Trane 3VAV PRC003 EN VariTrac Changeover Bypass VAV (Tracker System CB) User Manual To The A2e94c10 767a 4da2 81c1 Fdef63341b41

User Manual: Trane 3VAV-PRC003-EN to the manual

Open the PDF directly: View PDF PDF.
Page Count: 52

DownloadTrane 3VAV-PRC003-EN VariTrac Changeover Bypass VAV (Tracker System CB) User Manual  To The A2e94c10-767a-4da2-81c1-fdef63341b41
Open PDF In BrowserView PDF
VariTrac Changeover
Bypass VAV
(Tracker System CB)
™

June 2004

VAV-PRC003-EN

© 2004 American Standard, Inc. All rights reserved

VAV-PRC003-EN

Contents
Introduction ............................................................. 4
Comfort Made Simple ................................................................ 4
The Changeover Bypass VAV Comfort Advantage ....................... 4
VariTrac Product Enhancements ................................................. 4

Features and Benefits ........................................... 5–12
Overview ................................................................................... 6
Central Control Panel ................................................................. 7
Optional Operator Display .......................................................... 7
Communicating Bypass Controller ............................................. 8
Tracker System Integration ......................................................... 8
VariTrac Bypass Dampers ........................................................... 9
VariTrac Zone Dampers ............................................................ 10
Unit Control Module ................................................................ 10
Zone Sensors ...................................................................... 11–12

Application Considerations ................................ 13–24
Introduction .............................................................................. 13
Zoning Considerations .............................................................. 13
Effective Changeover Bypass VAV System Design ................ 14–19
Pressure Dependent vs. Pressure Independent .......................... 20
Local Reheat Capabilities Using VariTrane VAV Units ............. 20–21
Bypass Damper Operation ........................................................ 22
Building Pressure Control ......................................................... 23
ApplicationTip Summary .......................................................... 24

Selection Procedures ......................................... 25–28
VariTrac Dampers ................................................................ 25–26
Service Model Numbers........................................................... 27
Typical Bill of Materials ............................................................. 28

Electrical Data and Connections ......................... 29–34
Specifications ................................................... 35–38
Acoustics .......................................................... 39–40
Dimensions and Weights .................................... 41–46
™ ® The following are trademarks or
registered trademarks of their respective
companies: Precedent, ReliaTel, Trace, Tracker,
VariTrac, VariTrane, Voyager.
VAV-PRC003-EN

Glossary ........................................................... 47–48

3

Introduction

Comfort Made Simple
Trane has a long history of innovative
leadership in variable air volume (VAV)
technology.Trane introduced the:
• first fan-powered VAV unit
• first factory-commissioned DDC
controller
• first preprogrammed VAV controller
designed specifically for VAV
applications
Trane is now the leading manufacturer
of VAV terminal units and VAV-related
products in the world.
The introduction of VariTrac™ in 1989
brought VAV controls expertise into the
changeover bypass zoning market.
Trane is committed to continuous
product improvement and now
introduces a new generation of VariTrac
controls.This latest generation retains
the functionality of the original VariTrac
system with exciting new
enhancements, utilizing the best of
today’s technology.

Figure 1. The VariTrac CCP maximizes
system efficiency and reliability by
coordinating the components of the
changeover-bypass system

The Changeover Bypass
VAV Comfort Advantage
Packaged unitary systems offer a
popular and cost-effective method of
supplying conditioned air to light
commercial buildings.These systems
commonly have a constant-volume fan
with a fixed outside air damper and a
single thermostat. While a constant
volume system may meet the overall
thermal requirements of the space, only
a single thermostat is available.This
system may be insufficient in multiplespace applications with independent
thermal load requirements.
Changeover bypass systems use the
practicality and cost effectiveness of
constant volume unitary components
like packaged rooftop units, split
systems, or water-source heat pumps,
and simply add dampers and a central
control panel to coordinate the
components.This allows up to
24 individual sensors (thermostats) for
independent temperature control.

Figure 2. The VariTrac CCP with
optional touch-screen interface
simplifies system operation with
intuitive icon-driven design

VariTrac Product
Enhancements
Selected enhancements of the new
VariTrac product are listed below.
• A new central control panel (CCP) with
improved system temperature and
pressure control functions
• An optional touch-screen operator
display for the CCP with built-in
time clock for easier system setup and
control
• A communicating bypass controller
allows duct pressure and duct
temperature to communicate to the
system via a twisted shielded wire pair,
thus eliminating costly “home-run”
wiring
• The next generation UCM zone
controller allows CO2 and occupancy
sensor inputs
• A digital display zone sensor for
simplified occupant control

Advanced Control Options
Some of the VariTrac intelligent system
control features are listed below.
• CO2-based demand control ventilation
resets the position of the HVAC unit
ventilation air damper when zone CO2
levels rise
• Zone-based HVAC unit control operates
heating and cooling only when zone
demand exists
• Discharge air control to avoid extreme
supply air conditions and maximize
equipment life and occupant comfort
• A simplified system-balancing process
is available via PC software or the
touch-screen interface
• Global zone temperature setpoint limits
simplify startup, commissioning, and
operator control

4

VAV-PRC003-EN

Features and
Benefits

Figure 3. VariTrac changeover-bypass VAV system components

VariTrac Central Control
Panel with touchscreen
interface

HVAC
Unit
Bypass
Damper
Communicating
Bypass
Controller

VariTrac Zone
Damper

Zone Sensor

VariTrac Central Control Panel (CCP)
The CCP is the system level controller which
coordinates and monitors VariTrac system
operation, including HVAC system supply
pressure and airflow, heating/cooling mode,
supply air temperature, all zone temperatures and setpoints,
fan mode, economizer position (when paired with CO2
demand controlled ventilation), time-of-day scheduling, zone
grouping logic, system override mode (after hours
operation), and much more.

Rooftop

Split System

HVAC Unit
VariTrac changeover bypass systems
operate withTrane and non-Trane products,
including split systems, packaged rooftop
units, and water-source heat pumps.These
systems are generically referred to as HVAC
(heating, ventilating, and air conditioning)
units. When combined with aTrane
packaged rooftop with ReliaTel™ controller,
wiring, installation, and system startup
efficiency is maximized by connecting with a
simple twisted shielded wire pair.

Bypass Damper w/ Wire and Quick Connect
A round or rectangular damper ducted
between the HVAC supply and return ducts. It
is easily connected via a “quick-connector”
which provides quick and consistent field wiring.The bypass
damper is modulated by the CCP to maintain required system
static pressure.
Communicating Bypass Controller
A single enclosure with duct temperature sensor,
static pressure sensor, and communicating
controller (UCM) which easily mounts on the
supply ductwork.The UCM provides power to
drive the bypass damper actuator.

Zone Sensor
Zone sensors (sometimes referred to as
thermostats) measure space temperature and
report it to the zone damper controller (UCM).
Five models are available to satisfy varied aesthetic and
application preferences.

WSHP
5VAV-PRC003-EN

5

Features and
Benefits

Overview
Changeover-bypass VAV is a comfort
system developed for light commercial
applications. A changeover-bypass VAV
system responds to changing cooling
or heating requirements by varying the
quantity or volume of air delivered to
each zone. Each zone has a thermostat
for individual comfort control. An
HVAC unit delivers a constant volume
of air to the system. As the volume of
air required by the zone changes,
excess supply air is directed to the
return duct via a bypass duct and
damper. (See Figure 3 for typical
system components.)
A changeover-bypass VAV system
combines the comfort benefits of VAV
with the cost effectiveness and
simplicity of packaged, constantvolume unitary equipment.

6

How the System Works
A changeover-bypass VAV system
commonly consists of an HVAC unit
with a constant-volume supply fan, and
direct-expansion (DX) cooling.This
combined system has the ability to
“change” to the heating mode or
cooling mode, depending on individual
zone comfort requirements. A heating
coil or a gas-fired heater and an outside
air damper are possible options.
A temperature sensor in each zone
communicates information to an
electronic controller on the VAV
terminal unit.The controller then
modulates the zone damper open or
closed, supplying heating or cooling air
to the zone.
The HVAC unit delivers a constant
volume of supply air to the system. In
order to maintain duct static pressure, a
bypass duct and damper are required
to bypass (detour) air not required in
the zones.

The VAV terminal unit controller
communicates zone temperature
information to a central control panel
(CCP). The CCP also gathers
information from the system, including
duct static pressure and supply-air
temperature.The CCP determines zone
heating or cooling needs using voting
(or polling) logic, then requests heating
or cooling from the HVAC unit.The CCP
directs the HVAC unit to provide
ventilation air to high-occupancy areas
(demand control ventilation) or freecooling when the outside air
temperature falls below the
temperature setpoint (economizer
control).
Auto Changeover
“Auto changeover” refers to the ability
of the system to automatically change
between the heating and cooling
modes.
In a changeover-bypass VAV system,
the CCP determines whether the HVAC
unit should heat or cool by polling the
temperature of the individual zones. It
then compares the zone temperatures
to the space temperature setpoints. If
the supply air does not meet the criteria
for the heat or cool mode called for, the
CCP sends a signal to the HVAC unit to
change the system to the opposite
mode.

VAV-PRC003-EN

Features and
Benefits

Central Control Panel

Figure 5. VariTrac central control panel

The VariTrac central control panel (CCP)
serves as the central source of
communications and decisionmaking
between the individual zones and the
HVAC unit.The CCP determines system
heating and cooling modes and
coordinates the system supply air
temperature and static pressure to
satisfy building thermal load
conditions. Inputs to the CCP include
24VAC power and communication
wiring to the zone dampers and bypass
control.
Binary inputs consist of priority
shutdown and occupied/unoccupied
modes. Heating, cooling, and the HVAC
unit fan on split systems and non-Trane
HVAC units can be controlled through
binary outputs on an accessory relay
board. If aTrane rooftop air conditioner
with factory-installed electronic
controls is used, the CCP can control
heating, cooling, and the fan with a twowire communication link tied to an
interface board mounted in the rooftop.
It can also display status information
from the electronic controller in the
rooftop. (See Figure 4.)
Figure 4. A screen representation
from the central control panel
illustrating system status

CCP Feature Summary
• Communicates with up to 24 VAV unit
control modules (UCMs)
• Makes optimal heating and cooling
decisions based on setpoint and
temperature information received from
individual zones
• Automatically calibrates all dampers,
significantly reducing labor-intensive
and costly field calibration
• Windows-based PC software simplifies
setup and control

Figure 6. VariTrac central control panel
with optional operator display

Optional Operator Display
The optional operator display is a
backlit, liquid crystal display with touchscreen programming capability.
The operator can access system and
zone status through the display and
perform basic setup of zone VAV UCMs
and CCP system operating parameters.
The display allows an installer to
commission a VariTrac system without
using a PC. The operator display has a
seven-day time clock for stand-alone
scheduling capability.

• Provides diagnostic information for all
system components via the operator
display or PC software

Operator Display Feature Summary

• Provides status and diagnostic
information forTrane HVAC units
equipped withTrane ReliaTel or UCP
electronic controls

• Combination of icon- and menu-based
navigation provides intuitive operation

• Backlit LCD touch-screen display for
easy operator interface

• Provides a level of control for the daily
operator, and a second level for
commissioning and service
• Three levels of security are available to
protect system settings
• Seven-day time clock for stand-alone,
time-of-day scheduling

VAV-PRC003-EN

7

Features and
Benefits
Communicating Bypass
Controller
The communicating bypass controller
is a single control enclosure with the
following integrated devices included:
• integrated UCM board
• static pressure sensor
• discharge air temperature sensor
The communicating bypass controller
directly controls the bypass damper
and communicates duct conditions to
the central control panel via a simple
twisted shielded wire pair.
Quick Connect
Minimizes field wiring labor and
assures wiring consistency
Duct Temperature Sensor

Tracker System Integration
The VariTrac system can be fully
integrated with the new family of
Tracker building controls. ATracker
building management system can
manage multiple VariTrac systems from
a single control point.

Tracker System Summary
• Controls up to 10 VariTrac systems
from a singleTracker panel for easy
building operation
• LCD touch-screen operator display or
Tracker PC software interface provides
single-point building management by a
local operator

• 365-day scheduling function and the
flexibility of up to 10 schedules
• Assign all systems to a single
schedule, if desired, for simplified
schedule changes
• Exception scheduling feature for easy
management of vacations and holidays
• Automatically adjusts for daylight
savings time and leap year
• Remote communications capability
via modem for system programming
and control

Figure 8.Tracker System Architecture

The supply air temperature sensor
allows the CCP to control heating and
cooling stages to maintain the supply
air temperature. Supply air
temperature setpoints can be edited
through the operator display or
PC software.
Static Pressure Sensor
The static pressure sensor measures
duct static pressure and positions the
bypass damper(s) to maintain the static
pressure setpoint.
Figure 7. Communicating bypass
controller side view and 3-D view
Duct Temperature
Sensor

Up to 24
VariTrac or
VariTrane
Dampers

Static Pressure
Sensor

Quick
Connect
8

VAV-PRC003-EN

Features and
Benefits

VariTrac Bypass Dampers
Bypass dampers are noncommunicating VariTrac dampers and
include an integrated fully-modulating
24 VAC electric actuator.
Field wiring errors are reduced with a
quick-connect harness that plugs into
the communicating bypass controller.

Round Bypass Damper Summary

Rectangular Bypass Damper Summary

• Round bypass dampers are available
with inlet diameters 6, 8, 10, or 12 inches

• Rectangular bypass dampers are
available in sizes 14 x 12, 16 x 16,
20 x 20, and 30 x 20 inches

• Heavy gage galvanized steel cylinder
with rolled bend for high structural
integrity and corrosive resistance
• Metal-to-metal blade seal provides tight
shutoff for low leakage

Dampers are nominally rated up to
1800–2400 fpm at 1.75" of static
pressure, depending on size.

• Aerodynamic blade design provides a
constant torque for stable operation at
high velocity

For damper performance information,
seeTable 2.

• Factory-installed, direct-coupled, fullymodulating 24 VAC actuator
• Rated up to 2400 fpm at 1.75" of static
pressure

• Formed heavy gage galvanized steel
frame, mechanically joined with linkage
concealed in the side channel
• Air linkage is minimized with an
opposed blade design with stainless
steel side seals
• Damper casing is 16 inches long and
constructed of heavy gage galvanized
sheet metal with S cleats on the inlet
and outlet for easy installation
• Blades are six-inch nominal width,
heavy gage galvanized steel
• A blade rotation stop feature prevents
over-rotation of the blades in the fully
open position
• Factory-installed, direct-coupled, fullymodulating 24 VAC actuator
• Rated up to 3000 fpm at 2" of static
pressure

VAV-PRC003-EN

9

Features and
Benefits

VariTrac Zone Dampers
VariTrac zone dampers are fullymodulating, pressure-dependent VAV
devices. The dampers control zone
temperature by varying the volume of
air flowing into a space. Each VariTrac
damper has a control box with a VAV
control board and actuator enclosed.
The dampers are designed to operate in
static pressures up to 1.75 in. wg.

Round Zone Damper
• Round dampers are available in 6, 8, 10,
12, 14, and 16 inch diameters
• Heavy gage galvanized steel cylinder
with rolled bend for high structural
integrity and corrosive resistance

Rectangular Zone Damper
• Rectangular dampers are available in
sizes 8 x 12, 8 x 14, 8 x 16, 10 x 16,
10 x 20, and 14 x 18 inches
• Heavy gage G90 galvanized steel
frame assembled by a mechanical
joining process
• Single-ply, heavy gage G90 galvanized
steel blades
• Linkage has high impact ABS gears,
and is 3" nominal diameter
• Factory-installed 24 VAC direct-coupled
actuator
• Rated up to 2400 fpm at 2" of static
pressure

• Metal-to-metal seal provides tight
shutoff

Unit Control Module
A unit control module (UCM) is the
individual zone controller for the
VariTrac air damper and is mounted on
each zone damper.The unit controller
continually monitors the zone
temperature to maintain space
temperature.The UCM varies the
damper position as needed to meet
zone setpoints and communicates
current space requirements and
system operating modes to the CCP.
The UCM can also control local heat.
Local heat may be duct- or spacemounted, and can be staged electric,
pulse-width modulating electric, and
modulating or two-position staged
hot water.

• 90° blade rotation for a wide control
range and stable operation
• Aerodynamic blade design provides
constant torque for stable operation at
high velocity
• Rated up to 2000 fpm at 1.75" of static
pressure
Figure 9. VariTrac rectangular and round zone dampers with UCMs

10

VAV-PRC003-EN

Features and
Benefits

Zone Sensors
Figure 10. DDC zone sensors

DDC Zone Sensor
The direct digital control (DDC) zone
sensor is an uncomplicated, reliable
electro-mechanical room sensor. No
programming is required and most
sensors contain an internal
communications jack.
Models are available with combinations
of features such as override (on-cancel)
buttons and space-mounted setpoint.
Four sensor variations are available:
• Sensor only (no communications jack)
• Sensor with override buttons
• Sensor with temperature setpoint only
• Sensor with temperature setpoint and
override buttons

VAV-PRC003-EN

Figure 11. DDC zone sensor with LCD

DDC Zone Sensor with LCD
The DDC zone sensor with LCD (liquid
crystal display or digital) is compatible
with VariTrane VAV and VariTrac
controllers.

Digital Zone Sensor Summary
• Displays setpoint adjustment and space
temperature in °F or °C
• Simple, two-button control of space
setpoint
• Setpoint control and room temperature
display can be optionally disabled
• Includes button for timed override and
a cancel feature for after-hours system
operation
• An easily accessible communications
jack is provided forTrane portable edit
terminal devices
• Nonvolatile memory stores last
programmed setpoints
• For field balancing, maximum and
minimum airflow or position can be
overridden from the sensor

11

Features and
Benefits

Figure 12. Wall-mounted CO2 sensor

Figure 14. Zone occupancy sensor

Zone Occupancy Sensor

Figure 13. Duct-mounted CO2 sensor

The energy-saving zone occupancy
sensor is ideal for zones having
intermittent use during the occupied
mode.The sensor sends a signal to the
VAV controller upon detection of
movement in the coverage area.The
VAV system then changes the zone
from occupied standby mode to
occupied mode.

Occupancy Zone Sensor Summary
• Compatible with VariTrane VAV and
VariTrac controllers
CO2 Sensor
Wall- and duct-mounted carbon dioxide
(CO2) sensors are designed for
demand-controlled ventilation zone
applications.The sensor is compatible
with VariTrane VAV and VariTrac
controllers. TheTrane CO2 sensors
measure carbon dioxide in parts-permillion (ppm) in occupied building
spaces. Carbon dioxide measurements
are used to identify under-ventilated
building zones. Outdoor airflow
increases beyond design ventilation
rates if the CO2 exceeds specified levels.

CO2 Zone Sensor Summary
• Use with the UCM CO2 input for
demand control ventilation

Figure 15. Auxiliary temperature
sensor

Auxiliary Temperature Sensor
The auxiliary temperature sensor is
used with any UCM damper control.
The sensor allows the operator to
monitor duct temperature or air
temperature leaving a reheat device at
the zone damper.This sensor is used
for automatic changeover of a UCM
damper when not using a CCP.The
auxiliary temperature sensor is ideal for
remote monitoring and diagnostics
from the CCP operator display.

Auxiliary Temperature Sensor Summary

• Used with zone damper UCM for
controlling the occupied standby
function

• Thermistor sensing element 10,000
Ohms @ 77°F

• Ceiling-mount PIR occupancy sensor
detects motion over an adjustable
range up to 360 degrees

• Sleeving for wire leads is acrylic #5 awg
grade C rated @ 155C

• Wiring connection 8 feet, 18 awg

• Single detector covers up to 1200
square feet. For areas larger than 1200
square feet, multiple sensors can be
wired in parallel
• Adjustable time delay avoids nuisance
change of state on loss of detection
• Adjustable sensitivity
• SPDT isolated contacts connect to
UCM input

• Silicone-based NDIR sensor technology
for long-term stability
• Measurement range of 2000 ppm CO2
input with an output of 0–10 Vdc
• Wall-mount transmitter is compact and
aesthetic in appearance
• Optional zone return duct-mount
transmitter is available
12

VAV-PRC003-EN

Application
Considerations

Zoning Considerations

Introduction
The VariTrac system is a changeoverbypass VAV system. One fan supplies
either warm air for heating or cool air
for cooling. It is typically applied in
small buildings which use unitary
heating/cooling air conditioners.These
buildings need the simplicity and low
cost of unitary equipment, but more
than one comfort control zone (one
zone temperature sensor) for each air
conditioner.
When is VariTrac a good HVAC system
choice?To help answer this question,
several important application concepts
and considerations are discussed
below.

Figure 16. System design affects
occupancy comfort

Energy Savings • Comfort • Flexibility

Least

Single Zone Building
One thermal and
one comfort zone

Consider the following two questions
when evaluating your HVAC system
design:

Will the building occupants be
comfortable? A system designed
with a single-zone HVAC unit and one
zone sensor provides comfort to
occupants near the zone sensor.
However, occupants in perimeter areas
or interior rooms may be too hot or too
cold.
Will comfort be consistent from
room to room and area by area? A
building is normally divided into
thermal zones for increased comfort
control and energy savings. Each
thermal zone should have a dedicated
HVAC unit. For optimum comfort, each
thermal zone should be further divided
into comfort zones.
Choosing the number and location of
thermal and comfort zones is critical in
planning an effective system. Some
things to consider in the design
process include:
• Geographic location
• Orientation of the building to the sun

Thermal Zoned Building
Multiple thermal zones
each with one
comfort zone

Most

VAV-PRC003-EN

Thermal and
Comfort Zoned Building
Multiple thermal zones
each with multiple
comfort zones

• Prevailing winds
• Wall construction (glass, insulation,
building materials)
• Building layout, design, occupancy and
occupancy pattern throughout the day
and year
• Activities in each zone

Zoned unitary systems, such as
changeover-bypass VAV, divide thermal
zones into smaller comfort zones. Each
comfort zone has a damper and zone
sensor that controls the amount of
heated or cooled air delivered to the
zone. A central system controller
monitors the status of each zone
damper and zone sensor.The controller
then makes the decision to heat or cool
for the HVAC unit.
Individual comfort zones served by a
common HVAC unit (part of the same
thermal zone) can require heating and
cooling at the same time. In a
changeover-bypass VAV system, the
unit alternately provides warm and cool
air in an attempt to satisfy the needs of
all comfort zones.This is effective if the
simultaneous calls for heating and
cooling exist for short time periods
only. Wide temperature variations may
occur if some comfort zones need
heating for extended periods of time
while others need cooling.
Some comfort zones require special
consideration because of their use or
location. An example is the foyer or
reception area of an office building.
These areas often have wide variations
in thermal load because of glass
(relative to other areas of the building)
and frequently-opened exterior doors.
Another example is an interior storage
room with the need for ventilation but
little or no heating or cooling.These
zones can significantly influence
efficient operation and comfort levels
throughout the building.
Preferably, areas such as these are
designed as separate thermal zones
with dedicated HVAC units. However,
this may be impractical or costly.
Instead, use fan-powered variablevolume terminal units, or units with
local reheat.

13

Application
Considerations

Figure 17. Design process steps

Effective Changeover
Bypass VAV System Design

Step 1. Define Occupant
Comfort Needs

Unitary zoning systems feature low
first cost and quick, easy system design
and equipment selection. The system is
simple, but it is essential that key
elements are considered during the
design process.

Involves architect,
engineer(s), and building owner

Step 2. Define Thermal Zones
Involves engineers
and contractors

Step 3. Determine
Comfort Zones
Involves engineers,
contractors, and building owner

Step 4. Size Heating/
Cooling Equipment
Involves engineer(s) and contractors

Step 5. Size Zone and
Bypass Damper Units
Involves engineer(s) and contractors

Step 6. Design the Duct system
Involves engineer(s) and contractors

Step 7. Air Diffuser
Selection and Placement
Involves engineer(s) and contractors

14

This section offers a system design
sequence and discusses application
considerations that, when followed,
help avoid system control and
operational instabilities.
Suggested design steps for unitary
zoning systems are summarized in
Figure 17.
Step 1. Define occupant comfort needs
The design process begins by
considering the needs of building
occupants and intended building use.
y What is the intended use of the
building? Is the building usage
primarily office space? Is there a
manufacturing operation? Are there
areas that have special requirements
such as computer or electronic rooms,
video/television production, training
facilities, etc.?
y What physical activity level is
expected of the occupants? Seated
occupants require different indoor
temperatures for comfort than
continuously moving occupants. An
example may be a building with a mix
of office space and light assembly or
manufacturing.
y Where will the occupants be
located and at what times? Pay
particular attention to areas with
intermittent use, such as conference,
training, and lunchrooms.
y How are the occupants expected
to dress? Give consideration to how
the building occupants will dress. Will
they dress in traditional business attire,
such as long-sleeved shirts or blouses,
ties, and jackets? Or, will they dress in

cooler, casual attire, such as golf shirts,
light slacks, skirts, or shorts?
Gather as much usage information as
possible before designing a system.
This can be challenging, particularly
when finishing out tenant spaces.
However, usage information is crucial
to the selection of heating and cooling
equipment, building zoning, and duct
layout.
Several publications provide guidance
for properly assessing indoor space
comfort. An example is ASHRAE
(American Society of Heating,
Refrigerating and Air Conditioning
Engineers) Standard 55,Thermal
Environmental Conditions for Human
Occupancy. This standard specifies the
combinations of indoor space
environments and personal factors
(activity and clothing) that will produce
thermal environmental conditions
acceptable to 80 percent or more of the
occupants within a space. Standard 55
addresses temperature, thermal
radiation, humidity, and air speed.
ASHRAE Standard 62, Ventilation for
Acceptable Indoor Air Quality, is
another source for occupant comfort
and safety issues regarding indoor air
quality. The standard recommends that
relative humidity be maintained
between 30 and 60 percent.This
maximizes comfort and reduces the
potential for microbial growth.
Step 2. Define the Thermal Zones
A thermal zone is an area with similar
load profiles and occupant comfort
requirements. A thermal zone can be a
single room, an area, a group of rooms
or an entire building. Defining the
thermal zones within a building is
crucial to designing a comfortable
indoor environment. Each thermal zone
is conditioned by a single heating and/
or cooling unit.The load of the thermal
zone determines the size of the heating
and cooling unit.

VAV-PRC003-EN

Application
Considerations

Building Example 1 (See Figure 18.)

Cost vs. Comfort
First cost can be reduced by limiting
the number of thermal zones.
Unfortunately, this may impact the
thermal flexibility of the system, and
result in zone comfort issues. Let’s take
a closer look at this important system
decision known as “thermal zoning.”
Characteristics of a building which can
influence thermal load are:
• Orientation of the building (North,
South, East, West)
• Amount and thermal resistance (Rvalue) of glass (walls, skylights, etc.)
• Expected occupancy within the area
• Interior partitions and doors
• Varying loads from equipment or
processes

Consider an existing single-story office
building which is small, poorly
insulated, with many large windows
and few interior partitions. On a clear,
cool spring day, the entire building is
cool in the morning so heating is
required. By afternoon, however, the
south side of the building being
influenced by the solar load, is warm
and requires cooling. The north side
remains shaded and continues to
require heating. This situation results in
a simultaneous requirement for heating
and cooling for extended periods. Due
to the varying loads throughout the
building, controlling the building as a
single thermal zone (with a single HVAC
unit) cannot satisfy the comfort needs

of all areas. It also is not a good
candidate for a zoning system because
of the simultaneous need for heating
and cooling.
A similar building with good insulation
and fewer shaded windows, on the
other hand, may be a good candidate
for a single thermal zone with individual
comfort zones. The reduction in wall
glass reduces the solar effect on the
building resulting in all areas of the
building having similar load profiles
throughout the day. In this case, the
building has a single thermal zone and
is a good candidate for one HVAC unit.
Individual comfort zones (zone
dampers) will be needed to assure
comfortable conditions throughout the
zone.

Let’s examine a few building examples
and discuss the zoning criteria of each.

Figure 18. Building Example 1 illustrates a small, poorly insulated office on the left, and improved design on the right.

Men's
Women's
Restroom Restroom

Men's
Women's
Restroom Restroom

T Thermostat

T Thermostat

Poor Design Elements
• One thermostat for space
• Glass windows with no shading
• Minimal wall insulation

Glass windows
with no shading

VAV-PRC003-EN

T Thermostat

Minimal wall
insulation

Shaded
Windows

Improved Design Elements
• Multiple zone thermostats
• Shaded windows
• Insulated walls

T Thermostat

Insulated
Walls

15

Application
Considerations

Building Example 2 (See Figure 19.)
Consider a strip mall in the spring or fall
with stores that face both east and
west. In the morning, the east side of
the building gets full sun and warms up
while the west side is shaded and
requires heating. In the afternoon, the
east side of the building may need heat
and the west side cooling. Because of
the thermal load variation throughout
the day, this building will not remain
comfortable if designed with a single
heating and cooling unit.
On the other hand, comfort in this
building could be improved by dividing
the building into two thermal zones
(two HVAC units), one serving the east
exposure and the other serving the
west. Even with the two systems,
individual occupant comfort is not
necessarily assured. Interior
partitioning, varying schedules and
number of occupants within the
thermal zone will drive differing
amounts of heating and cooling. The
issues related to comfort zoning are
addressed in the next section.

Step 3. Define the Comfort Zones
Outside
Doors

Coffee
Shop
Jewelry
Store

Poor Design Elements
• One thermostat for entire space
• One HVAC unit
Electronics
Store
Pharmacy
Toy
Store
Clothing
Store

N

Figure 19. Building Example 2
illustrates a poorly insulated store
design (above) and an improved design
(below)

Outside
Doors

A primary criteria for defining a thermal
zone is that it will not require
simultaneous heating and cooling. An
HVAC unit with one fan is limited to
supplying either heating or cooling.
Most applications with larger thermal
zones however will have varying
thermal needs throughout the zone.
These small variations can easily be
addressed by properly defining comfort
zones.
A comfort zone is an area within a
thermal zone that is controlled by a
zone damper.The amount of
conditioned (heated or cooled) air
entering the space varies. This is in
response to a space thermostat.
ASHRAE Standard 55 recommends
limiting indoor temperature variations.
Temperature variations of less than 2°F
in 15 minutes or 4°F in an hour.
Deviations from this recommendation
will cause discomfort in 80 percent of
the occupants. Zoning systems can
greatly reduce temperature variations
caused by shifting occupancy and solar
load conditions in large thermal zones.

Coffee
Shop

Jewelry
Store

Improved Design Elements
• Two thermal zones
• Two HVAC units

Electronics
Store
Pharmacy

Toy
Store

Clothing
Store

N

16

VAV-PRC003-EN

Application
Considerations
Step 4. Sizing HVAC Equipment
Once the building heating and cooling
loads are known and the thermal zones
have been determined, the heating and
cooling equipment can be selected.
Each thermal zone requires a separate
heating and cooling unit. As discussed
earlier, unitary zoning systems typically
use packaged DX rooftop units or DX
split systems. These systems are
offered as heating and cooling units or
heat pumps.
When selecting the heating and cooling
unit for a thermal zone, load diversity
within the zone should be considered to
minimize equipment size and therefore
reduce system first cost and operating
expense. Load diversity is defined as
the ratio of the instantaneous peak
loads (block load) to the sum of the
peak loads within the thermal zone. In
recognizing load diversity, the designer
acknowledges that all areas of the
thermal zone will not require maximum
cooling or heating at the same time.
While using diversity may reduce the
size of the HVAC unit, the zone
ductwork, dampers, and diffusers must
be sized for the individual zone peak
loads.The main trunk duct may be sized
based on the HVAC unit airflow.
Figure 20. Diversity example
Wedge Zone

Building Perimeter

Calculating thermal zone diversity:
1. Determine the instantaneous peak
(or block) load for the thermal zone.
This information is output from load
analysis software such asTrane
TRACE® or manually calculated.
2. Calculate the sum of the peak loads
for each of the comfort zones within
the thermal zone.
3. The diversity factor is then calculated
by dividing the instantaneous peak
load value by the sum of the peak
loads.
Diversity
Factor =

Instantaneous
Peak Load
Sum of Peaks

The heating and cooling equipment will
never be called upon to provide more
capacity than was determined by the
instantaneous peak load value.
Consequently, the equipment capacity
can be reduced by the diversity factor.
Table 1. Diversity example
Zone
Interior
North
East
South
West

Time
3 p.m. in mid-July
5 p.m. in mid-July
9 a.m. in June
4 p.m. in November
5 p.m. in September
Sum of Peak Loads

Peak Load
7.5 tons
3.0 tons
2.5 tons
4.0 tons
2.5 tons
19.5 tons

Note:The sum of blocks loads = 17.5 tons
and occurs at 5 p.m. in mid-July.
Diversity =______
17.5 = 90%
19.5

North Zone

Glass
Windows

West Zone

Interior Zone

East Zone

South Zone

VAV-PRC003-EN

17

Application
Considerations
Step 5. Size Zone and Bypass
Damper Units
Sizing zone damper is relatively
straightforward. The volume of airflow
(in cfm or L/s) for each comfort zone
should be known from the load
analysis. The designer must select the
duct velocity to be used for the system.
Recommended zone damper velocities
are 1000 to 1600 feet per minute (fpm)
when applied at the branch level.
Sizing dampers in this range will
minimize damper cost, reduce the risk
of excessive noise, and ensure
adequate zone modulation/temperature
control.

Dampers located immediately adjacent
to the zone or diffuser may need to be
sized at a lower velocity to avoid sound
and airflow delivery issues.
Bypass dampers are typically sized for
80 percent of HVAC unit airflow.
Recommended velocities are 1600 to
2000 fpm. Bypass dampers should be
located as close to the HVAC unit as
possible. (See Bypass Damper
Operation for additional details.)
Note: VariTrac systems are designed
for HVAC unit static pressures up to
1.75" w.c.

Figure 21. Hand balancing dampers
Hand
Balancing
Damper

Step 6. Designing the Duct System
Low pressure, low velocity air
distribution systems, such as zoned
unitary systems, are usually designed
using the equal friction method.
Although static regain is the duct
design method of choice for medium
and high velocity variable air volume
systems, the added complexity is
difficult to justify with smaller unitary
systems. In addition, the low operating
velocity of most unitary systems makes
the pressure available to “regain”,small
and inconsequential.
With the equal friction method, ducts
are sized for a constant pressure loss
per given length of duct and fitting(s).
Where low noise levels are especially
critical, the system velocity can be
reduced by enlarging the entering and
leaving ductwork, damper unit or
adding duct liner. A characteristic of the
equal friction method that must be
considered however, is that there is no
natural provision for equalizing
pressure drops in the branch sections.
This results in each branch duct, and
thus the damper units, having different
entering static pressure and airflow
characteristics.
A robust system and zone unit
controller, like theTrane VariTrac
system, will compensate for system
static changes.The use of manual (or
hand) balancing dampers in the
branches will also ensure that airflow is
appropriately distributed to each
diffuser. (See Figure 21.)The overall
effect is improved acoustical and
system performance.

VariTrac
Damper

Supply
Duct

18

VAV-PRC003-EN

Application
Considerations
Step 7. Air Diffuser Selection and
Placement
Supply Diffusers
Many types of supply air diffusers are
used in variable air volume systems.
Performance, and ultimately space
comfort, can vary greatly depending on
the diffuser selected. Although
constant-volume diffusers will provide
air to the space at full cfm, as air
volume delivered to the space
decreases, so does performance.
Linear slot diffusers are recommended
for most VAV systems.
Linear supply air slot diffusers are
designed to properly mix variable air
delivery of both heated and cooled air.
Linear slot diffusers supply conditioned
air which “hugs” the ceiling rather than
“dumps” air downward on the
occupants.This airflow characteristic is
known as the “coanda effect”. The
throw and aspiration characteristics of
slot diffusers help to evenly distribute
the air throughout the room or space.
Locate linear slot diffusers in the center
of the room with the discharge air
pattern perpendicular to a perimeter
wall. To maximize diffuser
performance, placement in which air
discharge patterns converge at right
angles should be avoided. (See Diffuser
section of the VariTrane catalog (VAVPRC008-EN) for additional diffuser
placement and performance
recommendations.)

• When the average glass plus wall heat
loss is less than 250 Btuh/linear foot,
the slot diffuser may be located in
the center of the room with one or
more slots blowing toward the
perimeter wall.

Return Diffusers

• With glass and wall heat loss between
250 and 450 Btuh/linear foot, diffusers
should be positioned to blow toward
the window and the perimeter wall with
a collision velocity of 75 to 150 fpm. If
using a continuous glass design,
position diffusers every four feet.
• If heat loss exceeds 450 Btuh/linear
foot, radiation or floor mounted heated
air will be required to offset the high
wall heat loss.

Slot-style return diffusers offer some
acoustical advantages over perforated
grille styles. Perforated drop-in grilles
typically offer little attenuation effect
and thus allow sound in the plenum to
break out into the occupied space. This
is a problem in areas near the unitary
heating and cooling unit. Improved
ceiling aesthetics is also an advantage
of slot return diffusers in jobs where
slot supply diffusers are used. Within
the occupied space, they blend with the
slot supply diffusers.
A general rule of thumb is for the return
air openings to equal the total area of
the supply openings. If the ceiling is not
tight, such as a drop-in ceiling, the
return openings can be reduced by up
to 50% of the supply air openings.
To promote good air distribution, return
diffusers should be positioned to
minimize supply air short-circuiting to
the return slot. The returns should be
either perpendicular to the supply
airflow or parallel and offset from the
supply diffusers.

Figure 22. Proper return diffuser orientation

The throw characteristics of diffusers is
well-documented. Slot diffusers should
be positioned so that the velocity of the
air striking an obstruction (such as a
wall or column) is 75 feet per minute
(fpm) or less. If airstreams from two
diffusers collide, the collision velocity
should not exceed 150 fpm. Higher
collision velocities result in
uncomfortable drafts in the lower levels
of the room.
In heating applications, linear slot
diffusers must be placed to offset heat
loss and prevent downdraft problems
along perimeter walls. The following
techniques have been proven by test
and experience:

VAV-PRC003-EN

19

Application
Considerations

Pressure Dependent vs.
Pressure Independent
Pressure-Dependent
A pressure-dependent VAV control
sequence uses the space temperature
sensor to directly control the position
of the zone damper.The actual airflow
delivered to the space is a by-product of
this damper position and the static
pressure in the duct upstream of the
zone damper.
Ventilation air is a fixed-damper
position and must be measured and set
during the commissioning process.
Pressure-Independent
A pressure-independent VAV control
scheme directly controls the actual
volume of primary air that flows to the
space. An airflow-measuring device in
the VAV terminal unit makes this
possible.The position of the modulating
device is not directly controlled and is a
by-product of regulating the airflow
through the unit. Because the airflow
delivered to the space is directly
controlled, it is independent of inlet
static pressure.

Local Reheat Capabilities
Using VariTrane VAV Units
VariTrane pressure independent VAV
units are a simple way to upgrade the
zone VAV capabilities on a VariTrac
system.The main advantage is the
ability to integrate units with either hot
water or electric reheat. Here are
application examples where VAV units
may enhance your design:
Example 1
Series fan-powered VAV units
work well in conference rooms and
training rooms. Series fan-powered
units supply constant air volume to the
space.This provides excellent air
movement in the space regardless of
the internal load requirements. Hot
water or electric heat are integral to the
unit and optionally available to temper
the air at partial load conditions.

Example 2
Parallel fan powered units with
local heat applied help solve
problems in difficult areas to control
like lobbies and vestibules. The parallel
fan provides local heat to an individual
zone without relying on the main HVAC
unit’s heat or supply fan. This allows
greater flexibility for mixing zones on a
VariTrac system.
VariTrane units with integral electric or
hot water heat are available as:
• single-duct
• parallel fan-powered
• series fan-powered

Figure 25. Parallel fan-powered VAV
terminal unit

Figure 24. Series fan-powered VAV
terminal unit

Figure 23. Single-duct VAV unit is
available with integral electric or hot
water heat

20

VAV-PRC003-EN

Application
Considerations
Local Reheat Capabilities
Non-VAV Options
TheTrane VariTrac Zone Controller has
built-in capabilities and logic to control
a number of reheat sources.The
previous page discussed how a
VariTrane VAV unit with reheat can
solve application issues by providing
local reheat.

Figure 26. Trane hydronic wall fin
This is ideal for spaces with large
windows or perimeter heat losses
which exceed 450 Btuh per linear foot.
Trane wallfin is available with various
grilles and paint options and can be
pedestal or wall-mounted

Local Reheat
Let’s investigate a few other alternatives
which will provide local reheat, and
result in exceptional zone temperature
control.
Local reheat is particularly important
when an HVAC unit is in cooling mode.
Cold air is delivered to all zones
whether it is needed or not. Setting the
minimum cooling position to zero may
not be practical based on ventilation
and/or general airflow requirements. In
this case, local reheat options which
can be controlled by the standard
VariTrac zone controller include:

Figure 27. Trane electric wall fin

• hydronic wall fin or convector unit with
either modulating or two position
control. (See trane.com for a full line of
wall fin and convector products.)
• electric wall fin with multi-stage control
• duct-mounted electric heater with
multi-stage control
• duct-mounted hot water coil with either
modulating or two-position control.
(See trane.com for a full line of ductmounted water coils.)

VAV-PRC003-EN

21

Application
Considerations
Proper operation requires
consideration of all aspects of bypass
design and location.The bypass
dampers and ductwork should be sized
and located according to the following
general recommendations:

Bypass Damper Operation
When zone dampers modulate airflow
to the spaces, static pressure changes
in the supply duct system. High
pressure in a duct system creates
excessive noise and causes poor
comfort control. Low pressure results
in insufficient airflow to the spaces.

y Avoid turbulence by locating the
bypass two to three equivalent duct
diameters downstream of the HVAC
unit discharge.

The HVAC unit in a changeover bypass
system is constant volume and does
not modulate supply airflow.
Changeover-bypass VAV systems
support variable-air-volume operation
in the zones by using a bypass duct
with a motorized damper and a
pressure-sensing device.

y Locate the static pressure and supply
air sensors in the main supply duct
upstream of the bypass.

As duct pressure rises above the static
pressure setpoint, the bypass damper
begins to open. Conversely, when static
pressure falls below the static pressure
setpoint, the bypass damper begins to
close until the static pressure setpoint
is reached.The optimal static pressure
setpoint is automatically determined
upon system calibration.

y Locate the bypass before the zone
dampers (as close to the HVAC unit as
possible) to avoid comfort or noise
issues.
y Size the bypass damper to maintain the
minimum required airflow through the
HVAC unit (usually 80 percent of the
total design cfm)
y Provide adequate access for servicing
the damper.

Figure 28. Changeover bypass variable-air-volume system

Rooftop
Micro Control
Heating and

Static Pressure
and Supply
Temperature Sensors
Bypass
Damper

Return
Air
Duct

Return
Air
Duct

Supply
Air Duct
Ductwork

22

VAV-PRC003-EN

Application
Considerations

Building Pressure Control
Comfortable, efficient building
operation requires that the air pressure
inside the building be slightly higher
than the atmospheric pressure outside
of the building.That is, the building is at
a “positive” pressure with respect to
the outside environment. If the indoor
pressure is too low (negative), the
doors may be hard to open and cold air
may leak in through construction
cracks, causing drafts and cold floors.
On the other hand, if the indoor
pressure is too high, the doors may
stand open and the supply air flow to
the zones may decrease, decreasing
comfort.
Fixed Outside Air Dampers
Achieving appropriate building
pressure is simple in a system with a
constant volume supply fan and fixed
outdoor air damper.To maintain a
slightly positive building pressure, size
the exhaust fans to remove slightly
less air than is introduced through the
outdoor air damper.

In buildings that have a ducted return to
the fan, bypass air pressurizes the
return air duct. As the return air duct
pressure rises, the air flows out of the
building through the barometric relief
damper in the rooftop unit. Excess
bypass air flows into the zones through
the return air grilles.
Using the following suggestions will
help maintain building pressurization
control:
• Use an exhaust fan with a modulated
exhaust damper to remove air from the
return air plenum or duct. Energize the
exhaust fan as the outside air damper
opens beyond the minimum position.
Sense building static and maintain
building air pressure at a slightly
positive level by modulating the
exhaust damper position.

When using an economizer in a
changeover-bypass VAV system under
low cooling load conditions (reduced
airflow to the zones), the bypass
damper opens to maintain the static
pressure setpoint and airflow through
the supply fan. As the outside air
damper opens to provide economizer
cooling, the return air damper closes.
In buildings with a ceiling plenum
return, the bypass air dumps into the
ceiling plenum since it can no longer
return to the fan. The plenum pressure
rises and plenum air enters the zones
through the return air grilles.

VAV-PRC003-EN

• Use a back draft damper to prevent
airflow to the return air plenum or
grilles. When bypass airflow
pressurizes the return duct, the back
draft damper closes. Pressure in the
HVAC unit return air inlet rises, causing
the rooftop barometric relief damper to
open.This method is less effective
because the rooftop barometric relief
damper is sized for a portion of the total
airflow, not 100 percent of airflow which
may be seen in economizer mode. As
the economizer drives to the maximum
position, the building usually becomes
over-pressurized.

Figure 29. Changeover bypass with an economizer. Without proper building
pressurization, bypass air may be forced out of the return duct.

Outside Economizer or DemandControlled Ventilation Systems
If the system resets the quantity of
outdoor air in response to occupancy
demands (demand-controlled
ventilation), or uses an outdoor air
economizer, undesirable changes in
building pressure may result. As the
quantity of outdoor air intake varies,
the system must exhaust a similar
quantity of air to avoid over or under
pressurizing the building.

• Use an exhaust fan with no exhaust
damper. Energize the exhaust fan when
the outdoor air damper opens beyond
25 percent to remove excess outside air
from the building. This method is used
with some rooftop units and is
effective, affordable, and easy to install.

Economizer

Fan

Outdoor
Air Damper
Return
Damper

Bypass

Return
Opening

23

Application
Considerations

Application Tip Summary
Tip 1. Use comfort zones
Units serving thermal zones can
provide greater comfort by dividing the
thermal zones into “comfort zones”
using a changeover-bypass-VAV
system.
Tip 2. Create thermal zones
Create thermal zones which minimize
simultaneous heating and cooling
requirements.This will avoid
unnecessary changeover of the system
and maximize comfort. As an example,
a computer room would be a poor
candidate for one comfort zone of a
changeover-bypass-VAV system
because it will rarely, if ever, require
heating.
Tip 3. Use local heat
Zones which vary thermally by
requiring more heat than the other
zones or require heat when the HVAC
unit is in cooling mode should use local
heat. Local heat in the form of VariTrane
VAV units with electric or hot water
heat, or wallfin, or convectors, or ductmounted coils.The standard VariTrac
controller is capable of controlling the
heat based on zone temperature
demands.

24

Tip 4. Place dampers properly
The bypass damper should be ducted
between the supply and the return of
the unit as close to the unit as possible,
and should be sized to handle 80% of
the total system CFM.
Tip 5. Control building pressure
It may be necessary to provide a
modulating means to control building
pressure, especially when economizers
or demand-controlled ventilation are
used in conjunction with a changeoverbypass-VAV system.
Tip 6. Use fan-powered VAV boxes
Consider using fan-powered VAV boxes
to provide local heat or to enhance
comfort levels in some of your zones.
Conference rooms, or zones with high
wall heat loss are ideal for either series
or parallel units.

VAV-PRC003-EN

Selection
Procedures

VariTrac Dampers
VariTrac dampers are typically installed
on VariTrac changeover bypass variable
air volume (VAV) systems. VariTrac is
ideal when applied to buildings which
use unitary HVAC units.The damper
units have controls, which vary air
volume and maintain appropriate duct
static pressure in the system to make
sure that all zones receive the right
amount of airflow.
Trane offers four VariTrac dampers:
• Round zone dampers with DDC
controls
• Rectangular zone dampers with DDC
controls
• Round bypass dampers
• Rectangular bypass dampers
Figure 30. Round and rectangular zone and bypass dampers

Zone Damper Selection Procedures
Refer to the sizing chart inTable 2 for
zone dampers. Follow down the first
column in the table for the desired
velocity.Then follow across for the cfm
(air volume) of a given VariTrac damper
based on that velocity.

Note: If the cfm exceeds the damper
range, increase the damper size.
Minimum airflow damper position
should be set to10 percent in heating or
cooling when a zone duct temperature
sensor is used for stand-alone control.
In addition, when controlling ductmounted electric reheat coils, cooling
minimum airflow should meet the
heating unit manufacturer’s guidelines.
(See Application Considerations,
Maximum System Effectiveness for
more details.)
Bypass Damper Selection Procedures
To determine the cfm capacity required
for a bypass damper, calculate
80 percent of the cfm capacity of
the heating/cooling unit.

Example: If the rooftop capacity is 1200
cfm, the bypass damper should be
sized for 1200 x .8 = 960 cfm.
To determine the size of the damper,
locate the recommended velocity and
cfm for the bypass damper.
Since a 10" round bypass damper at
1800 fpm provides 980 cfm, a 10"
damper at 960 cfm would be slightly
less than 1800 fpm, but still within the
1600 to 2000 fpm recommended
velocity. A 10" bypass damper is
selected.

VAV-PRC003-EN

25

Selection
Procedures

Table 2. Damper sizing charts

Round Bypass Damper
Capacity (cfm), Dimensions, Blades, and Weights

6"

8"

10"

12"

14"

16"

Size

6"

8"

10"

12"

600

120

210

330

470

640

840

600

120

210

330

470

800

160

280

435

630

855

1115

1000
1200

200
235

350
420

545
655

785
940

1070
1280

1395
1675

275

490

765

1100

1500

1955

1600

315

560

875

1255

1710

2235

Length

12"

12"

16"

16"

20"

20"

Ship Wt

11 lbs

12 lbs

17 lbs

18 lbs

27 lbs

31 lbs

160

280

435

630

200

350

545

785

1200

235

420

655

940

1400

275

490

765

1100

1600

315

560

875

1255

1800

350

630

980

1415

2000

390

700

1090

1570

Length

12"

12"

16"

16"

Ship Wt

11 lbs

12 lbs

17 lbs

18 lbs

Rectangular Bypass Damper
Capacity (cfm), Dimensions, Blades, and Weights

8 x 12

8 x 14

8 x 16

10 x 16

10 x 20

14 x 18

Size

14 x 12

16 x 16

20 x 20

600

398

464

531

663

829

1045

600

696

1061

1658

2487

800

928

1415

2211

3316
4145

800

531

619

707

884

1105

1393

1000

663

774

884

1105

1382

1741

30 x 20

1000

1161

1769

2763

1200

1393

2122

3316

4974

1400

1625

2476

3869

5803

1600

1857

2830

4421

6632

1800

2089

3183

4974

7461
8290

1200

796

928

1061

1326

1658

2089

1400

928

1083

1238

1547

1934

2437

1600

1061

1238

1415

1769

2211

2785

Blades

2

2

2

3

3

4

2000

2321

3537

5527

Ship Wt

8 lbs

10 lbs

12 lbs

14 lbs

16 lbs

18 lbs

Blades

2

3

3

3

Ship Wt

16 lbs

21 lbs

29 lbs

40 lbs

Recommended

Velocity (fpm)

Size

Recommended

Velocity (fpm)

Rectangular Zone Damper
Capacity (cfm), Dimensions, Blades, and Weights

800
1000

Recommended

1400

Velocity (fpm)

Size

Recommended

Velocity (fpm)

Round Zone Damper
Capacity (cfm), Dimensions, and Weights

Notes:
1. Recommended velocity for zone dampers is between 1000 and 1600 fpm. Use
good standard design practices (such as location of duct).
2. Recommended velocity for bypass damper is between 1600 and 2000 fpm.

26

VAV-PRC003-EN

Selection
Procedures

Service Model Numbers
V

A

D

A

0

6

A

0

0

P

0

1

2

3

4

5

6

7

8

9

10

11

Digits 1, 2, 3, 4 – Product Type
VADA = VariTrac Air Damper
VARA = Rectangular Air Damper
Digits 5, 6 – VariTrac Damper Size
06 = 6" Damper
08 = 8" Damper
10 = 10" Damper
12 = 12" Damper

Digit 7 – Controls (all factory downloaded
and verified)
A = Bypass with actuator
B = Damper only control (Changeover)
C = Damper plus up to 3 stages of
Electric
D = Damper plus 1-stage Normallyopen hot water

14 = 14" Damper

E = Damper plus 1-stage Normallyclosed hot water

16 = 16" Damper

F = Not used

1R = 14 x 12 bypass damper

G = No controls (Actuator Only)

2R = 16 x 16 bypass damper

H = Not used

3R = 20 x 20 bypass damper

J = Bypass for rectangular damper
with actuator

4R = 30 x 20 bypass damper
5R = 8 x 12 zone damper
6R = 8 x 14 zone damper

Digits 8, 9, 10, 11
00P0 = Design sequence

7R = 8 x 16 zone damper
8R = 10 x 16 zone damper
9R = 10 x 20 zone damper
AR = 14 x 18 zone damper

VAV-PRC003-EN

27

Selection
Procedures

Typical Bill of Materials

Table 3. Typical VariTrac
changeover-bypass VAV
system components

Device Name

Function in System

Number Required

A

Central control panel
w/optional operator display

Controls the HVAC system and provides local
operator interface

One per HVAC unit/VariTrac system
(thermal zone)

B

Communicating bypass
controller

Sends supply duct temperature and pressure to
the central control panel

One per VariTrac system

C

Bypass damper(s)

Supply air duct volume control to maintain
appropriate static pressure in the duct

One or two per system as needed to
bypass from supply to return
airstream

D

VariTrac dampers

Varies air volume to the space to control comfort

One per comfort zone

E

Zone sensors

Sends space temperature and setpoint
information to the zone damper controller

One per comfort zone (DDC sensor
w/ LCD requires 4 VA)

F

CCP power supply

24V power for the central control panel

The CCP must have a dedicated 24V
power supply

G

Zone damper power supply(s)

24V power for the zone dampers

Power supplies may be shared; each
zone requires 10VA (plus the load of
optional outputs)

H

Trane rooftop communications
interface

Allows the CCP and Trane rooftop controller to
communicate with each other via simple twisted
shielded wire pair

One per controlled Trane rooftop
with ReliaTel controller

J

Optional relay board

Provides 24V control of any non-communicating
HVAC unit

One per controlled noncommunicating HVAC unit

H

Figure 31. Typical
components in a
changeover-bypass
VAV system

B
C

G
D

F
A &J

28

E

VAV-PRC003-EN

Electrical Data
and Connections
Figure 32. Central control panel field wiring
Termination Board TB2

Line voltage

24 Vac

Comm4 UCM
Comm4
link

Comm4 UCM
+
+
-

-

Comm4
link

Splice
Tracker

Comm5 UCM
Comm5
link

A

A

B

B

Comm5
link

Splice

Figure Notes:

Legend
= Transf
T
ormer
= Figure note
= Termination resistor
=

Twisted pair, shielded wire
per Trane specifications

= Shield termination
= Contact points
= Earth ground

1 All customer wiring must be in
accordance with national, state,
and local electrical codes.
2 Trane recommends a dedicated
transformer for 24 Vac power.
3 Do not apply voltage to the priority
shutdown and occupancy inputs.
4 Example of Comm5 communication
link wiring. See product-specific
literature for Comm5 wire connection
details.

= Shield ground

VAV-PRC003-EN

29

Electrical Data
and Connections

Figure 33. Relay board wiring
Relay Board TB2

Rc
Rh

2

G

3

Y1

4
5

COOL 2

COMP 2

6

HEAT 1

AUX HEAT

7

HEAT 2

REV VALVE

NO AUX

8

NC

W2/0

1

W1 Y2

TB1

10

9

24 VAC CLASS 2 COOL UNIT
24 VAC CLASS 2 HEAT UNIT
SUPPLY FAN
2 HEAT/2COOL
COOL 1

SPARE

HEAT PUMP
COMP 1

OUTSIDE AIR
HEAT/COOL
OR ICS

NOT USED

11
12
13
14
15

Figure 34.Typical relay board wiring
Relay Board TB2

30

Rc

1

Rh

2

G

3

Y1

4

Y2

5

W1

6

W2/0

TB1

7

HVAC Unit
24V Terminal Strip
R

G
Y1
Y2
W1
W2

VAV-PRC003-EN

1

2

To Zone Dampers
3 through 24

J8

–

J7

+

+

TB2–6

TB2–5

TB2–3

TB2–2

TB2–1

–

TB4–1

Shielded ground

Figure note

=

=

S

Twisted pair, shielded wire
per Trane specifications

ZONE GND SET A/CO2 GND

TB3–5

=

Legend

YEL GRN

1

J3

J11

–

–

+

2

1

2

1
BIP

TB4–1
GND 24V

+
–

YEL GRN

D.D.C.\U.C.M.
CONTROL BOARD
1

J3

ZONE GND SET A/CO2 GND

TB3–5

S

–

–

+

2

Splice

+

ADDRESS
SWITCH

J11

ACT

1
BIP

TB4–1
GND 24V

+
–

YEL GRN

D.D.C.\U.C.M.
CONTROL BOARD

J1

Notes:
The UCM order in this drawing is for demonstration purposes only.
No specific order is required on the Comm link.

Shield must be cut back and taped.

Shield must be spliced with other
communication link shields.

Figure Notes:

Splice

+

ADDRESS
SWITCH

J7
TB2–4

J9

–

TB3–3

ACT

J7
TB2–4

J10

+

TB2–4

TB1–1

TB3–2

D.D.C.\U.C.M.
CONTROL BOARD
TB2–6

J10
TB2–1

J1

TB2–5

J9
TB2–2

TB1–1

TB3–2

J11

ADDRESS
SWITCH

J8

TB2–3

TB1–2
TB3–1

GND 24V

TB3–3

J10
TB2–1

BIP

TB2–5

1

TB2–6

J9
TB2–2

TB1–1

S

G

R
BK

Static
Pressure Port

Pressure
Transducer

+
VOUT
–

Air Supply
Temp. Sensor

1

J3

ZONE GND SET A/CO2 GND

TB3–2

ACT

TB3–1

J1

J8

TB2–3

TB1–2

Communication Sensor/Bypass Control
Assembly Address #33

TB3–3

TB1–2

TB3–1

PRESS
TB3–6

PRESS
TB3–6

PRESS
TB3–6

Zone UCM Address #1

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

–

+

VariTrac
Termination Board TB2

COMM 4

VAV-PRC003-EN
TB3–5

Figure 35. UCM Comm Link Wiring

COMM 5

Zone UCM Address #2

Electrical Data
and Connections

31

Electrical Data
and Connections
Figure 36. Communicating bypass controller wiring

CW CLOSE
CCW OPEN
COM
HOT

TO NEC CLASS 2
24V TRANSFORMER
LOAD 8 VA
(WITHOUT ACTUATOR)

ACTUATOR

{

ACTUATOR

W–HOT
BK–OPEN

SPARE
CONNECTOR

R–CLOSE
2.
24V

FEMALE PLUG END
OF BYPASS SENSOR
ASSEMBLY CABLE

TB1–1

TB1–2

1

TB4–1

J8

J9

J7

J10

J11

GND

BIP

ACT

J1

STATIC
PRESSURE
PORT

24VAC

ZONE GND SET A/CO2

S

TB3–6

GRN

R
BK
G

+
VOUT
–

MALE PLUG END
LOCATED ON DDC\UCM
CONTROL BOARD

1
TB3–5

YEL

TB3–3 TB2–6

–
TB3–1

TB2–5

TB2–3

TB2–4

+

TB2–6

–

+

TB3–2

D.D.C.\U.C.M.
CONTROL BOARD

–
TB2–2

TB2–1

+

J3

PRESS

HIGH
ADDRESS
SWITCH

PRESSURE
TRANSDUCER

AC
T

GND

WH
BK

R

D.D.C.\U.C.M.
CONTROL BOARD

OUT

OUT

IN

IN

AIR SUPPLY TEMP SENSOR

COMMUNICATING SENSOR/BYPASS
CONTROL BOX

{
SHIELDED
TWISTED PAIR
COMMUNICATIONS
WIRING

32

VAV-PRC003-EN

Electrical Data
and Connections

Figure 37. UCM Wiring
8.

}

5.

24 VAC 60 HZ
NEC CLASS–2
CONTROL CIRCUIT

R (HOT)
O (COMMON)
GR (NC CONTACT)
BK (RETURN)
Y

(TB1–1) 24VAC
(TB4–1) BIP
(TB1–1) 24VAC
(TB1–2) GND

R
G
W
W

NOT CONNECTED

TO J11

3RD STG.

TO J10

2ND STG.
1ST STG.

TO J9

HOT

TO J8

}

OPTIONAL FIELD INSTALLED
OCCUPANCY SENSOR

DAMPER
ACTUATOR
WIRING

HEATER STAGE
CONTACTOR(S)
24 VAC, 12 VA
MAX/COIL

OPTIONAL FIELD INSTALLED
ELECTRIC HEATER

TB1–2

TB1–1

GND 24V

TB4–1

PRESS

TB1–1

TB2–6

1

+

1

GRN

TB3–6

YEL

TB3–5

–

TB3–3

–

TB3–2

+

TB3–2
TB3–1
TB3–3
TB1–2
TB2–5

J3

S

J7
J8

BIP

TB3–1

–

TB2–6

TO J8

TB2–1

TO J9

J9

J11
+

ON–OFF
WATER VALVE
24VAC
12 VA MAX

1

D.D.C. \ U.CM.
CONTROL BOARD

TB2–5

OPTIONAL FIELD INSTALLED
PROPORTIONAL WATER VALVE

ADDRESS
SWITCH

TB2–4

R (OPEN)

TO J10

PROP. WATER
VALV
24VAC
12 VA MAX

TB2–3

BK (CLOSE)

TB2–2

W (HOT)

TO J8
TO J9

J10

ACT
J1

7.

ZONE GND SET A/CO2 GND

2

1

TB1

2

3 1

TB2

2
TB3

DIGITAL
ZONE SENSOR
OPTIONAL FIELD
INSTALLED DIGITAL ZONE SENSOR

OPTIONAL FIELD INSTALLED
ON–OFF
ON
OFF WATER VALVE

TB2–6

TB3–1
TB2–5

TB3–2

GND
OUT

+
0

(TB3–6) GND

V

(TB3–5) A/CO2

OPTIONAL FIELD INSTALLED
CO2 SENSOR
TB3–5

OUT

IN

OUT

(TB1–1) 24V

9.

D.D.C. \ U.CM.
CONTROL BOARD

}

24V
CO2
SENSOR

IN

6.

DUCT
MOUNTED

WALL
MOUNTED

TB3–3

SHIELDED
TWISTED PAIR
COMMUNICATIONS
WIRING

TB3–6

5

4

3

2

1

ZONE SENSOR
W/ COMM. JACK
REMOTE MTD.

3.

4.

OPTIONAL FIELD
INSTALLED DIGITAL ZONE SENSOR

NOTES:

1.
6.
OPTIONAL FIELD INSTALLED
AUX TEMP SENSOR

Factory Wiring
Field Wiring
Optional or Alternate Wiring

2. ¼" quick connect required for all field connection.
3. Zone sensor terminals 4 and 5 require shielded twisted pair wiring for communications jack equipped zone sensor options
4. No additional wiring required for night setback override (on/cancel).
5. The optional binary input connects between TB4–1 (BIP) and 24VAC (HOT) from transformer. The binary input can be
reconfigured as an occupancy input via the communications interface.
6. As shipped, the aux input is configured as an AUX input. The AUX input can be reconfigured as a CO2 sensor input via
the communications interface.
7. S terminal not to be used with this applications.
8. If unit mounted transformer is not provided, polarity from unit to unit must be maintained to prevent permanent damage
to control board. If one leg of 24VAC supply is grounded, then ground leg must be connected to TB1–2.
9. Shields of communication wiring should be tied together and insulated.

VAV-PRC003-EN

33

Electrical Data
and Connections
Figure 38. DDC zone sensor with LCD
Digital Sensor
Board
TB1–1
24V
–2

ACT

BIP

TB2–1

TB3–2

TB2–6

TB1–1

PRESS

S

TB3–6

TB3–5

Communications
+ (High) –2

GRN

TB3–3

TB3–3

TB3–1 TB2–5

TB3–2

TB2–3

YEL

TB3–1

TB3–1

TB2–5

TB3–2

–

+

–
TB2–4

TB2–2

+
TB2–3

TB3–1

–
TB2–2

TB2–1

J3

1

+

Setpoint

TB1–2 TB1–2

GND 24V

D.D.C.\U.C.M.
CONTROL BOARD

Signal Common
–2

TB1–1

TB2–1

TB1–1

ADDRESS
SWITCH

Temperature
–2

TB2–6

Digital Sensor
Terminal Connection Chart
Field Wire
Sensor UCM Color Code

TB1–2

TB4–1

J7

1

J1

J8

J9

J10

J11

GND

ZONE GND SET A/CO2

GND

1

Communications

Optional
Field Mounted
Aux. Temp. Sensor

– (Low)

ACT

ADDRESS
SWITCH

BIP

TB1–1

TB1–2

1

J1

TB4–1

J8

J7

GND 24V

J3

D.D.C.\U.C.M.
CONTROL BOARD

PRESS

J9

J10

J11

Figure 39. DDC zone sensor wiring

1

+

TB3–6

TB3–5

TB3–2

GRN

TB3–3

YEL

TB3–1

–
TB2–6

TB2–5

–
TB2–4

+
TB2–3

–
TB2–2

TB2–1

+

S

ZONE GND SET A/CO2 GND

1
Night Setback
Override Option

Sensor

TB1–1

TB3–1

TB1–2 TB3–2

34

ON

Adjustable
Setpoint Option

TB1–4

TB2–5

TB1–5

TB2–6

Comm 1
Communications
Jack

Optional
Field Mounted
Aux. Temp. Sensor

Temperature
–2

PB1

Mechanical Sensor
Terminal Connection Chart
Field Wire
Sensor UCM Color Code

TB1–1

Warmer
Cooler

Signal Common
–3
Setpoint
–4

2

Communications (Optional)
+ (High)
–5
Communications (Optional)

Figure Notes:
1

Shield must be spliced with other
communication link shields

2

Shield must be cut back and taped
at sensor.

– (Low)

VAV-PRC003-EN

Specifications
Table 4. Zone sensor options

Figure 40. VariTrac DDC zone
sensors

Zone Sensor Options
Sensor only (no communications jack available)
Sensor with adjustable setpoint
Sensor with night setback override and cancel buttons
Sensor with adjustable setpoint and night setback
override and cancel buttons
Sensor with digital display and adjustable setpoint and
night setback override and cancel buttons

Number of
Required Wires1
2
3
2
3
52

Notes:

VAV-PRC003-EN

1

Most sensors have a communication jack available as an option. If these jacks are used, they must be
wired to the UCM using an approved two-conductor, shielded cable.The communication jacks do not
need to be wired for the system to operate properly.

2

Three wires are required for sensor connections. Two wires are required for 24-Vac power connection.

35

Specifications
Figure 41. VariTrac central control
panel components

Table 5. VariTrac control panel specifications
Power Requirements
Operating Environment
Storage Environment
Control Enclosure
Mounting
Weight
Communication Link Wiring

Binary Input

UL Approval
Memory Backup

Figure 42. VariTrac UCM round
damper

Table 6. UCM damper specifications
Power Requirements
Operating Environment
Storage Environment
Control Enclosure
Communication Link Wiring

36

20–30 Vac, 60 Hz, single-phase, 30 VA minimum. Class 2 transformer
required.
32°–122°F (0°–50°C), 10–90% relative humidity, non-condensing
-40°F–122°F (-40°–85°C), 5–95% relative humidity, non-condensing
NEMA 1 resin enclosure, plenum rated
Mount directly on wall surface or mount on recessed 4" x 4"
(101.6 mm x 101.6 mm) conduit box.
2.5 lbs. (1.13 kg)
Communication link wiring must be Level 4 22-AWG twisted shielded
pair wire with stranded tinned copper conductors. Maximum total wire
length is 3,500 ft (1066.8 m). Wire must meet Trane specifications.
Voltage (provided by VariTrac CCP): 10–14 Vdc
Current (provided by VariTrac CCP): 10–14 mA
Note: Only “dry” contacts may be attached to binary inputs.
The VariTrac Central Control Panel is UL approved.
Upon a power loss, all operator-edited data stored in the VariTrac Central
Control Panel is maintained permanently.

20–30 Vac, 60Hz, single-phase 10 VA minimum (plus load of optional heat
outputs). Class 2 transformer required.
32°–120°F (0°–49°C). 10–90% relative humidity, non-condensing
-50°–200°F (-46°–93°C). 5–95% relative humidity, non-condensing
NEMA 1 metal enclosure, plenum rated
Communication link wiring must be Level 4 22-AWG twisted shielded
pair wire with stranded tinned copper conductors. Maximum total wire is
3,500 ft (1066.8 m). Wire must meet Trane specifications.

VAV-PRC003-EN

Specifications
Figure 43. Communicating bypass
controller

Table 7. Communicating bypass control assembly specifications
Power Requirements
Operating Environment
Storage Environment
Control Enclosure
Communication Link Wiring

Figure 44. Zone occupancy sensor

20–30 Vac, 60Hz, single-phase 15 VA minimum. Class 2 transformer
required.
32°–120°F (0°–49°C). 10–90% relative humidity, non-condensing
-50°–200°F (-46°–93°C). 5–95% relative humidity, non-condensing
NEMA 1 metal enclosure, plenum rated
Communication link wiring must be Level 4 22-AWG twisted shielded
pair wire with stranded tinned copper conductors. Maximum total wire is
3,500 ft (1066.8 m). Wire must meet Trane specifications.

Table 8. Zone occupancy sensor specifications
Power Supply
Maximum VA Load
Isolated Relay Rating
Operating Temperature
Storage Temperature
Humidity Range
Effective Coverage Area
Effective Coverage Radius
Housing Material

24 Vac or 24 Vdc, ±10%
0.88 VA @ 24 Vac, 0.722 VA @ 24 Vdc
1 A @ 24 Vac or 24 Vdc
32°–131°F (0°–55°C)
-22°–176°F (-30°–80°C)
0–95% non-condensing
1200 sq. ft (365.8 m)
22 ft (6.7 m)
ABS plastic

Ideal for zones with intermittent
occupancy like conference rooms).
When occupied, the zone reverts to
unoccupied setpoints to save energy.

VAV-PRC003-EN

37

Specifications

Figure 45. DDC zone sensor with
digital display

Table 9. Digital zone sensor specifications
Thermistor Resistance Rating
Accuracy at 77°F (25°C)
Setpoint Resistance Rating
Display Zone Temperature Range
Display Setpoint Range
Operating Temperature
Storage Temperature
Humidity Range
Power Supply
Maximum VA Load
Housing Material

10kW at 77° (25°C)
0.4°F (0.2°C)
500 Ohms at 70°F (21.2°F)
40°–99°F (10° to 35°C)
50°–90°F (10° to 32°C)
0°–120°F (–18° to 49°C)
–20°–130°F (–29° to 54°C)
5–95% non-condensing
24 VAC
4 VA
Rigid vinyl

Figure 46. CO2 duct sensor

Table 10. CO2 sensor specifications
Duct

Figure 47. CO2 wall sensor

38

Dimensions
Operating Temperature
Accuracy at 77°F (25°C)
Measuring Range
Recommended Calibration Interval
Response Time
Storage Temperature
Humidity Range
Output Signal (jumper selectable)
Resolution of Analog Outputs
Power Supply
Power Consumption
Housing Material

3 1/8" × 3 1/8" × 7 3/4"
23°–113°F (–5°–45°C)
< ± (30 ppm CO2 + 3% of reading)
0-2000 parts per million (ppm)
5 years
1 minute (0–63%)
–4°–158°F (–20°–70°C)
0 to 85% relative humidity (RH)
4-20 mA, 0-20 mA, 0-10 VDC
10 ppm CO2
Nominal 24 VAC
<5 VA
ABS plastic

Wall
4 1/4" × 3 1/8" × 1 7/16"
59°–95°F (15°–35°C)
< ± (40 ppm CO2 + 3% of reading)

VAV-PRC003-EN

Acoustics

Acoustics are tricky to define for
specific jobsites. To provide an
acoustical overview of a typical office
system with mineral glass fiber
dropped ceiling, ARI standard 885-98
has generated the transfer functions in
Table 11.
Sound power data was collected in
accordance with ARI Standard 880.
Applying the transfer function for
sound reduction due to office
furnishings, materials, etc. generated
the NC data which follows. This is a
reference document only provided to
address general acoustical issues.
What you will find is that the sound in
the occupied spaces generated by the
VariTrac dampers is minimal when
compared to the main HVAC unit
sound generation.

Table 11. Acoustical transfer functions
ARI 885-98 Discharge Transfer
Function Assumptions
2
Small Box
(<300 cfm)
Medium Box
(<300–700 cfm)
Large Box
(>700 cfm)

Octave Band
3
4
5
6
-39

7

-24

-28

-53

-59

-40

-27

-29 240 -51

-53

-39

-29

-30

-52

-39

-41

-51

Note: Add to terminal unit sound power to
determine discharge sound pressure in the space.

ARI 885-98 Radiated Transfer
Function Assumptions
Type 2 Mineral
Fiber Insulation

Octave Band
4
5
6

2

3

-18

-19

-20

-26

-31

7
-36

Some general ideas to minimize
acoustical issues:
• pay close attention to location of the
HVAC unit. This will typically set the
overall acoustical quality of your job.
• locate VariTrac dampers outside the
occupied space.
• internally lined ductwork can be used to
reduce the discharge sound generated
by the HVAC unit.
• install flex duct with minimal sagging,
and turns.
• locate balancing dampers as far from
the diffuser as possible to limit airborne
noise.

Note: VariTrac dampers do not carry the
ARI seal.
Table 12. Radiated sound data
NC Based on 885-98 Mineral Tile
Size

Radiated NC

Size

6 in.
8 in.
10 in.
12 in.
14 in.
16 in.

33
26
25
26
29
21

470
840
1310
1885
2140
2515

NC based on maximum rated airflow
conditions.

VAV-PRC003-EN

39

Acoustics

Table 13. Discharge sound data
Size
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
6 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.
8 in.

CFM

ISP

375
375
375
375
300
300
300
300
225
225
225
225
150
150
150
150
75
75
75
75
38
38
38
38
656
656
656
656
525
525
525
525
394
394
394
394
263
263
263
263
131
131
131
131
66
66
66
66

0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2

Discharge
NC
—
—
18
22
—
—
19
—
—
—
16
—
—
—
16
—
—
—
16
—
—
—
15
—
16
24
30
—
—
20
25
—
—
16
22
—
—
—
23
—
—
15
24
—
—
—
20

Size

CFM

ISP

Discharge
NC

10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
10 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.
12 in.

1031
1031
1031
1031
825
825
825
825
619
619
619
619
413
413
413
413
206
206
206
206
103
103
103
103
1500
1500
1500
1500
1200
1200
1200
1200
900
900
900
900
600
600
600
600
300
300
300
300
150
150
150
150

0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2

—
15
21
27
—
—
17
22
—
—
—
20
—
—
—
19
—
—
—
19
—
—
—
18
—
15
21
29
—
—
17
25
—
—
—
22
—
—
—
21
—
—
—
20
—
—
—
19

Size

CFM

ISP

Discharge
NC

14 in.
14 in.
14 in.
14 in.
14 in.
14 in.
14 in.
14 in.
14 in.
14 in.
14 in.
14 in.
14 in.
14 in.
14 in.
14 in.

2000
2000
2000
2000
1600
1600
1600
1600
1200
1200
1200
1200
800
800
800
800

0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2

—
17
24
30
—
—
19
26
—
—
15
23
—
—
—
23

14 in.
14 in.
14 in.
14 in.
14 in.
14 in.
14 in.
14 in.
16 in.
16 in.
16 in.
16 in.

400
400
400
400
200
200
200
200
2625
2625
2625
2625

0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2

—
—
—
23
—
—
—
20
—
17
25
32

16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.
16 in.

2100
2100
2100
2100
1575
1575
1575
1575
1050
1050
1050
1050
525
525
525
525
263
263
263
263

0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2
0.25
0.5
1
2

—
—
23
29
—
—
22
27
—
—
—
22
—
—
—
23
—
—
—
23

Note: NC data based on ARI 885-98 Acoustical transfer functions in Table 11.

40

VAV-PRC003-EN

Dimensions and Weights

Figure 48. Central control panel dimensions

Top view

10.25 in.
(26.04 cm)

2.75 in.
(6.99 cm)

8.75 in.
(22.38 cm)

Front view

Side view

Bottom view

Note:
1. Central control panel weight is 2.5 lbs.

VAV-PRC003-EN

41

Dimensions and Weights

Figure 49. Communicating bypass control dimensions
Mounting holes
See back view for dimensions

6 3/4"

4 1/4"

5"
3 3/8"
Duct Static
Pressure Sensor
4 5/16"

3 7/8"

Duct Temp
Sensor

0.300"

Back View

Notes:
Weight
Operating Temp
Humidity
Mounting Method
42

1 15/16"

1.00"

1.00"

7/8" knockout
1/2" conduit
Customer entry

3 5/16"

Side View

3 1/4 lbs
32˚ to 140˚
5 to 95% (non-condensing)
Metal screws
VAV-PRC003-EN

Dimensions and Weights

Figure 50. Round zone and bypass damper dimensions

Airflow

8.875"

6.625"

Controls Area

4.375"
2.125"

0.50"

C

Airflow

2.00"
3.625"

Duct Temp Sensor (Optional)
N/A on Bypass Control

Center of Bead
B

VAV-PRC003-EN

Damper
Size

A

B

C

Nominal
CFM

Weight

6"

6.375"

12.00"

11.125"

300

6 lbs

8"

8.375"

12.00"

13.125"

500

7 lbs

10"

10.375"

16.00"

15.125"

800

8 lbs

12"

12.375"

16.00"

17.125"

1100

9 lbs

14"

14.375"

20.00"

19.125"

1600

11 lbs

16"

16.375"

20.00"

21.125"

2000

12 lbs

A
DIA

43

Dimensions and Weights

Figure 51. Rectangular zone damper dimensions

X
16.00" Ref.

Y

Seam

Slip & Drive
Connection

6.00" Ref.

Dimensions

44

Frame

X

Y

8.00"

12.00"

Blades

8.00"

14.00"

8.00"

16.00"

Gear
Blade Pin

10.00"

16.00"

10.00"

20.00"

14.00"

18.00"

Damper Frame Data
16-gage galvanized steel
16-gage galvanized steel
All blades are 3.19" nominal width
and 8" maximum
ABS plastic
3/8" rolled steel, zinc plated

VAV-PRC003-EN

Dimensions and Weights

Figure 52 Rectangular bypass damper dimensions
Hub

1.20"
6"
X
16" Ref
.70"

2"

1.10"

4"

Actuator Dimensions

Seam

Dimensions
X

Y

14"

12"

16"

16"

20"

20"

30"

20"

Wiring

Actuator

Red
White

CCW
COM

Com

Black

CW

Open

CCP
Close

Air

Frame

13 gage galvanized steel

Blades

16 gage galvanized steel; blades are
6" nominal width and 8" maximum

Bearings

1/8" rolled steel, zinc plated
3/8" square steel, zinc plated

Y

Seam

Factory Installed
Cable Provided

Damper Frame Data

Linkage
Blade Pin
Blade Pin
Extension

w
Flo

Actuator
5"

7/16" diameter, 7" long
Included with all dampers
Self-lubricating acetol

Blade Seals None
Side Seals None
10"
Cable
Weight

VAV-PRC003-EN

45

Dimensions and Weights

Figure 53. Occupancy Sensor

Figure 54. CO2 Sensor dimensions
3.125"

1.44"

4.25"

Figure 55. Digital Zone Sensor
1.1

3.60"

2.8

1.0

Front View

˚F
˚C
MAX
UNOCC SETPOINT OVERRIDE

2.50"

4.5
ON

Side
View
CANCEL

1.90"

R

46

VAV-PRC003-EN

Glossary
ABS gears – Gears formed of a
lightweight plastic known for its
toughness, impact strength, and
dimensional stability.
Back draft damper – A one-way
airflow damper in a parallel fan
powered unit prevents primary flow
from exiting the plenem inlet.
Binary input – A two-position signal
indicating on/off status.
Binary output – A control output that
is either on or off.
Built-in time clock –The occupancy
timer included in the CCP operator
display.
Bypass damper – The motorized
damper ducted between the system
supply and return ducts used to
control static pressure in changeover
bypass VAV systems.
Central control panel (CCP) – The
system level control device in aTrane
changeover bypass or delivered VAV
system that gathers data from zone
controllers and operates the HVAC unit
to maintain the correct air flow and
temperature.
Changeover-bypass VAV – A control
that provides variable air volume
functionality to a constant volume air
handling system.
CO2 sensor – An analog sensor that
detects and measures carbon dioxide
sensor to determine occupancy level.
Commissioning –The process of
starting up and verifying correct
operation of a building system.
Conditioned air – Air that is heated,
cooled, humidified, or dehumidified to
maintain comfort in an interior space.
Constant volume – An air
distribution system that varies the
temperature of a fixed volume of air to
maintain space comfort.
Delivered VAV – A self configuring
system providing true pressure
independent VAV control to smaller
building applications. Delivered VAV
requires a CCP with operator display, a

VAV-PRC003-EN

Commercial Voyager VAV rooftop unit
and VariTrane VAV boxes.
Demand control ventilation – A
method of maintaining indoor air
quality through intelligent ventilation
based on occupancy.The quantity of
ventilation is controlled based on
indoor CO2 levels, which correlate to
occupancy levels. Demand controlled
ventilation saves money by reducing
ventilation during periods of low
occupancy.
Direct-expansion (DX) – When the
refrigerant in the system is either
condensed or evaporated directly by
the medium being heated or cooled.
Discharge air (DA) – Air discharged
from the air handler into the ducts.
Discharge air control – An air
handling system that provides fixed
temperature air (either fixed or variable
volume). Other control devices vary the
actual volume of air delivered to the
space to maintain occupant comfort.

Non-volatile memory – System
memory that retains programming with
no battery or capacitor back up
required
Normally closed (NC) – Electrical
contacts that are closed (current flows)
in the de-energized condition
Normally open (NO) – Electrical
contacts that are open (no current
flows) in the de-energized condition
Occupancy sensor – A binary sensor
that transmits a signal upon detection
of movement in the coverage area
Outdoor air (OA) –This is fresh air
drawn in to provide space ventilation.
Also see ‘Ventilation air”
Outdoor air damper –The damper
that draws fresh air into the air handling
system for ventilation. Also referred to
as the ventilation or fresh air damper
Override – A manual or automatic
action taken to bypass normal
operation

Economizer – A damper arrangement
and automatic control system that
allows a heating, ventilation and air
conditioning (HVAC) system to supply
up to 100 percent outside air to satisfy
cooling demands, even if additional
mechanical cooling is required

Packaged unitary system – An air
handling system with all the major
components contained in a single
cabinet or installed in a single location

Exception schedule – A one time
only time of day schedule in a system
that is removed automatically after use

Polling –The method a VariTrac CCP
uses to determine the need for heating
or cooling from the air handling system
by examining the zone requirements

Free cooling – Outdoor air introduced
to a system under correct conditions to
provided cooling to a space. Also see
also “Economizer”
HVAC Unit – An air moving device
that conditions air. An HVAC unit may
provide cooling, or heating and cooling.
Typical HVAC units include packaged
rooftop units, split systems, and water
source heat pumps.
LCD – Liquid crystal display
NDIR – Non-dispersive infrared
technology
Negative pressure –The condition
that exists when more air is exhausted
from a space than is supplied.

PIR – Passive infrared sensing
technology (used in occupancy and
motion detection sensors)

Positive pressure –The condition that
exists when more air is supplied to a
space than is exhausted.
Pressure-dependent VAV control –
A VAV unit with airflow quantity
dependent upon static pressure.There
is no zone flow sensor in pressure
dependent VAV boxes.
Pressure-independent VAV
control – A VAV unit with airflow
quantity independent of duct static
pressure. Actual airflow to the space is
measured and controlled by an airflow
sensor in the pressure independent
VAV box.

47

Glossary

Priority shutdown – An immediate
shutdown of the fan and heating or
cooling stages in a VariTrac changeover
bypass or Delivered VAV system
caused by either the loss of critical
system information or an external
priority shutdown input
Pulse-width modulating reheat –
Reheat that operates duct mounted
electric coils on a 0-100% duty cycle in
response to increased space heating
demand.
Reheat device – A source of heat
located downstream from a control
device such as a VAV box to add heat to
air entering a space to provide
occupant comfort
ReliaTel (RTRM) – The latest
generationTrane factory mounted
unitary controller.
Return air (RA) – Air returned to the
air handler from the conditioned space,
to be reconditioned.
Setpoint –The desired room
temperature to be achieved and
maintained by an HVAC system.
Setpoint limit – An electronic or
manual constraint imposed on a
setpoint to prevent misadjustment
SPDT – A relay with of one set of
normally-open, normally-closed
contacts

48

Staged electric reheat – Reheat that
operates one or more duct mounted
electric coils in a series in response to
increased space heating demand.
Staged (or perimeter) hot water
reheat – Reheat that operates ductmounted hot water or space-mounted
electric or hot water reheat coils in
response to increased space heating
demand
Static pressure –The difference
between the air pressure on the inside
of the duct and outside of the duct.
Static pressure is an indicator of how
much pressure the fans are creating
and how effective they will be at
distributing the supply air through the
ducts.
Supply air (SA) – air which blows out
of the air handler into the ducts. See
also “Discharge air (DA)”
Terminal unit – HVAC equipment that
provides comfort directly to a space.
Thermal requirements –The heating
or cooling load requirements for a
specific area or space in a building.
Care must be taken to not control areas
with different thermal requirements
from one air handling system
Touch-screen operator display –
The LCD panel mounted onto a VariTrac
CCP to allow direct user interface and
time of day programming for the
system

Unit control module UCM – A Trane
microelectronic circuit board that
controls individual HVAC equipment.
May link to an Integrated Comfort
System
Unitary – one or more factory-made
assemblies which normally include an
evaporator or cooling coil, an air
moving device, and a compressor and
condenser combination
Variable air volume (VAV) – an air
handling system that varies the volume
(amount) of constant temperature air to
a space to control comfort
VariTrac –TheTrane changeover
bypass VAV system
VariTrane –TheTrane pressure
independent VAV box
VAV box – The damper or air valve
(plus associated controller) that
controls the zone air volume in a VAV
system. Also see “Variable air volume”
Ventilation air –The outdoor air
drawn into the HVAC unit to provide
fresh air to the space. Also see
“Outdoor air (OA)”
Voting – See “Polling”
Zone sensor –The device that
measures a variable (usually
temperature) in a space and sends it to
a controller. Commonly referred to as a
thermostat.

VAV-PRC003-EN

VAV-PRC003-EN

49

50

VAV-PRC003-EN

VAV-PRC003-EN

51

Literature Order Number

VAV-PRC003-EN

File Number

PL-TD-VAV-000-PRC003-EN-0604

Trane
A business of American Standard Companies
www.trane.com

Supersedes

VAV-DS-12

Stocking Location

La Crosse

For more information contact your local district office
or email us at comfort@trane.com

Trane has a policy of continuous product and product data improvement and reserves the right to change
design and specifications without notice.



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.4
Linearized                      : Yes
Create Date                     : 2004:07:29 20:40:41Z
Modify Date                     : 2004:07:29 15:50:54-05:00
Subject                         : VariTrac
Keywords                        : VariTrac, VariTrane, Tracker, changeover, bypass, zone, round, rectangular, central, control, panel
Page Count                      : 52
Creation Date                   : 2004:07:29 20:40:41Z
Mod Date                        : 2004:07:29 15:50:54-05:00
Producer                        : Acrobat Distiller 5.0.5 (Windows)
Metadata Date                   : 2004:07:29 15:50:54-05:00
Title                           : VariTrac Changeover Bypass VAV (Tracker System CB)
Description                     : VariTrac
Page Mode                       : UseOutlines
Page Layout                     : SinglePage
EXIF Metadata provided by EXIF.tools

Navigation menu