ywl

Ultra Low Power Sub-1GHz Wireless MCU

CMT2380F32 Rev. 0.9 | 1/65 www.cmostek.com MCU Features 32 MHz Cortex-M0 32-bit CPU platform 32 kB Flash with erasing protection 4 kB RAM with parity to enhance system stability

karta katalogowa

CMT2380F32 | Micros

Datasheet

ISM modules / Communication Modules | Micros

PDF info-rf cmt2380f32
CMT2380F32

CMT2380F32
Ultra Low Power Sub-1GHz Wireless MCU

MCU Features

SoC

 32 MHz Cortex-M0+ 32-bit CPU platform
 32 kB Flash with erasing protection
 4 kB RAM with parity to enhance system stability
 16 general purpose I/O interfaces available
 Flexible power management system - 0.5 uA @ 3 V(deep sleep mode): the power consumption when all clocks are off, power-on reset is active, I/O state is maintained, I/O interrupt is active and all registers, RAM, and CPU stay in data storage status - 0.8 uA @ 3 V (deep sleep mode): the power consumption when RTCs work - 150 uA/MHz @3 V @16 MHz: the power consumption when CPU and peripheral modules run with program Flash operating internally - 2 us: the chip's wakeup time from ultra-low power mode, the fast response enables mode switching more flexible and efficient
 RTC and crystal - External high speed crystal: 4 ­ 32 MHz - External low speed crystal: 32.768 kHz - Internal high speed clock: 4/8/16/22 and 24 MHz - Internal low speed clock: 32.8/38.4 kHz
 Timer and counter - 3 general purpose 16-bit timers/counters - A 16-bit timer/counter available in low power mode - 3 high performance 16-bit timers/counters capable for capture/compare and PWM output - One 20-bit programmable counter/watchdog circuit with built-in dedicated ultra-low power RC-OSC to perform WDT counting
 Communication interface - UART 0 and UART 1 standard communication interface - One ultra-low power UART(LPUART) supporting for low speed clock - Standard I2C and SPI communication interface

 One 12-bit 1 Msps SAR ADC  2 voltage comparators  Low voltage detector (LVD), configurable 16-level
comparison level, support for port voltage and supply voltage monitoring
RF Features
 Frequency range: 127 ­ 1020 MHz  Modem: FSK, GFSK, MSK, GMSK and OOK  Data rate0.5 ­ 300 kbps  Sensitivity: -121 dBm @ 434 MHz, FSK  Receiving current: 8.5 mA @ 434 MHz, FSK  Transmitting current: 72 mA @ 20 dBm, 434 MHz  Configurable up to 64-byte FIFO
System Features
 Supply voltage1.8 ­ 3.6 V  Operating temperature: -40 ­ 85   QFN40 5x5 packaging
Applications
 Smart grid and automatic meter reading  Home security and building automation  Wireless sensor networks and industrial monitoring  ISM band data communication
Descriptions
Employed a 32-bit Cortex-M0+ CPU core and an ultra-low power RF transceiver, the CMT2380F32 is a FSK, GFSK, MSK, GMSK and OOK wireless MCU with high performance and ultra-low power applying to 127 to 1020 MHz band wireless applications. Operating with 1.8 to 3.6 V supply voltage, the CMT2380F32 consumes only 72 mA current while delivering up to 20 dBm power. As for the receiver, the

Rev. 0.9 | 1/65

www.cmostek.com

device consumes an ultra-low current of 8.5 mA with the sensitivity reaching -121 dBm.
The device employs a wide range of peripherals like support of standard UART, I2C and SPI interfaces, up to 16 general-purpose I/Os, support of internal high-speed, low-speed, low-power RC oscillators and 32.768 kHz external crystal oscillators, flexible data handling and packet handler, up to 64-byte Tx/Rx FIFO, feature-enriched RF GPIO, multiple low-power modes and fast-start mechanisms, high-precision RSSI, manual fast frequency hopping, multi-channel input 12-bit high-speed ADC, etc. Leading the industry in the aspect of the smallest package size, the CMT2380F32 is ideal for size constraints due to a small form-factor, power-efficient IoT applications.

CMT2380F32

Rev. 0.9 | 2/65

www.cmostek.com

CMT2380F32

Table 1. The CMT2380F32 Resource List

Memory

Analog Peripherals

Digital Peripherals

Others

CCP

ROM RAM ADC VCMP LVD RTC WDT Timer

UART LPUART SPI I2C PCA CRC GPIO

PWM

12-bit

32 k 4 k

2

x9-ch



  16-bit 16-bit

2

x6 x6-ch

1

1 1   16+1

Figure 1. Typical Application Schematic for the CMT2380F32 (20dBm Output Power with Antenna Switch)

Table 2. Typical Application BOM (20 dBm Output Power with Antenna Switch)

Label

Description

C1 ± 5%, 0402 NP0, 50 V C2 ± 5%, 0402 NP0, 50 V C3 ± 5%, 0402 NP0, 50 V C4 ± 5%, 0402 NP0, 50 V C5 ± 5%, 0402 NP0, 50 V C6 ± 5%, 0402 NP0, 50 V C7 ± 5%, 0402 NP0, 50 V

Component Value

434 MHz

868/915 MHz

15

15

10

3.9

8.2

2.7

8.2

2.7

220

220

4.7

2

4.7

2

Unit
pF pF pF pF pF pF pF

Supplier
-

C8 ± 5%, 0402 NP0, 50 V

220

220

pF

-

C9 ± 5%, 0402 NP0, 50 V

220

220

pF

-

C12 ± 5%, 0402 NP0, 50 V C13 ± 20%, 0402 X7R, 25 V

470

pF

-

2.2

nF

-

C14 ± 20%, 0603 X7R, 25 V

4.7

uF

-

Rev. 0.9 | 3/65

www.cmostek.com

CMT2380F32

Label

Description

C15 ± 5%, 0402 NP0, 50 V C16 ± 5%, 0402 NP0, 50 V C17 ± 5%, 0402 NP0, 50 V C18 ± 5%, 0402 NP0, 50 V C19 ± 20%, 0402 X7R, 25 V C20 ± 20%, 0603 X7R, 25 V C21 ± 20%, 0402 X7R, 25 V C22 ± 5%, 0402 NP0, 50 V L1 ±10%, 0603multilayer chip inductor L2 ±10%, 0603 multilayer chip inductor L3 ±10%, 0603 multilayer chip inductor L4 ±10%, 0603 multilayer chip inductor L5 ±10%, 0603 multilayer chip inductor L6 ±10%, 0603 multilayer chip inductor L7 ±10%, 0603 multilayer chip inductor L8 ±10%, 0603 multilayer chip inductor Y1 ±10 ppm, SMD32*25 mm
CMT2380F32, ultra-low power sub-1GHz U1
wireless MCU U2 AS179, PHEMT GaAs IC SPDT Switch R1 ± 5%, 0402 R2 ± 5%, 0402

Component Value

434 MHz

868/915 MHz

27

Unit pF

27

pF

10

pF

10

pF

100

nF

4.7

uF

100

nF

470

pF

180

100

nH

27

6.8

nH

18

12

nH

33

22

nH

15

10

nH

27

12

nH

27

12

nH

68

18

nH

26

MHz

Supplier
Sunlord SDCL Sunlord SDCL Sunlord SDCL Sunlord SDCL Sunlord SDCL Sunlord SDCL Sunlord SDCL Sunlord SDCL EPSON

-

-

CMOSTEK

-

-

SKYWORKS

2.2

k

-

2.2

k

-

Rev. 0.9 | 4/65

www.cmostek.com

Table of Contents

CMT2380F32

1 Electrical Specifications ......................................................................................................................7
1.1 Recommended Operating Conditions................................................................................................................. 7 1.2 Absolute Maximum Ratings................................................................................................................................ 7 1.3 RF Power Consumption ..................................................................................................................................... 8 1.4 Receiver ............................................................................................................................................................. 9 1.5 Transmitter ....................................................................................................................................................... 11 1.6 RF Operating Mode Switching Time................................................................................................................. 12 1.7 RF Frequency Synthesizer ............................................................................................................................... 12 1.8 Requirement on Crystals for RF Section .......................................................................................................... 13 1.9 Controller Output Features ............................................................................................................................... 13 1.10 Controller Input FeaturesP0, P1, P2 and P3 Reset) ..................................................................................... 14 1.11 Port External Input Sampling Requirements (Timer Gate/Timer Clock) ........................................................... 14 1.12 Port Leakage Features (P0, P1, P2 and P3) .................................................................................................... 14 1.13 Controller Power Consumption Features.......................................................................................................... 15 1.14 POR/BOR Features.......................................................................................................................................... 18 1.15 Controller External XTH Oscillator.................................................................................................................... 18 1.16 Controller External 32.768 kHz Oscillator......................................................................................................... 19 1.17 Controller Internal RCH Oscillator .................................................................................................................... 19 1.18 Controller Internal RCL Oscillator ..................................................................................................................... 20 1.19 Controller Flash Features ................................................................................................................................. 20 1.20 Controller Low Power Mode Recover Time ...................................................................................................... 20 1.21 Controller ADC Features .................................................................................................................................. 21 1.22 Analog Voltage Comparator ............................................................................................................................. 23 1.23 Low Battery Detection Features ....................................................................................................................... 25 1.24 Receive Current and Supply Voltage Correlation ............................................................................................. 27 1.25 Correlation Among Receive Current, Supply Voltage and Temperature .......................................................... 27 1.26 Receive Sensitivity and Supply Voltage Correlation......................................................................................... 28 1.27 Receive Sensitivity and Temperature Correlation ............................................................................................ 29 1.28 Transmit Power and Supply Voltage Correlation.............................................................................................. 29 1.29 Phase Noise ..................................................................................................................................................... 30
2 Pin Description ...................................................................................................................................31
3 Chip Structure.....................................................................................................................................37
4 Sub-GHz Transceiver .........................................................................................................................39
4.1 Transmitter ....................................................................................................................................................... 39 4.2 Receiver ........................................................................................................................................................... 39 4.3 Transceiver Power-on Reset (POR)................................................................................................................. 39 4.4 Transceiver Crystal Oscillator........................................................................................................................... 40 4.5 Transceiver Built-in Low Frequency Oscillator (LPOSC) .................................................................................. 41 4.6 Transceiver Built-in Low Battery Detection....................................................................................................... 41 4.7 Receiver Signal Strength Indication (RSSI) ...................................................................................................... 41 4.8 Phase Jump Detector (PJD)............................................................................................................................. 42 4.9 Receiver Clock Data Recovery (CDR).............................................................................................................. 42

Rev. 0.9 | 5/65

www.cmostek.com

CMT2380F32
4.10 Fast Manual Frequency Hopping ..................................................................................................................... 43 4.11 Transceiver Control Interface and Operating Mode.......................................................................................... 43
4.11.1 Transceiver SPI Interface Timing ............................................................................................................. 43 4.11.2 Transceiver FIFO Interface Timing........................................................................................................... 44 4.11.3 Transceiver Operating Status, Timing, and Power Consumption ............................................................. 45 4.11.4 Transceiver GPIO Function and Interrupt Mapping.................................................................................. 48
5 Controller function Introduction .......................................................................................................50
5.1 Cortex M0+ Core Function Description ............................................................................................................ 50 5.2 Memory ............................................................................................................................................................ 53
5.2.1 On-chip Program Memory Flash .............................................................................................................. 53 5.2.2 On-chip Data Memory Flash .................................................................................................................... 53 5.3 System Clock ................................................................................................................................................... 55 5.4 Operating Mode................................................................................................................................................ 55 5.5 RTC Hardware Real Time Clock RTC .............................................................................................................. 55 5.6 General Purpose IO Port .................................................................................................................................. 55 5.7 Interrupt Controller............................................................................................................................................ 55 5.8 Reset Controller ............................................................................................................................................... 57 5.9 Timer/Counter .................................................................................................................................................. 57 5.10 Watchdog WDT ................................................................................................................................................ 58 5.11 Universal Purpose Asynchronous Receiver UART0, UART1 and LPUART ..................................................... 58 5.12 Synchronous Serial Interface SPI..................................................................................................................... 59 5.13 I2C Bus............................................................................................................................................................. 59 5.14 Buzzer .............................................................................................................................................................. 59 5.15 Clock Calibration Circuit ................................................................................................................................... 59 5.16 Unique ID number ............................................................................................................................................ 59 5.17 CRC16 Hardware Cyclic Redundancy Check Code......................................................................................... 59 5.18 12-bit SARADC ................................................................................................................................................ 59 5.19 Voltage Comparator (VC) ................................................................................................................................. 59 5.20 LVD Low Voltage Detector (LVD)..................................................................................................................... 59 5.21 Embedded Debug System................................................................................................................................ 60 5.22 High Security .................................................................................................................................................... 60
6 Order Information ...............................................................................................................................61 7 Packaging Information .......................................................................................................................62 8 Top Marking.........................................................................................................................................63 9 Reference Documents........................................................................................................................64 10 Revise History.....................................................................................................................................64 11 Contacts ..............................................................................................................................................65

Rev. 0.9 | 6/65

www.cmostek.com

CMT2380F32

1 Electrical Specifications
VDD= 3.3 VTOP= 25 °CFRF = 433.92 MHz, sensitivity is measured by receiving a PN9 sequence and matching to 50  impedance, 0.1% BER if nothing else stated. All measurement results are obtained using the evaluation board CMT2380F32-EM if nothing else stated.
1.1 Recommended Operating Conditions

Parameter Operating supply voltage Operating temperature Operating speed RF supply voltage slope Controller supply voltage SCloonpteroller power-on reset effective voltage

Table 3. Recommended Operating Conditions

Symbol VDD TOP
VRF-PSR VMC U-PSR

Condition CPU frequency range

Min.

Typ.

1.8

-40

256k

4M

1

50

VMC U-POR

Max. 3.6 85 32 M
0.1

Unit V  Hz
mV/us mV/us
V

1.2 Absolute Maximum Ratings

Table 4. Absolute Maximum Ratings[1]

Parameter Supply voltage Interface voltage Junction temperature Storage temperature Soldering temperature ESD rating[2] Latch-up current

Symbol VDD VIN TJ TSTG TSDR

Condition
Lasts for at least 30 seconds HHuummaann bbooddyy mmooddeell ((HHBBMM)) @ 85 

Min. -0.3 -0.3 -40 -50
-2 -100

Typ. 3.6 3.6 125 150 255 2 100

Max. V V    kV mA

Notes:
[1]. Exceeding the Absolute Maximum Ratings may cause permanent damage to the equipment. This value is a pressure rating and does not imply that the function of the equipment is affected under this pressure condition, but if it is exposed to absolute maximum ratings for extended periods of time, it may affect equipment reliability.
[2]. The CMT2380F32 is a high performance RF integrated circuit. The operation and assembly of this chip should only be performed on a workbench with good ESD protection.

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent performance degradation or loss of functionality.

Rev. 0.9 | 7/65

www.cmostek.com

CMT2380F32

1.3 RF Power Consumption

Parameter Sleep current Standby current RFS current TFS current FSK, RX current (high performance) FSK, RX current (low power mode)
FSK, TX current

Table 5. RF Power Consumption

Symbol ISLEEP IStandby IRFS ITFS IRx-HP IRx-LP
ITx

Condition Sleep mode, sleep counter off Sleep mode ,sleep counter on Crystal oscillator on 433 MHz 868 MHz 915 MHz 433 MHz 868 MHz 915 MHz 433 MHz, 10 kbps,10 kHz FDEV 868 MHz, 10 kbps, 10 kHz FDEV 915 MHz, 10 kbps,10 kHz FDEV 433 MHz, 10 kbps, 10 kHz FDEV 868 MHz, 10 kbps, 10 kHz FDEV 915 MHz, 10 kbps, 10 kHz FDEV 433 MHz, +20 dBm (Direct-tie) 433 MHz, +20 dBm (With RF switch) 433 MHz, +13 dBm (Direct-tie) 433 MHz, +10 dBm (Direct-tie) 433 MHz, -10 dBm (Direct-tie) 868 MHz, +20dBm (Direct-tie) 868 MHz, +20dBm (With RF switch) 868 MHz, +13 dBm (Direct-tie) 868 MHz, +10 dBm (Direct-tie) 868 MHz, -10 dBm (Direct-tie) 915 MHz, +20 dBm (Direct-tie) 915 MHz, +20 dBm (Direct-tie) 915 MHz, +13 dBm (Direct-tie) 915 MHz, +10 dBm (Direct-tie) 915 MHz, +10 dBm (Direct-tie)

Min.

Typ.

Max.

Unit

300

nA

800

nA

1.45

mA

5.7

mA

5.8

mA

5.8

mA

5.6

mA

5.9

mA

5.9

mA

8.5

mA

8.6

mA

8.9

mA

7.2

mA

7.3

mA

7.6

mA

72

mA

77

mA

23

mA

18

mA

8

mA

87

mA

80

mA

27

mA

19

mA

8

mA

70

mA

75

mA

28

mA

19

mA

8

mA

Rev. 0.9 | 8/65

www.cmostek.com

CMT2380F32

1.4 Receiver

Table 6. Receiver Specifications

Parameter Data Rate Error
Sensitivity @ 433 MHz
Sensitivity @ 868 MHz
Sensitivity @ 915 MHz
Saturation Image rejection ratio Receive channel bandwidth Co-channel rejection

Symbol DR FDEV
S433-HP
S868-HP
S915-HP
PLVL IMR BW CCR

Condition OOK FSK and GFSK FSK and GFSK DR = 2.0 kbps, FDEV = 10 kHz DR = 10 kbps, FDEV = 10 kHz DR = 10 kbps, FDEV= 10 kHz (low power mode) DR = 20 kbps, FDEV = 20 kHz DR = 20 kbps, FDEV = 20 kHz (low power mode) DR = 50 kbps, FDEV = 25 kHz DR =100 kbps, FDEV = 50 kHz DR =200 kbps, FDEV = 100 kHz DR =300 kbps, FDEV = 100 kHz DR = 2 kbps, FDEV = 10 kHz DR = 10 kbps, FDEV = 10 kHz DR = 10 kbps, FDEV = 10 kHz (low power mode) DR = 20 kbps, FDEV = 20 kHz DR = 20 kbps, FDEV = 20 kHz (low power mode) DR = 50 kbps, FDEV = 25 kHz DR =100 kbps, FDEV = 50 kHz DR =200 kbps, FDEV = 100 kHz DR =300 kbps, FDEV = 100 kHz
DR = 2 kbps, FDEV = 10 kHz
DR = 10 kbps, FDEV = 10 kHz DR = 10 kbps, FDEV = 10 kHz(low power mode) DR = 20 kbps, FDEV = 20 kHz DR = 20 kbps, FDEV = 20 kHz (low power mode) DR = 50 kbps, FDEV = 25 kHz DR =100 kbps, FDEV = 50 kHz DR =200 kbps, FDEV = 100 kHz DR =300 kbps, FDEV = 100 kHz
FRF = 433 MHz FRF = 868 MHz FRF = 915 MHz
Receive channel bandwidth
DR = 10 kbps, FDEV = 10 kHz Interference with the same modulation

Rev. 0.9 | 9/65

Min. 0.5 0.5 2
50

Typ.
-121 -116 -115 -113 -112 -111 -108 -105 -103 -119 -113 -111 -111 -109 -108 -105 -102 -99 -117 -113 -111 -111 -109 -109 -105 -102 -99
35 33 33
-7

Max. 40 300 200
20 500

Unit kbps kbps kHz dBm dBm
dBm
dBm
dBm
dBm dBm dBm dBm dBm dBm
dBm
dBm
dBm
dBm dBm dBm dBm dBm dBm
dBm
dBm
dBm
dBm dBm dBm dBm dBm dBc dBc dBc
kHz

dBc

www.cmostek.com

CMT2380F32

Parameter Adjacent channel rejection Alternate channel rejection
Blocking
Input 3rd order intercept point RSSI range
Sensitivity @ 433.92 MHz (typical configuration)

Symbol ACR-I ACR-II
BI
IIP3 RSSI

Condition DR = 10 kbps, FDEV = 10 kHz, BW = 100 kHz, 200 kHz channel spacing, interference with the same modulation DR = 10 kbps, FDEV = 10 kHz, BW=100kHz, 400 kHz channel spacing, interference with the same modulation DR = 10 kbps, FDEV = 10 kHz, ±1 MHz offset, continuous wave interference DR = 10 kbps, FDEV = 10 kHz, ±2 MHz offset, continuous wave interference DR = 10 kbps, FDEV = 10 kHz, ±10 MHz offset, continuous wave interference DR = 10 kbps, FDEV = 10 kHz, 1 MHz and 20 MHz offset two tone test, maximum system gain setting
DR = 1.2 kbps, FDEV = 5 kHz DR = 1.2 kbps, FDEV = 10kHz DR = 1.2 kbps, FDEV = 20 kHz DR = 2.4 kbps, FDEV = 5 kHz DR = 2.4 kbps, FDEV = 10 kHz DR = 2.4 kbps, FDEV = 20 kHz DR = 9.6 kbps, FDEV = 9.6 kHz DR = 9.6 kbps, FDEV = 19.2 kHz DR = 20 kbps, FDEV = 10 kHz DR = 20 kbps, FDEV = 20 kHz DR = 50 kbps, FDEV= 25 kHz DR = 50 kbps, FDEV = 50 kHz DR = 100 kbps, FDEV = 50 kHz DR = 200 kbps, FDEV= 50 kHz DR = 200 kbps, FDEV = 100 kHz DR = 300 kbps, FDEV = 50 kHz DR = 300 kbps, FDEV = 150 kHz

Min. -120

Typ. 30

Max.

Unit dBc

45

dBc

70

dBc

72

dBc

75

dBc

-25

dBm

20

dBm

-122.9

dBm

-121.8

dBm

-119.5

dBm

-120.6

dBm

-120.3

dBm

-119.7

dBm

-116.0

dBm

-116.1

dBm

-114.2

dBm

-113.0

dBm

-110.6

dBm

-109.0

dBm

-107.8

dBm

-103.5

dBm

-104.3

dBm

-98.0

dBm

-101.6

dBm

Rev. 0.9 | 10/65

www.cmostek.com

CMT2380F32

1.5 Transmitter

Table 7. Transmitter Specifications

Parameter
Output power
Output power step GFSK (Gaussian filter coefficient) Output power change with different temperature
Spurious emissions
Harmonic output[1] for FRF= 433 MHz Harmonic output[1] for FRF= 868 MHz Harmonic output[1] for FRF= 915 MHz Harmonic output[1] for FRF= 433 MHz Harmonic output[1] for FRF= 868 MHz Harmonic output[1] for FRF= 915 MHz

Symbol POUT PSTEP

Condition Specific matching network is required for different frequency bands

BT

Min. -20
0.3

POUT-TOP Temperature range:-40 to + 85 C

H2433 H3433 H2868 H3868 H2915 H3915 H2433 H3433 H2868 H3868 H2915 H3915

POUT = +13 dBm,433MHz, FRF<1 GHz 1 GHz to12.75 GHz, including harmonics 2nd harmonic,+20 dBm POUT 3nd harmonic,+20 dBm POUT 2nd harmonic,+20 dBm POUT 3nd harmonic,+20 dBm POUT 2nd harmonic,+20 dBm POUT 3nd harmonic,+20 dBm POUT 2nd harmonic,+13 dBm POUT 3nd harmonic,+13 dBm POUT 2nd harmonic,+13 dBm POUT 3nd harmonic,+13 dBm POUT 2nd harmonic,+13 dBm POUT 3nd harmonic,+13 dBm POUT

Typ.
1 0.5
1
- 46 - 50 - 43 - 52 - 48 - 53 - 52 - 52 - 52 - 52 - 52 - 52

Max. +20
1.0
-54 -36

Unit
dBm
dB
-
dB
dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm

Notes:

[1]. The harmonic level mainly depends on the matching network. Above parameters are measured based on the CMT2380F32-EM, users may get different results on their applications.

Rev. 0.9 | 11/65

www.cmostek.com

CMT2380F32

1.6 RF Operating Mode Switching Time

Table 8. RF Operating Mode Switching Time

Parameter
RF operating mode switching time

Symbol T [1]
SLP-R X
T [1] SLP- T X
TSTB-R X TSTB-TX TRFS-R X TTFS-R X

TT X-R X

TR X-T X

Condition From sleep to RX From sleep to TX From standby to RX From standby to TX From RFS to RX From TFS to TX From TX to RX (Needs 2Tsymbol to ramp down) From RX to TX

Min.

Typ. 1 1
350 350 20 20 2Tsymbol +350 350

Max.

Units ms ms us us us us
us
us

Notes:

[1]. TSLP-RX and TSLP-TX are dominated by the crystal oscillator startup time, and the start-up time is to a large degree crystal dependent.

1.7 RF Frequency Synthesizer

Parameter
Frequency range
Frequency resolution Frequency tuning time Phase noise @ 433 MHz
Phase noise @ 868 MHz
Phase noise @ 915 MHz

Symbol FRF FRES tTUNE PN433
PN868
PN915

Table 9. RF Frequency Synthesizer

Condition

Min.

760

380

190

127

10 kHz deviation 100 kHz deviation 500 kHz deviation 1MHz deviation 10 MHz deviation 10 kHz deviation 100 kHz deviation 500 kHz deviation 1MHz deviation 10 MHz deviation 10 kHz deviation 100 kHz deviation 500 kHz deviation 1MHz deviation 10 MHz deviation

Typ.

Max.

Unit

1020

MHz

510

MHz

340

MHz

170

MHz

25

Hz

150

us

-94

dBc/Hz

-99

dBc/Hz

-118

dBc/Hz

-127

dBc/Hz

-134

dBc/Hz

-92

dBc/Hz

-95

dBc/Hz

-114

dBc/Hz

-121

dBc/Hz

-130

dBc/Hz

-89

dBc/Hz

-92

dBc/Hz

-111

dBc/Hz

-121

dBc/Hz

-130

dBc/Hz

Rev. 0.9 | 12/65

www.cmostek.com

CMT2380F32

1.8 Requirement on Crystals for RF Section

Table 10. Requirement on Crystals for RF Section

Parameter Crystal frequency[1] Crystal frequency tolerance[2] Load capacitance ESR Crystal startup time[3]

Symbol FXTAL ppm CLO AD Rm tXTAL

Condition

Min.

Typ.

Max.

Unit

26

MHz

20

ppm

15

pF

60



400

us

Notes:

[1]. An external 26 MHz reference clock can be used to drive the XI pin directly through a coupling capacitor if such a clock is available. The peak-to-peak level of the external reference clock is required between 0.3 and 0.7 V.

[2]. It involves:(1) initial tolerance, (2) crystal loading, (3) aging, and (4) temperature changing. The acceptable crystal frequency tolerance is subject to the bandwidth of the receiver and the RF tolerance between the receiver and its paired transmitter.

[3]. This parameter is to a large degree crystal dependent.

1.9 Controller Output Features

Table 11. Controller Output Features

Parameter
Output high level
Output low level
Output high level (enhanced mode) Output low level (enhanced mode)

Symbol VO H VOL VO HD VOLD

Condition Sourcing 4 mA current, VDD = 3.3V Sourcing 6 mA current, VDD= 3.3V Sinking 4 mA current, VDD = 3.3V Sinking 6 mA current, VDD= 3.3V Sourcing 8 mA current, VDD = 3.3V Sourcing 12 mA current, VDD = 3.3V Sinking 8 mA current, VDD = 3.3V Sinking 12 mA current, VDD = 3.3V

Min. VDD - 0.25 VDD - 0.60
VDD - 0.25 VDD - 0.60

Typ.

Max.
VDD + 0.25 VDD + 0.60
VDD + 0.25 VDD + 0.60

Unit V V V V V V V V

Notes:

1. The maximum total current of IOH and IOL (sum of all pins) shall not exceed 40 mA to meet the specified maximum voltage drop.

2. The maximum total current of IOH and IOL (sum of all pins, enhanced mode) shall not exceed 100 mA to meet the specified maximum voltage drop.

Rev. 0.9 | 13/65

www.cmostek.com

Voltage (V)

VOL @ VDD = 3.3 V

Low drive High drive

CMT2380F32

Voltage (V)

VOH @ VDD = 3.3 V

Low drive High drive

Current (mA)
Figure 2. Controller I/O Driving Ability
1.10 Controller Input FeaturesP0, P1, P2 and P3 Reset)

Current (mA)

Table 12. Controller Input FeaturesP0, P1, P2 and P3 Reset)

Parameter
Output high level
Output low level
Input hysteresis range (VIH-VIL) Pull-up resistor Input capacitance

Symbol VIH VIL VHYS RPUP

Condition VDD = 1.8 V VDD = 3.3 V VDD = 1.8 V VDD = 3.3 V VDD = 1.8 V VDD = 3.3 V Pull-up enabled Sinking 12 mA currentVDD = 3.3 V

Min. 1 1.8 0.6 1.1 0.4 0.7

Typ. 1.1 2 0.7 1.3 0.4 0.7 80 5

Max. 1.2 2.2 0.8 1.5 0.4 0.7

Unit V V V V V V k pF

1.11 Port External Input Sampling Requirements (Timer Gate/Timer

Clock)

Table 13. Port External Input Sampling Requirements (Timer Gate/Timer Clock)

Parameter
External interrupt input pulse width
Timer 4/5/6 capture pulse width (FSYS=4MHz) Timer 0/1/2/4/5/6 external clock input (FSYS=4MHz)
PCA external input clock
Notes:

Symbol TINT TCAP TCLK TPCA

Condition VDD = 1.8 V VDD = 3.3 V VDD = 1.8 V VDD = 3.3 V VDD = 1.8 V VDD = 3.3 V VDD = 1.8 V VDD = 3.3 V

Min. 30[1] 30[1] 0.5 0.5

Typ.

Max.
PCLK/2 PCLK/2 PCLK/8 PCLK/8

Unit ns ns us us MHz MHz MHz MHz

[1]. It's the minimum external interrupt input pulse width used in the practical test for triggering the interrupt. It can support triggering the interrupt with even shorter pulse width based on the chip capability.

1.12 Port Leakage Features (P0, P1, P2 and P3)
Rev. 0.9 | 14/65

www.cmostek.com

CMT2380F32

Table 14. Port Leakage Features (P0, P1, P2, and P3)

Parameter Leakage current

Symbol Ilkg(Px,y)

Condition VDD: 1.8 to 3.6V

Min.

Typ.

Max.

Unit

± 50

nA

Notes:

[1]. Unless otherwise specified, the leakage current is measured with GND or VDD applied to the corresponding pin.

[2]. The pin to be tested must be set to input mode.

1.13 Controller Power Consumption Features

Table 15. Controller Power Consumption Features

Parameter

Symbol

Condition

Note 4 MHz

Typ. Max. Unit

220

uA

VCORE = 1.55 V, VDD = 3.3 V. All

8 MHz

400

uA

Operating current

peripheral clock sources are off.

when program

IDD-RAM Run While(1) in SRAM with RCH

16 MHz

740

uA

running in SRAM

as clock source.

24 MHz

1080

uA

32 MHz

1400

uA

4 MHz

670

uA

Core mark operating current

IDD-Mark

VCORE = 1.55 V, VDD = 3.3 V. All peripheral clock sources are off. Run Core Mark in Flash with RCH as clock source

VCORE = 1.55 V, VDD = 3.3 V. All peripheral clock sources are on. Run While(1) in Flash with RCH as clock source.

8 MHz 16 MHz 24 MHz 32 MHz Flash Wait=1 4 MHz 8 MHz 16 MHz 24 MHz

1300

uA

2380

uA

3410

uA

3530

uA

700

880

uA

1350 1600

uA

2500 3000

uA

3600 4300

uA

Operating current Sleep current

IRUN
VCORE = 1.55 V, VDD = 3.3 V. All peripheral clock sources are off. Run While(1) in Flash with RCH as clock source.

VCORE = 1.55 VVDD = 1.8~3.6 V.

ISLP

All peripheral clock sources are on

with RCH as clock source.

4 MHz 8 MHz 16 MHz 24 MHz 32 MHz Flash Wait=1 4 MHz 8 MHz 16 MHz

550

750

uA

1050 1300

uA

1900 2400

uA

2700 3300

uA

2850 3000

uA

260

280

uA

500

520

uA

950

970

uA

Rev. 0.9 | 15/65

www.cmostek.com

CMT2380F32

Parameter

Symbol

Condition

Note 24 MHz

4 MHz

VCORE = 1.55 V, VDD = 1.8 ~ 3.6 V. All peripheral clock sources are off. RCH clock source is used.

8 MHz 16 MHz 24 MHz

LP operating current LP sleep current

ILP-R UN ILP-R UN ILP-SLP ILP-SLP

32 MHz

VCORE = 1.55 V, VDD = 1.8 ~ 3.6 V. All peripheral clock sources are on. Run While(1) in Flash with XTAL (32768Hz, Driver = 1) as clock source.

TA = -40 ~ 25  TA = 50  TA = 85 

VCORE = 1.55V, VDD = 1.8 ~ 3.6 V. All peripheral clock sources are off. Run While(1) in Flash with XTAL (32768 Hz, Driver = 1) as clock source.

TA = - 40 ~ 25  TA = 50  TA = 85 

VCORE = 1.55 V, VDD = 1.8 ~ 3.6 V. All peripheral clock sources are on. Run While(1) in Flash with XTAL (32768 Hz, Driver = 1) as clock source.

TA = - 40 ~ 25  TA = 50  TA = 85 

VCORE = 1.55 V, VDD = 1.8 ~ 3.6 V. All peripheral clock sources are off (except LPTimer and RTC). Run While(1) in Flash with XTAL (32768Hz, Driver = 1) as clock source.

TA = - 40 ~ 25  TA = 50  TA = 85 

VCORE = 1.55 V, VDD = 1.8 ~ 3.6 V. All peripheral clock sources are off, except LPTimer, WDT and RTC.

TA = - 40 ~ 25  TA = 50  TA = 85 

Deep sleep current

IDEEP-SLP

VCORE = 1.55 V, VDD = 1.8 ~ 3.6 V. All peripheral clock sources are off, except WDT.

TA = - 40 ~ 25  TA = 50  TA = 85 

VCORE = 1.55 V, VDD = 1.8 ~ 3.6 V. All peripheral clock sources are off, except LPTimer.

TA = - 40 ~ 25  TA = 50  TA = 85 

VCORE = 1.55 V, VDD = 1.8~3.6V. All peripheral clock sources are off, except RTC.

TA = - 40 ~ 25  TA = 50 

Typ. Max. Unit

1400 1420

uA

110

125

uA

190

210

uA

330

360

uA

470

500

uA

580

610

uA

7

9

uA

7.3

9.2

uA

8.9

11.3

uA

6

8

uA

6.1

8.2

uA

7.7

10.1

uA

3.3

3.5

uA

3.6

3.8

uA

5.4

5.8

uA

2.2

2.4

uA

2.5

2.6

uA

4.2

4.6

uA

1.5

1.65

uA

1.85

2.2

uA

3.5

4.2

uA

1.2

1.3

uA

1.5

1.8

uA

3.1

3.7

uA

0.9

1

uA

1.1

1.3

uA

2.6

3

uA

1.0

1.1

uA

1.2

1.5

uA

Rev. 0.9 | 16/65

www.cmostek.com

CMT2380F32

Parameter

Symbol

Condition

VCORE = 1.55 V,VDD = 1.8 ~ 3.6 V. All peripheral clock sources are off.

Note TA = 85  TA = - 40 ~ 25  TA = 50  TA = 85 

Typ. Max. Unit

2.6

3.4

uA

0.42

0.6

uA

0.75

0.95

uA

2.2

2.7

uA

Rev. 0.9 | 17/65

www.cmostek.com

CMT2380F32

1.14 POR/BOR Features
VVCDCD
VBOR_hys+ 1.65V VBOR_hys- 1.50v
Vth ~0.8v

BOR_5V

unknown Treset

Treset

unknown

Figure 3. POR/BOR Features
Notes: 1. POR/BOR detects the VDD voltage. 2. It detects the threshold only instead of VDD power-up and power-down slew rate. 3. The detection threshold is the same no matter the VDD is powering on or off. A reset pulse is triggered when VDD is lower
than the threshold. 4. In case a reset pulse is generated, the pulse duration will not be less than Treset to guarantee a complete system reset.
Table 16. POR/BOR Features

Parameter

Symbol Condition Min.

Typ.

Max.

Unit

POR release voltage (power-up process)BOR detection voltage (power-down process)

VPOR

1.45

1.50

1.65

V

1.15 Controller External XTH Oscillator

Table 17. Controller External XTH Oscillator

Parameter Crystal frequency Equivalent series resistance
Load capacitance
Duty cycle Current consumption[1] Startup time

Symbol FFCLK ESRFCLK
CFCLK DCFCLK IDD TFstart

Condition
32 MHz crystal 4 MHz crystal The two pins of the crystal oscillator are connected separately.
32 MHz crystal, CFCLK= 12 pF, ESRFCLK = 30  4 MHz~32 MHz

Notes:

[1]. It is the current consumption when configure XTH_CR_Driver = 0b1110.

Min. 4
12 40 200

Typ.
30 400
50 600

Max. 32 60
1500 24 60
400

Unit MHz
 
pF
% uA us

Rev. 0.9 | 18/65

www.cmostek.com

CMT2380F32

1.16 Controller External 32.768 kHz Oscillator

Table 18. Controller External 32.768 kHz Oscillator

Parameter Crystal frequency Equivalent series resistance Load capacitance
Clock duty cycle Current consumption[1]
Startup time

Symbol FSCLK ESRSCLK CSCLK DCFCLK IDD
Tstart

Condition
The two pins of the crystal oscillator are connected separately.
CSCLK =12pF,ESRSCLK = 65k CSCLK =12pF,ESRSCLK = 65 k,40%~60% duty cycle

Min.

Typ. 32.768
65

Max. 85

0

12

40

50

60

0.6

1

500

Notes: [1]. The operating current is measured under the condition at XTL_CR_Driver = 0b0011 and ESR=65k.

Unit kHz k pF % uA
ms

1.17 Controller Internal RCH Oscillator

Parameter

Table 19. Controller Internal RCH Oscillator

Symbol

Condition

Min.

Internal high speed oscillating

frequency

FMCLK

4

FMCLK = 4 MHz

Startup time (not including software calibration)

TMstart

FMCLK = 8 MHz FMCLK = 16 MHz

FMCLK = 24 MHz

FMCLK = 4 MHz

Current consumption

IMCLK

FMCLK = 8 MHz FMCLK = 16 MHz

FMCLK = 24 MHz

Clock duty cycle Frequency tolerance

DCMCLK

45

VDD = 1.8 ~ 3.6 V, TA = -40 ~ +85 

-2.5

DEVMCLK

VDD = 1.8 V ~ 3.6 V, TA = - 20 ~ + 50 

-2.0

Typ. 4.0 8.0 16.0 22.12 24.0 6.0 4.0 3.0 2.5 80 100 120 140 50

Max. 32
55 +2.5 + 2.0

Unit
MHz
us us us us uA uA uA uA % % %

Rev. 0.9 | 19/65

www.cmostek.com

CMT2380F32

1.18 Controller Internal RCL Oscillator

Parameter Internal high speed oscillating frequency Startup time Current consumption Clock duty cycle
Frequency tolerance

Table 20. Controller Internal RCL Oscillator

Symbol FACLK

Condition

Min.

Typ.

38.4

32.768

TACLK IACLK DCACLK
DEVACLK

VDD = 1.8 ~ 3.6V, TA = - 40 ~ + 85  VDD = 1.8 ~ 3.6V, TA = - 20 ~ + 50 

100

0.25

25

50

-2.0

-1.5

Max.
75 +2.0 +1.5

Unit kHz
us uA % % %

1.19 Controller Flash Features

Parameter Sector endurance Byte Program Time Sector erase time Chip erase time
Data retention

Table 21. Controller Flash Features

Symbol ECFlash TProg
TErase

Condition

Min. 20 6 4 30

TA = +25 °C

20

RETFlas h

TA = +85 °C

10

Typ.

Max.
7.5 5 40

Unit kcycles
us ms ms Year Year

1.20 Controller Low Power Mode Recover Time

Table 22. Controller Low Power Mode Recover Time

Parameter

Symbol

Condition

Min.

Regulated 1.5 V, TA = + 25°C, 4 MHz

Typ. 4.0

Regulated 1.5 V, TA = + 25°C, 8 MHz

3.1

Return to active mode from

TWakeup

deep sleep mode

Regulated 1.5 V, TA = + 25°C, 16 MHz

2.8

Regulated 1.5 V, TA = + 25°C, 24 MHz

2.7

Max. Unit us us us us

Rev. 0.9 | 20/65

www.cmostek.com

CMT2380F32

1.21 Controller ADC Features

AIN0

ADC_CR0[10] ADC_CR0[12:11] ADC_CR0[1:0]

AIN8

VCC/3

1.2V Refe1r.e2ncVeVolt age

+ -

Temperature Sensor

ADC_CR0[7:4] ADC_CR2[7:0]
ADC_CR0[3:2]

S&aHmopldle

SARADC

1.5V 2.5V ExRef
VCC

ADCREF

PCLK PCLK/2 PCLK/4 PCLK/8

ADCCLK

ADC_CR0[9:8]

ADC_Result ADC_Result0 ADC_Result8 ADC_ResultAcc

Figure 4. Controller ADC Features

Table 23. Controller ADC Features

Parameter Input voltage range External input reference voltage Internal 2.5V reference voltage Internal 1.5 V reference voltage Operating current (including reference source and buffer) Operating current (not including reference source and buffer) Input capacitance
ADC clock Startup time (ADC core and reference source) Conversion time
Valid bit

Symbol VADCin

Condition Single-ended

VADC_REF_IN

VREF_25

TA = 25°C,VDD = 3.3 V

VREF_15

TA = 25°C,VDD = 3.3 V

IADC1

200 ksps

IADC2

1000 ksps

CADC _ IN FADC_C LK

TADC_START

TADC_CO NV ENOB

1 Msps @ VDD  2.7 V 500 ksps @ VDD  2.4 V 200 ksps @ VDD  1.8 V REF = EXREF(External Reference) 1 Msps @ VDD  2.7 V 500 ksps @ VDD  2.4 V 200 ksps @ VDD  1.8 V
Rev. 0.9 | 21/65

Min. 0 0
2.475 1.485
20

Typ.

Max. VA DC_ REF_ IN
3.6

Unit V V

2.5

2.525

V

1.5

1.515

V

2

mA

0.5

mA

16

19.2

pF

24

MHz

30

us

24

28

Cycles

10.3

bit

10.3

bit

www.cmostek.com

CMT2380F32

Parameter
Signal to noise ratio
Differential nonlinearity Integral nonlinearity Drift error Gain error Missing code

Symbol
SNR
DNL INL Eoffset Egain MC

Condition
REF = VDD 200ksps @ VDD  1.8 V REF = Internal 1.5V 200ksps @ VDD  2.8 V REF = Internal 2.5 V 1 Msps @ VDD  2.7 V 500 ksps @ VDD  2.4 V 200 ksps @ VDD  1.8 V REF = EXREF(External Reference) 1 Msps @ VDD  2.7 V 500 ksps @ VDD  2.4 V 200 ksps @ VDD  1.8 V REF = VDD 200 ksps @ VDD  1.8 V REF = Internal 1.5V 200 ksps @ VDD  2.8 V REF = Internal 2.5V

Min. Typ.
9.4 9.4
68.2
68.2
60 60 -1 -3 0 0 11.999 12

Max.
+1 +3

Unit
Bit Bit
dB
dB
dB dB LSB LSB LSB LSB bit

Rev. 0.9 | 22/65

www.cmostek.com

CMT2380F32

1.22 Analog Voltage Comparator

VC0_CR[3:1]

VC0_CR[14:12]

VCIN7
VCVICNI0N0 VcoreVcVoorlteage Temperature Sensor ADC ReferenAcDeCVoltage 1.2V Refere1n.c2eVVoltage
VC_CR[7]

VC0_CR[0] Trigger Policy Select ion VC_CR[11:8]

VCIN7 VCIN0

-
+
VC0

VC0_CR[3:1]

Digital Filtering

VC0_CR[15]

VC0_CR[11:8]

ADC RefereAncDeCVoltage SupplyVoltage
V1c.o2rVeVoltage TemperaAtuDrCeSensor ADC ReferenceVoltage 1.2V ReferenceVcVoorletage
VVCCIINN00 VCIN7

RDeivsidisitnogr

VC_CR[6:0]

VC1_CR[3:1]

VCIN0 VCIN7

VC1
+
-

VC1_CR[11:8]

Digital Filtering

VC1_CR[15]

VC_CR[15:12] VC1_CR[0] Trigger Policy Select ion

VC1_CR[3:1]

VC1_CR[14:12]

Figure 5. Analog Voltage Comparator

VVCCO0Interrupt VVCC1OInterrupt

Table 24. Analog Voltage Comparator

Parameter Input voltage range Common-mode input range Input offset Internal 1.2 V reference voltage
Comparator current
Comparator response time
Comparator startup time (data signal does not change when it is enabled)

Symbol VIN
VIN_CO M VOffset

Condition Single-ended
TA = 25°C, VDD = 3.3V

V1P2_AT

ICO MP TRESPO NSE
TSetup

VCx_BIAS_SEL = 00 VCx_BIAS_SEL = 01 VCx_BIAS_SEL = 10 VCx_BIAS_SEL = 11 VCx_BIAS_SEL = 00 VCx_BIAS_SEL = 01 VCx_BIAS_SEL = 10 VCx_BIAS_SEL = 11 VCx_BIAS_SEL = 00 VCx_BIAS_SEL = 01 VCx_BIAS_SEL = 10 VCx_BIAS_SEL = 11

Min. 0 0 -10

Typ.

Max. 3.6 VDD - 0.2 +10

Unit V V mV

1.2

V

0.16 1.28
uA 10 20 20 5
us 1 0.2 20 5
us 1 0.2

Rev. 0.9 | 23/65

www.cmostek.com

Parameter From main band gap being enabled to V1P2_AT being stable From 2.5V being enabled & BGR being enabled to V2P5 being stable V2P5 reference source current
Digital filtering time

Symbol TWarmup1 TWarmup2
IV2P5
TFilter

Condition
VC_debounce = 000 VC_debounce = 001 VC_debounce = 010 VC_debounce = 011 VC_debounce = 100 VC_debounce = 101 VC_debounce = 110 VC_debounce = 111

CMT2380F32

Min.

Typ.

20

Max.

Unit

us

15

us

4

uA

25 50 100 400
us 1,600 6,000 25,000 100,000

Rev. 0.9 | 24/65

www.cmostek.com

CMT2380F32

1.23 Low Battery Detection Features

LVD_CR[3:2]
VCC P03 P23 P25

LVD_CR[0]
+

LVD_CR[11:8] FDiltigeirtianlg

LVD_CR[15]

LVLVDDInterrupt

tLhVrLeDVshDold LVD_CR[7:4]

 Trigger Policy Selection LVD_CR[14:12] LVD_CR[1]

LLVVDDInterrupt

Figure 6. Low Battery Detection Features

Rev. 0.9 | 25/65

www.cmostek.com

CMT2380F32

Table 25. Low Battery Detection Features

Parameter External input voltage range
VDD or VEX detection threshold
Low battery detection operating current Low battery detection response time (when VDD or VEX falls below or rises above the thresholds) Startup time (when it is enabled, VDD or VEX does not change) Hysteresis voltage
Digital filtering time

Symbol VEX
VLEVEL
ILVD TResponse
TSetup VHyste TFilter

Condition Single-ended LVD_CR_VTDS = 0000 LVD_CR_VTDS = 0001 LVD_CR_VTDS = 0010 LVD_CR_VTDS = 0011 LVD_CR_VTDS = 0100 LVD_CR_VTDS = 0101 LVD_CR_VTDS = 0110 LVD_CR_VTDS = 0111 LVD_CR_VTDS = 1000 LVD_CR_VTDS = 1001 LVD_CR_VTDS = 1010 LVD_CR_VTDS = 1011 LVD_CR_VTDS = 1100 LVD_CR_VTDS = 1101 LVD_CR_VTDS = 1110 LVD_CR_VTDS = 1111
LVD_debounce = 000 LVD _debounce = 001 LVD _debounce = 010 LVD _debounce = 011 LVD _debounce = 100 LVD _debounce = 101 LVD _debounce = 110 LVD _debounce = 111

Min.

Typ.

Max.

Unit

0

VDD

V

1.86

1.96

2.07

2.17

2.27

2.38

2.48

2.58 V
2.69

2.79

2.89

3.00

3.10

3.20

3.31

3.41

0.12

uA

80

us

5

us

20

mV

30

40

50

130 us
480

1,800

7,300

29,000

Rev. 0.9 | 26/65

www.cmostek.com

CMT2380F32

1.24 Receive Current and Supply Voltage Correlation

Rx Current vs. Supply Voltage

434MHz 868MHz

8.80

Current Comsumption(mA)

8.60

8.40 8.20 8.00

7.80

7.60

7.40 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6
Supply Voltage(V)

Test ConditionsFreq = 434 MHz & 868 MHz, FDEV = 10 kHz, BR = 10 kbps

Figure 7. Rx Current vs. Supply Voltage
1.25 Correlation Among Receive Current, Supply Voltage and Temperature

Rx Current vs. Volt-Temp

Current Consumption(mA)

9.5 9.3 9.0 8.8 8.5 8.3 8.0 7.8 7.5 7.3 7.0
-40

25
Temperature()

Test ConditionsFreq = 434 MHz, FDEV = 10 KHz, BR = 10 kbps

Figure 8. Rx Current vs. Volt-Temp

3.3V 1.8V 3.6V
85

Rev. 0.9 | 27/65

www.cmostek.com

CMT2380F32

Current Consumption(mA)

Rx Current vs. Volt-Temp

3.3V

1.8V

3.6V

9.5

9.3

9.0

8.8

8.5

8.3

8.0

7.8

7.5

7.3

7.0

-40

25

85

Temperature()

Test Conditions: Freq = 868 MHz, FDEV= 10 kHz, BR = 10 kbps
Figure 9. Rx Current vs. Volt-Temp
1.26 Receive Sensitivity and Supply Voltage Correlation

Sensitivity(dBm)

-113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5
1.8

Sensitivity vs. Voltage

2.1

2.4

2.8

3.0

Supply Voltage(V)

Test Conditions: FSK modulation, FDEV = 10 kHz, BR = 10 kbps

Figure 10. Sensitivity vs. Voltage

434MHz 868MHz

3.3

3.6

Rev. 0.9 | 28/65

www.cmostek.com

1.27 Receive Sensitivity and Temperature Correlation

CMT2380F32

Sensitivity(dBm)

-112.0 -113.0 -114.0 -115.0 -116.0 -117.0 -118.0

Sensitivity vs. Temperature

-40

25

Temperature()

Test ConditionsFSK modulation, FDEV = 10 kHz, BR = 10 kbps

434MHz 868MHz
85

Figure 11. Sensitivity vs. Temperature

1.28 Transmit Power and Supply Voltage Correlation

Tx Power(dBm)

Tx Power vs. Supply Voltage

20dBm 13dBm

20.0 19.0

18.0 17.0 16.0

15.0 14.0 13.0

12.0 11.0 10.0
1.8 1.9 2.0 2.1 2.2 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6

Supply Voltage(V)

Test ConditionsFreq = 434 MHz, 20 dBm & 13 dBm matching network respectively

Figure 12. Tx Power vs. Supply Voltage

Rev. 0.9 | 29/65

www.cmostek.com

CMT2380F32

Tx Power(dBm)

Tx Power vs. Supply Voltage

13dBm 20dBm

20.0

19.0

18.0

17.0

16.0

15.0

14.0

13.0

12.0

11.0

10.0

9.0 1.8 1.9 2.0 2.1 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6
Supply Voltage(V)

Test ConditionsFreq = 868MHz, 20dBm&13dBmmatching network respectively

1.29 Phase Noise

Figure 13. Tx Power vs. Supply Voltage

Power (dBm)

433.92 MHz Phase Noise
20
13.4dBm
0

-20

-40

-60

-80

-100 431.92

432.42 432.92 center 433.92MHz

433.42

433.92 434.42
(2000pts ) Res BW 1kHz

434.92

435.42 435.92 sweep 5s

Figure 14. 433.92MHz Phase Noise

Rev. 0.9 | 30/65

www.cmostek.com

CMT2380F32

868 MHz Phase Noise

20

12.4dBm

0

Power (dBm)

-20

-40

-60

-80

-100 866

866.5

867

867.5

868

868.5

869

869.5

870

center 868MHz

sweep 5s (2000pts )

Res BW 1kHz

Figure 15. 868 MHz Phase Noise

2 Pin Description

Figure 16. The CMT2380F32 Pin Arrangement Diagram
Rev. 0.9 | 31/65

www.cmostek.com

CMT2380F32

Pin # 0 1
2 - 3 4 5 6 7 8[1]
9
10
11 12 13
14

Table 26. The CMT2380F32 Pin Description

Pin Name GND NC RFIP/RFIN FRO RF-AVDD RF-DGND RF-DVDD GPIO3 P32 TIM3_TOGN PCA_CH2 TIM6_CHB VC1OUT UART1_TXD PCA_CH4 RTC_1HX AIN2/VC2 P33 UART2_RXD PCA_CH1 TIM5_CHB PCA_ECI UART1_RXD XTL_OUT TIM1_TOGN AIN3/VC3 NC NC NC P34 PCA_CH0 UART2_TXD TIM5_CHA TIM0_EXT TIM4_CHA RTC_1HZ TIM1_TOG AIN4/VC4

I/O

Description

I Chip substrate, must connect to ground

- No connection

I Differential RF signal input port

O PA output

I RF circuit VDD, requires to connect to a 1.8-3.6 V power supply

I GND, must connect to ground

I Digital VDD, requires to connect to a 1.8-3.6 V power supply

IO Can be configured as: CLKO, DOUT/DIN, INT2 and DCLK (TX/RX)

IO General purpose digital input/output pin

O LPtimer inverted reversal output

IO PCA capture input/compare output 2

IO Timer6 capture input/compare output B

O VC1 output

O UART1 TXD

IO PCA capture input/compare output 4

O RTC1HZ output

I Analog input

IO General purpose digital input/output pin

I UART2 RXD

IO PCA capture input / compare output 1

IO Timer5 capture input / compare output B

I PCA external clock

I UART1 RXD

O 32K Oscillating output

O Timer1 inverted reversal output

I Analog input

- Not connect

- Not connect

- Not connect

IO General purpose digital input/output pin

IO PCA capture input / compare output 0

O UART2 TXD

IO Timer5 capture input / compare output A

I Timer0 external clock input

IO Timer4 capture input / compare output A

O RTC1HZ output

O Timer1 inverted output

I Analog input

Rev. 0.9 | 32/65

www.cmostek.com

CMT2380F32

Pin # 15
16 17 18
19

Pin Name P35 UART1_TXD TIM6_CHB UART0_TXD TIM0_GATE TIM4_CHB SPI_MISO I2C_SDA AIN5/VC5 P36 UART1_RXD TIM6_CHA UART0_RXD PCA_CH4 TIM5_CHA SPI_MOSI I2C_SCL AIN6/VC6/AVREF P00 ResetB P01 UART0_RXD I2C_SDA UART1_TXD TIM0_TOG TIM5_CHB SPI_SCK TIM2_EXT AIN7/VC7 XTHI P02 UART0_TXD I2C_SCL UART1_RXD TIM0_TOGN TIM6_CHA SPI_CS TIM2_GATE AIN8 XTHO

I/O

Description

IO General purpose digital input/output pin

O UART1 TXD

IO Timer6 capture input / compare output B

O UART0 TXD

I Timer0 gating

IO Timer4 capture input / compare output B

I SPI Module master input slave output data signal

IO I2Cdata

I Analog input

IO General purpose digital input/output pin

UART1 RXD

Timer6 capture input / compare output A

UART0 RXD

PCA capture input / compare output 4

Timer5 capture input / compare output A

SPI module master output slave input data signal

I I2C Clock

O Analog input

I Digital input

I Reset input port, active low, chip reset

IO General purpose digital input/output pin

I UART0 RXD

IO I2C data

O UART1 TXD

O Timer0 inverted output

IO Timer5 capture input / compare output B

O SPI clock

O Timer2 external clock

I Analog input

I External XTH crystal oscillator clock input

IO General purpose digital input/output pin

O UART0 TXD

O I2C clock

I UART1 RXD

O Timer0 inverted reversal output

IO Timer6 capture input / compare outputA

O SPI CS

I Timer2 gating

I Analog Input

O External XTH crystal oscillator clock output

Rev. 0.9 | 33/65

www.cmostek.com

CMT2380F32

Pin # 20 21 22 23
24
25
26 27

Pin Name MCU-GND MCU-VCAP MCU-VDD P03 PCA_CH3 SPI_CS TIM6_CHB LPTIM_EXT RTC_1HZ PCA_ECI VC0_OUT LVDIN1 P15 I2C_SDA TIM2_TOG TIM4_CHB LPTIM_GATE SPI_SCK UART0_RXD LVD_OUT XTLO P14 I2C_SCL TIM2_TOGN ECI ADC_RDY SPI_CS UART0_TXD XTLI P23 TIM6_CHA TIM4_CHB TIM4_CHA PCA_CH0 SPI_MISO UART1_TXD IR_OUT LVDIN2/VC0 P24 TIM4_CHB

I/O

Description

I Digital Ground

O LDO core power supply output (internal circuit only, connect 4.7uF capacitor)

I Digital Power Supply

IO General purpose digital input/output pin

O PCA capture input / compare output 3

O SPI CS

IO Timer6 capture input / compare output B

I LPTimer external clock input

O RTC 1Hz output

I PCA external clock input

O VC0 output

I Analog input

IO General purpose digital input/output pin

IO I2C data

O Timer2 inverted output

IO Timer4 capture input / compare output B

I LPTimer gating

O SPI clock

I UART0 RXD

O LVD output

O External XTL crystal oscillator clock input

IO General purpose digital input/output pin

O I2C clock

O Timer2 inverted reversal output

I PCA external clock input

O ADC ready

O SPI CS

O UART0 TXD

I External XTL crystal oscillator clock input

IO General purpose digital input/output pin

IO Timer6 capture input / compare output A

IO Timer4 capture input / compare output B

IO Timer4 capture input / compare output A

IO PCA capture input / compare output0

IO SPI Module master input slave output data signal

O UART1 TXD

O 38k carrier output

I Analog input

IO General purpose digital input/output pin

IO Timer4 capture input / compare output B

Rev. 0.9 | 34/65

www.cmostek.com

CMT2380F32

Pin #
28 29 30 31

Pin Name TIM5_CHB HCLK_OUT PCA_CH1 SPI_MOSI UART1_RXD VC1_OUT AIN0 P25 SPI_SCK PCA_CH0 TIM5_CHA LVD_OUT UART2_RXD I2C_SDA TIM1_GATE LVDIN3/VC1 P26 SPI_MOSI TIM4_CHA TIM5_CHB PCA_CH2 UART2_TXD I2C_SCL TIM1_EXT AIN1 P27 SPI_MISO TIM5_CHA TIM6_CHA PCA_CH3 UART0_RXD RCH_OUT XTH_OUT SWDIO P31 TIM3_TOG PCA_ECI PCLK_OUT VC0OUT UART0_TXD

I/O

Description

IO Timer5 capture input / compare output B

O HCLK output

IO PCA capture input / compare output 1

O SPI module master output slave input data signal

I UART1 RXD

O VC1 output

I Analog input

IO General purpose digital input/output pin

O SPI Clock

IO PCA capture input / compare output 0

IO Timer5 capture input / compare output A

O LVD output

I UART2 RXD

IO I2C data

I Timer1 gating

I Analog input

IO P26 general purpose digital input/output pin

O SPI Module master output slave input data signal

IO Timer4 capture input / compare output A

IO Timer5 capture input / compare output B

IO PCA capture input / compare output 2

O UART2 TXD

O I2C Clock

I Timer1 external clock input

I Analog input

IO General purpose digital input/output pin

IO SPI Module master input slave output data signal

IO Timer5 capture input / compare output A

IO Timer6 capture input / compare output A

IO PCA capture input / compare output 3

I UART0 RXD

O 24 M oscillating output

O 32 M oscillating output

IO Debugging interface, SWDIO

IO General purpose digital input/output pin

O Timer 3 Inverted output

I PCA external clock

O PCLK output

O VC0 output

O UART0 TXD

Rev. 0.9 | 35/65

www.cmostek.com

CMT2380F32

Pin #
32 33 34 35 36 37 38 39 40

Pin Name RCL_OUT HCLK_OUT SWCLK SCLK SDA CSB FCSB NC XI XO GPIO2 GPIO1

I/O

Description

O RCL oscillating output

O HCLK output

I Debugging interface, SWCLK

I RF SPI clock

IO RF SPI data input/output, connect to 10 k pull-up resistor externally

I RF SPI chip selection for register access

I RF SPI chip selection for FIFO access

- Not connect

I 26 MHz crystal circuit input

O 26 MHz crystal circuit output

IO Can configure as: INT1,INT2,DOUT/DIN,DCLK (TX/RX),RF_SWT

IO Can configure as: DOUT/DIN,INT1,INT2,DCLK (TX/RX),RF_SWT

Notes:
[1]. INT1 and INT2 refer to RF interrupts. DOUT refers to the demodulated data output. DIN refers to the modulation data input. DCLK refers to the modulation or demodulation data rate synchronous clock, which is switched automatically according to operation mode switch between TX and RX.

Rev. 0.9 | 36/65

www.cmostek.com

CMT2380F32

3 Chip Structure

XIN XOUT

PA
RXIP RXIN
SWDIO SWCLK
VC0_OUT VCIN0~VCIN7
AIN0~AIN8 ADC_RDY

VCO

LOOP FILTER

CP

PFD

26 Mhz XO

PA

D- DIV

M- DIV

AFC LOOP

LNA

I LMT Q LMT

SWD

Cortex-M0+ CPU
NVIC

Temp. Sensor
VC0 VC1
12-bit ADC
LVD

BGR Vref

AHB 2 APB

AHB Bus Matirx

RSSI AGC LOOP

ADC

Flash 32KB SRAM 4KB

CRC

I2C

SPI

LP UART

UART0 UART1

PCA

Timer4 Timer5 Timer6

Timer0 Timer1 Timer2

LPTimer

RTC

LFOSC LDOs

POR

Bandgap

Registers

Radio Controller

SPI, FIFO Interface

MODEM Packet Handler
FIFO IO Ctrl

System Control

XTL
XTH POR BOR RCH
RCL
Power VDD to VCore

P3 P2 P1 P0

VDD GND
FCSB CSB SCLK SDA
GPIO1 GPIO2 GPIO3
XTLI XTLO XTHI XTHO RESET
MCU-VDD GND

P0.0~P0.3
P1.4, P1.5
P2.3~P2.7
P3.1~P3.6
LPTIM_GATE LPTIM_EXT LPTIM_TOG LPTIM_TOGN TIMn_GATE TIMn_EXT TIMn_TOG TIMn_TOGN
TIMn_CHA TIMn_CHB
PCA_ECI PCA_CHn
UARTn_TxD UARTn_RxD UART2_TxD UART2_RxD SPI_SCK SPI_CS SPI_MISO SPI_MOSI I2C_SDA I2C_SCL

Figure 17. Functional System Block Diagram

The CMT2380F32 is a microcontroller integrated with high-performance sub-GHz wireless transceiver. The internal system block diagram of the CMT2380F32 is shown in Figure 17.
 Low-power and High-performance Sub-GHz Transceiver
With supports of 127 to 1020MHzfrequency range, modulation modes like OOK, (G)FSK, (G)MSK, etc., the sub-GHz wireless transceiver is remarkable for low-power and high performance features adapting to various wireless transceiver applications. The product is part of the CMOSTEK NextGenRFTM product family which covers a complete product line consisting of transmitters, receivers, transceiver, etc.
 High Performance Cortex-M0+ Microprocessor
Embedded with high-performance Cortex-M0+ core microprocessor, the CMT2380F32 suits for portable measurement systems requiring ultra-low power consumption. Powered by built-in 12-bit high-precision and high-speed SAR ADC (sampling rate up to 1Msps), comparator, rich peripherals like multi-channel UART, SPI andI2C, the CMT2380F32 is remarkable for such features as high integration, strong anti-interference and high reliability. See below table for its rich peripherals.

Rev. 0.9 | 37/65

www.cmostek.com

CMT2380F32

Table 27. The CMT2380F32 Peripheral Resource List

ROM RAM

Name

Peripheral Resource 32 kbytes Flash 4 kbytes

Debug function Unique identification code Multi-function serial interface ADC

Serial bus debug interface
Support
UART0/1 LPUART SPI I2C
12-bit1 Msps SAR

Analog voltage comparator Real time clock

VC0/1 1

IO port

16+1

Port interrupt

16

Buzzer

4-ch

Flash security protection

Available

RAM parity

Available

Internal high speed oscillator

IRC 4 / 8 / 16 / 22.12 / 24 MHz

Internal low speed oscillator

IRC 38.4 / 32.768 kHz

External high speed crystal oscillator 4 / 8 / 16 / 32 MHz

Internal low speed crystal oscillator

32.768 kHz

Rev. 0.9 | 38/65

www.cmostek.com

CMT2380F32

4 Sub-GHz Transceiver

4.1 Transmitter

The CMT2380F32 transmitter is based on direct RF synthesizer. Its carrier frequency is generated by a low noise fractional frequency synthesizer. The modulated data is transmitted by an efficient single-ended power amplifier (PA). The output power can be read and written by registers, which is configurable ranging from -20dBm to +20dBm with 1dB step.
When the PA switches quickly, its changed input impedance instantaneously interferes with the output frequency of the VCO. This effect becomes a VCO pull that produces spectral spurs and glitches near the target carrier. By ramping the PA output power, it can minimize the instantaneous glitch of the PA. The CMT2380F32 has a built-in ramping mechanism. When the PA ramp is enabled, the PA output power can be ramped to the required value by the configured speed in order to reduce the undesired spectral spectrum. In FSK mode, the transmitter supporting signal is transmitted after Gaussian filtering, meaning GFSK, to make the transmitting spectrum more concentrated.
Users can design a PA matching network based on specific application requirements to optimize the transmission efficiency at the required output power. Typical application schematics and required BOMs are detailed above. For more application schematic details and layout guidelines, please refer toAN141 CMT2300A Schematic and PCB Layout Guide.
The transmitter can work in pass-through mode and packet mode respectively. In pass-through mode, data is sent to the chip directly through the DIN pin of the chip and transmitted directly. In packet mode, data is preloaded into the FIFO of the chip in STBY status and transmitted then along with other packet elements.
4.2 Receiver

An ultra-low power, high performance low IF OOK, FSK receiver is built in the CMT2380F32. It follows processing steps as: 1) The RF signal sensed by the antenna is amplified by the low noise amplifier. 2) The signal is down-converted to the intermediate frequency by the quadrature mixer and then filtered by the image rejection filter. 3) The signal is further amplified by the limiting amplifier. 4) The signal is sent to the digital domain for digital demodulation processing.
Each analog module is calibrated to an internal reference voltage during power-on reset (POR). This allows the chip to perform better at different temperatures and voltages. Baseband filtering and demodulation is done by a digital demodulator. When the chip is working in an environment with strong out-of-band interference, the automatic gain control loop adjusts the gain of the system through the wideband power detector and attenuation network next to the LNA to achieve optimal system linearity, selectivity, sensitivity, etc.
Following the low-power design techniques of CMOSTEK, an ultra-low power is consumed even when the receiver keeps operating for long period. Its periodic operating mode and air wakeup feature further reduce the average power consumption of the system, serving well in applications where power consumption is critical.
Similar to the transmitter, the CMT2380F32 receiver can operate in pass-through mode and packet mode respectively. In the pass-through mode, the data output by the demodulator can be directly output through the DOUT pin of the chip. DOUT can be configured from GPIO1/2/3. In the packet mode, data processing follows steps as: 1)The data output of the demodulator is firstly sent to the packet processor for decoding. 2)The data is filled into the FIFO. 3)The controller portion of the CMT2380F32 reads the FIFO through the SPI interface.
4.3 Transceiver Power-on Reset (POR)

The power-on reset circuit assists in power supply change detection and generates a corresponding reset signal to reset the entire RF system (the RF portion of the CMT2380F32). The CMT2380F32 controller can reinitialize the RF system after POR. The two cases for POR reset generation are as follows:
1. A rapid power supply mutation triggers POR reset under the condition that RF-VDD (RF system power supply, the

Rev. 0.9 | 39/65

www.cmostek.com

CMT2380F32
same below) drops 0.9V±20% (0.72V ­ 1.08V) within less than 2 us. Note that it monitors RF-VDD decrease instead of its absolute value as shown inthe below figure.
< 0.2 us RF-VDD
0.9 V x (1 +/- 20%)
POR

Figure 18. Rapid RF-VDD Drop Triggers POR Reset
2. A slow supply power drop triggers POR reset under the condition that RF-VDD drops to 1.45V±20% (1.16 ­ 1.74V) within less than 2 us. Note that it monitors the absolute value of RF-VDD instead of RF-VDD decrease as shown in the below figure. > 0.2 us VDD
1.45 V x (1 +/- 20%)
POR

Figure 19. Slow RF-VDD Drop Triggers POR Reset

4.4 Transceiver Crystal Oscillator
The crystal oscillator provides both a reference clock for the phase-locked loop and a system clock for the digital part. The load capacitance depends on the crystal specified CL parameters. The total load capacitance between XI and XO should be equal to CL ensuring the crystal oscillates accurately at 26 MHz.
  = / + / +  + . 
C15 and C16 are the load capacitances reside at both ends of the crystal. Cpar is the parasitic capacitance resides on the PCB. Each pin of the crystal has a 5pF parasitic capacitance inside, as an equivalence of 2.5pF altogether. The equivalent series resistance of the crystal should meet the specified specifications to ensure reliable crystal start-up. Alternatively the traditional crystal can be replaced with an external source connected to the XI pin. This clock signal is recommended to have a peak-to-peak level between 300 mV and 700 mV and be coupled to the XI pin with a coupling capacitor.

Rev. 0.9 | 40/65

www.cmostek.com

CMT2380F32

4.5 Transceiver Built-in Low Frequency Oscillator (LPOSC)

The CMT2380F32 RF system integrates a sleep timer driven by a 32 kHz low power oscillator (LPOSC). When this function is enabled, the timer periodically wakes up the chip from sleep mode. Sleep time can be configured from 0.03125 ms to 41,922,560 ms when the chip is in periodical operating mode. Due to the low power oscillator frequency will change with the temperature and voltage drift, it will be automatically calibrated during power on and will be periodically calibrated since then. These calibrations will keep the oscillator's frequency tolerance within ± 1%.
4.6 Transceiver Built-in Low Battery Detection

The chip is employed with low battery detection function which is performed each time when the frequency is tuned. Frequency tuning occurs when the chip transitions from the SLEEP/STBY state to the RFS/TFS/TX/RX state. The detection result can be read by the LBD_VALUE register.
4.7 Receiver Signal Strength Indication (RSSI)

The RSSI is used to evaluate the strength of the signal within the tuned channel. The cascaded I/Q logarithmic amplifier amplifies the signal before it is sent to the demodulator. The receive signal indicators inside the logarithmic amplifiers ofI channel and Q channel produce DC voltage that is proportional to the input signal strength. The RSSI output is the sum of the two signal values, which extend a dynamic range of 80 dB based on the sensitivity. After the signal strength is sampled by the ADC, a smoother RSSI value is obtained through a SAR filter and a smoothing filter. The order of the smoothing filter can be set via RSSI_AVG_MODE<2:0>. After filtering, the code value is converted into a dBm value. Users can obtain either the RSSI code value (RSSI_CODE<7:0>) ordBm value (RSSI_DBM<7:0>) by reading the register. With configuring the value of RSSI_DET_SEL<1:0>, users can choose to either output the RSSI value in real time or store RSSI value at each stage during packet receiving.
The CMT2380F32 supports users to set RSSI_TRIG_TH<7:0> threshold. After a comparison between the threshold value and detected RSSI value, the comparison outputs logic 1 if the RSSI detection value is more than the threshold value, otherwise it outputs logic 0. The comparison output can be output to the RSSI VLD interrupt or it can support the operation of the internal super-low power (SLP) mode.

RSSI_AVG_MODE<2:0>

RSSI_DET_SEL<1:0>

LATCH

RSSI_CODE<7:0>

SAR ADC

SAR FILTER

RSSI AVG FILTER

CODE to dBm CONVERT

LATCH

RSSI_DBM<7:0>

RSSI_DET_SEL<1:0>

COMPARE to RSSI_TRIG_TH<7:0>

RESULT

Figure 20. RSSI Measuring and Comparing Circuit Structure
The CMT2380F32 offers RSSI to meet the qualitative analysis requirements of users generally. However more accurate RSSI measurement results are needed in case of quantitative analysis, therefore users need to perform production calibration based on actual solutions. Please refer to AN144- CMT2300A RSSI User Guide for details.

Rev. 0.9 | 41/65

www.cmostek.com

CMT2380F32

4.8 Phase Jump Detector (PJD)
PJD refers to the phase jump detector. During the chip performing FSK demodulation, it can be used to identify useful signals from noise via observing the hopping characteristics of received signals.

2

2

1 1 1 1

SYM

SYM SYM SYM SYM SYM

Figure 21.Receive Signal Jump Diagram

PJD identifies an input signal transition from 0 to 1 or from 1 to 0 as a phase jump. Users simply configure PJD_WIN_SEL<1:0> to indicate PJD how many signal transitions need to be detected before output the judgment result. As shown in above diagram, 6 phase jumps occurred among the total of 8 symbols received, meaning the jump number is not equal to the number of symbols. The jump count is equivalent to the number of symbols only if preamble is received. In general, the more signal transition detected, the more reliable the judgment is. The less, the faster the detection completes. If the receiving time window is small, the number of detections needs to be reduced to meet the window setting requirements. In general, 4 signal transitions detection can ensure reliable detection, that is, neither misjudging noise as a useful signal nor the detection failure of a useful signal will happen.
Monitoring signal transitions is essentially monitoring whether the signal meets the expected data rate, meanwhile, the PJD also automatically monitors whether the error of the signal meets the agreed value of the valid signal and determines if the SNR exceeds 7 dB. It outputs 1 if it determines a reliable signal is received based on the combined data rate, error and SNR monitoring results, otherwise it outputs 0 if it determines the signal is noise or interference signal. This result can be output to the RSSI VLD interrupt or to the implementation instance of the internal assisting super-low power (SLP) receive mode. In the direct mode, the FSK demodulation output can also be muted through setting the DOUT_MUTE register bit to 1based on phase jump detect result.
PJD is similar to traditional carrier sense(CS) technique, more reliable though. A combine of RSSI monitoring and PJD technique ensures accurate channel state identification.
4.9 Receiver Clock Data Recovery (CDR)

CDR system is largely to recover the clock signal synchronized with the data rate while receiving data, either for decoding inside the chip or outputting to the GPIO for users to sample data. Error existing between the recovered clock frequency and the actual transmitted data rate will cause data acquisition errors, error codes and decoding errors during data reception. Therefore, CDR takes a simple but critical role.

The CMT2380F32 receiver supports three CDR systems according to different application requirements:

 COUNTING system

This system is designed for the case where the data rate is relatively accurate. If the data rate is 100% aligned, users can even receive unlimited lengths of 0 without error.

 TRACING system

This system is designed for dealing with large data rate errors. It has a tracking function that automatically detects the data rate transmitted by TX and adjusts the RX local data rate promptly to minimize the error between them. This system leads the industry by supporting up to 15.6% error.

 MANCHESTER system

This system comes from COUNTING system by inheriting its basic features except a difference on specific design for

Rev. 0.9 | 42/65

www.cmostek.com

CMT2380F32
Manchester codec, which performs special treatment in case of a sudden change in the TX data rate to identify the signal part with sudden changes.
4.10 Fast Manual Frequency Hopping
Manual frequency hopping refers to switching an original basic frequency point obtained by RRPDK configuration, e.g. 433.92MHz,to another frequency point by simply setting 1 or 2 registers on MCU during the application, which simplify user's operation much for switching frequency points frequently in multi-channel applications.

 =    + .   × _ < :  >× _ < :  >
General processing steps follow: 1) Set FH_OFFSET<7:0> during the initialization configuration of power-up. 2) Switch channels constantly as desired in the application by changing FH_CHANNEL<7:0>. When fast manual frequency hopping in the receiving mode is performed, it needs to have special process on AFC parameters. Please refer to AN197-CMT2300A-CMT2119B-CMT2219B Fast Manual Frequency Hopping and CMT2300as well as CMT2219B Frequency Hopping Calculation Table for more details.
4.11 Transceiver Control Interface and Operating Mode

4.11.1 Transceiver SPI Interface Timing

The RF system of CMT2380F32 communicates with the controller section via a 4-wire SPI port (FCSB, CSB, SDA and SCLK). The low active CSB is the chip selection signal used to access the registers. The low active FCSB is the chip selection signal used to access the FIFO. The above two cannot be set to low both at the same time. SCLK is a serial clock with speed up to 5MHz.Data is sent on the falling edge of SCLK and collected on the rising edge for the chip itself or an external MCU. SDA is a bidirectional pin for inputting and outputting data. Both the address and data parts are transmitted from the MSB.

The CSB is pulled low when registers are accessed. An R/W bit followed by a 7-bit register address is sent. After the controller pulls CSB low, it must wait for at least half a SCLK cycle before it can start transmitting R/W bits. After the controller sends the falling edge of the last SCLK, it must wait for at least half of the SCLK cycle before pulling CSB high.

It should be noted that, as for read register operations, both the controller and the transceiver may generate a switch IO (SDA) port event among address 0 and data 7. At this point, SDA will switch the IO port from input to output, and the controller will switch the corresponding IO port from output to input. In the below figure, please notice the position of the dotted line in the

middle, at this time, it is strongly recommended the controller switches the IO port to input before it sends the falling edge of SCLK. The transceiver will switch the IO to output after it receives the falling edge, which avoids situations where the both set SDA to output resulting in electrical conflicts.

> 0.5 SCLK cycle

> 0.5 SCLK cycle

CSB FCSB SCLK
SDA

X7654321076543210X

r/w = 1

register address

register read data

Figure 22. Transceiver SPI Read Register Timing

Rev. 0.9 | 43/65

www.cmostek.com

CMT2380F32

> 0.5 SCLK cycle

> 0.5 SCLK cycle

CSB FCSB SCLK
SDA

X7654321076543210X

r/w = 0

register address

register write data

Figure 23. Transceiver SPI Write Register Timing

4.11.2 Transceiver FIFO Interface Timing
By default, the transceiver provides two independent 32-byte FIFOs for RX and TX. The RX FIFO is used to store received data in RX mode, and the TX FIFO is to store data to be transmitted in TX mode. Users can set FIFO_MARGE_EN to 1 as well, thus the two FIFOs are combined into a 64-byte FIFO, available both in TX and RX. By configuring FIFO_RX_TX_SEL, it indicates whether TX or RX currently is used. In no-combine case, when 32-byte RX FIFO is filled in, to save system operation time, users can fill in the 32-byte TX FIFO simultaneously for the next transmission.
The FIFO can be accessed via the SPI interface. Users can clear the FIFO by setting the FIFO_CLR_TX/FIFO_CLR_RX bit and transmit repeated data filled previously by setting FIFO_RESTORE, which avoids data refilling.
When accessing the FIFO, users start from configuring a number of registers involving FIFO read/write mode and some operating modes settings, as well as some other working modes. Please see AN143-CMT2300A FIFO and Packet Format Usage Guide for more details. As shown in below timing diagram for reading and writing, it should be noted that the FCSB control and CSB control for register access are slightly different. At the beginning of the access, the FCSB pulls down one clock cycle before sending the rising edge of SCLK. After sending the falling edge of the last SCLK, it pulls up FCSB at least 2us later. The FCSB must keep pulled up for at least 4us between two consecutive read and write operations. When writing to the FIFO, the first bit of the data must be ready a half of clock cycle before the first rising edge of SCLK is sent.

> 1 SCLK cycle

> 2 us > 4 us > 1 SCLK cycle

> 2 us

CSB FCSB SCLK
SDA

X76543210

X

76543210X

FIFO read data

FIFO read data

Figure 24. SPI Read FIFO Timing

Rev. 0.9 | 44/65

www.cmostek.com

CMT2380F32

> 1 SCLK cycle

> 2 us > 4 us > 1 SCLK cycle

> 2 us

CSB FCSB SCLK
SDA

X76543210

X

76543210X

FIFO write data

FIFO write data

Figure 25. SPI Write FIFO Timing

The transceiver provides enriched FIFO-related interrupt sources helping for efficient operation of the chip. The Rx and Tx-related FIFO interrupt timing is shown in the figure below.

RX DATA Noise Sync 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SYNC_OK

RX_FIFO_WBYTE

RX_FIFO_NMTY RX_FIFO_TH

(FIFO_TH = 16)

RX_FIFO_FULL

RX_FIFO_OVF

Noise

RX FIFO ARRAY

EMPTY

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 FULL

Figure 26 Transceiver RX FIFO Interrupt Timing Schematic

TX DATA Prefix Pream Sync 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0

TX_FIFO_NMTY TX_FIFO_TH

(FIFO_TH = 16)

TX_FIFO_FULL

FIFO ARRAY EMPTY 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FULL

Figure 27. Transceiver TX FIFO Interrupt Timing Schematic

4.11.3 Transceiver Operating Status, Timing, and Power Consumption

 Startup Timing

After the transceiver is powered up on RF-VDD, generally it takes about 1 ms for POR release. The crystal starts after POR release. The startup time defaults to N ms depending on characteristics of the crystal itself. After startup, it needs to wait for a

Rev. 0.9 | 45/65

www.cmostek.com

CMT2380F32
period of time for crystal stabilization then to start working. The default stabilization time is set as 2.48ms by default. The time can be written later by writing XTAL_STB_TIME <2:0>. The chip stays in the IDLE state until the crystal is stable. After the crystal is stabilized, the chip will leave IDLE and begin calibration for each module. After calibration, the chip will stay at SLEEP, waiting for the user to do initialization configuration. The chip returns to IDLE and resume the power-on process any time when reset is performed.
RF-VDD POR

POR Release XTAL Start up XTAL Stablize

<= 1 ms

<= N ms

<= 2.48 ms

Block Calibrations <= 6.5 ms

Enters the SLEEP State Ready for customer initializing

Figure 28. Startup Timing Diagram

The chip enters SLEEP mode after calibration completion. By now, the controller can switch the chip to different operating states by setting the register CHIP_MODE_SWT<7:0>.
 Transceiver Operating Status

The transceiver has a total of 7 working status: IDLE, SLEEP, STBY, RFS, RX, TFS and TX, as listed in the below table.

Status
IDLE SLEEP STBY RFS TFS RX TX

Table 28. Transceiver Status and Module Startup Table

Binary Code 0000

Switch Command
soft_rst

SPI, POR

Startup Module

0001

go_sleep SPI, POR, FIFO

0010

go_stby SPI, POR, XTAL, FIFO

0011

go_rfs

SPI, POR, XTAL, PLL, FIFO

0100

go_tfs

SPI, POR, XTAL, PLL, FIFO

0101

go_rx

SPI, POR, XTAL, PLL, LNA+MIXER+IF, FIFO

0110

go_tx

SPI, POR, XTAL, PLL, PA, FIFO

Optional Startup Module
NA LFOSC, sleep timer CLKO CLKO CLKO CLKO, RX timer CLKO

Rev. 0.9 | 46/65

www.cmostek.com

CMT2380F32

go_sleep go_tx
go_tfs go_sleep

IDLE 0000
Power up
SLEEP 0001

go_stby go_sleep

go_tx go_stby

STBY

0010

go_gtfos_stby

go_stgboy_rfs

go_rx go_stby

TFS 0100

RFS 0011

go_tfs go_tx

go_rfs go_rx

TX 0110

go_switch go_switch

RX 0101

go_sleep go_rx
go_rfs go_sleep

Figure 29. Status Switch Diagram

 SLEEP Status
The power consumption of the chip keeps the lowest in SLEEP mode with almost all modules disabled. The SPI is enabled, the registers in the configuration area and control area 1 can be accessed, and the contents previously filled in the FIFO is retained but the FIFO cannot be operated. If the periodical wake-up function is enabled, the LFOSC and sleep counters will start to work. The time period required for switching from IDLE to SLEEP is the power up processing time specified in above. Switching from the rest of the status to SLEEP is done immediately.
 STBY Status
In STBY, the crystal is enabled and the LDO of the digital circuit is enabled as well. The current is slightly increased. The FIFO can be operated. Users can choose whether to output CLKO (system clock) to the GPIOn pin. As the crystal is enabled, the time required switching from STBY to transmit or receive is less than that in SLEEP status (switching from SLEEP to STBY requires more time to wait for the crystal startup and stabilizing for a while). Switching from other status to STBY will complete immediately.
 RFS Status
RFS is transitional status before switching to RX. Except the receiver's RF module, all others are enabled and the current will be larger than that in STBY. As the PLL is already locked to the RX frequency point in RFS status, it cannot be switched to TX. Switching from STBY to RFS requires approximately 350us for PLL calibration and settling. Switching from SLEEP to RFS requires more time to wait for the crystal startup and stabilizing for a while. Switching from other status to RFS is done immediately.

 TFS Status
TFS is transitional status before switching to TX. Except the transmitter's RF module, all other modules are enabled and the current will be larger than STBY. As the PLL is already locked to the frequency of the TX in TFS status, it cannot be switched to

Rev. 0.9 | 47/65

www.cmostek.com

CMT2380F32

RX. Switching from STBY to TFS requires approximately 350us for PLL calibration and settling. Switching from SLEEP to TFS requires more time to wait for the crystal startup and stabilizing for a while. Switching from other states to TFS is done immediately.
 RX Status
All RX related modules on the receiver will be turned on. Switching from RFS to RX takes only 20us. Switching from STBY to RX requires a 350us for PLL calibration and settling. Switching from SLEEP to RX requires more time to wait for the crystal startup and stabilizing for a while. In TX, users can switch to RX in a prompt way by sending the go_switch command. No matter whether the frequency points set by TX and RX are the same, it needs to wait for 350us for PLL recalibration and settling to accomplish switch.
 TX Status
All transmitter related modules will be turned on at TX. Switching from TFS to TX takes only 20us. Switching from STBY to TX requires 350us for PLL calibration and settling. Switching from SLEEP to TX requires more time to wait for the crystal startup and stabilizing for a while. In RX, users can switch to TX in a prompt way by sending the go_switch command. No matter whether the frequency points set by TX and RX are the same, it needs to wait for 350us for PLL recalibration and settling to complete switch.
4.11.4 Transceiver GPIO Function and Interrupt Mapping
The three GPIOs employed in the transceiver are GPIO1, GPIO2, and GPIO3. Each GPIO can be configured with different input or output functions. The transceiver is employed with two interrupt ports, which can be configured to different GPIOs for mapping output.

Pin# 48 47 9

Name GPIO1 GPIO2 GPIO3

Table 29. Transceiver GOIP Function

I/O

Function

IO

Can configure as: DOUT/DIN,INT1,INT2,DCLK (TX/RX),RF_SWT

IO

Can configure as:INT1,INT2,DOUT/DIN,DCLK (TX/RX),RF_SWT

IO

Can configure as: CLKO,DOUT/DIN,INT2,DCLK (TX/RX)

The interrupt mapping table is given below. Mapping for INT1 and INT2 is the same. Take INT1 as an example as follows.

Name RX_ACTIVE
TX_ACTIVE
RSSI_VLD PREAM_OK SYNC_OK NODE_OK CRC_OK
PKT_OK SL_TMO RX_TMO

Table 30. Transceiver Interrupt Mapping

INT1_SEL

Description

00000
00001
00010 00011 00100 00101 00110
00111 01000 01001

Indicates that the interrupt is ready to enter RX or has entered RX, which is 1 in the PLL calibration and RX status, otherwise 0. Indicates that the interrupt is ready to enter TX or has entered TX, which is 1 in the PLL calibration and RX status, otherwise 0. An interrupt Indicating whether the RSSI is valid An interrupt Indicating whether Preamble is received successfully. An interrupt Indicating whether Sync Word is received successfully. An interrupt Indicating whether Node ID is received successfully. An interrupt Indicating whether receive and pass CRC check successfully An interrupt indicating receive a packet completely An interrupt indicating SLEEP counter time out An interrupt indicating RX counter time out

Clear Method
Auto
Auto
Auto by MCU by MCU by MCU by MCU
by MCU by MCU by MCU

Rev. 0.9 | 48/65

www.cmostek.com

CMT2380F32

Name

INT1_SEL

Description

TX_DONE RX_FIFO_NMTY RX_FIFO_TH RX_FIFO_FULL RX_FIFO_WBYTE RX_FIFO_OVF TX_FIFO_NMTY TX_FIFO_TH TX_FIFO_FULL STATE_IS_STBY STATE_IS_FS STATE_IS_RX STATE_IS_TX LBD
TRX_ACTIVE
PKT_DONE

01010 01011 01100 01101 01110 01111 10000 10001 10010 10011 10100 10101 10110 10111
11000
11001

An interrupt indicating TX completion An interrupt indicating RX counter is not empty An interrupt indicating unread contents in RX FIFO exceed FIFO TH An interrupt indicating RX FIFO is full An interrupt indicating a BYTE is written in RX FIFO, which is a pulse An interrupt indicating RX FIFO overflow An interrupt indicating TX FIFO is not empty An interrupt indicating unread contents in TX FIFO exceed FIFO TH An interrupt indicating TX FIFO is full An interrupt indicating current status is STBY An interrupt indicating current status is RFS or TFS An interrupt indicating current status is RX An interrupt indicating current status TX An interrupt indicating that low battery detection is active (VDD is lower than the set TH) An interrupt indicating begin to enter RX or TX, already in RX or TX, which is 1 in PLL calibration, RX status or TX state, otherwise 0. Indicating that the current data packet has been received with 4 cases as below: 1. Receive the entire packet completely 2. Manchester decoding error, decoding circuit automatically restarts 3. NODE ID receives error, the decoding circuit automatically restarts 4. The signal conflict is found, the decoding circuit does not restart
automatically, waiting for the MCU to process

Clear Method by MCU
Auto Auto Auto Auto Auto Auto Auto Auto Auto Auto Auto Auto Auto
Auto
by MCU

The interrupt is valid for value 1 by default. However value 0 becomes valid for all interrupts by setting the INT_POLAR register bit to 1. Still take INT1 as an example as shown in the below figure with the control and selection diagram of all interrupt sources shown. INT1 and INT2 are the same in control and mapping.

Rev. 0.9 | 49/65

www.cmostek.com

CMT2380F32

RX_ACTIVE

RSSI_VLD_FLG

Preamble OK Interrupt Source
0

PREAM_OK_CLR

PREAM_OK_EN

0

D Q PREAM_OK_FLG

1

Sycn Word OK Interrupt Source
0

SYNC_OK_CLR

SYNC_OK_EN

0

D Q SYNC_OK_FLG

1

Node ID OK Interrupt Source
0

NODE_OK_CLR

NODE_OK_EN

0

D Q NODE_OK_FLG

1

CRC OK Interrupt Source
0

CRC_OK_CLR

CRC_OK_EN

0

D Q CRC_OK_FLG

1

Packet OK Interrupt Source
0

PKT_DONE_CLR

PKT_DONE_EN

0

D Q PKT_OK_FLG

1

Sleep Timeout Interrupt Source
0

SL_TMO_CLR

SL_TMO_EN

0

D Q SL_TMO_FLG

1

Receive Timeout Interrupt Source
0

RX_TMO_CLR

RX_TMO_EN

0

D Q RX_TMO_FLG

1

Transmit Done Interrupt Source
0

TX_DONE_CLR

TX_DONE_EN

0

D Q RX_DONE_FLG

1

LBD Interrupt Source
0

RX_FIFO_NMTY_FLG

RX_FIFO_TH_FLG

RX_FIFO_FULL_FLG

RX_FIFO_WBYTE_FLG

RX_FIFO_OVF_FLG

TX_FIFO_NMTY_FLG

TX_FIFO_TH_FLG

TX_FIFO_FULL_FLG

STATE_IS_STBY

STATE_IS_FS

STATE_IS_RX

LBD_CLR

STATE_IS_TX

0

D Q LBD_FLG

1

RX_ACTIVE TX_ACTIVE

TRX_ACTIVE

INT1_CTL <4:0>

00000

0

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111 10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

0



INT_POLAR
0 INT1 1

Packet OK Interrupt Source
Packet Err Interrupt Source
Collision Err Interrupt Source

PKT_DONE_CLR

PKT_DONE_EN

0

D Q PKT_DONE_FLG

0

1

Figure 30. The CMT2300A INT1 Interrupt Map

5 Controller function Introduction

GPO3_SEL <1:0>

GPIO3

GPO2_SEL <1:0>

GPIO2

GPO1_SEL <1:0>

GPIO1

5.1 Cortex M0+ Core Function Description

The ARM® Cortex®-M0+ processor is based on the Cortex-M0 and includes a 32-bit RISC processor with a computing power of 0.95 Dhrystone MIPS/MHz. At the same time, it is powered with a number of new designs, improved debugging and tracking capabilities, reducing the number of instruction cycles (IPC), improved two-stage pipeline for Flash access, etc. The Cortex-M0+

Rev. 0.9 | 50/65

www.cmostek.com

CMT2380F32

processor fully supports the integrated Keil & IAR debugger. The Cortex-M0+ includes a hardware debug circuit that supports the 2-pin SWD debug interface.

Table 31. ARM Cortex-M0+ Features

CPU instruction set Assembly line Performance efficiency Performance efficiency Interrupt Interrupt priority Enhanced instruction
Debugging

Thumb/Thumb-2 2-stage pipeline 2.46CoreMark/ MHz 0.95 DMIPS/MHz in Dhrystone 32 fast interrupts Configurable 4-level interrupt priority Single cycle 32-bit multipliers Serial-wire debug port with 4 hard break points and 2 watch points

Rev. 0.9 | 51/65

www.cmostek.com

SWDI0 SWCLK

CORTEX-M0 CPU Fmax=32MHz
NVIC SWD

P00,P01 P02,P03
P14 P15 P23,P24 P25,P26 P27 P31,P32 P33,P34 P35,P36
UART0_TXD UART0_RXD
UART1_TXD UART1_RXD
UART2_TXD UART2_RXD
VC0_OUT VCIN0VCIN7 VC1_OUT VCIN0VCIN7
ADC_RDY AIN0-AIN8
LVD_OUT LVDIN1/2/3

GPIO port0 GPIO port1 GPIO port2 GPIO port3
U AR T0
U AR T1
LPUART
VC0
VC1 BGR Vref Temp sensor 12-bit ADC LVD @VDDA

AHB Bus matirx

Flash 16/32 KB
SRAM 2/4KB
System control CRC
AHB to APB brige
WDT Clock Trimming

CMT2380F32

POWER VOLT.REG VDD to Vcore @VDD POR/BOR
RCH RCL @VDDA XTL XTH @VDD RTC
Ti me r0
Ti me r1
Ti me r2
LPTimer
PCA
Ti me r4 Ti me r5 Ti me r6
SPI I2C

VDD=1.8 to 5.5v VSS
VDDA VSSA VDD RESET
XTLO XTLI
XTHO XTHI
RTC_1Hz
TIM0_GATE TIM0_EXT TIM0_TOG TIM0_TOGN TIM1_GATE TIM1_EXT TIM1_TOG TIM1_TOGN
TIM2_GATE TIM2_EXT TIM2_TOG TIM2_TOGN LPTIM_GATE LPTIM_EXT LPTIM_TOG LPTIM_TOGN
PCA_ECI PCA_CH0 PCA_CH1 PCA_CH2 PCA_CH3 PCA_CH4
TIM4_CHA TIM4_CHB
TIM5_CHA TIM5_CHB
TIM6_CHA TIM6_CHB SPI_SCK SPI_CS SPI_MISO SPI_MOSI I2C_SDA I2C_SCL

Figure 31. Controller Functional Block Diagram

Rev. 0.9 | 52/65

www.cmostek.com

CMT2380F32
5.2 Memory
5.2.1 On-chip Program Memory Flash
It's powered by fully built-in 32kbytesflash controller remarkable for no external high voltage input required, programming with high voltage generated by fully built-in circuits and support of ISP, IAP, ICP functions.
5.2.2 On-chip Data Memory Flash
4 kbytes RAM data is retained in various ultra-low power modes desired by customer. With hardware parity bit, if the data is accidentally destroyed, the hardware circuit will generate an interrupt immediately when the data is read, which helps ensure system reliability.

Rev. 0.9 | 53/65

www.cmostek.com

0xFFFF_FFFF Reserved
0xE010_0000 Cortex-M0+ Specific
0xE000_0000 Peripheral resource area

0x4002_1000

Reserved

AHB 0x4002_0000

CMT2380F32

0x4002_0c00 PORT CTRL

0x4002_0900

CRC

0x4002_0800 Reserved

0x4002_0400 RAM CTRL

0x4002_0000 flash CTRL

Reserved

Reserved

Reserved

0x4000_4000

0x4000_0000 Peripheral resource area

0x2000_1000

Reserved

SRAM

0x2000_0000

up t o 4KByt e)

Main

flash

Reserved

area

0x0000_8000

(32 k

Main flash area

Byte)

(Up to 32KByte)

0x0000_0000

0x4000_3C00 Reserved

0x4000_3800 TIM6

0x4000_3400 TIM5

0x4000_3000 TIM4

0x4000_2C00 Reserved

0x4000_2800 Reserved

0x4000_2400 analog_ctrl

0x4000_2000 System_ctrl

0x4000_1C00 Reserved

0x4000_1800 CLKTRIM

0x4000_1400

RTC

0x4000_1000

PCA

0x4000_0C00

TIM

0x4000_0800

SPI

0x4000_0400

I2C

0x4000_0000 UART

Figure 32. Memory Section Mapping

Rev. 0.9 | 54/65

www.cmostek.com

CMT2380F32

5.3 System Clock

 1 high-precision internal clock RCH with a configurable frequency of 4~24MHz. The wake-up time from low-power mode to operating mode is 3 us at 16MHz configuration. Frequency tolerance over full temperature and voltage range is less than ±2.5%. No external expensive high-frequency crystal is required.
 1 external crystal oscillator XTH with a frequency range of 4~32MHz.  1 external crystal oscillator XTL with a frequency of 32.768 kHz.  1 internal clock RCL with frequencies of 32.768/38.4 kHz.
5.4 Operating Mode

 Active mode Both CPU and the peripheral function modules are running.
 Sleep mode CPU stops running and the peripheral function modules are running.
 Deep sleep mode CPU stops running, the high-speed clock stops running, and the low-power function module is running.
5.5 RTC Hardware Real Time Clock RTC

RTC (real time counter) is a register supporting BCD data, which uses a 32,768 Hz crystal oscillator as its clock to implement the perpetual calendar function. It supports interrupt period setting as year/month/day/hour/minute/second, 24/12 hour mode, automatic leap year calibration by hardware, precision compensation and the highest precision reaching 0.96ppm. The internal temperature sensor or external temperature sensor can be used for accuracy compensation. It supports adjusting the year/month/day/hour/minute/second by +1/-1 operation via software with a minimum adjustable precision of 1 second.
When the MCU is reset caused by external factors, the RTC calendar recorder which indicates the time and date, does not clear the reserved value, which makes it the best choice for measuring instrumentation with the requirement of permanent high-precision and real-time clock.
5.6 General Purpose IO Port

Up to 16 GPIO ports are available with some of them multiplexed with analog ports. Each port is controlled by an independent control register bit. It supports both edge-triggered interrupts and level-triggered interrupts, which wake up the MCU to operating mode from various ultra-low power modes. It supports both Push-Pull CMOS output and Open-Drain output. Built-in pull-up resistor, pull-down resistor and the function of Schmitt trigger input filtering are available. The output drive capability is configurable with up to 12mA of current drive capability. 16 general purpose IOs support external asynchronous interrupts.
5.7 Interrupt Controller

The Cortex-M0+ processor provides a built-in Nested Vectored Interrupt Controller (NVIC) that supports up to 32 interrupt request (IRQ) inputs. It supports4 interrupt priorities to handle complex logic and enables real-time control and interrupt handling.
The 32 interrupt entry vector addresses are listed in the below table.

Rev. 0.9 | 55/65

www.cmostek.com

Table 32. Interrupt Vector Address Table

Interrupt Vector Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Interrupt Source GPIO_P0 GPIO_P1 GPIO_P2 GPIO_P3 UART0 UART1 UART2 SPI I2C Timer 0 Timer 1 Timer 2 LPTimer Timer 4 Timer 5 Timer 6 PCA WDT RTC ADC VC0 VC1 LVD
RAM Flash fault Clock trim

Rev. 0.9 | 56/65

CMT2380F32
www.cmostek.com

CMT2380F32

5.8 Reset Controller
This product has 7 reset signal sources. Each reset signal allows CPU resume to run, with most of the registers being reset and the program counter PC being reset and pointing to 00000000.

Table 33. Reset Source Table

No.

Reset Source

0

Power-on and power-off reset POR BOR

1

External Reset Pin reset

2

WDT reset

3

PCA reset

4

Cortex-M0+ LOCKUP hardware reset

5

Cortex-M0+ SYSRESETREQ software reset

6

LVD reset

5.9 Timer/Counter

Table 34. Timer Functionalities Table

Function Category

Timer Timer 0

Bit Width
16/32

Base timer Timer 1 16/32

LPTimer PCA

Timer 2 LPTimer PCA

16/32 16 16

Timer 4 16

Advanced Timer 5 16
timer

Timer 6 16

Pre-divided Frequency 1/2/4/8/16 32/64/256 1/2/4/8/16/ 32/64/256 1/2/4/8/16/ 32/64/256 NA 2/4/8/16/32
1/2/4/8/16/ 64/256/1024
1/2/4/8/16/ 64/256/1024
1/2/4/8/16/ 64/256/1024

Counting Direction
Up-count

PWM NA

Capture NA

Complementary O ut p ut
NA

Up-count

NA

NA

NA

Up-count

NA

NA

NA

Up-count

NA

NA

NA

Up-count

5

5

NA

Up-count /

down-count/

2

2

1

up-down-count

Up-count/

down-count/

2

2

1

up-down-count

Up-count/

down-count/

2

2

1

up-down-count

The Base Timer contains three timers, Timer 0/1/2, with the same functionality. Timer 0/1/2 is a synchronous timer/counter that can either be used as a 16-bit timer/counter with auto-reload function or as a 32-bit timer/counter with no auto-reload function. Timer 0/1/2 can count external pulses or perform system timing.

Rev. 0.9 | 57/65

www.cmostek.com

CMT2380F32

The LPTimer is an asynchronous 16-bit timer/counter that can still perform clock/count by internal low speed RC or external low speed crystal oscillator even the system clock is turned off. It provides the function to wake up the system in low power mode by interrupt as well.
The PCA (programmable counter array) supports up to 5 16-bit capture/compare modules. The timer/counter can be used as the capture/compare function for general-purpose clock counter/event counter. Each module of the PCA can be independently programmed to provide input capture, output compare or pulse width modulation. In addition, module 4 supports an additional watchdog timer mode.
The Advanced Timer consists of three timers, Timer 4/5/6, with the same functionalities, which are high-performance counters used to count different clock waveforms. Each timer can generate a pair of PWMs that complement each other or 2 separate PWM outputs that captures external inputs for pulse width or period measuring.
The basic functions and features of the advanced timer are shown in the below table.

Table 35. Advanced Timer Function Table

Waveform mode Basic function Interrupt type

Sawtooth wave, triangle wave Incrementing and decrementing counting directions Software synchronization Hardware synchronization Cache function Orthogonal coding count General purpose PWM output Protection mechanism AOS associated action Count comparison match interrupt Count cycle match interrupt Dead time error interrupt Short circuit monitoring interrupt

5.10 Watchdog WDT

WDT (watch dog timer) is a configurable 20-bit timer that provides a reset in case of an MCU exception. A built-in 10k low-speed clock input is used as the counter clock. Users can choose to pause or keep it run in debug mode. WDT can be reset by writing a specific sequence.
5.11 Universal Purpose Asynchronous Receiver UART0, UART1 and
LPUART
 2 universal asynchronous receiver/transmitters  One low power universal asynchronous receiver/transmitter available in low-power mode

Rev. 0.9 | 58/65

www.cmostek.com

CMT2380F32

5.12 Synchronous Serial Interface SPI

One serial peripheral interface, supporting master-slave mode.
5.13 I2C Bus

One I2C (inter-integrated circuit), supporting master-slave mode. With serial synchronous clock, data can be transmitted between devices at different rates. The serial 8-bit bidirectional data transmission can reach a maximum speed of 1Mbps.
5.14 Buzzer

3 base timers along with 1 LPTimer co-function to output buzzer providing programmable drive frequency for the buzzer. The buzzer port provides 16mA sink current, complementary output without additional transistors required.
5.15 Clock Calibration Circuit

The built-in clock calibration circuit can be used to calibrate the internal RC clock with an external precision crystal oscillator. The internal RC clock can also be used to verify whether the external crystal clock is working properly.
5.16 Unique ID number

Each chip has a unique 16-byte device identification number consisting of wafer lot information, chip coordinate information, etc. The ID address is 0X0010_0E70-0X0010_0E7F.
5.17 CRC16 Hardware Cyclic Redundancy Check Code

It conforms to the polynomial given in ISO/IEC13239 :F(x) = X16 + X12 + X5 + 1.
5.18 12-bit SARADC

The 12-bit successive approximation analog-to-digital converter, which is monotonous without loss of code, has a sampling rate of 1 Msps when operating with a 24M ADC clock. The reference voltage can be selected from the on-chip precision voltage (1.5V or 2.5V) or from an external input or supply voltage. The 12 input channels includes 9 external pin inputs, 1 internal temperature sensor voltage, one 1/3 supply voltage and 1 built-in BGR 1.2V voltage. A configurable input signal amplifier is built in to detect weak signals.
5.19 Voltage Comparator (VC)

It's Chip pin voltage monitoring/comparison circuit. It provides 8 configurable positive/negative external input channels, 5 internal input channels including 1 internal temperature sensor voltage, 1 built-in BGR 2.5V reference voltage, 1 built-in BGR 1.2 V voltage and one 64-step resistor Partial pressure. The VC output can be used by Timer0/1/2, LPTimer, Advanced Timer, PCA capture with programmable count array, gating, and external count clocks. An asynchronous interrupt can be generated based on the rising/falling edge to wake up the MCU from low power mode. It supports configurable software anti-shake function as well.
5.20 LVD Low Voltage Detector (LVD)

It detects the chip supply voltage or chip pin voltage with sixteen levels of voltage monitoring values (1.8 ~ 3.3 V). An asynchronous interrupt or reset can be generated based on the rising/falling edge. It provides hardware hysteresis circuit and

Rev. 0.9 | 59/65

www.cmostek.com

CMT2380F32
configurable software anti-shake function.
5.21 Embedded Debug System
The embedded debugging solution provides a full-featured real-time debugger co-working with sophisticated debugging software such as Keil and IAR. It supports for 4 hard breakpoints and multiple soft breakpoints.
5.22 High Security
It's powered with encrypted embedded debugging solution providing full-featured real-time debugger. Please refer to AN220 CMT2380F32 User's Manual (Microcontroller Section) for detailed instructions on using the CMT2380F32 microcontroller.

Rev. 0.9 | 60/65

www.cmostek.com

CMT2380F32

6 Order Information

Table 36. The CMT2380F32 Order Information

Model CMT2380F32-EQR[1]

Description

Packaging

The CMT2380F32 ultra-low

QFN40(5x5)

power sub-1GHz wireless MCU

Packaging Option Tape and tray

Operating Condition 1.8 to 3.6 V, - 40 to 85 °C

Minimum Order Quantity
3,000

Notes:

[1]. E refers to extended Industrial product rating, which supports temperature range from -40 to +85 °C. Q refers to the package type QFN40.

R refers to tape and tray type, and the minimum order quantity (MOQ) is 3,000 pieces.

Please visit www.cmostek.com for more product/product line information. Please contact sales@cmostek.comor your local sales representative for sales or pricing requirements.

Rev. 0.9 | 61/65

www.cmostek.com

7 Packaging Information

The packaging information of the CMT2380F32 is shown in the below figure.

D

b

40

1 2

CMT2380F32
e 40 L 1 2
D2

Ne E2

E

Top View

K

EXPOSED THERMAL PAD ZONE

Nd Bottom View

A

A1

c

Side View

Figure 33. QFN405x5 Packaging

Symbol
A A1 b b1 C D D2 e Ne Nd E E2 L L1 K h

Table 37. QFN405x5 Packaging Scale

Min.

Scale (mm) MaximumTyp.

0.70

0.75

0

0.02

0.15

0.20

0.14REF

0.18

0.20

4.90

5.00

3.60

3.70

0.40 BSC

3.60 BSC

3.60 BSC

4.90

5.00

3.60

3.70

0.35

0.40

0.10REF

0.20

-

0.30

0.35

Rev. 0.9 | 62/65

Max. 0.80 0.05 0.25
0.25 5.10 3.80
5.10 3.80 0.45
0.40
www.cmostek.com

8 Top Marking

CMT2380F32

2380F32
E 9 
Y WW

Figure 34. The CMT2380F32 Top Marking

Table 38. The CMT2380F32 Top Marking Information

Marking Method

Laser

Pin 1 Mark

Diameter of the circle = 0.3 mm

Font Size

0.5 mm, align right

Line 1 Marking

2380F32 referring to model CMT2380F32

Line 2 Marking Line 3 Marking

E9 is internal tracing code
The date code is assigned by the package factory. Y is the last digit of the year. WW is the working week.

Rev. 0.9 | 63/65

www.cmostek.com

CMT2380F32

9 Reference Documents

Doc No. AN141 AN142 AN143 AN144 AN146 AN147 AN149 AN150
AN197
AN198
AN199 AN220

Table 39. Reference Documents

Name CMT2300A Schematic and PCB Layout Guide CMT2300A Quick Start Guide CMT2300A FIFO and Packet Format Usage Guide CMT2300A RSSI User Guide CMT2300A Low Power Mode User Guide CMT2300A Features Usage Guide CMT2300A RF Parameter Configuration Guide CMT2300A Low Voltage Transmit Power Compensation CMT2300A-CMT2119B-CMT2219B Fast Manual Frequency Hopping CMT2300A-CMT2119B-CMT2219B Status Switching Precautions CMT2300A-CMT2119B-CMT2219B RF Frequency Calculation Guide CMT2380F32 User Manual (Microcontroller Section)

Description CMT2380F32 RF matching design guidelines CMT2380F32 RF quick start CMT2380F32 RF transceiver message usage guide CMT2380F32 RF RSSI user guide CMT2380F32 RF Low power design guidelines CMT2380F32 RF features description CMT2380F32 RF Frequency matching parameters CMT2380F32 RF Low-voltage transmit power compensation instructions CMT2380F32 fast manual frequency hopping instructions
CMT2380F32 RF status switching considerations
CMT2380F32 RF frequency calculation instructions
CMT2380F32 controller detailed instructions

10 Revise History

Version No. 0.8 0.9

Chapter All 7

Table 40. Revise History Records
Description Initial version Packaging diagram update

Date 2018-04-22 2018-05-09

Rev. 0.9 | 64/65

www.cmostek.com

CMT2380F32

11 Contacts

CMOSTEK Microelectronics Co., Ltd. Shenzhen Branch Address: 2/F Building 3, Pingshan Private Enterprise S.T. Park, Xili, Nanshan District, Shenzhen, Guangdong, China

Tel: Post Code: Sales: Supports: Website:

+86-755-83231427 518057 sales@cmostek.com support@cmostek.com www.cmostek.com

Copyright. CMOSTEK Microelectronics Co., Ltd. All rights are reserved.
The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of CMOSTEK and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of CMOSTEK. CMOSTEK products are not authorized for use as critical components in life support devices or systems without express written approval of CMOSTEK. The CMOSTEK logo is a registered trademark of CMOSTEK Microelectronics Co., Ltd. All other names are the property of their respective owners.

Rev. 0.9 | 65/65

www.cmostek.com


Microsoft Word 2013