Silicon Laboratories Finland BLE112 Bluetooth Low Energy Module User Manual BLE112 Datasheet

Silicon Laboratories Finland Oy Bluetooth Low Energy Module BLE112 Datasheet

User manual

                     BLE112 PRELIMINARY DATA SHEET Friday, 19 August 2011 Version 1.0
  Bluegiga Technologies Oy                         Copyright © 2000-2011 Bluegiga Technologies All rights reserved.  Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual.  Furthermore, Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications detailed here at any time without notice and does not make any commitment to update the information contained here. Bluegiga’s products are not authorized for use as critical components in life support devices or systems. The WRAP is a registered trademark of Bluegiga Technologies The Bluetooth trademark is owned by the Bluetooth SIG Inc., USA and is licensed to Bluegiga Technologies. All other trademarks listed herein are owned by their respective owners.
  Bluegiga Technologies Oy VERSION HISTORY Version  Comment 0.1 First draft 0.9 Preproduction information 0.91 Prerelease 0.92  Reference schematic added 0.93 Description updated 0.94  Design guide updates, characteristics updates, I/O descriptions updates  0.95 Layout fixes 0.96 Small updates 0.97  Figure 10 corrected 0.98  Recommended land pattern, land width added 0.99  Soldering recommendations added 1.0  Certification information updated. Layout guide for BLE112-N added.
  Bluegiga Technologies Oy TABLE OF CONTENTS 1BLE112 Product numbering ......................................................................................................................... 62Pinout and Terminal Description .................................................................................................................. 73Electrical Characteristics ............................................................................................................................ 103.1Absolute Maximum Ratings ................................................................................................................ 103.2Recommended Operating Conditions ................................................................................................. 103.3Antenna characteristics ....................................................................................................................... 104Design Guidelines ...................................................................................................................................... 154.1General Design Guidelines ................................................................................................................. 154.2Layout Guide Lines ............................................................................................................................. 164.3BLE112-A Layout Guide ..................................................................................................................... 164.4BLE112-N Layout Guide ..................................................................................................................... 175Soldering Recommendations ..................................................................................................................... 196Block diagram ............................................................................................................................................. 207Certifications ............................................................................................................................................... 237.1Bluetooth ............................................................................................................................................. 237.2FCC and IC ......................................................................................................................................... 237.3CE ....................................................................................................................................................... 267.4Qualified Antenna Types for BLE112-E and BLE112-N ..................................................................... 268Contact Information .................................................................................................................................... 27
  Bluegiga Technologies Oy  BLE112 Bluetooth® low energy single mode module  DESCRIPTION BLE112,  Bluetooth low energy single mode module is a single mode device targeted for low power sensors and accessories.  BLE112 offers all Bluetooth low energy features: radio, stack, profiles and application space for customer applications, so no external processor is needed. The module also provides flexible hardware interfaces to connect sensors, simple user interfaces or even displays directly to the module. BLE112 can be powered directly with a standard 3V coin cell batteries or pair of AAA batteries. In lowest power sleep mode it consumes only 400nA and will wake up in few hundred microseconds.   APPLICATIONS:   Heart rate sensors  Pedometers  Watches   Blood pressure and glucose meters  Weight scales  Key fobs   Households sensors and collector devices  Security tags   Wireless keys (keyless go)  Proximity sensors   HID keyboards and mice   Indoor GPS broadcasting devices  KEY FEATURES:  Bluetooth v.4.0, single mode compliant o  Supports master and slave modes o  4+  simultaneous connection in master mode  Integrated Bluetooth low energy stack o  GAP, GATT, L2CAP, SMP   o Bluetooth low energy profiles   Radio performance  o  TX power: +3dBm to -23dBm o  RX sensitivity: -87dBm to -93dBm   Ultra low current consumption o  Transmit: 27mA (0dBm) o  Sleep mode 3: 0.4uA   Programmable 8051 processor for embedding full applications  Bluetooth  end product, CE, FCC and IC and Telec qualified
  Bluegiga Technologies Oy Preliminary – information subject to change Page 6 of 27 1  BLE112 Product numbering BLE112-A-X             Generation:1 = 1st2 = 2nd3 = 3rdFirmware revision- 1.0- 2.1- 3.2Antenna:A = InternalE = ExternalN = RF pinType:1 = Single mode2 = Dual mode3 = ResevedClass:1 = class 12 = class 23 = class 3 Available products and product codes Product code  Description BLE112-A-v1  BLE112 with integrated chip antenna and software version 1.0 BLE112-N-v1  BLE112 with RF pin and software version 1.0 BLE112-E-v1  BLE112 with U.FL connector and software version 1.0
  Bluegiga Technologies Oy Preliminary – information subject to change Page 7 of 27 2  Pinout and Terminal Description 1234567891011121314151617181920213231302928272625242322GNDAVDDGNDAVDDGNDGNDP2_2P2_1P2_0P1_7P1_6VDD_USBUSB+USB‐P1_5DVDDP0_7P1_0P1_1P1_2P1_3P1_4P0_3RESETP0_0P0_1P0_2P0_4P0_5P0_6RFRFGND Figure 1: BLE112  PIN NUMBER PAD TYPE DESCRIPTIONRESET 29 Active low reset.GND 1, 10, 21, 30 GND GNDRF 31 RF (* RF output/input for BLE112-N. With BLE112-A and BLE112-E do not connect.RFGND 32 GNDRF ground. Connected to GND internally in the module. With BLE112-A and BLE112-E leave floating or connect to a solid GND plane.DVDD 20 Supply voltage Supply voltage 2V - 3.6VAVDD 2, 3 Supply voltage Supply voltage 2V - 3.6VVDD_USB 9 Supply voltage Supply voltage 2V - 3.6V *) RF pin is not connected in BLE112-A and BLE112-E. To use RF pin with BLE112-B please see the design guide. Table 1: Supply and RF Terminal Descriptions
  Bluegiga Technologies Oy Preliminary – information subject to change Page 8 of 27 PIN NUMBER PIN NAME PIN TYPE DESCRIPTION4 P2_2 Digital I/O Configurable I/O port, See table 35 P2_1 Digital I/O Configurable I/O port, See table 36 P2_0 Digital I/O Configurable I/O port, See table 37P17Digital I/OConfigurable I/O port, See table 38P1_6Digital I/OConfigurable I/O port, See table 311 USB+ USB+ USB data plus12 USB- USB- USB data minus13 P1_5Digital I/OConfigurable I/O port, See table 314 P1_4Digital I/OConfigurable I/O port, See table 315 P1_3Digital I/OConfigurable I/O port, See table 316 P1_2Digital I/OConfigurable I/O port, See table 317 P1_1 Digital I/O Configurable I/O port with 20mA driving capability, See table 318 P1_0 Digital I/O Configurable I/O port with 20mA driving capability, See table 319 P0_7Digital I/OConfigurable I/O port, See table 322 P0_6Digital I/OConfigurable I/O port, See table 323 P0_5Digital I/OConfigurable I/O port, See table 324 P0_4Digital I/OConfigurable I/O port, See table 325 P0_3Digital I/OConfigurable I/O port, See table 326 P0_2Digital I/OConfigurable I/O port, See table 327 P0_1Digital I/OConfigurable I/O port, See table 328 P0_2Digital I/OConfigurable I/O port, See table 3 Table 2: Terminal Descriptions *)BLE112 is configurable as either SPI master or SPI slave
  Bluegiga Technologies Oy Preliminary – information subject to change Page 9 of 27  7654321076543210210ADC A7 A6 A5 A4 A3 A2 A1 A0Operational amplifier O-+Analog comparator +-CSSMOMIMO MI C SSRT CT TX RXTX RX RT CTMI MO C SSMI MO C SSRX TX RT CTRX TX RT CT4321034 0121010100DEBUG DC DDOBSSEL 543210TIMER 1Alt.2TIMER 3Alt.2TIMER 4Alt.2PERIPHERAL / FUNCTIONP0 P1 P2USART 0 SPIAlt. 2USART 0 UARTAlt.2USART 1 SPIAlt.2USART 1 UARTAlt.2 Table 3:Peripheral I/O Pin Mapping
  Bluegiga Technologies Oy Preliminary – information subject to change Page 10 of 27 3 Electrical Characteristics 3.1 Absolute Maximum Ratings Min Max Unit-40 85 °C-0.4 3.6 VVSS-0.4 VDD+0.4 VRatingStorage TemperatureOther Terminal VoltagesAVDD,DVDD, VDD_USB Table 4: Absolute Maximum Ratings 3.2 Recommended Operating Conditions Min Max Unit-40 85 °C2.0 3.6 VRatingOperating Temperature RangeAVDD, DVDD, VDD_USB *) VDD_PA has an effect on the RF output power. Table 5: Recommended Operating Conditions 3.3 Antenna characteristics The antenna radiation pattern is depends on the mother board layout. Following characteristics are measured from a test board based on the layout guide given in chapter 4.   Efficiency 33% (-4.8 dB)   Peak gain 0 dBi
  Bluegiga Technologies Oy Preliminary – information subject to change Page 11 of 27  Figure 2: Radiation pattern of BLE112, top view  Figure 3: Radiation pattern of BLE112, front view
  Bluegiga Technologies Oy Preliminary – information subject to change Page 12 of 27  Figure 4: Radiation pattern of BLE112, side view
  Bluegiga Technologies Oy Preliminary – information subject to change Page 13 of 27 Physical Dimensions  Figure 5: Physical dimensions and pinout (top view)  18.10mm12.05mmAntennaU.fl Figure 6: Physical dimensions (top view)  18.1mm2.1mm 2.3mm Figure 7: Physical dimensions (side view)
  Bluegiga Technologies Oy Preliminary – information subject to change Page 14 of 27  Figure 8: Recommended land pattern for BLE112-A and BLE112-E
  Bluegiga Technologies Oy Preliminary – information subject to change Page 15 of 27 4 Design Guidelines 4.1 General Design Guidelines BLE112 can be used directly with a coin cell battery. Due to relatively high internal resistance of a coin cell battery it is recommended to place a 100uF capacitor in parallel with the battery. The internal resistance of a coin cell battery is initially in the range of 10 ohms but the resistance increases rapidly as the capacity is used. Basically the higher the value of the capacitor the higher is the effective capacity of the battery and thus the longer the life time for the application. The minimum value for the capacitor depends on the end application and the maximum transmit power used. The leakage current of a 100uF capacitor in in the range of 0.5 uA to 3 uA and generally ceramic capacitors have lower leakage current than tantalum or aluminum electrolytic capacitors.  Optionally TI’s TPS62730 can be used to reduce the current consumption during TX/RX and data processing stages. TPS62730 is an ultra low power DC/DC converter with by-pass mode and will reduce the current consumption during transmission nominally by ~20% when using 3V coin cell battery.    A ferrite bead is recommended to be used to filter any excessive noise in the power supply lines to guarantee the radio performance. OPTIONAL DC/DCPROGRAMMING INTERFACE12U4BATTERYHOLDER_SMD_CR2032C15100uF/6.3V/X5R1STAT2SW3VIN4GND5ON/BYP6VOUTU5TPS62730C102.2uF/10V/X5RC112.2uF/10V/X5RL12.2μH±20%, 130mA, 0.43ohm1GND2AVDD3AVDD4P2_25P2_16P2_07P1_78P1_69DVDD_USB10 GND11 USB+12 USB-13 P1_514 P1_415 P1_316 P1_217 P1_118 P1_019 P0:720 DVDD21 GND22P0_623P0_524P0_425P0_326P0_227P0_128P0_029RESET30GNDMOD2BLE112-A13524678910J1HEADER_2X5_SMD_1.27MMC31uF/16V/X5RC51uF/16V/X5RC61uF/16V/X5RP1_7/DCDCVBATP2_22V...3V3_SWP2_1RESET_NRESET_NP2_2P2_1P1_7/DCDC Figure 9: Example schematic for BLE112 with a coin cell battery 1VBUS 2D- 3D+ 4NC 5GND7869J10CON-MINIUSB-SOCKET-SMDC200.47uF/6.3V/X5RC312.2uF/10V/X5RC322.2uF/10V/X5R3VIN 2VOUT1GNDP1MCP1700T-3302E/TL4FB 1kohm12R1333R, 50V, 0.063W12R1433R, 50V, 0.063W12R151.5K, 50V, 0.063WC12747pF/50V/C0GC12847pF/50V/C0G1GND2AVDD3AVDD4P2_25P2_16P2_07P1_78P1_69DVDD_USB10 GND11 USB+12 USB-13 P1_514 P1_415 P1_316 P1_217 P1_118 P1_019 P0:720 DVDD21 GND22P0_623P0_524P0_425P0_326P0_227P0_128P0_029RESET30GNDMOD3BLE112-AC71uF/16V/X5RC81uF/16V/X5RC91uF/16V/X5RRESET Figure 10: Example schematic for BLE112 with USB
  Bluegiga Technologies Oy Preliminary – information subject to change Page 16 of 27 4.2  Layout Guide Lines Use good layout practices to avoid excessive noise coupling to supply voltage traces or sensitive analog signal traces. If using overlapping ground planes use stitching vias separated by max 3 mm to avoid emission from the edges of the PCB. Connect all the GND pins directly to a solid GND plane and make sure that there is a low impedance path for the return current following the signal and supply traces all the way from start to the end.  A good practice is to dedicate one of the inner layers to a solid GND plane and one of the inner layers to supply voltage planes and traces and route all the signals on top and bottom layers of the PCB. This arrangement will make sure that any return current follows the forward current as close as possible and any loops are minimized.   SignalsGNDPowerSignals Figure 11: Typical 4-layer PCB construction  Overlapping GND layers without GND stitching vias Overlapping GND layers with GND stitching vias shielding the RF energy Figure 12: Use of stitching vias to avoid emissions from the edges of the PCB  4.3 BLE112-A Layout Guide For optimal performance of the antenna place the module at the corner of the PCB as shown in the figure 13. Do not place any metal (traces, components, battery etc.) within the clearance area of the antenna. Connect all the GND pins directly to a solid GND plane. Place the GND vias as close to the GND pins as possible. Use good layout practices to avoid any excessive noise coupling to signal lines or supply voltage lines. Avoid placing plastic or any other dielectric material closer than 5 mm from the antenna. Any dielectric closer than 5 mm from the antenna will detune the antenna to lower frequencies.
  Bluegiga Technologies Oy Preliminary – information subject to change Page 17 of 27 T Figure 13: Recommended layout for BLE112-A  4.4 BLE112-N Layout Guide Use 50 ohm transmission line to trace the signal from RF pin to an external RF connector. Figure 14 shows a layout example for BLE112-N with an external SMA connector.    BoardedgeSMAconnector50ohmtraceGNDcontactfortheRFtraceGNDstitchingviasseparatedbymax3mm Figure 14: Example layout for BLE112-N
  Bluegiga Technologies Oy Preliminary – information subject to change Page 18 of 27 A transmission line impedance calculator, such as TX-Line made by AWR, can be used to approximate the dimensions for the 50 ohm transmission line. Figure 15 shows an example for two different 50 ohm transmission lines. FR4,εr=4.6Prepreg,εr=3.7W=0.15mmh=0.076mmG=0.25mmGNDstitchingviasRFGROUNDRFGROUND RFGROUNDRFGROUNDFR4,εr=4.6h=1mmW=1.8mmMICROSTRIPCPWGround Figure 15: Example cross section of two different 50 ohm transmission line
  Bluegiga Technologies Oy Preliminary – information subject to change Page 19 of 27 5 Soldering Recommendations BLE112 is compatible with industrial standard reflow profile for Pb-free solders. The reflow profile used is dependent on the thermal mass of the entire populated PCB, heat transfer efficiency of the oven and particular type of solder paste used. Consult the datasheet of particular solder paste for profile configurations.  Bluegiga Technologies will give following recommendations for soldering the module to ensure reliable solder joint and operation of the module after soldering. Since the profile used is process and layout dependent, the optimum profile should be studied case by case. Thus following recommendation should be taken as a starting point guide.  -  Refer to technical documentations of particular solder paste for profile configurations -  Avoid using more than one flow.  -  Reliability of the solder joint and self-alignment of the component are dependent on the solder volume. Minimum of 150m stencil thickness is recommended.  -  Aperture size of the stencil should be 1:1 with the pad size.  -  A low residue, “no clean” solder paste should be used due to low mounted height of the component.
  Bluegiga Technologies Oy Preliminary – information subject to change Page 20 of 27 6 Block diagram BLE112 is based on TI’s CC2540 chip. Embedded 32 MHz and 32.678 kHz crystals are used for clock generation. Matched balun and low pass filter provide optimal radio performance with extremely low spurious emissions. Small ceramic chip antenna gives good radiation efficiency even when the module is used in layouts with very limited space. I/OcontrollerCC2540I/O32MHzXTAL32.768kHzXTALClockDebuginterface8051CPUcoreandmemoryarbitratorVoltageregulatorSRAMFlashAnalogcomparatorOPAMPADCIRQcontroller DMAUSBUSART0USART1TIMER1TIMER2TIMER3TIMER4RadioarbiterRadioregistersLinklayerengineSRAMModulatorDemodulator SynthReceive TransmitFrequencysynthetisizerBalun+LPF AntResetPower‐onreset2V–3.6V Reset Figure 16: Simplified block diagram of BLE112   CPU and Memory The 8051 CPU core is a single-cycle 8051-compatible core. It has three different memory access buses (SFR, DATA, and CODE/XDATA), a debug interface, and an 18-input extended interrupt unit. The memory arbiter is at the heart of the system, as it connects the CPU and DMA controller with the physical memories and all peripherals through the SFR bus. The memory arbiter has four memory-access points, access of which can map to one of three physical memories: an SRAM, flash memory, and XREG/SFR registers. It is responsible for performing arbitration and sequencing between simultaneous memory accesses to the same physical memory.
  Bluegiga Technologies Oy Preliminary – information subject to change Page 21 of 27 The SFR bus is a common bus that connects all hardware peripherals to the memory arbiter. The SFR bus also provides access to the radio registers in the radio register bank, even though these are indeed mapped into XDATA memory space. The 8-KB SRAM maps to the DATA memory space and to parts of the XDATA memory spaces. The SRAM is an ultralow-power SRAM that retains its contents even when the digital part is powered off (power modes 2 and 3). The 128/256 KB flash block provides in-circuit programmable non-volatile program memory for the device, and maps into the CODE and XDATA memory spaces. Peripherals Writing to the flash block is performed through a flash controller that allows page-wise erasure and 4-bytewise programming.  A versatile five-channel DMA controller is available in the system, accesses memory using the XDATA memory space, and thus has access to all physical memories. Each channel (trigger, priority, transfer mode, addressing mode, source and destination pointers, and transfer count) is configured with DMA descriptors that can be located anywhere in memory. Many of the hardware peripherals (AES core, flash controller, USARTs, timers, ADC interface, etc.) can be used with the DMA controller for efficient operation by performing data transfers between a single SFR or XREG address and flash/SRAM. Each CC2540 contains a unique 48-bit IEEE address that can be used as the public device address for a Bluetooth device. Designers are free to use this address, or provide their own, as described in the Bluetooth specification. The interrupt controller services a total of 18 interrupt sources, divided into six interrupt groups, each of which is associated with one of four interrupt priorities. I/O and sleep timer interrupt requests are serviced even if the device is in a sleep mode (power modes 1 and 2) by bringing the CC2540 back to the active mode. The debug interface implements a proprietary two-wire serial interface that is used for in-circuit debugging. Through this debug interface, it is possible to erase or program the entire flash memory, control which oscillators are enabled, stop and start execution of the user program, execute instructions on the 8051 core, set code breakpoints, and single-step through instructions in the code. Using these techniques, it is possible to perform in-circuit debugging and external flash programming elegantly. The I/O controller is responsible for all general-purpose I/O pins. The CPU can configure whether peripheral modules control certain pins or whether they are under software control, and if so, whether each pin is configured as an input or output and if a pullup or pulldown resistor in the pad is connected. Each peripheral that connects to the I/O pins can choose between two different I/O pin locations to ensure flexibility in various applications. The sleep timer is an ultra low power timer that uses an external 32.768-kHz crystal oscillator. The sleep timer runs continuously in all operating modes except power mode 3. Typical applications of this timer are as a real-time counter or as a wake-up timer to exit power modes 1 or 2. A built-in watchdog timer allows the CC2540 to reset itself if the firmware hangs. When enabled by software, the watchdog timer must be cleared periodically; otherwise, it resets the device when it times out. Timer 1 is a 16-bit timer with timer/counter/PWM functionality. It has a programmable prescaler, a 16-bit period value, and five individually programmable counter/capture channels, each with a 16-bit compare value. Each of the counter/capture channels can be used as a PWM output or to capture the timing of edges on input signals. It can also be configured in IR generation mode, where it counts timer 3 periods and the output is ANDed with the output of timer 3 to generate modulated consumer IR signals with minimal CPU interaction. Timer 2 is a 40-bit timer used by the Bluetooth low energy stack. It has a 16-bit counter with a configurable timer period and a 24-bit overflow counter that can be used to keep track of the number of periods that have transpired. A 40-bit capture register is also used to record the exact time at which a start-of-frame delimiter is received/transmitted or the exact time at which transmission ends. There are two 16-bit timer-compare registers and two 24-bit overflow-compare registers that can be used to give exact timing for start of RX or TX to the radio or general interrupts.
  Bluegiga Technologies Oy Preliminary – information subject to change Page 22 of 27 Timer 3 and timer 4 are 8-bit timers with timer/counter/PWM functionality. They have a programmable prescaler, an 8-bit period value, and one programmable counter channel with an 8-bit compare value. Each of the counter channels can be used as PWM output. USART 0 and USART 1 are each configurable as either an SPI master/slave or a UART. They provide double buffering on both RX and TX and hardware flow control and are thus well suited to high-throughput full-duplex applications. Each USART has its own high-precision baud-rate generator, thus leaving the ordinary timers free for other uses. When configured as SPI slaves, the USARTs sample the input signal using SCK directly instead of using some oversampling scheme, and are thus well-suited for high data rates. The AES encryption/decryption core allows the user to encrypt and decrypt data using the AES algorithm with 128-bit keys. The AES core also supports ECB, CBC, CFB, OFB, CTR, and CBC-MAC, as well as hardware support for CCM. The ADC supports 7 to 12 bits of resolution with a corresponding range of bandwidths from 30-kHz to 4-kHz, respectively. DC and audio conversions with up to eight input channels (I/O controller pins) are possible. The inputs can be selected as single-ended or differential. The reference voltage can be internal, AVDD, or a single-ended or differential external signal. The ADC also has a temperature-sensor input channel. The ADC can automate the process of periodic sampling or conversion over a sequence of channels. The operational amplifier is intended to provide front-end buffering and gain for the ADC. Both inputs as well as the output are available on pins, so the feedback network is fully customizable. A chopper-stabilized mode is available for applications that need good accuracy with high gain. The ultralow-power analog comparator enables applications to wake up from PM2 or PM3 based on an analog signal. Both inputs are brought out to pins; the reference voltage must be provided externally. The comparator output is connected to the I/O controller interrupt detector and can be treated by the MCU as a regular I/O pin interrupt. RF front end RF front end includes combined matched balun and low pass filter, and ceramic chip antenna with matching network. Optimal matching combined with effective low pass filter provides extremely low in-band spurious emissions and harmonics. Optionally as a module assembly variant RF can be traced either to an embedded u.fl connector or to the RF pin of the module.
  Bluegiga Technologies Oy Preliminary – information subject to change Page 23 of 27 7 Certifications BLE112 is compliant to the following specifications.  7.1 Bluetooth BLE112 Bluetooth low energy module is Bluetooth qualified and listed as a controller subsystem and it is Bluetooth compliant to the following profiles of the core spec version v.4.0:   RF PHY   HCI   LL  The maximum antenna gain specified for BLE112 is 2.3 dBi. Bluetooth qualification is valid for any antenna with gain less than 2.3 dBi.  7.2   FCC and IC This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:  (1) this device may not cause harmful interference, and  (2) this device must accept any interference received, including interference that may cause undesired operation.  FCC RF Radiation Exposure Statement:  This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must follow the specific operating instructions for satisfying RF exposure compliance. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.    IC Statements:  This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.  If detachable antennas are used:
  Bluegiga Technologies Oy Preliminary – information subject to change Page 24 of 27 This radio transmitter (identify the device by certification number, or model number ifCategory II) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. See table 7 for the approved antennas for BLE112.  OEM Responsibilities to comply with FCC and Industry Canada Regulations The BLE112 module has been certified for integration into products only by OEM integrators under the following condition:    The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter.  As long as the condition above is met, further transmitter testing will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).  IMPORTANT NOTE: In the event that these conditions can not be met (for certain configurations or co-location with another transmitter), then the FCC and Industry Canada authorizations are no longer considered valid and the FCC ID and IC Certification Number can not be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC and Industry Canada authorization.  End Product Labeling The BLE112 module is labeled with its own FCC ID and IC Certification Number. If the FCC ID and IC Certification Number are not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module.  In that case, the final end product must be labeled in a visible area with the following:   “Contains Transmitter Module FCC ID: QOQBLE112” “Contains Transmitter Module IC: 5123A-BGTBLE112” or  “Contains FCC ID: QOQBLE112 “Contains IC: 5123A-BGTBLE112”   The OEM of the BLE112 module must only use the approved antenna(s) listed in table 7, which have been certified with this module.  The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or change RF related parameters in the user manual of the end product.  Déclaration d’IC :  Ce dispositif est conforme aux normes RSS exemptes de licence d’Industrie Canada. Son fonctionnement est assujetti aux deux conditions suivantes : (1) ce dispositif ne doit pas provoquer de perturbation et (2) ce
  Bluegiga Technologies Oy Preliminary – information subject to change Page 25 of 27 dispositif doit accepter toute perturbation, y compris les perturbations qui peuvent entraîner un fonctionnement non désiré du dispositif. Selon les réglementations d’Industrie Canada, cet émetteur radio ne doit fonctionner qu’avec une antenne d’une typologie spécifique et d’un gain maximum (ou inférieur) approuvé pour l’émetteur par Industrie Canada. Pour réduire les éventuelles perturbations radioélectriques nuisibles à d’autres utilisateurs, le type d’antenne et son gain doivent être choisis de manière à ce que la puissance isotrope rayonnée équivalente (P.I.R.E.) n’excède pas les valeurs nécessaires pour obtenir une communication convenable.  Si des antennes amovibles sont utilisées : Cet émetteur radio (identifier le dispositif à l’aide de son numéro de certification ou de son numéro de modèle s’il appartient à la Catégorie II) a été approuvé par Industrie Canada pour fonctionner avec les types d’antenne énumérés ci-dessous, avec le gain admissible maximum et l’impédance d’antenne requise pour chaque type d’antenne indiqué. Les types d’antennes qui ne figurent pas dans cette liste ont un gain supérieur au gain maximum indiqué pour ce type ; il est donc strictement défendu de les utiliser avec ce dispositif. Consulter le tableau 7 pour découvrir les antennes approuvées pour BLE112.  Responsabilités des OEM quant à la conformité avec les réglementations de FCC et d’Industrie Canada Le module BLE112 a été certifié pour être intégré à des produits fabriqués uniquement par les intégrateurs OEM dans les conditions suivantes :Le module de l’émetteur ne doit pas être situé près d’une autre antenne ou d’un autre émetteur ni ou fonctionner conjointement avec ceux-ci. Dans la mesure où cette condition est observée, il ne sera pas nécessaire de soumettre l’émetteur à des essais supplémentaires. Cependant, l’intégrateur OEM est chargé de tester son produit final pour s’assurer qu’il respecte toutes les autres exigences de conformité requises avec ce module installé (par exemple : émissions du dispositif numérique, exigences périphériques de l’ordinateur, etc.).  REMARQUE IMPORTANTE : En cas d’inobservance de ces conditions (en ce qui concerne certaines configurations ou l’emplacement du dispositif à proximité d’un autre émetteur), les autorisations de FCC et d’Industrie Canada ne seront plus considérées valables et l’identification de FCC et le numéro de certification d’IC ne pourront pas être utilisés sur le produit final. Dans ces cas, l’intégrateur OEM sera chargé d’évaluer à nouveau le produit final (y compris l’émetteur) et d’obtenir une autorisation indépendante de FCC et d’Industrie Canada.  Étiquetage du produit final Le module BLE112 est étiqueté avec sa propre identification FCC et son propre numéro de certification IC. Si l’identification FCC et le numéro de certification IC ne sont pas visibles lorsque le module est installé à l’intérieur d’un autre dispositif, la partie externe du dispositif dans lequel le module est installé devra également présenter une étiquette faisant référence au module inclus. Dans ce cas, le produit final devra être étiqueté sur une zone visible avec les informations suivantes :  « Contient module émetteur identification FCC : QOQBLE112 » « Contient module émetteur IC : 5123A-BGTBLE112 » ou  « Contient identification FCC : QOQBLE112 » « Contient IC : 5123A-BGTBLE112 »
  Bluegiga Technologies Oy Preliminary – information subject to change Page 26 of 27  L’OEM du module BLE112 ne doit utiliser que la ou les antennes approuvées énumérées dans le tableau 7, qui ont été certifiées avec ce module.  Dans le guide d’utilisation du produit final, l’intégrateur OEM doit s’abstenir de fournir des informations à l’utilisateur final portant sur les procédures à suivre pour installer ou retirer ce module RF ou pour changer les paramètres RF.  7.3 CE BLE112 is in conformity with the essential requirements and other relevant requirements of the R&TTE Directive (1999/5/EC). The product is conformity with the following standards and/or normative documents.   EMC (immunity only) EN 301 489-17 V.1.3.3 in accordance with EN 301 489-1 V1.8.1   Radiated emissions EN 300 328 V1.7.1  7.4  Qualified Antenna Types for BLE112-E and BLE112-N This device has been designed to operate with a standard 2.14 dBi dipole antenna. Any antenna of the same type and the same or less gain can be used without additional application to FCC. Table 7 lists approved antennas for BLE112. Any approved antenna listed in table 7 can be used directly with BLE112 without any additional approval. Any antenna not listed in table 7 can be used with BLE112 as long as detailed information from that particular antenna is provided to Bluegiga for approval. Specification of each antenna used with BLE112 will be filed by Bluegiga. Please, contact support@bluegiga.com for more information.  ItemManufacturerManufacturerspartnumberMeasuredGain(dBi)SpecifiedGain(dBi)MeasureTotalEfficiency(%)1PulseW103012dBi70‐802LinxTechnologiesIncANT‐2.4‐CW‐CT‐SMA1.32dBi773EADEA‐79A0.42dBi604AntenovaB4844/B60901.42dBi76‐825LiteconCAR‐ATR‐187‐0010.82dBi60‐70Table 6: Approved Antennas For BLE112-E and BLE112-N
  Bluegiga Technologies Oy Preliminary – information subject to change Page 27 of 27 8 Contact Information Sales:   sales@bluegiga.com  Technical support: support@bluegiga.com http://techforum.bluegiga.com  Orders:   orders@bluegiga.com  WWW:   www.bluegiga.com   www.bluegiga.hk Head Office / Finland: Phone: +358-9-4355 060 Fax: +358-9-4355 0660 Sinikalliontie 5A 02630 ESPOO FINLAND Postal address / Finland: P.O. BOX 120 02631 ESPOO FINLAND Sales Office / USA: Phone: +1 770 291 2181  Fax: +1 770 291 2183 Bluegiga Technologies, Inc. 3235 Satellite Boulevard, Building 400, Suite 300 Duluth, GA, 30096, USA Sales Office / Hong-Kong: Phone: +852 3182 7321  Fax: +852 3972 5777 Bluegiga Technologies, Inc. 19/F Silver Fortune Plaza, 1 Wellington Street,  Central Hong Kong

Navigation menu