information
Siemens SIMATIC RF350R (MLFB 6GT2801-4AA10); FCC ID NXW-RF350R
Siemens SIMATIC RF350R (MLFB 6GT2801-4AB10); FCC ID NXW-RF350R01
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
Readers
5.4 SIMATIC RF340R/RF350R
SIMATIC RF300
148 System Manual, 07/2016, C79000-G8976-C345-0x
5.4.2.9
Dimension drawing
Figure 5-17 RF350R dimension drawing
Dimensions in mm
Readers
5.4 SIMATIC RF340R/RF350R
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 149
5.4.3
Use of the reader in hazardous areas
TÜV NORD CERT GmbH as accredited test center and certification body, no. 0044 as per
Article 9 of the Directive 94/9/EC of the European Council of 23 March 1994, has confirmed
the compliance with the essential health and safety requirements relating to the design and
construction of equipment and protective systems intended for use in hazardous areas as
per Annex II of the Directive. The essential health and safety requirements are satisfied in
accordance with the following standards:
Document
Title
EN 60079-0: 2006 Electrical equipment for hazardous gas atmospheres -
Part 0: General requirements
EN 60079-15: 2005 Electrical equipment for hazardous gas atmospheres -
Part 15: Design, testing and identification of electrical equipment with
type of protection "n"
IEC 61241 -0: 2006 Electrical apparatus for use in the presence of combustible dust -
Part 0: General requirements
IEC 61241 -1: 2004 Electrical apparatus for use in the presence of combustible dust -
Part 1: Protection through enclosure
WARNING
EXPLOSION HAZARD
DO NOT CONNECT OR DISCONNECT EQUIPMENT WHEN A FLAMMABLE OR
COMBUSTIBLE ATMOSPHERE IS PRESENT.
Identification
The identification of the electrical equipment as an enclosed unit is:
II 3 G Ex nA nC IIB T5
II 3 D Ex tD A22 IP6x T80 °C
-25 °C to +70 °C
U
n
= 20 to 30 VDC
The equipment also has the following additional markings:
XXXYYYZZZ
[= serial number, is assigned during production]
TÜV 10 ATEX 556039
[= certificate number]
Readers
5.4 SIMATIC RF340R/RF350R
SIMATIC RF300
150 System Manual, 07/2016, C79000-G8976-C345-0x
5.4.3.1
Use of the readers in hazardous areas for gases
Temperature class delineation for gases
The temperature class of the reader for hazardous areas depends on the ambient
temperature range:
Ambient temperature range
Temperature class
-25 °C to +70 °C
T5
WARNING
Ignitions of gas-air mixtures
When using the RF340R/RF350R readers, check to ensure that the temperature class is
observed in respect of the requirements of the area of application.
Non-compliance with the permitted temperature ranges while using the reader can lead to
ignitions of gas-air mixtures.
5.4.3.2
Use of the readers in hazardous areas for dusts
The equipment is suitable for dusts whose ignition temperatures for a dust layer of 5 mm are
higher than 80 °C (smoldering temperature). With the ignition temperature according to type
of protection iD specified here in compliance with IEC 61241-0 and IEC 61241-11, the
smoldering temperature of the dust layer is referenced in this case.
Temperature class delineation for dusts
Ambient temperature range
Temperature value
-25 °C < Ta < +70 °C T80 °C
WARNING
Ignitions of dust-air mixtures
When using the RF340R/RF350R readers, check to ensure that the temperature values are
observed in respect of the requirements of the area of application.
Non-compliance with the permitted temperature ranges while using the reader can lead to
ignitions of dust-air mixtures.
Readers
5.4 SIMATIC RF340R/RF350R
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 151
5.4.3.3
Installation and operating conditions for the hazardous area
NOTICE
Device may be damaged
Note the following conditions when installing and operating the device in a hazardous zone
to avoid damage:
Making and breaking of circuits is permitted only in a de-energized state.
The maximum surface temperature, corresponding to the marking, applies only for
operation without a cover of dust.
The device may only be operated in such a way that adequate protection against UV
light is ensured.
The device may not be operated in areas influenced by processes that generate high
electrostatic charges.
The equipment must be installed so that it is mechanically protected.
The device sockets must be protected with a shrink-on tube.
The 8 pin connector must be grounded via its supply line.
The device may only be operated with accessories specified or supplied by the
manufacturer. All the points above also apply to the accessories (cables and
connectors) and to the antennas (exception: the housing of antenna 1 does not need to
be installed with impact protection).
Readers
5.5 SIMATIC RF340R/RF350R - second generation
SIMATIC RF300
152 System Manual, 07/2016, C79000-G8976-C345-0x
5.5
SIMATIC RF340R/RF350R - second generation
5.5.1
SIMATIC RF340R - second generation
5.5.1.1
Features
SIMATIC RF340R
Characteristics
Design RS-422 interface
LED operating display
Area of application Identification tasks on assembly lines in harsh
industrial environments
5.5.1.2
Ordering data
Table 5- 17 Ordering data for RF340R
Article number
RF340R with RS-422 interface (3964R)
6GT2801-2BA10
Readers
5.5 SIMATIC RF340R/RF350R - second generation
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 153
5.5.1.3
Pin assignment of the RS-422 interface
Table 5- 18 Pin assignment
Pin
Pin
Device end
8-pin M12
Assignment
1
+ 24 V
2
- Transmit
3
0 V
4 + Transmit
5
+ Receive
6
- Receive
7
Unassigned
8
Earth (shield)
5.5.1.4
LED operating display
The operational statuses of the reader are displayed by two LEDs. The LEDs can adopt the
colors white green, red, yellow or blue and the statuses off , on , flashing :
Table 5- 19 Display elements
LED
Meaning
The reader is turned off.
The reader is turned on and is searching for transponders.
The reader is in the "Setup" mode, in the "Search for transponders" status and
has not yet received a "RESET" command and is not ready.
/ There is transponder in the antenna field.
The reader is in the "Setup" mode, in the status "Show quality", has not yet re-
ceived a "RESET" command and is not ready.
Depending on the signal strength, the LED flashes or is lit permanently.
The reader has received a "RESET" command.
There is transponder in the antenna field.
The reader is ready.
There is an error. The number of flashes provides information about the current
error.
You will find more information on error messages in the section "System diag-
nostics (Page 395)".
5.5.1.5
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
Readers
5.5 SIMATIC RF340R/RF350R - second generation
SIMATIC RF300
154 System Manual, 07/2016, C79000-G8976-C345-0x
5.5.1.6
Metal-free area
The RF340R can be flush-mounted in metal. Allow for a possible reduction in the field data.
To avoid any influence on the field data, the distance "a" should be kept to.
a ≥
20 mm
Figure 5-18 Metal-free area for RF340R
5.5.1.7
Minimum distance between RF340R readers
RF340R side by side
D ≥
200 mm (with 2 readers)
D ≥
250 mm (with more than 2 readers)
Figure 5-19 Minimum distance between RF340R readers
Readers
5.5 SIMATIC RF340R/RF350R - second generation
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 155
RF340R face-of-face
D
500 mm
Figure 5-20 Face-of-face distance between two RF340Rs
5.5.1.8
Technical specifications
Table 5- 20 Technical specifications of the RF340R reader
6GT2801-2BA10
Product type designation
SIMATIC RF340R
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
140 mm
Maximum data transmission speed
reader ↔ transponder
RF300
transponder
ISO
transponder
(MDS D)
ISO tran-
sponder
(MDS E)
Read 8000
bytes/s
≤ 3300
bytes/s
≤ 3400
bytes/s
Write ≤ 8000
bytes/s
≤ 1700
bytes/s
≤ 800
bytes/s
Transmission speed
19.2, 57.6, 115.2 kBd
Read/write distances of the reader See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
260 years
Interfaces
Electrical connector design
M12, 8-pin
Standard for interfaces for communication
RS-422 (3964R protocol)
Antenna
integrated
Readers
5.5 SIMATIC RF340R/RF350R - second generation
SIMATIC RF300
156 System Manual, 07/2016, C79000-G8976-C345-0x
6GT2801-2BA10
Mechanical specifications
Housing
Material Plastic PA 12
Color TI-Grey
Recommended distance to metal
0 mm
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
55 mA
Permitted ambient conditions
Ambient temperature
During operation -25 to +70 ℃
During transportation and storage -40 to +85 ℃
Degree of protection to EN 60529
IP67
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
75 x 75 x 41 mm
Weight
210 g
Type of mounting 2 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
1000 m
LED display design 2 LEDs,
5 colors
Standards, specifications, approvals
Proof of suitability Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA (IEC61010 /
IEC61010-2-201),
Ex approval
Readers
5.5 SIMATIC RF340R/RF350R - second generation
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 157
5.5.1.9
Approvals
FCC information
Siemens SIMATIC RF340R (MLFB 6GT2801-2BA10); FCC ID NXW-RF340R-03
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
Readers
5.5 SIMATIC RF340R/RF350R - second generation
SIMATIC RF300
158 System Manual, 07/2016, C79000-G8976-C345-0x
UL information (IEC61010-1 / IEC61010-2-201)
This standard applies to equipment designed to be safe at least under the following
conditions:
a) indoor use;
b) altitude up to 2 000 m;
c) temperature -25 °C to 70 °C;
d) maximum relative humidity 80 % for temperature up to 31 °C decreasing linearly to 50
% relative humidity at 40 °C;
e) TRANSIENT OVERVALTAGES up to the levels of OVERVALTAGE CATEGORY II,
NOTE 1: These levels of transient overvoltage are typical for equipment supplied from the
building wiring.
f) using a "NEC Class 2" power supply is required
5.5.1.10
Dimension drawing
Figure 5-21 Dimension drawing for RF340R
Dimensions in mm
Readers
5.5 SIMATIC RF340R/RF350R - second generation
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 159
5.5.2
SIMATIC RF350R - second generation
5.5.2.1
Features
SIMATIC RF350R
Characteristics
Design Antenna connection
RS-422 interface
LED operating display
Area of application Identification tasks in assembly lines in harsh
industrial environments; for external antennas
(ANT 1, ANT 3, ANT 12, ANT 18, ANT 30)
Note
Reader requires external antennas
Note that the RF350R reader is designed only for operation with external antennas and only
works in conjunction with the antennas ANT 1, ANT 3, ANT 12, ANT 18 or ANT 30.
5.5.2.2
Ordering data
Table 5- 21 Ordering data for RF350R
Article number
RF350R with RS-422 interface (3964R)
6GT2801-4BA10
Readers
5.5 SIMATIC RF340R/RF350R - second generation
SIMATIC RF300
160 System Manual, 07/2016, C79000-G8976-C345-0x
5.5.2.3
Pin assignment of the RS-422 interface
Table 5- 22 Pin assignment
Pin
Pin
Device end
8-pin M12
Assignment
1
+ 24 V
2
- Transmit
3
0 V
4 + Transmit
5
+ Receive
6
- Receive
7
Unassigned
8
Earth (shield)
5.5.2.4
LED operating display
The operational statuses of the reader are displayed by two LEDs. The LEDs can adopt the
colors white green, red, yellow or blue and the statuses off , on , flashing :
Table 5- 23 Display elements
LED
Meaning
The reader is turned off.
The reader is turned on and is searching for transponders.
The reader is in the "Setup" mode, in the "Search for transponders" status and
has not yet received a "RESET" command and is not ready.
/ There is transponder in the antenna field.
The reader is in the "Setup" mode, in the status "Show quality", has not yet re-
ceived a "RESET" command and is not ready.
Depending on the signal strength, the LED flashes or is lit permanently.
The reader has received a "RESET" command.
There is transponder in the antenna field.
The reader is ready.
There is an error. The number of flashes provides information about the current
error.
You will find more information on error messages in the section "System diag-
nostics (Page 395)".
5.5.2.5
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
Readers
5.5 SIMATIC RF340R/RF350R - second generation
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 161
5.5.2.6
Metal-free area
The RF350R reader does not have an internal antenna. Operation is not affected by
mounting on metal or flush-mounting in metal. For information about the metal-free area
required by the external antennas, refer to the corresponding section of the chapter
"Antennas (Page 193)".
5.5.2.7
Technical specifications
Table 5- 24 Technical specifications of the RF350R reader
6GT2801-4BA10
Product type designation
SIMATIC RF350R
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
ANT 1 140 mm
ANT 3 50 mm
ANT 12 16 mm
ANT 18 35 mm
ANT 30 55 mm
Maximum data transmission speed
reader ↔ transponder
RF300
transponder
ISO
transponder
(MDS D)
ISO tran-
sponder
(MDS E)
Read ≤ 8000
bytes/s
≤ 3300
bytes/s
≤ 3400
bytes/s
Write ≤ 8000
bytes/s
≤ 1700
bytes/s
≤ 800
bytes/s
Transmission speed
19.2, 57.6, 115.2 kBd
Read/write distances of the reader See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
260 years
Interfaces
Electrical connector design
M12, 8-pin
Antenna connector design
M8, 4-pin
Standard for interfaces for communication
RS-422 (3964R protocol)
Antenna External, antennas ANT 1, ANT 3, ANT 12, ANT
18 or ANT 30
Readers
5.5 SIMATIC RF340R/RF350R - second generation
SIMATIC RF300
162 System Manual, 07/2016, C79000-G8976-C345-0x
6GT2801-4BA10
Mechanical specifications
Housing
Material Plastic PA 12
Color TI-Grey
Recommended distance to metal
0 mm
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
55 mA
Permitted ambient conditions
Ambient temperature
During operation -25 to +70 ℃
During transportation and storage -40 to +85 ℃
Degree of protection to EN 60529
IP65
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
75 x 75 x 41 mm
Weight
250 g
Type of mounting 2 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
1000 m
LED display design 2 LEDs,
5 colors
Standards, specifications, approvals
Proof of suitability Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA (IEC61010 /
IEC61010-2-201),
Ex approval
Readers
5.5 SIMATIC RF340R/RF350R - second generation
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 163
5.5.2.8
Approvals
FCC information
Siemens SIMATIC RF350R (MLFB 6GT2801-4BA10); FCC ID NXW-RF350R-03
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
Readers
5.5 SIMATIC RF340R/RF350R - second generation
SIMATIC RF300
164 System Manual, 07/2016, C79000-G8976-C345-0x
UL information (IEC61010-1 / IEC61010-2-201)
This standard applies to equipment designed to be safe at least under the following
conditions:
a) indoor use;
b) altitude up to 2 000 m;
c) temperature -25 °C to 70 °C;
d) maximum relative humidity 80 % for temperature up to 31 °C decreasing linearly to 50
% relative humidity at 40 °C;
e) TRANSIENT OVERVALTAGES up to the levels of OVERVALTAGE CATEGORY II,
NOTE 1: These levels of transient overvoltage are typical for equipment supplied from the
building wiring.
f) using a "NEC Class 2" power supply is required
5.5.2.9
Dimension drawing
Figure 5-22 RF350R dimension drawing
Dimensions in mm
Readers
5.5 SIMATIC RF340R/RF350R - second generation
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 165
5.5.3
Use of the reader in hazardous areas
NOTICE
Approvals for the hazardous area
The approvals for the hazardous area of the readers SIMATIC RF340R und RF350R are
currently in preparation.
Readers
5.6 SIMATIC RF380R
SIMATIC RF300
166 System Manual, 07/2016, C79000-G8976-C345-0x
5.6
SIMATIC RF380R
5.6.1
Features
SIMATIC RF380R
Characteristics
Design RS-232 or RS-422 interface
Status display
Area of application Identification tasks on assembly lines in
harsh industrial environments
5.6.2
RF380R ordering data
Table 5- 25 RF380R ordering data
Article number
RF380R with RS-232/RS-422 interface (3964R) 6GT2801-3AB10
5.6.3
Pin assignment of RF380R RS-232/RS-422 interface
You can connect the RF380R reader to a higher-level system via the internal RS-422
interface or via the RS-232 interface. After connection, the interface module automatically
detects which interface has been used.
Readers
5.6 SIMATIC RF380R
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 167
Note correct assignment of the pins here:
Pin
Pin
Device end
8-pin M12
Assignment
RS-232
RS-422
1
+ 24 V
+ 24 V
2 RXD - Transmit
3
0 V
0 V
4
TXD
+ Transmit
5
not used
+ Receive
6
not used
- Receive
7
not used
not used
8
Ground (shield)
Ground (shield)
5.6.4
LED operating display
The operational statuses of the reader are displayed by the LEDs. The LED can adopt the
colors green, red or yellow and the statuses off , on , flashing :
Table 5- 26 LED operating display on the reader
Color
Meaning
Operating voltage present, reader not initialized or antenna switched off
Operating voltage present, reader initialized and antenna switched on
1)
Transponder present
Error has occurred, the type of flashing corresponds to the error code in the
table in the section Error codes. The optical error display is only reset if the
corresponding reset para
meter ("option_1", see FC 45 / FB 45 documentation,
section Input parameters) is set.
1) Only in the "with presence" mode.
5.6.5
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
Readers
5.6 SIMATIC RF380R
SIMATIC RF300
168 System Manual, 07/2016, C79000-G8976-C345-0x
5.6.6
Metal-free area
The RF380R can be flush-mounted in metal. Please allow for a possible reduction in the field
data values.
Figure 5-23 Metal-free area for RF380R
To avoid any impact on the field data, the distance a should be ≥ 20 mm.
5.6.7
Minimum distance between RF380R readers
RF380R side by side
D
≥ 400 mm (with 2 readers)
D
≥ 500 mm (with more than 2 readers)
Figure 5-24 Minimum distance between RF380R readers
Readers
5.6 SIMATIC RF380R
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 169
RF380R face-to-face
D
≥ 800 mm
Figure 5-25 Face-to-face distance between two RF380R
5.6.8
Technical specifications
Table 5- 27 Technical specifications of the RF380R reader
6GT2801-3AB10
Product type designation
SIMATIC RF380R
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
200 mm
Maximum data transmission speed
reader ↔ transponder
RF300 transponder ISO transponder
Read approx. 8000
bytes/s
approx. 1500
bytes/s
Write approx. 8000
bytes/s
approx. 1500
bytes/s
Transmission speed
19.2, 57.6, 115.2 kBd
Read/write distances of the reader See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
109 years
Interfaces
Electrical connector design
M12, 8-pin
Standard for interfaces for communication
RS-232/RS-422 (3964R protocol)
Antenna
integrated
Readers
5.6 SIMATIC RF380R
SIMATIC RF300
170 System Manual, 07/2016, C79000-G8976-C345-0x
6GT2801-3AB10
Mechanical specifications
Housing
Material Plastic PA 12
Color Anthracite
Recommended distance to metal
0 mm
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
160 mA
Permitted ambient conditions
Ambient temperature
During operation -25 to +70 ℃
During transportation and storage -40 to +85 ℃
Degree of protection to EN 60529
IP67
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
160 x 80 x 41 mm
Weight
600 g
Type of mounting 4 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
RS-422
RS-232
1000 m 30 m
LED display design 3-color LED
Standards, specifications, approvals
Proof of suitability Radio in accordance with R&TTE directives EN
300330,
EN 301489, CE, FCC, UL/CSA,
Ex: II 3G Ex nC IIB T5
Readers
5.6 SIMATIC RF380R
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 171
5.6.9
Approvals
FCC information
Siemens SIMATIC RF380R (MLFB 6GT2801-3AA10); FCC ID NXW-RF380R
Siemens SIMATIC RF380R (MLFB 6GT2801-3AB10); FCC ID NXW-RF380R01
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
Readers
5.6 SIMATIC RF380R
SIMATIC RF300
172 System Manual, 07/2016, C79000-G8976-C345-0x
5.6.10
Use of the reader in hazardous areas
The TÜV SÜD Automotive GmbH as approved test center as well as the TÜV SÜD Product
Service GmbH as certification center, identification number 0123, as per Article 9 of the
Directive of the European Council of 23 March 1994 (94/9/EC), has confirmed the
compliance with the essential health and safety requirements relating to the design and
construction of equipment and protective systems intended for use in hazardous areas as
per Annex II of the Directive. The essential health and safety requirements are satisfied in
accordance with the following standards:
Document
Title
EN 60079-0: 2006
Electrical equipment for hazardous gas atmospheres -
Part 0: General requirements
EN 60079-15: 2005 Electrical equipment for hazardous gas atmospheres -
Part 15: Design, testing and identification of electrical equipment
with type of protection "n"
DIN VDE 0848-5: 2001
(in parts)
Safety in electrical, magnetic and electromagnetic fields -
Part 5: Explosion protection
ZLS SK 107.1
Central office of the states for safety; test components
Identification
The identification of the electrical equipment as an enclosed unit is:
II 3G Ex nC IIB T5
-25 °C to +70 °C
Um=30Vdc
The equipment is assigned the following references:
XXXYYYZZZ
[= serial number, is assigned during production]
TPS 09 ATEX 1 459 X
[= certificate number]
"No use of the equipment in the vicinity of processes generating high charges"
"Do not disconnect plug on load"
Readers
5.6 SIMATIC RF380R
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 173
5.6.11
Use of the reader in hazardous areas for gases
Temperature class delineation for gases
The temperature class of the reader for hazardous areas depends on the ambient
temperature range:
Ambient temperature range
Temperature class
-25 °C to +70 °C
T5
WARNING
Ignitions of gas-air mixtures
When using the RF380R reader, check to ensure that the temperature class is observed in
respect of the requirements of the area of application
Non-compliance with the permitted temperature ranges while using the reader can lead to
ignitions of gas-air mixtures.
5.6.12
Installation and operating conditions for the hazardous area
a) The connector on the RF380R must be grounded via its supply line.
b) Use of the equipment in the vicinity of processes generating high charges is not allowed.
c) The plug of the RF380R must not be disconnected in a hazardous atmosphere or under
load.
d) The supply line for the RF380R is not part of this certificate. The supply line must exhibit a
sufficient temperature resistance.
e) The equipment must be mechanically protected when installed.
Readers
5.6 SIMATIC RF380R
SIMATIC RF300
174 System Manual, 07/2016, C79000-G8976-C345-0x
5.6.13
Dimension drawing
Figure 5-26 Dimension drawing RF380R
Dimensions in mm
Readers
5.7 SIMATIC RF380R with Scanmode
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 175
5.7
SIMATIC RF380R with Scanmode
You will find detailed information on the SIMATIC RF382R with Scanmode on the Industry
Online Support - SIMATIC RF380R with Scanmode
(https://support.industry.siemens.com/cs/ww/en/ps/15037).
5.7.1
Features
RF380R Scanmode
Characteristics
Design RS232 or RS422 interface
Status display
Field of application Identification tasks on assembly lines in
harsh industrial environments
5.7.2
Ordering data for RF380R with Scanmode
Table 5- 28 Ordering data RF380R Scanmode
Product
Article number
RF380R Scanmode 6GT2801-3AB20-0AX1
Readers
5.7 SIMATIC RF380R with Scanmode
SIMATIC RF300
176 System Manual, 07/2016, C79000-G8976-C345-0x
5.7.3
Pin assignment RF380R Scanmode RS-232 interface
You can connect the RF380R Scanmode reader via the internal RS-232/RS-422 interface to
a higher-level system. (See section "Basic rules (Page 101)") Make sure that the pin
assignment is correct. In the factory settings, the reader is set to RS-232. Siemens can
change the interface to RS-422.
Table 5- 29 Connector and reader pin assignment
Pin
Pin
Device end 8-pin
M12
Assignment
RS-232
RS-422
1
+ 24 V
+ 24 V
2 RXD - Transmit
3
0 V
0 V
4
TXD
+ Transmit
5
not used
+ Receive
6
not used
- Receive
7
not used
not used
8
Ground (shield)
Ground (shield)
5.7.4
LED operating display
The operational statuses of the reader are displayed by the LEDs. The LED can adopt the
colors green, red or yellow and the statuses off , on , flashing :
Table 5- 30 LED operating display on the reader
Color
Meaning
Operating voltage present, reader ready for operation
Transponder present
Red LED for error display is activated permanently if correct operation of the reader
cannot be guaranteed (e. g. faulty start, checksum error during operation).
5.7.5
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
Readers
5.7 SIMATIC RF380R with Scanmode
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 177
5.7.6
Metal-free area
The RF380R can be flush-mounted in metal. Please allow for a possible reduction in the field
data values.
Figure 5-27 Metal-free area for RF380R
To avoid any impact on the field data, the distance a should be ≥ 20 mm.
5.7.7
Minimum distance between several RF380R Scanmode readers
RF380R side by side
D
≥ 400 mm (with 2 readers)
D
≥ 500 mm (with more than 2 readers)
Figure 5-28 Minimum distance between RF380R readers
Readers
5.7 SIMATIC RF380R with Scanmode
SIMATIC RF300
178 System Manual, 07/2016, C79000-G8976-C345-0x
RF380R face-to-face
D
≥ 800 mm
Figure 5-29 Face-to-face distance between two RF380R
5.7.8
Technical specifications
Table 5- 31 Technical specifications of the RF380R Scanmode reader
6GT2801-3AB20-0AX1
Product type designation
SIMATIC RF380R Scanmode
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
200 mm
Maximum data transmission speed
reader ↔ transponder
RF300 transponder ISO transponder
Read approx. 8000 bytes/s approx. 1500 bytes/s
Transmission speed
9.6, 19.2, 38.4, 57, 115.2 kBd
Read distances of the reader see section "Field data for transponders, readers
and antennas (Page 48)"
MTBF (Mean Time Between Failures)
109 years
Interfaces
Electrical connector design
M12, 8-pin
Standard for interfaces for communication
RS-232 / RS-422
Antenna
integrated
Mechanical specifications
Enclosure
Material Plastic PA 12
Color Anthracite
Recommended distance to metal
0 mm
Readers
5.7 SIMATIC RF380R with Scanmode
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 179
6GT2801-3AB20-0AX1
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
160 mA
Permitted environmental conditions
Ambient temperature
During operation -25 to +70 °C
Transport and storage -40 to +85 °C
Degree of protection to EN 60529
IP67
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weights
Dimensions (L x W x H)
160 x 80 x 41 (without M12 device connector)
Weight
Approx. 600 g
Type of mounting 4 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
RS-422
RS-232
1000 m
30 m
LED display design
3-color LED
Standards, specifications, approvals
Proof of suitability Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA
Readers
5.7 SIMATIC RF380R with Scanmode
SIMATIC RF300
180 System Manual, 07/2016, C79000-G8976-C345-0x
5.7.9
Approvals
FCC information
Siemens SIMATIC RF380R (MLFB 6GT2801-3AB20-0AX1); FCC ID NXW-RF380R01
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
Readers
5.7 SIMATIC RF380R with Scanmode
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 181
5.7.10
Certificates and Approvals
Certificates for USA and Canada
Underwriters Laboratories (UL) acc. to standard UL 60950, Report E11 5352 and Ca-
nadian standard C22.2 No. 60950 (I.T.E) or acc. to UL508 and C22.2 No. 142
(IND.CONT.EQ)
5.7.11
Dimension drawing
Figure 5-30 Dimension drawing RF380R
Dimensions in mm
Readers
5.8 SIMATIC RF382R with Scanmode
SIMATIC RF300
182 System Manual, 07/2016, C79000-G8976-C345-0x
5.8
SIMATIC RF382R with Scanmode
You will find detailed information on the SIMATIC RF382R with Scanmode on the Internet
(https://support.industry.siemens.com/cs/ww/en/ps/15038).
5.8.1
Characteristics
RF382R Scanmode
Characteristics
Design RS-232 or RS-422 interface
Status display
Operating range Suitable for high speeds, e.g. in
Suspension conveyor systems
Assembly lines
Production
Order picking
5.8.2
RF382R with Scanmode ordering data
Table 5- 32 RF382R Scanmode ordering data
Article number
RF382R Scanmode
6GT2801-3AB20-0AX0
Readers
5.8 SIMATIC RF382R with Scanmode
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 183
5.8.3
Pin assignment RF382R Scanmode RS232 interface
You can connect the RF382R Scanmode reader via the internal RS-232/RS-422 interface or
via a higher-level system. (See section "Basic rules (Page 101)") Make sure that the pin
assignment is correct. In the factory settings, the reader is set to RS-232. Siemens can
change the interface to RS-422.
Table 5- 33 Connector and reader pin assignment
Pin
Pin
Device end 8-pin
M12
Assignment
RS-232
RS-422
1
+ 24 V
+ 24 V
2 RXD - Transmit
3
0 V
0 V
4
TXD
+ Transmit
5
not used
+ Receive
6
not used
- Receive
7
not used
not used
8
Ground (shield)
Ground (shield)
5.8.4
LED operating display
The operational statuses of the reader are displayed by the LEDs. The LED can adopt the
colors green, red or yellow and the statuses off , on , flashing :
Table 5- 34 LED operating display on the reader
Color
Meaning
Operating voltage present, reader ready for operation
Transponder present
Red LED for error display is activated permanently if correct operation of the reader
cannot be guaranteed (e. g. faulty start, checksum error during operation).
5.8.5
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
5.8.6
Mounting on metal
The RF382R can be mounted directly on metal. Flush mounting on metal is not permitted.
Readers
5.8 SIMATIC RF382R with Scanmode
SIMATIC RF300
184 System Manual, 07/2016, C79000-G8976-C345-0x
5.8.7
Minimum distance between several RF382R Scanmode readers
Figure 5-31 Minimum distance between several RF382R Scanmode readers
Minimum distance D from RF382R to RF382R
D ≥ 200 mm
5.8.8
Transmission window
Orientation of fields of the SIMATIC RF382R Scanmode
For many applications it may be best to operate the reader so that the tags move from left to
right (or from right to left) at a certain distance in front of the narrow edge of the reader. With
this direction of movement, the horizontal reader field is used, see figure below.
You also have the option of moving the tags up and down (or down and up) past the narrow
edge of the reader. With this direction of movement, uses the vertical reader field is used.
Figure 5-32 Definition of horizontal and vertical reader field
Readers
5.8 SIMATIC RF382R with Scanmode
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 185
Maximum field strength
The reader creates the maximum field approximately 13 mm below the upper reader edge.
For the largest possible reading range the tags you want to read should move in this range.
This applies regardless of whether the horizontal or the vertical field is used.
Figure 5-33 Line of maximum magnetic field strength
The area of the maximum field strength and, therefore, the maximum range is identified by a
laser icon:
Figure 5-34 Laser labeling
Readers
5.8 SIMATIC RF382R with Scanmode
SIMATIC RF300
186 System Manual, 07/2016, C79000-G8976-C345-0x
Transmission window horizontal field
Figure 5-35 Distance definition horizontal field
Green
Main field (processing field)
Blue Secondary fields, horizontal field
L
x
Maximum length of the main field, horizontal field
d
Distance from the reader edge at which maximum horizontal main field length L exists
S
a
Operating range in the main field
Sg
Limit distance
Level 1
Level 2
Level 3
Direction of motion of the transponder
Operating range (Sa)
The operating range lies between Level and Level .
The operating range between Levels and includes secondary fields.
The recommended operating range therefore lies in the green main field between Level 2
and Level 3.
Readers
5.8 SIMATIC RF382R with Scanmode
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 187
Limit distance (Sg)
The limit distance lies on Level .
Transmission window vertical field
Figure 5-36 Distance definition vertical field
Green
Main field (processing field)
Ly
Maximum length of the main field, vertical field
d
Distance from the reader edge at which maximum vertical main field length L
y
exists
Sa
Operating range in the main field
S
g
Limit distance
D
opt
= 13 mm
Direction of motion of the transponder
Readers
5.8 SIMATIC RF382R with Scanmode
SIMATIC RF300
188 System Manual, 07/2016, C79000-G8976-C345-0x
5.8.9
Technical specifications
Table 5- 35 Technical specifications of the RF382R reader with Scanmode
6GT2801-3AB20-0AX0
Product type designation
SIMATIC RF382R Scanmode
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
75 mm
Maximum data transmission speed
reader ↔ transponder
ISO transponder
Read approx. 1500 bytes/s
Transmission speed
19.2, 57.6, 115.2 kBd
Read/write distances of the reader See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
115 years
Interfaces
Electrical connector design
M12, 8-pin
Standard for interfaces for communication RS-232 (factory setting, can be changed to RS-
422)
Antenna
integrated
Mechanical specifications
Housing
Material Plastic PA 12
Color Anthracite
Recommended distance to metal 0 mm
Supply voltage, current consumption, power loss
Supply voltage 24 VDC
Typical current consumption
140 mA
Readers
5.8 SIMATIC RF382R with Scanmode
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 189
6GT2801-3AB20-0AX0
Permitted ambient conditions
Ambient temperature
During operation -25 to +70 ℃
During transportation and storage -40 to +85 ℃
Degree of protection to EN 60529
IP67
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
160 x 80 x 41 mm
Weight
550 g
Type of mounting 4 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
RS-422
RS-232
1000 m
30 m
LED display design
3-color LED
Standards, specifications, approvals
Proof of suitability Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA
5.8.10
Approvals
FCC information
Siemens SIMATIC RF382R (MLFB 6GT2801-3AB20-0AX0); FCC ID NXW-RF382R
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Readers
5.8 SIMATIC RF382R with Scanmode
SIMATIC RF300
190 System Manual, 07/2016, C79000-G8976-C345-0x
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
Certificates for USA and Canada
Underwriters Laboratories (UL) acc. to standard UL 60950, Report E11 5352 and Ca-
nadian standard C22.2 No. 60950 (I.T.E) or acc. to UL508 and C22.2 No. 142
(IND.CONT.EQ)
Readers
5.8 SIMATIC RF382R with Scanmode
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x 191
5.8.11
Dimensional diagram
Figure 5-37 Dimension drawing
Readers
5.8 SIMATIC RF382R with Scanmode
SIMATIC RF300
192 System Manual, 07/2016, C79000-G8976-C345-0x

Navigation menu