THALES DIS AlS Deutschland AC65 Quad Band GSM Module User Manual AC65 AC75
Gemalto M2M GmbH Quad Band GSM Module AC65 AC75
User Manual
AC65/AC75 Siemens Cellular Engines Version: DocID: 00.372 AC65/AC75_hd_v00.372 Hardware Interface Description AC65/AC75 Hardware Interface Description Confidential / Preliminary Document Name: AC65/AC75 Hardware Interface Description Version: 00.372 Date: August 03, 2006 DocId: AC65/AC75_hd_v00.372 Status: Confidential / Preliminary General note Product is deemed accepted by Recipient and is provided without interface to Recipient´s products. The Product constitutes pre-release version and code and may be changed substantially before commercial release. The Product is provided on an “as is” basis only and may contain deficiencies or inadequacies. The Product is provided without warranty of any kind, express or implied. To the maximum extent permitted by applicable law, Siemens further disclaims all warranties, including without limitation any implied warranties of merchantability, fitness for a particular purpose and noninfringement of third-party rights. The entire risk arising out of the use or performance of the Product and documentation remains with Recipient. This Product is not intended for use in life support appliances, devices or systems where a malfunction of the product can reasonably be expected to result in personal injury. Applications incorporating the described product must be designed to be in accordance with the technical specifications provided in these guidelines. Failure to comply with any of the required procedures can result in malfunctions or serious discrepancies in results. Furthermore, all safety instructions regarding the use of mobile technical systems, including GSM products, which also apply to cellular phones must be followed. Siemens AG customers using or selling this product for use in any applications do so at their own risk and agree to fully indemnify Siemens for any damages resulting from illegal use or resale. To the maximum extent permitted by applicable law, in no event shall Siemens or its suppliers be liable for any consequential, incidental, direct, indirect, punitive or other damages whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of business information or data, or other pecuniary loss) arising out the use of or inability to use the Product, even if Siemens has been advised of the possibility of such damages. Subject to change without notice at any time. Copyright Transmittal, reproduction, dissemination and/or editing of this document as well as utilization of its contents and communication thereof to others without express authorization are prohibited. Offenders will be held liable for payment of damages. All rights created by patent grant or registration of a utility model or design patent are reserved. Copyright © Siemens AG 2006 AC65/AC75_hd_v00.372 Page 2 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Contents Document History .........................................................................................................7 Introduction ...................................................................................................................9 1.1 Related Documents ...............................................................................................9 1.2 Terms and Abbreviations.....................................................................................10 1.3 Type Approval......................................................................................................13 1.3.1 SAR Requirements Specific to Portable Mobiles...................................15 1.4 Safety Precautions...............................................................................................16 Product Concept .........................................................................................................18 2.1 Key Features at a Glance ....................................................................................18 2.2 AC65/AC75 System Overview .............................................................................21 2.3 Circuit Concept ....................................................................................................22 Application Interface...................................................................................................23 3.1 Operating Modes .................................................................................................24 3.2 Power Supply.......................................................................................................26 3.2.1 Minimizing Power Losses ......................................................................26 3.2.2 Measuring the Supply Voltage VBATT+ ....................................................27 3.2.3 Monitoring Power Supply by AT Command ...........................................27 3.3 Power-Up / Power-Down Scenarios ....................................................................28 3.3.1 Turn on AC65/AC75...............................................................................28 3.3.1.1 Turn on AC65/AC75 Using Ignition Line IGT .........................................28 3.3.1.2 Configuring the IGT Line for Use as ON/OFF Switch ............................31 3.3.1.3 Turn on AC65/AC75 Using the VCHARGE Signal.................................32 3.3.1.4 Reset AC65/AC75 via AT+CFUN Command.........................................32 3.3.1.5 Reset or Turn off AC65/AC75 in Case of Emergency............................33 3.3.1.6 Using EMERG_RST to Reset Application(s) or External Device(s).......33 3.3.2 Signal States after Startup .....................................................................34 3.3.3 Turn off AC65/AC75...............................................................................36 3.3.3.1 Turn off AC65/AC75 Using AT Command .............................................36 3.3.3.2 Leakage Current in Power-Down Mode.................................................37 3.3.3.3 Turn on/off AC65/AC75 Applications with Integrated USB ....................38 3.3.4 Automatic Shutdown ..............................................................................39 3.3.4.1 Thermal Shutdown.................................................................................39 3.3.4.2 Deferred Shutdown at Extreme Temperature Conditions ......................40 3.3.4.3 Monitoring the Board Temperature of AC65/AC75 ................................40 3.3.4.4 Undervoltage Shutdown if Battery NTC is Present ................................40 3.3.4.5 Undervoltage Shutdown if no Battery NTC is Present ...........................41 3.3.4.6 Overvoltage Shutdown...........................................................................41 3.4 Automatic EGPRS/GPRS Multislot Class Change ..............................................42 3.5 Charging Control..................................................................................................43 3.5.1 Hardware Requirements ........................................................................43 3.5.2 Software Requirements .........................................................................43 3.5.3 Battery Pack Requirements ...................................................................44 3.5.4 Charger Requirements...........................................................................45 3.5.5 Implemented Charging Technique.........................................................46 3.5.6 Operating Modes during Charging.........................................................47 3.6 Power Saving.......................................................................................................49 3.6.1 Network Dependency of SLEEP Modes ................................................49 3.6.2 Timing of the CTSx Signal in CYCLIC SLEEP Mode 7..........................50 3.6.3 Timing of the RTSx Signal in CYCLIC SLEEP Mode 9..........................50 3.7 Summary of State Transitions (Except SLEEP Mode).........................................51 AC65/AC75_hd_v00.372 Page 3 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 RTC Backup ........................................................................................................52 SIM Interface .......................................................................................................53 3.9.1 Installation Advice ..................................................................................54 Serial Interface ASC0 ..........................................................................................55 Serial Interface ASC1 ..........................................................................................57 USB Interface ......................................................................................................58 I2C Interface .........................................................................................................59 SPI Interface ........................................................................................................61 Audio Interfaces...................................................................................................63 3.15.1 Speech Processing ................................................................................64 3.15.2 Microphone Circuit .................................................................................64 3.15.2.1 Single-ended Microphone Input .............................................................65 3.15.2.2 Differential Microphone Input .................................................................66 3.15.2.3 Line Input Configuration with OpAmp ....................................................67 3.15.3 Loudspeaker Circuit ...............................................................................68 3.15.4 Digital Audio Interface (DAI) ..................................................................69 3.15.4.1 Master Mode ..........................................................................................70 3.15.4.2 Slave Mode ............................................................................................72 GPIO Interface.....................................................................................................74 3.16.1 Using the GPIO10 Pin as Pulse Counter ...............................................74 Control Signals ....................................................................................................75 3.17.1 Synchronization Signal ..........................................................................75 3.17.2 Using the SYNC Pin to Control a Status LED........................................76 3.17.3 Behavior of the RING0 Line (ASC0 Interface only)................................77 3.17.4 PWR_IND Signal ...................................................................................77 Antenna Interface........................................................................................................78 4.1 Antenna Diagnostic..............................................................................................79 4.2 Antenna Connector..............................................................................................80 Electrical, Reliability and Radio Characteristics......................................................82 5.1 Absolute Maximum Ratings .................................................................................82 5.2 Operating Temperatures......................................................................................83 5.3 Storage Conditions ..............................................................................................84 5.4 Reliability Characteristics.....................................................................................85 5.5 Pin Assignment and Signal Description...............................................................86 5.6 Power Supply Ratings .........................................................................................93 5.7 Electrical Characteristics of the Voiceband Part..................................................96 5.7.1 Setting Audio Parameters by AT Commands ........................................96 5.7.2 Audio Programming Model ....................................................................97 5.7.3 Characteristics of Audio Modes .............................................................98 5.7.4 Voiceband Receive Path........................................................................99 5.7.5 Voiceband Transmit Path.....................................................................100 5.8 Air Interface .......................................................................................................101 5.9 Electrostatic Discharge ......................................................................................102 Mechanics..................................................................................................................103 6.1 Mechanical Dimensions of AC65/AC75.............................................................103 6.2 Mounting AC65/AC75 to the Application Platform .............................................105 6.3 Board-to-Board Application Connector ..............................................................106 Sample Application...................................................................................................109 Reference Approval ..................................................................................................111 8.1 Reference Equipment for Type Approval...........................................................111 8.2 Compliance with FCC Rules and Regulations ...................................................112 AC65/AC75_hd_v00.372 Page 4 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Appendix....................................................................................................................113 9.1 List of Parts and Accessories ............................................................................113 9.2 Fasteners and Fixings for Electronic Equipment ...............................................115 9.2.1 Fasteners from German Supplier ETTINGER GmbH ..........................115 Tables Table 1: Directives.................................................................................................................. 13 Table 2: Standards of North American type approval ............................................................ 13 Table 3: Standards of European type approval...................................................................... 14 Table 4: Requirements of quality............................................................................................ 14 Table 5: Overview of operating modes................................................................................... 24 Table 6: Signal states............................................................................................................. 34 Table 7: Temperature dependent behavior ............................................................................ 40 Table 8: Specifications of battery packs suitable for use with AC65/AC75 ............................ 45 Table 9: AT commands available in Charge-only mode......................................................... 47 Table 10: Comparison Charge-only and Charge mode.......................................................... 48 Table 11: State transitions of AC65/AC75 (except SLEEP mode) ......................................... 51 Table 12: Signals of the SIM interface (board-to-board connector) ....................................... 53 Table 13: DCE-DTE wiring of ASC0....................................................................................... 56 Table 14: DCE-DTE wiring of ASC1....................................................................................... 57 Table 15: Configuration combinations for the PCM interface................................................. 69 Table 16: Overview of DAI pin functions ................................................................................ 70 Table 17: Return loss in the active band ................................................................................ 78 Table 18: Values of the AT^SAD parameterand their meaning................................. 79 Table 19: Product specifications of Rosenberger SMP connector ......................................... 80 Table 20: Absolute maximum ratings ..................................................................................... 82 Table 21: Board temperature ................................................................................................. 83 Table 22: Ambient temperature according to IEC 60068-2 (without forced air circulation) .... 83 Table 23: Charging temperature ............................................................................................ 83 Table 24: Storage conditions.................................................................................................. 84 Table 25: Summary of reliability test conditions ..................................................................... 85 Table 26: Signal description ...................................................................................................87 Table 27: Power supply ratings .............................................................................................. 93 Table 28: Current consumption during Tx burst for GSM 850MHz and GSM 900MHz.......... 94 Table 29: Current consumption during Tx burst for GSM 1800MHz and GSM 1900MHz...... 95 Table 30: Audio parameters adjustable by AT command ...................................................... 96 Table 31: Voiceband characteristics (typical)......................................................................... 98 Table 32: Voiceband receive path.......................................................................................... 99 Table 33: Voiceband transmit path....................................................................................... 100 Table 34: Air Interface .......................................................................................................... 101 Table 35: Measured electrostatic values.............................................................................. 102 Table 36: Technical specifications of Molex board-to-board connector ............................... 106 Table 37: List of parts and accessories................................................................................ 113 Table 38: Molex sales contacts (subject to change) ............................................................ 114 AC65/AC75_hd_v00.372 Page 5 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Figures Figure 1: AC65/AC75 system overview.................................................................................. 21 Figure 2: AC65/AC75 block diagram...................................................................................... 22 Figure 3: Power supply limits during transmit burst................................................................ 27 Figure 4: Position of the reference points BATT+ and GND .................................................. 27 Figure 5: Power-on with operating voltage at BATT+ applied before activating IGT.............. 29 Figure 6: Power-on with IGT held low before switching on operating voltage at BATT+ ....... 30 Figure 7: Timing of IGT if used as ON/OFF switch ................................................................ 31 Figure 8: Signal states during turn-off procedure ................................................................... 37 Figure 9: Battery pack circuit diagram.................................................................................... 44 Figure 10: Power saving and paging...................................................................................... 49 Figure 11: Timing of CTSx signal (if CFUN= 7)...................................................................... 50 Figure 12: Timing of RTSx signal (if CFUN = 9)..................................................................... 50 Figure 13: RTC supply from capacitor.................................................................................... 52 Figure 14: RTC supply from rechargeable battery ................................................................. 52 Figure 15: RTC supply from non-chargeable battery ............................................................. 52 Figure 16: Serial interface ASC0............................................................................................ 55 Figure 17: Serial interface ASC1............................................................................................ 57 Figure 18: USB circuit ............................................................................................................ 58 Figure 19: I2C interface connected to VCC of application ..................................................... 59 Figure 20: I2C interface connected to VEXT line of AC65/AC75 ........................................... 60 Figure 21: SPI interface.......................................................................................................... 61 Figure 22: Characteristics of SPI modes................................................................................ 62 Figure 23: Audio block diagram.............................................................................................. 63 Figure 24: Single ended microphone input............................................................................. 65 Figure 25: Differential microphone input ................................................................................ 66 Figure 26: Line input configuration with OpAmp .................................................................... 67 Figure 27: Differential loudspeaker configuration................................................................... 68 Figure 28: Master PCM interface Application......................................................................... 70 Figure 29: Master PCM timing, short frame selected ............................................................. 71 Figure 30: Master PCM timing, long frame selected .............................................................. 71 Figure 31: Slave PCM interface application ........................................................................... 72 Figure 32: Slave PCM timing, short frame selected ............................................................... 73 Figure 33: Slave PCM timing, long frame selected ................................................................ 73 Figure 34: SYNC signal during transmit burst ........................................................................ 75 Figure 35: LED Circuit (Example)........................................................................................... 76 Figure 36: Incoming voice/fax/data call .................................................................................. 77 Figure 37: URC transmission ................................................................................................. 77 Figure 38: Resistor measurement used for antenna detection .............................................. 79 Figure 39: Datasheet of Rosenberger SMP MIL-Std 348-A connector .................................. 81 Figure 40: Pin assignment (component side of AC65/AC75)................................................. 86 Figure 41: Audio programming model .................................................................................... 97 Figure 42: AC65/AC75 – top view ........................................................................................ 103 Figure 43: Dimensions of AC65/AC75 ................................................................................. 104 Figure 44: Molex board-to-board connector 52991-0808 on AC65/AC75............................ 107 Figure 45: Mating board-to-board connector 53748-0808 on application ............................ 108 Figure 46: AC65/AC75 sample application for Java............................................................. 110 Figure 47: Reference equipment for Type Approval ............................................................ 111 AC65/AC75_hd_v00.372 Page 6 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Document History Preceding document: "AC75 Hardware Interface Description" Version 00.251 New document: "AC65/AC75 Hardware Interface Description" Version 00.372 Chapter What is new Throughout document Added new product: AC65 module Added AC65 and general statement on difference between AC65 and AC75. 1.3 Updated list of standards. 1.3.1 Every portable mobile shall have an FCC Grant and IC Certificate of its own. 1.4 Added note on audio safety precautions. 3.5, 9 Removed all information related to specific types of batteries and specific vendors. 3.9 Removed note on required restart of module after removing and reinserting a SIM card during operation. 3.12 Removed section describing USB modem installation. For installation details see [11]. 3.15.4.1 Corrected description of master PCM timing with long or short frame selected. 3.15.4.2 Updated timing for slave mode of PCM interface (Figure 32 and Figure 33). 5.1 Added remark on SELV compliance. 5.5 Table 26: Modified RTC input voltage values (RTC Backup VDDLP). 5.6 Table 27: Different current consumption depending on whether autobauding enabled / disabled. 8.2 Added FCC and IC identifiers for AC65. Changed notes on mobile and fixed devices, added note on portable mobiles. 9.1 Added AC65 incl. Siemens ordering numbers. Preceding document: "AC75 Hardware Interface Description" Version 00.202 New document: "AC75 Hardware Interface Description" Version 00.251 Chapter What is new 3.3.4.2 Corrected description of deferred shutdown. 3.3.4.4 to 3.3.4.6 Alert URCs for undervoltage and overvoltage do not need to enabled by the user. 3.5.3 Added overdischarge release voltage 2.6V 9.1 Specified Siemens ordering numbers for AC75. Preceding document: "AC75 Hardware Interface Description" Version 00.020 New document: "AC75 Hardware Interface Description" Version 00.202 Chapter What is new 3.3.2 New chapter: Signal States after Startup. 3.3.1.1 More detailed description of IGT timing depending on Power-down or Charge-only mode. Added further details on timing after power-up. Added alert message “SHUTDOWN after Illegal PowerUp” AC65/AC75_hd_v00.372 Page 7 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Chapter What is new 3.3.1.2 New chapter: Configuring the IGT Line for Use as ON/OFF Switch 3.3.4.1 Revised Table 7: Temperature dependent behavior. 3.3.4.2, 3.3.4.3 Changed description. Added new section. 3.4 Minor text change. 3.3.1.3, 3.5.6, 3.7 To change from Charge-only mode to Normal mode the IGT line must be pulled low for at least 1s and then released. High state of IGT lets AC75 enter Normal mode. 3.5.6, 3.7 Added transition from Charge-only to Normal mode by switching off Airplane mode. 3.6 Added chapter on power saving. 3.12 AC75 does not support generic USB 2.0 High Speed hubs. 3.15.2.2 Added remarks on VMIC behaviour. 3.15.2.3 Replaced remark on VMIC behaviour. 3.15.4 Added Table 15: Configuration combinations for the PCM interface 5.1 New maximum values for voltage at analog pins with VMIC on/off. 5.2 Specified operating board temperature. Table 22: Temperature specified for charging is battery temperature (not ambient) 5.5 Specified internal pull-down resistors 330kΩ at TXD0, RXD0, TXD1, RXD1. Changed all VIHmin values from 2.0 to 2.15V. Corrected overview table: USB_DP was listed in wrong row. 5.7 New chapter: Electrical Characteristics of the Voiceband Part Modified description for Java “System.out” in sample application. New datasheet for recommended VARTA PoLiFlex® Lithium polymer battery. AC65/AC75_hd_v00.372 Page 8 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Introduction This document applies to the following Siemens products: • AC65 Module • AC75 Module The document describes the hardware of the AC65 and the AC75, both designed to connect to a cellular device application and the air interface. It helps you quickly retrieve interface specifications, electrical and mechanical details and information on the requirements to be considered for integrating further components. The difference between both modules is that AC75 additionally features EGPRS. Please note that except for EGPRS specific statements, all information provided below applies to both module types. Throughout the document, both modules are generally referred to as AC65/AC75. 1.1 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] Related Documents AC65 AT Command Set 00.372 AC75 AT Command Set 00.372 AC65/AC75 Release Notes 00.372 DSB75 Support Box - Evaluation Kit for Siemens Cellular Engines Application Note 02: Audio Interface Design for GSM Applications (AC65, AC75) Application Note 07: Rechargeable Lithium Batteries in GSM Applications Application Note 16: Upgrading Firmware on MC75, TC6x, AC65, AC75 Application Note 17: Over-The-Air Firmware Update for TC65, AC65, AC75 Application Note 22: Using TTY / CTM Equipment Application Note 26: Power Supply Design for GSM Applications Application Note 24: Application Developer’s Guide Application Note 32: Integrating USB into MC75, TC6x, AC65, AC75 Applications Multiplexer User's Guide Multiplex Driver Developer’s Guide for Windows 2000 and Windows XP Multiplex Driver Installation Guide for Windows 2000 and Windows XP Remote SAT User’s Guide for MC75, TC6x, AC65, AC75 Java User’s Guide for TC65, AC65, AC75 Java doc \wtk\doc\html\index.html AC65/AC75_hd_v00.372 Page 9 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 1.2 Terms and Abbreviations Abbreviation Description ADC Analog-to-Digital Converter AGC Automatic Gain Control ANSI American National Standards Institute ARFCN Absolute Radio Frequency Channel Number ARP Antenna Reference Point ASC0 / ASC1 Asynchronous Controller. Abbreviations used for first and second serial interface of AC65/AC75 Thermistor Constant B2B Board-to-board connector BER Bit Error Rate BTS Base Transceiver Station CB or CBM Cell Broadcast Message CE Conformité Européene (European Conformity) CHAP Challenge Handshake Authentication Protocol CPU Central Processing Unit CS Coding Scheme CSD Circuit Switched Data CTS Clear to Send DAC Digital-to-Analog Converter DAI Digital Audio Interface dBm0 Digital level, 3.14dBm0 corresponds to full scale, see ITU G.711, A-law DCE Data Communication Equipment (typically modems, e.g. Siemens GSM engine) DCS 1800 Digital Cellular System, also referred to as PCN DRX Discontinuous Reception DSB Development Support Box DSP Digital Signal Processor DSR Data Set Ready DTE Data Terminal Equipment (typically computer, terminal, printer or, for example, GSM application) DTR Data Terminal Ready DTX Discontinuous Transmission EFR Enhanced Full Rate EGSM Enhanced GSM EIRP Equivalent Isotropic Radiated Power EMC Electromagnetic Compatibility ERP Effective Radiated Power AC65/AC75_hd_v00.372 Page 10 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Abbreviation Description ESD Electrostatic Discharge ETS European Telecommunication Standard FCC Federal Communications Commission (U.S.) FDMA Frequency Division Multiple Access FR Full Rate GMSK Gaussian Minimum Shift Keying GPIO General Purpose Input/Output GPRS General Packet Radio Service GSM Global Standard for Mobile Communications HiZ High Impedance HR Half Rate I/O Input/Output IC Integrated Circuit IMEI International Mobile Equipment Identity ISO International Standards Organization ITU International Telecommunications Union kbps kbits per second LED Light Emitting Diode Li-Ion / Li+ Lithium-Ion Li battery Rechargeable Lithium Ion or Lithium Polymer battery Mbps Mbits per second MMI Man Machine Interface MO Mobile Originated MS Mobile Station (GSM engine), also referred to as TE MSISDN Mobile Station International ISDN number MT Mobile Terminated NTC Negative Temperature Coefficient OEM Original Equipment Manufacturer PA Power Amplifier PAP Password Authentication Protocol PBCCH Packet Switched Broadcast Control Channel PCB Printed Circuit Board PCL Power Control Level PCM Pulse Code Modulation PCN Personal Communications Network, also referred to as DCS 1800 PCS Personal Communication System, also referred to as GSM 1900 PDU Protocol Data Unit PLL Phase Locked Loop AC65/AC75_hd_v00.372 Page 11 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Abbreviation Description PPP Point-to-point protocol PSK Phase Shift Keying PSU Power Supply Unit R&TTE Radio and Telecommunication Terminal Equipment RAM Random Access Memory RF Radio Frequency RMS Root Mean Square (value) ROM Read-only Memory RTC Real Time Clock RTS Request to Send Rx Receive Direction SAR Specific Absorption Rate SELV Safety Extra Low Voltage SIM Subscriber Identification Module SMS Short Message Service SPI Serial Peripheral Interface SRAM Static Random Access Memory TA Terminal adapter (e.g. GSM engine) TDMA Time Division Multiple Access TE Terminal Equipment, also referred to as DTE Tx Transmit Direction UART Universal asynchronous receiver-transmitter URC Unsolicited Result Code USB Universal Serial Bus USSD Unstructured Supplementary Service Data VSWR Voltage Standing Wave Ratio Phonebook abbreviations FD SIM fixdialing phonebook LD SIM last dialing phonebook (list of numbers most recently dialed) MC Mobile Equipment list of unanswered MT calls (missed calls) ME Mobile Equipment phonebook ON Own numbers (MSISDNs) stored on SIM or ME RC Mobile Equipment list of received calls SM SIM phonebook AC65/AC75_hd_v00.372 Page 12 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 1.3 Type Approval AC65/AC75 is designed to comply with the directives and standards listed below. Please note that the product is still in a pre-release state and, therefore, type approval and testing procedures have not yet been completed. Table 1: Directives 99/05/EC Directive of the European Parliament and of the council of 9 March 1999 on radio equipment and telecommunications terminal equipment and the mutual recognition of their conformity (in short referred to as R&TTE Directive 1999/5/EC). The product is labeled with the CE conformity mark 89/336/EC Directive on electromagnetic compatibility 73/23/EC Directive on electrical equipment designed for use within certain voltage limits (Low Voltage Directive) 95/94/EC Automotive EMC directive 2002/95/EC Directive of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS) Table 2: Standards of North American type approval CFR Title 47 Code of Federal Regulations, Part 22 and Part 24 (Telecommunications, PCS); US Equipment Authorization FCC UL 60 950 Product Safety Certification (Safety requirements) NAPRD.03 V3.6.1 Overview of PCS Type certification review board Mobile Equipment Type Certification and IMEI control PCS Type Certification Review board (PTCRB) RSS133 (Issue2) AC65/AC75_hd_v00.372 Canadian Standard Page 13 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Table 3: Standards of European type approval 3GPP TS 51.010-1 Digital cellular telecommunications system (Phase 2); Mobile Station (MS) conformance specification ETSI EN 301 511 V9.0.2 Candidate Harmonized European Standard (Telecommunications series) Global System for Mobile communications (GSM); Harmonized standard for mobile stations in the GSM 900 and DCS 1800 bands covering essential requirements under article 3.2 of the R&TTE directive (1999/5/EC) (GSM 13.11 version 7.0.1 Release 1998) GCF-CC V3.21.0 Global Certification Forum - Certification Criteria ETSI EN 301 489-1 V1.4.1 Candidate Harmonized European Standard (Telecommunications series) Electro Magnetic Compatibility and Radio spectrum Matters (ERM); Electro Magnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common Technical Requirements ETSI EN 301 489-7 V1.2.1 (2000-09) Candidate Harmonized European Standard (Telecommunications series) Electro Magnetic Compatibility and Radio spectrum Matters (ERM); Electro Magnetic Compatibility (EMC) standard for radio equipment and services; Part 7: Specific conditions for mobile and portable radio and ancillary equipment of digital cellular radio telecommunications systems (GSM and DCS) IEC/EN 60950-1 (2001) Safety of information technology equipment (2000) Table 4: Requirements of quality IEC 60068 Environmental testing DIN EN 60529 IP codes AC65/AC75_hd_v00.372 Page 14 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 1.3.1 SAR Requirements Specific to Portable Mobiles Mobile phones, PDAs or other portable transmitters and receivers incorporating a GSM module must be in accordance with the guidelines for human exposure to radio frequency energy. This requires the Specific Absorption Rate (SAR) of portable AC65/AC75 based applications to be evaluated and approved for compliance with national and/or international regulations. Since the SAR value varies significantly with the individual product design manufacturers are advised to submit their product for approval if designed for portable use. For European and US markets the relevant directives are mentioned below. It is the responsibility of the manufacturer of the final product to verify whether or not further standards, recommendations or directives are in force outside these areas. Products intended for sale on US markets ES 59005/ANSI C95.1 Considerations for evaluation of human exposure to Electromagnetic Fields (EMFs) from Mobile Telecommunication Equipment (MTE) in the frequency range 30MHz - 6GHz Products intended for sale on European markets EN 50360 Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300MHz - 3GHz) IMPORTANT: Manufacturers of portable applications based on AC65/AC75 modules are required to have their final product certified and apply for their own FCC Grant and IC Certificate related to the specific portable mobile. See also Chapter 8.2. AC65/AC75_hd_v00.372 Page 15 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 1.4 Safety Precautions The following safety precautions must be observed during all phases of the operation, usage, service or repair of any cellular terminal or mobile incorporating AC65/AC75. Manufacturers of the cellular terminal are advised to convey the following safety information to users and operating personnel and to incorporate these guidelines into all manuals supplied with the product. Failure to comply with these precautions violates safety standards of design, manufacture and intended use of the product. Siemens AG assumes no liability for customer’s failure to comply with these precautions. When in a hospital or other health care facility, observe the restrictions on the use of mobiles. Switch the cellular terminal or mobile off, if instructed to do so by the guidelines posted in sensitive areas. Medical equipment may be sensitive to RF energy. The operation of cardiac pacemakers, other implanted medical equipment and hearing aids can be affected by interference from cellular terminals or mobiles placed close to the device. If in doubt about potential danger, contact the physician or the manufacturer of the device to verify that the equipment is properly shielded. Pacemaker patients are advised to keep their hand-held mobile away from the pacemaker, while it is on. Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it cannot be switched on inadvertently. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communications systems. Failure to observe these instructions may lead to the suspension or denial of cellular services to the offender, legal action, or both. Do not operate the cellular terminal or mobile in the presence of flammable gases or fumes. Switch off the cellular terminal when you are near petrol stations, fuel depots, chemical plants or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmospheres can constitute a safety hazard. Your cellular terminal or mobile receives and transmits radio frequency energy while switched on. Remember that interference can occur if it is used close to TV sets, radios, computers or inadequately shielded equipment. Follow any special regulations and always switch off the cellular terminal or mobile wherever forbidden, or when you suspect that it may cause interference or danger. Road safety comes first! Do not use a hand-held cellular terminal or mobile when driving a vehicle, unless it is securely mounted in a holder for speakerphone operation. Before making a call with a hand-held terminal or mobile, park the vehicle. Speakerphones must be installed by qualified personnel. Faulty installation or operation can constitute a safety hazard. AC65/AC75_hd_v00.372 Page 16 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary SOS IMPORTANT! Cellular terminals or mobiles operate using radio signals and cellular networks. Because of this, connection cannot be guaranteed at all times under all conditions. Therefore, you should never rely solely upon any wireless device for essential communications, for example emergency calls. Remember, in order to make or receive calls, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength. Some networks do not allow for emergency calls if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may need to deactivate those features before you can make an emergency call. Some networks require that a valid SIM card be properly inserted in the cellular terminal or mobile. Bear in mind that exposure to excessive levels of noise can cause physical damage to users! With regard to acoustic shock, the cellular application must be designed to avoid unintentional increase of amplification, e.g. for a highly sensitive earpiece. A protection circuit should be implemented in the cellular application. AC65/AC75_hd_v00.372 Page 17 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Product Concept 2.1 Key Features at a Glance Feature Implementation General Frequency bands Quad band: GSM 850/900/1800/1900MHz GSM class Small MS Output power (according to Release 99, V5) Class 4 (+33dBm ±2dB) for EGSM850 Class 4 (+33dBm ±2dB) for EGSM900 Class 1 (+30dBm ±2dB) for GSM1800 Class 1 (+30dBm ±2dB) for GSM1900 AC75 only: Class E2 (+27dBm ± 3dB) for GSM 850 8-PSK Class E2 (+27dBm ± 3dB) for GSM 900 8-PSK Class E2 (+26dBm +3 /-4dB) for GSM 1800 8-PSK Class E2 (+26dBm +3 /-4dB) for GSM 1900 8-PSK The values stated above are maximum limits. According to Release 99, Version 5, the maximum output power in a multislot configuration may be lower. The nominal reduction of maximum output power varies with the number of uplink timeslots used and amounts to 3.0dB for 2Tx, 4.8dB for 3Tx and 6.0dB for 4Tx. Power supply 3.3V to 4.5V Ambient operating temperature according to IEC 60068-2 Normal operation Restricted operation -30°C to +75°C -30°C / +85°C Physical Dimensions: Weight: 33.9mm x 55mm x max. 4mm approx. 8.5g RoHS All hardware components fully compliant with EU RoHS Directive GSM / GPRS / EGPRS features Data transfer GPRS • Multislot Class 12 • Full PBCCH support • Mobile Station Class B • Coding Scheme 1 – 4 EGPRS (AC75 only) • Multislot Class 10 • Mobile Station Class B • Modulation and Coding Scheme MCS 1 – 9 AC65/AC75_hd_v00.372 Page 18 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Feature Implementation CSD • V.110, RLP, non-transparent • 2.4, 4.8, 9.6, 14.4kbps • USSD PPP-stack for GPRS data transfer SMS • • • • • Fax Group 3; Class 1 Audio Speech codecs: • Half rate HR (ETS 06.20) • Full rate FR (ETS 06.10) • Enhanced full rate EFR (ETS 06.50/06.60/06.80) • Adaptive Multi Rate AMR Speakerphone operation (VDA), echo cancellation, suppression, DTMF, 7 ringing tones Point-to-point MT and MO Cell broadcast Text and PDU mode Storage: SIM card plus 25 SMS locations in mobile equipment Transmission of SMS alternatively over CSD or GPRS. Preferred mode can be user defined. noise Software AT commands AT-Hayes GSM 07.05 and 07.07, Siemens AT commands for RIL compatibility (NDIS/RIL) MicrosoftTM compatibility RIL / NDIS for Pocket PC and Smartphone Java platform JDK Version: 1.4.2_09 Java Virtual Machine with APIs for AT Parser, Serial Interface, FlashFileSystem and TCP/IP Stack. Major benefits: seamless integration into Java applications, ease of programming, no need for application microcontroller, extremely cost-efficient hardware and software design – ideal platform for industrial GSM applications. The memory space available for Java programs is around 1.7 MB in the flash file system and around 400k RAM. Application code and data share the space in the flash file system and in RAM. SIM Application Toolkit SAT Release 99 TCP/IP stack Access by AT commands IP addresses IP version 6 Remote SIM Access AC65/AC75 supports Remote SIM Access. RSA enables AC65/AC75 to use a remote SIM card via its serial interface and an external application, in addition to the SIM card locally attached to the dedicated lines of the application interface. The connection between the external application and the remote SIM card can be a Bluetooth wireless link or a serial link. The necessary protocols and procedures are implemented according to the “SIM Access Profile Interoperability Specification of the Bluetooth Special Interest Group”. AC65/AC75_hd_v00.372 Page 19 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Feature Implementation Firmware update Generic update from host application over ASC0, ASC1 or USB. Over-the-air (OTA) firmware update is possible via SPI interface. Interfaces 2 serial interfaces ASC0: • 8-wire modem interface with status and control lines, unbalanced, asynchronous • Fixed bit rates: 300 bps to 460,800 bps • Autobauding: 1,200 bps to 460,800 bps • RTS0/CTS0 and XON/XOFF flow control. • Multiplex ability according to GSM 07.10 Multiplexer Protocol. ASC1: • 4-wire, unbalanced asynchronous interface • Fixed bit rates: 300 bps to 460,800 bps • RTS1/CTS1 and software XON/XOFF flow control USB Supports a USB 2.0 Full Speed (12Mbit/s) slave interface. I2 C I2C bus for 7-bit addressing and transmission rates up to 400kbps. Programmable with AT^SSPI command. Alternatively, all pins of the I²C interface are configurable as SPI. SPI Serial Peripheral Interface for transmission rates up to 6.5 Mbps. Programmable with AT^SSPI command. If the SPI is active the I²C interface is not available. Audio • • 2 analog interfaces (2 microphone inputs and 2 headphone outputs with microphone power supply) 1 digital interface (PCM) SIM interface Supported SIM cards: 3V, 1.8V Antenna • • Module interface 50Ohms. External antenna can be connected via antenna connector. Antenna diagnostic 80-pin board-to-board connector Power on/off, Reset Power on/off • • • Switch-on by hardware pin IGT Switch-off by AT command (AT^SMSO) Automatic switch-off in case of critical temperature and voltage conditions. Reset • • Orderly shutdown and reset by AT command Emergency reset by hardware pin EMERG_RST and IGT. Special features Charging Supports management of rechargeable Lithium Ion and Lithium Polymer batteries Real time clock Timer functions via AT commands AC65/AC75_hd_v00.372 Page 20 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Feature Implementation GPIO 10 I/O pins of the application interface programmable as GPIO. Programming is done via AT commands. Alternatively, GPIO pin10 is configurable as pulse counter. Pulse counter Pulse counter for measuring pulse rates from 0 to 1000 pulses per second. If the pulse counter is active the GPIO10 pin is not available. DAC output Digital-to-Analog Converter which can provide a PWM signal. Phonebook SIM and phone Evaluation kit DSB75 DSB75 Evaluation Board designed to test and type approve Siemens cellular engines and provide a sample configuration for application engineering. 2.2 AC65/AC75 System Overview AC65 / AC75 Antenna Diagnostic Antenna Interface DAC Application Interface USB USB Host 9x GPIO SPI Slave I2C SPI I2C Slave SIM SIM card 1x GPIO Pulse Counter ASC0 ASC1 (modem) UART Digital Audio Analog Audio Charge Power Supply Audio Codec Headphones or Headsets Charging circuit Charger User Application Figure 1: AC65/AC75 system overview AC65/AC75_hd_v00.372 Page 21 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 2.3 Circuit Concept Figure 1 shows a block diagram of the AC65/AC75 module and illustrates the major functional components: Baseband block: • Digital baseband processor with DSP • Analog processor with power supply unit (PSU) • Flash / SRAM (stacked) • Application interface (board-to-board connector) • Antenna diagnostic RF section: • RF transceiver • RF power amplifier • RF front end • Antenna connector SRAM D(0:15) Front End A(0:24) Digital Baseband Processer with DSP 8 ASC(0) RF Power Amplifier 26MHz I2C/SPI SPI USB GPIO 10 Interface RF - Baseband RTC CCIN CCRST CCIO CCCLK CCVCC DAI SYNC Reset 32.768kHz Transceiver ASC(1) 6 SIM Interface PWR_IND VEXT RF Control Bus Analog Controller with PSU 4 I/Q REFCHG NTC Measuring Network Antenna Diagnostic DAC_OUT EMERG_RST RESET TEMP2 10 Audio analog IGT BATTYPE VDDLP CHARGEGATE VCHARGE ISENSE ADC Application Interface (80 pin) RF-Part 26MHz Flash RD; WR; CS; WAIT VSENSE BATT_TEMP AC65/AC75 BATT+ GND Figure 2: AC65/AC75 block diagram AC65/AC75_hd_v00.372 Page 22 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Application Interface AC65/AC75 is equipped with an 80-pin board-to-board connector that connects to the external application. The host interface incorporates several sub-interfaces described in the following chapters: • • • • • • • • • • • Power supply - see Chapter 3.1 Charger interface – see Chapter 3.5 SIM interface - see Chapter 3.9 Serial interface ASC0 - see Chapter 3.10 Serial interface ASC1 - see Chapter 3.11 Serial interface USB - see Chapter 3.12 Serial interface I²C/SPI - see Chapter 3.13 and 3.14 Two analog audio interfaces - see Chapter 3.15 Digital audio interface (DAI) - see Chapter 3.15 and 3.15.4 10 lines GPIO interface – see Chapter 3.16 Status and control lines: IGT, EMERG_RST, PWR_IND, SYNC - see Table 26 AC65/AC75_hd_v00.372 Page 23 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.1 Operating Modes The table below briefly summarizes the various operating modes referred to in the following chapters. Table 5: Overview of operating modes Normal operation POWER DOWN GSM / GPRS SLEEP Various power save modes set with AT+CFUN command. Software is active to minimum extent. If the module was registered to the GSM network in IDLE mode, it is registered and paging with the BTS in SLEEP mode, too. Power saving can be chosen at different levels: The NON-CYCLIC SLEEP mode (AT+CFUN=0) disables the AT interface. The CYCLIC SLEEP modes AT+CFUN=7 and 9 alternatingly activate and deactivate the AT interfaces to allow permanent access to all AT commands. GSM IDLE Software is active. Once registered to the GSM network, paging with BTS is carried out. The module is ready to send and receive. GSM TALK Connection between two subscribers is in progress. Power consumption depends on network coverage individual settings, such as DTX off/on, FR/EFR/HR, hopping sequences, antenna. GPRS IDLE EGPRS IDLE Module is ready for GPRS/EGPRS data transfer, but no data is currently sent or received. Power consumption depends on network settings and GPRS/EGPRS configuration (e.g. multislot settings). GPRS DATA EGPRS DATA GPRS/EGPRS data transfer in progress. Power consumption depends on network settings (e.g. power control level), uplink / downlink data rates, GPRS configuration (e.g. used multislot settings) and reduction of maximum output power. Normal shutdown after sending the AT^SMSO command. Only a voltage regulator is active for powering the RTC. Software is not active. Interfaces are not accessible. Operating voltage (connected to BATT+) remains applied. AC65/AC75_hd_v00.372 Page 24 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Airplane mode Airplane mode shuts down the radio part of the module, causes the module to log off from the GSM/GPRS network and disables all AT commands whose execution requires a radio connection. Airplane mode can be controlled by using the AT commands AT^SCFG and AT+CALA: • With AT^SCFG=MEopMode/Airplane/OnStart the module can be configured to enter the Airplane mode each time when switched on or reset. • The parameter AT^SCFG=MEopMode/Airplane can be used to switch back and forth between Normal mode and Airplane mode any time during operation. • Setting an alarm time with AT+CALA followed by AT^SMSO wakes the module up into Airplane mode at the scheduled time. Charge-only mode Limited operation for battery powered applications. Enables charging while module is detached from GSM network. Limited number of AT commands is accessible. Charge-only mode applies when the charger is connected if the module was powered down with AT^SMSO. Charge mode during normal operation Normal operation (SLEEP, IDLE, TALK, GPRS/EGPRS IDLE, GPRS/EGPRS DATA) and charging running in parallel. Charge mode changes to Charge-only mode when the module is powered down before charging has been completed. See Table 11 for the various options proceeding from one mode to another. AC65/AC75_hd_v00.372 Page 25 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.2 Power Supply AC65/AC75 needs to be connected to a power supply at the B2B connector (5 pins each BATT+ and GND). The power supply of AC65/AC75 has to be a single voltage source at BATT+. It must be able to provide the peak current during the uplink transmission. All the key functions for supplying power to the device are handled by the power management section of the analog controller. This IC provides the following features: • Stabilizes the supply voltages for the GSM baseband using low drop linear voltage regulators. • Switches the module's power voltages for the power-up and -down procedures. • Delivers, across the VEXT pin, a regulated voltage for an external application. This voltage is not available in Power-down mode. • SIM switch to provide SIM power supply. 3.2.1 Minimizing Power Losses When designing the power supply for your application please pay specific attention to power losses. Ensure that the input voltage VBATT+ never drops below 3.3V on the AC65/AC75 board, not even in a transmit burst where current consumption can rise to typical peaks of 2A. It should be noted that AC65/AC75 switches off when exceeding these limits. Any voltage drops that may occur in a transmit burst should not exceed 400mV. The measurement network monitors outburst and inburst values. The drop is the difference of both values. The maximum drop (Dmax) since the last start of the module will be saved. In IDLE and SLEEP mode, the module switches off if the minimum battery voltage (Vbattmin) is reached. Example: VImin = 3.3V Dmax = 0.4V Vbattmin = VImin + Dmax Vbattmin = 3.3V + 0.4V = 3.7V The best approach to reducing voltage drops is to use a board-to-board connection as recommended, and a low impedance power source. The resistance of the power supply lines on the host board and of a battery pack should also be considered. Note: If the application design requires an adapter cable between both board-to-board connectors, use a flex cable as short as possible in order to minimize power losses. AC65/AC75_hd_v00.372 Page 26 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Example: If the length of the flex cable reaches the maximum length of 100mm, this connection may cause, for example, a resistance of 30mΩ in the BATT+ line and 30mΩ in the GND line. As a result, a 2A transmit burst would add up to a total voltage drop of 120mV. Plus, if a battery pack is involved, further losses may occur due to the resistance across the battery lines and the internal resistance of the battery including its protection circuit. Figure 3: Power supply limits during transmit burst 3.2.2 Measuring the Supply Voltage VBATT+ The reference points for measuring the supply voltage VBATT+ on the module are BATT+ and GND, both accessible at a capacitor located close to the board-to-board connector of the module. Reference point BATT+ Reference point GND Figure 4: Position of the reference points BATT+ and GND 3.2.3 Monitoring Power Supply by AT Command To monitor the supply voltage you can also use the AT^SBV command which returns the value related to the reference points BATT+ and GND. The module continuously measures the voltage at intervals depending on the operating mode of the RF interface. The duration of measuring ranges from 0.5s in TALK/DATA mode to 50s when AC65/AC75 is in IDLE mode or Limited Service (deregistered). The displayed voltage (in mV) is averaged over the last measuring period before the AT^SBV command was executed. AC65/AC75_hd_v00.372 Page 27 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.3 Power-Up / Power-Down Scenarios In general, be sure not to turn on AC65/AC75 while it is beyond the safety limits of voltage and temperature stated in Chapter 5.1. AC65/AC75 would immediately switch off after having started and detected these inappropriate conditions. In extreme cases this can cause permanent damage to the module. 3.3.1 Turn on AC65/AC75 AC65/AC75 can be started in a variety of ways as described in the following sections: • Hardware driven start-up by IGT line: starts Normal mode or Airplane mode (see Section 3.3.1.1) • Software controlled reset by AT+CFUN command: starts Normal mode or Airplane mode (see Section 3.3.1.4) • Hardware driven start-up by VCHARGE line: starts charging algorithm and Charge-only mode (see Section 3.3.1.3) • Wake-up from Power-down mode by using RTC interrupt: starts Airplane mode The option whether to start into Normal mode or Airplane mode depends on the settings made with the AT^SCFG command or AT+CALA. With AT+CALA, followed by AT^SMSO the module can be configured to restart into Airplane mode at a scheduled alarm time. Switching back and forth between Normal mode and Airplane mode is possible any time during operation by using the AT^SCFG command. After startup or mode change the following URCs indicate the module’s ready state: • “SYSSTART” indicates that the module has entered Normal mode. • “^SYSSTART AIRPLANE MODE” indicates that the module has entered Airplane mode. • “^SYSSTART CHARGE ONLY MODE” indicates that the module has entered the Charge-only mode. These URCs are indicated only if the module is set to a fixed bit rate, i.e. they do not appear if autobauding is enabled (AT+IPR≠0). Detailed explanations on AT^SCFG, AT+CFUN, AT+CALA, Airplane mode and AT+IPR can be found in [1]. 3.3.1.1 Turn on AC65/AC75 Using Ignition Line IGT When AC65/AC75 is in Power-down mode or Charge-only mode, it can be started to Normal mode or Airplane mode by driving the IGT (ignition) line to ground. This must be accomplished with an open drain/collector driver to avoid current flowing into this pin. The module will start up when both of the following two conditions are met: • The supply voltage applied at BATT+ must be in the operating range. • The IGT line needs to be driven low for at least 400ms in Power-down mode or at least 2s in Charge-only mode. When released IGT goes high and causes the module to start. Considering different strategies of host application design the figures below show two approaches to meet this requirement: The example in Figure 5 assumes that IGT is activated after BATT+ has already been applied. The example in Figure 6 assumes that IGT is held low before BATT+ is switched on. In either case, to power on the module, ensure that low state of IGT takes at least 400ms (Power-down mode) or 2s (Charge-only mode) from the moment the voltage at BATT+ is available. For Charge-only mode see also Chapter 3.5.6. AC65/AC75_hd_v00.372 Page 28 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Assertion of CTS indicates that the module is ready to receive data from the host application. In addition, if configured to a fixed bit rate (AT+IPR≠0), the module will send the URC “^SYSSTART” or “^SYSSTART AIRPLANE MODE” which notifies the host application that the first AT command can be sent to the module. The duration until this URC is output varies with the SIM card and may take a couple of seconds. Please note that no “^SYSSTART” or “^SYSSTART AIRPLANE MODE” URC will be generated if autobauding (AT+IPR=0) is enabled. To allow the application to detect the ready state of the module we recommend using hardware flow control which can be set with AT\Q or AT+ICF (see [1] for details). The default setting of AC65/AC75 is AT\Q0 (no flow control) which shall be altered to AT\Q3 (RTS/CTS handshake). If the application design does not integrate RTS/CTS lines the host application shall wait at least for the “^SYSSTART” or “^SYSSTART AIRPLANE MODE” URC. However, if the URCs are neither used (due to autobauding) then the only way of checking the module’s ready state is polling. To do so, try to send characters (e.g. “at”) until the module is responding. See also Chapter 3.3.2 “Signal States after Startup” BATT+ tmin = >400ms IGT HiZ PWR_IND 120ms EMERG_RST VEXT TXD0/TXD1/RTS0/RST1/DTR0 (driven by the application) CTS0/CTS1/DSR0/DCD0 Undefined Interface pins Defined ca. 500 ms Figure 5: Power-on with operating voltage at BATT+ applied before activating IGT AC65/AC75_hd_v00.372 Page 29 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary BATT+ tmin = >400ms HiZ IGT PWR_IND 120ms EMERG_RST VEXT TXD0/TXD1/RTS0/RST1/DTR0 (driven by the application) CTS0/CTS1/DSR0/DCD0 Undefined Defined Interface pins ca. 500 ms Figure 6: Power-on with IGT held low before switching on operating voltage at BATT+ If the IGT line is driven low for less than 400ms the module will, instead of starting up, send only the alert message “SHUTDOWN after Illegal PowerUp” to the host application. The alert message appears on the serial interfaces ASC0 and ASC1 at a fixed bit rate of 115200bps. If other fixed bit rates or autobauding are set, the URC delivers only undefined characters. The message will not be indicated on the USB interface. AC65/AC75_hd_v00.372 Page 30 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.3.1.2 Configuring the IGT Line for Use as ON/OFF Switch The IGT line can be configured for use in two different switching modes: You can set the IGT line to switch on the module only, or to switch it on and off. The switching mode is determined by the parameter “MEShutdown/OnIgnition” of the AT^SCFG command. This approach is useful for application manufacturers who wish to have an ON/OFF switch installed on the host device. By factory default, the ON/OFF switch mode of IGT is disabled: at^scfg=meshutdown/onignition # Query the current status of IGT. ^SCFG: "MEShutdown/OnIgnition","off" # IGT can be used only to switch on AC65/AC75. IGT works as described in Section 3.3.1.1. OK To configure IGT for use as ON/OFF switch: at^scfg=meshutdown/onignition,on # Enable the ON/OFF switch mode of IGT. ^SCFG: "MEShutdown/OnIgnition","on" # IGT can be used to switch on and off AC65/AC75. OK We strongly recommend taking great care before changing the switching mode of the IGT line. To ensure that the IGT line works properly as ON/OFF switch it is of vital importance that the following conditions are met. Switch-on condition: If the AC65/AC75 is off, the IGT line must be asserted for at least 400ms before being released. The module switches on after 400ms. Switch-off condition: If the AC65/AC75 is on, the IGT line must be asserted for at least 1s before being released. The module switches off after the line is released. The switch-off routine is identical with the procedure initiated by AT^SMSO, i.e. the software performs an orderly shutdown as described in Section 3.3.3.1. Before switching off the module wait at least 2 seconds after startup. ON OFF |________|~~~~~~~~~~~~~|________|~~~~ 0.4s | ≥ 2s | ≥ 1s ~~~~ Figure 7: Timing of IGT if used as ON/OFF switch AC65/AC75_hd_v00.372 Page 31 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.3.1.3 Turn on AC65/AC75 Using the VCHARGE Signal As detailed in Section 3.5.6, the charging adapter can be connected regardless of the module’s operating mode. If the charger is connected to the charger input of the external charging circuit and the module’s VCHARGE pin while AC65/AC75 is off, and the battery voltage is above the undervoltage lockout threshold, processor controlled fast charging starts (see Section 3.5.5). AC65/AC75 enters a restricted mode, referred to as Charge-only mode where only the charging algorithm will be launched. During the Charge-only mode AC65/AC75 is neither logged on to the GSM network nor are the serial interfaces fully accessible. To switch from Charge-only mode to Normal mode the ignition line (IGT) must be pulled low for at least 2 seconds. When released, the IGT line goes high and causes the module to enter the Normal mode. See also Section 3.5.6. 3.3.1.4 Reset AC65/AC75 via AT+CFUN Command To reset and restart the AC65/AC75 module use the command AT+CFUN. You can enter AT+CFUN=,1 or AT+CFUN=x,1, where x may be in the range from 0 to 9. See [1] for details. If configured to a fix baud rate (AT+IPR≠0), the module will send the URC “^SYSSTART” or “^SYSSTART AIRPLANE MODE” to notify that it is ready to operate. If autobauding is enabled (AT+IPR=0) there will be no notification. To register to the network SIM PIN authentication is necessary after restart. AC65/AC75_hd_v00.372 Page 32 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.3.1.5 Reset or Turn off AC65/AC75 in Case of Emergency Caution: Use the EMERG_RST pin only when, due to serious problems, the software is not responding for more than 5 seconds. Pulling the EMERG_RST pin causes the loss of all information stored in the volatile memory. Therefore, this procedure is intended only for use in case of emergency, e.g. if AC65/AC75 does not respond, if reset or shutdown via AT command fails. The EMERG_RST signal is available on the application interface. To control the EMERG_RST line it is recommended to use an open drain / collector driver. The EMERG_RST line can be used to switch off or to reset the module. In any case the EMERG_RST line must be pulled to ground for ≥10ms. Then, after releasing the EMERG_RST line the module restarts if IGT is held low for at least 400ms. Otherwise, if IGT is not low the module switches off. In this case, it can be restarted any time as described in Section 3.3.1.1. After hardware driven restart, notification via “^SYSSTART” or “^SYSSTART AIRPLANE” URC is the same as in case of restart by IGT or AT command. To register to the network SIM PIN authentication is necessary after restart. 3.3.1.6 Using EMERG_RST to Reset Application(s) or External Device(s) When the module starts up, while IGT is held low for 400ms, the EMERG_RST signal goes low for 120ms as shown in Figure 5 and Figure 6. During this 120ms period, EMERG_RST becomes an output which can be used to reset application(s) or external device(s) connected to the module. After the 120ms period, i.e. during operation of the module, the EMERG_RST is an input. Specifications of the input and output mode of EMERG_RST can be found in Table 26. AC65/AC75_hd_v00.372 Page 33 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.3.2 Signal States after Startup Table 6 describes the various states each interface pin passes through after startup and during operation. As shown in Figure 5 and Figure 6 the pins are in undefined state while the module is initializing. Once the startup initialization has completed, i.e. when CTS is high and the software is running, all pins are in defined state. The state of several pins will change again once the respective interface is activated or configured by AT command. Table 6: Signal states Signal name Undefined state during startup Defined state initialization SYNC CCIN I, PU(100k) I, PU(100k) CCRST CCIO CCCLK CCVCC 2.9V RXD0 I, PU after Active state after configuration by AT command GPIO SPI IC DAI TXD0 I, PU I, PD(330k) CTS0 RTS0 I, PU I, PD(330k) DTR0 I, PU DCD0 DSR0 RING0 I, PU RXD1 TXD1 I, PD(330k) I, PD(330k) CTS1 RTS1 I, PD(330k) I, PD(330k) SPIDI Tristate Tristate SPICS Tristate Tristate I2CDAT_SPIDO IO I2CCLK_SPICLK GPIO1 I, PU Tristate IO GPIO2 I, PU Tristate IO GPIO3 I, PU Tristate IO GPIO4 I, PD Tristate IO GPIO5 Tristate IO GPIO6 Tristate IO GPIO7 I, PU Tristate IO GPIO8 Tristate IO GPIO9 Tristate IO GPIO10 Tristate IO DAC_OUT DAI0 Tristate DAI1 Tristate DAI2 Tristate DAI3 Tristate DAI4 Tristate DAI5 Tristate DAI6 Tristate For abbreviations, see below. AC65/AC75_hd_v00.372 Page 34 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Abbreviations used in Table 6: L = Low output level H = High output level I = Input O = Output AC65/AC75_hd_v00.372 PD = Pull down with min +15µA and max. +100µA PD(…k) = Fix pull down resistor PU = Pull up with min -15µA and max. -100µA PU(…k) = Fix pull up resistor Page 35 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.3.3 Turn off AC65/AC75 AC65/AC75 can be turned off as follows: • Normal shutdown: Software controlled by AT^SMSO command • Automatic shutdown: Takes effect if board or battery temperature is out of range or if undervoltage or overvoltage conditions occur. 3.3.3.1 Turn off AC65/AC75 Using AT Command The best and safest approach to powering down AC65/AC75 is to issue the AT^SMSO command. This procedure lets AC65/AC75 log off from the network and allows the software to enter into a secure state and safe data before disconnecting the power supply. The mode is referred to as Power-down mode. In this mode, only the RTC stays active. Before switching off the device sends the following response: ^SMSO: MS OFF OK ^SHUTDOWN After sending AT^SMSO do not enter any other AT commands. There are two ways to verify when the module turns off: • Wait for the URC “^SHUTDOWN”. It indicates that data have been stored non-volatile and the module turns off in less than 1 second. • Also, you can monitor the PWR_IND pin. High state of PWR_IND definitely indicates that the module is switched off. Be sure not to disconnect the supply voltage VBATT+ before the URC “^SHUTDOWN” has been issued and the PWR_IND signal has gone high. Otherwise you run the risk of losing data. Signal states during turn-off are shown in Figure 8. While AC65/AC75 is in Power-down mode the application interface is switched off and must not be fed from any other source. Therefore, your application must be designed to avoid any current flow into any digital pins of the application interface, especially of the serial interfaces. No special care is required for the USB interface which is protected from reverse current. AC65/AC75_hd_v00.372 Page 36 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary PWR_IND See note 1 VEXT CTS0/CTS1/DSR0/DTR0 TXD0/TXD1/RTS0/RTS1/DTR0 (driven by the application) Defined Undefined Interface pins Figure 8: Signal states during turn-off procedure Note 1: Depending on capacitance load from host application 3.3.3.2 Leakage Current in Power-Down Mode The leakage current in Power-down mode varies depending on the following conditions: • If the supply voltage at BATT+ was disconnected and then applied again without starting up the AC65/AC75 module, the leakage current ranges between 90µA and 100µA. • If the AC65/AC75 module is started and afterwards powered down with AT^SMSO, then the leakage current is only 50µA. Therefore, in order to minimize the leakage current take care to start up the module at least once before it is powered down. AC65/AC75_hd_v00.372 Page 37 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.3.3.3 Turn on/off AC65/AC75 Applications with Integrated USB In a Windows environment, the USB COM port emulation causes the USB port of AC65/AC75 to appear as a virtual COM port (VCOM port). The VCOM port emulation is only present when Windows can communicate with the module, and is lost when the module shuts down. Therefore, the host application or Terminal program must be disconnected from the USB VCOM port each time the module is restarted. Restart after shutdown with AT^SMSO: After entering the power-down command AT^SMSO on one of the interfaces (ASC0, ASC1, USB) the host application or Terminal program used on the USB VCOM port must be closed before the module is restarted by activating the IGT line. Software reset with AT+CFUN=x,1: Likewise, when using the reset command AT+CFUN=x,1 on one of the interfaces (ASC0, ASC1, USB) ensure that the host application or Terminal program on the USB VCOM port be closed down before the module restarts. Note that if AT+CFUN=x,1 is entered on the USB interface the application or Terminal program on the USB VCOM port must be closed immediately after the response OK is returned. AC65/AC75_hd_v00.372 Page 38 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.3.4 Automatic Shutdown Automatic shutdown takes effect if: • the AC65/AC75 board is exceeding the critical limits of overtemperature or undertemperature • the battery is exceeding the critical limits of overtemperature or undertemperature • undervoltage or overvoltage is detected See Charge-only mode described in Section 3.5.6 for exceptions. The automatic shutdown procedure is equivalent to the Power-down initiated with the AT^SMSO command, i.e. AC65/AC75 logs off from the network and the software enters a secure state avoiding loss of data. Alert messages transmitted before the device switches off are implemented as Unsolicited Result Codes (URCs). The URC presentation mode varies with the condition, please see Chapters 3.3.4.1 to 3.3.4.5 for details. For further instructions on AT commands refer to [1]. 3.3.4.1 Thermal Shutdown The board temperature is constantly monitored by an internal NTC resistor located on the PCB. The NTC that detects the battery temperature must be part of the battery pack circuit as described in 3.5.3 The values detected by either NTC resistor are measured directly on the board or the battery and therefore, are not fully identical with the ambient temperature. Each time the board or battery temperature goes out of range or back to normal, AC65/AC75 instantly displays an alert (if enabled). • URCs indicating the level "1" or "-1" allow the user to take appropriate precautions, such as protecting the module from exposure to extreme conditions. The presentation of the URCs depends on the settings selected with the AT^SCTM write command: AT^SCTM=1: Presentation of URCs is always enabled. AT^SCTM=0 (default): Presentation of URCs is enabled for 15 seconds time after start-up of AC65/AC75. After 15 seconds operation, the presentation will be disabled, i.e. no alert messages can be generated. • URCs indicating the level "2" or "-2" are instantly followed by an orderly shutdown. The presentation of these URCs is always enabled, i.e. they will be output even though the factory setting AT^SCTM=0 was never changed. The maximum temperature ratings are stated in Chapter 5.2. Refer to Table 7 for the associated URCs. AC65/AC75_hd_v00.372 Page 39 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Table 7: Temperature dependent behavior Sending temperature alert (2min after AC65/AC75 start-up, otherwise only if URC presentation enabled) ^SCTM_A: 1 Caution: Battery close to overtemperature limit. ^SCTM_B: 1 Caution: Bboard close to overtemperature limit. ^SCTM_A: -1 Caution: Battery close to undertemperature limit. ^SCTM_B: -1 Caution: Board close to undertemperature limit. ^SCTM_A: 0 Battery back to uncritical temperature range. ^SCTM_B: 0 Board back to uncritical temperature range. Automatic shutdown (URC appears no matter whether or not presentation was enabled) ^SCTM_A: 2 Alert: Battery equal or beyond overtemperature limit. AC65/AC75 switches off. ^SCTM_B: 2 Alert: Board equal or beyond overtemperature limit. AC65/AC75 switches off. ^SCTM_A: -2 Alert: Battery equal or below undertemperature limit. AC65/AC75 switches off. ^SCTM_B: -2 Alert: Board equal or below undertemperature limit. AC65/AC75 switches off. 3.3.4.2 Deferred Shutdown at Extreme Temperature Conditions In the following cases, shutdown will be deferred if a critical temperature limit is exceeded: • while an emergency call is in progress • during a two minute guard period after power-up. This guard period has been introduced in order to allow the user to make an emergency call. The start of an emergency call extends the guard period until the end of the call. Any other network activity may be terminated by shutdown upon expiry of the guard time. The guard period starts again when the module registers to the GSM network the first time after power-up. If the temperature is still out of range after the guard period expires or the call ends, the module switches off immediately (without another alert message). CAUTION! Automatic shutdown is a safety feature intended to prevent damage to the module. Extended usage of the deferred shutdown functionality may result in damage to the module, and possibly other severe consequences. 3.3.4.3 Monitoring the Board Temperature of AC65/AC75 The AT^SCTM command can also be used to check the present status of the board. Depending on the selected mode, the read command returns the current board temperature in degrees Celsius or only a value that indicates whether the board is within the safe or critical temperature range. See [1] for further instructions. 3.3.4.4 Undervoltage Shutdown if Battery NTC is Present In applications where the module’s charging technique is used and an NTC is connected to the BATT_TEMP terminal, the software constantly monitors the applied voltage. If the measured battery voltage is no more sufficient to set up a call the following URC will be presented: ^SBC: Undervoltage. AC65/AC75_hd_v00.372 Page 40 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary The message will be reported, for example, when you attempt to make a call while the voltage is close to the shutdown threshold of 3.2V and further power loss is caused during the transmit burst. In IDLE mode, the shutdown threshold is the sum of the module’s minimum supply voltage (3.2V) and the value of the maximum voltage drop resulting from earlier calls. This means that in IDLE mode the actual shutdown threshold may be higher than 3.2V. Therefore, to properly calculate the actual shutdown threshold application manufacturers are advised to measure the maximum voltage drops that may occur during transmit bursts. To remind you that the battery needs to be charged soon, the URC appears several times before the module switches off. This type of URC does not need to be activated by the user. It will be output automatically when fault conditions occur. 3.3.4.5 Undervoltage Shutdown if no Battery NTC is Present The undervoltage protection is also effective in applications, where no NTC connects to the BATT_TEMP terminal. Thus, you can take advantage of this feature even though the application handles the charging process or AC65/AC75 is fed by a fixed supply voltage. Whenever the supply voltage falls below the value of 3.2V the URC ^SBC: Undervoltage appears several times before the module switches off. This type of URC does not need to be activated by the user. It will be output automatically when fault conditions occur. 3.3.4.6 Overvoltage Shutdown The overvoltage shutdown threshold is 100mV above the maximum supply voltage VBATT+ specified in Table 27. When the supply voltage approaches the overvoltage shutdown threshold the module will send the URC ^SBC: Overvoltage warning. This alert is sent once. When the overvoltage shutdown threshold is exceeded the module will send the URC ^SBC: Overvoltage shutdown, before it shuts down cleanly. This type of URC does not need to be activated by the user. It will be output automatically when fault conditions occur. Keep in mind that several AC65/AC75 components are directly linked to BATT+ and, therefore, the supply voltage remains applied at major parts of AC65/AC75, even if the module is switched off. Especially the power amplifier is very sensitive to high voltage and might even be destroyed. AC65/AC75_hd_v00.372 Page 41 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.4 Automatic EGPRS/GPRS Multislot Class Change Temperature control is also effective for operation in EGPRS Multislot Class 10 (AC75 only), GPRS Multislot Class 10 and GPRS Multislot Class 12. If the board temperature rises close to the limit specified for normal operation1 while data are transmitted over EGPRS or GPRS, the module automatically reverts • from EGPRS Multislot Class 10 (2Tx slots) to EGPRS Multislot Class 8 (1Tx), • from GPRS Multislot Class 12 (4Tx slots) to GPRS Multislot Class 8 (1Tx), • from GPRS Multislot Class 10 (2Tx slots) to GPRS Multislot Class 8 (1Tx) This reduces the power consumption and, consequently, causes the board’s temperature to decrease. Once the temperature drops by 5 degrees, AC65/AC75 returns to the higher Multislot Class. If the temperature stays at the critical level or even continues to rise, AC65/AC75 will not switch back to the higher class. After a transition from EGPRS Multislot Class 10 to EGPRS Multislot Class 8 a possible switchback to EGPRS Multislot Class 10 is blocked for one minute. The same applies when a transition occurs from GPRS Multislot Class 12 or 10 to GPRS Multislot Class 8. Please note that there is not one single cause of switching over to a lower Multislot Class. Rather it is the result of an interaction of several factors, such as the board temperature that depends largely on the ambient temperature, the operating mode and the transmit power. Furthermore, take into account that there is a delay until the network proceeds to a lower or, accordingly, higher Multislot Class. The delay time is network dependent. In extreme cases, if it takes too much time for the network and the temperature cannot drop due to this delay, the module may even switch off as described in Section 3.3.4.1. See Chapter 5.2 for temperature limits. AC65/AC75_hd_v00.372 Page 42 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.5 Charging Control AC65/AC75 integrates a charging management for rechargeable Lithium Ion and Lithium Polymer batteries. You can skip this chapter if charging is not your concern, or if you are not using the implemented charging algorithm. The following sections contain an overview of charging and battery specifications. Please refer to [4] for greater detail, especially regarding requirements for batteries and chargers, appropriate charging circuits, recommended batteries and an analysis of operational issues typical of battery powered GSM/GPRS applications. 3.5.1 Hardware Requirements AC65/AC75 has no on-board charging circuit. To benefit from the implemented charging management you are required to install a charging circuit within your application according to the Figure 46. 3.5.2 Software Requirements Use the command AT^SBC, parameter , to enter the current consumption of the host application. This information enables the AC65/AC75 module to correctly determine the end of charging and terminate charging automatically when the battery is fully charged. If the value is inaccurate and the application draws a current higher than the final charge current, either charging will not be terminated or the battery fails to reach its maximum voltage. Therefore, the termination condition is defined as: current consumption dependent on the operating mode of the ME plus current consumption of the external application. If used the current flowing over the VEXT pin of the application interface must be added, too. The parameter is volatile, meaning that the factory default (0mA) is restored each time the module is powered down or reset. Therefore, for better control of charging, it is recommended to enter the value every time the module is started. See [1] for details on AT^SBC. AC65/AC75_hd_v00.372 Page 43 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.5.3 Battery Pack Requirements The charging algorithm has been optimized for rechargeable Lithium batteries that meet the characteristics listed below and in Table 8. It is recommended that the battery pack you want to integrate into your AC65/AC75 application is compliant with these specifications. This ensures reliable operation, proper charging and, particularly, allows you to monitor the battery capacity using the AT^SBC command. Failure to comply with these specifications might cause AT^SBC to deliver incorrect battery capacity values. • • • • • • • Li-Ion or Lithium Polymer battery pack specified for a maximum charging voltage of 4.2V and a recommended capacity of 1000 to 1200mAh. Since charging and discharging largely depend on the battery temperature, the battery pack should include an NTC resistor. If the NTC is not inside the battery it must be in thermal contact with the battery. The NTC resistor must be connected between BATT_TEMP and GND. The B value of the NTC should be in the range: 10kΩ +5% @ 25°C, B25/85 = 3423K to B =3435K ± 3% (alternatively acceptable: 10kΩ +2% @ 25°C, B25/50 = 3370K +3%). Please note that the NTC is indispensable for proper charging, i.e. the charging process will not start if no NTC is present. Ensure that the pack incorporates a protection circuit capable of detecting overvoltage (protection against overcharging), undervoltage (protection against deep discharging) and overcurrent. Due to the discharge current profile typical of GSM applications, the circuit must be insensitive to pulsed current. On the AC65/AC75 module, a built-in measuring circuit constantly monitors the supply voltage. In the event of undervoltage, it causes AC65/AC75 to power down. Undervoltage thresholds are specific to the battery pack and must be evaluated for the intended model. When you evaluate undervoltage thresholds, consider both the current consumption of AC65/AC75 and of the application circuit. The internal resistance of the battery and the protection should be as low as possible. It is recommended not to exceed 150mΩ, even in extreme conditions at low temperature. The battery cell must be insensitive to rupture, fire and gassing under extreme conditions of temperature and charging (voltage, current). The battery pack must be protected from reverse pole connection. For example, the casing should be designed to prevent the user from mounting the battery in reverse orientation. It is recommended that the battery pack be approved to satisfy the requirements of CE conformity. Figure 9 shows the circuit diagram of a typical battery pack design that includes the protection elements described above. to BATT+ to BATT_TEMP to GND ϑ NTC Protection Circuit + Figure 9: Battery pack circuit diagram AC65/AC75_hd_v00.372 Page 44 of 118 Battery cell Polyfuse 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Table 8: Specifications of battery packs suitable for use with AC65/AC75 Battery type Rechargeable Lithium Ion or Lithium Polymer battery Nominal voltage 3.6V / 3.7V Capacity Recommended: 1000mAh to 1200mAh Minimum: 500mAh NTC 10kΩ ± 5% @ 25°C approx. 5kΩ @ 45°C approx. 26.2kΩ @ 0°C B value range: B (25/85)=3423K to B =3435K ± 3% Overcharge detection voltage 4.325 ± 0.025V Overdischarge detection voltage 2.5V Overdischarge release voltage 2.6V Overcurrent detection 3 ± 0.5A Overcurrent detection delay time 4 ~ 16ms Short detection delay time 50µs Internal resistance <130mΩ Note: A maximum internal resistance of 150mΩ should not be exceeded even after 500 cycles and under extreme conditions. 3.5.4 Charger Requirements For using the implemented charging algorithm and the reference charging circuit recommended in [4] and in Figure 46, the charger has to meet the following requirements: Output voltage: 5.2Volts ±0.2V (stabilized voltage) Output current: 500mA Chargers with a higher output current are acceptable, but please consider that only 500mA will be applied when a 0.3Ohms shunt resistor is connected between VSENSE and ISENSE. See [4] for further details. AC65/AC75_hd_v00.372 Page 45 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.5.5 Implemented Charging Technique If all requirements listed above are met (appropriate external charging circuit of application, battery pack, charger, AT^SBC settings) then charging is enabled in various stages depending on the battery condition: Trickle charging: • Trickle charge current flows over the VCHARGE line. • Trickle charging is done when a charger is present (connected to VCHARGE) and the battery is deeply discharged or has undervoltage. If deeply discharged (Deep Discharge Lockout at VBATT+= <2.5V) the battery is charged with 5mA, in case of undervoltage (Undervoltage Lockout at VBATT+= 2.5…3.2V) it is charged with 30mA. Software controlled charging: • Controlled over the CHARGEGATE. • Temperature conditions: 0°C to 45°C • Software controlled charging is done when the charger is present (connected to VCHARGE) and the battery voltage is at least above the undervoltage threshold. Software controlled charging passes the following stages: - Power ramp: Depending on the discharge level of the battery (i.e. the measured battery voltage VBATT+) the software adjusts the maximum charge current for charging the battery. The duration of power ramp charging is very short (less than 30 seconds). - Fast charging: Battery is charged with constant current (approx. 500mA) until the battery voltage reaches 4.2V (approx. 80% of the battery capacity). - Top-up charging: The battery is charged with constant voltage of 4.2V at stepwise reducing charge current until full battery capacity is reached. Duration of charging: • AC65/AC75 provides two charging timers: a software controlled timer set to 4 hours and a hardware controlled timer set to 4.66 hours. - The duration of software controlled charging depends on the battery capacity and the level of discharge. Normally, charging stops when the battery is fully charged or, at the latest, when the software timer expires after 4 hours. - The hardware timer is provided to prevent runaway charging and to stop charging if the software is not responding. The hardware timer will start each time the charger is plugged to the VCHARGE line. AC65/AC75_hd_v00.372 Page 46 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.5.6 Operating Modes during Charging Of course, the battery can be charged regardless of the engine's operating mode. When the GSM module is in Normal mode (SLEEP, IDLE, TALK, GPRS IDLE or GPRS DATA mode), it remains operational while charging is in progress (provided that sufficient voltage is applied). The charging process during the Normal mode is referred to as Charge mode. If the charger is connected to the charger input of the external charging circuit and the module’s VCHARGE pin while AC65/AC75 is in Power-down mode, AC65/AC75 goes into Charge-only mode. While the charger remains connected it is not possible to switch the module off by using the AT^SMSO command or the automatic shutdown mechanism. Instead the following applies: • If the module is in Normal mode and the charger is connected (Charge mode) the AT^SMSO command causes the module to shut down shortly and then start into the Charge-only mode. • In Charge-only mode the AT^SMSO command is not usable. • In Charge-only mode the module neither switches off when the battery or the module exceeds the critical limits of overtemperature or undertemperature. In these cases you can only switch the module off by disconnecting the charger. To proceed from Charge-only mode to another operating mode you have the following options, provided that the battery voltage is at least above the undervoltage threshold. • To switch from Charge-only mode to Normal mode you have two ways: - Hardware driven: The ignition line (IGT) must be pulled low for at least 2 seconds. When released, the IGT line goes high and causes the module to enter the Normal mode. - AT command driven: Set the command AT^SCFG=MEopMode/Airplane,off (please do so although the current status of Airplane mode is already “off”). The module will enter the Normal mode, indicated by the “^SYSSTART” URC. • To switch from Charge-only mode to Airplane mode set the command AT^SCFG=MEopMode/Airplane,on. The mode is indicated by the URC “^SYSSTART AIRPLANE MODE”. • If AT^SCFG=MEopMode/Airplane/OnStart,on is set, driving the ignition line (IGT) activates the Airplane mode. The mode is indicated by the URC “^SYSSTART AIRPLANE MODE”. Table 9: AT commands available in Charge-only mode AT command Use AT+CALA Set alarm time, configure Airplane mode. AT+CCLK Set date and time of RTC. AT^SBC Query status of charger connection. AT^SBV Monitor supply voltage. AT^SCTM Query temperature range, enable/disable URCs to report critical temperature ranges AT^SCFG Enable/disable parameters MEopMode/Airplane or MEopMode/Airplane/OnStart AC65/AC75_hd_v00.372 Page 47 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Table 10: Comparison Charge-only and Charge mode Charge-only mode Charge mode How to activate mode Description of mode Connect charger to charger input of host • Battery can be charged while GSM module application charging circuit and module’s remains operational and registered to the VCHARGE pin while AC65/AC75 is GSM network. • operating, e.g. in IDLE or TALK mode • In IDLE and TALK mode, the serial interfaces • in SLEEP mode are accessible. All AT commands can be used to full extent. NOTE: If the module operates at maximum power level (PCL5) and GPRS Class 12 at the same time the current consumption is higher than the current supplied by the charger. Connect charger to charger input of host • Battery can be charged while GSM engine is application charging circuit and module’s deregistered from GSM network. VCHARGE pin while AC65/AC75 is • Charging runs smoothly due to constant • in Power-down mode current consumption. • in Normal mode: Connect charger to • The AT interface is accessible and allows to the VCHARGE pin, then enter use the commands listed below. AT^SMSO. NOTE: While trickle charging is in progress, be sure that the host application is switched off. If the application is fed from the trickle charge current the module might be prevented from proceeding to software controlled charging since the current would not be sufficient. AC65/AC75_hd_v00.372 Page 48 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.6 Power Saving Intended for power saving, SLEEP mode reduces the functionality of the AC65/AC75 to a minimum and thus minimizes the current consumption. Settings can be made using the AT+CFUN command. For details see [1]. SLEEP mode falls in two categories: • NON-CYCLIC SLEEP mode: AT+CFUN = 0 • CYCLIC SLEEP modes, AT+CFUN = 7 or 9. The functionality level AT+CFUN=1 is where power saving is switched off. This is the default after startup. NON-CYCLIC SLEEP mode permanently blocks the serial interface. The benefit of the CYCLIC SLEEP mode is that the serial interface remains accessible and that, in intermittent wake-up periods, characters can be sent or received without terminating the selected mode. This allows the AC65/AC75 to wake up for the duration of an event and, afterwards, to resume power saving. Please refer to [1] for a summary of all SLEEP modes and the different ways of waking up the module. For CYCLIC SLEEP mode both the AC65/AC75 and the application must be configured to use hardware flow control. This is necessary since the CTSx signal is set/reset every 0.9-2.7 seconds in order to indicate to the application when the UART is active. Please refer to [1] for details on how to configure hardware flow control for the AC65/AC75. Note: Although not explicitly stated, all explanations given in this section refer equally to ASC0 and ASC1, and accordingly to CTS0 and CTS1 or RTS0 and RTS1. 3.6.1 Network Dependency of SLEEP Modes The power saving possibilities of SLEEP modes depend on the network the module is registered in. The paging timing cycle varies with the base station. The duration of a paging interval can be calculated from the following formula: t = 4.615 ms (TDMA frame duration) * 51 (number of frames) * DRX value. DRX (Discontinuous Reception) is a value from 2 to 9, resulting in paging intervals from 0.47-2.12 seconds. The DRX value of the base station is assigned by the network operator. In the pauses between listening to paging messages, the module resumes power saving, as shown in Figure 10. Paging Power Saving 0.47-2.12 s Paging Power Saving Paging 0.47-2.12 s Power Saving Paging 0.47-2.12 s Figure 10: Power saving and paging The varying pauses explain the different potential for power saving. The longer the pause the less power is consumed. AC65/AC75_hd_v00.372 Page 49 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.6.2 Timing of the CTSx Signal in CYCLIC SLEEP Mode 7 Figure 11 illustrates the CTSx signal timing in CYCLIC SLEEP mode 7 (CFUN=7). Beginning of power saving CTSx 0.9...2.7 s 2s 1st character 0.9...2.7 s Last character AT interface disabled AT interface enabled Figure 11: Timing of CTSx signal (if CFUN= 7) With regard to programming or using timeouts, the UART must take the varying CTS inactivity periods into account. 3.6.3 Timing of the RTSx Signal in CYCLIC SLEEP Mode 9 In SLEEP mode 9 the falling edge of RTSx can be used to temporarily wake up the ME. In this case the activity time is at least the time set with AT^SCFG="PowerSaver/Mode9/ Timeout", (default 2 seconds). RTSx has to be asserted for at least a dedicated debounce time in order to wake up the ME. The debounce time specifies the minimum time period an RTSx signal has to remain asserted for the signal to be recognized as wake up signal and being processed. The debounce time is defined as 8*4.615 ms (TDMA frame duration) and is used to prevent bouncing or other fluctuations from being recognized as signals. Toggling RTSx while the ME is awake has no effect on the AT interface state, the regular hardware flow control via CTS/RTS is unaffected by this RTSx behaviour. Power saving Wake up of ME CTSx 2s RTSx 37 ms Debounce Time AT interface disabled AT interface enabled Figure 12: Timing of RTSx signal (if CFUN = 9) AC65/AC75_hd_v00.372 Page 50 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.7 Summary of State Transitions (Except SLEEP Mode) Table 11: State transitions of AC65/AC75 (except SLEEP mode) The table shows how to proceed from one mode to another (grey column = present mode, white columns = intended modes) POWER DOWN Normal mode**) Charge-only mode*) Airplane mode POWER DOWN mode --- If AT^SCFG=MeOpMode/ Airplane/OnStart,off: IGT >400 ms at low level, then release IGT Connect charger to VCHARGE If AT^SCFG=MeOpMode/ Airplane/OnStart,on: IGT >400 ms at low level, then release IGT. Regardless of AT^SCFG configuration: scheduled wake-up set with AT+CALA. Normal mode**) AT^SMSO --- AT^SMSO if charger is connected AT^SCFG=MeOpMode/ Airplane,on. If AT^SCFG=MeOpMode/ Airplane/OnStart,on: AT+CFUN=x,1 or EMERG_RST + IGT >400 ms. Charge-only mode *) Disconnect charger Hardware driven: If AT^SCFG= --MeOpMode/Airplane/OnStart,off: IGT >2s at low level, then release IGT AT command driven: AT^SCFG= MeOpMode/Airplane,off AT^SCFG=MeOpMode/ Airplane,on. If AT^SCFG=MeOpMode/ Airplane/OnStart,on: IGT >2s at low level Airplane mode AT^SMSO AT^SCFG=MeOpMode/ Airplane,off --- Further mode ÎÎÎ Present mode *) See Section 3.5.6 for details on the charging mode AC65/AC75_hd_v00.372 **) AT^SMSO if charger is connected Normal mode covers TALK, DATA, GPRS/EGPRS, IDLE and SLEEP modes Page 51 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.8 RTC Backup The internal Real Time Clock of AC65/AC75 is supplied from a separate voltage regulator in the analog controller which is also active when AC65/AC75 is in POWER DOWN status. An alarm function is provided to wake up AC65/AC75 to Airplane mode without logging on to the GSM network. In addition, you can use the VDDLP pin on the board-to-board connector to backup the RTC from an external capacitor or a battery (rechargeable or non-chargeable). The capacitor is charged by the BATT+ line of AC65/AC75. If the voltage supply at BATT+ is disconnected the RTC can be powered by the capacitor. The size of the capacitor determines the duration of buffering when no voltage is applied to AC65/AC75, i.e. the larger the capacitor the longer AC65/AC75 will save the date and time. A serial 1kΩ resistor placed on the board next to VDDLP limits the charge current of an empty capacitor or battery. The following figures show various sample configurations. Please refer to Table 26 for the parameters required. BATT+ Baseband processor B2B PSU 1k RTC VDDLP Figure 13: RTC supply from capacitor BATT+ Baseband processor B2B PSU 1k RTC VDDLP Figure 14: RTC supply from rechargeable battery BATT+ Baseband processor B2B PSU 1k RTC VDDLP Figure 15: RTC supply from non-chargeable battery AC65/AC75_hd_v00.372 Page 52 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.9 SIM Interface The baseband processor has an integrated SIM interface compatible with the ISO 7816 IC Card standard. This is wired to the host interface (board-to-board connector) in order to be connected to an external SIM card holder. Six pins on the board-to-board connector are reserved for the SIM interface. The SIM interface supports 3V and 1.8V SIM cards. Please refer to Table 26 for electrical specifications of the SIM interface lines depending on whether a 3V or 1.8V SIM card is used. The CCIN pin serves to detect whether a tray (with SIM card) is present in the card holder. Using the CCIN pin is mandatory for compliance with the GSM 11.11 recommendation if the mechanical design of the host application allows the user to remove the SIM card during operation. To take advantage of this feature, an appropriate SIM card detect switch is required on the card holder. For example, this is true for the model supplied by Molex, which has been tested to operate with AC65/AC75 and is part of the Siemens reference equipment submitted for type approval. See Chapter 8 for Molex ordering numbers. Table 12: Signals of the SIM interface (board-to-board connector) Signal Description CCGND Separate ground connection for SIM card to improve EMC. Be sure to use this ground line for the SIM interface rather than any other ground pin or plane on the module. A design example for grounding the SIM interface is shown in Figure 46. CCCLK Chipcard clock, various clock rates can be set in the baseband processor. CCVCC SIM supply voltage. CCIO Serial data line, input and output. CCRST Chipcard reset, provided by baseband processor. CCIN Input on the baseband processor for detecting a SIM card tray in the holder. If the SIM is removed during operation the SIM interface is shut down immediately to prevent destruction of the SIM. The CCIN pin is active low. The CCIN pin is mandatory for applications that allow the user to remove the SIM card during operation. The CCIN pin is solely intended for use with a SIM card. It must not be used for any other purposes. Failure to comply with this requirement may invalidate the type approval of AC65/AC75. Note: No guarantee can be given, nor any liability accepted, if loss of data is encountered after removing the SIM card during operation. Also, no guarantee can be given for properly initializing any SIM card that the user inserts after having removed a SIM card during operation. AC65/AC75_hd_v00.372 Page 53 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.9.1 Installation Advice The total cable length between the board-to-board connector pins on AC65/AC75 and the pins of the external SIM card holder must not exceed 100mm in order to meet the specifications of 3GPP TS 51.010-1 and to satisfy the requirements of EMC compliance. To avoid possible cross-talk from the CCCLK signal to the CCIO signal be careful that both lines are not placed closely next to each other. A useful approach is using the CCGND line to shield the CCIO line from the CCCLK line. To meet EMC requirements it is strongly recommended to add several capacitors as shown in Figure 46. Take care to place the capacitors close to the SIM card holder. AC65/AC75_hd_v00.372 Page 54 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.10 Serial Interface ASC0 AC65/AC75 offers an 8-wire unbalanced, asynchronous modem interface ASC0 conforming to ITU-T V.24 protocol DCE signalling. The electrical characteristics do not comply with ITUT V.28. The significant levels are 0V (for low data bit or active state) and 2.9V (for high data bit or inactive state). For electrical characteristics please refer to Table 26. AC65/AC75 is designed for use as a DCE. Based on the conventions for DCE-DTE connections it communicates with the customer application (DTE) using the following signals: • Port TXD @ application sends data to the module’s TXD0 signal line • Port RXD @ application receives data from the module’s RXD0 signal line GSM Module (DCE) Application (DTE) TXD0 TXD RXD0 RXD RTS0 RTS CTS0 CTS DTR0 DTR DSR0 DSR DCD0 DCD RING0 RING Figure 16: Serial interface ASC0 Features • Includes the data lines TXD0 and RXD0, the status lines RTS0 and CTS0 and, in addition, the modem control lines DTR0, DSR0, DCD0 and RING0. • ASC0 is primarily designed for controlling voice calls, transferring CSD, fax and GPRS data and for controlling the GSM engine with AT commands. • Full Multiplex capability allows the interface to be partitioned into three virtual channels, yet with CSD and fax services only available on the first logical channel. Please note that when the ASC0 interface runs in Multiplex mode, ASC1 cannot be used. For more details on Multiplex mode see [10]. • The DTR0 signal will only be polled once per second from the internal firmware of AC65/AC75. • The RING0 signal serves to indicate incoming calls and other types of URCs (Unsolicited Result Code). It can also be used to send pulses to the host application, for example to wake up the application from power saving state. See [1] for details on how to configure the RING0 line by AT^SCFG. • By default, configured for 8 data bits, no parity and 1 stop bit. The setting can be changed using the AT command AT+ICF and, if required, AT^STPB. For details see [1]. • ASC0 can be operated at fixed bit rates from 300 bps to 460,800 bps. • Autobauding supports bit rates from 1,200 to 460,800 bps. • Autobauding is not compatible with multiplex mode. • Supports RTS0/CTS0 hardware flow control and XON/XOFF software flow control. AC65/AC75_hd_v00.372 Page 55 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Table 13: DCE-DTE wiring of ASC0 V.24 circuit DCE DTE Pin function Signal direction Pin function Signal direction 103 TXD0 Input TXD Output 104 RXD0 Output RXD Input 105 RTS0 Input RTS Output 106 CTS0 Output CTS Input 108/2 DTR0 Input DTR Output 107 DSR0 Output DSR Input 109 DCD0 Output DCD Input 125 RING0 Output RING Input AC65/AC75_hd_v00.372 Page 56 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.11 Serial Interface ASC1 The ASC1 interface is available as a 4-wire unbalanced, asynchronous modem interface ASC1 conforming to ITU-T V.24 protocol DCE signalling. The electrical characteristics do not comply with ITU-T V.28. The significant levels are 0V (for low data bit or active state) and 2.9V (for high data bit or inactive state). For electrical characteristics please refer to Table 26. AC65/AC75 is designed for use as a DCE. Based on the conventions for DCE-DTE connections it communicates with the customer application (DTE) using the following signals: • Port TXD @ application sends data to module’s TXD1 signal line • Port RXD @ application receives data from the module’s RXD1 signal line GSM Module (DCE) Application (DTE) TXD1 TXD RXD1 RXD RTS1 RTS CTS1 CTS Figure 17: Serial interface ASC1 Features • Includes only the data lines TXD1 and RXD1 plus RTS1 and CTS1 for hardware handshake. • On ASC1 no RING line is available. The indication of URCs on the second interface depends on the settings made with the AT^SCFG command. For details refer to [1]. • Configured for 8 data bits, no parity and 1 or 2 stop bits. • ASC1 can be operated at fixed bit rates from 300 bps to 460,800 bps. Autobauding is not supported on ASC1. • Supports RTS1/CTS1 hardware flow control and XON/XOFF software flow control. Table 14: DCE-DTE wiring of ASC1 V.24 circuit DCE DTE Pin function Signal direction Pin function Signal direction 103 TXD1 Input TXD Output 104 RXD1 Output RXD Input 105 RTS1 Input RTS Output 106 CTS1 Output CTS Input AC65/AC75_hd_v00.372 Page 57 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.12 USB Interface AC65/AC75 supports a USB 2.0 Full Speed (12Mbit/s) device interface. It can be operated on a USB 2.0 Full Speed or High Speed root hub (a PC host), but not on a generic USB 2.0 High Speed hub which translates High Speed (480 Mbit/s/) to Full Speed (12 Mbit/s). The USB port has different functions depending on whether or not Java is running. Under Java, the lines may be used for debugging purposes (see [16] for further detail). If Java is not used, the USB interface is available as a command and data interface and for downloading firmware. The USB I/O-pins are capable of driving the signal at min 3.0V. They are 5V I/O compliant. 3.2V lin. Regulator 5V VUSB_IN PSU 1.5kOhms USB_DP MCU USB Transceiver 22Ohms USB_DN 22Ohms Baseband controller 80 pole board-to-board connector The USB host is responsible for supplying, across the VUSB_IN line, power to the module’s USB interface, but not to other AC65/AC75 interfaces. This is because AC65/AC75 is designed as a self-powered device compliant with the “Universal Serial Bus Specification Revision 2.0”2. VBUS GND D+ DHost GSM module Figure 18: USB circuit To properly connect the module’s USB interface to the host a USB 2.0 compatible connector is required. For more information on how to install a USB modem driver and on how to integrate USB into AC65/AC75 applications see [11]. The specification is ready for download on http://www.usb.org/developers/docs/ AC65/AC75_hd_v00.372 Page 58 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.13 I2C Interface I2C is a serial, 8-bit oriented data transfer bus for bit rates up to 400kbps in Fast mode. It consists of two lines, the serial data line I2CDAT and the serial clock line I2CCLK. The AC65/AC75 module acts as a single master device, e.g. the clock I2CCLK is driven by module. I2CDAT is a bi-directional line. Each device connected to the bus is software addressable by a unique 7-bit address, and simple master/slave relationships exist at all times. The module operates as mastertransmitter or as master-receiver. The customer application transmits or receives data only on request of the module. To configure and activate the I2C bus use the AT^SSPI command. If the I2C bus is active the two lines I2CCLK and I2DAT are locked for use as SPI lines. Vice versa, the activation of the SPI locks both lines for I2C. Detailed information on the AT^SSPI command as well explanations on the protocol and syntax required for data transmission can be found in [1]. The I2C interface can be powered from an external supply or via the VEXT line of AC65/AC75. If connected to the VEXT line the I2C interface will be properly shut down when the module enters the Power-down mode. If you prefer to connect the I2C interface to an external power supply, take care that VCC of the application is in the range of VVEXT and that the interface is shut down when the PWR_IND signal goes high. See figures below as well as Section 7 and Figure 46. In the application I2CDAT and I2CCLK lines need to be connected to a positive supply voltage via a pull-up resistor. For electrical characteristics please refer to Table 26. Application GSM module VCC w VEXT Rp I2CDAT I2CCLK GND Rp I2CDAT I2CCLK GND Figure 19: I2C interface connected to VCC of application AC65/AC75_hd_v00.372 Page 59 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Application GSM module VEXT Rp I2CDAT I2CCLK GND Rp I2CDAT I2CCLK GND Figure 20: I2C interface connected to VEXT line of AC65/AC75 Note: Good care should be taken when creating the PCB layout of the host application: The traces of I2CCLK and I2CDAT should be equal in length and as short as possible. AC65/AC75_hd_v00.372 Page 60 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.14 SPI Interface The SPI (serial peripheral interface) is a synchronous serial interface for control and data transfer between the AC65/AC75 module and the connected application. Only one application can be connected to the module’s SPI. The interface supports transmission rates up to 6.5Mbit/s. It consists of four lines, the two data lines SPIDI/SPIDO, the clock line SPICLK and the chip select line SPICS. The AC65/AC75 module acts as a single master device, e.g. the clock SPICLK is driven by module. Whenever the SPICS pin is in a low state, the SPI bus is activated and data can be transferred from the module and vice versa. The SPI interface uses two independent lines for data input (SPIDI) and data output (SPIDO). GSM module Application SPIDI SPIDO SPIDI SPIDO SPICS SPICLK SPICS SPICLK Figure 21: SPI interface To configure and activate the SPI bus use the AT^SSPI command. If the SPI bus is active the two lines I2CCLK and I2DAT are locked for use as I2C lines. Detailed information on the AT^SSPI command as well explanations on the SPI modes required for data transmission can be found in [1]. In general, SPI supports four operation modes. The modes are different in clock phase and clock polarity. The module’s SPI mode can be configured by using the AT command AT^SSPI. Make sure the module and the connected slave device works with the same SPI mode. Figure 22 shows the characteristics of the four SPI modes. The SPI modes 0 and 3 are the most common used modes. For electrical characteristics please refer to Table 26. AC65/AC75_hd_v00.372 Page 61 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Clock phase SPI MODE 0 SPI MODE 1 SPICS SPICLK SPICLK SPIDO SPIDO SPIDI SPIDI Clock polarity SPICS Sample Sample SPI MODE 2 SPI MODE 3 SPICS SPICS SPICLK SPICLK SPIDO SPIDO SPIDI SPIDI Sample Sample Figure 22: Characteristics of SPI modes AC65/AC75_hd_v00.372 Page 62 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.15 Audio Interfaces AC65/AC75 comprises three audio interfaces available on the board-to-board connector: • Two analog audio interfaces, both with balanced or single-ended inputs/outputs. • Serial digital audio interface (DAI) designed for PCM (Pulse Code Modulation). This means you can connect up to three different audio devices, although only one interface can be operated at a time. Using the AT^SAIC command you can easily switch back and forth. MICP1 MICN1 MUX MUX MICP2 MUX MICN2 Analog switch EPP1 EPN1 EPP2 EPN2 DSP Air Interface VMIC AGND DAI0 DAI1 DAI2 DAI3 DAI4 Digital Audio Interface DAI5 DAI6 Figure 23: Audio block diagram To suit different types of accessories the audio interfaces can be configured for different audio modes via the AT^SNFS command. The electrical characteristics of the voiceband part vary with the audio mode. For example, sending and receiving amplification, sidetone paths, noise suppression etc. depend on the selected mode and can be altered with AT commands (except for mode 1). Both analog audio interfaces can be used to connect headsets with microphones or speakerphones. Headsets can be operated in audio mode 3, speakerphones in audio mode 2. Audio mode 5 can be used for direct access to the speech coder without signal pre or post processing. When shipped from factory, all audio parameters of AC65/AC75 are set to interface 1 and audio mode 1. This is the default configuration optimized for the Votronic HH-SI-30.3/V1.1/0 handset and used for type approving the Siemens reference configuration. Audio mode 1 has fix parameters which cannot be modified. To adjust the settings of the Votronic handset simply change to another audio mode. AC65/AC75_hd_v00.372 Page 63 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.15.1 Speech Processing The speech samples from the ADC or DAI are handled by the DSP of the baseband controller to calculate e.g. amplifications, sidetone, echo cancellation or noise suppression depending on the configuration of the active audio mode. These processed samples are passed to the speech encoder. Received samples from the speech decoder are passed to the DAC or DAI after post processing (frequency response correction, adding sidetone etc.). Full rate, half rate, enhanced full rate, adaptive multi rate (AMR), speech and channel encoding including voice activity detection (VAD) and discontinuous transmission (DTX) and digital GMSK modulation are also performed on the GSM baseband processor. 3.15.2 Microphone Circuit AC65/AC75 has two identical analog microphone inputs. There is no on-board microphone supply circuit, except for the internal voltage supply VMIC and the dedicated audio ground line AGND. Both lines are well suited to feed a balanced audio application or a single-ended audio application. The AGND line on the AC65/AC75 board is especially provided to achieve best grounding conditions for your audio application. As there is less current flowing than through other GND lines of the module or the application, this solution will avoid hum and buzz problems. While AC65/AC75 is in Power-down mode, the input voltage at any MIC pin must not exceed ±0.3V relative to AGND (see also Chapter 5.1). In any other operating state the voltage applied to any MIC pin must be in the range of +2.7V to -0.3V, otherwise undervoltage shutdown may be caused. If VMIC is used to generate the MICP-pin bias voltage as shown in the following examples consider that VMIC is switched off (0V) outside a call. Audio signals applied to MICP in this case must not fall below -0.3V. If higher input levels are used especially in the line input configuration the signal level must be limited to 600mVpp outside a call, or AT^SNFM=,1 should be used to switch on VMIC permanently. AC65/AC75_hd_v00.372 Page 64 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.15.2.1 Single-ended Microphone Input Figure 24 as well as Figure 46 show an example of how to integrate a single-ended microphone input. RA = typ. 2k RB = typ. 5k RVMIC = typ. 470Ohm VMIC RA RA RVMIC Ck = typ. 100nF CF = typ. 22µF MICPx VMIC = typ. 2.5V VBias CF GSM module MICNx RB Vbias = 1.0V … 1.6V, typ. 1.5V CK AGND Figure 24: Single ended microphone input RA has to be chosen so that the DC voltage across the microphone falls into the bias voltage range of 1.0V to 1.6V and the microphone feeding current meets its specification. The MICNx input is automatically self biased to the MICPx DC level. It is AC coupled via CK to a resistive divider which is used to optimize supply noise cancellation by the differential microphone amplifier in the module. The VMIC voltage should be filtered if gains larger than 20dB are used. The filter can be attached as a simple first order RC-network (RVMIC and CF). This circuit is well suited if the distance between microphone and module is kept short. Due to good grounding the microphone can be easily ESD protected as its housing usually connects to the negative terminal. AC65/AC75_hd_v00.372 Page 65 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.15.2.2 Differential Microphone Input Figure 25 shows a differential solution for connecting an electret microphone. RA = typ. 1k RVMIC = 470Ohm VMIC RVMIC CK = typ. 100nF CF = typ. 22µF RA MICPx CF VMIC = typ. 2.5V GSM module Vbias = 1.0V … 1.6V, typ. 1.5V MICNx VBias RA CK AGND Figure 25: Differential microphone input The advantage of this circuit is that it can be used if the application involves longer lines between microphone and module. While VMIC is switched off, the input voltage at any MIC pin should not exceed ±0.25V relative to AGND (see also Chapter 5.1). In this case no bias voltage has to be supplied from the customer circuit to the MIC pin and any signal voltage should be smaller than Vpp = 0.5V. VMIC can be used to generate the MICP-pin bias voltage as shown below. In this case the bias voltage is only applied if VMIC is switched on. Only if VMIC is switched on, can the voltage applied to any MIC pin be in the range of 2.4V to 0V. If these limits are exceeded undervoltage shutdown may be caused. Consider that the maximum full scale input voltage is Vpp = 1.6V. The behavior of VMIC can be controlled with the parameter micVccCtl of the AT command AT^SNFM (see [1]): • micVccCtl=2 (default). VMIC is controlled automatically by the module. VMIC is always switched on while the internal audio circuits of the module are active (e.g., during a call). VMIC can be used as indicator for active audio in the module. • micVccCtl=1. VMIC is switched on continuously. This setting can be used to supply the microphone in order to use the signal in other customer circuits as well. However, this setting leads to a higher current consumption in SLEEP modes. • micVccCtl=0. VMIC is permanently switched off. AC65/AC75_hd_v00.372 Page 66 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.15.2.3 Line Input Configuration with OpAmp Figure 26 shows an example of how to connect an opamp into the microphone circuit. RA = typ. 47k RVMIC = 470Ohm VMIC RA CK RVMIC Ck = typ. 100nF CF = typ. 22µF MICPx VMIC = typ. 2.5V RA CK GSM module MICNx CF Vbias = typ. ½ VMIC = 1.25V VBias AGND Figure 26: Line input configuration with OpAmp The AC source (e.g. an opamp) and its reference potential have to be AC coupled to the MICPx resp. MICNx input terminals. The voltage divider between VMIC and AGND is necessary to bias the input amplifier. MICNx is automatically self biased to the MICPx DC level. The VMIC voltage should be filtered if gains larger than 20dB are used. The filter can be attached as a simple first order RC-network (RVMIC and CF). If a high input level and a lower gain are applied the filter is not necessary. Consider that if VMIC is switched off, the signal voltage should be limited to Vpp = 0.5V and any bias voltage must not be applied. Otherwise VMIC can be switched on permanently by using AT^SNFM=,1. In this case the current consumption in SLEEP modes is higher. If desired, MICNx via CK can also be connected to the inverse output of the AC source instead of connecting it to the reference potential for differential line input. AC65/AC75_hd_v00.372 Page 67 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.15.3 Loudspeaker Circuit The GSM module comprises two analog speaker outputs: EP1 and EP2. Output EP1 is able to drive a load of 8Ohms while the output EP2 can drive a load of 32Ohms. Each interface can be connected in differential and in single ended configuration. Figure 27 shows an example of a differential loudspeaker configuration. Loudspeaker impedance EPP1/EPN1 ZL = typ. 8Ohm EPP2/EPN2 ZL = typ. 32Ohm EPPx GSM module EPNx AGND Figure 27: Differential loudspeaker configuration AC65/AC75_hd_v00.372 Page 68 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.15.4 Digital Audio Interface (DAI) The DAI can be used to connect audio devices capable of PCM (Pulse Code Modulation) or for type approval. The following chapters describe the PCM interface functionality. The PCM functionality allows the use of a codec like for example the MC145483. This codec replaces the analog audio inputs and outputs during a call, if digital audio is selected by AT^SAIC. The PCM interface is configurable with the AT^SAIC command (see [1]) and supports the following features: - Master and slave mode - Short frame and long frame synchronization - 256 kHz or 512 kHz bit clock frequency For the PCM interface configuration the parameters , and of the AT^SAIC command are used. The following table lists possible combinations: Table 15: Configuration combinations for the PCM interface Configuration Master, 256kHz, short frame 0 Master, 256kHz, long frame Master, 512kHz, short frame 1 Master, 512kHz, long frame Slave, 256kHz, short frame 0 or 1 Slave, 256kHz, long frame 0 or 1 Slave, 512kHz, short frame 0 or 1 Slave, 512kHz, long frame 0 or 1 In all configurations the PCM interface has the following common features: - 16 Bit linear - 8 kHz sample rate - the most significant bit MSB is transferred first - 125 µs frame duration - common frame sync signal for transmit and receive In slave mode the BCLKIN signal is directly used for data shifting. Therefore, the clock frequency setting is not evaluated and may be either 0 or 1. AC65/AC75_hd_v00.372 Page 69 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Table 16 shows the assignment of the DAI0…6 pins to the PCM interface signals. To avoid hardware conflicts different pins are used as inputs and outputs for frame sync and clock signals in master or slave operation. The table shows also which pin is used for master or slave. The data pins (TXDAI and RXDAI) however are used in both modes. Unused inputs have to be tied to GND, unused outputs must be left open. Table 16: Overview of DAI pin functions Signal name on B2B connector Function for PCM Interface Input/Output DAI0 TXDAI Master/Slave DAI1 RXDAI Master/Slave DAI2 FS (Frame sync) Master DAI3 BITCLK Master DAI4 FSIN Slave DAI5 BCLKIN Slave DAI6 nc 3.15.4.1 Master Mode To clock input and output PCM samples the PCM interface delivers a bit clock (BITCLK) which is synchronous to the GSM system clock. The frequency of the bit clock is 256kHz or 512kHz. Any edge of this clock deviates less than ±100ns (Jitter) from an ideal 256-kHz clock respective 512-kHz-clock. The frame sync signal (FS) has a frequency of 8 kHz and is high for one BITCLK period before the data transmission starts if short frame is configured. If long frame is selected the frame sync signal (FS) is high during the whole transfer of the 16 data bits. Each frame has a duration of 125µs and contains 32 respectively 64 clock cycles. PCM interface of the GSM module Codec BITCLK bitclk FS frame sync TXDAI RX_data RXDAI TX_data Figure 28: Master PCM interface Application AC65/AC75_hd_v00.372 Page 70 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary The timing of a PCM short frame is shown in Figure 29. The 16-bit TXDAI and RXDAI data are transferred simultaneously in both directions during the first 16 clock cycles after the frame sync pulse. The duration of a frame sync pulse is one BITCLK period, starting at the rising edge of BITCLK. TXDAI data is shifted out at the next rising edge of BITCLK. RXDAI data (i.e. data transmitted from the host application to the module’s RXDAI line) is sampled at the falling edge of BITCLK. 125 µs BITCLK FS TXDAI MSB 14 13 12 LSB MSB RXDAI MSB 14 13 12 LSB MSB Figure 29: Master PCM timing, short frame selected The timing of a PCM long frame is shown in Figure 30. The 16-bit TXDAI and RXDAI data are transferred simultaneously in both directions while the frame sync pulse FS is high. For this reason the duration of a frame sync pulse is 16 BITCLK periods, starting at the rising edge of BITCLK. TXDAI data is shifted out at the same rising edge of BITCLK. RXDAI data (i.e. data transmitted from the host application to the module’s RXDAI line) is sampled at the falling edge of BITCLK. 125 µs BITCLK FS TXDAI MSB 14 13 12 LSB MSB RXDAI MSB 14 13 12 LSB MSB Figure 30: Master PCM timing, long frame selected AC65/AC75_hd_v00.372 Page 71 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.15.4.2 Slave Mode In slave mode the PCM interface is controlled by an external bit clock and an external frame sync signal applied to the BCLKIN and FSIN pins and delivered either by the connected codec or another source. The bit clock frequency has to be in the range of 256kHz -125ppm to 512kHz +125ppm. Data transfer starts at the falling edge of FSIN if the short frame format is selected, and at the rising edge of FSIN if long frame format is selected. With this edge control the frame sync signal is independent of the frame sync pulse length. TXDAI data is shifted out at the rising edge of BCLKIN. RXDAI data (i.e. data transmitted from the host application to the module’s RXDAI line) is sampled at the falling edge of BCLKIN. The deviation of the external frame rate from the internal frame rate must not exceed ±125ppm. The internal frame rate of nominal 8kHz is synchronized to the GSM network. The difference between the internal and the external frame rate is equalized by doubling or skipping samples. This happens for example every second, if the difference is 125ppm. The resulting distortion can be neglected in speech signals. The pins BITCLK and FS remain low in slave mode. Figure 31 shows the typical slave configuration. The external codec delivers the bit clock and the frame sync signal. If the codec itself is not able to run in master mode as for example the MC145483, a third party has to generate the clock and the frame sync signal. AC75 bitclk BCLKIN Frame Sync FSIN TXDAI RX_data RXDAI TX_data CODEC Figure 31: Slave PCM interface application The following figures show the slave short and long frame timings. Because these are edge controlled, frame sync signals may deviate from the ideal form as shown with the dotted lines. AC65/AC75_hd_v00.372 Page 72 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 125 µs BCLKIN FSIN TXDAI MSB MSB RXDAI 14 13 12 14 13 12 LSB MSB LSB MSB Figure 32: Slave PCM timing, short frame selected 125 µs BCLKIN FSIN TXDAI MSB RXDAI MSB 14 13 12 14 13 12 LSB MSB LSB MSB Figure 33: Slave PCM timing, long frame selected AC65/AC75_hd_v00.372 Page 73 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.16 GPIO Interface The AC65/AC75 has 10 GPIOs for external hardware devices. Each GPIO can be configured for use as input or output. All settings are AT command controlled. The GIPO related AT commands are the following: AT^SPIO, AT^SCPIN, AT^SCPOL, AT^SCPORT, AT^SDPORT, AT^SGIO, AT^SSIO. A detailed description can be found in [1]. 3.16.1 Using the GPIO10 Pin as Pulse Counter The GPIO10 pin can be assigned two different functions selectable by AT command: • The AT^SCPIN command configures the pin for use as GPIO. • With AT^SCCNT and AT^SSCNT the pin can be configured and operated as pulse counter. Both functions exclude each other. The pulse counter disables the GPIO functionality, and vice versa, the GPIO functionality disables the pulse counter. Detailed AT command descriptions can be found in [1]. The pulse counter is designed to measure signals from 0 to 1000 pulses per second. It can be operated either in Limit counter mode or Start-Stop mode. Depending on the selected mode the counted value is either the number of pulses or the time (in milliseconds) taken to generate a number of pulses specified with AT^SCCNT. In Limit counter mode, the displayed measurement result (URC “^SSCNT: ”) implies an inaccuracy <5ms. In Start-Stop mode, you can achieve 100% accuracy if you take care that no pulses are transmitted before starting the pulse counter (AT^SSCNT=0 or 1) and after closing the pulse counter (AT^SSCNT=3). AC65/AC75_hd_v00.372 Page 74 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.17 Control Signals 3.17.1 Synchronization Signal The synchronization signal serves to indicate growing power consumption during the transmit burst. The signal is generated by the SYNC pin. Please note that this pin can adopt three different operating modes which you can select by using the AT^SSYNC command: the mode AT^SSYNC=0 described below, and the two LED modes AT^SSYNC=1 or AT^SSYNC=2 described in [1] and Section 3.17.2. The first function (factory default AT^SSYNC=0) is recommended if you want your application to use the synchronization signal for better power supply control. Your platform design must be such that the incoming signal accommodates sufficient power supply to the AC65/AC75 module if required. This can be achieved by lowering the current drawn from other components installed in your application. The timing of the synchronization signal is shown below. High level of the SYNC pin indicates increased power consumption during transmission. 1 Tx 577 µs every 4.616 ms 2 Tx 1154 µs every 4.616 ms Transmit burst SYNC signal*) t = 180µs Figure 34: SYNC signal during transmit burst *) The duration of the SYNC signal is always equal, no matter whether the traffic or the access burst are active. AC65/AC75_hd_v00.372 Page 75 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.17.2 Using the SYNC Pin to Control a Status LED As an alternative to generating the synchronization signal, the SYNC pin can be configured to drive a status LED that indicates different operating modes of the AC65/AC75 module. To take advantage of this function the LED mode must be activated with the AT^SSYNC command and the LED must be connected to the host application. The connected LED can be operated in two different display modes (AT^SSYNC=1 or AT^SSYNC=2). For details please refer to [1]. Especially in the development and test phase of an application, system integrators are advised to use the LED mode of the SYNC pin in order to evaluate their product design and identify the source of errors. To operate the LED a buffer, e.g. a transistor or gate, must be included in your application. A sample circuit is shown in Figure 35. Power consumption in the LED mode is the same as for the synchronization signal mode. For details see Table 26, SYNC pin. Figure 35: LED Circuit (Example) AC65/AC75_hd_v00.372 Page 76 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 3.17.3 Behavior of the RING0 Line (ASC0 Interface only) The RING0 line is available on the first serial interface ASC0 (see also Chapter 3.10). The signal serves to indicate incoming calls and other types of URCs (Unsolicited Result Code). Although not mandatory for use in a host application, it is strongly suggested that you connect the RING0 line to an interrupt line of your application. In this case, the application can be designed to receive an interrupt when a falling edge on RING0 occurs. This solution is most effective, particularly, for waking up an application from power saving. Note that if the RING0 line is not wired, the application would be required to permanently poll the data and status lines of the serial interface at the expense of a higher current consumption. Therefore, utilizing the RING0 line provides an option to significantly reduce the overall current consumption of your application. The behavior of the RING0 line varies with the type of event: • When a voice/fax/data call comes in the RING0 line goes low for 1s and high for another 4s. Every 5 seconds the ring string is generated and sent over the /RXD0 line. If there is a call in progress and call waiting is activated for a connected handset or handsfree device, the RING0 line switches to ground in order to generate acoustic signals that indicate the waiting call. 4s 4s RING0 1s Ring string 1s Ring string 1s Ring string Figure 36: Incoming voice/fax/data call • All other types of Unsolicited Result Codes (URCs) also cause the RING0 line to go low, however for 1 second only. RING0 1s URC Figure 37: URC transmission 3.17.4 PWR_IND Signal PWR_IND notifies the on/off state of the module. High state of PWR_IND indicates that the module is switched off. The state of PWR_IND immediately changes to low when IGT is pulled low. For state detection an external pull-up resistor is required. AC65/AC75_hd_v00.372 Page 77 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Antenna Interface The RF interface has an impedance of 50Ω. AC65/AC75 is capable of sustaining a total mismatch at the antenna connector without any damage, even when transmitting at maximum RF power. The external antenna must be matched properly to achieve best performance regarding radiated power, DC-power consumption, modulation accuracy and harmonic suppression. Antenna matching networks are not included on the AC65/AC75 PCB and should be placed in the host application. Regarding the return loss AC65/AC75 provides the following values in the active band: Table 17: Return loss in the active band State of module Return loss of module Recommended return loss of application Receive > 8dB > 12dB Transmit not applicable > 12dB AC65/AC75_hd_v00.372 Page 78 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 4.1 Antenna Diagnostic The antenna diagnostic allows the customer to check the presence and the connection status of the antenna by using the AT^SAD command. A description of the AT^SAD command can be found in [1]. To properly detect the antenna and verify its connection status the antenna feed point must have a DC resistance RANT of 9kΩ (±3kΩ). Any lower or higher resistance from 1kΩ to 6kΩ or 12kΩ to 40kΩ gives an undefined result. A positive or negative voltage drop (referred to as Vdisturb) on the ground line may occur without having any impact on the measuring procedure and the measuring result. A peak deviation (Vdisturb ) of ≤ 0.8V from ground is acceptable. External antenna Vdisturb (peak) = ± 0.8V (maximum); fdisturb = 0Hz … 5kHz Waveform: DC, sinus, square-pulse, peak-pulse (width = 100µs) Rdisturb = 5Ω Antenna connector 9k±3k Figure 38: Resistor measurement used for antenna detection AC75 5 Ohm Vdisturb Table 18: Values of the AT^SAD parameter and their meaning Antenna connection status indicated by AT^SAD Equivalent ranges Normal operation, antenna connected (resistance at =0 feed point as required) RANT = 6kΩ…12kΩ Antenna connector short-circuited to GND RANT = 0...1kΩ =1 Antenna connector is short-circuited to the supply =2 voltage of the host application, for example the vehicle’s on-board power supply voltage max. 36V Antenna not properly connected, or resistance at =3 antenna feed point wrong or not present RANT = 40kΩ...∞Ω AC65/AC75_hd_v00.372 Page 79 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 4.2 Antenna Connector AC65/AC75 uses a subminiature coaxial antenna connector type SMP MIL-Std 348-A supplied from Rosenberger. Table 19: Product specifications of Rosenberger SMP connector Item Specification Conditions Material and finish Center contact Brass 0.8 µm gold plating over 2-4 µm NiP plating Outer contact Brass 0.8 µm gold plating over 2-4 µm NiP plating Dielectric PTFE Electrical ratings Nominal Impedance 50 Ω Operating frequency DC – 2 GHz VSWR 1.10 Insertion loss ≤ 0.1 dB x √ f/GHz Center contact resistance max. 6 mΩ Outer contact resistance max. 2 mΩ Insulation resistance 5 GΩ Working voltage 335 V rms at sea level Dielectric withstanding voltage 500 V rms at sea level DC to 2 GHz Mechanical ratings Durability 30 mating cycles Engagement force 20-35 N Disengagement force 30-50 N Center contact captivation Axial retention force 7 N min. Environmental ratings Operating temperature -65°C to +155°C Manufacturer Rosenberger Hochfrequenztechnik GmbH & Co. POB 1260 D-84526 Tittmoning http://www.rosenberger.de AC65/AC75_hd_v00.372 Page 80 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Figure 39: Datasheet of Rosenberger SMP MIL-Std 348-A connector AC65/AC75_hd_v00.372 Page 81 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Electrical, Reliability and Radio Characteristics 5.1 Absolute Maximum Ratings The absolute maximum ratings stated in Table 20 are stress ratings under any conditions. Stresses beyond any of these limits will cause permanent damage to AC65/AC75. The power supply shall be compliant with the SELV safety standard defined in EN60950. The supply voltage must be limited according to Table 20. Table 20: Absolute maximum ratings Parameter Min Max Unit Supply voltage BATT+ -0.3 5.5 Voltage at digital pins in POWER DOWN mode -0.3 0.3 Voltage at digital pins in normal operation -0.3 3.05 or VEXT+0.3 Voltage at analog pins in POWER DOWN mode -0.3 0.3 -0.3 2.75 -0.3 0.3 Voltage at VCHARGE pin -0.3 5.5 Voltage at CHARGEGATE pin -0.3 5.5 VUSB_IN -0.3 5.5 USB_DP, USB_DN -0.3 3.5 VSENSE 5.5 ISENSE 5.5 Voltage at analog pins, VMIC on Voltage at analog pins, VMIC off PWR_IND -0.3 10 VDDLP -0.3 5.5 For normal operation the voltage at analog pins with VMIC on should be within the range of 0V to 2.4V and with VMIC off within the range of -0.25V to 0.25V. AC65/AC75_hd_v00.372 Page 82 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 5.2 Operating Temperatures Table 21: Board temperature Parameter Min Operating temperature range -30 Automatic shutdown5 Temperature measured on AC65/AC75 board Temperature measured at battery NTC -30 -20 Typ ----- Max Unit +85 °C +90 +60 °C Table 22: Ambient temperature according to IEC 60068-2 (without forced air circulation) Parameter Operating temperature range Restricted operation Min Typ Max Unit -30 +25 +75 °C --- +75 to +85 °C Table 23: Charging temperature Parameter Min Typ Max Unit Battery temperature for software controlled fast charging (measured at battery NTC) --- +45 °C Note: • See Chapter 3.3.4 for further information about the NTCs for on-board and battery temperature measurement, automatic thermal shutdown and alert messages. • When data are transmitted over EGPRS or GPRS the AC65/AC75 automatically reverts to a lower Multislot Class if the temperature increases to the limit specified for normal operation and, vice versa, returns to the higher Multislot Class if the temperature is back to normal. For details see Chapter 3.4 “Automatic EGPRS/GPRS Multislot Class Change”. Due to temperature measurement uncertainty, a tolerance on the stated shutdown thresholds may occur. The possible deviation is in the range of ± 3°C at the overtemperature limit and ± 5°C at the undertemperature limit. Restricted operation allows normal mode speech calls or data transmission for limited time until automatic thermal shutdown takes effect. The duration of emergency calls is unlimited because automatic thermal shutdown is deferred until hang up. AC65/AC75_hd_v00.372 Page 83 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 5.3 Storage Conditions The conditions stated below are only valid for modules in their original packed state in weather protected, non-temperature-controlled storage locations. Normal storage time under these conditions is 12 months maximum. Table 24: Storage conditions Type Air temperature: Humidity relative: Air pressure: Condition Unit Reference Low -40 °C ETS 300 019-2-1: T1.2, IEC 68-2-1 Ab High +85 Low 10 High 90 at 30°C ETS 300 019-2-1: T1.2, IEC 68-2-56 Cb Condens. 90-100 at 30°C ETS 300 019-2-1: T1.2, IEC 68-2-30 Db Low 70 High 106 ETS 300 019-2-1: T1.2, IEC 68-2-2 Bb kPa --- IEC TR 60271-3-1: 1K4 IEC TR 60271-3-1: 1K4 Movement of surrounding air 1.0 m/s IEC TR 60271-3-1: 1K4 Water: rain, dripping, icing and frosting Not allowed --- --- Radiation: Solar 1120 W/m2 ETS 300 019-2-1: T1.2, IEC 68-2-2 Bb Heat 600 ETS 300 019-2-1: T1.2, IEC 68-2-2 Bb Chemically active substances Not recommended IEC TR 60271-3-1: 1C1L Mechanically active substances Not recommended IEC TR 60271-3-1: 1S1 Vibration sinusoidal: IEC TR 60271-3-1: 1M2 Displacement 1.5 mm Acceleration m/s2 Frequency range 2-9 9-200 Hz Shocks: IEC 68-2-27 Ea Shock spectrum semi-sinusoidal Duration ms Acceleration 50 m/s2 AC65/AC75_hd_v00.372 Page 84 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 5.4 Reliability Characteristics The test conditions stated below are an extract of the complete test specifications. Table 25: Summary of reliability test conditions Type of test Conditions Standard Vibration Frequency range: 10-20Hz; acceleration: 3.1mm amplitude Frequency range: 20-500Hz; acceleration: 5g Duration: 2h per axis = 10 cycles; 3 axes DIN IEC 68-2-6 Shock half-sinus Acceleration: 500g Shock duration: 1msec 1 shock per axis 6 positions (± x, y and z) DIN IEC 68-2-27 Dry heat Temperature: +70 ±2°C Test duration: 16h Humidity in the test chamber: < 50% EN 60068-2-2 Bb ETS 300 019-2-7 Temperature change (shock) Low temperature: -40°C ±2°C High temperature: +85°C ±2°C Changeover time: < 30s (dual chamber system) Test duration: 1h Number of repetitions: 100 DIN IEC 68-2-14 Na High temperature: +55°C ±2°C Low temperature: +25°C ±2°C Humidity: 93% ±3% Number of repetitions: 6 Test duration: 12h + 12h DIN IEC 68-2-30 Db Temperature: -40 ±2°C Test duration: 16h DIN IEC 68-2-1 Damp heat cyclic Cold (constant exposure) AC65/AC75_hd_v00.372 Page 85 of 118 ETS 300 019-2-7 ETS 300 019-2-5 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 5.5 Pin Assignment and Signal Description The Molex board-to-board connector on AC65/AC75 is an 80-pin double-row receptacle. The names and the positions of the pins can be seen from Figure 1 which shows the top view of AC65/AC75. GND GND 80 Not connected DAC_OUT 79 Not connected PWR_IND 78 GND Do not use 77 GPIO10 GPIO9 76 GPIO8 SPICS 75 SPIDI GPIO4 74 GPIO7 GPIO3 73 GPIO6 GPIO2 72 10 GPIO5 GPIO1 71 11 I2CCLK_SPICLK I2CDAT_SPIDO 70 12 VUSB_IN USB_DP 69 13 DAI5 USB_DN 68 14 ISENSE VSENSE 67 15 DAI6 VMIC 66 16 CCCLK EPN2 65 17 CCVCC EPP2 64 18 CCIO EPP1 63 19 CCRST EPN1 62 20 CCIN MICN2 61 21 CCGND MICP2 60 22 DAI4 MICP1 59 23 DAI3 MICN1 58 24 DAI2 AGND 57 25 DAI1 IGT 56 26 DAI0 EMERG_RST 55 27 BATT_TEMP DCD0 54 28 SYNC CTS1 53 29 RXD1 CTS0 52 30 RXD0 RTS1 51 31 TXD1 DTR0 50 32 TXD0 RTS0 49 33 VDDLP DSR0 48 34 VCHARGE RING0 47 35 CHARGEGATE VEXT 46 36 GND BATT+ 45 37 GND BATT+ 44 38 GND BATT+ 43 39 GND BATT+ 42 40 GND BATT+ 41 Figure 40: Pin assignment (component side of AC65/AC75) AC65/AC75_hd_v00.372 Page 86 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Please note that the reference voltages listed in Table 26 are the values measured directly on the AC65/AC75 module. They do not apply to the accessories connected. Table 26: Signal description Function Signal name Power supply BATT+ IO Signal form and level Comment VImax = 4.5V VItyp = 3.8V VImin = 3.3V during Tx burst on board Five pins of BATT+ and GND must be connected in parallel for supply purposes because higher peak currents may occur. Minimum voltage must not fall below 3.3V including drop, ripple, spikes. I ≈ 2A, during Tx burst n Tx = n x 577µs peak current every 4.616ms Power supply GND Ground Application Ground Charge Interface VCHARGE VImin = 1.015 * VBATT+ VImax = 5.45V This line signalizes to the processor that the charger is connected. If unused keep pin open. BATT_TEMP Connect NTC with RNTC ≈ 10kΩ @ 25°C to Battery temperature measurement via NTC ground. See Section 3.5.3 for B value of resistance. NTC. NTC should be installed inside or near battery pack to enable proper charging and deliver temperature values. If unused keep pin open. ISENSE VImax = 4.65V ∆VImax to VBATT+ = +0.3V at normal condition External supply voltage ISENSE is required for measuring the charge current. For this purpose, a shunt resistor for current measurement needs to be connected between ISENSE and VSENSE. If unused connect pin to VSENSE. VSENSE VImax = 4.5V VSENSE must be directly connected to BATT+ at battery connector or external power supply. CHARGEGATE VOmax = 5.5V IOmax = 0.6mA Control line to the gate of charge FET If unused keep pin open. VEXT Normal mode: VOmin = 2.75V VOtyp = 2.93V VOmax = 3.05V IOmax = -50mA VEXT may be used for application circuits, for example to supply power for an I2C AC65/AC75_hd_v00.372 Page 87 of 118 If unused keep pin open. Not available in Power-down mode. The external digital logic must not cause any spikes or glitches on voltage VEXT. 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Function Signal name IO Signal form and level Comment Power indicator PWR_IND VIHmax = 10V VOLmax = 0.4V at Imax = 2mA PWR_IND (Power Indicator) notifies the module’s on/off state. PWR_IND is an open collector that needs to be connected to an external pullup resistor. Low state of the open collector indicates that the module is on. Vice versa, high level notifies the Powerdown mode. Therefore, the pin may be used to enable external voltage regulators which supply an external logic for communication with the module, e.g. level converters. Ignition IGT Internal pull-up: RI ≈ 30kΩ, CI ≈ 10nF VILmax = 0.8V at Imax = -150µA VOHmax = 4.5V (VBATT+) This signal switches the mobile on. This line must be driven low by an open drain or open collector driver. ON Emergency reset EMERG_RST |____|~~~ Active Low ≥ 400ms Internal pull-up: RI ≈ 5kΩ VILmax = 0.2V at Imax = -0.5mA VOHmin = 1.75V VOHmax = 3.05V Signal Power-on reset ~~~ ~~~ |______|~~~ Pull down ≥ 10ms Internal pull-up: RI ≈ 5kΩ VOLmax = 0.2V at I = 2mA VOHmin = 1.75V VOHmax = 3.05V Reset signal driven by the module: Reset or turn-off in case of emergency: Pull down and release EMERG_RST. Then, activating IGT for 400ms will reset AC65/AC75. If IGT is not activated for 400ms, AC65/AC75 switches off. Data stored in the volatile memory will be lost. For orderly software controlled reset rather use the AT+CFUN command (e.g. AT+CFUN=x,1). This line must be driven by open drain or open collector. If unused keep pin open. Reset signal driven by the module which can be used to reset any application or device connected to the module. Only effective for 120ms during the assertion of IGT when the module is about to start. VEXT EMRG_RST appr. 120ms (see also Figure 5 and Figure 6) AC65/AC75_hd_v00.372 Page 88 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Function Signal name IO Signal form and level Comment Synchronization SYNC VOLmax = 0.3V at I = 0.1mA VOHmin = 2.3V at I = -0.1mA VOHmax = 3.05V There are two alternative options for using the SYNC pin: a) Indicating increased current consumption during uplink transmission burst. Note that the timing of the signal is different during handover. b) Driving a status LED to indicate different operating modes of AC65/AC75. The LED must be installed in the host application. To select a) or b) use the AT^SSYNC command. If unused keep pin open. n Tx = n x 577µs impulse each 4.616ms, with 180µs forward time. RTC backup VDDLP I/O RI ≈ 1kΩ VOmax = 4.5V VBATT+ = 4.3V: VO = 3.2V at IO = -500µA VBATT+ = 0V: VI = 2.4V…4.5V at Imax = 25µA ASC0 Serial interface RXD0 TXD0 CTS0 RTS0 DTR0 DCD0 DSR0 RING0 VOLmax = 0.2V at I = 2mA VOHmin = 2.55V at I = -0.5mA VOHmax = 3.05V RXD1 TXD1 CTS1 RTS1 VOLmax = 0.2V at I = 2mA VOHmin = 2.55V at I = -0.5mA VOHmax = 3.05V ASC1 Serial interface If unused keep pin open. Serial interface for AT commands or data stream. If lines are unused keep pins open. VILmax = 0.8V VIHmin = 2.15V VIHmax = VEXTmin + 0.3V = 3.05V Internal pull-down at TXD0: RI =330kΩ Internal pull-down at RTS0: RI =330kΩ 4-wire serial interface for AT commands or data stream. If lines are unused keep pins open. VILmax = 0.8V VIHmin = 2.15V VIHmax = VEXTmin + 0.3V = 3.05V Internal pull-down at TXD1: RI =330kΩ Internal pull-down at RTS1: RI =330kΩ AC65/AC75_hd_v00.372 Page 89 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Function Signal name Signal form and level Comment RI ≈ 100kΩ VILmax = 0.6V at I = -25µA VIHmin = 2.1V at I = -10µA VOmax = 3.05V CCIN = Low, SIM card holder closed CCRST RO ≈ 47Ω VOLmax = 0.25V at I = +1mA VOHmin = 2.5V at I = -0.5mA VOHmax = 2.95V CCIO I/O RI ≈ 4.7kΩ VILmax = 0.75V VILmin = -0.3V VIHmin = 2.1V VIHmax = CCVCCmin + 0.3V = 3.05V SIM interface CCIN specified for use with 3V SIM card IO RO ≈ 100Ω VOLmax = 0.3V at I = +1mA VOHmin = 2.5V at I = -0.5mA VOHmax = 2.95V CCCLK RO ≈ 100Ω VOLmax = 0.3V at I = +1mA VOHmin = 2.5V at I = -0.5mA VOHmax = 2.95V CCVCC VOmin = 2.75V VOtyp = 2.85V VOmax = 2.95V IOmax = -20mA CCGND SIM interface CCIN specified for use with 1.8V SIM card CCRST CCIO RI ≈ 100kΩ VILmax = 0.6V at I = -25µA VIHmin = 2.1V at I = -10µA VOmax = 3.05V RO ≈ 47Ω VOLmax = 0.25V at I = +1mA VOHmin = 1.45V at I = -0.5mA VOHmax = 1.90V I/O RI ≈ 4.7kΩ VILmax = 0.45V VIHmin = 1.35V VIHmax = CCVCCmin + 0.3V = 2.00V CCCLK RO ≈ 100Ω VOLmax = 0.3V at I = +1mA VOHmin = 1.45V at I = -0.5mA VOHmax = 1.90V CCVCC VOmin = 1.70V, VOtyp = 1.80V VOmax = 1.90V IOmax = -20mA CCGND SPIDI I2CDAT_SPIDO I2CCLK_SPICLK SPICS AC65/AC75_hd_v00.372 Maximum cable length or copper track 100mm to SIM card holder. All signals of SIM interface are protected against ESD with a special diode array. Usage of CCGND is mandatory. Ground RO ≈ 100Ω VOLmax = 0.3V at I = +1mA VOHmin = 1.45V at I = -0.5mA VOHmax = 1.90V SPI Serial Peripheral Interface CCIN = Low, SIM card holder closed Maximum cable length or copper track 100mm to SIM card holder. All signals of SIM interface are protected against ESD with a special diode array. Usage of CCGND is mandatory. Ground VOLmax = 0.2V at I = 2mA VOHmin = 2.55V at I = -0.5mA VOHmax = 3.05V If the Serial Peripheral Interface is active the I2C interface is not available. VILmax = 0.8V VIHmin = 2.15V, VIHmax = VEXTmin + 0.3V = 3.05V If lines are unused keep pins open. Page 90 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Function Signal name IO Signal form and level Comment I2C interface I2CCLK _SPICLK VOLmax = 0.2V at I = 2mA VOHmin = 2.55V at I = -0.5mA VOHmax = 3.05V I2C interface is only available if the two pins are not used as SPI interface. I2CDAT_SPIDO I/O VOLmax = 0.2V at I = 2mA VILmax = 0.8V VIHmin = 2.15V VIHmax = VEXTmin + 0.3V = 3.05V USB VUSB_IN USB_DN USB_DP VINmin = 4.0V VINmax = 5.25V I/O Differential Output Crossover voltage I/O Range VCRSmin = 1.5V, VCRSmax = 2.0V Line to GND: VOHmax = 3.6V VOHtyp = 3.2V VOHmin = 3.0V at I=-0.5mA VOLmax = 0.2V at I=2mA VIHmin = 2.24V VILmax = 0.96V Driver Output Resistance Ztyp = 32Ohm I2CDAT is configured as Open Drain and needs a pullup resistor in the host application. According to the I2C Bus Specification Version 2.1 for the fast mode a rise time of max. 300ns is permitted. There is also a maximum VOL=0.4V at 3mA specified. The value of the pull-up depends on the capacitive load of the whole system (I2C Slave + lines). The maximum sink current of I2CDAT and I2CCLK is 4mA. If lines are unused keep pins open. All electrical characteristics according to USB Implementers’ Forum, USB 2.0 Full Speed Specification. Without Java: USB port Under Java: Debug interface for development purposes. If lines are unused keep pins open. Pullup at USB_DP Rtyp=1.5kOhm General Purpose Input/Output GPIO1 GPIO2 GPIO3 GPIO4 I/O VOLmax = 0.2V at I = 2mA I/O VOHmin = 2.55V at I = -0.5mA VOHmax = 3.05V I/O GPIO6 I/O VILmax = 0.8V I/O VIHmin = 2.15V, I/O VIHmax = VEXTmin + 0.3V = 3.05V GPIO7 I/O GPIO8 I/O GPIO9 I/O I/O Pulse counter: GPIO5 GPIO10 pulse |________|~~~~~~~~~~~~~|________|~~~ | ≥ 450µs | ≥ 450µs | All pins which are configured as input must be connected to a pull-up or pull-down resistor. If lines are unused (not configured) keep pins open. Alternatively, the GPIO10 pin can be configured as a pulse counter for pulse rates from 0 to 1000 pulses per second. Slew rate ≤ 1µs Pulse rate: max. 1000 pulses per second AC65/AC75_hd_v00.372 Page 91 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Function Signal name IO Signal form and level Comment Digital Analog Converter DAC_OUT VOLmax = 0.2V at I = 2mA VOHmin = 2.55V at I = -0.5mA VOHmax = 3.05V PWM signal which can be smoothed by an external filter. Use the AT^SWDAC command to open and configure the DAC_OUT output. Digital Audio interface DAI0 DAI1 See Table 16 for details. If unused keep pins open. DAI2 VOLmax = 0.2V at I = 2mA VOHmin = 2.55V at I = -0.5mA VOHmax = 3.05V DAI3 DAI4 DAI5 Analog Audio interface VILmax = 0.8V VIHmin = 2.15V VIHmax = VEXTmin + 0.3V = 3.05V DAI6 VMIC VOmin = 2.4V VOtyp = 2.5V VOmax = 2.6V Imax = 2mA Microphone supply for customer feeding circuits EPP2 EPN2 3.0Vpp differential typical @ 0dBm0 4.2Vpp differential maximal @ 3.14dBm0 Measurement conditions: Audio mode: 6 Outstep 3 No load Minimum differential resp. single ended load 27Ohms The audio output can directly operate a 32-Ohmloudspeaker. If unused keep pins open. 4.2Vpp (differential) typical @ 0dBm0 6.0Vpp differential maximal @ 3.14dBm0 Measurement conditions: Audio mode: 5 Outstep 4 No load The audio output can directly operate an 8-Ohmloudspeaker. If unused keep pins open. EPP1 EPN1 Minimum differential resp. single ended load 7.5Ohms MICP1 MICN1 MICP2 MICN2 AGND AC65/AC75_hd_v00.372 Full Scale Input Voltage 1.6Vpp 0dBm0 Input Voltage 1.1Vpp At MICN1, apply external bias from 1.0V to 1.6V. Measurement conditions: Audio mode: 5 Balanced or single ended microphone or line input with external feeding circuit (using VMIC and AGND). If unused keep pins open. Full Scale Input Voltage 1.6Vpp 0dBm0 Input Voltage 1.1Vpp At MICN2, apply external bias from 1.0V to 1.6V. Measurement conditions: Audio mode: 6 Balanced or single ended microphone or line input with external feeding circuit (using VMIC and AGND). If unused keep pins open. Analog Ground GND level for external audio circuits Page 92 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 5.6 Power Supply Ratings Table 27: Power supply ratings Parameter Description Conditions Min BATT+ Directly measured at reference point TP BATT+ and TP GND, see chapter 3.2.2 3.3 Supply voltage Typ 3.8 Max Unit 4.5 400 mV @ f<200kHz 50 mV @ f>200kHz mV Voltage must stay within the min/max values, including voltage drop, ripple, spikes. IVDDLP IBATT+ Voltage drop during transmit burst Normal condition, power control level for Pout max Voltage ripple Normal condition, power control level for Pout max OFF State supply current Average standby supply current8 RTC Backup POWER DOWN mode 10 µA 50 100 µA mA @ DRX = 9 3.7 SLEEP mode @ DRX = 5 4.6 9 mA @ DRX = 2 mA 10 mA IDLE mode 25 SLEEP mode SLEEP mode @ BATT+ = 0V @ DRX = 2 7.0 28 Measured after module INIT (switch ON the module and following switch OFF); applied voltage on BATT+ (w/o INIT) show increased POWER DOWN supply current. Additional conditions: - SLEEP and IDLE mode measurements started 5 minutes after switching ON the module or after mode transition - Averaging times: SLEEP mode - 3 minutes; IDLE mode - 1.5 minutes - Communication tester settings: no neighbor cells, no cell reselection - USB interface disabled Stated value applies to operation without autobauding (AT+IPR≠0). Stated value applies to operation without autobauding (AT+IPR≠0). If autobauding is enabled (AT+IPR=0) average current consumption in IDLE mode is up to 43mA. AC65/AC75_hd_v00.372 Page 93 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Table 28: Current consumption during Tx burst for GSM 850MHz and GSM 900MHz Mode GSM call GPRS Class 8 GPRS Class10 GPRS Class 12 EGPRS Class 8 EGPRS Class 10 Timeslot configuration 1Tx / 1Rx 1Tx / 4Rx 2Tx / 3Rx 4Tx / 1Rx 1Tx / 4Rx 2Tx / 3Rx RF power nominal 2W (33dBm) 2W (33dBm) 2W (33dBm) 1W (30dBm) 1W (30dBm) 0.5W (27dBm) 0.5W (27dBm) 0.5W (27dBm) 0.25W (24dBm) = 1 ... 3 = 1 = 2 or 3 = 1 = 2 or 3 = 1 ... 3 = 1 or 2 = 3 Radio output power = 1 ... 3 reduction with AT^SCFG, parameter Current characteristics Burst current @ 50Ω antenna (typ.) 1.75A 1.75A 1.75A 1.48A 1.26A 1.1A 1.4A peak 1.2A plateau 1.4A peak 1.2A plateau 1.1A peak 1.0A plateau Burst current @ total mismatch 3.2A 3.2A 3.2A 2.7A 2.3A 1.9A 1.8A peak 1.5A plateau 1.8A peak 1.5A plateau 1.4A peak 1.2A plateau Average current @ 50Ω antenna (typ.) 330mA 360mA 540mA 475mA 680mA 600mA 370mA 450mA 400mA Average current @ total mismatch 510mA 540mA 905mA 780mA 1200mA 1000mA 395mA 525mA 450mA AT parameters are given in brackets <...> and marked italic. Statements on EGPRS apply to AC75 only. AC65/AC75_hd_v00.372 Page 94 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Table 29: Current consumption during Tx burst for GSM 1800MHz and GSM 1900MHz Mode Timeslot configuration RF power nominal GSM call GPRS Class 8 GPRS Class10 GPRS Class 12 1Tx / 1Rx 1Tx / 4Rx 2Tx / 3Rx 1W (30dBm) 1W (30dBm) 1W (30dBm) 0.5W (27dBm) 0.5W (27dBm) = 1 ... 3 = 1 = 2 or 3 Radio output power = 1 ... 3 reduction with AT^SCFG, parameter 4Tx / 1Rx EGPRS Class 8 EGPRS Class 10 1Tx / 4Rx 2Tx / 3Rx 0.25W (24dBm) 0.4W (26dBm) 0.4W (26dBm) 0.2W (23dBm) = 1 = 2 or 3 = 1 ... 3 = 1 or 2 = 3 Current characteristics Burst current @ 50Ω antenna (typ.) 1.3A 1.3A 1.3A 1.1A 0.95A 0.85A 1.0A peak 0.9A plateau 1.0A peak 0.9A plateau 0.9A peak 0.75A plateau Burst current @ total mismatch 2.2A 2.2A 2.2A 1.75A 1.5A 1.25A 1.3A peak 1.0A plateau 1.3A peak 1.0A plateau 1.1A peak 0.95A plateau Average current @ 50Ω antenna (typ.) 295mA 330mA 430mA 380mA 520mA 470mA 360mA 445mA 420mA Average current @ total mismatch 360mA 395mA 650mA 540mA 800mA 670mA 410mA 545mA 470mA AT parameters are given in brackets <...> and marked italic. Statements on EGPRS apply to AC75 only. AC65/AC75_hd_v00.372 Page 95 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 5.7 Electrical Characteristics of the Voiceband Part 5.7.1 Setting Audio Parameters by AT Commands The audio modes 2 to 6 can be adjusted according to the parameters listed below. Each audio mode is assigned a separate set of parameters. Table 30: Audio parameters adjustable by AT command Parameter Influence to Range Gain range Calculation inBbcGain MICP/MICN analogue amplifier gain of baseband controller before ADC 0...7 0...42dB 6dB steps inCalibrate Digital attenuation of input signal after ADC 0...32767 -∞...0dB 20 * log (inCalibrate/ 32768) outBbcGain EPP/EPN analogue output gain of baseband controller after DAC 0...3 0...-18dB 6dB steps outCalibrate[n] n = 0...4 Digital attenuation of output signal after speech decoder, before summation of sidetone and DAC 0...32767 -∞...+6dB 20 * log (2 * outCalibrate[n]/ 32768) 0...32767 -∞...0dB 20 * log (sideTone/ 32768) Present for each volume step[n] sideTone Digital attenuation of sidetone Is corrected internally by outBbcGain to obtain a constant sidetone independent of output volume Note: The parameters outCalibrate and sideTone accept also values from 32768 to 65535. These values are internally truncated to 32767. AC65/AC75_hd_v00.372 Page 96 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 5.7.2 Audio Programming Model The audio programming model shows how the signal path can be influenced by varying the AT command parameters. The parameters inBbcGain and inCalibrate can be set with AT^SNFI. All the other parameters are adjusted with AT^SNFO. Microphone feeding GSM module VMIC MIC1 Speech coder MIC2 RXDDAI EP1 8Ohms Speech decoder EP2 32 Ohms TXDDAI AT parameters are given in brackets <...> and marked red and italic. Figure 41: Audio programming model AC65/AC75_hd_v00.372 Page 97 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 5.7.3 Characteristics of Audio Modes The electrical characteristics of the voiceband part depend on the current audio mode set with the AT^SNFS command. All values are noted for default gains e.g. all parameters of AT^SNFI and AT^SNFO are left unchanged. Table 31: Voiceband characteristics (typical) Audio mode no. 1 (Default AT^SNFS= settings, not adjustable) Name Default Handset Basic Handsfree Headset User Handset Plain Codec 1 Plain Codec 2 Purpose DSB with Votronic handset Siemens Car Kit Portable Siemens Headset DSB with individual handset Direct access to speech coder Direct access to speech coder Gain setting via AT command. Defaults: Fix Adjustable Adjustable Adjustable Adjustable Adjustable inBbcGain outBbcGain 5 (30dB) 1 (-6dB) 2 (12dB) 2 (-12dB) 5 (30dB) 1 (-6dB) 5 (30dB) 1 (-6dB) 0 (0dB) 0 (0dB) 0 (0dB) 0 (0dB) Default audio interface 2 11 Power supply VMIC ON ON ON ON ON ON Sidetone Fix --- Adjustable Adjustable Adjustable Adjustable Volume control Fix Adjustable Adjustable Adjustable Adjustable Adjustable Echo canceller ON ON ON ON OFF OFF Loss controller idle/full attenuation 3dB / 6dB 4dB / 50dB 9dB / 18dB 3dB / 6dB OFF OFF Comfort noise generator ON ON ON ON OFF OFF Non linear processor ON ON ON ON OFF OFF MIC input signal for 0dBm0 -10dBm0 f=1024 Hz 18mV 5.8mV ---12 95mV --14mV 18mV 5.8mV 400mV 126mV 400mV 126mV 475mV 70mV default @ max volume 475mV 270mV default @ default @ max volume max volume 1.47V 1.47V Echo control EP output signal in mV rms. @ 0dBm0, 1024 Hz, no load (default gain) / 12 Vpp = 6.2 V @ 3.14 dBm0 Sidetone gain at default settings 21.9dB -∞ dB 10.0dB 21.9dB -∞ dB -∞ dB NOTE: With regard to acoustic shock, the cellular application must be designed to avoid sending false AT commands that might increase amplification, e.g. for a highly sensitive earpiece. A protection circuit should be implemented in the cellular application. 11 12 Audio mode 5 and 6 are identical. AT^SAIC can be used to switch mode 5 to the second interface. Audio mode 6 is therefore kept mainly for compatibility to earlier Siemens GSM products. In audio modes with an active loss controller a continuous sine signal is attenuated by the idle attenuation after a few seconds. All input voltages are noted for the idle attenuation. If the idle attenuation is higher than 3 dB, 0dBm0 cannot be reached without clipping. In this case only the value for -10dBm0 is noted. AC65/AC75_hd_v00.372 Page 98 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 5.7.4 Voiceband Receive Path Test conditions: • The values specified below were tested to 1kHz with default audio mode settings, unless otherwise stated. • Default audio mode settings are: mode=5 for EPP1 to EPN1 and mode=6 for EPP2 to EPN2, inBbcGain=0, inCalibrate=32767, outBbcGain=0, OutCalibrate=16384 (volume=4) or OutCalibrate=11585 (volume=3), sideTone=0. Table 32: Voiceband receive path Parameter Min Unit Test condition / remark 6.0 6.2 8 Ω, no load, Audio Mode 5, Volume 4 @ 3.14 dBm0 (Full Scale) Batt+ = 3.6V 4.0 4.2 32 Ω, no load Audio Mode 6, Volume 313 @ 3.14 dBm0 (Full Scale) 4.2 4.3 8 Ω, no load, Audio Mode 5, Volume 4 @ 0 dBm0 (Nominal level) 2.8 2.9 32 Ω, no load 13 Audio Mode 6, Volume 3 @ 0 dBm0 (Nominal level) Output bias voltage Batt+/2 from EPP1 or EPN1 to AGND Output bias voltage 1.2 from EPP2 or EPN2 to AGND Maximum differential output voltage (peak to peak) Typ Max EPP1 to EPN1 Maximum differential output voltage (peak to peak) EPP2 to EPN2 Nominal differential output voltage (peak to peak) EPP1 to EPN1 Nominal differential output voltage (peak to peak) EPP1 to EPN1 Differential output gain settings (gs) at 6dB stages (outBbcGain) -18 dB Set with AT^SNFO Fine scaling by DSP (outCalibrate) -∞ dB Set with AT^SNFO Differential output load resistance 7.5 Ω From EPP1 to EPN1 Differential output load resistance 27 32 Ω From EPP2 to EPN2 Single ended output load resistance 7.5 Ω From EPP1 or EPN1 to AGND Single ended output load resistance 27 32 Ω From EPP2 or EPN2 to AGND Absolute gain error -0.1 0.1 dB outBbcGain=2 -75 dBm0p outBbcGain=2 dB outBbcGain=2 14 Idle channel noise Signal to noise and distortion15 13 14 15 -83 47 Full scale of EPP2/EPN2 is lower than full scale of EPP1/EPN1 but the default gain is the same. 3.14dBm0 will lead to clipping if the default gain is used. The idle channel noise was measured with digital zero signal fed to decoder. This can be realized by setting outCalibrate and sideTone to 0 during a call. The test signal is a 1 kHz, 0 dbm0 sine wave. AC65/AC75_hd_v00.372 Page 99 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Parameter Min Typ Max Unit -34 dB Test condition / remark Frequency Response16 0Hz - 100Hz 200Hz 300Hz - 3350Hz 3400Hz 4000Hz ≥4400Hz -1.1 0.1 -0.2 -0.7 -39 -75 gs = gain setting 5.7.5 Voiceband Transmit Path Test conditions: • The values specified below were tested to 1kHz and default settings of audio modes, unless otherwise stated. • Parameter setup: Audio mode=5 for MICP1 to MICN1 and 6 for MICP2 to MICN2, inBbcGain=0, inCalibrate=32767, outBbcGain=0, OutCalibrate=16384, sideTone=0 Table 33: Voiceband transmit path Parameter Min Full scale input voltage (peak to peak) for 3.14dBm0 Typ Unit Test condition / Remark 1.6 Max MICPx must be biased with 1.25V (VMIC/2) 1.1 MICPx must be biased with 1.25V (VMIC/2) MICP1 to MICN1 or AGND, MICP2 to MICN2 or AGND Nominal input voltage (peak to peak) for 0dBm0 MICP1 to MICN1 or AGND, MICP2 to MICN2 or AGND Input amplifier gain in 6dB steps (inBbcGain) 42 dB Set with AT^SNFI Fine scaling by DSP (inCalibrate) -∞ dB Set with AT^SNFI Microphone supply voltage VMIC 2.4 2.6 mA -76 dBm0p 2.5 VMIC current Idle channel noise -82 Signal to noise and distortion 70 77 dB 16 Frequency response 0Hz - 100Hz 200Hz 300Hz - 3350Hz 3400Hz 4000Hz ≥4400Hz 16 -34 dB -1.1 0.1 -0.2 -0.7 -39 -75 This is the frequency response from a highpass and lowpass filter combination in the DAC of the baseband chip set. If the PCM interface is used, this filter is not involved in the audio path. Audio mode 1 to 4 incorporate additional frequency response correction filters in the digital signal processing unit and are adjusted to their dedicated audio devices (see Table 31). AC65/AC75_hd_v00.372 Page 100 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 5.8 Air Interface Test conditions: All measurements have been performed at Tamb= 25°C, VBATT+ nom = 4.0V. The reference points used on AC65/AC75 are the BATT+ and GND contacts (test points are shown in Figure 4). Table 34: Air Interface Parameter Min Typ Max Unit Frequency range GSM 850 824 849 MHz Uplink (MS → BTS) E-GSM 900 880 915 MHz GSM 1800 1710 1785 MHz GSM 1900 1850 1910 MHz Frequency range GSM 850 869 894 MHz Downlink (BTS → MS) E-GSM 900 925 960 MHz GSM 1800 1805 1880 MHz GSM 1900 1930 1990 MHz GSM 850 31 33 35 dBm 31 33 35 dBm 28 30 32 dBm 28 30 32 dBm RF power @ ARP with 50Ω load E-GSM 90017 GSM 1800 18 GSM 1900 Number of carriers Duplex spacing GSM 850 124 E-GSM 900 174 GSM 1800 374 GSM 1900 299 GSM 850 45 MHz E-GSM 900 45 MHz GSM 1800 95 MHz GSM 1900 80 MHz 200 kHz Carrier spacing Multiplex, Duplex TDMA / FDMA, FDD Time slots per TDMA frame Frame duration 4.615 ms Time slot duration 577 µs Modulation GMSK Receiver input sensitivity @ ARP GSM 850 -102 -108 dBm BER Class II < 2.4% (static input level) E-GSM 900 -102 -108 dBm GSM 1800 -102 -107 dBm GSM 1900 -102 -107 dBm 17 18 Power control level PCL 5 Power control level PCL 0 AC65/AC75_hd_v00.372 Page 101 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary 5.9 Electrostatic Discharge The GSM engine is not protected against Electrostatic Discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates a AC65/AC75 module. Special ESD protection provided on AC65/AC75: Antenna interface: one spark discharge line (spark gap) SIM interface: clamp diodes for protection against overvoltage. The remaining ports of AC65/AC75 are not accessible to the user of the final product (since they are installed within the device) and therefore, are only protected according to the “Human Body Model” requirements. AC65/AC75 has been tested according to the EN 61000-4-2 standard. The measured values can be gathered from the following table. Table 35: Measured electrostatic values Specification / Requirements Contact discharge Air discharge ESD at SIM port ± 4kV ± 8kV ESD at antenna port ± 4kV ± 8kV ETSI EN 301 489-7 Human Body Model (Test conditions: 1.5kΩ, 100pF) ESD at all other interfaces ± 1kV ± 1kV Note: Please note that the values may vary with the individual application design. For example, it matters whether or not the application platform is grounded over external devices like a computer or other equipment, such as the Siemens reference application described in Chapter 8. AC65/AC75_hd_v00.372 Page 102 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Mechanics 6.1 Mechanical Dimensions of AC65/AC75 Figure 42 shows the top view of AC65/AC75 and provides an overview of the board's mechanical dimensions. For further details see Figure 43. Length: Width: Height: 55.00mm 33.90mm 3.15mm Pin 1 Pin 80 Figure 42: AC65/AC75 – top view AC65/AC75_hd_v00.372 Page 103 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary All dimensions in mm Figure 43: Dimensions of AC65/AC75 AC65/AC75_hd_v00.372 Page 104 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 6.2 Mounting AC65/AC75 to the Application Platform There are many ways to properly install AC65/AC75 in the host device. An efficient approach is to mount the AC65/AC75 PCB to a frame, plate, rack or chassis. Fasteners can be M2 screws plus suitable washers, circuit board spacers, or customized screws, clamps, or brackets. In addition, the board-to-board connection can also be utilized to achieve better support. To help you find appropriate spacers a list of selected screws and distance sleeves for 3mm stacking height can be found in Chapter 9.2. When using the two small holes take care that the screws are inserted with the screw head on the bottom of the AC65/AC75 PCB. Screws for the large holes can be inserted from top or bottom. For proper grounding it is strongly recommended to use large ground plane on the bottom of board in addition to the five GND pins of the board-to-board connector. The ground plane may also be used to attach cooling elements, e.g. a heat sink or thermally conductive tape. To prevent mechanical damage, be careful not to force, bend or twist the module. Be sure it is positioned flat against the host device. AC65/AC75_hd_v00.372 Page 105 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 6.3 Board-to-Board Application Connector This section provides the specifications of the 80-pin board-to-board connector used to connect AC65/AC75 to the external application. Connector mounted on the AC65/AC75 module: Type: 52991-0808 SlimStack Receptacle 80 pins, 0.50mm pitch, for stacking heights from 3.0 to 4.0mm, see Figure 44 for details. Supplier: Molex www.molex.com Table 36: Technical specifications of Molex board-to-board connector Parameter Specification (80-pin B2B connector) Electrical Number of Contacts 80 Contact spacing 0.5mm (.020") Voltage 50V Rated current 0.5A max per contact Contact resistance 50mΩ max per contact Insulation resistance > 100MΩ Dielectric Withstanding Voltage 500V AC (for 1 minute) Physical Insulator material (housing) White glass-filled LCP plastic, flammability UL 94V 0 Contact material Plating: Gold over nickel Insertion force 1 st Insertion force 30 < 74.4N th < 65.6N Withdrawal force 1st > 10.8N Maximum connection cycles 30 (@ 70mΩ max per contact) Mating connector types for the customer's application offered by Molex: • 53748-0808 SlimStack Plug, 3mm stacking height, see Figure 45 for details. • 53916-0808 SlimStack Plug, 4mm stacking height AC65/AC75_hd_v00.372 Page 106 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Figure 44: Molex board-to-board connector 52991-0808 on AC65/AC75 AC65/AC75_hd_v00.372 Page 107 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Figure 45: Mating board-to-board connector 53748-0808 on application AC65/AC75_hd_v00.372 Page 108 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Sample Application Figure 46 shows a typical example of how to integrate a AC65/AC75 module with a Java application. Usage of the various host interfaces depends on the desired features of the application. Audio interface 1 demonstrates the balanced connection of microphone and earpiece. This solution is particularly well suited for internal transducers. Audio interface 2 uses an unbalanced microphone and earpiece connection typically found in headset applications. The charging circuit is optimized for the charging stages (trickle charging and software controlled charging) as well as the battery and charger specifications described in Chapter 3.5. The PWR_IND line is an open collector that needs an external pull-up resistor which connects to the voltage supply VCC µC of the microcontroller. Low state of the open collector pulls the PWR_IND signal low and indicates that the AC65/AC75 module is active, high level notifies the Power-down mode. If the module is in Power-down mode avoid current flowing from any other source into the module circuit, for example reverse current from high state external control lines. Therefore, the controlling application must be designed to prevent reverse flow. If the I2C bus is active the two lines I2CCLK and I2DAT are locked for use as SPI lines. Vice versa, the activation of the SPI locks both lines for I2C. Settings for either interface are made by using the AT^SSPI command. The internal pull-up resistors (Rp) of the I2C interface can be connected to an external power supply or to the VEXT line of AC65/AC75. The advantage of using VEXT is that when the module enters the Power-down mode, the I2CI interface is shut down as well. If you prefer to connect the resistors to an external power supply, take care that the interface is shut down when the PWR_IND signal goes high in Power-down mode. The interfaces ASC0, ASC1 and USB have different functions depending on whether or not Java is running. Without Java, all of them are used as AT interfaces. When a Java application is started, ASC0 and ASC1 can be used for CommConnection or/and System.out, and the USB lines can be used for debugging or System.out. The EMC measures are best practice recommendations. In fact, an adequate EMC strategy for an individual application is very much determined by the overall layout and, especially, the position of components. For example, mounting the internal acoustic transducers directly on the PCB eliminates the need to use the ferrite beads shown in the sample schematic. However, when connecting cables to the module’s interfaces it is strongly recommended to add appropriate ferrite beads for reducing RF radiation. Disclaimer No warranty, either stated or implied, is provided on the sample schematic diagram shown in Figure 46 and the information detailed in this section. As functionality and compliance with national regulations depend to a great amount on the used electronic components and the individual application layout manufacturers are required to ensure adequate design and operating safeguards for their products using AC65/AC75 modules. AC65/AC75_hd_v00.372 Page 109 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Figure 46: AC65/AC75 sample application for Java AC65/AC75_hd_v00.372 Page 110 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Reference Approval 8.1 Reference Equipment for Type Approval The Siemens reference setup submitted to type approve AC65/AC75 consists of the following components: • Siemens AC65/AC75 cellular engine • Development Support Box DSB75 • SIM card reader integrated on DSB75 • U.FL-R-SMT antenna connector and U.FL-LP antenna cable • Handset type Votronic HH-SI-30.3/V1.1/0 • Li-Ion battery • PC as MMI Antenna or 50 Ω cable to system simulator RS-232 Antenna GSM module DSB75 Flex cable 100mm PC SIM Power supply Li-Ion battery Handset Figure 47: Reference equipment for Type Approval AC65/AC75_hd_v00.372 Page 111 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 8.2 Compliance with FCC Rules and Regulations The FCC Equipment Authorization Certification for the Siemens reference application described in Chapter 8.1 will be registered under the following identifiers: FCC identifier QIPAC65 IC: 267W-AC65 granted to Siemens AG and FCC identifier QIPAC75 IC: 267W-AC75 granted to Siemens AG. Manufacturers of mobile or fixed devices incorporating AC65/AC75 modules are authorized to use the FCC Grants and IC Certificates of the AC65/AC75 modules for their own final products according to the conditions referenced in these documents. In this case, the FCC label of the module shall be visible from the outside, or the host device shall bear a second label stating “Contains FCC ID QIP AC65” resp. “Contains FCC ID QIPAC75”. IMPORTANT: Manufacturers of portable applications incorporating AC65/AC75 modules are required to have their final product certified and apply for their own FCC Grant and IC Certificate related to the specific portable mobile. This is mandatory to meet the SAR requirements for portable mobiles (see Chapter 1.3.1 for detail). Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment. If the final product is not approved for use in U.S. territories the application manufacturer shall take care that the 850 MHz and 1900 MHz frequency bands be deactivated and that band settings be inaccessible to end users. If these demands are not met (e.g. if the AT interface is accessible to end users), it is the responsibility of the application manufacturer to always ensure that the application be FCC approved regardless of the country it is marketed in. The frequency bands can be set using the command AT^SCFG="Radio/Band"[, ][, ]. A detailed command description can be found in [1]. AC65/AC75_hd_v00.372 Page 112 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Appendix 9.1 List of Parts and Accessories Table 37: List of parts and accessories Description Supplier Ordering information AC65 Siemens Standard module (Siemens IMEI) Siemens ordering number: L36880-N8335-A100 Customer IMEI mode: Siemens Ordering number: L36880-N8336-A100 AC75 Siemens Standard module (Siemens IMEI) Siemens ordering number: L36880-N8330-A100 Customer IMEI mode: Siemens Ordering number: L36880-N8331-A100 Siemens Car Kit Portable Siemens Siemens ordering number: L36880-N3015-A117 DSB75 Support Box Siemens Siemens ordering number: L36880-N8811-A100 Votronic Handset VOTRONIC Votronic HH-SI-30.3/V1.1/0 VOTRONIC Entwicklungs- und Produktionsgesellschaft für elektronische Geräte mbH Saarbrücker Str. 8 66386 St. Ingbert Germany Phone: +49-(0)6 89 4 / 92 55-0 Fax: +49-(0)6 89 4 / 92 55-88 e-mail: contact@votronic.com SIM card holder incl. push button ejector and slide-in tray Molex Ordering numbers: 91228 91236 Sales contacts are listed in Table 38. Board-to-board connector Molex Sales contacts are listed in Table 38. SMP Rosenberger antenna connector Hirose Rosenberger Hochfrequenztechnik GmbH & Co. POB 1260 84526 Tittmoning Germany http://www.rosenberger.de AC65/AC75_hd_v00.372 Page 113 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Table 38: Molex sales contacts (subject to change) Molex For further information please click: http://www.molex.com/ Molex Deutschland GmbH Felix-Wankel-Str. 11 4078 Heilbronn-Biberach Germany Phone: +49-7066-9555 0 Fax: +49-7066-9555 29 Email: mxgermany@molex.com American Headquarters Lisle, Illinois 60532 U.S.A. Phone: +1-800-78MOLEX Fax: +1-630-969-1352 Molex China Distributors Beijing, Room 1319, Tower B, COFCO Plaza No. 8, Jian Guo Men Nei Street, 100005 Beijing P.R. China Phone: +86-10-6526-9628 Phone: +86-10-6526-9728 Phone: +86-10-6526-9731 Fax: +86-10-6526-9730 Molex Singapore Pte. Ltd. Jurong, Singapore Phone: +65-268-6868 Fax: +65-265-6044 Molex Japan Co. Ltd. Yamato, Kanagawa, Japan Phone: +81-462-65-2324 Fax: +81-462-65-2366 AC65/AC75_hd_v00.372 Page 114 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary 9.2 Fasteners and Fixings for Electronic Equipment This section provides a list of suppliers and manufacturers offering fasteners and fixings for electronic equipment and PCB mounting. The content of this section is designed to offer basic guidance to various mounting solutions with no warranty on the accuracy and sufficiency of the information supplied. Please note that the list remains preliminary although it is going to be updated in later versions of this document. 9.2.1 Fasteners from German Supplier ETTINGER GmbH Sales contact: ETTINGER GmbH http://www.ettinger.de/main.cfm Phone: +4981 04 66 23 – 0 Fax: +4981 04 66 23 – 0 The following tables contain only article numbers and basic parameters of the listed components. For further detail and ordering information please contact Ettinger GmbH. Please note that some of the listed screws, spacers and nuts are delivered with the DSB75 Support Board. See comments below. Article number: 05.71.038 Spacer - Aluminum / Wall thickness = 0.8mm Length 3.0mm Material AlMgSi-0,5 For internal diameter M2=2.0-2.3 Internal diameter d = 2.4mm External diameter 4.0mm Vogt AG No. x40030080.10 AC65/AC75_hd_v00.372 Page 115 of 118 2006-08-03 AC65/AC75 Hardware Interface Description Confidential / Preliminary Article number: 07.51.403 Insulating Spacer for M2 Self-gripping *) Length 3.0mm Material Polyamide 6.6 Surface Black Internal diameter 2.2mm External diameter 4.0mm Flammability rating UL94-HB *) 2 spacers are delivered with DSB75 Support Board Article number: 05.11.209 Threaded Stud M2.5 - M2 Type E / External thread at both ends Length 3.0mm Material Stainless steel X12CrMoS17 Thread 1 / Length M2.5 / 6.0mm Thread 2 / Length M2 / 8.0mm Width across flats Recess yes Type External / External AC65/AC75_hd_v00.372 Page 116 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Article number: 01.14.131 Screw M2 *) DIN 84 - ISO 1207 Length 8.0mm Material Steel 4.8 Surface Zinced A2K Thread M2 Head diameter D = 3.8mm Head height 1.30mm Type Slotted cheese head screw *) 2 screws are delivered with DSB75 Support Board Article number: 01.14.141 Screw M2 DIN 84 - ISO 1207 Length 10.0mm Material Steel 4.8 Surface Zinced A2K Thread M2 Head diameter D = 3.8mm Head height 1.30mm Type Slotted cheese head screw AC65/AC75_hd_v00.372 Page 117 of 118 2006-08-03 s AC65/AC75 Hardware Interface Description Confidential / Preliminary Article number: 02.10.011 Hexagon Nut *) DIN 934 - ISO 4032 Material Steel 4.8 Surface Zinced A2K Thread M2 Wrench size / Ø Thickness / L 1.6mm Type Nut DIN/UNC, DIN934 *) AC65/AC75_hd_v00.372 2 nuts are delivered with DSB75 Support Board Page 118 of 118 2006-08-03
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.5 Linearized : No Page Count : 118 Page Mode : UseOutlines XMP Toolkit : XMP toolkit 2.9.1-14, framework 1.6 About : uuid:5d924d2c-9a55-4dc4-bcbd-14e55ceef6fc Producer : Acrobat Distiller 6.0.1 (Windows) Comments : AC75 Create Date : 2006:08:03 16:44:15+02:00 Creator Tool : Acrobat PDFMaker 6.0 for Word Modify Date : 2006:08:03 16:45:59+02:00 Metadata Date : 2006:08:03 16:45:59+02:00 Document ID : uuid:63a3a8b6-4b53-4c25-b16e-176405c52baf Format : application/pdf Title : AC65/AC75 Creator : Author : Keywords : AC65EXIF Metadata provided by EXIF.tools