Cypress Cy7C68014A Users Manual CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ USB FX2LP(TM) Microcontroller High Speed Peripheral Controller

CY7C68015A to the manual f8c27236-c4f7-439f-912c-6630ea7e969c

2015-02-05

: Cypress Cypress-Cy7C68014A-Users-Manual-532549 cypress-cy7c68014a-users-manual-532549 cypress pdf

Open the PDF directly: View PDF PDF.
Page Count: 62

DownloadCypress Cypress-Cy7C68014A-Users-Manual- CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB FX2LP(TM) USB Microcontroller High-Speed Peripheral Controller  Cypress-cy7c68014a-users-manual
Open PDF In BrowserView PDF
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

EZ-USB FX2LP™ USB Microcontroller
High-Speed USB Peripheral Controller
1. Features (CY7C68013A/14A/15A/16A)
■

USB 2.0 USB IF high-speed certified (TID # 40460272)

■

Single chip integrated USB 2.0 transceiver, smart SIE, and
enhanced 8051 microprocessor

■

Fit, form and function compatible with the FX2
❐ Pin compatible
❐ Object-code-compatible
❐ Functionally compatible (FX2LP is a superset)

■

Ultra Low power: ICC no more than 85 mA in any mode
❐ Ideal for bus and battery powered applications

■

Software: 8051 code runs from:
❐ Internal RAM, which is downloaded via USB
❐ Internal RAM, which is loaded from EEPROM
❐ External memory device (128 pin package)

■

16 KBytes of on-chip Code/Data RAM

■

Four programmable BULK/INTERRUPT/ISOCHRONOUS
endpoints
❐ Buffering options: double, triple, and quad

■

Additional programmable (BULK/INTERRUPT) 64 byte
endpoint

■

8-bit or 16-bit external data interface

■

Smart Media Standard ECC generation

Cypress Semiconductor Corporation
Document #: 38-08032 Rev. *L

•

■

GPIF (General Programmable Interface)
❐ Enables direct connection to most parallel interfaces
❐ Programmable waveform descriptors and configuration registers to define waveforms
❐ Supports multiple Ready (RDY) inputs and Control (CTL) outputs

■

Integrated, industry standard enhanced 8051
❐ 48 MHz, 24 MHz, or 12 MHz CPU operation
❐ Four clocks per instruction cycle
❐ Two USARTS
❐ Three counter/timers
❐ Expanded interrupt system
❐ Two data pointers

■

3.3V operation with 5V tolerant inputs

■

Vectored USB interrupts and GPIF/FIFO interrupts

■

Separate data buffers for the Setup and Data portions of a
CONTROL transfer

■

Integrated I2C controller, runs at 100 or 400 kHz

■

Four integrated FIFOs
❐ Integrated glue logic and FIFOs lower system cost
❐ Automatic conversion to and from 16-bit buses
❐ Master or slave operation
❐ Uses external clock or asynchronous strobes
❐ Easy interface to ASIC and DSP ICs

■

Available in Commercial and Industrial temperature grade (all
packages except VFBGA)

198 Champion Court

•

San Jose, CA 95134-1709
• 408-943-2600
Revised February 8, 2008
[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Logic Block Diagram
High performance micro
using standard tools
with lower-power options

24 MHz
Ext. XTAL

/0.5
/1.0
/2.0

I2C

8051 Core
12/24/48 MHz,
four clocks/cycle

Address (16) / Data Bus (8)

x20
PLL

VCC

Data (8)

Address (16)

FX2LP

1.5k
connected for
full-speed
D+
D–

USB
2.0
XCVR

Integrated
full-speed and
high-speed
XCVR

CY
Smart
USB
1.1/2.0
Engine

16 KB
RAM

Master

“Soft Configuration”
Easy firmware changes

RDY (6)
CTL (6)

General
programmable I/F
to ASIC/DSP or bus
standards such as
ATAPI, EPP, etc.

8/16

Up to 96 MBytes/s
burst rate

ADDR (9)

GPIF
ECC

4 kB
FIFO

Enhanced USB core
Simplifies 8051 code

Abundant IO
including two USARTS

Additional IOs (24)

FIFO and endpoint memory
(master or slave operation)

1.1 Features (CY7C68013A/14A only)
■

CY7C68014A: Ideal for battery powered applications
❐ Suspend current: 100 μA (typ)

Cypress has created a cost effective solution that provides
superior time-to-market advantages with low power to enable
bus powered applications.

■

CY7C68013A: Ideal for non-battery powered applications
❐ Suspend current: 300 μA (typ)

■

Available in five lead-free packages with up to 40 GPIOs
❐ 128-pin TQFP (40 GPIOs), 100-pin TQFP (40 GPIOs), 56-pin
QFN (24 GPIOs), 56-pin SSOP (24 GPIOs), and 56-pin VFBGA (24 GPIOs)

The ingenious architecture of FX2LP results in data transfer
rates of over 53 Mbytes per second, the maximum allowable
USB 2.0 bandwidth, while still using a low cost 8051 microcontroller in a package as small as a 56 VFBGA (5mm x 5mm).
Because it incorporates the USB 2.0 transceiver, the FX2LP is
more economical, providing a smaller footprint solution than
USB 2.0 SIE or external transceiver implementations. With
EZ-USB FX2LP, the Cypress Smart SIE handles most of the
USB 1.1 and 2.0 protocol in hardware, freeing the embedded
microcontroller for application specific functions and decreasing
development time to ensure USB compatibility.

1.2 Features (CY7C68015A/16A only)
■

CY7C68016A: Ideal for battery powered applications
❐ Suspend current: 100 μA (typ)

■

CY7C68015A: Ideal for non-battery powered applications
❐ Suspend current: 300 μA (typ)

■

Available in lead-free 56-pin QFN package (26 GPIOs)
❐ 2 more GPIOs than CY7C68013A/14A enabling additional
features in same footprint
Cypress Semiconductor Corporation’s (Cypress’s) EZ-USB
FX2LP™ (CY7C68013A/14A) is a low power version of the
EZ-USB FX2™ (CY7C68013), which is a highly integrated, low
power USB 2.0 microcontroller. By integrating the USB 2.0 transceiver, serial interface engine (SIE), enhanced 8051 microcontroller, and a programmable peripheral interface in a single chip,

Document #: 38-08032 Rev. *L

The General Programmable Interface (GPIF) and Master/Slave
Endpoint FIFO (8-bit or 16-bit data bus) provides an easy and
glueless interface to popular interfaces such as ATA, UTOPIA,
EPP, PCMCIA, and most DSP/processors.
The FX2LP draws less current than the FX2 (CY7C68013), has
double the on-chip code/data RAM, and is fit, form and function
compatible with the 56, 100, and 128 pin FX2.
Five packages are defined for the family: 56VFBGA, 56 SSOP,
56 QFN, 100 TQFP, and 128 TQFP.

Page 2 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

2. Applications

frequency is 12 MHz. The clock frequency of the 8051 can be
changed by the 8051 through the CPUCS register, dynamically.

■

Portable video recorder

■

MPEG/TV conversion

■

DSL modems

C1

■

ATA interface

12 pf

■

Memory card readers

■

Legacy conversion devices

■

Cameras

■

Scanners

■

Home PNA

■

Wireless LAN

■

MP3 players

The CLKOUT pin, which can be three-stated and inverted using
internal control bits, outputs the 50% duty cycle 8051 clock, at
the selected 8051 clock frequency: 48 MHz, 24 MHz, or 12 MHz.

■

Networking

3.2.2 USARTS

The “Reference Designs” section of the Cypress web site
provides additional tools for typical USB 2.0 applications. Each
reference design comes complete with firmware source and
object code, schematics, and documentation. Visit the Cypress
web site for more information.

3. Functional Overview
3.1 USB Signaling Speed
FX2LP operates at two of the three rates defined in the USB
Specification Revision 2.0, dated April 27, 2000:
■

Full-speed, with a signaling bit rate of 12 Mbps

■

High-speed, with a signaling bit rate of 480 Mbps.

FX2LP does not support the low speed signaling mode of
1.5 Mbps.

3.2 8051 Microprocessor
The 8051 microprocessor embedded in the FX2LP family has
256 bytes of register RAM, an expanded interrupt system, three
timer/counters, and two USARTs.
3.2.1 8051 Clock Frequency
FX2LP has an on-chip oscillator circuit that uses an external 24
MHz (±100 ppm) crystal with the following characteristics:
■

Parallel resonant

■

Fundamental mode

■

500-μW drive level

■

12-pF (5% tolerance) load capacitors

An on-chip PLL multiplies the 24 MHz oscillator up to 480 MHz,
as required by the transceiver/PHY and internal counters divide
it down for use as the 8051 clock. The default 8051 clock

Figure 1. Crystal Configuration
24 MHz

C2
12 pf

20 × PLL

12-pF capacitor values assumes a trace capacitance
of 3 pF per side on a four-layer FR4 PCA

FX2LP contains two standard 8051 USARTs, addressed via
Special Function Register (SFR) bits. The USART interface pins
are available on separate IO pins, and are not multiplexed with
port pins.
UART0 and UART1 can operate using an internal clock at
230 KBaud with no more than 1% baud rate error. 230 KBaud
operation is achieved by an internally derived clock source that
generates overflow pulses at the appropriate time. The internal
clock adjusts for the 8051 clock rate (48 MHz, 24 MHz, and 12
MHz) such that it always presents the correct frequency for 230
KBaud operation.[1]
3.2.3 Special Function Registers
Certain 8051 SFR addresses are populated to provide fast
access to critical FX2LP functions. These SFR additions are
shown in Table 1 on page 4. Bold type indicates non standard,
enhanced 8051 registers. The two SFR rows that end with “0”
and “8” contain bit addressable registers. The four IO ports A to
D use the SFR addresses used in the standard 8051 for ports 0
to 3, which are not implemented in FX2LP. Because of the faster
and more efficient SFR addressing, the FX2LP IO ports are not
addressable in external RAM space (using the MOVX
instruction).

3.3 I2C Bus
FX2LP supports the I2C bus as a master only at 100-/400- KHz.
SCL and SDA pins have open-drain outputs and hysteresis
inputs. These signals must be pulled up to 3.3V, even if no I2C
device is connected.

3.4 Buses
All packages, 8-bit or 16-bit “FIFO” bidirectional data bus, multiplexed on IO ports B and D. 128-pin package: adds 16-bit
output-only 8051 address bus, 8-bit bidirectional data bus.

Note
1. 115 KBaud operation is also possible by programming the 8051 SMOD0 or SMOD1 bits to a “1” for UART0, UART1, or both respectively.

Document #: 38-08032 Rev. *L

Page 3 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Table 1. Special Function Registers
x
0
1

8x
IOA
SP

9x
IOB
EXIF

Ax
IOC
INT2CLR

Bx
IOD
IOE

2
3
4
5
6
7
8
9
A
B
C
D
E
F

DPL0
DPH0
DPL1
DPH1
DPS
PCON
TCON
TMOD
TL0
TL1
TH0
TH1
CKCON

MPAGE

INT4CLR

OEA
OEB
OEC
OED
OEE

SCON0
SBUF0
AUTOPTRH1
AUTOPTRL1
reserved
AUTOPTRH2
AUTOPTRL2
reserved

IE
EP2468STAT
EP24FIFOFLGS
EP68FIFOFLGS

AUTOPTRSET-UP

3.5 USB Boot Methods
During the power up sequence, internal logic checks the I2C port
for the connection of an EEPROM whose first byte is either 0xC0
or 0xC2. If found, it uses the VID/PID/DID values in the EEPROM
in place of the internally stored values (0xC0), or it boot-loads the
EEPROM contents into internal RAM (0xC2). If no EEPROM is
detected, FX2LP enumerates using internally stored descriptors.
The default ID values for FX2LP are VID/PID/DID (0x04B4,
0x8613, 0xAxxx where xxx = Chip revision).[2]
Table 2. Default ID Values for FX2LP
Vendor ID
Product ID
Device release

Default VID/PID/DID
0x04B4 Cypress Semiconductor
0x8613 EZ-USB FX2LP
0xAnnn Depends on chip revision
(nnn = chip revision where first
silicon = 001)

3.6 ReNumeration™
Because the FX2LP’s configuration is soft, one chip can take on
the identities of multiple distinct USB devices.
When first plugged into USB, the FX2LP enumerates automatically and downloads firmware and USB descriptor tables over
the USB cable. Next, the FX2LP enumerates again, this time as
a device defined by the downloaded information. This patented
two step process called ReNumeration™ happens instantly when
the device is plugged in, without a hint that the initial download
step has occurred.

Cx
SCON1
SBUF1

Dx
PSW

Ex
ACC

Fx
B

IP

T2CON

EICON

EIE

EIP

EP01STAT
GPIFTRIG

RCAP2L
RCAP2H
TL2
TH2

GPIFSGLDATH
GPIFSGLDATLX
GPIFSGLDATLNOX

Two control bits in the USBCS (USB Control and Status) register,
control the ReNumeration process: DISCON and RENUM. To
simulate a USB disconnect, the firmware sets DISCON to 1. To
reconnect, the firmware clears DISCON to 0.
Before reconnecting, the firmware sets or clears the RENUM bit
to indicate whether the firmware or the Default USB Device
handles device requests over endpoint zero: if RENUM = 0, the
Default USB Device handles device requests; if RENUM = 1, the
firmware services the requests.

3.7 Bus-powered Applications
The FX2LP fully supports bus powered designs by enumerating
with less than 100 mA as required by the USB 2.0 specification.

3.8 Interrupt System
3.8.1 INT2 Interrupt Request and Enable Registers
FX2LP implements an autovector feature for INT2 and INT4.
There are 27 INT2 (USB) vectors, and 14 INT4 (FIFO/GPIF)
vectors. See EZ-USB Technical Reference Manual (TRM) for
more details.
3.8.2 USB Interrupt Autovectors
The main USB interrupt is shared by 27 interrupt sources. To
save the code and processing time that is required to identify the
individual USB interrupt source, the FX2LP provides a second
level of interrupt vectoring, called Autovectoring. When a USB
interrupt is asserted, the FX2LP pushes the program counter
onto its stack then jumps to the address 0x0043 where it expects
to find a “jump” instruction to the USB Interrupt service routine.

Note
2. The I2C bus SCL and SDA pins must be pulled up, even if an EEPROM is not connected. Otherwise this detection method does not work properly.

Document #: 38-08032 Rev. *L

Page 4 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

The FX2LP jump instruction is encoded as follows:
Table 3. INT2 USB Interrupts
USB INTERRUPT TABLE FOR INT2
Priority

INT2VEC Value

1

00

Source
SUDAV

Notes
Setup Data Available

2

04

SOF

Start of Frame (or microframe)

3

08

SUTOK

Setup Token Received

4

0C

SUSPEND

USB Suspend request

5

10

USB RESET

Bus reset

6

14

HISPEED

Entered high-speed operation

7

18

EP0ACK

FX2LP ACK’d the CONTROL Handshake

8

1C

9

20

EP0-IN

EP0-IN ready to be loaded with data

10

24

EP0-OUT

EP0-OUT has USB data

11

28

EP1-IN

EP1-IN ready to be loaded with data

12

2C

EP1-OUT

EP1-OUT has USB data

13

30

EP2

IN: buffer available. OUT: buffer has data

14

34

EP4

IN: buffer available. OUT: buffer has data

15

38

EP6

IN: buffer available. OUT: buffer has data

16

3C

EP8

IN: buffer available. OUT: buffer has data

17

40

IBN

IN-Bulk-NAK (any IN endpoint)

EP0PING

EP0 OUT was Pinged and it NAK’d

reserved

18

44

19

48

reserved

20

4C

EP1PING

EP1 OUT was Pinged and it NAK’d

21

50

EP2PING

EP2 OUT was Pinged and it NAK’d

22

54

EP4PING

EP4 OUT was Pinged and it NAK’d

23

58

EP6PING

EP6 OUT was Pinged and it NAK’d

24

5C

EP8PING

EP8 OUT was Pinged and it NAK’d

25

60

ERRLIMIT

Bus errors exceeded the programmed limit

26

64

27

68

28

6C

29

70

EP2ISOERR

ISO EP2 OUT PID sequence error

30

74

EP4ISOERR

ISO EP4 OUT PID sequence error

31

78

EP6ISOERR

ISO EP6 OUT PID sequence error

32

7C

EP8ISOERR

ISO EP8 OUT PID sequence error

reserved
reserved

If Autovectoring is enabled (AV2EN = 1 in the INTSET-UP
register), the FX2LP substitutes its INT2VEC byte. Therefore, if
the high byte (“page”) of a jump-table address is preloaded at the
location 0x0044, the automatically inserted INT2VEC byte at
0x0045 directs the jump to the correct address out of the 27
addresses within the page.

Document #: 38-08032 Rev. *L

3.8.3 FIFO/GPIF Interrupt (INT4)
Just as the USB Interrupt is shared among 27 individual USB
interrupt sources, the FIFO/GPIF interrupt is shared among 14
individual FIFO/GPIF sources. The FIFO/GPIF Interrupt, like the
USB Interrupt, can employ autovectoring. Table 4 shows the
priority and INT4VEC values for the 14 FIFO/GPIF interrupt
sources.

Page 5 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Table 4. Individual FIFO/GPIF Interrupt Sources
Priority

INT4VEC Value

Source

1

80

EP2PF

Notes
Endpoint 2 Programmable Flag

2

84

EP4PF

Endpoint 4 Programmable Flag

3

88

EP6PF

Endpoint 6 Programmable Flag

4

8C

EP8PF

Endpoint 8 Programmable Flag

5

90

EP2EF

Endpoint 2 Empty Flag

6

94

EP4EF

Endpoint 4 Empty Flag

7

98

EP6EF

Endpoint 6 Empty Flag

8

9C

EP8EF

Endpoint 8 Empty Flag

9

A0

EP2FF

Endpoint 2 Full Flag

10

A4

EP4FF

Endpoint 4 Full Flag

11

A8

EP6FF

Endpoint 6 Full Flag

12

AC

EP8FF

13

B0

GPIFDONE

14

B4

GPIFWF

Endpoint 8 Full Flag
GPIF Operation Complete
GPIF Waveform

If Autovectoring is enabled (AV4EN = 1 in the INTSET-UP
register), the FX 2LP substitutes its INT4VEC byte. Therefore, if
the high byte (“page”) of a jump-table address is preloaded at
location 0x0054, the automatically inserted INT4VEC byte at
0x0055 directs the jump to the correct address out of the 14
addresses within the page. When the ISR occurs, the FX2LP
pushes the program counter onto its stack then jumps to address
0x0053, where it expects to find a “jump” instruction to the ISR
Interrupt service routine.

3.9 Reset and Wakeup
3.9.1 Reset Pin
The input pin, RESET#, resets the FX2LP when asserted. This
pin has hysteresis and is active LOW. When a crystal is used with

the CY7C680xxA the reset period must allow for the stabilization
of the crystal and the PLL. This reset period must be approximately 5 ms after VCC reaches 3.0V. If the crystal input pin is
driven by a clock signal the internal PLL stabilizes in 200 μs after
VCC has reached 3.0V.[3]
Figure 2 on page 7 shows a power on reset condition and a reset
applied during operation. A power on reset is defined as the time
reset that is asserted while power is being applied to the circuit.
A powered reset is when the FX2LP powered on and operating
and the RESET# pin is asserted.
Cypress provides an application note which describes and
recommends power on reset implementation. For more information about reset implementation for the FX2 family of products
visit http://www.cypress.com.

Note
3. If the external clock is powered at the same time as the CY7C680xxA and has a stabilization wait period, it must be added to the 200 μs.

Document #: 38-08032 Rev. *L

Page 6 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Figure 2. Reset Timing Plots

RESET#

RESET#

VIL

VIL

3.3V
3.0V

3.3V
VCC

VCC

0V

0V
TRESET

TRESET
Power on Reset

Powered Reset

Table 5. Reset Timing Values

3.10 Program/Data RAM

Condition

TRESET

Power on Reset with Crystal

5 ms

Power on Reset with External
Clock

200 μs + Clock stability time

Powered Reset

200 μs

3.10.1 Size
The FX2LP has 16 KBytes of internal program/data RAM, where
PSEN#/RD# signals are internally ORed to enable the 8051 to
access it as both program and data memory. No USB control
registers appear in this space.
Two memory maps are shown in the following diagrams:

3.9.2 Wakeup Pins

Figure 3 on page 8 shows the Internal Code Memory, EA = 0

The 8051 puts itself and the rest of the chip into a power down
mode by setting PCON.0 = 1. This stops the oscillator and PLL.
When WAKEUP is asserted by external logic the oscillator
restarts after the PLL stabilizes, and the 8051 receives a wakeup
interrupt. This applies whether or not FX2LP is connected to the
USB.

Figure 4 on page 9 shows the External Code Memory, EA = 1.

The FX2LP exits the power down (USB suspend) state using one
of the following methods:
■

USB bus activity (if D+/D– lines are left floating, noise on these
lines may indicate activity to the FX2LP and initiate a wakeup)

■

External logic asserts the WAKEUP pin

■

External logic asserts the PA3/WU2 pin

The second wakeup pin, WU2, can also be configured as a
general purpose IO pin. This enables a simple external R-C
network to be used as a periodic wakeup source. WAKEUP is by
default active LOW.

3.10.2 Internal Code Memory, EA = 0
This mode implements the internal 16 KByte block of RAM
(starting at 0) as combined code and data memory. When
external RAM or ROM is added, the external read and write
strobes are suppressed for memory spaces that exist inside the
chip. This enables the user to connect a 64 KByte memory
without requiring address decodes to keep clear of internal
memory spaces.
Only the internal 16 KBytes and scratch pad 0.5 KBytes RAM
spaces have the following access:
■

USB download

■

USB upload

■

Setup data pointer

■

I2C interface boot load.

3.10.3 External Code Memory, EA = 1
The bottom 16 KBytes of program memory is external and
therefore the bottom 16 KBytes of internal RAM is accessible
only as a data memory.

Document #: 38-08032 Rev. *L

Page 7 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Figure 3. Internal Code Memory, EA = 0

Inside FX2LP

Outside FX2LP

FFFF
7.5 KBytes
USB regs and
4K FIFO buffers
(RD#,WR#)
E200
E1FF 0.5 KBytes RAM
E000 Data (RD#,WR#)*

(OK to populate
data memory
here—RD#/WR#
strobes are not
active)

40 KBytes
External
Data
Memory
(RD#,WR#)

48 KBytes
External
Code
Memory
(PSEN#)

3FFF

16 KBytes RAM
Code and Data
(PSEN#,RD#,WR#)*

(Ok to populate
data memory
here—RD#/WR#
strobes are not
active)

(OK to populate
program
memory here—
PSEN# strobe
is not active)

0000
Data

Code

*SUDPTR, USB upload/download, I2C interface boot access

Document #: 38-08032 Rev. *L

Page 8 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Figure 4. External Code Memory, EA = 1

Inside FX2LP

Outside FX2LP

FFFF
7.5 KBytes
USB regs and
4K FIFO buffers
(RD#,WR#)
E200
E1FF

0.5 KBytes RAM
E000 Data (RD#,WR#)*

(OK to populate
data memory
here—RD#/WR#
strobes are not
active)

40 KBytes
External
Data
Memory
(RD#,WR#)

64 KBytes
External
Code
Memory
(PSEN#)

3FFF
(Ok to populate
data memory
here—RD#/WR#
strobes are not
active)

16 KBytes
RAM
Data
(RD#,WR#)*

0000
Data

Code

*SUDPTR, USB upload/download, I2C interface boot access

3.11 Register Addresses
FFFF
4 KBytes EP2-EP8
buffers
(8 x 512)

F000
EFFF
2 KBytes RESERVED
E800
E7FF
E7C0
E7BF
E780
E77F
E740

E73F
E700
E6FF
E500
E4FF
E480
E47F
E400
E3FF
E200
E1FF

64 Bytes EP1IN
64 Bytes EP1OUT
64 Bytes EP0 IN/OUT
64 Bytes RESERVED
8051 Addressable Registers
(512)
Reserved (128)
128 bytes GPIF Waveforms
Reserved (512)

512 bytes
8051 xdata RAM
E000

Document #: 38-08032 Rev. *L

Page 9 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

3.12 Endpoint RAM

3.12.3 Setup Data Buffer

3.12.1 Size

A separate 8 byte buffer at 0xE6B8-0xE6BF holds the setup data
from a CONTROL transfer.

■

3× 64 bytes

(Endpoints 0 and 1)

■

8 × 512 bytes

(Endpoints 2, 4, 6, 8)

3.12.4 Endpoint Configurations (High -speed Mode)
Endpoints 0 and 1 are the same for every configuration. Endpoint
0 is the only CONTROL endpoint, and endpoint 1 can be either
BULK or INTERRUPT.

3.12.2 Organization
■

EP0

■

Bidirectional endpoint zero, 64 byte buffer

■

EP1IN, EP1OUT

■

64 byte buffers, bulk or interrupt

■

EP2, 4, 6, 8

■

Eight 512 byte buffers, bulk, interrupt, or isochronous. EP4 and
EP8 can be double buffered; EP2 and 6 can be either double,
triple, or quad buffered. For high-speed endpoint configuration
options, see Figure 5.

The endpoint buffers can be configured in any 1 of the 12 configurations shown in the vertical columns. When operating in the
full-speed BULK mode only the first 64 bytes of each buffer are
used. For example, in high-speed, the max packet size is 512
bytes but in full-speed it is 64 bytes. Even though a buffer is
configured to a 512 byte buffer, in full-speed only the first 64
bytes are used. The unused endpoint buffer space is not
available for other operations. An example endpoint configuration is the EP2–1024 double buffered; EP6–512 quad buffered
(column 8).

Figure 5. Endpoint Configuration
EP0 IN&OUT

64

64

64

64

64

64

64

64

64

64

64

64

EP1 IN

64

64

64

64

64

64

64

64

64

64

64

64

EP1 OUT

64

64

64

64

64

64

64

64

64

64

64

64

EP2

EP2

EP2

EP2

EP2

EP2

EP2

EP2

EP2

EP2

512

512

512

512

512

512

512

512

512

512

512

512

EP4

EP4

512

512

512

512

512

512

512

512

512

512

512

512

EP6

EP6

EP6

EP6

EP6

EP6

512

512

512

512

512

512

512

512

EP8
512

512

512

1

2

Document #: 38-08032 Rev. *L

1024

1024

3

1024

1024

512

1024

1024

1024

1024

1024

512

512

512

512

4

5

1024

6

EP6

1024

1024

512

EP6

EP6

512

512

512

512

EP6

512

1024

512

EP8

EP8

512

1024

512

EP4

1024

EP2 EP2

512

512

512

512

512

7

8

1024

9

1024
1024

EP8

EP8

512

512

512

512

10

11

1024

1024

12

Page 10 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

3.12.5 Default Full-Speed Alternate Settings
Table 6. Default Full-Speed Alternate Settings[4, 5]
Alternate Setting

0

1

2

3

ep0

64

64

64

64

ep1out

0

64 bulk

64 int

64 int

ep1in

0

64 bulk

64 int

64 int

ep2

0

64 bulk out (2×)

64 int out (2×)

64 iso out (2×)

ep4

0

64 bulk out (2×)

64 bulk out (2×)

64 bulk out (2×)

ep6

0

64 bulk in (2×)

64 int in (2×)

64 iso in (2×)

ep8

0

64 bulk in (2×)

64 bulk in (2×)

64 bulk in (2×)

3.12.6 Default High-Speed Alternate Settings
Table 7. Default High-Speed Alternate Settings[4, 5]
Alternate Setting

0

1

2

3

ep0

64

64

64

64

ep1out

0

512 bulk[6]

64 int

64 int

ep1in

0

512

bulk[6]

64 int

64 int

ep2

0

512 bulk out (2×)

512 int out (2×)

512 iso out (2×)

ep4

0

512 bulk out (2×)

512 bulk out (2×)

512 bulk out (2×)

ep6

0

512 bulk in (2×)

512 int in (2×)

512 iso in (2×)

ep8

0

512 bulk in (2×)

512 bulk in (2×)

512 bulk in (2×)

3.13 External FIFO Interface
3.13.1 Architecture
The FX2LP slave FIFO architecture has eight 512 byte blocks in
the endpoint RAM that directly serve as FIFO memories and are
controlled by FIFO control signals (such as IFCLK, SLCS#,
SLRD, SLWR, SLOE, PKTEND, and flags).
In operation, some of the eight RAM blocks fill or empty from the
SIE, while the others are connected to the IO transfer logic. The
transfer logic takes two forms, the GPIF for internally generated
control signals and the slave FIFO interface for externally
controlled transfers.
3.13.2 Master/Slave Control Signals
The FX2LP endpoint FIFOS are implemented as eight physically
distinct 256x16 RAM blocks. The 8051/SIE can switch any of the
RAM blocks between two domains, the USB (SIE) domain and
the 8051-IO Unit domain. This switching is done virtually instantaneously, giving essentially zero transfer time between “USB
FIFOS” and “Slave FIFOS.” Because they are physically the
same memory no bytes are actually transferred between buffers.
At any given time, some RAM blocks are filling/emptying with
USB data under SIE control, while other RAM blocks are
available to the 8051, the IO control unit or both. The RAM blocks
operate as single port in the USB domain, and dual port in the

8051-IO domain. The blocks can be configured as single,
double, triple, or quad buffered as previously shown.
The IO control unit implements either an internal master (M for
master) or external master (S for Slave) interface.
In Master (M) mode, the GPIF internally controls FIFOADR[1..0]
to select a FIFO. The RDY pins (two in the 56-pin package, six
in the 100-pin and 128-pin packages) can be used as flag inputs
from an external FIFO or other logic if desired. The GPIF can be
run from either an internally derived clock or externally supplied
clock (IFCLK), at a rate that transfers data up to 96 Megabytes/s
(48-MHz IFCLK with 16-bit interface).
In Slave (S) mode, the FX2LP accepts either an internally
derived clock or externally supplied clock (IFCLK, max frequency
48 MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals
from external logic. When using an external IFCLK, the external
clock must be present before switching to the external clock with
the IFCLKSRC bit. Each endpoint can individually be selected
for byte or word operation by an internal configuration bit and a
Slave FIFO Output Enable signal SLOE enables data of the
selected width. External logic must ensure that the output enable
signal is inactive when writing data to a slave FIFO. The slave
interface can also operate asynchronously, where the SLRD and
SLWR signals act directly as strobes, rather than a clock qualifier
as in synchronous mode. The signals SLRD, SLWR, SLOE and
PKTEND are gated by the signal SLCS#.

Notes
4. “0” means “not implemented.”
5. “2×” means “double buffered.”
6. Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1.

Document #: 38-08032 Rev. *L

Page 11 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

3.13.3 GPIF and FIFO Clock Rates

3.15 ECC Generation[7]

An 8051 register bit selects one of two frequencies for the internally supplied interface clock: 30 MHz and 48 MHz. Alternatively,
an externally supplied clock of 5 MHz–48 MHz feeding the IFCLK
pin can be used as the interface clock. IFCLK can be configured
to function as an output clock when the GPIF and FIFOs are
internally clocked. An output enable bit in the IFCONFIG register
turns this clock output off, if desired. Another bit within the
IFCONFIG register inverts the IFCLK signal whether internally or
externally sourced.

The EZ-USB can calculate ECCs (Error Correcting Codes) on
data that passes across its GPIF or Slave FIFO interfaces. There
are two ECC configurations: Two ECCs, each calculated over
256 bytes (SmartMedia Standard); and one ECC calculated over
512 bytes.

3.14 GPIF

ECCM = 0

The GPIF is a flexible 8-bit or 16-bit parallel interface driven by
a user programmable finite state machine. It enables the
CY7C68013A/15A to perform local bus mastering and can
implement a wide variety of protocols such as ATA interface,
printer parallel port, and Utopia.

Two 3 byte ECCs, each calculated over a 256 byte block of data.
This configuration conforms to the SmartMedia Standard.

The GPIF has six programmable control outputs (CTL), nine
address outputs (GPIFADRx), and six general-purpose ready
inputs (RDY). The data bus width can be 8 or 16 bits. Each GPIF
vector defines the state of the control outputs, and determines
what state a ready input (or multiple inputs) must be before
proceeding. The GPIF vector can be programmed to advance a
FIFO to the next data value, advance an address, etc. A
sequence of the GPIF vectors make up a single waveform that
is executed to perform the desired data move between the
FX2LP and the external device.
3.14.1 Six Control OUT Signals
The 100-pin and 128-pin packages bring out all six Control
Output pins (CTL0-CTL5). The 8051 programs the GPIF unit to
define the CTL waveforms. The 56-pin package brings out three
of these signals, CTL0–CTL2. CTLx waveform edges can be
programmed to make transitions as fast as once per clock (20.8
ns using a 48-MHz clock).
3.14.2 Six Ready IN Signals
The 100-pin and 128-pin packages bring out all six Ready inputs
(RDY0–RDY5). The 8051 programs the GPIF unit to test the
RDY pins for GPIF branching. The 56-pin package brings out two
of these signals, RDY0–1.
3.14.3 Nine GPIF Address OUT Signals
Nine GPIF address lines are available in the 100-pin and 128-pin
packages, GPIFADR[8..0]. The GPIF address lines enable
indexing through up to a 512 byte block of RAM. If more address
lines are needed IO port pins are used.
3.14.4 Long Transfer Mode
In the master mode, the 8051 appropriately sets GPIF transaction count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or
GPIFTCB0) for unattended transfers of up to 232 transactions.
The GPIF automatically throttles data flow to prevent under or
overflow until the full number of requested transactions
complete. The GPIF decrements the value in these registers to
represent the current status of the transaction.

The ECC can correct any one-bit error or detect any two-bit error.
3.15.1 ECC Implementation
The two ECC configurations are selected by the ECCM bit:

Write any value to ECCRESET, then pass data across the GPIF
or Slave FIFO interface. The ECC for the first 256 bytes of data
is calculated and stored in ECC1. The ECC for the next 256 bytes
is stored in ECC2. After the second ECC is calculated, the values
in the ECCx registers do not change until ECCRESET is written
again, even if more data is subsequently passed across the
interface.
ECCM = 1
One 3 byte ECC calculated over a 512 byte block of data.
Write any value to ECCRESET then pass data across the GPIF
or Slave FIFO interface. The ECC for the first 512 bytes of data
is calculated and stored in ECC1; ECC2 is unused. After the
ECC is calculated, the values in ECC1 do not change even if
more data is subsequently passed across the interface, till
ECCRESET is written again.

3.16 USB Uploads and Downloads
The core has the ability to directly edit the data contents of the
internal 16 KByte RAM and of the internal 512 byte scratch pad
RAM via a vendor specific command. This capability is normally
used when soft downloading user code and is available only to
and from internal RAM, only when the 8051 is held in reset. The
available RAM spaces are 16 KBytes from 0x0000–0x3FFF
(code/data) and 512 bytes from 0xE000–0xE1FF (scratch pad
data RAM).[8]

3.17 Autopointer Access
FX2LP provides two identical autopointers. They are similar to
the internal 8051 data pointers but with an additional feature:
they can optionally increment after every memory access. This
capability is available to and from both internal and external
RAM. The autopointers are available in external FX2LP registers
under control of a mode bit (AUTOPTRSET-UP.0). Using the
external FX2LP autopointer access (at 0xE67B – 0xE67C)
enables the autopointer to access all internal and external RAM
to the part.
Also, the autopointers can point to any FX2LP register or
endpoint buffer space. When autopointer access to external
memory is enabled, location 0xE67B and 0xE67C in XDATA and
code space cannot be used.

Notes
7. To use the ECC logic, the GPIF or Slave FIFO interface must be configured for byte-wide operation.
8. After the data has been downloaded from the host, a “loader” can execute from internal RAM to transfer downloaded data to external memory.

Document #: 38-08032 Rev. *L

Page 12 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
3.18 I2C Controller

3.18.2 I2C Interface Boot Load Access

FX2LP has one I2C port that is driven by two internal controllers,
one that automatically operates at boot time to load VID/PID/DID
and configuration information, and another that the 8051 uses
when running to control external I2C devices. The I2C port
operates in master mode only.

At power on reset the I2C interface boot loader loads the
VID/PID/DID configuration bytes and up to 16 KBytes of
program/data. The available RAM spaces are 16 KBytes from
0x0000–0x3FFF and 512 bytes from 0xE000–0xE1FF. The 8051
is in reset. I2C interface boot loads only occur after power on
reset.

3.18.1 I2C Port Pins
The I2C pins SCL and SDA must have external 2.2 kΩ pull up
resistors even if no EEPROM is connected to the FX2LP.
External EEPROM device address pins must be configured
properly. See Table 8 for configuring the device address pins.
Table 8. Strap Boot EEPROM Address Lines to These Values
Bytes

Example EEPROM

A2

A1

A0

N/A

N/A

N/A

16

24LC00[9]

128

24LC01

0

0

0

256

24LC02

0

0

0

4K

24LC32

0

0

1

8K

24LC64

0

0

1

16K

24LC128

0

0

1

3.18.3 I2C Interface General-Purpose Access
The 8051 can control peripherals connected to the I2C bus using
the I2CTL and I2DAT registers. FX2LP provides I2C master
control only, it is never an I2C slave.

3.19 Compatible with Previous Generation
EZ-USB FX2
The EZ-USB FX2LP is form, fit and with minor exceptions
functionally compatible with its predecessor, the EZ-USB FX2.
This makes for an easy transition for designers wanting to
upgrade their systems from the FX2 to the FX2LP. The pinout
and package selection are identical and a vast majority of
firmware previously developed for the FX2 functions in the
FX2LP.
For designers migrating from the FX2 to the FX2LP a change in
the bill of material and review of the memory allocation (due to
increased internal memory) is required. For more information
about migrating from EZ-USB FX2 to EZ-USB FX2LP, see the
application note titled Migrating from EZ-USB FX2 to EZ-USB
FX2LP available in the Cypress web site.

Table 9. Part Number Conversion Table
EZ-USB FX2
Part Number

EZ-USB FX2LP
Part Number

CY7C68013-56PVC

CY7C68013A-56PVXC or CY7C68014A-56PVXC

CY7C68013-56PVCT

Package Description
56-pin SSOP

CY7C68013A-56PVXCT or CY7C68014A-56PVXCT 56-pin SSOP – Tape and Reel

CY7C68013-56LFC

CY7C68013A-56LFXC or CY7C68014A-56LFXC

56-pin QFN

CY7C68013-100AC

CY7C68013A-100AXC or CY7C68014A-100AXC

100-pin TQFP

CY7C68013-128AC

CY7C68013A-128AXC or CY7C68014A-128AXC

128-pin TQFP

Note
9. This EEPROM does not have address pins.

Document #: 38-08032 Rev. *L

Page 13 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

3.20 CY7C68013A/14A and CY7C68015A/16A
Differences
CY7C68013A is identical to CY7C68014A in form, fit, and
functionality. CY7C68015A is identical to CY7C68016A in form,
fit, and functionality. CY7C68014A and CY7C68016A have a
lower suspend current than CY7C68013A and CY7C68015A
respectively and are ideal for power sensitive battery applications.
CY7C68015A and CY7C68016A are available in 56-pin QFN
package only. Two additional GPIO signals are available on the
CY7C68015A and CY7C68016A to provide more flexibility when
neither IFCLK or CLKOUT are needed in the 56-pin package.
USB developers wanting to convert their FX2 56-pin application
to a bus-powered system directly benefit from these additional
signals. The two GPIOs give developers the signals they need
for the power control circuitry of their bus-powered application
without pushing them to a high pincount version of FX2LP.
The CY7C68015A is only available in the 56-pin QFN package
Table 10. CY7C68013A/14A and CY7C68015A/16A Pin Differences

4. Pin Assignments
Figure 6 on page 15 identifies all signals for the five package
types. The following pages illustrate the individual pin diagrams,
plus a combination diagram showing which of the full set of
signals are available in the 128-pin, 100-pin, and 56-pin
packages.
The signals on the left edge of the 56-pin package in Figure 6
on page 15 are common to all versions in the FX2LP family with
the noted differences between the CY7C68013A/14A and the
CY7C68015A/16A.
Three modes are available in all package versions: Port, GPIF
master, and Slave FIFO. These modes define the signals on the
right edge of the diagram. The 8051 selects the interface mode
using the IFCONFIG[1:0] register bits. Port mode is the power on
default configuration.
The 100-pin package adds functionality to the 56-pin package by
adding these pins:
■

PORTC or alternate GPIFADR[7:0] address signals

■

PORTE or alternate GPIFADR[8] address signal and seven
additional 8051 signals

■

Three GPIF Control signals

■

Four GPIF Ready signals

■

Nine 8051 signals (two USARTs, three timer inputs, INT4,and
INT5#)

■

BKPT, RD#, WR#.

CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A
IFCLK

PE0

CLKOUT

PE1

The 128-pin package adds the 8051 address and data buses
plus control signals. Note that two of the required signals, RD#
and WR#, are present in the 100-pin version.
In the 100-pin and 128-pin versions, an 8051 control bit can be
set to pulse the RD# and WR# pins when the 8051 reads
from/writes to PORTC. This feature is enabled by setting
PORTCSTB bit in CPUCS register.
Section 10.5 displays the timing diagram of the read and write
strobing function on accessing PORTC.

Document #: 38-08032 Rev. *L

Page 14 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Figure 6. Signal

Port

XTALIN
XTALOUT
RESET#
WAKEUP#
SCL
SDA

56

**PE0 replaces IFCLK
& PE1 replaces CLKOUT
on CY7C68015A/16A
**PE0
**PE1
IFCLK
CLKOUT
DPLUS
DMINUS

GPIF Master
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0

INT0#/PA0
INT1#/PA1
PA2
WU2/PA3
PA4
PA5
PA6
PA7

FD[15]
FD[14]
FD[13]
FD[12]
FD[11]
FD[10]
FD[9]
FD[8]
FD[7]
FD[6]
FD[5]
FD[4]
FD[3]
FD[2]
FD[1]
FD[0]

Slave FIFO
FD[15]
FD[14]
FD[13]
FD[12]
FD[11]
FD[10]
FD[9]
FD[8]
FD[7]
FD[6]
FD[5]
FD[4]
FD[3]
FD[2]
FD[1]
FD[0]

RDY0
RDY1

SLRD
SLWR

CTL0
CTL1
CTL2

FLAGA
FLAGB
FLAGC

INT0#/PA0
INT1#/PA1
PA2
WU2/PA3
PA4
PA5
PA6
PA7

INT0#/ PA0
INT1#/ PA1
SLOE
WU2/PA3
FIFOADR0
FIFOADR1
PKTEND
PA7/FLAGD/SLCS#

CTL3
CTL4
CTL5
RDY2
RDY3
RDY4
RDY5

100
BKPT
PORTC7/GPIFADR7
PORTC6/GPIFADR6
PORTC5/GPIFADR5
PORTC4/GPIFADR4
PORTC3/GPIFADR3
PORTC2/GPIFADR2
PORTC1/GPIFADR1
PORTC0/GPIFADR0
PE7/GPIFADR8
PE6/T2EX
PE5/INT6
PE4/RxD1OUT
PE3/RxD0OUT
PE2/T2OUT
PE1/T1OUT
PE0/T0OUT

128

Document #: 38-08032 Rev. *L

RD#
WR#
CS#
OE#
PSEN#

D7
D6
D5
D4
D3
D2
D1
D0

EA

RxD0
TxD0
RxD1
TxD1
INT4
INT5#
T2
T1
T0

A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

Page 15 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Figure 7. CY7C68013A/CY7C68014A 128-pin TQFP Pin Assignment

27
28
29
30
31
32
33
34
35
36
37
38

103

26

104

25

105

24

106

23

107

22

108

21

109

20

110

19

111

18

112

17

113

16

114

15

115

14

116

13

117

12

118

11

119

10

120

9

121

8

122

7

123

6

124

5

125

4

126

3

PD1/FD9
PD2/FD10
PD3/FD11
INT5#
VCC
PE0/T0OUT
PE1/T1OUT
PE2/T2OUT
PE3/RXD0OUT
PE4/RXD1OUT
PE5/INT6
PE6/T2EX
PE7/GPIFADR8
GND
A4
A5
A6
A7
PD4/FD12
PD5/FD13
PD6/FD14
PD7/FD15
GND
A8
A9
A10

2

127

128

1

CLKOUT
VCC
GND
RDY0/*SLRD
RDY1/*SLWR
RDY2
RDY3
RDY4
RDY5
AVCC
XTALOUT
XTALIN
AGND
NC
NC
NC
AVCC
DPLUS
DMINUS
AGND
A11
A12
A13
A14
A15
VCC
GND
INT4
T0
T1
T2
*IFCLK
RESERVED
BKPT
EA
SCL
SDA
OE#

PD0/FD8
*WAKEUP
VCC
RESET#
CTL5
A3
A2
A1
A0
GND
PA7/*FLAGD/SLCS#
PA6/*PKTEND
PA5/FIFOADR1
PA4/FIFOADR0
D7
D6
D5
PA3/*WU2
PA2/*SLOE
PA1/INT1#
PA0/INT0#
VCC
GND
PC7/GPIFADR7
PC6/GPIFADR6
PC5/GPIFADR5
PC4/GPIFADR4
PC3/GPIFADR3
PC2/GPIFADR2
PC1/GPIFADR1
PC0/GPIFADR0
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA
VCC
CTL4
CTL3
GND

CY7C68013A/CY7C68014A
128-pin TQFP

102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65

VCC
D4
D3
D2
D1
D0
GND
PB7/FD7
PB6/FD6
PB5/FD5
PB4/FD4
RXD1
TXD1
RXD0
TXD0
GND
VCC
PB3/FD3
PB2/FD2
PB1/FD1
PB0/FD0
VCC
CS#
WR#
RD#
PSEN#
64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

* denotes programmable polarity
Document #: 38-08032 Rev. *L

Page 16 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Figure 8. CY7C68013A/CY7C68014A 100-pin TQFP Pin Assignment
81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

PD1/FD9
PD2/FD10
PD3/FD11
INT5#
VCC
PE0/T0OUT
PE1/T1OUT
PE2/T2OUT
PE3/RXD0OUT
PE4/RXD1OUT
PE5/INT6
PE6/T2EX
PE7/GPIFADR8
GND
PD4/FD12
PD5/FD13
PD6/FD14
PD7/FD15
GND
CLKOUT

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

VCC
GND
RDY0/*SLRD
RDY1/*SLWR
RDY2
RDY3
RDY4
RDY5
AVCC
XTALOUT
XTALIN
AGND
NC
NC
NC
AVCC
DPLUS
DMINUS
AGND
VCC
GND
INT4
T0
T1
T2
*IFCLK
RESERVED
BKPT
SCL
SDA

CY7C68013A/CY7C68014A
100-pin TQFP

PD0/FD8
*WAKEUP
VCC
RESET#
CTL5
GND
PA7/*FLAGD/SLCS#
PA6/*PKTEND
PA5/FIFOADR1
PA4/FIFOADR0
PA3/*WU2
PA2/*SLOE
PA1/INT1#
PA0/INT0#
VCC
GND
PC7/GPIFADR7
PC6/GPIFADR6
PC5/GPIFADR5
PC4/GPIFADR4
PC3/GPIFADR3
PC2/GPIFADR2
PC1/GPIFADR1
PC0/GPIFADR0
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA
VCC
CTL4
CTL3

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

GND
VCC
GND
PB7/FD7
PB6/FD6
PB5/FD5
PB4/FD4
RXD1
TXD1
RXD0
TXD0
GND
VCC
PB3/FD3
PB2/FD2
PB1/FD1
PB0/FD0
VCC
WR#
RD#
50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

* denotes programmable polarity

Document #: 38-08032 Rev. *L

Page 17 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Figure 9. CY7C68013A/CY7C68014A 56-pin SSOP Pin Assignment

CY7C68013A/CY7C68014A
56-pin SSOP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

PD5/FD13
PD6/FD14
PD7/FD15
GND
CLKOUT
VCC
GND
RDY0/*SLRD
RDY1/*SLWR
AVCC
XTALOUT
XTALIN
AGND
AVCC
DPLUS
DMINUS
AGND
VCC
GND
*IFCLK
RESERVED
SCL
SDA
VCC
PB0/FD0
PB1/FD1
PB2/FD2
PB3/FD3

PD4/FD12
PD3/FD11
PD2/FD10
PD1/FD9
PD0/FD8
*WAKEUP
VCC
RESET#
GND
PA7/*FLAGD/SLCS#
PA6/PKTEND
PA5/FIFOADR1
PA4/FIFOADR0
PA3/*WU2
PA2/*SLOE
PA1/INT1#
PA0/INT0#
VCC
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA
GND
VCC
GND
PB7/FD7
PB6/FD6
PB5/FD5
PB4/FD4

56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29

* denotes programmable polarity

Document #: 38-08032 Rev. *L

Page 18 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Figure 10. CY7C68013A/14A/15A/16A 56-pin QFN Pin Assignment

GND

VCC

CLKOUT/**PE1

GND

PD7/FD15

PD6/FD14

PD5/FD13

PD4/FD12

PD3/FD11

PD2/FD10

PD1/FD9

PD0/FD8

*WAKEUP

VCC

56

55

54

53

52

51

50

49

48

47

46

45

44

43

RDY0/*SLRD

1

42

RESET#

RDY1/*SLWR

2

41

GND

AVCC

3

40

PA7/*FLAGD/SLCS#

XTALOUT

4

39

PA6/*PKTEND

XTALIN

5

38

PA5/FIFOADR1

AGND

6

37

PA4/FIFOADR0

AVCC

7

36

PA3/*WU2

DPLUS

8

35

PA2/*SLOE

DMINUS

9

34

PA1/INT1#

AGND

10

33

PA0/INT0#

VCC

11

32

VCC

GND

12

31

CTL2/*FLAGC

*IFCLK/**PE0

13

30

CTL1/*FLAGB

RESERVED

14

29

CTL0/*FLAGA

CY7C68013A/CY7C68014A
&
CY7C68015A/CY7C68016A
56-pin QFN

18

19

20

21

22

23

24

25

26

27

28

PB0/FD0

PB1/FD1

PB2/FD2

PB3/FD3

PB4/FD4

PB5/FD5

PB6/FD6

PB7/FD7

GND

VCC

GND

SDA

VCC

16

SCL

17

15

* denotes programmable polarity
** denotes CY7C68015A/CY7C68016A pinout

Document #: 38-08032 Rev. *L

Page 19 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Figure 11. CY7C68013A 56-pin VFBGA Pin Assignment - Top View
1

2

3

4

5

6

7

8

A

1A

2A

3A

4A

5A

6A

7A

8A

B

1B

2B

3B

4B

5B

6B

7B

8B

C

1C

2C

3C

4C

5C

6C

7C

8C

D

1D

2D

7D

8D

E

1E

2E

7E

8E

F

1F

2F

3F

4F

5F

6F

7F

8F

G

1G

2G

3G

4G

5G

6G

7G

8G

H

1H

2H

3H

4H

5H

6H

7H

8H

Document #: 38-08032 Rev. *L

Page 20 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

4.1 CY7C68013A/15A Pin Descriptions
The FX2LP Pin Descriptions follows.[10]
Table 11. FX2LP Pin Descriptions
128 100
56
56 56 VFTQFP TQFP SSOP QFN BGA

Name

Type

Default

Description

10

9

10

3

2D

AVCC

Power

N/A

Analog VCC. Connect this pin to 3.3V power source.
This signal provides power to the analog section of the
chip.

17

16

14

7

1D

AVCC

Power

N/A

Analog VCC. Connect this pin to 3.3V power source.
This signal provides power to the analog section of the
chip.

13

12

13

6

2F

AGND

Ground

N/A

Analog Ground. Connect to ground with as short a path
as possible.

20

19

17

10

1F

AGND

Ground

N/A

Analog Ground. Connect to ground with as short a path
as possible.

19

18

16

9

1E

DMINUS

IO/Z

Z

USB D– Signal. Connect to the USB D– signal.

18

17

15

8

2E

DPLUS

IO/Z

Z

USB D+ Signal. Connect to the USB D+ signal.
8051 Address Bus. This bus is driven at all times.
When the 8051 is addressing internal RAM it reflects
the internal address.

94

A0

Output

L

95

A1

Output

L

96

A2

Output

L

97

A3

Output

L

117

A4

Output

L

118

A5

Output

L

119

A6

Output

L

120

A7

Output

L

126

A8

Output

L

127

A9

Output

L

128

A10

Output

L

21

A11

Output

L

22

A12

Output

L

23

A13

Output

L

24

A14

Output

L

25

A15

Output

L

59

D0

IO/Z

Z

60

D1

IO/Z

Z

61

D2

IO/Z

Z

62

D3

IO/Z

Z

63

D4

IO/Z

Z

86

D5

IO/Z

Z

87

D6

IO/Z

Z

88

D7

IO/Z

Z

39

PSEN#

Output

H

8051 Data Bus. This bidirectional bus is high
impedance when inactive, input for bus reads, and
output for bus writes. The data bus is used for external
8051 program and data memory. The data bus is active
only for external bus accesses, and is driven LOW in
suspend.

Program Store Enable. This active-LOW signal
indicates an 8051 code fetch from external memory. It
is active for program memory fetches from
0x4000–0xFFFF when the EA pin is LOW, or from
0x0000–0xFFFF when the EA pin is HIGH.

Note
10. Unused inputs must not be left floating. Tie either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power up and in
standby. Note also that no pins should be driven while the device is powered down.

Document #: 38-08032 Rev. *L

Page 21 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Table 11. FX2LP Pin Descriptions (continued)
128 100
56
56 56 VFTQFP TQFP SSOP QFN BGA
34

28

99

77

Name

Type

Default

Description

Output

L

Breakpoint. This pin goes active (HIGH) when the 8051
address bus matches the BPADDRH/L registers and
breakpoints are enabled in the BREAKPT register
(BPEN = 1). If the BPPULSE bit in the BREAKPT
register is HIGH, this signal pulses HIGH for eight
12-/24-/48-MHz clocks. If the BPPULSE bit is LOW, the
signal remains HIGH until the 8051 clears the BREAK
bit (by writing 1 to it) in the BREAKPT register.

RESET#

Input

N/A

Active LOW Reset. Resets the entire chip. See section
3.9 ”Reset and Wakeup” on page 6 for more details.

EA

Input

N/A

External Access. This pin determines where the 8051
fetches code between addresses 0x0000 and 0x3FFF.
If EA = 0 the 8051 fetches this code from its internal
RAM. IF EA = 1 the 8051 fetches this code from external
memory.

Input

N/A

Crystal Input. Connect this signal to a 24-MHz
parallel-resonant, fundamental mode crystal and load
capacitor to GND.
It is also correct to drive XTALIN with an external
24-MHz square wave derived from another clock
source. When driving from an external source, the
driving signal should be a 3.3V square wave.

Output

N/A

Crystal Output. Connect this signal to a 24-MHz
parallel-resonant, fundamental mode crystal and load
capacitor to GND.
If an external clock is used to drive XTALIN, leave this
pin open.

BKPT

49

42

8B

35

12

11

12

5

1C

XTALIN

11

10

11

4

2C

XTALOUT

1

100

5

54

2B

O/Z
12 MHz
CLKOUT on
CY7C68013A
and
CY7C68014A
------------------ ----------- ---------IO/Z
I
PE1 on
CY7C68015A
and
CY7C68016A

82

67

40

33

8G

PA0 or
INT0#

IO/Z

I
Multiplexed pin whose function is selected by
(PA0) PORTACFG.0
PA0 is a bidirectional IO port pin.
INT0# is the active-LOW 8051 INT0 interrupt input
signal, which is either edge triggered (IT0 = 1) or level
triggered (IT0 = 0).

83

68

41

34

6G

PA1 or
INT1#

IO/Z

I
Multiplexed pin whose function is selected by:
(PA1) PORTACFG.1
PA1 is a bidirectional IO port pin.
INT1# is the active-LOW 8051 INT1 interrupt input
signal, which is either edge triggered (IT1 = 1) or level
triggered (IT1 = 0).

84

69

42

35

8F

PA2 or
SLOE or

IO/Z

I
Multiplexed pin whose function is selected by two bits:
(PA2) IFCONFIG[1:0].
PA2 is a bidirectional IO port pin.
SLOE is an input-only output enable with programmable polarity (FIFOPINPOLAR.4) for the slave FIFOs
connected to FD[7..0] or FD[15..0].

CLKOUT: 12-, 24- or 48-MHz clock, phase locked to the
24-MHz input clock. The 8051 defaults to 12-MHz
operation. The 8051 may three-state this output by
setting CPUCS.1 = 1.
-----------------------------------------------------------------------PE1 is a bidirectional IO port pin.

Port A

Document #: 38-08032 Rev. *L

Page 22 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Table 11. FX2LP Pin Descriptions (continued)
128 100
56
56 56 VFTQFP TQFP SSOP QFN BGA

Name

Type

Default

Description

85

70

43

36

7F

PA3 or
WU2

IO/Z

I
Multiplexed pin whose function is selected by:
(PA3) WAKEUP.7 and OEA.3
PA3 is a bidirectional IO port pin.
WU2 is an alternate source for USB Wakeup, enabled
by WU2EN bit (WAKEUP.1) and polarity set by
WU2POL (WAKEUP.4). If the 8051 is in suspend and
WU2EN = 1, a transition on this pin starts up the oscillator and interrupts the 8051 to enable it to exit the
suspend mode. Asserting this pin inhibits the chip from
suspending, if WU2EN = 1.

89

71

44

37

6F

PA4 or
FIFOADR0

IO/Z

I
Multiplexed pin whose function is selected by:
(PA4) IFCONFIG[1..0].
PA4 is a bidirectional IO port pin.
FIFOADR0 is an input-only address select for the slave
FIFOs connected to FD[7..0] or FD[15..0].

90

72

45

38

8C

PA5 or
FIFOADR1

IO/Z

I
Multiplexed pin whose function is selected by:
(PA5) IFCONFIG[1..0].
PA5 is a bidirectional IO port pin.
FIFOADR1 is an input-only address select for the slave
FIFOs connected to FD[7..0] or FD[15..0].

91

73

46

39

7C

PA6 or
PKTEND

IO/Z

I
Multiplexed pin whose function is selected by the
(PA6) IFCONFIG[1:0] bits.
PA6 is a bidirectional IO port pin.
PKTEND is an input used to commit the FIFO packet
data to the endpoint and whose polarity is programmable via FIFOPINPOLAR.5.

92

74

47

40

6C

PA7 or
FLAGD or
SLCS#

IO/Z

I
Multiplexed pin whose function is selected by the
(PA7) IFCONFIG[1:0] and PORTACFG.7 bits.
PA7 is a bidirectional IO port pin.
FLAGD is a programmable slave-FIFO output status
flag signal.
SLCS# gates all other slave FIFO enable/strobes

44

34

25

18

3H

PB0 or
FD[0]

IO/Z

I
Multiplexed pin whose function is selected by the
(PB0) following bits: IFCONFIG[1..0].
PB0 is a bidirectional IO port pin.
FD[0] is the bidirectional FIFO/GPIF data bus.

45

35

26

19

4F

PB1 or
FD[1]

IO/Z

I
Multiplexed pin whose function is selected by the
(PB1) following bits: IFCONFIG[1..0].
PB1 is a bidirectional IO port pin.
FD[1] is the bidirectional FIFO/GPIF data bus.

46

36

27

20

4H

PB2 or
FD[2]

IO/Z

I
Multiplexed pin whose function is selected by the
(PB2) following bits: IFCONFIG[1..0].
PB2 is a bidirectional IO port pin.
FD[2] is the bidirectional FIFO/GPIF data bus.

47

37

28

21

4G

PB3 or
FD[3]

IO/Z

I
Multiplexed pin whose function is selected by the
(PB3) following bits: IFCONFIG[1..0].
PB3 is a bidirectional IO port pin.
FD[3] is the bidirectional FIFO/GPIF data bus.

54

44

29

22

5H

PB4 or
FD[4]

IO/Z

I
Multiplexed pin whose function is selected by the
(PB4) following bits: IFCONFIG[1..0].
PB4 is a bidirectional IO port pin.
FD[4] is the bidirectional FIFO/GPIF data bus.

Port B

Document #: 38-08032 Rev. *L

Page 23 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Table 11. FX2LP Pin Descriptions (continued)
128 100
56
56 56 VFTQFP TQFP SSOP QFN BGA

Name

Type

Default

Description

55

45

30

23

5G

PB5 or
FD[5]

IO/Z

I
Multiplexed pin whose function is selected by the
(PB5) following bits: IFCONFIG[1..0].
PB5 is a bidirectional IO port pin.
FD[5] is the bidirectional FIFO/GPIF data bus.

56

46

31

24

5F

PB6 or
FD[6]

IO/Z

I
Multiplexed pin whose function is selected by the
(PB6) following bits: IFCONFIG[1..0].
PB6 is a bidirectional IO port pin.
FD[6] is the bidirectional FIFO/GPIF data bus.

57

47

32

25

6H

PB7 or
FD[7]

IO/Z

I
Multiplexed pin whose function is selected by the
(PB7) following bits: IFCONFIG[1..0].
PB7 is a bidirectional IO port pin.
FD[7] is the bidirectional FIFO/GPIF data bus.

PORT C
72

57

PC0 or
GPIFADR0

IO/Z

I
Multiplexed pin whose function is selected by
(PC0) PORTCCFG.0
PC0 is a bidirectional IO port pin.
GPIFADR0 is a GPIF address output pin.

73

58

PC1 or
GPIFADR1

IO/Z

I
Multiplexed pin whose function is selected by
(PC1) PORTCCFG.1
PC1 is a bidirectional IO port pin.
GPIFADR1 is a GPIF address output pin.

74

59

PC2 or
GPIFADR2

IO/Z

I
Multiplexed pin whose function is selected by
(PC2) PORTCCFG.2
PC2 is a bidirectional IO port pin.
GPIFADR2 is a GPIF address output pin.

75

60

PC3 or
GPIFADR3

IO/Z

I
Multiplexed pin whose function is selected by
(PC3) PORTCCFG.3
PC3 is a bidirectional IO port pin.
GPIFADR3 is a GPIF address output pin.

76

61

PC4 or
GPIFADR4

IO/Z

I
Multiplexed pin whose function is selected by
(PC4) PORTCCFG.4
PC4 is a bidirectional IO port pin.
GPIFADR4 is a GPIF address output pin.

77

62

PC5 or
GPIFADR5

IO/Z

I
Multiplexed pin whose function is selected by
(PC5) PORTCCFG.5
PC5 is a bidirectional IO port pin.
GPIFADR5 is a GPIF address output pin.

78

63

PC6 or
GPIFADR6

IO/Z

I
Multiplexed pin whose function is selected by
(PC6) PORTCCFG.6
PC6 is a bidirectional IO port pin.
GPIFADR6 is a GPIF address output pin.

79

64

PC7 or
GPIFADR7

IO/Z

I
Multiplexed pin whose function is selected by
(PC7) PORTCCFG.7
PC7 is a bidirectional IO port pin.
GPIFADR7 is a GPIF address output pin.

PORT D
102

80

52

45

8A

PD0 or
FD[8]

IO/Z

I
Multiplexed pin whose function is selected by the
(PD0) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[8] is the bidirectional FIFO/GPIF data bus.

103

81

53

46

7A

PD1 or
FD[9]

IO/Z

I
Multiplexed pin whose function is selected by the
(PD1) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[9] is the bidirectional FIFO/GPIF data bus.

Document #: 38-08032 Rev. *L

Page 24 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Table 11. FX2LP Pin Descriptions (continued)
128 100
56
56 56 VFTQFP TQFP SSOP QFN BGA

Name

Type

Default

Description

104

82

54

47

6B

PD2 or
FD[10]

IO/Z

I
Multiplexed pin whose function is selected by the
(PD2) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[10] is the bidirectional FIFO/GPIF data bus.

105

83

55

48

6A

PD3 or
FD[11]

IO/Z

I
Multiplexed pin whose function is selected by the
(PD3) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[11] is the bidirectional FIFO/GPIF data bus.

121

95

56

49

3B

PD4 or
FD[12]

IO/Z

I
Multiplexed pin whose function is selected by the
(PD4) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[12] is the bidirectional FIFO/GPIF data bus.

122

96

1

50

3A

PD5 or
FD[13]

IO/Z

I
Multiplexed pin whose function is selected by the
(PD5) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[13] is the bidirectional FIFO/GPIF data bus.

123

97

2

51

3C

PD6 or
FD[14]

IO/Z

I
Multiplexed pin whose function is selected by the
(PD6) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[14] is the bidirectional FIFO/GPIF data bus.

124

98

3

52

2A

PD7 or
FD[15]

IO/Z

I
Multiplexed pin whose function is selected by the
(PD7) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[15] is the bidirectional FIFO/GPIF data bus.

Port E
108

86

PE0 or
T0OUT

IO/Z

I
Multiplexed pin whose function is selected by the
(PE0) PORTECFG.0 bit.
PE0 is a bidirectional IO port pin.
T0OUT is an active-HIGH signal from 8051
Timer-counter0. T0OUT outputs a high level for one
CLKOUT clock cycle when Timer0 overflows. If Timer0
is operated in Mode 3 (two separate timer/counters),
T0OUT is active when the low byte timer/counter
overflows.

109

87

PE1 or
T1OUT

IO/Z

I
Multiplexed pin whose function is selected by the
(PE1) PORTECFG.1 bit.
PE1 is a bidirectional IO port pin.
T1OUT is an active-HIGH signal from 8051
Timer-counter1. T1OUT outputs a high level for one
CLKOUT clock cycle when Timer1 overflows. If Timer1
is operated in Mode 3 (two separate timer/counters),
T1OUT is active when the low byte timer/counter
overflows.

110

88

PE2 or
T2OUT

IO/Z

I
Multiplexed pin whose function is selected by the
(PE2) PORTECFG.2 bit.
PE2 is a bidirectional IO port pin.
T2OUT is the active-HIGH output signal from 8051
Timer2. T2OUT is active (HIGH) for one clock cycle
when Timer/Counter 2 overflows.

111

89

PE3 or
RXD0OUT

IO/Z

I
Multiplexed pin whose function is selected by the
(PE3) PORTECFG.3 bit.
PE3 is a bidirectional IO port pin.
RXD0OUT is an active-HIGH signal from 8051 UART0.
If RXD0OUT is selected and UART0 is in Mode 0, this
pin provides the output data for UART0 only when it is
in sync mode. Otherwise it is a 1.

Document #: 38-08032 Rev. *L

Page 25 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Table 11. FX2LP Pin Descriptions (continued)
128 100
56
56 56 VFTQFP TQFP SSOP QFN BGA

Name

Type

Default

Description

112

90

PE4 or
RXD1OUT

IO/Z

I
Multiplexed pin whose function is selected by the
(PE4) PORTECFG.4 bit.
PE4 is a bidirectional IO port pin.
RXD1OUT is an active-HIGH output from 8051 UART1.
When RXD1OUT is selected and UART1 is in Mode 0,
this pin provides the output data for UART1 only when
it is in sync mode. In Modes 1, 2, and 3, this pin is HIGH.

113

91

PE5 or
INT6

IO/Z

I
Multiplexed pin whose function is selected by the
(PE5) PORTECFG.5 bit.
PE5 is a bidirectional IO port pin.
INT6 is the 8051 INT6 interrupt request input signal. The
INT6 pin is edge-sensitive, active HIGH.

114

92

PE6 or
T2EX

IO/Z

I
Multiplexed pin whose function is selected by the
(PE6) PORTECFG.6 bit.
PE6 is a bidirectional IO port pin.
T2EX is an active-HIGH input signal to the 8051 Timer2.
T2EX reloads timer 2 on its falling edge. T2EX is active
only if the EXEN2 bit is set in T2CON.

115

93

PE7 or
GPIFADR8

IO/Z

I
Multiplexed pin whose function is selected by the
(PE7) PORTECFG.7 bit.
PE7 is a bidirectional IO port pin.
GPIFADR8 is a GPIF address output pin.

4

3

8

1

1A

RDY0 or
SLRD

Input

N/A

Multiplexed pin whose function is selected by the
following bits:
IFCONFIG[1..0].
RDY0 is a GPIF input signal.
SLRD is the input-only read strobe with programmable
polarity (FIFOPINPOLAR.3) for the slave FIFOs
connected to FD[7..0] or FD[15..0].

5

4

9

2

1B

RDY1 or
SLWR

Input

N/A

Multiplexed pin whose function is selected by the
following bits:
IFCONFIG[1..0].
RDY1 is a GPIF input signal.
SLWR is the input-only write strobe with programmable
polarity (FIFOPINPOLAR.2) for the slave FIFOs
connected to FD[7..0] or FD[15..0].

6

5

RDY2

Input

N/A

RDY2 is a GPIF input signal.

7

6

RDY3

Input

N/A

RDY3 is a GPIF input signal.

8

7

RDY4

Input

N/A

RDY4 is a GPIF input signal.

9

8

RDY5

Input

N/A

RDY5 is a GPIF input signal.

69

54

CTL0 or
FLAGA

O/Z

H

36

29

Document #: 38-08032 Rev. *L

7H

Multiplexed pin whose function is selected by the
following bits:
IFCONFIG[1..0].
CTL0 is a GPIF control output.
FLAGA is a programmable slave-FIFO output status
flag signal.
Defaults to programmable for the FIFO selected by the
FIFOADR[1:0] pins.

Page 26 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Table 11. FX2LP Pin Descriptions (continued)
128 100
56
56 56 VFTQFP TQFP SSOP QFN BGA

Name

Type

Default

Description

70

55

37

30

7G

CTL1 or
FLAGB

O/Z

H

Multiplexed pin whose function is selected by the
following bits:
IFCONFIG[1..0].
CTL1 is a GPIF control output.
FLAGB is a programmable slave-FIFO output status
flag signal.
Defaults to FULL for the FIFO selected by the
FIFOADR[1:0] pins.

71

56

38

31

8H

CTL2 or
FLAGC

O/Z

H

Multiplexed pin whose function is selected by the
following bits:
IFCONFIG[1..0].
CTL2 is a GPIF control output.
FLAGC is a programmable slave-FIFO output status
flag signal.
Defaults to EMPTY for the FIFO selected by the
FIFOADR[1:0] pins.

66

51

CTL3

O/Z

H

CTL3 is a GPIF control output.

67

52

CTL4

Output

H

CTL4 is a GPIF control output.

98

76

CTL5

Output

H

CTL5 is a GPIF control output.

32

26

IFCLK on
CY7C68013A
and
CY7C68014A

IO/Z

Z

28

22

INT4

Input

N/A

INT4 is the 8051 INT4 interrupt request input signal. The
INT4 pin is edge-sensitive, active HIGH.

106

84

INT5#

Input

N/A

INT5# is the 8051 INT5 interrupt request input signal.
The INT5 pin is edge-sensitive, active LOW.

31

25

T2

Input

N/A

T2 is the active-HIGH T2 input signal to 8051 Timer2,
which provides the input to Timer2 when C/T2 = 1.
When C/T2 = 0, Timer2 does not use this pin.

30

24

T1

Input

N/A

T1 is the active-HIGH T1 signal for 8051 Timer1, which
provides the input to Timer1 when C/T1 is 1. When C/T1
is 0, Timer1 does not use this bit.

29

23

T0

Input

N/A

T0 is the active-HIGH T0 signal for 8051 Timer0, which
provides the input to Timer0 when C/T0 is 1. When C/T0
is 0, Timer0 does not use this bit.

53

43

RXD1

Input

N/A

RXD1is an active-HIGH input signal for 8051 UART1,
which provides data to the UART in all modes.

52

42

TXD1

Output

H

TXD1is an active-HIGH output pin from 8051 UART1,
which provides the output clock in sync mode, and the
output data in async mode.

51

41

RXD0

Input

N/A

RXD0 is the active-HIGH RXD0 input to 8051 UART0,
which provides data to the UART in all modes.

20

13

Document #: 38-08032 Rev. *L

2G

Interface Clock, used for synchronously clocking data
into or out of the slave FIFOs. IFCLK also serves as a
timing reference for all slave FIFO control signals and
GPIF. When internal clocking is used (IFCONFIG.7 = 1)
the IFCLK pin can be configured to output 30/48 MHz
by bits IFCONFIG.5 and IFCONFIG.6. IFCLK may be
inverted, whether internally or externally sourced, by
setting the bit IFCONFIG.4 =1.
------------------ ----------- ---------- ----------------------------------------------------------------------PE0 is a bidirectional IO port pin.
PE0 on
IO/Z
I
CY7C68015A
and
CY7C68016A

Page 27 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Table 11. FX2LP Pin Descriptions (continued)
128 100
56
56 56 VFTQFP TQFP SSOP QFN BGA
50

Name

Type

Default

Description

H

TXD0 is the active-HIGH TXD0 output from 8051
UART0, which provides the output clock in sync mode,
and the output data in async mode.

40

TXD0

Output

CS#

Output

H

CS# is the active-LOW chip select for external memory.

41

32

WR#

Output

H

WR# is the active-LOW write strobe output for external
memory.

40

31

RD#

Output

H

RD# is the active-LOW read strobe output for external
memory.

OE#

Output

H

OE# is the active-LOW output enable for external
memory.

42

38

33

27

21

14

2H

Reserved

Input

N/A

Reserved. Connect to ground.

101

79

51

44

7B

WAKEUP

Input

N/A

USB Wakeup. If the 8051 is in suspend, asserting this
pin starts up the oscillator and interrupts the 8051 to
enable it to exit the suspend mode. Holding WAKEUP
asserted inhibits the EZ-USB® chip from suspending.
This pin has programmable polarity (WAKEUP.4).

36

29

22

15

3F

SCL

OD

Z

Clock for the I2C interface. Connect to VCC with a 2.2K
resistor, even if no I2C peripheral is attached.

37

30

23

16

3G

SDA

OD

Z

Data for I2C-compatible interface. Connect to VCC
with a 2.2K resistor, even if no I2C-compatible
peripheral is attached.

2

1

6

55

5A

VCC

Power

N/A

VCC. Connect to 3.3V power source.

26

20

18

11

1G

VCC

Power

N/A

VCC. Connect to 3.3V power source.

43

33

24

17

7E

VCC

Power

N/A

VCC. Connect to 3.3V power source.

48

38

64

49

34

27

8E

68

53

VCC

81

66

39

32

5C

VCC

100

78

50

43

5B

VCC

107

85

VCC

3

2

7

56

4B

GND

27

21

19

12

1H

49

39

58

48

33

26

65

50

35

28

80

65

93

75

48

41

4C

116

94

125

99

4

53

4A

VCC

Power

N/A

VCC. Connect to 3.3V power source.

VCC

Power

N/A

VCC. Connect to 3.3V power source.

Power

N/A

VCC. Connect to 3.3V power source.

Power

N/A

VCC. Connect to 3.3V power source.

Power

N/A

VCC. Connect to 3.3V power source.

Power

N/A

VCC. Connect to 3.3V power source.

Ground

N/A

Ground.

GND

Ground

N/A

Ground.

GND

Ground

N/A

Ground.

7D

GND

Ground

N/A

Ground.

8D

GND

Ground

N/A

Ground.

GND

Ground

N/A

Ground.

GND

Ground

N/A

Ground.

GND

Ground

N/A

Ground.

GND

Ground

N/A

Ground.

14

13

NC

N/A

N/A

No Connect. This pin must be left open.

15

14

NC

N/A

N/A

No Connect. This pin must be left open.

16

15

NC

N/A

N/A

No Connect. This pin must be left open.

Document #: 38-08032 Rev. *L

Page 28 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

5. Register Summary
FX2LP register bit definitions are described in the FX2LP TRM in greater detail.
Table 12. FX2LP Register Summary
Hex
E400
E480
E50D
E600
E601
E602
E603
E604
E605
E606
E607
E608
E609
E60A

Size Name
Description
b7
GPIF Waveform Memories
128 WAVEDATA
GPIF Waveform
D7
Descriptor 0, 1, 2, 3 data
128 reserved
GENERAL CONFIGURATION
GPCR2
General Purpose Configu- reserved
ration Register 2
1
CPUCS
CPU Control & Status
0
1
IFCONFIG
Interface Configuration
IFCLKSRC
(Ports, GPIF, slave FIFOs)
[11]
1
PINFLAGSAB
Slave FIFO FLAGA and FLAGB3
FLAGB Pin Configuration
1
PINFLAGSCD[11]
Slave FIFO FLAGC and FLAGD3
FLAGD Pin Configuration
1
FIFORESET[11]
Restore FIFOS to default NAKALL
state
1
BREAKPT
Breakpoint Control
0
1
BPADDRH
Breakpoint Address H
A15
1
BPADDRL
Breakpoint Address L
A7
1
UART230
230 Kbaud internally
0
generated ref. clock
1
FIFOPINPOLAR[11] Slave FIFO Interface pins 0
polarity
1
REVID
Chip Revision
rv7

E60B 1
E60C 1
3
E610 1
E611 1
E612
E613
E614
E615

1
1
1
1
2
E618 1
E619 1
E61A 1
E61B 1
E61C 4
E620 1
E621 1
E622 1
E623 1
E624 1
E625 1
E626 1

REVCTL[11]

Chip Revision Control
UDMA
GPIFHOLDAMOUNT MSTB Hold Time
(for UDMA)
reserved
ENDPOINT CONFIGURATION
EP1OUTCFG
Endpoint 1-OUT
Configuration
EP1INCFG
Endpoint 1-IN
Configuration
EP2CFG
Endpoint 2 Configuration
EP4CFG
Endpoint 4 Configuration
EP6CFG
Endpoint 6 Configuration
EP8CFG
Endpoint 8 Configuration
reserved
EP2FIFOCFG[11]
Endpoint 2 / slave FIFO
configuration
[11]
EP4FIFOCFG
Endpoint 4 / slave FIFO
configuration
[11]
EP6FIFOCFG
Endpoint 6 / slave FIFO
configuration
[11]
EP8FIFOCFG
Endpoint 8 / slave FIFO
configuration
reserved
EP2AUTOINLENH[11 Endpoint 2 AUTOIN
Packet Length H
EP2AUTOINLENL[11] Endpoint 2 AUTOIN
Packet Length L
EP4AUTOINLENH[11] Endpoint 4 AUTOIN
Packet Length H
EP4AUTOINLENL[11] Endpoint 4 AUTOIN
Packet Length L
EP6AUTOINLENH[11] Endpoint 6 AUTOIN
Packet Length H
EP6AUTOINLENL[11] Endpoint 6 AUTOIN
Packet Length L
EP8AUTOINLENH[11] Endpoint 8 AUTOIN
Packet Length H

E627 1

EP8AUTOINLENL

E628 1
E629 1
E62A 1

ECCCFG
ECCRESET
ECC1B0

[11]

Endpoint 8 AUTOIN
Packet Length L
ECC Configuration
ECC Reset
ECC1 Byte 0 Address

b6

b5

b4

b3

b2

b1

b0

Default

Access

D6

D5

D4

D3

D2

D1

D0

xxxxxxxx RW

reserved

reserved

reserved

reserved

reserved

00000000 R

0
3048MHZ

FULL_SPEE reserved
D_ONLY
PORTCSTB CLKSPD1 CLKSPD0
IFCLKOE
IFCLKPOL ASYNC

CLKINV
GSTATE

CLKOE
IFCFG1

8051RES
IFCFG0

00000010 rrbbbbbr
10000000 RW

FLAGB2

FLAGB1

FLAGB0

FLAGA3

FLAGA2

FLAGA1

FLAGA0

00000000 RW

FLAGD2

FLAGD1

FLAGD0

FLAGC3

FLAGC2

FLAGC1

FLAGC0

00000000 RW

0

0

0

EP3

EP2

EP1

EP0

xxxxxxxx W

0
A14
A6
0

0
A13
A5
0

0
A12
A4
0

BREAK
A11
A3
0

BPPULSE
A10
A2
0

BPEN
A9
A1
230UART1

0
A8
A0
230UART0

00000000 rrrrbbbr
xxxxxxxx RW
xxxxxxxx RW
00000000 rrrrrrbb

0

PKTEND

SLOE

SLRD

SLWR

EF

FF

00000000 rrbbbbbb

rv6

rv5

rv4

rv3

rv2

rv1

rv0

0

0

0

0

0

0

dyn_out

enh_pkt

RevA
R
00000001
00000000 rrrrrrbb

0

0

0

0

0

0

HOLDTIME1 HOLDTIME0 00000000 rrrrrrbb

VALID

0

TYPE1

TYPE0

0

0

0

0

10100000 brbbrrrr

VALID

0

TYPE1

TYPE0

0

0

0

0

10100000 brbbrrrr

VALID
VALID
VALID
VALID

DIR
DIR
DIR
DIR

TYPE1
TYPE1
TYPE1
TYPE1

TYPE0
TYPE0
TYPE0
TYPE0

SIZE
0
SIZE
0

0
0
0
0

BUF1
0
BUF1
0

BUF0
0
BUF0
0

10100010 bbbbbrbb
10100000 bbbbrrrr
11100010 bbbbbrbb
11100000 bbbbrrrr

0

INFM1

OEP1

AUTOOUT

AUTOIN

ZEROLENIN 0

WORDWIDE 00000101 rbbbbbrb

0

INFM1

OEP1

AUTOOUT

AUTOIN

ZEROLENIN 0

WORDWIDE 00000101 rbbbbbrb

0

INFM1

OEP1

AUTOOUT

AUTOIN

ZEROLENIN 0

WORDWIDE 00000101 rbbbbbrb

0

INFM1

OEP1

AUTOOUT

AUTOIN

ZEROLENIN 0

WORDWIDE 00000101 rbbbbbrb

0

0

0

0

0

PL10

PL9

PL8

00000010 rrrrrbbb

PL7

PL6

PL5

PL4

PL3

PL2

PL1

PL0

00000000 RW

0

0

0

0

0

0

PL9

PL8

00000010 rrrrrrbb

PL7

PL6

PL5

PL4

PL3

PL2

PL1

PL0

00000000 RW

0

0

0

0

0

PL10

PL9

PL8

00000010 rrrrrbbb

PL7

PL6

PL5

PL4

PL3

PL2

PL1

PL0

00000000 RW

0

0

0

0

0

0

PL9

PL8

00000010 rrrrrrbb

PL7

PL6

PL5

PL4

PL3

PL2

PL1

PL0

00000000 RW

0
x
LINE15

0
x
LINE14

0
x
LINE13

0
x
LINE12

0
x
LINE11

0
x
LINE10

0
x
LINE9

ECCM
x
LINE8

00000000 rrrrrrrb
00000000 W
00000000 R

Note
11. Read and writes to these registers may require synchronization delay, see Technical Reference Manual for “Synchronization Delay.”

Document #: 38-08032 Rev. *L

Page 29 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Table 12. FX2LP Register Summary (continued)
Hex
E62B
E62C
E62D

Size
1
1
1

Name
ECC1B1
ECC1B2
ECC2B0

Description
ECC1 Byte 1 Address
ECC1 Byte 2 Address
ECC2 Byte 0 Address

b7
LINE7
COL5
LINE15

b6
LINE6
COL4
LINE14

b5
LINE5
COL3
LINE13

b4
LINE4
COL2
LINE12

b3
LINE3
COL1
LINE11

E62E
E62F
E630
H.S.
E630
F.S.
E631
H.S.
E631
F.S
E632
H.S.
E632
F.S
E633
H.S.
E633
F.S

1
1
1

ECC2B1
ECC2B2
EP2FIFOPFH[11]

LINE7
COL5
DECIS

LINE6
COL4
PKTSTAT

1

EP2FIFOPFH[11]

DECIS

PKTSTAT

LINE5
COL3
IN:PKTS[2]
OUT:PFC12
OUT:PFC12

LINE4
COL2
IN:PKTS[1]
OUT:PFC11
OUT:PFC11

1

EP2FIFOPFL[11]

PFC7

PFC6

PFC5

1

EP2FIFOPFL[11]
EP4FIFOPFH[11]

IN:PKTS[1]
OUT:PFC7
DECIS

IN:PKTS[0]
OUT:PFC6
PKTSTAT

PFC5

1

0

1

EP4FIFOPFH[11]

DECIS

PKTSTAT

1

EP4FIFOPFL[11]

PFC7

PFC6

1

EP4FIFOPFL[11]

ECC2 Byte 1 Address
ECC2 Byte 2 Address
Endpoint 2 / slave FIFO
Programmable Flag H
Endpoint 2 / slave FIFO
Programmable Flag H
Endpoint 2 / slave FIFO
Programmable Flag L
Endpoint 2 / slave FIFO
Programmable Flag L
Endpoint 4 / slave FIFO
Programmable Flag H
Endpoint 4 / slave FIFO
Programmable Flag H
Endpoint 4 / slave FIFO
Programmable Flag L
Endpoint 4 / slave FIFO
Programmable Flag L

E634
H.S.
E634
F.S
E635
H.S.
E635
F.S
E636
H.S.
E636
F.S
E637
H.S.
E637
F.S

1

EP6FIFOPFH[11]

PKTSTAT

1

DECIS

1

EP6FIFOPFL[11]

1

EP6FIFOPFL[11]

1

EP8FIFOPFH[11]

1

EP8FIFOPFH[11]

1

EP8FIFOPFL[11]

1

EP8FIFOPFL[11]

Endpoint 6 / slave FIFO
Programmable Flag H
Endpoint 6 / slave FIFO
Programmable Flag H
Endpoint 6 / slave FIFO
Programmable Flag L
Endpoint 6 / slave FIFO
Programmable Flag L
Endpoint 8 / slave FIFO
Programmable Flag H
Endpoint 8 / slave FIFO
Programmable Flag H
Endpoint 8 / slave FIFO
Programmable Flag L
Endpoint 8 / slave FIFO
Programmable Flag L

DECIS

EP6FIFOPFH[11]

8
E640 1

reserved
EP2ISOINPKTS

AADJ

0

E641 1

EP4ISOINPKTS

AADJ

E642 1

EP6ISOINPKTS

E643 1

EP8ISOINPKTS

EP2 (if ISO) IN Packets
per frame (1-3)
EP4 (if ISO) IN Packets
per frame (1-3)
EP6 (if ISO) IN Packets
per frame (1-3)
EP8 (if ISO) IN Packets
per frame (1-3)

E644 4
E648 1
E649 7
E650 1

reserved
INPKTEND[11]
OUTPKTEND[11]
INTERRUPTS
EP2FIFOIE[11]

E651 1

EP2FIFOIRQ[11,12]

E652 1

[11]

EP4FIFOIE

[11,12]

E653 1

EP4FIFOIRQ

E654 1

EP6FIFOIE[11]

E655 1

EP6FIFOIRQ[11,12]

E656 1

[11]

EP8FIFOIE

[11,12]

E657 1

EP8FIFOIRQ

E658 1

IBNIE

E659 1

IBNIRQ[12]

E65A 1

NAKIE

E65B 1

NAKIRQ[12]

E65C 1

USBIE

b2
LINE2
COL0
LINE10

b1
LINE1
LINE17
LINE9

b0
LINE0
LINE16
LINE8

Default
Access
00000000 R
00000000 R
00000000 R

LINE3
LINE2
COL1
COL0
IN:PKTS[0] 0
OUT:PFC10
OUT:PFC10 0

LINE1
0
PFC9

LINE0
0
PFC8

00000000 R
00000000 R
10001000 bbbbbrbb

PFC9

10001000 bbbbbrbb

PFC4

PFC3

PFC2

PFC1

IN:PKTS[2]
OUT:PFC8
PFC0

PFC4

PFC3

PFC2

PFC1

PFC0

00000000 RW

0

PFC8

10001000 bbrbbrrb

0

IN: PKTS[1] IN: PKTS[0] 0
OUT:PFC10 OUT:PFC9
OUT:PFC10 OUT:PFC9 0

0

PFC8

10001000 bbrbbrrb

PFC5

PFC4

PFC3

PFC2

PFC1

PFC0

00000000 RW

IN: PKTS[1] IN: PKTS[0] PFC5
OUT:PFC7 OUT:PFC6

PFC4

PFC3

PFC2

PFC1

PFC0

00000000 RW

PFC9

PFC8

00001000 bbbbbrbb

PKTSTAT

IN:PKTS[2] IN:PKTS[1] IN:PKTS[0] 0
OUT:PFC12 OUT:PFC11 OUT:PFC10
OUT:PFC12 OUT:PFC11 OUT:PFC10 0

PFC9

00001000 bbbbbrbb

PFC7

PFC6

PFC5

PFC4

PFC3

PFC2

PFC1

IN:PKTS[2]
OUT:PFC8
PFC0

IN:PKTS[1]
OUT:PFC7
DECIS

IN:PKTS[0]
OUT:PFC6
PKTSTAT

PFC5

PFC4

PFC3

PFC2

PFC1

PFC0

00000000 RW

0

0

PFC8

00001000 bbrbbrrb

DECIS

PKTSTAT

0

IN: PKTS[1] IN: PKTS[0] 0
OUT:PFC10 OUT:PFC9
OUT:PFC10 OUT:PFC9 0

0

PFC8

00001000 bbrbbrrb

PFC7

PFC6

PFC5

PFC4

PFC3

PFC2

PFC1

PFC0

00000000 RW

IN: PKTS[1] IN: PKTS[0] PFC5
OUT:PFC7 OUT:PFC6

PFC4

PFC3

PFC2

PFC1

PFC0

00000000 RW

0

0

0

0

INPPF1

INPPF0

00000001 brrrrrbb

0

0

0

0

0

INPPF1

INPPF0

00000001 brrrrrrr

AADJ

0

0

0

0

0

INPPF1

INPPF0

00000001 brrrrrbb

AADJ

0

0

0

0

0

INPPF1

INPPF0

00000001 brrrrrrr

Force IN Packet End
Force OUT Packet End

Skip
Skip

0
0

0
0

0
0

EP3
EP3

EP2
EP2

EP1
EP1

EP0
EP0

xxxxxxxx W
xxxxxxxx W

Endpoint 2 slave FIFO
Flag Interrupt Enable
Endpoint 2 slave FIFO
Flag Interrupt Request
Endpoint 4 slave FIFO
Flag Interrupt Enable
Endpoint 4 slave FIFO
Flag Interrupt Request
Endpoint 6 slave FIFO
Flag Interrupt Enable
Endpoint 6 slave FIFO
Flag Interrupt Request
Endpoint 8 slave FIFO
Flag Interrupt Enable
Endpoint 8 slave FIFO
Flag Interrupt Request
IN-BULK-NAK Interrupt
Enable
IN-BULK-NAK interrupt
Request
Endpoint Ping-NAK / IBN
Interrupt Enable
Endpoint Ping-NAK / IBN
Interrupt Request
USB Int Enables

0

0

0

0

EDGEPF

PF

EF

FF

00000000 RW

0

0

0

0

0

PF

EF

FF

00000000 rrrrrbbb

0

0

0

0

EDGEPF

PF

EF

FF

00000000 RW

0

0

0

0

0

PF

EF

FF

00000000 rrrrrbbb

0

0

0

0

EDGEPF

PF

EF

FF

00000000 RW

0

0

0

0

0

PF

EF

FF

00000000 rrrrrbbb

0

0

0

0

EDGEPF

PF

EF

FF

00000000 RW

0

0

0

0

0

PF

EF

FF

00000000 rrrrrbbb

0

0

EP8

EP6

EP4

EP2

EP1

EP0

00000000 RW

0

0

EP8

EP6

EP4

EP2

EP1

EP0

00xxxxxx rrbbbbbb

EP8

EP6

EP4

EP2

EP1

EP0

0

IBN

00000000 RW

EP8

EP6

EP4

EP2

EP1

EP0

0

IBN

xxxxxx0x bbbbbbrb

0

EP0ACK

HSGRANT

URES

SUSP

SUTOK

SOF

SUDAV

00000000 RW

00000000 RW

00000000 RW

Note
12. The register can only be reset, it cannot be set.

Document #: 38-08032 Rev. *L

Page 30 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Table 12. FX2LP Register Summary (continued)
Hex Size Name
E65D 1
USBIRQ[12]
E65E 1
EPIE
E65F 1

EPIRQ[12]

E660 1
E661 1
E662 1

GPIFIE[11]

E663 1

USBERRIRQ[12]

E664 1

ERRCNTLIM

E665 1
E666 1

CLRERRCNT
INT2IVEC

E667 1

INT4IVEC

E668 1
E669 7

INTSET-UP
reserved

E670 1

INPUT / OUTPUT
PORTACFG

E671 1

PORTCCFG

E672 1

PORTECFG

E673 4
E677 1
E678 1

reserved
reserved
I2CS

E679 1

I2DAT

E67A 1

I2CTL

E67B 1

XAUTODAT1

E67C 1

XAUTODAT2

GPIFIRQ[11]
USBERRIE

E680
E681
E682
E683
E684
E685
E686
E687
E688

1
1
1
1
1
1
1
1
2

UDMA CRC
UDMACRCH[11]
UDMACRCL[11]
UDMACRCQUALIFIER
USB CONTROL
USBCS
SUSPEND
WAKEUPCS
TOGCTL
USBFRAMEH
USBFRAMEL
MICROFRAME
FNADDR
reserved

E68A
E68B
E68C
E68D

1
1
1
1

ENDPOINTS
EP0BCH[11]
EP0BCL[11]
reserved
EP1OUTBC

E68E
E68F
E690
E691

1
1
1
1

reserved
EP1INBC
EP2BCH[11]
EP2BCL[11]

E692
E694
E695
E696
E698
E699
E69A
E69C

2
1
1
2
1
1
2
1

reserved
EP4BCH[11]
EP4BCL[11]
reserved
EP6BCH[11]
EP6BCL[11]
reserved
EP8BCH[11]

E67D 1
E67E 1
E67F 1

Description
USB Interrupt Requests
Endpoint Interrupt
Enables

b6
EP0ACK
EP6

b5
HSGRANT
EP4

b4
URES
EP2

b3
SUSP
EP1OUT

b2
SUTOK
EP1IN

b1
SOF
EP0OUT

b0
SUDAV
EP0IN

Default
Access
0xxxxxxx rbbbbbbb
00000000 RW

Endpoint Interrupt
EP8
Requests
GPIF Interrupt Enable
0
GPIF Interrupt Request 0
USB Error Interrupt
ISOEP8
Enables
USB Error Interrupt
ISOEP8
Requests
USB Error counter and
EC3
limit
Clear Error Counter EC3:0 x
Interrupt 2 (USB)
0
Autovector
Interrupt 4 (slave FIFO & 1
GPIF) Autovector
Interrupt 2&4 setup
0

EP6

EP4

EP2

EP1OUT

EP1IN

EP0OUT

EP0IN

0

0
0
ISOEP6

0
0
ISOEP4

0
0
ISOEP2

0
0
0

0
0
0

GPIFWF
GPIFWF
0

GPIFDONE 00000000 RW
GPIFDONE 000000xx RW
ERRLIMIT
00000000 RW

ISOEP6

ISOEP4

ISOEP2

0

0

0

ERRLIMIT

0000000x bbbbrrrb

EC2

EC1

EC0

LIMIT3

LIMIT2

LIMIT1

LIMIT0

xxxx0100 rrrrbbbb

x
I2V4

x
I2V3

x
I2V2

x
I2V1

x
I2V0

x
0

x
0

xxxxxxxx W
00000000 R

0

I4V3

I4V2

I4V1

I4V0

0

0

10000000 R

0

0

0

AV2EN

0

INT4SRC

AV4EN

00000000 RW

IO PORTA Alternate
Configuration
IO PORTC Alternate
Configuration
IO PORTE Alternate
Configuration

FLAGD

SLCS

0

0

0

0

INT1

INT0

00000000 RW

GPIFA7

GPIFA6

GPIFA5

GPIFA4

GPIFA3

GPIFA2

GPIFA1

GPIFA0

00000000 RW

GPIFA8

T2EX

INT6

RXD1OUT

RXD0OUT T2OUT

T1OUT

T0OUT

00000000 RW

I²C Bus
Control & Status
I²C Bus
Data
I²C Bus
Control
Autoptr1 MOVX access,
when APTREN=1
Autoptr2 MOVX access,
when APTREN=1

START

STOP

LASTRD

ID1

ID0

BERR

ACK

DONE

000xx000 bbbrrrrr

d7

d6

d5

d4

d3

d2

d1

d0

xxxxxxxx RW

0

0

0

0

0

0

STOPIE

400KHZ

00000000 RW

D7

D6

D5

D4

D3

D2

D1

D0

xxxxxxxx RW

D7

D6

D5

D4

D3

D2

D1

D0

xxxxxxxx RW

UDMA CRC MSB
UDMA CRC LSB
UDMA CRC Qualifier

CRC15
CRC7
QENABLE

CRC14
CRC6
0

CRC13
CRC5
0

CRC12
CRC4
0

CRC11
CRC3
QSTATE

CRC10
CRC2
QSIGNAL2

CRC9
CRC1
QSIGNAL1

CRC8
CRC0
QSIGNAL0

01001010 RW
10111010 RW
00000000 brrrbbbb

USB Control & Status
Put chip into suspend
Wakeup Control & Status
Toggle Control
USB Frame count H
USB Frame count L
Microframe count, 0-7
USB Function address

HSM
x
WU2
Q
0
FC7
0
0

0
x
WU
S
0
FC6
0
FA6

0
x
WU2POL
R
0
FC5
0
FA5

0
x
WUPOL
IO
0
FC4
0
FA4

DISCON
x
0
EP3
0
FC3
0
FA3

NOSYNSOF
x
DPEN
EP2
FC10
FC2
MF2
FA2

RENUM
x
WU2EN
EP1
FC9
FC1
MF1
FA1

SIGRSUME
x
WUEN
EP0
FC8
FC0
MF0
FA0

x0000000 rrrrbbbb
xxxxxxxx W
xx000101 bbbbrbbb
x0000000 rrrbbbbb
00000xxx R
xxxxxxxx R
00000xxx R
0xxxxxxx R

Endpoint 0 Byte Count H (BC15)
Endpoint 0 Byte Count L (BC7)

(BC14)
BC6

(BC13)
BC5

(BC12)
BC4

(BC11)
BC3

(BC10)
BC2

(BC9)
BC1

(BC8)
BC0

xxxxxxxx RW
xxxxxxxx RW

Endpoint 1 OUT Byte
Count

BC6

BC5

BC4

BC3

BC2

BC1

BC0

0xxxxxxx RW

Endpoint 1 IN Byte Count 0
Endpoint 2 Byte Count H 0
Endpoint 2 Byte Count L BC7/SKIP

BC6
0
BC6

BC5
0
BC5

BC4
0
BC4

BC3
0
BC3

BC2
BC10
BC2

BC1
BC9
BC1

BC0
BC8
BC0

0xxxxxxx RW
00000xxx RW
xxxxxxxx RW

Endpoint 4 Byte Count H 0
Endpoint 4 Byte Count L BC7/SKIP

0
BC6

0
BC5

0
BC4

0
BC3

0
BC2

BC9
BC1

BC8
BC0

000000xx RW
xxxxxxxx RW

Endpoint 6 Byte Count H 0
Endpoint 6 Byte Count L BC7/SKIP

0
BC6

0
BC5

0
BC4

0
BC3

BC10
BC2

BC9
BC1

BC8
BC0

00000xxx RW
xxxxxxxx RW

Endpoint 8 Byte Count H 0

0

0

0

0

0

BC9

BC8

000000xx RW

Document #: 38-08032 Rev. *L

b7
0
EP8

0

RW

Page 31 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Table 12. FX2LP Register Summary (continued)
Hex
E69D
E69E
E6A0

Size
1
2
1

Name
EP8BCL[11]
reserved
EP0CS

E6A1 1

EP1OUTCS

E6A2 1

EP1INCS

E6A3 1

EP2CS

E6A4 1

EP4CS

E6A5 1

EP6CS

E6A6 1

EP8CS

E6A7 1

EP2FIFOFLGS

E6A8 1

EP4FIFOFLGS

E6A9 1

EP6FIFOFLGS

E6AA 1

EP8FIFOFLGS

E6AB 1

EP2FIFOBCH

E6AC 1

EP2FIFOBCL

E6AD 1

EP4FIFOBCH

E6AE 1

EP4FIFOBCL

E6AF 1

EP6FIFOBCH

E6B0 1

EP6FIFOBCL

E6B1 1

EP8FIFOBCH

E6B2 1

EP8FIFOBCL

E6B3 1

SUDPTRH

E6B4 1

SUDPTRL

E6B5 1

SUDPTRCTL

2
E6B8 8

reserved
SET-UPDAT

E6C0 1
E6C1 1

GPIF
GPIFWFSELECT
GPIFIDLECS

E6C2
E6C3
E6C4
E6C5

1
1
1
1

E6C6 1

GPIFIDLECTL
GPIFCTLCFG
GPIFADRH[11]
GPIFADRL[11]
FLOWSTATE
FLOWSTATE

E6C7 1
E6C8 1

FLOWLOGIC
FLOWEQ0CTL

E6C9 1

FLOWEQ1CTL

E6CA 1

FLOWHOLDOFF

Description
b7
Endpoint 8 Byte Count L BC7/SKIP

b6
BC6

b5
BC5

b4
BC4

b3
BC3

b2
BC2

b1
BC1

b0
BC0

Default
Access
xxxxxxxx RW

Endpoint 0 Control and
Status
Endpoint 1 OUT Control
and Status
Endpoint 1 IN Control and
Status
Endpoint 2 Control and
Status
Endpoint 4 Control and
Status
Endpoint 6 Control and
Status
Endpoint 8 Control and
Status
Endpoint 2 slave FIFO
Flags
Endpoint 4 slave FIFO
Flags

HSNAK

0

0

0

0

0

BUSY

STALL

10000000 bbbbbbrb

0

0

0

0

0

0

BUSY

STALL

00000000 bbbbbbrb

0

0

0

0

0

0

BUSY

STALL

00000000 bbbbbbrb

0

NPAK2

NPAK1

NPAK0

FULL

EMPTY

0

STALL

00101000 rrrrrrrb

0

0

NPAK1

NPAK0

FULL

EMPTY

0

STALL

00101000 rrrrrrrb

0

NPAK2

NPAK1

NPAK0

FULL

EMPTY

0

STALL

00000100 rrrrrrrb

0

0

NPAK1

NPAK0

FULL

EMPTY

0

STALL

00000100 rrrrrrrb

0

0

0

0

0

PF

EF

FF

00000010 R

0

0

0

0

0

PF

EF

FF

00000010 R

Endpoint 6 slave FIFO
0
Flags
Endpoint 8 slave FIFO
0
Flags
Endpoint 2 slave FIFO
0
total byte count H
Endpoint 2 slave FIFO
BC7
total byte count L
Endpoint 4 slave FIFO
0
total byte count H
Endpoint 4 slave FIFO
BC7
total byte count L
Endpoint 6 slave FIFO
0
total byte count H
Endpoint 6 slave FIFO
BC7
total byte count L
Endpoint 8 slave FIFO
0
total byte count H
Endpoint 8 slave FIFO
BC7
total byte count L
Setup Data Pointer high A15
address byte
Setup Data Pointer low ad- A7
dress byte
Setup Data Pointer Auto 0
Mode

0

0

0

0

PF

EF

FF

00000110 R

0

0

0

0

PF

EF

FF

00000110 R

0

0

BC12

BC11

BC10

BC9

BC8

00000000 R

BC6

BC5

BC4

BC3

BC2

BC1

BC0

00000000 R

0

0

0

0

BC10

BC9

BC8

00000000 R

BC6

BC5

BC4

BC3

BC2

BC1

BC0

00000000 R

0

0

0

BC11

BC10

BC9

BC8

00000000 R

BC6

BC5

BC4

BC3

BC2

BC1

BC0

00000000 R

0

0

0

0

BC10

BC9

BC8

00000000 R

BC6

BC5

BC4

BC3

BC2

BC1

BC0

00000000 R

A14

A13

A12

A11

A10

A9

A8

xxxxxxxx RW

A6

A5

A4

A3

A2

A1

0

xxxxxxx0 bbbbbbbr

0

0

0

0

0

0

SDPAUTO

00000001 RW

8 bytes of setup data
D7
SET-UPDAT[0] =
bmRequestType
SET-UPDAT[1] =
bmRequest
SET-UPDAT[2:3] = wValue
SET-UPDAT[4:5] = wIndex
SET-UPDAT[6:7] =
wLength

D6

D5

D4

D3

D2

D1

D0

xxxxxxxx R

Waveform Selector
GPIF Done, GPIF IDLE
drive mode
Inactive Bus, CTL states
CTL Drive Type
GPIF Address H
GPIF Address L

SINGLEWR1 SINGLEWR0 SINGLERD1 SINGLERD0 FIFOWR1
DONE
0
0
0
0

FIFOWR0
0

FIFORD1
0

FIFORD0
IDLEDRV

11100100 RW
10000000 RW

0
TRICTL
0
GPIFA7

CTL1
CTL1
0
GPIFA1

CTL0
CTL0
GPIFA8
GPIFA0

11111111 RW
00000000 RW
00000000 RW
00000000 RW

Flowstate Enable and
Selector
Flowstate Logic
CTL-Pin States in
Flowstate
(when Logic = 0)
CTL-Pin States in Flowstate (when Logic = 1)
Holdoff Configuration

Document #: 38-08032 Rev. *L

0
0
0
GPIFA6

CTL5
CTL5
0
GPIFA5

CTL4
CTL4
0
GPIFA4

CTL3
CTL3
0
GPIFA3

CTL2
CTL2
0
GPIFA2

FSE

0

0

0

0

FS2

FS1

FS0

00000000 brrrrbbb

LFUNC1
CTL0E3

LFUNC0
CTL0E2

TERMA2
CTL0E1/
CTL5

TERMA1
CTL0E0/
CTL4

TERMA0
CTL3

TERMB2
CTL2

TERMB1
CTL1

TERMB0
CTL0

00000000 RW
00000000 RW

CTL0E3

CTL0E2

CTL2

CTL1

CTL0

00000000 RW

HOCTL2

HOCTL1

HOCTL0

00010010 RW

CTL0E1/
CTL0E0/
CTL3
CTL5
CTL4
HOPERIOD3 HOPERIOD2 HOPERIOD1 HOPERIOD HOSTATE
0

Page 32 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Table 12. FX2LP Register Summary (continued)
Hex Size Name
E6CB 1
FLOWSTB
E6CC 1

FLOWSTBEDGE

E6CD 1
E6CE 1

FLOWSTBPERIOD
GPIFTCB3[11]

E6CF 1

GPIFTCB2[11]

E6D0 1

GPIFTCB1[11]

E6D1 1

GPIFTCB0[11]

2

Description
Flowstate Strobe
Configuration
Flowstate Rising/Falling
Edge Configuration

b7
SLAVE

b6
b5
RDYASYNC CTLTOGL

b4
SUSTAIN

b3
0

b2
MSTB2

b1
MSTB1

b0
MSTB0

Default
Access
00100000 RW

0

0

0

0

0

0

FALLING

RISING

00000001 rrrrrrbb

D6
TC30

D5
TC29

D4
TC28

D3
TC27

D2
TC26

D1
TC25

D0
TC24

00000010 RW
00000000 RW

TC22

TC21

TC20

TC19

TC18

TC17

TC16

00000000 RW

TC14

TC13

TC12

TC11

TC10

TC9

TC8

00000000 RW

TC6

TC5

TC4

TC3

TC2

TC1

TC0

00000001 RW

Master-Strobe Half-Period D7
GPIF Transaction Count TC31
Byte 3
GPIF Transaction Count TC23
Byte 2
GPIF Transaction Count TC15
Byte 1
GPIF Transaction Count TC7
Byte 0

reserved
reserved
reserved
EP2GPIFFLGSEL[11] Endpoint 2 GPIF Flag
0
select
EP2GPIFPFSTOP
Endpoint 2 GPIF stop
0
transaction on prog. flag

0

0

0

0

0

FS1

FS0

0

0

0

0

0

0

FIFO2FLAG 00000000 RW

EP2GPIFTRIG[11]

x

x

x

x

x

x

x

x

xxxxxxxx W

0

0

0

0

0

0

FS1

FS0

00000000 RW

0

0

0

0

0

0

0

FIFO4FLAG 00000000 RW

x

x

x

x

x

x

x

x

xxxxxxxx W

0

0

0

0

0

0

FS1

FS0

00000000 RW

0

0

0

0

0

0

0

FIFO6FLAG 00000000 RW

x

x

x

x

x

x

x

x

xxxxxxxx W

0

0

0

0

0

0

FS1

FS0

00000000 RW

0

0

0

0

0

0

0

FIFO8FLAG 00000000 RW

x

x

x

x

x

x

x

x

xxxxxxxx W

D15

D14

D13

D12

D11

D10

D9

D8

xxxxxxxx RW

D7

D6

D5

D4

D3

D2

D1

D0

xxxxxxxx RW

D7

D6

D5

D4

D3

D2

D1

D0

xxxxxxxx R

INTRDY

SAS

TCXRDY5

0

0

0

0

0

00000000 bbbrrrrr

E6F4 1
E6F5 1
E6F6 2

0
x

0
x

RDY5
x

RDY4
x

RDY3
x

RDY2
x

RDY1
x

RDY0
x

00xxxxxx R
xxxxxxxx W

E740
E780
E7C0
E800
F000

D7
D7
D7

D6
D6
D6

D5
D5
D5

D4
D4
D4

D3
D3
D3

D2
D2
D2

D1
D1
D1

D0
D0
D0

D7

D6

D5

D4

D3

D2

D1

D0

xxxxxxxx RW
xxxxxxxx RW
xxxxxxxx RW
RW
xxxxxxxx RW

D7

D6

D5

D4

D3

D2

D1

D0

xxxxxxxx RW

D7

D6

D5

D4

D3

D2

D1

D0

xxxxxxxx RW

D7

D6

D5

D4

D3

D2

D1

D0

xxxxxxxx RW

E6D2 1
E6D3 1
E6D4 1
3

E6DA 1
E6DB 1
E6DC 1
3

E6E2 1
E6E3 1
E6E4 1
3

E6EA 1
E6EB 1
E6EC 1
3
E6F0 1
E6F1 1
E6F2 1
E6F3 1

F400
F600
F800
FC00
FE00

Endpoint 2 GPIF Trigger
reserved
reserved
reserved
EP4GPIFFLGSEL[11] Endpoint 4 GPIF Flag
select
EP4GPIFPFSTOP
Endpoint 4 GPIF stop
transaction on GPIF Flag
EP4GPIFTRIG[11]
Endpoint 4 GPIF Trigger
reserved
reserved
reserved
EP6GPIFFLGSEL[11] Endpoint 6 GPIF Flag
select
EP6GPIFPFSTOP
Endpoint 6 GPIF stop
transaction on prog. flag
[11]
EP6GPIFTRIG
Endpoint 6 GPIF Trigger
reserved
reserved
reserved
EP8GPIFFLGSEL[11] Endpoint 8 GPIF Flag
select
EP8GPIFPFSTOP
Endpoint 8 GPIF stop
transaction on prog. flag
EP8GPIFTRIG[11]
Endpoint 8 GPIF Trigger
reserved
XGPIFSGLDATH
GPIF Data H
(16-bit mode only)
XGPIFSGLDATLX
Read/Write GPIF Data L &
trigger transaction
XGPIFSGLDATLRead GPIF Data L, no
NOX
transaction trigger
GPIFREADYCFG
Internal RDY, Sync/Async,
RDY pin states

GPIFREADYSTAT
GPIF Ready Status
GPIFABORT
Abort GPIF Waveforms
reserved
ENDPOINT BUFFERS
64 EP0BUF
EP0-IN/-OUT buffer
64 EP10UTBUF
EP1-OUT buffer
64 EP1INBUF
EP1-IN buffer
2048 reserved
1024 EP2FIFOBUF
512/1024 byte EP 2 / slave
FIFO buffer (IN or OUT)
512 EP4FIFOBUF
512 byte EP 4 / slave FIFO
buffer (IN or OUT)
512 reserved
1024 EP6FIFOBUF
512/1024 byte EP 6 / slave
FIFO buffer (IN or OUT)
512 EP8FIFOBUF
512 byte EP 8 / slave FIFO
buffer (IN or OUT)
512 reserved

Document #: 38-08032 Rev. *L

00000000 RW

00000000 RW

Page 33 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Table 12. FX2LP Register Summary (continued)
Hex Size Name
Description
xxxx
I²C Configuration Byte

b7
0

b6
DISCON

b5
0

b4
0

b3
0

b2
0

b1
0

b0
400KHZ

Default
Access
xxxxxxxx n/a

Port A (bit addressable)
Stack Pointer
Data Pointer 0 L
Data Pointer 0 H
Data Pointer 1 L
Data Pointer 1 H
Data Pointer 0/1 select
Power Control
Timer/Counter Control
(bit addressable)
Timer/Counter Mode
Control
Timer 0 reload L
Timer 1 reload L
Timer 0 reload H

D7
D7
A7
A15
A7
A15
0
SMOD0
TF1

D6
D6
A6
A14
A6
A14
0
x
TR1

D5
D5
A5
A13
A5
A13
0
1
TF0

D4
D4
A4
A12
A4
A12
0
1
TR0

D3
D3
A3
A11
A3
A11
0
x
IE1

D2
D2
A2
A10
A2
A10
0
x
IT1

D1
D1
A1
A9
A1
A9
0
x
IE0

D0
D0
A0
A8
A0
A8
SEL
IDLE
IT0

xxxxxxxx RW
00000111 RW
00000000 RW
00000000 RW
00000000 RW
00000000 RW
00000000 RW
00110000 RW
00000000 RW

GATE

CT

M1

M0

GATE

CT

M1

M0

00000000 RW

D7
D7
D15

D6
D6
D14

D5
D5
D13

D4
D4
D12

D3
D3
D11

D2
D2
D10

D1
D1
D9

D0
D0
D8

00000000 RW
00000000 RW
00000000 RW

Timer 1 reload H
Clock Control

D15
x

D14
x

D13
T2M

D12
T1M

D11
T0M

D10
MD2

D9
MD1

D8
MD0

00000000 RW
00000001 RW

Port B (bit addressable) D7
External Interrupt Flag(s) IE5
Upper Addr Byte of MOVX A15
using @R0 / @R1

D6
IE4
A14

D5
I²CINT
A13

D4
USBNT
A12

D3
1
A11

D2
0
A10

D1
0
A9

D0
0
A8

xxxxxxxx RW
00001000 RW
00000000 RW

Serial Port 0 Control
(bit addressable)
Serial Port 0 Data Buffer
Autopointer 1 Address H
Autopointer 1 Address L

SM0_0

SM1_0

SM2_0

REN_0

TB8_0

RB8_0

TI_0

RI_0

00000000 RW

D7
A15
A7

D6
A14
A6

D5
A13
A5

D4
A12
A4

D3
A11
A3

D2
A10
A2

D1
A9
A1

D0
A8
A0

00000000 RW
00000000 RW
00000000 RW

Autopointer 2 Address H A15
Autopointer 2 Address L A7

A14
A6

A13
A5

A12
A4

A11
A3

A10
A2

A9
A1

A8
A0

00000000 RW
00000000 RW

Port C (bit addressable)
Interrupt 2 clear
Interrupt 4 clear

D7
x
x

D6
x
x

D5
x
x

D4
x
x

D3
x
x

D2
x
x

D1
x
x

D0
x
x

xxxxxxxx RW
xxxxxxxx W
xxxxxxxx W

Interrupt Enable
(bit addressable)

EA

ES1

ET2

ES0

ET1

EX1

ET0

EX0

00000000 RW

EP8E

EP6F

EP6E

EP4F

EP4E

EP2F

EP2E

01011010 R

EP4PF

EP4EF

EP4FF

0

EP2PF

EP2EF

EP2FF

00100010 R

EP8PF

EP8EF

EP8FF

0

EP6PF

EP6EF

EP6FF

01100110 R

0
D7
D7

0
D6
D6

0
D5
D5

0
D4
D4

0
D3
D3

APTR2INC
D2
D2

APTR1INC
D1
D1

APTREN
D0
D0

00000110 RW
xxxxxxxx RW
xxxxxxxx RW

D7
D7
D7
D7
D7

D6
D6
D6
D6
D6

D5
D5
D5
D5
D5

D4
D4
D4
D4
D4

D3
D3
D3
D3
D3

D2
D2
D2
D2
D2

D1
D1
D1
D1
D1

D0
D0
D0
D0
D0

00000000 RW
00000000 RW
00000000 RW
00000000 RW
00000000 RW

1

PS1

PT2

PS0

PT1

PX1

PT0

PX0

10000000 RW

0

0

0

0

0

EP1INBSY

00000000 R

DONE

0

0

0

0

RW

EP1OUTBS EP0BSY
Y
EP1
EP0

D14

D13

D12

D11

D10

D9

xxxxxxxx RW

[14]

Special Function Registers (SFRs)
80
81
82
83
84
85
86
87
88

1
1
1
1
1
1
1
1
1

IOA[13]
SP
DPL0
DPH0
DPL1[13]
DPH1[13]
DPS[13]
PCON
TCON

89

1

TMOD

8A
8B
8C

1
1
1

TL0
TL1
TH0

8D
8E
8F
90
91
92

1
1
1
1
1
1

TH1
CKCON[13]
reserved
IOB[13]
EXIF[13]
MPAGE[13]

93
98

5
1

reserved
SCON0

99
9A
9B
9C
9D
9E
9F
A0
A1
A2
A3
A8

1
1
1
1
1
1
1
1
1
1
5
1

SBUF0
AUTOPTRH1[13]
AUTOPTRL1[13]
reserved
AUTOPTRH2[13]
AUTOPTRL2[13]
reserved
IOC[13]
INT2CLR[13]
INT4CLR[13]
reserved
IE

A9
AA

1
1

reserved
EP2468STAT[13]

AB

1

EP24FIFOFLGS

AC

1

EP68FIFOFLGS

AD
AF
B0
B1

2
1
1
1

B2
B3
B4
B5
B6
B7
B8

1
1
1
1
1
1
1

B9
BA

1
1

reserved
AUTOPTRSETUP[13] Autopointer 1&2 setup
IOD[13]
Port D (bit addressable)
IOE[13]
Port E
(NOT bit addressable)
[13]
OEA
Port A Output Enable
OEB[13]
Port B Output Enable
OEC[13]
Port C Output Enable
OED[13]
Port D Output Enable
OEE[13]
Port E Output Enable
reserved
IP
Interrupt Priority (bit addressable)
reserved
EP01STAT[13]
Endpoint 0&1 Status

BB

1

GPIFTRIG[13, 11]

BC
BD

1
1

reserved
GPIFSGLDATH[13]

[13]
[13]

Endpoint 2,4,6,8 status
EP8F
flags
Endpoint 2,4 slave FIFO 0
status flags
Endpoint 6,8 slave FIFO 0
status flags

Endpoint 2,4,6,8 GPIF
slave FIFO Trigger

GPIF Data H (16-bit mode D15
only)

D8

10000xxx brrrrbbb

Note
13. SFRs not part of the standard 8051 architecture.
14. If no EEPROM is detected by the SIE then the default is 00000000.

Document #: 38-08032 Rev. *L

Page 34 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Table 12. FX2LP Register Summary (continued)
Hex
BE
BF

Size Name
Description
b7
1
GPIFSGLDATLX[13] GPIF Data L w/ Trigger D7
1
GPIFSGLDATLGPIF Data L w/ No Trigger D7
NOX[13]

C0

1

SCON1[13]

C1
C2
C8

1
6
1

SBUF1[13]

C9
CA

1
1

reserved
RCAP2L

CB

1

RCAP2H

CC
CD
CE
D0

1
1
2
1

TL2
TH2
reserved
PSW

D1
D8
D9
E0

7
1
7
1

reserved
EICON[13]
reserved
ACC

E1
E8

7
1

reserved
EIE[13]

E9
F0
F1
F8

7
1
7
1

reserved
B
reserved
EIP[13]

F9

7

reserved

reserved
T2CON

b6
D6
D6

b5
D5
D5

b4
D4
D4

b3
D3
D3

b2
D2
D2

b1
D1
D1

b0
D0
D0

Default
Access
xxxxxxxx RW
xxxxxxxx R

Serial Port 1 Control (bit SM0_1
addressable)
Serial Port 1 Data Buffer D7

SM1_1

SM2_1

REN_1

TB8_1

RB8_1

TI_1

RI_1

00000000 RW

D6

D5

D4

D3

D2

D1

D0

00000000 RW

Timer/Counter 2 Control
(bit addressable)

TF2

EXF2

RCLK

TCLK

EXEN2

TR2

CT2

CPRL2

00000000 RW

Capture for Timer 2, auto-reload, up-counter
Capture for Timer 2, auto-reload, up-counter
Timer 2 reload L
Timer 2 reload H

D7

D6

D5

D4

D3

D2

D1

D0

00000000 RW

D7

D6

D5

D4

D3

D2

D1

D0

00000000 RW

D7
D15

D6
D14

D5
D13

D4
D12

D3
D11

D2
D10

D1
D9

D0
D8

00000000 RW
00000000 RW

Program Status Word (bit CY
addressable)

AC

F0

RS1

RS0

OV

F1

P

00000000 RW

External Interrupt Control SMOD1

1

ERESI

RESI

INT6

0

0

0

01000000 RW

Accumulator (bit address- D7
able)

D6

D5

D4

D3

D2

D1

D0

00000000 RW

External Interrupt Enable(s)

1

1

1

EX6

EX5

EX4

EI²C

EUSB

11100000 RW

B (bit addressable)

D7

D6

D5

D4

D3

D2

D1

D0

00000000 RW

1

1

PX6

PX5

PX4

PI²C

PUSB

11100000 RW

External Interrupt Priority 1
Control

R = all bits read-only
W = all bits write-only

r = read-only bit
w = write-only bit
b = both read/write bit

Document #: 38-08032 Rev. *L

Page 35 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

6. Absolute Maximum Ratings
Storage Temperature ..................................................................................................................................................... 65°C to +150°C
Ambient Temperature with Power Supplied (Commercial) ................................................................................................ 0°C to +70°C
Ambient Temperature with Power Supplied (Industrial).............................................................................................. –40°C to +105°C
Supply Voltage to Ground Potential................................................................................................................................ –0.5V to +4.0V
DC Input Voltage to Any Input Pin[15] ............................................................................................................................................ 5.25V
DC Voltage Applied to Outputs in High Z State .................................................................................................... –0.5V to VCC + 0.5V
Power Dissipation...................................................................................................................................................................... 300 mW
Static Discharge Voltage.............................................................................................................................................................>2000V
Max Output Current, per IO port................................................................................................................................................... 10 mA
Max Output Current, all five IO ports (128- and 100-pin packages) ............................................................................................. 50 mA

7. Operating Conditions
TA (Ambient Temperature Under Bias) Commercial ......................................................................................................... 0°C to +70°C
TA (Ambient Temperature Under Bias) Industrial......................................................................................................... –40°C to +105°C
Supply Voltage............................................................................................................................................................ +3.00V to +3.60V
Ground Voltage................................................................................................................................................................................... 0V
FOSC (Oscillator or Crystal Frequency).......................................................................................24 MHz ± 100 ppm, Parallel Resonant

8. Thermal Characteristics
The following table displays the thermal characteristics of various packages:
Table 13. Thermal Characteristics

θJc
Junction
to Case
Ambient Temperature
Temperature
(°C)
(°C/W)
θa

Package

θCa
Case to Ambient
Temperature

θJa
Junction to Ambient Temperature
θJc + θCa

(°C/W)

(°C/W)

56 SSOP

70

24.4

23.3

47.7

100 TQFP

70

11.9

34.0

45.9

128 TQFP

70

15.5

27.7

43.2

56 QFN

70

10.6

14.6

25.2

56 VFBGA

70

30.9

27.7

58.6

The Junction Temperature θj, can be calculated using the following equation: θj = P*θJa + θa
where,
P = Power

θJa = Junction to Ambient Temperature (θJc + θCa)
θa = Ambient Temperature (70 C)
The Case Temperature θc, can be calculated using the following equation: θc = P*θCa + θa
where,
P = Power

θCa = Case to Ambient Temperature
θa = Ambient Temperature (70 C)
Note
15. Do not power IO with chip power off.

Document #: 38-08032 Rev. *L

Page 36 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

9. DC Characteristics
Table 14. DC Characteristics
Parameter
VCC

Description

Conditions

Supply Voltage

VCC Ramp Up 0 to 3.3V

Min

Typ

Max

Unit

3.00

3.3

3.60

V
μs

200

VIH

Input HIGH Voltage

2

VIL

Input LOW Voltage

–0.5

0.8

V

VIH_X

Crystal Input HIGH Voltage

2

5.25

V

VIL_X

Crystal Input LOW Voltage

II

Input Leakage Current

0< VIN < VCC

VOH

Output Voltage HIGH

IOUT = 4 mA

VOL

Output LOW Voltage

IOUT = –4 mA

5.25

–0.5

V

0.8

V

±10

μA

2.4

V
0.4

V

IOH

Output Current HIGH

4

mA

IOL

Output Current LOW

4

mA

CIN

Input Pin Capacitance

ISUSP

ICC
TRESET

Except D+/D–

10

pF

D+/D–

15

pF

Suspend Current

Connected

300

380[16]

μA

CY7C68014/CY7C68016

Disconnected

100

150[16]

μA
mA

Suspend Current

Connected

0.5

1.2[16]

CY7C68013/CY7C68015

Disconnected

0.3

1.0[16]

mA

Supply Current

8051 running, connected to USB HS

50

85

mA

8051 running, connected to USB FS

35

65

mA

Reset Time after Valid Power

VCC min = 3.0V

Pin Reset after powered on

5.0

mS

200

μS

9.1 USB Transceiver
USB 2.0 compliant in full-speed and high-speed modes.

10. AC Electrical Characteristics
10.1 USB Transceiver
USB 2.0 compliant in full-speed and high-speed modes.

Note
16. Measured at Max VCC, 25°C.

Document #: 38-08032 Rev. *L

Page 37 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

10.2 Program Memory Read
Figure 12. Program Memory Read Timing Diagram
tCL

CLKOUT[17]
tAV

tAV
A[15..0]
tSTBH

tSTBL
PSEN#

[18]
tACC1

D[7..0]

tDH
data in

tSOEL
OE#
tSCSL
CS#

Table 15. Program Memory Read Parameters
Parameter
tCL

Description

Min

1/CLKOUT Frequency

Typ

Max

20.83

Unit

Notes

ns

48 MHz

41.66

ns

24 MHz

83.2

ns

12 MHz

tAV

Delay from Clock to Valid Address

0

10.7

ns

tSTBL

Clock to PSEN Low

0

8

ns

tSTBH

Clock to PSEN High

0

tSOEL

Clock to OE Low

tSCSL

Clock to CS Low

tDSU

Data Setup to Clock

tDH

Data Hold Time

8

ns

11.1

ns

13

ns

9.6

ns

0

ns

Notes
17. CLKOUT is shown with positive polarity.
18. tACC1 is computed from the above parameters as follows:
tACC1(24 MHz) = 3*tCL – tAV – tDSU = 106 ns
tACC1(48 MHz) = 3*tCL – tAV – tDSU = 43 ns.

Document #: 38-08032 Rev. *L

Page 38 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

10.3 Data Memory Read
Figure 13. Data Memory Read Timing Diagram
tCL

Stretch = 0

CLKOUT[17]
tAV

tAV
A[15..0]
tSTBH

tSTBL
RD#
tSCSL
CS#
tSOEL
OE#
tDSU

[19]

tDH

tACC1

D[7..0]

data in
tCL

Stretch = 1

CLKOUT[17]
tAV
A[15..0]

RD#

CS#
tDSU

tACC1[19]

D[7..0]

tDH

data in

Table 16. Data Memory Read Parameters
Parameter
tCL

Description

Min

1/CLKOUT Frequency

Typ

Max

Unit

Notes

20.83

ns

48 MHz

41.66

ns

24 MHz

ns

12 MHz

83.2
tAV

Delay from Clock to Valid Address

tSTBL

Clock to RD LOW

11

ns

tSTBH

Clock to RD HIGH

11

ns

tSCSL

Clock to CS LOW

13

ns

tSOEL

Clock to OE LOW

11.1

ns

tDSU

Data Setup to Clock

tDH

Data Hold Time

10.7

ns

9.6

ns

0

ns

When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either
RD# or WR# are active. The address of AUTOPTR2 is active throughout the cycle and meets the above address valid time for
which is based on the stretch value
Note
19. tACC2 and tACC3 are computed from the above parameters as follows:
tACC2(24 MHz) = 3*tCL – tAV –tDSU = 106 ns
tACC2(48 MHz) = 3*tCL – tAV – tDSU = 43 ns
tACC3(24 MHz) = 5*tCL – tAV –tDSU = 190 ns
tACC3(48 MHz) = 5*tCL – tAV – tDSU = 86 ns.

Document #: 38-08032 Rev. *L

Page 39 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

10.4 Data Memory Write
Figure 14. Data Memory Write Timing Diagram
tCL

CLKOUT

tAV

tSTBL

tSTBH

tAV

A[15..0]

WR#
tSCSL
CS#
tON1

tOFF1
data out

D[7..0]

Stretch = 1

tCL

CLKOUT

tAV

A[15..0]

WR#

CS#
tON1

tOFF1
data out

D[7..0]

Table 17. Data Memory Write Parameters
Min

Max

Unit

tAV

Parameter

Delay from Clock to Valid Address

Description

0

10.7

ns

tSTBL

Clock to WR Pulse LOW

0

11.2

ns

tSTBH

Clock to WR Pulse HIGH

0

11.2

ns

tSCSL

Clock to CS Pulse LOW

13.0

ns

tON1

Clock to Data Turn-on

0

13.1

ns

tOFF1

Clock to Data Hold Time

0

13.1

ns

Notes

When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD#
or WR# are active. The address of AUTOPTR2 is active throughout the cycle and meets the above address valid time for which is
based on the stretch value.

Document #: 38-08032 Rev. *L

Page 40 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

10.5 PORTC Strobe Feature Timings
The RD# and WR# are present in the 100-pin version and the
128-pin package. In these 100-pin and 128-pin versions, an
8051 control bit can be set to pulse the RD# and WR# pins when
the 8051 reads from or writes to PORTC. This feature is enabled
by setting PORTCSTB bit in CPUCS register.

The RD# signal prompts the external logic to prepare the next
data byte. Nothing gets sampled internally on assertion of the
RD# signal itself, it is just a prefetch type signal to get the next
data byte prepared. So, using it with that in mind easily meets the
setup time to the next read.

The RD# and WR# strobes are asserted for two CLKOUT cycles
when PORTC is accessed.
The WR# strobe is asserted two clock cycles after PORTC is
updated and is active for two clock cycles after that, as shown in
Figure 15.

The purpose of this pulsing of RD# is to allow the external
peripheral to know that the 8051 is done reading PORTC and the
data was latched into PORTC three CLKOUT cycles before
asserting the RD# signal. After the RD# is pulsed, the external
logic can update the data on PORTC.

As for read, the value of PORTC three clock cycles before the
assertion of RD# is the value that the 8051 reads in. The RD# is
pulsed for 2 clock cycles after 3 clock cycles from the point when
the 8051 has performed a read function on PORTC.

Following is the timing diagram of the read and write strobing
function on accessing PORTC. Refer to Section 10.3 and
Section 10.4 for details on propagation delay of RD# and WR#
signals.

Figure 15. WR# Strobe Function when PORTC is Accessed by 8051
tCLKOUT

CLKOUT

PORTC IS UPDATED
tSTBL

tSTBH

WR#

Figure 16. RD# Strobe Function when PORTC is Accessed by 8051
tCLKOUT

CLKOUT

8051 READS PORTC

DATA CAN BE UPDATED BY EXTERNAL LOGIC

DATA MUST BE HELD FOR 3 CLK CYLCES
tSTBL

tSTBH

RD#

Document #: 38-08032 Rev. *L

Page 41 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

10.6 GPIF Synchronous Signals
Figure 17. GPIF Synchronous Signals Timing Diagram[20]
tIFCLK
IFCLK
tSGA
GPIFADR[8:0]

RDYX
tSRY
tRYH
DATA(input)

valid
tSGD

tDAH

CTLX
tXCTL
DATA(output)

N

N+1

tXGD

Table 18. GPIF Synchronous Signals Parameters with Internally Sourced IFCLK[20, 21]
Parameter

Description

Min

Max

20.83

Unit

tIFCLK

IFCLK Period

ns

tSRY

RDYX to Clock Setup Time

tRYH

Clock to RDYX

tSGD

GPIF Data to Clock Setup Time

tDAH

GPIF Data Hold Time

tSGA

Clock to GPIF Address Propagation Delay

7.5

ns

tXGD

Clock to GPIF Data Output Propagation Delay

11

ns

tXCTL

Clock to CTLX Output Propagation Delay

6.7

ns

Min.

Max.

Unit

20.83

200

ns

8.9

ns

0

ns

9.2

ns

0

ns

Table 19. GPIF Synchronous Signals Parameters with Externally Sourced IFCLK[21]
Parameter

Description

tIFCLK

IFCLK Period[22]

tSRY

RDYX to Clock Setup Time

2.9

ns

tRYH

Clock to RDYX

3.7

ns

tSGD

GPIF Data to Clock Setup Time

3.2

ns

tDAH

GPIF Data Hold Time

4.5

ns

tSGA

Clock to GPIF Address Propagation Delay

tXGD

Clock to GPIF Data Output Propagation Delay

tXCTL

Clock to CTLX Output Propagation Delay

11.5

ns

15

ns

10.7

ns

Notes
20. Dashed lines denote signals with programmable polarity.
21. GPIF asynchronous RDYx signals have a minimum Setup time of 50 ns when using internal 48-MHz IFCLK.
22. IFCLK must not exceed 48 MHz.

Document #: 38-08032 Rev. *L

Page 42 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

10.7 Slave FIFO Synchronous Read
Figure 18. Slave FIFO Synchronous Read Timing Diagram[20]
tIFCLK

IFCLK
tSRD

tRDH

SLRD
tXFLG
FLAGS

DATA

N
tOEon

N+1
tXFD

tOEoff

SLOE

Table 20. Slave FIFO Synchronous Read Parameters with Internally Sourced IFCLK[21]
Parameter

Description

Min

Max

Unit

tIFCLK

IFCLK Period

20.83

ns

tSRD

SLRD to Clock Setup Time

18.7

ns

tRDH

Clock to SLRD Hold Time

0

tOEon

SLOE Turn-on to FIFO Data Valid

10.5

tOEoff

SLOE Turn-off to FIFO Data Hold

10.5

ns

tXFLG

Clock to FLAGS Output Propagation Delay

9.5

ns

tXFD

Clock to FIFO Data Output Propagation Delay

11

ns

ns
ns

Table 21. Slave FIFO Synchronous Read Parameters with Externally Sourced IFCLK[21]
Min.

Max.

Unit

tIFCLK

Parameter
IFCLK Period

Description

20.83

200

ns

tSRD

SLRD to Clock Setup Time

12.7

ns

tRDH

Clock to SLRD Hold Time

3.7

ns

tOEon

SLOE Turn-on to FIFO Data Valid

10.5

ns

tOEoff

SLOE Turn-off to FIFO Data Hold

10.5

ns

tXFLG

Clock to FLAGS Output Propagation Delay

13.5

ns

tXFD

Clock to FIFO Data Output Propagation Delay

15

ns

Document #: 38-08032 Rev. *L

Page 43 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

10.8 Slave FIFO Asynchronous Read
Figure 19. Slave FIFO Asynchronous Read Timing Diagram[20]
tRDpwh
SLRD

tRDpwl

FLAGS

tXFD

tXFLG

DATA

N

N+1

tOEon

tOEoff

SLOE

Table 22. Slave FIFO Asynchronous Read Parameters[23]
Parameter

Description

Min

Max

Unit

tRDpwl

SLRD Pulse Width LOW

50

tRDpwh

SLRD Pulse Width HIGH

50

tXFLG

SLRD to FLAGS Output Propagation Delay

tXFD

SLRD to FIFO Data Output Propagation Delay

tOEon

SLOE Turn-on to FIFO Data Valid

tOEoff

SLOE Turn-off to FIFO Data Hold

10.5

ns

ns
ns
70

ns

15

ns

10.5

ns

Note
23. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz.

Document #: 38-08032 Rev. *L

Page 44 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

10.9 Slave FIFO Synchronous Write
Figure 20. Slave FIFO Synchronous Write Timing Diagram[20]
tIFCLK
IFCLK

SLWR

DATA

tSWR

tWRH

N

Z
tSFD

Z

tFDH

FLAGS
tXFLG

Table 23. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK[21]
Parameter

Description

Min

Max

Unit

tIFCLK

IFCLK Period

20.83

ns

tSWR

SLWR to Clock Setup Time

10.4

ns

tWRH

Clock to SLWR Hold Time

0

ns

tSFD

FIFO Data to Clock Setup Time

9.2

ns

tFDH

Clock to FIFO Data Hold Time

0

tXFLG

Clock to FLAGS Output Propagation Time

ns
9.5

ns

Min

Max

Unit

200

ns

Table 24. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK[21]
Parameter

Description

tIFCLK

IFCLK Period

20.83

tSWR

SLWR to Clock Setup Time

12.1

ns

tWRH

Clock to SLWR Hold Time

3.6

ns

tSFD

FIFO Data to Clock Setup Time

3.2

ns

tFDH

Clock to FIFO Data Hold Time

4.5

tXFLG

Clock to FLAGS Output Propagation Time

Document #: 38-08032 Rev. *L

ns
13.5

ns

Page 45 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

10.10 Slave FIFO Asynchronous Write
Figure 21. Slave FIFO Asynchronous Write Timing Diagram[20]
tWRpwh
SLWR
SLWR/SLCS#

tWRpwl

tSFD

tFDH

DATA

tXFD

FLAGS

Table 25. Slave FIFO Asynchronous Write Parameters with Internally Sourced IFCLK [23]
Parameter

Description

Min

Max

Unit

tWRpwl

SLWR Pulse LOW

50

ns

tWRpwh

SLWR Pulse HIGH

70

ns

tSFD

SLWR to FIFO DATA Setup Time

10

ns

tFDH

FIFO DATA to SLWR Hold Time

10

tXFD

SLWR to FLAGS Output Propagation Delay

ns
70

ns

10.11 Slave FIFO Synchronous Packet End Strobe
Figure 22. Slave FIFO Synchronous Packet End Strobe Timing Diagram[20]

IFCLK
tPEH
PKTEND

tSPE

FLAGS
tXFLG

Table 26. Slave FIFO Synchronous Packet End Strobe Parameters with Internally Sourced IFCLK[21]
Parameter

Description

Min

Max

Unit

tIFCLK

IFCLK Period

20.83

tSPE

PKTEND to Clock Setup Time

14.6

ns

tPEH

Clock to PKTEND Hold Time

0

ns

tXFLG

Clock to FLAGS Output Propagation Delay

ns

9.5

ns

Table 27. Slave FIFO Synchronous Packet End Strobe Parameters with Externally Sourced IFCLK[21]
Parameter

Description

Min

Max

Unit

20.83

200

ns

tIFCLK

IFCLK Period

tSPE

PKTEND to Clock Setup Time

8.6

tPEH

Clock to PKTEND Hold Time

2.5

tXFLG

Clock to FLAGS Output Propagation Delay

Document #: 38-08032 Rev. *L

ns
ns
13.5

ns

Page 46 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

There is no specific timing requirement that should be met for
asserting PKTEND pin to asserting SLWR. PKTEND can be
asserted with the last data value clocked into the FIFOs or thereafter. The setup time tSPE and the hold time tPEH must be met.

caused the last byte or word to be clocked into the previous auto
committed packet. Figure 23 shows this scenario. X is the value
the AUTOINLEN register is set to when the IN endpoint is
configured to be in auto mode.

Although there are no specific timing requirements for the
PKTEND assertion, there is a specific corner case condition that
needs attention while using the PKTEND to commit a one byte
or word packet. There is an additional timing requirement that
needs to be met when the FIFO is configured to operate in auto
mode and it is required to send two packets back to back: a full
packet (full defined as the number of bytes in the FIFO meeting
the level set in AUTOINLEN register) committed automatically
followed by a short one byte or word packet committed manually
using the PKTEND pin. In this scenario, the user must ensure to
assert PKTEND at least one clock cycle after the rising edge that

Figure 23 shows a scenario where two packets are committed.
The first packet gets committed automatically when the number
of bytes in the FIFO reaches X (value set in AUTOINLEN
register) and the second one byte/word short packet being
committed manually using PKTEND.
Note that there is at least one IFCLK cycle timing between the
assertion of PKTEND and clocking of the last byte of the previous
packet (causing the packet to be committed automatically).
Failing to adhere to this timing results in the FX2 failing to send
the one byte or word short packet.

Figure 23. Slave FIFO Synchronous Write Sequence and Timing Diagram[20]
tIFCLK

IFCLK
tSFA

tFAH

FIFOADR
>= tWRH

>= tSWR

SLWR

tFDH

tSFD

tSFD

X-4

DATA

tFDH

tFDH

tSFD

X-3

tFDH

tSFD

X-2

tSFD

X-1

X

tFDH

tSFD

tFDH

1

At least one IFCLK cycle

tSPE

tPEH

PKTEND

10.12 Slave FIFO Asynchronous Packet End Strobe
Figure 24. Slave FIFO Asynchronous Packet End Strobe Timing Diagram[20]
tPEpwh
PKTEND

tPEpwl

FLAGS
tXFLG

Table 28. Slave FIFO Asynchronous Packet End Strobe Parameters[23]
Parameter

Description

Min

Max

Unit

tPEpwl

PKTEND Pulse Width LOW

50

ns

tPWpwh

PKTEND Pulse Width HIGH

50

ns

tXFLG

PKTEND to FLAGS Output Propagation Delay

Document #: 38-08032 Rev. *L

115

ns

Page 47 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

10.13 Slave FIFO Output Enable
Figure 25. Slave FIFO Output Enable Timing Diagram[20]
SLOE
tOEoff

tOEon

DATA

Table 29. Slave FIFO Output Enable Parameters
Max

Unit

tOEon

Parameter

SLOE Assert to FIFO DATA Output

Description

Min

10.5

ns

tOEoff

SLOE Deassert to FIFO DATA Hold

10.5

ns

10.14 Slave FIFO Address to Flags/Data
Figure 26. Slave FIFO Address to Flags/Data Timing Diagram[20]
FIFOADR [1.0]
tXFLG
FLAGS
tXFD
DATA

N

N+1

Table 30. Slave FIFO Address to Flags/Data Parameters
Parameter

Description

Min

Max

Unit

tXFLG

FIFOADR[1:0] to FLAGS Output Propagation Delay

10.7

ns

tXFD

FIFOADR[1:0] to FIFODATA Output Propagation Delay

14.3

ns

Document #: 38-08032 Rev. *L

Page 48 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

10.15 Slave FIFO Synchronous Address
Figure 27. Slave FIFO Synchronous Address Timing Diagram[20]
IFCLK

SLCS/FIFOADR [1:0]
tSFA

tFAH

Table 31. Slave FIFO Synchronous Address Parameters [21]
Parameter

Description

Min

Max

Unit

20.83

200

ns

tIFCLK

Interface Clock Period

tSFA

FIFOADR[1:0] to Clock Setup Time

25

ns

tFAH

Clock to FIFOADR[1:0] Hold Time

10

ns

10.16 Slave FIFO Asynchronous Address
Figure 28. Slave FIFO Asynchronous Address Timing Diagram[20]
SLCS/FIFOADR [1:0]
tSFA

tFAH

SLRD/SLWR/PKTEND

Table 32. Slave FIFO Asynchronous Address Parameters[23]
Parameter

Description

Min

Max

Unit

tSFA

FIFOADR[1:0] to SLRD/SLWR/PKTEND Setup Time

10

ns

tFAH

RD/WR/PKTEND to FIFOADR[1:0] Hold Time

10

ns

Document #: 38-08032 Rev. *L

Page 49 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

10.17 Sequence Diagram
10.17.1 Single and Burst Synchronous Read Example
Figure 29. Slave FIFO Synchronous Read Sequence and Timing Diagram[20]
tIFCLK

IFCLK
tSFA

tSFA

tFAH

tFAH

FIFOADR
t=0

tSRD

T=0

tRDH

>= tSRD

>= tRDH

SLRD
t=3

t=2

T=3

T=2

SLCS

tXFLG

FLAGS
tXFD

tXFD
Data Driven: N

DATA

N+1

N+1

N+2

N+3

tOEon

tOEoff

tOEon

tXFD

tXFD

N+4

tOEoff

SLOE
t=4

T=4

T=1

t=1

Figure 30. Slave FIFO Synchronous Sequence of Events Diagram
IFCLK

FIFO POINTER

N

IFCLK

IFCLK

N

N+1

FIFO DATA BUS Not Driven

Driven: N

N+1

Not Driven

■

At t = 0 the FIFO address is stable and the signal SLCS is
asserted (SLCS may be tied low in some applications). Note
that tSFA has a minimum of 25 ns. This means when IFCLK is
running at 48 MHz, the FIFO address setup time is more than
one IFCLK cycle.

■

At t = 1, SLOE is asserted. SLOE is an output enable only,
whose sole function is to drive the data bus. The data that is
driven on the bus is the data that the internal FIFO pointer is
currently pointing to. In this example it is the first data value in
the FIFO. Note: the data is pre-fetched and is driven on the bus
when SLOE is asserted.
At t = 2, SLRD is asserted. SLRD must meet the setup time of
tSRD (time from asserting the SLRD signal to the rising edge of
the IFCLK) and maintain a minimum hold time of tRDH (time
from the IFCLK edge to the deassertion of the SLRD signal).

Document #: 38-08032 Rev. *L

N+1
SLOE

Figure 29 shows the timing relationship of the SLAVE FIFO
signals during a synchronous FIFO read using IFCLK as the
synchronizing clock. The diagram illustrates a single read
followed by a burst read.

■

IFCLK

N+1
SLOE
SLRD

SLRD

SLOE

IFCLK

IFCLK

N+2

IFCLK

N+3

IFCLK

N+4

SLRD

N+1

IFCLK

N+4

SLRD

N+2

N+3

N+4

IFCLK

N+4
SLOE

N+4

Not Driven

If the SLCS signal is used, it must be asserted before SLRD is
asserted (The SLCS and SLRD signals must both be asserted
to start a valid read condition).
■

The FIFO pointer is updated on the rising edge of the IFCLK,
while SLRD is asserted. This starts the propagation of data
from the newly addressed location to the data bus. After a
propagation delay of tXFD (measured from the rising edge of
IFCLK) the new data value is present. N is the first data value
read from the FIFO. To have data on the FIFO data bus, SLOE
MUST also be asserted.

The same sequence of events are shown for a burst read and
are marked with the time indicators of T = 0 through 5.
Note For the burst mode, the SLRD and SLOE are left asserted
during the entire duration of the read. In the burst read mode,
when SLOE is asserted, data indexed by the FIFO pointer is on
the data bus. During the first read cycle, on the rising edge of the
clock the FIFO pointer is updated and increments to point to
address N+1. For each subsequent rising edge of IFCLK, while
the SLRD is asserted, the FIFO pointer is incremented and the
next data value is placed on the data bus.
Page 50 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

10.17.2 Single and Burst Synchronous Write
Figure 31. Slave FIFO Synchronous Write Sequence and Timing Diagram[20]
tIFCLK

IFCLK
tSFA

tSFA

tFAH

tFAH

FIFOADR
t=0

tSWR

tWRH

>= tWRH

>= tSWR

T=0

SLWR
t=2

T=2

t=3

T=5

SLCS
tXFLG

tXFLG

FLAGS
tFDH

tSFD

tSFD
N+1

N

DATA
t=1

tFDH

T=1

tSFD

tSFD

tFDH

N+3

N+2
T=3

tFDH

T=4

tSPE

tPEH

PKTEND

The Figure 31 shows the timing relationship of the SLAVE FIFO
signals during a synchronous write using IFCLK as the synchronizing clock. The diagram illustrates a single write followed by
burst write of 3 bytes and committing all 4 bytes as a short packet
using the PKTEND pin.

FIFO data bus is written to the FIFO on every rising edge of
IFCLK. The FIFO pointer is updated on each rising edge of
IFCLK. In Figure 31, after the four bytes are written to the FIFO,
SLWR is deasserted. The short 4 byte packet can be committed
to the host by asserting the PKTEND signal.

■

At t = 0 the FIFO address is stable and the signal SLCS is
asserted. (SLCS may be tied low in some applications) Note
that tSFA has a minimum of 25 ns. This means when IFCLK is
running at 48 MHz, the FIFO address setup time is more than
one IFCLK cycle.

■

At t = 1, the external master/peripheral must outputs the data
value onto the data bus with a minimum set up time of tSFD
before the rising edge of IFCLK.

■

At t = 2, SLWR is asserted. The SLWR must meet the setup
time of tSWR (time from asserting the SLWR signal to the rising
edge of IFCLK) and maintain a minimum hold time of tWRH (time
from the IFCLK edge to the deassertion of the SLWR signal).
If the SLCS signal is used, it must be asserted with SLWR or
before SLWR is asserted (The SLCS and SLWR signals must
both be asserted to start a valid write condition).

There is no specific timing requirement that should be met for
asserting PKTEND signal with regards to asserting the SLWR
signal. PKTEND can be asserted with the last data value or
thereafter. The only requirement is that the setup time tSPE and
the hold time tPEH must be met. In the scenario of Figure 31, the
number of data values committed includes the last value written
to the FIFO. In this example, both the data value and the
PKTEND signal are clocked on the same rising edge of IFCLK.
PKTEND can also be asserted in subsequent clock cycles. The
FIFOADDR lines should be held constant during the PKTEND
assertion.

■

While the SLWR is asserted, data is written to the FIFO and on
the rising edge of the IFCLK, the FIFO pointer is incremented.
The FIFO flag is also updated after a delay of tXFLG from the
rising edge of the clock.

The same sequence of events are also shown for a burst write
and are marked with the time indicators of T = 0 through 5.
Note For the burst mode, SLWR and SLCS are left asserted for
the entire duration of writing all the required data values. In this
burst write mode, after the SLWR is asserted, the data on the
Document #: 38-08032 Rev. *L

Although there are no specific timing requirement for the
PKTEND assertion, there is a specific corner case condition that
needs attention while using the PKTEND to commit a one
byte/word packet. Additional timing requirements exists when
the FIFO is configured to operate in auto mode and it is desired
to send two packets: a full packet (full defined as the number of
bytes in the FIFO meeting the level set in AUTOINLEN register)
committed automatically followed by a short one byte or word
packet committed manually using the PKTEND pin.
In this case, the external master must ensure to assert the
PKTEND pin at least one clock cycle after the rising edge that
caused the last byte or word that needs to be clocked into the
previous auto committed packet (the packet with the number of
bytes equal to what is set in the AUTOINLEN register). Refer to
Figure 23 for further details on this timing.
Page 51 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

10.17.3 Sequence Diagram of a Single and Burst Asynchronous Read
Figure 32. Slave FIFO Asynchronous Read Sequence and Timing Diagram[20]
tSFA

tFAH

tSFA

tFAH

FIFOADR
t=0

tRDpwl

tRDpwh

tRDpwl

T=0

tRDpwl

tRDpwh

tRDpwl

tRDpwh

tRDpwh

SLRD
t=2

t=3

T=3

T=2

T=5

T=4

T=6

SLCS
tXFLG

tXFLG

FLAGS
tXFD
Data (X)
Driven

DATA

tXFD

tXFD
N

N

N+3

N+2

tOEon

tOEoff

tOEon

tXFD

N+1

tOEoff

SLOE
t=4

t=1

T=7

T=1

Figure 33. Slave FIFO Asynchronous Read Sequence of Events Diagram
SLOE

FIFO POINTER

N

FIFO DATA BUS Not Driven

SLRD

SLRD

SLOE

SLOE

SLRD

SLRD

SLRD

SLRD

SLOE

N

N

N+1

N+1

N+1

N+1

N+2

N+2

N+3

N+3

Driven: X

N

N

Not Driven

N

N+1

N+1

N+2

N+2

Not Driven

Figure 32 shows the timing relationship of the SLAVE FIFO
signals during an asynchronous FIFO read. It shows a single
read followed by a burst read.

■

The data that is driven, after asserting SLRD, is the updated
data from the FIFO. This data is valid after a propagation delay
of tXFD from the activating edge of SLRD. In Figure 32, data N
is the first valid data read from the FIFO. For data to appear on
the data bus during the read cycle (SLRD is asserted), SLOE
must be in an asserted state. SLRD and SLOE can also be tied
together.

■

At t = 0 the FIFO address is stable and the SLCS signal is
asserted.

■

At t = 1, SLOE is asserted. This results in the data bus being
driven. The data that is driven on to the bus is previous data,
it data that was in the FIFO from a prior read cycle.

The same sequence of events is also shown for a burst read
marked with T = 0 through 5.

At t = 2, SLRD is asserted. The SLRD must meet the minimum
active pulse of tRDpwl and minimum de-active pulse width of
tRDpwh. If SLCS is used then, SLCS must be asserted before
SLRD is asserted (The SLCS and SLRD signals must both be
asserted to start a valid read condition.)

Note In burst read mode, during SLOE is assertion, the data bus
is in a driven state and outputs the previous data. After SLRD is
asserted, the data from the FIFO is driven on the data bus (SLOE
must also be asserted) and then the FIFO pointer is incremented.

■

Document #: 38-08032 Rev. *L

Page 52 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

10.17.4 Sequence Diagram of a Single and Burst Asynchronous Write
Figure 34. Slave FIFO Asynchronous Write Sequence and Timing Diagram[20]
tSFA

tFAH

tSFA

tFAH

FIFOADR
t=0

tWRpwl

tWRpwh

T=0

tWRpwl

tWRpwl

tWRpwh

tWRpwl

tWRpwh

tWRpwh

SLWR
t=3

t =1

T=1

T=3

T=4

T=6

T=7

T=9

SLCS
tXFLG

tXFLG

FLAGS
tSFD tFDH

tSFD tFDH

tSFD tFDH

tSFD tFDH

N+1

N+2

N+3

N

DATA
t=2

T=2

T=5

T=8

tPEpwl

tPEpwh

PKTEND

Figure 34 shows the timing relationship of the SLAVE FIFO write
in an asynchronous mode. The diagram shows a single write
followed by a burst write of 3 bytes and committing the 4 byte
short packet using PKTEND.
■

At t = 0 the FIFO address is applied, insuring that it meets the
setup time of tSFA. If SLCS is used, it must also be asserted
(SLCS may be tied low in some applications).

■

At t = 1 SLWR is asserted. SLWR must meet the minimum
active pulse of tWRpwl and minimum de-active pulse width of
tWRpwh. If the SLCS is used, it must be asserted with SLWR or
before SLWR is asserted.

■

At t = 2, data must be present on the bus tSFD before the
deasserting edge of SLWR.

■

At t = 3, deasserting SLWR causes the data to be written from
the data bus to the FIFO and then increments the FIFO pointer.

Document #: 38-08032 Rev. *L

The FIFO flag is also updated after tXFLG from the deasserting
edge of SLWR.
The same sequence of events are shown for a burst write and is
indicated by the timing marks of T = 0 through 5.
Note In the burst write mode, after SLWR is deasserted, the data
is written to the FIFO and then the FIFO pointer is incremented
to the next byte in the FIFO. The FIFO pointer is post incremented.
In Figure 34 after the four bytes are written to the FIFO and
SLWR is deasserted, the short 4 byte packet can be committed
to the host using the PKTEND. The external device should be
designed to not assert SLWR and the PKTEND signal at the
same time. It should be designed to assert the PKTEND after
SLWR is deasserted and met the minimum deasserted pulse
width. The FIFOADDR lines have to held constant during the
PKTEND assertion.

Page 53 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

11. Ordering Information
Table 33. Ordering Information
Ordering Code

Package Type

RAM Size

# Prog IOs

8051 Address
/Data Busses

Ideal for battery powered applications
CY7C68014A-128AXC

128 TQFP – Lead-Free

16K

40

16/8 bit

CY7C68014A-100AXC

100 TQFP – Lead-Free

16K

40

–

CY7C68014A-56PVXC

56 SSOP – Lead-Free

16K

24

–

CY7C68014A-56LFXC

56 QFN – Lead-Free

16K

24

–

CY7C68014A-56BAXC

56 VFBGA – Lead-Free

16K

24

–

CY7C68016A-56LFXC

56 QFN – Lead-Free

16K

26

–

Ideal for non-battery powered applications
CY7C68013A-128AXC

128 TQFP – Lead-Free

16K

40

16/8 bit

CY7C68013A-128AXI

128 TQFP – Lead-Free (Industrial)

16K

40

16/8 bit

CY7C68013A-100AXC

100 TQFP – Lead-Free

16K

40

–

CY7C68013A-100AXI

100 TQFP – Lead-Free (Industrial)

16K

40

–

CY7C68013A-56PVXC

56 SSOP – Lead-Free

16K

24

–

CY7C68013A-56PVXI

56 SSOP – Lead-Free (Industrial)

16K

24

–

CY7C68013A-56LFXC

56 QFN – Lead-Free

16K

24

–

CY7C68013A-56LFXI

56 QFN – Lead-Free (Industrial)

16K

24

–

CY7C68015A-56LFXC

56 QFN – Lead-Free

16K

26

–

CY7C68013A-56BAXC

56 VFBGA – Lead-Free

16K

24

–

Development Tool Kit
CY3684

EZ-USB FX2LP Development Kit

Reference Design Kit
CY4611B

Document #: 38-08032 Rev. *L

USB 2.0 to ATA/ATAPI Reference Design using EZ-USB FX2LP

Page 54 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

12. Package Diagrams
The FX2LP is available in five packages:
■

56-pin SSOP

■

56-pin QFN

■

100-pin TQFP

■

128-pin TQFP

■

56-ball VFBGA

Package Diagrams
Figure 35. 56-lead Shrunk Small Outline Package O56 (51-85062)

51-85062-*C

Document #: 38-08032 Rev. *L

Page 55 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Package Diagrams (continued)
Figure 36. 56-Lead QFN 8 x 8 mm LF56A (51-85144)
SIDE VIEW

TOP VIEW

BOTTOM VIEW
0.08[0.003]

7.90[0.311]
8.10[0.319]

A

C

1.00[0.039] MAX.

6.1
0.05[0.002] MAX.

7.70[0.303]
7.80[0.307]

0.18[0.007]
0.28[0.011]

0.80[0.031] MAX.
0.20[0.008] REF.

N

1

2

2

6.1

0°-12°

C

SEATING PLANE

0.45[0.018]

SOLDERABLE
EXPOSED
PAD

0.30[0.012]
0.50[0.020]

0.50[0.020]
6.45[0.254]
6.55[0.258]

6.45[0.254]
6.55[0.258]

7.70[0.303]
7.80[0.307]

1

7.90[0.311]
8.10[0.319]

0.80[0.031]
DIA.

PIN1 ID
0.20[0.008] R.

N

0.24[0.009]
0.60[0.024]

(4X)

51-85144-*D

NOTES:
1.

HATCH AREA IS SOLDERABLE EXPOSED METAL.

2. REFERENCE JEDEC#: MO-220
3. PACKAGE WEIGHT: 0.162g
4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
5. PACKAGE CODE
PART #

DESCRIPTION

LF56
LY56

STANDARD
PB-FREE

(SUBCON PUNCH TYPE PKG with 6.1 x 6.1 EPAD)

51-85144-*G

Document #: 38-08032 Rev. *L

Page 56 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Package Diagrams (continued)
Figure 37. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A100RA (51-85050)
16.00±0.20
1.40±0.05

14.00±0.10
100

81
80

1

20.00±0.10

22.00±0.20

0.30±0.08

0.65
TYP.
30

12°±1°
(8X)

SEE DETAIL

A

51
31

50

0.20 MAX.

0.10

1.60 MAX.
R 0.08 MIN.
0.20 MAX.

0° MIN.
SEATING PLANE
STAND-OFF
0.05 MIN.
0.15 MAX.

0.25

NOTE:
1. JEDEC STD REF MS-026

GAUGE PLANE

0°-7°

R 0.08 MIN.
0.20 MAX.

2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
3. DIMENSIONS IN MILLIMETERS

0.60±0.15

51-85050-*B

0.20 MIN.
1.00 REF.
DETAIL

Document #: 38-08032 Rev. *L

A

Page 57 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Package Diagrams (continued)
Figure 38. 128-Lead Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A128 (51-85101)
16.00±0.20
14.00±0.10

1.40±0.05

128
1

20.00±0.10

22.00±0.20

0.22±0.05

12°±1°
(8X)

0.50
TYP.

SEE DETAIL

A

0.20 MAX.
1.60 MAX.
0° MIN.

0.08

R 0.08 MIN.
0.20 MAX.

STAND-OFF
0.05 MIN.
0.15 MAX.

0.25
GAUGE PLANE

0°-7°

R 0.08 MIN.
0.20 MAX.

SEATING PLANE
NOTE:
1. JEDEC STD REF MS-026
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
3. DIMENSIONS IN MILLIMETERS

51-85101-*C

0.60±0.15
0.20 MIN.
1.00 REF.
DETAIL

Document #: 38-08032 Rev. *L

A

Page 58 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Package Diagrams (continued)
Figure 39. 56 VFBGA (5 x 5 x 1.0 mm) 0.50 Pitch, 0.30 Ball BZ56 (001-03901)
TOP VIEW

BOTTOM VIEW

Ø0.05 M C
Ø0.15 M C A B

PIN A1 CORNER

A1 CORNER

Ø0.30±0.05(56X)

8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H

0.50

3.50

A
B
C
D
E
F
G
H

5.00±0.10

5.00±0.10

1 2 3 4 5 6 6 8

0.50
-B3.50
-A-

5.00±0.10

5.00±0.10

0.080 C

0.45

SIDE VIEW

0.10 C

0.10(4X)

REFERENCE JEDEC: MO-195C
PACKAGE WEIGHT: 0.02 grams

0.160 ~0.260
1.0 max

SEATING PLANE

0.21

-C-

001-03901-*B

13. PCB Layout Recommendations
Follow these recommendations to ensure reliable high performance operation:[24]

■

Bypass and flyback caps on VBus, near connector, are recommended.

■

Four layer impedance controlled boards are required to
maintain signal quality.

■

■

Specify impedance targets (ask your board vendor what they
can achieve).

DPLUS and DMINUS trace lengths should be kept to within 2
mm of each other in length, with preferred length of 20 to
30 mm.

■

Maintain a solid ground plane under the DPLUS and DMINUS
traces. Do not allow the plane to split under these traces.

■

Do not place vias on the DPLUS or DMINUS trace routing.

■

Isolate the DPLUS and DMINUS traces from all other signal
traces by no less than 10 mm.

■

To control impedance, maintain trace widths and trace spacing.

■

Minimize stubs to minimize reflected signals.

■

Connections between the USB connector shell and signal
ground must be near the USB connector.

Note
24. Source for recommendations: EZ-USB FX2™PCB Design Recommendations, http://www.cypress.com/cfuploads/support/app_notes/FX2_PCB.pdf and
High-Speed USB Platform Design Guidelines, http://www.usb.org/developers/docs/hs_usb_pdg_r1_0.pdf.

Document #: 38-08032 Rev. *L

Page 59 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

14. Quad Flat Package No Leads (QFN) Package Design Notes
Electrical contact of the part to the Printed Circuit Board (PCB)
is made by soldering the leads on the bottom surface of the
package to the PCB. Hence, special attention is required to the
heat transfer area below the package to provide a good thermal
bond to the circuit board. Design a Copper (Cu) fill in the PCB as
a thermal pad under the package. Heat is transferred from the
FX2LP through the device’s metal paddle on the bottom side of
the package. Heat from here is conducted to the PCB at the
thermal pad. It is then conducted from the thermal pad to the
PCB inner ground plane by a 5 x 5 array of via. A via is a plated
through hole in the PCB with a finished diameter of 13 mil. The
QFN’s metal die paddle must be soldered to the PCB’s thermal
pad. Solder mask is placed on the board top side over each via
to resist solder flow into the via. The mask on the top side also
minimizes outgassing during the solder reflow process.

For further information on this package design refer to Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages. You can find this on Amkor's website
http://www.amkor.com.
The application note provides detailed information about board
mounting guidelines, soldering flow, rework process, etc.
Figure 40 shows a cross-sectional area underneath the
package. The cross section is of only one via. The solder paste
template should be designed to allow at least 50% solder
coverage. The thickness of the solder paste template should be
5 mil. Use the No Clean type 3 solder paste for mounting the part.
Nitrogen purge is recommended during reflow.
Figure 41 is a plot of the solder mask pattern and Figure 42
displays an X-Ray image of the assembly (darker areas indicate
solder).

Figure 40. Cross-section of the Area Underneath the QFN Package
0.017” dia
Solder Mask
Cu Fill

Cu Fill

PCB Material

Via hole for thermally connecting the
QFN to the circuit board ground plane.

0.013” dia

PCB Material

This figure only shows the top three layers of the
circuit board: Top Solder, PCB Dielectric, and
the Ground Plane

Figure 41. Plot of the Solder Mask (White Area)

Figure 42. X-ray Image of the Assembly

Document #: 38-08032 Rev. *L

Page 60 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Document History Page
Document Title: CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB FX2LP™ USB Microcontroller
High-Speed USB Peripheral Controller
Document Number: 38-08032
REV. ECN NO.

Issue
Date

Orig. of
Change

Description of Change

**

124316 03/17/03

VCS

New data sheet

*A

128461 09/02/03

VCS

Added PN CY7C68015A throughout data sheet
Modified Figure 1 to add ECC block and fix errors
Removed word “compatible” where associated with I2C
Corrected grammar and formatting in various locations
Updated Sections 3.2.1, 3.9, 3.11, Table 9, Section 5.0
Added Sections 3.15, 3.18.4, 3.20
Modified Figure 5 for clarity
Updated Figure 36 to match current spec revision

*B

130335 10/09/03

KKV

Restored PRELIMINARY to header (had been removed in error from rev. *A)

*C

131673 02/12/04

KKU

Section 8.1 changed “certified” to “compliant”
Table 14 added parameter VIH_X and VIL_X
Added Sequence diagrams Section 9.16
Updated Ordering information with lead-free parts
Updated Registry Summary
Section 3.12.4:example changed to column 8 from column 9
Updated Figure 14 memory write timing Diagram
Updated section 3.9 (reset)
Updated section 3.15 ECC Generation

*D

230713 See ECN

KKU

Changed Lead free Marketing part numbers in Table 33 as per spec change in 28-00054.

*E

242398 See ECN

TMD

Minor Change: data sheet posted to the web,

*F

271169 See ECN

MON

Added USB-IF Test ID number
Added USB 2.0 logo
Added values for Isusp, Icc, Power Dissipation, Vih_x, Vil_x
Changed VCC from + 10% to + 5%
Changed E-Pad size to 4.3 mm x 5.0 mm
Changed PKTEND to FLAGS output propagation delay (asynchronous interface) in
Table 28 from a max value of 70 ns to 115 ns

*G

316313 See ECN

MON

Removed CY7C68013A-56PVXCT part availability
Added parts ideal for battery powered applications: CY7C68014A, CY7C68016A
Provided additional timing restrictions and requirement about the use of PKETEND pin to
commit a short one byte/word packet subsequent to committing a packet automatically
(when in auto mode).
Added Min Vcc Ramp Up time (0 to 3.3v)

*H

338901 See ECN

MON

Added information about the AUTOPTR1/AUTOPTR2 address timing with regards to data
memory read/write timing diagram.
Removed TBD for Min value of Clock to FIFO Data Output Propagation Delay (tXFD) for
Slave FIFO Synchronous Read
Changed Table 33 to include part CY7C68016A-56LFXC in the part listed for battery
powered applications
Added register GPCR2 in register summary

*I

371097 See ECN

MON

Added timing for strobing RD#/WR# signals when using PortC strobe feature (Section 10.5)

*J

397239 See ECN

MON

Removed XTALINSRC register from register summary.
Changed Vcc margins to +10%
Added 56-pin VFBGA Pin Package Diagram
Added 56-pin VFBGA definition in pin listing
Added RDK part number to the Ordering Information table

Document #: 38-08032 Rev. *L

Page 61 of 62

[+] Feedback

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A

Document Title: CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB FX2LP™ USB Microcontroller
High-Speed USB Peripheral Controller
Document Number: 38-08032
REV. ECN NO.

Issue
Date

Orig. of
Change
MON

Description of Change

*K

420505 See ECN

Remove SLCS from figure in Section 10.10.
Removed indications that SLRD can be asserted simultaneously with SLCS in Section
10.17.2 and Section 10.17.3
Added Absolute Maximum Temperature Rating for industrial packages in Section 6.
Changed number of packages stated in the description in Section 4. to five.
Added Table 13 on Thermal Coefficients for various packages

*L

2064406 See ECN CMCC/ Changed TID number
PYRS Removed T0OUT and T1OUT from CY7C68015A/16A
Updated tSWR Min value in Figure 20
Updated 56-lead QFN package diagram

© Cypress Semiconductor Corporation, 2003-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without
the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 38-08032 Rev. *L
2

Revised February 8, 2008

Page 62 of 62

2

Purchase of I C components from Cypress, or one of its sublicensed Associated Companies, conveys a license under the Philips I C Patent Rights to use these components in an I2C system, provided
that the system conforms to the I2C Standard Specification as defined by Philips. EZ-USB FX2LP, EZ-USB FX2 and ReNumeration are trademarks, and EZ-USB is a registered trademark, of Cypress
Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.

[+] Feedback



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.4
Linearized                      : No
Create Date                     : 2008:01:30 16:16:58Z
Subject                         : EZ-USB FX2LP(TM) USB Microcontroller High-Speed USB Peripheral Controller
Copyright                       : Cypres
Author                          : VCS
Keywords                        : CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB FX2LP(TM) USB Microcontroller High-Speed USB Peripheral Controller
Modify Date                     : 2008:02:08 16:07:29Z
Page Mode                       : UseOutlines
XMP Toolkit                     : Adobe XMP Core 4.0-c316 44.253921, Sun Oct 01 2006 17:14:39
Format                          : application/pdf
Description                     : EZ-USB FX2LP(TM) USB Microcontroller High-Speed USB Peripheral Controller
Title                           : CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB FX2LP(TM) USB Microcontroller High-Speed USB Peripheral Controller
Creator                         : VCS
Producer                        : Acrobat Distiller 8.1.0 (Windows)
Creator Tool                    : FrameMaker 7.2
Document ID                     : uuid:dff31228-542a-4db9-a03c-f9c5fca51907
Instance ID                     : uuid:009a9455-872e-45cd-b25a-a49a9f72ef80
Page Count                      : 62
EXIF Metadata provided by EXIF.tools

Navigation menu