i.MX 8M Mini Applications Processor Datasheet for Consumer Products

i.MX 8M Mini, MIMX8MM6DVTLZAA MIMX8MM5DVTLZAA, MIMX8MM5DVTLZCA, MIMX8MM5DVTLZDA, MIMX8MM4DVTLZAA, MIMX8MM3DVTLZAA, MIMX8MM2DVTLZAA, MIMX8MM1DVTLZAA

i.MX 8M Mini, MIMX8MM6DVTLZAA MIMX8MM5DVTLZAA, MIMX8MM5DVTLZCA, MIMX8MM5DVTLZDA..MIMX8MM4DVTLZAA, MIMX8MM3DVTLZAA..MIMX8MM2DVTLZAA, MIMX8MM1DVTLZAA

NXP Semiconductors

i.MX 8M Mini Applications Processor Datasheet for ... - NXP

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020 4 NXP Semiconductors i.MX 8M Mini introduction NOTE The actual feature set depends on th e part numbers as described in Table 2 .

PDF

Evaluation Boards - Embedded - MCU, DSP - DIGITAL ELECTRONICS

IMX8MMCEC
NXP Semiconductors Data Sheet: Technical Data

Document Number: IMX8MMCEC Rev. 1, 07/2020

MIMX8MM6DVTLZAA MIMX8MM5DVTLZCA MIMX8MM4DVTLZAA MIMX8MM2DVTLZAA

MIMX8MM5DVTLZAA MIMX8MM5DVTLZDA MIMX8MM3DVTLZAA MIMX8MM1DVTLZAA

i.MX 8M Mini Applications Processor Datasheet for Consumer Products

Package Information Plastic Package
FCBGA 14 x 14 mm, 0.5 mm pitch

Ordering Information See Table 2 on page 6

1 i.MX 8M Mini introduction

The i.MX 8M Mini applications processor represents 1. i.MX 8M Mini introduction . . . . . . . . . . . . . . . . . . . . . . . . 1

NXP's latest video and audio experience combining 1.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

state-of-the-art

media-specific

features

with

2.

1.2. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 6 Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

high-performance processing while optimized for lowest 2.1. Recommended connections for unused input/output 12

power consumption.

3. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1. Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . 14

The i.MX 8M Mini family of processors features advanced implementation of a quad Arm® Cor-

3.2. Power supplies requirements and restrictions . . . 23 3.3. PLL electrical characteristics . . . . . . . . . . . . . . . . 26 3.4. On-chip oscillators . . . . . . . . . . . . . . . . . . . . . . . . 27

tex®-A53 core, which operates at speeds of up to

3.6. I/O AC parameters . . . . . . . . . . . . . . . . . . . . . . . 29 3.5. General purpose I/O (GPIO) DC parameters . . . 28

1.8 GHz. A general purpose Cortex®-M4 400 MHz core processor is for low-power processing. The DRAM

3.7. Output buffer impedance parameters . . . . . . . . . 30 3.8. System modules timing . . . . . . . . . . . . . . . . . . . . 32 3.9. External peripheral interface parameters . . . . . . 33

controller supports 32-bit/16-bit LPDDR4, DDR4, and 4. Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 68 4.1. Boot mode configuration pins . . . . . . . . . . . . . . . 68
DDR3L memory. A wide range of audio interfaces are 4.2. Boot device interface allocation . . . . . . . . . . . . . . 69

available,

including

I2S, AC97, TDM,

and

S/PDIF.

5.

Package information and contact assignments . . . . . . . 70 5.1. 14 x 14 mm package information . . . . . . . . . . . . 70

There are a number of other interfaces for connecting 5.2. DDR pin function list . . . . . . . . . . . . . . . . . . . . . . 87

peripherals, such as USB, PCIe, and Ethernet.

6. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products.

i.MX 8M Mini introduction Subsystem
Arm Cortex-A53 MPCore platform
Arm Cortex-M4 core platform Connectivity
On-chip memory GPIO and pin multiplexing Power management

Table 1. Features
Features
Quad symmetric Cortex-A53 processors · 32 KB L1 Instruction Cache · 32 KB L1 Data Cache · Media Processing Engine (MPE) with NEON technology supporting the Advanced
Single Instruction Multiple Data architecture: · Floating Point Unit (FPU) with support of the VFPv4-D16 architecture
Support of 64-bit Armv8-A architecture
512 KB unified L2 cache
Low power microcontroller available for customer application: · low power standby mode · IoT features including Weave · Manage IR or Wireless Remote
Cortex M4 CPU: · 16 KB L1 Instruction Cache · 16 KB L1 Data Cache · 256 KB tightly coupled memory (TCM)
One PCI Express (PCIe) · Single lane supporting PCIe Gen2 · Dual mode operation to function as root complex or endpoint · Integrated PHY interface · Support L1 low power sub-state
Two USB 2.0 OTG controllers with integrated PHY interfaces: · Spread spectrum clock support
Three Ultra Secure Digital Host Controller (uSDHC) interfaces: · MMC 5.1 compliance with HS400 DDR signaling to support up to 400 MB/sec · SD/SDIO 3.0 compliance with 200 MHz SDR signaling to support up to 100
MB/sec · Support for SDXC (extended capacity)
One Gigabit Ethernet controller with support for Energy Efficient Ethernet (EEE), Ethernet AVB, and IEEE 1588
Four Universal Asynchronous Receiver/Transmitter (UART) modules Four I2C modules
Three ECSPI modules
Boot ROM (256 KB)
On-chip RAM (256 KB + 32 KB)
General-purpose input/output (GPIO) modules with interrupt capability
Input/output multiplexing controller (IOMUXC) to provide centralized pad control
Temperature sensor with programmable trip points
Flexible power domain partitioning with internal power switches to support efficient power management

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

2

NXP Semiconductors

Subsystem External memory interface Multimedia
System debug

i.MX 8M Mini introduction
Table 1. Features (continued)
Features
32/16-bit DRAM interfaces: · LPDDR4 (up to 1.5 GHz) · DDR4-2400 · DDR3L-1600
8-bit NAND-Flash, including support for Raw MLC/SLC devices, BCH ECC up to 62-bit, and ONFi3.2 compliance (clock rates up to 100 MHz and data rates up to 200 MB/sec)
eMMC 5.1 Flash (2 interfaces, uSDHC1 and uSDHC3)
SPI NOR Flash (3 interfaces)
FlexSPI with support for XIP (for ME in low-power mode) and parallel read mode of two identical FLASH devices
Video Processing Unit: · 1080p60 VP9 Profile 0, 2 (10-bit) · 1080p60 HEVC/H.265 Decoder · 1080p60 AVC/H.264 Baseline, Main, High decoder · 1080p60 VP8 · 1080p60 AVC/H.264 Encoder · 1080p60 VP8 · TrustZone support
Graphic Processing Unit: · GCNanoUltra for 3D acceleration · GC320 for 2D acceleration
LCDIF Display Controller: · Support up to 2 layers of overlay · Support up to 1080p60 display through MIPI DSI
MIPI Interface: · 4-lane MIPI CSI interface · 4-lane MIPI DSI interface
Audio: · S/PDIF input and output, including a new Raw Capture input mode · Five synchronous audio interface (SAI) modules supporting I2S, AC97, TDM,
codec/DSP, and DSD interfaces, including one SAI with 8 Tx and 8 Rx lanes, one SAI with 4 Tx and 4 Rx lanes, two SAI with 2 Tx and 2 Rx lanes, and one SAI with 1 Tx and 1Rx lane. Support over 20 channels of audio subject to I/O limitations. · 8-Channel Pulse Density Modulation (PDM) input
Arm CoreSight debug and trace architecture
Trace Port Interface Unit (TPIU) to support off-chip real-time trace
Embedded Trace FIFO (ETF) with 4 KB internal storage to provide trace buffering
Unified trace capability for Quad Cortex-A53 and Cortex-M4 CPUs
Cross Triggering Interface (CTI)
Support for 5-pin (JTAG) debug interface

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

3

i.MX 8M Mini introduction

Table 1. Features (continued)

Subsystem

Features

Security

Resource Domain Controller (RDC) supports four domains and up to eight regions of DDR
Arm TrustZone (TZ) architecture: · Support Arm Cortex-A53 MPCore TrustZone
On-chip RAM (OCRAM) secure region protection using OCRAM controller
High Assurance Boot (HAB)
Cryptographic acceleration and assurance (CAAM) module and Assurance Module: · Support Widevine and PlayReady content protection · Public Key Cryptography (PKHA) with RSA and Elliptic Curve (ECC) algorithms · Real-time integrity checker (RTIC) · DRM support for RSA, AES, 3DES, DES · Side channel attack resistance · True random number generation (RNG) · Manufacturing protection support
Secure non-volatile storage (SNVS): · Secure real-time clock (RTC)
Secure JTAG controller (SJC)

NOTE
The actual feature set depends on the part numbers as described in Table 2. Functions such as display and camera interfaces, and connectivity interfaces, may not be enabled for specific part numbers.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

4

NXP Semiconductors

i.MX 8M Mini introduction
1.1 Block diagram
Figure 1 shows the functional modules in the i.MX 8M Mini applications processor system.

Security TrustZone DRM Ciphers Secure Clock eFuse Key Storage Random Number 32 KB Secure RAM
System Control 3x Smart DMA
XTAL PLLs 3x Watchdog 4x PWM 6x Timer Secure JTAG Temperature Sensor

Main CPU Platform Quad Cortex-A53

32 KB I-cache

32 KB D-cache

NEON

FPU

512 KB L2 Cache

Low Power, Security CPU Cortex-M4

16 KB I-cache

16 KB D-cache

256 KB TCM

Multimedia 3D Graphics: GC NanoUltra
2D Graphics: GC320
1080p60 H265, VP9 decoder 1080p60 H264, VP8 decoder
1080p60 H.264, VP8 encoder
4-lane MIPI-CSI Interface 4-lane MIPI-DSI Interface

Connectivity and I/O 1 GB Ethernet
(IEEE1588, EEE, and AVB) S/PDIF Rx and Tx 5x I2S/SAI
2x USB 2.0 OTG and PHY 1x PCIe 2.0 (1-lane) 4x UART 4x I2C, 3x ECSPI PDM
External Memory LPDDR4/DDR4/DDR3L 2x eMMC 5.1/3x SD 3.0
NAND CTL (BCH62) 1x FlexSPI

Figure 1. i.MX 8M Mini system block diagram

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

5

i.MX 8M Mini introduction
1.2 Ordering information
Table 2 shows examples of orderable sample part numbers covered by this data sheet. This table does not include all possible orderable part numbers. If your desired part number is not listed in the table, or you have questions about available parts, contact your NXP representative.

Table 2. Orderable part numbers

Family

Part number

Part differentiator

Cortex-A53 CPU speed
grade

Qualification tier

Temperat ure Tj (C)

Package

i.MX 8M Mini MIMX8MM6DVTLZAA 4x A53, M4, GPU, VPU 1.8 GHz Quad

Consumer

0 to +95 14 x 14 mm, 0.5 mm pitch

i.MX 8M Mini MIMX8MM5DVTLZAA QuadLite

4x A53, M4, GPU

1.8 GHz

Consumer

0 to +95 14 x 14 mm, 0.5 mm pitch

i.MX 8M Mini MIMX8MM5DVTLZCA 4x A53, M4, GPU,

QuadLite

Immersiv3D with Dolby ATMOS support1

1.8 GHz

Consumer

0 to +95 14 x 14 mm, 0.5 mm pitch

i.MX 8M Mini QuadLite

MIMX8MM5DVTLZDA

4x A53, M4, GPU,
Immersiv3D with Dolby
ATMOS and DTS support1

1.8 GHz

Consumer

0 to +95 14 x 14 mm, 0.5 mm pitch

i.MX 8M Mini MIMX8MM4DVTLZAA 2x A53, M4, GPU, VPU 1.8 GHz Dual

Consumer

0 to +95 14 x 14 mm, 0.5 mm pitch

i.MX 8M Mini MIMX8MM3DVTLZAA DualLite

2x A53, M4, GPU

1.8 GHz

Consumer

0 to +95 14 x 14 mm, 0.5 mm pitch

i.MX 8M Mini MIMX8MM2DVTLZAA 1x A53, M4, GPU, VPU 1.8 GHz Solo

Consumer

0 to +95 14 x 14 mm, 0.5 mm pitch

i.MX 8M Mini MIMX8MM1DVTLZAA SoloLite

1x A53, M4, GPU

1.8 GHz

Consumer

0 to +95 14 x 14 mm, 0.5 mm pitch

1 Supply of this Implementation of Dolby technology does not convey a license nor imply a right under any patent, or any other industrial or intellectual property right of Dolby Laboratories, to use this Implementation in any finished end-user or ready-to-use final product. It is hereby notified that a license for such use is required from Dolby Laboratories.

Figure 2 describes the part number nomenclature so that the users can identify the characteristics of the specific part number.
Contact an NXP representative for additional details.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

6

NXP Semiconductors

i.MX 8M Mini introduction

MIMX8MM@+VT$$%A
Qualification level Part number series
Part differentiator

Silicon revision Fusing options Primary core frequency Package type ­ all ROHS Qualification tier Tj

Qualification Level

Samples

P

Mass Production

M

Part number series
IMX8MM

Name
i.MX 8M Mini

Part differentiator @

i.MX 8M Mini Quad

6

4x A53, M4, GPU, VPU

i.MX 8M Mini QuadLite

5

4x A53, M4, GPU

i.MX 8M Mini Dual

4

2x A53, M4, GPU, VPU

i.MX 8M Mini DualLite

3

2x A53, M4, GPU

i.MX 8M Mini Solo

2

1x A53, M4, GPU, VPU

i.MX 8M Mini SoloLite

1

1x A53, M4, GPU

Temperature Tj
Consumer: 0 to +95oC Industrial: -40 to 105oC
Package Type
FCBGA486 14 x 14 mm, 0.5 mm pitch

+

Frequency

$$

D

1.8 GHz

LZ

C

1.6 GHz

KZ

ROHS

Fusing

%

VT

Default

A

Immersiv3D enabled w/Dolby Atmos

C

Immersiv3D enabled w/Dolby Atmos

D

and DTS

Silicon rev

A

Rev A0

A

Figure 2. Part number nomenclature--i.MX 8M Mini family of processors

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

7

Modules list

2 Modules list

The i.MX 8M Mini family of processors contains a variety of digital and analog modules. Table 3 describes these modules in alphabetical order.
Table 3. i.MX 8M Mini modules list

Block mnemonic

Block name

Brief description

32k Oscillator APBH-DMA
Arm
BCH CAAM
CCM GPC SRC CSU CTI-0 CTI-1 CTI-2 CTI-3 CTI-4 DAP
DDRC
eCSPI1 eCSPI2 eCSPI3

Clock system

32 KHz oscillator is used as the clock source for RTC and internal low speed clock. It can be supplied by external 32.768 KHz oscillator.

NAND Flash and BCH ECC DMA controller used for GPMI2 operation. DMA Controller

Arm Platform

The Arm Core Platform includes a quad Cortex-A53 core and a Cortex-M4 core. The Cortex-A53 core includes associated sub-blocks, such as the Level 2 Cache Controller, Snoop Control Unit (SCU), General Interrupt Controller (GIC), private timers, watchdog, and CoreSight debug modules. The Cortex-M4 core is used as a customer microcontroller.

Binary-BCH ECC Processor The BCH module provides up to 62-bit ECC encryption/decryption for NAND Flash controller (GPMI)

Cryptographic accelerator and assurance module

CAAM is a cryptographic accelerator and assurance module. CAAM implements several encryption and hashing functions, a run-time integrity checker, entropy source generator, and a Pseudo Random Number Generator (PRNG). The PRNG is certifiable by the Cryptographic Algorithm Validation Program (CAVP) of the National Institute of Standards and Technology (NIST). CAAM also implements a Secure Memory mechanism. In i.MX 8M Mini processors, the secure memory provided is 32 KB.

Clock Control Module, General These modules are responsible for clock and reset distribution in the Power Controller, System Reset system, and also for the system power management.
Controller

Central Security Unit

The Central Security Unit (CSU) is responsible for setting comprehensive security policy within the i.MX 8M Mini platform.

Cross Trigger Interface

Cross Trigger Interface (CTI) allows cross-triggering based on inputs from masters attached to CTIs. The CTI module is internal to the Cortex-A53 core platform.

Debug Access Port Double Data Rate Controller
Configurable SPI

The DAP provides real-time access for the debugger without halting the core to access: · System memory and peripheral registers · All debug configuration registers The DAP also provides debugger access to JTAG scan chains.
The DDR Controller has the following features: · Supports 32/16-bit LPDDR4 (up to 1.5 GHz), DDR4-2400, and
DDR3L-1600 · Supports up to 8 Gbyte DDR memory space
Full-duplex enhanced Synchronous Serial Interface, with data rate up to 52 Mbit/s. Configurable to support Master/Slave modes, only one chip select is supported.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

8

NXP Semiconductors

Block mnemonic ENET1
FlexSPI
GIC GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 GPMI
GPT1 GPT2 GPT3 GPT4 GPT5 GPT6
GPU3D
I2C1 I2C2 I2C3 I2C4 IOMUXC

Modules list

Table 3. i.MX 8M Mini modules list (continued)

Block name

Brief description

Ethernet Controller

The Ethernet Media Access Controller (MAC) is designed to support 10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The module has dedicated hardware to support the IEEE 1588 standard. See the ENET chapter of the i.MX 8M Mini Applications Processor Reference Manual (IMX8MMRM) for details.

FlexSPI

The FlexSPI module acts as an interface to external serial flash devices. This module contains the following features: · Flexible sequence engine to support various flash vendor devices · Single pad/Dual pad/Quad pad mode of operation · Single Data Rate/Double Data Rate mode of operation · Parallel Flash mode · DMA support · Memory mapped read access to connected flash devices · Multi master access with priority and flexible and configurable
buffer for each master

Generic Interrupt Controller The GIC handles all interrupts from the various subsystems and is ready for virtualization.

General Purpose I/O Modules Used for general purpose input/output to external ICs. Each GPIO module supports up to 32 bits of I/O.

General Purpose Memory Interface

The GPMI module supports up to 8x NAND devices and 62-bit ECC encryption/decryption for NAND Flash Controller (GPMI2). GPMI supports separate DMA channels for each NAND device.

General Purpose Timer

Each GPT is a 32-bit "free-running" or "set-and-forget" mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in "set-and-forget" mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock.

Graphics Processing Unit-3D I2C Interface

The GPU3D provides hardware acceleration for 3D graphics algorithms with sufficient processor power to run desktop quality interactive graphics applications on displays.
I2C provides serial interface for external devices. Data rates of up to 320 kbps are supported.

IOMUX Control

This module enables flexible I/O multiplexing. Each IO pad has a default as well as several alternate functions. The alternate functions are software configurable.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

9

Modules list

Table 3. i.MX 8M Mini modules list (continued)

Block mnemonic

Block name

Brief description

MIPI CSI2 (four-lane) MIPI DSI (four-lane)
OCOTP_CTRL
OCRAM
PCIe1 PDM PMU PWM1 PWM2 PWM3 PWM4 SAI1 SAI2 SAI3 SAI5 SAI6

MIPI Camera Serial Interface This module provides one four-lane MIPI camera serial interfaces, which operates up to a maximum bit rate of 1.5 Gbps.

MIPI Display Serial Interface This module provides a four-lane MIPI display serial interface operating up to a maximum bit rate of 1.5 Gbps.

OTP Controller

The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals requiring permanent non volatility.

On-Chip Memory controller

The On-Chip Memory controller (OCRAM) module is designed as an interface between the system's AXI bus and the internal (on-chip) SRAM memory module. In i.MX 8M Mini processors, the OCRAM is used for controlling the 256 KB multimedia RAM through a 64-bit AXI bus.

PCI Express 2.0

The PCIe IP provides PCI Express Gen 2.0 functionality.

Pulse Density Modulation The PDM supports up to 8-channels (4 lanes).

Power Management Unit

Integrated power management unit. Used to provide power to various SoC domains.

Pulse Width Modulation

The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images. It can also generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate sound.

Synchronous Audio Interface The SAI module provides a synchronous audio interface (SAI) that supports full duplex serial interfaces with frame synchronization, such as I2S, AC97, TDM, and codec/DSP interfaces.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

10

NXP Semiconductors

Block mnemonic SDMA
SJC
SNVS SPDIF1 TEMPSENSOR TZASC

Modules list

Table 3. i.MX 8M Mini modules list (continued)

Block name

Brief description

Smart Direct Memory Access

The SDMA is a multichannel flexible DMA engine. It helps in maximizing system performance by offloading the various cores in dynamic data routing. It has the following features: · Powered by a 16-bit Instruction-Set micro-RISC engine · Multi channel DMA supporting up to 32 time-division multiplexed
DMA channels · 48 events with total flexibility to trigger any combination of
channels · Memory accesses including linear, FIFO, and 2D addressing · Shared peripherals between Arm and SDMA · Very fast Context-Switching with 2-level priority based preemptive
multi tasking · DMA units with auto-flush and prefetch capability · Flexible address management for DMA transfers (increment,
decrement, and no address changes on source and destination address) · DMA ports can handle unidirectional and bidirectional flows (Copy mode) · Up to 8-word buffer for configurable burst transfers for EMIv2.5 · Support of byte-swapping and CRC calculations · Library of Scripts and API is available

Secure JTAG Controller

The SJC provides JTAG interface (designed to be compatible with JTAG TAP standards) to internal logic. The i.MX 8M Mini family of processors uses JTAG port for production, testing, and system debugging. Additionally, the SJC provides BSR (Boundary Scan Register) standard support, designed to be compatible with IEEE 1149. 1. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The i.MX 8M Mini SJC incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration.

Secure Non-Volatile Storage Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, Master Key Control, and Violation/Tamper Detection and reporting.

Sony Philips Digital Interconnect Format

A standard audio file transfer format, developed jointly by the Sony and Phillips corporations. It supports Transmitter and Receiver functionality.

Temperature Sensor

Temperature sensor

Trust-Zone Address Space Controller

The TZASC (TZC-380 by Arm) provides security address region control functions required for intended application. It is used on the path to the DRAM controller.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

11

Modules list
Block mnemonic UART1 UART2 UART3 UART4
uSDHC1 uSDHC2 uSDHC3
USB1 USB2 VPU
WDOG1 WDOG2 WDOG3 XTALOSC

Table 3. i.MX 8M Mini modules list (continued)

Block name

Brief description

UART Interface

Each of the UARTv2 modules supports the following serial data transmit/receive protocols and configurations: · 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even,
odd, or none) · Programmable baud rates up to 4 Mbps. This is a higher max
baud rate relative to the 1.875 MHz, which is stated by the TIA/EIA-232-F standard. · 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud

SD/MMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller

i.MX 8M Mini SoC characteristics: All the MMC/SD/SDIO controller IPs are based on the uSDHC IP. They are designed to support: · SD/SDIO standard, up to version 3.0. · MMC standard, up to version 5.1. · 1.8 V and 3.3 V operation, but do not support 1.2 V operation. · 1-bit/4-bit SD and SDIO modes, 1-bit/4-bit/8-bit MMC mode. Two uSDHC controllers (uSDHC1 and uSDHC3) can support up to an 8-bit interface, the other controller (uSDHC2) can only support up to a 4-bit interface.

2x USB 2.0 controllers and PHYs

Two USB controllers and PHYs that support USB 2.0. Each USB instance contains: · USB 2.0 core, which can operate in 2.0 mode

Video Processing Unit

A high performing video processing unit (VPU), which covers many SD-level and HD-level video decoders. See the i.MX 8M Mini Applications Processor Reference Manual (IMX8MMRM) for a
complete list of the VPU's decoding and encoding capabilities.

Watchdog

The watchdog (WDOG) timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the Arm core, and a second point evokes an external event on the WDOG line.

Crystal Oscillator interface

The XTALOSC module enables connectivity to an external crystal oscillator device. In a typical application use case, it is used for a 24 MHz oscillator.

2.1 Recommended connections for unused input/output
If a function of the i.MX 8M Mini is not in use, the I/Os and power rails of that function can be terminated to reduce overall board power.
Table 4 shows the recommended connections for unused power supply rails.
Table 4. Recommended connections for unused power supply rails

Function

Ball Name

MIP-CSI and MIPI-DSI
PCIe

VDD_MIPI_0P9, VDD_MIPI_1P2, VDD_MIPI_1P8 VDD_PCI_0P8, VDD_PCI_1P8

Recommendations if Unused
Leave unconnected
Leave unconnected

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

12

NXP Semiconductors

Modules list

Table 4. Recommended connections for unused power supply rails (continued)

Function

Ball Name

Recommendations if Unused

USB1 and USB2 VDD_USB_0P8, VDD_USB_1P8, VDD_USB_3P3

Leave unconnected

VPU

VDD_VPU

Leave unconnected

GPU

VDD_GPU

Leave unconnected

Digital I/O supplies

NVCC_CLK, NVCC_ECSPI, NVCC_ENET, NVCC_GPIO1, NVCC_I2C,

All digital I/O

NVCC_JTAG, NVCC_NAND, NVCC_SAI1, NVCC_SAI2, NVCC_SAI3, NVCC_SAI5, supplies listed in this

NVCC_SD1, NVCC_SD2, NVCC_UART, NVCC_SNVS_1P8, PVCC0_1P8,

table must be

PVCC1_1P8, PVCC2_1P8

powered under

normal conditions

whether the

associated I/O pins

are in use or not, and

associated I/O pins

need to enable pull

in pad control

register to limit any

floating gate current.

Table 5 shows recommended connections for unused signal contacts/interfaces.
Table 5. Recommended connections for unused signal contacts/interfaces

Function MIPI-CSI

Ball Name MIPI_CSI_CLK_P, MIPI_CSI_CLK_N, MIPI_CSI_Dx_P, MIPI_CSI_Dx_N

MIPI-DSI PCIe USB1 USB2

MIPI_VREG_CAP, MIPI_DSI_CLK_P, MIPI_DSI_CLK_N, MIPI_DSI_Dx_P, MIPI_DSI_Dx_N
PCIE_CLK_P, PCIE_CLK_N, PCIE_TXN_P, PCIE_TXN_N, PCIE_RXN_P, PCIE_RXN_N, PCIE_RESREF
USB1_VBUS, USB1_DN, USB1_DP, USB1_ID, USB1_TXRTUNE
USB2_VBUS, USB2_DN, USB2_DP, USB2_ID, USB2_TXRTUNE

Recommendations if Unused
Tie all signals to ground Leave unconnected
Leave unconnected
Leave unconnected Leave unconnected

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

13

Electrical characteristics
3 Electrical characteristics
This section provides the device and module-level electrical characteristics for the i.MX 8M Mini family of processors.

3.1 Chip-level conditions
This section provides the device-level electrical characteristics for the IC. See Table 6 for a quick reference to the individual tables and sections.
Table 6. i.MX 8M Mini chip-level conditions

For these characteristics, ...

Topic appears ...

Absolute maximum ratings FCBGA package thermal resistance Operating ranges External clock sources Maximum supply currents

on page 14 on page 16 on page 17 on page 19 on page 20

3.1.1

Absolute maximum ratings
CAUTION
Stresses beyond those listed under Table 7 may affect reliability or cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operating ranges or parameters tables is not implied.

Table 7. Absolute maximum ratings

Parameter description

Symbol

Min

Max

Unit

Core supply voltages
Power supply for GPU Power supply for VPU DDR PHY supply voltage DDR I/O supply voltage DRAM PLL supply voltage
SNVS IO supply voltage VDD_SNVS supply voltage

VDD_ARM

-0.3

VDD_SOC

VDD_GPU

-0.3

VDD_VPU

-0.3

VDD_DRAM

-0.3

NVCC_DRAM

-0.3

VDD_DRAM_PLL_0P8

-0.3

VDD_DRAM_PLL_1P8

-0.3

NVCC_SNVS_1V8

-0.3

VDD_SNVS_0V8

-0.3

1.15

V

1.15

V

1.15

V

1.15

V

1.575

V

1.15

V

2.15

V

2.15

V

0.95

V

Notes --
-- -- -- -- -- -- -- --

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

14

NXP Semiconductors

Electrical characteristics

Table 7. Absolute maximum ratings (continued)

Parameter description

Symbol

Min

Max

Unit

Notes

GPIO supply voltage

NVCC_JTAG,

-0.3

3.8

V

--

NVCCGPIO1,

NVCC_ENET,

NVCC_SD1,

NVCC_SD2,

NVCC_NAND,

NVCC_SA1,

NVCC_SAI2,

NVCC_SAI3,

NVCC_SAI5,

NVCC_ECSPI,

NVCC_I2C,

NVCC_UART,

NVCC_CLK

GPIO pre-driver supply voltage

PVCC0_1P8,

-0.3

2.15

V

--

PVCC1_1P8,

PVCC2_1P8

Isolated core supply voltage

VDD_ANA_0P8

-0.3

1.15

V

--

Analog core supply voltage

VDD_ANA0_1P8

-0.3

2.15

V

--

VDD_ANA1_1P8

-0.3

2.15

V

--

Arm PLL supply voltage

VDD_ARM_PLL_0P8

-0.3

0.95

V

--

VDD_ARM_PLL_1P8

-0.3

2.15

V

--

VDD_MIPI_0P9

-0.3

1.05

V

--

MIPI PHY supply voltage

VDD_MIPI_1P2

-0.3

1.45

V

--

VDD_MIPI_1P8

-0.3

2.15

V

--

PCIe PHY supply voltage

VDD_PCIE_0P8

-0.3

0.95

V

--

VDD_PCIE_1P8

-0.3

2.15

V

--

VDD_USB_0P8

-0.3

0.95

V

--

USB PHY supply voltage

VDD_USB_1P8

-0.3

2.15

V

--

VDD_USB_3P3

-0.3

3.95

V

--

USB_VBUS input detected

USB1_VBUS,

-0.3

3.95

V

--

USB2_VBUS

XTAL supply voltage

VDD_24M_XTAL_1P8

-0.3

2.15

V

--

Storage temperature range

TSTORAGE

-40

150

oC

--

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

15

Electrical characteristics

Table 8. Electrostatic discharge and latch up ratings

Parameter description

Rating

Reference

Electrostatic Discharge (ESD)
Latch UP (LU)

Human Body Model (HBM)
Charged Device Model (CDM)
Immunity level: · Class I@ 25 oC ambient
temperature · Class II @ 105 oC ambient
temperature

±1000 V ±250 V

JS-001-2017 JS-002-2018

A

JESD78E

A

Comment -- -- --

3.1.2 Thermal resistance

3.1.2.1 FCBGA package thermal resistance
Table 9 displays the FCBGA package thermal resistance data.
Table 9. Thermal resistance data

Rating

Test conditions

Symbol

Value

Unit Notes

Junction to Ambient Natural Convection

Single layer board (1s)

RJA

30

oC/W 1, 2

Junction to Ambient Natural Convection

Four layer board (2s2p)

RJA

22.9

oC/W 1, 2, 3

Junction to Ambient (@200 ft/min)

Single layer board (1s)

RJMA

24

oC/W 1, 3

Junction to Ambient (@200 ft/min)

Four layer board (2s2p)

RJMA

18.5

oC/W 1, 3

Junction to Board

--

RJB

7.8

oC/W 4

Junction to Case

--

RJC

4

oC/W 5

Junction to Package Top

Natural Convection

JT

0.2

oC/W 6

1 Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
2 Per SEMI G38-87 and JESD51-2 with the single layer board horizontal. 3 Per JEDEC JESD51-6 with the board horizontal. 4 Thermal resistance between the die and printed circuit board per JEDEC JESD51-8. Board temperature is measured on the
top surface of the board near the package. 5 Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method
1012.1). 6 Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

16

NXP Semiconductors

Electrical characteristics

3.1.3 Operating ranges

Table 10 provides the operating ranges of the i.MX 8M Mini applications processor. For details on the chip's power structure, see the "Power Management Unit (PMU)" chapter of the i.MX 8M Mini Applications Processor Reference Manual (IMX8MMRM).
Table 10. Operating ranges1

Symbol

Min

Typ

Max2,3

Unit

Comment

VDD_ARM
VDD_SOC without PCIE VDD_SOC with PCIE VDD_GPU
VDD_VPU
VDD_DRAM
VDD_SNVS_0P8 NVCC_SNVS_1P8
NVCC_JTAG, NVCC_GPIO1, NVCC_ENET, NVCC_SD1, NVCC_SD2, NVCC_NAND, NVCC_SAI1, NVCC_SAI2, NVCC_SAI3, NVCC_SAI5, NVCC_ECSPI, NVCC_I2C, NVCC_UART,
NVCC_CLK NVCC_ENET

0.805 0.900 0.950 0.780 0.805 0.805 0.855
-- 0.805 0.855 0.900 0.805 0.855 0.900 0.760 1.620 1.650
3.000
2.250

0.850 0.950 1.000 0.820 0.850 0.850 0.900
-- 0.850 0.900 0.950 0.850 0.900 0.950 0.800 1.800 1.800
3.300
2.500

0.950 1.000 1.050 0.900 0.900 0.900
1.000
--
0.900 0.950 1.000 0.900
0.950
1.000
0.900 1.980
1.950
3.600

V Power supply for Quad-A53, 1.2 GHz
V Power supply for Quad-A53, 1.6 GHz V Power supply for Quad-A53, 1.8 GHz4 V Power supply for SoC logic5 V Power supply for SoC logic5
V Power supply for 3D GPU, nominal mode, 800 MHz
V Power supply for 3D GPU, overdrive mode, 1000 MHz
-- Block G2/G1/H1
V Power supply for VPU, 450/450/450 MHz
V Power supply for VPU, 600/650/650 MHz
V Power supply for VPU, 700/750/750 MHz
V Power supply for DDRC, 0.85 V supports up to 1.0 GHz (DDR clock)
V Power supply for DDRC, 0.9 V supports up to 1.2 GHz (DDR clock)
V Power supply for DDRC, 0.95 V supports up to 1.5 GHz (DDR clock)
V Power supply for SNVS core logic
V Power supply for GPIO pre-driver in SNVS bank
V Power supply for GPIO when it is in 1.8 V mode
V Power supply for GPIO when it is in 3.3 V mode

2.750

V Power supply for GPIO when it is in 2.5 V mode

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

17

Electrical characteristics

Symbol

Table 10. Operating ranges1 (continued)

Min

Typ

Max2,3

Unit

Comment

PVCC0_1P8, PVCC1_1P8, PVCC2_1P8

1.650

1.800

1.950

V Power supply for GPIO pre-driver

VSS

--

--

--

V Ground for all core logic and I/O

NVCC_DRAM

1.283

1.35

1.425

V DDR3L

1.14

1.2

1.26

V DDR4

1.06

1.1

1.17

V LPDDR4

DRAM_VREF

0.49 x

0.5 x

0.51 x

V Internal output, no connection is needed.

NVCC_DRAM NVCC_DRAM NVCC_DRAM

VDD_DRAM_PLL_0P8

0.805

0.850

1.000

V 0.8 V logic power supply for DSM. It should be connected to the separate logic power.

VDD_ANA0_1P8

1.71

1.8

1.89

V Analog 1.8 V core power

VDD_ANA1_1P8

VDD_ANA_0P8

0.780

0.820

0.900

V Isolated 0.8 V core power

VDD_ARM_PLL_0P8

0.780

0.820

0.900

V Arm PLL 0.8 V power

VDD_ARM_PLL_1P8

1.71

1.8

1.89

V Arm PLL 1.8 V power

VDD_24M_XTAL_1P8

1.71

1.8

1.89

V XTAL 1.8 V power

VDD_DRAM_PLL_1P8

1.71

1.8

1.89

V Analog 1.8 V core power

VDD_MIPI_0P9

0.855

0.9

1.000

V 0.9 V power for PLL and internal logic

VDD_MIPI_1P2

1.14

1.2

1.26

V 1.2 V power for analog

VDD_MIPI_1P8 VDD_PCI_0P86,7 VDD_PCI_1P86

1.71 0.805 1.71

1.8 0.850 1.800

1.89 0.900 1.890

V 1.8 V power for PLL and analog V Digital supply for PCIe PHY V 1.8 V supply for PCIe PHY

VDD_USB_0P8

0.780

0.820

0.900

V Digital power supply from PHY's I/O power pads

VDD_USB_1P8

1.71

1.80

1.89

V 1.8 V analog power supply

VDD_USB_3P3

3.069

3.30

3.6

V 3.3 V analog power supply

USB1_VBUS USB2_VBUS

0.800

1.40

3.60

V USB_VBUS input detect signal

Temperature Sensor

--

Accuracy8

±3

±5

°C Sensing temperature range 10°C to

105°C

T J

0

--

+95

oC See Table 2 for complete list of junction

temperature capabilities.

1 The BD71847MWV PMIC does not support 0.950 V for VDD_GPU, VDD_VPU, and VDD_DRAM. For this PMIC, 0.975 V typical is acceptable and supported.
2 Applying the maximum voltage results in maximum power consumption and heat generation. A voltage set point = (Vmin + the supply tolerance) is recommended. This results in an optimized power/speed ratio.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

18

NXP Semiconductors

Electrical characteristics
3 Overdrive maximum voltage includes all the nominal frequencies. 4 50% duty cycle for 5 years 5 Booting VDD_SOC at 0.800 V ±5% is acceptable (Vmin = 0.760 V). Software is expected to program the VDD_SOC voltage
to the typical value in this table prior to first DRAM memory access. 6 Ensure the VDD_PCI_1P8 does not have more than 40 mVpp AC power supply noise superimposed on the high power supply
voltage for the PHY core (1.8 V nominal DC value). Simultaneously, the VDD_PCI_0P8 should have no more than 20 mVpp AC power supply noise superimposed on the low power supply voltage for th PHY core (0.9 V nominal DC value for the overdrive). 7 It can be min 0.78 V when supplied but not operating PCIe. 8 "EN" of TMU Enable Register (TMU_TER) is required to be always enabled for the part to operate correctly.

3.1.4 External clock sources
Each i.MX 8M Mini processor has two external input system clocks: a low frequency (RTC_XTALI) and a high frequency (XTALI).
The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit, power-down real time clock operation, and slow system and watch-dog counters. The clock input can only be connected to an external oscillator. RTC_XTALO should be directly connected to VDD_SNVS_0P8.
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input can be connected to either an external oscillator or a crystal using internal oscillator amplifier.
Table 11 shows the interface frequency requirements.
Table 11. External input clock frequency

Parameter Description

Symbol

Min

Typ

Max

Unit

RTC_XTALI Oscillator1

fckil

--

32.7682

--

XTALI Oscillator1,3

fxtal

24

1 The required frequency stability of this clock source is application dependent. 2 Recommended nominal frequency 32.768 kHz. 3 External oscillator or a fundamental frequency crystal appropriately coupled to the internal oscillator amplifier.

kHz MHz

The typical values shown in Table 11 are required for use with NXP software to ensure precise time keeping and USB operation. For RTC_XTALI operation, an external oscillator is necessary. RTC_XTALO should be directly connected to VDD_SNVS_0P8 when using an external 32.768 kHz oscillator.

NOTE There is no internal RC oscillator.

Table 12 shows the external input clock for OSC32K.
Table 12. External input clock for OSC32K

Symbol

Min

Frequency

f

--

Typ 32.768

Max

Unit

--

kHz

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

19

Electrical characteristics

RTC_XTALI

Symbol VIH VIL

Table 12. External input clock for OSC32K

Min

Typ

Max

Unit

0.7 x NVCC_SNVS_1P8

--

NVCC_SNVS_1P8

V

0

--

0.3 x NVCC_SNVS_1P8

V

3.1.5 Maximum supply currents
Power consumption is highly dependent on the application. Estimating the maximum supply currents required for power supply design is difficult because the use cases that requires maximum supply current is not a realistic use cases.
To help illustrate the effect of the application on power consumption, data was collected while running consumer standard benchmarks that are designed to be compute and graphic intensive. The results provided are intended to be used as guidelines for power supply design.

VDD_ARM VDD_SOC VDD_GPU VDD_VPU VDD_DRAM VDD_ANA_0P8 VDD_ANA0_1P8 VDD_ANA1_1P8 NVCC_SNVS_1P8 VDD_ARM_PLL_1P8 VDD_24M_XTAL_1P8 PVCCx_1P8 NVCC_<XXX> NVCC_DRAM
DRAM_VFEF

Table 13. Maximum supply currents

Power rail

Max current

Unit

2200

mA

1000

mA

500

mA

1000

mA

1000

mA

50

mA

250

mA

3

mA

100

mA

3

mA

Imax = N x C x V x (0.5 x F) Where: N--Number of IO pins supplied by the power line C--Equivalent external capacitive load V--IO voltage (0.5 x F)--Data change rate. Up to 0.5 of the clock rate (F). In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.

10

mA

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

20

NXP Semiconductors

Electrical characteristics

3.1.6 Power modes
The i.MX 8M Mini processors support the following power modes:
· RUN Mode: All external power rails are on, CPU is active and running; other internal modules can be on/off based on application.
· IDLE Mode: When there is no thread running and all high-speed devices are not active, the CPU can automatically enter this mode. The CPU can be in the power-gated state but with L2 data retained, DRAM and the bus clock are reduced. Most of the internal logic is clock gated but still remains powered. The M4 core can remain running. Compared with RUN mode, all the external power rails from the PMIC remain the same, and most of the modules still remain in their state.
· SUSPEND Mode: The most efficient power saving mode where all the clocks are off and all the unnecessary power supplies are off.
· SNVS Mode: This mode is also called RTC mode. Only the power for the SNVS domain remains on to keep RTC and SNVS logic alive.
· OFF Mode: All power rails are off.
Table 14. Chip power in different LP mode

Mode

Supply

Typ.1

Unit

SNVS

VDD_SNVS_0P8 (0.8 V)

0.02

NVCC_SNVS_1P8 (1.8 V)

0.09

mW

Total2

0.11

SUSPEND

NVCC (1.8 V)

1.20

NVCC_DRAM (1.1 V)

0.50

NVCC_ENET (1.8 V)

0.10

NVCC_SNVS_1P8 (1.8 V)

0.10

PVCC (1.8 V)

0.60

mW

VDD_MIPI_0P9 (0.9 V)

2.20

VDD_SNVS_0P8 (0.8 V)

0.10

VDD_SOC (0.82 V)

4.00

VDD_ARM_0P8 (0.82 V)

0.10

VDDA_PCIE_USB_0P8 (0.82 V)

3.00

Total2

11.90

1 All the power numbers defined in the table are for information only. These numbers are based on typical silicon at 25oC, under non-OS environment and use case dependent. For power numbers with OS and real use cases, see Power consumption measurement application note for more details.
2 Sum of the listed supply rails.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

21

Electrical characteristics
Table 15 summarizes the external power supply states in all the power modes.

Power rail
VDD_ARM VDD_SOC VDD_GPU VDD_VPU VDD_DRAM Misc_1P81 Misc_0P81 VDD_MIPI_1P2 VDD_MIPI_0P9 VDD_DRAM_PLL_0P8 VDD_SNVS_0P8 NVCC_SNVS_1P8 NVCC_<XXX> PVCCx_1P8 NVCC_DRAM 1 See Table 16

Table 15. The power supply states

OFF

SNVS

SUSPEND

OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF

OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF ON ON OFF OFF OFF

OFF ON OFF OFF OFF ON ON OFF OFF ON ON ON ON ON ON

IDLE ON ON OFF OFF ON ON ON ON ON ON ON ON ON ON ON

RUN ON ON ON/OFF ON/OFF ON ON ON ON ON ON ON ON ON ON ON

Misc_1P8 Misc_0P8

Table 16. Group name
VDD_24M_XTAL_1P8 VDD_ANA0_1P8 VDD_ANA1_1P8 VDD_ARM_PLL_1P8 VDD_DRAM_PLL_1P8 VDD_MIPI_1P8 VDD_PCI_1P8 VDD_USB_1P8
VDD_ANA_0P8 VDD_ARM_PLL_0P8 VDD_PCI_0P8 VDD_USB_0P8

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

22

NXP Semiconductors

Electrical characteristics
3.2 Power supplies requirements and restrictions
The system design must comply with power-up sequence, power-down sequence, and steady state guidelines as described in this section to guarantee the reliable operation of the device. Any deviation from these sequences may result in the following situations:
· Excessive current during power-up phase · Prevention of the device from booting · Irreversible damage to the processor (worst-case scenario)
3.2.1 Power-up sequence
Figure 5 illustrates the power-up sequence of i.MX 8M Mini processor.

NVCC_SNVS_1P8
VDD_SNVS_0P8
RTC_RESET_B
32K RTC_XTALI
PMIC_ON_REQ VDD_SOC,VDD_ANA_0P8,VDD_ARM_PLL_0P8
VDD_PCI_0P8,VDD_USB_0P8 VDD_GPU,VDD_VPU,VDD_DRAM,
VDD_DRAM_PLL_0P8 VDD_MIPI_0P9 VDD_ARM
VDD_ANAx_1P8,VDD_DRAM_PLL_1P8,VDD_MIPI_1P8, VDD_24M_XTAL_1P8,VDD_USB_1P8,VDD_PCI_1P8 VDD_ARM_PLL_1P8 PVCCx_1P8, NVCC_xxx (1.8 V)
NVCC_DRAM
NVCC_xxx (2.5 and 3.3 V),VDD_USB_3P3
VDD_MIPI_1P2
POR_B

T1 T2
T3 t1
T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

Figure 3. The power-up sequence

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

23

Electrical characteristics

Table 17 represents the timing parameters of the power-up sequence.
Table 17. Power-up sequence

Description

Min

Typ

Max

Unit

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T131

Delay from NVCC_SNVS_1P8 to VDD_SNVS_0P8 Delay from VDD_SNVS_0P8 high or RTC_SET_B de-assert Delay from RTC_RESET_B de-assert to stable 32 k existed Delay from PMIC_ON_REQ assert to analog 0.8 V on Delay from analog 0.8 V on to analog 0.8/0/9 V on Delay from analog 0.8/0.9 V on to PHY 0.9 V on Delay from PHY 0.9 V on to VDD_ARM on Delay from VDD_ARM on to analog 1.8 V on Delay from analog 1.8 V on to digital 1.8 V on Delay from digital 1.8 V on to NVCC_DRAM on Delay from NVCC_DRAM on to digital 2.5 V and 3.3 V on Delay from digital 2.5 V and 3.3 V on to PHY 1.2 V on Delay from PHY 1.2 V on to POR_B de-assert

0

2

--

ms

0

10

--

ms

--

40

100

s

0

0.2

--

ms

0

2

--

ms

0

15

--

s

0

2

--

ms

0

15

--

s

0

2

--

ms

0

2

--

ms

0

2

--

ms

0

2

--

ms

0

20

--

ms

t1

Uncertain period before PMIC_ON_REQ assert during VDD_SNVS_0P8 ramp up.

For ramp up requirement, only VDD_ANA0_1P8 has 5 s minimum requirement, others do not have such requirement. During power-up, make sure NVCC_xxx - PVCCx_1P8 < 2 V.
1 The values of T13 depend on T2. RTC_RESET_B must be de-assert before POR_B de-asserts.

3.2.2 Power-down sequence
Figure 5 illustrates the power-down sequence of i.MX 8M Mini processor.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

24

NXP Semiconductors

Electrical characteristics

VDD_MIPI_1P2
NVCC_xxx (2.5 and 3.3 V)
NVCC_DRAM
PVCCx_1P8, NVCC_xxx (1.8V) VDD_ANAx_1P8, VDD_DRAM_PLL_1P8,VDD_MIPI_1P8
VDD_24M_XTAL_1P8,VDD_USB_1P8,VCC_PCI_1P8 VDD_ARM
VDD_MIPI_0P9 VDD_GPU, VDD_VPU, VDD_DRAM
VDD_DRAM_PLL_0P8 VDD_SOC, VDD_ANA_0P8 VDD_PCI_0P8, VDD_USB_0P8
32K RTC_XTALI RTC_RESET_B
VDD_SNVS_0P8
NVCC_SNVS_1P8

T1 T2 T3 T4
T5 T6 T7 T8

T9 T10 T11 T12

Figure 4. The power-down sequence

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

25

Electrical characteristics

Table 18 represents the timing parameters of the power-down sequence.
Table 18. Power-down sequence

Description

Min

T1

Delay from PHY 1.2 V off to digital 2.5 V and 3.3 V off

0

T2

Delay from digital 2.5 V and 3.3 V off to NVCC_DRAM off

0

T3

Delay from NVCC_DRAM off to digital 1.8 V off

0

T4

Delay from digital 1.8 V off to analog 1.8 V off

0

T5

Delay from analog 1.8 V off to VDD_ARM off

0

T6

Delay from VDD_ARM off to PHY 0.9 V off

0

T7

Delay from PHY 0.9 V off to analog 0.8/0.9 V off

0

T8

Delay from analog 0.8/0.9 V off to analog 0.8 V off

0

T9

Delay from analog 0.8 V off to 32k off

0

T10 Delay from 32k off to RTC_RESET_B assert

0

T11 Delay from RTC_RESET_B assert to VDD_SNVS_0P8 off

0

T12 Delay from VDD_SNVS_0P8 off to NVCC_SNVS_1P8 off

0

During power-down, make sure NVCC_xxx - PVCCx_1P8 < 2 V.

3.3 PLL electrical characteristics
Table 19 shows PLL electrical characteristics.

PLL type AUDIO_PLL1 AUDIO_PLL2 VIDEO_PLL1
SYS_PLL1

Table 19. PLL electrical parameters Parameter
Clock output range Reference clock Lock time
Clock output range Reference clock Lock time
Clock output range Reference clock Lock time
Clock output range Reference clock Lock time

Typ

Max

Unit

10

--

ms

10

--

ms

10

--

ms

10

--

ms

10

--

ms

10

--

ms

10

--

ms

10

--

ms

10

--

ms

10

--

ms

10

--

ms

10

--

ms

Value Maximum 650 MHz
24 MHz 375 s Maximum 650 MHz 24 MHz 375 s Maximum 650 MHz 24 MHz 375 s 800 MHz 24 MHz 25 s

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

26

NXP Semiconductors

PLL type SYS_PLL2 SYS_PLL3 ARM_PLL DRAM_PLL GPU_PLL VPU_PLL

Electrical characteristics

Table 19. PLL electrical parameters (continued)

Parameter

Value

Clock output range Reference clock Lock time
Clock output range Reference clock Lock time
Clock output range Reference clock Lock time
Clock output range Reference clock Lock time
Clock output range Reference clock Lock time
Clock output range Reference clock Lock time

1 GHz 24 MHz 25 s 600 MHz ~ 1 GHz 24 MHz 25 s 800 MHz ~1.6 GHz 24 MHz 25 s Maximum 750 MHz 24 MHz 375 s Maximum 1 GHz 24 MHz 25 s 400 MHz ~ 800 MHz 24 MHz 25 s

3.4 On-chip oscillators
3.4.1 OSC24M
A 24 MHz oscillator is used as the primary clock source for the PLLs to generate the clock for the CPU, BUS, and high-speed interfaces. For fractional PLLs, the 24 MHz clock from the oscillator can be used as the PLL reference clock directly.

Parameter Description Frequency Cload Drive level ESR

Table 20. Crystal specifications1

Min

Typ

--

24

--

12

100

--

--

--

Max

Unit

--

MHz

--

pF

--

W

80



i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

27

Electrical characteristics
1 Actual working drive level is depend on real design. Please contact crystal vendor for selecting drive level of crystal.
3.4.2 OSC32K
An external 32.768 kHz oscillator is necessary.
3.5 General purpose I/O (GPIO) DC parameters
Table 21 shows DC parameters for GPIO pads. The parameters in Table 21 are guaranteed per the operating ranges in Table 10, unless otherwise noted.

Table 21. GPIO DC parameters

Parameter

Symbol

Test Conditions

Min

Typ

Max

Unit

High-level output voltage VOH (1.8 V) IOH = 1.6/3.2/6.4/9.6 mA (1.8 V) 0.8 x VDD

--

VOH (3.3 V)

IOH = 2/4/8/12 mA (3.3 V)

0.8 x VDD

--

VDD

V

VDD

V

Low-level output voltage VOL (1.8 V) IOL = 1.6/3.2/6.4/9.6 mA (1.8 V)

0

VOL (3.3 V)

IOL = 2/4/8/12 mA (3.3 V)

0

--

0.2 x VDD V

--

0.2 x VDD V

High-level input voltage

VIH

--

0.7 x VDD

--

VDD + 0.3 V

Low-level input voltage

VIL

--

-0.3

--

0.3 x VDD V

Pull-up resistor

--

Pull-down resistor

--

VDD = 1.65 - 1.95V Temp = 0 - 95 oC

12

22

49

K

13

23

48

K

Pull-up resistor

--

Pull-down resistor

--

VDD = 2.25 - 2.75V Temp = 0 - 95 oC

Pull-up resistor1

--

Pull-down resistor1

--

VDD = 3.0 - 3.6V Temp = 0 - 95 oC

High level input current

IIH

--

Low level input current

IIL

--

1 Does not support internal pull-up or pull-down for 3.3 V IOs.

13

24

9.1

33

--

--

--

--

-4

--

-0.7

--

69

K

69

K

--

K

--

K

4

A

0.7

A

Parameter High level input current

Table 22. Additional leakage parameters

Symbol

Pins

Min

PCIE_RXN, USBx_Dx

-30

IIH

PCIE_CLK

-8

MIPI_CSI

-4

Max

Unit

30

8

A

4

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

28

NXP Semiconductors

Parameter Low level input current

Electrical characteristics

Table 22. Additional leakage parameters (continued)

Symbol IIL

Pins JTAG_TRST_B, USBx_ID
PCIE_CLK, USBx_Dx PCIE_RXN
MIPI_CSI, ONOFF, POR_B

Min -200
-6 -2.5 -0.7

Max

Unit

200

6

A

2.5

0.7

3.5.1 DDR I/O DC electrical characteristics
The DDR I/O pads support LPDDR 4, DDR4, and DDR3L operational modes. The DDR Memory Controller (DDRMC) is designed to be compatible with JEDEC-compliant SDRAMs.
DDRMC operation is contingent upon the board's DDR design adherence to the DDR design and layout requirements stated in the hardware development guide for the i.MX 8M Mini applications processor.

3.6 I/O AC parameters
This section includes the AC parameters of the following I/O types: · General Purpose I/O (GPIO)
The GPIO load circuit and output transition time waveforms are shown in Figure 5 and Figure 6.

FUronmdeOr uTtepsutt

Test Point CL

CL includes package, probe and fixture capacitance Figure 5. Load circuit for output

80%

Output (at pad)

20%

tr

tf

Figure 6. Output transition time waveform

3.6.1 General purpose I/O AC parameters
This section presents the I/O AC parameters for GPIO in different modes.

OVDD 80%
20%0 V

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

29

Electrical characteristics

Table 23. Maximum frequency of operation for input

Maximum frequency (MHz)

VDD = 1.8 V, CL = 50 pF

VDD = 3.3 V, CL = 50 pF

450

440

dse[2:0] 00X 00X 10X 10X 01X 01X 11X 11X

Table 24. Maximum frequency of operation for output

Parameter

Maximum Frequency (MHz)

VDD = 1.8 V

VDD = 3.3 V

sre[1:0]

Driver type

CL = 10 pF

CL = 20 pF

CL = 10 pF

CL = 20 pF

0X

1x Slow Slew

150

80

120

65

1X

1x Fast Slew

150

80

120

65

0X

2x Slow Slew

160

90

150

80

1X

2x Fast Slew

160

90

150

80

0X

4x Slow Slew

200

100

180

90

1X

4x Fast Slew

200

100

180

90

0X

6x Slow Slew

250

130

200

100

1X

6x Fast Slew

250

130

200

100

3.7 Output buffer impedance parameters
This section defines the I/O impedance parameters of the i.MX 8M Mini family of processors for the following I/O types:
NOTE
DDR I/O output driver impedance is measured with "long" transmission line of impedance Ztl attached to I/O pad and incident wave launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that defines specific voltage of incident wave relative to OVDD. Output driver impedance is calculated from this voltage divider (see Figure 7).

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

30

NXP Semiconductors

ipp_do predriver
U,(V) VDD

OVDD PMOS (Rpu)
pad
NMOS (Rpd) OVSS

Electrical characteristics

Ztl W, L = 20 inches

Cload = 1p

Vin (do)

0 U,(V)
OVDD
Vref

Vref1

Vref2

t,(ns) Vout (pad)

0

Vovdd - Vref1

Rpu =

x Ztl

Vref1

Vref2

Rpd =

x Ztl

Vovdd - Vref2

Figure 7. Impedance matching load for measurement

t,(ns)

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

31

Electrical characteristics

3.7.1 DDR I/O output buffer impedance
Table 25 shows DDR I/O output buffer impedance of i.MX 8M Mini family of processors.
Table 25. DDR I/O output buffer impedance

Parameter Symbol

Test Conditions DSE (Drive Strength)

Typical

NVCC_DRAM = 1.35 NVCC_DRAM = 1.2 NVCC_DRAM = 1.1

V (DDR3L)

V (DDR4)

V (LPDDR4)

Unit

Output Driver Impedance

Rdrv

000000 000010 001000 001010 011000 011010 111000 111010

Hi-Z

Hi-Z

Hi-Z

240

240

240

120

120

120

80

80

80



60

60

60

48

48

48

40

40

40

34

34

34

Note: 1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.
2. Calibration is done against 240  external reference resistor.
3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.

3.8 System modules timing
This section contains the timing and electrical parameters for the modules in each i.MX 8M Mini processor.

3.8.1 Reset timings parameters
Figure 8 shows the reset timing and Table 26 lists the timing parameters.

POR_B (Input)

CC1

Figure 8. Reset timing diagram

Table 26. Reset timing parameters

ID

Parameter

Min Max

CC1 Duration of POR_B to be qualified as valid.

1--

Unit RTC_XTALI cycle

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

32

NXP Semiconductors

Electrical characteristics
3.8.2 WDOG Reset timing parameters
Figure 9 shows the WDOG reset timing and Table 27 lists the timing parameters.

WDOGx_B (Output)

CC3
Figure 9. WDOGx_B timing diagram

Table 27. WDOGx_B timing parameters

ID CC3

Parameter Duration of WDOGx_B Assertion

Min Max 1--

Unit RTC_XTALI cycle

NOTE
RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or approximately 30 s.
NOTE
WDOGx_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUXC chapter of the i.MX 8M Mini Applications Processor Reference Manual (IMX8MMRM) for detailed information.

3.9 External peripheral interface parameters
The following subsections provide information on external peripheral interfaces.

3.9.1 ECSPI timing parameters
This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing parameters for master and slave modes.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

33

Electrical characteristics
3.9.1.1 ECSPI Master mode timing Figure 10 depicts the timing of ECSPI in master mode. Table 28 lists the ECSPI master mode timing characteristics.
ECSPIx_RDY_B

ECSPIx_SS_B ECSPIx_SCLK ECSPIx_MOSI ECSPIx_MISO

CS10 CS8

CS1

CS3

CS7 CS3

CS9

CS2 CS2

CS6

CS5

CS4

Figure 10. ECSPI Master mode timing diagram

Table 28. ECSPI Master mode timing parameters

ID

Parameter

Symbol

Min

Max Unit

CS1 ECSPIx_SCLK Cycle Time­Read ECSPIx_SCLK Cycle Time­Write

tclk

43

-- ns

15

CS2 ECSPIx_SCLK High or Low Time­Read ECSPIx_SCLK High or Low Time­Write

tSW

21.5

-- ns

7

CS3 ECSPIx_SCLK Rise or Fall1

tRISE/FALL

--

-- ns

CS4 ECSPIx_SS_B pulse width

tCSLH

Half ECSPIx_SCLK period

-- ns

CS5 ECSPIx_SS_B Lead Time (CS setup time)

tSCS

Half ECSPIx_SCLK period - 4 -- ns

CS6 ECSPIx_SS_B Lag Time (CS hold time)

tHCS

Half ECSPIx_SCLK period - 2 -- ns

CS7 ECSPIx_MOSI Propagation Delay (CLOAD = 20 pF)

tPDmosi

-1

1 ns

CS8 ECSPIx_MISO Setup Time

tSmiso

18

-- ns

CS9 ECSPIx_MISO Hold Time

tHmiso

0

CS10 RDY to ECSPIx_SS_B Time2

tSDRY

5

1 See specific I/O AC parameters Section 3.6, I/O AC parameters." 2 SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.

-- ns -- ns

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

34

NXP Semiconductors

Electrical characteristics
3.9.1.2 ECSPI Slave mode timing Figure 11 depicts the timing of ECSPI in Slave mode. Table 29 lists the ECSPI Slave mode timing characteristics.

ECSPIx_SS_B
ECSPIx_SCLK
ECSPIx_MISO
CS7
ECSPIx_MOSI

CS1 CS9
CS8

CS2 CS2

CS6

CS5

CS4

Figure 11. ECSPI Slave mode timing diagram

Table 29. ECSPI Slave mode timing parameters

ID

Parameter

CS1 ECSPIx_SCLK Cycle Time­Read ECSPI_SCLK Cycle Time­Write
CS2 ECSPIx_SCLK High or Low Time­Read ECSPIx_SCLK High or Low Time­Write
CS4 ECSPIx_SS_B pulse width CS5 ECSPIx_SS_B Lead Time (CS setup time) CS6 ECSPIx_SS_B Lag Time (CS hold time) CS7 ECSPIx_MOSI Setup Time CS8 ECSPIx_MOSI Hold Time CS9 ECSPIx_MISO Propagation Delay (CLOAD = 20 pF)

Symbol tclk
tSW
tCSLH tSCS tHCS tSmosi tHmosi tPDmiso

Min
15 43 7 21.5 Half ECSPIx_SCLK period 5 5 4 4 4

Max Unit -- ns
-- ns
-- ns -- ns -- ns -- ns -- ns 19 ns

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

35

Electrical characteristics
3.9.2 Ultra-high-speed SD/SDIO/MMC host interface (uSDHC) AC
timing
This section describes the electrical information of the uSDHC, which includes SD/eMMC 5.1 (single data rate) timing, eMMC 5.1/SD3.0 (dual data rate) AC timing, and SDR50/SDR104 AC timing.
3.9.2.1 SD3.0/eMMC 5.1 (single data rate) AC timing Figure 12 depicts the timing of SD3.0/eMMC5.1 (SDR), and Table 30 lists the SD3.0/eMMC5.1 (SDR) timing characteristics.
SD4
SD2 SD1
SD5

SDx_CLK

SD3 SD6

Output from uSDHC to card SDx_DATA[7:0]

SD7 SD8

Input from card to uSDHC SDx_DATA[7:0]

Figure 12. SD3.0/eMMC5.1 (SDR) timing

Table 30. SD3.0/eMMC5.1 (SDR) interface timing specification

ID

Parameter

Symbols

Min

Card Input Clock

SD1
SD2 SD3 SD4 SD5

Clock Frequency (Low Speed) Clock Frequency (SD/SDIO Full Speed/High Speed) Clock Frequency (MMC Full Speed/High Speed)

fPP1

0

fPP2

0

fPP3

0

Clock Frequency (Identification Mode)

fOD

100

Clock Low Time

tWL

7

Clock High Time

tWH

7

Clock Rise Time

tTLH

--

Clock Fall Time

tTHL

--

uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)

SD6 uSDHC Output Delay

tOD

6.6

Max
400 25/50 20/52 400
-- -- 3 3
3.6

Unit
kHz MHz MHz kHz ns ns
ns ns
ns

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

36

NXP Semiconductors

Electrical characteristics

Table 30. SD3.0/eMMC5.1 (SDR) interface timing specification (continued)

ID

Parameter

Symbols

Min

Max

Unit

uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)

SD7 uSDHC Input Setup Time

tISU

2.5

--

ns

SD8 uSDHC Input Hold Time4

tIH

1.5

--

ns

1 In Low-Speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.
2 In Normal (Full) -Speed mode for SD/SDIO card, clock frequency can be any value between 0­25 MHz. In High-speed mode, clock frequency can be any value between 0­50 MHz.
3 In Normal (Full) -Speed mode for MMC card, clock frequency can be any value between 0­20 MHz. In High-speed mode, clock frequency can be any value between 0­52 MHz.
4 To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.

3.9.2.2 eMMC 5.1/SD3.0 (dual data rate) AC timing
Figure 13 depicts the timing of eMMC 5.1/SD3.0 (DDR). Table 31 lists the eMMC 5.1/SD3.0 (DDR) timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).
SD1

SDx_CLK

SD2

SD2

Output from eSDHCv3 to card SDx_DATA[7:0]

SD3 SD4

Input from card to eSDHCv3 SDx_DATA[7:0]

...... ......

Figure 13. eMMC5.1/SD3.0 (DDR) timing

Table 31. eMMC5.1/SD3.0 (DDR) interface timing specification

ID

Parameter

Symbols

Min

Max

Card Input Clock

SD1 Clock Frequency (eMMC5.1 DDR) SD1 Clock Frequency (SD3.0 DDR)

fPP

0

52

fPP

0

50

uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)

SD2 uSDHC Output Delay

tOD

2.7

6.9

uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)

Unit
MHz MHz
ns

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

37

Electrical characteristics

Table 31. eMMC5.1/SD3.0 (DDR) interface timing specification (continued)

ID

Parameter

Symbols

Min

Max

Unit

SD3 uSDHC Input Setup Time SD4 uSDHC Input Hold Time

tISU

2.4

--

ns

tIH

1.3

--

ns

3.9.2.3 HS400 DDR AC timing Figure 14 depicts the timing of HS400 mode, and Table 32 lists the HS400 timing characteristics. Be aware that only data is sampled on both edges of the clock (not applicable to CMD). The CMD input/output timing for HS400 mode is the same as CMD input/output timing for SDR104 mode. Check SD5, SD6, and SD7 parameters in Table 34 SDR50/SDR104 Interface Timing Specification for CMD input/output timing for HS400 mode.

SCK

DAT0

Output from uSDHC to eMMC

D.A..T1 DAT7

Strobe

DAT0

Input from eMMC to uSDHC

D.A..T1

DAT7

SD1

SD2

SD3

SD4 SD5 SD4 SD5

SD6

SD7

Figure 14. HS400 timing

Table 32. HS400 interface timing specification

ID

Parameter

Symbols

Min

SD1 SD2 SD3
SD4 SD5

Card Input Clock

Clock frequency Clock low time Clock high time

fPP

0

tCL

0.46 x tCLK

tCH

0.46 x tCLK

uSDHC Output/Card Inputs DAT (Reference to SCK)

Output skew from data of edge of SCK

tOSkew1

0.45

Output skew from edge of SCk to data

tOSkew2

0.45

uSDHC Input/Card Outputs DAT (Reference to Strobe)

Max
200 0.54 x tCLK 0.54 x tCLK
-- --

Unit
MHz ns ns
ns ns

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

38

NXP Semiconductors

Electrical characteristics

Table 32. HS400 interface timing specification (continued)

ID

Parameter

SD6 uSDHC input skew

SD7 uSDHC hold skew

Symbols

Min

tRQ

--

tRQH

--

Max

Unit

0.45

ns

0.45

ns

3.9.2.4 HS200 Mode AC timing Figure 15 depicts the timing of HS200 mode, and Table 33 lists the HS200 timing characteristics.

SCK 8-bit output from uSDHC to eMMC

SD1

SD2

SD3

SD4/SD5

8-bit input from eMMC to uSDHC SD8

Figure 15. HS200 timing

iti

Table 33. HS200 interface timing specification

ID

Parameter

Symbols

Min

Max

Unit

Card Input Clock

SD1 Clock Frequency Period

tCLK

5.0

--

ns

SD2 Clock Low Time

tCL

0.3 x tCLK 0.7 x tCLK

ns

SD3 Clock High Time

tCH

0.3 x tCLK 0.7 x tCLK

ns

uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)

SD5 uSDHC Output Delay

tOD

-1.6

1

ns

uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1

SD8 uSDHC Output Data Window 1 HS200 is for 8 bits while SDR104 is for 4 bits.

tODW

0.5 x tCLK

--

ns

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

39

Electrical characteristics
3.9.2.5 SDR50/SDR104 AC timing Figure 16 depicts the timing of SDR50/SDR104, and Table 34 lists the SDR50/SDR104 timing characteristics.

SCK

SD1

SD2

SD3

SD4/SD5

8-bit output from uSDHC to eMMC 8-bit input from eMMC to uSDHC

SD6

SD7

SD8

Figure 16. SDR50/SDR104 timing

Table 34. SDR50/SDR104 interface timing specification

ID

Parameter

Symbols

Min

Max

Unit

Card Input Clock

SD1 Clock Frequency Period

tCLK

5

--

ns

SD2 Clock Low Time

tCL

0.46 x tCLK 0.54 x tCLK

ns

SD3 Clock High Time

tCH

0.46 x tCLK 0.54 x tCLK

ns

uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)

SD4 uSDHC Output Delay

tOD

-3

1

ns

uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)

SD5 uSDHC Output Delay

tOD

-1.6

1

ns

uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)

SD6 uSDHC Input Setup Time

tISU

2.4

--

ns

SD7 uSDHC Input Hold Time

tIH

1.4

--

ns

uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1

SD8 uSDHC Output Data Window 1 Data window in SDR100 mode is variable.

tODW

0.5 x tCLK

--

ns

3.9.2.6 Bus operation condition for 3.3 V and 1.8 V signaling
Signaling level of SD/eMMC4.5/5.0/5.1 can be 1.8 V or 3.3 V depending on the working mode. The DC parameters for the NVCC_SD1, NVCC_SD2 and NVCC_SD3 supplies are identical to those shown in Table 21, "GPIO DC parameters," on page 28.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

40

NXP Semiconductors

Electrical characteristics

3.9.3 Ethernet controller (ENET) AC electrical specifications
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.
Table 35. ENET signal mapping

Pad name

Description

Mode

Alt mode Direction

Comments

ENET_MDC

enet1.MDC RMII/RGMII

ALT0

O

--

ENET_MDIO

enet1.MDIO RMII/RGMII

ALT0

I/O

--

ENET_TD3

RGMII.TD3

RGMII

ALT0

O

Only used for RGMII

ENET_TD2

RMII.CLK; RGMII.TD2

RMII/RGMII

ALT0

I/O

Used as RMII clock and RGMII data, there

are two RGMII clock schemes.

· MAC generate output 50M reference clock

for PHY, and MAC also use this 50M clock.

· MAC use external 50M clock.

ENET_TD1

RMII and RGMII.TD1

RMII/RGMII

ALT0

O

--

ENET_TD0

RMII and RGMII.TD0

RMII/RGMII

ALT0

O

--

ENET_TX_CTL RMII.TX_EN; RMII/RGMII RGMII.TX_CTL

ALT0

O

--

ENET_TXC RMII.TX_ERR;

RGMII ALT0/ALT1

O

For RMII--ENET_TXC works as

RGMII. TX_CLK

RMII.TX_ERR need to work in the ALT1

mode.

For RGMII--ENET_TXC works as

RGMII.TX_CLK need to work in the ALT0

mode.

ENET_RX_CTL RMII.RX_EN (CRS_DV);
RGMII.RC_CTL

RMII/RGMII

ALT0

I

--

ENET_RXC RMII.RX_ERR;

RGMII ALT0/ALT1

I

For RMII--ENET_RXC works as

RGMII.RX_CLK

RMII.RX_ERR need to work in the ALT1

mode.

For RGMII--ENET_RXC works as

RGMII.RX_CLK need to work in the ALT0

mode.

ENET_RD0

RMII and RGMII.RD0

RMII/RGMII

ALT0

I

--

ENET_RD1

RMII and RGMII.RD1

RMII/RGMII

ALT0

I

--

ENET_RD2

RGMII.RD2

RGMII

ALT0

I

--

ENET_RD3

RGMII.RD3

RGMII

ALT0

I

--

GPIO1_IO06

enet1.MDC

RMII/RGMII

ALT1

O

--

GPIO1_IO07

enet1.MDIO RMII/RGMII

ALT1

I/O

--

I2C1_SCL

enet1.MDC

RMII/RGMII

ALT1

O

--

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

41

Electrical characteristics

Table 35. ENET signal mapping (continued)

Pad name

Description

Mode

Alt mode Direction

Comments

I2C1_SDA I2C2_SCL I2C2_SDA GPIO1_IO00 GPIO1_IO08

enet1.MDIO
enet1.1588_EV ENT1_IN
enet1.1588_EV ENT1_OUT
ENET_PHY_RE F_CLK_ROOT
enet1.1588_EV ENT0_IN

RMII/RGMII RMII/RGMII RMII/RGMII
RGMII RMII/RGMII

ALT1 ALT1 ALT1 ALT1 ALT1

GPIO1_IO09 enet1.1588_EV RMII/RGMII ENT0_OUT

ALT1

I/O

--

O

--

I/O

--

O

Reference clock for PHY.

I

Capture/compare block input/output event

bus signal. When configured for capture and

a rising edge is detected, the current timer

value is latched and transferred into the

corresponding ENET_TCCRn register for

inspection by software. When configured for

compare, the corresponding signal

1588_EVENT is asserted for one cycle when

the timer reaches the compare value

programmed in register ENET_TCCRn. An

interrupt or DMA request can be triggered if

the corresponding bit in ENET_TCSRn[TIE]

or ENET_TSCRn[TDRE] is set.

O

--

3.9.3.1 RMII mode timing
Figure 17 shows RMII mode timings. Table 36 describes the timing parameters (M16­M21) shown in the figure.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

42

NXP Semiconductors

Electrical characteristics

ENET_CLK (input)

M16 M17

M18
ENET_TX_DATA (output) ENET_TX_EN

ENET_RX_EN (input) ENET_RX_DATA[1:0] ENET_RX_ER

M19
M20 M21 Figure 17. RMII mode signal timing diagram

Table 36. RMII signal timing

ID

Characteristic

Min.

M16 ENET_CLK pulse width high

35%

M17 ENET_CLK pulse width low

35%

M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid

4

M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid

--

M20 ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to

4

ENET_CLK setup

M21 ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold 2

Max.

Unit

65% 65% -- 15 --

ENET_CLK period ENET_CLK period
ns ns ns

--

ns

3.9.3.2 RGMII signal switching specifications
The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices.
Table 37. RGMII signal switching specifications1

Symbol
Tcyc2 TskewT3 TskewR3 Duty_G4 Duty_T4
Tr/Tf

Description Clock cycle duration Data to clock output skew at transmitter Data to clock input skew at receiver Duty cycle for Gigabit Duty cycle for 10/100T Rise/fall time (20­80%)

Min. 7.2 -500 1 45 40 --

Max.

Unit

8.8

ns

500

ps

2.6

ns

55

%

60

%

0.75

ns

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

43

Electrical characteristics
1 The timings assume the following configuration: DDR_SEL = (11)b DSE (drive-strength) = (111)b
2 For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively. 3 For all versions of RGMII prior to 2.0; this implies that PC board design will require clocks to be routed such that an additional
trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value is unspecified. 4 Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between.

2'-))?48#ATTRANSMITTER 2'-))?48$NNTO

4SKEW4

2'-))?48?#4,

48%.

48%22

4SKEW2

2'-))?48#ATRECEIVER
Figure 18. RGMII transmit signal timing diagram original

2'-))?28#ATTRANSMITTER 2'-))?28$NNTO

4SKEW4

2'-))?28?#4,

28$6

28%22

4SKEW2

2'-))?28#ATRECEIVER
Figure 19. RGMII receive signal timing diagram original

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

44

NXP Semiconductors

Electrical characteristics

2'-))?28#SOURCEOFDATA )NTERNALDELAY 2'-))?28$NNTO

4SETUP4

4HOLD4

2'-))?28?#4, 2'-))?28#ATRECEIVER

28$6

28%22
4SETUP2

4HOLD2

Figure 20. RGMII receive signal timing diagram with internal delay

3.9.4 General-purpose media interface (GPMI) timing
The i.MX 8M Mini GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 200 MB/s I/O speed and individual chip select.
It supports Asynchronous Timing mode, Source Synchronous Timing mode and Toggle Timing mode separately, as described in the following subsections.

3.9.4.1 Asynchronous mode AC timing (ONFI 1.0 compatible)
Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 21 through Figure 24 depicts the relative timing between GPMI signals at the module level for different operations under Asynchronous mode. Table 38 describes the timing parameters (NF1­NF17) that are shown in the figures.

.!.$?#,% .!.$?#%?" .!.$?7%?" .!.$?!,%
.!.$?$!4!XX

NF1 NF3

NF2 NF4

NF5

NF6

NF7

NF8

NF9

Command

Figure 21. Command Latch cycle timing diagram

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

45

Electrical characteristics

.!.$?#,% .!.$?#%?" .!.$?7%?"

NF1
NF3 NF10
NF5

NF11

.!.$?!,% NAND_DATAxx

NF6
NF8 Address

NF7 NF9

Figure 22. Address Latch cycle timing diagram

.!.$?#,% .!.$?#%?" .!.$?7%?"

NF1
NF3 NF10
NF5

NF11

.!.$?!,%

NF6

NF7

.!.$?$!4!XX

NF8

NF9

Data to NF

Figure 23. Write Data Latch cycle timing diagram

.!.$?#,%

.!.$?#%?" .!.$?2%?"

NF14 NF13

NF15

.!.$?2%!$9?"

NF12

NF16

NF17

.!.$?$!4!XX

Data from NF

Figure 24. Read Data Latch cycle timing diagram (Non-EDO Mode)

.!.$?#,% .!.$?#%?"
.!.$?2%?"

NF14 NF13

NF15

.!.$?2%!$9?"

NF12

NAND_DATAxx

NF16

NF17 Data from NF

Figure 25. Read Data Latch cycle timing diagram (EDO mode)

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

46

NXP Semiconductors

Electrical characteristics

Table 38. Asynchronous mode timing parameters1

Timing

ID

Parameter

Symbol

T = GPMI Clock Cycle

Unit

Min.

Max.

NF1 NAND_CLE setup time

tCLS

(AS + DS)  T - 0.12 [see notes2,3]

ns

NF2 NAND_CLE hold time

tCLH

DH  T - 0.72 [see note2]

ns

NF3 NAND_CE0_B setup time

tCS

(AS + DS + 1)  T [see notes3,2]

ns

NF4 NAND_CE0_B hold time

tCH

(DH+1)  T - 1 [see note2]

ns

NF5 NAND_WE_B pulse width

tWP

DS  T [see note2]

ns

NF6 NAND_ALE setup time

tALS

(AS + DS)  T - 0.49 [see notes3,2]

ns

NF7 NAND_ALE hold time

tALH

DH  T - 0.42 [see note2]

ns

NF8 Data setup time

tDS

DS  T - 0.26 [see note2]

ns

NF9 Data hold time

tDH

DH  T - 1.37 [see note2]

ns

NF10 Write cycle time

tWC

(DS + DH)  T [see note2]

ns

NF11 NAND_WE_B hold time

tWH

DH  T [see note2]

ns

NF12 Ready to NAND_RE_B low

tRR4

(AS + 2)  T [see 3,2]

--

ns

NF13 NAND_RE_B pulse width

tRP

DS  T [see note2]

ns

NF14 READ cycle time

tRC

(DS + DH)  T [see note2]

ns

NF15 NAND_RE_B high hold time

tREH

DH  T [see note2]

ns

NF16 Data setup on read

tDSR

--

(DS  T -0.67)/18.38 [see

ns

notes5,6]

NF17 Data hold on read

tDHR

0.82/11.83 [see notes5,6]

--

ns

1 GPMI's Asynchronous mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.
2 AS minimum value can be 0, while DS/DH minimum value is 1. 3 T = GPMI clock period -0.075 ns (half of maximum p-p jitter). 4 NF12 is guaranteed by the design. 5 Non-EDO mode. 6 EDO mode, GPMI clock  100 MHz
(AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).

In EDO mode (Figure 24), NF16/NF17 are different from the definition in non-EDO mode (Figure 23). They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical values for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI samples NAND_DATAxx at the rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 8M Mini Applications Processor Reference Manual [IMX8MMRM]). The typical value of this control register is 0x8 at 50 MT/s EDO mode. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

47

Electrical characteristics
3.9.4.2 Source synchronous mode AC timing (ONFI 2.x compatible) Figure 26 to Figure 28 show the write and read timing of Source Synchronous mode.

NF18

NF19

.!.$?#%?"

NAND_CLE NAND_ALE NAND_WE/RE_B NAND_CLK

NF23

NF25 NF26

NF25 NF26 NF22

NF24

NAND_DQS NAND_DQS Output enable
NAND_DATA[7:0]

NF20
NF21
CMD

NF20
NF21
ADD

NAND_DATA[7:0] Output enable

Figure 26. Source Synchronous mode command and address timing diagram

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

48

NXP Semiconductors

.!.$?#%?"

NF18

.!.$?#,%

.!.$?!,%

NAND_WE/RE_B

.!.$?#,+

.!.$?$13
.!.$?$13 Output enable

NF23 NF23

NF25 NF25

NF27

Electrical characteristics
NF19

NF26 NF26

NF24 NF24

NF22

NF27

NF29

NF29

.!.$?$1;=
.!.$?$1;= Output enable

NF28

NF28

Figure 27. Source Synchronous mode data write timing diagram

NF18
.!.$?#%?" .!.$?#,% NAND_ALE
.!.$?7%2% .!.$?#,+

NF23 NF23 NF25

NF25 NF25

NF26 NF26 NF22

NF24 NF24

NF19

NF26

NF25

.!.$?$13
.!.$?$13 /UTPUTENABLE

.!.$?$!4!;=

.!.$?$!4!;= /UTPUTENABLE

Figure 28. Source Synchronous mode data read timing diagram

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

49

Electrical characteristics

.!.$?$13

NF30

.!.$?$!4!;=

D0

D1

D2

D3

NF30

NF31

NF31

Figure 29. NAND_DQS/NAND_DQ read valid window

Table 39. Source Synchronous mode timing parameters1

Timing

ID

Parameter

Symbol

T = GPMI Clock Cycle

Unit

Min.

Max.

NF18 NAND_CE0_B access time NF19 NAND_CE0_B hold time

tCE

CE_DELAY  T - 0.79 [see note2]

ns

tCH

0.5  tCK - 0.63 [see note2]

ns

NF20 Command/address NAND_DATAxx setup time

tCAS

0.5  tCK - 0.05

ns

NF21 Command/address NAND_DATAxx hold time

tCAH

0.5  tCK - 1.23

ns

NF22 clock period NF23 preamble delay NF24 postamble delay

tCK

--

ns

tPRE

PRE_DELAY  T - 0.29 [see note2]

ns

tPOST POST_DELAY  T - 0.78 [see note2]

ns

NF25 NAND_CLE and NAND_ALE setup time

tCALS

0.5  tCK - 0.86

ns

NF26 NAND_CLE and NAND_ALE hold time

tCALH

0.5  tCK - 0.37

ns

NF27 NAND_CLK to first NAND_DQS latching transition

tDQSS

T - 0.41 [see note2]

ns

NF28 Data write setup

--

0.25  tCK - 0.35

NF29 Data write hold

--

0.25  tCK - 0.85

NF30 NAND_DQS/NAND_DQ read setup skew

--

--

2.06

NF31 NAND_DQS/NAND_DQ read hold skew

--

--

1.95

1 GPMI's Source Synchronous mode output timing can be controlled by the module's internal registers GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.
2 T = tCK(GPMI clock period) ­0.075 ns (half of maximum p-p jitter).

For DDR Source Synchronous mode, Figure 29 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 8M Mini Applications Processor Reference Manual [IMX8MMRM]). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

50

NXP Semiconductors

3.9.4.3 ONFI NV-DDR2 mode (ONFI 3.2 compatible)

Electrical characteristics

3.9.4.3.1 Command and address timing
ONFI 3.2 mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing. See Section 3.9.4.1, Asynchronous mode AC timing (ONFI 1.0 compatible)," for details.

3.9.4.3.2 Read and write timing
ONFI 3.2 mode read and write timing is the same as Toggle mode AC timing. See Section 3.9.4.4, Toggle mode AC Timing," for details.

3.9.4.4 Toggle mode AC Timing

3.9.4.4.1

Command and address timing
NOTE Toggle mode command and address timing is the same as ONFI 1.0 compatible Asynchronous mode AC timing. See Section 3.9.4.1, Asynchronous mode AC timing (ONFI 1.0 compatible)," for details.

3.9.4.4.2 Read and write timing

Figure 30. Toggle mode data write timing

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

51

Electrical characteristics

DEV?CLK .!.$?#%X?" .!.$?#,%

.&

.!.$?!,%

 .!.$?7%?" .!.$?2%?"
.!.$?$13 .!.$?$!4!;=

T#+

.&

T#+

T#+

.&

T#+

T#+

Figure 31. Toggle mode data read timing

Table 40. Toggle mode timing parameters

Timing

ID

Parameter

Symbol

T = GPMI Clock Cycle

Unit

Min.

Max.

NF1 NAND_CLE setup time

tCLS

(AS + DS)  T - 0.12 [see note1s,2]

NF2 NAND_CLE hold time

tCLH

DH  T - 0.72 [see note2]

NF3 NAND_CE0_B setup time

tCS

(AS + DS)  T - 0.58 [see notes,2]

NF4 NAND_CE0_B hold time

tCH

DH  T - 1 [see note2]

NF5 NAND_WE_B pulse width

tWP

DS  T [see note2]

NF6 NAND_ALE setup time

tALS

(AS + DS)  T - 0.49 [see notes,2]

NF7 NAND_ALE hold time

tALH

DH  T - 0.42 [see note2]

NF8 Command/address NAND_DATAxx setup time tCAS

DS  T - 0.26 [see note2]

NF9 Command/address NAND_DATAxx hold time tCAH

DH  T - 1.37 [see note2]

NF18 NAND_CEx_B access time

tCE CE_DELAY  T [see notes3,2]

--

ns

NF22 clock period NF23 preamble delay

tCK

--

--

ns

tPRE PRE_DELAY  T [see notes4,2]

--

ns

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

52

NXP Semiconductors

Electrical characteristics

Table 40. Toggle mode timing parameters (continued)

Timing

ID

Parameter

Symbol

T = GPMI Clock Cycle

Unit

Min.

Max.

NF24 postamble delay

tPOST POST_DELAY  T + 0.43 [see

--

ns

note2]

NF28 Data write setup

tDS5

0.25  tCK - 0.32

--

ns

NF29 Data write hold

tDH5

0.25  tCK - 0.79

--

ns

NF30 NAND_DQS/NAND_DQ read setup skew

tDQSQ6

--

3.18

ns

NF31 NAND_DQS/NAND_DQ read hold skew

tQHS6

--

3.27

ns

1 AS minimum value can be 0, while DS/DH minimum value is 1. 2 T = tCK (GPMI clock period) -0.075 ns (half of maximum p-p jitter). 3 CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started
with enough time of ALE/CLE assertion to low level.
4 PRE_DELAY+1  (AS+DS)
5 Shown in Figure 30. 6 Shown in Figure 31.

For DDR Toggle mode, Figure 29 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI samples NAND_DATA[7:0] at both the rising and falling edges of a delayed NAND_DQS signal, which is provided by an internal DPLL. The delay value of this register can be controlled by the GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 8M Mini Applications Processor Reference Manual [IMX8MMRM]). Generally, the typical delay value is equal to 0x7, which means a 1/4 clock cycle delay is expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

3.9.5 I2C bus characteristics
The Inter-Integrated Circuit (I2C) provides functionality of a standard I2C master and slave. The I2C is designed to be compatible with the I2C Bus Specification, version 2.1, by Philips Semiconductor (now NXP Semiconductors).

3.9.6 MIPI D-PHY timing parameters
MIPI D-PHY electrical specifications are compliance.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

53

Electrical characteristics

Table 41. MIPI PHY worst power dissipation1

MODE

Power consume on Power consume on Power consume on VDD_MIPI_0P9 (mW) VDD_MIPI_1P2 (mW) VDD_MIPI_1P8 (mW)

Total power consume (mW)

M4 on

226.1

4.1

S4 on

35.6

265.8

2.1 Gbps

M4 on S4 off

164.7

4.03

28.6

197.33

M4 off

63.02

0

15.8

78.82

S4 on

ULPS

4.26

0.0367

0.0584

4.36

1 M4 indicates MIPI DSI have 4 data lane enable (at least 1 clock lane enable). S4 indicates MIPI CSI have 4 data lane enable (at least 1 clock lane enable).

3.9.7 PCIe PHY parameters
The PCIe interface is designed to be compatible with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0 standard.

Table 42. PCIe DC electrical characteristics

Parameter

Description

Min

PD

Power Consumption

Normal Gen2

--

Partial Mode

--

Slumber Mode

--

Full Powerdown

--

Typ 129.5 98.2
4.9 0.1

Max Unit

--

mW

--

mW

--

mW

--

mW

3.9.7.1 PCIE_RESREF reference resistor connection
The impedance calibration process requires connection of reference resistor 8.2 k 1% precision resistor on PCIE_RESREF pads to ground. It is used for termination impedance calibration.

3.9.8 PDM timing parameters
Figure 32 illustrates the input timing of the PDM.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

54

NXP Semiconductors

Electrical characteristics

PDM Clock PDM Bitstream ipg_clk_app Pulse right pre_channel_1 ipg_dee_clk Channel 1 Channel 0

Figure 32. PDM input timing
PDM clock operative range is from 500 kHz to 6 MHz. Within range, only need to configure ipg_clk_app rate and CLKDIV without I/O timing concerns.
3.9.9 Pulse width modulator (PWM) timing parameters
This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin. Figure 33 depicts the timing of the PWM, and Table 43 lists the PWM timing parameters.

0

0

07-N?/54

Figure 33. PWM timing

Table 43. PWM output timing parameters

ID

Parameter

Min

Max

PWM Module Clock Frequency P1 PWM output pulse width high P2 PWM output pulse width low

0

66 (ipg_clk)

12

--

12

--

Unit MHz
ns ns

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

55

Electrical characteristics
3.9.10 FlexSPI timing parameters
Measurements are with a load of 15 pF and an input slew rate of 1 V/ns.

3.9.10.1 FlexSPI input/read timing
There are three sources for the internal sample clock for FlexSPI read data:
· Dummy read strobe generated by FlexSPI controller and looped back internally (FlexSPIn_MCR0[RXCLKSRC] = 0x0)
· Dummy read strobe generated by FlexSPI controller and looped back through the DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x1)
· Read strobe provided by memory device and input from DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x3)
The following sections describe input signal timing for each of these four internal sample clock sources.

3.9.10.1.1 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1

Table 44. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0

Symbol

Parameter

Min.

Max.

Unit

Notes

--

[D:] Frequency of operation

--

66

MHz

--

F1

[D:] Setup time for incoming data

8.67

--

ns

1

F2

[D:] Hold time for incoming data

0

--

ns

--

1 The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be decreased by up to 2ns.

Table 45. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1

Symbol

Parameter

Min.

Max.

Unit

Notes

--

[D:] Frequency of operation

--

133

MHz

--

F1

[D:] Setup time for incoming data

1.5

--

ns

1

F2

[D:] Hold time for incoming data

1

--

ns

--

1 The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be decreased by up to 2ns.

FLEXSPI_SCLK FLEXSPI_DATA[7:0] Internal Sample Clock

F1 F2

F1 F2

Figure 34. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

56

NXP Semiconductors

Electrical characteristics

NOTE
Timing shown is based on the memory generating read data on the SCK falling edge, and FlexSPI controller sampling read data on the falling edge.

3.9.10.1.2 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3
There are two cases when the memory provides both read data and the read strobe in SDR mode: · A1--Memory generates both read data and read strobe on SCK rising edge (or falling edge) · A2--Memory generates read data on SCK falling edge and generates read strobe on SCK rising edge
Table 46. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A1)

Symbol

Parameter

Min.

Max.

Unit

--

[D:] Frequency of operation

--

166

MHz

F3

[D:] Time from SCK to data valid

--

--

ns

F4

[D:] Time from SCK to DQS

--

--

ns

--

[D:] Time delta between TSCKD and

-2

2

ns

TSCKDQS

FLEXSPI_SCLK FLEXSPI_DATA[7:0]
FLEXSPI_DQS

F3

F3

F4

F4

Figure 35. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A1)

NOTE
Timing shown is based on the memory generating read data and read strobe on the SCK rising edge. The FlexSPI controller samples read data on the DQS falling edge.

Table 47. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A2)

Symbol

Parameter

Min.

Max.

Unit

--

[D:] Frequency of operation

--

166

MHz

F5

[D:] Time from SCK to data valid

--

--

ns

F6

[D:] Time from SCK to DQS

--

--

ns

--

[D:] Time delta between TSCKD and

-2

2

ns

TSCKDQS

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

57

Electrical characteristics

FLEXSPI_SCLK FLEXSPI_DATA[7:0]
FLEXSPI_DQS

F5

F5

F5

F6

F6

F6

Internal Sample Clock

Figure 36. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A2)

NOTE
Timing shown is based on the memory generating read data on the SCK falling edge and read strobe on the SCK rising edge. The FlexSPI controller samples read data on a half-cycle delayed DQS falling edge.

3.9.10.1.3 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1

Table 48. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0

Symbol

Parameter

Min.

Max.

Unit

Notes

--

[D:] Frequency of operation

--

33

MHz

--

F1

[D:] Setup time for incoming data

8.67

--

ns

1

F2

[D:] Hold time for incoming data

0

--

ns

--

1 The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be decreased by up to 2ns.

Table 49. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1

Symbol

Parameter

Min.

Max.

Unit

Notes

--

[D:] Frequency of operation

--

66

MHz

--

F1

[D:] Setup time for incoming data

1.5

--

ns

1

F2

[D:] Hold time for incoming data

1

--

ns

--

1 The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be decreased by up to 2ns.

SCLK SIO[0:7] Internal Sample Clocks

F1 F2 F1 F2

Figure 37. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

58

NXP Semiconductors

3.9.10.1.4 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3

Electrical characteristics

Table 50. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case 1)

Symbol

Parameter

Min.

Max.

Unit

-- TSCKD TSCKDQS TSCKD - TSCKDQS

[D:] Frequency of operation [D:] Time from SCK to data valid [D:] Time from SCK to DQS [D:] Time delta between TSCKD and TSCKDQS

--

166

MHz

--

--

ns

--

--

ns

-0.6

0.6

ns

SCK SIO[0:7]
DQS

TSCKD TSCKDQS

Figure 38. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3

3.9.10.2 FlexSPI output/write timing The following sections describe output signal timing for the FlexSPI controller including control signals and data outputs.
3.9.10.2.1 SDR mode

-- TCK TDSO TDHO TCSS TCSH

Symbol

Table 51. FlexSPI output timing in SDR mode

Parameter [D:] Frequency of operation1 [D:] SCK clock period [D:] Output data setup time [D:] Output data hold time [D:] Chip select output setup time [D:] Chip select output hold time

Min. -- 6.02 2 2 3 x TCK - 1 3 x TCK - 1

Max. 166 -- -- -- -- --

Unit MHz
ns ns ns ns ns

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

59

Electrical characteristics
1 The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. See the FlexSPI SDR input timing specifications.
NOTE TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the default values are shown above. See the i.MX 8M Mini Applications Processor Reference Manual (IMX8MMRM) for more details.

SCK
TCSS
CS
SIO[0:7]

TCK TDVO

TDVO

TDHO

TDHO

Figure 39. FlexSPI output timing in SDR mode

3.9.10.2.2 DDR mode

TCSH

Table 52. FlexSPI output timing in DDR mode

Symbol

Parameter

Min.

Max.

Unit

--

[D:] Frequency of operation1

--

166

MHz

TCK

[D:] SCK clock period

6.02

--

ns

TDSO

[D:] Output data setup time

--

0.6

ns

TDHO

[D:] Output data hold time

0.6

--

ns

TCSS

[D:] Chip select output setup time

3 x TCK - 1.075

--

ns

TCSH

[D:] Chip select output hold time

3 x TCK - 1.075

--

ns

1 The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. See the FlexSPI SDR input timing specifications.

NOTE

TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the default values are shown above. See the i.MX 8M Mini Applications Processor Reference Manual (IMX8MMRM) for more details.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

60

NXP Semiconductors

Electrical characteristics

SCK CS SIO[0:7]

TCSS

TCK

TDVO TDHO

TDVO TDHO

TCSH

Figure 40. FlexSPI output timing in DDR mode

3.9.11 SAI/I2S switching specifications
This section provides the AC timings for the SAI in Master (clocks driven) and Slave (clocks input) modes. All timings are given for non inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] = 0) and non inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.
Table 53. Master mode SAI timing (50 MHz)1

Num

Characteristic

Min

Max

Unit

S1

SAI_MCLK cycle time

20

S2

SAI_MCLK pulse width high/low

40%

S3

SAI_BCLK cycle time

20

S4

SAI_BCLK pulse width high/low

40%

S5

SAI_BCLK to SAI_FS output valid

--

S6

SAI_BCLK to SAI_FS output invalid

0

S7

SAI_BCLK to SAI_TXD valid

--

S8

SAI_BCLK to SAI_TXD invalid

0

S9

SAI_RXD/SAI_FS input setup before SAI_BCLK

2

S10

SAI_RXD/SAI_FS input hold after SAI_BCLK

0

1 To achieve 50 MHz for BCLK operation, clock must be set in feedback mode.

-- 60% -- 60% 2 -- 2 -- -- --

ns MCLK period ns BCLK period ns ns ns ns ns ns

Num S1 S2 S3 S4 S5

Table 54. Master mode SAI timing (25 MHz)

Characteristic

Min

Max

SAI_MCLK cycle time SAI_MCLK pulse width high/low SAI_BCLK cycle time SAI_BCLK pulse width high/low SAI_BCLK to SAI_FS output valid

40 40% 40 40% --

-- 60% -- 60% 2

Unit ns MCLK period ns BCLK period ns

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

61

Electrical characteristics

Table 54. Master mode SAI timing (25 MHz) (continued)

Num

Characteristic

Min

Max

S6

SAI_BCLK to SAI_FS output invalid

0

--

S7

SAI_BCLK to SAI_TXD valid

--

2

S8

SAI_BCLK to SAI_TXD invalid

0

--

S9

SAI_RXD/SAI_FS input setup before SAI_BCLK

12

--

S10

SAI_RXD/SAI_FS input hold after SAI_BCLK

0

--

Unit ns ns ns ns ns

Figure 41. SAI timing--Master modes

Table 55. Slave mode SAI timing (50 MHz)1

Num

Characteristic

Min

Max

S11

SAI_BCLK cycle time (input)

S12

SAI_BCLK pulse width high/low (input)

S13

SAI_FS input setup before SAI_BCLK

S14

SAI_FA input hold after SAI_BCLK

S17

SAI_RXD setup before SAI_BCLK

S18

SAI_RXD hold after SAI_BCLK

1 TX does not support 50 MHz operation in Slave mode.

20 40% 2 2 2 2

-- 60% -- -- -- --

Num S11 S12

Table 56. Slave mode SAI timing (25 MHz)

Characteristic

Min

SAI_BCLK cycle time (input) SAI_BCLK pulse width high/low (input)

40 40%

Max -- 60%

Unit ns BCLK period ns ns ns ns
Unit ns BCLK period

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

62

NXP Semiconductors

Num S13 S14 S15 S16 S17 S18

Electrical characteristics

Table 56. Slave mode SAI timing (25 MHz) (continued)

Characteristic

Min

Max

Unit

SAI_FS input setup before SAI_BCLK

12

--

ns

SAI_FA input hold after SAI_BCLK

2

--

ns

SAI_BCLK to SAI_TXD/SAI_FS output valid

--

7

ns

SAI_BCLK to SAI_TXD/SAI_FS output invalid

0

--

ns

SAI_RXD setup before SAI_BCLK

12

--

ns

SAI_RXD hold after SAI_BCLK

2

--

ns

Figure 42. SAI Timing -- Slave Modes

3.9.12 SPDIF timing parameters
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.
Table 57 and Figure 43 and Figure 44 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.
Table 57. SPDIF timing parameters

Parameter

Timing Parameter Range

Symbol

Unit

Min

Max

SPDIF_IN Skew: asynchronous inputs, no specs apply

--

--

SPDIF_OUT output (Load = 50 pf) · Skew · Transition rising · Transition falling

--

--

--

--

--

--

0.7

ns

1.5

ns

24.2

31.3

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

63

Electrical characteristics

Table 57. SPDIF timing parameters (continued)

Parameter

Timing Parameter Range

Symbol

Unit

Min

Max

SPDIF_OUT output (Load = 30 pf) · Skew · Transition rising · Transition falling
Modulating Rx clock (SPDIF_SR_CLK) period
SPDIF_SR_CLK high period
SPDIF_SR_CLK low period
Modulating Tx clock (SPDIF_ST_CLK) period
SPDIF_ST_CLK high period
SPDIF_ST_CLK low period

-- -- -- srckp srckph srckpl stclkp stclkph stclkpl

-- -- -- 40.0 16.0 16.0 40.0 16.0 16.0

1.5

13.6

ns

18.0

--

ns

--

ns

--

ns

--

ns

--

ns

--

ns

SPDIF_SR_CLK (Output)

srckpl VM

srckp

srckph VM

Figure 43. SPDIF_SR_CLK timing diagram

SPDIF_ST_CLK (Input)

stclkpl VM

stclkp

stclkph VM

Figure 44. SPDIF_ST_CLK timing diagram

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

64

NXP Semiconductors

3.9.13 UART I/O configuration and timing parameters

Electrical characteristics

3.9.13.1 UART RS-232 I/O configuration in different modes The i.MX 8M Mini UART interfaces can serve both as DTE or DCE device. This can be configured by the DCEDTE control bit (default 0--DCE mode). Table 58 shows the UART I/O configuration based on the enabled mode.
Table 58. UART I/O configuration vs. mode

Port

Direction

DTE Mode Description

Direction

DCE Mode Description

UARTx_RTS_B UARTx_CTS_B UARTx_TX_ DATA UARTx_RX_DATA

Output Input Input Output

UARTx_RTS_B from DTE to DCE UARTx_CTS_B from DCE to DTE Serial data from DCE to DTE Serial data from DTE to DCE

Input Output Output Input

UARTx_RTS_B from DTE to DCE UARTx_CTS_B from DCE to DTE Serial data from DCE to DTE Serial data from DTE to DCE

3.9.13.2 UART RS-232 Serial mode timing This section describes the electrical information of the UART module in the RS-232 mode.

3.9.13.2.1 UART transmitter Figure 45 depicts the transmit timing of UART in the RS-232 Serial mode, with 8 data bit/1 stop bit format. Table 59 lists the UART RS-232 Serial mode transmit timing characteristics.

Possible

UA1

UA1

Parity

Bit Next

Start

Start

UARTx_TX_DATA

Bit

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP

Bit

(output)

BIT

UA1 UA1
Figure 45. UART RS-232 Serial mode transmit timing diagram

Table 59. RS-232 Serial mode transmit timing parameters

ID

Parameter

Symbol

Min

Max

UA1 Transmit Bit Time

tTbit

1/Fbaud_rate1 - Tref_clk2

1/Fbaud_rate + Tref_clk

1 Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. 2 Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).

Unit --

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

65

Electrical characteristics

3.9.13.2.2 UART receiver Figure 46 depicts the RS-232 Serial mode receive timing with 8 data bit/1 stop bit format. Table 60 lists Serial mode receive timing characteristics.

UA2

UARTx_RX_DATA (output)

Start Bit

Bit 0

Bit 1

UA2 Bit 2 Bit 3

Bit 4

Bit 5

Bit 6

Possible Parity Bit
Bit 7 Par Bit STOP BIT

Next Start Bit

UA2 UA2
Figure 46. UART RS-232 Serial mode receive timing diagram

Table 60. RS-232 Serial mode receive timing parameters

ID

Parameter

Symbol

Min

Max

Unit

UA2

Receive Bit Time1

tRbit

1/Fbaud_rate2 - 1/(16

1/Fbaud_rate +

--

x Fbaud_rate)

1/(16 x Fbaud_rate)

1 The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not
exceed 3/(16 x Fbaud_rate). 2 Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.

3.9.14 USB PHY parameters
This section describes the USB-OTG PHY parameters.

3.9.14.1 Pad/Package/Board connections
The USBx_VBUS pin cannot directly connect to the 5 V VBUS voltage on the USB2.0 link.
Each USBx_VBUS pin must be isolated by an external 30 K1% precision resistor.
The USB 2.0 PHY uses USBx_TXRTUNE and an external resistor to calibrate the USBx_DP/DN 45  source impedance. The external resistor value is 200  1% precision on each of USBx_TXRTUNE pad to ground.

3.9.14.2 USB PHY worst power consumption Table 61 shows the USB 2.0 PHY worst power dissipation.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

66

NXP Semiconductors

Mode HS TX FS TX LS TX Suspend Sleep

Electrical characteristics

Table 61. USB 2.0 PHY worst power dissipation

VDD_USB_0P8

VDD_USB_3P3

VDD_USB_1P8

8.286

4.63

23.409

6.767

12.52

5.968

7.001

mA

13.58

mA

6.224

mA

0.752

0.164

0.106

0.761

0.163

0.106

Total Power

70.448

63.22

67.779

mW

1.465

1.472

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

67

Boot mode configuration
4 Boot mode configuration
This section provides information on Boot mode configuration pins allocation and boot devices interfaces allocation.

4.1 Boot mode configuration pins
Table 62 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is `0' (cleared, which is the case for an unblown fuse). For detailed Boot mode options configured by the Boot mode pins, see the "System Boot, Fusemap, and eFuse" chapter in the i.MX 8M Mini Applications Processor Reference Manual (IMX8MMRM).

Table 62. Fuses and associated pins used for boot

Directio

State during reset State after reset

Pin

n

eFuse name

(POR_B

(POR_B

at Reset

asserted)

deasserted)

Details

BOOT_MODE0 BOOT_MODE1
SAI1_RXD0 SAI1_RXD1 SAI1_RXD2 SAI1_RXD3 SAI1_RXD4 SAI1_RXD5 SAI1_RXD6 SAI1_RXD7 SAI1_TXD0 SAI1_TXD1 SAI1_TXD2 SAI1_TXD3 SAI1_TXD4 SAI1_TXD5 SAI1_TXD6

Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input

N/A N/A BOOT_CFG[0] BOOT_CFG[1] BOOT_CFG[2] BOOT_CFG[3] BOOT_CFG[4] BOOT_CFG[5] BOOT_CFG[6] BOOT_CFG[7] BOOT_CFG[8] BOOT_CFG[9] BOOT_CFG[10] BOOT_CFG[11] BOOT_CFG[12] BOOT_CFG[13] BOOT_CFG[14]

Input with pull down Input with pull down Boot mode selection

Input with pull down Input with pull down

Input with pull down Input with pull down Input with pull down Input with pull down Input with pull down Input with pull down Input with pull down Input with pull down

Input with pull down Boot options pin value

Input with pull down

overrides fuse settings for BT_FUSE_SEL = "0". Signal

Input with pull down configuration as fuse override input at power up. These are

Input with pull down special I/O lines that control

Input with pull down

the boot configuration during product development. In

Input with pull down production, the boot configuration can be
Input with pull down controlled by fuses.

Input with pull down

Input with pull down Input with pull down

Input with pull down Input with pull down

Input with pull down Input with pull down

Input with pull down Input with pull down

Input with pull down Input with pull down

Input with pull down Input with pull down

Input with pull down Input with pull down

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

68

NXP Semiconductors

Boot mode configuration

4.2 Boot device interface allocation
Table 63 lists the interfaces that can be used by the boot process in accordance with the specific Boot mode configuration. The table also describes the interface's specific modes and IOMUXC allocation, which are configured during boot when appropriate.
Table 63. Interface allocation during boot

Interface

IP Instance

Allocated Pads During Boot

Comment

SPI SPI SPI NAND Flash
SD/MMC
SD/MMC SD/MMC
FlexSPI
USB

ECSPI-1

ECSPI1_SCLK, ECSPI1_MOSI, ECSPI1_MISO, The chip-select pin used depends

ECSPI1_SS0

on the fuse "CS select (SPI only)".

ECSPI-2

ECSPI2_SCLK, ECSPI2_MOSI, ECSPI2_MISO, The chip-select pin used depends

ECSPI2_SS0

on the fuse "CS select (SPI only)".

ECSPI-3

UART1_RXD, UART1_TXD, UART2_RXD, UART2_TXD

The chip-select pin used depends on the fuse "CS select (SPI only)".

GPMI

NAND_ALE, NAND_CE0_B, NAND_CLE,

8-bit, only CS0 is supported.

NAND_DATA00, NAND_DATA01, NAND_DATA02,

NAND_DATA03, NAND_DATA04, NAND_DATA05,

NAND_DATA06, NAND_DATA07, NAND_DQS,

NAND_RE_B, NAND_READY_B, NAND_WE_B,

NAND_WP_B

USDHC-1

GPIO1_IO03, GPIO1_IO06, GPIO1_IO07, SD1_RESET_B, SD1_CLK, SD1_CMD, SD1_STROBE, SD1_DATA0, SD1_DATA1, SD1_DATA2, SD1_DATA3, SD1_DATA4, SD1_DATA5, SD1_DATA6, SD1_DATA7

1, 4, or 8-bit

USDHC-2

GPIO1_IO04, GPIO1_IO08, GPIO1_IO07, SD2_RESET_B, SD2_WP, SD2_CLK, SD2_CMD, SD2_DATA0, SD2_DATA1, SD2_DATA2, SD2_DATA3

1 or 4-bit

USDHC-3

NAND_CE1_B, NAND_CE2_B, NAND_CE3_B, 1, 4, or 8-bit NAND_CLE, NAND_DATA02, NAND_DATA03, NAND_DATA04, NAND_DATA05, NAND_DATA06, NAND_DATA07, NAND_RE_B, NAND_READY_B, NAND_WE_B, NAND_WP_B

FlexSPI

NAND_ALE, NAND_CE0_B, NAND_CE1_B,

For FlexSPI flash

NAND_CE2_B, NAND_CE3_B, NAND_CLE,

NAND_DATA00, NAND_DATA01, NAND_DATA02,

NAND_DATA03, NAND_DATA04, NAND_DATA05,

NAND_DATA06, NAND_DATA07, NAND_DQS,

NAND_RE_B

USB_OTG PHY Dedicated USB pins

--

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

69

Package information and contact assignments
5 Package information and contact assignments
This section includes the contact assignment information and mechanical package drawing.
5.1 14 x 14 mm package information
5.1.1 14 x 14 mm, 0.5 mm pitch, ball matrix
Figure 47 shows the top, bottom, and side views of the 14 × 14 mm FCBGA package.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

70

NXP Semiconductors

Package information and contact assignments

Figure 47. 14 X 14 MM BGA, case x package top, bottom, and side views

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

71

Package information and contact assignments
5.1.2 14 x 14 mm supplies contact assignments and functional contact assignments
Table 64 shows supplies contact assignments for the 14 x 14 mm package.

Table 64. i.MX 8M Mini 14 x 14 mm supplies contact assignments

Supply Rail Name

Ball(s) Position(s)

Remark

NC NVCC_CLK NVCC_DRAM
NVCC_ECSPI NVCC_ENET NVCC_GPIO1 NVCC_I2C NVCC_JTAG NVCC_NAND NVCC_SAI1 NVCC_SAI2 NVCC_SAI3 NVCC_SAI5 NVCC_SD1 NVCC_SD2 NVCC_SNVS_1P8 NVCC_UART PVCC0_1P8 PVCC1_1P8 PVCC2_1P8 VDD_24M_XTAL_1P8 VDD_ANA_0P8 VDD_ANA0_1P8 VDD_ANA1_1P8 VDD_ARM
VDD_ARM_PLL_0P8 VDD_ARM_PLL_1P8 VDD_DRAM

J18 M19 P7, K8, N8, R8, V8, K9, L9, M9, N9, R9, T9, U9, V9 H10 W22 W12 J11 L19 U19 W18 V19 Y10 W17 V20 V22 J22 J12 AB13 T19 J13 N19 L17, N17 AA14, Y15 P19, N20 R13, T13, U13, V13, W13, T14, W14, R15, T15, U15, V15, W15, V16, W16 P16 R19 J10, L10, N10, R10, U10, W10

-- Supply for CLK interface Supply for DRAM interface
Supply for ESCPI interface Supply for ENET interface Supply for GPIO1 interface Supply for I2C interface Supply for JTAG interface Supply for NAND interface Supply for SAI interface Supply for SAI interface Supply for SAI interface Supply for SAI interface Supply for SD interface Supply for SD interface Supply for SNVS interface Supply for UART interface Digital IO pre-drive Digital IO pre-drive Digital IO pre-drive Supply for XTAL Supply for Analog logic Supply for Analog logic Supply for Analog logic Supply for ARM
Supply for ARM PLL Supply for ARM PLL Supply for DRAM module

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

72

NXP Semiconductors

Package information and contact assignments

Table 64. i.MX 8M Mini 14 x 14 mm supplies contact assignments (continued)

VDD_DRAM_PLL_0P8 VDD_DRAM_PLL_1P8 VDD_GPU VDD_MIPI_0P9 VDD_MIPI_1P2 VDD_MIPI_1P8 VDD_PCI_0P8 VDD_PCI_1P8 VDD_SNVS_0P8 VDD_SOC
VDD_USB_0P8 VDD_USB_1P8 VDD_USB_3P3 VDD_VPU VSS

P9

Supply for DRAM PLL

P5

Supply for DRAM PLL

R11, U11, W11, P12, V12

Supply for GPU

J14

Supply for MIPI PHY

J15

Supply for MIPI PHY

H13

Supply for MIPI PHY

J16

Supply for PCIe PHY

G14

Supply for PCIe PHY

K22

Supply for SNVS logic

N13, K15, L15, M15, N15, K16, R17, U17, L18, Supply for SOC logic N18, R18, U18

J17

Supply for USB PHY

H15

Supply for USB PHY

K19

Supply for USB PHY

L11, N11, K12, K13, L13, M13, M14

Supply for VPU

A1, AG1, C2, H2, Y2, AE2, B3, E3, F3, J3, K3, -- N3, P3, R3, V3, W3, AB3, AC3, AF3, C5, AE5, C6, AE6, G7, J7, K7, N7, R7, V7, W7, AA7, C9, G9, AA9, AE9, C10, G10, AA10, AE10, L12, M12, N12, R12, T12, U12, C13, G13, P13, Y13, AA13, AE13, C14, AE14, C15, G15, P15, AA15, AE15, L16, M16, N16, R16, T16, U16, C18, G18, H18, Y18, AA18, AE18, C19, G19, AA19, AE19, K20, R20, G21, J21, K21, N21, P21, R21, V21, W21, AA21, C22, AE22, C23, AE23, E25, F25, J25, K25, N25, P25, R25, V25, W25, AB25, AC25, B26, A27, AG27

Table 65 shows an alpha-sorted list of functional contact assignments for the 14 x 14 mm package.

Ball name
24M_XTALI 24M_XTALO BOOT_MODE0 BOOT_MODE1

Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments

Reset condition

Ball

Power group

Ball type Default

mode

Default function

Input/ Output status

B27 VDD_24M_XTAL_ ANALOG --

--

1P8

Input

C26 VDD_24M_XTAL_ ANALOG --

--

Output

1P8

G26

NVCC_JTAG

GPIO

ALT0 ccmsrcgpcmix.BOOT_MODE[0] Input with PD

G27

NVCC_JTAG

GPIO

ALT0 ccmsrcgpcmix.BOOT_MODE[1] Input with PD

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

73

Package information and contact assignments

Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)

Reset condition

Ball name

Ball

Power group

Ball type Default

mode

Default function

Input/ Output status

CLKIN1 CLKIN2 CLKOUT1

H27

NVCC_CLK

GPIO

--

J27

NVCC_CLK

GPIO

--

H26

NVCC_CLK

GPIO

--

CLKOUT2

J26

NVCC_CLK

GPIO

--

DRAM_AC00

F4

NVCC_DRAM

DDR

--

DRAM_AC01

F5

NVCC_DRAM

DDR

--

DRAM_AC02

K4

NVCC_DRAM

DDR

--

DRAM_AC03

J4

NVCC_DRAM

DDR

--

DRAM_AC04

L2

NVCC_DRAM

DDR

--

DRAM_AC05

L1

NVCC_DRAM

DDR

--

DRAM_AC06

F6

NVCC_DRAM

DDR

--

DRAM_AC07

J5

NVCC_DRAM

DDR

--

DRAM_AC08

J6

NVCC_DRAM

DDR

--

DRAM_AC09

K6

NVCC_DRAM

DDR

--

DRAM_AC10

E4

NVCC_DRAM

DDR

--

DRAM_AC11

D5

NVCC_DRAM

DDR

--

DRAM_AC12

N4

NVCC_DRAM

DDR

--

DRAM_AC13

N5

NVCC_DRAM

DDR

--

DRAM_AC14

K5

NVCC_DRAM

DDR

--

DRAM_AC15

N6

NVCC_DRAM

DDR

--

DRAM_AC16

M1

NVCC_DRAM

DDR

--

DRAM_AC17

M2

NVCC_DRAM

DDR

--

DRAM_AC19

N2

NVCC_DRAM

DDR

--

DRAM_AC20

AB4

NVCC_DRAM

DDR

--

DRAM_AC21

AB5

NVCC_DRAM

DDR

--

DRAM_AC22

W4

NVCC_DRAM

DDR

--

DRAM_AC23

V4

NVCC_DRAM

DDR

--

--

Input without

PU/PD

--

Input without

PU/PD

--

Output low

without

PU/PD

--

Output low

without

PU/PD

--

Output low

--

Output low

--

Input

--

Input

--

Input

--

Input

--

Input

--

Input

--

Input

--

Input

--

Input

--

Input

--

Input

--

Input

--

Input

--

Input

--

Input

--

Input

--

Input

--

Output low

--

Output low

--

Input

--

Input

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

74

NXP Semiconductors

Package information and contact assignments

Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)

Reset condition

Ball name

Ball

Power group

Ball type Default

mode

Default function

Input/ Output status

DRAM_AC24

U2

NVCC_DRAM

DDR

--

--

DRAM_AC25

U1

NVCC_DRAM

DDR

--

--

DRAM_AC26

N1

NVCC_DRAM

DDR

--

--

DRAM_AC27

R6

NVCC_DRAM

DDR

--

--

DRAM_AC28

W6

NVCC_DRAM

DDR

--

--

DRAM_AC29

V6

NVCC_DRAM

DDR

--

--

DRAM_AC30

AC4

NVCC_DRAM

DDR

--

--

DRAM_AC31

AD5

NVCC_DRAM

DDR

--

--

DRAM_AC32

R4

NVCC_DRAM

DDR

--

--

DRAM_AC33

R5

NVCC_DRAM

DDR

--

--

DRAM_AC34

T1

NVCC_DRAM

DDR

--

--

DRAM_AC35

T2

NVCC_DRAM

DDR

--

--

DRAM_AC36

V5

NVCC_DRAM

DDR

--

--

DRAM_AC37

W5

NVCC_DRAM

DDR

--

--

DRAM_AC38

AB6

NVCC_DRAM

DDR

--

--

DRAM_ALERT_N R2

NVCC_DRAM

DDR

--

--

DRAM_DM0

A4

NVCC_DRAM

DDR

--

--

DRAM_DM1

F1

NVCC_DRAM

DDR

--

--

DRAM_DM2

AB1

NVCC_DRAM

DDR

--

--

DRAM_DM3

AG4

NVCC_DRAM

DDR

--

--

DRAM_DQ00

A5

NVCC_DRAM

DDR

--

--

DRAM_DQ01

B5

NVCC_DRAM

DDR

--

--

DRAM_DQ02

D2

NVCC_DRAM

DDR

--

--

DRAM_DQ03

D1

NVCC_DRAM

DDR

--

--

DRAM_DQ04

C1

NVCC_DRAM

DDR

--

--

DRAM_DQ05

B1

NVCC_DRAM

DDR

--

--

DRAM_DQ06

A3

NVCC_DRAM

DDR

--

--

DRAM_DQ07

B4

NVCC_DRAM

DDR

--

--

DRAM_DQ08

F2

NVCC_DRAM

DDR

--

--

DRAM_DQ09

G2

NVCC_DRAM

DDR

--

--

Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

75

Package information and contact assignments

Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)

Reset condition

Ball name

Ball

Power group

Ball type Default

mode

Default function

DRAM_DQ10

J1

NVCC_DRAM

DDR

--

--

DRAM_DQ11

J2

NVCC_DRAM

DDR

--

--

DRAM_DQ12

K2

NVCC_DRAM

DDR

--

--

DRAM_DQ13

K1

NVCC_DRAM

DDR

--

--

DRAM_DQ14

E1

NVCC_DRAM

DDR

--

--

DRAM_DQ15

E2

NVCC_DRAM

DDR

--

--

DRAM_DQ16

AB2

NVCC_DRAM

DDR

--

--

DRAM_DQ17

AA2

NVCC_DRAM

DDR

--

--

DRAM_DQ18

W1

NVCC_DRAM

DDR

--

--

DRAM_DQ19

W2

NVCC_DRAM

DDR

--

--

DRAM_DQ20

V2

NVCC_DRAM

DDR

--

--

DRAM_DQ21

V1

NVCC_DRAM

DDR

--

--

DRAM_DQ22

AC1

NVCC_DRAM

DDR

--

--

DRAM_DQ23

AC2

NVCC_DRAM

DDR

--

--

DRAM_DQ24

AG5

NVCC_DRAM

DDR

--

--

DRAM_DQ25

AF5

NVCC_DRAM

DDR

--

--

DRAM_DQ26

AD2

NVCC_DRAM

DDR

--

--

DRAM_DQ27

AD1

NVCC_DRAM

DDR

--

--

DRAM_DQ28

AE1

NVCC_DRAM

DDR

--

--

DRAM_DQ29

AF1

NVCC_DRAM

DDR

--

--

DRAM_DQ30

AG3

NVCC_DRAM

DDR

--

--

DRAM_DQ31

AF4

NVCC_DRAM

DDR

--

--

DRAM_DQS0_N

B2

NVCC_DRAM

--

--

--

DRAM_DQS0_P

A2

NVCC_DRAM DDRCLK

--

--

DRAM_DQS1_N

H1

NVCC_DRAM

--

--

--

DRAM_DQS1_P

G1

NVCC_DRAM DDRCLK

--

--

DRAM_DQS2_N

Y1

NVCC_DRAM

--

--

--

DRAM_DQS2_P AA1

NVCC_DRAM DDRCLK

--

--

DRAM_DQS3_N AF2

NVCC_DRAM

--

--

--

DRAM_DQS3_P AG2

NVCC_DRAM DDRCLK

--

--

Input/ Output status
Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

76

NXP Semiconductors

Package information and contact assignments

Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)

Reset condition

Ball name

Ball

Power group

Ball type Default

mode

Default function

Input/ Output status

DRAM_RESET_N DRAM_VREF DRAM_ZN ECSPI1_MISO ECSPI1_MOSI ECSPI1_SCLK ECSPI1_SS0 ECSPI2_MISO ECSPI2_MOSI ECSPI2_SCLK ECSPI2_SS0 ENET_MDC ENET_MDIO ENET_RD0 ENET_RD1 ENET_RD2 ENET_RD3 ENET_RXC ENET_RX_CTL ENET_TD0 ENET_TD1 ENET_TD2 ENET_TD3 ENET_TXC ENET_TX_CTL GPIO1_IO00 GPIO1_IO011 GPIO1_IO02 GPIO1_IO03 GPIO1_IO04

R1 P1 P2 A7 B7 D6 B6 A8 B8 E6 A6 AC27 AB27 AE27 AD27 AD26 AC26 AE26 AF27 AG26 AF26 AG25 AF25 AG24 AF24 AG14 AF14 AG13 AF13 AG12

NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_ECSPI NVCC_ECSPI NVCC_ECSPI NVCC_ECSPI NVCC_ECSPI NVCC_ECSPI NVCC_ECSPI NVCC_ECSPI NVCC_ENET NVCC_ENET NVCC_ENET NVCC_ENET NVCC_ENET NVCC_ENET NVCC_ENET NVCC_ENET NVCC_ENET NVCC_ENET NVCC_ENET NVCC_ENET NVCC_ENET NVCC_ENET NVCC_GPIO1 NVCC_GPIO1 NVCC_GPIO1 NVCC_GPIO1 NVCC_GPIO1

DDR DDR DDR GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO

-- -- -- ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT0 ALT0 ALT0 ALT0 ALT0

-- -- -- GPIO5.IO[8] GPIO5.IO[7] GPIO5.IO[6] GPIO5.IO[9] GPIO5.IO[12] GPIO5.IO[11] GPIO5.IO[10] GPIO5.IO[13] GPIO1.IO[16] GPIO1.IO[17] GPIO1.IO[26] GPIO1.IO[27] GPIO1.IO[28] GPIO1.IO[29] GPIO1.IO[25] GPIO1.IO[24] GPIO1.IO[21] GPIO1.IO[20] GPIO1.IO[19] GPIO1.IO[18] GPIO1.IO[23] GPIO1.IO[22] GPIO1.IO[0] GPIO1.IO[1] GPIO1.IO[2] GPIO1.IO[3] GPIO1.IO[4]

Output low -- --
Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD
Output low Input with PU Input with PD Input with PD

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

77

Package information and contact assignments

Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)

Reset condition

Ball name

Ball

GPIO1_IO052 GPIO1_IO06 GPIO1_IO07 GPIO1_IO08 GPIO1_IO09 GPIO1_IO10 GPIO1_IO11 GPIO1_IO12 GPIO1_IO13 GPIO1_IO14 GPIO1_IO15
I2C1_SCL I2C1_SDA I2C2_SCL I2C2_SDA I2C3_SCL I2C3_SDA I2C4_SCL I2C4_SDA JTAG_MOD JTAG_TCK JTAG_TDI JTAG_TDO JTAG_TMS JTAG_TRST_B MIPI_CSI_CLK_N MIPI_CSI_CLK_P MIPI_CSI_D0_N MIPI_CSI_D0_P MIPI_CSI_D1_N

AF12 AG11 AF11 AG10 AF10 AD10 AC10 AB10 AD9 AC9 AB9
E9 F9 D10 D9 E10 F10 D13 E13 D27 F26 E27 E26 F27 C27 A16 B16 A14 B14 A15

Power group

Ball type Default mode

NVCC_GPIO1 NVCC_GPIO1 NVCC_GPIO1 NVCC_GPIO1 NVCC_GPIO1 NVCC_GPIO1 NVCC_GPIO1 NVCC_GPIO1 NVCC_GPIO1 NVCC_GPIO1 NVCC_GPIO1
NVCC_I2C NVCC_I2C NVCC_I2C NVCC_I2C NVCC_I2C NVCC_I2C NVCC_I2C NVCC_I2C NVCC_JTAG NVCC_JTAG NVCC_JTAG NVCC_JTAG NVCC_JTAG NVCC_JTAG VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8

GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO PHY PHY PHY PHY PHY

ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT0 ALT0 ALT0 ALT0 ALT0 ALT0
-- -- -- -- --

Default function
GPIO1.IO[5] GPIO1.IO[6] GPIO1.IO[7] GPIO1.IO[8] GPIO1.IO[9] GPIO1.IO[10] GPIO1.IO[11] GPIO1.IO[12] GPIO1.IO[13] GPIO1.IO[14] GPIO1.IO[15] GPIO5.IO[14] GPIO5.IO[15] GPIO5.IO[16] GPIO5.IO[17] GPIO5.IO[18] GPIO5.IO[19] GPIO5.IO[20] GPIO5.IO[21] cjtag_wrapper.MOD cjtag_wrapper.TCK cjtag_wrapper.TDI cjtag_wrapper.TDO cjtag_wrapper.TMS cjtag_wrapper.TRST_B
-- -- -- -- --

Input/ Output status
Output high Input with PD Input with PU Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PU Input with PU Input with PU Input with PU Input with PU
Input Input Input Input Input

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

78

NXP Semiconductors

Package information and contact assignments

Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)

Reset condition

Ball name

Ball

Power group

Ball type Default

mode

Default function

Input/ Output status

MIPI_CSI_D1_P

B15

MIPI_CSI_D2_N A17

MIPI_CSI_D2_P

B17

MIPI_CSI_D3_N A18

MIPI_CSI_D3_P

B18

MIPI_DSI_CLK_N A11

MIPI_DSI_CLK_P B11

MIPI_DSI_D0_N

A9

MIPI_DSI_D0_P

B9

MIPI_DSI_D1_N A10

MIPI_DSI_D1_P

B10

MIPI_DSI_D2_N A12

MIPI_DSI_D2_P

B12

MIPI_DSI_D3_N A13

MIPI_DSI_D3_P

B13

MIPI_VREG_CAP D15

NAND_ALE

N22

NAND_CE0_B

N24

NAND_CE1_B

P27

NAND_CE2_B

M27

NAND_CE3_B

L27

NAND_CLE

K27

NAND_DATA00

P23

NAND_DATA01

K24

NAND_DATA02

K23

NAND_DATA03

N23

NAND_DATA04

M26

NAND_DATA05

L26

NAND_DATA06

K26

NAND_DATA07

N26

VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8 VDD_MIPI_1P8
0.35 - 0.45 V NVCC_NAND NVCC_NAND NVCC_NAND NVCC_NAND NVCC_NAND NVCC_NAND NVCC_NAND NVCC_NAND NVCC_NAND NVCC_NAND NVCC_NAND NVCC_NAND NVCC_NAND NVCC_NAND

PHY PHY PHY PHY PHY PHY PHY PHY PHY PHY PHY PHY PHY PHY PHY PHY GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- GPIO3.IO[0] GPIO3.IO[1] GPIO3.IO[2] GPIO3.IO[3] GPIO3.IO[4] GPIO3.IO[5] GPIO3.IO[6] GPIO3.IO[7] GPIO3.IO[8] GPIO3.IO[9] GPIO3.IO[10] GPIO3.IO[11] GPIO3.IO[12] GPIO3.IO[13]

Input Input Input Input Input Output low Output low Output low Output low Output low Output low Output low Output low Output low Output low Output Input with PD Input with PU Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

79

Package information and contact assignments

Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)

Reset condition

Ball name

Ball

Power group

Ball type Default

mode

Default function

Input/ Output status

NAND_DQS NAND_RE_B NAND_READY_B NAND_WE_B NAND_WP_B
ONOFF

R22

NVCC_NAND

N27

NVCC_NAND

P26

NVCC_NAND

R26

NVCC_NAND

R27

NVCC_NAND

A25 NVCC_SNVS_1P8

GPIO GPIO GPIO GPIO GPIO GPIO

PCIE_CLK_N

A21

VDD_PCI_1P8

PCIE_CLK_P

B21

VDD_PCI_1P8

PCIE_RESREF

D19

VDD_PCI_1P8

PCIE_RXN_N

A19

VDD_PCI_1P8

PCIE_RXN_P

B19

VDD_PCI_1P8

PCIE_TXN_N

A20

VDD_PCI_1P8

PHY PHY PHY PHY PHY PHY

PCIE_TXN_P

B20

VDD_PCI_1P8

PHY

PMIC_ON_REQ

A24 NVCC_SNVS_1P8 GPIO

PMIC_STBY_REQ E24 NVCC_SNVS_1P8 GPIO

POR_B

B24 NVCC_SNVS_1P8 GPIO

RTC_XTALI RTC_XTALO

A26 NVCC_SNVS_1P8 ANALOG B25 NVCC_SNVS_1P8 ANALOG

RTC_RESET_B

F24 NVCC_SNVS_1P8 GPIO

SAI1_MCLK SAI1_RXC SAI1_RXD0 SAI1_RXD1 SAI1_RXD2

AB18 AF16 AG15 AF15 AG17

NVCC_SAI1 NVCC_SAI1 NVCC_SAI1 NVCC_SAI1 NVCC_SAI1

GPIO GPIO GPIO GPIO GPIO

ALT5 ALT5 ALT5 ALT5 ALT5 ALT0
-- -- -- -- -- --
--
ALT0
ALT0
ALT0
-- --
ALT0
ALT5 ALT5 ALT5 ALT5 ALT5

GPIO3.IO[14]

Input with PD

GPIO3.IO[15]

Input with PU

GPIO3.IO[16]

Input with PD

GPIO3.IO[17]

Input with PD

GPIO3.IO[18]

Input with PD

snvsmix.ONOFF

Input without PU/PD

--

High-Z

--

High-Z

--

High-Z

--

Input, High-Z

--

Input, High-Z

--

Output,

High-Z

--

Output,

High-Z

snvsmix.PMIC_ON_REQ

Open-drain output high
with PU

ccmsrcgpcmix.PMIC_STBY_RE Output low

Q

with PD

snvsmix.POR_B

Input without PU/PD

--

Input

--

Output,

inverted of

RTC_XTALI

snvsmix.RTC_POR_B

Input without PU/PD

GPIO4.IO[20]

Input with PD

GPIO4.IO[1]

Input with PD

GPIO4.IO[2]

Input with PD

GPIO4.IO[3]

Input with PD

GPIO4.IO[4]

Input with PD

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

80

NXP Semiconductors

Package information and contact assignments

Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)

Reset condition

Ball name

Ball

Power group

Ball type Default

mode

Default function

Input/ Output status

SAI1_RXD3 SAI1_RXD4 SAI1_RXD5 SAI1_RXD6 SAI1_RXD7 SAI1_RXFS SAI1_TXC SAI1_TXD0 SAI1_TXD1 SAI1_TXD2 SAI1_TXD3 SAI1_TXD4 SAI1_TXD5 SAI1_TXD6 SAI1_TXD7 SAI1_TXFS SAI2_MCLK SAI2_RXC SAI2_RXD0 SAI2_RXFS SAI2_TXC SAI2_TXD0 SAI2_TXFS SAI3_MCLK SAI3_RXC SAI3_RXD SAI3_RXFS SAI3_TXC SAI3_TXD SAI3_TXFS

AF17 AG18 AF18 AG19 AF19 AG16 AC18 AG20 AF20 AG21 AF21 AG22 AF22 AG23 AF23 AB19 AD19 AB22 AC24 AC19 AD22 AC22 AD23 AD6 AG7 AF7 AG8 AG6 AF6 AC6

NVCC_SAI1 NVCC_SAI1 NVCC_SAI1 NVCC_SAI1 NVCC_SAI1 NVCC_SAI1 NVCC_SAI1 NVCC_SAI1 NVCC_SAI1 NVCC_SAI1 NVCC_SAI1 NVCC_SAI1 NVCC_SAI1 NVCC_SAI1 NVCC_SAI1 NVCC_SAI1 NVCC_SAI2 NVCC_SAI2 NVCC_SAI2 NVCC_SAI2 NVCC_SAI2 NVCC_SAI2 NVCC_SAI2 NVCC_SAI3 NVCC_SAI3 NVCC_SAI3 NVCC_SAI3 NVCC_SAI3 NVCC_SAI3 NVCC_SAI3

GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO

ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5

GPIO4.IO[5] GPIO4.IO[6] GPIO4.IO[7] GPIO4.IO[8] GPIO4.IO[9] GPIO4.IO[0] GPIO4.IO[11] GPIO4.IO[12] GPIO4.IO[13] GPIO4.IO[14] GPIO4.IO[15] GPIO4.IO[16] GPIO4.IO[17] GPIO4.IO[18] GPIO4.IO[19] GPIO4.IO[10] GPIO4.IO[27] GPIO4.IO[22] GPIO4.IO[23] GPIO4.IO[21] GPIO4.IO[25] GPIO4.IO[26] GPIO4.IO[24] GPIO5.IO[2] GPIO4.IO[29] GPIO4.IO[30] GPIO4.IO[28] GPIO5.IO[0] GPIO5.IO[1] GPIO4.IO[31]

Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

81

Package information and contact assignments

Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)

Reset condition

Ball name SAI5_MCLK3

Ball AD15

Power group NVCC_SAI5

Ball type Default mode

GPIO

ALT5

SAI5_RXC SAI5_RXD0 SAI5_RXD1 SAI5_RXD2 SAI5_RXD3 SAI5_RXFS SD1_CLK SD1_CMD SD1_DATA0 SD1_DATA1 SD1_DATA2 SD1_DATA3 SD1_DATA4 SD1_DATA5 SD1_DATA6 SD1_DATA7 SD1_RESET_B SD1_STROBE SD2_CD_B SD2_CLK SD2_CMD SD2_DATA0 SD2_DATA1 SD2_DATA2 SD2_DATA3 SD2_RESET_B
SD2_WP SPDIF_EXT_CLK
SPDIF_RX

AC15 AD18 AC14 AD13 AC13 AB15 V26 V27 Y27 Y26 T27 T26 U27 U26 W27 W26 R23 R24 AA26 W23 W24 AB23 AB24 V24 V23 AB26 AA27 AF8 AG9

NVCC_SAI5 NVCC_SAI5 NVCC_SAI5 NVCC_SAI5 NVCC_SAI5 NVCC_SAI5 NVCC_SD1 NVCC_SD1 NVCC_SD1 NVCC_SD1 NVCC_SD1 NVCC_SD1 NVCC_SD1 NVCC_SD1 NVCC_SD1 NVCC_SD1 NVCC_SD1 NVCC_SD1 NVCC_SD2 NVCC_SD2 NVCC_SD2 NVCC_SD2 NVCC_SD2 NVCC_SD2 NVCC_SD2 NVCC_SD2 NVCC_SD2 NVCC_SAI3 NVCC_SAI3

GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO

ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5 ALT5

Default function
GPIO3.IO[25]
GPIO3.IO[20] GPIO3.IO[21] GPIO3.IO[22] GPIO3.IO[23] GPIO3.IO[24] GPIO3.IO[19] GPIO2.IO[0] GPIO2.IO[1] GPIO2.IO[2] GPIO2.IO[3] GPIO2.IO[4] GPIO2.IO[5] GPIO2.IO[6] GPIO2.IO[7] GPIO2.IO[8] GPIO2.IO[9] GPIO2.IO[10] GPIO2.IO[11] GPIO2.IO[12] GPIO2.IO[13] GPIO2.IO[14] GPIO2.IO[15] GPIO2.IO[16] GPIO2.IO[17] GPIO2.IO[18] GPIO2.IO[19] GPIO2.IO[20] GPIO5.IO[5] GPIO5.IO[4]

Input/ Output status
Input without PU/PD
Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD Input with PD

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

82

NXP Semiconductors

Package information and contact assignments

Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)

Reset condition

Ball name

Ball

Power group

Ball type Default

mode

Default function

Input/ Output status

SPDIF_TX

AF9

NVCC_SAI3

GPIO

ALT5

GPIO5.IO[3]

Input with PD

TEST_MODE

D26

NVCC_JTAG

GPIO

ALT0

tcu.TEST_MODE

Input with PD

TSENSOR_TEST_ J23 VDD_ANA1_1P8 ANALOG -- OUT

--

Output low

TSENSOR_REST_ J24 VDD_ANA1_1P8 ANALOG --

--

--

EXT

UART1_RXD

E14

NVCC_UART

GPIO

ALT5

GPIO5.IO[22]

Input with PD

UART1_TXD

F13

NVCC_UART

GPIO

ALT5

GPIO5.IO[23]

Input with PD

UART2_RXD

F15

NVCC_UART

GPIO

ALT5

GPIO5.IO[24]

Input with PD

UART2_TXD

E15

NVCC_UART

GPIO

ALT5

GPIO5.IO[25]

Input with PD

UART3_RXD

E18

NVCC_UART

GPIO

ALT5

GPIO5.IO[26]

Input with PD

UART3_TXD

D18

NVCC_UART

GPIO

ALT5

GPIO5.IO[27]

Input with PD

UART4_RXD

F19

NVCC_UART

GPIO

ALT5

GPIO5.IO[28]

Input with PD

UART4_TXD

F18

NVCC_UART

GPIO

ALT5

GPIO5.IO[29]

Input with PD

USB1_DN

A22 VDD_USB_3P3

PHY

--

--

Input

USB1_DP

B22 VDD_USB_3P3

PHY

--

--

Input

USB1_ID

D22 VDD_USB_1P8

PHY

--

--

Input

USB1_TXRTUNE E19 VDD_USB_1P8

PHY

--

--

--

USB1_VBUS

F22 VDD_USB_3P3

PHY

--

--

--

USB2_DN

A23 VDD_USB_3P3

PHY

--

--

Input

USB2_DP

B23 VDD_USB_3P3

PHY

--

--

Input

USB2_ID

D23 VDD_USB_1P8

PHY

--

--

Input

USB2_TXRTUNE E22 VDD_USB_1P8

PHY

--

--

--

USB2_VBUS

F23 VDD_USB_3P3

PHY

--

--

--

1 Works as JTAG Active output when the internal reset is asserted, default is output low. After the internal reset is deasserted, it becomes input with PD.
2 Works as INT_BOOT output when the internal reset is asserted, default is output high. After the internal reset is deasserted, it becomes input with PU.
3 Works as TESTER_ACK input when the internal reset is asserted, default is input without PU/PD. After the internal reset is deasserted, it becomes input with PD.

5.1.3 i.MX 8M Mini 14 x 14 mm 0.5 mm pitch ball map
Table 66 shows the i.MX 8M Mini 14 x 14 mm 0.5 mm pitch ball map.

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

83

Package information and contact assignments Table 66. 14 x 14 mm, 0.5 mm pitch ball map
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

84

G

F

E

D

C

B

A

DRAM_DQS1_P DRAM_DM1

DRAM_DQ14

DRAM_DQ03 DRAM_DQ04 DRAM_DQ05

VSS

DRAM_DQ09 DRAM_DQ08 DRAM_DQ15

DRAM_DQ02

VSS

DRAM_DQS0_N DRAM_DQS0_P

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

VSS

VSS

VSS

DRAM_DQ06

DRAM_AC00 DRAM_AC10

DRAM_DQ07

DRAM_DM0

DRAM_AC01

DRAM_AC11

VSS

DRAM_DQ01

DRAM_DQ00

DRAM_AC06 ECSPI2_SCLK ECSPI1_SCLK

VSS

ECSPI1_SS0

ECSPI2_SS0

VSS

ECSPI1_MOSI ECSPI1_MISO

ECSPI2_MOSI ECSPI2_MISO

VSS

I2C1_SDA

I2C1_SCL

I2C2_SDA

VSS

MIPI_DSI_D0_P MIPI_DSI_D0_N

VSS

I2C3_SDA

I2C3_SCL

I2C2_SCL

VSS

MIPI_DSI_D1_P MIPI_DSI_D1_N

MIPI_DSI_CLK_P MIPI_DSI_CLK_N

MIPI_DSI_D2_P MIPI_DSI_D2_N

VSS

UART1_TXD

I2C4_SDA

I2C4_SCL

VSS

MIPI_DSI_D3_P MIPI_DSI_D3_N

VDD_PCI_1P8

UART1_RXD

VSS

MIPI_CSI_D0_P MIPI_CSI_D0_N

VSS

UART2_RXD

UART2_TXD MIPI_VREG_CAP

VSS

MIPI_CSI_D1_P MIPI_CSI_D1_N

MIPI_CSI_CLK_P MIPI_CSI_CLK_N

MIPI_CSI_D2_P MIPI_CSI_D2_N

VSS

UART4_TXD

UART3_RXD

UART3_TXD

VSS

MIPI_CSI_D3_P MIPI_CSI_D3_N

VSS

UART4_RXD USB1_TXRTUNE PCIE_RESREF

VSS

PCIE_PXN_P PCIE_RXN_N

PCIE_TXN_P

PCIE_TXN_N

VSS

PCIE_CLK_P

PCIE_CLK_N

USB1_VBUS USB2_TXRTUNE

USB1_ID

VSS

USB1_DP

USB1_DN

NXP Semiconductors

USB2_VBUS

USB2_ID

VSS

USB2_DP

USB2_DN

RTC_RESET_B PMIC_STBY_REQ

POR_B

PMIC_ON_REQ

VSS

VSS

RTC_XTALO

ONOFF

BOOT_MODE0 JTAG_TCK

JTAG_TDO

TEST_MODE 24M_XTALO

VSS

RTC_XTALI

BOOT_MODE1 JTAG_TMS

JTAG_TDI

JTAG_MOD JTAG_TRST_B 24M_XTALI

VSS

Package information and contact assignments Table 66. 14 x 14 mm, 0.5 mm pitch ball map (continued) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

NXP Semiconductors

P

N

M

L

K

J

H

DRAM_VREF

DRAM_AC26

DRAM_AC16 DRAM_AC05 DRAM_DQ13

DRAM_DQ10

DRAM_DQS1_N

DRAM_ZN

DRAM_AC19

DRAM_AC17 DRAM_AC04 DRAM_DQ12

DRAM_DQ11

VSS

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

VSS

VSS

VSS

VSS

DRAM_AC12

DRAM_AC02

DRAM_AC03

VDD_DRAM_PLL_1P8

DRAM_AC13

DRAM_AC14

DRAM_AC07

DRAM_AC15

DRAM_AC09

DRAM_AC08

NVCC_DRAM

VSS

VSS

VSS

NVCC_DRAM

NVCC_DRAM

VDD_DRAM_PLL_0P8 NVCC_DRAM

NVCC_DRAM NVCC_DRAM NVCC_DRAM

VDD_DRAM

VDD_DRAM

VDD_DRAM

NVCC_ESCPI

VDD_VPU

VDD_VPU

NVCC_I2C

VDD_GPU

VSS

VSS

VSS

VDD_VPU

NVCC_UART

VSS

VDD_SOC

VDD_VPU

VDD_VPU

VDD_VPU

PVCC2_1P8

VDD_MIPI_1P8

VDD_VPU

VDD_MIPI_0P9

VSS

VDD_SOC

VDD_SOC

VDD_SOC

VDD_SOC

VDD_MIPI_1P2

VDD_USB_1P8

VDD_ARM_PLL_0P8

VSS

VSS

VSS

VDD_SOC

VDD_PCI_0P8

VDD_ANA_0P8

VDD_ANA_0P8

VDD_USB_0P8

VDD_SOC

VDD_SOC

NC_J18

VSS

VDD_ANA1_1P8 VDD_24M_XTAL_1P8 NVCC_CLK NVCC_JTAG VDD_USB_3P3

VDD_ANA1_1P8

VSS

VSS

VSS

VSS

VSS

NAND_ALE

VDD_SNVS_0P8 NVCC_SNVS_1P8

NAND_DATA00

NAND_DATA03

NAND_DATA02 TSENSOR_TEST_OUT

NAND_CE0_B

NAND_DATA01 TESENSOR_RES_EXT

VSS

VSS

VSS

VSS

NAND_READY_B

NAND_DATA07 NAND_DATA04 NAND_DATA05 NAND_DATA06

CLKOUT2

CLKOUT1

NAND_CE1_B

NAND_RE_B

NAND_CE2_B NAND_CE3_B NAND_CLE

CLKIN2

CLKIN1

85

Package information and contact assignments Table 66. 14 x 14 mm, 0.5 mm pitch ball map (continued)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

86

AB

AA

Y

W

V

U

T

R

DRAM_DM2 DRAM_DQS2_P DRAM_DQS2_N DRAM_DQ18 DRAM_DQ21 DRAM_AC25 DRAM_AC234 DRAM_RESET_N

DRAM_DQ16 DRAM_DQ17

VSS

DRAM_DQ19 DRAM_DQ20 DRAM_AC24 DRAM_AC35 DRAM_ALERT_N

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

VSS

VSS

VSS

VSS

DRAM_AC20

DRAM_AC22 DRAM_AC23

DRAM_AC32

DRAM_AC21

DRAM_AC37 DRAM_AC36

DRAM_AC33

DRAM_AC38

DRAM_AC28 DRAM_AC29

DRAM_AC27

VSS

VSS

VSS

VSS

NVCC_DRAM

NVCC_DRAM

GPIO1_IO15

VSS

NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM

GPIO1_IO12

VSS

NVCC_SAI3 VDD_DRAM

VDD_DRAM

VDD_DRAM

VDD_GPU

VDD_GPU

VDD_GPU

NVCC_GPIO1 VDD_GPU

VSS

VSS

VSS

PVCC0_1P8

VSS

VSS

VDD_ARM VDD_ARM VDD_ARM VDD_ARM

VDD_ARM

VDD_ANA0_1P8

VDD_ARM

VDD_ARM

SAI5_RXFS

VSS

VDD_ANA0_1P8 VDD_ARM VDD_ARM VDD_ARM VDD-ARM

VDD_ARM

VDD_ARM VDD_ARM

VSS

VSS

VSS

NVCC_SAI5

VDD_SOC

VDD_SOC

SAI1_MCLK

VSS

VSS

NVCC_SAI1

VDD_SOC

VDD_SOC

SAI1_TXFS

VSS

NVCC_SAI2 NVCC_NAND PVCC1_1P8 VDD_ARM_PLL_1P8

NVCC_SD1

VSS

VSS

VSS

VSS

VSS

SAI2_RXC

NVCC__ENET NVCC_SD2

NAND_DQS

NXP Semiconductors

SD2_DATA0

SD2_CLK SD2_DATA3

SD1_RESET_B

SD2_DATA1

SD2_CMD SD2_DATA2

SD1_STROBE

VSS

VSS

VSS

VSS

SD2_RESET_B SD2_CD_B

SD1_DATA1 SD1_DATA7 SD1_CLK SD1_DATA5 SD1_DATA3

NAND_WE_B

ENET_MDIO

SD2_WP

SD1_DATA0 SD1_DATA6 SD1_CMD SD1_DATA4 SD1_DATA2

NAND_WP_B

Package information and contact assignments Table 66. 14 x 14 mm, 0.5 mm pitch ball map (continued) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

5.2 DDR pin function list
Table 67 shows the DDR pin function list.
Table 67. DDR pin function list

Ball name

DRAM_DQS0_P DRAM_DQS0_N
DRAM_DM0 DRAM_DQ00 DRAM_DQ01 DRAM_DQ02 DRAM_DQ03 DRAM_DQ04 DRAM_DQ05

NXP Semiconductors

AG

AF

AE

AD

AC

VSS

DRAM_DQ29 DRAM_DQ28 DRAM_DQ27 DRAM_DQ22

DRAM_DQS3_P DRAM_DQS3_N

VSS

DRAM_DQ26 DRAM_DQ23

LPDDR4

DQS0_t_A DQS0_c_A
DMI0_A DQ0_A DQ1_A DQ2_A DQ3_A DQ4_A DQ5_A

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

DRAM_DQ30

VSS

VSS

DRAM_DM3 DRAM_DQ31

DRAM_AC30

DRAM_DQ24 DRAM_DQ25

VSS

DRAM_AC31

SAI3_TXC

SAI3_TXD

VSS

SAI3_MCLK SAI3_TXFS

SAI3_RXC

SAI3_RXD

SAI3_RXFS SPDIF_EXT_CLK

SPDIF_RX

SPDIF_TX

VSS

GPIO1_IO13 GPIO1_IO14

GPIO1_IO08

GPIO1_IO09

VSS

GPIO1_IO10 GPIO1_IO11

GPIO1_IO06

GPIO1_IO07

GPIO1_IO04

GPIO1_IO05

GPIO1_IO02

GPIO1_IO03

VSS

SAI5_RXD2 SAI5_RXD3

GPIO1_IO00

GPIO1_IO01

VSS

SAI5_RXD1

DDR4

DQSL_t_A DQSL_c_A DML_n_A / DBIL_n_A
DQL0_A DQL1_A DQL2_A DQL3_A DQL4_A DQL5_A

SAI1_RXD0

SAI1_RXD1

VSS

SAI5_MCLK SAI5_RXC

SAI1_RXFS

SAI1_RXC

SAI1_RXD2

SAI1_RXD3

SAI1_RXD4

SAI1_RXD5

VSS

SAI5_RXD0 SAI1_TXC

SAI1_RXD6

SAI1_RXD7

VSS

SAI2_MCLK SAI2_RXFS

SAI1_TXD0

SAI1_TXD1

SAI1_TXD2

SAI1_TXD3

SAI1_TXD4

SAI1_TXD5

VSS

SAI2_TXC SAI2_TXD0

DDR3/3L DQSL_A DQSL#_A DML_A DQL0_A DQL1_A DQL2_A DQL3_A DQL4_A DQL5_A

SAI1_TXD6

SAI1_TXD7

VSS

SAI2_TXFS

ENET_TXC ENET_TX_CTL

SAI2_RXD0

ENET_TD2

ENET_TD3

VSS

ENET_TD0

ENET_TD1 ENET_RXC ENET_RD2 ENENT_RD3

VSS

ENET_RX_CTL ENET_RD0 ENET_RD1 ENET_MDC

87

Package information and contact assignments

Table 67. DDR pin function list (continued)

DRAM_DQ06 DRAM_DQ07 DRAM_DQS1_P DRAM_DQS1_N DRAM_DM1 DRAM_DQ08 DRAM_DQ09 DRAM_DQ10 DRAM_DQ11 DRAM_DQ12 DRAM_DQ13 DRAM_DQ14 DRAM_DQ15 DRAM_DQS2_P DRAM_DQS2_N DRAM_DM2 DRAM_DQ16 DRAM_DQ17 DRAM_DQ18 DRAM_DQ19 DRAM_DQ20 DRAM_DQ20 DRAM_DQ21 DRAM_DQ22 DRAM_DQ23 DRAM_DQS3_P DRAM_DQS3_N DRAM_DM3 DRAM_DQ24 DRAM_DQ25 DRAM_DQ26 DRAM_DQ27 DRAM_DQ28 DRAM_DQ29

DQ6_A DQ7_A DQS1_t_A DQS1_c_A DMI1_A DQ08_A DQ09_A DQ10_A DQ11_A DQ12_A DQ13_A DQ14_A DQ15_A DQS0_t_B DQS0_c_B DMI0_B DQ0_B DQ1_B DQ2_B DQ3_B DQ4_B DQ4_B DQ5_B DQ6_B DQ7_B DQS1_t_B DQS1_c_B DMI1_B DQ08_B DQ09_B DQ10_B DQ11_B DQ12_B DQ13_B

DQL6_A DQL7_A DQSU_t_A DQSU_c_A DMU_n_A / DBIU_n_A DQU0_A DQU1_A DQU2_A DQU3_A DQU4_A DQU5_A DQU6_A DQU7_A DQSL_t_B DQSL_c_B DML_n_B / DBIL_n_B DQL0_B DQL1_B DQL2_B DQL3_B DQL4_B DQL4_B DQL5_B DQL6_B DQL7_B DQSU_t_B DQSU_c_B DMU_n_B / DBIU_n_B DQU0_B DQU1_B DQU2_B DQU3_B DQU4_B DQU5_B

DQL6_A DQL7_A DQSU_A DQSU#_A DMU_A DQU0_A DQU1_A DQU2_A DQU3_A DQU4_A DQU5_A DQU6_A DQU7_A DQSL_B DQSL#_B DML_B DQL0_B DQL1_B DQL2_B DQL3_B DQL4_B DQL4_B DQL5_B DQL6_B DQL7_B DQSU_B DQSU#_B DMU_B DQU0_B DQU1_B DQU2_B DQU3_B DQU4_B DQU5_B

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

88

NXP Semiconductors

DRAM_DQ30 DRAM_DQ31 DRAM_RESET_N DRAM_ALERT_N DRAM_AC00 DRAM_AC01 DRAM_AC02 DRAM_AC03 DRAM_AC04 DRAM_AC05 DRAM_AC06 DRAM_AC07 DRAM_AC08 DRAM_AC09 DRAM_AC10 DRAM_AC11 DRAM_AC12 DRAM_AC13 DRAM_AC14 DRAM_AC15 DRAM_AC16 DRAM_AC17 DRAM_AC19 DRAM_AC20 DRAM_AC21 DRAM_AC22 DRAM_AC23 DRAM_AC24 DRAM_AC25 DRAM_AC26 DRAM_AC27 DRAM_AC28 DRAM_AC29 DRAM_AC30

Package information and contact assignments

Table 67. DDR pin function list (continued)

DQ14_B DQ15_B RESET_N MTEST1 CKE0_A CKE1_A CS0_A CS1_A CK_t_A CK_c_A
-- -- CA0_A CA1_A CA2_A CA3_A CA4_A CA5_A -- -- -- -- MTEST CKE0_B CKE1_B CS1_B CS0_B CK_t_B CK_c_B -- -- CA0_B CA1_B CA2_B

DQU6_B DQU7_B RESET_n ALERT_n / MTEST1
CKE0 CKE1 CS0_n
C0 BG0 BG1 ACT_n A9 A12 A11 A7 A8 A6 A5 A4 A3 CK_t_A CK_c_A MTEST CK_t_B CK_c_B -- -- A2 A1 BA1 PARITY A13 BA0 A10 / AP

DQU6_B DQU7_B RESET# MTEST1
CKE0 CKE1 CS0#
-- BA2 A14 A15 A9 A12 / BC# A11 A7 A8 A6 A5 A4 A3 CK_A CK#_A MTEST CK_B CK#_B -- -- A2 A1 BA1 -- A13 BA0 A10 / AP

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

89

Package information and contact assignments

Table 67. DDR pin function list (continued)

DRAM_AC31 DRAM_AC32 DRAM_AC33 DRAM_AC34 DRAM_AC35 DRAM_AC36 DRAM_AC37 DRAM_AC38
DRAM_ZN DRAM_VREF

CA3_B CA4_B CA5_B
-- -- -- -- -- ZQ VREF

A0 C2 CAS_n / A15 WE_n / A14 RAS_n / A16 ODT0 ODT1 CS1_n ZQ VREF

A0 -- CAS# WE# RAS# ODT0 ODT1 CS1# ZQ VREF

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

90

NXP Semiconductors

Revision history

6 Revision history

Table 68 provides a revision history for this data sheet.
Table 68. Revision history

Rev. number

Date

Substantive change(s)

Rev. 1
Rev. 0.2 Rev. 0.1 Rev. 0

07/2020

· Updated the eMMC descriptions in the Table 1, "Features" · Updated numbers of SD 3.0 in the Figure 1, "i.MX 8M Mini system block diagram" · Added two part numbers and updated the part differentiator in the Table 2, "Orderable part
numbers" · Updated the part differentiator and Fusing in the Figure 2, "Part number nomenclature--i.MX 8M
Mini family of processors" · Updated eCSPI, SJC, and uSDHC descriptions in the Table 3, "i.MX 8M Mini modules list" · Updated a typo for NVCC_ENET in the Table 4, "Recommended connections for unused power
supply rails" · Updated the min values and a typo in the Table 7, "Absolute maximum ratings"; removed ESD
parameters from the Table 7, "Absolute maximum ratings" · Added the Table 8, "Electrostatic discharge and latch up ratings" · Added a footnote in the Table 10, "Operating ranges" · Added VDD_24M_XTAL_1P8, VDD_ARM_PLL_1P8, and PVCCx_1P8 in the Table 13, "Maximum
supply currents" · Updated the Table 14, "Chip power in different LP mode" · Updated the suspend mode state of VDD_MIPI_0P9 and VDD_MIPI_1P2 in the Table 15, "The
power supply states" · Updated the maximum values of T1, T2, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13 and minimum
value of T3 in the Table 17, "Power-up sequence" · Updated the maximum values in the Table 18, "Power-down sequence" · Removed the USBx_ID, ONOFF, and POR_B from the Table 22, "Additional leakage parameters" · Added GPIO1_09, I2C2_SCL, and I2C2_SDA in the Table 35, "ENET signal mapping" · Removed 0x2 from the Section 3.9.10.1.1, SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0,
0x1 and Section 3.9.10.1.3, DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1 · Updated the parameters of GPIO1_IO00, GPIO1_IO01, GPIO1_IO05, GPIO1_IO09, and
SAI5_MCLK in the Table 65, "i.MX 8M Mini 14 x 14 mm functional contact assignments" · Fixed a typo in the Table 66, "14 x 14 mm, 0.5 mm pitch ball map"

04/2019

· Updated numbers of eMMC and FlexSPI in the Figure 1, "i.MX 8M Mini system block diagram" · Updated the descriptions about USB and uSDHC in the Table 3, "i.MX 8M Mini modules list" · Updated the comment of VDD_VPU and the LPDDR4 maximum value of NVCC_DRAM in the
Table 10, "Operating ranges"

02/2019 · Updated the SNVS states in the Table 15, "The power supply states"

02/2019 · Initial version

i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020

NXP Semiconductors

91

How to Reach Us:
Home Page: nxp.com
Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals" must be validated for each customer application by customer, customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.
While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2019-2020 NXP B.V.
Document Number: IMX8MMCEC Rev. 1
07/2020


Acrobat Distiller 20.0 (Windows)