CalAmp Wireless Networks 2424096-001 T-96SR 900MHz Transceiver/Modem User Manual Cover
CalAmp Wireless Networks Corporation T-96SR 900MHz Transceiver/Modem Cover
Contents
- 1. Transceiver Manual
- 2. Modem Manual
Transceiver Manual
3492 Synthesized 900 MHz Transceiver Service Manual First Printing June 1997 Part No. 001-3492-001 6-97mwp -1 Printed in U.S.A. April 1997 Part No. 001-3492-001 3492 SYNTHESIZED 900 MHZ TRANSCEIVER SERVICE MANUAL Copyright 1997 by the Johnson Data Telemetry Corporation. The Johnson Data Telemetry Corporation designs and manufactures radios and radio modems to serve a wide variety of data communication needs. The Johnson Data Telemetry Corporation produces equipment for the fixed data market including SCADA systems for utilities, petrochemical, waste and fresh water management markets and RF boards for OEM applications in the Radio Frequency Data Capture market. In addition, the Johnson Data Telemetry Corporation provides wireless communication solutions to the mobile data market serving public safety, utilities and industrial users. DATA TELEMETRY PRODUCT WARRANTY The manufacturer's warranty statement for this product is available from your product supplier or from the Johnson Data Telemetry Corporation, 299 Johnson Avenue, PO Box 1733, Waseca, MN 56093-0833. Phone (507) 835-8819. WARNING This device complies with Part 15 of the FCC rules. Operation is subject to the condition that this device does not cause harmful interference. In addition, changes or modification to this equipment not expressly approved by the Johnson Data Telemetry Corporation could void the user's authority to operate this equipment (FCC rules, 47CFR Part 15.19). DO NOT allow the antenna to come close to or touch, the eyes, face, or any exposed body parts while the radio is transmitting. DO NOT operate the radio near electrical blasting caps or in an explosive atmosphere. DO NOT operate the radio unless all the radio frequency connectors are secure and any open connectors are properly terminated. DO NOT allow children to operate transmitter equipped radio equipment. SAFETY INFORMATION Proper operation of this radio will result in user exposure below the Occupational Safety and Health Act and Federal Communication Commission limits. The information in this document is subject to change without notice. ™ Johnson Data Telemetry is a trademark of the Johnson Data Telemetry Corporation. -3 April 1997 Part No. 001-3492-001 TABLE OF CONTENTS GENERAL INFORMATION 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 SCOPE OF MANUAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EQUIPMENT DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DL3492 WITH LOADER BOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DL3492 WITH MODEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DM3492 SYNTHESIZER PROGRAMMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TRANSCEIVER IDENTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ACCESSORIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PART NUMBER BREAKDOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FACTORY CUSTOMER SERVICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PRODUCT WARRANTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REPLACEMENT PARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FACTORY RETURNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INSTALLATION 2.1 2.2 PRE-INSTALLATION CHECKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 INTERFACING WITH DATA EQUIPMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 DM3492 (RF Board) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 PROGRAMMING 3.1 3.2 3.3 3.4 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 DM3492 SYNTHESIZER DATA PROTOCOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 SYNTHESIZER DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 D-WORD CALCULATION (24 BITS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 C-WORD CALCULATION (24 BITS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 B-WORD CALCULATION (24 BITS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 A0-WORD CALCULATION (24 BITS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 TX / RX FREQUENCY SHIFT AND BAND SELECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 RADIO DIAGNOSTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 RECEIVE TO TRANSMIT SEQUENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 TRANSMIT TO RECEIVE SEQUENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 CIRCUIT DESCRIPTION 4.1 GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 SYNTHESIZER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 RECEIVER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 TRANSMITTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 SYNTHESIZER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 VOLTAGE-CONTROLLED OSCILLATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 VCO AND REFERENCE OSCILLATOR MODULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 CASCADE AMPLIFIERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 AMPLIFIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 VOLTAGE FILTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 VCO FREQUENCY SHIFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 SYNTHESIZER INTEGRATED CIRCUIT (U800) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 LOCK DETECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 4.2 1-1 1-1 1-1 1-1 1-2 1-2 1-2 1-2 1-2 1-3 1-3 1-3 1-3 TABLE OF CONTENTS 4.3 4.4 4.5 RECEIVER CIRCUIT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 CERAMIC FILTER, RF AMPLIFIER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 MIXER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 FIRST LO AMPLIFIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 CRYSTAL FILTER, FIRST IF SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 SECOND LO/MIXER/DETECTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 TRANSMITTER CIRCUIT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 DRIVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 FINAL, COMPARATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 ANTENNA SWITCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 TRANSMIT KEY-UP CONTROL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 VOLTAGE REGULATORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 +9.6 AND +5.5V REGULATED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 SERVICING 5.1 GENERAL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 PERIODIC CHECKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 SURFACE-MOUNTED COMPONENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 SCHEMATIC DIAGRAMS AND COMPONENT LAYOUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 REPLACEMENT PARTS LIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 TCXO MODULE NOT SERVICEABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 SYNTHESIZER SERVICING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 REFERENCE OSCILLATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 SYNTHESIZER (U800) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 RECEIVER SERVICING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 SUPPLY VOLTAGES AND CURRENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 MIXER/DETECTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 SECOND LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 AUDIO BUFFER AMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 CRYSTAL FILTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 MIXER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 LOW NOISE AMPLIFIER (LNA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 ANTENNA SWITCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 TRANSMITTER SERVICING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 SUPPLY VOLTAGES AND CURRENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 FINAL AMPLIFIER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 ANTENNA SWITCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 MODULATION INPUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 TCXO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 5.2 5.3 5.4 TABLE OF CONTENTS ALIGNMENT PROCEDURE 6.1 6.2 6.3 6.4 6.5 6.7 GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TEST EQUIPMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INITIAL SETTINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCO CONTROL VOLTAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TRANSMITTER AND FREQUENCY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MODULATION ALIGNMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TRANSMITTER/FREQUENCY WITH LOADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MODULATION ADJUSTMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RECEIVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PARTS LIST SCHEMATICS AND COMPONENT LAYOUTS 6.6 6-1 6-1 6-1 6-1 6-1 6-2 6-2 6-3 6-3 SECTION 1 GENERAL INFORMATION 1.1 SCOPE OF MANUAL 1.2.2 DL3492 WITH LOADER BOARD This service manual contains alignment and service information for the JDT DM3492 900 MHz Synthesized Telemetry Unit. The DL3492 (Part No. 242-3492-5x0) includes the 8-channel Loader Board (Part No. 023-3240-001), which performs synthesizer loading through an RS-232 DB-9 interface. The Loader Board has circuitry which provides electronic control of the following: This manual concentrates on the RF section of the data link which may be paired with an internal Loader board or 9600 baud Modem board. Transmit/Receive data conditioning and gating Carrier Detect Power Control Preselector Tracking 1.2 EQUIPMENT DESCRIPTION Modulation Flatness 1.2.1 GENERAL Audio/Data Filtering The JDT DM3492 is a synthesized data transceiver (transmitter and receiver) which operates in the 928-960 MHz UHF frequency range. Transmitter power output is 1-5 watts, 5W at 13.3V nominal, and operation is simplex or half duplex. Sleep/Wake-up to minimize current consumption Diagnostics that include: Input Voltage Sense Input Current Sense Ambient Temperature Sense RSSI Indicator (RSSI Sense) Forward/Reverse Power Sense. Service manuals addressing items specific to the Loader board (001-3240-001) and the Modem board (001-3276-001) should be referenced for the users specific configuration. In addition to this 900 MHz radio, JDT has a full line of radios and radio modems to meet wireless data communication needs. Both OEM RF decks and complete FCC type approved radios and radio modems are available from 132-174 MHz at VHF, 380-512 MHz at UHF and 928-960 MHz at 900 MHz in both 5W and 2W units (VHF and UHF). High Specification units are available to meet International requirements and bandwidths to meet U.S.A. refarming requirements. To learn more about the other JDT products, call 1800-992-7774 or 1-612-890-8155 to speak to a sales representative. The gating circuits allow the type of data filtering to be selected (standard or wide band) and also preemphasis/de-emphasis to be enabled or disabled. This board is programmed using an IBM PC or compatible computer and the Johnson Data Telemetry programming software. Programming information is stored by an EEPROM on the Loader board. Refer to Section 3.3 for programming information. 1-1 June 1997 Part No. 001-3492-001 GENERAL INFORMATION NOTE: The synthesizer must be loaded each time power is turned on. Therefore, one loader board or customer supplied programming circuit is required for each data transceiver. 1.2.4 DM3492 SYNTHESIZER PROGRAMMING The DM3492, when used without the Universal Loader Board (Part No. 023-3240-001) requires customer supplied circuitry to load the synthesizer with channel information. The protocol that this circuitry must follow is described in Section 3. 1.2.3 DL3492 WITH MODEM The DL3492 (Part No. 242-3492-5x0) includes the 9600 baud Modem (Part No. 023-3276-001), which supports the RNET™ communication protocol, allowing data communication between the Johnson Data Telemetry high specification synthesized products and the Motorola RNET radio/ modems. 1.3 TRANSCEIVER IDENTIFICATION The transceiver identification number is printed on a label that is affixed to the PC board. The following information is contained in that number: The Modem features include: Model 3492 User Programmable Data Rates; 9600, 4800, 2400 and 1200 baud in a 25 kHz bandwidth. RS-232 compatible. Simplex or Half-Duplex operation. RTS-CTS handshaking protocol with option for configuring any two units as a digital repeater. Ninth Digit of PN Revision Letter Manufacture Date Plant Warranty Number 14 3 12345 Week No. of Year Year 1.4 ACCESSORIES Accessories available for the 3492 data transceiver are listed in Table 1-1. Supports asynchronous, serial or transparent data formats. Table 1-1 ACCESSORIES Front panel LEDs provide indication for Transmit, Receive and Power. Accessory Part No. 3276 Service Manual 3240 Service Manual Interface cable Built-In Diagnostics reported both locally and "Over-The-Air": Reports specific unit programming Loopback test feature RSSI Forward and Reflected Power Temperature Supply Voltage 001-3276-001 001-3240-001 023-3472-007 1.5 PART NUMBER BREAKDOWN The following is a breakdown of the part number used to identify this transceiver: 8-Channels programmable with option to switch channels remotely "Over-The-Air". 242-3492 - 5 X 0 This board is programmed using an IBM PC or compatible computer and the RSS programming software. The 3276 Modem Programming Kit (Part No. 023-3276-005) includes programming instructions contained in the RSS Manual. June 1997 Part No. 001-3492-001 1 = 12.5 kHz BW 3 = 25 kHz BW 5 = 928-960 MHz 1-2 GENERAL INFORMATION 1.6 FACTORY CUSTOMER SERVICE 1.7 PRODUCT WARRANTY The Customer Service Department of the Johnson Data Telemetry Corporation provides customer assistance on technical problems and the availability of local and factory repair facilities. Customer Service hours are 7:30 a.m. - 4:30 p.m. Central Time, Monday - Friday. There is also a 24-hour emergency technical support telephone number. From within the continental United States, the Customer Service Department can be reached at this toll-free number The warranty statement for this transceiver is available from your product supplier or from the Warranty Department, Johnson Data Telemetry Corporation, 299 Johnson Avenue, PO Box 1733, Waseca, MN 56093-0833. This information may also be requested by phone from the Warranty Department. The Warranty Department may also be contacted for Warranty Service Reports, claim forms, or any questions concerning warranties or warranty service by dialing (507) 835-6970. 1-800-992-7774 1.8 REPLACEMENT PARTS When your call is answered at the Johnson Data Telemetry Corporation, you will hear a brief message informing you of numbers that can be entered to reach various departments. This number may be entered during or after the message using a tone-type telephone. If you have a pulse-type telephone, wait until the message is finished and an operator will come on the line to assist you. When you enter a first number of "3", another number is requested to further categorize the type of information you need. You may also enter the 4-digit extension number of the person that you want to reach if you know what it is. FAX Machine - Sales FAX Machine - Cust Serv Replacement parts can be ordered directly from the Service Parts Department. To order parts by phone, dial the toll-free number and then enter "3" as described in Section 1.6. When ordering, please supply the part number and quantity of each part ordered. Johnson Data Telemetry dealers also need to give their account number. If there is uncertainty about the part number, include the designator (C112, for example) and the model number of the equipment the part is from (refer to Section 1.3). (507) 835-6485 (507) 835-6969 You may also send your order by mail or FAX. The mailing address is as follows and the FAX number is shown in Section 1.6. If you are calling from outside the continental United States, the Customer Service telephone numbers are as follows: Johnson Data Telemetry Corporation Service Parts Department 299 Johnson Avenue PO Box 1733 Waseca, MN 56093-0833 Customer Service Department - (507) 835-6911 Customer Service FAX Machine - (507) 835-6969 You may also contact the Customer Service Department by mail. Please include all information that may be helpful in solving your problem. The mailing address is as follows: 1.9 FACTORY RETURNS Repair service is normally available through local authorized Johnson Data Telemetry Land Mobile Radio Service Centers. If local service is not available, the equipment can be returned to the factory for repair. However, it is recommended that you contact the Field Service Department before returning equipment. A service representative may be able to suggest a solution to the problem so that return of the equipment would not be necessary. If using the toll-free number in the preceding section, enter "3". Johnson Data Telemetry Corporation Customer Service Department 299 Johnson Avenue P.O. Box 1733 Waseca, MN 56093-0833 1-3 June 1997 Part No. 001-3492-001 GENERAL INFORMATION Be sure to fill out a Factory Repair Request Form #271 for each unit to be repaired, whether it is in or out of warranty. These forms are available free of charge by calling the repair lab (see Section 1.6) or by requesting them when you send a unit in for repair. Clearly describe the difficulty experienced in the space provided and also note any prior physical damage to the equipment. Include a form in the shipping container with each unit. Your phone number and contact name are very important because there are times when the technicians have specific questions that need to be answered in order to completely identify and repair a problem. When returning equipment for repair, it is also a good idea to use a PO number or some other reference number on your paperwork in case you need to call the repair lab about your unit. These numbers are referenced on the repair order to make it easier and faster to locate your unit in the lab. Return Authorization (RA) numbers are not necessary unless you have been given one by the Field Service Department. They require RA numbers for exchange units or if they want to be aware of a specific problem. If you have been given an RA number, reference this number on the Factory Repair Request Form sent with the unit. The repair lab will then contact the Field Service Department when the unit arrives. June 1997 Part No. 001-3492-001 1-4 GENERAL INFORMATION 3492 UHF SYNTHESIZED TELEMETRY UNIT SPECIFICATIONS The following are general specifications intended for use in testing and servicing this transceiver. For current advertised specifications, refer to the specification sheet available from the Marketing Department. Specifications are subject to change without notice. GENERAL Frequency Range Frequency Control Channel Spacing Mode of Operation Operating Voltage Regulated Supply Voltages Transmit Enable Receive Current Transceiver Enable Power and Data Connector RF Input/Output Operating Temperature Storage Temperature Humidity Maximum Dimensions FCC Compliance DM3492 RECEIVER Bandwidth Frequency Stability Sensitivity - 12 dB SINAD RF Input Impedance Selectivity Spurious and Image Rejection Conducted Spurious Emissions Intermodulation FM Hum and Noise Receive Attack Time Total Receive On Time Audio Distortion Response Output Bias Buffered Impedance Buffered Audio Level RSSI 928-960 MHz Synthesized 12.5/25 kHz with 6.25 kHz Channel steps Simplex or Half Duplex +13.3V DC nominal (10-16V DC operational) +5V DC ±5% 3-16V DC at 400 µA max 70 mA maximum 3-16V DC at less than 400 µA 14-pin in-line socket (Dupont 76308-14) SMA Jack (female) -30°C to +60°C (-22°F to +140°F) -40°C to +85°C (-40°F to +185°F) 95% maximum RH at 40°C, non-condensing 4.585" L, 3.25" W, 2.2" H Parts 90, 94, 15 Customer must apply 32 MHz ±1.5 PPM from -30°C to +60°C (-22°F to +140°F) ≤ 0.35 µ V, -116 dBm psophometrically weighted 50 ohms 65 dB 25 kHz, 60 dB 12.5 kHz 70 dB < -57 dBm 70 dB -40 dB, 25 kHz channels, -35 dB, 12.5 kHz channels < 5 ms 7 ms maximum < 3% psophometrically weighted ±1/-3 dB 0 to 2.5 kHz for 12.5 kHz Channel, 0 to 5 kHz for 25 kHz Channel 2.5V DC ±0.5V DC >10k ohms 150 mV ±50 mV 0.7V to 2.0V DC output from -120 to -60 dBm 1-5 June 1997 Part No. 001-3492-001 GENERAL INFORMATION TRANSMITTER Frequency Stability Bandwidth Maximum System Deviation Frequency Spread Modulation Wideband Data Input Bias Narrow Band Input Input Impedance Audio Distortion Audio Response Flatness RF Power Output Deviation Symmetry RF Output Impedance Duty Cycle Transmitter Adjacent Power Intermodulation Attenuation Spurious and Harmonic FM FM Hum and Noise June 1997 Part No. 001-3492-001 ±1.5 PPM from -30°C to +60°C (-22°F to +140°F) 32 MHz 5 kHz (25 kHz Channel), 2.5 kHz (12.5 kHz Channel) 32 MHz FM/DC coupled 2.5V DC ±1% AC coupled >50k ohms < 3% at 3 kHz deviation, 1 kHz tone (with user interface board narrow band data port ±2 dB, DC to 5 kHz dev with a 1 kHz tone Programmable to ± dB using DAC ±1 dB across 32 MHz bandwidth 1-5W ±20% adjustable (5W at 13.3V DC nominal) 5% 50 ohms 50% (30 sec. max transmit) -70 dB -40 dB -20 dBm max. -40 dB 25 kHz, -35 dB 12.5 kHz 1-6 SECTION 2 INSTALLATION 2.1 PRE-INSTALLATION CHECKS ±3 dB that produces ±5 kHz deviation with a 1 kHz tone. When this input is used, a temperature compensated 2.5V DC bias is required as variations in voltage cause the frequency to change. The transceiver regulatory compliance must be applied for with the customer supplied modulation limiting/filter circuit and chassis. Field alignment should not be required before the 3492 is installed. However, it is still good practice to check the performance to ensure that no damage occurred during shipment. Performance tests are located in Section 6.2. Pin 7 (Synth Lock) - Output from synthesizer lock detect circuit. Low (< 1V DC) = unlocked, high (>2.5V DC) = locked. 2.2 INTERFACING WITH DATA EQUIPMENT 2.2.1 DM3492 (RF Board) Pin 8 (Synth En) - TTL input. Latch enable signal for synthesizer. 250 ns min. for D, C and B words; 3 ms min. for A0 word. A rising edge latches the data loaded into the synthesizer IC.. Connector J201 on the data transceiver PC board provides the interface with the data equipment. This is a 14-pin female connector with .025" square pins on 0.1" centers (Dupont 76308-114). The cable (Part No. 023-3472-007) is not included with the data transceiver. An interface cable diagram and pin designations are shown in Figure 2-1. Pin 9 (Data) - TTL input. Serial data line used for programming the synthesizer and diagnostic functions. Pin 10 (Synth Clock) - TTL input. Clock signal for serial data input on Pin 9. Data is valid on the rising edge. 1 MHz max. frequency. The following is a general description of the input and output signals on Transceiver Interface connector J201. Pin 11 (Diag En) - TTL input. Loads programmed DAC values into DAC (U900) for modulation adjust and power set. Also provides the strobe signal for shift register (u901) for selecting Forward and Reverse power diagnostics. 250 ns min. activates on rising edge. Pin 1 (Ground) - Chassis ground. Pin 2 (+13.3V DC) - Input, transceiver main power. Input range 10-16V DC with ±3 dB variation in output power. Pin 12 (RSSI) - Analog output (0.5-2V DC). The Receive Signal Strength Indicator output provides a voltage that increases in proportion to the strength of the RF input signal. Pin 3 (Tx En) - Input +3-16V DC. Enables transmit circuitry. ≤ 0.3V DC in Rx mode. Pin 4 (Rx En) - Input +3-16V DC. Enables receive circuitry. ≤ 0.3 V DC in Tx mode. Pin 5 (RF En) - Input +3-16V DC. Shuts down onboard regulators. To be used as a power save mode. Pin 13 (Demod) - Analog output. The Receiver Demod output level is 150 mV RMS with a modulation signal of 1 kHz at 60% of maximum deviation. The output is DC coupled and referenced to +2.5V DC. Load impedance should be >10k ohms. Pin 6 (Mod In) - Provides a response of ±2 dB from DC to 5 kHz across the RF band (referenced to 1 kHz). It is programmable to 1 dB with the diagnostic DAC. The modulation capability is 250 mV RMS Pin 14 (Diag) - Analog Output. This pin is enabled by pin 11. When the Loader board is used it has the capability to test the operating environment through diagnostics. The diagnostic capabilities are in Section 1.2.2 2-1 June 1997 Part No. 001-3492-001 INSTALLATION 10 11 13 12 GROUND 14 +13.3V DC TX EN RX EN RF EN MOD IN SYNTH LOCK SYNTH EN DATA SYNTH CLOCK (1.3 MHz) DIAG EN RSSI DEMOD DIAG PART NO. 023-3472-007 Figure 2-1 DM3492 INTERFACE CABLE June 1997 Part No. 001-3492-001 2-2 SECTION 3 PROGRAMMING A diagram of the 32 Bit Synthesizer Serial Data Stream with definitions of the bits is shown in Figure 3-1. 3.1 INTRODUCTION DM3492 - The information in Section 3.2 describes synthesizer programming protocol. This information can be used as a basis for designing the synthesizer programming hardware and software required. Clock Synth Enable D00-D23 1 MHz (max) 250 ns (min) (for D, C and B words approximately 3 ms for A0 word) D, C, B and A0 words 3.2.2 SYNTHESIZER DATA 3.2 DM3492 SYNTHESIZER DATA PROTOCOL In order to implement the band selection and Tx/Rx frequency shift mentioned in Section 3.2.1, an additional shift register was added to the synthesizer section. Therefore, an additional 8 Bits of data are added to each of the synthesizer load words (D/C/B/ A0) as shown in the serial data stream in Figure 3-1. 3.2.1 GENERAL The 928-960 MHz band is divided into two segments for the purpose of reducing VCO gain. The "LOW" band covers the 928-944 MHz segment and the "HIGH" band covers the 944-960 MHz segment. The VCO band selection is accomplished by capacitive pin-switching. The band switching is implemented in both the transmit and receive modes. The front-end filters and transmitter line-up cover the entire 928-960 MHz band without adjustment. 3.2.3 D-WORD CALCULATION (24 BITS) The D-Word programs the Main, Reference and Auxiliary dividers, and sets the modulus (refer to Figures 3-2 and 3-6). Receive Bandwidth 928-960 MHz Transmit Bandwidth 928-960 MHz First IF 87.850 MHz Second IF 450.0 kHz First LO Injection 840.150-872.150 MHz* Second LO Injection 87.40 MHz* TCXO Frequency 17.50 MHz Resolution 6.25 kHz Loop Comparison Freq. 50 kHz NR = 350 * Low Side Injection D Word = 0xA1 0x5E 0x26 D23 D22 D21 D20 Ftcxo/50 kHz=350 where Ftcxo=17.5 MHz SM = 00 Reference select for main phase detector EM = 1 Main divider enable flag SA = 00 Reference select for aux phase detector EA = 1 Auxiliary divider enable flag FMOD = 1 Selects modulus 8 LONG = 0 Send all 4 words with A0 D1 D0 XX XX XX XX Low+ Low- Tx+ Tx- Data MSB (31) LSB (00) Clock Synth En Figure 3-1 32-BIT SYNTHESIZER SERIAL DATA STREAM 3-1 June 1997 Part No. 001-3492-001 PROGRAMMING 3.2.4 C-WORD CALCULATION (24 BITS) 3.2.6 A0-WORD CALCULATION (24 BITS) The C-Word enables the auxiliary prescaler, and sets the auxiliary divide ratio for the secondary (Second LO) loop (refer to Figures 3-4 and 3-7). The A0-Word is sent last (see Figure 3-5). The A0-Word contains the data for the loop dividers and is programmed on a channel-by-channel basis. The Functional-N (NF) word is a 3 bit word that programs the synthesizer to the fractional steps determined by the fractional modulus selection flag (1 = modulus 8) and the loop comparison frequency (50 kHz). The frequency resolution (i.e. step size) is then 50 kHz ÷ 8 = 6.25 kHz. PA = 0 Sets aux prescaler mode to ÷ 4 NA = 437 (0x1B5) Auxiliary divide ratio 87.4 MHz ÷ (4 x 437) = 50 kHz C-Word = 0x91 0xB5 0x00 3.2.5 B-WORD CALCULATION (24 BITS) NF=* Fractional increment for modulus 8 (3 bits) NM1=* Number of main divider cycles when prescaler modulus equals 64 (12 bits) NM2=* Number of main divider cycles when prescaler modulus equals 65 (4 bits, PR=10) NM3=* Number of main divider cycles when prescaler modulus equals 72 (4 bits, PR=10) The B-Word programs the Fractional-N charge pump current setting factor. The Binary acceleration factors (CL/CK) and prescaler type (modulus 3). The value of CN should be interpolated for frequencies between the band edges. With these recommended values of CN, the transceiver should have the fractional spurs minimized far below the levels needed to make 70 dB adjacent channel Rx or Tx specifications. * Indicates frequency/channel dependant variable. EXAMPLE: To program an 18.75 kHz channel: NF = 18.75 kHz ÷ 6.25 kHz NF = 3 The Charge Pump Current setting (CN) could be changed on a channel-by-channel basis for ultimate rejection of the Fraction N spurious responses close into the carrier frequency. the 3492 synthesizer has an adjust (R823) for the fractional compensation current. The factory preset value will allow CN to be set to the following ranges: NM1, NM2 and NM3 are calculated as follows: N = (NM1 + 2) x 64 + NM2 x 65 + (NM3 +1) x 72 Where: N= Total division ratio NM1 = Number of main divider cycles when prescaler modulus equals 64 NM2 = Number of main divider cycles when prescaler modulus equals 65 NM3 = Number of main divider cycles when prescaler modulus equals 72 (Refer to Figures 3-3 and 3-7) Frequency in a Band Lowest Tx Highest Tx Lowest Rx Highest Rx CN 110 115 100 105 Example: CN = * (Channel/Frequency dependent variable) (110-115 Tx) (100-105 Rx) CK = 0000 Binary acceleration factor for integral charge pump CL = 00 Binary acceleration factor for proportional charge pump PR = 10 Selects modulus 3 prescaler Calculate NM1, NM2 and NM3 to Rx 944.150 MHz Rx LO = 944.15 - 87.85 = 856.3 MHz (Synth Freq) (87.85 MHz IF with Low Side Injection) N = Rx LO ÷ FCM = 856.3 ÷ 0.05 = 17126 (FCM = Loop Reference Frequency) B-Word = 0x80 (8 bit CN) 0x02 June 1997 Part No. 001-3492-001 3-2 PROGRAMMING NM3 = (INT(64 x FRAC [N ÷ 64]) ÷ 8) - 1 = (INT(64 x 0.59375) ÷ 8) - 1 = (INT(38 ÷ 8)) - 1 =4-1 =3 3.2.7 TX / RX FREQUENCY SHIFT AND BAND SELECTION As mentioned in 3.2.2, in order to implement the band selection and Rx/Rx an additional 8 bits of data are added to each of the synthesizer load words (D/C/ B/AO) (see Figure 3-1). The frequency bands and Transmit/Receive Bits are defined as follows: NM2 = 8 x FRAC [N ÷ 8] = 8 x 0.75 =6 Low Band High Band NM1 = INTEGER [N ÷ 64] - NM2 - NM3 - 3 = 267 - 6 - 3 - 3 = 255 xx Low+ LowTx+ Tx- 928-944 MHz >944 MHz to 960 MHz Don’t care Low Band Select (1=lowband, 0=highband) Low Band Select (0=lowband, 1=highband) Transmit Select (1=Tx mode, 0=Rx mode) Transmit Select (0=Tx mode, 1=Rx mode) BITS 1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0/1 ADDRESS NR (REFERENCE DIVIDE) = 350 FOR 50 kHz REFERENCE SM (ALWAYS 00) EM (ALWAYS 1) SA (ALWAYS 00) EA (ALWAYS 1) FMOD (1 = MODULUS 8) LONG (0=24 BIT WORD) Figure 3-2 D-WORD 3-3 June 1997 Part No. 001-3492-001 PROGRAMMING BITS 1 ADDRESS 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 NA (AUXILIARY DIVIDE RATIO) = 437 FOR 50 kHz REFERENCE (ALWAYS 0) PA (ALWAYS 0) Figure 3-3 C-WORD BITS 1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 ADDRESS NOT USED (ALWAYS 0000) CL CK BINARY ACCELERATION CN (CHARGE PUMP CURRENT SETTING) (CHANNEL DEPENDENT) FACTOR (ALWAYS 000000) PR (PRESCALER TYPE) (10=MODULUS 3) Figure 3-4 B-WORD BITS 1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 ADDRESS NF NM1 (NUMBER OF MAIN DIVIDER CYCLES WHEN PRESCALER MODULUS = 64) NM2 (NUMBER OF MAIN DIVIDER CYCLES WHEN PRESCALER MODULUS = 65) Figure 3-5 A0-WORD June 1997 Part No. 001-3492-001 3-4 PROGRAMMING A0 24 NF NM1 NM3 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 CN CK NA CL PA NR NM2 PR SM EM SA EA 0 0 T1 T0 PR="10" F L M O O N D G 24 ADDRESS BITS TEST BITS NOTE: E-Word not used in Synthesizer load. Figure 3-6 SERIAL INPUT WORD FORMAT XX XX XX XX XX A1 A0 Rng D7 D6 D5 D4 D3 D2 D1 D0 XX XX XX XX XX XX XX a0 Data MSB (23) LSB (00) Clock Diag En Figure 3-7 DIAGNOSTIC SERIAL DATA STREAM 3-5 June 1997 Part No. 001-3492-001 PROGRAMMING 3.2.8 RADIO DIAGNOSTICS 3. The SYNTH ENABLE line should be held HIGH for 2 to 3 milliseconds after the last word is sent. This puts the frequency synthesizer in a SPEEDUP MODE and slightly improves lock times then the Synth Enable should be returned to a low state. The diagnostic features allow the user to program a Digital-To-Analog Converter (DAC) to adjust RF output power and modulation flatness without removing the radio from the enclosure. Bit "a0" can be set to provide an analog voltage representative of the forward and reverse RF power at the radio interface connector J201, pin 14. This feature can be used to monitor the condition of the transceiver and antenna/ feedline. Figure 3-7 is a diagram of the Diagnostic Serial Data Stream with definitions of the bits. It is 19 bits long, the front (MSBs) can be padded with "Don’t Cares" (XXs) to get to 24 bits. 4. After the last word is strobed in, 7 milliseconds (worst case) should elapse before TX_EN is turned ON. This allows the synthesizer to come within 1 kHz of the desired frequency. RX_EN DATA D0 D24 "D" WORD Clock Diag Enable XX D0 "C" WORD D24 "B" WORD D0 D24 "A" WORD CLOCK 1 MHz (max) 250 ns (min) Don’t Care SYNTH_EN 9V TX DAC Bits SPEEDUP RAMP-UP LOCK A1-A0 = DAC Output Select 00=Power Set Data=0x00 to 0xFF, RNG=1 01=Mod Adj Data=0x00 to 0xFF, RNG=1 11=DAC Control Select Data=0x00 to 0xFF, RNG=1 TX_EN t=0 Figure 3-8 RX TO TX TIMING DIAGRAM RNG = Range Select (max output) (Ref=5.5V÷2) 0 = 1 x Ref 1 = 2 x Ref "Ramp-Up" is the amount of time required for the transmitter to reach full power once the TX EN has been applied. The Ramp-Up circuitry (located on the transceiver) minimizes adjacent channel interference caused by spectral spreading (sinx/x) when the transmitter is keyed. The Ramp-Up time is approximately 3 ms. D7-D0 = D/A Data 0x00 = 0.0V 0xFF = 1 x Ref (RNG=0) 0xFF = 2 x Ref (RNG=1) Shift Register Bits: a0 = Diagnostic Select to J201, pin 14 (Analog Voltage) 0 = Forward Power 1 = Reverse Power 3.4 TRANSMIT TO RECEIVE SEQUENCE 3.3 RECEIVE TO TRANSMIT SEQUENCE 2. The synthesizer load process could begin slightly before, but when the last bit is strobed in the synthesizer it will become unlocked. 1. TX_EN is turned OFF. This signal is shaped. Refer to Figure 3-9. 1. Synthesizer is loaded (D, C, B and A0 words). Refer to Figure 3-8. 3. The RX_EN line should switch from low to high AFTER the TX_EN is switched. The RX_EN not only turns the RX circuits on but also Pin Shifts the VCO. 2. The state of the RX_EN line does not have to be changed until the last bit is sent. However, Recieve will cease as soon as it is changed. June 1997 Part No. 001-3492-001 3-6 PROGRAMMING 4. For quickest lock times the SYNTH ENABLE line on the last load word should be held high for 2 to 3 milliseconds. It MUST NOT be left high as the synthesizer in the SPEEDUP mode has poor noise performance and would degrade the Receive performance. RX_EN DATA D0 D24 "D" WORD D0 "C" WORD D24 "B" WORD D0 D24 "A" WORD CLOCK SYNTH_EN 9V TX t=0 RAMP-DOWN SPEEDUP TX_EN Figure 3-9 TX TO RX TIMING DIAGRAM Speedup is 2 to 3 ms Lock is approximately 7 ms Ramp is approximately 3 ms Dekey is approximately 3 ms "Ramp-Down" is the amount of time required for the transmitter output power to be reduced before switching off the transmitter and enabling the receiver with the RX EN. The Ramp-Down circuitry (located on the transceiver) minimizes adjacent channel interference caused by spectral spreading (sinx/x) when the transmitter un un-keyed. The Ramp-Down time is approximately 3 ms. 3-7 June 1997 Part No. 001-3492-001 PROGRAMMING This page intentionally left blank. June 1997 Part No. 001-3492-001 3-8 SECTION 3 PROGRAMMING A diagram of the 32 Bit Synthesizer Serial Data Stream with definitions of the bits is shown in Figure 3-1. 3.1 INTRODUCTION DM3492 - The information in Section 3.2 describes synthesizer programming protocol. This information can be used as a basis for designing the synthesizer programming hardware and software required. Clock Synth Enable D00-D23 1 MHz (max) 250 ns (min) (for D, C and B words approximately 3 ms for A0 word) D, C, B and A0 words 3.2.2 SYNTHESIZER DATA 3.2 DM3492 SYNTHESIZER DATA PROTOCOL In order to implement the band selection and Tx/Rx frequency shift mentioned in Section 3.2.1, an additional shift register was added to the synthesizer section. Therefore, an additional 8 Bits of data are added to each of the synthesizer load words (D/C/B/ A0) as shown in the serial data stream in Figure 3-1. 3.2.1 GENERAL The 928-960 MHz band is divided into two segments for the purpose of reducing VCO gain. The "LOW" band covers the 928-944 MHz segment and the "HIGH" band covers the 944-960 MHz segment. The VCO band selection is accomplished by capacitive pin-switching. The band switching is implemented in both the transmit and receive modes. The front-end filters and transmitter line-up cover the entire 928-960 MHz band without adjustment. 3.2.3 D-WORD CALCULATION (24 BITS) The D-Word programs the Main, Reference and Auxiliary dividers, and sets the modulus (refer to Figures 3-2 and 3-6). Receive Bandwidth 928-960 MHz Transmit Bandwidth 928-960 MHz First IF 87.850 MHz Second IF 450.0 kHz First LO Injection 840.150-872.150 MHz* Second LO Injection 87.40 MHz* TCXO Frequency 17.50 MHz Resolution 6.25 kHz Loop Comparison Freq. 50 kHz NR = 350 * Low Side Injection D Word = 0xA1 0x5E 0x26 D23 D22 D21 D20 Ftcxo/50 kHz=350 where Ftcxo=17.5 MHz SM = 00 Reference select for main phase detector EM = 1 Main divider enable flag SA = 00 Reference select for aux phase detector EA = 1 Auxiliary divider enable flag FMOD = 1 Selects modulus 8 LONG = 0 Send all 4 words with A0 D1 D0 XX XX XX XX Low+ Low- Tx+ Tx- Data MSB (31) LSB (00) Clock Synth En Figure 3-1 32-BIT SYNTHESIZER SERIAL DATA STREAM 3-1 June 1997 Part No. 001-3492-001 PROGRAMMING 3.2.4 C-WORD CALCULATION (24 BITS) 3.2.6 A0-WORD CALCULATION (24 BITS) The C-Word enables the auxiliary prescaler, and sets the auxiliary divide ratio for the secondary (Second LO) loop (refer to Figures 3-4 and 3-7). The A0-Word is sent last (see Figure 3-5). The A0-Word contains the data for the loop dividers and is programmed on a channel-by-channel basis. The Functional-N (NF) word is a 3 bit word that programs the synthesizer to the fractional steps determined by the fractional modulus selection flag (1 = modulus 8) and the loop comparison frequency (50 kHz). The frequency resolution (i.e. step size) is then 50 kHz ÷ 8 = 6.25 kHz. PA = 0 Sets aux prescaler mode to ÷ 4 NA = 437 (0x1B5) Auxiliary divide ratio 87.4 MHz ÷ (4 x 437) = 50 kHz C-Word = 0x91 0xB5 0x00 3.2.5 B-WORD CALCULATION (24 BITS) NF=* Fractional increment for modulus 8 (3 bits) NM1=* Number of main divider cycles when prescaler modulus equals 64 (12 bits) NM2=* Number of main divider cycles when prescaler modulus equals 65 (4 bits, PR=10) NM3=* Number of main divider cycles when prescaler modulus equals 72 (4 bits, PR=10) The B-Word programs the Fractional-N charge pump current setting factor. The Binary acceleration factors (CL/CK) and prescaler type (modulus 3). The value of CN should be interpolated for frequencies between the band edges. With these recommended values of CN, the transceiver should have the fractional spurs minimized far below the levels needed to make 70 dB adjacent channel Rx or Tx specifications. * Indicates frequency/channel dependant variable. EXAMPLE: To program an 18.75 kHz channel: NF = 18.75 kHz ÷ 6.25 kHz NF = 3 The Charge Pump Current setting (CN) could be changed on a channel-by-channel basis for ultimate rejection of the Fraction N spurious responses close into the carrier frequency. the 3492 synthesizer has an adjust (R823) for the fractional compensation current. The factory preset value will allow CN to be set to the following ranges: NM1, NM2 and NM3 are calculated as follows: N = (NM1 + 2) x 64 + NM2 x 65 + (NM3 +1) x 72 Where: N= Total division ratio NM1 = Number of main divider cycles when prescaler modulus equals 64 NM2 = Number of main divider cycles when prescaler modulus equals 65 NM3 = Number of main divider cycles when prescaler modulus equals 72 (Refer to Figures 3-3 and 3-7) Frequency in a Band Lowest Tx Highest Tx Lowest Rx Highest Rx CN 110 115 100 105 Example: CN = * (Channel/Frequency dependent variable) (110-115 Tx) (100-105 Rx) CK = 0000 Binary acceleration factor for integral charge pump CL = 00 Binary acceleration factor for proportional charge pump PR = 10 Selects modulus 3 prescaler Calculate NM1, NM2 and NM3 to Rx 944.150 MHz Rx LO = 944.15 - 87.85 = 856.3 MHz (Synth Freq) (87.85 MHz IF with Low Side Injection) N = Rx LO ÷ FCM = 856.3 ÷ 0.05 = 17126 (FCM = Loop Reference Frequency) B-Word = 0x80 (8 bit CN) 0x02 June 1997 Part No. 001-3492-001 3-2 PROGRAMMING NM3 = (INT(64 x FRAC [N ÷ 64]) ÷ 8) - 1 = (INT(64 x 0.59375) ÷ 8) - 1 = (INT(38 ÷ 8)) - 1 =4-1 =3 3.2.7 TX / RX FREQUENCY SHIFT AND BAND SELECTION As mentioned in 3.2.2, in order to implement the band selection and Rx/Rx an additional 8 bits of data are added to each of the synthesizer load words (D/C/ B/AO) (see Figure 3-1). The frequency bands and Transmit/Receive Bits are defined as follows: NM2 = 8 x FRAC [N ÷ 8] = 8 x 0.75 =6 Low Band High Band NM1 = INTEGER [N ÷ 64] - NM2 - NM3 - 3 = 267 - 6 - 3 - 3 = 255 xx Low+ LowTx+ Tx- 928-944 MHz >944 MHz to 960 MHz Don’t care Low Band Select (1=lowband, 0=highband) Low Band Select (0=lowband, 1=highband) Transmit Select (1=Tx mode, 0=Rx mode) Transmit Select (0=Tx mode, 1=Rx mode) BITS 1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0/1 ADDRESS NR (REFERENCE DIVIDE) = 350 FOR 50 kHz REFERENCE SM (ALWAYS 00) EM (ALWAYS 1) SA (ALWAYS 00) EA (ALWAYS 1) FMOD (1 = MODULUS 8) LONG (0=24 BIT WORD) Figure 3-2 D-WORD 3-3 June 1997 Part No. 001-3492-001 PROGRAMMING BITS 1 ADDRESS 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 NA (AUXILIARY DIVIDE RATIO) = 437 FOR 50 kHz REFERENCE (ALWAYS 0) PA (ALWAYS 0) Figure 3-3 C-WORD BITS 1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 ADDRESS NOT USED (ALWAYS 0000) CL CK BINARY ACCELERATION CN (CHARGE PUMP CURRENT SETTING) (CHANNEL DEPENDENT) FACTOR (ALWAYS 000000) PR (PRESCALER TYPE) (10=MODULUS 3) Figure 3-4 B-WORD BITS 1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 ADDRESS NF NM1 (NUMBER OF MAIN DIVIDER CYCLES WHEN PRESCALER MODULUS = 64) NM2 (NUMBER OF MAIN DIVIDER CYCLES WHEN PRESCALER MODULUS = 65) Figure 3-5 A0-WORD June 1997 Part No. 001-3492-001 3-4 PROGRAMMING A0 24 NF NM1 NM3 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 CN CK NA CL PA NR NM2 PR SM EM SA EA 0 0 T1 T0 PR="10" F L M O O N D G 24 ADDRESS BITS TEST BITS NOTE: E-Word not used in Synthesizer load. Figure 3-6 SERIAL INPUT WORD FORMAT XX XX XX XX XX A1 A0 Rng D7 D6 D5 D4 D3 D2 D1 D0 XX XX XX XX XX XX XX a0 Data MSB (23) LSB (00) Clock Diag En Figure 3-7 DIAGNOSTIC SERIAL DATA STREAM 3-5 June 1997 Part No. 001-3492-001 PROGRAMMING 3.2.8 RADIO DIAGNOSTICS 3. The SYNTH ENABLE line should be held HIGH for 2 to 3 milliseconds after the last word is sent. This puts the frequency synthesizer in a SPEEDUP MODE and slightly improves lock times then the Synth Enable should be returned to a low state. The diagnostic features allow the user to program a Digital-To-Analog Converter (DAC) to adjust RF output power and modulation flatness without removing the radio from the enclosure. Bit "a0" can be set to provide an analog voltage representative of the forward and reverse RF power at the radio interface connector J201, pin 14. This feature can be used to monitor the condition of the transceiver and antenna/ feedline. Figure 3-7 is a diagram of the Diagnostic Serial Data Stream with definitions of the bits. It is 19 bits long, the front (MSBs) can be padded with "Don’t Cares" (XXs) to get to 24 bits. 4. After the last word is strobed in, 7 milliseconds (worst case) should elapse before TX_EN is turned ON. This allows the synthesizer to come within 1 kHz of the desired frequency. RX_EN DATA D0 D24 "D" WORD Clock Diag Enable XX D0 "C" WORD D24 "B" WORD D0 D24 "A" WORD CLOCK 1 MHz (max) 250 ns (min) Don’t Care SYNTH_EN 9V TX DAC Bits SPEEDUP RAMP-UP LOCK A1-A0 = DAC Output Select 00=Power Set Data=0x00 to 0xFF, RNG=1 01=Mod Adj Data=0x00 to 0xFF, RNG=1 11=DAC Control Select Data=0x00 to 0xFF, RNG=1 TX_EN t=0 Figure 3-8 RX TO TX TIMING DIAGRAM RNG = Range Select (max output) (Ref=5.5V÷2) 0 = 1 x Ref 1 = 2 x Ref "Ramp-Up" is the amount of time required for the transmitter to reach full power once the TX EN has been applied. The Ramp-Up circuitry (located on the transceiver) minimizes adjacent channel interference caused by spectral spreading (sinx/x) when the transmitter is keyed. The Ramp-Up time is approximately 3 ms. D7-D0 = D/A Data 0x00 = 0.0V 0xFF = 1 x Ref (RNG=0) 0xFF = 2 x Ref (RNG=1) Shift Register Bits: a0 = Diagnostic Select to J201, pin 14 (Analog Voltage) 0 = Forward Power 1 = Reverse Power 3.4 TRANSMIT TO RECEIVE SEQUENCE 3.3 RECEIVE TO TRANSMIT SEQUENCE 2. The synthesizer load process could begin slightly before, but when the last bit is strobed in the synthesizer it will become unlocked. 1. TX_EN is turned OFF. This signal is shaped. Refer to Figure 3-9. 1. Synthesizer is loaded (D, C, B and A0 words). Refer to Figure 3-8. 3. The RX_EN line should switch from low to high AFTER the TX_EN is switched. The RX_EN not only turns the RX circuits on but also Pin Shifts the VCO. 2. The state of the RX_EN line does not have to be changed until the last bit is sent. However, Recieve will cease as soon as it is changed. June 1997 Part No. 001-3492-001 3-6 PROGRAMMING 4. For quickest lock times the SYNTH ENABLE line on the last load word should be held high for 2 to 3 milliseconds. It MUST NOT be left high as the synthesizer in the SPEEDUP mode has poor noise performance and would degrade the Receive performance. RX_EN DATA D0 D24 "D" WORD D0 "C" WORD D24 "B" WORD D0 D24 "A" WORD CLOCK SYNTH_EN 9V TX t=0 RAMP-DOWN SPEEDUP TX_EN Figure 3-9 TX TO RX TIMING DIAGRAM Speedup is 2 to 3 ms Lock is approximately 7 ms Ramp is approximately 3 ms Dekey is approximately 3 ms "Ramp-Down" is the amount of time required for the transmitter output power to be reduced before switching off the transmitter and enabling the receiver with the RX EN. The Ramp-Down circuitry (located on the transceiver) minimizes adjacent channel interference caused by spectral spreading (sinx/x) when the transmitter un un-keyed. The Ramp-Down time is approximately 3 ms. 3-7 June 1997 Part No. 001-3492-001 PROGRAMMING This page intentionally left blank. June 1997 Part No. 001-3492-001 3-8 SECTION 4 CIRCUIT DESCRIPTION 4.1 GENERAL 4.1.3 RECEIVER 4.1.1 INTRODUCTION The receiver is a double-conversion type with intermediate frequencies of 87.85 MHz / 450 kHz. Bandpass filters reject the image, half IF, injection, and other unwanted frequencies. A four-pole crystal filter enhances receiver selectivity. The main subassemblies of this transceiver are the RF board, VCO board, TCXO, Loader board or Modem. A block diagram of the transceiver is located in Figure 4-1. The 3492 is also available in Transmit only and Receive only models. 4.1.4 TRANSMITTER The 3492 has a reference oscillator stability of ±1.5 PPM. The 17.5 MHz TCXO (Temperature Compensated Crystal Oscillator) is soldered directly to the RF board. The TCXO is not serviceable. The transmitter produces a nominal RF power output of 5W at 13.3V DC, adjustable down to 1W. Frequency modulation of the transmit signal occurs in the synthesizer. Transmit audio processing circuitry is contained in the Loader board, modem or customersupplied equipment. 4.1.2 SYNTHESIZER The VCO (voltage-controlled oscillator) output signal is the receiver first injection frequency in the Receive mode and the transmit frequency in the Transmit mode. The first injection frequency is 87.85 MHz below the receive frequency. The frequency of this oscillator is controlled by a DC voltage produced by the phase detector in synthesizer chip U800. 4.2 SYNTHESIZER Programming of the synthesizer provides the data necessary for the internal prescaler and counters. One input signal is the reference frequency. This frequency is produced by the 17.5 MHz reference oscillator (TCXO). The other input signal is the VCO frequency. Channels are selected by programming counters in U800 to divide by a certain number. This programming is performed over a serial bus formed by the Synth Clock, Synth Enable, and Data pins of J201. This programming is performed by the Loader board, modem or user supplied hardware and software (see Section 3). A block diagram of the synthesizer is shown in Figure 4-1 and a block diagram of Synthesizer IC U800 is shown in Figure 4-2. As stated previously, the synthesizer output signal is produced by a VCO (voltage controlled oscillator). The VCO frequency is controlled by a DC voltage produced by the phase detector in U800. The phase detector senses the phase and frequency of the two input signals and causes the VCO control voltage to increase or decrease if they are not the same. The VCO is then "locked" on frequency. The frequency stability of the synthesizer in both the receive and transmit modes is established by the stability of the TCXO. The TCXO is stable over a temperature range of -30° to +60° C (-22° to +140° F). 4-1 June 1997 Part No. 001-3492-001 CIRCUIT DESCRIPTION RF BPF RF AMP RF BPF Z200 Q200/Q201 Z201 87.85 MHz MIXER Q211 CRYSTAL FILTER IF / 450 kHz FILTER Z220/Z221 U230 1st LO AMP 840.15-872.15 MHZ RECEIVER 2nd LO AMP Q260/Q261 Q240 CLOCK PWR SET U902A U900 DIAG EN U520B TRANSMITTER U901 V FWD Q520/U130C U902A V REV Q911 U520A ANTENNA SWITCH DRIVER Q500 LOW-PASS FILTER U510 CR540/CR541 DIAG DIAG DATA DATA TX EN DIAG EN TX EN Q133/Q134 DIAG EN U130A/B/D Q135 +9V TX CLOCK CNTRL SEC LO RX OUT RX OUT RX AUDIO RSSI RSSI RSSI MOD ADJ Q110/U110 U111 RF EN +5.5V +9.6V RX EN TCXO TX IN Q130 Q131 Q132 Y800 +13.3V SWITCHED VCO RF OUT Q845 BUFFER/ AMPLIFIER Q823 +9V U840 Q843 Q844 Q840 LOWBAND + LOWBAND CTRL U800 CLOCK Q842 T/R PS - SYNTH DATA Q841 T/R PS + MOD INPUT SYNTH EN R818 MOD ADJUST LOCK DET TEST +13.3V +13.3V Q800 RF IN SYNTHESIZER SYNTH OUT Figure 4-1 TRANSCEIVER BLOCK DIAGRAM June 1997 Part No. 001-3492-001 4-2 VCO Q820 Q821/Q822 AMPLIFIER CIRCUIT DESCRIPTION The DC voltage applied across CR823 comes from the modulation adjust control R818 on the RF board. R820 applies a DC biasing voltage to CR822; C815 provides DC blocking. RF isolation is provided by C827, R822 and R817. 4.2.1 VOLTAGE-CONTROLLED OSCILLATOR Oscillator The VCO is formed by Q820, several capacitors and varactor diodes, and ceramic resonator L826. It oscillates at the transmit frequency in transmit mode and first injection frequency in the receive mode (928960 MHz in transmit and 840.150-872.150 MHz in receive). 4.2.2 VCO AND REFERENCE OSCILLATOR MODULATION Both the VCO and reference oscillator (TCXO) are modulated in order to achieve a flat frequency response. If only the VCO were modulated, the phase detector in U800 would sense the frequency change and increase or decrease the VCO control voltage to counteract the change (especially at the lower audio frequencies). If only the reference oscillator frequency is modulated, the VCO frequency would not change fast enough (especially at the higher audio frequencies). Modulating both VCO and reference oscillators produces a flat audio response. Potentiometer R818 sets the VCO modulation sensitivity so that it is equal to the reference oscillator modulation sensitivity. Biasing of Q820 is provided by R823, R824 and R826. An AC voltage divider formed by C844 and C845 initiates and maintains oscillation and also matches Q820 to the tank circuit. Resonator L826 is grounded at one end to provide shunt inductance to the tank circuit. Frequency Control and Modulation The VCO frequency is controlled by a DC voltage across varactor diode CR824. As voltage across a reverse-biased varactor diode increases, its capacitance decreases. The VCO frequency increases as the control voltage increases. The control line is isolated from tank circuit RF by choke L825. The amount of frequency change produced by CR824 is controlled by series capacitor C836. 4.2.3 CASCADE AMPLIFIERS The output signal on the collector of Q820 is coupled by C846 to buffer amplifier Q821/Q822. This is a cascade amplifier which provides amplification and also isolation between the VCO and the stages which follow. The signal is capacitively coupled from the collector of Q822 to the base of Q821. The resistors in this circuit provide biasing and stabilization, and C852 and C854 are RF bypass capacitors. The VCO frequency is modulated with the transmit audio/data signal from J201, pin 6 is applied across varactor diode CR822 which varies the VCO frequency at an audio rate. Series capacitors C825/ C824 couple the VCO to CR822. R821 provides a DC ground on the anodes of CR822/CR823, and isolation is provided by R820 and C826. C827 is an RF bypass. 4.2.4 AMPLIFIER Amplifier Q823 provides amplification and isolation between the VCO, Receiver and Transmitter. C851 provides matching between the amplifiers. Bias for Q823 is provided by R840, R842 and R843. Inductor L833 and capacitor C860 provide impedance matching on the output. The DC voltage across CR823 provides compensation to keep modulation relatively flat over the entire bandwidth of the VCO. This compensation is required because modulation tends to increase as the VCO frequency gets higher (capacitance of CR824/ CR825/CR826/CR827 gets lower). CR823 also balances the modulation signals applied to the VCO and TCXO. The DAC can be used to adjust the VCO modulation sensitivity. 4.2.5 VOLTAGE FILTER Q845 on the RF board is a capacitance multiplier to provide filtering of the +9.6V supply to the VCO. R845 provides transistor bias and C842 provides the 4-3 June 1997 Part No. 001-3492-001 CIRCUIT DESCRIPTION capacitance that is multiplied. If a noise pulse or other voltage change appears on the collector, the base voltage does not change significantly because of C842. Therefore, base current does not change and transistor current remains constant. CR840 decreases the charge time of C842 when power is turned on. This shortens the start-up time of the VCO. C840 and C841 are RF decoupling capacitors. The 928-960 MHz band is divided into two segments, 928-944 MHz and 944-960 MHz. The band selection is controlled by shift register U840, digital transistors Q843/Q844 and pin diode CR820 on the VCO board. A frequency shift of 87.85 MHz is required to go from transmit to receive mode and visa versa. Transmit to receive frequency shift is accomplished by programming shift register U840 which drives the digital transistors Q841/Q842. In Transmit mode, Q841/ Q842 forward bias pin diode CR821 which switches in an inductive transmission line in parallel with the VCO resonator causing the VCO frequency to increase. In Receive mode Q841/Q842 reverse bias CR821 which switches out the inductive transmission line and lowers the VCO frequency for the mixer injection. 4.2.6 VCO FREQUENCY SHIFT The VCO must be capable of producing frequencies from 840-960 MHz to produce the required receive injection and transmit frequencies. If this large of a shift was achieved by varying the VCO control voltage, the VCO gain would be undesirably high. Therefore, capacitance is switched in and out of the tank circuit to provide a coarse shift in frequency. CLOCK DATA STROBE Vss SERIAL INPUT + PROGRAM LATCHES EM RF IN RF IN PR NM1 NM2 NM3 12 FB FB 64/65/72 PRESCALER DD FMOD NF FRACTIONAL ACCUMULATOR MAIN DIVIDERS PRESCALER MODULUS CONTROL RF RN CN TEST EM SM NR EM+EA NORMAL OUTPUT CHARGE PUMP MAIN PHASE DETECTOR CL PHP SPEED-UP OUTPUT CHARGE PUMP MAIN REFERENCE SELECT CK 12 REF IN REFERENCE DIVIDER SA PA EA AUX IN NA EA +2 +2 INTEGRAL OUTPUT CHARGE PUMP +2 RA SECONDARY REFERENCE SELECT AUXILIARY PHASE DETECTOR AUXILIARY OUTPUT CHARGE PUMP AUXILIARY DIVIDER VDDA SSA Figure 4-2 U800 SYNTHESIZER BLOCK DIAGRAM June 1997 Part No. 001-3492-001 PHA LOCK 12 1/4 PRESCALER PHI 4-4 CIRCUIT DESCRIPTION 4.2.7 SYNTHESIZER INTEGRATED CIRCUIT (U800) Impedance matching between the Z200 and RF amplifier Q201 is provided by C201, C203 and L200. CR200 protects the base-emitter junction of Q201 from excessive negative voltages that may occur during high signal conditions. Q200 is a switched constant current source which provides a base bias for Q201. Q200 base bias is provided by R200/R201. Current flows through R202 so that the voltage across it equals the voltage across R200 (minus the base/ emitter drop of Q200). In the transmit mode the receive +9.6V is removed and Q200 is off. This removes the bias from Q201 and disables the RF amplifier in transmit mode. This prevents noise and RF from being amplified by Q201 and fed back on the first injection line. Introduction Synthesizer chip U800 is shown in Figure 4-2. This device contains the following circuits: R (reference), Fractional-N, NM1, NM2 and NM3; phase and lock detectors, prescaler and counter programming circuitry. The basic operation was described in Section 4.2.1. Channel Programming Frequencies are selected by programming the R, Fractional-N, NM1, NM2 and NM3 in U800 to divide by a certain number. These counters are programmed by Loader board or a user supplied programming circuit. More information on programming is located in Section 3. Additional filtering of the receive signal is provided by Z201. L201 and C206 provide impedance matching between Q201 and Z201. Resistor R205 is used to lower the Q of L201 to make it less frequency selective. As previously stated, the counter divide numbers are chosen so that when the VCO is oscillating on the correct frequency, the VCO-derived input to the phase detector is the same frequency as the reference oscillator-derived frequency. 4.3.2 MIXER First mixer Q211 mixes the receive frequency with the first injection frequency to produce the 87.85 MHz first IF. Since low-side injection is used, the injection frequency is 87.85 MHz below the receive frequency. The RF signal is coupled to the mixer through C211. L212 and C214 tune the mixer output to 87.85. R214 lowers the Q of L212. The VCO frequency is divided by the internal prescaler and the main divider to produce the input to the phase detector. 4.2.8 LOCK DETECT When the synthesizer is locked on frequency, the SYNTH LOCK output of U800, pin 18 (J201, pin 7) is 3V. When the synthesizer is unlocked, the output is a less than 1V. Lock is defined as a phase difference of less than 1 cycle of the TCXO. 4.3.3 FIRST LO AMPLIFIER The first injection frequency from the VCO is coupled to the First Local Oscillator (LO) amplifier Q260/Q261 through C266. L261/C265 match Q260 to the VCO. 4.3 RECEIVER CIRCUIT DESCRIPTION 4.3.1 CERAMIC FILTER, RF AMPLIFIER Q261 is a switched constant current source which provides a base bias for Q260. Q261 base bias is provided by R264/R265. Current flows through R263 so that the voltage across it equals the voltage across R264 (minus the base/emitter drop of Q261). In the transmit mode the receive +9.6V is removed and Q261 is off. This removes the bias from Q260 and disables the First LO amplifier in transmit mode. Capacitor C200 couples the receive signal from the antenna switch to ceramic filter Z200. (The antenna switch is described in Section 4.4.3.) Z200 is a bandpass filter that passes only a narrow band of frequencies to the receiver. This attenuates the image and other unwanted frequencies. 4-5 June 1997 Part No. 001-3492-001 CIRCUIT DESCRIPTION 4.3.4 CRYSTAL FILTER, FIRST IF SECTION Second IF Filter Z220 and Z221 form a 2-section, 4-pole crystal filter with a center frequency of 87.85 MHz and a -3 dB passband of 8 kHz (12.5 kHz BW) or 15 kHz (25 kHz BW). This filter establishes the receiver selectivity by attenuating the adjacent channel and other signals close to the receive frequency. C223, C224, and L221 adjust the coupling of the filter. L222, C226, C227 and R223 provide impedance matching between the filter and U230. The output of the internal double-balanced mixer is the difference between 87.85 MHz and 87.4 MHz which is 450 kHz. This 450 kHz signal is fed out on pin 20 and applied to second IF filters Z230 and Z231. These filters have passbands of 9 kHz (12.5 kHz BW), or 20 kHz (25 kHz BW) at the -6 dB points and are used to attenuate wideband noise. 4.3.5 SECOND LO/MIXER/DETECTOR The output of Z230/Z231 is applied to a limiteramplifier circuit in U230. This circuit amplifies the 450 kHz signal and any noise present; then limits this signal to a specific value. When the 450 kHz signal level is high, noise pulses tend to get clipped off by the limiter; however, when the 450 kHz signal level is low, the noise passes through the limiter. C233/C234 decouple the 450 kHz signal. Limiter-Amplifier Oscillator and Mixer As shown in Figure 4-3, U230 contains the second oscillator, second mixer, limiter, detector, and squelch circuitry. The control line from synthesizer U800 is on U230, pin 4. R250/C252/CR240 stabilize the base current of the oscillator control line. C243/ C245 provide the feedback for the Colpitts oscillator. The 87.4 MHz output of the oscillator is on U230, pin 3 and is coupled to buffer Q240. Bias for Q240 is provided by R242/R243/R245. The output of Q240 is coupled to the auxiliary input of U800, pin 10 to maintain the control line. The 87.85 MHz IF signal is mixed with the 87.4 MHz second LO to produce the 450 kHz Second IF. C228 87.85 MHz 20 19 C237 18 RSSI OUTPUT From the limiter stage the signal is fed to the quadrature detector. An external phase-shift network connected to U230, pin 10 shifts the phase of one of the detector inputs 90° at 450 kHz (all other inputs are unshifted in phase). When modulation occurs, the frequency of the IF signal changes at an audio rate as does the phase of the shifted input. The detector, which has no output with a 90° phase shift, converts this phase shift into an audio signal. L230 is tuned to provide maximum undistorted output from the detector. R232 is used to lower the Q of L230. From the detector the audio and data signal is fed out on pin 8. The audio/data output of U230, pin 8 is applied to J201, pin 13. MIXER 87.4 MHz CONTROL Quadrature Detector OSCILLATOR 17 IF AMP 16 RSSI MIXER OUT IF DEC2 IF AMP IN IF DEC1 IF AMP OUT 15 V CC AUDIO FB AUDIO OUTPUT RSSI FB Audio/Data Amplifier VREG 14 LIMITER 13 10 LIMITER IN QUAD 12 11 The audio/data output of U230, pin 8 is applied to J201, pin 13. LIMITER DEC1 LIMITER DEC2 LIMITER OUT Receive Signal Strength Indicator (RSSI) L230 U230, pin 5 is an output for the RSSI circuit which provides a voltage proportional to the strength of the 450 kHz IF signal. The RSSI voltage is applied to J201, pin 12. Figure 4-3 U230 BLOCK DIAGRAM June 1997 Part No. 001-3492-001 4-6 CIRCUIT DESCRIPTION 4.4 TRANSMITTER CIRCUIT DESCRIPTION Q520 decreases the input voltage to U510 to lower the power. The control voltage is isolated from RF by ferrite bead EP510 and C511 decouples RF. 4.4.1 DRIVER The VCO RF output signal is applied to R846, R847 and R848 that form a resistive splitter for the receive first local oscillator and the transmitter. The VCO signal is then applied to a 50 ohm pad formed by R500, R501, and R502. This pad provides attenuation and isolation. Q500 provides amplification and additional isolation between the VCO and transmitter. Biasing for this stage is provided by R503 and R504, and decoupling of RF signals is provided by C504. Impedance matching to the power amplifier is provided by L500/C505. The forward/reverse power voltages from U520A/B are also applied to U901 for Diagnostic outputs on J201, pin 14. The low-pass filter consists of C541, L540, C542, L541, C543, L542 and C544. The filter attenuates spurious frequencies occurring above the transmit frequency band. The transmit signal is then fed through the antenna switch to antenna jack J501. 4.4.3 ANTENNA SWITCH 4.4.2 FINAL, COMPARATOR The antenna switching circuit switches the antenna to the receiver in the receive mode and the transmitter in the transmit mode. In the transmit mode, +9V is applied to L543 and current flows through diode CR540, L544, diode CR541, and R540. When a diode is forward biased, it presents a low impedance to the RF signal; conversely, when it is reverse biased (or not conducting), it presents a high impedance (small capacitance). Therefore, when CR540 is forward biased, the transmit signal has a low-impedance path to the antenna through coupling capacitor C546. RF module U510 has an RF output of 1 to 5W and operates on an input voltage from 10-16V. Power control is provided by U520, U130, Q520 and a stripline directional coupler. The power is adjusted by Power Set Control of U900 that provides a reference voltage to U130C. U130C drives Q520 and PA module U510 when using the DAC. When not using the DAC, the set voltage is applied through U902, pin 2. One end of the stripline directional coupler is connected to a forward RF peak detector formed by R535, CR530, C531 and U520A. The other end of the stripline directional coupler is connected to a reverse RF peak detector formed by R537, CR531, C534 and U520B. L544 and C552 form a discrete quarter- wave line. When CR541 is forward biased, this quarterwave line is effectively AC grounded on one end by C552. When a quarter-wave line is grounded on one end, the other end presents a high impedance to the quarter-wave frequency. This blocks the transmit signal from the receiver. C545/C546 matches the antenna to 50 ohms in transmit and receive. If the power output of U510 decreases due to temperature variations, etc., the forward peak detector voltage drops. This detector voltage drop is buffered by U520A and applied to inverting amplifier U130C which increases the forward bias on Q520. The increase on Q520 increases the power output level of U510. If the power output of U510 increases, the forward peak detector voltage increases and U130C decreases the forward bias on Q520. The decrease on Q520 decreases the output power of U510. 4.4.4 TRANSMIT KEY-UP CONTROL When 3-16V is applied to J201, pin 3 (TX_EN) is applied to the base of Q133 it turns the transistor on and causes the collector to go low. This low is on the base of Q134 and turns the transistor on to apply +5.5V to U130A, pin 2. C130 and C131 decouple RF. The +5.5V from Q134 is divided by R132/R133 to produce a +3.6V reference on U130A, pin 3. C136, C137, C138 and C139 provide RF decoupling. The output of CR530 and CR531 are fed to U520A/B respectively. If the output of either buffer increases, the increase is applied to the inverting input of U130C. The output of U130C then decreases and 4-7 June 1997 Part No. 001-3492-001 CIRCUIT DESCRIPTION Q130, Q131 and Q132 act as switches that turn on with the RX_EN line. When J201, pin 4 goes low, Q130 is turned off, which turns on Q131 that turns on Q132. This applies +13.3V to U130 before the TX_EN line on J201, pin 3 goes high. 4.5 VOLTAGE REGULATORS 4.5.1 +9.6 AND +5.5V REGULATED The +3-16V applied on J201, pin 5 is applied to the base of Q110 turning the transistor on. This causes the collector to go low and applies a low to the control line of U110, pin 2 and R110 provides supply voltage isolation. The +13.3V from J201, pin 2 is on U110, pin 6 to produce a +5.5V reference output on U110, pin 4. C110 stabilizes the voltage and C114/ C111 provide RF decoupling. C117 provides RF bypass and C123 provides RF decoupling. C119 helps to stabilize the voltage when the +5.5V supply first turned on. U130B provides the key-up/key-down conditioning circuit. C141/R137 provide a ramp up/ramp down of the +9V TX during key-up/key-down which reduces load pull of the VCO during key-up. The output on U130B, pin 7 is applied to the noninverting input of comparator U130D, pin 12. The output of U130D, pin 14 is applied to the base of current source Q135. The output of Q135 is on the emitter and is applied back to the inverting input of comparator U130D, pin 13. A decrease or increase at U130D, pin 13 causes a correction by U130D to stabilize the +9V transmit output. R140/R141 establishes the reference voltage on U130D, pin 13. C144 provides RF bypass, C143 provides RF decoupling and C145 stabilizes the output. The +9V transmit voltage is then distributed to the circuits. June 1997 Part No. 001-3492-001 The low from the collector of Q110 is also applied to the control line of U111, pin 2. The +13.3V from J201, pin 2 is on U111, pin 6 to produce a +9.6V output on U111, pin 4. C118 provides RF bypass and C122 provides RF decoupling. C120 helps to stabilize the voltage when the +9.6V supply first turned on. 4-8 SECTION 5 SERVICING 5.1 GENERAL 5.2 SYNTHESIZER SERVICING 5.1.1 PERIODIC CHECKS 5.2.1 INTRODUCTION This transceiver should be put on a regular maintenance schedule and an accurate performance record maintained. Important checks are receiver sensitivity and transmitter frequency, modulation, and power output. A procedure for these and other tests is located in Section 6. It is recommended that transceiver performance be checked annually even though periodic checks are not required by the FCC. During the first year, make an additional check or two to ensure no TCXO frequency drifting has occurred. When there is a synthesizer malfunction, the VCO is not locked on frequency. When an unlocked VCO is detected by the lock detector circuit, U800, pin 18 goes low (0V). NOTE: The user-supplied circuitry must disable the transmitter and receiver when an out-of-lock condition is indicated. When the VCO is unlocked, the fR and fV inputs to the phase detector are usually not in phase (see Section 4.1.2). The phase detector in U800 then causes the VCO control voltage to go to the high or low end of its operating range. This in turn causes the VCO to oscillate at the high or low end of its frequency range. 5.1.2 SURFACE-MOUNTED COMPONENTS A large number of the components used on the transceiver board are the surface-mounted type. Since these components are relatively small in size and are soldered directly to the PC board, care must be used when they are replaced to prevent damage to the component or PC board. Surface-mounted components should not be reused because they may be damaged by the unsoldering process. As shown in Figure 4-1, a loop is formed by VCO Q820, amplifier Q821/Q822, and the RF IN of U800. Therefore, if any of these components begin to malfunction, improper signals appear throughout the loop. However, correct operation of the counters can still be verified by measuring the input and output frequencies to check the divide number. 5.1.3 SCHEMATIC DIAGRAMS AND COMPONENT LAYOUTS Proceed as follows to check the synthesizer I/O signals to determine if it is operating properly. Schematic diagrams and component layouts of the PC boards used in this transceiver are located in Section 8. A component locator guide is also provided to aid in component location. 5.2.2 REFERENCE OSCILLATOR Check the signal at U800, pin 8. It should be 17.5 MHz at a level of approximately 0.5V P-P. If the TCXO module is defective, it is not serviceable and must be replaced with a new module as described in Section 5.1.5. 5.1.4 REPLACEMENT PARTS LIST A replacement parts list with all the parts used in this transceiver is located in Section 7. Parts are listed alphanumerically according to designator. For information on ordering parts, refer to Section 1.8. 5.2.3 VCO 5.1.5 TCXO MODULE NOT SERVICEABLE Output Level The ±1.5 PPM TCXO module is not field serviceable. Part changes require a factory recalibration to ensure that the oscillator stays within its ±1.5 PPM tolerance. The output level of Q823 can be measured with an RF voltmeter or some other type of high impedance meter. The minimum level after a power splitter at R846 should be -3 dBm. 5-1 June 1997 Part No. 001-3492-001 SERVICING Control Voltage 5.3.2 MIXER/DETECTOR Check the DC voltage at C815 with a channel near the center of the band. If the VCO is locked on frequency, this should be a steady DC voltage near 3V. If it is not locked on frequency, it should be near the lower or upper end of its range (0V or 5.5V). Data Output Using a .01 µF coupling capacitor, inject a 87.85 MHz, 1 mV signal, modulated with 1 kHz at ±3 kHz deviation (for 25 kHz radios) ±1.5 kHz (for 12.5 kHz radios) at U230, pin 1. The signal output at U230, pin 8 should be approximately 150 mV P-P. Output Frequency Check the VCO frequency at R841. If the VCO is locked on frequency, it should be stable on the transmit channel frequency. If the VCO is not locked on frequency, the VCO control voltage is probably near 0V or 5.5V. NOTE: This signal consists of the 1 kHz modulation and harmonics of 450 kHz. RSSI Output The RSSI output on J201, pin 12 should be <900 mV DC with no signal applied, and >1.8V DC with a 1 mV input signal. 5.2.4 SYNTHESIZER (U800) Lock Detector START When the VCO is locked on frequency, the lock detect output on J201, pin 7 should be high. MEASURE CURRENT AND VOLTAGES REFER TO SECTION 5.3 NO OK 5.3 RECEIVER SERVICING CHECK FUSES AND WIRE HARNESS CONNECTIONS YES CHECK MIXER/ DETECT CIRCUIT To isolate a receiver problem to a specific section, refer to the troubleshooting flowchart in Figure 5-1. Tests referenced in the flowchart are described in the following information. REFER TO SECTION 5.3.2 CHECK DATA OUTPUT REFER TO SECTION 5.3.2 NOTE: Supply voltages are provided by the user. OK NO CHECK U230 YES CHECK AUDIO CIRCUIT 5.3.1 SUPPLY VOLTAGES AND CURRENT REFER TO SECTION 5.3.4 REFER TO SECTION 5.3.3 Measure the supply voltages on the following pins at interface connector J201: OK NO REPLACE DEFECTIVE COMPONENT YES REFER TO SECTION 5.3.5 CHECK BUFFERS CRYSTAL FILTERS Pin 4 - 3-16V DC Receive Pin 5 - 3-16V DC OK Place a DC ammeter in the supply line to the transceiver and the following maximum currents should be measured: REPAIR DEFECTIVE STAGE YES CHECK RF AMP FIRST MIXER Pin 4 - 400 µA Pin 5 - 400 µA June 1997 Part No. 001-3492-001 NO REFER TO SECTION 5.3.6 Figure 5-1 RECEIVER SERVICING 5-2 SERVICING 5.3.3 SECOND LO Place a DC ammeter in the supply line to the transceiver and the following maximum currents should be measured: Verify that the Second LO signal is present at R245. The Second LO should be at 87.40 MHz and not less than 250 mV P-P. Pin 2 - 2.5A maximum Pin 3 - 400 µA Pin 5 - 400 µA 5.3.4 AUDIO BUFFER AMP The Data output on J201, pin 13 should be 100200 mV RMS, with the preceding injection signal. If these levels are not correct, verify proper adjustment of L230 (see Section 6.7). The gain of U230 is 2.8 for 25 kHz radios and 5.8 for 12.5 kHz radios. 5.4.2 VCO 1. Check VCO after power splitter for power output. (Power output should be at least -3 dBm.) 2. Check 9V Transmit (Q135, emitter). 5.3.5 CRYSTAL FILTERS 3. If 9V is not present check Q133/Q134, U130, Q135, Q130, Q131 and Q132 (see Section 4.4.4). The 87.85 MHz IF signal is provided to the crystal filters Z220/Z221. 4. Check voltages on Driver Q500. 5.3.6 MIXER Input = 1.5V DC Output = 3.5V DC The mixer converts the RF signal (928-960 MHz) to 87.85 MHz. The Local Oscillator is provided by the VCO and Q260/Q261. The level of the LO should be approximately +3 dBm. Power output should be at least 2 mW (+3 dBm) at C506 (50 ohm point). 5.3.7 LOW NOISE AMPLIFIER (LNA) 5.4.3 FINAL AMPLIFIER The LNA provides approximately 12 dB of gain at 928-960 MHz. Q200 provides active bias to Q201. 1. Check the voltages on U510. 5.3.8 ANTENNA SWITCH Pin 2 = 9V DC Pin 3 = 5.0V DC (varies with power setting) Pin 4 = 13.3V DC CR540, CR541, L544, C551 and C552 form a Pi-network antenna switch. CR540 and CR541 are reversed biased in Receive Mode. Power output at C540 should be 7.5-8.0W (+38.7 to +39 dBm). 5.4 TRANSMITTER SERVICING 5.4.1 SUPPLY VOLTAGES AND CURRENT 5.4.4 ANTENNA SWITCH Measure the supply voltages on the following pins of interface connector J201: 1. Check the antenna switch voltages. Pin 2 - 13.3V DC nominal Pin 3 - 3-16V DC Pin 4 - 0.0V DC (while transmitting) Pin 5 - 3-16V DC Pin 6 - 2.5V DC ±1%/1.5V P-P max CR540 = 8.6V DC CR541 = 8.0V DC The loss through the Antenna Switch should be 1.9 to 2.1 dB. 5-3 June 1997 Part No. 001-3492-001 SERVICING 5.4.5 MODULATION INPUT 1. Check for audio/data signals at J201, pin 6, Y800, pin 1 and A840, pin 3. 5.4.6 TCXO 1. Check Y800, pin 1 for 2.5V DC ±1%. 2. Adjust Y800 to set the transmitter to the frequency of operation. 3. If the frequency cannot be set to the frequency of operation, replace the TCXO. START MEASURE CURRENT AND VOLTAGES OK CHECK FUSES AND NO WIRE HARNESS CONNECTIONS YES MEASURE RF OUTPUT POWER WATTS YES CHECK DEVIATION (SECTION 5.4.6) NO REFER TO SECTION 5.4.2 OK CHECK DRIVER NO CHECK AUDIO CIRCUITS YES NO CHECK A840 CHECK FREQUENCY (SECTION 5.4.7) OK YES NO CHECK Q500 OK REFER TO SECTION 5.4.4 CHECK POWER MODULE YES TRANSMITTER OK NO CHECK U510 OK YES REFER TO SECTION 5.4.5 CHECK CR540/541 CHECK ANTENNA SWITCH NO OK Figure 5-2 TRANSMITTER SERVICING June 1997 Part No. 001-3492-001 5-4 CHECK TCXO Y800 OFF FREQ ADJUST OR CHANGE TCXO SECTION 6 ALIGNMENT PROCEDURE 6.1 GENERAL 6.4 VCO CONTROL VOLTAGE Receiver or transmitter alignment may be necessary if repairs are made that could affect tuning. Alignment points diagrams are located in Figure 6-5 or component layouts are located in Section 8. 1. Connect the test setup shown in Figure 6-1. 2. Adjust R525 fully counterclockwise. 3. Load the synthesizer with the HIGHEST channel frequency in the band. Fabricate test cables by referring to Figure 2-1. This cable should include power and ground, a transmit keying switch that shorts the keying line to ground, data input and data output. The test setup must apply the various supply voltages and load the synthesizer with channel information. 4. Key the transmitter. 5. Verify the voltage at TP800 is < 5V DC. 6. Unkey the transmitter. 6.2 TEST EQUIPMENT 7. Load the synthesizer with the LOWEST channel frequency in the band. Modulation Analyzer, HP8901 or equivalent RF Signal Generator, HP8656 or equivalent Frequency Counter and "sniffer" probe Power Meter Oscilloscope Digital Multimeter 20 dB Attenuator Power Supply, HP8264A or equivalent Audio Analyzer, HP8903A or equivalent Misc. cables, connectors, attenuators. 8. Key the transmitter. 9. Verify the voltage at TP800 is > 1V DC. 10.Unkey the transmitter. 6.5 TRANSMITTER AND FREQUENCY NOTE: If the radio is intended to use Diagnostics or is a Radio/Loader board combination go to Section 6.6. 6.3 INITIAL SETTINGS 1. Connect the test setup shown in Figure 6-1. 1. Adjust power supply voltage to +13.3V DC. 2. Turn off the power supply. 2. Load the synthesizer with a channel frequency in the MIDDLE of the band. 3. Connect RF and power cables. 3. Key the transmitter. 4. Turn on the power supply. 4. The voltage at J201, pin 2 should be 13.3V DC. 5. Using a DC voltmeter, monitor the DC voltage at the junction of R812/R814 (wiper of R814), refer to Figure 6-5. (Do not transmit for extended periods.) 5. Adjust R525 clockwise for 5.0W ±1W. Adjust voltage and power if necessary. 6. Adjust R814 to 2.1V DC ±0.05V. 6. Check the power at a channel frequency on the LOW and HIGH ends of the band. The power output should be 4-6W with current less than 2.5A. 7. Verify the bias voltage at J201, pin 6 is +2.5V DC ±0.05V. 6-1 June 1997 Part No. 001-3492-001 ALIGNMENT PROCEDURE 16.Apply a 1 kHz sine-wave. The level should be within ±2 dB of the reference at 100 Hz. 6.5.1 MODULATION ALIGNMENT 1. Apply a 1V, 100 Hz square-wave to J201, pin 6. 17.Unkey the transmitter. 2. Transmit into the modulation analyzer and observe modulation output on the oscilloscope. Set the modulation analyzer high pass filtering OFF and no less than a 15 kHz low pass filter. DC VOLTMETER COMMUNICATIONS SERVICE MONITOR 3. Preset R818 to the center position. 5W, 50 OHM DUMMY LOAD WATTMETER MODULATION ANALYZER 4. Load the synthesizer with a channel frequency at the MIDDLE of the band. 5. Adjust R818 for a flat square wave. +7.5V DC POWER SUPPLY 6. Apply a 100 Hz sine-wave to J201, pin 6. The modulation analyzer should still have the 15 kHz lowpass filter selected. 0-1.5A DC AMMETER TX RX 7. Adjust the audio analyzer output level to achieve a transmit deviation of: Figure 6-1 TRANSMITTER TEST SETUP 1.5 kHz for 12.5 kHz BW radios 3.0 kHz for 25 kHz BW radios 6.6 TRANSMITTER/FREQUENCY WITH LOADER 8. Load the synthesizer with a channel frequency at the LOW end of the band. NOTE: If the radio is not intended to use Diagnostics go to Section 6.5. 9. Input a 100 Hz sine-wave and set a 0 dB reference on the Modulation Analyzer. NOTE: Subtract the current drawn by the Test Loader or any Interface Units from all measurements. 10.Apply a 1 kHz sine-wave. The level should be within ±2 dB of the reference at 100 Hz. 1. Set the Diagnostic Enable DAC (DAC4) to 255, (FFh). 11.Load the synthesizer with a channel frequency in the MIDDLE of the band. 12.Input a 100 Hz sine-wave and set a 0 dB reference on the Modulation Analyzer. 2. Select a Transmit channel frequency in the MIDDLE of the band. Make sure voltage at J201, pin 2 is 13.3V DC. 13.Apply a 1 kHz sine-wave. The level should be within ±2 dB of the reference at 100 Hz. 3. Adjust R535 fully clockwise for maximum power output. 14.Load the synthesizer with a channel frequency in the HIGH end of the band. 4. Adjust the Power Adjust DAC setting (DAC1) to set the power output to 5W ±0.3W. Make sure voltage at J201, pin 2 is 13.3V DC. 15.Input a 100 Hz sine-wave and set a 0 dB reference on the Modulation Analyzer. June 1997 Part No. 001-3492-001 5. Adjust voltage and power if necessary. 6-2 ALIGNMENT PROCEDURE 6. Repeat Step 5 for channels on the LOW and HIGH ends of the band. 12.Input a 100 Hz sine-wave and set a 0 dB reference on the Modulation Analyzer. 7. Power output should be 4.7-5.3W (50% duty cycle) and current should be less than 2.5A. 13.Apply a 1 kHz sine-wave. The level should be within ±2 dB of the reference at 100 Hz. 8. Select a Transmit channel frequency in the MIDDLE of the band 14. Select a Transmit channel frequency in the HIGH end of the band. 9. Adjust the frequency displayed on the Modulation Analyzer to the desired channel frequency by adjusting the TCXO (Y801). 15.Input a 100 Hz sine-wave and set a 0 dB reference on the Modulation Analyzer. 16.Apply a 1 kHz sine-wave. The level should be within ±2 dB of the reference at 100 Hz. 6.6.1 MODULATION ADJUSTMENT 17.Unkey the transmitter. 1. Apply a 1V, 100 Hz square wave to J201, pin 6. 2. Transmit into the modulation analyzer and observe modulation output on the oscilloscope. The modulation analyzer should not have any high pass filtering selected and no less than a 15 kHz low pass filter. 5W, 50 OHM DUMMY LOAD J104 3. Select a Transmit channel frequency in the MIDDLE of the band. The DAC value should be "125". J201 WATTMETER J102 TEST CABLE 4. If the square wave is peaked on the edges, adjust R818 down in value for the flattest square wave. OSCILLOSCOPE +7.5V DC POWER SUPPLY 5. Repeat Steps 3 and 4 for channels on the LOW and HIGH ends of the band. COMMUNICATIONS SERVICE MONITOR Figure 6-2 TX WITH LOADER TEST SETUP 6. Input a 100 Hz sinewave to J201, pin 6. The modulation analyzer should still have the 15 kHz low pass filter selected. 6.7 RECEIVER CAUTION 7. Adjust the audio analyzer output level to achieve a transmit deviation of: 1.5 kHz for 12.5 kHz radios or 3 kHz for 25 kHz radios. Do not key the transmitter with the generator connected because severe generator damage may result. NOTE: All distortion and SINAD measurements are performed with psophometric audio filtering. 8. Select a Transmit channel frequency at the LOW end of the band. 1. Connect the test setup shown in Figure 6-3. 9. Input a 100 Hz sine-wave and set a 0 dB reference on the Modulation Analyzer. 2. Preset tuning slugs of L212 and L222 flush with the top of the can. 10.Apply a 1 kHz sine-wave. The level should be within ±2 dB of the reference at 100 Hz. 3. Preset C223 to the center position (slot in-line with axis of the part). 11.Select a Transmit channel frequency in the MIDDLE of the band. 4. Re-adjust L212 and L222 clockwise 2 turns. 6-3 June 1997 Part No. 001-3492-001 ALIGNMENT PROCEDURE 5. Load the synthesizer with a receive channel frequency at the MIDDLE of the band. 20.Adjust the amplitude of the RF signal generator on J501 until an 12 dB SINAD level (psophometrically weighted) is reached. 6. Apply a -47 dBm signal from the RF signal genertor to J501 on the radio. Adjust deviation for: 1.5 kHz with 1 kHz tone for 12.5 kHz radios 3 kHz with 1 kHz tone for 25 kHz radios. 21.Measure the 12 dB SINAD sensitivity. The RF input level should be less than -116 dBm (0.35 µV). NOTE: Maintain these deviation levels throughout the test when measuring AC levels, SINAD and % distortion, unless otherwise instructed. COMMUNICATIONS SERVICE MONITOR MODULATION ANALYZER 7. Preset L230 for 2.5V DC ±0.05V at J201, pin 13. 8. Set RF signal generator to -105 dBm, unmodulated. DC VOLTMETER 9. Set generator frequency to : 3 kHz below channel center on 12.5 kHz radios 5 kHz below channel center on 25 kHz radios +13.3V DC POWER SUPPLY 10.Adjust C223 (first) and L212 for peak RSSI voltage. (Use 2V scale on DVM.) 11.Apply a -47 dBm signal from the RF signal generator to J501 on the radio with standard deviation levels. 0-3A DC AMMETER TX RX Figure 6-3 RECEIVER TEST SETUP 12.Adjust L222 for minimum distortion (psophometrically weighted). 22.Load the synthesizer with a receive channel frequency to the LOW end of the band. 13.Set RF signal generator to -105 dBm, unmodulated. 23.Verify the RF generator amplitude level is less than -116 dBm at 12 dB SINAD. 14.Adjust L212 for peak RSSI voltage. (Use 2V scale on DVM.) 24.Load the synthesizer with a receive channel frequency to the HIGH end of the band. 15.Apply a -47 dBm signal from the RF signal generator to J501 on the radio with standard deviation levels. 25.Verify the RF generator amplitude level is less than -116 dBm at 12 dB SINAD. 26.Adjust generator RF level to -120 dBm and measure DC (RSSI) voltage on J201, pin 12 of the radio (spec is less than or equal to 0.90V DC). 16.Adjust L230 for maximum receive audio voltage. 17.Verify that the receive audio RMS voltage is 150 mV ±50 mV. 27.Adjust generator RF level to -120 dBm and measure DC (RSSI) voltage on J201, pin 12 of the radio (spec is less than or equal to 0.8V DC). 18.Verify that the receive audio DC voltage is 2.5V ±0.3V. 28.Adjust generator RF level to -60 dBm and measure DC (RSSI) voltage on J201, pin 12 of the radio (spec is greater than or equal to 1.7V DC). 19.Measure the % distortion (spec is <3% psophometrically weighted). June 1997 Part No. 001-3492-001 6-4 ALIGNMENT PROCEDURE J104 J201 OSCILLOSCOPE J102 TEST CABLE +7.5V DC POWER SUPPLY COMMUNICATIONS SERVICE MONITOR Figure 6-4 Rx WITH LOADER TEST SETUP R818 R540 J501 A840 Y800 Z231 Z230 L230 J201 L222 L212 R525 R814 TP800 14 C223 U510 Figure 6-5 ALIGNMENT POINTS DIAGRAM 6-5 June 1997 Part No. 001-3492-001 SECTION 7 PARTS LIST SYMBOL NUMBER DESCRIPTION SYMBOL NUMBER PART NUMBER 3492 TRANSCEIVER PART NO. 242-3492-510 (12.5 kHz) PART NO. 242-3492-530 ( 25 kHz ) A 840 VCO 928-960 MHz 023-3492-540 C 100 C 101 C 110 C 111 C 112 C 113 C 114 C 115 C 116 C 117 C 118 C 119 C 120 C 122 C 123 C 130 C 131 C 132 C 133 C 134 C 135 C 136 C 137 C 138 C 139 C 140 C 141 C 142 C 143 C 144 C 145 C 146 C 170 C 171 C 172 C 173 C 174 C 175 510-3674-220 510-2625-109 510-2625-109 510-3674-220 510-2625-109 510-3674-220 510-3674-220 510-3675-103 510-3675-103 510-3675-103 510-3675-103 510-2625-109 510-2625-109 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-2625-109 510-3675-103 510-2625-109 510-3674-220 510-3674-220 510-3675-103 510-3674-220 510-3609-104 510-3675-103 510-3605-882 510-3674-220 510-3675-103 510-3674-220 510-2625-109 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-3674-220 22 pF ±5% NPO 0603 1 µF 16V SMD tantalum 1 µF 16V SMD tantalum 22 pF ±5% NPO 0603 1 µF 16V SMD tantalum 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 1 µF 16V SMD tantalum 1 µF 16V SMD tantalum 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 1 µF 16V SMD tantalum .01 µF ±10% X7R 0603 1 µF 16V SMD tantalum 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 22 pF ±5% NPO 0603 .1 µF ±5% X7R 1206 .01 µF ±10% X7R 0603 .0082 ±10% X7R 0805 22 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 22 pF ±5% NPO 0603 1 µF 16V SMD tantalum 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 C 176 C 177 C 178 C 179 C 180 C 181 C 182 C 200 C 201 C 202 C 203 C 204 C 206 C 207 C 210 C 211 C 213 C 214 C 217 C 218 C 219 C 220 C 223 C 224 C 225 C 226 C 227 C 228 C 230 C 231 C 232 C 233 C 234 C 235 C 236 C 237 C 240 C 241 C 242 C 243 C 244 C 245 C 246 C 248 7-1 DESCRIPTION 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 3.3 pF ±0.1pF NPO 0603 .01 µF ±10% X7R 0603 2.2 pF ±0.1pF NPO 0603 22 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 22 pF ±5% NPO 0603 2.2 pF ±0.1pF NPO 0603 9.1 pF ±0.1pF NPO 0603 .01 µF ±10% X7R 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 1.5-5 pF SMD ceramic 2.4 pF ±0.1pF NPO 0603 .01 µF ±10% X7R 0603 6.2 pF ±0.1pF NPO 0603 10 pF ±0.1pF NPO 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 10 pF ±0.1pF NPO 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 47 µF 10V SMD tantalum .01 µF ±10% X7R 0603 22 pF ±5% NPO 0603 18 pF ±5% NPO 0603 .001 µF ±10% X7R 0603 15 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 .001 µF ±10% X7R 0603 PART NUMBER 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-3675-103 510-3673-339 510-3675-103 510-3673-229 510-3674-220 510-3675-103 510-3674-220 510-3673-229 510-3673-919 510-3675-103 510-3674-220 510-3674-220 510-3675-103 512-1602-001 510-3673-249 510-3675-103 510-3673-629 510-3673-100 510-3675-103 510-3675-103 510-3675-103 510-3675-103 510-3675-103 510-3675-103 510-3673-100 510-3675-103 510-3675-103 510-2624-470 510-3675-103 510-3674-220 510-3674-180 510-3675-102 510-3674-150 510-3675-103 510-3675-102 June 1997 Part No. 001-3492-001 PARTS LIST SYMBOL NUMBER C 249 C 250 C 251 C 252 C 253 C 261 C 262 C 263 C 264 C 265 C 266 C 267 C 268 C 269 C 270 C 500 C 501 C 502 C 503 C 504 C 505 C 506 C 510 C 511 C 512 C 513 C 514 C 515 C 516 C 517 C 518 C 520 C 521 C 522 C 523 C 524 C 526 C 527 C 528 C 529 C 530 C 531 C 533 C 534 C 540 C 541 C 542 DESCRIPTION .1 µF ±5% X7R 1206 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 1 µF 16V SMD tantalum .01 µF ±10% X7R 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 5.6 pF ±0.1pF NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 1.8 pF ±0.1pF NPO 0603 22 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 68 pF ±5% NPO 0603 10 pF ±0.1pF NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 1 µF 16V SMD tantalum 22 pF ±5% NPO 0603 1 µF 16V SMD tantalum 1 µF 16V SMD tantalum 22 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 22 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 10 pF ±0.1pF NPO 0603 .01 µF ±10% X7R 0603 10 pF ±0.1pF NPO 0603 22 pF ±5% NPO 0603 6.2 pF ±5% NPO 0805 4.3 pF ±5% NPO 0805 June 1997 Part No. 001-3492-001 PART NUMBER SYMBOL NUMBER 510-3609-104 510-3675-103 510-3675-103 510-2625-109 510-3675-103 510-3674-220 510-3674-220 510-3674-220 510-3675-103 510-3673-569 510-3674-220 510-3674-220 510-3674-220 510-3675-103 510-3673-189 510-3674-220 510-3675-103 510-3674-680 510-3673-100 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-2625-109 510-3674-220 510-2625-109 510-2625-109 510-3674-220 510-3675-103 510-3674-220 510-3674-220 510-3675-103 510-3674-220 510-3675-103 510-3674-220 510-3674-220 510-3674-220 510-3675-103 510-3673-100 510-3675-103 510-3673-100 510-3674-220 510-3601-629 510-3601-439 C 543 C 544 C 545 C 546 C 547 C 548 C 549 C 550 C 551 C 552 C 800 C 801 C 802 C 803 C 804 C 805 C 806 C 807 C 808 C 809 C 810 C 811 C 812 C 813 C 814 C 815 C 816 C 817 C 818 C 819 C 820 C 821 C 822 C 823 C 840 C 841 C 842 C 843 C 844 C 845 C 846 C 847 C 850 C 851 C 852 C 853 C 854 C 855 7-2 DESCRIPTION PART NUMBER 3.9 pF ±5% NPO 0805 3.3 pF ±5% NPO 0805 2.7 pF ±5% NPO 0805 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 68 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 10 pF ±0.1pF NPO 0603 2.4 pF ±5% NPO 0805 10 pF ±0.1pF NPO 0603 .01 µF ±10% X7R 0603 22 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 22 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 22 pF ±5% NPO 0603 1.5 pF ±5% NPO 0603 2.7 pF ±0.1pF NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 1 µF 16V SMD tantalum 22 pF ±5% NPO 0603 100 pF ±5% NPO 0603 .039 µF ±5% X7R 1206 .0039 µF ±10% X7R 0805 .0039 µF ±10% X7R 0805 1 µF 16V SMD tantalum 22 pF ±5% NPO 0603 10 pF ±0.1pF NPO 0603 .01 µF ±10% X7R 0603 22 pF ±5% NPO 0603 4.7 µF 10V SMD tantalum .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 510-3601-399 510-3601-339 510-3601-279 510-3674-220 510-3674-220 510-3674-680 510-3675-103 510-3673-100 510-3601-249 510-3673-100 510-3675-103 510-3674-220 510-3675-103 510-3674-220 510-3675-103 510-3675-103 510-3675-103 510-3674-220 510-3674-159 510-3673-279 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-2625-109 510-3674-220 510-3674-101 510-3609-393 510-3605-392 510-3605-392 510-2625-109 510-3674-220 510-3673-100 510-3675-103 510-3674-220 510-2624-479 510-3675-103 510-3675-103 510-3675-103 510-3675-103 510-3675-103 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-3675-103 510-3675-103 PARTS LIST SYMBOL NUMBER DESCRIPTION PART NUMBER C 856 C 900 C 901 C 902 C 903 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 .01 µF ±10% X7R 0603 510-3675-103 510-3675-103 510-3675-103 510-3675-103 510-3675-103 CR200 CR240 CR530 CR531 CR540 CR541 CR840 Switching diode SOT-23 Varactor BB535 SOD-323 Hot carrier SOT-23 Hot carrier SOT-23 PIN switch diode SOT-23 PIN switch diode SOT-23 Varactor BB535 SOD-323 523-1504-002 523-5005-022 523-1504-016 523-1504-016 523-1504-001 523-1504-001 523-5005-022 EP130 EP200 EP510 EP511 EP512 EP513 Ferrite bead SMD Mini cer crystal pin insulator Ferrite bead SMD Ferrite bead SMD Ferrite bead SMD123 Ferrite bead SMD 517-2503-001 010-0345-280 517-2503-001 517-2503-001 517-2503-010 517-2503-001 HW102 Grafoil MHW 806 (25 kHz) HW104 900 MHz module shield HW104 4-40 machine panhead ZPS 018-1007-104 017-2225-754 575-1604-010 J 201 J 501 14-pin single row header Jack right angle PC mount 515-7110-214 142-0701-501 L 200 L 201 L 210 L 211 L 212 L 221 L 222 L 230 L 240 L 260 L 261 L 262 L 500 L 540 L 541 L 542 L 543 L 544 2.2 nH ±10% 0805 SMD 8.2 nH inductor LL2012 22 nH ±10% SMD 15 nH inductor LL21012 270 nH variable SMT 0.39 µH inductor SMD 270 nH variable SMT 680 µH quad coil 120 nH 50 x 80 chip 10 nH ±10% 0805 SMD 2.7 nH ±10% 0805 SMD 10 nH ±10% 0805 SMD 1 µH inductor SMD 8 nH air core inductor SMD 12.5 nH air core inductor SMD 8 nH air core inductor SMD 1 µH inductor SMD 2T 24 AWG 0.08 ID 542-9003-226 542-9003-826 542-9003-227 542-9003-157 542-5103-157 542-9001-398 542-5103-157 542-5102-001 542-9007-121 542-9003-107 542-9003-276 542-9003-107 542-9001-109 542-0030-003 542-0030-004 542-0030-003 542-9001-109 542-0030-002 SYMBOL NUMBER 7-3 DESCRIPTION PART NUMBER MP101 MP102 MP102 MP107 MP108 MP801 MP806 Heat sink Grafoil MHW 806 900 MHz shield (25 kHz) Low pass Synthisizer bottom shield VCO can Crystal filter shield 014-0778-047 018-1007-104 017-2225-754 017-2225-771 017-2225-772 017-2225-751 017-2225-699 Q 100 Q 101 Q 110 Q 130 Q 131 Q 132 Q 133 Q 134 Q 135 Q 200 Q 201 Q 211 Q 240 Q 260 Q 261 Q 500 Q 520 Q 800 Q 840 Q 841 Q 842 Q 843 Q 844 Q 845 Q 911 NPN digital 47k/47 transistor 576-0013-046 PNP digital 10k/47 transistor 576-0013-032 NPN digital 47k/47 transistor 576-0013-046 NPN digital 47k/47 transistor 576-0013-046 NPN digital 47k/47 transistor 576-0013-046 PNP digital 10k/47 transistor 576-0013-032 NPN digital 47k/47 transistor 576-0013-046 PNP digital 10k/47 transistor 576-0013-032 NPN high current SOT-223 576-0006-027 PNP gen purp SC70 MSB1218 576-0013-700 NPN low noise SOT-23 576-0003-636 Dual gate GaAS 576-0006-405 VHF/UHF amp SOT-23 576-0003-634 NPN low noise SOT-23 576-0003-636 PNP gen purp SC70 MSB1218 576-0013-700 Bipolar MMIC SOT-143 576-0003-640 NPN high current SOT-223 576-0006-027 NPN gen purp SC70 MSD1819 576-0013-701 NPN digital 47k/47 transistor 576-0013-046 NPN digital 47k/47 transistor 576-0013-046 NPN digital 47k/47 transistor 576-0013-046 NPN digital 47k/47 transistor 576-0013-046 NPN digital 47k/47 transistor 576-0013-046 NPN gen purp SC70 MSD1819 576-0013-701 NPN Si SOT-23 576-0003-658 R 110 R 111 R 112 R 113 R 114 R 130 R 131 R 132 R 133 R 134 R 135 R 136 R 137 R 138 100k ohm ±5% 0.063W 0603 51k ohm ±5% 0.063W 0603 15k ohm ±5% 0.063W 0603 100k ohm ±5% 0.063W 0603 15k ohm ±5% 0.063W 0603 100k ohm ±5% 0.063W 0603 1k ohm ±5% 0.063W 0603 22k ohm ±5% 0.063W 0603 43k ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 150k ohm ±5% 0.063W 0603 150k ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 569-0155-104 569-0155-513 569-0155-153 569-0155-104 569-0155-153 569-0155-104 569-0155-102 569-0155-223 569-0155-433 569-0155-103 569-0155-103 569-0155-154 569-0155-154 569-0155-103 June 1997 Part No. 001-3492-001 PARTS LIST SYMBOL NUMBER R 139 R 140 R 141 R 148 R 200 R 201 R 202 R 203 R 205 R 212 R 213 R 214 R 215 R 223 R 230 R 231 R 232 R 233 R 234 R 240 R 241 R 242 R 243 R 244 R 245 R 246 R 247 R 248 R 249 R 250 R 260 R 261 R 262 R 263 R 264 R 265 R 266 R 267 R 500 R 501 R 502 R 503 R 504 DESCRIPTION 470 ohm ±5% 0.063W 0603 3.6k ohm ±5% 0.063W 0603 5.6k ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 12k ohm ±5% 0.063W 0603 39k ohm ±5% 0.063W 0603 300 ohm ±5% 0.063W 0603 39k ohm ±5% 0.063W 0603 2.2k ohm ±5% 0.063W 0603 10 ohm ±5% 0.063W 0603 1k ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 160 ohm ±5% 0.063W 0603 1.5k ohm ±5% 0.063W 0603 3.3k ohm ±5% 0.063W 0603 2.4k ohm ±5% 0.063W 0603 39k ohm ±5% 0.063W 0603 33k ohm ±5% 0.063W 0603 7.5k ohm ±5% 0.063W 0603 (12.5 kHz BW) 18k ohm ±5% 0.063W 0603 (25 kHz BW) 100 ohm ±5% 0.063W 0603 75k ohm ±5% 0.063W 0603 (12.5 kHz BW Only) 68k ohm ±5% 0.063W 0603 22k ohm ±5% 0.063W 0603 10 ohm ±5% 0.063W 0603 1k ohm ±5% 0.063W 0603 100k ohm ±5% 0.063W 0603 330 ohm ±5% 0.063W 0603 330 ohm ±5% 0.063W 0603 22k ohm ±5% 0.063W 0603 4.7k ohm ±5% 0.063W 0603 2.2k ohm ±5% 0.063W 0603 390 ohm ±5% 0.063W 0603 39k ohm ±5% 0.063W 0603 220 ohm ±5% 0.063W 0603 12k ohm ±5% 0.063W 0603 39k ohm ±5% 0.063W 0603 100k ohm ±5% 0.063W 0603 8.2k ohm ±5% 0.063W 0603 270 ohm ±5% 0.063W 0603 18 ohm ±5% 0.063W 0603 270 ohm ±5% 0.063W 0603 470 ohm ±5% 0.063W 0603 470 ohm ±5% 0.063W 0603 June 1997 Part No. 001-3492-001 PART NUMBER SYMBOL NUMBER 569-0155-471 569-0155-362 569-0155-562 569-0155-103 569-0155-123 569-0155-393 569-0155-301 569-0155-393 569-0155-222 569-0155-100 569-0155-102 569-0155-103 569-0155-161 569-0155-152 569-0155-332 569-0155-242 569-0155-393 569-0155-333 569-0155-752 R 520 R 521 R 522 R 525 R 526 R 527 R 528 R 529 R 531 R 532 R 534 R 535 R 536 R 537 R 540 R 541 R 800 R 801 R 802 R 803 R 804 R 805 R 806 R 808 R 809 R 810 R 811 R 812 R 813 R 814 R 815 R 816 R 817 R 818 R 819 R 820 R 821 R 822 R 823 R 840 R 841 R 842 R 843 R 844 R 845 R 846 R 847 569-0155-183 569-0155-101 569-0155-753 569-0155-683 569-0155-223 569-0155-100 569-0155-102 569-0155-104 569-0155-331 569-0155-331 569-0155-223 569-0155-472 569-0155-222 569-0155-391 569-0155-393 569-0155-221 569-0155-123 569-0155-393 569-0155-104 569-0155-822 569-0155-271 569-0155-180 569-0155-271 569-0155-471 569-0155-471 7-4 DESCRIPTION 470 ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 100k ohm ±5% 0.063W 0603 100k ohm SMD trimmer 10k ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 10 ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 10 ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 1k ohm ±5% 0.063W 0603 51 ohm ±5% 0.063W 0603 1k ohm ±5% 0.063W 0603 51 ohm ±5% 0.063W 0603 100 ohm ±5% 0.75W 2010 47k ohm ±5% 0.063W 0603 4.7k ohm ±5% 0.063W 0603 4.7k ohm ±5% 0.063W 0603 4.7k ohm ±5% 0.063W 0603 6.8k ohm ±5% 0.063W 0603 6.8k ohm ±5% 0.063W 0603 6.8k ohm ±5% 0.063W 0603 20 ohm ±5% 0.063W 0603 4.7k ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 4.7k ohm ±5% 0.063W 0603 51 ohm ±5% 0.063W 0603 4.7k ohm ±5% 0.063W 0603 16k ohm ±5% 0.063W 0603 100k ohm SMD trimmer 120k ohm ±5% 0.063W 0603 39k ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 220k ohm ±5% 0.063W 0603 68k ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 10 ohm ±5% 0.063W 0603 18k ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 3.9k ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 3.9k ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 4.7k ohm ±5% 0.063W 0603 24 ohm ±5% 0.063W 0603 24 ohm ±5% 0.063W 0603 PART NUMBER 569-0155-471 569-0155-103 569-0155-104 569-0130-104 569-0155-103 569-0155-103 569-0155-100 569-0155-103 569-0155-100 569-0155-103 569-0155-102 569-0155-510 569-0155-102 569-0155-510 569-0135-101 569-0155-473 569-0155-472 569-0155-472 569-0155-472 569-0155-682 569-0155-682 569-0155-682 569-0155-200 569-0155-472 569-0155-103 569-0155-472 569-0155-510 569-0155-472 569-0155-163 569-0130-104 569-0155-124 569-0155-393 569-0155-103 569-0155-224 569-0155-683 569-0155-103 569-0155-100 569-0155-183 569-0155-103 569-0155-103 569-0155-392 569-0155-103 569-0155-392 569-0155-103 569-0155-472 569-0155-240 569-0155-240 PARTS LIST SYMBOL NUMBER DESCRIPTION PART NUMBER R 848 R 849 R 900 R 901 R 911 R 912 R 913 R 914 24 ohm ±5% 0.063W 0603 24 ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 47k ohm ±5% 0.063W 0603 47k ohm ±5% 0.063W 0603 1k ohm ±5% 0.063W 0603 569-0155-240 569-0155-240 569-0155-103 569-0155-103 569-0155-103 569-0155-473 569-0155-473 569-0155-102 U 110 U 111 U 130 U 230 U 510 U 520 U 800 U 840 U 900 U 901 U 902 Voltage regulator adjustable Voltage regulator adjustable Quad op amp SO-14 331 FM IF SA676DK 6W power module 900 MHz Op amp SO-8 MC33172D Fractional-N synthesizer 8-stage shift register SOIC Quad 8-bit TLC5620ID 8-stage shift register SOIC 3 2-chnl analog mux/demux 544-2603-093 544-2603-093 544-2020-017 544-2002-037 544-4001-049 544-2019-017 544-3954-027 544-3016-094 544-2031-014 544-3016-094 544-3016-053 Y 800 17.5 MHz TCXO ±1.5 PPM 518-7009-521 Z 200 944 MHz 3-pole ceramic Z 201 944 MHz 3-pole ceramic Z 220 87.85 MHz 4-pole 8 kHz BW (12.5 kHz BW) Z 220 87.85 MHz 4-pole 15 kHz BW (25 kHz BW) Z 221 87.85 MHz 4-pole 8 kHz BW (12.5 kHz BW) Z 221 87.85 MHz 4-pole 15 kHz BW (25 kHz BW) Z 230 450 kHz 9 kHz BW ceramic (12.5 kHz BW) Z 230 450 kHz 20 kHz BW ceramic (25 kHz BW) Z 231 450 kHz 9 kHz BW ceramic (12.5 kHz BW) Z 231 450 kHz 20 kHz BW ceramic (25 kHz BW) 532-2006-040 532-2006-040 532-0009-021 SYMBOL NUMBER DESCRIPTION PART NUMBER VCO 928-960 MHz Part No. 023-3492-540 532-0009-022 532-0009-021 532-0009-022 532-2004-015 532-2004-013 C 820 C 821 C 822 C 824 C 825 C 826 C 827 C 830 C 831 C 832 C 833 C 834 C 835 C 836 C 838 C 840 C 841 C 842 C 844 C 845 C 846 C 850 C 851 C 852 C 853 C 854 C 860 C 861 C 863 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 1.5 pF ±0.1 pF NPO 0603 2 pF ±0.1 pF NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 6.8 pF ±0.1 pF NPO 0603 1 pF ±0.1 pF NPO 0603 22 pF ±5% NPO 0603 4.3 pF ±0.1 pF NPO 0603 1 pF ±0.1 pF NPO 0603 .001 µF ±10% X7R 0603 22 pF ±5% NPO 0603 2.2 pF ±0.1 pF NPO 0603 3.9 pF ±0.1 pF NPO 0603 3.9 pF ±0.1 pF NPO 0603 2.7 pF ±0.1 pF NPO 0603 22 pF ±5% NPO 0603 4.7 pF ±0.1 pF NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 22 pF ±5% NPO 0603 4.3 pF ±0.1 pF NPO 0603 2 pF ±0.1 pF NPO 0603 510-3674-220 510-3674-220 510-3674-220 510-3673-159 510-3673-209 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-3673-689 510-3673-109 510-3674-220 510-3673-439 510-3673-109 510-3675-102 510-3674-220 510-3673-229 510-3673-399 510-3673-399 510-3673-279 510-3674-220 510-3673-479 510-3674-220 510-3674-220 510-3674-220 510-3674-220 510-3673-439 510-3673-200 CR820 CR821 CR822 CR824 PIN switch diode SOT PIN switch diode SOT Varactor SOD-323 BB535 Varactor SOD-323 BB535 523-1504-001 523-1504-001 523-5005-022 523-5005-022 L 820 L 821 L 822 L 823 L 825 L 826 L 830 L 831 L 832 L 833 68 nH ±10% SMD 0805 68 nH ±10% SMD 0805 68 nH ±10% SMD 0805 68 nH ±10% SMD 0805 68 nH ±10% SMD 0805 Resonator 0.5" long SMD 68 nH ±10% SMD 0805 12 nH inductor LL2012 3.3 nH inductor ceramic 10 nH inductor LL2012 542-9003-687 542-9003-687 542-9003-687 542-9003-687 542-9003-687 542-9004-011 542-9003-687 542-9003-127 542-9003-336 542-9003-107 532-2004-015 532-2004-013 7-5 June 1997 Part No. 001-3492-001 PARTS LIST SYMBOL NUMBER DESCRIPTION PART NUMBER Q 820 Q 821 Q 822 Q 823 NPN transistor NE85619 NPN transistor NE85619 NPN transistor NE85619 NPN transistor NE85619 576-0003-651 576-0003-651 576-0003-651 576-0003-651 R 820 R 821 R 822 R 823 R 824 R 825 R 826 R 827 R 830 R 831 R 832 R 833 R 835 R 836 R 840 R 842 R 843 10k ohm ±5% 0.063W 0603 100 ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 10k ohm ±5% 0.063W 0603 3.3k ohm ±5% 0.063W 0603 10 ohm ±5% 0.063W 0603 150 ohm ±5% 0.063W 0603 10 ohm ±5% 0.063W 0603 4.3k ohm ±5% 0.063W 0603 5.6k ohm ±5% 0.063W 0603 3k ohm ±5% 0.063W 0603 200 ohm ±5% 0.063W 0603 200 ohm ±5% 0.063W 0603 200 ohm ±5% 0.063W 0603 100 ohm ±5% 0.063W 0603 27k ohm ±5% 0.063W 0603 3.9k ohm ±5% 0.063W 0603 569-0155-103 569-0155-101 569-0155-103 569-0155-103 569-0155-332 569-0155-100 569-0155-151 569-0155-100 569-0155-432 569-0155-562 569-0155-302 569-0155-201 569-0155-201 569-0155-201 569-0155-101 569-0155-273 569-0155-392 June 1997 Part No. 001-3492-001 7-6 SECTION 8 SCHEMATICS AND COMPONENT LAYOUTS GND TRANSISTOR AND DIODE BASING REFERENCE TABLE TRANSISTORS Part Number Basing Diagram Identification TOP VIEW TOP VIEW OUT 576-0003-636 576-0003-640 576-0006-027 576-0006-405 576-0013-032 576-0013-046 576-0013-700 576-0013-701 DIODES 523-1504-001 523-1504-002 523-1504-016 523-5005-022 G2 P1F U72 6D 8C BR ZR IN G1 TOP VIEW TOP VIEW GND TOP VIEW 4D 5A 5F 5B NC INTEGRATED CIRCUITS 8-1 June 1997 Part No. 001-3492-001 SCHEMATICS AND COMPONENT LAYOUTS LOADER BOARD 023-3240-001 J104 SLEEP/WAKE UP PROGRAMMING RX DATA CONNECTOR TX DATA NC GROUND RF BOARD PRG0 GROUND PRG1 PRG2 10 GROUND 11 GROUND 242-3492-5xx P101 J1 GROUND GROUND +13.3V +13.3V TX EN TX EN RX EN RX EN RF EN RF EN MOD IN MOD IN SYNTH LOCK SYNTH LOCK SYNTH EN SYNTH EN DATA DATA SYNTH CLOCK 10 SYNTH CLOCK DIAG EN 11 DIAG EN RSSI 12 RSSI DEMOD 13 DEMOD DIAG 14 DIAG J102 USER INTERFACE WIDE BAND IN WIDE BAND OUT FREQ SEL RSSI +13.3V DC PTT CARRIER DETECT TX DATA IN GROUND 10 RX DATA OUT Figure 8-1 LOADER BOARD INTERCONNECT June 1997 Part No. 001-3492-001 8-2 SCHEMATICS AND COMPONENT LAYOUTS TELEMETRY RF BOARD 3276 MODEM P1 J1 GROUND GROUND RXD +13.3V +13.3V TXD TX EN TX EN TEST AUDIO RX EN RX EN B+ RF EN RF EN GROUND MOD IN MOD IN CTS SYNTH LOCK SYNTH LOCK RTS SYNTH EN SYNTH EN DCD DATA DATA 10 B+ SYNTH CLOCK 10 SYNTH CLOCK 11 CS0 DIAG EN 11 DIAG EN 12 CS1 RSSI 12 RSSI 13 CS2 DEMOD 13 DEMOD 14 RSSI DIAG 14 DIAG 15 DTR PGM GROUND ANTENNA Figure 8-2 MODEM INTERCONNECT 8-3 June 1997 Part No. 001-3492-001 SCHEMATICS AND COMPONENT LAYOUTS Figure 8-3 TRANSCEIVER COMPONENT LAYOUT (COMPONENT SIDE VIEW) Figure 8-4 TRANSCEIVER COMPONENT LAYOUT (OPPOSITE COMPONENT SIDE VIEW) June 1997 Part No. 001-3492-001 8-4 SCHEMATICS AND COMPONENT LAYOUTS Figure 8-5 SCHEMATIC 1 OF 2 8-5 June 1997 Part No. 001-3492-001 SCHEMATICS AND COMPONENT LAYOUTS Figure 8-6 SCHEMATIC 2 OF 2 June 1997 Part No. 001-3492-001 8-6 SCHEMATICS AND COMPONENT LAYOUTS C826 L826 W835 R827 L833 W840 W841 CR824 C836 R823 C831 C830 R840 C833 CR820 C862 R841 C863 R826 C840 C834 C842 R842 Q823 W838 R825 Q820 W826 L821 R843 C846 L830 R824 L820 C861 C860 L832 R833 C844 C845 C841 R830 C854 R836 R831 R832 R835 Q822 Q821 C851 C850 L831 W839 C855 C853 R834 C852 W836 W842 C835 C838 W822 L825 C827 L823 L822 C825 C821 CR821 CR822 W823 C823 R820 W833 C820 W824 W832 C824 CR823 R821 R822 W837 W843 C822 W844 W825 W827 C832 W831 W830 W820 W821 Figure 8-7 VCO COMPONENT LAYOUT 8-7 June 1997 Part No. 001-3492-001 SCHEMATICS AND COMPONENT LAYOUTS This page intentionally left blank. June 1997 Part No. 001-3492-001 8-8
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.2 Linearized : No Creator : Cover Create Date : Wednesday, September 02, 1998 8:53:24 AM Title : Cover Author : Unknown Producer : Acrobat PDFWriter 3.02 for Windows Subject : Modify Date : 1998:09:09 17:08:49 Page Count : 60EXIF Metadata provided by EXIF.tools