Silicon Laboratories Finland WF121 IEEE 802.11b/g/n Wi-Fi module WF121 User Manual WF121 v2 Datasheet

Silicon Laboratories Finland Oy IEEE 802.11b/g/n Wi-Fi module WF121 WF121 v2 Datasheet

Contents

User Manual and Installation

WF121 Wi-Fi MODULE
DATA SHEET
Thursday, 12 July 2012
Version 1.2
Bluegiga Technologies Oy
Copyright © 2000-2012 Bluegiga Technologies
All rights reserved.
Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual.
Furthermore, Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications
detailed here at any time without notice and does not make any commitment to update the information
contained here. Bluegiga’s products are not authorized for use as critical components in life support devices
or systems.
The WRAP, Bluegiga Access Server, Access Point and iWRAP are registered trademarks of Bluegiga
Technologies.
The Bluetooth trademark is owned by the Bluetooth SIG Inc., USA and is licensed to Bluegiga Technologies.
All other trademarks listed herein are owned by their respective owners.
Bluegiga Technologies Oy
VERSION HISTORY
Version Comment
1.0 First version
1.1 FCC and IC information added
1.2 WF121-N layout guide
Bluegiga Technologies Oy
TABLE OF CONTENTS
1 Ordering Information..................................................................................................................................... 7
2 Pin-out and Terminal Descriptions ............................................................................................................... 8
3 Power control .............................................................................................................................................. 10
3.1 Power supply requirements ............................................................................................................... 10
3.2 Reset .................................................................................................................................................. 10
4 Microcontroller ............................................................................................................................................ 11
5 Interfaces .................................................................................................................................................... 12
5.1 General Purpose I/O pins .................................................................................................................. 12
5.2 Serial ports ......................................................................................................................................... 12
5.3 I2C/SPI ............................................................................................................................................... 13
5.4 USB On-The-Go ................................................................................................................................ 13
5.5 Ethernet ............................................................................................................................................. 14
5.6 Analog inputs ..................................................................................................................................... 15
5.7 Timers ................................................................................................................................................ 15
5.8 Parallel master port ............................................................................................................................ 15
5.9 Microcontroller programming interface .............................................................................................. 15
5.10 RF Debug Interface ........................................................................................................................... 16
5.11 Bluetooth co-existence ...................................................................................................................... 16
5.12 CPU Clock ......................................................................................................................................... 17
5.13 32.768 kHz External Reference Clock ............................................................................................... 18
6 Example schematic .................................................................................................................................... 19
7 802.11 Radio .............................................................................................................................................. 20
7.1 Wi-Fi Receiver ................................................................................................................................... 20
7.2 Wi-Fi Transmitter ............................................................................................................................... 20
7.3 Antenna switch for Bluetooth coexistence ......................................................................................... 20
8 Firmware ..................................................................................................................................................... 21
9 Host interfaces ............................................................................................................................................ 23
9.1 UART ................................................................................................................................................. 23
9.2 USB .................................................................................................................................................... 23
9.3 SPI ..................................................................................................................................................... 23
10 Electrical characteristics ........................................................................................................................ 24
10.1 Absolute maximum ratings ................................................................................................................ 24
10.2 Recommended operating conditions ................................................................................................. 24
10.3 Input/output terminal characteristics .................................................................................................. 25
10.4 Digital ................................................................................................................................................. 25
10.5 Reset .................................................................................................................................................. 25
10.6 Power consumption (preliminary) ...................................................................................................... 26
Bluegiga Technologies Oy
11 RF Characteristics ................................................................................................................................. 27
12 Physical dimensions .............................................................................................................................. 29
13 Layout guidelines ................................................................................................................................... 30
13.1 WF121-E ............................................................................................................................................ 30
13.2 WF121-N ............................................................................................................................................ 30
13.3 WF121-A ............................................................................................................................................ 31
13.4 Thermal considerations ..................................................................................................................... 32
13.5 EMC considerations ........................................................................................................................... 32
14 Soldering recommendations .................................................................................................................. 34
15 Certifications .......................................................................................................................................... 35
15.1 CE ...................................................................................................................................................... 35
15.2 FCC and IC ........................................................................................................................................ 35
15.2.1 FCC et IC ................................................................................................................................... 37
16 Qualified Antenna Types for WF121-E .................................................................................................. 40
17 Contact information ................................................................................................................................ 41
Bluegiga Technologies Oy
DESCRIPTION
WF121 is a self-contained Wi-Fi module
providing a fully integrated 2.4GHz 802.11
b/g/n radio and a 32-bit microcontroller (MCU)
platform, making it an ideal product for
embedded applications requiring simple, low-
cost and low-power wireless TCP/IP
connectivity. WF121 also provides flexible
interfaces for connecting to various
peripherals.
WF121 allows end user applications to be
embedded onto the on-board 32-bit
microcontroller either using a simple
BGScriptTM scripting language or for more
sophisticated applications; ANSI C-language.
This cuts out the need of an external MCU
and allows the development of smaller and
lower-cost products. However WF121 can
also be used in modem-like mode in
applications where the external MCU is
needed.
With an integrated 802.11 radio, antenna,
single power supply, and regulatory
certifications, WF121 provides a low-risk and
fast time-to-market for applications requiring
Internet connectivity. This combined with
Bluegiga’s excellent customer service will turn
your Internet-of-Things applications into
reality.
APPLICATIONS:
PoS terminals
RFID and laser scanners
Wi-Fi internet radios and audio
streaming products
Wireless cameras
Video streaming
Portable navigation devices
Portable handheld devices
Wi-Fi medical sensors
Wireless picture frames
KEY FEATURES:
2.4GHz band IEEE 802.11 b/g/n radio
Excellent radio performance:
TX power: +17 dBm
RX sensitivity: -97 dBm
Host interfaces:
20Mbps UART
USB on-the-go
Peripheral interfaces:
GPIO, AIO and timers
I2C, SPI and UART
Ethernet
Embedded TCP/IP and 802.11 MAC
stacks:
IP, TCP, UDP, DHCP and DNS
protocols
BGAPI host protocol for modem
like usage
BGScriptTM scripting language or
native C-development for self-
contained applications
32-bit embedded microcontroller
80Mhz, 128kB RAM and 512kB
Flash
MIPS architecture
Temperature range: -40oC - +85oC
Fully CE, FCC and IC qualified
PHYSICAL OUTLOOK:
WF121-A
Bluegiga Technologies Oy
Page 7 of 41
1 Ordering Information
Product code Description
WF121-A WF121 module with integrated antenna
WF121-E WF121 module with U.FL connector
WF121-N
WF121 module with RF pin.
Non-standard product, so minimum order quantity applies.
Please contact: sales@bluegiga.com
DKWF121 WF121 development kit
Bluegiga Technologies Oy
Page 8 of 41
2 Pin-out and Terminal Descriptions
24
RB5
23
RB10
22
RB11
21
RB12
20
RB13
19
RB14
18
RF3
17
RB8
26
GND
27
RG3/D-
28
RG2/D+
29
RD3
30
RC12/OSC1
31
RC15/OSC2
32
RD2
33
RC13/SOSCI
34
RC14/SOSCO
35
RF4
36
RF5
37
RD11/INT4/BT_PERIODIC
38
RD0/INT0/WLAN_DENY
39
RD4/BT_STATUS
40
BT_RF
41
RD5/BT_ACTIVE
42
RD6
16 GND
15 RB0/PGED1
14 RB1/PGEC1
13 MCLR
12 RE7
11 RE6
10 RE5
9VDD_3.3V
8VDD_PA
7RE4
6RE3
5RE2
4RE1
3RE0
2RB15
1GND
44
RD9
43
RD7
45
GND
46 RD10
47 RD1
48 GND
49 ANT
50 GND
25
VBUS
51 GNDPAD
52 SPI_MISO
53 SPI_CLK
54 SPI_MOSI
55 SPI_CS
Figure 1: WF121 pinout
Pad number Function Description
9 VDD_3.3V Module power supply
8 VDD_PA RF power amplifier power supply
1, 16, 26, 45,
48, 50 GND Ground, connected together internally but should all be connected directly to a solid ground plane
51 GNDPAD Thermal ground pad, should be soldered to a directly to a solid ground plane for improved thermal
conductance
40 BT_RF Bluetooth coexistence antenna connection, connect to ground through a 51ohm resistor if
coexistence is not used
49 ANT Antenna connection pad in N variant of the module, in other variants not connected
25 VBUS USB VBUS input
13 MCLR
Module reset, also used for programming using a Microchip tool. Internal pull-up, can be left
floating or connected to ground through a 100nF capacitor for delayed power-up reset (note:
Microchip ICSP programming tools will not work with a capacitor)
Table 1: Single function pad descriptions
PAD# GPIO I2C SPI UART Ethernet Timer USB Analog Prog. Parallel Other
Bluegiga Technologies Oy
Page 9 of 41
2 RB15
CN12
EMDC OCFB AN15
PMA0
PMLL
3 RE0
ERXD1 PMD0
4 RE1
ERXD0 PMD1
5 RE2
ECRSDV PMD2
6 RE3
EREFCLK PMD3
7 RE4
ERXERR PMD4
10 RE5
ETXEN PMD5
11 RE6
ETXD0 PMD6
12 RE7
ETXD1 PMD7
14 RB1
CN3
AN1 PGEC1
15 RB0
CN2
AN0 PGED1 PMA6
17 RB8 SS4 U2CTS
U5RX C1OUT AN8
18 RF3 OTG_ID
19 RB14 SCK4 U2RTS
U5TX AN14
PMA1
PMALH
20 RB13 AN13 TDI PMA10
21 RB12 AN12 TCK PMA11
22 RB11 AN11 TDO PMA12
23 RB10 AN10 TMS PMA13
24 RB5
CN 7 VBUSON AN5
27 RG3 D-
28 RG2 D+
29 RD3 SCL3 SDO3 U1TX OC4
30 RC12 OSC1
31 RC15 OSC2
32 RD2 SDA3 SDI3 U1RX OC3
33 RC13
CN 1 SOSCI
34 RC14
CN0 T1CK SOSCO
35 RF4
CN17 SDA5 SDI4 U2RX
PMA9
36 RF5
CN18 SCL5 SDO4 U2TX
PMA8
37 RD11
INT4 IC4
PMA14 BT_PERIODIC
38 RD0
INT0 OC1
WLAN_DENY
39 RD4 IC5/OC5 PMWR BT_STATUS
41 RD5 PMRD BT_ACTIVE
42 RD6
CN15
ETXERR
43 RD7
CN16
44 RD9
INT2 SDA1 SS3 U1CTS
U4RX IC2
46 RD10
INT3 SCL1 IC3 PMA15
47 RD1 SCK3
U1RTS
U4TX EMDIO OC2
Table 2: Multifunction pad descriptions
Note: 5V tolerant pads are marked with orange. CN pins support pull-up, pull-down and GPIO notifications
Bluegiga Technologies Oy
Page 10 of 41
3 Power control
3.1 Power supply requirements
WF121 is designed to operate with a 3.3V nominal input voltage supplied to two module pads. The VDD_3.3V
pad can be fed with a voltage between 2.3V and 3.6V and is used to power the internal microcontroller. The
VDD_PA pad can be supplied with a voltage between 2.7V and 4.8V and supplies the RF power amplifier and
the internal switch-mode converter powering the WiFi digital core.
In lithium battery powered applications, VDD_PA can be connected directly to the battery, while a regulator is
needed to supply the VDD_3.3V with a lower voltage, as needed by the design.
The VDD_PA supply should be capable of providing at least 350mA, though the average consumption of the
module will be much less than that. The VDD_3.3V supply will draw a peak current of less than 100mA, not
including current drawn from the GPIO pins. The PA supply should preferably be bypassed with a 10 to 100µF
capacitor to smooth out the current spikes drawn by the Wi-Fi power amplifier. External high frequency
bypassing is not needed, the module contains the needed supply filtering capacitors.
While the Wi-Fi power saving modes reduce the idle consumption to very low levels, it may in some
applications be useful to reduce the consumption even further. For this purpose, the Wi-Fi part of the module
can be fully shut down internally by disabling the internal switch mode converter to minimize power
consumption, though restarting it requires a new WiFi core power-up initialization. This will usually take
several seconds, but in applications where a connection is required only once a few minutes or this might not
be an issue while the reduced consumption can be very valuable.
The WF121 module automatically applies various power saving modes during operation to minimize average
power consumption.
3.2 Reset
WF121 can be reset by the MCLR-pin (active low), system power up, the internal brown-out detector or the
internal watchdog timer.
Bluegiga Technologies Oy
Page 11 of 41
4 Microcontroller
WF121 contains a Microchip PIC32-series microcontroller with a MIPS M4K core. At a maximum clock
frequency of 80 MHz the core can reach a performance of 125 DMIPS while keeping low power consumption.
The microcontroller used in WF121 contains 512kB of Flash memory and 128kB of SRAM.
Most peripheral features are directly provided by the microcontroller and for low level information and detailed
descriptions please refer to the material and datasheets of the PIC32MX695H.
Bluegiga Technologies Oy
Page 12 of 41
5 Interfaces
5.1 General Purpose I/O pins
To see which GPIOs are multiplexed with which features, please refer to Table 2.
.WF121 contains a number of pads that can be configured to be used as general purpose digital IO’s, analog
inputs or for various built-in functions. Provided functions include a Full Speed USB-OTG port, three I2C-ports,
two SPI-ports, two to four UART’s, Ethernet MAC with RMII connection and various timer functions. Some of
the pads are 5V tolerant. All GPIO pads can drive currents of up to +/- 25 mA.
Four pins are available for implementing a coexistence scheme with a Bluetooth device. The exact order and
function as well as the coexistence system desired is software configurable, with the default pad bindings
shown in Table 3 for a Unity-3e+ coexistence scheme. If the pads are bound to WiFi chip pins, the CPU pins
associated with the pads must be set to inputs.
5.2 Serial ports
Pad number UART 1 UART 2 UART 4 UART 5
17 CTS RX
21 RTS TX
29 TX
32 RX
35 RX
36 TX
44 CTS RX
47 RTS TX
Table 3: Serial port pads
Two UART’s are provided with RTS/CTS-handshaking. If handshaking is not needed, up to four UART’s can
be implemented. Speeds up to 20 Mbps are possible, but the higher bit rates might require the use of an
external crystal for sufficient clock accuracy. The serial ports can also be used as host connections when
using an external microcontroller.
To see what other functions are present on the same pins, please refer to Table 2.
.
Bluegiga Technologies Oy
Page 13 of 41
5.3 I2C/SPI
Pad number I2C SPI
17 SS4 – Slave select SPI 4
19 SCK4 - Clock SPI 4
29 SCL3 – Clock I2C 3 SDO3 – Data out SPI 3
32 SDA3 – Data I2C 3 SDI3 – Data in SPI 3
35 SDA5 – Data I2C 5 SDI4 – Data in SPI 4
36 SCL5 – Clock I2C 5 SDO4 – Data out SPI 4
46 SCL1 – Clock I2C 1
44 SDA1 – Data I2C 1 SS3 – Slave select SPI 3
47 SCK3 – Clock SPI 3
Table 4: Pads for I2C and SPI
Up to three I2C-ports and up to two SPI ports can be implemented, mostly multiplexed on the same pins
together and with the UART signals. The I2C ports support 100 kHz and 400 kHz speed specifications, while
the SPI can be operated at up to 40 Mbps. The SPI ports are also available for use as a host connection for
use with an external microcontroller.
To see what other functions are present on the same pins, please refer to Table 2.
5.4 USB On-The-Go
Pad number Function Description
18 OTG_ID USB-OTG mode identify line
25 VBUS USB bus supply input
27 D- Data +
28 D+ Data -
26 VBUSON USB bus supply switch enable in host mode
Table 5: USB pads
The module contains a USB-OTG system with an integrated transceiver. Full Speed (12 Mbps) USB 2.0
profile is supported in device mode, while the host system can operate in Low Speed and Full Speed modes.
For host use an external switch can be implemented to provide switched power for the connected device. Pad
number 26 can be dedicated to control this switch. The USB device can be used as a host connection,
although the embedded (simplified) USB-OTG may not be able to support every kind of USB system, like
hubs.
Bluegiga Technologies Oy
Page 14 of 41
Using the USB connection requires an external crystal for sufficient clock accuracy.
Other functions are present on the same pins; please refer to Table 2 for details.
5.5 Ethernet
Pad number Function Description
2 EMDC Management bus clock
3 ERXD1 Receive data 1
4 ERXD0 Receive data 0
5 ECRSDV Receive data valid
6 EREFCLK Reference clock
7 ERXERR Receive error
10 ETXEN Transmit enable
11 ETXD0 Transmit data 0
12 ETXD1 Transmit data 1
46 ETXERR Transmit error
47 EMDIO Management bus data
Table 6: Ethernet pads
An RMII interface to an external Ethernet PHY is available. The PHY should supply EREFCLK with a 50 MHz
RMII reference clock. Other functions are present on the same pads; please refer to Table 2 for details.
Bluegiga Technologies Oy
Page 15 of 41
5.6 Analog inputs
Pad number Function
2 AN15
14 AN1
15 AN0
17 AN8
19 AN14
20 AN13
21 AN12
22 AN11
23 AN10
24 AN5
Table 7: ADC pads
The microcontroller provides a 10-bit Analog to digital converter (ADC) with sampling speeds up to 1MSps.
The measurement can be done on any of the input pins listed in the table above. For further information see
the PIC32MX695H data sheet and related documents.
5.7 Timers
The module processor contains 5 timers with various functions including capture & compare. For more
information see the PIC32MX695H data sheet.
5.8 Parallel master port
An 8-bit master/slave port is also available for transferring parallel data at a high speed to or from the module
microcontroller. For more information, see PIC32MX695H data sheet.
5.9 Microcontroller programming interface
Pad number Pad function Description
13 MCLR Reset
14 PGEC1 Programming Clock
15 PGED1 Programming Data
20 TDI JTAG Test Data In
21 TCK JTAG Test Clock
Bluegiga Technologies Oy
Page 16 of 41
22 TDO JTAG Test Data out
23 TMS JTAG Test Machine State
Table 8: Programming and JTAG pads
A programming connection (PGEC1, PGED1, MCLR) is provided to allow device re-flashing using a Microchip
tool. A JTAG connection is also provided which can be used for system debugging purposes or device
programming. The JTAG supports basic boundary scans but not CPU core debugging.
5.10 RF Debug Interface
Pad number Pad function Description
52 SPI_MISO RF Debug data out
53 SPI_CLK RF Debug clock
54 SPI_MOSI RF Debug data in
55 SPI_CS RF Debug chip select
Table 9: RF Debug SPI pads
Four pads are provided for the debug interface of the WiFi chipset in the module bottom. This is meant for RF
calibration and testing during module production and product certification measurements. These should in
most applications be left unconnected, but should be taken into account when doing the application board
layout. Avoid placing vias or signals without a solder mask under these pads.
5.11 Bluetooth co-existence
Bluetooth coexistence systems allow co-located WiFi and Bluetooth devices to be aware of each other and to
avoid simultaneous transfers that would degrade link performance. There are many ways of implementing
such connections, from host driver negotiated channel and time sharing, to hardware signalling between the
two devices. WF121 supports a number of different coexistence schemes with up to 4 control lines for
hardware communication between the two devices.
WiFi and Bluetooth may also use separate antennas, or share a single antenna through a switch and/or a
coupler. With a shared antenna, usually two additional signals are needed to control the front end switch.
WF121 contains an internal switch for separating WiFi and Bluetooth transmissions as well as a shared low
noise amplifier that allows both WiFi and Bluetooth to receive simultaneously using the same amplifier.
For use with CSR-based Bluetooth (BC4 to BC6 with firmware version 21 or later, BC7 and onwards with all
versions), Unity-3e+ is recommended as the coexistence scheme. Unity-3e is an enhanced version of the 3-
wire Unity-3 –scheme that uses tighter timings and uses the three control lines also for antenna switch control,
removing the need for the two separate switch control lines which with the limited number of coexistence
capable signals in WF121 would limit the supported coexistence schemes to just 2-wire schemes. Unity-3e+,
or Unity-3e with Unity+ adds an additional BT_PERIODIC signal to communicate the need for a periodic
transmission from the Bluetooth to the WiFi, allowing a guaranteed low-latency throughput for certain
Bluetooth applications despite high WiFi usage. This allows reliable audio connections that would otherwise
suffer from the WiFi’s higher priority.
Bluegiga Technologies Oy
Page 17 of 41
Pad number Function
37 BT_PERIODIC
38 WLAN_DENY
39 BT_STATUS
41 BT_ACTIVE
Table 10: Bluetooth co-existence interface
Industry standard 2-wire, 3-wire and 4-wire, as well as Unity-2, Unity-3, Unity-4, Unity-3e and Unity+
coexistence schemes are supported and the associated signals can be assigned to the GPIO pads. In default
mode these pins are tied to CPU GPIO functions. Antenna sharing is possible with 2-wire, Unity-2 and Unity-
3e/3e+ schemes.
For more detailed information about implementing co-existence, see WF111 datasheet.
5.12 CPU Clock
Pad number Function Description
30 OSC1 External crystal input
31 OSC2 External crystal output
Table 11: Clocking pads
WF121 uses an internal 26 MHz crystal as the WiFi reference clock. The internal processor uses an
integrated 8MHz RC oscillator and associated phase locked loop (PLL) to create its clock signals, but cannot
share the internal crystal-stabilized WiFi clock. The internal CPU uses a PLL to create an 80MHz core clock.
To use the USB functionality an external crystal and the associated capacitors must be implemented on the
application board to provide a sufficiently accurate clock. A crystal with its associated capacitors can be
connected to pads OSC1 and OSC2. If an external crystal is not needed, these pads are available for GPIO
use. The USB clock synthesizer requires an internal reference frequency of 4MHz, so the crystal for USB use
must be a multiple of 4MHz.
An external oscillator can also be used to generate the CPU clock frequency. The voltage levels should be
3.3V logic level.
Note: The present WF121 default firmware only supports 8MHz crystals or oscillators.
The internal clock divider generating the reference frequency for the internal PLL’s cannot be changed by the
firmware, and to support automatic switchover between the internal RC oscillator and the external crystal, the
default firmware needs an 8MHz clock. A custom firmware can be ordered with support for desired
frequencies for easier crystal availability, for achieving desired UART baud rates and other applications.
The Ethernet connection requires the external PHY to provide the 50MHz RMII reference clock. A crystal is
not required for the module CPU for Ethernet operation.
Bluegiga Technologies Oy
Page 18 of 41
5.13 32.768 kHz External Reference Clock
Pad number Function Description
35 SOSCI External 32.768 kHz crystal input
36 SOSCO External 32.768 kHz crystal output
Table 12: Slow clock
The module contains integrated RC oscillators for sleep timing, one in the WiFi chipset, one in the CPU. The
sleep clocks are used to periodically wake up the module while in power save modes. If more accurate timing
is required, an external 32.768 kHz crystal and the associated capacitors can be placed to pads SOSCI and
SOSCO. If an accurate sleep clock is not needed, the pads are available for GPIO use.
An external oscillator can also be used to generate the sleep clock. The voltage levels should be 3.3V logic
level.
This low frequency clock is shared for both the CPU and the WiFi chipset. The default WiFi configuration uses
only the internal oscillator, if support for a crystal stabilized WiFi sleep clock is required, please contact
Bluegiga technical support.
The Wi-Fi packet timing during active data transfer is derived from the internal 26MHz crystal and so is
unaffected by the tolerances of the sleep clock.
Bluegiga Technologies Oy
Page 19 of 41
6 Example schematic
24
RB5
23
RB10
22
RB11
21
RB12
20
RB13
19
RB14
18
RF3
17
RB8
26
GND
27
RG3/D-
28
RG2/D+
29
RD3
30
RC12/OSC1
31
RC15/OSC2
32
RD2
33
RC13/SOSCI
34
RC14/SOSCO
35
RF4
36
RF5
37
RD11/INT4/BT_PERIODIC
38
RD0/INT0/WLAN_DENY
39
RD4/BT_STATUS
40
BT_RF
41
RD5/BT_ACTIVE
42
RD6
16 GND
15 RB0/PGED1
14 RB1/PGEC1
13 MCLR
12 RE7
11 RE6
10 RE5
9VDD_3.3V
8VDD_PA
7RE4
6RE3
5RE2
4RE1
3RE0
2RB15
1GND
44
RD9
43
RD7
45
GND
46 RD10
47 RD1
48 GND
49 ANT
50 GND
25
VBUS
51 GNDPAD
52 SPI_MISO
53 SPI_CLK
54 SPI_MOSI
55 SPI_CS
+3.3V
TX
D
RX
D
CT
S
RT
S
Figure 2: Minimal system required for UART host connection
Bluegiga Technologies Oy
Page 20 of 41
7 802.11 Radio
7.1 Wi-Fi Receiver
The receiver features direct conversion architecture. Sufficient out-of-band blocking specification at the Low
Noise Amplifier (LNA) input allows the receiver to be used in close proximity to GSM and WCDMA cellular
phone transmitters without being desensitized. High-order baseband filters ensure good performance against
in-band interference.
7.2 Wi-Fi Transmitter
The transmitter features a direct IQ modulator. Digital baseband transmit circuitry provides the required
spectral shaping and on-chip trims are used to reduce IQ modulator distortion. Transmitter gain can be
controlled on a per-packet basis, allowing the optimization of the transmit power as a function of modulation
scheme.
The internal Power Amplifier (PA) has a maximum output power of +15dBm for IEEE 802.11g/n and +17dBm
for IEEE 802.11b. The module internally compensates for PA gain and reference oscillator frequency drifts
with varying temperature and supply voltage.
7.3 Antenna switch for Bluetooth coexistence
WF121 supports sharing the integrated antenna or antenna connector with a Bluetooth device through the
BT_RF pad. The module contains a bypass switch to route the Bluetooth signal directly to the antenna, and
supports using the internal LNA for Bluetooth reception. The switch is controlled through the coexistence
interface.
Bluegiga Technologies Oy
Page 21 of 41
8 Firmware
WF121 incorporates firmware which implements a full TCP/IP stack and Wi-Fi management. Exact features
will depend on the firmware version used. Please see the documentation of the firmware for exact details.
There are three main ways to use the module: Host controlled, script controlled or native application
controlled.
Host controlled means an external host is physically connected to the module and it sends simple commands
to the module and one of several different host interfaces can be used. The module provides high level APIs
for managing Wi-Fi as well as data connections. Bluegiga provides a thin API layer (BGLib) written in ANSI C
for the host which can take care of creating and parsing the messages sent over the transport. For evaluation
purposes GUI tools and a library for python are also provided.
IP
BGAPI
802.2 LLC
802.11 MAC
UART / USB / SPI
Host
UDPTCP
BGLib
(implements BGAPI)
Application
MLME
802.11 PHY
HTTP, FTP,
SMTP etc. DHCP, TFTP,
DNS etc.
Figure 3: WF121 software
Data can be routed either through the API or through another physical interface. For example if the first UART
is used for sending and receiving command events, a TCP/IP socket can be bound to the second UART and
data written to the UART will seamlessly be passed to the TCP/IP socket. For information about the latest
capabilities of the firmware, please refer to the WF121 API reference documentation accompanying it.
The module can also be controlled by a script running on the module. This is especially useful for simple
applications as it eliminates the need for a host controller and can drastically cut development time. In
combination with a host it can also be used automate certain features such as the serial to TCP/IP
functionality described above.
Native application development is also possible as the stack will not require all of the available flash or
memory. Please see the material accompanying the firmware release about more details of this option.
Bluegiga Technologies Oy
Page 22 of 41
Bluegiga Technologies Oy
Page 23 of 41
9 Host interfaces
9.1 UART
The module can be controlled over the UART interface. In order for the communication to be reliable,
hardware flow control signals (RTS and CTS) must be present between the host and the module. When using
high UART transfer speeds (between 1 and 20Mbps) an external crystal is required for sufficient clock
accuracy.
9.2 USB
When using the USB host interface, the module will appear as a USB CDC/ACM device enumerating as
virtual COM port. The same protocol can be used as with the UART interface.
9.3 SPI
Please refer to the Bluegiga WF121 API reference documentation supplied with the firmware regarding using
SPI as the Host interface.
Bluegiga Technologies Oy
Page 24 of 41
10 Electrical characteristics
10.1 Absolute maximum ratings
Rating Min Max Unit
Storage Temperature -40 85 °C
VDD_PA -0.3 6 V
VDD_3.3V -0.3 3.6
5V tolerant GPIO Voltages -0.3 5.5 V
Other Terminal Voltages VSS-0.3 VDD_3.3V+0.3 V
Maximum output current sourced or sunk by any GPIO pad 25 mA
Maximum current on all GPIO pads combined 200 mA
Table 13: Absolute maximum ratings
10.2 Recommended operating conditions
Rating Min Max Unit
Operating Temperature Range * -40 85 °C
VDD_3.3V 2.3 3.6 V
VDD_PA 2.7 4.8 V
Table 14: Recommended operating conditions
*Note: The module will heat up depending on use, at high constant transmit duty cycles (high throughput, low
bitrate for more than a few seconds) the maximum operating temperature may need to be derated down to
60°C.
Bluegiga Technologies Oy
Page 25 of 41
10.3 Input/output terminal characteristics
10.4 Digital
Digital terminals Min Typ Max Unit
Input voltage levels
VIL input logic level low 1.7V VDD 3.6V VSS-0.3V - 0.15VDD V
VIH input logic level high 1.7V VDD 3.6V 0.8VDD - VDD+0.3V V
Output voltage levels
VOL output logic level low, Vdd = 3.6 V, Iol = 7 mA - - 0.4 V
VOH output logic level high Vdd = 3.6 V, Ioh = -12 mA 2.4 - VDD V
Table 15: Digital terminal electrical characteristics
Min Typ max
Frequency 32.748 32.768 32.788 kHz
Deviation @25oC -20 +20 ppm
Deviation over temperature -150 +150 ppm
Duty cycle 30 50 70 %
Rise time 50 ns
Input high level 0.625Vdd Vdd+0.3 V
Input low level -0.3 0.25Vdd V
Table 16: External sleep clock specifications
10.5 Reset
Power-on Reset Min Typ Max Unit
Power on reset threshold 1.75 - 2.1 V
VDD rise rate to ensure reset 0.05 - 115 V/ms
Table 17: Power on reset characteristics
Bluegiga Technologies Oy
Page 26 of 41
10.6 Power consumption (preliminary)
Operation Mode Current Unit Operation Mode
Absolute maximum (+17dBm, CCK) 400 mA Peak total current (+17dBm, CCK)
Continuous transmit (+17dBm, CCK) 330 mA Continuous transmit (+17dBm, CCK)
Continuous receive (OFDM) 120 mA Continuous receive (OFDM)
Sleep 60 µA Deep sleep (WiFi powered down)
NOTE: values estimated, measurements to be added later
Table 18: Power consumption (TBD)
Bluegiga Technologies Oy
Page 27 of 41
11 RF Characteristics
min max
Channel 1 13 Note: channel 14 (Japan only) can be set
but proper operation is not guaranteed and
its use should be avoided.
Frequency 2412 2472 MHz
Table 19: Supported frequencies
Standard Supported bit rates
802.11b 1, 2, 5.5, 11Mbps
802.11g 6, 9, 12, 18, 24, 36, 48, 54Mbps
802.11n, HT, 20MHz, 800ns 6.5, 13, 19.5, 26, 39, 52, 58.5, 65Mbps
802.11n, HT, 20MHz, 400ns 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2Mbps
Table 20: Supported modulations
802.11b Typ 802.11g Typ 802.11n short GI Typ 802.11n long GI Typ
1 Mbps -97 dBm 6 Mbps -92 dBm 6.5 Mbps -91 dBm 7.2 Mbps -92 dBm
2 Mbps -95 dBm 9 Mbps -91 dBm 13 Mbps -87 dBm 14.4 Mbps -90 dBm
5.5 Mbps -93 dBm 12 Mbps -89 dBm 19.5 Mbps -85 dBm 21.7 Mbps -87 dBm
11 Mbps -89 dBm 18 Mbps -87 dBm 26 Mbps -82 dBm 28.9 Mbps -84 dBm
24 Mbps -84 dBm 39 Mbps -78 dBm 43.3 Mbps -80 dBm
36 Mbps -80 dBm 52 Mbps -74 dBm 57.8 Mbps -75 dBm
48 Mbps -75 dBm 58.5 Mbps -71 dBm 65 Mbps -72 dBm
54 Mbps -73 dBm 65 Mbps -68 dBm 72.2 Mbps -69 dBm
Table 21: Typical receiver sensitivity
Bluegiga Technologies Oy
Page 28 of 41
Modulation type Min Typ Max
802.11b +16 +17 +17.6 dBm
802.11g +14 +15 +15.6 dBm
802.11n +14 +15 +15.6 dBm
Table 22: Transmitter output power at maximum setting
Modulation type Min Typ Max
TX loss -2.5 -3 -3.5 dB
RX gain (using internal LNA) 8 10 12 dB
Internal LNA noise figure 2.0 2.5 dB
Table 23: BT antenna sharing interface properties
Typ Max 802.11 limit (total error)
Variation between individual units +/-5 +/-10 +/-25 ppm
Variation with temperature +/-3 +/-10 +/-25 ppm
Table 24: Carrier frequency accuracy
Bluegiga Technologies Oy
Page 29 of 41
12 Physical dimensions
Figure 4: Physical dimensions
Figure 5: WF121-A recommended PCB land pattern
Bluegiga Technologies Oy
Page 30 of 41
13 Layout guidelines
13.1 WF121-E
RF output can be taken directly from the U.FL connector of the module, and no antenna clearances need to
be made for the module.
13.2 WF121-N
The RF output is taken from the ANT pin at the end of the device. In other variants this pin is not connected.
The antenna trace should be properly impedance controlled and kept short. Figure 6 shows a typical trace
from the RF pin to a SMA connector. A transmission line impedance calculator, such as TX-Line made by
AWR, can be used to approximate the dimensions for the 50 ohm transmission line. Figure 7 show cross
sections of two 50 ohm transmission lines.
Figure 6: Typical 50 ohm trace from the RF pin to an antenna connector
Bluegiga Technologies Oy
Page 31 of 41
FR4, ε
r
= 4.6
Prepreg, ε
r
= 3.7
W = 0.15 mm
h = 0.076 mm
G = 0.25 mm
GND stitching vias
RF GROUND
RF GROUND RF GROUND
RF GROUND
FR4, ε
r
= 4.6
h = 1 mm
W = 1.8 mm
MICROSTRIP
CPW Ground
Figure 7: Example cross section of two different 50 ohm transmission line
13.3 WF121-A
Figure 8: Example layouts, board corner placement on left, board edge on right
The impedance matching of the antenna is designed for a layout similar to the module evaluation board. For
an optimal performance of the antenna the layout should strictly follow the layout example shown in the above
figures and the thickness of FR4 should be between 1 and 2 mm, preferably 1.6mm.
Bluegiga Technologies Oy
Page 32 of 41
Any dielectric material close to the antenna will change the resonant frequency and it is recommended not to
place a plastic case or any other dielectric closer than 5 mm from the antenna.
ANY metal in close proximity of the antenna will prevent the antenna from radiating freely. It is recommended
not to place any metal or other conductive objects closer than 20 mm to the antenna except in the directions
of the ground planes of the module itself.
For optimal performance, place the antenna end of the module outside any metal surfaces and objects in the
application, preferably on the device corner. The larger the angle in which no metallic object obstructs the
antenna radiation, the better the antenna will work.
The ANT pad on the antenna end of the WF121-A can be connected to the ground or left unsoldered.
13.4 Thermal considerations
The WF121 module may at continuous full power transmit consume up to 1.3 W of DC power, most of which
is drawn by the power amplifier. Most of this will be dissipated as heat. In any application where high ambient
temperatures and constant transmissions for more than a few seconds can occur, it is important that a
sufficient cooling surface is provided to dissipate the heat.
The thermal pad in the bottom of the module must be connected to the application board ground
planes by soldering. The application board should provide a number of vias under and around the pad to
conduct the produced heat to the board ground planes, and preferably to a copper surface on the other side of
the board in order to dissipate the heat into air.
The module internal thermal resistance should in most cases be negligible compared to the thermal resistance
from the module into air, and common equations for surface area required for cooling can be used to estimate
the temperature rise of the module. Only copper planes on the circuit board surfaces with a solid thermal
connection to the module ground pad will dissipate heat. For an application with high transmit duty cycles
(low bit rate, high throughput, long bursts or constant streaming) the maximum allowed ambient temperature
should be reduced due to inherent heating of the module, especially with small fully plastic enclosed
applications where heat transfer to ambient air is low due to low thermal conductivity of plastic.
The module measured on the evaluation board exhibits a temperature rise of about 25oC above ambient
temperature when continuously transmitting IEEE 802.11b at full power with minimal off-times and no collision
detection (a worst case scenario regarding power dissipation). An insufficiently cooled module will rapidly heat
beyond operating range in ambient room temperature.
13.5 EMC considerations
Following recommendations helps to avoid EMC problems arising in the design. Note that each design is
unique and the following list do not consider all basic design rules such as avoiding capacitive coupling
between signal lines. Following list is aimed to avoid EMC problems caused by RF part of the module.
Do not remove copper from the PCB more than needed. For proper operation the antenna requires a
solid ground plane with as much surface area as possible. Use ground filling as much as possible.
Connect all grounds together with multiple vias. Do not leave small floating unconnected copper areas
or areas connected by just one via, these will act as additional antennas and raise the risk of
unwanted radiations.
Do not place a ground plane underneath the antenna. The grounding areas under the module should
be designed as shown in Figure 4.
When using overlapping ground areas use conductive vias separated max. 3 mm apart at the edge of
the ground areas. This prevents RF from penetrating inside the PCB. Use ground vias extensively all
over the PCB. All the traces in (and on) the PCB are potential antennas. Especially board edges
should have grounds connected together at short intervals to avoid resonances.
Avoid current loops. Keep the traces with sensitive, high current or fast signals short, and mind the
return current path, having a short signal path is not much use if the associated ground path between
Bluegiga Technologies Oy
Page 33 of 41
the ends of the signal trace is long. Remember, ground is also a signal trace. The ground will conduct
the same current as the signal path and at the same frequency, power and sensitivity.
Split a ground plane ONLY if you know exactly what you are doing. Splitting the plane may cause
more harm than good if applied incorrectly. The ground plane acts as a part of the antenna system.
Insufficient ground planes or large separate sensitive signal ground planes will easily cause the
coupled transmitted pulses to be AM-demodulated by semiconductor junctions around the board,
degrading system performance.
Overlapping GND layers without
GND stitching vias
Overlapping GND layers with
GND stitching vias shielding the
RF energy
Figure 9: Use of stitching vias to avoid emissions from the edges of the PCB
Bluegiga Technologies Oy
Page 34 of 41
14 Soldering recommendations
WF121 is compatible with industrial standard reflow profile for Pb-free solders. The reflow profile used is
dependent on the thermal mass of the entire populated PCB, heat transfer efficiency of the oven and
particular type of solder paste used. Consult the datasheet of particular solder paste for profile configurations.
Bluegiga Technologies will give following recommendations for soldering the module to ensure reliable solder
joint and operation of the module after soldering. Since the profile used is process and layout dependent, the
optimum profile should be studied case by case. Thus following recommendation should be taken as a
starting point guide.
Refer to technical documentations of particular solder paste for profile configurations
Avoid using more than one flow.
Reliability of the solder joint and self-alignment of the component are dependent on the solder
volume. Minimum of 150m stencil thickness is recommended.
Aperture size of the stencil should be 1:1 with the pad size.
A low residue, “no clean” solder paste should be used due to low mounted height of the component.
If the vias used on the application board have a diameter larger than 0.3mm, it is recommended to
mask the via holes at the module side to prevent solder wicking through the via holes. Solders have a
habit of filling holes and leaving voids in the thermal pad solder junction, as well as forming solder
balls on the other side of the application board which can in some cases be problematic.
Bluegiga Technologies Oy
Page 35 of 41
15 Certifications
WF121 is compliant to the following specifications:
15.1 CE
TBD
15.2 FCC and IC
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) this device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may
cause undesired operation.
FCC RF Radiation Exposure Statement:
This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End
users must follow the specific operating instructions for satisfying RF exposure compliance. This transmitter
must not be co-located or operating in conjunction with any other antenna or transmitter. This transmitter is
considered as mobile device and should not be used closer than 20 cm from a human body. To allow portable
use in a known host class 2 permissive change is required. Please contact support@bluegiga.com for detailed
information.
IC Statements:
This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the
following two conditions: (1) this device may not cause interference, and (2) this device must accept any
interference, including interference that may cause undesired operation of the device.
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and
maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio
interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically
radiated power (e.i.r.p.) is not more than that necessary for successful communication.
If detachable antennas are used:
This radio transmitter (identify the device by certification number, or model number ifCategory II) has been
approved by Industry Canada to operate with the antenna types listed below with the maximum permissible
gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list,
having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this
device. See table 25 for the approved antennas for WF121-E and WF121-N.
OEM Responsibilities to comply with FCC and Industry Canada Regulations
The WF121 Module has been certified for integration into products only by OEM integrators under the
following conditions:
Bluegiga Technologies Oy
Page 36 of 41
The antenna(s) must be installed such that a minimum separation distance of 20cm is maintained
between the radiator (antenna) and all persons at all times.
The transmitter module must not be co-located or operating in conjunction with any other antenna or
transmitter.
As long as the two conditions above are met, further transmitter testing will not be required. However, the
OEM integrator is still responsible for testing their end-product for any additional compliance requirements
required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).
IMPORTANT NOTE: In the event that these conditions can not be met (for certain configurations or co-
location with another transmitter), then the FCC and Industry Canada authorizations are no longer considered
valid and the FCC ID and IC Certification Number can not be used on the final product. In these
circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the
transmitter) and obtaining a separate FCC and Industry Canada authorization.
End Product Labeling
The WF121 Module is labeled with its own FCC ID and IC Certification Number. If the FCC ID and IC
Certification Number are not visible when the module is installed inside another device, then the outside of the
device into which the module is installed must also display a label referring to the enclosed module. In that
case, the final end product must be labeled in a visible area with the following:
Contains Transmitter Module FCC ID: QOQWF121
Contains Transmitter Module IC: 5123A-BGTWF121
or
Contains FCC ID: QOQWF121
Contains IC: 5123A-BGTWF121
The OEM of the WF121 Module must only use the approved antenna(s) described in table 25, which have
been certified with this module.
The OEM integrator has to be aware not to provide information to the end user regarding how to install or
remove this RF module or change RF related parameters in the user manual of the end product.
To comply with FCC and Industry Canada RF radiation exposure limits for general population, the
antenna(s) used for this transmitter must be installed such that a minimum separation distance of
20cm is maintained between the radiator (antenna) and all persons at all times and must not be co-
located or operating in conjunction with any other antenna or transmitter.
Bluegiga Technologies Oy
Page 37 of 41
15.2.1 FCC et IC
Cet appareil est conforme à l’alinéa 15 des règles de la FCC. Deux conditions sont à respecter lors de
son utilisation :
(1) cet appareil ne doit pas créer d’interférence susceptible de causer un quelconque dommage et,
(2) cet appareil doit accepter toute interférence, quelle qu’elle soit, y compris les interférences
susceptibles d’entraîner un fonctionnement non requis.
Déclaration de conformité FCC d’exposition aux radiofréquences (RF):
Ce matériel respecte les limites d’exposition aux radiofréquences fixées par la FCC dans un environnement
non contrôlé. Les utilisateurs finaux doivent se conformer aux instructions d’utilisation spécifiées afin de
satisfaire aux normes d’exposition en matière de radiofréquence. Ce transmetteur ne doit pas être installé ni
utilisé en concomitance avec une autre antenne ou un autre transmetteur. Ce transmetteur est assimilé à un
appareil mobile et ne doit pas être utilisé à moins de 20 cm du corps humain. Afin de permettre un usage
mobile dans le cadre d’un matériel de catégorie 2, il est nécessaire de procéder à quelques adaptations. Pour
des informations détaillées, veuillez contacter le support technique Bluegiga : support@bluegiga.com.
Déclaration de conformité IC :
Ce matériel respecte les standards RSS exempt de licence d’Industrie Canada. Son utilisation est soumise
aux deux conditions suivantes :
(1) l’appareil ne doit causer aucune interférence, et
(2) l’appareil doit accepter toute interférence, quelle qu’elle soit, y compris les interférences
susceptibles d’entraîner un fonctionnement non requis de l’appareil.
Selon la réglementation d’Industrie Canada, ce radio-transmetteur ne peut utiliser qu’un seul type d’antenne
et ne doit pas dépasser la limite de gain autorisée par Industrie Canada pour les transmetteurs. Afin de
réduire les interférences potentielles avec d’autres utilisateurs, le type d’antenne et son gain devront être
définis de telle façon que la puissance isotrope rayonnante équivalente (EIRP) soit juste suffisante pour
permettre une bonne communication.
Lors de l’utilisation d’antennes amovibles :
Ce radio-transmetteur (identifié par un numéro certifié ou un numéro de modèle dans le cas de la catégorie II)
a été approuvé par Industrie Canada pour fonctionner avec les antennes référencées ci-dessous dans la
limite de gain acceptable et l’impédance requise pour chaque type d’antenne cité. Les antennes non
référencées possédant un gain supérieur au gain maximum autorisé pour le type d’antenne auquel elles
Bluegiga Technologies Oy
Page 38 of 41
appartiennent sont strictement interdites d’utilisation avec ce matériel. Veuillez vous référer au tableau 25
concernant les antennes approuvées pour les WF121.
Les responsabilités de l’intégrateur afin de satisfaire aux réglementations de la FCC et d’Industrie
Canada :
Les modules WF121 ont été certifiés pour entrer dans la fabrication de produits exclusivement réalisés par
des intégrateurs dans les conditions suivantes :
L’antenne (ou les antennes) doit être installée de façon à maintenir à tout instant une distance
minimum de 20cm entre la source de radiation (l’antenne) et toute personne physique.
Le module transmetteur ne doit pas être installé ou utilisé en concomitance avec une autre antenne
ou un autre transmetteur.
Tant que ces deux conditions sont réunies, il n’est pas nécessaire de procéder à des tests supplémentaires
sur le transmetteur. Cependant, l’intégrateur est responsable des tests effectués sur le produit final afin de se
mettre en conformité avec d’éventuelles exigences complémentaires lorsque le module est installé (exemple :
émissions provenant d’appareils numériques, exigences vis-à-vis de périphériques informatiques, etc.) ;
IMPORTANT : Dans le cas où ces conditions ne peuvent être satisfaites (pour certaines configurations ou
installation avec un autre transmetteur), les autorisations fournies par la FCC et Industrie Canada ne sont plus
valables et les numéros d’identification de la FCC et de certification d’Industrie Canada ne peuvent servir pour
le produit final. Dans ces circonstances, il incombera à l’intégrateur de faire réévaluer le produit final
(comprenant le transmetteur) et d’obtenir une autorisation séparée de la part de la FCC et d’Industrie Canada.
Etiquetage du produit final
Chaque module WF121 possède sa propre identification FCC et son propre numéro de certification IC. Si
l’identification FCC et le numéro de certification IC ne sont pas visibles lorsqu’un module est installé à
l’intérieur d’un autre appareil, alors l’appareil en question devra lui aussi présenter une étiquette faisant
référence au module inclus. Dans ce cas, le produit final doit comporter une étiquette placée de façon visible
affichant les mentions suivantes :
« Contient un module transmetteur certifié FCC QOQWF121 »
« Contient un module transmetteur certifié IC 5123A-BGTWF121 »
ou
« Inclut la certification FCC QOQWF121 »
Bluegiga Technologies Oy
Page 39 of 41
« Inclut la certification IC 5123A-BGTWF121 »
L’intégrateur du module WF121 ne doit utiliser que les antennes répertoriées dans le tableau 25 certifiées
pour ce module.
L’intégrateur est tenu de ne fournir aucune information à l’utilisateur final autorisant ce dernier à installer ou
retirer le module RF, ou bien changer les paramètres RF du module, dans le manuel d’utilisation du produit
final.
Afin de se conformer aux limites de radiation imposées par la FCC et Industry Canada, l’antenne (ou
les antennes) utilisée pour ce transmetteur doit être installée de telle sorte à maintenir une distance
minimum de 20cm à tout instant entre la source de radiation (l’antenne) et les personnes physiques.
En outre, cette antenne ne devra en aucun cas être installée ou utilisée en concomitance avec une
autre antenne ou un autre transmetteur.
Bluegiga Technologies Oy
Page 40 of 41
16 Qualified Antenna Types for WF121-E
This device has been designed to operate with the antennas listed below, and having a maximum gain of 2.14
dB. Antennas not included in this list or having a gain greater than 2.14 dB are strictly prohibited for use with
this device. The required antenna impedance is 50 ohms.
Qualified Antenna Types for WT121-E
Antenna Type Maximum Gain
Dipole 2.14 dBi
Table 25: Qualified Antenna Types for WF121-E
Any antenna that is of the same type and of equal or less directional gain as listed in table 29 can be used
without a need for retesting. To reduce potential radio interference to other users, the antenna type and its
gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that
permitted for successful communication. Using an antenna of a different type or gain more than 2.14 dBi will
require additional testing for FCC, CE and IC. Please, contact support@bluegiga.com for more information
Bluegiga Technologies Oy
Page 41 of 41
17 Contact information
Sales: sales@bluegiga.com
Technical support: support@bluegiga.com
http://techforum.bluegiga.com
Orders: orders@bluegiga.com
WWW: www.bluegiga.com
www.bluegiga.hk
Head Office / Finland:
Phone: +358-9-4355 060
Fax: +358-9-4355 0660
Sinikalliontie 5A
02630 ESPOO
FINLAND
Postal address / Finland:
P.O. BOX 120
02631 ESPOO
FINLAND
Sales Office / USA:
Phone: +1 770 291 2181
Fax: +1 770 291 2183
Bluegiga Technologies, Inc.
3235 Satellite Boulevard, Building 400, Suite 300
Duluth, GA, 30096, USA
Sales Office / Hong-Kong:
Phone: +852 3182 7321
Fax: +852 3972 5777
Bluegiga Technologies, Inc.
19/F Silver Fortune Plaza, 1 Wellington Street,
Central Hong Kong

Navigation menu