GW1NZ series of FPGA Products

Datasheet

DS841-1.6E

Shen Weiqi

DS841

DS841-1.7.2E, 01/27/2021 ... The latest user guides are available on the GOWINSEMI Website. You ... Quick page erasure/Write operation ...

GW1NZ series of FPGA Products - Mouser Electronics

For example, routing resources distributed in CFU and IOB connect resources in CFU and IOB. Routing resources can automatically be.

View Datasheet

LittleBee GW1NZ-1 FPGAs - GOWIN | Mouser

PDF preview unavailable. Download the PDF instead.

DS841-16E GW1NZseriesofFPGAProductsDatasheet
GW1NZ series of FPGA Products
Datasheet
DS841-1.6E,06/30/2020

Copyright©2020 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.
No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.
Disclaimer
GOWINSEMI®, LittleBee®, Arora, and the GOWINSEMI logos are trademarks of GOWINSEMI and are registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders, as described at www.gowinsemi.com. GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. All information in this document should be treated as preliminary. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date

Version

01/23/2019

1.0E

02/12/2019

1.1E

04/03/2019

1.2E

09/25/2019
11/06/2019 01/06/2020 06/30/2020

1.3E
1.4E 1.5E 1.6E

Description
Initial version published.
Figures of part naming updated.
 I/O BANK view updated;  The description of I3C bus and SPMI added; the
precision of the on chip OSC added;  Changerd "Operating Temperature" to "Junction
Temperature".
 The note of "GW1NZ-1 I/Os support differential output, rather than differential input" added;
 Power supply ramp rate modified.
Number of Max. I/O updated.  The static current of ZV devices added;  Low power description of user flash added. GW1NZ-1 FN32F added.

Contents

Contents

Contents ............................................................................................................... i List of Figures .................................................................................................... iv List of Tables...................................................................................................... vi 1 About This Guide ............................................................................................. 1

1.1 Purpose .............................................................................................................................. 1 1.2 Related Documents ............................................................................................................ 1 1.3 Abbreviations and Terminology........................................................................................... 2 1.4 Support and Feedback ....................................................................................................... 2
2 General Description......................................................................................... 3

2.1 Features.............................................................................................................................. 3 2.2 Product Resources ............................................................................................................. 5 2.3 Package Information........................................................................................................... 5
3 Architecture...................................................................................................... 6

3.1 Architecture Overview......................................................................................................... 6 3.2 Configurable Function Unit ................................................................................................. 7 3.2.1 Look-up Table .................................................................................................................. 8 3.2.2 Register ........................................................................................................................... 9 3.2.3 CRU ................................................................................................................................. 9 3.3 IOB.................................................................................................................................... 10 3.3.1 I/O Buffer ....................................................................................................................... 10 3.3.2 I/O Logic ........................................................................................................................ 12 3.3.3 I/O Logic Modes............................................................................................................. 14 3.4 I3C Bus ............................................................................................................................. 18 3.4.1 Overview ........................................................................................................................ 18 3.4.2 Port Signal ..................................................................................................................... 19 3.5 SPMI ................................................................................................................................. 21 3.5.1 Overview ........................................................................................................................ 21 3.5.2 Port Signal ..................................................................................................................... 22 3.6 Block SRAM (B-SRAM) .................................................................................................... 22 3.6.1 Introduction .................................................................................................................... 22 3.6.2 Configuration Mode ....................................................................................................... 23

DS841-1.6E

i

Contents

3.6.3 Mixed Data Bus Width Configuration............................................................................. 25 3.6.4 Byte-enable.................................................................................................................... 25 3.6.5 Parity Bit ........................................................................................................................ 25 3.6.6 Synchronous Operation ................................................................................................. 26 3.6.7 Power up Conditions ..................................................................................................... 26 3.6.8 B-SRAM Operation Modes ............................................................................................ 26 3.6.9 Clock Operations ........................................................................................................... 28 3.7 User Flash ........................................................................................................................ 29 3.7.1 Introduction .................................................................................................................... 29 3.7.2 Mode .............................................................................................................................. 29 3.7.3 Port Signal ..................................................................................................................... 30 3.7.4 Operation Modes ........................................................................................................... 31 3.8 Clock ................................................................................................................................. 31 3.8.1 Global Clock .................................................................................................................. 31 3.8.2 PLL ................................................................................................................................ 34 3.8.3 HCLK ............................................................................................................................. 35 3.9 Long Wire (LW)................................................................................................................. 35 3.10 Global Set/Reset (GSR) ................................................................................................. 36 3.11 Programming Configuration ............................................................................................ 36 3.11.1 SRAM Configuration .................................................................................................... 36 3.11.2 Flash Configuration ...................................................................................................... 36 3.12 On Chip Oscillator........................................................................................................... 36
4 AC/DC Characteristic..................................................................................... 38
4.1 Operating Conditions ........................................................................................................ 38 4.1.1 Absolute Max. Ratings ................................................................................................... 38 4.1.2 Recommended Operating Conditions ........................................................................... 38 4.1.3 Power Supply Ramp Rates ........................................................................................... 38 4.1.4 Hot Socket Specifications .............................................................................................. 39 4.1.5 POR Specification.......................................................................................................... 39 4.2 ESD................................................................................................................................... 39 4.3 DC Characteristic.............................................................................................................. 39 4.3.1 DC Electrical Characteristics over Recommended Operating Conditions .................... 39 4.3.2 Static Current ................................................................................................................. 41 4.3.3 I/O Operating Conditions Recommended ..................................................................... 42 4.3.4 Single-Ended IO DC Electrical Characteristic ............................................................. 43 4.4 Switching Characteristic ................................................................................................... 44 4.4.1 CFU Block Internal Timing Parameters ......................................................................... 44 4.4.2 Clock and I/O Switching Characteristics ....................................................................... 44 4.4.3 B-SRAM Switching Characteristics ............................................................................... 44

DS841-1.6E

ii

Contents
4.4.4 On chip Oscillator Output Frequency ............................................................................ 44 4.4.5 PLL Switching Characteristics ....................................................................................... 45 4.5 User Flash Characteristic ................................................................................................. 45 4.5.1 DC Characteristic........................................................................................................... 45 4.5.2 Timing Parameters......................................................................................................... 47 4.5.3 Operation Timing Diagrams ........................................................................................... 48 4.6 Configuration Interface Timing Specification .................................................................... 49
5 Ordering Information ..................................................................................... 50
5.1 Part Name......................................................................................................................... 50 5.2 Package Mark ................................................................................................................... 51

DS841-1.6E

iii

List of Figures

List of Figures

Figure 3-1 GW1NZ Architecture Overview ........................................................................................ 6 Figure 3-2 CFU View.......................................................................................................................... 8 Figure 3-3 Register in CFU ................................................................................................................ 9 Figure 3-4 IOB Structure View ........................................................................................................... 10 Figure 3-5 I/O Bank Distribution of GW1NZ series of FPGA Products.............................................. 11 Figure 3-6 I/O Logic Output ............................................................................................................... 12 Figure 3-7 I/O Logic Input .................................................................................................................. 12 Figure 3-8 IODELAY .......................................................................................................................... 13 Figure 3-9 Register Structure in I/O Logic ......................................................................................... 13 Figure 3-10 IEM Structure.................................................................................................................. 14 Figure 3-11 I/O Logic in Basic Mode .................................................................................................. 14 Figure 3-12 I/O Logic in SDR Mode................................................................................................... 15 Figure 3-13 I/O Logic in DDR Input Mode ......................................................................................... 15 Figure 3-14 I/O Logic in DDR Output Mode....................................................................................... 16 Figure 3-15 I/O Logic in IDES10 Mode .............................................................................................. 16 Figure 3-16 I/O Logic in OSER4 Mode .............................................................................................. 16 Figure 3-17 I/O Logic in IVideo Mode ................................................................................................ 17 Figure 3-18 I/O Logic in OVideo Mode .............................................................................................. 17 Figure 3-19 I/O Logic in IDES8 Mode ................................................................................................ 17 Figure 3-20 I/O Logic in OSER8 Mode .............................................................................................. 18 Figure 3-21 I/O Logic in IDES10 Mode .............................................................................................. 18 Figure 3-22 I/O Logic in OSER10 Mode ............................................................................................ 18 Figure 3-27 Pipeline Mode in Single Port, Dual Port and Semi Dual Port......................................... 26 Figure 3-28 Independent Clock Mode ............................................................................................... 28 Figure 3-29 Read/Write Clock Mode.................................................................................................. 28 Figure 3-30 Single Port Clock Mode .................................................................................................. 29 Figure 3-31 GW1NZ-1 User Flash Ports ........................................................................................... 30 Figure 3-32 GW1NZ-1 Clock Resources ........................................................................................... 31 Figure 3-33 GCLK Quadrant Distribution........................................................................................... 32 Figure 3-34 DQCE Concepts ............................................................................................................. 32 Figure 3-35 DCS Concept.................................................................................................................. 33 Figure 3-36 DCS Rising Edge............................................................................................................ 33

DS841-1.6E

iv

List of Figures
Figure 3-37 DCS Falling Edge ........................................................................................................... 33 Figure 3-38 PLL Structure.................................................................................................................. 34 Figure 3-39 GW1NZ-1 HCLK Distribution.......................................................................................... 35 Figure 4-1 Read Mode ....................................................................................................................... 48 Figure 4-2 Write Mode ....................................................................................................................... 48 Figure 4-3 Erasure Mode ................................................................................................................... 49 Figure 5-1 Part Naming Example­ES................................................................................................ 50 Figure 5-2 Part Naming Example­Production ................................................................................... 51 Figure 5-3 Package Mark................................................................................................................... 51

DS841-1.6E

v

List of Tables

List of Tables

Table 1-1 Abbreviations and Terminologies ....................................................................................... 2 Table 2-1 Product Resources............................................................................................................. 5 Table 2-2 Package Information and Max. User I/O............................................................................ 5 Table 3-1 Register Description in CFU .............................................................................................. 9 Table 3-2 Output I/O Standards and Configuration Options .............................................................. 11 Table 3-3 Output I/O Standards and Configuration Options .............................................................. 12 Table 3-4 I3C Port Signals ................................................................................................................. 20 Table 3-5 SPMI Port Signal ................................................................................................................ 22 Table 3-6 B-SRAM Signals ................................................................................................................ 23 Table 3-7 Memory Size Configuration................................................................................................ 23 Table 3-8 Dual Port Mixed Read/Write Data Width Configuration ..................................................... 25 Table 3-9 Semi Dual Port Mixed Read/Write Data Width Configuration ............................................ 25 Table 3-14 Clock Operations in Different B-SRAM Modes ................................................................ 28 Table 3-15 User Flash Modes ............................................................................................................ 30 Table 3-16 Flash Module Signal Description ..................................................................................... 30 Table 3-17 Truth Table in User Mode ................................................................................................. 31 Table 3-18 PLL Ports Definition.......................................................................................................... 34 Table 3-19 Oscillator Output Frequency Options ............................................................................... 37 Table 4-1 Absolute Max. Ratings ....................................................................................................... 38 Table 4-2 Recommended Operating Conditions ................................................................................ 38 Table 4-3 Power Supply Ramp Rates ................................................................................................ 38 Table 4-4 Hot Socket Specifications .................................................................................................. 39 Table 4-5 POR Specification .............................................................................................................. 39 Table 4-6 GW1NZ ESD - HBM........................................................................................................... 39 Table 4-7 GW1NZ ESD - CDM .......................................................................................................... 39 Table 4-8 DC Electrical Characteristics over Recommended Operating Conditions ......................... 39 Table 4-9 Static Supply Current (LV Device) ..................................................................................... 41 Table 4-10 Static Supply Current (ZV Device) ................................................................................... 41 Table 4-11 I/O Operating Conditions Recommended ........................................................................ 42 Table 4-12 Single-Ended IO DC Electrical Characteristic ............................................................... 43 Table 4-13 CFU Block Internal Timing Parameters............................................................................ 44 Table 4-14 Clock and I/O Switching Characteristics .......................................................................... 44

DS841-1.6E

vi

List of Tables
Table 4-15 B-SRAM Internal Timing Parameters............................................................................... 44 Table 4-16 On chip Oscillator Output Frequency............................................................................... 44 Table 4-17 PLL Switching Characteristics.......................................................................................... 45 Table 4-18 User Flash DC Characteristics......................................................................................... 45 Table 4-19 User Flash Timing Parameters ........................................................................................ 47

DS841-1.6E

vii

1 About This Guide

1.1 Purpose

1About This Guide
1.1 Purpose
This data sheet describes the features, product resources and structure, AC/DC characteristics, timing specifications of the configuration interface, and the ordering information of the GW1NZ series of FPGA product. It is designed to help you understand the GW1NZ series of FPGA products quickly and select and use devices appropriately.
1.2 Related Documents
The latest user guides are available on the GOWINSEMI Website. You can find the related documents at www.gowinsemi.com:
1. DS841, GW1NZ series of FPGA Products Data Sheet 2. UG290, Gowin FPGA Products Programming and Configuration User
Guide 3. UG843, GW1NZ series of FPGA Products Package and Pinout 4. UG842, GW1NZ-1 Pinout

DS841-1.6E

1(51)

1 About This Guide

1.3 Abbreviations and Terminology

1.3 Abbreviations and Terminology

The abbreviations and terminology used in this manual are as shown in Table 1-1 below.
Table 1-1 Abbreviations and Terminologies

Abbreviations and Terminology FPGA CFU CLS CRU LUT4 LUT5 LUT6 LUT7 LUT8 REG ALU IOB B-SRAM SP SDP DP DQCE DCS PLL SPMI GPIO CS30 FN32 LQ100 LQ144 MG160 PG204

Full Name Field Programmable Gate Array Configurable Functional Unit Configurable Logic Slice Configurable Routing Unit Four-input Look-up Table Five-input Look-up Tables Six-input Look-up Tables Seven-input Look-up Tables Eight-input Look-up Tables Register Arithmetic Logic Unit Input/output Bank Block SRAM Signal Port Semi Dual Port Dual Port Dynamic Quadrant Clock Enable Dynamic Clock Selector Phase Locked Loop System Power Management Interface Gowin Programmable IO WLCSP30 QFN32 LQFP100 LQFP144 MBGA160 PBGA204

1.4 Support and Feedback

Gowin Semiconductor provides customers with comprehensive technical support. If you have any questions, comments, or suggestions, please feel free to contact us directly using the information provided below.
Website: www.gowinsemi.com
E-mail: support@gowinsemi.com

DS841-1.6E

2(51)

2 General Description

2.1 Features

2General Description

The GW1NZ series of FPGA products are the first generation products in the LittleBee® family. They offer ultra-low power consumption, instant on, low cost, non-volatile, high security, various packages, and flexible usage. They can be widely used in communication, industry control, consumer, video control, etc.
GOWINSEMI provides a new generation of FPGA hardware development environment through market-oriented independent research and development that supports the GW1NZ series of FPGA products and applies to FPGA synthesizing, layout, place and routing, data bitstream generation and download, etc.
2.1 Features
 Zero power consumption - 55nm embedded flash technology - LV: Supports 1.2V core voltage - ZV: Supports 0.9V core voltage. Please refer to Table 4-10 Static Supply Current (ZV Device) for the lowest power consumption. - Power Management Module - Clock dynamically turns on and off - User Falsh dynamically turns on and off
 Power Management Module - SPMI: System power management interface - VCC and VCCM are independent in the device
 User Flash - Dynamically turns on and off - 64K bits - Data Width: 32 - 10,000 write cycles - Greater than ten years' data retention at +85  - Supports page erasure: 2048 bytes per page - Duration: Max. 25ns - Electric current a). Read Operation: 2.19 mA/25 ns (VCC) & 0.5 mA/25 ns (VCCX) (MAX); b). Write operation/erase operation: 12/12 mA (MAX)

DS841-1.6E

3(51)

2 General Description

2.1 Features

- Quick page erasure/Write operation - Clock frequency: 40MHz - Write operation time: 16s - Page erasure time: 120 ms  Multiple I/O Standards - LVCMOS33/25/18/15/12;LVTTL33; PCI; - LVDS25E, BLVDSE, MLVDSE, LVPECLE, RSDSE - Input hysteresis option - Supports 4mA,8mA,16mA,24mA,etc. drive options - Slew Rate option - Output drive strength option - Individual Bus Keeper, Weak Pull-up, Weak Pull-down, and Open
Drain option - Hot Socket - I3C hard core, supports SDR mode - Support differential output, rather than differential input  Abundant Slices - Four input LUT (LUT4) - Double-edge flip-flops - Supports shifter register - Supports shadow SRAM  Block SRAM with multiple modes - Supports Dual Port, Single Port, and Semi Dual Port - Supports bytes write enable  Flexible PLLs - Frequency adjustment (multiply and division) and phase
adjustment - Supports global clock  Built-in Flash programming - Instant-on - Supports security bit operation - Supports AUTO BOOT and DUAL BOOT  Configuration - JTAG configuration - Offers up to six GowinCONFIG configuration modes: AUTOBOOT,
SSPI, MSPI, CPU, SERIAL, DUAL BOOT

DS841-1.6E

4(51)

2 General Description

2.2 Product Resources

2.2 Product Resources
Table 2-1 Product Resources
Device LUT4 Flip-Flop (FF) Shadow SRAM S-SRAM (bits) Block SRAM B-SRAM (bits) PLLs User Flash (bits) Max. I/O VCC

GW1NZ-1 1,152 864 4K
72K 1 64K 48 1.2V(LV); 0.9V(ZV)

2.3 Package Information

Table 2-2 Package Information and Max. User I/O

Package FN32 FN32F CS16 QN48

Pitch (mm) 0.4 0.4 0.4 0.4

Size (mm) 4 x 4 4 x 4 1.8 x 1.8 6 x 6

GW1NZ-1 25 25 11 40

Note!
 In this manual, abbreviations are employed to refer to the package types. See 5.1 Part Name.
 The JTAGSEL_N and JTAG pins cannot be used as I/O simultaneously. The data in this table is when the loaded four JTAG pins (TCK, TDI, TDO, and TMS) are used as I/O. When mode [2:0] = 001, JTAGSEL_N and the four JTAG pins (TCK, TDI, TDO, and TMS) can be used as GPIO simultaneously, and the Max. user I/O plus one.

DS841-1.6E

5(51)

3 Architecture

3.1 Architecture Overview

3Architecture

3.1 Architecture Overview
Figure 3-1 GW1NZ Architecture Overview

DS841-1.6E

I/OBAnk0/1 I/OBAnk0/1

I/OBank0 SPMI CFU
CFU Block SRAM
CFU

User Flash
PLL

Block SRAM

OSC

CFU

CFU

I3C

I/OBank1

SPMI

CFU

CFU

User Flash

IOB

IOB

Block SRAM

IOB PLL
IOB

Block SRAM

IOB OSC
IOB

CFU

CFU

CFU

CFU

IOB

IOB

CFU

CFU

CFU

IOB I3C
IOB

Figure 3-1 shows the GW1NZ devices architecture view.The core of the GW1NZ devices is the array of configurable logic unit (CFU) surrounded by IO blocks. GW1NZ also provides B-SRAM, DSP, PLL, user Flash, and on chip oscillator and supports Instant-on. SPMI and I3C are also embedded in the GW1NZ devices. See Table 2-1 for more detailed information on internal resources.
Configurable Function Unit (CFU) is the base cell for the array of the GW1NZ series of FPGA Products. These CFUs arrange in rows and columns. CFU can be configured as LUT4 mode, ALU mode, and memory mode. See 3.2Configurable Function Unit for further detailed information.
The I/O resources in the GW1NZ series of FPGA products are arranged around the periphery of the devices in groups referred to as banks, including Bank0 and Bank1. The I/O resources support multiple level standards, and support basic mode, SRD mode, and generic DDR mode. See 3.3IOB for further detailed information.
The B-SRAM is embedded as a row in the GW1NZ series of FPGA
6(51)

3 Architecture

3.2 Configurable Function Unit

products. In the FPGA array, each B-SRAM occupies three columns of CFU. Each B-SRAM has 18,432 bits (18 Kbits) and supports multiple configuration modes and operation modes. See 3.6Block SRAM (B-SRAM) for further detailed information.
The User Flash is embedded in the GW1NZ series of FPGA products, without loss of data even if power off. See Table 2-1 for further detailed information. See 3.7User Flash for further detailed information.
GW1NZ provides one PLL. PLL blocks provide the ability to synthesize clock frequencies. Frequency adjustment (multiply and division), phase adjustment, and duty cycle can be adjusted using the configuration of parameters. See 3.8Clock for further detailed information.
FPGA provides abundant CRUs, connecting all the resources in FPGA. For example, routing resources distributed in CFU and IOB connect resources in CFU and IOB. Routing resources can automatically be generated by Gowin software. In addition, the GW1NZ series of FPGA Products also provide abundant GCLKs, long wires (LW), global set/reset (GSR), and programming options, etc. See 3.9Long Wire (LW), 3.10Global Set/Reset (GSR), 3.11Programming Configuration for further detailed information.
3.2 Configurable Function Unit
The configurable function unit (CFU) is the base cell for the array of the GW1NZ series of FPGA Products. Each CFU consists of a configurable logic unit (CLU) and its routing resource configurable routing unit (CRU). In each CLU, there are four configurable logic slices (CLS). Each CLS contains look-up tables (LUT) and registers, as shown in Figure 3-2 below.

DS841-1.6E

7(51)

3 Architecture

Figure 3-2 CFU View
CFU

Carry to Right CLU

LUT LUT

REG/ SREG
REG/ SREG

CLU CLS3

CRU

LUT REG LUT REG

CLS2

LUT REG LUT REG

CLS1

LUT REG LUT REG

CLS0

3.2 Configurable Function Unit

Carry from left CLU
Note!
SERG needs special patch supporting. Please contact Gowin technical support or local O ffice for this patch.
3.2.1 Look-up Table
The CLU supports three operation modes: Basic logic mode, ALU mode, and ROM mode.
 Basic Logic Mode
Each LUT can be configured as one four-input LUT. Higher input number of LUT can be formed by combining the LUT4 together.
- Each CLS can form one five-input LUT5. - Two CLSs can form one six-input LUT6. - Four CLSs can form one seven-input LUT7. - Eight CLSs (two CLUs) can form one eight-input LUT8.  ALU Mode
When combined with carry chain logic, the LUT can be configured as the ALU mode to implement the following functions.
- Adder and subtractor - Up/down counter - Comparator,including greater-than, less-than, and not-equal-to - MULT

DS841-1.6E

8(51)

3 Architecture

3.2 Configurable Function Unit

 Memory mode In this mode, a 16 x 4 S-SRAM or ROM can be constructed by using CLSs.
 This SRAM can be initialized during the device configuration stage. The initialization data can be generated in the bit stream file from Gowin Yunyuan software.
3.2.2 Register
Each configurable logic slice (CLS) has two registers (REG), as shown in Figure 3-3 below.
Figure 3-3 Register in CFU

D

CE

CLK

Q

SR

GSR

Table 3-1 Register Description in CFU

Signal I/O Description

D

I

Data input 1

CE

I

CLK enable, can be high or low effective 2

CLK

I

SR

I

GSE3,4 I

Clock, can be rising edge or falling edge trigging 2
Set/Reset, can be configured as 2:  Synchronized reset  Synchronized set  Asynchronous reset  Asynchronous set  Non Global Set/Reset, can be configured as4:  Asynchronous reset  Asynchronous set  Non

Q

O Register

3.2.3 CRU

Note!
 [1] The source of the signal D can be the output of a LUT, or the input of the CRU; as such, the register can be used alone when LUTs are in use.
 [2] CE/CLK/SR in CFU is independent.  [3] In the GW1NZ series of FPGA products, GSR has its own dedicated network.  [4] When both SR and GSR are effective, GSR has higher priority.
The main functions of the CRU are as follows:
 Input selection: Select input signals for the CFU.  Configurable routing: Connect the input and output of the CFUs,
including inside the CFU, CFU to CFU, and CFU to other functional blocks in FPGA.

DS841-1.6E

9(51)

3 Architecture

3.3 IOB

3.3 IOB

The IOB in the GW1NZ series of FPGA products includes IO buffer, IO logic, and its routing unit. As shown in Figure 3-4, each IOB connects to two Pins (Marked as A and B). As input, they can be used as a single-end signal; as output, they can be used as an output differential pair or as a single end input/output.
Note!
GW1NZ-1 I/Os support differential output, rather than differential input.
Figure 3-4 IOB Structure View

"True" PAD A

"Comp" PAD B

"True" PAD A

"Comp" PAD B

Buffer Pair A & B

Buffer Pair A & B

DI

DO

TO

DI

DO

TO

DI

DO

TO

DI

DO

TO

IO Logic A

IO Logic B

IO Logic A

IO Logic B

CLK

Routing

Output

Routing

Input

CLK

Routing

Output

Routing

Input

CLK

Routing

Output

Routing

Input

CLK

Routing

Output

Routing

Input

Routing

Routing

IOB Features:
 VCCO supplied with each bank  Supports multiple levels: LVCMOS, PCI, LVTTL, etc.  Input hysteresis option  Output drive strength option  Slew Rate option  Individual Bus Keeper, Weak Pull-up, Weak Pull-down, and Open Drain
option  Hot Socket  IO Logic supports basic mode, SRD mode, and generic DDR mode  I3C hard core embedded, supports SDR mode  Supports differential output, rather than differential input
3.3.1 I/O Buffer
GW1NZ series of FPGA products include Bank0 and Bank1, as shown in Figure 3-5. VCCO can be 3.3V, 2.5V, 1.8V, 1.5V, or 1.2V.

DS841-1.6E

10(51)

3 Architecture
Figure 3-5 I/O Bank Distribution of GW1NZ series of FPGA Products
I/O Bank0

3.3 IOB

GW1NZ

I/O Bank1

GW1NZ series FPGA products contain both LV and UV. LV devices support 1.2V core voltage to meet users' low power needs. ZV devices support 0.9V core voltage. Zero-power consumption can be available for ZV devices. VCCO supplied with I/O Bank can be set as 1.2V, 1.5V, 1.8V, 2.5V, or 3.3V according to requirements. VCCX supports 1.8V, 2.5 V, and 3.3 V power supply.

Note!

By default, the Gowin Programmable IO is tri-stated weak pull-up.

For the VCCO requirements of different I/O standards, see Table 3-2.

Table 3-2 Output I/O Standards and Configuration Options

I/O output standard
LVTTL33

Single/Differ Single end

Bank VCCO (V) 3.3

Driver Strength (mA) 4,8,12,16,24

LVCMOS33 Single end

3.3

4,8,12,16,24

LVCMOS25 Single end

2.5

4,8,12,16

LVCMOS18 Single end

1.8

4,8,12

LVCMOS15 Single end

1.5

4,8

LVCMOS12 Single end

1.2

4,8

PCI33

Single end

3.3

N/A

LVPECL33E Differential

3.3

16

MLVDS25E

Differential

2.5

16

BLVDS25E

Differential

2.5

16

RSDS25E

Differential

2.5

8

LVDS25E

Differential

2.5

8

DS841-1.6E

11(51)

3 Architecture

3.3 IOB

Table 3-3 Output I/O Standards and Configuration Options

I/O Input Standard
LVTTL33

Single/Differ Bank VCCO (V) Single end 1.5/1.8/2.5/3.3

Hysteresis Yes

LVCMOS33 Single end 1.5/1.8/2.5/3.3

Yes

LVCMOS25 Single end 1.5/1.8/2.5/3.3

Yes

LVCMOS18 Single end 1.5/1.8/2.5/3.3

Yes

LVCMOS15 Single end 1.2/1.5/1.8/2.5/3.3 Yes

LVCMOS12 Single end 1.2/1.5/1.8/2.5/3.3 Yes

PCI33

Single end 3.3

Yes

Need VREF
No No No No No No No

3.3.2 I/O Logic
Figure 3-6 shows the I/O logic output of the GW1NZ series of FPGA products.
Figure 3-6 I/O Logic Output

TCTRL

TCFF

GND

SER

TDATA

ISI OUTFF

IODELAY

Figure 3-7 shows the I/O logic input of the GW1NZ series of FPGA products.
Figure 3-7 I/O Logic Input

CI

DI

IODELAY

INFF

DIN

IEM

IDES

Rate Sel

Q

DS841-1.6E

A description of the I/O logic modules of the GW1NZ series of FPGA products is presented below:
12(51)

3 Architecture

3.3 IOB

IODELAY
See Figure 3-8 for an overview of the IODELAY. Each I/O of the GW1NZ series of FPGA products has an IODELAY cell. A total of 128(0~127) step delay is provided, with one-step delay time of about 30ps.
Figure 3-8 IODELAY

DI

DO

DLY UNIT

SDTAP

SETN

DLY ADJ

DF

VALUE

There are two ways to control the delay cell:
 Static control  Dynamic control: usually used to sample delay window together with
IEM. The IODELAY cannot be used for both input and output at the same time
I/O Register
See Figure Figure 3-9 for the I/O register in the GW1NZ series of FPGA products. Each I/O provides one input register, INFF, one output register, OUTFF, and a tristate Register, TCFF.
Figure 3-9 Register Structure in I/O Logic

D

Q

CE

CLK

SR

Note!
 CE can be either active ow (0: enable)or active high (1: enable).  CLK can be either rising edge trigger or falling edge trigger.  SR can be either synchronous/asynchronous SET or RESET or
disable.  The register can be programmed as register or latch.
IEM
IEM is for sampling clock edge and is used in the generic DDR mode, as shown in Figure 3-10.

DS841-1.6E

13(51)

3 Architecture

3.3 IOB

Figure 3-10 IEM Structure

CLK

LEAD

D

IEM

MCLK

RESET

LAG

De-serializer DES and Clock Domain Transfer
The GW1NZ series of FPGA products provide a simple DES for each input I/O to support advanced I/O protocols.
Serializer SER
The GW1NZ series of FPGA products provide a simple Serializer SER for each output I/O to support advanced I/O protocols.
3.3.3 I/O Logic Modes
The I/O Logic in the GW1NZ series of FPGA products supports several modes. In each operation, the I/O can be configured as output, input, and INOUT or tristate output (output signal with tristate control).
The GW1NZ-1 pins IOR6 (A,B,C....J) do not support IO logic.
Basic Mode
In basic mode, the I/O Logic is as shown in Figure 3-11, and the TC, DO, and DI signals can connect to the internal cores directly through CRU.
Figure 3-11 I/O Logic in Basic Mode

TC

DO

IO PAD

DI

DS841-1.6E

14(51)

3 Architecture

3.3 IOB

SDR Mode
In comparison with the basic mode, SDR utilizes the IO register, as shown in Figure 3-12. This can effectively improve IO timing.
Figure 3-12 I/O Logic in SDR Mode

TCTRL

D

Q

CE

>CLK

SR

DOUT O_CE O_CLK O_SR
DIN
I_CE I_CLK
I_SR

D

Q

CE

>CLK

SR

D

Q

CE

>CLK

SR

IO PAD

Note!
 CLK enable O_CE and I_CE can be configured as active-high or active-low.  O_CLK and I_CLK can be either rising edge trigger or falling edge trigger.  Local set/reset signal O_SR and I_SR can be synchronized reset, synchronized set,
asynchronous reset, asynchronous set, or no-function.  I/O in SDR mode can be configured as basic register or latch.
Generic DDR Mode
Higher speed I/O protocols can be supported in generic DDR mode.
Figure 3-13 shows generic DDR input, with the speed ratio of internal logic to PAD 1:2.
Figure 3-13 I/O Logic in DDR Input Mode

D CLK RESET

IDDR

CE 2 Q[1:0]

Figure 3-14 shows generic DDR output, with a speed ratio of PAD to FPGA internal logic 2:1.

DS841-1.6E

15(51)

3 Architecture

Figure 3-14 I/O Logic in DDR Output Mode

D[1:0] 2

CE

ODDR

Q

CLK

RESET

3.3 IOB

IDES4
In IDES4 mode, higher I/O speed signals can be supported. The frequency of input signal (D) and the signal Q which is transferred to Pin has a ratio of 4:1.
Figure 3-15 I/O Logic in IDES10 Mode

D FCLK PCLK RESET

IDES4

CE 4 Q[3:0]

OSER4 Mode
In OSER4 mode, higher speed signals can be supported. The frequency of input signal (D) and the signal Q which is transferred to Pin has a ratio of 4:1.
Figure 3-16 I/O Logic in OSER4 Mode

TX[1:0] 2 D[3:0] 4 FCLK
PCLK
RESET

OSER4

CE 2 Q[1:0]

DS841-1.6E

16(51)

3 Architecture

3.3 IOB

IVideo Mode
In IVideo mode, higher speed signals can be supported. The signal (D) frequency at the input of this block vs the signal Q which is transferred to core has a ratio of 7:1.
Figure 3-17 I/O Logic in IVideo Mode

D FCLK PCLK CALIB RESET

IVideo

CE 7 Q[6:0]

Note!
IVideo and IDES8/10 will occupy the neighboring I/O logic. If the I/O logic of a single port is occupied, the pin can only be programmed in SDR or BASIC mode.
OVideo Mode
In OVideo mode, higher speed signals can be supported. The signal (D) frequency at the input of this block vs the signal Q which is transferred to core has a ratio of 7:1.
Figure 3-18 I/O Logic in OVideo Mode

D[6:0] 7

CE

FCLK

OVideo

PCLK

Q

RESET

IDES8 Mode
In IDES8 mode, higher I/O speed signals can be supported. The signal (D) frequency at the input of this block vs the signal Q which is transferred to Pin has a ratio of 1:8.
Figure 3-19 I/O Logic in IDES8 Mode

D FCLK PCLK RESET

IDES8

CE 8 Q[7:0]

DS841-1.6E

17(51)

3 Architecture

3.4 I3C Bus

OSER8 Mode
In OSER8 mode, higher I/O speed signals can be supported. The signal (D) frequency at the input of this block vs the signal Q which is transferred to Pin has a ratio of 1:8.
Figure 3-20 I/O Logic in OSER8 Mode

TX[3:0] 4 D[7:0] 8 FCLK
PCLK
RESET

OSER8

CE 2 Q[1:0]

IDES10 Mode
In IDES10 mode, higher I/O speed signals can be supported. The signal (D) frequency at the input of this block vs the signal Q which is transferred to Pin has a ratio of 1:10.
Figure 3-21 I/O Logic in IDES10 Mode

D FCLK PCLK RESET

IDES10

CE 10 Q[9:0]

OSER10 Mode
In OSER10 mode, higher I/O speed signals can be supported. The signal (D) frequency at the input of this block vs the signal Q which is transferred to Pin has a ratio of 1:10.
Figure 3-22 I/O Logic in OSER10 Mode

D[9:0] 10

CE

FCLK

Q

OSER10

PCLK

RESET

3.4 I3C Bus
3.4.1 Overview
GW1NZ series of FPGA products includes a hard core of I3C bus controller, which supports SDR mode. The I3C controller is backwards compatible with I2C features low power, and is high speed and extensible. The I3C bus is compliant with MIPI I3C protocol, adopts register interfaces, and supports operation modes of I3C SDR Master and I3C SDR Slave.

DS841-1.6E

18(51)

3 Architecture

3.4 I3C Bus

I3C SDR Master
 Compliance with MIPI I3C protocol;  Supports I3C address arbitration detection;  Supports Single Data Rate (SDR) mode;  The max. data transmission rate can up to 12.5Mbps;  Start / Stop / Repeated Start / Acknowledge generation;  Start / Stop / Repeated Start detection;  Support dynamically allocating address via SETDASA or ENTDAA;  Supports Receive/Send data;  Supports In-band Interrupts;  Supports Hot-Join;  Supports dynamically allocating address when hot-join;  Supports CCC's command;  Supports dynamic adjusting SCL frequency;  Compatible with I2C Slave;  Adopts register interfaces.
I3C SDR Slave
 Compliance with MIPI I3C protocol;  Start / Acknowledge generation;  Start / Stop / Repeated Start detection;  Support dynamically allocating address via SETDASA or ENTDAA;  Receive/Send data;  Send an IBI or hot-join request. If more than one slaves send the IBI or
hot-join requests, the min. address obtains the arbitration;  Static address of Slave configuration;  Adopts register interfaces.
3.4.2 Port Signal
For the detailed information about I3C port signals, working principle, timing, and examples, please refer to IPUG508-1.2_Gowin I3C SDR IP User Guide.

DS841-1.6E

19(51)

3 Architecture

3.4 I3C Bus

DS841-1.6E

Table 3-4 I3C Port Signals

Port Name

I/O

AAC

Input

AAO AAS

output Input

ACC

Input

ACKHS ACKLS ACO

Input Input output

ACS

Input

ADDRS CE CLK CMC CMO CMS DI[7:0] DO[7:0] DOBUF[7:0]

Input Input Input Input output Input Input output output

LGYC

Input

LGYO

output

LGYS
PARITYERROR RECVDHS RECVDLS RESET SCLI SCLO SCLOEN SCLPULLO SCLPULLOEN SDAI SDAO SDAOEN SDAPULLO SDAPULLOEN

Input
output Input Input Input Input output output output output Input output output output output

Description The setting to clear ACK response, single pulse signal Output ACK signal Set ACK response, single pulse signal The setting to clear continuous operation mode, single pulse signal Set ACK high-level time Set ACK low-level time Continuous operation mode output Set continuous operation mode, single pulse signal Set slave address Clock enable signal Clock input Clear the current Master role, single pulse signal Output the flag of current master role Set the current Master role, single pulse signal Data input Data output Buffer data output Clear the setting of I2C as the current communication object, single pulse signal Output of I2C as the current communication object Set I2C as the current communication object, single pulse signal Parity error signal Set high-level time of receiving data Set low-level time of receiving data Asynchronous reset, active high I3C serial clock input I3C serial clock line I3C serial clock output enable I3C serial clock pullup output I3C serial clock pullup output enable I3C serial data input I3C serial data output I3C serial data output enable I3C serial data pullup output I3C serial data pullup output enable
20(51)

3 Architecture

3.5 SPMI

Port Name SENDAHS SENDALS SENDDHS SENDDLS SIC SIO
STRTC
STRTO STRTS STATE STRTHDS
STOPC
STOPO STOPS STOPSUS STOPHDS

I/O Input Input Input Input Input output
Input
output Input output Input
Input
output Input Input Input

Description Set high-level time of sending address Set low-level time of sending address Set high-level time of sending data Set low-level time of sending data Signal of clearing interrupt flag Signal of output signal interrupt Setting of clearing the START command, single pulse signal Output START command Set START command, single pulse signal Output internal state Set the holding time of the START command Clear the STOP command setting, single pulse signal Output the STOP command Set the STOP command, single pulse signal Set the setting time of the STOP command Set the holding time of the STOP command

3.5 SPMI

3.5.1 Overview
The GW1NZ series of FPGA products provides SPMI and the SPMI controller IP. As a Master, the GW1NZ device supports for the power management of the external Slave devices via the SPMI interface. As a Slave, it also supports for the FPGA power management.
The GW1NZ series of FPGA products supports two ways to control the main power:
 Using hardware I/O VCCEN: The main power is turned off when VCCEN is 0. The main power is on when VCCEN is 1;
 Sending the command of shut down by Master: Master sends reset / sleep / wakeup to recover FPGA main power. The main power can also be recovered at low pulse of SPMI_EN.
Note!
For the detailed information of operation modes, communication modes, commands, and timing, etc, please refer to IPUG529, Gowin SPMI User Guide.

DS841-1.6E

21(51)

3 Architecture

3.6 Block SRAM (B-SRAM)

3.5.2 Port Signal

Table 3-5 SPMI Port Signal

Name SPMI_EN SPMI_CLK SPMI_SCLK SPMI_SDATA

I/O input intput inout inout

Description SPMI enable signal System clock signal SPMI serial clock signal SPMI serial data signal

3.6 Block SRAM (B-SRAM)

3.6.1 Introduction

GW1NZ series FPGA products provide abundant SRAM. The Block SRAM (B-SRAM) is embedded as a row in the FPGA array and is different from S-SRAM (Shadow SRAM). Each B-SRAM occupies three columns of CFU in the FPGA array. Each B-SRAM has 18,432 bits (18Kbits). There are five operation modes: Single Port, Dual Port, Semi-dual Port, ROM, and FIFO. Table 3-6 lists the signals and functional descriptions of B-SRAM.
An abundance of B-SRAM resources provide a guarantee for the user's high-performance design. B-SRAM features:
 Max.18,432 bits per B-SRAM  B-SRAM itself can run at 170MHz at max (typical, Read-before-write is
100MHz)  Single Port  Dual Port  Semi-dual Port  Parity bits  ROM  Data width from 1 to 36 bits  Mixed clock mode  Mixed data width mode  Enable Byte operation for double byte or above  Normal read and write mode  Read-before-write mode  Write-through Mode

DS841-1.6E

22(51)

3 Architecture

3.6 Block SRAM (B-SRAM)

Table 3-6 B-SRAM Signals

Port Name DIA DIB ADA ADB CEA CEB RESETA RESETB WREA WREB BLKSELA, BLKSELB CLKA
CLKB
OCEA OCEB DOA DOB

I/O Input Input Input Input Input Input Input Input Input Input
Input
Input
Input Input Input Output Output

Description Port A data input Port B data input Port A address Port B address Clock enable, Port A Clock enable, Port B Register reset, Port A Register reset, Port B Read/write enable, Port A Read/write enable, Port B
Block select
Read/write cycle clock for Port A input registers Read/write cycle clock for Port B input registers Output enable for Port A registers Output enable for Port B registers Port A data output Port B data output

3.6.2 Configuration Mode

The B-SRAM mode in the GW1NZ series of FPGA products supports different data bus widths. See Table 3-7.
Table 3-7 Memory Size Configuration

Single Port Mode 16K x 1 8K x 2 4K x 4 2K x 8 1K x 16 512 x 32 2K x 9 1K x 18 512 x 36

Dual Port Mode 16K x 1 8K x 2 4K x 4 2K x 8 1K x 16 2K x 9 1K x 18 -

Semi-Dual Port Mode 16K x 1 8K x 2 4K x 4 2K x 8 1K x 16 512 x 32 2K x 9 1K x 18 512 x 36

Single Port Mode
In the single port mode, B-SRAM can write to or read from one port at one clock edge. During the write operation, the data can show up at the output of B-SRAM. Normal-Write Mode and Write­through Mode can be supported. When the output register is bypassed, the new data will show at

DS841-1.6E

23(51)

3 Architecture

3.6 Block SRAM (B-SRAM)

the same write clock rising edge.
For further information about Single Port Block Memory ports and the related description, please refer to SUG283E, Gowin Primitives User Guide > 3 Memory.
Dual Port Mode
B-SRAM support dual port mode. The applicable operations are as follows:
 Two independent read  Two independent write  An independent read and an independent write at different clock
frequencies
For further information about Dual Port Block Memory ports and the related description, please refer to SUG283E, Gowin Primitives User Guide > 3 Memory.
Semi-Dual Port Mode
Semi-Dual Port supports read and write at the same time on different ports, but it is not possible to write and read to the same port at the same time. The system only supports write on Port A, read on Port B.
For further information about Semi-Dual Port Block Memory ports and the related description, please refer to SUG283E, Gowin Primitives User Guide > 3 Memory.
Read Only
B-SRAM can be configured as ROM. The ROM can be initialized during the device configuration stage, and the ROM data needs to be provided in the initialization file. Initialization completes during the device power-on process.
Each B-SRAM can be configured as one 16 Kbits ROM. For further information about Read Only Port Block Memory ports and the related description, please refer to SUG283E, Gowin Primitives User Guide > 3 Memory.

DS841-1.6E

24(51)

3 Architecture

3.6 Block SRAM (B-SRAM)

3.6.3 Mixed Data Bus Width Configuration

B-SRAM in the GW1NZ series of FPGA products supports mixed data bus width operation. In the dual port and semi-dual port modes, the data bus width for read and write can be different. For the configuration options that are available, please see Table 3-8 and Table 3-9 below.

Table 3-8 Dual Port Mixed Read/Write Data Width Configuration

Read Port
16K x 1 8K x 2 4K x 4 2K x 8 1K x 16 2K x 9 1K x 18

Write Port

16K x 1 8K x 2

*

*

*

*

*

*

*

*

*

*

4K x 4 * * * * *

2K x 8 * * * * *

1K x 16 * * * * *

2K x 9
* *

1K x 18
* *

Note! "*"denotes the modes supported. Table 3-9 Semi Dual Port Mixed Read/Write Data Width Configuration

Read Port

Write Port 16K x 1 8K x 2 4K x 4 2K x 8 1K x 16 512 x 32 2K x 9 1K x 18 512 x 36

16K x 1 * 8K x 2 * 4K x 4 * 2K x 8 * 1K x 16 * 512 x 32 * 2K x 9 1K x 18

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Note! "*"denotes the modes supported.

3.6.4 Byte-enable

The B-SRAM in the GW1NZ series of FPGA products supports byte-enable. For data longer than a byte, the additional bits can be blocked, and only the selected portion can be written into. The blocked bits will be retained for future operation. Read/write enable ports (WREA, WREB), and byte-enable parameter options can be used to control the B-SRAM write operation.

3.6.5 Parity Bit

There are parity bits in B-SRAM. The 9th bit in each byte can be used

DS841-1.6E

25(51)

3 Architecture

3.6 Block SRAM (B-SRAM)

as a parity bit or for data storage. However, the parity operation is not yet supported.
3.6.6 Synchronous Operation
 All the input registers of B-SRAM support synchronous write;  The output registers can be used as pipeline register to improve design
performance;  The output registers are bypass-able.
3.6.7 Power up Conditions
B-SRAM initialization is supported when powering up. During the power-up process, B-SRAM is in standby mode, and all the data outputs are "0". This also applies in ROM mode.
3.6.8 B-SRAM Operation Modes
B-SRAM supports five different operations, including two read operations (Bypass Mode and Pipeline Read Mode) and three write operations (Normal Write Mode, Write-through Mode, and Read-before-write Mode).
Read Mode
Read data from the B-SRAM via output registers or without using the registers.
Pipeline Mode
While writing in the B-SRAM, the output register and pipeline register are also being written. The data bus can be up to 36 bits in this mode.
Bypass Mode
The output register is not used. The data is kept in the output of memory array.
Figure 3-23 Pipeline Mode in Single Port, Dual Port and Semi Dual Port

AD DI

Input Memory

Pipeline

Register Array

Register

DO

WRE

CLK OCE

DS841-1.6E

26(51)

3 Architecture

3.6 Block SRAM (B-SRAM)

CLKA

DIA

Input

Register
ADA

Memory Array

Input Register

ADB CLKB

Pipeline Register
OCEB

DIA ADA
WREA

Input Register

CLKA OCEA

Pipeline Register

Memory Array

DOB
Input Register
Pipeline Register

DIB ADB WREB
CLKB
OCEB

DOA

DOB

Write Mode
NORMAL WRITE MODE
In this mode, when the user writes data to one port, and the output data of this port does not change. The data written in will not appear at the read port.
WRITE-THROUGH MODE
In this mode, when the user writes data to one port, and the data written in will also appear at the output of this port.
READ-BEFORE-WRITE MODE
In this mode, when the user writes data to one port, and the data written in will be stored in the memory according to the address. The original data in this address will appear at the output of this port.

DS841-1.6E

27(51)

3 Architecture

3.6 Block SRAM (B-SRAM)

3.6.9 Clock Operations

Table 3-10 lists the clock operations in different B-SRAM modes:
Table 3-10 Clock Operations in Different B-SRAM Modes

Clock Operations
Independent Clock Mode Read/Write Clock Mode Single Port Clock Mode

Dual Port Mode Yes Yes No

Semi-Dual Port Mode No Yes No

Single Port Mode No No Yes

Independent Clock Mode

Figure 3-24 shows the independent clocks in dual port mode with each port with one clock. CLKA controls all the registers at Port A; CLKB controls all the registers at Port B.

Figure 3-24 Independent Clock Mode

WREA

WREB

ADA DIA
CLKA DOA

Input Register
Output Register

Memory Array

ADB

Input

Register

DIB

CLKB

Output

Register

DOB

WREA

WREB

Read/Write Clock Operation
Figure 3-25 shows the read/write clock operations in the semi-dual port mode with one clock at each port. The write clock (CLKA) controls Port A data inputs, write address and write enable signals. The read clock (CLKB) controls Port B data output, read address, and read enable signals.
Figure 3-25 Read/Write Clock Mode

Input Register

Input

Memory

CLKA

Register

Array

CLKB

Pipeline Register

DS841-1.6E

28(51)

3 Architecture

3.7 User Flash

Single Port Clock Mode Figure 3-26shows the clock operation in single port mode.
Figure 3-26 Single Port Clock Mode
WRE AD

DI

Input

Register

CLK

DO

Output Register

Memory Array

WRE
3.7 User Flash
3.7.1 Introduction
GW1NZ-1 offers User Flash, the features are shown below:
 10,000 write cycles  Capacity: 64K bits  Greater than ten years' data retention at +85   Supports page erasure: 2,048 bytes per page  Quick page erasure/Write operation  Clock frequency: 40MHz  Write operation time: 16s  Page erasure time: 120 ms  Electric current
- Read Operation: 2.19 mA/25 ns (VCC) & 0.5 mA/25 ns (VCCX) (MAX).
- Write operation/erase operation: 12/12 mA(MAX)
3.7.2 Mode
The User Flash in GW1NZ series of FPGA products contains two modes: Normal mode and sleep mode.
 Normal mode: User flash is turned on by default. Users can perform erase/write/read operations after the device is power on. It cannot be turned off.
 Sleep mode: User flash is turned off by default to save power. Users can turn on/turn off the user flash mode using "Sleep" port. When the user flash is turned on, it's the same as the normal mode user flash, and users can perform erase/write/read operations.
The GW1NZ LV/ZV devices with different speeds offer different user flash modes. For further detailed information, please refer to Table 3-11.

DS841-1.6E

29(51)

3 Architecture

3.7 User Flash

Mode

Table 3-11 User Flash Modes Default Status Turn on/Turn off

Device Version

LV

Normal mode On

No

ZV

Sleep mode Off

Yes

ZV

Speed Grade C6/I5 C5/I4 C5/I4 I2 I3

3.7.3 Port Signal
SeeFigure 3-27 for the User Flash signal diagram of GW1NZ-1.
Figure 3-27 GW1NZ-1 User Flash Ports

XADR[n:0]

n+1

YADR[5:0]

6

DIN[31:0]

32

DOUT[31:0]

32

NVSTR

NVM

XE YE SE PROG ERASE
SLEEP **

Table 3-12 Flash Module Signal Description

Pin name1 I/O XADR[5:0]2 I YADR[5:0]2 I DIN[31:0] I

Description
X address bus, used to select one row within a page of main memory block. Y address bus, used to select one column within a row of memory block.
Data input bus.

DOUT[31:0] O

XE2

I

YE2

I

SE2

I

Data output bus.
X address enable signal, if XE is 0, all of row addresses are not enabled. Y address enable signal, if YE is 0, all of column addresses are not enabled.
Detect amplifier enable signal, active high.

ERASE

I

Erase port, active-high.

PROG

I

Programming port, active-high.

NVSTR

I

SLEEP**

I4

Flash data storage port, active-high.
Used to turn on/turn off user falsh.  High level: On;  Low level: Off.

Note!

 [1] Port names of Control, address, and data signals.  [2] The read operation is valid only if XE = YE = VCC and SE meets the pulse timing
requirements (Tpws, Tnws). The address of read data is determined by XADR [5: 0] and YADR [5: 0].  [3] The power pin and the ground pin connect in FPGA.

DS841-1.6E

30(51)

3 Architecture

3.8 Clock

 [4] Only supported in user flash in sleep mode.
3.7.4 Operation Modes

Table 3-13 Truth Table in User Mode

Mode

XE YE SE PROG

Read mode

H

H

H

L

Programming mode

H

H

L

H

Page Mode

Erasure

H

L

L

L

Note!

"H" and "L" means high level and low level of VCC.

ERASE L L
H

NVSTR L H
H

3.8 Clock

3.8.1 Global Clock

The GCLK is distributed in GW1NZ-1 as two quadrants, L and R. Each quadrant provides eight GCLKs. Each GCLK has 12 optional clock sources. The optional clock resources of GCLK can be pins or CRU. Users can employ dedicated pins as clock resources to achieve better timing.
Figure 3-28 GW1NZ-1 Clock Resources

I/O Bank0

T

R

I/O Bank1

IO Bank

HCLK

DS841-1.6E

31(51)

3 Architecture

Figure 3-29 GCLK Quadrant Distribution

CE GCLK0
CE GCLK1
CE GCLK2
CE GCLK3

56:1 DQCE

56:1 DQCE

56:1 DQCE

DQCE 56:1

DQCE 56:1

DQCE 56:1

CE GCLK0
CE GCLK1
CE GCLK2
CE GCLK3

DQCE 56:1

56:1 DQCE

L

CE GCLK4

CE GCLK4

DQCE 56:1

56:1 DQCE

CE GCLK5

CE GCLK5

DQCE 56:1

56:1 DQCE

SELECTOR[3:0] 4

SELECTOR[3:0] 4

56:1

56:1

56:1

56:1

GCLK6

GCLK6

R

DCS

DCS

56:1

56:1

56:1

56:1

SELECTOR[3:0] 4

SELECTOR[3:0] 4

56:1

56:1

56:1

56:1

GCLK7

GCLK7

3.8 Clock

DCS

DCS

56:1

56:1

56:1

56:1

GCLK0~GCLK5 can be turned on or off by Dynamic Quadrant Clock Enable (DQCE). When GCLK0~GCLK5 in the quadrant is off, all the logic driven by it will not toggle; therefore, lower power can be achieved.
Figure 3-30 DQCE Concepts

DQCE

CE

D Q

CLK CLKIN

CLKOUT

DS841-1.6E

32(51)

3 Architecture

3.8 Clock

GCLK6~GCLK7 of each quadrant is controlled by the DCS, as shown in Figure 3-31. Select dynamically between CLK0~CLK3 by CRU, and output a glitch-free clock.
Figure 3-31 DCS Concept

CLKSEL [3:0] SELFORCE CLK0 CLK1 CLK2 CLK3

4 DCS

CLKOUT

DCS can be configured in the following modes: 1. DCS Rising Edge
Stay as 1 after current selected clock rising edge, and the new select clock will be effective after its first rising edge, as shown in Figure 3-32.
Figure 3-32 DCS Rising Edge

2. DCS Falling Edge
Stay as 0 after current selected clock falling edge, and the new select clock will be effective after its first falling edge, as shown in Figure 3-33.
Figure 3-33 DCS Falling Edge

3. Clock Buffer Mode In this mode, the DCS acts as a clock buffer.
DS841-1.6E

33(51)

3 Architecture

3.8 Clock

3.8.2 PLL

PLL (Phase-locked Loop) is one kind of a feedback control circuit. The frequency and phase of the internal oscillator signal is controlled by the external input reference clock.

PLL blocks provide the ability to synthesize clock frequencies. Frequency adjustment (multiply and division), phase adjustment, and duty cycle can be adjusted by configuring the parameters.

See Figure 3-34 for the PLL structure.

Figure 3-34 PLL Structure

IDSEL[5:0]

ODSEL[5:0]

CLKIN

CLKFB

FBDSEL[5:0]

6

6 IDIV
FBDIV

PFD +
ICP

VCO

VCODIV LPF

PS&DCA

6 LOCK
Detector
/3 DIV SDIV

4

4

4

LOCK CLKOUT CLKOUTP CLKOUTD3
CLKOUTD

DS841-1.6E

RESET RESET_P DUTYDA[3:0] PSDA[3:0] FDLY[3:0]

Table 3-14 PLL Ports Definition

Port Name CLKIN[5:0] CLKFB RESET RESET_P IDSEL [5:0] FBDSEL [5:0] PSDA [3:0]
DUTYDA [3:0]
FDLY[3:0]
CLKOUT
CLKOUTP
CLKOUTD

Signal I I I I I I I
I
I
Output
Output
Output

CLKOUTD3 LOCK

Output Output

Description Reference clock input Feedback clock input PLL reset PLL Power Down Dynamic IDIV control: 1~64 Dynamic FBDIV control:1~64 Dynamic phase control (rising edge effective) Dynamic duty cycle control (falling edge effective) CLKOUTP dynamic delay control Clock output with no phase and duty cycle adjustment Clock output with phase and duty cycle adjustment Clock divider from CLKOUT and CLKOUTP (controlled by SDIV) clock divider from CLKOUT and CLKOUTP (controlled by DIV3 with the constant division value 3) PLL lock status: 1 locked, 0 unlocked

The PLL reference clock source can come from an external PLL pin or from internal routing GCLK, HCLK, or general data signal. PLL feedback

34(51)

3 Architecture

3.9 Long Wire (LW)

signal can come from the external PLL feedback input or from internal routing GCLK, HCLK, or general data signal.
For PLL features of GW1NZ series of FPGA products, please refer to 4.4.5 PLL Switching Characteristics.
PLL can adjust the frequency of the input clock CLKIN (multiply and division). The formulas for doing so are as follows:
1. fCLKOUT = (fCLKIN*FBDIV)/IDIV; 2. fVCO = fCLKOUT*ODIV; 3. fCLKOUTD = fCLKOUT/SDIV; 4. fPFD = fCLKIN/IDIV = fCLKOUT/FBDIV.
Note!
 fCLKIN: The frequency of input clock CLKIN;  fCLKOUT: The clock frequency of CLKOUT and CLKOUTP  fCLKOUTD: The clock frequency of CLKOUTD, and CLKOUTD is the clock CLKOUT
after division  fPFD: PFD Frequency, and the minimum value of fPFD should be no less than 3MHz.
Adjust IDIV, FBDIV, ODIV, and SDIV to achieve the required clock frequency.
3.8.3 HCLK
HCLK is the high-speed clock in the GW1NZ series of FPGA products. It can support high-performance data transfer and is mainly suitable for source synchronous data transfer protocols. See Figure Figure 3-35. HCLK can be used for the whole I/O Bank.
Figure 3-35 GW1NZ-1 HCLK Distribution
I/O Bank0

T

R

I/O Bank1

I/O Bank1 IO Bank

HCLK

3.9 Long Wire (LW)
As a supplement to the CRU, the GW1NZ series of FPGA products provides another routing resource, Long wire, which can be used as clock, clock enable, set/reset,or other high fan out signals.

DS841-1.6E

35(51)

3 Architecture

3.10 Global Set/Reset (GSR)

3.10 Global Set/Reset (GSR)
A global set/reset (GSR) network is built in the GW1NZ series of FPGA product. There is a direct connection to core logic. It can be used as asynchronous/synchronous set. The registers in CFU and I/O can be individually configured to use GSR.
3.11 Programming Configuration
The GW1NZ series of FPGA products support SRAM and Flash. The Flash programming mode supports on-chip Flash and off-chip Flash. The GW1NZ series of FPGA products support DUAL BOOT, providing a selection for users to backup data to off chip Flash according to requirements.
Besides JTAG, the GW1NZ series of FPGA products also supports GOWINSEMI's own configuration mode: GowinCONFIG (AUTO BOOT, SSPI, MSPI, DUAL BOOT, SERIAL, and CPU). All the devices support JTAG and AUTO BOOT. For the detailed information, please refer to UG290, Gowin FPGA Products Programming and Configureation User Guide.
3.11.1 SRAM Configuration
When you adopt SRAM to configure the device, every time the device is powered on, the bit stream file needs to be downloaded to configure the device.
3.11.2 Flash Configuration
The Flash configuration data is stored in the on-chip flash. Each time the device is powered on, the configuration data is transferred from the Flash to the SRAM, which controls the working of the device. This mode can complete configuration within a few ms, and is referred to as "Quick Start". The GW1NZ series of FPGA products also support off-chip Flash configuration and dual-boot. Please refer to UG290, Gowin FPGA Products Programming and Configuration User Guide for more detailed information.
3.12 On Chip Oscillator
There is an on chip oscillator in each of the GW1NZ series of FPGA product. The on chip oscillator provides a programmable user clock with precision of ±5%. During the configuration process, it can provide a clock for the MSPI mode. See Table 3-15 for the output frequency.

DS841-1.6E

36(51)

3 Architecture

3.12 On Chip Oscillator

Table 3-15 Oscillator Output Frequency Options

Mode 0 1 2 3 4 5 6 7

Frequency 2.5MHz1 5.4MHz 5.7MHz 6.0MHz 6.3MHz 6.6MHz 6.9MHz 7.4MHz

Mode 8 9 10 11 12 13 14 15

Frequency 7.8MHz 8.3MHz 8.9MHz 9.6MHz 10.4MHz 11.4MHz 12.5MHz 13.9MHz

Mode 16 17 18 19 20 21 22 23

Frequency 15.6MHz 17.9MHz 21MHz 25MHz 31.3MHz 41.7MHz 62.5MHz 125MHz2

Note!
 [1] The default frequency is 2.5MHz.  [2] 125 MHz is not suitable for MSPI.
The on-chip oscillator also provides a clock resource for user designs. Up to 64 clock frequencies can be obtained by setting the parameters. The following formula is employed to get the output clock frequency:

fout=250MHz/Param.
"Param" is the configuration parameter with a range of 2~128. It supports even number only.

DS841-1.6E

37(51)

4 AC/DC Characteristic

4.1 Operating Conditions

4AC/DC Characteristic

4.1 Operating Conditions

4.1.1 Absolute Max. Ratings
Table 4-1 Absolute Max. Ratings
Name VCC VCCO VCCX Storage Temperature Junction Temperature

Description Core voltage I/O Bank Power Auxiliary Power Storage Temperature Junction Temperature

Min. -0.5V -0.5V -0.5V -65  -40

Max. 1.32V 3.75V 3.75V +150  +125

4.1.2 Recommended Operating Conditions
Table 4-2 Recommended Operating Conditions

Name Description

LV: Core Power

VCC VCCO

ZV: Core Power I/O Bank Power

VCCX Auxiliary voltage

TJCOM Junction temperature Commercial operation

TJIND Junction temperature Industrial operation

4.1.3 Power Supply Ramp Rates

Table 4-3 Power Supply Ramp Rates

Name Description

Min.

TRAMP

Power supply ramp rates for all power supplies

0.6mV/s

Min. 1.14V 0.855V 1.14V 1.71V 0  -40
Typ. -

Max. 1.26V 0.945V 3.465V 3.465V +85  +100
Max. 6mV/s

DS841-1.6E

38(51)

4 AC/DC Characteristic

4.2 ESD

4.1.4 Hot Socket Specifications

Table 4-4 Hot Socket Specifications

Name IHS IHS

Description Input or I/O leakage current Input or I/O leakage current

Condition 0<VIN<VIH(MAX) 0<VIN<VIH(MAX)

I/O Type
I/O TDI,TDO, TMS,TCK

Max. 150uA 120uA

4.1.5 POR Specification

Table 4-5 POR Specification

Name
POR Voltage Value

Description Power on reset voltage of Vcc

Min. TBD

Max. TBD

4.2 ESD

Table 4-6 GW1NZ ESD - HBM

Device GW1NZ-1

CS16 TBD

FN32 HBM>1,000V

FN32F HBM>1,000V

Table 4-7 GW1NZ ESD - CDM

Device GW1NZ-1

CS16 TBD

FN32 CDM>500V

FN32F CDM>500V

4.3 DC Characteristic

4.3.1 DC Electrical Characteristics over Recommended Operating Conditions
Table 4-8 DC Electrical Characteristics over Recommended Operating Conditions

Name IIL,IIH
IPU
IPD IBHLS IBHHO IBHLO IBHHO

Description
Input or I/O leakage
I/O Active Pull-up Current (I/O Active Pull-up Current) I/O Active Pull-down Current Bus Hold Low Sustaining Current Bus Hold High Sustaining Current Bus HoldLow Overdrive Current Bus HoldHigh Overdrive Current

Condition VCCO<VIN<VIH (MAX) 0V<VIN<VCCO
0<VIN<0.7VCCO
VIL (MAX)<VIN<VCCO VIN=VIL (MAX) VIN=0.7VCCO 0VINVCCO 0VINVCCO

Min.

Typ.

-

-

-

-

-30 µA -

Max. 210 µA 10µA
-150 µA

30 µA

-

30 µA

-

-30 µA -

-

-

-

-

150 µA 150 µA -150 µA

DS841-1.6E

39(51)

4 AC/DC Characteristic

4.3 DC Characteristic

Name VBHT C1
VHYST

Description Bus hold trigger points I/O Capacitance (I/O Capacitance)
Hysteresis for Schmitt Trigge inputs (Hysteresis for Schmitt Trigger inputs)

Condition
VCCO=3.3V, Hysteresis= Large VCCO=2.5V, Hysteresis= Large VCCO=1.8V, Hysteresis= Large VCCO=1.5V, Hysteresis= Large VCCO=3.3V, Hysteresis= Small VCCO=2.5V, Hysteresis= Small VCCO=1.8V, Hysteresis= Small VCCO=1.5V, Hysteresis= Small

Min.

Typ.

VIL (MAX) -

5 pF

-

482mV

-

302mV

-

152mV

-

94mV

-

240mV

-

150mV

-

75mV

-

47mV

Max. VIH (MIN)
8 pF
-

DS841-1.6E

40(51)

4 AC/DC Characteristic

4.3 DC Characteristic

4.3.2 Static Current

Table 4-9 Static Supply Current (LV Device)

Name ICC ICCX ICCO

Description Core current (Vcc=1.2V) VCCX current (VCCX=3.3V) VCCX current (VCCX=2.5V) I/O Bank current (VCCO=2.5V)

Device GW1NZ-1 GW1NZ-1 GW1NZ-1 GW1NZ-1

Typ. 3mA -

Table 4-10 Static Supply Current (ZV Device)

Name ICC
ICCX
ICCO

Description Core current (Vcc=0.9V)
VCCX current (VCCX floating)
VCCX current (VCCX=1.8V~3.3V)
I/O Bank current (VCCO=3.3V)

Device
GW1NZ-ZV1FN32C5/I4 GW1NZ-ZV1CS16C5/I4 GW1NZ-ZV1FN32I3 GW1NZ-ZV1CS16I3 GW1NZ-ZV1FN32I2 GW1NZ-ZV1CS16I2 GW1NZ-ZV1FN32C5/I4 GW1NZ-ZV1CS16C5/I4 GW1NZ-ZV1FN32I3 GW1NZ-ZV1CS16I3 GW1NZ-ZV1FN32I2 GW1NZ-ZV1CS16I2 GW1NZ-ZV1FN32C5/I4 GW1NZ-ZV1CS16C5/I4 GW1NZ-ZV1FN32I3 GW1NZ-ZV1CS16I3 GW1NZ-ZV1FN32I2 GW1NZ-ZV1CS16I2 GW1NZ-ZV1FN32C5/I4 GW1NZ-ZV1CS16C5/I4 GW1NZ-ZV1FN32I3 GW1NZ-ZV1CS16I3 GW1NZ-ZV1FN32I2 GW1NZ-ZV1CS16I2

Typ. 50uA 40uA 30uA 0uA 0uA 0uA 1uA 1uA 1uA 0uA 0uA 0uA

Note!
 After device wake up, user can turn off external Vccx when they do not use user flash and chip still functional.
 The typical values in the table above are tested at room temperature.  In zero power cirucumstance, if users use MODE pin, the PULL_MODE of this pin
must be configured as KEEPER.

DS841-1.6E

41(51)

4 AC/DC Characteristic

4.3 DC Characteristic

4.3.3 I/O Operating Conditions Recommended

Table 4-11 I/O Operating Conditions Recommended

Name
LVTTL33 LVCMOS33 LVCMOS25 LVCMOS18 LVCMOS15 LVCMOS12 SSTL15 SSTL18_I SSTL18_II SSTL25_I SSTL25_II SSTL33_I SSTL33_II HSTL18_I HSTL18_II HSTL15 PCI33 LVPECL33E MLVDS25E BLVDS25E RSDS25E LVDS25E SSTL15D SSTL18D_I SSTL18D_II SSTL25D_I SSTL25D_II SSTL33D_I SSTL33D_II HSTL15D HSTL18D_I HSTL18D_II

Output VCCO (V)

Min.

Typ.

3.135

3.3

3.135

3.3

2.375

2.5

1.71

1.8

1.425

1.5

1.14

1.2

1.425

1.5

1.71

1.8

1.71

1.8

2.375

2.5

2.375

2.5

3.135

3.3

3.135

3.3

1.71

1.8

1.71

1.8

1.425

1.5

3.135

3.3

3.135

3.3

2.375

2.5

2.375

2.5

2.375

2.5

2.375

2.5

1.425

1.5

1.71

1.8

1.71

1.8

2.375

2.5

2.375

2.5

3.135

3.3

3.135

3.3

1.425

1.575

1.71

1.8

1.71

1.8

Max. 3.465 3.465 2.625 1.89 1.575 1.26 1.575 1.89 1.89 2.645 2.645 3.465 3.465 1.89 1.89 1.575 3.465 3.465 2.625 2.625 2.625 2.625 1.575 1.89 1.89 2.625 2.625 3.465 3.465 1.89 1.89 1.89

Input VREF (V)

Min.

Typ.

-

-

-

-

-

-

-

-

-

-

-

-

0.68

0.75

0.833

0.9

0.833

0.9

1.15

1.25

1.15

1.25

1.3

1.5

1.3

1.5

0.816

0.9

0.816

0.9

0.68

0.75

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Max. 0.9 0.969 0.969 1.35 1.35 1.7 1 1.08 1.08 0.9 -

DS841-1.6E

42(51)

4 AC/DC Characteristic

4.3 DC Characteristic

4.3.4 Single-Ended IO DC Electrical Characteristic

Table 4-12 Single-Ended IO DC Electrical Characteristic

Name

VIL Min Max

LVCMOS33 LVTTL33

-0.3V

0.8V

LVCMOS25 -0.3V 0.7V LVCMOS18 -0.3V 0.35 x VCCO

VIH

VOL

Min

Max (Max)

2.0V

0.4V 3.6V

0.2V

1.7V

0.4V 3.6V

0.2V

0.4V 0.65 x VCCO 3.6V

VOH (Min)
VCCO-0.4V
VCCO-0.2V VCCO-0.4V VCCO-0.2V VCCO0.4V

IOL (mA)
4 8 12 16 24 0.1 4 8 12 16 0.1 4 8 12

IOH (mA)
-4 -8 -12 -16 -24 -0.1 -4 -8 -12 -16 -0.1 -4 -8 -12

0.2V

VCCO-0.2V 0.1 -0.1

4

-4

LVCMOS15 -0.3V 0.35 x VCCO

0.4V 0.65 x VCCO 3.6V

VCCO-0.4V 8

-8

0.2V

VCCO-0.2V 0.1 -0.1

2

-2

LVCMOS12 -0.3V 0.35 x VCCO

0.4V 0.65 x VCCO 3.6V

VCCO-0.4V 6

-6

PCI33 SSTL33_I

-0.3V 0.3 x VCCO -0.3V VREF-0.2V

0.2V

VCCO-0.2V 0.1 -0.1

0.5 x VCCO

3.6V

0.1 VCCO

x 0.9 x VCCO 1.5

-0.5

VREF+0.2V 3.6V 0.7

VCCO-1.1V 8

-8

SSTL25_I -0.3V VREF-0.18V

VREF+0.18V 3.6V 0.54V VCCO-0.62V 8

-8

SSTL25_II -0.3V VREF-0.18V

VREF+0.18V 3.6V NA

NA

NA NA

SSTL18_II -0.3V VREF-0.125V VREF+0.125V 3.6V NA

NA

NA NA

SSTL18_I -0.3V VREF-0.125V VREF+0.125V 3.6V 0.40V VCCO-0.40V 8

-8

SSTL15

-0.3V VREF-0.1V

VREF+ 0.1V 3.6V 0.40V VCCO-0.40V 8

-8

HSTL18_I -0.3V VREF-0.1V

VREF+ 0.1V 3.6V 0.40V VCCO-0.40V 8

-8

HSTL18_II -0.3V VREF-0.1V

VREF+ 0.1V 3.6V NA

NA

NA NA

HSTL15_I -0.3V VREF-0.1V

VREF+ 0.1V 3.6V 0.40V VCCO-0.40V 8

-8

HSTL15_II -0.3V VREF-0.1V

VREF+ 0.1V 3.6V NA

NA

NA NA

DS841-1.6E

43(51)

4 AC/DC Characteristic

4.4 Switching Characteristic

4.4 Switching Characteristic

4.4.1 CFU Block Internal Timing Parameters

Table 4-13 CFU Block Internal Timing Parameters

Name
tLUT4_CFU tLUT5_CFU tLUT6_CFU tLUT7_CFU tLUT8_CFU tSR_CFU tCO_CFU

Description
LUT4 delay LUT5 delay LUT6 delay LUT7 delay LUT8 delay Set/Reset to Register output Clock to Register output

Speed Grade Unit
Min Max

-

0.674 ns

-

1.388 ns

-

2.01

ns

-

2.632 ns

-

3.254 ns

-

1.86

ns

-

0.76

ns

4.4.2 Clock and I/O Switching Characteristics

Table 4-14 Clock and I/O Switching Characteristics

Name Clocks

Descri ption

Device

-5 Min

-6 Max Min

Unit Max

TBD TBD TBD TBD TBD TBD

Pin-LUT-Pin Delay TBD TBD TBD TBD TBD TBD

General I/O Pin Parameters

TBD TBD TBD TBD TBD TBD

4.4.3 B-SRAM Switching Characteristics

Table 4-15 B-SRAM Internal Timing Parameters

Name

Description

tCOAD_BSRAM tCOOR_BSRAM

Clock to output from read address/data Clock to output from output register

4.4.4 On chip Oscillator Output Frequency

Table 4-16 On chip Oscillator Output Frequency

Speed Grade Unit
Min Max

-

5.10 ns

-

0.56 ns

Name
fMAX
tDT tOPJIT

Description

Min.

Output Frequency (0 to 85) Output Frequency (-40 to +100)
Output Clock Duty Cycle

106.25MHz 100MHz 43%

Output Clock Period Jitter

0.01UIPP

Typ. 125MHz 125MHz 50% 0.012UIPP

Max. 143.75MHz 150MHz 57% 0.02UIPP

DS841-1.6E

44(51)

4 AC/DC Characteristic

4.5 User Flash Characteristic

4.4.5 PLL Switching Characteristics

Table 4-17 PLL Switching Characteristics

Device

LV/ZV

LV

GW1NZ-1 ZV

Speed Grade C6/I5 C5/I4 C5/I4 I3 I2

Name CLKIN PFD VCO CLKOUT CLKIN PFD VCO CLKOUT CLKIN PFD VCO CLKOUT CLKIN PFD VCO CLKOUT CLKIN PFD VCO CLKOUT

Min.



3MHZ

400MHZ

3MHZ

400MHZ

400MHZ

800MHZ

3.125MHZ

400MHZ

3MHZ

320MHZ

3MHZ

320MHZ

320MHZ

640MHZ

2.5MHZ

360MHZ

3MHZ

200MHZ

3MHZ

200MHZ

200MHZ

400MHZ

1.5625MHZ 200MHZ

3MHZ

150MHZ

3MHZ

150MHZ

150MHZ

300MHZ

1.171875MHZ 150MHZ

3MHZ

100MHZ

3MHZ

100MHZ

100MHZ

200MHZ

0.78125MHZ 100MHZ

4.5 User Flash Characteristic

4.5.1 DC Characteristic
Table 4-18 User Flash DC Characteristics

Name

Parame Max.

ter

VCC3

VCCX

Unit

Read mode (w/I 25ns)1

2.19 0.5 mA

Write mode Erase mode

ICC12

0.1 12 0.1 12

mA mA

Page Erasure Mode

0.1 12

mA

Read mode static current ICC2 (25-50ns)

980 25

A

Standby mode ISB

5.2 20

A

Wake-up Time NA NA NA NA
NA
0

Condition Min. Clcok period, duty cycle 100%, VIN = "1/0"
XE=YE=SE="1", between T=Tacc and T=50ns, I/O=0mA; later than T=50ns, read mode is turned off, and I/O current is the current of standby mode. VSS, VCCX, and VCC

DS841-1.6E

45(51)

4 AC/DC Characteristic

4.5 User Flash Characteristic

Floating mode3 IPD

0

0

A

7us

Typical Value (Room temperature: 25)

VCCX=0

Standby mode ISB Floating mode3 IPD

0.4 7.5 A

0

0

A

0 3.5us

VSS, VCCX, and VCC VCCX=0

Note!

 [1] means the average current, and the peak value is higher than the average one.  [2] Calculated in different Tnew clock periods.
- Tnew< Tacc is not allowed - Tnew = Tacc - Tacc< Tnew - 50ns: ICC1 (new) = (ICC1 - ICC2)(Tacc/Tnew) + ICC2 - Tnew>50ns: ICC1 (new) = (ICC1 - ICC2)(Tacc/Tnew) + 50ns x ICC2/Tnew +
ISB - t > 50ns, ICC2 = ISB
 [3] Only supported in user flash in sleep mode.

DS841-1.6E

46(51)

4 AC/DC Characteristic

4.5 User Flash Characteristic

4.5.2 Timing Parameters

Table 4-19 User Flash Timing Parameters

User Modes Parameter

Name

WC1

TC Access time2 BC
LT

Tacc3

WC

Program/Erase to data storage

Data storage hold time

Data storage hold time (Overall erase) Time from data storage to program setup Program hold time

Write time

Write ready time

Erase hold time Time from control signal to write/Erase setup Time from SE to read setup

E pulse high level time

Adress/data setup time

Adress/data hold time

Data hold-up time

WC1

Read mode

TC

address hold

BC

time3

LT

Tnvs Tnvh Tnvh1
Tpgs
Tpgh Tprog Twpr Twhd
Tcps
Tas Tpws Tads Tadh Tdh Tah

WC

SE pulse low level time Recovery time Data storage time Erasure time Overall erase time Wake-up time from power down to standby mode Standby hold time VCC setup time VCCX hold time

Tnws Trcv Thv4 Terase Tme
Twk_pd
Tsbh Tps Tph

Min. 5 5 100
10
20 8 >0 >0
-10
0.1 5 20 20 0.5 25 22 21 21 25 2 10 100 100
7
100 0 0

Note!
 [1] The parameter values may change;  [2] The values are simulation data only.

DS841-1.6E

Max.

Unit

25

ns

22

ns

21

ns

21

ns

25

ns

-

s

-

s

-

s

-

s

-

ns

16

s

-

ns

-

ns

-

ns

-

ns

-

ns

-

ns

-

ns

-

ns

-

ns

-

ns

-

ns

-

ns

-

ns

-

ns

-

s

6

ms

120

ms

120

ms

-

s

-

ns

-

ns

-

ns

47(51)

4 AC/DC Characteristic

4.5 User Flash Characteristic

 [3]After XADR, YADR, XE, and YE are valid, Tacc start time is SE rising edge. DOUT is kept until the next valid read operation;
 [4]Thv is the time between write and the next erasure.The same address can not be written twice before erasure, so does the same register. This limitation is for safety;
 [5]Both the rising edge time and falling edge time for all waveform is 1ns;  [6] TX, YADR, XE, and YE hold time need to be Tacc at leaset, and Tacc start from SE
rising edge.

4.5.3 Operation Timing Diagrams
Figure 4-1 Read Mode

Figure 4-2 Write Mode

DS841-1.6E

48(51)

4 AC/DC Characteristic
Figure 4-3 Erasure Mode

4.6 Configuration Interface Timing Specification

4.6 Configuration Interface Timing Specification
The GW1NZ series of FPGA products GowinCONFIG support six configuration modes: AUTO BOOT, DUAL BOOT, MSPI, SSPI, SERIAL, and CPU. For more detailed information, please refer to UG290, Gowin FPGA Products Programming and Configuration User Guide.

DS841-1.6E

49(51)

5 Ordering Information

5.1 Part Name

5Ordering Information

5.1 Part Name
Figure 5-1 Part Naming Example­ES GW1NZ - XX X XXXXXX ES
Product Series GW1NZ
Core Supply Voltage LV 1.2V ZV 0.9V
Logic Density 1 1,152 LUTs

Optional Suffix ES Engineering Sample
Package Type FN32F (QFN32F, 0.4mm) CS16 (WLCSP16, 0.4mm) QN48 (QFN48, 0.4mm)

DS841-1.6E

50(51)

5 Ordering Information

5.2 Package Mark

Figure 5-2 Part Naming Example­Production GW1NZ - XX X XXXXXX CX/IX

Product Series GW1NZ
Core Supply Voltage LV 1.2V ZV 0.9V
Logic Density 1 1,152 LUTs

Grade C Commercial 0 to 85 I Industrial -40 to100 Speed 2 Slowest /3 /4 /5 /6 Fastest
Package Type FN321 (QFN32, 0.4mm) FN32F (QFN32F, 0.4mm) CS16 (WLCSP16, 0.4mm) QN48 (QFN48, 0.4mm)

Note!
 [1] FN32 is the legacy version.  For the further detailed information about the package type and pin number, please
refer to 2.2 Product Resources and 2.3 Package Information.  The LittleBee® family devices and Arora family devices of the same speed level have
different speed.  Both "C" and "I" are used in partial GW1NZ device part name marking. GOWIN
devices are screened using industrial standards, so one same device can be used for both industrial (I) and commercial (C) applications. The maximum temperature of the industrial grade is 100, and the maximum temperature of the commercial grade is 85. Therefore, if the same chip meets the speed level 5 in the commercial grade application, the speed level is 4 in the industrial grade application.

5.2 Package Mark

The device information of GOWINSEMI is marked on the chip surface, as shown in Figure 5-3.
Figure 5-3 Package Mark

Part Number Date Code Lot Number

GW1NZ-ZV1FN32C6/I5 YYWW LLLLLLLLL

GW1NZ-ZV1 F N 3 2 C 6 / I 5 YY WW L LL L LL L LL

Part Number
Date Code Lot Number

Note! The first two lines in the right figure above are the "Part Number".

DS841-1.6E

51(51)


Microsoft Word 2010 Microsoft Word 2010