Siemens RF310R02 RFID Reader 13.56 MHz User Manual SIMATIC RF300

Siemens AG RFID Reader 13.56 MHz SIMATIC RF300

User Manual part 1

Download: Siemens RF310R02 RFID Reader 13.56 MHz User Manual SIMATIC RF300
Mirror Download [FCC.gov]Siemens RF310R02 RFID Reader 13.56 MHz User Manual SIMATIC RF300
Document ID3092342
Application ID2zyqX9Hp4DzTThF7Xr4DFQ==
Document DescriptionUser Manual part 1
Short Term ConfidentialNo
Permanent ConfidentialNo
SupercedeNo
Document TypeUser Manual
Display FormatAdobe Acrobat PDF - pdf
Filesize386.87kB (4835876 bits)
Date Submitted2016-08-09 00:00:00
Date Available2016-08-10 00:00:00
Creation Date2016-07-12 09:45:24
Producing SoftwareAdobe PDF Library 11.0
Document Lastmod2016-08-01 11:55:48
Document TitleSIMATIC RF300
Document CreatorAcrobat PDFMaker 11 für Word
Document Author: SIEMENS AG

SIMATIC RF300
___________________
Introduction
___________________
Safety information
SIMATIC Ident
RFID systems
SIMATIC RF300
System Manual
___________________
System overview
___________________
Planning the RF300 system
___________________
Readers
___________________
Antennas
___________________
RF300 transponder
___________________
ISO transponder
___________________
System integration
10
___________________
System diagnostics
___________________
Appendix
Note: This document is a draft document. This
document is not released for publication. Siemens
accepts no liability for the completeness and
correctness of the contents.
07/2016
C79000-G8976-C345-0x
Legal information
Warning notice system
This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.
DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.
WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.
CAUTION
indicates that minor personal injury can result if proper precautions are not taken.
NOTICE
indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.
Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.
Proper use of Siemens products
Note the following:
WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.
Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.
Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.
Siemens AG
Division Process Industries and Drives
Postfach 48 48
90026 NÜRNBERG
GERMANY
Document order number: C79000-G8976-C345
Ⓟ 07/2016 Subject to change
Copyright © Siemens AG 2005 - 2016.
All rights reserved
Table of contents
Introduction ........................................................................................................................................... 13
1.1
Navigating in the system manual ............................................................................................13
1.2
Preface ....................................................................................................................................14
Safety information ................................................................................................................................. 17
System overview ................................................................................................................................... 21
3.1
RFID systems .........................................................................................................................21
3.2
3.2.1
3.2.2
3.2.3
SIMATIC RF300 ......................................................................................................................22
System overview of SIMATIC RF300 .....................................................................................22
RFID components and their function ......................................................................................23
Application areas of RF300 ....................................................................................................31
3.3
3.3.1
3.3.2
3.3.3
System configuration ..............................................................................................................32
Overview .................................................................................................................................32
Assembly line example: Use of RF300 transponders .............................................................32
Example of container and cardboard container handling: Use of ISO transponders .............34
Planning the RF300 system .................................................................................................................. 37
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8
4.1.9
Fundamentals of application planning ....................................................................................37
Selection criteria for SIMATIC RF300 components ................................................................37
Transmission window and read/write distance .......................................................................37
Width of the transmission window ..........................................................................................40
Impact of secondary fields ......................................................................................................41
Setup help of the readers of the second generation ...............................................................43
Permissible directions of motion of the transponder ...............................................................44
Operation in static and dynamic mode ...................................................................................45
Dwell time of the transponder .................................................................................................46
Communication between communications module, reader and transponder ........................47
4.2
4.2.1
4.2.2
4.2.3
4.2.4
Field data for transponders, readers and antennas ................................................................48
Field data of RF300 transponders ..........................................................................................49
Field data of ISO transponders (MDS D) ................................................................................52
Field data of ISO transponders (MDS E) ................................................................................57
Minimum clearances ...............................................................................................................59
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.4.1
4.3.4.2
4.3.4.3
4.3.4.4
4.3.4.5
Installation guidelines..............................................................................................................62
Overview .................................................................................................................................62
Reduction of interference due to metal ...................................................................................62
Effects of metal on different transponders and readers ..........................................................64
Impact on the transmission window by metal .........................................................................65
Impact on the transmission window by metal .........................................................................65
RF340R ...................................................................................................................................69
RF350R ...................................................................................................................................73
RF380R ...................................................................................................................................85
RF382R ................................................................................................................................... 89
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
Table of contents
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
Chemical resistance of the transponders .............................................................................. 90
Overview of the transponders and their housing materials ................................................... 90
Polyamide 12 ......................................................................................................................... 91
Polyphenylene sulfide (PPS) ................................................................................................. 93
Polycarbonate (PC) ................................................................................................................ 94
Polyvinyl chloride (PVC) ........................................................................................................ 95
Epoxy resin ............................................................................................................................ 96
PA6.6 GF30 ........................................................................................................................... 98
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4.5.7
4.5.8
Guidelines for electromagnetic compatibility (EMC) .............................................................. 99
Overview ................................................................................................................................ 99
What does EMC mean? ....................................................................................................... 100
Basic rules ............................................................................................................................ 101
Propagation of electromagnetic interference ....................................................................... 102
Cabinet configuration ........................................................................................................... 106
Prevention of interference sources ...................................................................................... 109
Equipotential bonding .......................................................................................................... 110
Cable shielding..................................................................................................................... 111
Readers ...............................................................................................................................................113
5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7
5.1.8
5.1.9
5.1.10
SIMATIC RF310R ................................................................................................................ 115
Features ............................................................................................................................... 115
RF310R ordering data ......................................................................................................... 115
Pin assignment RF310R with RS-422 interface .................................................................. 116
LED operating display .......................................................................................................... 116
Ensuring reliable data exchange.......................................................................................... 116
Metal-free area ..................................................................................................................... 117
Minimum distance between RF310R readers ...................................................................... 117
Technical specifications ....................................................................................................... 118
Approvals ............................................................................................................................. 120
Dimension drawing .............................................................................................................. 121
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
SIMATIC RF310R with Scanmode ...................................................................................... 122
Features ............................................................................................................................... 122
Ordering data for RF310R with Scanmode .......................................................................... 122
Pin assignment RF310R special version Scanmode RS-422 interface............................... 123
LED operating display .......................................................................................................... 123
Ensuring reliable data exchange.......................................................................................... 123
Metal-free area ..................................................................................................................... 124
Minimum distance between several readers ....................................................................... 124
Technical specifications ....................................................................................................... 125
Approvals ............................................................................................................................. 127
Dimension drawing .............................................................................................................. 128
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
SIMATIC RF310R - second generation ............................................................................... 129
Features ............................................................................................................................... 129
Ordering data ....................................................................................................................... 129
Pin assignment of the RS-422 interface .............................................................................. 130
LED operating display .......................................................................................................... 130
Ensuring reliable data exchange.......................................................................................... 130
Metal-free area ..................................................................................................................... 131
Minimum distance between RF310R readers ...................................................................... 131
Technical specifications ....................................................................................................... 132
Approvals ............................................................................................................................. 134
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
Table of contents
5.3.10
Dimension drawing ...............................................................................................................135
5.4
5.4.1
5.4.1.1
5.4.1.2
5.4.1.3
5.4.1.4
5.4.1.5
5.4.1.6
5.4.1.7
5.4.1.8
5.4.1.9
5.4.1.10
5.4.2
5.4.2.1
5.4.2.2
5.4.2.3
5.4.2.4
5.4.2.5
5.4.2.6
5.4.2.7
5.4.2.8
5.4.2.9
5.4.3
5.4.3.1
5.4.3.2
5.4.3.3
SIMATIC RF340R/RF350R ..................................................................................................136
SIMATIC RF340R .................................................................................................................136
Features ................................................................................................................................136
Ordering data for RF340R ....................................................................................................136
Pin assignment of RF340R RS422 interface ........................................................................137
LED operating display ...........................................................................................................137
Ensuring reliable data exchange ..........................................................................................137
Metal-free area ......................................................................................................................138
Minimum distance between RF340R readers ......................................................................138
Technical specifications ........................................................................................................139
Approvals ..............................................................................................................................141
Dimension drawing ...............................................................................................................142
SIMATIC RF350R .................................................................................................................143
Features ................................................................................................................................143
Ordering data for RF350R ....................................................................................................143
Pin assignment of RF350R RS422 interface ........................................................................144
LED operating display ...........................................................................................................144
Ensuring reliable data exchange ..........................................................................................144
Metal-free area ......................................................................................................................144
Technical specifications ........................................................................................................145
Approvals ..............................................................................................................................147
Dimension drawing ...............................................................................................................148
Use of the reader in hazardous areas ..................................................................................149
Use of the readers in hazardous areas for gases .................................................................150
Use of the readers in hazardous areas for dusts ..................................................................150
Installation and operating conditions for the hazardous area ...............................................151
5.5
5.5.1
5.5.1.1
5.5.1.2
5.5.1.3
5.5.1.4
5.5.1.5
5.5.1.6
5.5.1.7
5.5.1.8
5.5.1.9
5.5.1.10
5.5.2
5.5.2.1
5.5.2.2
5.5.2.3
5.5.2.4
5.5.2.5
5.5.2.6
5.5.2.7
5.5.2.8
5.5.2.9
5.5.3
SIMATIC RF340R/RF350R - second generation .................................................................152
SIMATIC RF340R - second generation ................................................................................152
Features ................................................................................................................................152
Ordering data ........................................................................................................................152
Pin assignment of the RS-422 interface ...............................................................................153
LED operating display ...........................................................................................................153
Ensuring reliable data exchange ..........................................................................................153
Metal-free area ......................................................................................................................154
Minimum distance between RF340R readers ......................................................................154
Technical specifications ........................................................................................................155
Approvals ..............................................................................................................................157
Dimension drawing ...............................................................................................................158
SIMATIC RF350R - second generation ................................................................................159
Features ................................................................................................................................159
Ordering data ........................................................................................................................159
Pin assignment of the RS-422 interface ...............................................................................160
LED operating display ...........................................................................................................160
Ensuring reliable data exchange ..........................................................................................160
Metal-free area ......................................................................................................................161
Technical specifications ........................................................................................................161
Approvals ..............................................................................................................................163
Dimension drawing ...............................................................................................................164
Use of the reader in hazardous areas ..................................................................................165
5.6
SIMATIC RF380R .................................................................................................................166
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
Table of contents
5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6
5.6.7
5.6.8
5.6.9
5.6.10
5.6.11
5.6.12
5.6.13
Features ............................................................................................................................... 166
RF380R ordering data ......................................................................................................... 166
Pin assignment of RF380R RS-232/RS-422 interface......................................................... 166
LED operating display .......................................................................................................... 167
Ensuring reliable data exchange.......................................................................................... 167
Metal-free area ..................................................................................................................... 168
Minimum distance between RF380R readers ...................................................................... 168
Technical specifications ....................................................................................................... 169
Approvals ............................................................................................................................. 171
Use of the reader in hazardous areas ................................................................................. 172
Use of the reader in hazardous areas for gases .................................................................. 173
Installation and operating conditions for the hazardous area .............................................. 173
Dimension drawing .............................................................................................................. 174
5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.7.5
5.7.6
5.7.7
5.7.8
5.7.9
5.7.10
5.7.11
SIMATIC RF380R with Scanmode ...................................................................................... 175
Features ............................................................................................................................... 175
Ordering data for RF380R with Scanmode .......................................................................... 175
Pin assignment RF380R Scanmode RS-232 interface........................................................ 176
LED operating display .......................................................................................................... 176
Ensuring reliable data exchange.......................................................................................... 176
Metal-free area ..................................................................................................................... 177
Minimum distance between several RF380R Scanmode readers....................................... 177
Technical specifications ....................................................................................................... 178
Approvals ............................................................................................................................. 180
Certificates and Approvals ................................................................................................... 181
Dimension drawing .............................................................................................................. 181
5.8
5.8.1
5.8.2
5.8.3
5.8.4
5.8.5
5.8.6
5.8.7
5.8.8
5.8.9
5.8.10
5.8.11
SIMATIC RF382R with Scanmode ...................................................................................... 182
Characteristics ..................................................................................................................... 182
RF382R with Scanmode ordering data ................................................................................ 182
Pin assignment RF382R Scanmode RS232 interface ......................................................... 183
LED operating display .......................................................................................................... 183
Ensuring reliable data exchange.......................................................................................... 183
Mounting on metal ............................................................................................................... 183
Minimum distance between several RF382R Scanmode readers....................................... 184
Transmission window ........................................................................................................... 184
Technical specifications ....................................................................................................... 188
Approvals ............................................................................................................................. 189
Dimensional diagram ........................................................................................................... 191
Antennas .............................................................................................................................................193
6.1
Features ............................................................................................................................... 193
6.2
Ordering data ....................................................................................................................... 196
6.3
Ensuring reliable data exchange.......................................................................................... 196
6.4
Metal-free area ..................................................................................................................... 197
6.5
Minimum distance between antennas ................................................................................. 200
6.6
Technical specifications ....................................................................................................... 201
6.7
Dimensional drawings .......................................................................................................... 203
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
Table of contents
RF300 transponder ............................................................................................................................. 207
7.1
Memory configuration of the RF300 transponders ...............................................................208
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
SIMATIC RF320T .................................................................................................................211
Features ................................................................................................................................211
Ordering data ........................................................................................................................211
Mounting on metal ................................................................................................................212
Technical data .......................................................................................................................213
Dimension drawing ...............................................................................................................214
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
SIMATIC RF330T .................................................................................................................215
Features ................................................................................................................................215
Ordering data ........................................................................................................................215
Mounting on/in metal.............................................................................................................216
Technical specifications ........................................................................................................217
Dimension drawing ...............................................................................................................219
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
SIMATIC RF340T .................................................................................................................220
Features ................................................................................................................................220
Ordering data ........................................................................................................................220
Mounting on metal ................................................................................................................221
Technical specifications ........................................................................................................222
Dimension drawing ...............................................................................................................223
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
SIMATIC RF350T .................................................................................................................224
Features ................................................................................................................................224
Ordering data ........................................................................................................................224
Mounting on metal ................................................................................................................224
Mounting options ...................................................................................................................226
Technical data .......................................................................................................................227
Dimension drawing ...............................................................................................................228
7.6
7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
SIMATIC RF360T .................................................................................................................229
Features ................................................................................................................................229
Ordering data ........................................................................................................................229
Mounting on metal ................................................................................................................229
Technical data .......................................................................................................................232
Dimension drawing ...............................................................................................................233
7.7
7.7.1
7.7.2
7.7.3
7.7.4
7.7.5
7.7.6
SIMATIC RF370T .................................................................................................................234
Features ................................................................................................................................234
Ordering data ........................................................................................................................234
Mounting on metal ................................................................................................................235
Mounting instructions ............................................................................................................236
Technical specifications ........................................................................................................236
Dimensional drawing.............................................................................................................237
7.8
7.8.1
7.8.2
7.8.3
7.8.3.1
7.8.3.2
7.8.4
7.8.4.1
SIMATIC RF380T .................................................................................................................238
Features ................................................................................................................................238
Ordering data ........................................................................................................................238
Installation guidelines for RF380T ........................................................................................239
Mounting instructions ............................................................................................................239
Metal-free area ......................................................................................................................242
Configuring instructions ........................................................................................................243
Temperature dependence of the transmission window ........................................................243
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
Table of contents
7.8.4.2
7.8.5
7.8.5.1
7.8.5.2
7.8.6
7.8.7
7.8.8
Temperature response in cyclic operation ........................................................................... 243
Use of the transponder in the Ex protection area ................................................................ 246
Use of the transponder in hazardous areas for gases ......................................................... 246
Installation and operating conditions for the hazardous area .............................................. 247
Cleaning the mobile data memory ....................................................................................... 247
Technical specifications ....................................................................................................... 247
Dimensional drawing ............................................................................................................ 249
ISO transponder ..................................................................................................................................251
8.1
Memory configuration of ISO the transponders ................................................................... 252
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
MDS D100............................................................................................................................ 254
Characteristics ..................................................................................................................... 254
Ordering data ....................................................................................................................... 254
Metal-free area ..................................................................................................................... 254
Technical data ...................................................................................................................... 256
Dimension drawing .............................................................................................................. 258
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
MDS D117............................................................................................................................ 259
Features ............................................................................................................................... 259
Ordering data ....................................................................................................................... 259
Mounting in metal ................................................................................................................. 260
Technical specifications ....................................................................................................... 260
Dimension drawing .............................................................................................................. 261
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
MDS D124............................................................................................................................ 262
Characteristics ..................................................................................................................... 262
Ordering data ....................................................................................................................... 262
Mounting on metal ............................................................................................................... 263
Technical specifications ....................................................................................................... 264
Use of the MDS D124 in hazardous area ............................................................................ 265
Dimension drawing .............................................................................................................. 267
8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.5.5
MDS D126............................................................................................................................ 268
Characteristics ..................................................................................................................... 268
Ordering data ....................................................................................................................... 268
Mounting on metal ............................................................................................................... 269
Technical specifications ....................................................................................................... 270
Dimension drawing .............................................................................................................. 271
8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
MDS D127............................................................................................................................ 272
Features ............................................................................................................................... 272
Ordering data ....................................................................................................................... 272
Mounting in metal ................................................................................................................. 273
Technical specifications ....................................................................................................... 274
Dimension drawing .............................................................................................................. 275
8.7
8.7.1
8.7.2
8.7.3
8.7.4
8.7.5
8.7.6
8.7.7
MDS D139............................................................................................................................ 276
Characteristics ..................................................................................................................... 276
Ordering data ....................................................................................................................... 277
Mounting on metal ............................................................................................................... 277
Cleaning the mobile data memory ....................................................................................... 278
Technical specifications ....................................................................................................... 279
Use of the MDS D139 in hazardous areas .......................................................................... 280
Dimension drawings ............................................................................................................. 282
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
Table of contents
8.8
8.8.1
8.8.2
8.8.3
8.8.4
8.8.5
8.8.6
MDS D160 ............................................................................................................................283
Characteristics ......................................................................................................................283
Information for RF300 compatibility ......................................................................................283
Ordering data ........................................................................................................................283
Mounting on metal ................................................................................................................284
Technical specifications ........................................................................................................285
Dimension drawings..............................................................................................................287
8.9
8.9.1
8.9.2
8.9.3
8.9.4
MDS D165 ............................................................................................................................288
Features ................................................................................................................................288
Ordering data ........................................................................................................................288
Technical data .......................................................................................................................289
Dimension drawing ...............................................................................................................290
8.10
8.10.1
8.10.2
8.10.3
8.10.4
8.10.5
MDS D200 ............................................................................................................................291
Features ................................................................................................................................291
Ordering data ........................................................................................................................291
Mounting on metal ................................................................................................................292
Technical data .......................................................................................................................293
Dimension drawing ...............................................................................................................295
8.11
8.11.1
8.11.2
8.11.3
8.11.4
MDS D261 ............................................................................................................................296
Features ................................................................................................................................296
Ordering data ........................................................................................................................296
Technical data .......................................................................................................................297
Dimension drawing ...............................................................................................................298
8.12
8.12.1
8.12.2
8.12.3
8.12.4
8.12.5
MDS D324 ............................................................................................................................299
Characteristics ......................................................................................................................299
Ordering data ........................................................................................................................299
Mounting on metal ................................................................................................................300
Technical specifications ........................................................................................................301
Dimension drawing ...............................................................................................................302
8.13
8.13.1
8.13.2
8.13.3
8.13.4
8.13.5
8.13.6
8.13.7
MDS D339 ............................................................................................................................303
Characteristics ......................................................................................................................303
Ordering data ........................................................................................................................303
Mounting on metal ................................................................................................................304
Cleaning the mobile data memory ........................................................................................305
Technical specifications ........................................................................................................305
Use of the MDS D339 in hazardous areas ...........................................................................307
Dimensional drawing.............................................................................................................309
8.14
8.14.1
8.14.2
8.14.3
8.14.4
8.14.5
MDS D400 ............................................................................................................................310
Features ................................................................................................................................310
Ordering data ........................................................................................................................310
Mounting on metal ................................................................................................................311
Technical specifications ........................................................................................................312
Dimension drawing ...............................................................................................................314
8.15
8.15.1
8.15.2
8.15.3
8.15.4
8.15.5
MDS D421 ............................................................................................................................315
Characteristics ......................................................................................................................315
Ordering data ........................................................................................................................315
Mounting on metal ................................................................................................................316
Technical specifications ........................................................................................................318
Dimension drawing ...............................................................................................................320
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
Table of contents
8.16
8.16.1
8.16.2
8.16.3
8.16.4
8.16.5
MDS D422............................................................................................................................ 321
Characteristics ..................................................................................................................... 321
Ordering data ....................................................................................................................... 321
Mounting in metal ................................................................................................................. 322
Technical specifications ....................................................................................................... 323
Dimension drawing .............................................................................................................. 324
8.17
8.17.1
8.17.2
8.17.3
8.17.4
8.17.5
MDS D423............................................................................................................................ 325
Characteristics ..................................................................................................................... 325
Ordering data ....................................................................................................................... 325
Mounting on metal ............................................................................................................... 326
Technical specifications ....................................................................................................... 327
Dimensional drawing ............................................................................................................ 329
8.18
8.18.1
8.18.2
8.18.3
8.18.4
8.18.5
MDS D424............................................................................................................................ 330
Characteristics ..................................................................................................................... 330
Ordering data ....................................................................................................................... 330
Mounting on metal ............................................................................................................... 331
Technical specifications ....................................................................................................... 332
Dimension drawing .............................................................................................................. 333
8.19
8.19.1
8.19.2
8.19.3
8.19.4
8.19.5
MDS D425............................................................................................................................ 334
Characteristics ..................................................................................................................... 334
Ordering data ....................................................................................................................... 334
Application example ............................................................................................................. 335
Technical specifications ....................................................................................................... 335
Dimension drawing .............................................................................................................. 337
8.20
8.20.1
8.20.2
8.20.3
8.20.4
8.20.5
MDS D426............................................................................................................................ 338
Characteristics ..................................................................................................................... 338
Ordering data ....................................................................................................................... 338
Mounting on metal ............................................................................................................... 339
Technical specifications ....................................................................................................... 340
Dimension drawing .............................................................................................................. 341
8.21
8.21.1
8.21.2
8.21.3
8.21.4
8.21.5
MDS D428............................................................................................................................ 342
Characteristics ..................................................................................................................... 342
Ordering data ....................................................................................................................... 342
Application example ............................................................................................................. 343
Technical specifications ....................................................................................................... 343
Dimension drawing .............................................................................................................. 345
8.22
8.22.1
8.22.2
8.22.3
8.22.4
8.22.5
MDS D460............................................................................................................................ 346
Characteristics ..................................................................................................................... 346
Ordering data ....................................................................................................................... 346
Mounting on metal ............................................................................................................... 347
Technical specifications ....................................................................................................... 347
Dimension drawings ............................................................................................................. 349
8.23
8.23.1
8.23.2
8.23.3
8.23.4
8.23.5
MDS D521............................................................................................................................ 350
Characteristics ..................................................................................................................... 350
Ordering data ....................................................................................................................... 350
Mounting on metal ............................................................................................................... 350
Technical specifications ....................................................................................................... 353
Dimension drawing .............................................................................................................. 354
SIMATIC RF300
10
System Manual, 07/2016, C79000-G8976-C345-0x
Table of contents
8.24
8.24.1
8.24.2
8.24.3
8.24.4
8.24.5
MDS D522 ............................................................................................................................355
Characteristics ......................................................................................................................355
Ordering data ........................................................................................................................355
Mounting in metal..................................................................................................................355
Technical specifications ........................................................................................................356
Dimension drawing ...............................................................................................................357
8.25
8.25.1
8.25.2
8.25.3
8.25.4
8.25.5
8.25.6
MDS D522 special variant ....................................................................................................358
Characteristics ......................................................................................................................358
Ordering data ........................................................................................................................358
Mounting in metal..................................................................................................................359
Installation instructions..........................................................................................................359
Technical specifications ........................................................................................................361
Dimensional drawing.............................................................................................................362
8.26
8.26.1
8.26.2
8.26.3
8.26.4
8.26.5
MDS D524 ............................................................................................................................363
Characteristics ......................................................................................................................363
Ordering data ........................................................................................................................363
Mounting on metal ................................................................................................................364
Technical specifications ........................................................................................................365
Dimension drawing ...............................................................................................................366
8.27
8.27.1
8.27.2
8.27.3
8.27.4
8.27.5
MDS D525 ............................................................................................................................367
Characteristics ......................................................................................................................367
Ordering data ........................................................................................................................367
Application example ..............................................................................................................368
Technical specifications ........................................................................................................368
Dimension drawing ...............................................................................................................370
8.28
8.28.1
8.28.2
8.28.3
8.28.4
8.28.5
MDS D526 ............................................................................................................................371
Characteristics ......................................................................................................................371
Ordering data ........................................................................................................................371
Mounting on metal ................................................................................................................372
Technical specifications ........................................................................................................373
Dimension drawing ...............................................................................................................374
8.29
8.29.1
8.29.2
8.29.3
8.29.4
8.29.5
MDS D528 ............................................................................................................................375
Characteristics ......................................................................................................................375
Ordering data ........................................................................................................................375
Application example ..............................................................................................................376
Technical specifications ........................................................................................................376
Dimension drawing ...............................................................................................................378
System integration .............................................................................................................................. 379
9.1
Introduction ...........................................................................................................................379
9.2
ASM 456 ...............................................................................................................................382
9.3
9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6
ASM 475 ...............................................................................................................................382
Features ................................................................................................................................382
Ordering data ........................................................................................................................383
Indicators ..............................................................................................................................384
Configuration .........................................................................................................................386
Shield connection..................................................................................................................388
Technical data .......................................................................................................................389
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
11
Table of contents
10
9.4
RF120C ................................................................................................................................ 391
9.5
RF160C ................................................................................................................................ 391
9.6
RF170C ................................................................................................................................ 392
9.7
RF180C ................................................................................................................................ 393
9.8
RF182C ................................................................................................................................ 394
System diagnostics ..............................................................................................................................395
10.1
Error codes ........................................................................................................................... 395
10.2
10.2.1
10.2.2
10.2.3
Diagnostics functions - STEP 7 Classic ............................................................................... 397
Overview .............................................................................................................................. 397
Reader diagnostics with SLG STATUS ............................................................................... 398
Transponder diagnostics with MDS STATUS ...................................................................... 401
10.3
Diagnostics functions STEP 7 Basic / Professional ............................................................. 403
Appendix .............................................................................................................................................405
A.1
Certificates and approvals ................................................................................................... 405
A.2
A.2.1
A.2.2
A.2.3
Accessories .......................................................................................................................... 407
Transponder holders ............................................................................................................ 407
MOBY Y adapter for MOBY I migration ............................................................................... 414
DVD "Ident Systems Software & Documentation" ............................................................... 416
A.3
A.3.1
A.3.2
A.3.3
A.3.4
Connecting cable ................................................................................................................. 417
RF3xxR reader (RS-422) with ASM 456 / RF160C / RF170C / RF180C / RF182C ............ 417
Reader RF3xxR (RS422) with ASM 475 ............................................................................. 419
Reader RF3xxR (RS-422) with RF120C .............................................................................. 420
Reader RF380R (RS232) - PC ............................................................................................ 421
A.4
Ordering data ....................................................................................................................... 423
A.5
Service & Support ................................................................................................................ 434
Index ...................................................................................................................................................437
SIMATIC RF300
12
System Manual, 07/2016, C79000-G8976-C345-0x
1
Introduction
1.1
Navigating in the system manual
Structure of the content
Content
Contents
Detailed organization of the documentation, including the index of pages and chapters
Introduction
Purpose, structure and description of the important topics.
Safety Information
Refers to all the valid technical safety aspects which have to be adhered to while installing,
commissioning and operating from the product/system view and with reference to statutory
regulations.
System overview
Overview of all RF identification systems, system overview of SIMATIC RF300
Planning the RF300 system
Information about possible applications of SIMATIC RF300, support for application planning, tools for finding suitable SIMATIC RF300 components.
Reader
Description of readers which can be used for SIMATIC RF300
Antennas
Description of antennas which can be used for SIMATIC RF300
RF300 transponder
Description of RF300 transponders which can be used for SIMATIC RF300
ISO transponder
Description of ISO transponders which can be used for SIMATIC RF300
System integration
Overview of the communications modules and function blocks that can be used for
SIMATIC RF300
System diagnostics
Description of system diagnostics available for SIMATIC RF300
Appendix
•
Certificates and approvals
•
Accessories
•
Connecting cables
•
Ordering data
•
Service & Support
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
13
Introduction
1.2 Preface
1.2
Preface
Purpose of this document
This system manual contains all the information needed to plan and configure the system.
It is intended both for programming and testing/debugging personnel who commission the
system themselves and connect it with other units (automation systems, further
programming devices), as well as for service and maintenance personnel who install
expansions or carry out fault/error analyses.
Scope of validity of this document
This documentation is valid for all variants of the SIMATIC RF300 system and describes the
devices shipped as of July 2016.
Additional information
You will find further information about the readers RF350M, RF310R Scanmode and
RF382R Scanmode in the relevant manuals.
Additional information (https://support.industry.siemens.com/cs/ww/en/ps/15033)
Registered trademarks
SIMATIC ®, SIMATIC RF ®, MOBY ®, RF MANAGER ® and SIMATIC Sensors ® are
registered trademarks of Siemens AG.
History
Currently released versions of the SIMATIC RF300 system manual:
Edition
Remark
05/2005
First Edition
11/2005
Revised edition, components added: RF310R with RS-422 interface, RF350T and
RF360T; ASM 452, ASM 456, ASM 473 and ASM 475
04/2006
Revised edition,
components added: RF340R as well as RF350R with the antenna types ANT 1, ANT 18
and ANT 30
12/2006
Revised edition,
components added: RF370T, RF380T and RF170C
07/2007
Revised edition,
degrees of protection changed for the RF300 readers
09/2007
Revised edition,
components added: RF380R and RF180C
06/2008
Revised edition
01/2009
Revised edition,
expanded by the reader functionalities "RF300 transponder" and "ISO transponder" for
the SIMATIC RF310R and SIMATIC RF380R readers
SIMATIC RF300
14
System Manual, 07/2016, C79000-G8976-C345-0x
Introduction
1.2 Preface
Edition
Remark
03/2014
Revised edition,
expanded by the reader functionalities "RF300 transponder" and "ISO transponder" for
the SIMATIC RF340R and SIMATIC RF350R readers
Expanded by the following components:
07/2016
•
Reader
RF310R with Scanmode, RF382R with Scanmode
•
Communications module
RF120C
•
Antennas
ANT 12 (in conjunction with RF350R) and ANT 8 (in conjunction with RF310M)
•
RF300 transponder
RF330T
•
ISO transponder
MDS D117, D126, D127, D165, D200, D261, D339, D400, D422, D423, D425, D426
Revised and expanded edition
Expanded by the following components:
•
Readers of the second generation
RF310R, RF340R, RF350R
•
Reader
RF380R Scanmode
•
Antenna
ANT 3, ANT 3S
•
ISO transponder
MDS D5xx
•
MOBY E migration in SIMATIC RF300
•
MOBY Y adapter for MOBY I migration in SIMATIC RF300
Abbreviations and naming conventions
The following terms/abbreviations are used synonymously in this document:
Reader
Write/read device (SLG)
Transponder, tag
Data carrier, mobile data storage, (MDS)
Communications module (CM)
Interface module (ASM)
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
15
Introduction
1.2 Preface
SIMATIC RF300
16
System Manual, 07/2016, C79000-G8976-C345-0x
Safety information
SIMATIC RFID products comply with the salient safety specifications acc. to IEC, VDE, EN,
UL and CSA. If you have questions about the permissibility of the installation in the planned
environment, please contact your service representative.
WARNING
Opening the device
Do not open the device when when the power supply is on. Unauthorized opening of and
improper repairs to the device may result in substantial damage to equipment or risk of
personal injury to the user.
NOTICE
Alterations not permitted
Alterations to the devices are not permitted.
Failure to observe this requirement shall constitute a revocation of the radio equipment
approval, CE approval and manufacturer's warranty.
Installation instructions
NOTICE
Switch/fuse to disconnect the reader from the power supply
Make sure that the readers can be disconnected from the power supply with a switch or a
fuse. The function of the switch or fuse must be clearly recognizable.
Operating temperature
CAUTION
Danger of burns
Note that some outer components of the reader are made of metal. Depending on the
environmental conditions temperatures can occur on the device that are higher than the
maximum permitted operating temperature.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
17
Safety information
Repairs
WARNING
Repairs only by authorized qualified personnel
Repairs may only be carried out by authorized qualified personnel. Unauthorized opening of
and improper repairs to the device may result in substantial damage to equipment or risk of
personal injury to the user.
System expansions
Only install system expansions intended for this system. If you install other expansions, you
may damage the system or violate the safety requirements and regulations for radio
frequency interference suppression. Contact Technical Support or your local sales
department to find out which system expansions are suitable for installation.
NOTICE
Warranty conditions
If you cause system defects by installing or exchanging system expansion devices, the
warranty becomes void.
Safety distances
CAUTION
Safety distance between reader/antenna and persons
Note that for permanent exposure, the following safety distances must be adhered to:
• RF310R: ≥ 80 mm
• RF340R: ≥ 130 mm
• RF350R + ANT 1: ≥ 140 mm
• RF350R + ANT 3: ≥ 80 mm
• RF350R + ANT 12: ≥ 25 mm
• RF350R + ANT 18: ≥ 50 mm
• RF350R + ANT 30: ≥ 80 mm
• RF380R: ≥ 250 mm
• RF382R: ≥ 130 mm
Note
Safety distance with pacemakers
A safety distance between reader/antenna and persons with pacemakers is not necessary.
SIMATIC RF300
18
System Manual, 07/2016, C79000-G8976-C345-0x
Safety information
Security information
Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, solutions, machines, equipment and/or networks. They are
important components in a holistic industrial security concept. With this in mind, Siemens’
products and solutions undergo continuous development. Siemens recommends strongly
that you regularly check for product updates.
For the secure operation of Siemens products and solutions, it is necessary to take suitable
preventive action (e.g. cell protection concept) and integrate each component into a holistic,
state-of-the-art industrial security concept. Third-party products that may be in use should
also be considered. You will find more information about Industrial Security in:
Industrial security (http://www.siemens.com/industrialsecurity)
To stay informed about product updates as they occur, sign up for a product-specific
newsletter. You will find more information about this in
Product support (https://support.industry.siemens.com/cs/ww/en/ps/15247/pm)
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
19
Safety information
SIMATIC RF300
20
System Manual, 07/2016, C79000-G8976-C345-0x
3
System overview
3.1
RFID systems
RFID systems from Siemens control and optimize material flow. They identify reliably,
quickly and economically, are insensitive to contamination and store data directly on the
product or workpiece carrier.
Table 3- 1
Overview of SIMATIC RFID systems
Frequency range
HF
UHF
RFID system
SIMATIC RF200
SIMATIC RF300
MOBY D
SIMATIC RF600
Transmission frequency
13.56 MHz
13.56 MHz
13.56 MHz
865 ... 928 MHz 1)
Range, max.
650 mm
210 mm
380 mm
8m
Protocols
(air interface)
•
ISO 15693
•
ISO 15693
•
ISO 15693
•
ISO 18000-3
•
ISO 18000-3
•
ISO 18000-3
•
RF300 (proprietary)
Standards, specifications, approvals
Memory capacity,
max.
•
EPCglobal Class 1
Gen 2
•
ISO 18000-6B
•
ISO 18000-6C
•
EN 300330, EN
301489, CE
•
EN 300330, EN
301489, CE
•
EN 300330, EN
301489, CE
•
ETSI EN 3002208,
CE
•
FCC Part 15
•
FCC Part 15
•
FCC Part 15
•
FCC
•
UL/CSA
•
UL/CSA
•
UL/CSA
•
UL
•
ATEX
992 bytes (EEPROM)
64 kB (EEPROM)
922 bytes (EEPROM)
496 bits (EPC),
8192 bytes (FRAM)
8192 bytes (FRAM)
2000 bytes (FRAM)
3424 bytes
Maximum data transfer 25.5 kbps
rate for wireless
transmission
106 kbps
26.5 kbps
300 kbps
Multitag capability
With RF290R reader
only
Yes/No 2)
Yes
Yes
Special characteristics
•
Particularly compact designs
•
High data transmission speed
•
SIMATIC or PC/IT
integration
•
SIMATIC or PC/IT
integration
•
For particularly
low-cost RFID solutions
•
Extended diagnostics options
•
•
Data preprocessing
in the readers
•
•
•
IO-Link for simple
identification tasks
High memory capacity
External antennas
for industrial applications
Special antennas
for industrial applications
1)
Depends on the country of deployment and the frequency regulations that apply there
2)
Multitag capability only with the readers of the second generation and in conjunction with ISO transponders.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
21
System overview
3.2 SIMATIC RF300
3.2
SIMATIC RF300
3.2.1
System overview of SIMATIC RF300
SIMATIC RF300 is an inductive identification system specially designed for use in industrial
production for the control and optimization of material flow.
Thanks to its compact dimensions, RF300 is the obvious choice where installation conditions
are restricted, especially for assembly lines, handling systems and workpiece carrier
systems. RF300 is suitable for both simple and demanding RFID applications and it stands
out for its persuasive price/performance ratio.
Scanmode applications
In applications without command control, the transponders are read automatically. The type
of data acquisition and transfer is preset in the reader using parameters.
Medium-performance applications
RF300 in conjunction with ISO transponders provides a cost-effective solution for mediumperformance applications.
High-performance applications
The high-performance components of RF300 in conjunction with the RF300 transponders
provide advantages in terms of high data transmission speeds and storage capacities.
SIMATIC RF300 - second generation
As of the delivery stage in the first quarter of 2017 an innovative second generation of the
readers RF310R, RF340R und RF350R is available. These readers apart from additional
performance characteristics are 100% compatible with the RF300s of the first generation.
The second generation of the RF380R comes later.
Additional performance features:
● Additional transponder protocol ISO 14443 (air interface) for MDS E transponders
● Automatic detection of different transponder types (RF300, ISO 15693, ISO 14443)
● Emulation of MOBY I write/read devices (SLG 4x) in conjunction with RF300
transponders for simplified migration
● Setup help integrated in the reader
The setup help serves the simple optimization of the reader-transponder positioning
during installation/commissioning. Further installation or software are not necessary. The
setup help becomes active directly after turning the device on.
● Improved 5-color LED display
SIMATIC RF300
22
System Manual, 07/2016, C79000-G8976-C345-0x
System overview
3.2 SIMATIC RF300
● User-friendly parameter assignment and configuration with TIA Portal technological object
(as of STEP 7 Basic / Professional V14 SP 1)
● Expanded functions for trained users:
– Address information for the "INIT" command no longer necessary
– Expanded "RESET" parameter
– The MDS-STATUS "Mode 3" functions with all transponder types
– Automatic antenna recognition with the reader RF350R (depending on the antenna)
Table 3- 2
Feature
SIMATIC RF300
first generation
SIMATIC RF300
second generation
Transponder protocol RF300
✓
✓
Transponder protocol ISO
15693
✓
✓
Transponder protocol ISO
14443
--
✓
MOBY I emulation to the controller
--
✓
Integrated setup help
--
✓
LED display
1x
2x
RFID technological object
--
✓ 1)
1)
3.2.2
Differences in the features
With the TIA Portal as of STEP 7 Basic / Professional V14 SP 1
RFID components and their function
System components overview
Table 3- 3
RF300 system components
Component
Description
Communications
module
A communications module is used to integrate the RF identification system in
controllers/automation systems.
Reader
The reader ensures inductive communication and power supply to the transponder, and handles the connection to the various controllers (e.g. SIMATIC
S7) through the communications module (e.g. ASM 456).
Transponder
The transponder stores all data relevant for production and is used, for example, instead of barcode.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
23
System overview
3.2 SIMATIC RF300
RF300 system components for high-performance applications
Figure 3-1
High performance system overview
Table 3- 4
Reader-transponder combination options for high-performance applications
Transponder
RF310R
RF340R
RF350R
with ANT 1
RF350R
with ANT 3
RF350R
with ANT 18
RF350R
with ANT 30
RF380R
RF320T
✓
✓
✓
✓
✓
✓
✓
RF330T
✓
✓
✓
✓
✓
✓
✓
RF340T
✓
✓
✓
✓
✓
✓
✓
RF350T
✓
✓
✓
✓
--
✓
✓
RF360T
✓
✓
✓
✓
--
✓
✓
SIMATIC RF300
24
System Manual, 07/2016, C79000-G8976-C345-0x
System overview
3.2 SIMATIC RF300
Transponder
RF310R
RF340R
RF350R
with ANT 1
RF350R
with ANT 3
RF350R
with ANT 18
RF350R
with ANT 30
RF380R
RF370T
✓ 1)
✓
✓
--
--
--
✓
RF380T
--
✓
✓
--
--
--
✓
1)
as of reader version "AS ≥ D"
✓ Combination possible
--
Combination not possible
○
Combination possible, but not recommended
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
25
System overview
3.2 SIMATIC RF300
RF300 system components for medium-performance applications
Figure 3-2
System overview medium-performance
SIMATIC RF300
26
System Manual, 07/2016, C79000-G8976-C345-0x
System overview
3.2 SIMATIC RF300
Table 3- 5
Reader-transponder combination options for medium-performance applications
Transponder /
MDS
RF310R
(RS-422)
RF340R
RF350R
with ANT
RF350R
with ANT
RF350R
with ANT
30
RF380R
MDS D100
✓
✓
✓
--
--
MDS D117
--
--
--
--
✓
--
○
✓
✓
--
--
MDS D124
✓
✓
✓
✓
○
MDS D126
✓
✓
✓
--
--
✓
✓
✓
--
✓
✓
MDS D127
--
--
--
--
✓
✓
--
--
MDS D139
✓
✓
✓
--
--
MDS D160
✓
✓
✓
✓
✓
--
○
✓
✓
✓
✓
MDS D165
✓
✓
✓
--
--
--
○
✓
MDS D200
✓
✓
✓
--
MDS D261
✓
✓
✓
--
--
--
○
✓
--
--
○
✓
MDS D324
✓
✓
✓
MDS D339 1)
✓
✓
✓
✓
--
✓
✓
✓
--
--
--
--
✓
MDS D400
✓
✓
✓
--
--
--
--
✓
MDS D421
--
--
MDS D422
--
--
--
--
✓
✓
--
--
--
✓
--
✓
✓
--
MDS D423
✓
MDS D424
✓
✓
✓
✓
--
--
✓
✓
✓
✓
✓
○
✓
✓
✓
MDS D425
✓
✓
✓
✓
○
✓
✓
✓
MDS D426
✓
✓
✓
--
--
--
✓
✓
MDS D428
✓
✓
✓
✓
✓
✓
✓
✓
MDS D460
✓
✓
✓
✓
✓
✓
✓
✓
MDS D521
--
--
--
--
✓
✓
--
--
MDS D522
--
--
--
--
--
✓
✓
--
MDS D524
✓
✓
✓
--
○
✓
✓
✓
MDS D525
✓
✓
✓
--
○
✓
✓
✓
MDS D526
✓
✓
✓
--
--
--
✓
✓
MDS D528
✓
✓
✓
--
✓
✓
✓
✓
MDS E600 2)
✓
✓
✓
--
--
--
○
✓
MDS E611
2)
✓
✓
✓
--
--
--
○
--
MDS E623
2)
--
--
--
--
✓
✓
--
--
MDS E624 2)
✓
✓
✓
--
○
✓
✓
--
1)
as of reader version "AS ≥ D"
2)
Product to be discontinued; only relevant for migration projects.
RF350R
with ANT
12
RF350R
with ANT
18
✓ Combination possible
--
Combination not possible
○
Combination possible, but not recommended
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
27
System overview
3.2 SIMATIC RF300
Note
Note on operation of the transponders MDS D5xx and MDS E6xx
Note that the transponders MDS D5xx and MDS E6xx can only be operated in conjunction
with the readers of the second generation (article number "6GT2801-xBAxx").
SIMATIC RF300
28
System Manual, 07/2016, C79000-G8976-C345-0x
System overview
3.2 SIMATIC RF300
RF300 system components for Scanmode applications
Figure 3-3
Scanmode system overview
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
29
System overview
3.2 SIMATIC RF300
Table 3- 6
Reader-transponder combination options for Scanmode applications
Transponder /
MDS
RF310R
RF380R
MDS D100
✓
✓
--
MDS D124
✓
✓
✓
MDS D126
✓
✓
--
MDS D139
✓
✓
--
MDS D160
✓
✓
✓
MDS D165
✓
✓
--
MDS D200
✓
✓
--
MDS D261
✓
✓
--
MDS D324
✓
✓
✓
MDS D339
✓
✓
--
MDS D400
✓
✓
--
MDS D423
✓
✓
--
MDS D424
✓
✓
✓
MDS D425
✓
✓
--
MDS D426
✓
✓
--
MDS D428
✓
✓
--
MDS D460
✓
✓
✓
MDS E610 1)
✓
--
--
MDS E611
1)
✓
--
--
MDS E624 1)
✓
--
--
RF320T
✓
✓
--
RF330T
✓
✓
--
RF340T
✓
✓
--
RF350T
✓
✓
--
RF360T
✓
✓
--
RF370T
--
✓
--
RF380T
--
✓
--
1)
RF382R
Product to be discontinued; only relevant for migration projects.
✓ Combination possible
--
Combination not possible
○
Combination possible, but not recommended
Note
Note on operation of the transponders MDS D5xx and MDS E6xx
Note that the transponders MDS D5xx and MDS E6xx can only be operated in conjunction
with the readers of the second generation (article number "6GT2801-xBAxx").
SIMATIC RF300
30
System Manual, 07/2016, C79000-G8976-C345-0x
System overview
3.2 SIMATIC RF300
3.2.3
Application areas of RF300
SIMATIC RF300 is primarily used for non-contact identification of containers, palettes and
workpiece holders in a closed production circuit. The data carriers (transponders) remain in
the production chain and are not supplied with the products. SIMATIC RF300, with its
compact transponder and reader enclosure dimensions, is particularly suitable in confined
spaces.
Main applications
● Mechanical engineering, automation systems, conveyor systems
● Ancillary assembly lines in the automotive industry, component suppliers
● Small assembly lines
Application examples
● Production lines for engines, gearboxes, axles, etc.
● Assembly lines for ABS systems, airbags, brake systems, doors, cockpits, etc.
● Assembly lines for household electrical appliances, consumer electronics and electronic
communication equipment
● Assembly lines for PCs, small-power motors, contactors, switches
Advantages
● Reading and writing of large data volumes within a short time results in shorter production
cycle times and helps to boost productivity
● Can be used in harsh environments thanks to rugged components with high degree of
protection
● Simple system integration into TCP/IP networks, SIMATIC S7, PROFINET and
PROFIBUS (TIA) with little effort
● Shorter commissioning times and fewer plant failures and downtimes thanks to integral
diagnostic functionalities
● Cost savings thanks to maintenance-free components
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
31
System overview
3.3 System configuration
3.3
System configuration
3.3.1
Overview
The SIMATIC RF300 system is characterized by a high level of standardization of its
components. This means that the system follows the TIA principle throughout: Totally
Integrated Automation. It provides maximum transparency at all levels with its reduced
interface overhead. This ensures optimum interaction between all system components.
The RF300 system with its flexible components offers many possibilities for system
configuration. This chapter shows you how you can use the RF300 components on the basis
of various example scenarios.
3.3.2
Assembly line example: Use of RF300 transponders
In assembly lines, such as in engine manufacturing, many work steps are completed in
succession. Automated or manual assembly work is carried out at the individual workstations
in relatively short periods of time. The special features of the RF300 transponders, which
stand out for their large data memory and high transmission speeds, bring about many
advantages in regard to the production unit numbers of such plants.
The possibility of saving large volumes of data means savings in terms of data management
on the HOST system and considerably contributes to data security (redundant data
management e.g. HOST database or controller and data carrier)
Advantages at a glance:
● redundant data storage on the basis of large memory, availability of decentralized data
● high data rate
● data management savings on the host system
Features of the scenario
In this example scenario, engine blocks that are placed on metal pallets are conveyed on an
assembly line. The engines are assembled piece-by-piece at the individual workstations. The
RFID transponder of the type SIMATIC RF340T is mounted permanently on the underside of
the pallet. The transport speed is approx. 0.5 m/s.
In this scenario, it is an advantage that the transponder can be directly secured to metal on
the metal pallets. The small-dimensioned SIMATIC RF310R reader is integrated in the
conveyor elements in such a manner that it can communicate with the transponders from
below. Thus, it is not necessary to align the pallets or to attach several transponders.
The data of the entire production order (5000 bytes) is stored on the transponder. This data
is read at each workstation and changed or supplemented depending on the workstation,
and then written back again. Thus, the status of the engine block assembly can be
determined at any point in time, even if there is a failure at the HOST level.
Thanks to the extremely high data rate, a very short cycle time for the work steps can be
planned, which results in high end product unit numbers "engines".
SIMATIC RF300
32
System Manual, 07/2016, C79000-G8976-C345-0x
System overview
3.3 System configuration
The entire production order that is saved on the transponder can also be read manually via
the WIN-LC terminal located at each workstation. This means that virtually no additional data
management is required on the control computer.
The production order data can also be read for servicing purposes via the mobile SIMATIC
RF350M reader.
Figure 3-4
Example of engine block production
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
33
System overview
3.3 System configuration
3.3.3
Example of container and cardboard container handling: Use of ISO
transponders
Containers of varying sizes are conveyed to picking workstations in a delivery center. There,
the individual goods are removed and packed in cartons according to the delivery note.
These cartons are marked with low-cost transponder labels and sorted to small or large
packaging workstations (according to the delivery note) by being guided or transported via
the corresponding conveyor system. The containers are marked using the MDS D100 ISO
transponder.
Advantages at a glance:
● Decision points in the conveyor system can be installed in a more favorable way
(mechanically)
● Different sizes of containers with different depths can be identified due to the range
● In contrast to bar codes, the transponders can also be written to
● Different types of transponders can be processed using one and the same reader
Features of the scenario
In this example scenario, containers of varying sizes are conveyed on a conveyor system.
Only the unique identification number (8 bytes) is read. The containers to be picked are
sorted to the corresponding workstations. The maximum transport speed is 1.0 m/s.
In this scenario, it is an advantage that the RF380R reader can read and write the
transponders at different distances on the containers without a great deal of mechanical or
control system effort due to the reading range.
During the picking process, the goods are immediately placed in different containers or
packed in cartons depending on the destination (small packaging or large packaging station).
The containers are equipped with the MDS D100 ISO transponder. The low-cost "one-way
tag" (label) is used on the cartons: it is simply glued onto the carton. Thus the goods can be
identified at any time. Again, one and the same reader hardware is used for this. The
maximum transport speed is 0.8 m/s.
In addition, flexible identification is possible at each location and at any time using the mobile
SIMATIC RF350M reader.
SIMATIC RF300
34
System Manual, 07/2016, C79000-G8976-C345-0x
System overview
3.3 System configuration
Figure 3-5
Example of container and cardboard container handling
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
35
System overview
3.3 System configuration
SIMATIC RF300
36
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.1
Fundamentals of application planning
4.1.1
Selection criteria for SIMATIC RF300 components
Assess your application according to the following criteria, in order to choose the right
SIMATIC RF300 components:
● Transmission distance (read/write distance)
● Tracking tolerances
● Static or dynamic data transfer
● Data volume to be transferred
● Speed in case of dynamic transfer
● Metal-free rooms for transponders and readers
● Ambient conditions such as relative humidity, temperature, chemical impacts, etc.
4.1.2
Transmission window and read/write distance
The reader generates an inductive alternating field. The antenna field is largest near to the
reader. The size of the field decreases strongly the further away from the reader. The
distribution of the antenna field depends on the structure and geometry of the antennas in
the reader and transponder.
For the transponder to function correctly, a minimum field strength at the transponder must
be achieved at a distance Sg from the reader or the antenna. The figures below show the
transmission window between transponder and reader or between transponder and antenna:
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
37
Planning the RF300 system
4.1 Fundamentals of application planning
Sa
Operating distance between transponder and reader
Sg
Limit distance (maximum clear distance between upper surface of the reader and the transponder, at which the transmission can still just function under normal conditions)
Lx
Length of a transmission window in the x direction while maintaining the working distance (Lx ≠
Ly with RF380R and RF382R)
Ly
Length of a transmission window in the y direction while maintaining the working distance (Lx ≠
Ly with RF380R and RF382R)
Field centerpoint
SP
Intersection of the axes of symmetry of the transponder
Figure 4-1
Transmission window and read/write distance reader
SIMATIC RF300
38
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.1 Fundamentals of application planning
Note
Transmission window with RF380R and RF382R
Note that the transmission window of the reader RF380R is not square (Lx ≠ Ly). To obtain as
large a transmission window as possible, make sure that the transponder only crosses the
reader in the x direction.
Sa
Operating distance between transponder and reader
Sg
Limit distance (maximum clear distance between upper surface of the reader and the transponder, at which the transmission can still just function under normal conditions)
Ld
Diameter of a transmission window
SP
Intersection of the axes of symmetry of the transponder
Figure 4-2
Transmission window and read/write distance round antenna
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
39
Planning the RF300 system
4.1 Fundamentals of application planning
The transponder can be used as soon as the intersection (SP) of the transponder enters the
area of the transmission window.
From the diagrams above, it can also be seen that operation is possible within the area
between Sa and Sg. The active operating area reduces as the distance increases, and
shrinks to a single point at distance Sg. Only static mode should thus be used in the area
between Sa and Sg.
Aids for calculating the field data
Note
Determining the operating distance, limit distance and transmission window
Remember that you can obtain the values Sa, Sg and L simply and quickly using the tool for
field data acquisition. You will find this on the DVD "Ident Systems, Software &
Documentation".
4.1.3
Width of the transmission window
Determining the width of the transmission window
The following approximation formula can be used for practical applications:
B:
Width of the transmission window
L:
Length of the transmission window
Tracking tolerances
The width of the transmission window (B) is particularly important for the mechanical tracking
tolerance. The formula for the dwell time is valid without restriction when B is observed.
SIMATIC RF300
40
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.1 Fundamentals of application planning
4.1.4
Impact of secondary fields
Secondary fields in the range from 0 mm to 30% of the limit distance (Sg) generally always
exist.
They should, however, only be used during configuration in exceptional cases, since the
read/write distances are very limited. Exact details of the secondary field geometry cannot be
given, since these values depend heavily on the operating distance and the application.
When working in dynamic mode, remember that during the transition from the secondary
field to the main field the presence of the tag is lost temporarily. It is therefore advisable to
select a distance > 30 % of Sg.
①
②
Main field
Secondary field
Figure 4-3
Gap in the field resulting from secondary fields
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
41
Planning the RF300 system
4.1 Fundamentals of application planning
Secondary fields without shielding
The following graphic shows typical primary and secondary fields, if no shielding measures
are taken.
①
②
Main field
Secondary field
Figure 4-4
Secondary field without shielding
In this arrangement, the reader can also read tags via the secondary field. Shielding is
required in order to prevent unwanted reading via the secondary field, as shown and
described in the following.
SIMATIC RF300
42
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.1 Fundamentals of application planning
Secondary fields with shielding
The following graphic shows typical primary and secondary fields, with metal shielding this
time.
The metal shielding prevents the reader from detecting tags via the secondary field.
①
②
Main field
Secondary field
Figure 4-5
4.1.5
Secondary field with shielding
Setup help of the readers of the second generation
After turning on the reader (connection to the power supply) and the following startup phase,
the reader automatically changes to the "Setup" mode. The antenna (reader internal or
external) is also turned on.
In this status "search for transponders" the reader scans the antenna field for transponders
with all HF protocols (RF300, ISO 15693, ISO 14443). If a transponder is recognized in the
antenna field of the reader only the HF protocol of the recognized transponder type is used
and there is a change in the status to "Show quality". In this status you obtain direct
feedback of the communication with the transponder via the LED. If no transponder is
recognized for a longer period of time, the reader changes back to the "Search for
transponders" status.
When a "RESET" command is received, the reader changes back to the normal operation as
known from the RF300.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
43
Planning the RF300 system
4.1 Fundamentals of application planning
Meaning of the LED operating display in the "Setup" mode
The operational statuses of the reader are displayed by two LEDs. The LEDs can adopt the
colors white green, red, yellow or blue and the statuses off , on , flashing :
Table 4- 1
Display elements
LED
Meaning
The reader is turned off.
The reader is turned on and is searching for transponders.
The reader is in the "Setup" mode, in the "Search for transponders" status and
has not yet received a "RESET" command and is not ready.
There is transponder in the antenna field.
The reader is in the "Setup" mode, in the status "Show quality", has not yet received a "RESET" command and is not ready.
Depending on the receive strength, the LED flashes or is lit permanently.
4.1.6
Permissible directions of motion of the transponder
Detection area and direction of motion of the transponder
The transponder and reader have no polarization axis, i.e. the transponder can come in from
any direction, assume any position as parallel as possible to the reader, and cross the
transmission window. The figure below shows the active area for various directions of
transponder motion:
Transmission window
Direction of motion of the transponder
Detection area L x W
Figure 4-6
Detection areas of the reader for different directions of transponder motion
SIMATIC RF300
44
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.1 Fundamentals of application planning
4.1.7
Operation in static and dynamic mode
Operation in static mode
If working in static mode, the transponder can be operated up to the limit distance (Sg). The
transponder must then be positioned exactly over the reader:
Figure 4-7
Operation in static mode
Operation in dynamic mode
When working in dynamic mode, the transponder moves past the reader. The transponder
can be used as soon as the intersection (SP) of the transponder enters the circle of the
transmission window. In dynamic mode, the operating distance (Sa) is of primary importance.
[Operating distances, see Chapter Field data for transponders, readers and antennas
(Page 48)]
Figure 4-8
Operation in dynamic mode
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
45
Planning the RF300 system
4.1 Fundamentals of application planning
4.1.8
Dwell time of the transponder
The dwell time is the time in which the transponder remains within the transmission window
of a reader. The reader can exchange data with the transponder during this time.
The dwell time is calculated thus:
tV:
Dwell time of the transponder
L:
Length of the transmission window
vTag:
Speed of the transponder (tag) in dynamic mode
0,8:
Constant factor used to compensate for temperature impacts and production tolerances
The dwell time can be of any duration in static mode. The dwell time must be sufficiently long
to allow communication with the transponder.
The dwell time is defined by the system environment in dynamic mode. The volume of data
to be transferred must be matched to the dwell time or vice versa. In general:
tV::
Dwell time of the data memory within the field of the reader
tK:
Communication time between transponder and communication module
SIMATIC RF300
46
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.1 Fundamentals of application planning
4.1.9
Communication between communications module, reader and transponder
Aids for calculating the data transmission times
User-friendly calculation tools are available for the communications modules ASM 456,
RF160C, RF170C and RF180C to calculate data transfer times. The calculation tools can be
found on the DVD "Ident Systems Software & Documentation", article number 6GT20802AA20.
Figure 4-9
User interface of the calculation tool for command processing time
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
47
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
Aids for calculating the field data
You will also find a tool for calculating field data on the DVD "Ident Systems, Software &
Documentation". Using this tool, among other things you can calculate the operating
distance (Sa), limit distance (Sg) and transmission window (L).
Figure 4-10
4.2
User interface of the calculation tool for field data acquisition
Field data for transponders, readers and antennas
The following tables show the field data for all SIMATIC RF300 components of transponders
and readers. This makes the correct selection of a transponder and reader particularly easy.
All the technical specifications listed are typical data and are applicable for an ambient
temperature between 0 °C and +50 °C, a supply voltage between 22 and 27 VDC and a
metal-free environment. Tolerances of ±20 % are permitted due to production or temperature
conditions.
If the entire voltage range at the reader of 20 VDC to 30 VDC and/or the entire temperature
range of transponders and readers is used, the field data is subject to further tolerances.
Note
Transmission gaps
If the minimum operating distance (Sa) is not observed, a transmission gap can occur in the
center of the field. Communication with the transponder is not possible in the transmission
gap.
SIMATIC RF300
48
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
Note
Possible reader-transponder combinations
The tables of the following section show the possible reader-transponder combinations.
4.2.1
Field data of RF300 transponders
The limit distances (Sg) and operating distances (Sa) along with the length of the
transmission window for each reader-transponder combination are listed in the tables below.
In dynamic mode, make sure that rectangular transponders cross the antenna field in the
longitudinal direction.
Table 4- 2
Field data RF310R reader
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
RF320T
30
1...23
26
RF330T
30
2...18
21
RF340T
40
2...36
41
RF350T
45
2...47
53
RF360T
45
2...60
68
RF370T
70
2...45
60
All values are in mm
The values relate to the RF310R reader as of version "D".
Table 4- 3
Field data RF340R reader
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
RF320T
45
1...20
25
RF330T
40
2...20
24
RF340T
80
2...50
65
RF350T
80
2...60
75
RF360T
90
2...65
85
RF370T
85
5...60
80
RF380T
90
5...80
100
All values are in mm
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
49
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
Table 4- 4
Field data RF350R reader / ANT 1
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
RF320T
45
1...30
40
RF330T
40
1...25
30
RF340T
80
2...55
70
RF350T
80
2...65
85
RF360T
90
2...75
100
RF370T
85
5...65
85
RF380T
90
5...90
110
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
RF320T
??
1...16
20
RF330T
??
1...16
20
RF340T
??
2...32
40
RF350T
??
2...35
42
RF360T
??
2...40
50
Diameter of the transmission window (Ld)
Operating distance (Sa)
Limit distance (Sg)
RF320T
10
0...10
15
RF330T
10
0...11
13
RF340T
20
0...20
25
Diameter of the transmission window (Ld)
Operating distance (Sa)
Limit distance (Sg)
RF320T
15
0...15
20
RF330T
22
0...15
18
RF340T
25
0...30
35
All values are in mm
Table 4- 5
Field data RF350R reader / ANT 3
All values are in mm
Table 4- 6
Field data RF350R reader / ANT 18
All values are in mm
Table 4- 7
Field data RF350R reader / ANT 30
SIMATIC RF300
50
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
Diameter of the transmission window (Ld)
Operating distance (Sa)
Limit distance (Sg)
RF350T
25
0...35
40
RF360T
??
2...25
35
All values are in mm
Table 4- 8
Field data RF380R reader
Length of the transmission window
in the x direction (Lx) in the y direction (Ly)
Operating distance
(Sa)
Limit distance (Sg)
RF320T
100
40
2...45
60
RF330T
120
30
5...45
52
RF340T
120
50
2...80
105
RF350T
140
60
2...100
125
RF360T
160
70
2...120
150
RF370T
160
65
5...100
135
RF380T
180
75
5...125
160
All values are in mm
The RF380R with MLFB 6GT2801-3AB10 allows the transmission output power to be set
with the aid of the "distance_limiting" input parameter (you will find more detailed information
in "Function manual FB 45
(https://support.industry.siemens.com/cs/ww/en/view/21738808)"). For this, values from
approx. 0.5 W to approx. 2.0 W can be set in 0.25 W increments. Depending on the setting,
the change to the transmission output power increases the performance in the lower
operating distance (low performance) or in the upper limit distance (high performance).
The "distance_limiting" range of values is from:
● 02 (= 0.5 W) through
● 05 (= 1.25 W; default value) to
● 08 (= 2 W).
Note
A 'distance_limiting' value setting outside of the range of "02 to 08" leads to the default
setting 5 and does not generate an error message.
You will find more information on this subject in the chapter "Minimum clearances (Page 59)"
section "Minimum distance from reader to reader".
You will find precise information about the parameters in "Product Information "FB 45 and
FC 45 input parameters for RF300 and ISO transponders"
(https://support.industry.siemens.com/cs/ww/en/view/33315697)".
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
51
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
4.2.2
Field data of ISO transponders (MDS D)
The limit distances (Sg) and operating distances (Sa) along with the length of the
transmission window for each reader-transponder combination are listed in the tables below.
Observe the following information for field data of ISO transponders:
● A maximum median deviation of ±2 mm is possible in static mode (without affecting the
field data).
● In dynamic mode, make sure that rectangular transponders cross the antenna field in the
longitudinal direction.
Table 4- 9
Field data RF310R reader
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
MDS D100
40
2...93
105
MDS D124
30
2...64
72
MDS D126
90
2...65
73
MDS D139
105
5...96
109
MDS D160
30
2...39
44
MDS D165
130
2...90
102
MDS D200
120
2...84
95
MDS D261
80
2...74
83
MDS D324
30
2...47
63
MDS D339
85
5...74
84
MDS D400
90
2...104
117
MDS D423
55
2...35
45
MDS D424
35
1...70
78
MDS D425
30
1...22
25
MDS D426
90
5...100
113
MDS D428
30
1...43
48
MDS D460
30
1...37
41
MDS D524
35
1...70
78
MDS D525
??
??
??
MDS D526
90
5...100
113
MDS D528
30
1...43
48
All values are in mm
The values relate to the RF310R reader as of version "D".
SIMATIC RF300
52
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
Table 4- 10
Field data RF340R reader
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
MDS D100
90
5...110
140
MDS D124
60
2...60
75
MDS D126
80
2...85
110
MDS D139
90
5...80
110
MDS D160
50
2...35
60
MDS D165
130
5...100
125
MDS D200
125
5...80
110
MDS D261
95
5...60
70
MDS D324
50
2...55
70
MDS D339
100
5...75
85
MDS D400
140
2...100
130
MDS D423
65
2...40
55
MDS D424
50
2...55
70
MDS D425
45
2...20
30
MDS D426
110
0...80
100
MDS D428
45
2...35
50
MDS D460
45
2...25
40
MDS D524
50
2...55
70
MDS D525
??
??
??
MDS D526
110
0...80
100
MDS D528
45
2...35
50
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
80
5...110
140
MDS D124
55
2...65
85
MDS D126
150
2...90
120
MDS D139
75
5...85
115
MDS D160
50
2...35
60
MDS D165
140
5...100
120
MDS D200
130
5...95
115
MDS D261
100
5...80
95
MDS D324
50
2...70
90
MDS D339
110
5...90
105
MDS D400
140
2...110
140
MDS D423
85
2...50
70
All values are in mm
Table 4- 11
Field data RF350R reader / ANT 1
MDS D100
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
53
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
50
2...60
80
MDS D424
MDS D425
40
2...25
35
MDS D426
110
0...85
110
MDS D428
40
2...35
50
MDS D460
40
2...35
50
MDS D524
50
2...60
80
MDS D525
??
??
??
MDS D526
110
0...85
110
MDS D528
40
2...35
50
Diameter of the transmission window (Ld)
Operating distance (Sa)
Limit distance (Sg)
MDS D124
??
0...35
42
MDS D160
??
1...16
20
MDS D324
??
2...32
40
MDS D422
??
1...12
15
MDS D423
??
0...24
30
MDS D424
??
0...42
48
MDS D425
??
0...16
20
MDS D428
??
0...25
32
MDS D460
??
0...18
25
Diameter of the transmission window (Ld)
Operating distance (Sa)
Limit distance (Sg)
0...3
MDS D127
0...3
MDS D160
15
0...8
15
All values are in mm
Table 4- 12
Field data RF350R reader / ANT 3
All values are in mm
Table 4- 13
Field data RF350R reader / ANT 12
MDS D117
MDS D421
0...3
MDS D428
15
1...10
17
MDS D460
1...10
14
MDS D521
0...3
MDS D528
15
1...10
17
All values are in mm
SIMATIC RF300
54
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
Table 4- 14
Field data RF350R reader / ANT 18
Diameter of the transmission window (Ld)
Operating distance (Sa)
Limit distance (Sg)
MDS D117
0...4
MDS D124
27
2...24
34
MDS D127
0...4
MDS D160
20
1...18
27
MDS D324
25
1...22
28
MDS D421
10
0...6
MDS D422
20
1...10
13
MDS D424
25
1...27
35
MDS D425
17
1...10
14
MDS D428
17
1...12
14
MDS D460
15
1...12
18
MDS D521
??
??
??
MDS D522
20
1...10
13
MDS D524
25
1...27
35
MDS D525
??
??
??
MDS D528
17
1...12
14
Diameter of the transmission window (Ld)
Operating distance (Sa)
Limit distance (Sg)
MDS D124
30
1...35
46
MDS D126
70
0...47
60
MDS D160
25
1...25
30
MDS D324
30
1...35
45
MDS D422
30
0...15
19
MDS D423
45
2...30
40
MDS D424
28
0...45
50
MDS D425
25
1...15
20
MDS D426
65
0...45
57
MDS D428
25
1...25
34
MDS D460
22
1...18
25
MDS D522
??
??
??
MDS D524
28
0...45
50
MDS D525
??
??
??
MDS D526
65
0...45
57
MDS D528
25
1...25
34
All values are in mm
Table 4- 15
Field data RF350R reader / ANT 30
All values are in mm
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
55
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
Table 4- 16
Field data RF380R reader
Length of the transmission window
in the x direction (Lx) in the y direction (Ly)
Operating distance
(Sa)
Limit distance (Sg)
MDS D100
140
100
5...170
210
MDS D124
80
80
1...120
140
MDS D126
180
140
2...145
190
MDS D139
140
90
5...160
200
MDS D160
80
40
2...64
80
MDS D165
200
140
5...170
200
MDS D200
200
160
5...150
195
MDS D261
190
120
5..120
160
MDS D324
100
60
2...96
120
MDS D339
290
140
5...160
180
MDS D400
240
120
2...200
240
MDS D423
110
60
5...75
90
MDS D424
100
70
2...120
140
MDS D425
80
45
2...35
50
MDS D426
220
160
0...155
195
MDS D428
80
50
2…70
95
MDS D460
80
70
2…65
90
MDS D524
100
70
2...120
140
MDS D525
??
??
??
??
MDS D526
220
160
0...155
195
MDS D528
80
50
2…70
95
Operating distance
(Sa)
Limit distance (Sg)
All values are in mm
Table 4- 17
Field data RF382R reader
Length of the transmission window
in the x direction (Lx)
in the y direction
(Ly)
MDS D124
70
130
40...65
75
MDS D160
50
100
35...50
65
MDS D324
60
120
40...65
75
MDS D424
65
120
40...65
75
MDS D460
40
80
30...50
60
All values are in mm
SIMATIC RF300
56
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
4.2.3
Field data of ISO transponders (MDS E)
The limit distances (Sg) and operating distances (Sa) along with the length of the
transmission window for each reader-transponder combination are listed in the tables below.
Observe the following information for field data of ISO transponders:
● A maximum median deviation of ±2 mm is possible in static mode (without affecting the
field data).
● In dynamic mode, make sure that rectangular transponders cross the antenna field in the
longitudinal direction.
Note
Relenace of the MDS E transponders
The MDS E transponders are products that will be discontinued. These are relevant for
migration projects in which existing RFID systems are replaced by SIMATIC RF300.
Table 4- 18
Field data RF310R reader
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
MDS E600
40
2...93
105
MDS E611
40
2...93
105
MDS E624
30
2...64
72
All values are in mm
The values relate to the RF310R reader as of version "D".
Table 4- 19
Field data RF340R reader
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
MDS E600
90
5...110
140
MDS E611
90
20...50
70
MDS E624
60
2...60
75
All values are in mm
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
57
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
Table 4- 20
Field data RF350R reader / ANT 1
Length of the transmission
window (L)
Operating distance (Sa)
Limit distance (Sg)
MDS E600
80
5...110
140
MDS E611
80
5...110
140
MDS E624
55
2...65
85
Diameter of the transmission window (Ld)
Operating distance (Sa)
Limit distance (Sg)
0...3
Operating distance (Sa)
Limit distance (Sg)
All values are in mm
Table 4- 21
Field data RF350R reader / ANT 12
MDS E623
All values are in mm
Table 4- 22
Field data RF350R reader / ANT 18
Diameter of the transmission window (Ld)
MDS E623
10
0...6
MDS E624
27
2...24
34
Diameter of the transmission window (Ld)
Operating distance (Sa)
Limit distance (Sg)
30
1...35
46
All values are in mm
Table 4- 23
Field data RF350R reader / ANT 30
MDS E624
All values are in mm
SIMATIC RF300
58
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
4.2.4
Minimum clearances
Minimum distance from transponder to transponder
The specified distances refer to a metal-free environment. For a metallic environment, the
specified minimum distances must be multiplied by a factor of 1.5. The transponders
designed specifically for installation in/on metal are an exception to this.
Table 4- 24
Minimum distances RF300 transponder
RF310R
RF340R
RF350R /
ANT 1
RF350R /
ANT 3
RF350R /
ANT 18
RF350R /
ANT 30
RF380R
RF320T
≥ 50
≥ 70
≥ 70
??
≥ 20
≥ 40
≥ 120
RF330T
≥ 40
≥ 50
≥ 50
??
≥ 20
≥ 30
≥ 120
RF340T
≥ 60
≥ 80
≥ 80
??
≥ 40
≥ 40
≥ 140
RF350T
≥ 60
≥ 80
≥ 80
??
--
≥ 50
≥ 150
RF360T
≥ 60
≥ 80
≥ 80
??
--
??
≥ 120
RF370T
--
≥ 80
≥ 80
--
--
--
≥ 130
RF380T
??
≥ 80
≥ 80
--
--
--
≥ 150
All values are in mm, relative to the operating distance (Sa) between reader and transponder, and between transponder
edge and transponder edge
Table 4- 25
Minimum distances ISO transponder
MDS D100
RF310R
RF340R
RF350R /
ANT 1
RF350R /
ANT 3
RF350R /
ANT 12
RF350R /
ANT 18
RF350R /
ANT 30
RF380R
RF382R 1)
≥ 120
≥ 240
≥ 240
--
--
--
--
≥ 420
--
MDS D117
--
--
--
--
≥ 20
≥ 30
--
--
--
MDS D124
≥ 100
≥ 180
≥ 180
??
--
≥ 50
≥ 80
≥ 360
≥ 100,
150
MDS D126
≥ 120
≥ 140
≥ 140
--
--
--
≥ 100
≥ 400
--
MDS D127
--
--
--
--
≥ 25
≥ 30
--
--
--
MDS D139
--
≥ 200
≥ 200
--
--
--
≥ 80
≥ 450
--
MDS D160
≥ 120
≥ 150
≥ 150
??
≥ 30
≥ 50
≥ 60
≥ 300
≥ 100,
120
MDS D165
≥ 120
≥ 140
≥ 140
--
--
--
--
≥ 500
--
MDS D200
≥ 120
≥ 150
≥ 150
--
--
--
--
≥ 500
--
MDS D261
≥ 160
≥ 200
≥ 200
--
--
--
--
≥ 400
--
MDS D324
≥ 120
≥ 180
≥ 180
??
--
≥ 50
≥ 80
≥ 360
≥ 100,
150
MDS D339
??
≥ 140
≥ 140
--
--
--
--
≥ 450
--
MDS D400
≥ 220
≥ 240
≥ 240
--
--
--
--
≥ 500
--
MDS D421
--
--
--
--
≥ 15
≥ 15
--
--
--
MDS D422
--
--
--
??
--
≥ 30
≥ 40
--
--
MDS D423
≥ 100
≥ 120
≥ 120
??
--
≥ 40
≥ 60
≥ 250
--
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
59
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
RF310R
RF340R
RF350R /
ANT 1
RF350R /
ANT 3
RF350R /
ANT 12
RF350R /
ANT 18
RF350R /
ANT 30
RF380R
RF382R 1)
MDS D424
≥ 100
180
≥ 180
??
--
≥ 50
≥ 80
≥ 360
≥ 100,
180
MDS D425
≥ 70
≥ 100
≥ 100
??
--
--
≥ 60
≥ 250
--
MDS D426
≥ 120
≥ 120
≥ 140
--
--
≥ 30
≥ 60
≥ 400
--
MDS D428
≥ 100
≥ 150
≥ 150
??
≥ 30
≥ 50
≥ 60
≥ 300
--
MDS D460
≥ 100
≥ 150
≥ 150
??
≥ 30
≥ 50
≥ 60
≥ 300
≥ 100,
120
MDS D521
--
--
--
--
≥ 15
≥ 15
--
--
--
MDS D522
--
--
--
--
--
≥ 30
≥ 40
--
--
MDS D524
≥ 100
180
≥ 180
--
--
≥ 50
≥ 80
≥ 360
≥ 100,
180
MDS D525
≥ 70
≥ 100
≥ 100
??
--
--
≥ 60
≥ 250
--
MDS D526
≥ 120
≥ 120
≥ 140
--
--
≥ 30
≥ 60
≥ 400
--
MDS D528
≥ 100
≥ 150
≥ 150
--
≥ 30
≥ 50
≥ 60
≥ 300
--
MDS E600
≥ 120
≥ 240
≥ 240
--
--
--
--
--
--
MDS E611
≥ 120
≥ 240
≥ 240
--
--
--
--
--
--
MDS E623
--
--
--
--
≥ 15
≥ 15
--
--
--
MDS E624
≥ 100
180
≥ 180
??
--
≥ 50
≥ 80
--
--
2)
2)
2)
2)
1)
The first value is the minimum distance of the transponders in the horizontal field, the second value is the minimum
distance of the transponders in the vertical field.
2)
Product to be discontinued; only relevant for migration projects.
All values are in mm, relative to the operating distance (Sa) between reader and transponder, and between transponder
edge and transponder edge
Minimum distance from reader to reader
Table 4- 26
Minimum distances reader
RF310R to
RF310R
RF340R to
RF340R
RF380R to
RF380R1)
RF382R to
RF382R
with 2 readers
≥ 150
≥ 200
≥ 400
≥ 200
with several
readers
≥ 200
≥ 250
≥ 500
≥ 200
All values are in mm
SIMATIC RF300
60
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.2 Field data for transponders, readers and antennas
The permissible minimum distance between two RF380Rs depends on the transmit power
that is set. The specified minimum distance must be multiplied by the following factor,
depending on the output:
1)
Table 4- 27
Effect on the minimum distance of the transmit power with RF380R
'distance_limiting' byte
Factor
02; 03
0.8
04; 05; 06
1.0
07; 08
1.2
Minimum distance from antenna to antenna
Table 4- 28
Minimum distances antennas
ANT 1
ANT 3
ANT 3S
ANT 8
ANT 12
ANT 18
ANT 30
≥ 100
≥ 80
≥ 20
≥ 50
≥ 70
≥ 100
≥ 100
All values are in mm
You will find detailed information on the minimum distances between antennas the section
"Minimum distance between antennas (Page 200)".
Note
Effect on inductive fields by not maintaining the minimum distances of the readers
If the values fall below the values specified in the "Minimum distance readers" and "Minimum
distances antennas" tables , there is a risk of the function being affected by inductive fields.
In this case, the data transfer time would increase unpredictably or a command would be
aborted with an error.
Keeping to the values specified in the "Minimum distance readers" and "Minimum distances
antennas" tables is therefore essential.
If the specified minimum distance cannot be complied with due to the physical configuration,
the SET-ANT command can be used to activate and deactivate the RF field of the reader.
The application software must be used to ensure that only one reader is active (antenna is
switched on) at a time.
Note
Please also observe the graphic representations of the minimum distances in the respective
chapters on readers.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
61
Planning the RF300 system
4.3 Installation guidelines
4.3
Installation guidelines
4.3.1
Overview
The transponder and reader complete with their antennas are inductive devices. Any type of
metal in the vicinity of these devices affects their functionality. Some points need to be
considered during planning and installation if the values described in the "Field data
(Page 48)" section are to retain their validity:
● Minimum spacing between two readers or their antennas
● Minimum distance between two adjacent data memories
● Metal-free area for flush-mounting of readers or their antennas and transponders in metal
● Mounting of multiple readers or their antennas on metal frames or racks
The following sections describe the impact on the operation of the RFID system when
mounted in the vicinity of metal.
4.3.2
Table 4- 29
Reduction of interference due to metal
Interference due to metal rack
Representation
Description
Problem:
A metal rack is located above the
transmission window of the reader.
This affects the entire field. In particular, the transmission window
between reader and transponder is
reduced.
Remedy:
The transmission window is no
longer affected if the transponder is
mounted differently.
SIMATIC RF300
62
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.3 Installation guidelines
Table 4- 30
Flush-mounting of transponders and readers
Representation
Description
Problem:
Flush-mounting of transponders and
readers is possible in principle.
However, the size of the transmission window is significantly reduced.
The following measures can be
used to counteract the reduction of
the window:
Remedy:
Enlargement of the non-metallic
spacer below the transponder
and/or reader.
The transponder and/or reader are
10 to 20 mm higher than the metal
surround.
(The value x ≥ 100 mm is valid, e.g.
for RF310R. It indicates that, for a
distance x ≥ 100 mm, the reader
can no longer be significantly affected by metal.)
Remedy:
Increase the distances a, b to metal.
The following rule of thumb can be
used:
•
Increase a, b by a factor of 2 to 3
over the values specified for
metal-free areas
•
Increasing a, b has a greater
effect for readers or transponders with a large limit distance
than for readers or transponders
with a small limit distance.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
63
Planning the RF300 system
4.3 Installation guidelines
Mounting of several readers on metal frames or racks
Any reader mounted on metal couples part of the field to the metal frame. There is normally
no interaction as long as the minimum distance D and metal-free areas a, b are maintained.
However, interaction may take place if an iron frame is positioned unfavorably. Longer data
transfer times or sporadic error messages at the communication module are the result.
Table 4- 31
Mounting several readers on metal frames or racks
Representation
Description
Problem:
Interaction between readers
Remedy:
Increase the distance D between the two readers.
Remedy:
Introduce one or more iron struts in order to shortcircuit the stray fields.
Remedy:
Insert a non-metallic spacer of 20 to 40 millimeter
thickness between the reader and the iron frame. This
will significantly reduce the induction of stray fields on
the rack:
4.3.3
Effects of metal on different transponders and readers
Mounting different transponders and readers on metal or flush-mounting
Certain conditions have to be observed when mounting the transponders and readers on
metal or flush-mounting. For more information, please refer to the descriptions of the
individual transponders and readers in the relevant section.
SIMATIC RF300
64
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.3 Installation guidelines
4.3.4
Impact on the transmission window by metal
In general, the following points should be considered when mounting RFID components:
● Direct mounting on metal is allowed only in the case of specially approved transponders.
● Flush-mounting of the components in metal reduces the field data; a test is recommended
in critical applications.
● When working inside the transmission window, make sure that no metal rail (or similar
part) intersects the transmission field.
The metal rail would affect the field data.
● With readers with a large antenna surface (e.g. RF260R) for reasons of communication
reliability, when the transponders are flush mounted in metal, a metal-free space around
the transponders is recommended. This metal-free space should match the size of the
antenna surface.
The impact of metal on the field data (Sg, Sa, L) is shown in a table in this section. The
values in the tables describe field data reduction and show the reduced range as a
percentage. The range relates to use in a non-metallic environment. A value of 100% means
no influence on the range.
Note
Possible reader-transponder combinations
The tables of the following section show the possible reader-transponder combinations.
4.3.4.1
Impact on the transmission window by metal
With RF300 transponders
Table 4- 32
Reduction of field data due to metal, range as %: Transponder and RF310R
Transponder
RF320T1)
RF330T
RF310R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm allround)
Without metal
100
95
80
On metal; distance 20 mm
100
80
70
Flush-mounted in metal;
distance all round 20 mm
80
70
60
Without metal
100
95
80
On metal; distance 0 mm
100
85
75
Flush-mounted in metal;
distance all round 10 mm
85
80
70
Flush-mounted in metal;
without surrounding clearance
30
30
25
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
65
Planning the RF300 system
4.3 Installation guidelines
Transponder
RF340T
RF350T
RF360T
RF370T
1)
RF310R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm allround)
Without metal
100
95
80
On metal; distance 0 mm
80
80
80
Flush-mounted in metal;
distance all round 20 mm
70
70
70
Without metal
100
95
85
On metal; distance 0 mm
70
65
65
Flush-mounted in metal;
distance all round 20 mm
60
60
60
Without metal
100
95
85
On metal; distance 20 mm
100
95
75
Flush-mounted in metal;
distance all round 20 mm
60
60
60
without metal
??
??
??
on metal; distance 0 mm
??
??
??
flush-mounted in metal;
distance all round 20 mm
??
??
??
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
With ISO transponders (MDS D)
Table 4- 33
Reduction of field data due to metal, range as %: Transponder and RF310R
Transponder
RF310R reader
MDS D1001) Without metal
Without metal
On metal
Flush-mounted
in metal
(20 mm allround)
100
95
80
On metal; distance 20 mm
75
70
65
Flush-mounted in metal;
distance all round 20 mm
55
55
50
100
95
80
On metal; distance 15 mm
90
95
85
Flush-mounted in metal;
distance all round 20 mm
80
75
60
MDS D1241) Without metal
MDS D1261) Without metal
100
90
85
On metal; distance 25 mm
85
80
75
Flush-mounted in metal;
distance all round 50 mm
80
75
70
SIMATIC RF300
66
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.3 Installation guidelines
Transponder
RF310R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm allround)
100
90
80
On metal; distance 30 mm
100
90
80
Flush-mounted in metal;
distance all round 100 mm
100
90
80
MDS D1391) Without metal
MDS D1601) Without metal
MDS D165
MDS
D2001)
MDS D261
MDS
D3241)
MDS D339
100
90
80
On metal; distance 10 mm
75
75
75
Without metal
100
90
85
On metal; distance 25 mm
90
80
75
Without metal
100
90
80
On metal; distance 20 mm
80
70
65
Flush-mounted in metal;
distance all round 20 mm
60
60
60
Without metal
100
80
85
On metal; distance 25 mm
90
75
80
Without metal
100
95
75
On metal; distance 15 mm
80
80
75
Flush-mounted in metal;
distance all round 25 mm
80
75
70
without metal
??
??
??
on metal; distance 30 mm
??
??
??
flush-mounted in metal;
distance all round 100 mm
??
??
??
100
80
75
On metal; distance 20 mm
65
60
55
Flush-mounted in metal;
distance all round 20 mm
55
50
45
MDS D4001) Without metal
MDS D423
Without metal
100
95
90
On metal; distance 0 mm
1502)
1402)
1402)
Flush-mounted in metal;
distance all round 0 mm
70
60
60
100
90
80
On metal; distance 15 mm
80
80
70
Flush-mounted in metal;
distance all round 25 mm
60
60
50
Without metal
100
100
95
On metal; distance 0 mm
90
85
80
Without metal
100
90
80
On metal; distance 25 mm
85
80
70
Flush-mounted in metal;
distance all round 50 mm
80
75
65
MDS D4241) Without metal
MDS D425
MDS
D4261)
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
67
Planning the RF300 system
4.3 Installation guidelines
Transponder
MDS D428
RF310R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm allround)
Without metal
100
100
75
On metal; distance 0 mm
100
100
75
100
100
80
80
80
60
??
??
??
on metal; distance 15 mm
??
??
??
flush-mounted in metal;
distance all round 25 mm
??
??
??
without metal
??
??
??
on metal; distance 0 mm
??
??
??
??
??
??
on metal; distance 25 mm
??
??
??
flush-mounted in metal;
distance all round 50 mm
??
??
??
without metal
??
??
??
on metal; distance 0 mm
??
??
??
MDS D4601) Without metal
On metal; distance 10 mm
MDS D5241) without metal
MDS D525
MDS D5261) without metal
MDS D528
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
2)
Values of > 100 % can occur if transponders were developed specifically for mounting in/on metallic surroundings.
With ISO transponders (MDS E)
Table 4- 34
Reduction of field data due to metal, range as %: Transponder and RF310R
Transponder
RF310R reader
without metal
on metal
flush-mounted
in metal
(20 mm allround)
100
95
80
on metal; distance 20 mm
75
70
65
flush-mounted in metal;
distance all round 20 mm
55
55
50
MDS E6001) without metal
MDS E6111) without metal
100
95
80
on metal; distance 20 mm
75
70
65
flush-mounted in metal;
distance all round 20 mm
55
55
50
SIMATIC RF300
68
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.3 Installation guidelines
Transponder
RF310R reader
without metal
on metal
flush-mounted
in metal
(20 mm allround)
100
95
80
on metal; distance 15 mm
90
95
85
flush-mounted in metal;
distance all round 20 mm
80
75
60
MDS E6241) without metal
1)
4.3.4.2
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
RF340R
With RF300 transponders
Table 4- 35
Reduction of field data due to metal, range as %: Transponder and RF340R
Transponder
RF320T
RF330T1)
RF340T
RF350T
RF360T
RF340R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm allround)
Without metal
100
95
90
On metal; distance 20 mm
85
85
80
Flush-mounted in metal;
distance all round 20 mm
75
75
65
Without metal
100
95
90
On metal; distance 0 mm
90
90
80
Flush-mounted in metal;
distance all round 10 mm
65
65
60
Without metal
100
95
80
On metal; distance 0 mm
65
65
55
Flush-mounted in metal;
distance all round 20 mm
60
60
55
Without metal
100
90
85
On metal; distance 0 mm
75
70
70
Flush-mounted in metal;
distance all round 20 mm
55
55
45
Without metal
100
95
80
On metal; distance 20 mm
75
70
65
Flush-mounted in metal;
distance all round 20 mm
70
60
50
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
69
Planning the RF300 system
4.3 Installation guidelines
Transponder
RF370T
RF380T
1)
RF340R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm allround)
Without metal
100
95
80
On metal; distance 0 mm
95
90
75
Flush-mounted in metal;
distance all round 20 mm
70
65
65
Without metal
100
95
75
On metal; distance 0 mm
100
95
70
Flush-mounted in metal; distance all-round 40 mm
80
75
60
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
With ISO transponders (MDS D)
Table 4- 36
Reduction of field data due to metal, range as %: Transponder and RF340R
Transponder
RF340R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm allround)
100
90
75
On metal; distance 20 mm
70
65
60
Flush-mounted in metal;
distance all round 20 mm
60
45
45
100
95
80
On metal; distance 15 mm
85
85
75
Flush-mounted in metal;
distance all round 20 mm
80
80
45
MDS D1001) Without metal
MDS D1241) Without metal
MDS D1261) Without metal
100
90
85
On metal; distance 25 mm
80
80
70
Flush-mounted in metal;
distance all round 50 mm
75
75
65
100
95
80
On metal; distance 30 mm
100
90
75
Flush-mounted in metal;
distance all round 100 mm
100
90
75
MDS D1391) Without metal
MDS D1601) Without metal
MDS D165
100
95
80
On metal; distance 10 mm
85
85
75
Without metal
100
95
85
On metal; distance 25 mm
90
80
75
SIMATIC RF300
70
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.3 Installation guidelines
Transponder
RF340R reader
Without metal
On metal
Flush-mounted
in metal
(20 mm allround)
100
95
90
On metal; distance 20 mm
90
85
80
Flush-mounted in metal;
distance all round 20 mm
75
50
65
Without metal
100
100
100
On metal; distance 25 mm
70
95
90
Without metal
100
95
80
On metal; distance 15 mm
90
85
75
Flush-mounted in metal;
distance all round 25 mm
80
80
60
Without metal
100
95
80
On metal; distance 30 mm
100
90
75
Flush-mounted in metal;
distance all round 100 mm
100
90
75
100
90
80
On metal; distance 20 mm
70
65
80
Flush-mounted in metal;
distance all round 20 mm
55
50
50
MDS D2001) Without metal
MDS D261
MDS
D3241)
MDS D339
MDS D4001) Without metal
MDS D423
Without metal
100
95
85
On metal; distance 0 mm
1202)
1202)
1152)
Flush-mounted in metal;
distance all round 0 mm
65
60
60
100
95
80
On metal; distance 15 mm
85
85
75
Flush-mounted in metal;
distance all round 25 mm
75
75
70
Without metal
100
95
95
On metal; distance 0 mm
100
90
90
Without metal
100
90
80
On metal; distance 25 mm
80
75
70
Flush-mounted in metal;
distance all round 50 mm
75
70
65
Without metal
100
95
80
On metal; distance 0 mm
95
80
75
Without metal
100
95
95
On metal; distance 10 mm
85
85
85
without metal
??
??
??
on metal; distance 15 mm
??
??
??
flush-mounted in metal;
distance all round 25 mm
??
??
??
MDS D4241) Without metal
MDS D425
MDS
D4261)
MDS D428
MDS
MDS
D4601)
D5241)
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
71
Planning the RF300 system
4.3 Installation guidelines
Transponder
MDS D525
RF340R reader
without metal
on metal; distance 0 mm
On metal
Flush-mounted
in metal
(20 mm allround)
??
??
??
??
??
??
??
??
??
on metal; distance 25 mm
??
??
??
flush-mounted in metal;
distance all round 50 mm
??
??
??
without metal
??
??
??
on metal; distance 0 mm
??
??
??
MDS D5261) without metal
MDS D528
Without metal
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
2)
Values of > 100 % can occur if transponders were developed specifically for mounting in/on metallic surroundings.
With ISO transponders (MDS E)
Table 4- 37
Reduction of field data due to metal, range as %: Transponder and RF340R
Transponder
RF340R reader
without metal
on metal
flush-mounted
in metal
(20 mm allround)
100
90
75
on metal; distance 20 mm
70
65
60
flush-mounted in metal;
distance all round 20 mm
60
45
45
MDS E6001) without metal
MDS E6111) without metal
100
90
75
on metal; distance 20 mm
70
65
60
flush-mounted in metal;
distance all round 20 mm
60
45
45
100
95
80
MDS E6241) without metal
1)
on metal; distance 15 mm
85
85
75
flush-mounted in metal;
distance all round 20 mm
80
80
45
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
SIMATIC RF300
72
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.3 Installation guidelines
4.3.4.3
RF350R
Reader RF350R with ANT 1 and with RF300 transponders
Table 4- 38
Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 1
Transponder
RF320T1)
RF330T
RF340T
RF350T
RF360T
RF370T
RF380T
1)
ANT 1 without
metal
ANT 1 on metal
ANT 1 flushmounted in
metal
(40 mm allround)
Without metal
100
90
90
On metal; distance 20 mm
85
85
75
Flush-mounted in metal;
distance all round 20 mm
75
75
65
Without metal
100
90
90
On metal; distance 0 mm
95
85
75
Flush-mounted in metal;
distance all round 10 mm
65
60
60
Without metal
100
90
90
On metal; distance 0 mm
65
65
60
Flush-mounted in metal;
distance all round 20 mm
60
60
55
Without metal
100
90
85
On metal; distance 0 mm
75
70
65
Flush-mounted in metal;
distance all round 20 mm
55
55
45
Without metal
100
90
85
On metal; distance 20 mm
75
75
65
Flush-mounted in metal;
distance all round 20 mm
65
60
50
Without metal
100
90
85
On metal; distance 0 mm
95
88
75
Flush-mounted in metal;
distance all round 20 mm
70
65
65
Without metal
100
90
80
On metal; distance 0 mm
100
90
70
Flush-mounted in metal;
distance all round 40 mm
80
75
60
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
73
Planning the RF300 system
4.3 Installation guidelines
Reader RF350R with ANT 1 and with ISO transponders (MDS D)
Table 4- 39
Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 1
Transponder
MDS D1001) Without metal
MDS
D3241)
85
80
70
60
65
45
45
100
95
85
On metal; distance 15 mm
85
85
80
Flush-mounted in metal;
distance all round 20 mm
85
80
50
100
85
85
On metal; distance 25 mm
85
75
75
Flush-mounted in metal;
distance all round 50 mm
80
70
70
100
90
85
On metal; distance 30 mm
95
85
85
Flush-mounted in metal;
distance all round 100 mm
95
85
85
100
95
90
On metal; distance 10 mm
85
85
80
Without metal
100
85
85
On metal; distance 25 mm
90
80
75
Without metal
100
85
80
On metal; distance 20 mm
85
75
75
Flush-mounted in metal;
distance all round 20 mm
75
65
65
Without metal
100
90
85
On metal; distance 25 mm
85
80
80
Without metal
100
85
85
On metal; distance 15 mm
90
80
80
Flush-mounted in metal;
distance all round 25 mm
80
75
65
100
90
85
On metal; distance 30 mm
95
85
85
Flush-mounted in metal;
distance all round 100 mm
95
85
85
100
90
85
On metal; distance 20 mm
80
70
65
Flush-mounted in metal;
distance all round 20 mm
65
60
60
MDS D1601) Without metal
MDS D261
100
60
MDS D1391) Without metal
MDS
ANT 1 mounted
in metal
(40 mm allround)
Flush-mounted in metal;
distance all round 20 mm
MDS D1261) Without metal
D2001)
ANT 1 on metal
On metal; distance 20 mm
MDS D1241) Without metal
MDS D165
ANT 1 without
metal
MDS D3391) Without metal
MDS D4001) Without metal
SIMATIC RF300
74
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.3 Installation guidelines
Transponder
MDS D423
ANT 1 without
metal
ANT 1 on metal
ANT 1 mounted
in metal
(40 mm allround)
100
90
90
On metal; distance 0 mm
1152)
1152)
1152)
Flush-mounted in metal;
distance all round 0 mm
80
65
65
Without metal
MDS D4241) Without metal
MDS D425
MDS
D4261)
MDS D428
100
90
75
On metal; distance 15 mm
85
80
75
Flush-mounted in metal;
distance all round 25 mm
75
70
70
Without metal
100
95
95
On metal; distance 0 mm
90
85
85
Without metal
100
90
85
On metal; distance 25 mm
85
80
75
Flush-mounted in metal;
distance all round 50 mm
80
75
Without metal
100
90
85
On metal; distance 0 mm
85
80
80
100
90
80
On metal; distance 10 mm
85
80
75
without metal
??
??
??
on metal; distance 15 mm
??
??
??
flush-mounted in metal;
distance all round 25 mm
??
??
??
without metal
??
??
??
MDS D4601) Without metal
MDS
D5241)
MDS D525
on metal; distance 0 mm
??
??
??
??
??
??
on metal; distance 25 mm
??
??
??
flush-mounted in metal;
distance all round 50 mm
??
??
??
without metal
??
??
??
on metal; distance 0 mm
??
??
??
MDS D5261) without metal
MDS D528
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
2)
Values of > 100 % can occur if transponders were developed specifically for mounting in/on metallic surroundings.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
75
Planning the RF300 system
4.3 Installation guidelines
Reader RF350R with ANT 1 and with ISO transponders (MDS E)
Table 4- 40
Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 1
Transponder
ANT 1 without
metal
ANT 1 on metal
ANT 1 mounted
in metal
(40 mm allround)
100
85
80
on metal; distance 20 mm
70
60
65
flush-mounted in metal;
distance all round 20 mm
60
45
45
MDS E6001) without metal
MDS E6111) without metal
100
85
80
on metal; distance 20 mm
70
60
65
flush-mounted in metal;
distance all round 20 mm
60
45
45
100
95
85
on metal; distance 15 mm
85
85
80
flush-mounted in metal;
distance all round 20 mm
85
80
50
MDS E6241) without metal
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
Reader RF350R with ANT 3 and with RF300 transponders
Table 4- 41
Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 3
Transponder
RF320T1)
RF330T
RF340T
ANT 3 without
metal
ANT 3 on metal
ANT 3 flushmounted in
metal
(40 mm allround)
without metal
??
??
??
on metal; distance 20 mm
??
??
??
flush-mounted in metal;
distance all round 20 mm
??
??
??
without metal
??
??
??
on metal; distance 0 mm
??
??
??
flush-mounted in metal;
distance all round 10 mm
??
??
??
without metal
??
??
??
on metal; distance 0 mm
??
??
??
flush-mounted in metal;
distance all round 20 mm
??
??
??
SIMATIC RF300
76
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.3 Installation guidelines
Transponder
RF350T
RF360T
1)
ANT 3 without
metal
ANT 3 on metal
ANT 3 flushmounted in
metal
(40 mm allround)
without metal
??
??
??
on metal; distance 0 mm
??
??
??
flush-mounted in metal;
distance all round 20 mm
??
??
??
without metal
??
??
??
on metal; distance 20 mm
??
??
??
flush-mounted in metal;
distance all round 20 mm
??
??
??
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
Reader RF350R with ANT 3 and with ISO transponders (MDS D)
Table 4- 42
Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 3
Transponder
MDS D1241) without metal
ANT 3 flushmounted in
metal
(40 mm allround)
??
??
??
??
??
??
flush-mounted in metal;
distance all round 20 mm
??
??
??
??
??
??
??
??
??
??
??
??
on metal; distance 15 mm
??
??
??
flush-mounted in metal;
distance all round 25 mm
??
??
??
without metal
??
??
??
on metal, distance 0 mm
??
??
??
flush-mounted in metal;
distance all round 0 mm
??
??
??
without metal
??
??
??
on metal; distance 0 mm
??
??
??
flush-mounted in metal;
distance all round 0 mm
??
??
??
on metal; distance 10 mm
MDS D3241) without metal
MDS D423
ANT 3 on metal
on metal; distance 15 mm
MDS D1601) without metal
MDS D422
ANT 3 without
metal
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
77
Planning the RF300 system
4.3 Installation guidelines
Transponder
ANT 3 without
metal
ANT 3 on metal
ANT 3 flushmounted in
metal
(40 mm allround)
??
??
??
on metal; distance 15 mm
??
??
??
flush-mounted in metal;
distance all round 25 mm
??
??
??
without metal
??
??
??
on metal; distance 0 mm
??
??
??
without metal
??
??
??
on metal; distance 0 mm
??
??
??
??
??
??
??
??
??
MDS D4241) without metal
MDS D425
MDS D428
MDS D4601) without metal
on metal; distance 10 mm
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
2)
Values of > 100 % can occur if transponders were developed specifically for mounting in/on metallic surroundings.
Reader RF350R with ANT 3 and with ISO transponders (MDS E)
Table 4- 43
Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 3
Transponder
ANT 3 without
metal
ANT 3 on metal
ANT 3 flushmounted in
metal
(40 mm allround)
??
??
??
on metal; distance 15 mm
??
??
??
flush-mounted in metal;
distance all round 20 mm
??
??
??
MDS E6241) without metal
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
SIMATIC RF300
78
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.3 Installation guidelines
Reader RF350R with ANT 12 and with ISO transponders (MDS D)
Table 4- 44
Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 12
Transponder
MDS D117
MDS D127
ANT 12 without metal
ANT 12 mounted in metal
(0 mm all-round)
Without metal
100
85
On metal; distance 0 mm
90
85
Flush-mounted in metal;
distance all round 0 mm
65
65
Without metal
100
85
On metal; distance 0 mm
95
85
Flush-mounted in metal;
distance all round 0 mm
65
65
100
80
On metal; distance 10 mm
100
80
Without metal
100
80
On metal; distance 0 mm
90
75
Flush-mounted in metal;
distance all round 0 mm
70
60
Without metal
100
75
MDS D1601) Without metal
MDS D421
MDS D428
On metal; distance 0 mm
95
75
100
80
On metal; distance 10 mm
100
80
without metal
??
??
on metal; distance 0 mm
??
??
flush-mounted in metal;
distance all round 0 mm
??
??
without metal
??
??
on metal; distance 0 mm
??
??
MDS D4601) Without metal
MDS D521
MDS D528
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
79
Planning the RF300 system
4.3 Installation guidelines
Reader RF350R with ANT 12 and with ISO transponders (MDS E)
Table 4- 45
Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 12
Transponder
MDS E623
1)
ANT 12 without metal
ANT 12 mounted in metal
(0 mm all-round)
without metal
100
80
on metal; distance 0 mm
90
75
flush-mounted in metal;
distance all round 0 mm
70
60
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
Reader RF350R with ANT 18 and with RF300 transponders
Table 4- 46
Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 18
Transponder
RF320T1)
RF330T
RF340T
ANT 18 without metal
ANT 18 mounted in metal
(10 mm all-round)
Without metal
100
65
On metal; distance 20 mm
85
55
Flush-mounted in metal;
distance all round 20 mm
75
45
Without metal
100
85
On metal; distance 0 mm
1202)
100
Flush-mounted in metal;
distance all round 10 mm
1152)
95
Flush-mounted in metal;
without surrounding clearance
95
90
Without metal
100
85
On metal; distance 0 mm
65
60
Flush-mounted in metal;
distance all round 20 mm
60
55
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
2)
Values of > 100 % can occur if transponders were developed specifically for mounting in/on metallic surroundings.
SIMATIC RF300
80
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.3 Installation guidelines
Reader RF350R with ANT 18 and with ISO transponders (MDS D)
Table 4- 47
Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 18
Transponder
MDS D1241) Without metal
MDS D127
MDS
MDS D421
MDS D422
MDS D428
85
85
75
85
45
Without metal
100
90
On metal, distance 0 mm
95
85
Flush-mounted in metal;
distance all round 0 mm
60
60
100
80
On metal, distance 10 mm
85
75
Without metal
100
80
On metal; distance 15 mm
90
75
Flush-mounted in metal;
distance all round 25 mm
80
65
Without metal
100
85
On metal, distance 0 mm
90
65
Flush-mounted in metal;
distance all round 0 mm
40
20
Without metal
100
85
On metal, distance 0 mm
95
85
Flush-mounted in metal;
distance all round 0 mm
90
80
100
85
On metal 15 mm
85
80
Flush-mounted in metal;
distance all round 25 mm
75
75
Without metal
100
85
On metal, distance 0 mm
100
85
Without metal
100
95
On metal, distance 0 mm
95
95
100
95
On metal, distance 15 mm
95
95
without metal
??
??
on metal, distance 0 mm
??
??
flush-mounted in metal;
distance all round 0 mm
??
??
MDS D4601) Without metal
MDS D521
100
Flush-mounted in metal;
distance all round 15 mm
MDS D4241) Without metal
MDS D425
ANT 18 mounted in metal
(10 mm all-round)
On metal, distance 15 mm
MDS D1601) Without metal
D3241)
ANT 18 without metal
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
81
Planning the RF300 system
4.3 Installation guidelines
Transponder
MDS D522
ANT 18 without metal
ANT 18 mounted in metal
(10 mm all-round)
without metal
??
??
on metal, distance 0 mm
??
??
flush-mounted in metal;
distance all round 0 mm
??
??
MDS D5241) without metal
MDS D525
MDS D528
1)
??
??
on metal 15 mm
??
??
flush-mounted in metal;
distance all round 25 mm
??
??
without metal
??
??
on metal, distance 0 mm
??
??
without metal
??
??
on metal, distance 0 mm
??
??
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
Reader RF350R with ANT 18 and with ISO transponders (MDS E)
Table 4- 48
Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 18
Transponder
MDS E623
ANT 18 without metal
ANT 18 mounted in metal
(10 mm all-round)
without metal
100
85
on metal, distance 0 mm
90
65
flush-mounted in metal;
distance all round 0 mm
40
20
MDS E6241) without metal
1)
100
85
on metal, distance 15 mm
85
75
flush-mounted in metal;
distance all round 15 mm
85
45
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
SIMATIC RF300
82
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.3 Installation guidelines
Reader RF350R with ANT 30 and with RF300 transponders
Table 4- 49
Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 30
Transponder
RF320T1)
RF330T
RF340T
RF350T
RF360T
Mounting the antenna
ANT 30 without metal
ANT 30 mounted in metal
(20 mm all-round)
Without metal
100
90
On metal; distance 30 mm
85
75
Flush-mounted in metal;
distance all round 20 mm
75
65
Without metal
100
90
On metal;
1102)
100
Flush-mounted in metal;
distance all round 10 mm
1052)
95
Flush-mounted in metal;
without surrounding clearance
90
80
Without metal
100
85
On metal; distance 30 mm
65
55
Flush-mounted in metal;
distance all round 20 mm
60
55
Without metal
100
85
Directly on metal
75
65
Flush-mounted in metal;
distance all round 20 mm
55
45
without metal
??
??
on metal; distance 20 mm
??
??
flush-mounted in metal;
distance all round 20 mm
??
??
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
2)
Values of > 100 % can occur if transponders were developed specifically for mounting in/on metallic surroundings.
Reader RF350R with ANT 30 and with ISO transponders (MDS D)
Table 4- 50
Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 30
Transponder
ANT 30 without metal
ANT 30 mounted in metal
(20 mm all-round)
100
85
On metal; distance 15 mm
85
75
Flush-mounted in metal;
distance all round 15 mm
80
45
MDS D1241) Without metal
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
83
Planning the RF300 system
4.3 Installation guidelines
Transponder
MDS D1261) Without metal
MDS
MDS D422
MDS D423
MDS
D4261)
MDS D428
90
75
70
100
80
On metal, distance 10 mm
85
75
Without metal
100
80
On metal; distance 15 mm
90
70
Flush-mounted in metal;
distance all round 25 mm
80
65
Without metal
100
85
On metal, distance 0 mm
95
85
Flush-mounted in metal;
distance all round 0 mm
90
80
Without metal
100
80
On metal, distance 0 mm
1252)
1152)
Flush-mounted in metal;
distance all round 0 mm
80
70
100
85
On metal 15 mm
95
85
Flush-mounted in metal;
distance all round 25 mm
85
75
Without metal
100
80
On metal, distance 0 mm
95
80
Without metal
100
85
On metal; distance 25 mm
90
75
Flush-mounted in metal;
distance all round 50 mm
80
70
Without metal
100
90
On metal, distance 0 mm
95
90
100
90
On metal, distance 10 mm
95
85
without metal
??
??
on metal, distance 0 mm
??
??
flush-mounted in metal;
distance all round 0 mm
??
??
??
??
on metal 15 mm
??
??
flush-mounted in metal;
distance all round 25 mm
??
??
MDS D5241) without metal
MDS D525
85
85
MDS D4601) Without metal
MDS D522
100
Flush-mounted in metal;
distance all round 50 mm
MDS D4241) Without metal
MDS D425
ANT 30 mounted in metal
(20 mm all-round)
On metal; distance 25 mm
MDS D1601) Without metal
D3241)
ANT 30 without metal
without metal
??
??
on metal, distance 0 mm
??
??
SIMATIC RF300
84
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.3 Installation guidelines
Transponder
ANT 30 without metal
ANT 30 mounted in metal
(20 mm all-round)
??
??
on metal; distance 25 mm
??
??
flush-mounted in metal;
distance all round 50 mm
??
??
without metal
??
??
on metal, distance 0 mm
??
??
MDS D5261) without metal
MDS D528
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
2)
Values of > 100 % can occur if transponders were developed specifically for mounting in/on metallic surroundings.
Reader RF350R with ANT 30 and with ISO transponders (MDS E)
Table 4- 51
Reduction of field data due to metal, range as %: Transponder and RF350R with ANT 30
Transponder
ANT 30 without metal
ANT 30 mounted in metal
(20 mm all-round)
100
85
on metal; distance 15 mm
85
75
flush-mounted in metal;
distance all round 15 mm
80
45
MDS E6241) without metal
1)
4.3.4.4
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
RF380R
With RF300 transponders
Table 4- 52
Reduction of field data due to metal, range as %: Transponder and RF380R
Transponder
RF320T1)
Reader RF380R (RF300 mode)
Without metal
On metal
Flush-mounted
in metal
(20 mm allround)
Without metal
100
95
90
On metal; distance 20 mm
85
75
70
Flush-mounted in metal;
distance all round 20 mm
60
55
50
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
85
Planning the RF300 system
4.3 Installation guidelines
Transponder
RF330T
RF340T
RF350T
RF360T1)
RF370T
RF380T
1)
Reader RF380R (RF300 mode)
Without metal
On metal
Flush-mounted
in metal
(20 mm allround)
100
90
80
On metal; distance 0 mm
70
65
60
Without metal
100
90
80
On metal; distance 0 mm
70
65
60
Flush-mounted in metal;
distance all round 20 mm
60
60
55
Without metal
100
85
80
On metal; distance 0 mm
70
65
60
Flush-mounted in metal;
distance all round 20 mm
55
50
45
Without metal
100
95
85
On metal; distance 20 mm
75
70
65
Flush-mounted in metal;
distance all round 20 mm
60
55
50
Without metal
100
95
85
On metal; distance 0 mm
90
85
80
Flush-mounted in metal;
distance all round 20 mm
65
60
60
Without metal
100
95
85
On metal; distance 0 mm
95
90
80
Flush-mounted in metal; distance all-round 40 mm
65
60
55
Without metal
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
With ISO transponders (MDS D)
Table 4- 53
Reduction of field data due to metal, range as %: Transponder and RF380R
Transponder
Reader RF380R (ISO mode)
Without metal
On metal
Flush-mounted
in metal
(20 mm allround)
100
95
80
On metal; distance 20 mm
65
60
55
Flush-mounted in metal;
distance all round 20 mm
55
50
45
MDS D1001) Without metal
SIMATIC RF300
86
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.3 Installation guidelines
Transponder
Reader RF380R (ISO mode)
Without metal
On metal
Flush-mounted
in metal
(20 mm allround)
100
95
90
On metal; distance 15 mm
95
90
85
Flush-mounted in metal;
distance all round 20 mm
70
65
50
MDS D1241) Without metal
MDS D1261) Without metal
100
90
80
On metal; distance 25 mm
80
75
70
Flush-mounted in metal;
distance all round 50 mm
75
65
65
100
90
75
On metal; distance 30 mm
95
85
70
Flush-mounted in metal;
distance all round 100 mm
90
80
70
MDS D1391) Without metal
MDS D1601) Without metal
MDS D165
100
95
90
On metal; distance 10 mm
85
85
80
Without metal
100
90
80
On metal; distance 25 mm
80
75
70
100
90
80
On metal; distance 20 mm
80
75
70
Flush-mounted in metal;
distance all round 20 mm
65
60
55
Without metal
100
95
85
On metal; distance 25 mm
85
80
75
Without metal
100
95
85
On metal; distance 15 mm
85
85
80
Flush-mounted in metal;
distance all round 25 mm
70
65
60
MDS D2001) Without metal
MDS D261
MDS
D3241)
MDS D3391) Without metal
100
90
80
On metal; distance 30 mm
85
80
75
Flush-mounted in metal;
distance all round 100 mm
80
75
70
100
90
80
On metal; distance 20 mm
75
70
60
Flush-mounted in metal;
distance all round 20 mm
60
60
55
Without metal
100
95
85
On metal; distance 0 mm
100
100
90
flush-mounted in metal;
distance all round 10 mm
75
65
60
MDS D4001) Without metal
MDS D423
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
87
Planning the RF300 system
4.3 Installation guidelines
Transponder
Reader RF380R (ISO mode)
Without metal
On metal
Flush-mounted
in metal
(20 mm allround)
100
90
75
On metal; distance 15 mm
75
75
60
Flush-mounted in metal;
distance all round 25 mm
60
55
40
Without metal
100
70
90
On metal; distance 0 mm
75
70
60
Without metal
100
90
80
On metal; distance 25 mm
80
75
70
Flush-mounted in metal;
distance all round 50 mm
75
65
65
Without metal
100
90
80
On metal; distance 0 mm
85
80
65
Without metal
100
95
80
On metal; distance 10 mm
80
75
60
MDS D4241) Without metal
MDS D425
MDS
D4261)
MDS D428
MDS
MDS
D4601)
D5241)
without metal
on metal 15 mm
flush-mounted in metal;
distance all round 25 mm
MDS D525
without metal
on metal; distance 0 mm
MDS
D5261)
without metal
on metal; distance 25 mm
flush-mounted in metal;
distance all round 50 mm
MDS D528
without metal
on metal, distance 0 mm
1)
Mounting the transponder on or in metal is only possible with the appropriate spacer or if there is
adequate clearance to the metal.
SIMATIC RF300
88
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.3 Installation guidelines
4.3.4.5
RF382R
Note
RF382R not suitable for metallic surroundings
The RF382R was not developed for reading transponders in a metallic environment.
With ISO transponders (MDS D)
Table 4- 54
Reduction of field data by metal (in %): Transponder and RF382R
Transponder
Reader RF382R (ISO mode)
Without metal
On metal
MDS D124
Without metal
100
1101)
MDS D160
Without metal
100
100
MDS D324
Without metal
100
1101)
MDS D424
Without metal
100
1051)
MDS D460
Without metal
100
1151)
1)
Values of > 100 % can occur if transponders were developed specifically for mounting in/on metallic surroundings.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
89
Planning the RF300 system
4.4 Chemical resistance of the transponders
4.4
Chemical resistance of the transponders
4.4.1
Overview of the transponders and their housing materials
The following sections describe the resistance to chemicals of the various transponders.
Resistance to chemicals depends on the housing materials used to manufacture the
transponders.
The following table provides an overview of the housing materials of the transponders:
Table 4- 55
Overview of the housing materials of the transponders
Housing material
Transponder
Polyamide 12
RF340T
RF350T
RF370T
Polyphenylene sulfide (PPS)
RF380T
MDS D117
MDS D124 (6GT2600-0AC10)
MDS D139
MDS D160
MDS D339
MDS D423
Polycarbonate (PC)
MDS D100 (6GT2600-0AD10)
Polyvinyl chloride (PVC)
MDS D100 (6GT2600-0AD00-0AX0)
MDS D200
MDS D400
Epoxy resin
RF320T
RF360T
MDS D124 (6GT2600-0AC00)
MDS D324
MDS D421
MDS D424
MDS D460
MDS D521
MDS D524
MDS E610
MDS E611
MDS E623
MDS E624
SIMATIC RF300
90
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.4 Chemical resistance of the transponders
Housing material
Transponder
PA6
MDS D127
PA6.6 GF30
MDS D126
MDS D422
MDS D425
MDS D426
MDS D428
MDS D522
MDS D525
MDS D526
MDS D528
Note
Chemical substances not listed
The following sections describe the resistance of the various transponders to specific
substances. If you require information about chemical substances that are not listed, contact
Customer Support.
4.4.2
Polyamide 12
The resistance of the plastic housing to chemicals used in the automobile sector (e.g.: oils,
greases, diesel fuel, gasoline, etc,) is not listed extra.
Table 4- 56
Chemical resistance - Polyamide 12
Substance
Test conditions
Rating
Concentration [%]
Temperature [°C]
30%
20 ℃
○○
60 ℃
○○○○
conc.
60 ℃
○○○○
10%
60 ℃
○○○○
Benzene
20 ℃
○○○○
60 ℃
○○○
Bleach solution (12.5% effective chlorine)
20 ℃
○○
Butane, gas, liquid
60 ℃
○○○○
Butyl acetate (acetic acid butyl ester)
60 ℃
○○○○
n(n)
20 ℃
○○○○
60 ℃
○○○
20 ℃
○○○○
60 ℃
○○○
Battery acid
Ammonia, gaseous
Ammonia, w.
Calcium chloride, w.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
91
Planning the RF300 system
4.4 Chemical resistance of the transponders
Substance
Calcium nitrate, w.
Test conditions
Concentration [%]
Temperature [°C]
c. s.
20 ℃
c. s.
Chlorine
Chrome baths, tech.
Rating
○○○○
60 ℃
○○○
20 ℃
20 ℃
Iron salts, w.
c. s.
60 ℃
○○○○
Acetic acid, w.
50%
20 ℃
Ethyl alcohol, w., undenaturated
95%
20 ℃
○○○○
95%
60 ℃
○○○
50%
60 ℃
○○○○
30%
20 ℃
○○○
10%
20 ℃
○○○○
10%
Formaldehyde, w.
60 ℃
○○○
Formalin
20 ℃
○○○
Glycerine
60 ℃
○○○○
Isopropyl alcohol
20 ℃
○○○○
60 ℃
○○○
60 ℃
○○○○
20 ℃
○○
Potassium hydroxide, w.
50%
Lysol
Magnesium salts, w.
c. s.
60 ℃
○○○○
Methyl alcohol, w.
50%
60 ℃
○○○○
Lactic acid, w.
50%
20 ℃
○○
10%
20 ℃
○○○
10%
60 ℃
○○
Sodium carbonate, w. (soda)
c. s.
60 ℃
○○○○
Sodium chloride, w.
c. s.
60 ℃
○○○○
60 ℃
○○○○
60 ℃
○○○○
20 ℃
○○○
60 ℃
○○
20 ℃
○
Propane
60 ℃
○○○○
Mercury
60 ℃
○○○○
Sodium hydroxide
Nickel salts, w.
c. s.
Nitrobenzene
Phosphoric acid
10%
Nitric acid
10%
20 ℃
○
Hydrochloric acid
10%
20 ℃
○
Sulfur dioxide
low
60 ℃
○○○○
Sulfuric acid
25%
20 ℃
○○
10%
20 ℃
○○○
low
Hydrogen sulfide
60 ℃
○○○○
Carbon tetrachloride
60 ℃
○○○○
Toluene
20 ℃
○○○○
60 ℃
○○○
SIMATIC RF300
92
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.4 Chemical resistance of the transponders
Substance
Test conditions
Rating
Concentration [%]
Temperature [°C]
high
60 ℃
○○○○
60 ℃
○○○○
Detergent
Plasticizer
Explanation of the rating
4.4.3
○○○○
Resistant
○○○
Practically resistant
○○
Conditionally resistant
○
Less resistant
Not resistant
w.
Water solution
c. s.
Cold saturated
Polyphenylene sulfide (PPS)
The data memory has special chemical resistance to solutions up to a temperature of 200
°C. A reduction in the mechanical properties has been observed in aqueous solutions of
hydrochloric acid (HCl) and nitric acid (HNO3) at 80 °C. The plastic housings are resistant to
all types of fuel including methanol.
Table 4- 57
Chemical resistance - polyphenylene sulfide (PPS)
Substance
Test conditions
Concentration [%]
Rating
Temperature [°C]
Acetone
55 ℃
○○○○
n-Butanol (butyl alcohol)
80 ℃
○○○○
Butanone-2 (methyl ethyl ketone)
60 ℃
○○○○
n-Butyl acetate
80 ℃
○○○○
Brake fluid
80 ℃
○○○○
Calcium chloride (saturated)
80 ℃
○○○○
Diesel fuel
80 ℃
○○○○
Diethyl ether
23 ℃
○○○○
Frigen 113
23 ℃
○○○○
Anti-freeze
120 ℃
○○○○
Kerosene
60 ℃
○○○○
Methanol
60 ℃
○○○○
Engine oil
80 ℃
○○○○
Sodium chloride (saturated)
80 ℃
○○○○
Sodium hydroxide
30%
80 ℃
○○○○
Sodium hypochlorite
(30 or 180 days)
5%
80 ℃
○○
5%
80 ℃
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
93
Planning the RF300 system
4.4 Chemical resistance of the transponders
Substance
Test conditions
Concentration [%]
Temperature [°C]
30%
90 ℃
Sodium hydroxide solution
Rating
○○○○
Nitric acid
10%
23 ℃
○○○○
Hydrochloric acid
10%
80 ℃
Sulfuric acid
10%
23 ℃
○○○○
10%
80 ℃
○○
30%
23 ℃
○○○○
Tested fuels
80 ℃
○○○○
FAM testing fluid
acc. to DIN 51 604-A
Toluene
80 ℃
○○
1, 1, 1-Trichloroethane
Xylene
80 ℃
○○○○
Zinc chloride (saturated)
80 ℃
○○
75 ℃
○○○○
Explanation of the rating
4.4.4
○○○○
Resistant
○○○
Practically resistant
○○
Conditionally resistant
○
Less resistant
Not resistant
Polycarbonate (PC)
Table 4- 58
Chemical resistance - polycarbonate (PPS)
Substance
Test conditions
Concentration [%]
Rating
Temperature [°C]
Mineral lubricants
○○
Aliphatic hydrocarbons
○○○○
Aromatic hydrocarbons
Gasoline
Weak mineral acids
○○○○
Strong mineral acids
○○
Weak organic acids
○○○○
Strong organic acids
○○
Oxidizing acids
Weak alkaline solutions
Strong alkaline solutions
Trichloroethylene
SIMATIC RF300
94
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.4 Chemical resistance of the transponders
Substance
Test conditions
Concentration [%]
Rating
Temperature [°C]
Perchloroethylene
Acetone
Alcohols
○○
Hot water (hydrolysis resistance)
Explanation of the rating
4.4.5
○○○○
Resistant
○○○
Practically resistant
○○
Conditionally resistant
○
Less resistant
Not resistant
Polyvinyl chloride (PVC)
Table 4- 59
Chemical resistance - polyvinyl chloride (PVC)
Substance
Test conditions
Concentration [%]
Rating
Temperature [°C]
Salt water
5%
○○○○
Sugared water
10%
○○○○
Acetic acid, w.
5%
○○○○
Sodium carbonate, w.
5%
○○○○
Ethyl alcohol, w.
60%
○○○○
Ethylene glycol
50%
○○○○
Fuel B
(acc. to ISO 1817)
○○○○
Human sweat
○○○○
Explanation of the rating
○○○○
Resistant
○○○
Practically resistant
○○
Conditionally resistant
○
Less resistant
Not resistant
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
95
Planning the RF300 system
4.4 Chemical resistance of the transponders
4.4.6
Epoxy resin
Table 4- 60
Chemical Resistance - epoxy resin
Substance
Test conditions
Concentration [%]
Allyl chloride
Formic acid
Rating
Temperature [°C]
20 ℃
○○○○
50%
20 ℃
○○○○
100%
20 ℃
○○
Ammonia, gaseous
20 ℃
○○○○
Ammonia, liquid, water-free
20 ℃
20 ℃
○○○○
40 ℃
○○○○
60 ℃
○○○○
Ethyl acrylate
20 ℃
○○○○
Ethyl glycol
60 ℃
○○○○
Gasoline, aroma-free
20 ℃
○○○○
Gasoline, containing benzene
20 ℃
○○○○
Benzoates (Na–, Ca– among others)
40 ℃
○○○○
Benzoic acid
20 ℃
○○○○
Benzene
20 ℃
○○○○
Borax
60 ℃
○○○○
Boric acid
20 ℃
○○○○
Bromine, liquid
20 ℃
60 ℃
○○○○
20 ℃
○○○○
20 ℃
Ammonium hydroxide
10%
Ethanol
Bromides (K–, Na– among others)
Bromoform
100%
Bromine water
Butadiene (1,3–)
20 ℃
○○○○
Butane, gaseous
20 ℃
○○○○
Butanol
20 ℃
Butyric acid
100%
Carbonates (ammonium–, Na– among
others)
Chlorine, liquid
Chlorine, gaseous, dry
100%
20 ℃
○○
60 ℃
○○○○
20 ℃
20 ℃
Chlorobenzene
20 ℃
○○○○
Chlorides (ammonium–, Na– among
others)
60 ℃
○○○○
Chloroform
20 ℃
Chlorophyll
20 ℃
○○○○
20 ℃
Chlorosulfuric acid
100%
Chlorine water (saturated solution)
20 ℃
○○
Chromates (K–, Na– among others)
Up to 50 %
40 ℃
○○○○
Chromic acid
Up to 30 %
20 ℃
SIMATIC RF300
96
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.4 Chemical resistance of the transponders
Substance
Test conditions
Concentration [%]
Chromosulfuric acid
Rating
Temperature [°C]
20 ℃
Citric acid
20 ℃
○○○○
Cyanamide
20 ℃
○○○○
Cyanides (K–, Na– among others)
60 ℃
○○○○
Dextrin, w.
60 ℃
○○○○
Diethyl ether
20 ℃
○○○○
Diethylene glycol
60 ℃
○○○○
Dimethyl ether
20 ℃
○○○○
Dioxane
20 ℃
40 ℃
○○○○
20 ℃
○○
Ethanol
60 ℃
○○○○
Fixing bath
40 ℃
○○○○
Fluorides (ammonium–, K–, Na–
among others)
40 ℃
○○○○
Up to 40 %
20 ℃
○○○○
Formaldehyde
50%
20 ℃
○○○○
Formamide
100%
20 ℃
○○○○
20 ℃
○○○○
Developer
Acetic acid
Hydrofluoric acid
100%
Gluconic acid
Glycerine
60 ℃
○○○○
Glycol
60 ℃
○○○○
Urine
20 ℃
○○○○
Uric acid
20 ℃
○○○○
Hydroxides (ammonium...)
10%
20 ℃
○○○○
Hydroxides (Na–, K–)
40%
20 ℃
○○○○
Hydroxides (alkaline earth metal)
60 ℃
○○○○
Hypochlorites (K–, Na– among others)
60 ℃
○○○○
Iodides (K–, Na– among others)
60 ℃
○○○○
Silicic acid
60 ℃
○○○○
Up to 90 %
20 ℃
100%
40 ℃
○○○○
20 ℃
Cresol
Methanol
Methylene chloride
Lactic acid
20 ℃
○○
Mineral oils
40 ℃
○○○○
Nitrates (ammonium..., K– among
others)
60 ℃
○○○○
Nitroglycerin
20 ℃
Oxalic acid
20 ℃
○○○○
Phenol
Phosphates (ammonium..., Na– among
others)
100%
1%
20 ℃
○○○○
60 ℃
○○○○
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
97
Planning the RF300 system
4.4 Chemical resistance of the transponders
Substance
Test conditions
Concentration [%]
Temperature [°C]
50%
60 ℃
Phosphoric acid
85%
Propanol
Rating
○○○○
20 ℃
○○○○
20 ℃
○○○○
Nitric acid
25%
20 ℃
Hydrochloric acid
10%
20 ℃
60 ℃
Brine
Sulfur dioxide
100%
20 ℃
○○
Carbon disulfide
100%
20 ℃
Sulfuric acid
40%
20 ℃
Sulfurous acid
20 ℃
○○
Soap solution
60 ℃
○○○○
Sulphates (ammonium..., Na– among
others)
60 ℃
○○○○
Sulfites (ammonium..., Na– among
others)
60 ℃
Tar, aroma-free
60 ℃
○○○○
Turpentine
20 ℃
○○○○
20 ℃
20 ℃
○○○○
20 ℃
○○○○
Trichloroethylene
Hydrogen peroxide
30%
Tartaric acid
Explanation of the rating
4.4.7
○○○○
Resistant
○○○
Practically resistant
○○
Conditionally resistant
○
Less resistant
Not resistant
PA6.6 GF30
Table 4- 61
Chemical resistance - PA6.6 GF30
Substance
Test conditions
Concentration [%]
Rating
Temperature [°C]
Mineral lubricants
○○○○
Aliphatic hydrocarbons
○○○○
Aromatic hydrocarbons
○○○○
Gasoline
○○○○
Weak mineral acids
○○○
SIMATIC RF300
98
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
Substance
Test conditions
Concentration [%]
Rating
Temperature [°C]
Strong mineral acids
Weak organic acids
○○
Strong organic acids
Oxidizing acids
Weak alkaline solutions
○○
Strong alkaline solutions
Trichloroethylene
○○○○
Perchloroethylene
○○○○
Acetone
○○○○
Alcohols
○○○○
Hot water (hydrolysis resistance)
○○
Explanation of the rating
○○○○
Resistant
○○○
Practically resistant
○○
Conditionally resistant
○
Less resistant
Not resistant
4.5
Guidelines for electromagnetic compatibility (EMC)
4.5.1
Overview
These EMC Guidelines answer the following questions:
● Why are EMC guidelines necessary?
● What types of external interference have an impact on the system?
● How can interference be prevented?
● How can interference be eliminated?
● Which standards relate to EMC?
● Examples of interference-free plant design
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
99
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
The description is intended for "qualified personnel":
● Project engineers and planners who plan system configurations with RFID modules and
have to observe the necessary guidelines.
● Fitters and service engineers who install the connecting cables in accordance with this
description or who rectify defects in this area in the event of interference.
Note
Failure to observe notices drawn to the reader's attention can result in dangerous
conditions in the plant or the destruction of individual components or the entire plant.
4.5.2
What does EMC mean?
The increasing use of electrical and electronic devices is accompanied by:
● Higher component density
● More switched power electronics
● Increasing switching rates
● Lower power consumption of components due to steeper switching edges
The higher the degree of automation, the greater the risk of interaction between devices.
Electromagnetic compatibility (EMC) is the ability of an electrical or electronic device to
operate satisfactorily in an electromagnetic environment without affecting or interfering with
the environment over and above certain limits.
EMC can be broken down into three different areas:
● Internal immunity to interference:
Immunity to internal (own) electrical disturbance
● External immunity to interference:
Immunity to external electromagnetic disturbances
● Degree of interference emission:
Emission of interference and its effect on the electrical environment
All three areas are considered when testing an electrical device.
The RFID modules are tested for conformity with the limit values required by the CE and
R&TTE directives. Since the RFID modules are merely components of an overall system,
and sources of interference can arise as a result of combining different components, certain
directives have to be followed when setting up a plant.
SIMATIC RF300
100
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
EMC measures usually consist of a complete package of measures, all of which need to be
implemented in order to ensure that the plant is immune to interference.
Note
The plant manufacturer is responsible for the observance of the EMC directives; the plant
operator is responsible for radio interference suppression in the overall plant.
All measures taken when setting up the plant prevent expensive retrospective modifications
and interference suppression measures.
The plant operator must comply with the locally applicable laws and regulations. They are
not covered in this document.
4.5.3
Basic rules
It is often sufficient to follow a few elementary rules in order to ensure electromagnetic
compatiblity (EMC).
The following rules must be observed:
Shielding by enclosure
● Protect the device against external interference by installing it in a cabinet or housing.
The housing or enclosure must be connected to the chassis ground.
● Use metal plates to shield against electromagnetic fields generated by inductances.
● Use metal connector housings to shield data conductors.
Wide-area ground connection
● Plan a meshed grounding concept.
● Bond all passive metal parts to chassis ground, ensuring large-area and low-HFimpedance contact.
● Establish a large-area connection between the passive metal parts and the central
grounding point.
● Don't forget to include the shielding bus in the chassis ground system. That means the
actual shielding busbars must be connected to ground by large-area contact.
● Aluminium parts are not suitable for ground connections.
Plan the cable installation
● Break the cabling down into cable groups and install these separately.
● Always route power cables, signal cables and HF cables through separated ducts or in
separate bundles.
● Feed the cabling into the cabinet from one side only and, if possible, on one level only.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
101
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
● Route the signal cables as close as possible to chassis surfaces.
● Twist the feed and return conductors of separately installed cables.
● Routing HF cables:
avoid parallel routing of HF cables.
● Do not route cables through the antenna field.
Shielding for the cables
● Shield the data cables and connect the shield at both ends.
● Shield the analog cables and connect the shield at one end, e.g. on the drive unit.
● Always apply large-area connections between the cable shields and the shielding bus at
the cabinet inlet and make the contact with clamps.
● Feed the connected shield through to the module without interruption.
● Use braided shields, not foil shields.
Line and signal filter
● Use only line filters with metal housings
● Connect the filter housing to the cabinet chassis using a large-area low-HF-impedance
connection.
● Never fix the filter housing to a painted surface.
● Fix the filter at the control cabinet inlet or in the direction of the source.
4.5.4
Propagation of electromagnetic interference
Three components have to be present for interference to occur in a system:
● Interference source
● Coupling path
● Interference sink
Figure 4-11
Propagation of interference
If one of the components is missing, e.g. the coupling path between the interference source
and the interference sink, the interference sink is unaffected, even if the interference source
is transmitting a high level of noise.
SIMATIC RF300
102
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
The EMC measures are applied to all three components, in order to prevent malfunctions
due to interference. When setting up a plant, the manufacturer must take all possible
measures in order to prevent the occurrence of interference sources:
● Only devices fulfilling limit class A of VDE 0871 may be used in a plant.
● Interference suppression measures must be introduced on all interference-emitting
devices. This includes all coils and windings.
● The design of the system must be such that mutual interference between individual
components is precluded or kept as small as possible.
Information and tips for plant design are given in the following sections.
Interference sources
In order to achieve a high level of electromagnetic compatibility and thus a very low level of
disturbance in a plant, it is necessary to recognize the most frequent interference sources.
These must then be eliminated by appropriate measures.
Table 4- 62
Interference sources: origin and effect
Interference source
Interference results from
Effect on the interference sink
Contactors,
electronic valves
Contacts
System disturbances
Coils
Magnetic field
Electrical motor
Collector
Electrical field
Winding
Magnetic field
Contacts
Electrical field
Transformer
Magnetic field, system disturbance,
transient currents
Power supply unit, switchedmode
Circuit
Electrical and magnetic field, system
disturbance
High-frequency appliances
Circuit
Electromagnetic field
Transmitter
(e.g. service radio)
Antenna
Electromagnetic field
Electric welding device
Ground or reference potential Voltage difference
difference
Transient currents
Operator
Static charge
Electrical discharge currents, electrical
field
Power cable
Current flow
Electrical and magnetic field, system
disturbance
High-voltage cable
Voltage difference
Electrical field
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
103
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
What interference can affect RFID?
Interference source
Cause
Remedy
Switched-mode power supply Interference emitted from the
current infeed
Replace the power supply
Interference injected through
the cables connected in
series
Cable is inadequately shielded
Better cable shielding
The reader is not connected
to ground.
Ground the reader
caused by another reader
•
Position the antennas further
apart.
•
Erect suitable damping materials
between the antennas.
HF interference over the
antennas
• Reduce the power of the readers.
Please follow the instructions in the
section Installation guidelines/reducing
the effects of metal
Coupling paths
A coupling path has to be present before the disturbance emitted by the interference source
can affect the system. There are four ways in which interference can be coupled in:
Figure 4-12
Ways in which interference can be coupled in
SIMATIC RF300
104
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
When RFID modules are used, different components in the overall system can act as a
coupling path:
Table 4- 63
Causes of coupling paths
Coupling path
Invoked by
Conductors and cables
•
Incorrect or inappropriate installation
•
Missing or incorrectly connected shield
•
Inappropriate physical arrangement of cables
•
Missing or incorrectly wired equalizing conductor
•
Missing or incorrect earthing
•
Inappropriate physical arrangement
•
Components not mounted securely
•
Unfavorable cabinet configuration
Control cabinet or housing
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
105
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
4.5.5
Cabinet configuration
The influence of the user in the configuration of an electromagnetically compatible plant
encompasses cabinet configuration, cable installation, ground connections and correct
shielding of cables.
Note
For information about electromagnetically compatible cabinet configuration, please consult
the installation guidelines for SIMATIC PLCs.
Shielding by enclosure
Magnetic and electrical fields and electromagnetic waves can be kept away from the
interference sink by using a metal enclosure. The easier the induced interference current can
flow, the greater the intrinsic weakening of the interference field. All enclosures and metal
panels in the cabinet should therefore be connected in a manner allowing good
conductance.
Figure 4-13
Shielding by enclosure
If the control cabinet panels are insulated from each other, a high-frequency-conducting
connection can be established using ribbon cables and high-frequency terminals or HF
conducting paste. The larger the area of the connection, the greater the high-frequency
conductivity. This is not possible using single-wire connections.
Prevention of interference by optimum configuration
Good interference suppression can be achieved by installing SIMATIC PLCs on conducting
mounting plates (unpainted). When setting up the control cabinet, interference can be
prevented easily by observing certain guidelines. Power components (transformers, drive
units, load power supply units) should be arranged separately from the control components
(relay control unit, SIMATIC S7).
SIMATIC RF300
106
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
As a rule:
● The effect of the interference decreases as the distance between the interference source
and interference sink increases.
● The interference can be further decreased by installing grounded shielding plates.
● The load connections and power cables should be installed separately from the signal
cables with a minimum clearance of 10 cm.
Figure 4-14
Prevention of interference by optimum configuration
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
107
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
Filtering of the supply voltage
External interference from the mains can be prevented by installing line filters. Correct
installation is extremely important, in addition to appropriate dimensioning. It is essential that
the line filter is mounted directly at the cabinet inlet. As a result, interference is filtered
promptly at the inlet, and is not conducted through the cabinet.
Figure 4-15
Filtering of the supply voltage
SIMATIC RF300
108
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
4.5.6
Prevention of interference sources
A high level of immunity to interference can be achieved by avoiding interference sources.
All switched inductances are frequent sources of interference in plants.
Suppression of inductance
Relays, contactors, etc. generate interference voltages and must therefore be suppressed
using one of the circuits below.
Even with small relays, interference voltages of up to 800 V occur on 24 V coils, and
interference voltages of several kV occur on 230 V coils when the coil is switched. The use
of freewheeling diodes or RC circuits prevents interference voltages and thus stray
interference on conductors installed parallel to the coil conductor.
Figure 4-16
Suppression of inductance
Note
All coils in the cabinet should be suppressed. The valves and motor brakes are frequently
forgotten. Fluorescent lamps in the control cabinet should be tested in particular.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
109
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
4.5.7
Equipotential bonding
Potential differences between different parts of a plant can arise due to the different design
of the plant components and different voltage levels. If the plant components are connected
across signal cables, transient currents flow across the signal cables. These transient
currents can corrupt the signals.
Proper equipotential bonding is thus essential.
● The equipotential bonding conductor must have a sufficiently large cross section (at least
10 mm2).
● The distance between the signal cable and the associated equipotential bonding
conductor must be as small as possible (antenna effect).
● A fine-strand conductor must be used (better high-frequency conductivity).
● When connecting the equipotential bonding conductors to the centralized equipotential
bonding strip (EBS), the power components and non-power components must be
combined.
● The equipotential bonding conductors of the separate modules must lead directly to the
equipotential bonding strip.
Figure 4-17
Equipotential bonding (EBS = Equipotential bonding strip)
The better the equipotential bonding in a plant, the smaller the chance of interference due to
fluctuations in potential.
Equipotential bonding should not be confused with protective earthing of a plant. Protective
earthing prevents the occurrence of excessive contact voltages in the event of equipment
faults whereas equipotential bonding prevents the occurrence of differences in potential.
SIMATIC RF300
110
System Manual, 07/2016, C79000-G8976-C345-0x
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
4.5.8
Cable shielding
Signal cables must be shielded in order to prevent coupling of interference.
The best shielding is achieved by installing the cables in steel tubes. However, this is only
necessary if the signal cable is routed through an environment prone to particular
interference. It is usually adequate to use cables with braided shields. In either case,
however, correct connection is vital for effective shielding.
Note
An unconnected or incorrectly connected shield has no shielding effect.
As a rule:
● For analog signal cables, the shield should be connected at one end on the receiver side
● For digital signals, the shield should be connected to the enclosure at both ends
● Since interference signals are frequently within the HF range (> 10 kHz), a large-area HFproof shield contact is necessary
Figure 4-18
Cable shielding
The shielding bus should be connected to the control cabinet enclosure in a manner allowing
good conductance (large-area contact) and must be situated as close as possible to the
cable inlet. The cable insulation must be removed and the cable clamped to the shielding
bus (high-frequency clamp) or secured using cable ties. Care should be taken to ensure that
the connection allows good conductance.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
111
Planning the RF300 system
4.5 Guidelines for electromagnetic compatibility (EMC)
Figure 4-19
Connection of shielding bus
The shielding bus must be connected to the PE busbar.
If shielded cables have to be interrupted, the shield must be continued via the corresponding
connector housing. Only suitable connectors may be used for this purpose.
Figure 4-20
Interruption of shielded cables
If intermediate connectors, which do not have a suitable shield connection, are used, the
shield must be continued by fixing cable clamps at the point of interruption. This ensures a
large-area, HF-conducting contact.
SIMATIC RF300
112
System Manual, 07/2016, C79000-G8976-C345-0x
5
Readers
Features of the RF300 reader
The reader provides inductive communication with the transponders and serial connection to
the communications modules.
Communication between the transponder and reader takes place over inductive alternating
fields.
The transmittable data volume between reader and transponder depends on
● the speed at which the transponder moves through the transmission window of the
reader.
● the length of the transmission window,
● the transponder type used (RF300- / ISO 15693- (MDS D)/ ISO 14443 transponder (MDS
E)),
● the memory type (FRAM, EEPROM; with RF300 transponders).
ISO 15693 functionality
With all readers of the RF300 family, you can use ISO 15693 transponders. Note that the
readers for RF300, ISO 15963 or ISO 14443 operation must have parameters assigned. The
parameter assignment done with the aid of the RESET frame (INIT-Run).
For more detailed information on software parameter assignment refer to the manuals.
● Function manual "Ident profile and Ident blocks
(https://support.industry.siemens.com/cs/ww/en/view/106368029)",
● Product Information "FB 45 and FC 45 input parameters for RF300 and ISO transponders
(https://support.industry.siemens.com/cs/ww/en/view/33315697)",
● Function manual "FB 45 (https://support.industry.siemens.com/cs/ww/en/view/21738808)"
as of version "AS ≥ A3".
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
113
Readers
ISO 14443 functionality
With all readers of the second generation of the RF300 family, you can use ISO 14443
transponders. The RF300 readers of the second generation therefore replace the MOBY E
readers SLG 72 and SLG 75. Note that the readers for RF300, ISO 15963 or ISO 14443
operation must have parameters assigned. The parameter assignment done with the aid of
the RESET frame (INIT-Run).
The following commands are supported in ISO 14443 operation of the readers:
● READ
● WRITE
● MDS-STATUS (mode 3)
● INIT
● REPEAT
Special ISO 14443 commands such as "INCREMENT", "DECREMENT" or "SET-VALUE"
are not supported.
SIMATIC RF300
114
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.1 SIMATIC RF310R
5.1
SIMATIC RF310R
5.1.1
Features
SIMATIC RF310R
5.1.2
Characteristics
Design
① RS-422 interface
② Status display
Area of application
Identification tasks on small assembly lines
in harsh industrial environments
RF310R ordering data
Table 5- 1
RF310R ordering data
Article number
RF310R with RS-422 interface (3964R)
horizontal base plate
6GT2801-1AB10
RF310R with RS-422 interface (3964R)
base plate turned through 90°
6GT2801-1AB10-0AX1
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
115
Readers
5.1 SIMATIC RF310R
5.1.3
Pin assignment RF310R with RS-422 interface
Pin
Pin
Assignment
Device end
8-pin M12
5.1.4
+ 24 V
- Transmit
0V
+ Transmit
+ Receive
- Receive
Unassigned
Earth (shield)
LED operating display
The operational statuses of the reader are displayed by the LEDs. The LED can adopt the
colors green, red or yellow and the statuses off
, on
, flashing
Table 5- 2
LED operating display on the reader
Color
Meaning
Operating voltage present, reader not initialized or antenna switched off
Operating voltage present, reader initialized and antenna switched on
1)
Transponder present
Error has occurred, the type of flashing corresponds to the error code in the
table in the section Error codes. The optical error display is only reset if the
corresponding reset parameter ("option_1", see FC 45 / FB 45 documentation,
section Input parameters) is set.
1)
5.1.5
Only in the "with presence" mode.
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
SIMATIC RF300
116
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.1 SIMATIC RF310R
5.1.6
Metal-free area
The RF310R can be flush-mounted in metal. Please allow for a possible reduction in the field
data values.
Figure 5-1
Metal-free area for RF310R
To avoid any impact on the field data, the distance a should be ≥ 20 mm.
5.1.7
Minimum distance between RF310R readers
RF310R side by side
≥ 150 mm (with 2 readers)
≥ 200 mm (with more than 2 readers)
Figure 5-2
Minimum distance between RF310R readers
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
117
Readers
5.1 SIMATIC RF310R
RF310R face-of-face
≥ 300 mm
Figure 5-3
5.1.8
Face-of-face distance between two RF310Rs
Technical specifications
Table 5- 3
Technical specifications of the RF310R reader with RS-422 interface
6GT2801-1AB10
Product type designation
SIMATIC RF310R
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
60 mm
Maximum data transmission speed
reader ↔ transponder
RF300 transponder
ISO transponder
•
Read
•
approx. 8000
bytes/s
•
approx. 1500
bytes/s
•
Write
•
approx. 8000
bytes/s
•
approx. 1500
bytes/s
Transmission speed
19.2, 57.6, 115.2 kBd
Read/write distances of the reader
See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
170 years
Interfaces
Electrical connector design
M12, 8-pin
Standard for interfaces for communication
RS-422
Antenna
integrated
SIMATIC RF300
118
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.1 SIMATIC RF310R
6GT2801-1AB10
Mechanical specifications
Housing
•
Material
•
Plastic PA 12
•
Color
•
Anthracite
Recommended distance to metal
0 mm
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
50 mA
Permitted ambient conditions
Ambient temperature
•
During operation
•
-25 to +70 ℃
•
During transportation and storage
•
-40 to +85 ℃
Degree of protection to EN 60529
IP67
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
75 x 55 x 30 mm
Weight
200 g
Type of mounting
4 x M5 screw;
1.5 Nm
Cable length for RS-422 interface, maximum
1000 m
LED display design
3-color LED
Standards, specifications, approvals
Proof of suitability
Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
119
Readers
5.1 SIMATIC RF310R
5.1.9
Approvals
FCC information
Siemens SIMATIC RF310R (MLFB 6GT2801-1AB10); FCC ID NXW-RF310R
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
SIMATIC RF300
120
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.1 SIMATIC RF310R
5.1.10
Dimension drawing
Figure 5-4
Dimension drawing for RF310R
Dimensions in mm
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
121
Readers
5.2 SIMATIC RF310R with Scanmode
5.2
SIMATIC RF310R with Scanmode
You will find detailed information on the SIMATIC RF310R with Scanmode on the Internet
(https://support.industry.siemens.com/cs/ww/en/ps/15034).
5.2.1
Features
SIMATIC RF310R special version
Scanmode
5.2.2
Characteristics
Design
① RS-422 interface
② Status display
Area of application
Identification tasks on small assembly lines in harsh
industrial environments
Ordering data for RF310R with Scanmode
Table 5- 4
Ordering data RF310R Scanmode
Article number
RF310R special version Scanmode with RS-422 interface
6GT2801-1AB20-0AX1
SIMATIC RF300
122
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.2 SIMATIC RF310R with Scanmode
5.2.3
Pin assignment RF310R special version Scanmode RS-422 interface
Pin
Pin
Assignment
Device end
8-pin M12
5.2.4
+ 24 V
- Transmit
0V
+ Transmit
+ Receive
- Receive
Unassigned
Earth (shield)
LED operating display
The operational statuses of the reader are displayed by the LEDs. The LED can adopt the
colors green, red or yellow and the statuses off , on , flashing :
Table 5- 5
Color
LED operating display on the reader
Meaning
Operating voltage present, reader ready for operation
Transponder present
Red LED for error display is activated permanently if correct operation of the reader
cannot be guaranteed (e. g. faulty start, checksum error during operation).
5.2.5
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
123
Readers
5.2 SIMATIC RF310R with Scanmode
5.2.6
Metal-free area
The RF310R special version can be flush-mounted in metal. Please allow for a possible
reduction in the field data values.
Figure 5-5
Metal-free area for RF310R special version
To avoid any impact on the field data, the distance a should be ≥ 20 mm.
5.2.7
Minimum distance between several readers
RF310R special version side by side
≥ 150 mm (with 2 readers)
≥ 200 mm (with more than 2 readers)
Figure 5-6
Minimum distance between RF310R readers
SIMATIC RF300
124
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.2 SIMATIC RF310R with Scanmode
RF310R special version face-to-face
≥ 300 mm
Figure 5-7
5.2.8
Face-to-face distance between two RF310R special version
Technical specifications
Table 5- 6
Technical specifications of the RF310R reader with Scanmode
6GT2801-1AB20-0AX1
Product type designation
SIMATIC RF310R Scanmode
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
60 mm
Maximum data transmission speed
reader ↔ transponder
RF300 transponder
•
Read
•
approx. 8000
bytes/s
ISO transponder
•
approx. 1500
bytes/s
Transmission speed
9.6, 19.2, 38.4, 57.6, 115.2 kBd
Read/write distances of the reader
See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
170 years
Interfaces
Electrical connector design
M12, 8-pin
Standard for interfaces for communication
RS-422 (Scanmode)
Antenna
integrated
Mechanical specifications
Housing
•
Material
•
Plastic PA 12
•
Color
•
Anthracite
Recommended distance to metal
0 mm
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
125
Readers
5.2 SIMATIC RF310R with Scanmode
6GT2801-1AB20-0AX1
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
50 mA
Permitted ambient conditions
Ambient temperature
•
During operation
•
-25 to +70 ℃
•
During transportation and storage
•
-40 to +85 ℃
Degree of protection to EN 60529
IP67
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
75 x 55 x 30 mm
Weight
170 g
Type of mounting
4 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
1000 m
LED display design
3-color LED
Standards, specifications, approvals
Proof of suitability
Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA
SIMATIC RF300
126
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.2 SIMATIC RF310R with Scanmode
5.2.9
Approvals
FCC information
Siemens SIMATIC RF310R (MLFB 6GT2801-1AB20-0AX1); FCC ID NXW-RF310R
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
127
Readers
5.2 SIMATIC RF310R with Scanmode
5.2.10
Dimension drawing
Figure 5-8
Dimension drawing RF310R special version Scanmode
Dimensions in mm
SIMATIC RF300
128
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.3 SIMATIC RF310R - second generation
5.3
SIMATIC RF310R - second generation
5.3.1
Features
SIMATIC RF310R
5.3.2
Characteristics
Design
① RS-422 interface
② LED operating display
Area of application
Identification tasks on small assembly lines in
harsh industrial environments
Ordering data
Table 5- 7
RF310R ordering data
Article number
RF310R with RS-422 interface (3964R)
6GT2801-1BA10
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
129
Readers
5.3 SIMATIC RF310R - second generation
5.3.3
Pin assignment of the RS-422 interface
Table 5- 8
Pin assignment
Pin
Pin
Assignment
Device end
8-pin M12
5.3.4
+ 24 V
- Transmit
0V
+ Transmit
+ Receive
- Receive
Unassigned
Earth (shield)
LED operating display
The operational statuses of the reader are displayed by two LEDs. The LEDs can adopt the
colors white green, red, yellow or blue and the statuses off , on , flashing :
Table 5- 9
Display elements
LED
Meaning
The reader is turned off.
The reader is turned on and is searching for transponders.
The reader is in the "Setup" mode, in the "Search for transponders" status and
has not yet received a "RESET" command and is not ready.
There is transponder in the antenna field.
The reader is in the "Setup" mode, in the status "Show quality", has not yet received a "RESET" command and is not ready.
Depending on the signal strength, the LED flashes or is lit permanently.
The reader has received a "RESET" command.
There is transponder in the antenna field.
The reader is ready.
There is an error. The number of flashes provides information about the current
error.
You will find more information on error messages in the section "System diagnostics (Page 395)".
5.3.5
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
SIMATIC RF300
130
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.3 SIMATIC RF310R - second generation
5.3.6
Metal-free area
The RF310R can be flush-mounted in metal. Allow for a possible reduction in the field data.
To avoid any influence on the field data, the distance "a" should be kept to.
a≥
20 mm
Figure 5-9
5.3.7
Metal-free area for RF310R
Minimum distance between RF310R readers
RF310R side by side
D≥
150 mm (with 2 readers)
D≥
200 mm (with more than 2 readers)
Figure 5-10
Minimum distance between RF310R readers
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
131
Readers
5.3 SIMATIC RF310R - second generation
RF310R face-of-face
D≥
300 mm
Figure 5-11
5.3.8
Face-of-face distance between two RF310Rs
Technical specifications
Table 5- 10
Technical specifications of the RF310R reader with RS-422 interface
6GT2801-1BA10
Product type designation
SIMATIC RF310R
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
60 mm
Maximum data transmission speed
reader ↔ transponder
RF300
transponder
ISO
transponder
(MDS D)
ISO transponder
(MDS E)
•
Read
•
≤ 8000
bytes/s
•
≤ 3300
bytes/s
•
≤ 3400
bytes/s
•
Write
•
≤ 8000
bytes/s
•
≤ 1700
bytes/s
•
≤ 800
bytes/s
Transmission speed
19.2, 57.6, 115.2 kBd
Read/write distances of the reader
See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
273 years
Interfaces
Electrical connector design
M12, 8-pin
Standard for interfaces for communication
RS-422
Antenna
integrated
SIMATIC RF300
132
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.3 SIMATIC RF310R - second generation
6GT2801-1BA10
Mechanical specifications
Housing
•
Material
•
Plastic PA 12
•
Color
•
TI-Grey
Recommended distance to metal
0 mm
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
55 mA
Permitted ambient conditions
Ambient temperature
•
During operation
•
-25 to +70 ℃
•
During transportation and storage
•
-40 to +85 ℃
Degree of protection to EN 60529
IP67
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
75 x 55 x 30 mm
Weight
100 g
Type of mounting
4 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
1000 m
LED display design
2 LEDs, 5 colors
Standards, specifications, approvals
Proof of suitability
Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA (IEC61010 /
IEC61010-2-201),
Ex approval
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
133
Readers
5.3 SIMATIC RF310R - second generation
5.3.9
Approvals
FCC information
Siemens SIMATIC RF310R (MLFB 6GT2801-1BA10); FCC ID NXW-RF310R-03
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
SIMATIC RF300
134
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.3 SIMATIC RF310R - second generation
UL information (IEC61010-1 / IEC61010-2-201)
This standard applies to equipment designed to be safe at least under the following
conditions:
● a) indoor use;
● b) altitude up to 2 000 m;
● c) temperature -25 °C to 70 °C;
● d) maximum relative humidity 80 % for temperature up to 31 °C decreasing linearly to 50
% relative humidity at 40 °C;
● e) TRANSIENT OVERVALTAGES up to the levels of OVERVALTAGE CATEGORY II,
NOTE 1: These levels of transient overvoltage are typical for equipment supplied from the
building wiring.
● f) using a "NEC Class 2" power supply is required
5.3.10
Dimension drawing
Figure 5-12
Dimension drawing for RF310R
Dimensions in mm
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
135
Readers
5.4 SIMATIC RF340R/RF350R
5.4
SIMATIC RF340R/RF350R
5.4.1
SIMATIC RF340R
5.4.1.1
Features
SIMATIC RF340R
5.4.1.2
Characteristics
Design
① RS-422 interface
② Status display
Area of application
Identification tasks on assembly lines in
harsh industrial environments
Ordering data for RF340R
Table 5- 11
Ordering data for RF340R
Article number
RF340R with RS-422 interface (3964R)
6GT2801-2AB10
SIMATIC RF300
136
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.4 SIMATIC RF340R/RF350R
5.4.1.3
Pin assignment of RF340R RS422 interface
Pin
Pin
Assignment
Device end
8-pin M12
5.4.1.4
+ 24 V
- Transmit
0V
+ Transmit
+ Receive
- Receive
Unassigned
Earth (shield)
LED operating display
The operational statuses of the reader are displayed by the LEDs. The LED can adopt the
colors green, red or yellow and the statuses off , on , flashing :
Table 5- 12
LED operating display on the reader
Color
Meaning
Operating voltage present, reader not initialized or antenna switched off
Operating voltage present, reader initialized and antenna switched on
1)
Transponder present
Error has occurred, the type of flashing corresponds to the error code in the
table in the section Error codes. The optical error display is only reset if the
corresponding reset parameter ("option_1", see FC 45 / FB 45 documentation,
section Input parameters) is set.
1)
5.4.1.5
Only in the "with presence" mode.
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
137
Readers
5.4 SIMATIC RF340R/RF350R
5.4.1.6
Metal-free area
The RF340R can be flush-mounted in metal. Please allow for a possible reduction in the field
data values.
Figure 5-13
Metal-free area for RF340R
To avoid any impact on the field data, the distance a should be ≥ 20 mm.
5.4.1.7
Minimum distance between RF340R readers
RF340R side by side
≥ 200 mm (with 2 readers)
≥ 250 mm (with more than 2 readers)
Figure 5-14
Minimum distance between RF340R readers
SIMATIC RF300
138
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.4 SIMATIC RF340R/RF350R
RF340R face-of-face
≥ 500 mm
Figure 5-15
5.4.1.8
Face-of-face distance between two RF340Rs
Technical specifications
Table 5- 13
Technical specifications of the RF340R reader
6GT2801-2AB10
Product type designation
SIMATIC RF340R
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
140 mm
Maximum data transmission speed
reader ↔ transponder
RF300 transponder
ISO transponder
•
Read
•
approx. 8000
bytes/s
•
approx. 1500
bytes/s
•
Write
•
approx. 8000
bytes/s
•
approx. 1500
bytes/s
Transmission speed
19.2, 57.6, 115.2 kBd
Read/write distances of the reader
See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
140 years
Interfaces
Electrical connector design
M12, 8-pin
Standard for interfaces for communication
RS-422 (3964R protocol)
Antenna
integrated
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
139
Readers
5.4 SIMATIC RF340R/RF350R
6GT2801-2AB10
Mechanical specifications
Housing
•
Material
•
Plastic PA 12
•
Color
•
Anthracite
Recommended distance to metal
0 mm
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
100 mA
Permitted ambient conditions
Ambient temperature
•
During operation
•
-25 to +70 ℃
•
During transportation and storage
•
-40 to +85 ℃
Degree of protection to EN 60529
IP67
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
75 x 75 x 41 mm
Weight
250 g
Type of mounting
2 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
1000 m
LED display design
3-color LED
Standards, specifications, approvals
Proof of suitability
Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA,
Ex approval
SIMATIC RF300
140
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.4 SIMATIC RF340R/RF350R
5.4.1.9
Approvals
FCC information
Siemens SIMATIC RF340R (MLFB 6GT2801-2AA10); FCC ID NXW-RF340R
Siemens SIMATIC RF340R (MLFB 6GT2801-2AB10); FCC ID NXW-RF340R01
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
141
Readers
5.4 SIMATIC RF340R/RF350R
5.4.1.10
Dimension drawing
Figure 5-16
Dimension drawing for RF340R
Dimensions in mm
SIMATIC RF300
142
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.4 SIMATIC RF340R/RF350R
5.4.2
SIMATIC RF350R
5.4.2.1
Features
SIMATIC RF350R
Characteristics
Design
① Antenna connection
② RS-422 interface
③ Status display
Area of application
Identification tasks in assembly lines in harsh industrial
environments; for external antennas
(ANT 1, ANT 3, ANT 12, ANT 18, ANT 30)
Note
Reader requires external antennas
Note that the RF350R reader is designed only for operation with external antennas and only
works in conjunction with the antennas ANT 1, ANT 3, ANT 12, ANT 18 or ANT 30.
5.4.2.2
Ordering data for RF350R
Table 5- 14
Ordering data for RF350R
Article number
RF350R with RS-422 interface (3964R)
6GT2801-4AB10
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
143
Readers
5.4 SIMATIC RF340R/RF350R
5.4.2.3
Pin assignment of RF350R RS422 interface
Pin
Pin
Assignment
Device end
8-pin M12
5.4.2.4
+ 24 V
- Transmit
0V
+ Transmit
+ Receive
- Receive
Unassigned
Earth (shield)
LED operating display
The operational statuses of the reader are displayed by the LEDs. The LED can adopt the
colors green, red or yellow and the statuses off , on , flashing :
Table 5- 15
LED operating display on the reader
Color
Meaning
Operating voltage present, reader not initialized or antenna switched off
Operating voltage present, reader initialized and antenna switched on
1)
Transponder present
Error has occurred, the type of flashing corresponds to the error code in the
table in the section Error codes. The optical error display is only reset if the
corresponding reset parameter ("option_1", see FC 45 / FB 45 documentation,
section Input parameters) is set.
1)
5.4.2.5
Only in the "with presence" mode.
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
5.4.2.6
Metal-free area
The RF350R reader does not have an internal antenna. Operation is not affected by
mounting on metal or flush-mounting in metal. For information about the metal-free area
required by the external antennas, refer to the corresponding section of the chapter AutoHotspot.
SIMATIC RF300
144
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.4 SIMATIC RF340R/RF350R
5.4.2.7
Technical specifications
Table 5- 16
Technical specifications of the RF350R reader
6GT2801-4AB10
Product type designation
SIMATIC RF350R
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
•
ANT 1
•
140 mm
•
ANT 3
•
50 mm
•
ANT 12
•
16 mm
•
ANT 18
•
35 mm
•
ANT 30
•
55 mm
Maximum data transmission speed
reader ↔ transponder
RF300 transponder
ISO transponder
•
Read
•
approx. 8000
bytes/s
•
approx. 1500
bytes/s
•
Write
•
approx. 8000
bytes/s
•
approx. 1500
bytes/s
Transmission speed
19.2, 57.6, 115.2 kBd
Read/write distances of the reader
See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
140 years
Interfaces
Electrical connector design
M12, 8-pin
Antenna connector design
M8, 4-pin
Standard for interfaces for communication
RS-422 (3964R protocol)
Antenna
External, antennas ANT 1, ANT 3, ANT 12, ANT
18 or ANT 30
Mechanical specifications
Housing
•
Material
•
Plastic PA 12
•
Color
•
Anthracite
Recommended distance to metal
0 mm
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
145
Readers
5.4 SIMATIC RF340R/RF350R
6GT2801-4AB10
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
100 mA
Permitted ambient conditions
Ambient temperature
•
During operation
•
-25 to +70 ℃
•
During transportation and storage
•
-40 to +85 ℃
Degree of protection to EN 60529
IP65
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
75 x 75 x 41 mm
Weight
250 g
Type of mounting
2 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
1000 m
LED display design
3-color LED
Standards, specifications, approvals
Proof of suitability
Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA,
Ex approval
SIMATIC RF300
146
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.4 SIMATIC RF340R/RF350R
5.4.2.8
Approvals
FCC information
Siemens SIMATIC RF350R (MLFB 6GT2801-4AA10); FCC ID NXW-RF350R
Siemens SIMATIC RF350R (MLFB 6GT2801-4AB10); FCC ID NXW-RF350R01
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
147
Readers
5.4 SIMATIC RF340R/RF350R
5.4.2.9
Dimension drawing
Figure 5-17
RF350R dimension drawing
Dimensions in mm
SIMATIC RF300
148
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.4 SIMATIC RF340R/RF350R
5.4.3
Use of the reader in hazardous areas
TÜV NORD CERT GmbH as accredited test center and certification body, no. 0044 as per
Article 9 of the Directive 94/9/EC of the European Council of 23 March 1994, has confirmed
the compliance with the essential health and safety requirements relating to the design and
construction of equipment and protective systems intended for use in hazardous areas as
per Annex II of the Directive. The essential health and safety requirements are satisfied in
accordance with the following standards:
Document
Title
EN 60079-0: 2006
Electrical equipment for hazardous gas atmospheres Part 0: General requirements
EN 60079-15: 2005
Electrical equipment for hazardous gas atmospheres Part 15: Design, testing and identification of electrical equipment with
type of protection "n"
IEC 61241 -0: 2006
Electrical apparatus for use in the presence of combustible dust Part 0: General requirements
IEC 61241 -1: 2004
Electrical apparatus for use in the presence of combustible dust Part 1: Protection through enclosure
WARNING
EXPLOSION HAZARD
DO NOT CONNECT OR DISCONNECT EQUIPMENT WHEN A FLAMMABLE OR
COMBUSTIBLE ATMOSPHERE IS PRESENT.
Identification
The identification of the electrical equipment as an enclosed unit is:
II 3 G Ex nA nC IIB T5
II 3 D Ex tD A22 IP6x T80 °C
-25 °C to +70 °C
Un = 20 to 30 VDC
The equipment also has the following additional markings:
XXXYYYZZZ
[= serial number, is assigned during production]
TÜV 10 ATEX 556039
[= certificate number]
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
149
Readers
5.4 SIMATIC RF340R/RF350R
5.4.3.1
Use of the readers in hazardous areas for gases
Temperature class delineation for gases
The temperature class of the reader for hazardous areas depends on the ambient
temperature range:
Ambient temperature range
Temperature class
-25 °C to +70 °C
T5
WARNING
Ignitions of gas-air mixtures
When using the RF340R/RF350R readers, check to ensure that the temperature class is
observed in respect of the requirements of the area of application.
Non-compliance with the permitted temperature ranges while using the reader can lead to
ignitions of gas-air mixtures.
5.4.3.2
Use of the readers in hazardous areas for dusts
The equipment is suitable for dusts whose ignition temperatures for a dust layer of 5 mm are
higher than 80 °C (smoldering temperature). With the ignition temperature according to type
of protection iD specified here in compliance with IEC 61241-0 and IEC 61241-11, the
smoldering temperature of the dust layer is referenced in this case.
Temperature class delineation for dusts
Ambient temperature range
Temperature value
-25 °C < Ta < +70 °C
T80 °C
WARNING
Ignitions of dust-air mixtures
When using the RF340R/RF350R readers, check to ensure that the temperature values are
observed in respect of the requirements of the area of application.
Non-compliance with the permitted temperature ranges while using the reader can lead to
ignitions of dust-air mixtures.
SIMATIC RF300
150
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.4 SIMATIC RF340R/RF350R
5.4.3.3
Installation and operating conditions for the hazardous area
NOTICE
Device may be damaged
Note the following conditions when installing and operating the device in a hazardous zone
to avoid damage:
• Making and breaking of circuits is permitted only in a de-energized state.
• The maximum surface temperature, corresponding to the marking, applies only for
operation without a cover of dust.
• The device may only be operated in such a way that adequate protection against UV
light is ensured.
• The device may not be operated in areas influenced by processes that generate high
electrostatic charges.
• The equipment must be installed so that it is mechanically protected.
• The device sockets must be protected with a shrink-on tube.
• The 8 pin connector must be grounded via its supply line.
• The device may only be operated with accessories specified or supplied by the
manufacturer. All the points above also apply to the accessories (cables and
connectors) and to the antennas (exception: the housing of antenna 1 does not need to
be installed with impact protection).
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
151
Readers
5.5 SIMATIC RF340R/RF350R - second generation
5.5
SIMATIC RF340R/RF350R - second generation
5.5.1
SIMATIC RF340R - second generation
5.5.1.1
Features
SIMATIC RF340R
5.5.1.2
Characteristics
Design
① RS-422 interface
② LED operating display
Area of application
Identification tasks on assembly lines in harsh
industrial environments
Ordering data
Table 5- 17
Ordering data for RF340R
Article number
RF340R with RS-422 interface (3964R)
6GT2801-2BA10
SIMATIC RF300
152
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.5 SIMATIC RF340R/RF350R - second generation
5.5.1.3
Pin assignment of the RS-422 interface
Table 5- 18
Pin
Pin assignment
Pin
Assignment
Device end
8-pin M12
5.5.1.4
+ 24 V
- Transmit
0V
+ Transmit
+ Receive
- Receive
Unassigned
Earth (shield)
LED operating display
The operational statuses of the reader are displayed by two LEDs. The LEDs can adopt the
colors white green, red, yellow or blue and the statuses off , on , flashing :
Table 5- 19
LED
Display elements
Meaning
The reader is turned off.
The reader is turned on and is searching for transponders.
The reader is in the "Setup" mode, in the "Search for transponders" status and
has not yet received a "RESET" command and is not ready.
There is transponder in the antenna field.
The reader is in the "Setup" mode, in the status "Show quality", has not yet received a "RESET" command and is not ready.
Depending on the signal strength, the LED flashes or is lit permanently.
The reader has received a "RESET" command.
There is transponder in the antenna field.
The reader is ready.
There is an error. The number of flashes provides information about the current
error.
You will find more information on error messages in the section "System diagnostics (Page 395)".
5.5.1.5
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
153
Readers
5.5 SIMATIC RF340R/RF350R - second generation
5.5.1.6
Metal-free area
The RF340R can be flush-mounted in metal. Allow for a possible reduction in the field data.
To avoid any influence on the field data, the distance "a" should be kept to.
a≥
20 mm
Figure 5-18
5.5.1.7
Metal-free area for RF340R
Minimum distance between RF340R readers
RF340R side by side
D≥
200 mm (with 2 readers)
D≥
250 mm (with more than 2 readers)
Figure 5-19
Minimum distance between RF340R readers
SIMATIC RF300
154
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.5 SIMATIC RF340R/RF350R - second generation
RF340R face-of-face
D≥
500 mm
Figure 5-20
5.5.1.8
Face-of-face distance between two RF340Rs
Technical specifications
Table 5- 20
Technical specifications of the RF340R reader
6GT2801-2BA10
Product type designation
SIMATIC RF340R
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
140 mm
Maximum data transmission speed
reader ↔ transponder
RF300
transponder
ISO
transponder
(MDS D)
ISO transponder
(MDS E)
•
Read
•
≤ 8000
bytes/s
•
≤ 3300
bytes/s
•
≤ 3400
bytes/s
•
Write
•
≤ 8000
bytes/s
•
≤ 1700
bytes/s
•
≤ 800
bytes/s
Transmission speed
19.2, 57.6, 115.2 kBd
Read/write distances of the reader
See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
260 years
Interfaces
Electrical connector design
M12, 8-pin
Standard for interfaces for communication
RS-422 (3964R protocol)
Antenna
integrated
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
155
Readers
5.5 SIMATIC RF340R/RF350R - second generation
6GT2801-2BA10
Mechanical specifications
Housing
•
Material
•
Plastic PA 12
•
Color
•
TI-Grey
Recommended distance to metal
0 mm
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
55 mA
Permitted ambient conditions
Ambient temperature
•
During operation
•
-25 to +70 ℃
•
During transportation and storage
•
-40 to +85 ℃
Degree of protection to EN 60529
IP67
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
75 x 75 x 41 mm
Weight
210 g
Type of mounting
2 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
1000 m
LED display design
2 LEDs,
5 colors
Standards, specifications, approvals
Proof of suitability
Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA (IEC61010 /
IEC61010-2-201),
Ex approval
SIMATIC RF300
156
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.5 SIMATIC RF340R/RF350R - second generation
5.5.1.9
Approvals
FCC information
Siemens SIMATIC RF340R (MLFB 6GT2801-2BA10); FCC ID NXW-RF340R-03
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
157
Readers
5.5 SIMATIC RF340R/RF350R - second generation
UL information (IEC61010-1 / IEC61010-2-201)
This standard applies to equipment designed to be safe at least under the following
conditions:
● a) indoor use;
● b) altitude up to 2 000 m;
● c) temperature -25 °C to 70 °C;
● d) maximum relative humidity 80 % for temperature up to 31 °C decreasing linearly to 50
% relative humidity at 40 °C;
● e) TRANSIENT OVERVALTAGES up to the levels of OVERVALTAGE CATEGORY II,
NOTE 1: These levels of transient overvoltage are typical for equipment supplied from the
building wiring.
● f) using a "NEC Class 2" power supply is required
5.5.1.10
Dimension drawing
Figure 5-21
Dimension drawing for RF340R
Dimensions in mm
SIMATIC RF300
158
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.5 SIMATIC RF340R/RF350R - second generation
5.5.2
SIMATIC RF350R - second generation
5.5.2.1
Features
SIMATIC RF350R
Characteristics
Design
① Antenna connection
② RS-422 interface
③ LED operating display
Area of application
Identification tasks in assembly lines in harsh
industrial environments; for external antennas
(ANT 1, ANT 3, ANT 12, ANT 18, ANT 30)
Note
Reader requires external antennas
Note that the RF350R reader is designed only for operation with external antennas and only
works in conjunction with the antennas ANT 1, ANT 3, ANT 12, ANT 18 or ANT 30.
5.5.2.2
Ordering data
Table 5- 21
Ordering data for RF350R
Article number
RF350R with RS-422 interface (3964R)
6GT2801-4BA10
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
159
Readers
5.5 SIMATIC RF340R/RF350R - second generation
5.5.2.3
Pin assignment of the RS-422 interface
Table 5- 22
Pin
Pin assignment
Pin
Assignment
Device end
8-pin M12
5.5.2.4
+ 24 V
- Transmit
0V
+ Transmit
+ Receive
- Receive
Unassigned
Earth (shield)
LED operating display
The operational statuses of the reader are displayed by two LEDs. The LEDs can adopt the
colors white green, red, yellow or blue and the statuses off , on , flashing :
Table 5- 23
LED
Display elements
Meaning
The reader is turned off.
The reader is turned on and is searching for transponders.
The reader is in the "Setup" mode, in the "Search for transponders" status and
has not yet received a "RESET" command and is not ready.
There is transponder in the antenna field.
The reader is in the "Setup" mode, in the status "Show quality", has not yet received a "RESET" command and is not ready.
Depending on the signal strength, the LED flashes or is lit permanently.
The reader has received a "RESET" command.
There is transponder in the antenna field.
The reader is ready.
There is an error. The number of flashes provides information about the current
error.
You will find more information on error messages in the section "System diagnostics (Page 395)".
5.5.2.5
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
SIMATIC RF300
160
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.5 SIMATIC RF340R/RF350R - second generation
5.5.2.6
Metal-free area
The RF350R reader does not have an internal antenna. Operation is not affected by
mounting on metal or flush-mounting in metal. For information about the metal-free area
required by the external antennas, refer to the corresponding section of the chapter
"Antennas (Page 193)".
5.5.2.7
Technical specifications
Table 5- 24
Technical specifications of the RF350R reader
6GT2801-4BA10
Product type designation
SIMATIC RF350R
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
•
ANT 1
•
140 mm
•
ANT 3
•
50 mm
•
ANT 12
•
16 mm
•
ANT 18
•
35 mm
•
ANT 30
•
55 mm
Maximum data transmission speed
reader ↔ transponder
RF300
transponder
ISO
transponder
(MDS D)
ISO transponder
(MDS E)
•
Read
•
≤ 8000
bytes/s
•
≤ 3300
bytes/s
•
≤ 3400
bytes/s
•
Write
•
≤ 8000
bytes/s
•
≤ 1700
bytes/s
•
≤ 800
bytes/s
Transmission speed
19.2, 57.6, 115.2 kBd
Read/write distances of the reader
See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
260 years
Interfaces
Electrical connector design
M12, 8-pin
Antenna connector design
M8, 4-pin
Standard for interfaces for communication
RS-422 (3964R protocol)
Antenna
External, antennas ANT 1, ANT 3, ANT 12, ANT
18 or ANT 30
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
161
Readers
5.5 SIMATIC RF340R/RF350R - second generation
6GT2801-4BA10
Mechanical specifications
Housing
•
Material
•
Plastic PA 12
•
Color
•
TI-Grey
Recommended distance to metal
0 mm
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
55 mA
Permitted ambient conditions
Ambient temperature
•
During operation
•
-25 to +70 ℃
•
During transportation and storage
•
-40 to +85 ℃
Degree of protection to EN 60529
IP65
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
75 x 75 x 41 mm
Weight
250 g
Type of mounting
2 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
1000 m
LED display design
2 LEDs,
5 colors
Standards, specifications, approvals
Proof of suitability
Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA (IEC61010 /
IEC61010-2-201),
Ex approval
SIMATIC RF300
162
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.5 SIMATIC RF340R/RF350R - second generation
5.5.2.8
Approvals
FCC information
Siemens SIMATIC RF350R (MLFB 6GT2801-4BA10); FCC ID NXW-RF350R-03
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
163
Readers
5.5 SIMATIC RF340R/RF350R - second generation
UL information (IEC61010-1 / IEC61010-2-201)
This standard applies to equipment designed to be safe at least under the following
conditions:
● a) indoor use;
● b) altitude up to 2 000 m;
● c) temperature -25 °C to 70 °C;
● d) maximum relative humidity 80 % for temperature up to 31 °C decreasing linearly to 50
% relative humidity at 40 °C;
● e) TRANSIENT OVERVALTAGES up to the levels of OVERVALTAGE CATEGORY II,
NOTE 1: These levels of transient overvoltage are typical for equipment supplied from the
building wiring.
● f) using a "NEC Class 2" power supply is required
5.5.2.9
Dimension drawing
Figure 5-22
RF350R dimension drawing
Dimensions in mm
SIMATIC RF300
164
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.5 SIMATIC RF340R/RF350R - second generation
5.5.3
Use of the reader in hazardous areas
NOTICE
Approvals for the hazardous area
The approvals for the hazardous area of the readers SIMATIC RF340R und RF350R are
currently in preparation.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
165
Readers
5.6 SIMATIC RF380R
5.6
SIMATIC RF380R
5.6.1
Features
SIMATIC RF380R
5.6.2
Characteristics
Design
① RS-232 or RS-422 interface
② Status display
Area of application
Identification tasks on assembly lines in
harsh industrial environments
RF380R ordering data
Table 5- 25
RF380R ordering data
Article number
RF380R with RS-232/RS-422 interface (3964R)
5.6.3
6GT2801-3AB10
Pin assignment of RF380R RS-232/RS-422 interface
You can connect the RF380R reader to a higher-level system via the internal RS-422
interface or via the RS-232 interface. After connection, the interface module automatically
detects which interface has been used.
SIMATIC RF300
166
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.6 SIMATIC RF380R
Note correct assignment of the pins here:
Pin
5.6.4
Pin
Assignment
Device end
8-pin M12
RS-232
RS-422
+ 24 V
+ 24 V
RXD
- Transmit
0V
0V
TXD
+ Transmit
not used
+ Receive
not used
- Receive
not used
not used
Ground (shield)
Ground (shield)
LED operating display
The operational statuses of the reader are displayed by the LEDs. The LED can adopt the
colors green, red or yellow and the statuses off , on , flashing :
Table 5- 26
LED operating display on the reader
Color
Meaning
Operating voltage present, reader not initialized or antenna switched off
Operating voltage present, reader initialized and antenna switched on
1)
Transponder present
Error has occurred, the type of flashing corresponds to the error code in the
table in the section Error codes. The optical error display is only reset if the
corresponding reset parameter ("option_1", see FC 45 / FB 45 documentation,
section Input parameters) is set.
1)
5.6.5
Only in the "with presence" mode.
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
167
Readers
5.6 SIMATIC RF380R
5.6.6
Metal-free area
The RF380R can be flush-mounted in metal. Please allow for a possible reduction in the field
data values.
Figure 5-23
Metal-free area for RF380R
To avoid any impact on the field data, the distance a should be ≥ 20 mm.
5.6.7
Minimum distance between RF380R readers
RF380R side by side
≥ 400 mm (with 2 readers)
≥ 500 mm (with more than 2 readers)
Figure 5-24
Minimum distance between RF380R readers
SIMATIC RF300
168
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.6 SIMATIC RF380R
RF380R face-to-face
≥ 800 mm
Figure 5-25
5.6.8
Face-to-face distance between two RF380R
Technical specifications
Table 5- 27
Technical specifications of the RF380R reader
6GT2801-3AB10
Product type designation
SIMATIC RF380R
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
200 mm
Maximum data transmission speed
reader ↔ transponder
RF300 transponder
ISO transponder
•
Read
•
approx. 8000
bytes/s
•
approx. 1500
bytes/s
•
Write
•
approx. 8000
bytes/s
•
approx. 1500
bytes/s
Transmission speed
19.2, 57.6, 115.2 kBd
Read/write distances of the reader
See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
109 years
Interfaces
Electrical connector design
M12, 8-pin
Standard for interfaces for communication
RS-232/RS-422 (3964R protocol)
Antenna
integrated
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
169
Readers
5.6 SIMATIC RF380R
6GT2801-3AB10
Mechanical specifications
Housing
•
Material
•
Plastic PA 12
•
Color
•
Anthracite
Recommended distance to metal
0 mm
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
160 mA
Permitted ambient conditions
Ambient temperature
•
During operation
•
-25 to +70 ℃
•
During transportation and storage
•
-40 to +85 ℃
Degree of protection to EN 60529
IP67
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
160 x 80 x 41 mm
Weight
600 g
Type of mounting
4 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
RS-422
RS-232
1000 m
30 m
LED display design
3-color LED
Standards, specifications, approvals
Proof of suitability
Radio in accordance with R&TTE directives EN
300330,
EN 301489, CE, FCC, UL/CSA,
Ex: II 3G Ex nC IIB T5
SIMATIC RF300
170
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.6 SIMATIC RF380R
5.6.9
Approvals
FCC information
Siemens SIMATIC RF380R (MLFB 6GT2801-3AA10); FCC ID NXW-RF380R
Siemens SIMATIC RF380R (MLFB 6GT2801-3AB10); FCC ID NXW-RF380R01
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
171
Readers
5.6 SIMATIC RF380R
5.6.10
Use of the reader in hazardous areas
The TÜV SÜD Automotive GmbH as approved test center as well as the TÜV SÜD Product
Service GmbH as certification center, identification number 0123, as per Article 9 of the
Directive of the European Council of 23 March 1994 (94/9/EC), has confirmed the
compliance with the essential health and safety requirements relating to the design and
construction of equipment and protective systems intended for use in hazardous areas as
per Annex II of the Directive. The essential health and safety requirements are satisfied in
accordance with the following standards:
Document
Title
EN 60079-0: 2006
Electrical equipment for hazardous gas atmospheres Part 0: General requirements
EN 60079-15: 2005
Electrical equipment for hazardous gas atmospheres Part 15: Design, testing and identification of electrical equipment
with type of protection "n"
DIN VDE 0848-5: 2001
(in parts)
Safety in electrical, magnetic and electromagnetic fields Part 5: Explosion protection
ZLS SK 107.1
Central office of the states for safety; test components
Identification
The identification of the electrical equipment as an enclosed unit is:
II 3G Ex nC IIB T5
-25 °C to +70 °C
Um=30Vdc
The equipment is assigned the following references:
XXXYYYZZZ
[= serial number, is assigned during production]
TPS 09 ATEX 1 459 X [= certificate number]
"No use of the equipment in the vicinity of processes generating high charges"
"Do not disconnect plug on load"
SIMATIC RF300
172
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.6 SIMATIC RF380R
5.6.11
Use of the reader in hazardous areas for gases
Temperature class delineation for gases
The temperature class of the reader for hazardous areas depends on the ambient
temperature range:
Ambient temperature range
Temperature class
-25 °C to +70 °C
T5
WARNING
Ignitions of gas-air mixtures
When using the RF380R reader, check to ensure that the temperature class is observed in
respect of the requirements of the area of application
Non-compliance with the permitted temperature ranges while using the reader can lead to
ignitions of gas-air mixtures.
5.6.12
Installation and operating conditions for the hazardous area
a) The connector on the RF380R must be grounded via its supply line.
b) Use of the equipment in the vicinity of processes generating high charges is not allowed.
c) The plug of the RF380R must not be disconnected in a hazardous atmosphere or under
load.
d) The supply line for the RF380R is not part of this certificate. The supply line must exhibit a
sufficient temperature resistance.
e) The equipment must be mechanically protected when installed.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
173
Readers
5.6 SIMATIC RF380R
5.6.13
Dimension drawing
Figure 5-26
Dimension drawing RF380R
Dimensions in mm
SIMATIC RF300
174
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.7 SIMATIC RF380R with Scanmode
5.7
SIMATIC RF380R with Scanmode
You will find detailed information on the SIMATIC RF382R with Scanmode on the Industry
Online Support - SIMATIC RF380R with Scanmode
(https://support.industry.siemens.com/cs/ww/en/ps/15037).
5.7.1
Features
RF380R Scanmode
5.7.2
Characteristics
Design
① RS232 or RS422 interface
② Status display
Field of application
Identification tasks on assembly lines in
harsh industrial environments
Ordering data for RF380R with Scanmode
Table 5- 28
Ordering data RF380R Scanmode
Product
Article number
RF380R Scanmode
6GT2801-3AB20-0AX1
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
175
Readers
5.7 SIMATIC RF380R with Scanmode
5.7.3
Pin assignment RF380R Scanmode RS-232 interface
You can connect the RF380R Scanmode reader via the internal RS-232/RS-422 interface to
a higher-level system. (See section "Basic rules (Page 101)") Make sure that the pin
assignment is correct. In the factory settings, the reader is set to RS-232. Siemens can
change the interface to RS-422.
Table 5- 29
Connector and reader pin assignment
Pin
5.7.4
Pin
Assignment
Device end 8-pin
M12
RS-232
RS-422
+ 24 V
+ 24 V
RXD
- Transmit
0V
0V
TXD
+ Transmit
not used
+ Receive
not used
- Receive
not used
not used
Ground (shield)
Ground (shield)
LED operating display
The operational statuses of the reader are displayed by the LEDs. The LED can adopt the
colors green, red or yellow and the statuses off , on , flashing :
Table 5- 30
Color
LED operating display on the reader
Meaning
Operating voltage present, reader ready for operation
Transponder present
Red LED for error display is activated permanently if correct operation of the reader
cannot be guaranteed (e. g. faulty start, checksum error during operation).
5.7.5
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
SIMATIC RF300
176
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.7 SIMATIC RF380R with Scanmode
5.7.6
Metal-free area
The RF380R can be flush-mounted in metal. Please allow for a possible reduction in the field
data values.
Figure 5-27
Metal-free area for RF380R
To avoid any impact on the field data, the distance a should be ≥ 20 mm.
5.7.7
Minimum distance between several RF380R Scanmode readers
RF380R side by side
≥ 400 mm (with 2 readers)
≥ 500 mm (with more than 2 readers)
Figure 5-28
Minimum distance between RF380R readers
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
177
Readers
5.7 SIMATIC RF380R with Scanmode
RF380R face-to-face
≥ 800 mm
Figure 5-29
5.7.8
Face-to-face distance between two RF380R
Technical specifications
Table 5- 31
Technical specifications of the RF380R Scanmode reader
6GT2801-3AB20-0AX1
Product type designation
SIMATIC RF380R Scanmode
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
200 mm
Maximum data transmission speed
reader ↔ transponder
RF300 transponder
ISO transponder
approx. 8000 bytes/s
approx. 1500 bytes/s
•
Read
Transmission speed
9.6, 19.2, 38.4, 57, 115.2 kBd
Read distances of the reader
see section "Field data for transponders, readers
and antennas (Page 48)"
MTBF (Mean Time Between Failures)
109 years
Interfaces
Electrical connector design
M12, 8-pin
Standard for interfaces for communication
RS-232 / RS-422
Antenna
integrated
Mechanical specifications
Enclosure
•
Material
•
Plastic PA 12
•
Color
•
Anthracite
Recommended distance to metal
0 mm
SIMATIC RF300
178
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.7 SIMATIC RF380R with Scanmode
6GT2801-3AB20-0AX1
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
160 mA
Permitted environmental conditions
Ambient temperature
•
During operation
-25 to +70 °C
•
Transport and storage
-40 to +85 °C
Degree of protection to EN 60529
IP67
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weights
Dimensions (L x W x H)
160 x 80 x 41 (without M12 device connector)
Weight
Approx. 600 g
Type of mounting
4 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
RS-422
RS-232
1000 m
30 m
LED display design
3-color LED
Standards, specifications, approvals
Proof of suitability
Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
179
Readers
5.7 SIMATIC RF380R with Scanmode
5.7.9
Approvals
FCC information
Siemens SIMATIC RF380R (MLFB 6GT2801-3AB20-0AX1); FCC ID NXW-RF380R01
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
SIMATIC RF300
180
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.7 SIMATIC RF380R with Scanmode
5.7.10
Certificates and Approvals
Certificates for USA and Canada
Underwriters Laboratories (UL) acc. to standard UL 60950, Report E11 5352 and Canadian standard C22.2 No. 60950 (I.T.E) or acc. to UL508 and C22.2 No. 142
(IND.CONT.EQ)
5.7.11
Dimension drawing
Figure 5-30
Dimension drawing RF380R
Dimensions in mm
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
181
Readers
5.8 SIMATIC RF382R with Scanmode
5.8
SIMATIC RF382R with Scanmode
You will find detailed information on the SIMATIC RF382R with Scanmode on the Internet
(https://support.industry.siemens.com/cs/ww/en/ps/15038).
5.8.1
Characteristics
RF382R Scanmode
5.8.2
Characteristics
Design
① RS-232 or RS-422 interface
② Status display
Operating range
Suitable for high speeds, e.g. in
•
Suspension conveyor systems
•
Assembly lines
•
Production
•
Order picking
RF382R with Scanmode ordering data
Table 5- 32
RF382R Scanmode ordering data
Article number
RF382R Scanmode
6GT2801-3AB20-0AX0
SIMATIC RF300
182
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.8 SIMATIC RF382R with Scanmode
5.8.3
Pin assignment RF382R Scanmode RS232 interface
You can connect the RF382R Scanmode reader via the internal RS-232/RS-422 interface or
via a higher-level system. (See section "Basic rules (Page 101)") Make sure that the pin
assignment is correct. In the factory settings, the reader is set to RS-232. Siemens can
change the interface to RS-422.
Table 5- 33
Connector and reader pin assignment
Pin
5.8.4
Pin
Assignment
Device end 8-pin
M12
RS-232
RS-422
+ 24 V
+ 24 V
RXD
- Transmit
0V
0V
TXD
+ Transmit
not used
+ Receive
not used
- Receive
not used
not used
Ground (shield)
Ground (shield)
LED operating display
The operational statuses of the reader are displayed by the LEDs. The LED can adopt the
colors green, red or yellow and the statuses off , on , flashing :
Table 5- 34
Color
LED operating display on the reader
Meaning
Operating voltage present, reader ready for operation
Transponder present
Red LED for error display is activated permanently if correct operation of the reader
cannot be guaranteed (e. g. faulty start, checksum error during operation).
5.8.5
Ensuring reliable data exchange
The "center point" of the transponder must be situated within the transmission window.
5.8.6
Mounting on metal
The RF382R can be mounted directly on metal. Flush mounting on metal is not permitted.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
183
Readers
5.8 SIMATIC RF382R with Scanmode
5.8.7
Minimum distance between several RF382R Scanmode readers
Figure 5-31
Minimum distance between several RF382R Scanmode readers
Minimum distance D from RF382R to RF382R
5.8.8
D ≥ 200 mm
Transmission window
Orientation of fields of the SIMATIC RF382R Scanmode
For many applications it may be best to operate the reader so that the tags move from left to
right (or from right to left) at a certain distance in front of the narrow edge of the reader. With
this direction of movement, the horizontal reader field is used, see figure below.
You also have the option of moving the tags up and down (or down and up) past the narrow
edge of the reader. With this direction of movement, uses the vertical reader field is used.
Figure 5-32
Definition of horizontal and vertical reader field
SIMATIC RF300
184
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.8 SIMATIC RF382R with Scanmode
Maximum field strength
The reader creates the maximum field approximately 13 mm below the upper reader edge.
For the largest possible reading range the tags you want to read should move in this range.
This applies regardless of whether the horizontal or the vertical field is used.
Figure 5-33
Line of maximum magnetic field strength
The area of the maximum field strength and, therefore, the maximum range is identified by a
laser icon:
Figure 5-34
Laser labeling
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
185
Readers
5.8 SIMATIC RF382R with Scanmode
Transmission window horizontal field
Figure 5-35
Distance definition horizontal field
Green
Main field (processing field)
Blue
Secondary fields, horizontal field
Lx
Maximum length of the main field, horizontal field
Distance from the reader edge at which maximum horizontal main field length L exists
Sa
Operating range in the main field
Sg
Limit distance
①
Level 1
②
Level 2
③
Level 3
⇒
Direction of motion of the transponder
Operating range (Sa)
The operating range lies between Level ① and Level ③.
The operating range between Levels ① and ② includes secondary fields.
The recommended operating range therefore lies in the green main field between Level 2
and Level 3.
SIMATIC RF300
186
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.8 SIMATIC RF382R with Scanmode
Limit distance (Sg)
The limit distance lies on Level ③.
Transmission window vertical field
Figure 5-36
Distance definition vertical field
Green
Main field (processing field)
Ly
Maximum length of the main field, vertical field
Distance from the reader edge at which maximum vertical main field length Ly exists
Sa
Operating range in the main field
Sg
Limit distance
Dopt
= 13 mm
⇓
Direction of motion of the transponder
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
187
Readers
5.8 SIMATIC RF382R with Scanmode
5.8.9
Technical specifications
Table 5- 35
Technical specifications of the RF382R reader with Scanmode
6GT2801-3AB20-0AX0
Product type designation
SIMATIC RF382R Scanmode
Radio frequencies
Operating frequency, rated value
13.56 MHz
Electrical data
Maximum range
75 mm
Maximum data transmission speed
reader ↔ transponder
ISO transponder
•
Read
•
approx. 1500 bytes/s
Transmission speed
19.2, 57.6, 115.2 kBd
Read/write distances of the reader
See section "Field data for transponders, readers
and antennas (Page 48)."
MTBF (Mean Time Between Failures)
115 years
Interfaces
Electrical connector design
M12, 8-pin
Standard for interfaces for communication
RS-232 (factory setting, can be changed to RS422)
Antenna
integrated
Mechanical specifications
Housing
•
Material
•
Plastic PA 12
•
Color
•
Anthracite
Recommended distance to metal
0 mm
Supply voltage, current consumption, power loss
Supply voltage
24 VDC
Typical current consumption
140 mA
SIMATIC RF300
188
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.8 SIMATIC RF382R with Scanmode
6GT2801-3AB20-0AX0
Permitted ambient conditions
Ambient temperature
•
During operation
•
-25 to +70 ℃
•
During transportation and storage
•
-40 to +85 ℃
Degree of protection to EN 60529
IP67
Shock-resistant to EN 60721-3-7, Class 7 M3
50 g
Vibration-resistant to EN 60721-3-7, Class 7 M3
20 g
Torsion and bending load
Not permitted
Design, dimensions and weight
Dimensions (L x W x H)
160 x 80 x 41 mm
Weight
550 g
Type of mounting
4 x M5 screws;
1.5 Nm
Cable length for RS-422 interface, maximum
RS-422
RS-232
1000 m
30 m
LED display design
3-color LED
Standards, specifications, approvals
Proof of suitability
5.8.10
Radio to R&TTE directives EN 300330,
EN 301489, CE, FCC, UL/CSA
Approvals
FCC information
Siemens SIMATIC RF382R (MLFB 6GT2801-3AB20-0AX0); FCC ID NXW-RF382R
This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions:
(1) This device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause
undesired operation.
Caution
Any changes or modifications not expressly approved by the party responsible for
compliance could void the user's authority to operate the equipment.
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
189
Readers
5.8 SIMATIC RF382R with Scanmode
Note
This equipment has been tested and found to comply with the limits for a Class A digital
device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own expense.
IC information
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is
subject to the following two conditions:
(1) This device may not cause interference, and
(2) this device must accept any interference, including interference that may cause
undesired operation of the device.
Le présent appareil est conforme aux CNR d`Industrie Canada applicables aux appareils
radio exempts de licence. L`exploitation est autorisée aux deux conditions suivantes :
(1) L`appareil ne doit pas produire de brouillage, et
(2) l'utilisateur de l`appareil doit accepter tout brouillage radioélectrique subi, même si le
brouillage est susceptible d`en compromettre le fonctionnement.
Certificates for USA and Canada
Underwriters Laboratories (UL) acc. to standard UL 60950, Report E11 5352 and Canadian standard C22.2 No. 60950 (I.T.E) or acc. to UL508 and C22.2 No. 142
(IND.CONT.EQ)
SIMATIC RF300
190
System Manual, 07/2016, C79000-G8976-C345-0x
Readers
5.8 SIMATIC RF382R with Scanmode
5.8.11
Dimensional diagram
Figure 5-37
Dimension drawing
SIMATIC RF300
System Manual, 07/2016, C79000-G8976-C345-0x
191
Readers
5.8 SIMATIC RF382R with Scanmode
SIMATIC RF300
192
System Manual, 07/2016, C79000-G8976-C345-0x

Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : No
Author                          : SIEMENS AG
Create Date                     : 2016:07:12 09:45:24+02:00
Keywords                        : Draft, Document!, Note:, This, document, is, a, draft, document., This, document, is, not, released, for, publication., Siemens, accepts, no, liability, for, the, completeness, and, correctness, of, the, contents.
Modify Date                     : 2016:08:01 11:55:48+02:00
Has XFA                         : No
Tagged PDF                      : Yes
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:08:04
Metadata Date                   : 2016:08:01 11:55:48+02:00
Creator Tool                    : Acrobat PDFMaker 11 für Word
Document ID                     : uuid:b70fa864-d883-4fd1-bf2f-f4a77846d359
Instance ID                     : uuid:79a08c90-866b-4053-a599-60d24ba16bb2
Format                          : application/pdf
Title                           : SIMATIC RF300
Description                     : SIMATIC Ident
Creator                         : SIEMENS AG
Subject                         : Draft Document!, Note: This document is a draft document. This document is not released for publication. Siemens accepts no liability for the completeness and correctness of the contents.
Producer                        : Adobe PDF Library 11.0
Source Modified                 : D:20160712074354
Company                         : Siemens AG
Comments                        : 
Edition                         : 0.00347222222222222
System                          : SIMATIC Ident
Print-year                      : 2005 - 2016
Document-class                  : System Manual
Document-class-mrl              : 
Product-group                   : RFID systems
Order-nr                        : C79000-G8976-C345-0x
Ident-nr                        : 
Company-short                   : Siemens
Company-long                    : Siemens AG
Headline                        : System Manual
Page Layout                     : OneColumn
Page Mode                       : UseOutlines
Page Count                      : 192
EXIF Metadata provided by EXIF.tools
FCC ID Filing: NXW-RF310R02

Navigation menu