DsPIC33EPXXX(GP/MC/MU)806/810/814 And PIC24EPXXX(GP/GU)810/814 Data Sheet RP80 1669518

User Manual: RP80

Open the PDF directly: View PDF PDF.
Page Count: 622

DownloadDsPIC33EPXXX(GP/MC/MU)806/810/814 And PIC24EPXXX(GP/GU)810/814 Data Sheet RP80 1669518
Open PDF In BrowserView PDF
dsPIC33EPXXX(GP/MC/MU)806/810/814
and PIC24EPXXX(GP/GU)810/814

16-Bit Microcontrollers and Digital Signal Controllers with
High-Speed PWM, USB and Advanced Analog
Operating Conditions

Timers/Output Compare/Input Capture

• 3.0V to 3.6V, -40ºC to +125ºC, DC to 60 MIPS
• 3.0V to 3.6V, -40ºC to +85ºC, DC to 70 MIPS

• 27 General Purpose Timers:
- Nine 16-bit and up to four 32-bit Timers/Counters
- 16 OC modules configurable as Timers/Counters
- Two 32-bit Quadrature Encoder Interface (QEI)
modules configurable as Timers/Counters
• 16 IC modules
• Peripheral Pin Select (PPS) to allow Function Remap
• Real-Time Clock and Calendar (RTCC) module

Core: 16-Bit dsPIC33E/PIC24E CPU
•
•
•
•
•

Code-Efficient (C and Assembly) architecture
Two 40-Bit Wide Accumulators
Single-Cycle (MAC/MPY) with Dual Data Fetch
Single-Cycle Mixed-Sign MUL Plus Hardware Divide
32-Bit Multiply Support

Clock Management
•
•
•
•
•

2% Internal Oscillator
Programmable PLLs and Oscillator Clock Sources
Fail-Safe Clock Monitor (FSCM)
Independent Watchdog Timer
Fast Wake-up and Start-up

Power Management
•
•
•
•

Low-Power Management modes (Sleep, Idle, Doze)
Integrated Power-on Reset and Brown-out Reset
1.0 mA/MHz Dynamic Current (typical)
60 µA IPD Current (typical)

High-Speed PWM
•
•
•
•

Up to Seven PWM Pairs with Independent Timing
Dead Time for Rising and Falling Edges
8.32 ns PWM Resolution
PWM Support for:
- DC/DC, AC/DC, Inverters, PFC, Lighting
- BLDC, PMSM, ACIM, SRM
• Programmable Fault Inputs
• Flexible Trigger Configurations for ADC Conversions

Advanced Analog Features
• Two Independent ADC modules:
- One ADC configurable as 10-bit, 1.1 Msps with four
S&H or 12-bit, 500 ksps with one S&H
- One 10-bit ADC, 1.1 Msps with four S&H
- Eight S&H using both ADC 10-bit modules
- 24 analog channels (64-pin devices) up to 32 analog
channels (100/121/144-pin devices)
• Flexible and Independent ADC Trigger Sources
• Comparators:
- Up to three Analog Comparator modules
- Programmable references with 32 voltage points

 2009-2012 Microchip Technology Inc.

Communication Interfaces
• USB 2.0 OTG-Compliant Full-Speed Interface
• Four UART modules (15 Mbps)
- Supports LIN/J2602 protocols and IrDA®
• Four 4-Wire SPI modules (15 Mbps)
• Two ECAN™ modules (1 Mbaud) CAN 2.0B Support
• Two I2C modules (up to 1 Mbaud) with SMBus Support
• Data Converter Interface (DCI) module with Support for
I2S and Audio Codecs
• PPS to allow Function Remap
• Parallel Master Port (PMP)
• Programmable Cyclic Redundancy Check (CRC)

Direct Memory Access (DMA)
• 15-Channel DMA with User-Selectable
Priority Arbitration
• UART, USB, SPI, ADC, ECAN™, IC, OC, Timers,
DCI/I2S, PMP

Input/Output
•
•
•
•
•

Sink/Source 10 mA on All Pins
5V Tolerant Pins
Selectable Open-Drain, Pull-ups and Pull-Downs
Up to 5 mA Overvoltage Clamp Current
External Interrupts on All I/O pins

Qualification and Class B Support
• AEC-Q100 REVG (Grade 1 -40ºC to +125ºC) Planned
• AEC-Q100 REVG (Grade 0 -40ºC to +150ºC) Planned
• Class B Safety Library, IEC 60730

Debugger Development Support
•
•
•
•

In-Circuit and In-Application Programming
Five Program and Three Complex Data Breakpoints
IEEE 1149.2 Compatible (JTAG) Boundary Scan
Trace and Run-Time Watch

DS70616G-page 1

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

dsPIC33EPXXX(GP/MC/MU)806/810/814
and PIC24EPXXX(GP/GU)810/814
PRODUCT FAMILIES
The device names, pin counts, memory sizes and
peripheral availability of each device are listed in
Table 1. Their pinout diagrams appear on the following
pages.

TABLE 1:

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
CONTROLLER FAMILIES

Input Capture

Output Compare (with PWM)

QEI

UART with IrDA®

SPI

ECAN™

External Interrupts(6)

DMA Controller (Channels)

DCI

Analog Comparators/
Inputs Per Comparator(7)

RTCC

I2C™

CRC Generator

10-Bit/12-Bit ADC(8)

USB

9

16

16

8

2

4

4

2

5

15

1

3/4

1

2

1

2 ADC,
24 ch

1

Y

51

280

28

9

16

16

12

2

4

4

2

5

15

1

3/4

1

2

1

2 ADC,
32 ch

1

Y

83

100

TQFP

dsPIC33EP256MU810

121 TFBGA

I/O Pins

16-Bit Timer(3,4)

28

64

Parallel Master Port

RAM (Kbyte)(2)

280

dsPIC33EP256MU806

Motor Control PWM
(Channels)(5)

Program Flash Memory
(Kbyte)(1)

QFN,
TQFP

Device

Pins

Packages

Remappable Peripherals

dsPIC33EP256MU814 144

TQFP,
LQFP

280

28

9

16

16

14

2

4

4

2

5

15

1

3/4

1

2

1

2 ADC,
32 ch

1

Y

122

dsPIC33EP512GP806

64

QFN,
TQFP

536

52

9

16

16

—

—

4

4

2

5

15

1

3/4

1

2

1

2 ADC,
—
24 ch

Y

53

dsPIC33EP512MC806

64

QFN,
TQFP

536

52

9

16

16

8

2

4

4

2

5

15

1

3/4

1

2

1

2 ADC,
—
24 ch

Y

53

100

TQFP

536

52

9

16

16

12

2

4

4

2

5

15

1

3/4

1

2

1

2 ADC,
32 ch

1

Y

83

536

52

9

16

16

14

2

4

4

2

5

15

1

3/4

1

2

1

2 ADC,
32 ch

1

Y

122

280

28

9

16

16

0

0

4

4

2

5

15

1

3/4

1

2

1

2 ADC,
32 ch

1

Y

83

dsPIC33EP512MU810

121 TFBGA

dsPIC33EP512MU814 144

TQFP,
LQFP

100

TQFP

PIC24EP256GU810

121 TFBGA

PIC24EP256GU814

144

TQFP,
LQFP

280

28

9

16

16

0

0

4

4

2

5

15

1

3/4

1

2

1

2 ADC,
32 ch

1

Y

122

PIC24EP512GP806

64

QFN,
TQFP

586

52

9

16

16

—

—

4

4

2

5

15

1

3/4

1

2

1

2 ADC,
—
24 ch

Y

53

100

TQFP

536

52

9

16

16

0

0

4

4

2

5

15

1

3/4

1

2

1

2 ADC,
32 ch

1

Y

83

536

52

9

16

16

0

0

4

4

2

5

15

1

3/4

1

2

1

2 ADC,
32 ch

1

Y

122

PIC24EP512GU810
PIC24EP512GU814
Note

1:
2:
3:
4:
5:
6:
7:
8:

121 TFBGA
144

TQFP,L
QFP

Flash size is inclusive of 24 Kbytes of auxiliary Flash. Auxiliary Flash supports simultaneous code execution and self-erase/programming.
Refer to Section 5. “Flash Programming” (DS70609) in the “dsPIC33E/PIC24E Family Reference Manual”.
RAM size is inclusive of 4 Kbytes of DMA RAM (DPSRAM) for all devices.
Up to eight of these timers can be combined into four 32-bit timers.
Eight out of nine timers are remappable.
PWM Faults and Sync signals are remappable.
Four out of five interrupts are remappable.
Comparator output is remappable.
The ADC2 module supports 10-bit mode only.

DS70616G-page 2

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Pin Diagrams
= Pins are up to 5V tolerant

64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49

AN28/PWM3L/PMD4/RP84/RE4
AN27/PWM2H/PMD3/RPI83/RE3
AN26/PWM2L/PMD2/RP82/RE2
AN25/PWM1H/PMD1/RPI81/RE1
AN24/PWM1L/PMD0/RP80/RE0
VCMPST2/RP97/RF1
VCMPST1/RP96/RF0
VDD
VCAP
C3IN1+/VCMPST3/RP71/RD7
C3IN2-/RP70/RD6
PMRD/RP69/RD5
PMWR/RP68/RD4
PMBE/RP67/RD3
DPH/RP66/RD2
VCPCON/RP65/RD1

64-Pin QFN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

dsPIC33EP256MU806

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33

PGEC2/SOSCO/C3IN1-/T1CK/RPI62/RC14
PGED2/SOSCI/C3IN3-/RPI61/RC13
INT0/DMH/RP64/RD0
PMCS1/RPI75/RD11
ASCL1/PMCS2/RPI74/RD10
ASDA1/DPLN/RPI73/RD9
RTCC/DMLN/RPI72/RD8
VSS
OSC2/CLKO/RC15
OSC1/RPI60/RC12
VDD
D+/RG2
D-/RG3
VUSB3V3
VBUS
USBID/RP99/RF3

PGEC1/AN6/RPI38/RB6
PGED1/AN7/RCV/RPI39/RB7
AVDD
AVSS
AN8/PMA6/RPI40/RB8
AN9/PMA7//RPI41/RB9
TMS/AN10/CVREF/PMA13/RPI42/RB10
TDO/AN11/PMA12/RPI43/RB11
VSS
VDD
TCK/AN12/PMA11/RPI44/RB12
TDI/AN13/PMA10/RPI45/RB13
AN14/PMA1/RPI46/RB14
AN15/PMA0/RPI47/RB15
SDA2/PMA9/RP100/RF4
SCL2/PMA8/RP101/RF5

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

AN29/PWM3H/PMD5/RP85/RE5
AN30/PWM4L/PMD6/RPI86/RE6
AN31/PWM4H/PMD7/RP87/RE7
C1IN3-/SCK2/PMA5/RP118/RG6
C1IN1-/SDI2/PMA4/RPI119/RG7
C2IN3-/SDO2/PMA3/RP120/RG8
MCLR
C2IN1-/PMA2/RPI121/RG9
VSS
VDD
AN5/C1IN1+/VBUSON/VBUSST/RPI37/RB5
AN4/C1IN2-/USBOEN/RPI36/RB4
AN3/C2IN1+/VPIO/RPI35/RB3
AN2/C2IN2-/VMIO/RPI34/RB2
PGEC3/AN1/VREF-/RPI33/RB1
PGED3/AN0/VREF+/RPI32/RB0

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See
Section 11.4 “Peripheral Pin Select” for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0
“I/O Ports” for more information.
3: The availability of I2C™ interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is
made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0
“Special Features” for more information.

 2009-2012 Microchip Technology Inc.

DS70616G-page 3

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Pin Diagrams
= Pins are up to 5V tolerant

64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49

AN28/PWM3L/PMD4/RP84/RE4
AN27/PWM2H/PMD3/RPI83/RE3
AN26/PWM2L/PMD2/RP82/RE2
AN25/PWM1H/PMD1/RPI81/RE1
AN24/PWM1L/PMD0/RP80/RE0
RP97/RF1
RP96/RF0
VDD
VCAP
C3IN1+/RP71/RD7
C3IN2-/RP70/RD6
PMRD/RP69/RD5
PMWR/RP68/RD4
PMBE/RP67/RD3
RP66/RD2
RP65/RD1

64-Pin QFN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

dsPIC33EP512MC806

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33

PGEC2/SOSCO/C3IN1-/T1CK/RPI62/RC14
PGED2/SOSCI/C3IN3-/RPI61/RC13
INT0/RP64/RD0
PMCS1/RPI75/RD11
ASCL1/PMCS2/RPI74/RD10
ASDA1/RPI73/RD9
RTCC/RPI72/RD8
VSS
OSC2/CLKO/RC15
OSC1/RPI60/RC12
VDD
SCLI/RG2
SDA1/RG3
RP102/RF6
RP98/RF2
RP99/RF3

PGEC1/AN6/RPI38/RB6
PGED1/AN7/RPI39/RB7
AVDD
AVSS
AN8/PMA6/RPI40/RB8
AN9/PMA7//RPI41/RB9
TMS/AN10/CVREF/PMA13/RPI42/RB10
TDO/AN11/PMA12/RPI43/RB11
VSS
VDD
TCK/AN12/PMA11/RPI44/RB12
TDI/AN13/PMA10/RPI45/RB13
AN14/PMA1/RPI46/RB14
AN15/PMA0/RPI47/RB15
SDA2/PMA9/RP100/RF4
SCL2/PMA8/RP101/RF5

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

AN29/PWM3H/PMD5/RP85/RE5
AN30/PWM4L/PMD6/RPI86/RE6
AN31/PWM4H/PMD7/RP87/RE7
C1IN3-/SCK2/PMA5/RP118/RG6
C1IN1-/SDI2/PMA4/RPI119/RG7
C2IN3-/SDO2/PMA3/RP120/RG8
MCLR
C2IN1-/PMA2/RPI121/RG9
VSS
VDD
AN5/C1IN1+/RPI37/RB5
AN4/C1IN2-/RPI36/RB4
AN3/C2IN1+/RPI35/RB3
AN2/C2IN2-/RPI34/RB2
PGEC3/AN1/VREF-/RPI33/RB1
PGED3/AN0/VREF+/RPI32/RB0

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See
Section 11.4 “Peripheral Pin Select” for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0
“I/O Ports” for more information.
3: The availability of I2C™ interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is
made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0
“Special Features” for more information.

DS70616G-page 4

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Pin Diagrams
= Pins are up to 5V tolerant

64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49

AN28/PMD4/RP84/RE4
AN27/PMD3/RPI83/RE3
AN26/PMD2/RP82/RE2
AN25/PMD1/RPI81/RE1
AN24/PMD0/RP80/RE0
RP97/RF1
RP96/RF0
VDD
VCAP
C3IN1+/RP71/RD7
C3IN2-/RP70/RD6
PMRD/RP69/RD5
PMWR/RP68/RD4
PMBE/RP67/RD3
RP66/RD2
RP65/RD1

64-Pin QFN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

dsPIC33EP512GP806
PIC24EP512GP806

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33

PGEC2/SOSCO/C3IN1-/T1CK/RPI62/RC14
PGED2/SOSCI/C3IN3-/RPI61/RC13
INT0/RP64/RD0
PMCS1/RPI75/RD11
ASCL1/PMCS2/RPI74/RD10
ASDA1/RPI73/RD9
RTCC/RPI72/RD8
VSS
OSC2/CLKO/RC15
OSC1/RPI60/RC12
VDD
SCLI/RG2
SDA1/RG3
RP102/RF6
RP98/RF2
RP99/RF3

PGEC1/AN6/RPI38/RB6
PGED1/AN7/RPI39/RB7
AVDD
AVSS
AN8/PMA6/RPI40/RB8
AN9/PMA7//RPI41/RB9
TMS/AN10/CVREF/PMA13/RPI42/RB10
TDO/AN11/PMA12/RPI43/RB11
VSS
VDD
TCK/AN12/PMA11/RPI44/RB12
TDI/AN13/PMA10/RPI45/RB13
AN14/PMA1/RPI46/RB14
AN15/PMA0/RPI47/RB15
SDA2/PMA9/RP100/RF4
SCL2/PMA8/RP101/RF5

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

AN29/PMD5/RP85/RE5
AN30/PMD6/RPI86/RE6
AN31/PMD7/RP87/RE7
C1IN3-/SCK2/PMA5/RP118/RG6
C1IN1-/SDI2/PMA4/RPI119/RG7
C2IN3-/SDO2/PMA3/RP120/RG8
MCLR
C2IN1-/PMA2/RPI121/RG9
VSS
VDD
AN5/C1IN1+/RPI37/RB5
AN4/C1IN2-/RPI36/RB4
AN3/C2IN1+/RPI35/RB3
AN2/C2IN2-/RPI34/RB2
PGEC3/AN1/VREF-/RPI33/RB1
PGED3/AN0/VREF+/RPI32/RB0

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See
Section 11.4 “Peripheral Pin Select” for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0
“I/O Ports” for more information.
3: The availability of I2C™ interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is
made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0
“Special Features” for more information.

 2009-2012 Microchip Technology Inc.

DS70616G-page 5

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Pin Diagrams (Continued)
= Pins are up to 5V tolerant

64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49

AN28/PWM3L/PMD4/RP84/RE4
AN27/PWM2H/PMD3/RPI83/RE3
AN26/PWM2L/PMD2/RP82/RE2
AN25/PWM1H/PMD1/RPI81/RE1
AN24/PWM1L/PMD0/RP80/RE0
VCMPST2/RP97/RF1
VCMPST1/RP96/RF0
VDD
VCAP
C3IN1+/VCMPST3/RP71/RD7
C3IN2-/RP70/RD6
PMRD/RP69/RD5
PMWR/RP68/RD4
PMBE/RP67/RD3
DPH/RP66/RD2
VCPCON/RP65/RD1

64-Pin TQFP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

dsPIC33EP256MU806

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33

PGEC2/SOSCO/C3IN1-/T1CK/RPI62/RC14
PGED2/SOSCI/C3IN3-/RPI61/RC13
INT0/DMH/RP64/RD0
PMCS1/RPI75/RD11
ASCL1/PMCS2/RPI74/RD10
ASDA1/DPLN/RPI73/RD9
RTCC/DMLN/RPI72/RD8
VSS
OSC2/CLKO/RC15
OSC1/RPI60/RC12
VDD
D+/RG2
D-/RG3
VUSB3V3
VBUS
USBID/RP99/RF3

PGEC1/AN6/RPI38/RB6
PGED1/AN7/RCV/RPI39/RB7
AVDD
AVSS
AN8/PMA6/RPI40/RB8
AN9/PMA7//RPI41/RB9
TMS/AN10/CVREF/PMA13/RPI42/RB10
TDO/AN11/PMA12/RPI43/RB11
VSS
VDD
TCK/AN12/PMA11/RPI44/RB12
TDI/AN13/PMA10/RPI45/RB13
AN14/PMA1/RPI46/RB14
AN15/PMA0/RPI47/RB15
SDA2/PMA9/RP100/RF4
SCL2/PMA8/RP101/RF5

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

AN29/PWM3H/PMD5/RP85/RE5
AN30/PWM4L/PMD6/RPI86/RE6
AN31/PWM4H/PMD7/RP87/RE7
C1IN3-/SCK2/PMA5/RP118/RG6
C1IN1-/SDI2/PMA4/RPI119/RG7
C2IN3-/SDO2/PMA3/RP120/RG8
MCLR
C2IN1-/PMA2/RPI121/RG9
VSS
VDD
AN5/C1IN1+/VBUSON/VBUSST/RPI37/RB5
AN4/C1IN2-/USBOEN/RPI36/RB4
AN3/C2IN1+/VPIO/RPI35/RB3
AN2/C2IN2-/VMIO/RPI34/RB2
PGEC3/AN1/VREF-/RPI33/RB1
PGED3/AN0/VREF+/RPI32/RB0

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See
Section 11.4 “Peripheral Pin Select” for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0
“I/O Ports” for more information.
3: The availability of I2C™ interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is
made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0
“Special Features” for more information.

DS70616G-page 6

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Pin Diagrams (Continued)
= Pins are up to 5V tolerant

64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49

AN28/PMD4/RP84/RE4
AN27/PMD3/RPI83/RE3
AN26/PMD2/RP82/RE2
AN25/PMD1/RPI81/RE1
AN24/PMD0/RP80/RE0
RP97/RF1
RP96/RF0
VDD
VCAP
C3IN1+/RP71/RD7
C3IN2-/RP70/RD6
PMRD/RP69/RD5
PMWR/RP68/RD4
PMBE/RP67/RD3
RP66/RD2
RP65/RD1

64-Pin TQFP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

dsPIC33EP512GP806
PIC24EP512GP806

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33

PGEC2/SOSCO/C3IN1-/T1CK/RPI62/RC14
PGED2/SOSCI/C3IN3-/RPI61/RC13
INT0/RP64/RD0
PMCS1/RPI75/RD11
ASCL1/PMCS2/RPI74/RD10
ASDA1/RPI73/RD9
RTCC/RPI72/RD8
VSS
OSC2/CLKO/RC15
OSC1/RPI60/RC12
VDD
SCL1/RG2
SDA1/RG3
RP102/RF6
RP98/RF2
RP99/RF3

PGEC1/AN6/RPI38/RB6
PGED1/AN7/RPI39/RB7
AVDD
AVSS
AN8/PMA6/RPI40/RB8
AN9/PMA7//RPI41/RB9
TMS/AN10/CVREF/PMA13/RPI42/RB10
TDO/AN11/PMA12/RPI43/RB11
VSS
VDD
TCK/AN12/PMA11/RPI44/RB12
TDI/AN13/PMA10/RPI45/RB13
AN14/PMA1/RPI46/RB14
AN15/PMA0/RPI47/RB15
SDA2/PMA9/RP100/RF4
SCL2/PMA8/RP101/RF5

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

AN29/PMD5/RP85/RE5
AN30/PMD6/RPI86/RE6
AN31/PMD7/RP87/RE7
C1IN3-/SCK2/PMA5/RP118/RG6
C1IN1-/SDI2/PMA4/RPI119/RG7
C2IN3-/SDO2/PMA3/RP120/RG8
MCLR
C2IN1-/PMA2/RPI121/RG9
VSS
VDD
AN5/C1IN1+/RPI37/RB5
AN4/C1IN2-/RPI36/RB4
AN3/C2IN1+/RPI35/RB3
AN2/C2IN2-/RPI34/RB2
PGEC3/AN1/VREF-/RPI33/RB1
PGED3/AN0/VREF+/RPI32/RB0

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See
Section 11.4 “Peripheral Pin Select” for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0
“I/O Ports” for more information.
3: The availability of I2C™ interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is
made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0
“Special Features” for more information.

 2009-2012 Microchip Technology Inc.

DS70616G-page 7

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Pin Diagrams (Continued)
= Pins are up to 5V tolerant

64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49

AN28/PWM3L/PMD4/RP84/RE4
AN27/PWM2H/PMD3/RPI83/RE3
AN26/PWM2L/PMD2/RP82/RE2
AN25/PWM1H/PMD1/RPI81/RE1
AN24/PWM1L/PMD0/RP80/RE0
RP97/RF1
RP96/RF0
VDD
VCAP
C3IN1+/RP71/RD7
C3IN2-/RP70/RD6
PMRD/RP69/RD5
PMWR/RP68/RD4
PMBE/RP67/RD3
RP66/RD2
RP65/RD1

64-Pin TQFP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

dsPIC33EP512MC806

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33

PGEC2/SOSCO/C3IN1-/T1CK/RPI62/RC14
PGED2/SOSCI/C3IN3-/RPI61/RC13
INT0/RP64/RD0
PMCS1/RPI75/RD11
ASCL1/PMCS2/RPI74/RD10
ASDA1/RPI73/RD9
RTCC/RPI72/RD8
VSS
OSC2/CLKO/RC15
OSC1/RPI60/RC12
VDD
SCL1/RG2
SDA1/RG3
RP102/RF6
RP98/RF2
RP99/RF3

PGEC1/AN6/RPI38/RB6
PGED1/AN7/RPI39/RB7
AVDD
AVSS
AN8/PMA6/RPI40/RB8
AN9/PMA7//RPI41/RB9
TMS/AN10/CVREF/PMA13/RPI42/RB10
TDO/AN11/PMA12/RPI43/RB11
VSS
VDD
TCK/AN12/PMA11/RPI44/RB12
TDI/AN13/PMA10/RPI45/RB13
AN14/PMA1/RPI46/RB14
AN15/PMA0/RPI47/RB15
SDA2/PMA9/RP100/RF4
SCL2/PMA8/RP101/RF5

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

AN29/PWM3H/PMD5/RP85/RE5
AN30/PWM4L/PMD6/RPI86/RE6
AN31/PWM4H/PMD7/RP87/RE7
C1IN3-/SCK2/PMA5/RP118/RG6
C1IN1-/SDI2/PMA4/RPI119/RG7
C2IN3-/SDO2/PMA3/RP120/RG8
MCLR
C2IN1-/PMA2/RPI121/RG9
VSS
VDD
AN5/C1IN1+/RPI37/RB5
AN4/C1IN2-/RPI36/RB4
AN3/C2IN1+/RPI35/RB3
AN2/C2IN2-/RPI34/RB2
PGEC3/AN1/VREF-/RPI33/RB1
PGED3/AN0/VREF+/RPI32/RB0

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See
Section 11.4 “Peripheral Pin Select” for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0
“I/O Ports” for more information.
3: The availability of I2C™ interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is
made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0
“Special Features” for more information.

DS70616G-page 8

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Pin Diagrams (Continued)
100-Pin TQFP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

dsPIC33EP512MU810
dsPIC33EP256MU810

75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

VSS
PGEC2/SOSCO/C3IN1-/T1CK/RPI62/RC14
PGED2/SOSCI/C3IN3-/RPI61/RC13
INT0/DMH/RP64/RD0
PMCS1/RPI75/RD11
ASCL1/PMCS2/RPI74/RD10
ASDA1/DPLN/RPI73/RD9
RTCC/DMLN/RPI72/RD8
RPI31/RA15
RPI30/RA14
VSS
OSC2/CLKO/RC15
OSC1/RPI60/RC12
VDD
TDO/RPI21/RA5
TDI/RPI20/RA4
ASDA2/RPI19/RA3
ASCL2/RPI18/RA2
D+/RG2
D-/RG3
VUSB3V3
VBUS
RP104/RF8
RP98/RF2
USBID/RP99/RF3

PGEC1/AN6/RPI38/RB6
PGED1/AN7/RCV/RPI39/RB7
VREF-/RA9
VREF+/RA10
AVDD
AVSS
AN8/PMA6/RPI40/RB8
AN9/PMA7//RPI41/RB9
AN10/CVREF/PMA13/RPI42/RB10
AN11/PMA12/RPI43/RB11
VSS
VDD
TCK/RPI17/RA1
RP109/RF13
RP108/RF12
AN12/PMA11/RPI44/RB12
AN13/PMA10/RPI45/RB13
AN14/PMA1/RPI46/RB14
AN15/PMA0/RPI47/RB15
VSS
VDD
RPI78/RD14
RP79/RD15
SDA2/PMA9/RP100/RF4
SCL2/PMA8/RP101/RF5

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

RP127/RG15
VDD
AN29/PWM3H/PMD5/RP85/RE5
AN30/PWM4L/PMD6/RPI86/RE6
AN31/PWM4H/PMD7/RP87/RE7
AN16/PWM5L/RPI49/RC1
AN17/PWM5H/RPI50/RC2
AN18/PWM6L/RPI51/RC3
AN19/PWM6H/RPI52/RC4
C1IN3-/SCK2/PMA5/RP118/RG6
C1IN1-/SDI2/PMA4/RPI119/RG7
C2IN3-/SDO2/PMA3/RP120/RG8
MCLR
C2IN1-/PMA2/RPI121/RG9
VSS
VDD
TMS/RPI16/RA0
AN20/RPI88/RE8
AN21/RPI89/RE9
AN5/C1IN1+/VBUSON//VBUSST/RPI37/RB5
AN4/C1IN2-/USBOEN/RPI36/RB4
AN3/C2IN1+/VPIO/RPI35/RB3
AN2/C2IN2-/VMIO/RPI34/RB2
PGEC3/AN1/RPI33/RB1
PGED3/AN0/RPI32/RB0

100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76

AN28/PWM3L/PMD4/RP84/RE4
AN27/PWM2H/PMD3/RPI83/RE3
AN26/PWM2L/PMD2/RP82/RE2
RP125/RG13
RPI124/RG12
RP126/RG14
AN25/PWM1H/PMD1/RPI81/RE1
AN24/PWM1L/PMD0/RP80/RE0
AN23/RPI23/RA7
AN22/RPI22/RA6
RP112/RG0
RP113/RG1
VCMPST2/RP97/RF1
VCMPST1/RP96/RF0
VDD
VCAP
C3IN1+/VCMPST3/RP71/RD7
C3IN2-/RP70/RD6
PMRD/RP69/RD5
PMWR/RP68/RD4
RPI77/RD13
RPI76/RD12
PMBE/RP67/RD3
DPH/RP66/RD2
VCPCON/RP65/RD1

= Pins are up to 5V tolerant

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See
Section 11.4 “Peripheral Pin Select” for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0
“I/O Ports” for more information.
3: The availability of I2C™ interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is
made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0
“Special Features” for more information.

 2009-2012 Microchip Technology Inc.

DS70616G-page 9

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Pin Diagrams (Continued)
100-Pin TQFP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

PIC24EP512GU810
PIC24EP256GU810

75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

VSS
PGEC2/SOSCO/C3IN1-/T1CK/RPI62/RC14
PGED2/SOSCI/C3IN3-/RPI61/RC13
INT0/DMH/RP64/RD0
PMCS1/RPI75/RD11
ASCL1/PMCS2/RPI74/RD10
ASDA1/DPLN/RPI73/RD9
RTCC/DMLN/RPI72/RD8
RPI31/RA15
RPI30/RA14
VSS
OSC2/CLKO/RC15
OSC1/RPI60/RC12
VDD
TDO/RPI21/RA5
TDI/RPI20/RA4
ASDA2/RPI19/RA3
ASCL2/RPI18/RA2
D+/RG2
D-/RG3
VUSB3V3
VBUS
RP104/RF8
RP98/RF2
USBID/RP99/RF3

PGEC1/AN6/RPI38/RB6
PGED1/AN7/RCV/RPI39/RB7
VREF-/RA9
VREF+/RA10
AVDD
AVSS
AN8/PMA6/RPI40/RB8
AN9/PMA7//RPI41/RB9
AN10/CVREF/PMA13/RPI42/RB10
AN11/PMA12/RPI43/RB11
VSS
VDD
TCK/RPI17/RA1
RP109/RF13
RP108/RF12
AN12/PMA11/RPI44/RB12
AN13/PMA10/RPI45/RB13
AN14/PMA1/RPI46/RB14
AN15/PMA0/RPI47/RB15
VSS
VDD
RPI78/RD14
RP79/RD15
SDA2/PMA9/RP100/RF4
SCL2/PMA8/RP101/RF5

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

RP127/RG15
VDD
AN29/PMD5/RP85/RE5
AN30/PMD6/RPI86/RE6
AN31/PMD7/RP87/RE7
AN16/RPI49/RC1
AN17/RPI50/RC2
AN18/RPI51/RC3
AN19/RPI52/RC4
C1IN3-/SCK2/PMA5/RP118/RG6
C1IN1-/SDI2/PMA4/RPI119/RG7
C2IN3-/SDO2/PMA3/RP120/RG8
MCLR
C2IN1-/PMA2/RPI121/RG9
VSS
VDD
TMS/RPI16/RA0
AN20/RPI88/RE8
AN21/RPI89/RE9
AN5/C1IN1+/VBUSON/VBUSST/RPI37/RB5
AN4/C1IN2-/USBOEN/RPI36/RB4
AN3/C2IN1+/VPIO/RPI35/RB3
AN2/C2IN2-/VMIO/RPI34/RB2
PGEC3/AN1/RPI33/RB1
PGED3/AN0/RPI32/RB0

100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76

AN28/PMD4/RP84/RE4
AN27/PMD3/RPI83/RE3
AN26/PMD2/RP82/RE2
RP125/RG13
RPI124/RG12
RP126/RG14
AN25/PMD1/RPI81/RE1
AN24/PMD0/RP80/RE0
AN23/RPI23/RA7
AN22/RPI22/RA6
RP112/RG0
RP113/RG1
VCMPST2/RP97/RF1
VCMPST1/RP96/RF0
VDD
VCAP
C3IN1+/VCMPST3/RP71/RD7
C3IN2-/RP70/RD6
PMRD/RP69/RD5
PMWR/RP68/RD4
RPI77/RD13
RPI76/RD12
PMBE/RP67/RD3
DPH/RP66/RD2
VCPCON/RP65/RD1

= Pins are up to 5V tolerant

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See
Section 11.4 “Peripheral Pin Select” for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0
“I/O Ports” for more information.
3: The availability of I2C™ interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is
made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0
“Special Features” for more information.

DS70616G-page 10

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Pin Diagrams (Continued)
121-Pin TFBGA(1)

= Pins are up to 5V tolerant
dsPIC33EP256MU810
dsPIC33EP512MU810

A

B

C

D
E
F
G
H
J
K

L

1

2

3

4

5

6

7

8

9

10

11

RE4

RE3

RG13

RE0

RG0

RF1

VDD

NC

RD12

RD2

RD1

NC

RG15

RE2

RE1

RA7

RF0

VCAP

RD5

RD3

VSS

RC14

RE6

VDD

RG12

RG14

RA6

NC

RD7

RD4

NC

RC13

RD11

RC1

RE7

RE5

NC

NC

NC

RD6

RD13

RD0

NC

RD10

RC4

RC3

RG6

RC2

NC

RG1

NC

RA15

RD8

RD9

RA14

MCLR

RG8

RG9

RG7

VSS

NC

NC

VDD

RC12

VSS

RC15

RE8

RE9

RA0

NC

VDD

VSS

VSS

NC

RA5

RA3

RA4

RB5

RB4

NC

NC

NC

VDD

NC

VBUS

VUSB3V3

RG2

RA2

RB3

RB2

RB7

AVDD

RB11

RA1

RB12

NC

NC

RF8

RG3

RB1

RB0

RA10

RB8

NC

RF12

RB14

VDD

RD15

RF3

RF2

RB6

RA9

AVSS

RB9

RB10

RF13

RB13

RB15

RD14

RF4

RF5

Note 1: Refer to Table 2 for full pin names.

 2009-2012 Microchip Technology Inc.

DS70616G-page 11

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

TABLE 2:

PIN NAMES: dsPIC33EP256MU810 AND dsPIC33EP512MU810
DEVICES(1,2)

Pin
Number

Full Pin Name

Pin
Number

Full Pin Name

A1

AN28/PWM3L/PMD4/RP84/RE4

E8

RPI31/RA15

A2

AN27/PWM2H/PMD3/RPI83/RE3

E9

RTCC/DMLN/RPI72/RD8

A3

RP125/RG13

E10

ASDA1(3)/DPLN/RPI73/RD9

A4

AN24/PWM1L/PMD0/RP80/RE0

E11

RPI30/RA14

A5

RP112/RG0

F1

MCLR

A6

VCMPST2/RP97/RF1

F2

C2IN3-/SDO2/PMA3/RP120/RG8

A7

VDD

F3

C2IN1-/PMA2/RPI121/RG9

A8

No Connect

F4

C1IN1-/SDI2/PMA4/RPI119/RG7

A9

RPI76/RD12

F5

VSS

A10

DPH/RP66/RD2

F6

No Connect

A11

VCPCON/RP65/RD1

F7

No Connect

B1

No Connect

F8

VDD

B2

RP127/RG15

F9

OSC1/RPI60/RC12

B3

AN26/PWM2L/PMD2/RP82/RE2

F10

VSS

B4

AN25/PWM1H/PMD1/RPI81/RE1

F11

OSC2/CLKO/RC15

B5

AN23/RPI23/RA7

G1

AN20/RPI88/RE8
AN21/RPI89/RE9

B6

VCMPST1/RP96/RF0

G2

B7

VCAP

G3

TMS/RPI16/RA0

B8

PMRD/RP69/RD5

G4

No Connect
VDD

B9

PMBE/RP67/RD3

G5

B10

VSS

G6

VSS

B11

PGEC2/SOSCO/C3IN1-/T1CK/RPI62/RC14

G7

VSS

C1

AN30/PWM4L/PMD6/RPI86/RE6

G8

No Connect

C2

VDD

G9

TDO/RPI21/RA5

C3

RPI124/RG12

G10

ASDA2(3)/RPI19/RA3

C4

RP126/RG14

G11

TDI/RPI20/RA4

C5

AN22/RPI22/RA6

H1

AN5/C1IN1+/VBUSON/VBUSST/RPI37/RB5

C6

No Connect

H2

AN4/C1IN2-/USBOEN/RPI36/RB4

C7

C3IN1+/VCMPST3/RP71/RD7

H3

No Connect

C8

PMWR/RP68/RD4

H4

No Connect

C9

No Connect

H5

No Connect

C10

PGED2/SOSCI/C3IN3-/RPI61/RC13

H6

VDD

C11

PMCS1/RPI75/RD11

H7

No Connect

D1

AN16/PWM5L/RPI49/RC1

H8

VBUS

D2

AN31/PWM4H/PMD7/RP87/RE7

H9

VUSB3V3

D3

AN29/PWM3H/PMD5/RP85/RE5

H10

D+/RG2(4)

D4

No Connect

H11

ASCL2(3)/RPI18/RA2

D5

No Connect

J1

D6

No Connect

J2

AN2/C2IN2-/VMIO/RPI34/RB2

D7

C3IN2-/RP70/RD6

J3

PGED1/AN7/RCV/RPI39/RB7

AN3/C2IN1+/VPIO/RPI35/RB3

D8

RPI77/RD13

J4

AVDD

D9

INT0/DMH/RP64/RD0

J5

AN11/PMA12/RPI43/RB11

D10

No Connect

J6

TCK/RPI17/RA1

D11

ASCL1(3)/PMCS2/RPI74/RD10

J7

AN12/PMA11/RPI44/RB12

Note 1:
2:
3:
4:
5:

The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 “Peripheral Pin Select” for
available peripherals and for information on limitations.
Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 “I/O Ports” for more information.
The availability of I2C™ interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits,
ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0 “Special Features” for more information.
The pin name is SCL1/RG2 for the dsPIC33EP512(GP/MC)806 and PIC24EP512GP806 devices.
The pin name is SDA1/RG3 for the dsPIC33EP512(GP/MC)806 and PIC24EP512GP806 devices.

DS70616G-page 12

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

TABLE 2:

PIN NAMES: dsPIC33EP256MU810 AND dsPIC33EP512MU810
DEVICES(1,2) (CONTINUED)

Pin
Number

Full Pin Name

Pin
Number

Full Pin Name

E1

AN19/PWM6H/RPI52/RC4

J8

E2

AN18/PWM6L/RPI51/RC3

J9

No Connect
No Connect

E3

C1IN3-/SCK2/PMA5/RP118/RG6

J10

RP104/RF8

E4

AN17/PWM5H/RPI50/RC2

J11

D-/RG3(5)

E5

No Connect

K1

PGEC3/AN1/RPI33/RB1

E6

RP113/RG1

K2

PGED3/AN0/RPI32/RB0

E7

No Connect

K3

VREF+/RA10
AVSS

K4

AN8/PMA6/RPI40/RB8

L3

K5

No Connect

L4

AN9/PMA7//RPI41/RB9

K6

RP108/RF12

L5

AN10/CVREF/PMA13/RPI42/RB10

K7

AN14/PMA1/RPI46/RB14

L6

RP109/RF13

K8

VDD

L7

AN13/PMA10/RPI45/RB13

K9

RP79/RD15

L8

AN15/PMA0/RPI47/RB15

K10

USBID/RP99/RF3

L9

RPI78/RD14

K11

RP98/RF2

L10

SDA2(3)/PMA9/RP100/RF4

PGEC1/AN6/RPI38/RB6

L11

SCL2(3)/PMA8/RP101/RF5

L1
L2

VREF-/RA9

Note 1:
2:
3:
4:
5:

The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 “Peripheral Pin Select” for
available peripherals and for information on limitations.
Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 “I/O Ports” for more information.
The availability of I2C™ interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits,
ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0 “Special Features” for more information.
The pin name is SCL1/RG2 for the dsPIC33EP512(GP/MC)806 and PIC24EP512GP806 devices.
The pin name is SDA1/RG3 for the dsPIC33EP512(GP/MC)806 and PIC24EP512GP806 devices.

 2009-2012 Microchip Technology Inc.

DS70616G-page 13

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Pin Diagrams (Continued)
121-Pin TFBGA(1)

= Pins are up to 5V tolerant
PIC24EP256GU810
PIC24EP512GU810

A

B

C
D
E
F
G
H
J
K

L

1

2

3

4

5

6

7

8

9

10

11

RE4

RE3

RG13

RE0

RG0

RF1

VDD

NC

RD12

RD2

RD1

NC

RG15

RE2

RE1

RA7

RF0

VCAP

RD5

RD3

VSS

RC14

RE6

VDD

RG12

RG14

RA6

NC

RD7

RD4

NC

RC13

RD11

RC1

RE7

RE5

NC

NC

NC

RD6

RD13

RD0

NC

RD10

RC4

RC3

RG6

RC2

NC

RG1

NC

RA15

RD8

RD9

RA14

MCLR

RG8

RG9

RG7

VSS

NC

NC

VDD

RC12

VSS

RC15

RE8

RE9

RA0

NC

VDD

VSS

VSS

NC

RA5

RA3

RA4

RB5

RB4

NC

NC

NC

VDD

NC

VBUS

VUSB3V3

RG2

RA2

RB3

RB2

RB7

AVDD

RB11

RA1

RB12

NC

NC

RF8

RG3

RB1

RB0

RA10

RB8

NC

RF12

RB14

VDD

RD15

RF3

RF2

RB6

RA9

AVSS

RB9

RB10

RF13

RB13

RB15

RD14

RF4

RF5

Note 1: Refer to Table 3 for full pin names.

DS70616G-page 14

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

TABLE 3:

PIN NAMES: PIC24EP256GU810 AND PIC24EP512GU810
DEVICES(1,2)

Pin
Number

Full Pin Name

Pin
Number

Full Pin Name

A1

AN28/PMD4/RP84/RE4

E8

RPI31/RA15

A2

AN27/PMD3/RPI83/RE3

E9

RTCC/DMLN/RPI72/RD8

A3

RP125/RG13

E10

ASDA1(3)/DPLN/RPI73/RD9

A4

AN24/PMD0/RP80/RE0

E11

RPI30/RA14

A5

RP112/RG0

F1

MCLR

A6

VCMPST2/RP97/RF1

F2

C2IN3-/SDO2/PMA3/RP120/RG8

A7

VDD

F3

C2IN1-/PMA2/RPI121/RG9

A8

No Connect

F4

C1IN1-/SDI2/PMA4/RPI119/RG7

A9

RPI76/RD12

F5

VSS

A10

DPH/RP66/RD2

F6

No Connect

A11

VCPCON/RP65/RD1

F7

No Connect

B1

No Connect

F8

VDD

B2

RP127/RG15

F9

OSC1/RPI60/RC12

B3

AN26/PMD2/RP82/RE2

F10

VSS

B4

AN25/PMD1/RPI81/RE1

F11

OSC2/CLKO/RC15

B5

AN23/RPI23/RA7

G1

AN20/RPI88/RE8
AN21/RPI89/RE9

B6

VCMPST1/RP96/RF0

G2

B7

VCAP

G3

TMS/RPI16/RA0

B8

PMRD/RP69/RD5

G4

No Connect
VDD

B9

PMBE/RP67/RD3

G5

B10

VSS

G6

VSS

B11

PGEC2/SOSCO/C3IN1-/T1CK/RPI62/RC14

G7

VSS

C1

AN30/PMD6/RPI86/RE6

G8

No Connect

C2

VDD

G9

TDO/RPI21/RA5

C3

RPI124/RG12

G10

ASDA2(3)/RPI19/RA3

C4

RP126/RG14

G11

TDI/RPI20/RA4

C5

AN22/RPI22/RA6

H1

AN5/C1IN1+/VBUSON/VBUSST/RPI37/RB5

C6

No Connect

H2

AN4/C1IN2-/USBOEN/RPI36/RB4

C7

C3IN1+/VCMPST3/RP71/RD7

H3

No Connect

C8

PMWR/RP68/RD4

H4

No Connect

C9

No Connect

H5

No Connect

C10

PGED2/SOSCI/C3IN3-/RPI61/RC13

H6

VDD

C11

PMCS1/RPI75/RD11

H7

No Connect

D1

AN16/RPI49/RC1

H8

VBUS

D2

AN31/PMD7/RP87/RE7

H9

VUSB3V3

D3

AN29/PMD5/RP85/RE5

H10

D+/RG2(4)

D4

No Connect

H11

ASCL2(3)/RPI18/RA2

D5

No Connect

J1

AN3/C2IN1+/VPIO/RPI35/RB3

D6

No Connect

J2

AN2/C2IN2-/VMIO/RPI34/RB2

D7

C3IN2-/RP70/RD6

J3

PGED1/AN7/RCV/RPI39/RB7

D8

RPI77/RD13

J4

AVDD
AN11/PMA12/RPI43/RB11

D9

INT0/DMH/RP64/RD0

J5

D10

No Connect

J6

TCK/RPI17/RA1

D11

ASCL1(3)/PMCS2/RPI74/RD10

J7

AN12/PMA11/RPI44/RB12

Note 1:
2:
3:
4:
5:

The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 “Peripheral Pin Select” for
available peripherals and for information on limitations.
Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 “I/O Ports” for more information.
The availability of I2C™ interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits,
ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0 “Special Features” for more information.
The pin name is SCL1/RG2 for the dsPIC33EP512(GP/MC)806 and PIC24EP512GP806 devices.
The pin name is SDA1/RG3 for the dsPIC33EP512(GP/MC)806 and PIC24EP512GP806 devices.

 2009-2012 Microchip Technology Inc.

DS70616G-page 15

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

TABLE 3:

PIN NAMES: PIC24EP256GU810 AND PIC24EP512GU810
DEVICES(1,2) (CONTINUED)

Pin
Number

Full Pin Name

Pin
Number

Full Pin Name

E1

AN19/RPI52/RC4

J8

E2

AN18/RPI51/RC3

J9

No Connect
No Connect

E3

C1IN3-/SCK2/PMA5/RP118/RG6

J10

RP104/RF8

E4

AN17/RPI50/RC2

J11

D-/RG3(5)

E5

No Connect

K1

PGEC3/AN1/RPI33/RB1

E6

RP113/RG1

K2

PGED3/AN0/RPI32/RB0

E7

No Connect

K3

VREF+/RA10

K4

AN8/PMA6/RPI40/RB8

L3

AVSS

K5

No Connect

L4

AN9/PMA7/RPI41/RB9

K6

RP108/RF12

L5

AN10/CVREF/PMA13/RPI42/RB10

K7

AN14/PMA1/RPI46/RB14

L6

RP109/RF13

K8

VDD

L7

AN13/PMA10/RPI45/RB13

K9

RP79/RD15

L8

AN15/PMA0/RPI47/RB15

K10

USBID/RP99/RF3

L9

RPI78/RD14

K11

RP98/RF2

L10

SDA2(3)/PMA9/RP100/RF4

PGEC1/AN6/RPI38/RB6

L11

SCL2(3)/PMA8/RP101/RF5

L1
L2

VREF-/RA9

Note 1:
2:
3:
4:
5:

The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 “Peripheral Pin Select” for
available peripherals and for information on limitations.
Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 “I/O Ports” for more information.
The availability of I2C™ interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits,
ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0 “Special Features” for more information.
The pin name is SCL1/RG2 for the dsPIC33EP512(GP/MC)806 and PIC24EP512GP806 devices.
The pin name is SDA1/RG3 for the dsPIC33EP512(GP/MC)806 and PIC24EP512GP806 devices.

DS70616G-page 16

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Pin Diagrams (Continued)
144-Pin TQFP, 144-pin LQFP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

dsPIC33EP512MU814
dsPIC33EP256MU814

108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73

VSS
PGEC2/SOSCO/C3IN1-/T1CK/RPI62/RC14
PGED2/SOSCI/C3IN3-/RPI61/RC13
INT0/DMH/RP64/RD0
RH15
RH14
RH13
RH12
RPI75/RD11
ASCL1/RPI74/RD10
ASDA1/DPLN/RPI73/RD9
RTCC/DMLN/RPI72/RD8
RPI31/RA15
RPI30/RA14
PMCS1/RK11
PMCS2/RK12
VSS
OSC2/CLKO/RC15
OSC1/RPI60/RC12
VDD
TDO/RPI21/RA5
TDI/RPI20/RA4
ASDA2/RPI19/RA3
ASCL2/RPI18/RA2
RH11
RH10
RH9
RH8
D+/RG2
D-/RG3

VUSB3V3

VBUS
RP104/RF8
RP98/RF2
USBID/RP99/RF3
VSS

PGEC1/AN6/RPI38/RB6
PGED1/AN7/RCV/RPI39/RB7
VREF-/RA9
VREF+/RA10
AVDD
AVSS
PMD0/RH0
PMD1/RH1
PMD2/RH2
PMD3/RH3
AN8/RPI40/RB8
AN9/RPI41/RB9
AN10/CVREF/RPI42/RB10
AN11/RPI43/RB11
VSS
VDD
PMRD/RK15
PMWR/RK14
PMBE/RK13
TCK/RPI17/RA1
RP109/RF13
RP108/RF12
AN12/RPI44/RB12
AN13/RPI45/RB13
AN14/RPI46/RB14
AN15/RPI47/RB15
VSS
VDD
PMD4/RH4
PMD5/RH5
PMD6/RH6
PMD7/RH7
RPI78/RD14
RP79/RD15
SDA2/RP100/RF4
SCL2/RP101/RF5

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

RP127/RG15
VDD
AN29/PWM3H/RP85/RE5
AN30/PWM4L/RPI86/RE6
AN31/PWM4H/RP87/RE7
PWM7L/PMA8/RJ8
PWM7H/PMA9/RJ9
PMA10/RJ10
PMA11/RJ11
AN16/PWM5L/RPI49/RC1
AN17/PWM5H/RPI50/RC2
AN18/PWM6L/RPI51/RC3
AN19/PWM6H/RPI52/RC4
PMA12/RJ12
PMA13/RJ13
C1IN3-/SCK2/RP118/RG6
C1IN1-/SDI2/RPI119/RG7
C2IN3-/SDO2/RP120/RG8
MCLR
C2IN1-/RPI121/RG9
RJ14
RJ15
VSS
VDD
TMS/RPI16/RA0
AN20/RPI88/RE8
AN21/RPI89/RE9
RK0
RK1
AN5/C1IN1+/VBUSON/VBUSST/RPI37/RB5
AN4/C1IN2-/USBOEN/RPI36/RB4
AN3/C2IN1+/VPIO/RPI35/RB3
AN2/C2IN2-/VMIO/RPI34/RB2
PGEC3/AN1/RPI33/RB1
PGED3/AN0/RPI32/RB0
VSS

144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109

AN28/PWM3L/RP84/RE4
AN27/PWM2H/RPI83/RE3
AN26/PWM2L/RP82/RE2
VSS
RP125/RG13
RPI124/RG12
RP126/RG14
AN25/PWM1H/RPI81/RE1
AN24/PWM1L/RP80/RE0
PMA7/RJ7
PMA6/RJ6
PMA5/RJ5
PMA4/RJ4
AN23/RPI23/RA7
AN22/RPI22/RA6
RP112/RG0
RP113/RG1
VCMPST2/RP97/RF1
VCMPST1/RP96/RF0
VSS
VDD
VCAP
C3IN1+/VCMPST3/RP71/RD7
C3IN2-/RP70/RD6
RP69/RD5
RP68/RD4
PMA3/RJ3
PMA2/RJ2
PMA1/RJ1
PMA0/RJ0
RPI77/RD13
RPI76/RD12
VDD
RP67/RD3
DPH/RP66/RD2
VCPCON/RP65/RD1

= Pins are up to 5V tolerant

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See
Section 11.4 “Peripheral Pin Select” for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RKx) can be used as change notification (CNAx-CNKx). See Section 11.0
“I/O Ports” for more information.
3: The availability of I2C interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is made
using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0
“Special Features” for more information.

 2009-2012 Microchip Technology Inc.

DS70616G-page 17

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Pin Diagrams (Continued)
144-Pin TQFP, 144-pin LQFP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

PIC24EP512GU814
PIC24EP256GU814

108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73

VSS
PGEC2/SOSCO/C3IN1-/T1CK/RPI62/RC14
PGED2/SOSCI/C3IN3-/RPI61/RC13
INT0/DMH/RP64/RD0
RH15
RH14
RH13
RH12
RPI75/RD11
ASCL1/RPI74/RD10
ASDA1/DPLN/RPI73/RD9
RTCC/DMLN/RPI72/RD8
RPI31/RA15
RPI30/RA14
PMCS1/RK11
PMCS2/RK12
VSS
OSC2/CLKO/RC15
OSC1/RPI60/RC12
VDD
TDO/RPI21/RA5
TDI/RPI20/RA4
ASDA2/RPI19/RA3
ASCL2/RPI18/RA2
RH11
RH10
RH9
RH8
D+/RG2
D-/RG3

VUSB3V3

VBUS
RP104/RF8
RP98/RF2
USBID/RP99/RF3
VSS

PGEC1/AN6/RPI38/RB6
PGED1/AN7/RCV/RPI39/RB7
VREF-/RA9
VREF+/RA10
AVDD
AVSS
PMD0/RH0
PMD1/RH1
PMD2/RH2
PMD3/RH3
AN8/RPI40/RB8
AN9/RPI41/RB9
AN10/CVREF/RPI42/RB10
AN11/RPI43/RB11
VSS
VDD
PMRD/RK15
PMWR/RK14
PMBE/RK13
TCK/RPI17/RA1
RP109/RF13
RP108/RF12
AN12/RPI44/RB12
AN13/RPI45/RB13
AN14/RPI46/RB14
AN15/RPI47/RB15
VSS
VDD
PMD4/RH4
PMD5/RH5
PMD6/RH6
PMD7/RH7
RPI78/RD14
RP79/RD15
SDA2/RP100/RF4
SCL2/RP101/RF5

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

RP127/RG15
VDD
AN29/RP85/RE5
AN30/RPI86/RE6
AN31/RP87/RE7
PMA8/RJ8
PMA9/RJ9
PMA10/RJ10
PMA11/RJ11
AN16/RPI49/RC1
AN17/RPI50/RC2
AN18/RPI51/RC3
AN19/RPI52/RC4
PMA12/RJ12
PMA13/RJ13
C1IN3-/SCK2/RP118/RG6
C1IN1-/SDI2/RPI119/RG7
C2IN3-/SDO2/RP120/RG8
MCLR
C2IN1-/RPI121/RG9
RJ14
RJ15
VSS
VDD
TMS/RPI16/RA0
AN20/RPI88/RE8
AN21/RPI89/RE9
RK0
RK1
AN5/C1IN1+/VBUSON/VBUSST/RPI37/RB5
AN4/C1IN2-/USBOEN/RPI36/RB4
AN3/C2IN1+/VPIO/RPI35/RB3
AN2/C2IN2-/VMIO/RPI34/RB2
PGEC3/AN1/RPI33/RB1
PGED3/AN0/RPI32/RB0
VSS

144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109

AN28/RP84/RE4
AN27/RPI83/RE3
AN26/RP82/RE2
VSS
RP125/RG13
RPI124/RG12
RP126/RG14
AN25/RPI81/RE1
AN24/RP80/RE0
PMA7/RJ7
PMA6/RJ6
PMA5/RJ5
PMA4/RJ4
AN23/RPI23/RA7
AN22/RPI22/RA6
RP112/RG0
RP113/RG1
VCMPST2/RP97/RF1
VCMPST1/RP96/RF0
VSS
VDD
VCAP
C3IN1+/VCMPST3/RP71/RD7
C3IN2-/RP70/RD6
RP69/RD5
RP68/RD4
PMA3/RJ3
PMA2/RJ2
PMA1/RJ1
PMA0/RJ0
RPI77/RD13
RPI76/RD12
VDD
RP67/RD3
DPH/RP66/RD2
VCPCON/RP65/RD1

= Pins are up to 5V tolerant

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4
“Peripheral Pin Select” for available peripherals and for information on limitations.
2: Every I/O port pin (RAx-RKx) can be used as change notification (CNAx-CNKx). See Section 11.0 “I/O
Ports” for more information.
3: The availability of I2C interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is made
using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0 “Special
Features” for more information.

DS70616G-page 18

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Table of Contents
1.0 Device Overview ........................................................................................................................................................................ 23
2.0 Guidelines for Getting Started with 16-Bit Digital Signal Controllers and Microcontrollers ........................................................ 31
3.0 CPU............................................................................................................................................................................................ 37
4.0 Memory Organization ................................................................................................................................................................. 47
5.0 Flash Program Memory............................................................................................................................................................ 135
6.0 Resets ..................................................................................................................................................................................... 141
7.0 Interrupt Controller ................................................................................................................................................................... 145
8.0 Direct Memory Access (DMA) .................................................................................................................................................. 159
9.0 Oscillator Configuration ............................................................................................................................................................ 177
10.0 Power-Saving Features............................................................................................................................................................ 191
11.0 I/O Ports ................................................................................................................................................................................... 207
12.0 Timer1 ...................................................................................................................................................................................... 271
13.0 Timer2/3, Timer4/5, Timer6/7 and Timer8/9 ............................................................................................................................ 275
14.0 Input Capture............................................................................................................................................................................ 281
15.0 Output Compare....................................................................................................................................................................... 287
16.0 High-Speed PWM Module (dsPIC33EPXXX(MC/MU)8XX Devices Only) ............................................................................... 293
17.0 Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXX(MC/MU)8XX Devices Only)................................................... 321
18.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 337
19.0 Inter-Integrated Circuit™ (I2C™).............................................................................................................................................. 345
20.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 353
21.0 Enhanced CAN (ECAN™) Module........................................................................................................................................... 359
22.0 USB On-The-Go (OTG) Module (dsPIC33EPXXXMU8XX and PIC24EPGU8XX Devices Only) ............................................ 385
23.0 10-Bit/12-Bit Analog-to-Digital Converter (ADC) ...................................................................................................................... 413
24.0 Data Converter Interface (DCI) Module.................................................................................................................................... 429
25.0 Comparator Module.................................................................................................................................................................. 437
26.0 Real-Time Clock and Calendar (RTCC) .................................................................................................................................. 449
27.0 Programmable Cyclic Redundancy Check (CRC) Generator .................................................................................................. 461
28.0 Parallel Master Port (PMP)....................................................................................................................................................... 467
29.0 Special Features ...................................................................................................................................................................... 477
30.0 Instruction Set Summary .......................................................................................................................................................... 485
31.0 Development Support............................................................................................................................................................... 495
32.0 Electrical Characteristics .......................................................................................................................................................... 499
33.0 DC and AC Device Characteristics Graphs.............................................................................................................................. 573
34.0 Packaging Information.............................................................................................................................................................. 577
Appendix A: Revision History............................................................................................................................................................. 597

 2009-2012 Microchip Technology Inc.

DS70616G-page 19

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

TO OUR VALUED CUSTOMERS
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We
welcome your feedback.

Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of
silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
• Microchip’s Worldwide Web site; http://www.microchip.com
• Your local Microchip sales office (see last page)
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are
using.

Customer Notification System
Register on our web site at www.microchip.com to receive the most current information on all of our products.

DS70616G-page 20

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Referenced Sources
This device data sheet is based on the following
individual chapters of the “dsPIC33E/PIC24E Family
Reference Manual”. These documents should be
considered as the general reference for the operation
of a particular module or device feature.
Note:

To access the documents listed below,
browse to the documentation section
of the dsPIC33EP512MU814 product
page on the Microchip web site
(www.microchip.com).
In the event you are not able to access
the product page using the link above,
enter this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310#1

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Section 1. “Introduction” (DS70573)
Section 2. “CPU” (DS70359)
Section 3. “Data Memory” (DS70595)
Section 4. “Program Memory” (DS70613)
Section 5. “Flash Programming” (DS70609)
Section 6. “Interrupts” (DS70600)
Section 7. “Oscillator” (DS70580)
Section 8. “Reset” (DS70602)
Section 9. “Watchdog Timer and Power-Saving Modes” (DS70615)
Section 10. “I/O Ports” (DS70598)
Section 11. “Timers” (DS70362)
Section 12. “Input Capture” (DS70352)
Section 13. “Output Compare” (DS70358)
Section 14. “High-Speed PWM” (DS70645)
Section 15. “Quadrature Encoder Interface (QEI)” (DS70601)
Section 16. “Analog-to-Digital Converter (ADC)” (DS70621)
Section 17. “UART” (DS70582)
Section 18. “Serial Peripheral Interface (SPI)” (DS70569)
Section 19. “Inter-Integrated Circuit™ (I2C™)” (DS70330)
Section 20. “Data Converter Interface (DCI)” (DS70356)
Section 21. “Enhanced Controller Area Network (ECAN™)” (DS70353)
Section 22. “Direct Memory Access (DMA)” (DS70348)
Section 23. “CodeGuard™ Security” (DS70634)
Section 24. “Programming and Diagnostics” (DS70608)
Section 25. “USB On-The-Go (OTG)” (DS70571)
Section 26. “Op Amp/Comparator” (DS70357)
Section 27. “Programmable Cyclic Redundancy Check (CRC)” (DS70346)
Section 28. “Parallel Master Port (PMP)” (DS70576)
Section 29. “Real-Time Clock and Calendar (RTCC)” (DS70584)
Section 30. “Device Configuration” (DS70618)

 2009-2012 Microchip Technology Inc.

DS70616G-page 21

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

NOTES:

DS70616G-page 22

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
1.0

DEVICE OVERVIEW

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive resource. To complement the information in this data
sheet, refer to the related section of the
“dsPIC33E/PIC24E Family Reference
Manual”, which is available from the
Microchip web site (www.microchip.com)
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.

 2009-2012 Microchip Technology Inc.

This document contains device-specific information
for the dsPIC33EPXXX(GP/MC/MU)806/810/814
and PIC24EPXXX(GP/GU)810/814 Digital Signal
Controller (DSC) and Microcontroller (MCU) devices.
The dsPIC33EPXXX(GP/MC/MU)806/810/814 devices
contain extensive Digital Signal Processor (DSP)
functionality with a high-performance 16-bit MCU
architecture.
Figure 1-1 illustrates a general block diagram
of the core and peripheral modules in
the dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 families of devices.
Table 1-1 lists the functions of the various pins shown
in the pinout diagrams.

DS70616G-page 23

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 1-1:

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
BLOCK DIAGRAM
X Address Bus
Y Data Bus(1)
X Data Bus

Interrupt
Controller

PSV and Table
Data Access
24 Control Block

8

Data Latch

Data Latch

Y Data
RAM(1)

X Data
RAM

Address
Latch

Address
Latch

16

Y Address Bus

24
24

PCU PCH PCL
Program Counter
Stack
Loop
Control
Control
Logic
Logic

Address Latch

16

16

16

16

PORTA

PORTB
16

16
16
X RAGU
X WAGU

16

24

PORTC

PORTD

Y AGU(1)
Program Memory
Data Latch

PORTE
24

16
Literal Data

IR

ROM Latch

24

EA MUX

16

16

16

PORTF

16 x 16
W Reg Array
Instruction
Decode and
Control

16

Control Signals
to Various Blocks
OSC1/CLKI

Power-up
Timer
Timing
Generation

Divide
Support

DSP
Engine(1)

POR/BOR

16

PORTH

PORTJ

16-Bit ALU

MCLR

PORTG

16

Oscillator
Start-up Timer

VDD, VSS
AVDD, AVSS

16

16

Watchdog
Timer

PORTK

Remappable
Comparator
(3-Channel)

CRC

Note 1:
2:

PWM

(1)

QEI1(1),
QEI2(1)

RTCC

ECAN1,
ECAN2

ADC1,
ADC2

Input
Capture

Output
Compare

I2C1,
I2C2

PMP

USB
OTG(2)

Timers

DCI

SPI1SPI4

UART1UART4

Pins

This feature or peripheral is only available on dsPIC33EPXXX(MC/MU)806/810/814 devices.
This feature or peripheral is only available on dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU806/810/814 devices.

DS70616G-page 24

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 1-1:

PINOUT I/O DESCRIPTIONS

Pin Name

Pin Buffer
PPS
Type Type

Description

AN0-AN31

I

Analog

No

Analog input channels.

CLKI

I

ST/
CMOS

No

External clock source input. Always associated with OSC1 pin function.
Oscillator crystal output. Connects to crystal or resonator in Crystal
Oscillator mode. Optionally functions as CLKO in RC and EC modes.
Always associated with OSC2 pin function.

CLKO

O

—

No

OSC1

I

No

OSC2

I/O

ST/
CMOS
—

SOSCI

I

No

32.768 kHz low-power oscillator crystal input; CMOS otherwise.

SOSCO

O

ST/
CMOS
—

No

32.768 kHz low-power oscillator crystal output.

IC1-IC16

I

ST

Yes Capture Inputs 1 through 16.

OCFA
OCFB
OCFC
OC1-OC16

I
I
I
O

ST
ST
ST
—

Yes
Yes
Yes
Yes

Compare Fault A input (for Compare channels).
Compare Fault B input (for Compare channels).
Compare Fault C input (for Compare channels).
Compare Outputs 1 through 16.

INT0
INT1
INT2
INT3
INT4

I
I
I
I
I

ST
ST
ST
ST
ST

No
Yes
Yes
Yes
Yes

External Interrupt 0.
External Interrupt 1.
External Interrupt 2.
External Interrupt 3.
External Interrupt 4.

RA0-RA7, RA9,
RA10, RA14, RA15

I/O

ST

No

PORTA is a bidirectional I/O port.

RB0-RB15

I/O

ST

No

PORTB is a bidirectional I/O port.

RC1-RC4,
RC12-RC15

I/O

ST

No

PORTC is a bidirectional I/O port.

No

Oscillator crystal input. ST buffer when configured in RC mode; CMOS
otherwise.
Oscillator crystal output. Connects to crystal or resonator in Crystal
Oscillator mode. Optionally functions as CLKO in RC and EC modes.

RD0-RD15

I/O

ST

No

PORTD is a bidirectional I/O port.

RE0-RE9

I/O

ST

No

PORTE is a bidirectional I/O port.

RF0-RF6, RF8
RF12, RF13

I/O

ST

No

PORTF is a bidirectional I/O port.

RG0, RG1
RG2, RG3(3)
RG6-RG9,
RG12-RG15

I/O
I/O
I/O

ST
ST
ST

No
No
No

PORTG is a bidirectional I/O port.
PORTG is a bidirectional I/O port.
PORTG is a bidirectional I/O port.

RH0-RH15

I/O

ST

No

PORTH is a bidirectional I/O port.

RJ0-RJ15

I/O

ST

No

PORTJ is a bidirectional I/O port.

RK0-RK1,
RK11-RK15

I/O

ST

No

PORTK is a bidirectional I/O port.

Legend: CMOS = CMOS compatible input or output
Analog = Analog input
P = Power
ST = Schmitt Trigger input with CMOS levels
O = Output
I = Input
PPS = Peripheral Pin Select
TTL = TTL input buffer
Note 1: This pin is available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.
2: AVDD must be connected at all times.
3: These pins are input only on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices.
4: These pins are only available on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices.
5: The availability of I2C™ interfaces varies by device. Refer to the “Pin Diagrams” section for availability.
Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits, ALTI2C1 and
ALTI2C2 (FPOR<5:4>). See Section 29.0 “Special Features” for more information.
6: Analog functionality is activated by enabling the USB module and is not controlled by the ANSEL register.

 2009-2012 Microchip Technology Inc.

DS70616G-page 25

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 1-1:
Pin Name

PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Buffer
PPS
Type Type

Description

T1CK
T2CK
T3CK
T4CK
T5CK
T6CK
T7CK
T8CK
T9CK

I
I
I
I
I
I
I
I
I

ST
ST
ST
ST
ST
ST
ST
ST
ST

No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Timer1 external clock input.
Timer2 external clock input.
Timer3 external clock input.
Timer4 external clock input.
Timer5 external clock input.
Timer6 external clock input.
Timer7 external clock input.
Timer8 external clock input.
Timer9 external clock input.

U1CTS
U1RTS
U1RX
U1TX

I
O
I
O

ST
—
ST
—

Yes
Yes
Yes
Yes

UART1 Clear-to-Send.
UART1 Ready-to-Send.
UART1 receive.
UART1 transmit.

U2CTS
U2RTS
U2RX
U2TX

I
O
I
O

ST
—
ST
—

Yes
Yes
Yes
Yes

UART2 Clear-to-Send.
UART2 Ready-to-Send.
UART2 receive.
UART2 transmit.

U3CTS
U3RTS
U3RX
U3TX

I
O
I
O

ST
—
ST
—

Yes
Yes
Yes
Yes

UART3 Clear-to-Send.
UART3 Ready-to-Send.
UART3 receive.
UART3 transmit.

U4CTS
U4RTS
U4RX
U4TX

I
O
I
O

ST
—
ST
—

Yes
Yes
Yes
Yes

UART4 Clear-to-Send.
UART4 Ready-to-Send.
UART4 receive.
UART4 transmit.

SCK1
SDI1
SDO1
SS1

I/O
I
O
I/O

ST
ST
—
ST

Yes
Yes
Yes
Yes

Synchronous serial clock input/output for SPI1.
SPI1 data in.
SPI1 data out.
SPI1 slave synchronization or frame pulse I/O.

SCK2
SDI2
SDO2
SS2

I/O
I
O
I/O

ST
ST
—
ST

No
No
No
Yes

Synchronous serial clock input/output for SPI2.
SPI2 data in.
SPI2 data out.
SPI2 slave synchronization or frame pulse I/O.

SCK3
SDI3
SDO3
SS3

I/O
I
O
I/O

ST
ST
—
ST

Yes
Yes
Yes
Yes

Synchronous serial clock input/output for SPI3.
SPI3 data in.
SPI3 data out.
SPI3 slave synchronization or frame pulse I/O.

SCK4
SDI4
SDO4
SS4

I/O
I
O
I/O

ST
ST
—
ST

Yes
Yes
Yes
Yes

Synchronous serial clock input/output for SPI4.
SPI4 data in.
SPI4 data out.
SPI4 slave synchronization or frame pulse I/O.

Legend: CMOS = CMOS compatible input or output
Analog = Analog input
P = Power
ST = Schmitt Trigger input with CMOS levels
O = Output
I = Input
PPS = Peripheral Pin Select
TTL = TTL input buffer
Note 1: This pin is available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.
2: AVDD must be connected at all times.
3: These pins are input only on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices.
4: These pins are only available on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices.
5: The availability of I2C™ interfaces varies by device. Refer to the “Pin Diagrams” section for availability.
Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits, ALTI2C1 and
ALTI2C2 (FPOR<5:4>). See Section 29.0 “Special Features” for more information.
6: Analog functionality is activated by enabling the USB module and is not controlled by the ANSEL register.

DS70616G-page 26

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 1-1:
Pin Name

PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Buffer
PPS
Type Type

Description

SCL1(5)
SDA1(5)
ASCL1(5)
ASDA1(5)

I/O
I/O
I/O
I/O

ST
ST
ST
ST

No
No
No
No

Synchronous serial clock input/output for I2C1.
Synchronous serial data input/output for I2C1.
Alternate synchronous serial clock input/output for I2C1.
Alternate synchronous serial data input/output for I2C1.

SCL2(5)
SDA2(5)
ASCL2(5)
ASDA2(5)

I/O
I/O
I/O
I/O

ST
ST
ST
ST

No
No
No
No

Synchronous serial clock input/output for I2C2.
Synchronous serial data input/output for I2C2.
Alternate synchronous serial clock input/output for I2C2.
Alternate synchronous serial data input/output for I2C2.

TMS
TCK
TDI
TDO

I
I
I
O

ST
ST
ST
—

No
No
No
No

JTAG Test mode select pin.
JTAG test clock input pin.
JTAG test data input pin.
JTAG test data output pin.

INDX1(1)
HOME1(1)
QEA1(1)

I
I
I

ST
ST
ST

QEB1(1)

I

ST

CNTCMP1(1)

O

—

Yes Quadrature Encoder Index1 pulse input.
Yes Quadrature Encoder Home1 pulse input.
Yes Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer
external clock input in Timer mode.
Yes Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer
external gate input in Timer mode.
Yes Quadrature Encoder Compare Output 1.

INDX2
HOME2(1)
QEA2(1)

I
I
I

ST
ST
ST

QEB2(1)

I

ST

CNTCMP2(1)

O

—

Yes Quadrature Encoder Index2 pulse input.
Yes Quadrature Encoder Home2 pulse input.
Yes Quadrature Encoder Phase A input in QEI2 mode. Auxiliary timer
external clock input in Timer mode.
Yes Quadrature Encoder Phase B input in QEI2 mode. Auxiliary timer
external gate input in Timer mode.
Yes Quadrature Encoder Compare Output 2.

COFS
CSCK
CSDI
CSDO

I/O
I/O
I
O

ST
ST
ST
—

Yes
Yes
Yes
Yes

C1RX
C1TX

I
O

ST
—

Yes ECAN1 bus receive pin.
Yes ECAN1 bus transmit pin.

C2RX
C2TX

I
O

ST
—

Yes ECAN2 bus receive pin.
Yes ECAN2 bus transmit pin.

RTCC

O

—

No

CVREF

O

Analog

No

Comparator voltage reference output.

C1IN1+, C1IN2-,
C1IN1-, C1IN3C1OUT

I

Analog

No

Comparator 1 inputs

O

—

(1)

Data Converter Interface frame synchronization pin.
Data Converter Interface serial clock input/output pin.
Data Converter Interface serial data input pin.
Data Converter Interface serial data output pin.

Real-Time Clock alarm output.

Yes Comparator 1 output.

Legend: CMOS = CMOS compatible input or output
Analog = Analog input
P = Power
ST = Schmitt Trigger input with CMOS levels
O = Output
I = Input
PPS = Peripheral Pin Select
TTL = TTL input buffer
Note 1: This pin is available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.
2: AVDD must be connected at all times.
3: These pins are input only on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices.
4: These pins are only available on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices.
5: The availability of I2C™ interfaces varies by device. Refer to the “Pin Diagrams” section for availability.
Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits, ALTI2C1 and
ALTI2C2 (FPOR<5:4>). See Section 29.0 “Special Features” for more information.
6: Analog functionality is activated by enabling the USB module and is not controlled by the ANSEL register.

 2009-2012 Microchip Technology Inc.

DS70616G-page 27

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 1-1:

PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name
C2IN1+, C2IN2-,
C2IN1-, C2IN3C2OUT

Pin Buffer
PPS
Type Type
I

Analog

O

—

No

Description
Comparator 2 inputs.

Yes Comparator 2 output.

C3IN1+, C3IN2-,
C2IN1-, C3IN3C3OUT

I

Analog

No

Comparator 3 inputs.

O

—

PMA0

I/O

TTL/ST

No

PMA1

I/O

TTL/ST

No

PMA2 -PMA13
PMBE
PMCS1, PMCS2
PMD0-PMD7

O
O
O
I/O

—
—
—
TTL/ST

No
No
No
No

PMRD
PMWR

O
O

—
—

No
No

Parallel Master Port Address Bit 0 input (Buffered Slave modes) and
output (Master modes).
Parallel Master Port Address Bit 1 input (Buffered Slave modes) and
output (Master modes).
Parallel Master Port Address Bits 2-13 (Demultiplexed Master modes).
Parallel Master Port byte enable strobe.
Parallel Master Port Chip Select 1 and 2 strobe.
Parallel Master Port data (Demultiplexed Master mode) or address/data
(Multiplexed Master modes).
Parallel Master Port read strobe.
Parallel Master Port write strobe.

FLT1-FLT7(1)
DTCMP1-DTCMP7(1)
PWM1L-PWM7L(1)
PWM1H-PWM7H(1)
SYNCI1, SYNCI2(1)
SYNCO1, SYNCO2(1)

I
I
O
O
I
O

ST
ST
—
—
ST
—

Yes
Yes
No
No
Yes
Yes

PWM Fault Input 1 through 7.
PWM dead-time compensation input.
PWM Low Output 1 through 7.
PWM High Output 1 through 7.
PWM Synchronization Inputs 1 and 2.
PWM Synchronization Outputs 1 and 2.

Yes Comparator 3 output.

Legend: CMOS = CMOS compatible input or output
Analog = Analog input
P = Power
ST = Schmitt Trigger input with CMOS levels
O = Output
I = Input
PPS = Peripheral Pin Select
TTL = TTL input buffer
Note 1: This pin is available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.
2: AVDD must be connected at all times.
3: These pins are input only on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices.
4: These pins are only available on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices.
5: The availability of I2C™ interfaces varies by device. Refer to the “Pin Diagrams” section for availability.
Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits, ALTI2C1 and
ALTI2C2 (FPOR<5:4>). See Section 29.0 “Special Features” for more information.
6: Analog functionality is activated by enabling the USB module and is not controlled by the ANSEL register.

DS70616G-page 28

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

TABLE 1-1:
Pin Name

PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Buffer
PPS
Type Type

Description

VBUS(4,6)
VUSB3V3(4)

I
P

Analog
—

No
No

VBUSON(4)
D+(4,6)
D-(4,6)
USBID(4)
USBOEN(4)
VBUSST(4)
VCPCON(4)
VCMPST1(4)
VCMPST2(4)
VCMPST3(4)
VMIO(4)
VPIO(4)
DMH(4)
DPH(4)
DMLN(4)
DPLN(4)
RCV(4)

O
I/O
I/O
I
O
I
O
I
I
I
I/O
I/O
O
O
O
O
I

—
Analog
Analog
ST
—
ST
—
ST
ST
ST
ST
ST
—
—
—
—
ST

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

USB bus power monitor.
USB internal transceiver supply. If the USB module is not being used,
this pin must be connected to VDD.
USB host and On-The-Go (OTG) bus power control output.
D+ pin of internal USB transceiver.
D- pin of internal USB transceiver.
USB OTG ID detect.
USB output enabled control (for external transceiver).
USB boost controller overcurrent detection.
USB boost controller PWM signal.
USB External Comparator 1 input.
USB External Comparator 2 input.
USB External Comparator 3 input.
USB differential minus input/output (external transceiver).
USB differential plus input/output (external transceiver).
D- external pull-up control output.
D+ external pull-up control output.
D- external pull-down control output.
D+ External Pull-down Control Output.
USB receive input (from external transceiver).

PGED1
PGEC1
PGED2
PGEC2
PGED3
PGEC3

I/O
I
I/O
I
I/O
I

ST
ST
ST
ST
ST
ST

No
No
No
No
No
No

Data I/O pin for Programming/Debugging Communication Channel 1.
Clock input pin for Programming/Debugging Communication Channel 1.
Data I/O pin for Programming/Debugging Communication Channel 2.
Clock input pin for Programming/Debugging Communication Channel 2.
Data I/O pin for Programming/Debugging Communication Channel 3.
Clock input pin for Programming/Debugging Communication Channel 3.

MCLR

I/P

ST

No

Master Clear (Reset) input. This pin is an active-low Reset to the
device.

AVDD(2)

P

P

No

Positive supply for analog modules. This pin must be connected at all
times.

AVSS

P

P

No

Ground reference for analog modules.

VDD

P

—

No

Positive supply for peripheral logic and I/O pins.

VCAP

P

—

No

CPU logic filter capacitor connection.

VSS

P

—

No

Ground reference for logic and I/O pins.

VREF+

I

Analog

No

Analog voltage reference (high) input.

VREF-

I

Analog

No

Analog voltage reference (low) input.

Legend: CMOS = CMOS compatible input or output
Analog = Analog input
P = Power
ST = Schmitt Trigger input with CMOS levels
O = Output
I = Input
PPS = Peripheral Pin Select
TTL = TTL input buffer
Note 1: This pin is available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.
2: AVDD must be connected at all times.
3: These pins are input only on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices.
4: These pins are only available on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices.
5: The availability of I2C™ interfaces varies by device. Refer to the “Pin Diagrams” section for availability.
Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits, ALTI2C1 and
ALTI2C2 (FPOR<5:4>). See Section 29.0 “Special Features” for more information.
6: Analog functionality is activated by enabling the USB module and is not controlled by the ANSEL register.

 2009-2012 Microchip Technology Inc.

DS70616G-page 29

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
NOTES:

DS70616G-page 30

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
2.0

GUIDELINES FOR GETTING
STARTED WITH 16-BIT DIGITAL
SIGNAL CONTROLLERS AND
MICROCONTROLLERS

Note 1: This
data
sheet
summarizes
the
features
of
the
dsPIC33EPXXX(GP/MC/MU)806/810/814
and PIC24EPXXX(GP/GU)810/814 families of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the related section of the
“dsPIC33E/PIC24E Family Reference
Manual”, which is available from the
Microchip web site (www.microchip.com)
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.

2.1

Basic Connection Requirements

Getting started with the 16-bit DSCs and microcontrollers
requires attention to a minimal set of device pin
connections before proceeding with development. The
following is a list of pin names, which must always be
connected:
• All VDD and VSS pins (see Section 2.2
“Decoupling Capacitors”)
• All AVDD and AVSS pins (regardless if ADC module
is not used) (see Section 2.2 “Decoupling
Capacitors”)
• VCAP (see Section 2.3 “CPU Logic Filter
Capacitor Connection (VCAP)”)
• MCLR pin (see Section 2.4 “Master Clear (MCLR)
Pin”)
• PGECx/PGEDx pins used for In-Circuit Serial
Programming™ (ICSP™) and debugging purposes
(see Section 2.5 “ICSP Pins”)
• OSC1 and OSC2 pins when external oscillator
source is used (see Section 2.6 “External
Oscillator Pins”)

2.2

Decoupling Capacitors

The use of decoupling capacitors on every pair of
power supply pins, such as VDD, VSS, VUSB3V3,
AVDD and AVSS is required.
Consider the following criteria when using decoupling
capacitors:
• Value and type of capacitor: Recommendation of
0.1 µF (100 nF), 10-20V. This capacitor should be a
low-ESR and have resonance frequency in the
range of 20 MHz and higher. It is recommended to
use ceramic capacitors.
• Placement on the printed circuit board: The
decoupling capacitors should be placed as close to
the pins as possible. It is recommended to place the
capacitors on the same side of the board as the
device. If space is constricted, the capacitor can be
placed on another layer on the PCB using a via;
however, ensure that the trace length from the pin to
the capacitor is within one-quarter inch (6 mm) in
length.
• Handling high frequency noise: If the board is
experiencing high frequency noise, above tens of
MHz, add a second ceramic-type capacitor in
parallel to the above described decoupling capacitor. The value of the second capacitor can be in the
range of 0.01 µF to 0.001 µF. Place this second
capacitor next to the primary decoupling capacitor.
In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the
power and ground pins as possible. For example,
0.1 µF in parallel with 0.001 µF.
• Maximizing performance: On the board layout
from the power supply circuit, run the power and
return traces to the decoupling capacitors first, and
then to the device pins. This ensures that the
decoupling capacitors are first in the power chain.
Equally important is to keep the trace length
between the capacitor and the power pins to a
minimum, thereby reducing PCB track inductance.

Additionally, the following pins may be required:
• VUSB3V3 pin is used when utilizing the USB
module. If the USB module is not used, VUSB3V3
must be connected to VDD.
• VREF+/VREF- pin is used when external voltage
reference for ADC module is implemented
Note:

The AVDD and AVSS pins must be
connected independent of the ADC
voltage reference source. The voltage
difference between AVDD and VDD cannot
exceed 300 mV at any time during
operation or start-up.

 2009-2012 Microchip Technology Inc.

DS70616G-page 31

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

FIGURE 2-1:

RECOMMENDED
MINIMUM CONNECTION
0.1 µF
Ceramic

R
R1

VSS

VCAP

VDD

10 µF
Tantalum

VDD

MCLR

dsPIC33EP/
PIC24EP

VSS
VDD
0.1 µF
Ceramic

VSS

VDD

AVSS

VDD

AVDD

0.1 µF
Ceramic

VSS

Master Clear (MCLR) Pin

The MCLR
functions:

0.1 µF
Ceramic

two

specific

device

0.1 µF
Ceramic

During device programming and debugging, the
resistance and capacitance that can be added to the
pin must be considered. Device programmers and
debuggers drive the MCLR pin. Consequently,
specific voltage levels (VIH and VIL) and fast signal
transitions must not be adversely affected. Therefore,
specific values of R and C will need to be adjusted
based on the application and PCB requirements.

If the USB module is not used, VUSB3V3 must be
connected to VDD, as shown.

2:

As an option, instead of a hard-wired connection, an
inductor (L1) can be substituted between VDD and
AVDD to improve ADC noise rejection. The inductor
impedance should be less than 1 and the inductor
capacity greater than 10 mA.

For example, as shown in Figure 2-2, it is
recommended that the capacitor C, be isolated from
the MCLR pin during programming and debugging
operations.

Where:

Place the components as shown in Figure 2-2 within
one-quarter inch (6 mm) from the MCLR pin.

(i.e., ADC conversion rate/2)

FIGURE 2-2:

2
1
L =  ----------------------
  2f C 

CPU Logic Filter Capacitor
Connection (VCAP)

A low-ESR (< 1 Ohms) capacitor is required on the
VCAP pin, which is used to stabilize the voltage
regulator output voltage. The VCAP pin must not be
connected to VDD and must have a capacitor greater
than 4.7 µF (10 µF is recommended), 16V connected

DS70616G-page 32

EXAMPLE OF MCLR PIN
CONNECTIONS

VDD
R(1)

TANK CAPACITORS

On boards with power traces running longer than six
inches in length, it is suggested to use a tank capacitor
for integrated circuits including DSCs to supply a local
power source. The value of the tank capacitor should
be determined based on the trace resistance that connects the power supply source to the device and the
maximum current drawn by the device in the application. In other words, select the tank capacitor so that it
meets the acceptable voltage sag at the device. Typical
values range from 4.7 µF to 47 µF.

2.3

provides

1:

CNV
------------f = F
2
1 f = --------------------- 2 LC 

2.2.1

pin

• Device Reset
• Device Programming and Debugging

L1(2)
Note

The placement of this capacitor should be close to the
VCAP. It is recommended that the trace length not
exceeds one-quarter inch (6 mm). See Section 29.2
“On-Chip Voltage Regulator” for details.

2.4

VUSB3V3(1)

C

to ground. The type can be ceramic or tantalum. See
Section 32.0 “Electrical Characteristics” for
additional information.

JP

R1(2)

MCLR
dsPIC33EP

C

Note 1:

R  10 k is recommended. A suggested
starting value is 10 k. Ensure that the
MCLR pin VIH and VIL specifications are met.

2:

R1  470 will limit any current flowing into
MCLR from the external capacitor C, in the
event of MCLR pin breakdown, due to
Electrostatic Discharge (ESD) or Electrical
Overstress (EOS). Ensure that the MCLR pin
VIH and VIL specifications are met.

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

2.5

ICSP Pins

FIGURE 2-3:

The PGECx and PGEDx pins are used for ICSP and
debugging purposes. It is recommended to keep the
trace length between the ICSP connector and the ICSP
pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a
series resistor is recommended, with the value in the
range of a few tens of Ohms, not to exceed 100 Ohms.
Pull-up resistors, series diodes and capacitors on the
PGECx and PGEDx pins are not recommended as they
will interfere with the programmer/debugger communications to the device. If such discrete components are
an application requirement, they should be removed
from the circuit during programming and debugging.
Alternatively, refer to the AC/DC characteristics and
timing requirements information in the respective
device Flash programming specification for information
on capacitive loading limits and pin input voltage high
(VIH) and input low (VIL) requirements.
Ensure that the “Communication Channel Select” (i.e.,
PGECx/PGEDx pins) programmed into the device
matches the physical connections for the ICSP to
MPLAB® PICkit™ 3, MPLAB ICD 3, or MPLAB REAL
ICE™.
For more information on MPLAB ICD 3 and MPLAB
REAL ICE connection requirements, refer to the
following documents that are available on the
Microchip web site.
• “Using MPLAB® ICD 3” (poster) DS51765
• “MPLAB® ICD 3 Design Advisory” DS51764
• “MPLAB® REAL ICE™ In-Circuit Emulator User’s
Guide” DS51616
• “Using MPLAB® REAL ICE™ In-Circuit Emulator”
(poster) DS51749

2.6

External Oscillator Pins

Many DSCs have options for at least two oscillators: a
high-frequency primary oscillator and a low-frequency
secondary oscillator. For details, see Section 9.0
“Oscillator Configuration” for details.

SUGGESTED PLACEMENT
OF THE OSCILLATOR
CIRCUIT

Main Oscillator
13
Guard Ring

14
15

Guard Trace
Secondary
Oscillator

16
17
18
19
20

2.7

Oscillator Value Conditions on
Device Start-up

If the PLL of the target device is enabled and
configured for the device start-up oscillator, the
maximum oscillator source frequency must be limited
to 3 MHz < FIN < 5.5 MHz to comply with device PLL
start-up conditions. This means that if the external
oscillator frequency is outside this range, the
application must start-up in the FRC mode first. The
default PLL settings after a POR with an oscillator
frequency outside this range will violate the device
operating speed.
Once the device powers up, the application firmware
can initialize the PLL SFRs, CLKDIV and PLLDBF to a
suitable value, and then perform a clock switch to the
Oscillator + PLL clock source. Note that clock switching
must be enabled in the device Configuration Word.

2.8

Unused I/Os

Unused I/O pins should be configured as outputs and
driven to a logic-low state.
Alternatively, connect a 1k to 10k resistor between VSS
and unused pins and drive the output to logic low.

The oscillator circuit should be placed on the same
side of the board as the device. Also, place the
oscillator circuit close to the respective oscillator pins,
not exceeding one-half inch (12 mm) distance
between them. The load capacitors should be placed
next to the oscillator itself, on the same side of the
board. Use a grounded copper pour around the
oscillator circuit to isolate them from surrounding
circuits. The grounded copper pour should be routed
directly to the MCU ground. Do not run any signal
traces or power traces inside the ground pour. Also, if
using a two-sided board, avoid any traces on the
other side of the board where the crystal is placed. A
suggested layout is shown in Figure 2-3.

 2009-2012 Microchip Technology Inc.

DS70616G-page 33

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
2.9
•
•
•
•
•
•
•
•
•
•

Application Examples

• Speech (playback, hands-free kits, answering
machines, VoIP)
• Consumer audio
• Industrial and building control (security systems
and access control)
• Barcode reading
• Networking: LAN switches, gateways
• Data storage device management
• Smart cards and smart card readers

Induction heating
Uninterruptable Power Supplies (UPS)
DC/AC inverters
Compressor motor control
Washing machine 3-phase motor control
BLDC motor control
Automotive HVAC, cooling fans, fuel pumps
Stepper motor control
Audio and fluid sensor monitoring
Camera lens focus and stability control

FIGURE 2-4:

Examples of typical application connections are shown
in Figure 2-4 through Figure 2-8.

BOOST CONVERTER IMPLEMENTATION
IPFC

VINPUT

VOUTPUT

k1

k3

ADC Channel

k2

FET
Driver

Comparator

PWM
Output

ADC Channel

dsPIC33EP

DS70616G-page 34

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 2-5:

SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER
12V Input

5V Output
I5V

PWM

ADC
Channel

PWM

FET
Driver

k7

k1

k2

Comparator

ADC
Channel

dsPIC33EP

FIGURE 2-6:

MULTI-PHASE SYNCHRONOUS BUCK CONVERTER
3.3V Output

FET
Driver

FET
Driver

ADC
Channel

PWM

dsPIC33EP

PWM

k7

PWM
PWM

12V Input

k6

PWM
PWM

FET
Driver

Comparator

k3

Comparator

k4

Comparator

k5

ADC Channel

 2009-2012 Microchip Technology Inc.

DS70616G-page 35

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

FIGURE 2-7:

INTERLEAVED PFC

VOUT+
|VAC|

k4

VAC

k3
k1

k2

VOUTFET
Driver

Comparator

FET
Driver

PWM Comparator PWM

Comparator

ADC
Channel

dsPIC33EP
ADC Channel

FIGURE 2-8:

BEMF VOLTAGE MEASURED USING THE ADC MODULE
dsPIC33EP/PIC24EP

BLDC

PWM3H
PWM3L
PWM2H
PWM2L
PWM1H
PWM1L
FLTx

3-Phase
Inverter

Fault

R49

R41

R34 R36
R44

AN2

R52
Demand

AN3
AN4
AN5

DS70616G-page 36

Phase Terminal Voltage Feedback

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
3.0

CPU

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this
data sheet, refer to Section 2. “CPU”
(DS70359) in the “dsPIC33E/PIC24E
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.
The CPU has a 16-bit (data) modified Harvard
architecture with an enhanced instruction set, including
significant support for digital signal processing. The
CPU has a 24-bit instruction word, with a variable
length opcode field. The Program Counter (PC) is
24 bits wide and addresses up to 4M x 24 bits of user
program memory space.
An instruction prefetch mechanism helps maintain
throughput and provides predictable execution. Most
instructions execute in a single-cycle effective execution rate, with the exception of instructions that change
the program flow, the double-word move (MOV.D)
instruction, PSV accesses and the table instructions.
Overhead free program loop constructs are supported
using the DO and REPEAT instructions, both of which
are interruptible at any point.

3.1

Registers

Devices have sixteen 16-bit working registers in the
programmer’s model. Each of the working registers
can act as a Data, Address or Address Offset register.
The 16th working register (W15) operates as a Software Stack Pointer for interrupts and calls. The working
registers, W0 through W3, and selected bits from the
STATUS register, have shadow registers for fast
context saves and restores using a single POP.S or
PUSH.S instruction.

3.2

Instruction Set

The dsPIC33EPXXXMU806/810/814 instruction set
has two classes of instructions: the MCU class of
instructions and the DSP class of instructions. The
PIC24EPXXX(GP/GU)810/814 instruction set has the
MCU class of instructions and does not support DSP
instructions. These two instruction classes are seamlessly integrated into the architecture and execute from
a single execution unit. The instruction set includes
many addressing modes and was designed for
optimum C compiler efficiency.

 2009-2012 Microchip Technology Inc.

3.3

Data Space Addressing

The Base Data Space can be addressed as 32K words
or 64 Kbytes and is split into two blocks, referred to as
X and Y data memory. Each memory block has its own
independent Address Generation Unit (AGU). The
MCU class of instructions operate solely through the X
memory AGU, which accesses the entire memory map
as one linear data space. On dsPIC33EPXXX(GP/MC/
MU)806/810/814 devices, certain DSP instructions
operate through the X and Y AGUs to support dual
operand reads, which splits the data address space
into two parts. The X and Y data space boundary is
device-specific.
The upper 32 Kbytes of the data space memory map
can optionally be mapped into Program Space at any
16K program word boundary. The program-to-data
space mapping feature, known as Program Space
Visibility (PSV), lets any instruction access Program
Space as if it were data space. Moreover, the Base
Data Space address is used in conjunction with a read
or write page register (DSRPAG or DSWPAG) to form
an Extended Data Space (EDS) address. The EDS can
be addressed as 8M words or 16 Mbytes. Refer to
Section 3. “Data Memory” (DS70595) and Section 4.
“Program Memory” (DS70613) in the “dsPIC33E/
PIC24E Family Reference Manual” for more details on
EDS, PSV and table accesses.
On dsPIC33EPXXX(GP/MC/MU)806/810/814 devices,
overhead-free circular buffers (Modulo Addressing) are
supported in both X and Y address spaces. The
Modulo Addressing removes the software boundary
checking overhead for DSP algorithms. The X AGU
circular addressing can be used with any of the MCU
class of instructions. The X AGU also supports BitReversed Addressing to greatly simplify input or output
data reordering for radix-2 FFT algorithms.
PIC24EPXXX(GP/GU)810/814 devices do not support
Modulo and Bit-Reversed Addressing.

3.4

Addressing Modes

The CPU supports these addressing modes:
•
•
•
•
•
•

Inherent (no operand)
Relative
Literal
Memory Direct
Register Direct
Register Indirect

Each instruction is associated with a predefined
addressing mode group, depending upon its functional
requirements. As many as six addressing modes are
supported for each instruction.

DS70616G-page 37

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 3-1:

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 CPU
BLOCK DIAGRAM
X Address Bus
Y Data Bus(1)
X Data Bus
16

16
Interrupt
Controller

PSV and Table
Data Access
24 Control Block

8

Data Latch

Data Latch

Y Data
RAM(1)

X Data
RAM

Address
Latch

Address
Latch

16

Y Address Bus

24
24

PCU PCH PCL
Program Counter
Stack
Loop
Control
Control
Logic
Logic

Address Latch

PORTA

16

16

PORTB
16

16
16
X RAGU
X WAGU

16

24

PORTC

PORTD

Y AGU(1)
Program Memory
Data Latch

PORTE
24

16
Literal Data

IR

ROM Latch

24

EA MUX

16

16

16

PORTF

16 x 16
W Reg Array
Instruction
Decode and
Control

16

Control Signals
to Various Blocks
OSC1/CLKI

Power-up
Timer

Divide
Support

DSP
Engine(1)

16-Bit ALU

POR/BOR

16

MCLR
VDD, VSS
AVDD, AVSS

PORTG

16

Oscillator
Start-up Timer

Timing
Generation

16

PORTH

PORTJ

16

Watchdog
Timer

PORTK

Remappable
Comparator
(3-Channel)

PWM(1)

RTCC

ECAN1,
ECAN2

ADC1,
ADC2

Input
Capture

Output
Compare

I2C1,
I2C2

CRC

QEI1(1),
QEI2(1)

PMP

USB
OTG(2)

Timers

DCI

SPI1SPI4

UART1UART4

Note 1:
2:

Pins

This feature or peripheral is only available on dsPIC33EPXXX(MC/MU)806/810/814 devices.
This feature or peripheral is only available on dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU806/810/814 devices.

DS70616G-page 38

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
3.5

Programmer’s Model

The programmer’s model is shown in Figure 3-2. All
registers in the programmer’s model are memory
mapped and can be manipulated directly by
instructions. Table 3-1 lists a description of each
register.

In addition to the registers contained in the
programmer’s model, all devices in this family
contain control registers for interrupts, while
the dsPIC33EPXXX(GP/MC/MU)806/810/814 devices
contain control registers for Modulo and Bit-reversed
Addressing. These registers are described in
subsequent sections of this document.
All registers associated with the programmer’s model
are memory mapped, as shown in Table 4-1.

TABLE 3-1:

PROGRAMMER’S MODEL REGISTER DESCRIPTIONS

Register(s) Name
W0 through W15

Description
Working Register Array

ACCA, ACCB

40-Bit DSP Accumulators

PC

23-Bit Program Counter

SR

ALU and DSP Engine Status register

SPLIM

Stack Pointer Limit Value register

TBLPAG

Table Memory Page Address register

DSRPAG

Extended Data Space (EDS) Read Page register

DSWPAG

Extended Data Space (EDS) Write Page register

RCOUNT

REPEAT Loop Count register

DCOUNT(1)

DO Loop Count register

DOSTARTH(1,2), DOSTARTL(1,2)

DO Loop Start Address register (High and Low)

DOENDH(1),

DO Loop End Address register (High and Low)

DOENDL(1)

CORCON
Note 1:
2:

Contains DSP Engine, DO Loop Control and Trap Status bits
This register is available on dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.
The DOSTARTH and DOSTARTL registers are read-only.

 2009-2012 Microchip Technology Inc.

DS70616G-page 39

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 3-2:

PROGRAMMER’S MODEL
D15

D0
W0 (WREG)
W1
W2
W3
W4

DSP Operand
Registers

W5
W6
W7

Working/Address
Registers

W8
W9

DSP Address
Registers

W10
W11
W12
W13
Frame Pointer/W14
Stack Pointer/W15* 0

PUSH.s and POP.s shadows
Nested DO Stack

AD15

AD31

AD39
DSP
Accumulators(1)

Stack Pointer Limit

0

SPLIM*

AD0

ACCA
ACCB

PC23
0

PC0
0

Program Counter

0

7
TBLPAG

Data Table Page Address

9

0
DSRPAG

X Data Space Read Page Address

8

0
DSWPAG

X Data Space Write Page Address

15

0
RCOUNT

Repeat Loop Counter

15

0
DCOUNT

DO Loop Counter and Stack(1)

23
0

DOSTART

0
0

DO Loop Start Address and Stack(1)

23
0

DOEND

0
0

DO Loop End Address and Stack(1)

15

0
CPU Core Control Register

CORCON
SRL
OA(1) OB(1) SA(1) SB(1) OAB(1) SAB(1) DA(1) DC IPL2 IPL1 IPL0 RA
Note 1:

N

OV

Z

C

Status Register

This feature or bit is available on dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.

DS70616G-page 40

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
3.6

CPU Resources

Many useful resources related to the CPU are provided
on the main product page of the Microchip web site for
the devices listed in this data sheet. This product page,
which can be accessed using this link, contains the
latest updates and additional information.
Note:

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

 2009-2012 Microchip Technology Inc.

3.6.1

KEY RESOURCES

• See Section 16. “CPU” (DS70359) in the
“dsPIC33E/PIC24E Family Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

DS70616G-page 41

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
3.7

CPU Control Registers

REGISTER 3-1:

SR: CPU STATUS REGISTER

R/W-0

R/W-0

R/W-0

R/W-0

R/C-0

R/C-0

R -0

R/W-0

OA(1)

OB(1)

SA(1,4)

SB(1,4)

OAB(1)

SAB(1)

DA(1)

DC

bit 15

bit 8

R/W-0(2,3)

R/W-0(2,3)

R/W-0(2,3)

IPL<2:0>

R-0

R/W-0

R/W-0

R/W-0

R/W-0

RA

N

OV

Z

C

bit 7

bit 0

Legend:

U = Unimplemented bit, read as ‘0’

R = Readable bit

W = Writable bit

C = Clearable bit

-n = Value at POR

‘1’= Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

OA: Accumulator A Overflow Status bit(1)
1 = Accumulator A has overflowed
0 = Accumulator A has not overflowed

bit 14

OB: Accumulator B Overflow Status bit(1)
1 = Accumulator B has overflowed
0 = Accumulator B has not overflowed

bit 13

SA: Accumulator A Saturation ‘Sticky’ Status bit(1,4)
1 = Accumulator A is saturated or has been saturated at some time
0 = Accumulator A is not saturated

bit 12

SB: Accumulator B Saturation ‘Sticky’ Status bit(1,4)
1 = Accumulator B is saturated or has been saturated at some time
0 = Accumulator B is not saturated

bit 11

OAB: OA || OB Combined Accumulator Overflow Status bit(1)
1 = Accumulators A or B have overflowed
0 = Neither Accumulators A or B have overflowed

bit 10

SAB: SA || SB Combined Accumulator ‘Sticky’ Status bit(1)
1 = Accumulators A or B are saturated or have been saturated at some time
0 = Neither Accumulator A or B are saturated

bit 9

DA: DO Loop Active bit(1)
1 = DO loop in progress
0 = DO loop not in progress

bit 8

DC: MCU ALU Half Carry/Borrow bit
1 = A carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized data)
of the result occurred
0 = No carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized
data) of the result occurred

Note 1:
2:
3:
4:

This bit is available on dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.
The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL, if IPL<3> = 1.
The IPL<2:0> bits are read-only when NSTDIS = 1 (INTCON1<15>).
A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by
clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not
be modified using bit operations.

DS70616G-page 42

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 3-1:

SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5

IPL<2:0>: CPU Interrupt Priority Level Status bits(2,3)
111 = CPU Interrupt Priority Level is 7 (15, user interrupts are disabled)
110 = CPU Interrupt Priority Level is 6 (14)
101 = CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (9)
000 = CPU Interrupt Priority Level is 0 (8)

bit 4

RA: REPEAT Loop Active bit
1 = REPEAT loop in progress
0 = REPEAT loop not in progress

bit 3

N: MCU ALU Negative bit
1 = Result was negative
0 = Result was non-negative (zero or positive)

bit 2

OV: MCU ALU Overflow bit
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the magnitude that
causes the sign bit to change state.
1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
0 = No overflow occurred

bit 1

Z: MCU ALU Zero bit
1 = An operation that affects the Z bit has set it at some time in the past
0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)

bit 0

C: MCU ALU Carry/Borrow bit
1 = A carry-out from the Most Significant bit of the result occurred
0 = No carry-out from the Most Significant bit of the result occurred

Note 1:
2:
3:
4:

This bit is available on dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.
The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL, if IPL<3> = 1.
The IPL<2:0> bits are read-only when NSTDIS = 1 (INTCON1<15>).
A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by
clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not
be modified using bit operations.

 2009-2012 Microchip Technology Inc.

DS70616G-page 43

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 3-2:

CORCON: CORE CONTROL REGISTER

R/W-0

U-0

VAR

—

R/W-0

R/W-0

US<1:0>(1)

R/W-0

R-0

EDT(1,2)

R-0

R-0

DL<2:0>(1)

bit 15

bit 8

R/W-0

R/W-0

R/W-1

R/W-0

R/C-0

R-0

R/W-0

R/W-0

SATA(1)

SATB(1)

SATDW(1)

ACCSAT(1)

IPL3(3)

SFA

RND(1)

IF(1)

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

VAR: Variable Exception Processing Latency Control bit
1 = Variable exception processing is enabled
0 = Fixed exception processing is enabled

bit 14

Unimplemented: Read as ‘0’

bit 13-12

US<1:0>: DSP Multiply Unsigned/Signed Control bits(1)
11 = Reserved
10 = DSP engine multiplies are mixed-sign
01 = DSP engine multiplies are unsigned
00 = DSP engine multiplies are signed

bit 11

EDT: Early DO Loop Termination Control bit(1,2)
1 = Terminates executing DO loop at end of current loop iteration
0 = No effect

bit 10-8

DL<2:0>: DO Loop Nesting Level Status bits(1)
111 = 7 DO loops are active
•
•
•
001 = 1 DO loop is active
000 = 0 DO loops are active

bit 7

SATA: ACCA Saturation Enable bit(1)
1 = Accumulator A saturation is enabled
0 = Accumulator A saturation is disabled

bit 6

SATB: ACCB Saturation Enable bit(1)
1 = Accumulator B saturation is enabled
0 = Accumulator B saturation is disabled

bit 5

SATDW: Data Space Write from DSP Engine Saturation Enable bit(1)
1 = Data space write saturation is enabled
0 = Data space write saturation is disabled

bit 4

ACCSAT: Accumulator Saturation Mode Select bit(1)
1 = 9.31 saturation (super saturation)
0 = 1.31 saturation (normal saturation)

bit 3

IPL3: CPU Interrupt Priority Level Status bit 3(3)
1 = CPU Interrupt Priority Level is greater than 7
0 = CPU Interrupt Priority Level is 7 or less

Note 1:
2:
3:

This bit is available on dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.
This bit is always read as ‘0’.
The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

DS70616G-page 44

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 3-2:

CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 2

SFA: Stack Frame Active Status bit
1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and
DSWPAG values
0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space

bit 1

RND: Rounding Mode Select bit(1)
1 = Biased (conventional) rounding is enabled
0 = Unbiased (convergent) rounding is enabled

bit 0

IF: Integer or Fractional Multiplier Mode Select bit(1)
1 = Integer mode is enabled for DSP multiply
0 = Fractional mode is enabled for DSP multiply

Note 1:
2:
3:

This bit is available on dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.
This bit is always read as ‘0’.
The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

 2009-2012 Microchip Technology Inc.

DS70616G-page 45

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
3.8

Arithmetic Logic Unit (ALU)

The ALU is 16 bits wide and is capable of addition,
subtraction, bit shifts and logic operations. Unless
otherwise mentioned, arithmetic operations are two’s
complement in nature. Depending on the operation, the
ALU can affect the values of the Carry (C), Zero (Z),
Negative (N), Overflow (OV) and Digit Carry (DC)
Status bits in the SR register. The C and DC Status bits
operate as Borrow and Digit Borrow bits, respectively,
for subtraction operations.
The ALU can perform 8-bit or 16-bit operations,
depending on the mode of the instruction that is used.
Data for the ALU operation can come from the W
register array or data memory, depending on the
addressing mode of the instruction. Likewise, output
data from the ALU can be written to the W register array
or a data memory location.
Refer to the “16-bit MCU and DSC Programmer’s
Reference Manual” (DS70157) for information on the
SR bits affected by each instruction.
The core CPU incorporates hardware support for both
multiplication and division. This includes a dedicated
hardware multiplier and support hardware for 16-bit
divisor division.

3.8.1

MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU
supports unsigned, signed, or mixed-sign operation in
several MCU multiplication modes:
•
•
•
•
•
•
•

16-bit x 16-bit signed
16-bit x 16-bit unsigned
16-bit signed x 5-bit (literal) unsigned
16-bit signed x 16-bit unsigned
16-bit unsigned x 5-bit (literal) unsigned
16-bit unsigned x 16-bit signed
8-bit unsigned x 8-bit unsigned

3.8.2

DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit
signed and unsigned integer divide operations with the
following data sizes:
1.
2.
3.
4.

3.9

DSP Engine (dsPIC33EPXXX(GP/
MC/MU)806/810/814 Devices Only)

The DSP engine consists of a high-speed 17-bit x
17-bit multiplier, a 40-bit barrel shifter and a 40-bit
adder/subtracter (with two target accumulators, round
and saturation logic).
The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional
data. These instructions are: ADD, SUB and NEG.
The DSP engine has options selected through bits in
the CPU Core Control register (CORCON), as listed
below:
•
•
•
•
•
•

Fractional or integer DSP multiply (IF)
Signed, unsigned or mixed-sign DSP multiply (US)
Conventional or convergent rounding (RND)
Automatic saturation on/off for ACCA (SATA)
Automatic saturation on/off for ACCB (SATB)
Automatic saturation on/off for writes to data
memory (SATDW)
• Accumulator Saturation mode selection
(ACCSAT)

TABLE 3-2:
Instruction
CLR

DSP INSTRUCTIONS
SUMMARY
Algebraic
Operation

ACC Write
Back
Yes

A=0
2

ED

A = (x – y)

No

EDAC

A = A + (x – y)2

No

MAC

A = A + (x • y)

Yes

MAC

A = A + x2

No

MOVSAC

No change in A

Yes

MPY

A=x•y

No

MPY

A=

x2

No

MPY.N

A=–x•y

No

MSC

A=A–x•y

Yes

32-bit signed/16-bit signed divide
32-bit unsigned/16-bit unsigned divide
16-bit signed/16-bit signed divide
16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0
and the remainder in W1. The 16-bit signed and
unsigned DIV instructions can specify any W register
for both the 16-bit divisor (Wn) and any W register
(aligned) pair (W(m + 1):Wm) for the 32-bit dividend.
The divide algorithm takes one cycle per bit of divisor,
so both 32-bit/16-bit and 16-bit/16-bit instructions take
the same number of cycles to execute.

DS70616G-page 46

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
4.0

MEMORY ORGANIZATION

Note:

This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this data
sheet, refer to Section 4. “Program
Memory” (DS70613) of the “dsPIC33E/
PIC24E Family Reference Manual”, which
is available from the Microchip web site
(www.microchip.com).

The device architecture features separate program and
data memory spaces and buses. This architecture also
allows the direct access of program memory from the
data space during code execution.

FIGURE 4-1:

4.1

Program Address Space

The device program address memory space is 4M
instructions. The space is addressable by a 24-bit
value derived either from the 23-bit PC during program
execution, or from table operation or data space
remapping as described in Section 4.8 “Interfacing
Program and Data Memory Spaces”.
User application access to the program memory space
is restricted to the lower half of the address range
(0x000000 to 0x7FFFFF). The exception is the use of
TBLRD/TBLWT operations, which use TBLPAG<7> to
permit access to the Configuration bits and Device ID
sections of the configuration memory space.
The device program memory map is shown in
Figure 4-1.

PROGRAM MEMORY MAP FOR dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 DEVICES(1)
dsPIC33EP256MU806/810/814 and
PIC24EP256GU810/814

Configuration Memory Space

General Segment

User Program
Flash Memory
(87552 instructions)

Unimplemented
(Read ‘0’s)
Auxiliary Segment

User Memory Space

GOTO Instruction(2)
Reset Address(2)
Interrupt Vector Table

Auxiliary Program
Flash Memory

dsPIC33EP512(GP/MC/MU)806/810/814 and
PIC24EP512(GP/GU)806/810/814
0x000000
GOTO Instruction(2)
0x000002
Reset Address(2)
0x000004
Interrupt Vector Table
0x0001FE
0x000200
User Program
Flash Memory
(175104 instructions)

Unimplemented
(Read ‘0’s)

Auxiliary Interrupt
Vector

Auxiliary Program
Flash Memory
Auxiliary Interrupt
Vector

Instruction(2)

Instruction(2)

GOTO

GOTO

Reset Address(2)

Reset Address(2)

Reserved

Reserved

Device Configuration
Registers

Device Configuration
Registers

Reserved

Reserved

Write Latch

Write Latch

Reserved

Reserved

DEVID (2 Words)

DEVID (2 Words)

Reserved

Reserved

0x02ABFE
0x02AC00
0x0557FE
0x055800
0x7FBFFE
0x7FC000
0x7FFFF8
0x7FFFFA
0x7FFFFC
0x7FFFFE
0x800000

0xF7FFFE
0xF80000
0xF80012
0xF80014
0xF9FFFE
0xFA0000
0xFA00FE
0xFA0100
0xFEFFFE
0xFF0000
0xFF0002

0xFFFFFE
Note 1:
2:

Memory areas are not shown to scale.
The Reset location is controlled by the Reset Target Vector Select bit, RSTPRI (FICD<2>). See Section 29.0 “Special Features”
for more information.

 2009-2012 Microchip Technology Inc.

DS70616G-page 47

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
4.1.1

PROGRAM MEMORY
ORGANIZATION

4.1.2

All devices reserve the addresses between 0x00000
and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect
code execution from the default value of the PC on
device Reset to the actual start of code. A GOTO
instruction is programmed by the user application at
address 0x000000 of the primary Flash memory or at
address 0x7FFFFC of the auxiliary Flash memory, with
the actual address for the start of code at address
0x000002 of the primary Flash memory or at address
0x7FFFFE of the auxiliary Flash memory. Reset Target
Vector Select bit (RSTPRI) in the FPOR Configuration
register controls whether primary or auxiliary Flash
Reset location is used.

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits
wide, it is more appropriate to think of each address of
the program memory as a lower and upper word, with
the upper byte of the upper word being unimplemented.
The lower word always has an even address, while the
upper word has an odd address (Figure 4-2).
Program memory addresses are always word-aligned
on the lower word and addresses are incremented or
decremented by two during code execution. This
arrangement provides compatibility with data memory
space addressing and makes data in the program
memory space accessible.

FIGURE 4-2:
msw
Address

least significant word

most significant word
16

8

PC Address
(lsw Address)
0
0x000000
0x000002
0x000004
0x000006

00000000
00000000
00000000
00000000
Program Memory
‘Phantom’ Byte
(read as ‘0’)

DS70616G-page 48

A more detailed discussion of the interrupt vector
tables is provided in Section 7.1 “Interrupt Vector
Table”.

PROGRAM MEMORY ORGANIZATION

23
0x000001
0x000003
0x000005
0x000007

INTERRUPT AND TRAP VECTORS

Instruction Width

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
4.2

Data Address Space

The CPU has a separate 16-bit wide data memory
space. The data space is accessed using separate
Address Generation Units (AGUs) for read and write
operations. The data memory maps are shown in
Figure 4-3, Figure 4-4, Figure 4-5 and Figure 4-6.
All Effective Addresses (EAs) in the data memory space
are 16 bits wide and point to bytes within the data space.
This arrangement gives a Base Data Space address
range of 64 Kbytes or 32K words.
The Base Data Space address is used in conjunction
with a Read or Write Page register (DSRPAG or
DSWPAG) to form an Extended Data Space, which has
a total address range of 16 MBytes.

All word accesses must be aligned to an even address.
Misaligned word data fetches are not supported, so
care must be taken when mixing byte and word
operations, or translating from 8-bit MCU code. If a
misaligned read or write is attempted, an address error
trap is generated. If the error occurred on a read, the
instruction underway is completed. If the error occurred
on a write, the instruction is executed but the write does
not occur. In either case, a trap is then executed,
allowing the system and/or user application to examine
the machine state prior to execution of the address
Fault.
All byte loads into any W register are loaded into the
LSB. The MSB is not modified.

dsPIC33EPXXX(GP/MC/MU)806/810/814
and
PIC24EPXXX(GP/GU)810/814 devices implement up
to 56 Kbytes of data memory. If an EA point to a location outside of this area, an all-zero word or byte is
returned.

A Sign-Extend instruction (SE) is provided to allow user
applications to translate 8-bit signed data to 16-bit
signed values. Alternatively, for 16-bit unsigned data,
user applications can clear the MSB of any W register
by executing a Zero-Extend (ZE) instruction on the
appropriate address.

4.2.1

4.2.3

DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in
data memory and registers as 16-bit words, but all data
space EAs resolve to bytes. The Least Significant
Bytes (LSBs) of each word have even addresses, while
the Most Significant Bytes (MSBs) have odd
addresses.

4.2.2

DATA MEMORY ORGANIZATION
AND ALIGNMENT

To maintain backward compatibility with PIC® MCU
devices and improve data space memory usage
efficiency, the device instruction set supports both word
and byte operations. As a consequence of byte
accessibility, all Effective Address calculations are
internally scaled to step through word-aligned memory.
For example, the core recognizes that Post-Modified
Register Indirect Addressing mode [Ws++] results in a
value of Ws + 1 for byte operations and Ws + 2 for word
operations.
A data byte read, reads the complete word that
contains the byte, using the LSb of any EA to determine
which byte to select. The selected byte is placed onto
the LSB of the data path. That is, data memory and
registers are organized as two parallel byte-wide
entities with shared (word) address decode but
separate write lines. Data byte writes only write to the
corresponding side of the array or register that matches
the byte address.

 2009-2012 Microchip Technology Inc.

SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000
to 0x0FFF, is primarily occupied by Special Function
Registers (SFRs). These are used by the core and
peripheral modules for controlling the operation of the
device.
SFRs are distributed among the modules that they
control and are generally grouped together by module.
Much of the SFR space contains unused addresses;
these are read as ‘0’.
Note:

4.2.4

The actual set of peripheral features and
interrupts varies by the device. Refer to
the corresponding device tables and
pinout diagrams for device-specific
information.

NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is
referred to as the Near Data Space. Locations in this
space are directly addressable through a 13-bit absolute address field within all memory direct instructions.
Additionally, the whole data space is addressable using
MOV instructions, which support Memory Direct
Addressing mode with a 16-bit address field, or by
using Indirect Addressing mode using a working
register as an Address Pointer.

DS70616G-page 49

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 4-3:

DATA MEMORY MAP FOR dsPIC33EP512(GP/MC/MU)806/810/814 DEVICES
WITH 52-KBYTE RAM
MSB
Address
MSB

4-Kbyte
SFR Space

LSB
Address

16 Bits
LSB

0x0000

0x0000
SFR Space

0x0FFF
0x1001

0x0FFE
0x1000

0x1FFF
0x2001

0x1FFE
0x2000

8-Kbyte
Near Data
Space

X Data RAM (X)

52-Kbyte
SRAM Space

0x7FFF
0x8001

0x7FFE
0x8000

0x8FFF
0x9001

0x8FFE
0x9000

Y Data RAM (Y)

0xCFFE
0xD000

0xCFFF
0xD001
DPSRAM (Y)

0xDFFE
0xE000

0xDFFF
0xE001

Optionally
Mapped
into Program
Memory

Far
Data
Space

X Data
Unimplemented (X)

0xFFFF

DS70616G-page 50

0xFFFE

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 4-4:

DATA MEMORY MAP FOR PIC24EP512(GP/GU)806/810/814 DEVICES
WITH 52-KBYTE RAM
MSB
Address
MSB

4-Kbyte
SFR Space

LSB
Address

16 Bits
LSB

0x0000

0x0000
SFR Space

0x0FFF
0x1001

0x0FFE
0x1000

0x1FFF
0x2001

0x1FFE
0x2000

0x7FFF
0x8001

0x7FFE
0x8000

8-Kbyte
Near Data
Space

X Data RAM (X)
52-Kbyte
SRAM Space

0xCFFE
0xD000

0xCFFF
0xD001
DMA Dual Port RAM (X)
0xDFFF
0xE001

0xDFFE
0xE000

Optionally
Mapped
into Program
Memory

Far
Data
Space

X Data
Unimplemented (X)

0xFFFF

 2009-2012 Microchip Technology Inc.

0xFFFE

DS70616G-page 51

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 4-5:

DATA MEMORY MAP FOR dsPIC33EP256MU806/810/814 DEVICES
WITH 28-KBYTE RAM
MSB
Address
MSB

4-Kbyte
SFR Space

28-Kbyte
SRAM Space

LSB
Address

16 Bits
LSB

0x0000

0x0001
SFR Space
0x0FFF
0x1001
0x1FFF
0x2001

X Data RAM (X)

0x4FFF
0x5001
0x6FFF
0x7001

0x0FFE
0x1000
0x1FFE
0x2000

8-Kbyte
Near Data
Space

0x4FFE
0x5000
Y Data RAM (Y)
0x6FFE
0x7000
DMA Dual Port RAM (Y)

0x7FFF
0x8001

0x7FFE
0x8000

Far
Data
Space
Optionally
Mapped
into Program
Memory

X Data
Unimplemented (X)

0xFFFF

DS70616G-page 52

0xFFFE

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

FIGURE 4-6:

DATA MEMORY MAP FOR PIC24EP256GU810/814 DEVICES
WITH 28-KBYTE RAM
MSB
Address
MSB

4-Kbyte
SFR Space

0x0001

LSB
Address

16 Bits
LSB

0x0000
SFR Space
0x0FFE
0x1000
0x1FFE
0x2000

0x0FFF
0x1001
0x1FFF
0x2001

8-Kbyte
Near Data
Space

X Data RAM (X)
28-Kbyte
SRAM Space
0x6FFF
0x7001
0x7FFF
0x8001

0x6FFE
0x7000
DMA Dual Port RAM

0x7FFE
0x8000
Far
Data
Space

Optionally
Mapped
into Program
Memory

X Data
Unimplemented (X)

0xFFFF

 2009-2012 Microchip Technology Inc.

0xFFFE

DS70616G-page 53

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

4.2.5

X AND Y DATA SPACES

The dsPIC33EPXXX(GP/MC/MU)806/810/814 core
has two data spaces, X and Y. These data spaces can
be considered either separate (for some DSP
instructions), or as one unified linear address range (for
MCU instructions). The data spaces are accessed
using two Address Generation Units (AGUs) and
separate data paths. This feature allows certain
instructions to concurrently fetch two words from RAM,
thereby enabling efficient execution of DSP algorithms
such as Finite Impulse Response (FIR) filtering and
Fast Fourier Transform (FFT).
The PIC24EPXXX(GP/GU)806/810/814 devices do not
have a Y data space and a Y AGU. For these devices,
the entire data space is treated as X data space.
The X data space is used by all instructions and
supports all addressing modes. X data space has
separate read and write data buses. The X read data
bus is the read data path for all instructions that view
data space as combined X and Y address space. It is
also the X data prefetch path for the dual operand DSP
instructions (MAC class).

When the CPU and the DMA controller attempt to
concurrently write to the same DMA RAM location, the
hardware ensures that the CPU is given precedence in
accessing the DMA RAM location. Therefore, the DMA
RAM provides a reliable means of transferring DMA
data without ever having to stall the CPU.
Note 1: DMA RAM can be used for general
purpose data storage if the DMA function
is not required in an application.
2: On PIC24EPXXX(GP/GU)806/810/814
devices, DMA RAM is located at the end
of X data RAM and is part of X data
space.

4.3

Many useful resources related to the Program Memory
are provided on the main product page of the Microchip
web site for the devices listed in this data sheet. This
product page, which can be accessed using this link,
contains the latest updates and additional information.
Note:

The Y data space is used in concert with the X data
space by the MAC class of instructions (CLR, ED,
EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide
two concurrent data read paths.
Both the X and Y data spaces support Modulo
Addressing mode for all instructions, subject to
addressing
mode
restrictions.
Bit-Reversed
Addressing mode is only supported for writes to X data
space. Modulo Addressing and Bit-Reversed
Addressing are not present in PIC24EPXXX(GP/
GU)806/810/814 devices.
All data memory writes, including in DSP instructions,
view data space as combined X and Y address space.
The boundary between the X and Y data spaces is
device-dependent and is not user-programmable.

4.2.6

DMA RAM

Each dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814
device
contains
4 Kbytes of dual ported DMA RAM located at the end
of Y data RAM and is part of Y data space. Memory
locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA Controller module.
DMA RAM is utilized by the DMA controller to store
data to be transferred to various peripherals using
DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by
the DMA controller without having to steal cycles from
the CPU.

DS70616G-page 54

Program Memory Resources

4.3.1

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

KEY RESOURCES

• Section 4. “Program Memory” (DS70612) in the
“dsPIC33E/PIC24E Family Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

4.4

Special Function Register Maps

Table 4-1 through Table 4-72 provide mapping tables
for all Special Function Registers (SFRs).

 2009-2012 Microchip Technology Inc.

File Name

Addr.

CPU CORE REGISTER MAP FOR dsPIC33EPXXX(GP/MC/MU)806/810/814 DEVICES ONLY
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

W0

0000

W0 (WREG)

0000

W1

0002

W1

0000

W2

0004

W2

0000

W3

0006

W3

0000

W4

0008

W4

0000

W5

000A

W5

0000

W6

000C

W6

0000

W7

000E

W7

0000

W8

0010

W8

0000

W9

0012

W9

0000

W10

0014

W10

0000

W11

0016

W11

0000

W12

0018

W12

0000

W13

001A

W13

0000

W14

001C

W14

0000

W15

001E

W15

1000

SPLIM

0020

SPLIM

0000

ACCAL

0022

ACCAL

0000

ACCAH

0024

ACCAH

ACCAU

0026

ACCBL

0028

ACCBL

ACCBH

002A

ACCBH

ACCBU

002C

PCL

002E

0000

Sign-Extension of ACCA<39>

ACCAU

0000
0000
0000

Sign-Extension of ACCB<39>

ACCBU

0000

PCL

PCH

0030

—

—

—

—

—

—

DSRPAG

0032

—

—

—

—

—

—

DSWPAG

0034

—

—

—

—

—

—

—

—

—
—

PCH

0000

DSRPAG
—

0000
0001

DSWPAG

0001

RCOUNT

0036

RCOUNT

0000

DCOUNT

0038

DCOUNT

0000

DS70616G-page 55

DOSTARTL

003A

DOSTARTH

003C

DOENDL

003E

DOENDH
Legend:

0040

DOSTARTL
—

—

—

—

—

—

—

—

—

—

DOENDL
—

—

—

—

—

—

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

—

—

—

—

—

0000

—

0000

DOSTARTH
DOENDH

0000
0000

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-1:

File Name

Addr.

CPU CORE REGISTER MAP FOR dsPIC33EPXXX(GP/MC/MU)806/810/814 DEVICES ONLY (CONTINUED)
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

SA

SB

OAB

SAB

SR

0042

OA

OB

CORCON

0044

VAR

—

MODCON

0046

XMODSRT

0048

XMODEND
YMODSRT
YMODEND

004E

XBREV

0050

BREN

DISICNT

0052

—

—

TBLPAG

0054

—

—

MSTRPR

0058

Legend:

Bit 9

Bit 8

DA

DC

Bit 7

Bit 6

IPL0

RA

Bit 1

Bit 0

All
Resets

OV

Z

C

0000

RND

IF

0020

XMODSRT<15:1>

0

0000

004A

XMODEND<15:1>

1

0001

004C

YMODSRT<15:1>

0

0000

YMODEND<15:1>

1

0001

XMODEN YMODEN

—

—

IPL1

Bit 2

SFA

DL<2:0>

SATB

Bit 3
N

EDT

IPL2

Bit 4

IPL3

US<1:0>

SATA

Bit 5

BWM<3:0>

SATDW ACCSAT

YWM<3:0>

XWM<3:0>

XBREV<14:0>

0000

DISICNT<13:0>
—

—

—

—

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

—

—
MSTRPR<15:0>

0000

0000
TBLPAG<7:0>

0000
0000

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 56

TABLE 4-1:

File
Name

Addr.

CPU CORE REGISTER MAP FOR PIC24EPXXX(GP/GU)810/814 DEVICES ONLY
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

W0

0000

W0 (WREG)

0000

W1

0002

W1

0000

W2

0004

W2

0000

W3

0006

W3

0000

W4

0008

W4

0000

W5

000A

W5

0000

W6

000C

W6

0000

W7

000E

W7

0000

W8

0010

W8

0000

W9

0012

W9

0000

W10

0014

W10

0000

W11

0016

W11

0000

W12

0018

W12

0000

W13

001A

W13

0000

W14

001C

W14

0000

W15

001E

W15

1000

SPLIM

0020

SPLIM

PCL

002E

PCH

0030

—

—

—

—

—

—

DSRPAG

0032

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—
—

PCH

DSWPAG

0034
0036

SR

0042

—

—

—

—

—

—

—

DC

—

—

—

—

—

—

—

0001

DSWPAG<8:0>

0001

RCOUNT<15:0>

CORCON

0044

VAR

—

DISICNT

0052

—

—

TBLPAG

0054

—

—

MSTRPR

0058

0000

IPL2

IPL1

IPL0

RA

N

OV

Z

C

—

—

—

—

IPL3

SFA

—

—

DISICNT<13:0>
—

—

—

—

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

—

—
MSTRPR<15:0>

0000
0000

DSRPAG<9:0>

RCOUNT

Legend:

0000

PCL

0000
0020
0000

TBLPAG<7:0>

0000
0000

DS70616G-page 57

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-2:

File
Name

Addr.

INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMU814 DEVICES ONLY
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

 2009-2012 Microchip Technology Inc.

IFS0

0800

NVMIF

DMA1IF

AD1IF

U1TXIF

U1RXIF

SPI1IF

SPI1EIF

T3IF

T2IF

OC2IF

IC2IF

DMA0IF

T1IF

OC1IF

IC1IF

INT0IF

0000

IFS1

0802

U2TXIF

U2RXIF

INT2IF

T5IF

T4IF

OC4IF

OC3IF

DMA2IF

IC8IF

IC7IF

AD2IF

INT1IF

CNIF

CMIF

MI2C1IF

SI2C1IF

0000

IFS2

0804

T6IF

DMA4IF

PMPIF

OC8IF

OC7IF

OC6IF

OC5IF

IC6IF

IC5IF

IC4IF

IC3IF

DMA3IF

C1IF

C1RXIF

SPI2IF

SPI2EIF

0000

IFS3

0806

—

RTCIF

DMA5IF

DCIIF

DCIEIF

QEI1IF

PSEMIF

C2IF

C2RXIF

INT4IF

INT3IF

T9IF

T8IF

MI2C2IF

SI2C2IF

T7IF

0000

IFS4

0808

—

—

—

—

QEI2IF

—

PSESMIF

—

C2TXIF

C1TXIF

DMA7IF

DMA6IF

CRCIF

U2EIF

U1EIF

—

0000

IFS5

080A PWM2IF

PWM1IF

IC9IF

OC9IF

SPI3IF

SPI3EIF

U4TXIF

U4RXIF

U4EIF

USB1IF

—

—

U3TXIF

U3RXIF

U3EIF

—

0000

IFS6

080C

—

—

—

—

—

—

—

—

—

—

—

PWM7IF

PWM6IF

PWM5IF

PWM4IF

PWM3IF

0000

IFS7

080E

IC11IF

OC11IF

IC10IF

OC10IF

SPI4IF

SPI4EIF

DMA11IF

DMA10IF

DMA9IF

DMA8IF

—

—

—

—

—

—

0000

IFS8

0810

—

ICDIF

IC16IF

OC16IF

IC15IF

OC15IF

IC14IF

OC14IF

IC13IF

OC13IF

—

DMA14IF

DMA13IF

DMA12IF

IC12IF

OC12IF

0000

IEC0

0820

NVMIE

DMA1IE

AD1IE

U1TXIE

U1RXIE

SPI1IE

SPI1EIE

T3IE

T2IE

OC2IE

IC2IE

DMA0IE

T1IE

OC1IE

IC1IE

INT0IE

0000

IEC1

0822

U2TXIE

U2RXIE

INT2IE

T5IE

T4IE

OC4IE

OC3IE

DMA2IE

IC8IE

IC7IE

AD2IE

INT1IE

CNIE

CMIE

MI2C1IE

SI2C1IE

0000

IEC2

0824

T6IE

DMA4IE

PMPIE

OC8IE

OC7IE

OC6IE

OC5IE

IC6IE

IC5IE

IC4IE

IC3IE

DMA3IE

C1IE

C1RXIE

SPI2IE

SPI2EIE

0000

IEC3

0826

—

RTCIE

DMA5IE

DCIIE

DCIEIE

QEI1IE

PSEMIE

C2IE

C2RXIE

INT4IE

INT3IE

T9IE

T8IE

MI2C2IE

SI2C2IE

T7IE

0000

IEC4

0828

—

—

—

—

QEI2IE

—

PSESMIE

—

C2TXIE

C1TXIE

DMA7IE

DMA6IE

CRCIE

U2EIE

U1EIE

—

0000

IEC5

082A PWM2IE

PWM1IE

IC9IE

OC9IE

SPI3IE

SPI3EIE

U4TXIE

U4RXIE

U4EIE

USB1IE

—

—

U3TXIE

U3RXIE

U3EIE

—

0000

IEC6

082C

—

—

—

—

—

—

—

—

—

—

—

PWM7IE

PWM6IE

PWM5IE

PWM4IE

PWM3IE

0000

IEC7

082E

IC11IE

OC11IE

IC10IE

OC10IE

SPI4IE

SPI4EIE

DMA11IE

DMA10IE

DMA9IE

DMA8IE

—

—

—

—

—

—

0000

IEC8

0830

—

ICDIE

IC16IE

OC16IE

IC15IE

OC15IE

IC14IE

OC14IE

IC13IE

OC13IE

—

DMA14IE

DMA13IE

DMA12IE

IC12IE

OC12IE

0000

IPC0

0840

—

T1IP<2:0>

—

OC1IP<2:0>

—

IC1IP<2:0>

—

INT0IP<2:0>

4444

IPC1

0842

—

T2IP<2:0>

—

OC2IP<2:0>

—

IC2IP<2:0>

—

DMA0IP<2:0>

4444

IPC2

0844

—

U1RXIP<2:0>

—

SPI1IP<2:0>

—

SPI1EIP<2:0>

—

T3IP<2:0>

4444

IPC3

0846

—

NVMIP<2:0>

—

DMA1IP<2:0>

—

AD1IP<2:0>

—

U1TXIP<2:0>

4444

IPC4

0848

—

CNIP<2:0>

—

CMIP<2:0>

—

MI2C1IP<2:0>

—

SI2C1IP<2:0>

4444

IPC5

084A

—

IC8IP<2:0>

—

IC7IP<2:0>

—

AD2IP<2:0>

—

INT1IP<2:0>

4444

IPC6

084C

—

T4IP<2:0>

—

OC4IP<2:0>

—

OC3IP<2:0>

—

DMA2IP<2:0>

4444

IPC7

084E

—

U2TXIP<2:0>

—

U2RXIP<2:0>

—

INT2IP<2:0>

—

T5IP<2:0>

4444

IPC8

0850

—

C1IP<2:0>

—

C1RXIP<2:0>

—

SPI2IP<2:0>

—

SPI2EIP<2:0>

4444

IPC9

0852

—

IC5IP<2:0>

—

IC4IP<2:0>

—

IC3IP<2:0>

—

DMA3IP<2:0>

4444

IPC10

0854

—

OC7IP<2:0>

—

OC6IP<2:0>

—

OC5IP<2:0>

—

IC6IP<2:0>

4444

IPC11

0856

—

T6IP<2:0>

—

DMA4IP<2:0>

—

PMPIP<2:0>

—

OC8IP<2:0>

4444

IPC12

0858

—

T8IP<2:0>

—

MI2C2IP<2:0>

—

SI2C2IP<2:0>

—

T7IP<2:0>

4444

IPC13

085A

C2RXIP<2:0>

—

INT4IP<2:0>

—

INT3IP<2:0>

—

T9IP<2:0>

4444

IPC14

085C

—

DCIEIP<2:0>

—

QEI1IP<2:0>

—

PSEMIP<2:0>

—

C2IP<2:0>

4444

IPC15

085E

—

—

RTCIP<2:0>

—

DMA5IP<2:0>

—

DCIIP<2:0>

0444

Legend:

—

—

—

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 58

TABLE 4-3:

File
Name

INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMU814 DEVICES ONLY (CONTINUED)
Bit 14

Bit 12

—

U2EIP<2:0>

—

C2TXIP<2:0>

—

C1TXIP<2:0>

—

IPC18

0864

—

QEI2IP<2:0>

—

—

PSESMIP<2:0>

—

—

—

—

4040

IPC20

0868

—

U3TXIP<2:0>

—

U3RXIP<2:0>

—

U3EIP<2:0>

—

—

—

—

4440

IPC21

086A

—

U4EIP<2:0>

—

USB1IP<2:0>

—

—

—

—

—

4400

IPC22

086C

—

SPI3IP<2:0>

—

SPI3EIP<2:0>

—

U4TXIP<2:0>

—

U4RXIP<2:0>

4444

IPC23

086E

—

PWM2IP<2:0>

—

PWM1IP<2:0>

—

IC9IP<2:0>

—

OC9IP<2:0>

4444

IPC24

0870

—

PWM6IP<2:0>

—

PWM5IP<2:0>

—

PWM4IP<2:0>

—

PWM3IP<2:0>

4444

IPC25

0872

—

PWM7IP<2:0>

IPC29

087A

—

DMA9IP<2:0>

—

IPC30

087C

—

SPI4IP<2:0>

IPC31

087E

—

IPC32

0880

IPC33

—

—

—

Bit 6

—

Bit 5

Bit 3

Bit 2

U1EIP<2:0>

—

—

DMA7IP<2:0>

—

—

Bit 4

—

DMA6IP<2:0>

4444

—

—

—

—

—

DMA8IP<2:0>

—

—

—

—

—

—

SPI4EIP<2:0>

—

DMA11IP<2:0>

—

DMA10IP<2:0>

4444

IC11IP<2:0>

—

OC11IP<2:0>

—

IC10IP<2:0>

—

OC10IP<2:0>

4444

—

DMA13IP<2:0>

—

DMA12IP<2:0>

—

IC12IP<2:0>

—

OC12IP<2:0>

4444

0882

—

IC13IP<2:0>

—

OC13IP<2:0>

—

—

DMA14IP<2:0>

4404

IPC34

0884

—

IC15IP<2:0>

—

OC15IP<2:0>

—

IC14IP<2:0>

—

OC14IP<2:0>

4444

IPC35

0886

—

ICDIP<2:0>

—

IC16IP<2:0>

—

OC16IP<2:0>

INTCON1 08C0 NSTDIS

—

—

Bit 7

4440

CRCIP<2:0>

—

—

Bit 8

—

—

0862

—

Bit 9

—

0860

IPC17

—

Bit 10

All
Resets

IPC16

—

Bit 11

Bit 0

Bit 15

—

Bit 13

Bit 1

Addr.

—

—

—

—

—

0004
—

4400

—

—

—

—

OVAERR

OVBERR

COVAERR

COVBERR

OVATE

OVBTE

COVTE

SFTACERR

DIV0ERR

DMACERR

MATHERR

ADDRERR

STKERR

OSCFAIL

—

0000

0444

INTCON2 08C2

GIE

DISI

SWTRAP

—

—

—

—

—

—

—

—

INT4EP

INT3EP

INT2EP

INT1EP

INT0EP

8000

INTCON3 08C4

—

—

—

—

—

—

—

—

—

UAE

DAE

DOOVR

—

—

—

—

0000

INTCON4 08C6

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

SGHT

0000

INTTREG 08C8

—

—

—

—

Legend:

ILR<3:0>

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

VECNUM<7:0>

0000

DS70616G-page 59

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-3:

File
Name

Addr.

INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

 2009-2012 Microchip Technology Inc.

IFS0

0800

NVMIF

DMA1IF

AD1IF

U1TXIF

U1RXIF

SPI1IF

SPI1EIF

T3IF

T2IF

OC2IF

IC2IF

DMA0IF

T1IF

OC1IF

IC1IF

INT0IF

0000

IFS1

0802

U2TXIF

U2RXIF

INT2IF

T5IF

T4IF

OC4IF

OC3IF

DMA2IF

IC8IF

IC7IF

AD2IF

INT1IF

CNIF

CMIF

MI2C1IF

SI2C1IF

0000

IFS2

0804

T6IF

DMA4IF

PMPIF

OC8IF

OC7IF

OC6IF

OC5IF

IC6IF

IC5IF

IC4IF

IC3IF

DMA3IF

C1IF

C1RXIF

SPI2IF

SPI2EIF

0000

IFS3

0806

—

RTCIF

DMA5IF

DCIIF

DCIEIF

QEI1IF

PSEMIF

C2IF

C2RXIF

INT4IF

INT3IF

T9IF

T8IF

MI2C2IF

SI2C2IF

T7IF

0000

IFS4

0808

—

—

—

—

QEI2IF

—

PSESMIF

—

C2TXIF

C1TXIF

DMA7IF

DMA6IF

CRCIF

U2EIF

U1EIF

—

0000

IFS5

080A PWM2IF PWM1IF

IC9IF

OC9IF

SPI3IF

SPI3EIF

U4TXIF

U4RXIF

U4EIF

USB1IF

—

—

U3TXIF

U3RXIF

U3EIF

—

0000

IFS6

080C

—

—

—

—

—

—

—

—

—

—

—

—

PWM6IF

PWM5IF

PWM4IF

PWM3IF

0000

IFS7

080E

IC11IF

OC11IF

IC10IF

OC10IF

SPI4IF

SPI4EIF

DMA11IF

DMA10IF

DMA9IF

DMA8IF

—

—

—

—

—

—

0000

IFS8

0810

—

ICDIF

IC16IF

OC16IF

IC15IF

OC15IF

IC14IF

OC14IF

IC13IF

OC13IF

—

DMA14IF

DMA13IF

DMA12IF

IC12IF

OC12IF

0000

IEC0

0820

NVMIE

DMA1IE

AD1IE

U1TXIE

U1RXIE

SPI1IE

SPI1EIE

T3IE

T2IE

OC2IE

IC2IE

DMA0IE

T1IE

OC1IE

IC1IE

INT0IE

0000

IEC1

0822

U2TXIE

U2RXIE

INT2IE

T5IE

T4IE

OC4IE

OC3IE

DMA2IE

IC8IE

IC7IE

AD2IE

INT1IE

CNIE

CMIE

MI2C1IE

SI2C1IE

0000

IEC2

0824

T6IE

DMA4IE

PMPIE

OC8IE

OC7IE

OC6IE

OC5IE

IC6IE

IC5IE

IC4IE

IC3IE

DMA3IE

C1IE

C1RXIE

SPI2IE

SPI2EIE

0000

IEC3

0826

—

RTCIE

DMA5IE

DCIIE

DCIEIE

QEI1IE

PSEMIE

C2IE

C2RXIE

INT4IE

INT3IE

T9IE

T8IE

MI2C2IE

SI2C2IE

T7IE

0000

IEC4

0828

—

—

—

—

QEI2IE

—

PSESMIE

—

C2TXIE

C1TXIE

DMA7IE

DMA6IE

CRCIE

U2EIE

U1EIE

—

0000

IEC5

082A PWM2IE PWM1IE

IC9IE

OC9IE

SPI3IE

SPI3EIE

U4TXIE

U4RXIE

U4EIE

USB1IE

—

—

U3TXIE

U3RXIE

U3EIE

—

0000

IEC6

082C

—

—

—

—

—

—

—

—

—

—

—

—

PWM6IE

PWM5IE

PWM4IE

PWM3IE

0000

IEC7

082E

IC11IE

OC11IE

IC10IE

OC10IE

SPI4IE

SPI4EIE

DMA11IE

DMA10IE

DMA9IE

DMA8IE

—

—

—

—

—

—

0000

IEC8

0830

—

ICDIE

IC16IE

OC16IE

IC15IE

OC15IE

IC14IE

OC14IE

IC13IE

OC13IE

—

DMA14IE

DMA13IE

DMA12IE

IC12IE

OC12IE

0000

IPC0

0840

—

T1IP<2:0>

—

OC1IP<2:0>

—

IC1IP<2:0>

—

INT0IP<2:0>

4444

IPC1

0842

—

T2IP<2:0>

—

OC2IP<2:0>

—

IC2IP<2:0>

—

DMA0IP<2:0>

4444

IPC2

0844

—

U1RXIP<2:0>

—

SPI1IP<2:0>

—

SPI1EIP<2:0>

—

T3IP<2:0>

4444

IPC3

0846

—

NVMIP<2:0>

—

DMA1IP<2:0>

—

AD1IP<2:0>

—

U1TXIP<2:0>

4444

IPC4

0848

—

CNIP<2:0>

—

CMIP<2:0>

—

MI2C1IP<2:0>

—

SI2C1IP<2:0>

4444

IPC5

084A

—

IC8IP<2:0>

—

IC7IP<2:0>

—

AD2IP<2:0>

—

INT1IP<2:0>

4444

IPC6

084C

—

T4IP<2:0>

—

OC4IP<2:0>

—

OC3IP<2:0>

—

DMA2IP<2:0>

4444

IPC7

084E

—

U2TXIP<2:0>

—

U2RXIP<2:0>

—

INT2IP<2:0>

—

T5IP<2:0>

4444

IPC8

0850

—

C1IP<2:0>

—

C1RXIP<2:0>

—

SPI2IP<2:0>

—

SPI2EIP<2:0>

4444

IPC9

0852

—

IC5IP<2:0>

—

IC4IP<2:0>

—

IC3IP<2:0>

—

DMA3IP<2:0>

4444

IPC10

0854

—

OC7IP<2:0>

—

OC6IP<2:0>

—

OC5IP<2:0>

—

IC6IP<2:0>

4444

IPC11

0856

—

T6IP<2:0>

—

DMA4IP<2:0>

—

PMPIP<2:0>

—

OC8IP<2:0>

4444

IPC12

0858

—

T8IP<2:0>

—

MI2C2IP<2:0>

—

SI2C2IP<2:0>

—

T7IP<2:0>

4444

IPC13

085A

C2RXIP<2:0>

—

INT4IP<2:0>

—

INT3IP<2:0>

—

T9IP<2:0>

4444

IPC14

085C

—

DCIEIP<2:0>

—

QEI1IP<2:0>

—

PSEMIP<2:0>

—

C2IP<2:0>

4444

IPC15

085E

—

—

RTCIP<2:0>

—

DMA5IP<2:0>

—

DCIIP<2:0>

0444

Legend:

—

—

—

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 60

TABLE 4-4:

File
Name

INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY (CONTINUED)
Bit 14

Bit 10

Bit 8

—

U2EIP<2:0>

—

C2TXIP<2:0>

—

C1TXIP<2:0>

—

IPC18

0864

—

QEI2IP<2:0>

—

—

PSESMIP<2:0>

—

—

—

—

4040

IPC20

0868

—

U3TXIP<2:0>

—

U3RXIP<2:0>

—

U3EIP<2:0>

—

—

—

—

4440

IPC21

086A

—

U4EIP<2:0>

—

USB1IP<2:0>

—

—

—

—

—

4400

IPC22

086C

—

SPI3IP<2:0>

—

SPI3EIP<2:0>

—

U4TXIP<2:0>

—

U4RXIP<2:0>

4444

IPC23

086E

—

PWM2IP<2:0>

—

PWM1IP<2:0>

—

IC9IP<2:0>

—

OC9IP<2:0>

4444

IPC24

0870

—

PWM6IP<2:0>

—

PWM5IP<2:0>

—

PWM4IP<2:0>

—

PWM3IP<2:0>

IPC29

087A

—

DMA9IP<2:0>

—

DMA8IP<2:0>

—

IPC30

087C

—

SPI4IP<2:0>

—

SPI4EIP<2:0>

—

DMA11IP<2:0>

—

DMA10IP<2:0>

4444

IPC31

087E

—

IC11IP<2:0>

—

OC11IP<2:0>

—

IC10IP<2:0>

—

OC10IP<2:0>

4444

IPC32

0880

—

DMA13IP<2:0>

—

DMA12IP<2:0>

—

IC12IP<2:0>

—

OC12IP<2:0>

4444

IPC33

0882

—

IC13IP<2:0>

—

OC13IP<2:0>

—

—

DMA14IP<2:0>

4404

IPC34

0884

—

IC15IP<2:0>

—

OC15IP<2:0>

—

IC14IP<2:0>

—

OC14IP<2:0>

4444

IPC35

0886

—

—

—

ICDIP<2:0>

—

IC16IP<2:0>

—

OC16IP<2:0>

COVAERR

COVBERR

OVATE

OVBTE

COVTE

SFTACERR

DIV0ERR

DMACERR

MATHERR

ADDRERR

STKERR

OSCFAIL

—

0000

—

Bit 6

—

—

—

Bit 5

Bit 3

Bit 2

U1EIP<2:0>

—

—

DMA7IP<2:0>

—

—

—

—

Bit 4

4440

CRCIP<2:0>

—

—

Bit 7

—

—

0862

—

Bit 9

—

0860

IPC17

INTCON1 08C0 NSTDIS OVAERR OVBERR

Bit 11

All
Resets

IPC16

—

Bit 12

Bit 0

Bit 15

—

Bit 13

Bit 1

Addr.

—

—

—

—

DMA6IP<2:0>

—

—

4444

4444
—

4400

0444

INTCON2 08C2

GIE

DISI

SWTRAP

—

—

—

—

—

—

—

—

INT4EP

INT3EP

INT2EP

INT1EP

INT0EP

8000

INTCON3 08C4

—

—

—

—

—

—

—

—

—

UAE

DAE

DOOVR

—

—

—

—

0000

INTCON4 08C6

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

SGHT

0000

INTTREG 08C8

—

—

—

—

—

Legend:

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

ILR<3:0>

VECNUM<7:0>

0000

DS70616G-page 61

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-4:

File
Name

Addr.

INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

 2009-2012 Microchip Technology Inc.

IFS0

0800

NVMIF

DMA1IF

AD1IF

U1TXIF

U1RXIF

SPI1IF

SPI1EIF

T3IF

T2IF

OC2IF

IC2IF

DMA0IF

T1IF

OC1IF

IC1IF

INT0IF

0000

IFS1

0802

U2TXIF

U2RXIF

INT2IF

T5IF

T4IF

OC4IF

OC3IF

DMA2IF

IC8IF

IC7IF

AD2IF

INT1IF

CNIF

CMIF

MI2C1IF

SI2C1IF

0000

IFS2

0804

T6IF

DMA4IF

PMPIF

OC8IF

OC7IF

OC6IF

OC5IF

IC6IF

IC5IF

IC4IF

IC3IF

DMA3IF

C1IF

C1RXIF

SPI2IF

SPI2EIF

0000

IFS3

0806

—

RTCIF

DMA5IF

DCIIF

DCIEIF

QEI1IF

PSEMIF

C2IF

C2RXIF

INT4IF

INT3IF

T9IF

T8IF

MI2C2IF

SI2C2IF

T7IF

0000

IFS4

0808

—

—

—

—

QEI2IF

—

PSESMIF

—

C2TXIF

C1TXIF

DMA7IF

DMA6IF

CRCIF

U2EIF

U1EIF

—

0000

IFS5

080A

PWM2IF

PWM1IF

IC9IF

OC9IF

SPI3IF

SPI3EIF

U4TXIF

U4RXIF

U4EIF

USB1IF

—

—

U3TXIF

U3RXIF

U3EIF

—

0000

IFS6

080C

—

—

—

—

—

—

—

—

—

—

—

—

—

—

PWM4IF

PWM3IF

0000

IFS7

080E

IC11IF

OC11IF

IC10IF

OC10IF

SPI4IF

SPI4EIF

DMA11IF

DMA10IF

DMA9IF

DMA8IF

—

—

—

—

—

—

0000

IFS8

0810

—

ICDIF

IC16IF

OC16IF

IC15IF

OC15IF

IC14IF

OC14IF

IC13IF

OC13IF

—

DMA14IF

DMA13IF

DMA12IF

IC12IF

OC12IF

0000

IEC0

0820

NVMIE

DMA1IE

AD1IE

U1TXIE

U1RXIE

SPI1IE

SPI1EIE

T3IE

T2IE

OC2IE

IC2IE

DMA0IE

T1IE

OC1IE

IC1IE

INT0IE

0000

IEC1

0822

U2TXIE

U2RXIE

INT2IE

T5IE

T4IE

OC4IE

OC3IE

DMA2IE

IC8IE

IC7IE

AD2IE

INT1IE

CNIE

CMIE

MI2C1IE

SI2C1IE

0000

IEC2

0824

T6IE

DMA4IE

PMPIE

OC8IE

OC7IE

OC6IE

OC5IE

IC6IE

IC5IE

IC4IE

IC3IE

DMA3IE

C1IE

C1RXIE

SPI2IE

SPI2EIE

0000

IEC3

0826

—

RTCIE

DMA5IE

DCIIE

DCIEIE

QEI1IE

PSEMIE

C2IE

C2RXIE

INT4IE

INT3IE

T9IE

T8IE

MI2C2IE

SI2C2IE

T7IE

0000

IEC4

0828

—

—

—

—

QEI2IE

—

PSESMIE

—

C2TXIE

C1TXIE

DMA7IE

DMA6IE

CRCIE

U2EIE

U1EIE

—

0000

IEC5

082A

PWM2IE

PWM1IE

IC9IE

OC9IE

SPI3IE

SPI3EIE

U4TXIE

U4RXIE

U4EIE

USB1IE

—

—

U3TXIE

U3RXIE

U3EIE

—

0000

IEC6

082C

—

—

—

—

—

—

—

—

—

—

—

—

—

—

PWM4IE

PWM3IE

0000

IEC7

082E

IC11IE

OC11IE

IC10IE

OC10IE

SPI4IE

SPI4EIE

DMA11IE

DMA10IE

DMA9IE

DMA8IE

—

—

—

—

—

—

0000

IEC8

0830

—

ICDIE

IC16IE

OC16IE

IC15IE

OC15IE

IC14IE

OC14IE

IC13IE

OC13IE

—

DMA14IE

DMA13IE

DMA12IE

IC12IE

OC12IE

0000

IPC0

0840

—

T1IP<2:0>

—

OC1IP<2:0>

—

IC1IP<2:0>

—

INT0IP<2:0>

4444

IPC1

0842

—

T2IP<2:0>

—

OC2IP<2:0>

—

IC2IP<2:0>

—

DMA0IP<2:0>

4444

IPC2

0844

—

U1RXIP<2:0>

—

SPI1IP<2:0>

—

SPI1EIP<2:0>

—

T3IP<2:0>

4444

IPC3

0846

—

NVMIP<2:0>

—

DMA1IP<2:0>

—

AD1IP<2:0>

—

U1TXIP<2:0>

4444

IPC4

0848

—

CNIP<2:0>

—

CMIP<2:0>

—

MI2C1IP<2:0>

—

SI2C1IP<2:0>

4444

IPC5

084A

—

IC8IP<2:0>

—

IC7IP<2:0>

—

AD2IP<2:0>

—

INT1IP<2:0>

4444

IPC6

084C

—

T4IP<2:0>

—

OC4IP<2:0>

—

OC3IP<2:0>

—

DMA2IP<2:0>

4444

IPC7

084E

—

U2TXIP<2:0>

—

U2RXIP<2:0>

—

INT2IP<2:0>

—

T5IP<2:0>

4444

IPC8

0850

—

C1IP<2:0>

—

C1RXIP<2:0>

—

SPI2IP<2:0>

—

SPI2EIP<2:0>

4444

IPC9

0852

—

IC5IP<2:0>

—

IC4IP<2:0>

—

IC3IP<2:0>

—

DMA3IP<2:0>

4444

IPC10

0854

—

OC7IP<2:0>

—

OC6IP<2:0>

—

OC5IP<2:0>

—

IC6IP<2:0>

4444

IPC11

0856

—

T6IP<2:0>

—

DMA4IP<2:0>

—

PMPIP<2:0>

—

OC8IP<2:0>

4444

IPC12

0858

—

T8IP<2:0>

—

MI2C2IP<2:0>

—

SI2C2IP<2:0>

—

T7IP<2:0>

4444

IPC13

085A

C2RXIP<2:0>

—

INT4IP<2:0>

—

INT3IP<2:0>

—

T9IP<2:0>

4444

IPC14

085C

—

DCIEIP<2:0>

—

QEI1IP<2:0>

—

PSEMIP<2:0>

—

C2IP<2:0>

4444

IPC15

085E

—

—

RTCIP<2:0>

—

DMA5IP<2:0>

—

DCIIP<2:0>

0444

Legend:

—

—

—

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 62

TABLE 4-5:

File
Name

INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY (CONTINUED)
Bit 12

—

U2EIP<2:0>

—

C2TXIP<2:0>

—

C1TXIP<2:0>

—

IPC18

0864

—

QEI2IP<2:0>

—

—

PSESMIP<2:0>

—

—

—

—

4040

IPC20

0868

—

U3TXIP<2:0>

—

U3RXIP<2:0>

—

U3EIP<2:0>

—

—

—

—

4440

IPC21

086A

—

U4EIP<2:0>

—

USB1IP<2:0>

—

—

—

—

—

4400

IPC22

086C

—

SPI3IP<2:0>

—

SPI3EIP<2:0>

—

U4TXIP<2:0>

—

U4RXIP<2:0>

4444

IPC23

086E

—

PWM2IP<2:0>

—

PWM1IP<2:0>

—

IC9IP<2:0>

—

OC9IP<2:0>

4444

IPC24

0870

—

—

PWM4IP<2:0>

—

PWM3IP<2:0>

IPC29

087A

—

DMA9IP<2:0>

—

DMA8IP<2:0>

—

IPC30

087C

—

SPI4IP<2:0>

—

SPI4EIP<2:0>

—

DMA11IP<2:0>

—

DMA10IP<2:0>

4444

IPC31

087E

—

IC11IP<2:0>

—

OC11IP<2:0>

—

IC10IP<2:0>

—

OC10IP<2:0>

4444

IPC32

0880

—

DMA13IP<2:0>

—

DMA12IP<2:0>

—

IC12IP<2:0>

—

OC12IP<2:0>

4444

IPC33

0882

—

IC13IP<2:0>

—

OC13IP<2:0>

—

—

DMA14IP<2:0>

4404

IPC34

0884

—

IC15IP<2:0>

—

OC15IP<2:0>

—

IC14IP<2:0>

—

OC14IP<2:0>

4444

IPC35

0886

—

—

—

—

ICDIP<2:0>

—

IC16IP<2:0>

—

OC16IP<2:0>

INTCON1

08C0

NSTDIS

OVAERR

OVBERR

INTCON2

08C2

GIE

DISI

SWTRAP

—

INTCON3

08C4

—

—

—

INTCON4

08C6

—

—

INTTREG

08C8

—

—

—

—

COVAERR COVBERR

—

Bit 8

—

—

—

—

Bit 7

Bit 6

—

—

—

Bit 5

Bit 3

Bit 2

U1EIP<2:0>

—

—

DMA7IP<2:0>

—

—

—

—

Bit 4

4440

CRCIP<2:0>

—

—

Bit 9

—

—

0862

—

Bit 10

—

0860

IPC17

—

Bit 11

All
Resets

IPC16

—

Bit 13

Bit 0

Bit 15

Legend:

Bit 14

Bit 1

Addr.

—

—

—

OVATE

OVBTE

COVTE

—

—

—

—

—

—

—

INT4EP

—

—

—

—

—

—

UAE

DAE

—

—

—

—

—

—

—

—

—

—

—

—

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

ILR<3:0>

—

SFTACERR DIV0ERR DMACERR MATHERR ADDRERR

DMA6IP<2:0>

—

—

4444

0044
—

4400

0444

STKERR

OSCFAIL

—

0000

INT3EP

INT2EP

INT1EP

INT0EP

8000

DOOVR

—

—

—

—

0000

—

—

—

—

SGHT

0000

VECNUM<7:0>

0000

DS70616G-page 63

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-5:

File
Name

Addr.

INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC806 DEVICES ONLY
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

 2009-2012 Microchip Technology Inc.

IFS0

0800

NVMIF

DMA1IF

AD1IF

U1TXIF

U1RXIF

SPI1IF

SPI1EIF

T3IF

T2IF

OC2IF

IC2IF

DMA0IF

T1IF

OC1IF

IC1IF

INT0IF

0000

IFS1

0802

U2TXIF

U2RXIF

INT2IF

T5IF

T4IF

OC4IF

OC3IF

DMA2IF

IC8IF

IC7IF

AD2IF

INT1IF

CNIF

CMIF

MI2C1IF

SI2C1IF

0000

IFS2

0804

T6IF

DMA4IF

PMPIF

OC8IF

OC7IF

OC6IF

OC5IF

IC6IF

IC5IF

IC4IF

IC3IF

DMA3IF

C1IF

C1RXIF

SPI2IF

SPI2EIF

0000

IFS3

0806

—

RTCIF

DMA5IF

DCIIF

DCIEIF

QEI1IF

PSEMIF

C2IF

C2RXIF

INT4IF

INT3IF

T9IF

T8IF

MI2C2IF

SI2C2IF

T7IF

0000

IFS4

0808

—

—

—

—

QEI2IF

—

PSESMIF

—

C2TXIF

C1TXIF

DMA7IF

DMA6IF

CRCIF

U2EIF

U1EIF

—

0000

IFS5

080A

PWM2IF

PWM1IF

IC9IF

OC9IF

SPI3IF

SPI3EIF

U4TXIF

U4RXIF

U4EIF

—

—

—

U3TXIF

U3RXIF

U3EIF

—

0000

IFS6

080C

—

—

—

—

—

—

—

—

—

—

—

—

—

—

PWM4IF

PWM3IF

0000

IFS7

080E

IC11IF

OC11IF

IC10IF

OC10IF

SPI4IF

SPI4EIF

DMA11IF

DMA10IF

DMA9IF

DMA8IF

—

—

—

—

—

—

0000

IFS8

0810

—

ICDIF

IC16IF

OC16IF

IC15IF

OC15IF

IC14IF

OC14IF

IC13IF

OC13IF

—

DMA14IF

DMA13IF

DMA12IF

IC12IF

OC12IF

0000

IEC0

0820

NVMIE

DMA1IE

AD1IE

U1TXIE

U1RXIE

SPI1IE

SPI1EIE

T3IE

T2IE

OC2IE

IC2IE

DMA0IE

T1IE

OC1IE

IC1IE

INT0IE

0000

IEC1

0822

U2TXIE

U2RXIE

INT2IE

T5IE

T4IE

OC4IE

OC3IE

DMA2IE

IC8IE

IC7IE

AD2IE

INT1IE

CNIE

CMIE

MI2C1IE

SI2C1IE

0000

IEC2

0824

T6IE

DMA4IE

PMPIE

OC8IE

OC7IE

OC6IE

OC5IE

IC6IE

IC5IE

IC4IE

IC3IE

DMA3IE

C1IE

C1RXIE

SPI2IE

SPI2EIE

0000

IEC3

0826

—

RTCIE

DMA5IE

DCIIE

DCIEIE

QEI1IE

PSEMIE

C2IE

C2RXIE

INT4IE

INT3IE

T9IE

T8IE

MI2C2IE

SI2C2IE

T7IE

0000

IEC4

0828

—

—

—

—

QEI2IE

—

PSESMIE

—

C2TXIE

C1TXIE

DMA7IE

DMA6IE

CRCIE

U2EIE

U1EIE

—

0000

IEC5

082A

PWM2IE

PWM1IE

IC9IE

OC9IE

SPI3IE

SPI3EIE

U4TXIE

U4RXIE

U4EIE

—

—

—

U3TXIE

U3RXIE

U3EIE

—

0000

IEC6

082C

—

—

—

—

—

—

—

—

—

—

—

—

—

—

PWM4IE

PWM3IE

0000

IEC7

082E

IC11IE

OC11IE

IC10IE

OC10IE

SPI4IE

SPI4EIE

DMA11IE

DMA10IE

DMA9IE

DMA8IE

—

—

—

—

—

—

0000

IEC8

0830

—

ICDIE

IC16IE

OC16IE

IC15IE

OC15IE

IC14IE

OC14IE

IC13IE

OC13IE

—

DMA14IE

DMA13IE

DMA12IE

IC12IE

OC12IE

0000

IPC0

0840

—

T1IP<2:0>

—

OC1IP<2:0>

—

IC1IP<2:0>

—

INT0IP<2:0>

4444

IPC1

0842

—

T2IP<2:0>

—

OC2IP<2:0>

—

IC2IP<2:0>

—

DMA0IP<2:0>

4444

IPC2

0844

—

U1RXIP<2:0>

—

SPI1IP<2:0>

—

SPI1EIP<2:0>

—

T3IP<2:0>

4444

IPC3

0846

—

NVMIP<2:0>

—

DMA1IP<2:0>

—

AD1IP<2:0>

—

U1TXIP<2:0>

4444

IPC4

0848

—

CNIP<2:0>

—

CMIP<2:0>

—

MI2C1IP<2:0>

—

SI2C1IP<2:0>

4444

IPC5

084A

—

IC8IP<2:0>

—

IC7IP<2:0>

—

AD2IP<2:0>

—

INT1IP<2:0>

4444

IPC6

084C

—

T4IP<2:0>

—

OC4IP<2:0>

—

OC3IP<2:0>

—

DMA2IP<2:0>

4444

IPC7

084E

—

U2TXIP<2:0>

—

U2RXIP<2:0>

—

INT2IP<2:0>

—

T5IP<2:0>

4444

IPC8

0850

—

C1IP<2:0>

—

C1RXIP<2:0>

—

SPI2IP<2:0>

—

SPI2EIP<2:0>

4444

IPC9

0852

—

IC5IP<2:0>

—

IC4IP<2:0>

—

IC3IP<2:0>

—

DMA3IP<2:0>

4444

IPC10

0854

—

OC7IP<2:0>

—

OC6IP<2:0>

—

OC5IP<2:0>

—

IC6IP<2:0>

4444

IPC11

0856

—

T6IP<2:0>

—

DMA4IP<2:0>

—

PMPIP<2:0>

—

OC8IP<2:0>

4444

IPC12

0858

—

T8IP<2:0>

—

MI2C2IP<2:0>

—

SI2C2IP<2:0>

—

T7IP<2:0>

4444

IPC13

085A

C2RXIP<2:0>

—

INT4IP<2:0>

—

INT3IP<2:0>

—

T9IP<2:0>

4444

IPC14

085C

—

DCIEIP<2:0>

—

QEI1IP<2:0>

—

PSEMIP<2:0>

—

C2IP<2:0>

4444

IPC15

085E

—

—

RTCIP<2:0>

—

DMA5IP<2:0>

—

DCIIP<2:0>

0444

Legend:

—

—

—

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 64

TABLE 4-6:

File
Name

INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC806 DEVICES ONLY (CONTINUED)
Bit 12

—

U2EIP<2:0>

—

C2TXIP<2:0>

—

C1TXIP<2:0>

—

IPC18

0864

—

QEI2IP<2:0>

—

—

PSESMIP<2:0>

—

—

—

—

4040

IPC20

0868

—

U3TXIP<2:0>

—

—

U3EIP<2:0>

—

—

—

—

4440

IPC21

086A

—

U4EIP<2:0>

—

—

—

—

—

4400

IPC22

086C

—

SPI3IP<2:0>

—

SPI3EIP<2:0>

—

U4TXIP<2:0>

—

U4RXIP<2:0>

4444

IPC23

086E

—

PWM2IP<2:0>

—

PWM1IP<2:0>

—

IC9IP<2:0>

—

OC9IP<2:0>

4444

IPC24

0870

—

—

PWM4IP<2:0>

—

PWM3IP<2:0>

IPC29

087A

—

DMA9IP<2:0>

—

DMA8IP<2:0>

—

IPC30

087C

—

SPI4IP<2:0>

—

SPI4EIP<2:0>

—

DMA11IP<2:0>

—

DMA10IP<2:0>

4444

IPC31

087E

—

IC11IP<2:0>

—

OC11IP<2:0>

—

IC10IP<2:0>

—

OC10IP<2:0>

4444

IPC32

0880

—

DMA13IP<2:0>

—

DMA12IP<2:0>

—

IC12IP<2:0>

—

OC12IP<2:0>

4444

IPC33

0882

—

IC13IP<2:0>

—

OC13IP<2:0>

—

—

DMA14IP<2:0>

4404

IPC34

0884

—

IC15IP<2:0>

—

OC15IP<2:0>

—

IC14IP<2:0>

—

OC14IP<2:0>

4444

IPC35

0886

—

—

—

—

ICDIP<2:0>

—

IC16IP<2:0>

—

OC16IP<2:0>

INTCON1

08C0

NSTDIS

OVAERR

OVBERR

INTCON2

08C2

GIE

DISI

SWTRAP

—

INTCON3

08C4

—

—

—

INTCON4

08C6

—

—

INTTREG

08C8

—

—

—

—

COVAERR COVBERR

Bit 8

—

—

U3RXIP<2:0>
—

—

—

—

—

—

Bit 7

—

Bit 6

—

—

—

Bit 5

Bit 3

Bit 2

U1EIP<2:0>

—

—

DMA7IP<2:0>

—

—

—

—

Bit 4

4440

CRCIP<2:0>

—

—

Bit 9

—

—

0862

—

Bit 10

—

0860

IPC17

—

Bit 11

All
Resets

IPC16

—

Bit 13

Bit 0

Bit 15

Legend:

Bit 14

Bit 1

Addr.

—

—

—

OVATE

OVBTE

COVTE

—

—

—

—

—

—

—

INT4EP

—

—

—

—

—

—

UAE

DAE

—

—

—

—

—

—

—

—

—

—

—

—

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

ILR<3:0>

—

SFTACERR DIV0ERR DMACERR MATHERR ADDRERR

DMA6IP<2:0>

—

—

4444

0044
—

4400

0444

STKERR

OSCFAIL

—

0000

INT3EP

INT2EP

INT1EP

INT0EP

8000

DOOVR

—

—

—

—

0000

—

—

—

—

SGHT

0000

VECNUM<7:0>

0000

DS70616G-page 65

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-6:

File
Name

Addr.

INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP806 AND PIC24EPXXXGP806 DEVICES ONLY
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

IFS0

0800

NVMIF

DMA1IF

AD1IF

U1TXIF

U1RXIF

SPI1IF

SPI1EIF

T3IF

T2IF

OC2IF

IC2IF

DMA0IF

T1IF

OC1IF

IC1IF

INT0IF

0000

IFS1

0802

U2TXIF

U2RXIF

INT2IF

T5IF

T4IF

OC4IF

OC3IF

DMA2IF

IC8IF

IC7IF

AD2IF

INT1IF

CNIF

CMIF

MI2C1IF

SI2C1IF

0000

IFS2

0804

T6IF

DMA4IF

PMPIF

OC8IF

OC7IF

OC6IF

OC5IF

IC6IF

IC5IF

IC4IF

IC3IF

DMA3IF

C1IF

C1RXIF

SPI2IF

SPI2EIF

0000

IFS3

0806

—

RTCIF

DMA5IF

DCIIF

DCIEIF

—

PSEMIF

C2IF

C2RXIF

INT4IF

INT3IF

T9IF

T8IF

MI2C2IF

SI2C2IF

T7IF

0000

IFS4

0808

—

—

—

—

—

—

PSESMIF

—

C2TXIF

C1TXIF

DMA7IF

DMA6IF

CRCIF

U2EIF

U1EIF

—

0000

IFS5

080A

—

—

IC9IF

OC9IF

SPI3IF

SPI3EIF

U4TXIF

U4RXIF

U4EIF

—

—

—

U3TXIF

U3RXIF

U3EIF

—

0000

IFS6

080C

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

0000

IFS7

080E

IC11IF

OC11IF

IC10IF

OC10IF

SPI4IF

SPI4EIF DMA11IF DMA10IF

DMA9IF

DMA8IF

—

—

—

—

—

—

0000

IFS8

0810

—

ICDIF

IC16IF

OC16IF

IC15IF

OC15IF

IC14IF

OC14IF

IC13IF

OC13IF

—

DMA14IF

DMA13IF

DMA12IF

IC12IF

OC12IF

0000

IEC0

0820

NVMIE

DMA1IE

AD1IE

U1TXIE

U1RXIE

SPI1IE

SPI1EIE

T3IE

T2IE

OC2IE

IC2IE

DMA0IE

T1IE

OC1IE

IC1IE

INT0IE

0000

IEC1

0822

U2TXIE

U2RXIE

INT2IE

T5IE

T4IE

OC4IE

OC3IE

DMA2IE

IC8IE

IC7IE

AD2IE

INT1IE

CNIE

CMIE

MI2C1IE

SI2C1IE

0000

IEC2

0824

T6IE

DMA4IE

PMPIE

OC8IE

OC7IE

OC6IE

OC5IE

IC6IE

IC5IE

IC4IE

IC3IE

DMA3IE

C1IE

C1RXIE

SPI2IE

SPI2EIE

0000

IEC3

0826

—

RTCIE

DMA5IE

DCIIE

DCIEIE

—

PSEMIE

C2IE

C2RXIE

INT4IE

INT3IE

T9IE

T8IE

MI2C2IE

SI2C2IE

T7IE

0000

IEC4

0828

—

—

—

—

—

—

PSESMIE

—

C2TXIE

C1TXIE

DMA7IE

DMA6IE

CRCIE

U2EIE

U1EIE

—

0000

IEC5

082A

—

—

IC9IE

OC9IE

SPI3IE

SPI3EIE

U4TXIE

U4RXIE

U4EIE

—

—

—

U3TXIE

U3RXIE

U3EIE

—

0000

IEC6

082C

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

0000

IEC7

082E

IC11IE

OC11IE

IC10IE

OC10IE

SPI4IE

SPI4EIE DMA11IE DMA10IE

DMA9IE

DMA8IE

—

—

—

—

—

—

0000

IEC8

0830

—

ICDIE

IC16IE

OC16IE

IC15IE

OC15IE

IC13IE

OC13IE

—

DMA14IE

IC12IE

OC12IE

IPC0

0840

—

IPC1

0842

IPC2

0844

IPC3

T1IP<2:0>

—

—

T2IP<2:0>

—

U1RXIP<2:0>

0846

—

IPC4

0848

IPC5

IC14IE

OC14IE

 2009-2012 Microchip Technology Inc.

OC1IP<2:0>

—

—

OC2IP<2:0>

—

SPI1IP<2:0>

NVMIP<2:0>

—

—

CNIP<2:0>

084A

—

IPC6

084C

IPC7

DMA13IE DMA12IE

0000

IC1IP<2:0>

—

INT0IP<2:0>

4444

—

IC2IP<2:0>

—

DMA0IP<2:0>

4444

—

SPI1EIP<2:0>

—

T3IP<2:0>

4444

DMA1IP<2:0>

—

AD1IP<2:0>

—

U1TXIP<2:0>

4444

—

CMIP<2:0>

—

MI2C1IP<2:0>

—

SI2C1IP<2:0>

4444

IC8IP<2:0>

—

IC7IP<2:0>

—

AD2IP<2:0>

—

INT1IP<2:0>

4444

—

T4IP<2:0>

—

OC4IP<2:0>

—

OC3IP<2:0>

—

DMA2IP<2:0>

4444

084E

—

U2TXIP<2:0>

—

U2RXIP<2:0>

—

INT2IP<2:0>

—

T5IP<2:0>

4444

IPC8

0850

—

C1IP<2:0>

—

C1RXIP<2:0>

—

SPI2IP<2:0>

—

SPI2EIP<2:0>

4444

IPC9

0852

—

IC5IP<2:0>

—

IC4IP<2:0>

—

IC3IP<2:0>

—

DMA3IP<2:0>

4444

IPC10

0854

—

OC7IP<2:0>

—

OC6IP<2:0>

—

OC5IP<2:0>

—

IC6IP<2:0>

4444

IPC11

0856

—

T6IP<2:0>

—

DMA4IP<2:0>

—

PMPIP<2:0>

—

OC8IP<2:0>

4444

IPC12

0858

—

T8IP<2:0>

—

MI2C2IP<2:0>

—

SI2C2IP<2:0>

—

T7IP<2:0>

4444

IPC13

085A

C2RXIP<2:0>

—

INT4IP<2:0>

—

INT3IP<2:0>

—

T9IP<2:0>

4444

IPC14

085C

—

DCIEIP<2:0>

—

—

PSEMIP<2:0>

—

C2IP<2:0>

4444

IPC15

085E

—

—

DMA5IP<2:0>

—

DCIIP<2:0>

0444

Legend:

—

—

—

—

—

—
RTCIP<2:0>

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

—

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 66

TABLE 4-7:

File
Name

INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP806 AND PIC24EPXXXGP806 DEVICES ONLY (CONTINUED)
Bit 15

IPC16

0860

—

CRCIP<2:0>

—

U2EIP<2:0>

—

IPC17

0862

—

C2TXIP<2:0>

—

C1TXIP<2:0>

—

IPC18

0864

—

—

PSESMIP<2:0>

—

—

—

—

4040

IPC20

0868

—

U3TXIP<2:0>

—

—

U3EIP<2:0>

—

—

—

—

4440

IPC21

086A

—

U4EIP<2:0>

—

—

—

—

—

IPC22

086C

—

SPI3IP<2:0>

—

IPC23

086E

—

—

—

—

—

—

—

—

—

IPC24

0870

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

IPC29

087A

—

DMA9IP<2:0>

—

DMA8IP<2:0>

—

—

—

—

—

—

—

—

IPC30

087C

—

SPI4IP<2:0>

—

SPI4EIP<2:0>

—

DMA11IP<2:0>

—

DMA10IP<2:0>

4444

IPC31

087E

—

IC11IP<2:0>

—

OC11IP<2:0>

—

IC10IP<2:0>

—

OC10IP<2:0>

4444

IPC32

0880

—

DMA13IP<2:0>

—

DMA12IP<2:0>

—

IC12IP<2:0>

—

OC12IP<2:0>

4444

IPC33

0882

—

IC13IP<2:0>

—

OC13IP<2:0>

—

—

DMA14IP<2:0>

4404

IPC34

0884

—

IC15IP<2:0>

—

OC15IP<2:0>

—

IC14IP<2:0>

—

OC14IP<2:0>

4444

IPC35

0886

—

—

ICDIP<2:0>

—

IC16IP<2:0>

—

OC16IP<2:0>

INTCON1 08C0

Bit 14

—

—

Bit 13

—

—

Bit 12

—

—

Bit 11

—

NSTDIS OVAERR OVBERR COVAERR COVBERR

Bit 10

Bit 9

—

Bit 8

—

—

U3RXIP<2:0>
—

—

—

SPI3EIP<2:0>

Bit 7

—

Bit 6

—

—

OVATE

OVBTE

COVTE

Bit 5

Bit 3

Bit 2

U1EIP<2:0>

—

—

DMA7IP<2:0>

—

—

Bit 4

—

U4TXIP<2:0>

—

—

—

—

4400
4444

OC9IP<2:0>

SFTACERR DIV0ERR DMACERR MATHERR ADDRERR STKERR

4440
4444

U4RXIP<2:0>

—

—

Bit 0

DMA6IP<2:0>

—

IC9IP<2:0>

Bit 1

All
Resets

Addr.

4444
0044
4400

0444

OSCFAIL

—

0000

INTCON2 08C2

GIE

DISI

SWTRAP

—

—

—

—

—

—

—

—

INT4EP

INT3EP

INT2EP

INT1EP

INT0EP

8000

INTCON3 08C4

—

—

—

—

—

—

—

—

—

UAE

DAE

DOOVR

—

—

—

—

0000

INTCON4 08C6

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

SGHT

INTTREG 08C8

—

—

—

—

—

Legend:

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

ILR<3:0>

VECNUM<7:0>

0000
0000

DS70616G-page 67

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-7:

File
Name

Addr.

INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGU810/814 DEVICES ONLY
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

 2009-2012 Microchip Technology Inc.

IFS0

0800

NVMIF

DMA1IF

AD1IF

U1TXIF

U1RXIF

SPI1IF

SPI1EIF

T3IF

T2IF

OC2IF

IC2IF

DMA0IF

T1IF

OC1IF

IC1IF

INT0IF

0000

IFS1

0802

U2TXIF

U2RXIF

INT2IF

T5IF

T4IF

OC4IF

OC3IF

DMA2IF

IC8IF

IC7IF

AD2IF

INT1IF

CNIF

CMIF

MI2C1IF

SI2C1IF

0000

IFS2

0804

T6IF

DMA4IF

PMPIF

OC8IF

OC7IF

OC6IF

OC5IF

IC6IF

IC5IF

IC4IF

IC3IF

DMA3IF

C1IF

C1RXIF

SPI2IF

SPI2EIF

0000

IFS3

0806

—

RTCIF

DMA5IF

DCIIF

DCIEIF

—

—

C2IF

C2RXIF

INT4IF

INT3IF

T9IF

T8IF

MI2C2IF

SI2C2IF

T7IF

0000

IFS4

0808

—

—

—

—

—

—

—

—

C2TXIF

C1TXIF

DMA7IF

DMA6IF

CRCIF

U2EIF

U1EIF

—

0000

IFS5

080A

—

—

IC9IF

OC9IF

SPI3IF

SPI3EIF

U4TXIF

U4RXIF

U4EIF

USB1IF

—

—

U3TXIF

U3RXIF

U3EIF

—

0000

IFS7

080E

IC11IF

OC11IF

IC10IF

OC10IF

SPI4IF

SPI4EIF DMA11IF DMA10IF

DMA9IF

DMA8IF

—

—

—

—

—

—

0000

IFS8

0810

—

ICDIF

IC16IF

OC16IF

IC15IF

OC15IF

IC14IF

OC14IF

IC13IF

OC13IF

—

DMA14IF

DMA13IF

DMA12IF

IC12IF

OC12IF

0000

IEC0

0820

NVMIE

DMA1IE

AD1IE

U1TXIE

U1RXIE

SPI1IE

SPI1EIE

T3IE

T2IE

OC2IE

IC2IE

DMA0IE

T1IE

OC1IE

IC1IE

INT0IE

0000

IEC1

0822

U2TXIE

U2RXIE

INT2IE

T5IE

T4IE

OC4IE

OC3IE

DMA2IE

IC8IE

IC7IE

AD2IE

INT1IE

CNIE

CMIE

MI2C1IE

SI2C1IE

0000

IEC2

0824

T6IE

DMA4IE

PMPIE

OC8IE

OC7IE

OC6IE

OC5IE

IC6IE

IC5IE

IC4IE

IC3IE

DMA3IE

C1IE

C1RXIE

SPI2IE

SPI2EIE

0000

IEC3

0826

—

RTCIE

DMA5IE

DCIIE

DCIEIE

—

—

C2IE

C2RXIE

INT4IE

INT3IE

T9IE

T8IE

MI2C2IE

SI2C2IE

T7IE

0000

IEC4

0828

—

—

—

—

—

—

—

—

C2TXIE

C1TXIE

DMA7IE

DMA6IE

CRCIE

U2EIE

U1EIE

—

0000

IEC5

082A

—

—

IC9IE

OC9IE

SPI3IE

SPI3EIE

U4TXIE

U4RXIE

U4EIE

USB1IE

—

—

U3TXIE

U3RXIE

U3EIE

—

0000

IEC7

082E

IC11IE

OC11IE

IC10IE

OC10IE

SPI4IE

SPI4EIE DMA11IE DMA10IE

DMA9IE

DMA8IE

—

—

—

—

—

—

0000

IEC8

0830

—

ICDIE

IC16IE

OC16IE

IC15IE

OC15IE

IC13IE

OC13IE

—

DMA14IE

DMA13IE

DMA12IE

IC12IE

OC12IE

0000

IPC0

0840

—

T1IP<2:0>

—

OC1IP<2:0>

—

IC1IP<2:0>

—

INT0IP<2:0>

4444

IPC1

0842

—

T2IP<2:0>

—

OC2IP<2:0>

—

IC2IP<2:0>

—

DMA0IP<2:0>

4444

IPC2

0844

—

U1RXIP<2:0>

—

SPI1IP<2:0>

—

SPI1EIP<2:0>

—

T3IP<2:0>

4444

IPC3

0846

—

NVMIP<2:0>

—

DMA1IP<2:0>

—

AD1IP<2:0>

—

U1TXIP<2:0>

4444

IPC4

0848

—

CNIP<2:0>

—

CMIP<2:0>

—

MI2C1IP<2:0>

—

SI2C1IP<2:0>

4444

IPC5

084A

—

IC8IP<2:0>

—

IC7IP<2:0>

—

AD2IP<2:0>

—

INT1IP<2:0>

4444

IPC6

084C

—

T4IP<2:0>

—

OC4IP<2:0>

—

OC3IP<2:0>

—

DMA2IP<2:0>

4444

IPC7

084E

—

U2TXIP<2:0>

—

U2RXIP<2:0>

—

INT2IP<2:0>

—

T5IP<2:0>

4444

IPC8

0850

—

C1IP<2:0>

—

C1RXIP<2:0>

—

SPI2IP<2:0>

—

SPI2EIP<2:0>

4444

IPC9

0852

—

IC5IP<2:0>

—

IC4IP<2:0>

—

IC3IP<2:0>

—

DMA3IP<2:0>

4444

IPC10

0854

—

OC7IP<2:0>

—

OC6IP<2:0>

—

OC5IP<2:0>

—

IC6IP<2:0>

4444

IPC11

0856

—

T6IP<2:0>

—

DMA4IP<2:0>

—

PMPIP<2:0>

—

OC8IP<2:0>

4444

IPC12

0858

—

T8IP<2:0>

—

MI2C2IP<2:0>

—

SI2C2IP<2:0>

—

T7IP<2:0>

4444

IPC13

085A

C2RXIP<2:0>

—

INT4IP<2:0>

—

INT3IP<2:0>

—

T9IP<2:0>

4444

IPC14

085C

—

DCIEIP<2:0>

—

—

C2IP<2:0>

4004

IPC15

085E

—

DCIIP<2:0>

IPC16

0860

—

IPC17

0862

—

Legend:

—

—

—

—

IC14IE

—

OC14IE

—

—

—

—

—

—

RTCIP<2:0>

—

DMA5IP<2:0>

—

CRCIP<2:0>

—

U2EIP<2:0>

—

U1EIP<2:0>

—

C2TXIP<2:0>

—

C1TXIP<2:0>

—

DMA7IP<2:0>

—

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

—

—
DMA6IP<2:0>

0444
—

4440
4444

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 68

TABLE 4-8:

File
Name

INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGU810/814 DEVICES ONLY (CONTINUED)
Bit 4

—

4440

—

—

4400

—

USB1IP<2:0>

—

IPC22

086C

—

SPI3IP<2:0>

—

SPI3EIP<2:0>

—

U4TXIP<2:0>

—

U4RXIP<2:0>

IPC23

086E

—

—

IC9IP<2:0>

—

OC9IP<2:0>

IPC29

087A

—

DMA9IP<2:0>

—

DMA8IP<2:0>

—

IPC30

087C

—

SPI4IP<2:0>

—

SPI4EIP<2:0>

—

DMA11IP<2:0>

—

DMA10IP<2:0>

4444

IPC31

087E

—

IC11IP<2:0>

—

OC11IP<2:0>

—

IC10IP<2:0>

—

OC10IP<2:0>

4444

IPC32

0880

—

DMA13IP<2:0>

—

DMA12IP<2:0>

—

IC12IP<2:0>

—

OC12IP<2:0>

4444

IPC33

0882

—

IC13IP<2:0>

—

OC13IP<2:0>

—

—

DMA14IP<2:0>

4404

IPC34

0884

—

IC15IP<2:0>

—

OC15IP<2:0>

—

IC14IP<2:0>

—

OC14IP<2:0>

4444

IPC35

0886

—

—

—

—

—

ICDIP<2:0>

—

IC16IP<2:0>

—

OC16IP<2:0>

INTCON1

08C0

NSTDIS

—

—

—

—

—

—

—

—

INTCON2

08C2

GIE

DISI

SWTRAP

—

—

—

—

—

—

—

—

INT4EP

INT3EP

INTCON3

08C4

—

—

—

—

—

—

—

—

—

UAE

DAE

DOOVR

INTCON4

08C6

—

—

—

—

—

—

—

—

—

—

—

—

INTTREG

08C8

—

—

—

—

—

ILR<3:0>

Bit 5

—

U3RXIP<2:0>

—

—

Bit 6

—

—

U4EIP<2:0>

—

Bit 7

—

U3TXIP<2:0>

—

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

Bit 8

—

—

—

Bit 9

—

0868

—

Bit 10

All
Resets

086A

—

Bit 11

Bit 0

IPC21

—

Bit 12

Bit 1

IPC20

—

Bit 13

Bit 2

Bit 15

Legend:

Bit 14

Bit 3

Addr.

U3EIP<2:0>
—

—

—

—

—

—

—

—

—

—

—

—

DIV0ERR DMACERR MATHERR ADDRERR STKERR

4444
0044
—

4400

4444

OSCFAIL

—

0000

INT2EP

INT1EP

INT0EP

8000

—

—

—

—

0000

—

—

—

SGHT

0000

VECNUM<7:0>

0000

DS70616G-page 69

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-8:

File Name Addr.

TIMER1 THROUGH TIMER9 REGISTER MAP
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

TMR1

0100

Timer1 Register

PR1

0102

Period Register 1

T1CON

0104

TMR2

0106

TON

—

TSIDL

—

—

—

—

—

—

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

xxxx
FFFF
TGATE

TCKPS<1:0>

—

TSYNC

TCS

—

Timer2 Register

TMR3HLD 0108

All
Resets

0000
xxxx

Timer3 Holding Register (for 32-bit timer operations only)

xxxx

TMR3

010A

Timer3 Register

xxxx

PR2

010C

Period Register 2

FFFF

PR3

010E

Period Register 3

T2CON

0110

TON

—

TSIDL

—

—

—

—

—

—

TGATE

TCKPS<1:0>

T32

—

TCS

—

T3CON

0112

TON

—

TSIDL

—

—

—

—

—

—

TGATE

TCKPS<1:0>

—

—

TCS

—

TMR4

0114

FFFF

Timer4 Register

TMR5HLD 0116

0000
0000
xxxx

Timer5 Holding Register (for 32-bit operations only)

xxxx

0118

Timer5 Register

xxxx

PR4

011A

Period Register 4

FFFF

PR5

011C

Period Register 5

T4CON

011E

TON

—

TSIDL

—

—

—

—

—

—

TGATE

TCKPS<1:0>

T32

—

TCS

—

T5CON

0120

TON

—

TSIDL

—

—

—

—

—

—

TGATE

TCKPS<1:0>

—

—

TCS

—

TMR6

0122

TMR5

FFFF

Timer6 Register

TMR7HLD 0124

0000
0000
xxxx

Timer7 Holding Register (for 32-bit operations only)

xxxx

0126

Timer7 Register

xxxx

PR6

0128

Period Register 6

FFFF

PR7

012A

Period Register 7

T6CON

012C

TON

—

TSIDL

—

—

—

—

—

—

TGATE

TCKPS<1:0>

T32

—

TCS

—

T7CON

012E

TON

—

TSIDL

—

—

—

—

—

—

TGATE

TCKPS<1:0>

—

—

TCS

—

TMR8

0130

TMR7

FFFF

 2009-2012 Microchip Technology Inc.

Timer8 Register

TMR9HLD 0132

0000
0000
xxxx

Timer9 Holding Register (for 32-bit operations only)

xxxx

TMR9

0134

Timer9 Register

xxxx

PR8

0136

Period Register 8

FFFF

PR9

0138

Period Register 9

T8CON

013A

TON

—

TSIDL

—

—

—

—

—

—

TGATE

TCKPS<1:0>

T32

—

TCS

—

0000

T9CON

013C

TON

—

TSIDL

—

—

—

—

—

—

TGATE

TCKPS<1:0>

—

—

TCS

—

0000

Legend:

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

FFFF

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 70

TABLE 4-9:

File Name Addr.

INPUT CAPTURE 1 THROUGH INPUT CAPTURE 16 REGISTER MAP
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

ICTSEL<2:0>

Bit 9

Bit 8

Bit 7

ICOV

ICBNE

All
Resets

DS70616G-page 71

—

ICSIDL

—

—

IC1BUF

0144

Input Capture 1 Buffer Register

IC1TMR

0146

Input Capture 1 Timer

IC2CON1

0148

—

—

ICSIDL

IC2CON2

014A

—

—

—

IC2BUF

014C

Input Capture 2 Buffer Register

IC2TMR

014E

Input Capture 2 Timer

IC3CON1

0150

—

—

ICSIDL

IC3CON2

0152

—

—

—

IC3BUF

0154

Input Capture 3 Buffer Register

IC3TMR

0156

Input Capture 3 Timer

IC4CON1

0158

—

—

ICSIDL

IC4CON2

015A

—

—

—

IC4BUF

015C

Input Capture 4 Buffer Register

IC4TMR

015E

Input Capture 4 Timer

IC5CON1

0160

—

—

ICSIDL

IC5CON2

0162

—

—

—

IC5BUF

0164

Input Capture 5 Buffer Register

IC5TMR

0166

Input Capture 5 Timer

IC6CON1

0168

—

—

ICSIDL

IC6CON2

016A

—

—

—

IC6BUF

016C

Input Capture 6 Buffer Register

IC6TMR

016E

Input Capture 6 Timer

IC7CON1

0170

—

—

ICSIDL

IC7CON2

0172

—

—

—

IC7BUF

0174

Input Capture 7 Buffer Register

IC7TMR

0176

Input Capture 7 Timer

IC8CON1

0178

—

—

ICSIDL

IC8CON2

017A

—

—

—

IC8BUF

017C

Input Capture 8 Buffer Register

xxxx

IC8TMR

017E

Input Capture 8 Timer

0000

—

—

ICTSEL<2:0>
—

—

—
—

ICTSEL<2:0>
—

—

—

—

—

—

—

—

—

—

—
—

ICTSEL<2:0>
—

—

—

ICTSEL<2:0>
—

—

—

ICTSEL<2:0>
—

—

—

ICTSEL<2:0>
—

—

—

—
—

—

—

—

IC32

ICTRIG

—

—

IC32

ICTRIG

—

—

IC32

ICTRIG

—

—

IC32

ICTRIG

—

—

IC32

ICTRIG

—

—

IC32

ICTRIG

—

—

IC32

ICTRIG

TRIGSTAT

—

ICM<2:0>

Bit 0

—

—

ICI<1:0>

Bit 1

—

—

—
ICTRIG

Bit 2

0142

ICTSEL<2:0>

—

Bit 3

0140

—

IC32

Bit 4

IC1CON2

—

—

Bit 5

IC1CON1

—

—

Bit 6

SYNCSEL<4:0>

0000
000D
xxxx
0000

ICI<1:0>
TRIGSTAT

ICOV
—

ICBNE

ICM<2:0>

SYNCSEL<4:0>

0000
000D
xxxx
0000

ICI<1:0>
TRIGSTAT

ICOV
—

ICBNE

ICM<2:0>

SYNCSEL<4:0>

0000
000D
xxxx
0000

ICI<1:0>
TRIGSTAT

ICOV
—

ICBNE

ICM<2:0>

SYNCSEL<4:0>

0000
000D
xxxx
0000

ICI<1:0>
TRIGSTAT

ICOV
—

ICBNE

ICM<2:0>

SYNCSEL<4:0>

0000
000D
xxxx
0000

ICI<1:0>
TRIGSTAT

ICOV
—

ICBNE

ICM<2:0>

SYNCSEL<4:0>

0000
000D
xxxx
0000

ICI<1:0>
TRIGSTAT

ICOV
—

ICBNE

ICM<2:0>

SYNCSEL<4:0>

0000
000D
xxxx
0000

ICI<1:0>
TRIGSTAT

ICOV
—

ICBNE

ICM<2:0>

SYNCSEL<4:0>

0000
000D

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-10:

File Name Addr.

INPUT CAPTURE 1 THROUGH INPUT CAPTURE 16 REGISTER MAP (CONTINUED)
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

ICTSEL<2:0>

Bit 9

Bit 8

Bit 7

IC9CON1

0180

—

—

ICSIDL

IC9CON2

0182

—

—

—

IC9BUF

0184

Input Capture 9 Buffer Register

IC9TMR

0186

Input Capture 9 Timer

IC10CON1

0188

—

—

ICSIDL

IC10CON2

018A

—

—

—

IC10BUF

018C

Input Capture 10 Buffer Register

IC10TMR

018E

Input Capture 10 Timer

IC11CON1

0190

—

—

ICSIDL

IC11CON2

0192

—

—

—

IC11BUF

0194

Input Capture 11 Buffer Register

IC11TMR

0196

Input Capture 11 Timer

IC12CON1

0198

—

—

ICSIDL

IC12CON2

019A

—

—

—

IC12BUF

019C

Input Capture 12 Buffer Register

IC12TMR

019E

Input Capture 12 Timer

IC13CON1

01A0

—

—

ICSIDL

IC13CON2

01A2

—

—

—

IC13BUF

01A4

Input Capture 13 Buffer Register

IC13TMR

01A6

Input Capture 13 Timer

IC14CON1

01A8

—

—

ICSIDL

IC14CON2 01AA

—

—

—

—

—

—

ICTSEL<2:0>
—

—

—

—

—

—

—

—

—

—

—

—

—
—

ICTSEL<2:0>
—

ICTRIG

—

ICTSEL<2:0>
—

—

IC32

—

ICTSEL<2:0>
—

—

—

—

ICTSEL<2:0>
—

—

Bit 6

—

—
—

—

—

—

IC32

ICTRIG

—

—

IC32

ICTRIG

—

—

IC32

ICTRIG

—

—

IC32

ICTRIG

—

—

IC32

ICTRIG

ICI<1:0>
TRIGSTAT

 2009-2012 Microchip Technology Inc.

—

—

—

Input Capture 15 Buffer Register

IC15TMR

01B6

Input Capture 15 Timer

IC16CON1

01B8

—

—

ICSIDL

IC16CON2 01BA

—

—

—

—

—

—

IC32

ICTRIG

000D

ICBNE

ICM<2:0>

SYNCSEL<4:0>

0000
000D

ICOV
—

ICBNE

ICM<2:0>

SYNCSEL<4:0>

0000
000D

ICOV
—

ICBNE

ICM<2:0>

SYNCSEL<4:0>

0000
000D
xxxx

TRIGSTAT

01B4

—

0000

0000

01B2

—

—

ICI<1:0>

IC15BUF

—

ICM<2:0>

xxxx

TRIGSTAT

IC15CON2

—

000D

0000

ICSIDL

ICTSEL<2:0>

ICBNE

SYNCSEL<4:0>

ICOV

ICI<1:0>

—

ICTRIG

0000

xxxx

TRIGSTAT

—

IC32

All
Resets

0000

01B0

—

—

ICI<1:0>

IC15CON1

—

ICM<2:0>

SYNCSEL<4:0>

Bit 0

xxxx

TRIGSTAT

Input Capture 14 Timer
—

ICBNE

Bit 1

0000

01AE
—

ICOV

ICOV

ICI<1:0>

IC14TMR

—

Bit 2

xxxx

TRIGSTAT

Input Capture 14 Buffer Register
—

Bit 3

0000

01AC
—

Bit 4

—

ICI<1:0>

IC14BUF

ICTSEL<2:0>

Bit 5

ICOV
—

ICBNE

ICM<2:0>

SYNCSEL<4:0>

0000
000D
xxxx
0000

ICI<1:0>
TRIGSTAT

ICOV
—

ICBNE

ICM<2:0>

SYNCSEL<4:0>

0000
000D
xxxx
0000

ICI<1:0>
TRIGSTAT

ICOV
—

ICBNE

ICM<2:0>

SYNCSEL<4:0>

0000
000D

IC16BUF

01BC

Input Capture 16 Buffer Register

xxxx

IC16TMR

01BE

Input Capture 16 Timer

0000

Legend:

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 72

TABLE 4-10:

File Name

Addr.

OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 16 REGISTER MAP
Bit 15

Bit 14

Bit 13

—

OCSIDL

Bit 12

Bit 11

Bit 10

Bit 8

ENFLTC

ENFLTB

—

OC32

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

ENFLTA

OCFLTC

OCFLTB

OCFLTA

TRIGMODE

OCTRIG

TRIGSTAT

OCTRIS

Bit 1

All
Resets

DS70616G-page 73

0900

—

OC1CON2

0902

FLTMD

OC1RS

0904

Output Compare 1 Secondary Register

xxxx

OC1R

0906

Output Compare 1 Register

xxxx

OC1TMR

0908

Timer Value 1 Register

OC2CON1

090A

—

OC2CON2

090C

FLTMD

OC2RS

090E

Output Compare 2 Secondary Register

xxxx

OC2R

0910

Output Compare 2 Register

xxxx

OC2TMR

0912

Timer Value 2 Register

OC3CON1

0914

—

OC3CON2

0916

FLTMD

OC3RS

0918

Output Compare 3 Secondary Register

xxxx

OC3R

091A

Output Compare 3 Register

xxxx

OC3TMR

091C

Timer Value 3 Register

OC4CON1

091E

—

OC4CON2

0920

FLTMD

OC4RS

0922

Output Compare 4 Secondary Register

xxxx

OC4R

0924

Output Compare 4 Register

xxxx

OC4TMR

0926

Timer Value 4 Register

OC5CON1

0928

—

OC5CON2

092A

FLTMD

OC5RS

092C

Output Compare 5 Secondary Register

xxxx

OC5R

092D

Output Compare 5 Register

xxxx

OC5TMR

0930

Timer Value 5 Register

OC6CON1

0932

—

OC6CON2

0934

FLTMD

OC6RS

0936

Output Compare 6 Secondary Register

xxxx

OC6R

0938

Output Compare 6 Register

xxxx

OC6TMR

093A

Timer Value 6 Register

OC7CON1

093C

—

OC7CON2

093E

FLTMD

OC7RS

0940

Output Compare 7 Secondary Register

xxxx

OC7R

0942

Output Compare 7 Register

xxxx

OC7TMR

0944

Timer Value 7 Register

xxxx

Legend:

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

—

OCSIDL

FLTOUT FLTTRIEN

—

—

—

OCINV

OCINV

—

—

—

—

—

OCTSEL<2:0>
OCINV

—

—

OCTSEL<2:0>
OCINV

OCSIDL

FLTOUT FLTTRIEN

—

OCTSEL<2:0>

OCSIDL

FLTOUT FLTTRIEN

—

OCTSEL<2:0>

OCSIDL

FLTOUT FLTTRIEN

—

OCINV

OCSIDL

FLTOUT FLTTRIEN

—

OCTSEL<2:0>

OCSIDL

FLTOUT FLTTRIEN

—

OCINV

—

—

OCTSEL<2:0>
OCINV

—

—

OCM<2:0>

Bit 0

OC1CON1

FLTOUT FLTTRIEN

OCTSEL<2:0>

Bit 9

SYNCSEL<4:0>

0000
000C

xxxx

ENFLTC

ENFLTB

ENFLTA

OCFLTC

OCFLTB

—

OC32

OCTRIG

TRIGSTAT

OCTRIS

OCFLTA

TRIGMODE

OCM<2:0>

SYNCSEL<4:0>

0000
000C

xxxx

ENFLTC

ENFLTB

ENFLTA

OCFLTC

OCFLTB

—

OC32

OCTRIG

TRIGSTAT

OCTRIS

OCFLTA

TRIGMODE

OCM<2:0>

SYNCSEL<4:0>

0000
000C

xxxx

ENFLTC

ENFLTB

ENFLTA

OCFLTC

OCFLTB

—

OC32

OCTRIG

TRIGSTAT

OCTRIS

OCFLTA

TRIGMODE

OCM<2:0>

SYNCSEL<4:0>

0000
000C

xxxx

ENFLTC

ENFLTB

ENFLTA

OCFLTC

OCFLTB

—

OC32

OCTRIG

TRIGSTAT

OCTRIS

OCFLTA

TRIGMODE

OCM<2:0>

SYNCSEL<4:0>

0000
000C

xxxx

ENFLTC

ENFLTB

ENFLTA

OCFLTC

OCFLTB

—

OC32

OCTRIG

TRIGSTAT

OCTRIS

OCFLTA

TRIGMODE

OCM<2:0>

SYNCSEL<4:0>

0000
000C

xxxx

ENFLTC

ENFLTB

ENFLTA

OCFLTC

OCFLTB

—

OC32

OCTRIG

TRIGSTAT

OCTRIS

OCFLTA

TRIGMODE

OCM<2:0>

SYNCSEL<4:0>

0000
000C

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-11:

File Name

Addr.

OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 16 REGISTER MAP (CONTINUED)
Bit 15

Bit 14

Bit 13

—

OCSIDL

Bit 12

Bit 11

Bit 10

Bit 8

ENFLTC

ENFLTB

—

OC32

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

ENFLTA

OCFLTC

OCFLTB

OCFLTA

TRIGMODE

OCTRIG

TRIGSTAT

OCTRIS

Bit 1

All
Resets

0946

—

OC8CON2

0948

FLTMD

OC8RS

094A

Output Compare 8 Secondary Register

xxxx

OC8R

094C

Output Compare 8 Register

xxxx

OC8TMR

094E

Timer Value 8 Register

OC9CON1

0950

—

OC9CON2

0952

FLTMD

OC9RS

0954

Output Compare 9 Secondary Register

xxxx

OC9R

0956

Output Compare 9 Register

xxxx

OC9TMR

0958

Timer Value 9 Register

OC10CON1 095A

—

OC10CON2 095C

FLTMD

—

OCSIDL

FLTOUT FLTTRIEN

—

OCINV

—

OCTSEL<2:0>
OCINV

OCSIDL

FLTOUT FLTTRIEN

—

—

—

OCTSEL<2:0>
OCINV

—

—

OCM<2:0>

Bit 0

OC8CON1

FLTOUT FLTTRIEN

OCTSEL<2:0>

Bit 9

SYNCSEL<4:0>

0000
000C

xxxx

ENFLTC

ENFLTB

ENFLTA

OCFLTC

OCFLTB

—

OC32

OCTRIG

TRIGSTAT

OCTRIS

OCFLTA

TRIGMODE

OCM<2:0>

SYNCSEL<4:0>

0000
000C

xxxx

ENFLTC

ENFLTB

ENFLTA

OCFLTC

OCFLTB

—

OC32

OCTRIG

TRIGSTAT

OCTRIS

OCFLTA

TRIGMODE

OCM<2:0>

SYNCSEL<4:0>

0000
000C

OC10RS

095E

Output Compare 10 Secondary Register

xxxx

OC10R

0960

Output Compare 10 Register

xxxx

OC10TMR

0962

Timer Value 10 Register

OC11CON1

0964

—

OC11CON2

0966

FLTMD

OC11RS

0968

Output Compare 11 Secondary Register

xxxx

OC11R

096A

Output Compare 11 Register

xxxx

OC11TMR

096C

Timer Value 11 Register

OC12CON1 096E

—

OC12CON2 0970

FLTMD

—

OCSIDL

FLTOUT FLTTRIEN

—

OCTSEL<2:0>
OCINV

OCSIDL

FLTOUT FLTTRIEN

—

—

OCTSEL<2:0>
OCINV

—

—

xxxx

ENFLTC

ENFLTB

ENFLTA

OCFLTC

OCFLTB

—

OC32

OCTRIG

TRIGSTAT

OCTRIS

OCFLTA

TRIGMODE

OCM<2:0>

SYNCSEL<4:0>

0000
000C

xxxx

ENFLTC

ENFLTB

ENFLTA

OCFLTC

OCFLTB

—

OC32

OCTRIG

TRIGSTAT

OCTRIS

OCFLTA

TRIGMODE

OCM<2:0>

SYNCSEL<4:0>

0000
000C

 2009-2012 Microchip Technology Inc.

OC12RS

0972

Output Compare 12 Secondary Register

xxxx

OC12R

0974

Output Compare 12 Register

xxxx

OC12TMR

0976

Timer Value 12 Register

OC13CON1 0978

—

OC13CON2 097A

FLTMD

—

OCSIDL

FLTOUT FLTTRIEN

OCTSEL<2:0>
OCINV

—

—

xxxx

ENFLTC

ENFLTB

ENFLTA

OCFLTC

OCFLTB

—

OC32

OCTRIG

TRIGSTAT

OCTRIS

OCFLTA

TRIGMODE

OCM<2:0>

SYNCSEL<4:0>

0000
000C

OC13RS

097C

Output Compare 13 Secondary Register

xxxx

OC13R

097E

Output Compare 13 Register

xxxx

OC13TMR

0980

Timer Value 13 Register

OC14CON1 0982

—

OC14CON2 0984

FLTMD

—

OCSIDL

FLTOUT FLTTRIEN

OCTSEL<2:0>
OCINV

—

—

xxxx

ENFLTC

ENFLTB

ENFLTA

OCFLTC

OCFLTB

—

OC32

OCTRIG

TRIGSTAT

OCTRIS

OCFLTA

TRIGMODE

OCM<2:0>

SYNCSEL<4:0>

0000
000C

OC14RS

0986

Output Compare 14 Secondary Register

xxxx

OC14R

0988

Output Compare 14 Register

xxxx

OC14TMR

098A

Timer Value 14 Register

xxxx

Legend:

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 74

TABLE 4-11:

File Name

Addr.

OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 16 REGISTER MAP (CONTINUED)
Bit 15

OC15CON1 098C

—

OC15CON2 098E

FLTMD

Bit 14

Bit 13

—

OCSIDL

FLTOUT FLTTRIEN

Bit 12

Bit 11

Bit 10

OCTSEL<2:0>
OCINV

—

—

Bit 9

Bit 8

ENFLTC

ENFLTB

—

OC32

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

ENFLTA

OCFLTC

OCFLTB

OCFLTA

TRIGMODE

OCTRIG

TRIGSTAT

OCTRIS

Bit 1
OCM<2:0>

SYNCSEL<4:0>

Bit 0

All
Resets
0000
000C

OC15RS

0990

Output Compare 15 Secondary Register

xxxx

OC15R

0992

Output Compare 15 Register

xxxx

OC15TMR

0994

Timer Value 15 Register

OC16CON1 0996

—

OC16CON2 0998

FLTMD

—

OCSIDL

FLTOUT FLTTRIEN

OCTSEL<2:0>
OCINV

—

—

xxxx

ENFLTC

ENFLTB

ENFLTA

OCFLTC

OCFLTB

—

OC32

OCTRIG

TRIGSTAT

OCTRIS

OCFLTA

TRIGMODE

OCM<2:0>

SYNCSEL<4:0>

0000
000C

OC16RS

099A

Output Compare 16 Secondary Register

xxxx

OC16R

099C

Output Compare 16 Register

xxxx

OC16TMR

099E

Timer Value 16 Register

xxxx

Legend:

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

DS70616G-page 75

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-11:

File Name

PWM REGISTER MAP FOR dsPIC33EPXXX(MC/MU)806/810/814 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

SYNCPOL SYNCOEN SYNCEN

Bit 5

Bit 4

Bit 3

Bit 2

Bit 0

PTCON

0C00

PTEN

—

PTSIDL

SESTAT

SEIEN

EIPU

0C02

—

—

—

—

—

—

PTPER

0C04

PTPER<15:0>

FFF8

SEVTCMP

0C06

SEVTCMP<15:0>

0000

MDC

0C0A

MDC<15:0>

STCON

0C0E

—

—

—

SESTAT

SEIEN

EIPU

STCON2

0C10

—

—

—

—

—

—

STPER

0C12

Legend:

—

—

—

—

—

—

0000

PCLKDIV<2:0>

0000

0000

SYNCPOL SYNCOEN SYNCEN
—

SYNCSRC<2:0>

—

—

—

SEVTPS<3:0>
—

—

0000

PCLKDIV<2:0>

0000

STPER<15:0>

SSEVTCMP 0C14
CHOP

—

SEVTPS<3:0>

All
Resets

PTCON2

—

SYNCSRC<2:0>

Bit 1

FFF8

SSEVTCMP<15:0>

0C1A CHPCLKEN

—

—

—

—

0000

—

CHOPCLK<9:0>

0000

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-13:

PWM GENERATOR 1 REGISTER MAP FOR dsPIC33EPXXX(MC/MU)806/810/814 DEVICES ONLY

File Name

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

CLIEN

TRGIEN

Bit 9

Bit 8

Bit 7

Bit 6

MDCS

DTC<1:0>

OVRENL

OVRDAT<1:0>

Bit 3

Bit 2

Bit 1

DTCP

—

MTBS

CAM

XPRES

IUE

0000

CLDAT<1:0>

SWAP

OSYNC

0000

PWMCON1

0C20

FLTSTAT

CLSTAT

TRGSTAT

FLTIEN

0C22

PENH

PENL

POLH

POLL

FCLCON1

0C24

IFLTMOD

PDC1

0C26

PDC1<15:0>

0000

PHASE1

0C28

PHASE1<15:0>

0000

CLSRC<4:0>

ITB

Bit 4

IOCON1

PMOD<1:0>

OVRENH

Bit 0

All
Resets

Bit 5

CLPOL

CLMOD

FLTDAT<1:0>
FLTSRC<4:0>

FLTPOL

FLTMOD<1:0>

0000

 2009-2012 Microchip Technology Inc.

DTR1

0C2A

—

—

DTR1<13:0>

0000

ALTDTR1

0C2C

—

—

ALTDTR1<13:0>

0000

SDC1

0C2E

SDC1<15:0>

0000

SPHASE1

0C30

SPHASE1<15:0>

0000

TRIG1

0C32

TRGCON1

0C34

PWMCAP1

0C38

TRGCMP<15:0>
TRGDIV<3:0>

—

0C3A

PHR

PHF

PLR

PLF

LEBDLY1

0C3C

—

—

—

—

0C3E

—

—

—

—

Legend:

—

—

0000
—

—

TRGSTRT<5:0>

0000

PWMCAP1<15:0>

LEBCON1
AUXCON1

—

FLTLEBEN CLLEBEN

—

—

—

0000
—

BCH

BCL

BPHH

BPHL

BPLH

BPLL

LEB<11:0>
BLANKSEL<3:0>

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

—

—

0000
0000

CHOPSEL<3:0>

CHOPHEN CHOPLEN

0000

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 76

TABLE 4-12:

File Name

Addr.

PWMCON2 0C40

PWM GENERATOR 2 REGISTER MAP FOR dsPIC33EPXXX(MC/MU)806/810/814 DEVICES ONLY
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

CLIEN

TRGIEN

Bit 9

Bit 8

Bit 7

Bit 6

Bit 1

DTCP

—

MTBS

CAM

XPRES

IUE

0000

CLDAT<1:0>

SWAP

OSYNC

0000

CLSTAT

TRGSTAT

FLTIEN

PENH

PENL

POLH

POLL

FCLCON2

0C44

IFLTMOD

PDC2

0C46

PDC2<15:0>

PHASE2

0C48

PHASE2<15:0>

DTR2

0C4A

—

—

ALTDTR2

0C4C

—

—

SDC2

0C4E

SDC2<15:0>

0000

SPHASE2

0C50

SPHASE2<15:0>

0000

TRIG2

0C52

TRGCMP<15:0>

TRGCON2

0C54
0C58

LEBCON2

0C5A

PHR

PHF

PLR

PLF

LEBDLY2

0C5C

—

—

—

—

AUXCON2

0C5E

—

—

—

—

Legend:

—

CLMOD

—

FLTDAT<1:0>

FLTSRC<4:0>

FLTPOL

FLTMOD<1:0>

0000
0000

DTR2<13:0>

0000

ALTDTR2<13:0>

0000

—

0000
—

—

—

—

TRGSTRT<5:0>

0000

PWMCAP2<15:0>
FLTLEBEN CLLEBEN

—

0000

—

0000
BCH

BCL

BPHH

BPHL

BPLH

BPLL

LEB<11:0>
BLANKSEL<3:0>

—

0000
0000

—

CHOPSEL<3:0>

CHOPHEN CHOPLEN

0000

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-15:
File Name

CLPOL

—

PWMCAP2

DTC<1:0>
OVRDAT<1:0>

Bit 2

FLTSTAT

TRGDIV<3:0>

MDCS
OVRENL

Bit 3

0C42

CLSRC<4:0>

ITB

Bit 4

IOCON2

PMOD<1:0>

OVRENH

Bit 0

All
Resets

Bit 5

Addr.

PWMCON3 0C60

PWM GENERATOR 3 REGISTER MAP FOR dsPIC33EPXXX(MC/MU)806/810/814 DEVICES ONLY
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

CLIEN

TRGIEN

Bit 9

Bit 8

Bit 7

Bit 6

MDCS

DTC<1:0>

OVRENL

OVRDAT<1:0>

CLPOL

CLMOD

XPRES

IUE

0000

SWAP

OSYNC

0000

Bit 3

Bit 2

Bit 1

DTCP

—

MTBS

CAM

CLDAT<1:0>

FLTSTAT

CLSTAT

TRGSTAT

FLTIEN

0C62

PENH

PENL

POLH

POLL

FCLCON3

0C64

IFLTMOD

PDC3

0C66

PDC3<15:0>

0000

PHASE3

0C68

PHASE3<15:0>

0000

CLSRC<4:0>

ITB

All
Resets

Bit 4

IOCON3

PMOD<1:0>

OVRENH

Bit 0

Bit 5

FLTDAT<1:0>

FLTSRC<4:0>

FLTPOL

FLTMOD<1:0>

0000

DTR3

0C6A

—

—

DTR3<13:0>

0000

ALTDTR3

0C6C

—

—

ALTDTR3<13:0>

0000

SDC3

0C6E

SDC3<15:0>

0000

SPHASE3

0C70

SPHASE3<15:0>

0000

DS70616G-page 77

TRIG3

0C72

TRGCON3

0C74

PWMCAP3

0C78

LEBCON3

0C7A

PHR

PHF

PLR

PLF

LEBDLY3

0C7C

—

—

—

—

0C7E

—

—

—

—

AUXCON3
Legend:

TRGCMP<15:0>
TRGDIV<3:0>

—

—

—

—

0000
—

—

—

—

TRGSTRT<5:0>

0000

PWMCAP3<15:0>
FLTLEBEN CLLEBEN

—

—

0000
BCH

BCL

BPHH

BPHL

BPLH

BPLL

LEB<11:0>
BLANKSEL<3:0>

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

—

—

0000
0000

CHOPSEL<3:0>

CHOPHEN CHOPLEN

0000

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-14:

File Name

Addr.

PWMCON4 0C80

PWM GENERATOR 4 REGISTER MAP FOR dsPIC33EPXXX(MC/MU)806/810/814 DEVICES ONLY
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

CLIEN

TRGIEN

Bit 9

Bit 8

ITB

MDCS

Bit 7

Bit 6

Bit 4

Bit 3

Bit 2

Bit 1

DTCP

—

MTBS

CAM

XPRES

IUE

0000

CLDAT<1:0>

SWAP

OSYNC

0000

FLTSTAT

CLSTAT

TRGSTAT

FLTIEN

IOCON4

0C82

PENH

PENL

POLH

POLL

FCLCON4

0C84

IFLTMOD

PDC4

0C86

PDC4<15:0>

0000

PHASE4

0C88

PHASE4<15:0>

0000

PMOD<1:0>

CLSRC<4:0>

DTC<1:0>

Bit 0

All
Resets

Bit 5

OVRENH OVRENL
CLPOL

OVRDAT<1:0>

CLMOD

FLTDAT<1:0>

FLTSRC<4:0>

FLTPOL

FLTMOD<1:0>

0000

DTR4

0C8A

—

—

DTR4<13:0>

0000

ALTDTR4

0C8C

—

—

ALTDTR4<13:0>

0000

SDC4

0C8E

SDC4<15:0>

0000

SPHASE4

0C90

SPHASE4<15:0>

0000

TRIG4

0C92

TRGCON4

0C94

PWMCAP4

0C98

LEBCON4

0C9A

PHR

PHF

PLR

PLF

LEBDLY4

0C9C

—

—

—

—

0C9E

—

—

—

—

AUXCON4
Legend:

—

—

—

—

0000
—

—

TRGSTRT<5:0>

0000

PWMCAP4<15:0>
FLTLEBEN CLLEBEN

—

—

0000

—

—

BCH

BCL

BPHH

BPHL

BPLH

BPLL

LEB<11:0>
BLANKSEL<3:0>

—

0000
0000

—

CHOPSEL<3:0>

CHOPHEN CHOPLEN

0000

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-17:
File Name

TRGCMP<15:0>
TRGDIV<3:0>

Addr.

PWMCON5 0CA0

PWM GENERATOR 5 REGISTER MAP FOR dsPIC33EPXXX(MC/MU)810/814 DEVICES ONLY
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

CLIEN

TRGIEN

Bit 9

Bit 8

Bit 7

Bit 6

0000

OSYNC

—

MTBS

CAM

CLDAT<1:0>

 2009-2012 Microchip Technology Inc.

TRGSTAT

FLTIEN

PENL

POLH

POLL

FCLCON5

0CA4

IFLTMOD

PDC5

0CA6

PDC5<15:0>

PHASE5

0CA8

PHASE5<15:0>

DTR5

0CAA

—

—

ALTDTR5

0CAC

—

—

SDC5

0CAE

SDC5<15:0>

0000

SPHASE5

0CB0

SPHASE5<15:0>

0000

TRIG5

0CB2

TRGCMP<15:0>

TRGCON5

0CB4

PWMCAP5

0CB8

LEBCON5

0CBA

PHR

PHF

PLR

PLF

LEBDLY5

0CBC

—

—

—

—

0CBE

—

—

—

—

AUXCON5
Legend:

CLMOD

IUE

SWAP

DTCP

CLSTAT

—

CLPOL

XPRES

Bit 1

PENH

—

DTC<1:0>
OVRDAT<1:0>

Bit 2

FLTSTAT

TRGDIV<3:0>

MDCS
OVRENL

Bit 3

0CA2

CLSRC<4:0>

ITB

All
Resets

Bit 4

IOCON5

PMOD<1:0>

OVRENH

Bit 0

Bit 5

—

FLTDAT<1:0>

FLTSRC<4:0>

FLTPOL

FLTMOD<1:0>

0000
0000

DTR5<13:0>

0000

ALTDTR5<13:0>

0000

—

0000
—

—

—

—

TRGSTRT<5:0>

0000

PWM Capture<15:0>
FLTLEBEN CLLEBEN

—

0000
0000

—

0000
BCH

BCL

BPHH

BPHL

BPLH

BPLL

LEB<11:0>
BLANKSEL<3:0>

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

—

—

0000
0000

CHOPSEL<3:0>

CHOPHEN CHOPLEN

0000

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 78

TABLE 4-16:

File Name

Addr.

PWMCON6 0CC0

PWM GENERATOR 6 REGISTER MAP FOR dsPIC33EPXXX(MC/MU)810/814 DEVICES ONLY
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

FLTSTAT

CLSTAT

TRGSTAT

FLTIEN

CLIEN

TRGIEN

PENH

PENL

POLH

POLL

Bit 8

Bit 7

Bit 6

ITB

MDCS

DTC<1:0>

OVRENH

OVRENL

OVRDAT<1:0>

CLPOL

CLMOD

Bit 0

All
Resets

XPRES

IUE

0000

SWAP

OSYNC

0000

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

DTCP

—

MTBS

CAM

CLDAT<1:0>

IOCON6

0CC2

FCLCON6

0CC4 IFLTMOD

PDC6

0CC6

PDC6<15:0>

PHASE6

0CC8

PHASE6<15:0>

DTR6

0CCA

—

—

ALTDTR6

0CCC

—

—

SDC6

0CCE

SDC6<15:0>

0000

SPHASE6

0CD0

SPHASE6<15:0>

0000

TRIG6

0CD2

TRGCMP<15:0>

TRGCON6

0CD4

CLSRC<4:0>

TRGDIV<3:0>

—

PWMCAP6

0CD8

LEBCON6

0CDA

PHR

PHF

PLR

PLF

LEBDLY6

0CDC

—

—

—

—

AUXCON6

0CDE

—

—

—

—

Legend:

—

—

FLTDAT<1:0>

FLTSRC<4:0>

FLTPOL

FLTMOD<1:0>

0000
0000

DTR6<13:0>

0000

ALTDTR6<13:0>

0000

0000

—

—

—

—

—

TRGSTRT<5:0>

0000

PWMCAP6<15:0>
FLTLEBEN CLLEBEN

—

0000

—

0000
BCH

BCL

BPHH

BPHL

BPLH

BPLL

LEB<11:0>
BLANKSEL<3:0>

—

0000
0000

—

CHOPSEL<3:0>

CHOPHEN CHOPLEN

0000

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-19:
File Name

PMOD<1:0>

Bit 9

Addr.

PWMCON7 0CE0

PWM GENERATOR 7 REGISTER MAP FOR dsPIC33EPXXX(MC/MU)814 DEVICES ONLY
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

FLTSTAT

CLSTAT

TRGSTAT

FLTIEN

CLIEN

TRGIEN

PENH

PENL

POLH

POLL

PMOD<1:0>

Bit 9

Bit 8

Bit 7

ITB

MDCS

DTC<1:0>

OVRENH

OVRENL

OVRDAT<1:0>

CLPOL

CLMOD

IOCON7

0CE2

FCLCON7

0CE4 IFLTMOD

PDC7

0CE6

PDC7<15:0>

PHASE7

0CE8

PHASE7<15:0>

DTR7

0CEA

—

—

—

—

CLSRC<4:0>

Bit 6

Bit 0

All
Resets

XPRES

IUE

0000

SWAP

OSYNC

0000

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

DTCP

—

MTBS

CAM

CLDAT<1:0>

FLTDAT<1:0>

FLTSRC<4:0>

FLTPOL

FLTMOD<1:0>

0000
0000
0000

DTR7<13:0>

0000

ALTDTR7<13:0>

0000

DS70616G-page 79

ALTDTR7

0CEC

SDC7

0CEE

SDC7<15:0>

0000

SPHASE7

0CF0

SPHASE7<15:0>

0000

TRIG7

0CF2

TRGCMP<15:0>

TRGCON7

0CF4

TRGDIV<3:0>

—

PWMCAP7

0CF8

LEBCON7

0CFA

PHR

PHF

PLR

PLF

LEBDLY7

0CFC

—

—

—

—

AUXCON7

0CFE

—

—

—

—

Legend:

—

—

—

0000
—

—

—

—

TRGSTRT<5:0>

0000

PWMCAP7<15:0>
FLTLEBEN CLLEBEN

—

—

0000
BCH

BCL

BPHH

BPHL

BPLH

BPLL

LEB<11:0>
BLANKSEL<3:0>

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

—

—

0000
0000

CHOPSEL<3:0>

CHOPHEN CHOPLEN

0000

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-18:

File Name

QEI1 REGISTER MAP FOR dsPIC33EPXXX(MC/MU)806/810/814 DEVICES ONLY
Bit 15

Bit 14

Bit 13

QEI1CON

01C0

QEIEN

—

QEISIDL

QEI1IOC

01C2 QCAPEN FLTREN

QEI1STAT

01C4

POS1CNTL

01C6

POSCNT<15:0>

0000

POS1CNTH 01C8

POSCNT<31:16>

0000

POS1HLD

01CA

POSHLD<15:0>

0000

VEL1CNT

01CC

VELCNT<15:0>

0000

INT1TMRL

01CE

INTTMR<15:0>

0000

INT1TMRH

01D0

INTTMR<31:16>

0000

INT1HLDL

01D2

INTHLD<15:0>

0000

INT1HLDH

01D4

INTHLD<31:16>

0000

INDX1CNTL 01D6

INDXCNT<15:0>

0000

INDX1CNTH 01D8

INDXCNT<31:16>

0000

INDX1HLD

01DA

INDXHLD<15:0>

0000

QEI1GECL

01DC

QEIGEC<15:0>

0000

QEI1ICL

01DC

QEIIC<15:0>

0000

QEI1GECH

01DE

QEIGEC<31:16>

0000

QEI1ICH

01DE

QEIIC<31:16>

0000

QEI1LECL

01E0

QEILEC<15:0>

0000

QEI1LECH

01E2

QEILEC<31:16>

0000

Legend:

—

—

Bit 12

Bit 11

Bit 10

Bit 9

PIMOD<2:0>
QFDIV<2:0>

Bit 8

Bit 7

IMV<1:0>
OUTFNC<1:0>

SWPAB

—

Bit 5

Bit 4

INTDIV<2:0>

HOMPOL

IDXPOL

PCIIRQ

PCIIEN

PCHEQIRQ PCHEQIEN PCLEQIRQ PCLEQIEN POSOVIRQ POSOVIEN

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

Bit 6

QEBPOL

QEAPOL

Bit 3

Bit 2

CNTPOL

GATEN

HOME

INDEX

VELOVIRQ VELOVIEN HOMIRQ HOMIEN

Bit 1

Bit 0

All
Resets

Addr.

CCM<1:0>

0000

QEB

QEA

000x

IDXIRQ

IDXIEN

0000

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 80

TABLE 4-20:

File Name

QEI2 REGISTER MAP FOR dsPIC33EPXXX(MC/MU)806/810/814 DEVICES ONLY
Bit 15

Bit 14

Bit 13

QEI2CON

05C0

QEIEN

—

QEISIDL

QEI2IOC

05C2 QCAPEN FLTREN

QEI2STAT

05C4

POS2CNTL

05C6

POSCNT<15:0>

0000

POS2CNTH 05C8

POSCNT<31:16>

0000

POS2HLD

05CA

POSHLD<15:0>

0000

VEL2CNT

05CC

VELCNT<15:0>

0000

INT2TMRL

05CE

INTTMR<15:0>

0000

INT2TMRH

05D0

INTTMR<31:16>

0000

INT2HLDL

05D2

INTHLD<15:0>

0000

INT2HLDH

05D4

INTHLD<31:16>

0000

INDX2CNTL 05D6

INDXCNT<15:0>

0000

INDX2CNTH 05D8

INDXCNT<31:16>

0000

INDX2HLD

05DA

INDXHLD<15:0>

0000

QEI2GECL

05DC

QEIGEC<15:0>

0000

QEI2ICL

05DC

QEIIC<15:0>

0000

QEI2GECH

05DE

QEIGEC<31:16>

0000

QEI2ICH

05DE

QEIIC<31:16>

0000

QEI2LECL

05E0

QEILEC<15:0>

0000

QEI2LECH

05E2

QEILEC<31:16>

0000

Legend:

—

—

Bit 12

Bit 11

Bit 10

Bit 9

PIMOD<2:0>
QFDIV<2:0>

Bit 8

Bit 7

IMV<1:0>
OUTFNC<1:0>

SWPAB

—
PCIIRQ

Bit 5

Bit 4

INTDIV<2:0>

HOMPOL IDXPOL

PCHEQIRQ PCHEQIEN PCLEQIRQ PCLEQIEN POSOVIRQ POSOVIEN

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

Bit 6

QEBPOL

Bit 3

Bit 2

CNTPOL GATEN
QEAPOL

HOME

INDEX

PCIIEN VELOVIRQ VELOVIEN HOMIRQ HOMIEN

Bit 1

Bit 0

All
Resets

Addr.

CCM<1:0>

0000

QEB

QEA

000x

IDXIRQ

IDXIEN

0000

DS70616G-page 81

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-21:

I2C1 and I2C2 REGISTER MAP

File
Name

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

I2C1RCV

0200

—

—

—

—

—

—

—

—

I2Cx Receive Register

I2C1TRN

0202

—

—

—

—

—

—

—

—

I2Cx Transmit Register

I2C1BRG

0204

—

—

—

—

—

—

—

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets
0000
00FF

Baud Rate Generator

0000

I2C1CON

0206

I2CEN

—

I2CSIDL

SCLREL

IPMIEN

A10M

DISSLW

SMEN

GCEN

STREN

ACKDT

ACKEN

RCEN

PEN

RSEN

SEN

1000

I2C1STAT

0208

ACKSTAT

TRSTAT

—

—

—

BCL

GCSTAT

ADD10

IWCOL

I2COV

D_A

P

S

R_W

RBF

TBF

0000

I2C1ADD

020A

—

—

—

—

—

—

I2Cx Address Register

0000

I2C1MSK

020C

—

—

—

—

—

—

I2Cx Address Mask

0000

I2C2RCV

0210

—

—

—

—

—

—

—

—

I2Cx Receive Register

I2C2TRN

0212

—

—

—

—

—

—

—

—

I2Cx Transmit Register

I2C2BRG

0214

—

—

—

—

—

—

—

0000
00FF

Baud Rate Generator

0000

I2C2CON

0216

I2CEN

—

I2CSIDL

SCLREL

IPMIEN

A10M

DISSLW

SMEN

GCEN

STREN

ACKDT

ACKEN

RCEN

PEN

RSEN

SEN

1000

I2C2STAT

0218

ACKSTAT

TRSTAT

—

—

—

BCL

GCSTAT

ADD10

IWCOL

I2COV

D_A

P

S

R_W

RBF

TBF

0000

I2C2ADD

021A

—

—

—

—

—

—

I2Cx Address Register

0000

I2C2MSK

021C

—

—

—

—

—

—

I2Cx Address Mask

0000

Legend:

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 82

TABLE 4-22:

File Name Addr.

UART1, UART2, UART3 and UART4 REGISTER MAP
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 6

WAKE

LPBACK

Bit 5

Bit 4

Bit 3

ABAUD

URXINV

BRGH

ADDEN

RIDLE

PERR

Bit 2

Bit 1

All
Resets

STSEL

0000

U1MODE

0220

UARTEN

—

USIDL

IREN

RTSMD

—

0222

UTXISEL1

UTXINV

UTXISEL0

—

UTXBRK

UTXEN

UTXBF

U1TXREG

0224

—

—

—

—

—

—

—

UARTx Transmit Register

xxxx

U1RXREG

0226

—

—

—

—

—

—

—

UARTxReceive Register

0000

U1BRG

0228

U2MODE

0230

UARTEN

—

USIDL

IREN

RTSMD

—

U2STA

0232

UTXISEL1

UTXINV

UTXISEL0

—

UTXBRK

UTXEN

UTXBF

U2TXREG

0234

—

—

—

—

—

—

—

UARTx Transmit Register

xxxx

U2RXREG

0236

—

—

—

—

—

—

—

UARTx Receive Register

0000

U2BRG

0238

U3MODE

0250

UARTEN

—

USIDL

IREN

RTSMD

—

U3STA

0252

UTXISEL1

UTXINV

UTXISEL0

—

UTXBRK

UTXEN

UTXBF

U3TXREG

0254

—

—

—

—

—

—

—

UARTx Transmit Register

xxxx

U3RXREG

0256

—

—

—

—

—

—

—

UARTx Receive Register

0000

U3BRG

0258

U4MODE

02B0

UARTEN

—

USIDL

IREN

RTSMD

—

U4STA

02B2

UTXISEL1

UTXINV

UTXISEL0

—

UTXBRK

UTXEN

UTXBF

U4TXREG

02B4

—

—

—

—

—

—

—

UARTx Transmit Register

xxxx

U4RXREG

02B6

—

—

—

—

—

—

—

UARTx Receive Register

0000

U4BRG

02B8

TRMT

URXISEL<1:0>

PDSEL<1:0>

Bit 0

U1STA

Legend:

UEN<1:0>

Bit 7

FERR

OERR

URXDA

Baud Rate Generator Prescaler
UEN<1:0>

WAKE

TRMT

LPBACK

URXISEL<1:0>

0000
ABAUD

URXINV

BRGH

ADDEN

RIDLE

PERR

PDSEL<1:0>
FERR

OERR

STSEL
URXDA

Baud Rate Generator Prescaler
UEN<1:0>

WAKE

TRMT

LPBACK

URXISEL<1:0>

WAKE

TRMT

LPBACK

URXISEL<1:0>

Baud Rate Generator Prescaler

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

0000
0110

0000
ABAUD

URXINV

BRGH

ADDEN

RIDLE

PERR

PDSEL<1:0>
FERR

OERR

STSEL
URXDA

Baud Rate Generator Prescaler
UEN<1:0>

0110

0000
0110

0000
ABAUD

URXINV

BRGH

ADDEN

RIDLE

PERR

PDSEL<1:0>
FERR

OERR

STSEL
URXDA

0000
0110

0000

DS70616G-page 83

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-23:

File Name

SPI1, SPI2, SPI3 and SPI4 REGISTER MAP

Addr.

Bit 15

Bit 14

Bit 13

SPI1STAT

0240

SPIEN

—

SPISIDL

SPI1CON1

0242

—

—

—

SPI1CON2

0244

FRMEN

SPIFSD

FRMPOL

SPI1BUF

0248

Bit 11

—

—

SPIBEC<2:0>

DISSCK DISSDO MODE16

SMP

CKE

SSEN

CKP

MSTEN

—

—

—

—

—

—

—

Bit 10

—

Bit 9

Bit 8

Bit 7
SRMPT

Bit 6

Bit 5

Bit 4

SPIROV SRXMPT

Bit 3

Bit 2

SISEL<2:0>
SPRE<2:0>
—

—

Bit 1

Bit 0

SPITBF

SPIRBF

PPRE<1:0>
—

FRMDLY SPIBEN

SPIx Transmit and Receive Buffer Register

SPI2STAT

0260

SPIEN

—

SPISIDL

SPI2CON1

0262

—

—

—

FRMEN

SPIFSD

FRMPOL

SPI2CON2

0264

SPI2BUF

0268

SPI3STAT

02A0

SPIEN

—

SPISIDL

SPI3CON1

02A2

—

—

—

SPI3CON2

02A4

FRMEN

SPIFSD

FRMPOL

SPI3BUF

02A8

—

—

SPIBEC<2:0>

DISSCK DISSDO MODE16

SMP

CKE

SSEN

CKP

MSTEN

—

—

—

—

—

—

—

—

SRMPT

—

SPIROV SRXMPT

—

SPIBEC<2:0>
SMP

CKE

SSEN

CKP

MSTEN

—

—

—

—

—

—

—

SISEL<2:0>

SPITBF

SPRE<2:0>
—

—

SPIRBF

PPRE<1:0>
—

FRMDLY SPIBEN

SPIROV SRXMPT

SISEL<2:0>

SPITBF

SPRE<2:0>
—

—

SPIRBF

PPRE<1:0>
—

FRMDLY SPIBEN

SPIx Transmit and Receive Buffer Register

02C0

SPIEN

—

SPISIDL

SPI4CON1

02C2

—

—

—

SPI4CON2

02C4

FRMEN

SPIFSD

FRMPOL

SPI4BUF

02C8

—

—

SPIBEC<2:0>
SMP

CKE

SSEN

CKP

MSTEN

—

—

—

—

—

—

—

SPIROV SRXMPT

SPIx Transmit and Receive Buffer Register

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

0000
0000
0000
0000
0000
0000
0000
0000

DISSCK DISSDO MODE16
—

SRMPT

0000
0000

0000

DISSCK DISSDO MODE16
—

SRMPT

All
Resets

0000

SPIx Transmit and Receive Buffer Register

SPI4STAT

Legend:

Bit 12

SISEL<2:0>

SPITBF

SPRE<2:0>
—

—

SPIRBF

PPRE<1:0>
—

FRMDLY SPIBEN

0000
0000
0000
0000

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 84

TABLE 4-24:

ADC1 and ADC2 REGISTER MAP

Addr.

ADC1BUF0

0300

ADCx Data Buffer 0

xxxx

ADC1BUF1

0302

ADCx Data Buffer 1

xxxx

ADC1BUF2

0304

ADCx Data Buffer 2

xxxx

ADC1BUF3

0306

ADCx Data Buffer 3

xxxx

ADC1BUF4

0308

ADCx Data Buffer 4

xxxx

ADC1BUF5

030A

ADCx Data Buffer 5

xxxx

ADC1BUF6

030C

ADCx Data Buffer 6

xxxx

ADC1BUF7

030E

ADCx Data Buffer 7

xxxx

ADC1BUF8

0310

ADCx Data Buffer 8

xxxx

ADC1BUF9

0312

ADCx Data Buffer 9

xxxx

ADC1BUFA

0314

ADCx Data Buffer 10

xxxx

ADC1BUFB

0316

ADCx Data Buffer 11

xxxx

ADC1BUFC

0318

ADCx Data Buffer 12

xxxx

ADC1BUFD

031A

ADCx Data Buffer 13

xxxx

ADC1BUFE

031C

ADCx Data Buffer 14

xxxx

ADC1BUFF

031E

ADCx Data Buffer 15

AD1CON1

0320

AD1CON2

0322

AD1CON3

0324

AD1CHS123 0326

Bit 15

ADON

Bit 14

—

Bit 13

ADSIDL

VCFG<2:0>
ADRC

—

—

Bit 12

Bit 11

ADDMABM

—

—

—

Bit 10

Bit 9

Bit 8

AD12B

FORM<1:0>

CSCNA

CHPS<1:0>

Bit 7

Bit 6

Bit 5

Bit 2

Bit 1

Bit 0

SSRCG

BUFS

SIMSAM

ASAM

SMPI<4:0>

SAMP

DONE

BUFM

ALTS

ADCS<7:0>

CH123NB<1:0>

CH123SB

DS70616G-page 85

—

—

—

CH0NB

—

—

AD1CSSH

032E

CSS31

CSS30

CSS29

CSS28

CSS27

CSS26

CSS25

CSS24

AD1CSSL

0330

CSS15

CSS14

CSS13

CSS12

CSS11

CSS10

CSS9

CSS8

CSS7

CSS6

CSS5

CSS4

CSS3

AD1CON4

0332

—

—

—

—

—

—

—

ADDMAEN

—

—

—

—

—

ADC2BUF0

0340

ADCx Data Buffer 0

xxxx

ADC2BUF1

0342

ADCx Data Buffer 1

xxxx

ADC2BUF2

0344

ADCx Data Buffer 2

xxxx

ADC2BUF3

0346

ADCx Data Buffer 3

xxxx

ADC2BUF4

0348

ADCx Data Buffer 4

xxxx

ADC2BUF5

034A

ADCx Data Buffer 5

xxxx

ADC2BUF6

034C

ADCx Data Buffer 6

xxxx

ADC2BUF7

034E

ADCx Data Buffer 7

xxxx

ADC2BUF8

0350

ADCx Data Buffer 8

xxxx

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
These bits are not available on dsPIC33EP256MU806 devices.

—

—

—

—

—

—

—

0000
0000

0328

CH0SB<4:0>

CH0NA

0000

AD1CHS0

Legend:
Note 1:

—

Bit 3

xxxx
SSRC<2:0>

SAMC<4:0>
—

Bit 4

All
Resets

File Name

CH123NA<1:0>

CH123SA

CH0SA<4:0>

CSS23(1) CSS22(1) CSS21(1) CSS20(1) CSS19(1)

0000

CSS18(1) CSS17(1) CSS16(1)
CSS2

0000

CSS1
DMABL<2:0>

CSS0

0000
0000
0000

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-25:

ADC1 and ADC2 REGISTER MAP (CONTINUED)

Addr.

ADC2BUF9

0352

ADCx Data Buffer 9

xxxx

ADC2BUFA

0354

ADCx Data Buffer 10

xxxx

ADC2BUFB

0356

ADCx Data Buffer 11

xxxx

ADC2BUFC

0358

ADCx Data Buffer 12

xxxx

ADC2BUFD

035A

ADCx Data Buffer 13

xxxx

ADC2BUFE

035C

ADCx Data Buffer 14

xxxx

ADC2BUFF

035E

ADCx Data Buffer 15

AD2CON1

0360

AD2CON2

0362

AD2CON3

0364

AD2CHS123 0366

Bit 15

ADON

Bit 14

—

Bit 13

ADSIDL

VCFG<2:0>
ADRC

—

—

—

—

—

Bit 12

Bit 11

ADDMABM

—

—

—

Bit 10

Bit 9

Bit 8

—

FORM<1:0>

CSCNA

CHPS<1:0>

Bit 7

Bit 6

Bit 5

SSRCG

—

—

SIMSAM

Bit 1

Bit 0

ASAM

SAMP

DONE

0000

BUFM

ALTS

0000

ADCS<7:0>

CH123NB<1:0>

CH123SB

—

—

—

CH0NA

—

—

—

—

AD2CHS0

0368

CH0NB

—

—

AD2CSSL

0270

CSS15

CSS14

CSS13

CSS12

CSS11

CSS10

CSS9

CSS8

CSS7

CSS6

CSS5

CSS4

CSS3

AD2CON4

0272

—

—

—

—

—

—

—

ADDMAEN

—

—

—

—

—

Legend:
Note 1:

Bit 2

SMPI<3:0>

SAMC<4:0>
—

Bit 3

xxxx
SSRC<2:0>

BUFS

Bit 4

All
Resets

File Name

CH0SB<4:0>

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
These bits are not available on dsPIC33EP256MU806 devices.

0000
CH123NA<1:0>

CH123SA

CH0SA<4:0>
CSS2

0000
0000

CSS1
DMABL<2:0>

CSS0

0000
0000

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 86

TABLE 4-25:

File
Name

DCI REGISTER MAP

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

DCICON1

0280

DCIEN

—

DCISIDL

—

DLOOP

CSCKD

CSCKE

COFSD

UNFM

CSDOM

DJST

—

—

—

DCICON2

0282

—

—

—

—

DCICON3

0284

—

—

—

—

BLEN<1:0>

—

COFSG<3:0>

—

Bit 1

Bit 0

COFSM<1:0>
WS<3:0>

All
Resets
0000
0000

BCG<11:0>

0000

DCISTAT

0286

—

—

—

—

—

—

—

—

ROV

RFUL

TUNF

TMPTY

0000

TSCON

0288

TSE15

TSE14

TSE13

TSE12

TSE11

TSE10

TSE9

TSE8

TSE7

TSE6

TSE5

TSE4

TSE3

TSE2

TSE1

TSE0

0000

RSCON

028C

RSE15

RSE14

RSE13

RSE12

RSE11

RSE10

RSE9

RSE8

RSE7

RSE6

RSE5

RSE4

RSE3

RSE2

RSE1

RSE0

0000

RXBUF0

0290

DCI Receive 0 Data Register

uuuu

RXBUF1

0292

DCI Receive 1 Data Register

uuuu

RXBUF2

0294

DCI Receive 2 Data Register

uuuu

RXBUF3

0296

DCI Receive 3 Data Register

uuuu

TXBUF0

0298

DCI Transmit 0 Data Register

0000

TXBUF1

029A

DCI Transmit 1 Data Register

0000

TXBUF2

029C

DCI Transmit 2 Data Register

0000

TXBUF3

029E

DCI Transmit 3 Data Register

0000

Legend:

SLOT<3:0>

x = unknown value on Reset, u = unchanged, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Shaded locations indicate reserved space in the SFR map for future module
expansion. Read reserved locations as ‘0’s.

DS70616G-page 87

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-26:

USB OTG REGISTER MAP FOR dsPIC33EPMU806/810/814 AND PIC24EPGU806/10/814) DEVICES ONLY

 2009-2012 Microchip Technology Inc.

Bit 0

All
Resets

—

VBUSVDIF

0000

—

VBUSVDIE

0000

SESEND

—

VBUSVD

0000

VBUSON

OTGEN

VBUSCHG

VBUSDIS

0000

USLPGRD

—

—

USUSPND

USBPWR

0000

RESUMEIF

IDLEIF

TRNIF

SOFIF

UERRIF

URSTIF

0000

ATTACHIF

RESUMEIF

IDLEIF

TRNIF

SOFIF

UERRIF

DETACHIF

0000

STALLIE

—

RESUMEIE

IDLEIE

TRNIE

SOFIE

UERRIE

URSTIE

0000

—

STALLIE

ATTACHIE

RESUMEIE

IDLEIE

TRNIE

SOFIE

UERRIE

DETACHIE

0000

—

—

BTSEF

BUSACCEF

DMAEF

BTOEF

DFN8EF

CRC16EF

CRC5EF

PIDEF

0000

—

—

—

BTSEF

BUSACCEF

DMAEF

BTOEF

DFN8EF

CRC16EF

EOFEF

PIDEF

0000

—

—

—

—

BTSEE

BUSACCEE

DMAEE

BTOEE

DFN8EE

CRC16EE

CRC5EE

PIDEE

0000

—

—

—

—

—

BTSEE

BUSACCEE

DMAEE

BTOEE

DFN8EE

CRC16EE

EOFEE

PIDEE

0000

—

—

—

—

—

—

DIR

PPBI

—

—

0000

—

—

—

—

—

—

—

—

SE0

PKTDIS

—

HOSTEN

RESUME

PPBRST

USBEN

0000

—

—

—

—

—

—

—

—

JSTATE

SE0

TOKBUSY

USBRST

HOSTEN

RESUME

PPBRST

SOFEN

0000

04CC

—

—

—

—

—

—

—

—

LSPDEN(1)

U1BDTP1

04CE

—

—

—

—

—

—

—

—

U1FRML

04D0

—

—

—

—

—

—

—

—

U1FRMH

04D2

—

—

—

—

—

—

—

—

U1TOK(3)

04D4

—

—

—

—

—

—

—

—

U1SOF(3)

04D6

—

—

—

—

—

—

—

—

CNT<7:0>

0000

U1BDTP2

04D8

—

—

—

—

—

—

—

—

BDTPTRH<23:16>

0000

U1BDTP3

04DA

—

—

—

—

—

—

—

—

BDTPTRU<31:24>

U1CNFG1

04DC

—

—

—

—

—

—

—

—

UTEYE

UOEMON

—

USBSIDL

U1CNFG2

O4DE

—

—

—

—

—

—

—

—

—

—

UVCMPSEL

PUVBUS

U1EP0

04E0

—

—

—

—

—

—

—

—

LSPD

RETRYDIS

—

EPCONDIS

EPRXEN

EPTXEN

U1EP1

04E2

—

—

—

—

—

—

—

—

—

—

—

EPCONDIS

EPRXEN

U1EP2

04E4

—

—

—

—

—

—

—

—

—

—

—

EPCONDIS

U1EP3

04E6

—

—

—

—

—

—

—

—

—

—

—

U1EP4

04E8

—

—

—

—

—

—

—

—

—

—

—

File Name

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

U1OTGIR

0488

—

—

—

—

—

—

—

—

IDIF

T1MSECIF

LSTATEIF

U1OTGIE

048A

—

—

—

—

—

—

—

—

IDIE

T1MSECIE

LSTATEIE

U1OTGSTAT

048C

—

—

—

—

—

—

—

—

ID

—

LSTATE

—

SESVD

U1OTGCON

048E

—

—

—

—

—

—

—

—

DPPULUP

DMPULUP

DPPULDWN

DMPULDWN

U1PWRC

0490

—

—

—

—

—

—

—

—

UACTPND(4)

—

—

U1IR(1)

04C0

—

—

—

—

—

—

—

—

STALLIF

—

U1IR(2)

04C0

—

—

—

—

—

—

—

—

STALLIF

U1IE(1)

04C2

—

—

—

—

—

—

—

—

U1IE(2)

04C2

—

—

—

—

—

—

—

U1EIR(1)

04C4

—

—

—

—

—

—

U1EIR(2)

04C4

—

—

—

—

—

U1EIE(1)

04C6

—

—

—

—

U1EIE(2)

04C6

—

—

—

U1STAT

04C8

—

—

U1CON(1)

04CA

—

U1CON(2)

04CA

U1ADDR

Legend:
Note 1:
2:
3:
4:

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
This bit is available when the module is operating in Device mode.
This bit is available when the module is operating in Host mode
Device mode only. These bits are always read as ‘0’ in Host mode.
The Reset value for this bit is undefined.

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

ACTVIF

SESVDIF

SESENDIF

ACTVIE

SESVDIE SESENDIE

ENDPT<3:0>(3)

USB Device Address (DEVADDR)

0000

BDTPTRL<15:9>

—

FRML<7:0>
—

—

—

0000
0000

—

—

FRMH<2:0>

PID<3:0>

0000

EP<3:0>

0000

0000
—

—

—

—

0000

UTRDIS

0000

EPSTALL

EPHSHK

0000

EPTXEN

EPSTALL

EPHSHK

0000

EPRXEN

EPTXEN

EPSTALL

EPHSHK

0000

EPCONDIS

EPRXEN

EPTXEN

EPSTALL

EPHSHK

0000

EPCONDIS

EPRXEN

EPTXEN

EPSTALL

EPHSHK

0000

EXTI2CEN UVBUSDIS UVCMPDIS

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 88

TABLE 4-27:

USB OTG REGISTER MAP FOR dsPIC33EPMU806/810/814 AND PIC24EPGU806/10/814) DEVICES ONLY (CONTINUED)

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

U1EP5

04EA

—

—

—

—

—

—

—

—

—

—

—

EPCONDIS

EPRXEN

EPTXEN

EPSTALL

EPHSHK

0000

U1EP6

04EC

—

—

—

—

—

—

—

—

—

—

—

EPCONDIS

EPRXEN

EPTXEN

EPSTALL

EPHSHK

0000

U1EP7

04EE

—

—

—

—

—

—

—

—

—

—

—

EPCONDIS

EPRXEN

EPTXEN

EPSTALL

EPHSHK

0000

U1EP8

04F0

—

—

—

—

—

—

—

—

—

—

—

EPCONDIS

EPRXEN

EPTXEN

EPSTALL

EPHSHK

0000

U1EP9

04F2

—

—

—

—

—

—

—

—

—

—

—

EPCONDIS

EPRXEN

EPTXEN

EPSTALL

EPHSHK

0000

U1EP10

04F4

—

—

—

—

—

—

—

—

—

—

—

EPCONDIS

EPRXEN

EPTXEN

EPSTALL

EPHSHK

0000

U1EP11

04F6

—

—

—

—

—

—

—

—

—

—

—

EPCONDIS

EPRXEN

EPTXEN

EPSTALL

EPHSHK

0000

U1EP12

04F8

—

—

—

—

—

—

—

—

—

—

—

EPCONDIS

EPRXEN

EPTXEN

EPSTALL

EPHSHK

0000

U1EP13

04FA

—

—

—

—

—

—

—

—

—

—

—

EPCONDIS

EPRXEN

EPTXEN

EPSTALL

EPHSHK

0000

U1EP14

04FC

—

—

—

—

—

—

—

—

—

—

—

EPCONDIS

EPRXEN

EPTXEN

EPSTALL

EPHSHK

0000

U1EP15

04FE

—

—

—

—

—

—

—

—

—

—

—

EPCONDIS

EPRXEN

EPTXEN

EPSTALL

EPHSHK

0000

U1PWMRRS

0580

U1PWMCON

0582

—

—

—

—

File Name

Legend:
Note 1:
2:
3:
4:

DC<7:0>
PWMEN

—

—

—

—

PER<7:0>
—

PWMPOL CNTEN

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
This bit is available when the module is operating in Device mode.
This bit is available when the module is operating in Host mode
Device mode only. These bits are always read as ‘0’ in Host mode.
The Reset value for this bit is undefined.

—

—

—

—

0000
0000

DS70616G-page 89

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-27:

File Name

ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 OR 1
Bit 9

Bit 8

Bit 7

—

—

0480

0400

—

—

CSIDL

ABAT

CANCKS

C1CTRL2

0402

—

—

—

—

—

C1VEC

0404

—

—

—

C1FCTRL

0406

C1FIFO

0408

—

—

C1INTF

040A

—

—

TXBO

TXBP

RXBP

TXWAR

RXWAR

C1INTE

040C

—

—

—

—

—

—

—

C1EC

040E

C1CFG1

0410

—

—

—

—

—

C1CFG2

0412

—

WAKFIL

—

—

—

C1FEN1

0414

FLTEN15

FLTEN14

FLTEN13

C1FMSKSEL1

0418

F7MSK<1:0>

F6MSK<1:0>

F5MSK<1:0>

F4MSK<1:0>

F3MSK<1:0>

F2MSK<1:0>

F1MSK<1:0>

F0MSK<1:0>

0000

C1FMSKSEL2

041A

F15MSK<1:0>

F14MSK<1:0>

F13MSK<1:0>

F12MSK<1:0>

F11MSK<1:0>

F10MSK<1:0>

F9MSK<1:0>

F8MSK<1:0>

0000

FILHIT<4:0>

DMABS<2:0>

—

—

—

CANCAP

WIN

C1CTRL1

—

—

—

Bit 11

OPMODE<2:0>

Bit 3

—

Bit 12

—

Bit 4

All
Resets

Bit 13

REQOP<2:0>

Bit 5

Bit 0

Bit 14

—

Bit 6

Bit 1

Bit 15

Legend:

Bit 10

Bit 2

Addr.

—

DNCNT<4:0>

—
—

—

0000

ICODE<6:0>
—

—

—

EWARN

IVRIF

WAKIF

ERRIF

—

FIFOIF

RBOVIF

RBIF

TBIF

0000

—

IVRIE

WAKIE

ERRIE

—

FIFOIE

RBOVIE

RBIE

TBIE

0000

FBP<5:0>

—

0040

—

FSA<4:0>

0000

FNRB<5:0>

TERRCNT<7:0>

0000

RERRCNT<7:0>
—

—

—

SEG2PH<2:0>

FLTEN12 FLTEN11 FLTEN10

FLTEN9

FLTEN8

SJW<1:0>
SEG2PHTS
FLTEN7

0000

BRP<5:0>

SAM

SEG1PH<2:0>

FLTEN6 FLTEN5 FLTEN4

0000
PRSEG<2:0>

FLTEN3

FLTEN2

FLTEN1

0000

FLTEN0

FFFF

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-29:
File Name

Addr

—

0400041E

ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

See Table 4-28
RXFUL9

 2009-2012 Microchip Technology Inc.

C1RXFUL1

0420 RXFUL15 RXFUL14 RXFUL13 RXFUL12 RXFUL11 RXFUL10

RXFUL0

0000

0422 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27 RXFUL26 RXFUL25 RXFUL24 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16

0000

C1RXOVF1

0428 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10

RXOVF0

0000

C1RXOVF2

042A RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16

0000

RXOVF8

RXFUL7

—

C1RXFUL2

RXOVF9

RXFUL8

All
Resets

RXOVF7

RXFUL6
RXOVF6

RXFUL5
RXOVF5

RXFUL4
RXOVF4

RXFUL3
RXOVF3

RXFUL2
RXOVF2

RXFUL1
RXOVF1

C1TR01CON 0430

TXEN1

TXABT1

TXLARB1

TXERR1

TXREQ1

RTREN1

TX1PRI<1:0>

TXEN0

TXABAT0 TXLARB0

TXERR0

TXREQ0

RTREN0

TX0PRI<1:0>

0000

C1TR23CON 0432

TXEN3

TXABT3

TXLARB3

TXERR3

TXREQ3

RTREN3

TX3PRI<1:0>

TXEN2

TXABAT2 TXLARB2

TXERR2

TXREQ2

RTREN2

TX2PRI<1:0>

0000

C1TR45CON 0434

TXEN5

TXABT5

TXLARB5

TXERR5

TXREQ5

RTREN5

TX5PRI<1:0>

TXEN4

TXABAT4 TXLARB4

TXERR4

TXREQ4

RTREN4

TX4PRI<1:0>

0000

C1TR67CON 0436

TXEN7

TXABT7

TXLARB7

TXERR7

TXREQ7

RTREN7

TX7PRI<1:0>

TXEN6

TXABAT6 TXLARB6

TXERR6

TXREQ6

RTREN6

TX6PRI<1:0>

xxxx

C1RXD

0440

Received Data Word

xxxx

C1TXD

0442

Transmit Data Word

xxxx

Legend:

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 90

TABLE 4-28:

File Name

Addr

—

0400041E

ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

See Table 4-28

All
Resets
—

DS70616G-page 91

C1BUFPNT1

0420

F3BP<3:0>

F2BP<3:0>

F1BP<3:0>

F0BP<3:0>

0000

C1BUFPNT2

0422

F7BP<3:0>

F6BP<3:0>

F5BP<3:0>

F4BP<3:0>

0000

C1BUFPNT3

0424

F11BP<3:0>

F10BP<3:0>

F9BP<3:0>

F8BP<3:0>

0000

C1BUFPNT4

0426

F15BP<3:0>

F14BP<3:0>

F13BP<3:0>

F12BP<3:0>

0000

C1RXM0SID

0430

SID<10:3>

—

EID<17:16>

xxxx

C1RXM0EID

0432

EID<15:8>

C1RXM1SID

0434

SID<10:3>

—

EID<17:16>

C1RXM1EID

0436

EID<15:8>

C1RXM2SID

0438

SID<10:3>

—

EID<17:16>

C1RXM2EID

043A

EID<15:8>

C1RXF0SID

0440

SID<10:3>

—

EID<17:16>

C1RXF0EID

0442

EID<15:8>

C1RXF1SID

0444

SID<10:3>

—

EID<17:16>

C1RXF1EID

0446

EID<15:8>

C1RXF2SID

0448

SID<10:3>

—

EID<17:16>

C1RXF2EID

044A

EID<15:8>

C1RXF3SID

044C

SID<10:3>

—

EID<17:16>

C1RXF3EID

044E

EID<15:8>

C1RXF4SID

0450

SID<10:3>

—

EID<17:16>

C1RXF4EID

0452

EID<15:8>

C1RXF5SID

0454

SID<10:3>

—

EID<17:16>

C1RXF5EID

0456

EID<15:8>

C1RXF6SID

0458

SID<10:3>

—

EID<17:16>

C1RXF6EID

045A

EID<15:8>

C1RXF7SID

045C

SID<10:3>

—

EID<17:16>

C1RXF7EID

045E

EID<15:8>

C1RXF8SID

0460

SID<10:3>

—

EID<17:16>

C1RXF8EID

0462

EID<15:8>

C1RXF9SID

0464

SID<10:3>

—

EID<17:16>

C1RXF9EID

0466

EID<15:8>

C1RXF10SID

0468

SID<10:3>

—

EID<17:16>

C1RXF10EID

046A

EID<15:8>

C1RXF11SID

046C

SID<10:3>

—

EID<17:16>

Legend:

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

SID<2:0>

—

MIDE

EID<7:0>
SID<2:0>

—

MIDE

xxxx

EID<7:0>
SID<2:0>

—

MIDE

xxxx

EID<7:0>
SID<2:0>

—

EXIDE

—

EXIDE

—

EXIDE

—

EXIDE

—

EXIDE

—

EXIDE

—

EXIDE

—

EXIDE

—

EXIDE

—

EXIDE

—

EXIDE

—

EXIDE

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx

xxxx
xxxx
xxxx

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-30:

ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 (CONTINUED)

File Name

Addr

C1RXF11EID

046E

EID<15:8>

C1RXF12SID

0470

SID<10:3>

C1RXF12EID

0472

EID<15:8>

C1RXF13SID

0474

SID<10:3>

C1RXF13EID

0476

EID<15:8>

C1RXF14SID

0478

SID<10:3>

C1RXF14EID

047A

EID<15:8>

C1RXF15SID

047C

SID<10:3>

C1RXF15EID

047E

EID<15:8>

Legend:

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

EXIDE

—

EID<17:16>

—

EID<17:16>

—

EID<17:16>

—

EID<17:16>

EID<7:0>
SID<2:0>

—

xxxx

EID<7:0>
SID<2:0>

—

EXIDE

—

EXIDE

—

EXIDE

EID<7:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

All
Resets

xxxx
xxxx
xxxx
xxxx

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 92

TABLE 4-30:

File Name

ECAN2 REGISTER MAP WHEN WIN (C2CTRL<0>) = 0 OR 1

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

C2CTRL1

0500

—

—

CSIDL

ABAT

CANCKS

C2CTRL2

0502

—

—

—

—

—

C2VEC

0504

—

—

—

C2FCTRL

0506

C2FIFO

0508

—

—

C2INTF

050A

—

—

TXBO

TXBP

RXBP

TXWAR

RXWAR

C2INTE

050C

—

—

—

—

—

—

—

C2EC

050E

C2CFG1

0510

—

—

—

—

—

C2CFG2

0512

—

WAKFIL

—

—

—

C2FEN1

0514

FLTEN15

FLTEN14

FLTEN13

FLTEN12

FLTEN11

DMABS<2:0>

Bit 10

Bit 9

Bit 8

Bit 7

—

—

REQOP<2:0>
—

—

—

Bit 5

OPMODE<2:0>

—

FILHIT<4:0>
—

Bit 6

—

Bit 4

Bit 3

—

CANCAP

—

—

Bit 1

Bit 0

All
Resets

—

—

WIN

0480

DNCNT<4:0>

—
—

Bit 2

0000

ICODE<6:0>
—

—

—

EWARN

IVRIF

WAKIF

ERRIF

—

FIFOIF

RBOVIF

RBIF

TBIF

0000

—

IVRIE

WAKIE

ERRIE

—

FIFOIE

RBOVIE

RBIE

TBIE

0000

FBP<5:0>

—

0040

—

FSA<4:0>

0000

FNRB<5:0>

TERRCNT<7:0>

0000

RERRCNT<7:0>
—

—

—

SEG2PH<2:0>
FLTEN10

FLTEN9

FLTEN8

SJW<1:0>

0000

BRP<5:0>

SEG2PHTS

SAM

SEG1PH<2:0>

FLTEN7

FLTEN6

FLTEN5

FLTEN4

0000
PRSEG<2:0>

FLTEN3

FLTEN2

FLTEN1

0000
FLTEN0

FFFF

C2FMSKSEL1 0518

F7MSK<1:0>

F6MSK<1:0>

F5MSK<1:0>

F4MSK<1:0>

F3MSK<1:0>

F2MSK<1:0>

F1MSK<1:0>

F0MSK<1:0>

0000

C2FMSKSEL2 051A

F15MSK<1:0>

F14MSK<1:0>

F13MSK<1:0>

F12MSK<1:0>

F11MSK<1:0>

F10MSK<1:0>

F9MSK<1:0>

F8MSK<1:0>

0000

Legend:

— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-32:
File Name

Addr.

—

0500051E

ECAN2 REGISTER MAP WHEN WIN (C2CTRL<0>) = 0
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

See Table 4-31
RXFUL9

RXFUL8

RXFUL7

All
Resets
—

C2RXFUL1

0520 RXFUL15 RXFUL14 RXFUL13 RXFUL12 RXFUL11 RXFUL10

RXFUL0

0000

C2RXFUL2

0522 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27 RXFUL26 RXFUL25 RXFUL24 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16

RXFUL6

0000

C2RXOVF1

0528 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF09 RXOVF08 RXOVF7

RXOVF0

0000

C2RXOVF2

052A RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16

0000

RXOVF6

RXFUL5
RXOVF5

RXFUL4
RXOVF4

RXFUL3
RXOVF3

RXFUL2
RXOVF2

RXFUL1
RXOVF1

C2TR01CON 0530

TXEN1

TXABAT1 TXLARB1

TXERR1

TXREQ1

RTREN1

TX1PRI<1:0>

TXEN0

TXABAT0 TXLARB0

TXERR0

TXREQ0

RTREN0

TX0PRI<1:0>

0000

C2TR23CON 0532

TXEN3

TXABAT3 TXLARB3

TXERR3

TXREQ3

RTREN3

TX3PRI<1:0>

TXEN2

TXABAT2 TXLARB2

TXERR2

TXREQ2

RTREN2

TX2PRI<1:0>

0000

C2TR45CON 0534

TXEN5

TXABAT5 TXLARB5

TXERR5

TXREQ5

RTREN5

TX5PRI<1:0>

TXEN4

TXABAT4 TXLARB4

TXERR4

TXREQ4

RTREN4

TX4PRI<1:0>

0000

C2TR67CON 0536

TXEN7

TXABAT7 TXLARB7

TXERR7

TXREQ7

RTREN7

TX7PRI<1:0>

TXEN6

TXABAT6 TXLARB6

TXERR6

TXREQ6

RTREN6

TX6PRI<1:0>

xxxx

DS70616G-page 93

C2RXD

0540

ECAN2 Received Data Word

xxxx

C2TXD

0542

ECAN2 Transmit Data Word

xxxx

Legend:

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-31:

File Name
—

Addr.

ECAN2 REGISTER MAP WHEN WIN (C2CTRL<0>) = 1
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

0500051E

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

See Table 4-31

All
Resets
—

C2BUFPNT1 0520

F3BP<3:0>

F2BP<3:0>

F1BP<3:0>

F0BP<3:0>

0000

C2BUFPNT2 0522

F7BP<3:0>

F6BP<3:0>

F5BP<3:0>

F4BP<3:0>

0000

C2BUFPNT3 0524

F11BP<3:0>

F10BP<3:0>

F9BP<3:0>

F8BP<3:0>

0000

C2BUFPNT4 0526

F15BP<3:0>

F14BP<3:0>

F13BP<3:0>

F12BP<3:0>

C2RXM0SID 0530

SID<10:3>

C2RXM0EID 0532

EID<15:8>

C2RXM1SID 0534

SID<10:3>

C2RXM1EID 0536

EID<15:8>

C2RXM2SID 0538

SID<10:3>

C2RXM2EID 053A

EID<15:8>

C2RXF0SID

0540

SID<10:3>

C2RXF0EID

0542

EID<15:8>

C2RXF1SID

0544

SID<10:3>

C2RXF1EID

0546

EID<15:8>

C2RXF2SID

0548

SID<10:3>

C2RXF2EID

054A

EID<15:8>

 2009-2012 Microchip Technology Inc.

C2RXF3SID

054C

SID<10:3>

C2RXF3EID

054E

EID<15:8>

C2RXF4SID

0550

SID<10:3>

C2RXF4EID

0552

EID<15:8>

C2RXF5SID

0554

SID<10:3>

C2RXF5EID

0556

EID<15:8>

C2RXF6SID

0558

SID<10:3>

C2RXF6EID

055A

EID<15:8>

C2RXF7SID

055C

SID<10:3>

C2RXF7EID

055E

EID<15:8>

C2RXF8SID

0560

SID<10:3>

C2RXF8EID

0562

EID<15:8>

C2RXF9SID

0564

SID<10:3>

C2RXF9EID

0566

EID<15:8>

C2RXF10SID 0568

SID<10:3>

C2RXF10EID 056A

EID<15:8>

C2RXF11SID 056C

SID<10:3>

Legend:

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

SID<2:0>

—

SID<2:0>

—

MIDE

—

EID<17:16>

—

EID<17:16>

EID<7:0>
MIDE

xxxx

EID<7:0>
SID<2:0>

—

MIDE

—

EXIDE

—

EID<17:16>

—

EXIDE

—

EID<17:16>

—

EXIDE

—

EID<17:16>

—

EXIDE

—

EID<17:16>

—

EXIDE

—

EID<17:16>

—

EID<17:16>

—

EXIDE

—

EID<17:16>

—

EXIDE

—

EID<17:16>

—

EXIDE

—

EID<17:16>

—

EXIDE

—

EID<17:16>

—

EXIDE

—

EID<17:16>

—

EXIDE

—

EID<17:16>

—

EXIDE

—

EID<17:16>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

0000
xxxx

xxxx
xxxx
xxxx

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 94

TABLE 4-33:

File Name

Addr.

ECAN2 REGISTER MAP WHEN WIN (C2CTRL<0>) = 1 (CONTINUED)
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

C2RXF11EID 056E

EID<15:8>

C2RXF12SID 0570

SID<10:3>

C2RXF12EID 0572

EID<15:8>

C2RXF13SID 0574

SID<10:3>

C2RXF13EID 0576

EID<15:8>

C2RXF14SID 0578

SID<10:3>

C2RXF14EID 057A

EID<15:8>

C2RXF15SID 057C

SID<10:3>

C2RXF15EID 057E

EID<15:8>

Legend:

Bit 10

Bit 9

Bit 8

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

EID<7:0>
SID<2:0>

—

SID<2:0>

—

EXIDE

xxxx
—

EID<17:16>

—

EID<17:16>

—

EID<17:16>

—

EID<17:16>

EID<7:0>
EXIDE

—

EXIDE

—

EXIDE

EID<7:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

xxxx
xxxx

EID<7:0>
SID<2:0>

All
Resets

xxxx
xxxx
xxxx
xxxx

DS70616G-page 95

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-33:

File Name

PARALLEL MASTER/SLAVE PORT REGISTER MAP
Bit 9

Bit 8

Bit 7

ADRMUX<1:0>

PTBEEN

PTWREN

PTRDEN

INCM<1:0>

MODE16

Bit 2

Bit 1

Bit 0

All
Resets

ALP

CS2P

CS1P

BEP

WRSP

RDSP

0000

Bit 13

Bit 12

PMCON

0600

PMPEN

—

PSIDL

PMMODE

0602

BUSY

PMADDR(1)

0604

CS2

PMDOUT1(1)

0604

Parallel Port Data Out Register 1 (Buffers Level 0 and 1)

0000

PMDOUT2

0606

Parallel Port Data Out Register 2 (Buffers Level 2 and 3)

0000

PMDIN1

0608

Parallel Port Data In Register 1 (Buffers Level 0 and 1)

0000

PMDIN2

060A

Parallel Port Data In Register 2 (Buffers Level 2 and 3)

PMAEN

060C

PTEN15

PTEN14

PTEN13

PTEN12

PTEN11

PTEN10

PTEN9

PTEN8

PTEN7

PTEN6

PTEN5

PTEN4

PTEN3

PTEN2

PTEN1

PTEN0

0000

PMSTAT

060E

IBF

IBOV

—

—

IB3F

IB2F

IB1F

IB0F

OBE

OBUF

—

—

OB3E

OB2E

OB1E

OB0E

008F

Bit 2

Bit 1

Bit 0

All
Resets

—

—

—

0000

—

0000

CSF<1:0>

MODE<1:0>

CS1

Bit 6

Bit 3

Bit 14

Legend:
Note 1:

Bit 10

Bit 4

Bit 15

IRQM<1:0>

Bit 11

Bit 5

Addr.

WAITB<1:0>

WAITM<3:0>

WAITE<1:0>

Parallel Port Address (ADDR<13:0>)

0000
0000

0000

— = unimplemented, read as ‘0’. Shaded bits are not used in the operation of the PMP module.
PMADDR and PMDOUT1 are the same physical register, but are defined differently depending on the module’s operating mode.

TABLE 4-35:
File Name

CRC REGISTER MAP

Addr.

Bit 15

Bit 14

Bit 13

CRCCON1

0640

CRCEN

—

CSIDL

CRCCON2

0642

—

—

—

CRCXORL

0644

CRCXORH

0646

X<31:16>

0000

CRCDATL

0648

CRC Data Input Low Word

0000

CRCDATH

064A

CRC Data Input High Word

0000

CRCWDATL

064C

CRC Result Low Word

0000

CRCWDATH

064E

CRC Result High Word

0000

Legend:

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

VWORD<4:0>

CRCFUL

CRCMPT

CRCISEL

CRCGO

LENDIAN

DWIDTH<4:0>

—

—

—

PLEN<4:0>

0000

X<15:1>

— = unimplemented, read as ‘0’. Shaded bits are not used in the operation of the programmable CRC module.

 2009-2012 Microchip Technology Inc.

TABLE 4-36:
File Name Addr.
ALRMVAL

Bit 12

REAL-TIME CLOCK AND CALENDAR REGISTER MAP
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

0620

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Alarm Value Register Window based on ALRMPTR<1:0>

ALCFGRPT 0622 ALRMEN

CHIME

AMASK<3:0>

ALRMPTR<1:0>

RTCVAL

0624

RCFGCAL

0626

Legend:

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

—

RTCWREN RTCSYNC HALFSEC

RTCOE

RTCPTR<1:0>

Bit 1

Bit 0

All
Resets
xxxx

ARPT<7:0>

RTCC Value Register Window based on RTCPTR<1:0>
RTCEN

Bit 2

0000
xxxx

CAL<7:0>

0000

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 96

TABLE 4-34:

PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814
DEVICES ONLY

File
Name

Addr.

Bit 15

Bit 14

RPOR0

0680

—

—

RPOR1

0682

—

—

RPOR2

0684

—

RPOR3

0686

RPOR4

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 6

RP65R<5:0>

—

—

RP64R<5:0>

0000

RP67R<5:0>

—

—

RP66R<5:0>

0000

—

RP69R<5:0>

—

—

RP68R<5:0>

0000

—

—

RP71R<5:0>

—

—

RP70R<5:0>

0000

0688

—

—

RP80R<5:0>

—

—

RP79R<5:0>

0000

RPOR5

068A

—

—

RP84R<5:0>

—

—

RP82R<5:0>

0000

RPOR6

068C

—

—

RP87R<5:0>

—

—

RP85R<5:0>

0000

RPOR7

068E

—

—

RP97R<5:0>

—

—

RP96R<5:0>

0000

RPOR8

0690

—

—

RP99R<5:0>

—

—

RP98R<5:0>

0000

RPOR9

0692

—

—

RP101R<5:0>

—

—

RP100R<5:0>

0000

RPOR11

0696

—

—

RP108R<5:0>

—

—

RP104R<5:0>

0000

RPOR12

0698

—

—

RP112R<5:0>

—

—

RP109R<5:0>

0000

RPOR13

069A

—

—

RP118R<5:0>

—

—

RP113R<5:0>

0000

RPOR14

069C

—

—

RP125R<5:0>

—

—

RP120R<5:0>

0000

RPOR15

069E

—

—

RP127R<5:0>

—

—

RP126R<5:0>

0000

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

Bit 7

Legend:

Bit 13

DS70616G-page 97

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-37:

PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

File
Name

Addr.

Bit 15

Bit 14

RPOR0

0680

—

—

RPOR1

0682

—

—

RPOR2

0684

—

RPOR3

0686

RPOR4

Bit 6

RP65R<5:0>

—

—

RP64R<5:0>

0000

RP67R<5:0>

—

—

RP66R<5:0>

0000

—

RP69R<5:0>

—

—

RP68R<5:0>

0000

—

—

RP71R<5:0>

—

—

RP70R<5:0>

0688

—

—

RP80R<5:0>

—

—

RPOR5

068A

—

—

RP84R<5:0>

—

—

RP82R<5:0>

0000

RPOR6

068C

—

—

RP87R<5:0>

—

—

RP85R<5:0>

0000

RPOR7

068E

—

—

RP97R<5:0>

—

—

RP96R<5:0>

RPOR8

0690

—

—

RP99R<5:0>

—

—

RPOR9

0692

—

—

RP101R<5:0>

—

—

RPOR13

069A

—

—

RP118R<5:0>

—

—

RPOR14

069C

—

—

—

—

—

Bit 12

—

Bit 11

—

Bit 10

—

Bit 9

—

Bit 8

—

Bit 5

—

Bit 4

—

—

—

—

—

Bit 3

—

—

Bit 2

—

—

Bit 1

Bit 0

All
Resets

Bit 7

Legend:

Bit 13

0000
—

—

0000
—

—

0000

—

—

0000

RP100R<5:0>
—

—

0000

0000

RP120R<5:0>

0000

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-39:

PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXX(GP/MC/MU)806 AND PIC24EPXXXGP806
DEVICES ONLY

 2009-2012 Microchip Technology Inc.

File
Name

Addr.

Bit 15

Bit 14

RPOR0

0680

—

—

RPOR1

0682

—

—

RPOR2

0684

—

RPOR3

0686

RPOR4

Bit 6

RP65R<5:0>

—

—

RP64R<5:0>

0000

RP67R<5:0>

—

—

RP66R<5:0>

0000

—

RP69R<5:0>

—

—

RP68R<5:0>

0000

—

—

RP71R<5:0>

—

—

RP70R<5:0>

0688

—

—

RP80R<5:0>

—

—

RPOR5

068A

—

—

RP84R<5:0>

—

—

RP82R<5:0>

0000

RPOR6

068C

—

—

RP87R<5:0>

—

—

RP85R<5:0>

0000

RPOR7

068E

—

—

RP97R<5:0>

—

—

RP96R<5:0>

0000

RPOR8

0690

—

—

RP99R<5:0>

—

—

RP98R<5:0>

0000

RPOR9

0692

—

—

RP101R<5:0>

—

—

RP100R<5:0>

0000

RPOR10

0694

—

—

—

—

RP102R<5:0>

RPOR13

069A

—

—

—

—

RPOR14

069C

—

—

—

—

—

Bit 12

—

Bit 11

—

Bit 10

—

Bit 9

—

Bit 8

—

RP118R<5:0>
—

—

—

—

—

—

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

Bit 5

—

—

Bit 4

—

—

Bit 3

—

—

Bit 2

—

—

RP120R<5:0>

Bit 1

Bit 0

All
Resets

Bit 7

Legend:

Bit 13

0000
—

—

0000

0000
—

—

0000
0000

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 98

TABLE 4-38:

PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU814 DEVICES ONLY

File
Name

Addr.

Bit 15

RPINR0

06A0

—

RPINR1

06A2

—

RPINR2

06A4

—

RPINR3

06A6

—

T3CKR<6:0>

RPINR4

06A8

—

RPINR5

06AA

RPINR6

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

INT1R<6:0>

—

—

—

—

INT3R<6:0>

—

Bit 3

Bit 2

Bit 1

Bit 0

—

—

—

—

All
Resets
0000

DS70616G-page 99

INT2R<6:0>

0000

—

INT4R<6:0>

0000

—

T2CKR<6:0>

0000

T5CKR<6:0>

—

T4CKR<6:0>

0000

—

T7CKR<6:0>

—

T6CKR<6:0>

0000

06AC

—

T9CKR<6:0>

—

T8CKR<6:0>

0000

RPINR7

06AE

—

IC2R<6:0>

—

IC1R<6:0>

0000

RPINR8

06B0

—

IC4R<6:0>

—

IC3R<6:0>

0000

RPINR9

06B2

—

IC6R<6:0>

—

IC5R<6:0>

0000

RPINR10

06B4

—

IC8R<6:0>

—

IC7R<6:0>

0000

RPINR11

06B6

—

OCFBR<6:0>

—

OCFAR<6:0>

0000

RPINR12

06B8

—

FLT2R<6:0>

—

FLT1R<6:0>

0000

RPINR13

06BA

—

FLT4R<6:0>

—

FLT3R<6:0>

0000

RPINR14

06BC

—

QEB1R<6:0>

—

QEA1R<6:0>

0000

RPINR15

06BE

—

HOME1R<6:0>

—

INDX1R<6:0>

0000

RPINR16

06C0

—

QEB2R<6:0>

—

QEA2R<6:0>

0000

RPINR17

06C2

—

HOME2R<6:0>

—

INDX2R<6:0>

0000

RPINR18

06C4

—

U1CTSR<6:0>

—

U1RXR<6:0>

0000

RPINR19

06C6

—

U2CTSR<6:0>

—

U2RXR<6:0>

0000

RPINR20

06C8

—

SCK1R<6:0>

—

SDI1R<6:0>

0000

RPINR21

06CA

—

—

—

—

—

—

—

—

—

SS1R<6:0>

0000

RPINR23

06CE

—

—

—

—

—

—

—

—

—

SS2R<6:0>

0000

RPINR24

06D0

—

—

CSDIR<6:0>

0000

RPINR25

06D2

—

—

COFSR<6:0>

0000

RPINR26

06D4

—

C2RXR<6:0>

—

C1RXR<6:0>

0000

RPINR27

06D6

—

U3CTSR<6:0>

—

U3RXR<6:0>

0000

RPINR28

06D8

—

U4CTSR<6:0>

—

U4RXR<6:0>

0000

RPINR29

06DA

—

SCK3R<6:0>

—

SDI3R<6:0>

0000

RPINR30

06DC

—

—

SS3R<6:0>

0000

RPINR31

06DE

—

—

SDI4R<6:0>

0000

RPINR32

06E0

—

—

SS4R<6:0>

0000

RPINR33

06E2

—

IC10R<6:0>

—

IC9R<6:0>

0000

RPINR34

06E4

—

IC12R<6:0>

—

IC11R<6:0>

0000

Legend:

—

—

—

—

—

—

—

CSCKR<6:0>
—

—

—

—

—

—

—

—

—

—

—

—

—

—

SCK4R<6:0>
—

—

—

—

—

—

—

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-40:

File
Name

PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU814 DEVICES ONLY (CONTINUED)

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

RPINR35

06E6

—

IC14R<6:0>

—

IC13R<6:0>

0000

RPINR36

06E8

—

IC16R<6:0>

—

IC15R<6:0>

0000

RPINR37

06EA

—

SYNCI1R<6:0>

—

OCFCR<6:0>

0000

RPINR38

06EC

—

DTCMP1R<6:0>

—

SYNCI2R<6:0>

0000

RPINR39

06EE

—

DTCMP3R<6:0>

—

DTCMP2R<6:0>

0000

RPINR40

06F0

—

DTCMP5R<6:0>

—

DTCMP4R<6:0>

0000

RPINR41

06F2

—

DTCMP7R<6:0>

—

DTCMP6R<6:0>

0000

RPINR42

06F4

—

FLT6R<6:0>

—

FLT5R<6:0>

0000

RPINR43

06F6

—

—

FLT7R<6:0>

0000

Legend:

—

—

—

—

—

—

—

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 100

TABLE 4-40:

File
Name

PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

—

—

—

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

—

—

—

—

0000

DS70616G-page 101

RPINR0

06A0

—

INT1R<6:0>

—

RPINR1

06A2

—

INT3R<6:0>

—

INT2R<6:0>

0000

RPINR2

06A4

—

—

INT4R<6:0>

0000

RPINR3

06A6

—

T3CKR<6:0>

—

T2CKR<6:0>

0000

RPINR4

06A8

—

T5CKR<6:0>

—

T4CKR<6:0>

0000

RPINR5

06AA

—

T7CKR<6:0>

—

T6CKR<6:0>

0000

RPINR6

06AC

—

T9CKR<6:0>

—

T8CKR<6:0>

0000

RPINR7

06AE

—

IC2R<6:0>

—

IC1R<6:0>

0000

RPINR8

06B0

—

IC4R<6:0>

—

IC3R<6:0>

0000

RPINR9

06B2

—

IC6R<6:0>

—

IC5R<6:0>

0000

RPINR10

06B4

—

IC8R<6:0>

—

IC7R<6:0>

0000

RPINR11

06B6

—

OCFBR<6:0>

—

OCFAR<6:0>

0000

RPINR12

06B8

—

FLT2R<6:0>

—

FLT1R<6:0>

0000

RPINR13

06BA

—

FLT4R<6:0>

—

FLT3R<6:0>

0000

RPINR14

06BC

—

QEB1R<6:0>

—

QEA1R<6:0>

0000

RPINR15

06BE

—

HOME1R<6:0>

—

INDX1R<6:0>

0000

RPINR16

06C0

—

QEB2R<6:0>

—

QEA2R<6:0>

0000

RPINR17

06C2

—

HOME2R<6:0>

—

INDX2R<6:0>

0000

RPINR18

06C4

—

U1CTSR<6:0>

—

U1RXR<6:0>

0000

RPINR19

06C6

—

U2CTSR<6:0>

—

U2RXR<6:0>

0000

RPINR20

06C8

—

SCK1R<6:0>

—

SDI1R<6:0>

0000

RPINR21

06CA

—

—

—

—

—

—

—

—

—

SS1R<6:0>

0000

RPINR23

06CE

—

—

—

—

—

—

—

—

—

SS2R<6:0>

0000

RPINR24

06D0

—

—

CSDIR<6:0>

0000

RPINR25

06D2

—

—

COFSINR<6:0>

0000

RPINR26

06D4

—

C2RXR<6:0>

—

C1RXR<6:0>

0000

RPINR27

06D6

—

U3CTSR<6:0>

—

U3RXR<6:0>

0000

RPINR28

06D8

—

U4CTSR<6:0>

—

U4RXR<6:0>

0000

RPINR29

06DA

—

SCK3R<6:0>

—

SDI3R<6:0>

0000

RPINR30

06DC

—

—

SS3R<6:0>

0000

RPINR31

06DE

—

—

SDI4R<6:0>

0000

RPINR32

06E0

—

—

SS4R<6:0>

0000

RPINR33

06E2

—

IC10R<6:0>

—

IC9R<6:0>

0000

RPINR34

06E4

—

IC12R<6:0>

—

IC11R<6:0>

0000

Legend:

—

—

—

—

—

—

—

CSCKR<6:0>
—

—

—

—

—

—

—

—

—

—

—

—

—

—

SCK4R<6:0>
—

—

—

—

—

—

—

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-41:

File
Name

PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY (CONTINUED)

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

RPINR35

06E6

—

IC14R<6:0>

—

IC13R<6:0>

0000

RPINR36

06E8

—

IC16R<6:0>

—

IC15R<6:0>

0000

RPINR37

06EA

—

SYNCI1R<6:0>

—

OCFCR<6:0>

0000

RPINR38

06EC

—

DTCMP1R<6:0>

—

SYNCI2R<6:0>

0000

RPINR39

06EE

—

DTCMP3R<6:0>

—

DTCMP2R<6:0>

0000

RPINR40

06F0

—

DTCMP5R<6:0>

—

DTCMP4R<6:0>

0000

RPINR41

06F2

—

—

DTCMP6R<6:0>

0000

RPINR42

06F4

—

—

FLT5R<6:0>

0000

RPINR43

06F6

—

—

FLT7R<6:0>

0000

Legend:

—

—

—

—

—

—

—

FLT6R<6:0>
—

—

—

—

—

—

—

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 102

TABLE 4-41:

File
Name

PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXX(MC/MU)806 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

—

—

—

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

—

—

—

—

0000

DS70616G-page 103

RPINR0

06A0

—

INT1R<6:0>

—

RPINR1

06A2

—

INT3R<6:0>

—

INT2R<6:0>

0000

RPINR2

06A4

—

—

INT4R<6:0>

0000

RPINR3

06A6

—

T3CKR<6:0>

—

T2CKR<6:0>

0000

RPINR4

06A8

—

T5CKR<6:0>

—

T4CKR<6:0>

0000

RPINR5

06AA

—

T7CKR<6:0>

—

T6CKR<6:0>

0000

RPINR6

06AC

—

T9CKR<6:0>

—

T8CKR<6:0>

0000

RPINR7

06AE

—

IC2R<6:0>

—

IC1R<6:0>

0000

RPINR8

06B0

—

IC4R<6:0>

—

IC3R<6:0>

0000

RPINR9

06B2

—

IC6R<6:0>

—

IC5R<6:0>

0000

RPINR10

06B4

—

IC8R<6:0>

—

IC7R<6:0>

0000

RPINR11

06B6

—

OCFBR<6:0>

—

OCFAR<6:0>

0000

RPINR12

06B8

—

FLT2R<6:0>

—

FLT1R<6:0>

0000

RPINR13

06BA

—

FLT4R<6:0>

—

FLT3R<6:0>

0000

RPINR14

06BC

—

QEB1R<6:0>

—

QEA1R<6:0>

0000

RPINR15

06BE

—

HOME1R<6:0>

—

INDX1R<6:0>

0000

RPINR16

06C0

—

QEB2R<6:0>

—

QEA2R<6:0>

0000

RPINR17

06C2

—

HOME2R<6:0>

—

INDX2R<6:0>

0000

RPINR18

06C4

—

U1CTSR<6:0>

—

U1RXR<6:0>

0000

RPINR19

06C6

—

U2CTSR<6:0>

—

U2RXR<6:0>

0000

RPINR20

06C8

—

SCK1R<6:0>

—

SDI1R<6:0>

0000

RPINR21

06CA

—

—

—

—

—

—

—

—

—

SS1R<6:0>

0000

RPINR23

06CE

—

—

—

—

—

—

—

—

—

SS2R<6:0>

0000

RPINR24

06D0

—

—

CSDIR<6:0>

0000

RPINR25

06D2

—

—

COFSINR<6:0>

0000

RPINR26

06D4

—

C2RXR<6:0>

—

C1RXR<6:0>

0000

RPINR27

06D6

—

U3CTSR<6:0>

—

U3RXR<6:0>

0000

RPINR28

06D8

—

U4CTSR<6:0>

—

U4RXR<6:0>

0000

RPINR29

06DA

—

SCK3R<6:0>

—

SDI3R<6:0>

0000

RPINR30

06DC

—

—

SS3R<6:0>

0000

RPINR31

06DE

—

—

SDI4R<6:0>

0000

RPINR32

06E0

—

—

SS4R<6:0>

0000

RPINR33

06E2

—

IC10R<6:0>

—

IC9R<6:0>

0000

RPINR34

06E4

—

IC12R<6:0>

—

IC11R<6:0>

0000

Legend:

—

—

—

—

—

—

—

CSCKR<6:0>
—

—

—

—

—

—

—

—

—

—

—

—

—

—

SCK4R<6:0>
—

—

—

—

—

—

—

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-42:

File
Name

PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXX(MC/MU)806 DEVICES ONLY (CONTINUED)

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

RPINR35

06E6

—

IC14R<6:0>

—

IC13R<6:0>

0000

RPINR36

06E8

—

IC16R<6:0>

—

IC15R<6:0>

0000

RPINR37

06EA

—

SYNCI1R<6:0>

—

OCFCR<6:0>

0000

RPINR38

06EC

—

DTCMP1R<6:0>

—

SYNCI2R<6:0>

0000

RPINR39

06EE

—

DTCMP3R<6:0>

—

DTCMP2R<6:0>

0000

RPINR40

06F0

—

—

DTCMP4R<6:0>

0000

RPINR42

06F4

—

—

FLT5R<6:0>

0000

RPINR43

06F6

—

—

FLT7R<6:0>

0000

Legend:

—

—

—

—

—

—

—

FLT6R<6:0>
—

—

—

—

—

—

—

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 104

TABLE 4-42:

File
Name

PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR PIC24EPXXXGU810/814 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

—

—

—

Bit 3

Bit 2

Bit 1

Bit 0

All
Reset
s

—

—

—

—

0000

DS70616G-page 105

RPINR0

06A0

—

INT1R<6:0>

—

RPINR1

06A2

—

INT3R<6:0>

—

INT2R<6:0>

0000

RPINR2

06A4

—

—

INT4R<6:0>

0000

RPINR3

06A6

—

T3CKR<6:0>

—

T2CKR<6:0>

0000

RPINR4

06A8

—

T5CKR<6:0>

—

T4CKR<6:0>

0000

RPINR5

06AA

—

T7CKR<6:0>

—

T6CKR<6:0>

0000

RPINR6

06AC

—

T9CKR<6:0>

—

T8CKR<6:0>

0000

RPINR7

06AE

—

IC2R<6:0>

—

IC1R<6:0>

0000

RPINR8

06B0

—

IC4R<6:0>

—

IC3R<6:0>

0000

RPINR9

06B2

—

IC6R<6:0>

—

IC5R<6:0>

0000

RPINR10 06B4

—

IC8R<6:0>

—

IC7R<6:0>

0000

RPINR11 06B6

—

OCFBR<6:0>

—

OCFAR<6:0>

0000

RPINR18 06C4

—

U1CTSR<6:0>

—

U1RXR<6:0>

0000

RPINR19 06C6

—

U2CTSR<6:0>

—

U2RXR<6:0>

0000

RPINR20 06C8

—

SCK1R<6:0>

—

SDI1R<6:0>

0000

RPINR21 06CA

—

—

—

—

—

—

—

—

—

SS1R<6:0>

0000

RPINR23 06CE

—

—

—

—

—

—

—

—

—

SS2R<6:0>

0000

RPINR26 06D4

—

C2RXR<6:0>

—

C1RXR<6:0>

0000

RPINR27 06D6

—

U3CTSR<6:0>

—

U3RXR<6:0>

0000

RPINR28 06D8

—

U4CTSR<6:0>

—

U4RXR<6:0>

0000

RPINR29 06DA

—

SCK3R<6:0>

—

SDI3R<6:0>

0000

RPINR30 06DC

—

—

SS3R<6:0>

0000

RPINR31 06DE

—

—

SDI4R<6:0>

0000

RPINR32 06E0

—

—

SS4R<6:0>

0000

RPINR33 06E2

—

IC10R<6:0>

—

IC9R<6:0>

0000

RPINR34 06E4

—

IC12R<6:0>

—

IC11R<6:0>

0000

RPINR35 06E6

—

IC14R<6:0>

—

IC13R<6:0>

0000

RPINR36 06E8

—

IC16R<6:0>

—

IC15R<6:0>

0000

RPINR37 06EA

—

—

OCFCR<6:0>

0000

Legend:

—

—

—

—

—

—

—

—

—

—

—

—

—

—

SCK4R<6:0>
—

—

—

—

—

—

—

—

—

—

—

—

—

—

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-43:

File Name

REFERENCE CLOCK REGISTER MAP
Bit 9

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

—

—

—

—

—

—

—

—

0000

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 2

Bit 1

Bit 0

—

—

—

—

—

Bit 14

Bit 13

Bit 12

REFOCON

074E

ROON

—

ROSSLP

ROSEL

Legend:

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

File Name

Bit 10

Bit 6

Bit 15

TABLE 4-45:

Bit 11

Bit 7

Addr.

Bit 8

RODIV<3:0>

NVM REGISTER MAP
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

NVMCON

0728

WR

WREN

WRERR

NVMSIDL

—

—

—

NVMADR

072A

NVMADRU

072C

—

—

—

—

—

—

—

—

NVMADR<23:16>

0000

NVMKEY

072E

—

—

—

—

—

—

—

—

NVMKEY<7:0>

0000

Legend:

NVMOP<3:0>

0000

NVMADR<15:0>

0000

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-46:
File Name

SYSTEM CONTROL REGISTER MAP

Addr.

Bit 15

Bit 14

RCON

0740

TRAPR

IOPUWR

OSCCON

0742

—

CLKDIV

0744

ROI

PLLFBD

0746

—

—

—

—

—

—

—

OSCTUN

0748

—

—

—

—

—

—

—

—

ACLKCON3

0758

ENAPLL

—

SELACLK

ASRCSEL

FRCSEL

—

ACLKDIV3

075A

—

—

—

—

—

—

 2009-2012 Microchip Technology Inc.

Legend:
Note 1:
2:

Bit 3

All
Resets

Addr.

Bit 13

Bit 12

Bit 11

Bit 10

—

—

VREGSF

—

COSC<2:0>

—

DOZE<2:0>

—

—

Bit 8

CM

VREGS

NOSC<2:0>

DOZEN

AOSCMD<1:0>

Bit 9

FRCDIV<2:0>

Bit 7

Bit 6

Bit 5

Bit 4

EXTR

SWR

SWDTEN

WDTO

CLKLOCK

IOLOCK

LOCK

—

PLLPOST<1:0>

Bit 3

Bit 2

SLEEP IDLE
CF

—

—

Bit 1
BOR
LPOSCEN

Bit 0

All
Resets

POR

Note 1

OSWEN Note 2

PLLPRE<4:0>

PLLDIV<8:0>

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
RCON register Reset values are dependent on the type of Reset.
OSCCON register Reset values are dependent on the Configuration Fuses and by the type of Reset.

—

—

—

—

0030
TUN<5:0>

APLLPOST2<2:0>
—

3040
0000

—

—

APLLPRE<2:0>

0000

—

—

APLLDIV<2:0>

0000

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 106

TABLE 4-44:

File
Addr.
Name

PMD REGISTER MAP FOR dsPIC33EPXXXMU814 DEVICES ONLY

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets
0000

PMD1

0760

T5MD

T4MD

T3MD

T2MD

T1MD

QEI1MD

PWMMD

DCIMD

I2C1MD

U2MD

U1MD

SPI2MD

SPI1MD

C2MD

C1MD

AD1MD

PMD2

0762

IC8MD

IC7MD

IC6MD

IC5MD

IC4MD

IC3MD

IC2MD

IC1MD

OC8MD

OC7MD

OC6MD

OC5MD

OC4MD

OC3MD

OC2MD

OC1MD

0000

PMD3

0764

T9MD

T8MD

T7MD

T6MD

—

CMPMD

RTCCMD

PMPMD

CRCMD

—

QEI2MD

—

U3MD

—

I2C2MD

AD2MD

0000

U4MD

—

REFOMD

—

—

USB1MD

0000

OC9MD

0000

PMD4

0766

—

—

—

—

—

—

—

—

—

—

PMD5

0768

IC16MD

IC15MD

IC14MD

IC13MD

IC12MD

IC11MD

IC10MD

IC9MD

OC16MD

OC15MD

PMD6

076A

—

—

—

PMD7

Legend:

076C

PWM7MD PWM6MD PWM5MD PWM4MD

PWM3MD

PWM2MD PWM1MD

OC14MD OC13MD OC12MD OC11MD OC10MD
—

—

SPI4MD

SPI3MD

0000

—

—

—

—

—

—

—

—

DMA12MD DMA8MD DMA4MD DMA0MD

—

—

—

—

0000

—

—

—

—

—

—

—

—

DMA13MD DMA9MD DMA5MD DMA1MD

—

—

—

—

0000

—

—

—

—

—

—

—

—

DMA14MD DMA10MD DMA6MD DMA2MD

—

—

—

—

0000

—

—

—

—

—

—

—

—

—

—

—

—

0000

Bit 2

Bit 1

Bit 0

All
Resets

—

—

—

DMA11MD DMA7MD DMA3MD

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-48:
File
Addr.
Name

PMD REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

PMD1

0760

T5MD

T4MD

T3MD

T2MD

T1MD

QEI1MD

PWMMD

DCIMD

I2C1MD

U2MD

U1MD

SPI2MD

SPI1MD

C2MD

C1MD

AD1MD

0000

PMD2

0762

IC8MD

IC7MD

IC6MD

IC5MD

IC4MD

IC3MD

IC2MD

IC1MD

OC8MD

OC7MD

OC6MD

OC5MD

OC4MD

OC3MD

OC2MD

OC1MD

0000

PMD3

0764

T9MD

T8MD

T7MD

T6MD

—

CMPMD

RTCCMD

PMPMD

CRCMD

—

QEI2MD

—

U3MD

—

I2C2MD

AD2MD

0000

PMD4

0766

—

—

—

—

—

—

—

—

—

—

U4MD

—

REFOMD

—

—

USB1MD

0000

PMD5

0768

IC16MD

IC15MD

IC14MD

IC13MD

IC12MD

IC11MD

IC10MD

IC9MD

OC16MD

OC15MD

PMD6

076A

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

PMD7

Legend:

076C

PWM6MD PWM5MD PWM4MD

PWM3MD

PWM2MD PWM1MD

OC14MD OC13MD OC12MD OC11MD OC10MD
—

SPI4MD

SPI3MD

0000

DMA12MD DMA8MD DMA4MD DMA0MD

—

—

—

—

0000

DMA13MD DMA9MD DMA5MD DMA1MD

—

—

—

—

0000

DMA14MD DMA10MD DMA6MD DMA2MD

—

—

—

—

0000

—

—

—

—

0000

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

—

0000

—

—

—

OC9MD

DMA11MD DMA7MD DMA3MD

DS70616G-page 107

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-47:

File
Addr.
Name

PMD REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

PMD1

0760

T5MD

T4MD

T3MD

T2MD

T1MD

QEI1MD

PWMMD

DCIMD

I2C1MD

U2MD

U1MD

SPI2MD

SPI1MD

C2MD

C1MD

AD1MD

0000

PMD2

0762

IC8MD

IC7MD

IC6MD

IC5MD

IC4MD

IC3MD

IC2MD

IC1MD

OC8MD

OC7MD

OC6MD

OC5MD

OC4MD

OC3MD

OC2MD

OC1MD

0000

PMD3

0764

T9MD

T8MD

T7MD

T6MD

—

CMPMD

RTCCMD

PMPMD

CRCMD

—

QEI2MD

—

U3MD

—

I2C2MD

AD2MD

0000

PMD4

0766

—

—

—

—

—

—

—

—

—

—

U4MD

—

REFOMD

—

—

USB1MD

0000

PMD5

0768

IC16MD

IC15MD

IC14MD

IC13MD

IC12MD

IC11MD

IC10MD

IC9MD

OC16MD

OC15MD

OC9MD

0000

PMD6

076A

—

—

—

—

PWM4MD

PWM3MD

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

PMD7

Legend:

076C

PWM2MD PWM1MD

OC14MD OC13MD OC12MD OC11MD OC10MD
—

—

SPI4MD

SPI3MD

0000

DMA12MD DMA8MD DMA4MD DMA0MD

—

—

—

—

0000

—

DMA13MD DMA9MD DMA5MD DMA1MD

—

—

—

—

0000

—

DMA14MD DMA10MD DMA6MD DMA2MD

—

—

—

—

0000

—

—

—

—

0000

Bit 2

Bit 1

Bit 0

All
Resets

—

—

—

DMA11MD DMA7MD DMA3MD

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-50:
File
Addr.
Name

PMD REGISTER MAP FOR dsPIC33EPXXXMC806 DEVICES ONLY

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

 2009-2012 Microchip Technology Inc.

PMD1

0760

T5MD

T4MD

T3MD

T2MD

T1MD

QEI1MD

PWMMD

DCIMD

I2C1MD

U2MD

U1MD

SPI2MD

SPI1MD

C2MD

C1MD

AD1MD

0000

PMD2

0762

IC8MD

IC7MD

IC6MD

IC5MD

IC4MD

IC3MD

IC2MD

IC1MD

OC8MD

OC7MD

OC6MD

OC5MD

OC4MD

OC3MD

OC2MD

OC1MD

0000

PMD3

0764

T9MD

T8MD

T7MD

T6MD

—

CMPMD

RTCCMD

PMPMD

CRCMD

—

QEI2MD

—

U3MD

—

I2C2MD

AD2MD

0000

PMD4

0766

—

—

—

—

—

—

—

—

—

—

U4MD

—

REFOMD

—

—

—

0000

PMD5

0768

IC16MD

IC15MD

IC14MD

IC13MD

IC12MD

IC11MD

IC10MD

IC9MD

OC16MD

OC15MD

OC9MD

0000

PMD6

076A

—

—

—

—

PWM4MD

PWM3MD

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

PMD7

Legend:

076C

PWM2MD PWM1MD

OC14MD OC13MD OC12MD OC11MD OC10MD
—

—

SPI4MD

SPI3MD

0000

DMA12MD DMA8MD DMA4MD DMA0MD

—

—

—

—

0000

—

DMA13MD DMA9MD DMA5MD DMA1MD

—

—

—

—

0000

—

DMA14MD DMA10MD DMA6MD DMA2MD

—

—

—

—

0000

—

—

—

—

0000

—

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

—

—

DMA11MD DMA7MD DMA3MD

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 108

TABLE 4-49:

File
Addr.
Name

PMD REGISTER MAP FOR dsPIC33EPXXXGP8XX AND PIC24EPXXXGP8XX DEVICES ONLY

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

PMD1

0760

T5MD

T4MD

T3MD

T2MD

T1MD

—

—

DCIMD

I2C1MD

U2MD

U1MD

SPI2MD

SPI1MD

C2MD

C1MD

AD1MD

0000

PMD2

0762

IC8MD

IC7MD

IC6MD

IC5MD

IC4MD

IC3MD

IC2MD

IC1MD

OC8MD

OC7MD

OC6MD

OC5MD

OC4MD

OC3MD

OC2MD

OC1MD

0000

PMD3

0764

T9MD

T8MD

T7MD

T6MD

—

CMPMD

RTCCMD

PMPMD

CRCMD

—

—

—

U3MD

—

I2C2MD

AD2MD

0000

PMD4

0766

—

—

—

—

—

—

—

—

—

—

U4MD

—

REFOMD

—

—

—

0000

PMD5

0768

IC16MD

IC15MD

IC14MD

IC13MD

IC12MD

IC11MD

IC10MD

IC9MD

OC16MD

OC15MD

OC9MD

0000

PMD6

076A

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

PMD7

Legend:

076C

OC14MD OC13MD OC12MD OC11MD OC10MD
—

—

SPI4MD

SPI3MD

0000

DMA12MD DMA8MD DMA4MD DMA0MD

—

—

—

—

0000

—

DMA13MD DMA9MD DMA5MD DMA1MD

—

—

—

—

0000

—

DMA14MD DMA10MD DMA6MD DMA2MD

—

—

—

—

0000

—

—

—

—

0000

Bit 2

Bit 1

Bit 0

All
Resets

—

—

—

DMA11MD DMA7MD DMA3MD

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-52:
File
Addr.
Name

PMD REGISTER MAP FOR PIC24EPXXXGU810/814 DEVICES ONLY

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

PMD1

0760

T5MD

T4MD

T3MD

T2MD

T1MD

—

—

DCIMD

I2C1MD

U2MD

U1MD

SPI2MD

SPI1MD

C2MD

C1MD

AD1MD

0000

PMD2

0762

IC8MD

IC7MD

IC6MD

IC5MD

IC4MD

IC3MD

IC2MD

IC1MD

OC8MD

OC7MD

OC6MD

OC5MD

OC4MD

OC3MD

OC2MD

OC1MD

0000

PMD3

0764

T9MD

T8MD

T7MD

T6MD

—

CMPMD

RTCCMD

PMPMD

CRCMD

—

—

—

U3MD

—

I2C2MD

AD2MD

0000

PMD4

0766

—

—

—

—

—

—

—

—

—

—

U4MD

—

REFOMD

—

—

USB1MD

0000

PMD5

0768

IC16MD

IC15MD

IC14MD

IC13MD

IC12MD

IC11MD

IC10MD

IC9MD

OC16MD

OC15MD

OC9MD

0000

PMD6

076A

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

PMD7

Legend:

076C

OC14MD OC13MD OC12MD OC11MD OC10MD
—

—

SPI4MD

SPI3MD

0000

DMA12MD DMA8MD DMA4MD DMA0MD

—

—

—

—

0000

—

DMA13MD DMA9MD DMA5MD DMA1MD

—

—

—

—

0000

—

DMA14MD DMA10MD DMA6MD DMA2MD

—

—

—

—

0000

—

—

—

—

0000

—

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

—

—

DMA11MD DMA7MD DMA3MD

DS70616G-page 109

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-51:

File Name

COMPARATOR REGISTER MAP

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

CMSTAT

0A80

CMSIDL

—

—

—

CVRCON

0A82

—

—

—

—

—

C3EVT

C2EVT

C1EVT

—

VREFSEL

CM1CON

0A84

CON

COE

CPOL

—

—

CM1MSKSRC

0A86

—

—

—

—

CM1MSKCON

0A88

HLMS

—

OCEN

OCNEN

OBEN

OBNEN

—

BGSEL<1:0>
CEVT

Bit 7

Bit 3

Bit 2

Bit 1

Bit 0

—

C3OUT

C2OUT

C1OUT

—

—

—

CVROE

CVRR

CVRSS

—

CREF

EVPOL<1:0>

CVR<3:0>
—

SELSRCB<3:0>
OANEN

0A8A

—

—

—

—

—

—

—

—

CM2CON

0A8C

CON

COE

CPOL

—

—

—

CEVT

COUT

CM2MSKSRC

0A8E

—

—

—

—

CM2MSKCON

0A90

HLMS

—

OCEN

OCNEN

OBEN

OBNEN

NAGS

PAGS

—

SELSRCC<3:0>

ACEN
—

ACNEN

ABEN

NAGS

0A92

—

—

—

—

—

—

—

—

CM3CON

0A94

CON

COE

CPOL

—

—

—

CEVT

COUT

CM3MSKSRC

0A96

—

—

—

—

CM3MSKCON

0A98

HLMS

—

OCEN

OCNEN

OBEN

OBNEN

OAEN

OANEN

NAGS

CM3FLTR

0A9A

—

—

—

—

—

—

—

—

—

PAGS

—

—

—

ACNEN

ABEN

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

ACEN
CFSEL<2:0>

AAEN

ABNEN

—

AAEN

ABEN
CFLTREN

ABNEN

CFDIV<2:0>

0000
0000
0000

CCH<1:0>
AAEN

0000

0000
AANEN

SELSRCA<3:0>
ACNEN

0000

0000

CCH<1:0>

CFDIV<2:0>
—

0000

0000
AANEN

CFDIV<2:0>
—

CFLTREN
CREF

SELSRCB<3:0>
PAGS

CCH<1:0>

SELSRCA<3:0>

CFSEL<2:0>

EVPOL<1:0>

SELSRCC<3:0>

ACEN

ABNEN

CFLTREN
CREF

SELSRCB<3:0>
OANEN

—

All
Resets

0000

SELSRCA<3:0>

CFSEL<2:0>

EVPOL<1:0>

CM2FLTR

Legend:

Bit 4

—

COUT

CM1FLTR

OAEN

Bit 5

CVREN

SELSRCC<3:0>
OAEN

Bit 6

0000
0000

AANEN

0000
0000

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 110

TABLE 4-53:

File Name

Addr.

DMAC REGISTER MAP
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

—

—

DMA0CON

0B00

CHEN

SIZE

DIR

HALF

NULLW

—

—

—

DMA0REQ

0B02

FORCE

—

—

—

—

—

—

—

DMA0STAL

0B04

DMA0STAH

0B06

DMA0STBL

0B08

DMA0STBH

0B0A

DMA0PAD

0B0C

DMA0CNT

0B0E

Bit 4

AMODE<1:0>

Bit 3

Bit 2

—

—

Bit 1

Bit 0

MODE<1:0>

IRQSEL<7:0>

—

—

—

—

—

—

—

—

—

—

—

—

—

STA<23:16>

0000
0000

—

STB<23:16>

0000

PAD<15:0>
—

—

0000
CNT<13:0>

0B10

CHEN

SIZE

DIR

HALF

NULLW

—

—

—

DMA1REQ

0B12

FORCE

—

—

—

—

—

—

—

DMA1STAL

0B14

DMA1STAH

0B16

DMA1STBL

0B18

DMA1STBH

0B1A

DMA1PAD

0B1C

DMA1CNT

0B1E

—

0000
—

AMODE<1:0>

—

—

MODE<1:0>

IRQSEL<7:0>

—

—

—

—

—

—

0000

—

STA<23:16>

0000

STB<15:0>
—

—

—

—

—

—

—

0000

—

STB<23:16>

0000

PAD<15:0>
—

—

0000
CNT<13:0>

DMA2CON

0B20

CHEN

SIZE

DIR

HALF

NULLW

—

—

—

DMA2REQ

0B22

FORCE

—

—

—

—

—

—

—

DMA2STAL

0B24

DMA2STAH

0B26

DMA2STBL

0B28

DMA2STBH

0B2A

DMA2PAD

0B2C

DMA2CNT

0B2E

—

0000
—

AMODE<1:0>

—

—

MODE<1:0>

IRQSEL<7:0>

—

—

—

—

—

—

0000

—

STA<23:16>

0000

STB<15:0>
—

—

—

—

—

—

—

0000

—

STB<23:16>

0000

PAD<15:0>
—

—

0000
CNT<13:0>

DS70616G-page 111

DMA2CON

0B30

CHEN

SIZE

DIR

HALF

NULLW

—

—

—

DMA3REQ

0B32

FORCE

—

—

—

—

—

—

—

DMA3STAL

0B34

DMA3STAH

0B36

DMA3STBL

0B38

DMA3STBH

0B3A

DMA3PAD

0B3C

DMA3CNT

0B3E

—

0000
—

AMODE<1:0>

—

—

MODE<1:0>

IRQSEL<7:0>

—

—

—

—

—

—

0000

—

STA<23:16>

0000

STB<15:0>
—

—

—

—

—

—

—

0000

—

STB<23:16>

0000

PAD<15:0>
—

—

0000
CNT<13:0>

DMA4CON

0B40

CHEN

SIZE

DIR

HALF

NULLW

—

—

—

DMA4REQ

0B42

FORCE

—

—

—

—

—

—

—

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

0000
00FF

STA<15:0>
—

0000
00FF

STA<15:0>
—

0000
00FF

STA<15:0>
—

0000
0000

—
STB<15:0>

—

All
Resets

00FF

STA<15:0>

DMA1CON

Legend:

Bit 5

—

0000
—

AMODE<1:0>

—

IRQSEL<7:0>

—

MODE<1:0>

0000
00FF

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-54:

File Name

Addr.

DMA4STAL

0B44

DMA4STAH

0B46

DMA4STBL

0B48

DMA4STBH

0B4A

DMA4PAD

0B4C

DMA4CNT

0B4E

DMAC REGISTER MAP (CONTINUED)
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

—

—

—

—

—

—

—

Bit 8

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

STA<15:0>
STA<23:16>

0000

STB<15:0>
—

—

—

—

—

—

—

0000

—

STB<23:16>

0000

PAD<15:0>
—

—

0000
CNT<13:0>

0B50

CHEN

SIZE

DIR

HALF

NULLW

—

—

—

DMA5REQ

0B52

FORCE

—

—

—

—

—

—

—

DMA5STAL

0B54

DMA5STAH

0B56

DMA5STBL

0B58

DMA5STBH

0B5A

DMA5PAD

0B5C

DMA5CNT

0B5E

—

0000
—

AMODE<1:0>

—

—

MODE<1:0>

IRQSEL<7:0>

—

—

—

—

—

—

0000

—

STA<23:16>

0000

STB<15:0>
—

—

—

—

—

—

—

0000

—

STB<23:16>

0000

PAD<15:0>
—

—

0000
CNT<13:0>

DMA6CON

0B60

CHEN

SIZE

DIR

HALF

NULLW

—

—

—

DMA6REQ

0B62

FORCE

—

—

—

—

—

—

—

DMA6STAL

0B64

DMA6STAH

0B66

DMA6STBL

0B68

DMA6STBH

0B6A

DMA6PAD

0B6C

DMA6CNT

0B6E

—

0000
—

AMODE<1:0>

—

—

MODE<1:0>

IRQSEL<7:0>

—

—

—

—

—

—

0000

—

STA<23:16>

0000

STB<15:0>
—

—

—

—

—

—

—

0000

—

STB<23:16>

0000

PAD<15:0>
—

—

0000
CNT<13:0>

 2009-2012 Microchip Technology Inc.

DMA7CON

0B70

CHEN

SIZE

DIR

HALF

NULLW

—

—

—

DMA7REQ

0B72

FORCE

—

—

—

—

—

—

—

DMA7STAL

0B74

DMA7STAH

0B76

DMA7STBL

0B78

DMA7STBH

0B7A

DMA7PAD

0B7C

DMA7CNT

0B7E

—

0000
—

AMODE<1:0>

—

—

MODE<1:0>

IRQSEL<7:0>

—

—

—

—

—

—

0000

—

STA<23:16>

0000

STB<15:0>
—

—

—

—

—

—

—

0000

—

STB<23:16>

0000

PAD<15:0>
—

—

0000
CNT<13:0>

DMA8CON

0B80

CHEN

SIZE

DIR

HALF

NULLW

—

—

—

DMA8REQ

0B82

FORCE

—

—

—

—

—

—

—

DMA8STAL

0B84

DMA8STAH

0B86

DMA8STBL

0B88

—

0000
—

AMODE<1:0>

—

IRQSEL<7:0>

STA<15:0>
—

—

—

—

—

—

—

—
STB<15:0>

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

0000
00FF

STA<15:0>
—

0000
00FF

STA<15:0>
—

0000
00FF

STA<15:0>
—

All
Resets
0000

—

DMA5CON

Legend:

Bit 7

—

MODE<1:0>

0000
00FF
0000

STA<23:16>

0000
0000

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 112

TABLE 4-54:

File Name

DMAC REGISTER MAP (CONTINUED)

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

DMA8STBH

0B8A

—

—

—

—

—

—

—

DMA8PAD

0B8C

DMA8CNT

0B8E

Bit 8
—

—

—

0B90

CHEN

SIZE

DIR

HALF

NULLW

—

—

—

0B92

FORCE

—

—

—

—

—

—

—

DMA9STAL

0B94

DMA9STAH

0B96

DMA9STBL

0B98

DMA9STBH

0B9A

DMA9PAD

0B9C

DMA9CNT

0B9E

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—
SIZE

DIR

HALF

NULLW

—

—

—

—

—

—

—

—

—

—

DMA10STAL 0BA4
—

—

—

—

—

—

DMA10STBL 0BA8

DMA11STAL

0BB4

—

—

—

—

—

—

—

CHEN

SIZE

DIR

HALF

NULLW

—

—

—

FORCE

—

—

—

—

—

—

—

0BBE

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

CHEN

SIZE

DIR

HALF

NULLW

—

—

—

—

—

—

—

—

—

—

DS70616G-page 113

DMA12STAL 0BC4

Legend:

0000
—

0000
—

AMODE<1:0>

—

—

MODE<1:0>

IRQSEL<7:0>

—

—

—

—

—

—

—

0000
0000
0000
STB<23:16>

0000
0000

—

0000
—

AMODE<1:0>

—

—

MODE<1:0>

IRQSEL<7:0>

—

—

—

—

—

—

0000
0000
0000
STB<23:16>

0000
0000

—

0000
—

AMODE<1:0>

—

IRQSEL<7:0>
STA<23:16>

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

MODE<1:0>

0000
00FF
0000
0000

—

—

—

0000

—

STB<23:16>

PAD<15:0>
—

0000
00FF

STA<23:16>

STB<15:0>
—

0000
00FF

STA<23:16>

STA<15:0>

DMA12STBL 0BC8

0BCE

0000

CNT<13:0>

FORCE

DMA12CNT

0000

PAD<15:0>

0BC0

0BCC

0000

STB<23:16>

—

0BC2

DMA12PAD

0000

STB<15:0>
—

0000
00FF

STA<23:16>

—

DMA12REQ

DMA12STBH 0BCA

MODE<1:0>

STA<15:0>

DMA12CON

DMA12STAH 0BC6

—

CNT<13:0>

DMA11STBL 0BB8

DMA11CNT

—

PAD<15:0>

0BB2

0BBC

AMODE<1:0>

IRQSEL<7:0>

—

0BB0

DMA11PAD

—

STB<15:0>

—

DMA11STBH 0BBA

—

—

—

DMA11STAH 0BB6

0000

STA<15:0>
—

All
Resets
0000

CNT<13:0>

CHEN

DM11AREQ

Bit 0

PAD<15:0>

FORCE

DMA11CON

Bit 1

0000

—

0BA0

0BAE

Bit 2

STB<15:0>

0BA2

DMA10CNT

Bit 3

STB<23:16>

—

DMA10REQ

0BAC

Bit 4

STA<15:0>

DMA10CON

DMA10PAD

Bit 5

CNT<13:0>

DMA9REQ

DMA10STBH 0BAA

Bit 6

PAD<15:0>

DMA9CON

DMA10STAH 0BA6

Bit 7

0000
0000

CNT<13:0>

0000

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-54:

File Name

Addr.

DMA13CON 0BD0
DMA13REQ

0BD2

DMAC REGISTER MAP (CONTINUED)
Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

CHEN

SIZE

DIR

HALF

NULLW

—

—

—

—

—

FORCE

—

—

—

—

—

—

—

DMA13STAL 0BD4
DMA13STAH 0BD6

DMA13PAD

0BDC

DMA13CNT

0BDE

DMA14CON
DMA14REQ

—

—

—

—

—

—

—

Bit 3

Bit 2

—

—

Bit 1

Bit 0

MODE<1:0>

IRQSEL<7:0>

—

—

—

—

—

—

—

0000
0000

STB<23:16>

0000

PAD<15:0>
CHEN

SIZE

DIR

HALF

NULLW

—

—

—

0BE2

FORCE

—

—

—

—

—

—

—

0000
CNT<13:0>

DMA14STAL 0BE4

—

0000
—

AMODE<1:0>

—

—

MODE<1:0>

IRQSEL<7:0>

—

—

—

—

—

—

DMA14STBL 0BE8

0000

—

STA<23:16>

0000

STB<15:0>
—

—

—

—

—

—

—

0000
00FF

STA<15:0>
—

0000
0000

STA<23:16>

—

0BE0

All
Resets

00FF

STB<15:0>

—

DMA14STBH 0BEA

AMODE<1:0>

—

—

DMA14STAH 0BE6

Bit 4

STA<15:0>

DMA13STBL 0BD8
DMA13STBH 0BDA

Bit 5

0000

—

STB<23:16>

0000

DMA14PAD

0BEC

DMA14CNT

0BEE

—

DMAPWC

0BF0

—

PWCOL14 PWCOL13 PWCOL12 PWCOL11 PWCOL10 PWCOL9 PWCOL8 PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWCOL0

0000

DMARQC

0BF2

—

RQCOL14 RQCOL13 RQCOL12 RQCOL11 RQCOL10 RQCOL9 RQCOL8 RQCOL7 RQCOL6 RQCOL5 RQCOL4 RQCOL3 RQCOL2 RQCOL1 RQCOL0

0000

DMAPPS

0BF4

—

PPST14

PPST13

PPST12

PPST11

PPST10

PPST9

PPST8

PPST7

PPST6

PPST5

PPST4

DMALCA

0BF6

—

—

—

—

—

—

—

—

—

—

—

—

DSADRL

0BF8

DSADRH

0BFA

Legend:

PAD<15:0>
—

0000
CNT<13:0>

0000

PPST3

DSADR<15:0>
—

—

—

—

—

—

—

—

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

PPST2

PPST1

LSTCH<3:0>

PPST0

0000
000F
0000

DSADR<23:16>

0000

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 114

TABLE 4-54:

File
Name

PORTA REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

TRISA

0E00

TRISA15

TRISA14

—

—

—

TRISA10

TRISA9

—

TRISA7

TRISA6

TRISA5

TRISA4

TRISA3

TRISA2

TRISA1

TRISA0

C6FF

PORTA

0E02

RA15

RA14

—

—

—

RA10

RA9

—

RA7

RA6

RA5

RA4

RA3

RA2

RA1

RA0

xxxx

LATA

0E04

LATA15

LATA14

—

—

—

LATA10

LATA9

—

LATA7

LATA6

LATA5

LATA4

LATA3

LATA2

LATA1

LATA0

xxxx

ODCA

0E06

ODCA15

ODCA14

—

—

—

—

—

—

—

—

ODCA5

ODCA4

ODCA3

ODCA2

ODCA1

ODCA0

0000

CNENA

0E08

CNIEA15

CNIEA14

—

—

—

CNIEA10

CNIEA9

—

CNIEA7

CNIEA6

CNIEA5

CNIEA4

CNIEA3

CNIEA2

CNIEA1

CNIEA0

0000

CNPUA

0E0A CNPUA15 CNPUA14

—

—

—

CNPUA10 CNPUA9

—

CNPUA7 CNPUA6 CNPUA5 CNPUA4 CNPUA3 CNPUA2 CNPUA1 CNPUA0

0000

CNPDA

0E0C CNPDA15 CNPDA14

—

—

—

CNPDA10 CNPDA9

—

CNPDA7 CNPDA6 CNPDA5 CNPDA4 CNPDA3 CNPDA2 CNPDA1 CNPDA0

ANSELA

0E0E

—

—

—

Legend:

—

ANSA10

ANSA9

—

ANSA7

ANSA6

0000

—

—

—

—

—

—

06C0

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-56:
File
Name

—

PORTB REGISTER MAP

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

TRISB

0E10

TRISB15

TRISB14

TRISB13

TRISB12

TRISB11

TRISB10

TRISB9

TRISB8

TRISB7

TRISB6

TRISB5

TRISB4

TRISB3

TRISB2

TRISB1

TRISB0

FFFF

PORTB

0E12

RB15

RB14

RB13

RB12

RB11

RB10

RB9

RB8

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

xxxx

LATB

0E14

LATB15

LATB14

LATB13

LATB12

LATB11

LATB10

LATB9

LATB8

LATB7

LATB6

LATB5

LATB4

LATB3

LATB2

LATB1

LATB0

xxxx

ODCB

0E16

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

0000

CNENB

0E18

CNIEB15

CNIEB14

CNIEB13

CNIEB12

CNIEB11

CNIEB10

CNIEB9

CNIEB8

CNIEB7

CNIEB6

CNIEB5

CNIEB4

CNIEB3

CNIEB2

CNIEB1

CNIEB0

0000

CNPUB

0E1A CNPUB15 CNPUB14

CNPUB13 CNPUB12 CNPUB11 CNPUB10

CNPUB9

CNPUB8 CNPUB7 CNPUB6 CNPUB5 CNPUB4 CNPUB3 CNPUB2 CNPUB1 CNPUB0

0000

CNPDB

0E1C CNPDB15 CNPDB14

CNPDB13 CNPDB12 CNPDB11 CNPDB10

CNPDB9

CNPDB8 CNPDB7 CNPDB6 CNPDB5 CNPDB4 CNPDB3 CNPDB2 CNPDB1 CNPDB0

0000

ANSELB 0E1E
Legend:

ANSB15

ANSB14

ANSB13

ANSB12

ANSB11

ANSB10

ANSB9

ANSB8

ANSB7

ANSB6

ANSB5

ANSB4

ANSB3

ANSB2

ANSB1

ANSB0

FFFF

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-57:

PORTC REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

TRISC

0E20

TRISC15

TRISC14

TRISC13

TRISC12

—

—

—

—

—

—

—

TRISC4

TRISC3

TRISC2

TRISC1

—

F01E

PORTC

0E22

RC15

RC14

RC13

RC12

—

—

—

—

—

—

—

RC4

RC3

RC2

RC1

—

xxxx

LATC

0E24

LATC15

LATC14

LATC13

LATC12

—

—

—

—

—

—

—

LATC4

LATC3

LATC2

LATC1

—

xxxx

ODCC

0E26

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

0000

CNENC

0E28

CNIEC15

CNIEC14

CNIEC13

CNIEC12

—

—

—

—

—

—

—

CNIEC4

CNIEC3

CNIEC2

CNIEC1

—

0000

CNPUC

0E2A CNPUC15 CNPUC14 CNPUC13 CNPUC12

—

—

—

—

—

—

—

CNPUC4 CNPUC3 CNPUC2 CNPUC1

—

0000

CNPDC

0E2C CNPDC15 CNPDC14 CNPDC13 CNPDC12

—

—

—

—

—

—

—

CNPDC4 CNPDC3 CNPDC2 CNPDC1

—

0000

—

—

—

—

—

—

—

—

601E

File
Name

DS70616G-page 115

ANSELC 0E2E
Legend:

—

ANSC14

ANSC13

—

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

ANSC4

ANSC3

ANSC2

ANSC1

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-55:

File
Name

PORTC REGISTER MAP FOR dsPIC33EPXXX(GP/MC/MU)806 AND PIC24EPXXXGP806 DEVICES ONLY

Addr,

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

TRISC

0E20

TRISC15

TRISC14

TRISC13

TRISC12

—

—

—

—

—

—

—

—

—

—

—

—

F000

PORTC

0E22

RC15

RC14

RC13

RC12

—

—

—

—

—

—

—

—

—

—

—

—

xxxx

LATC

0E24

LATC15

LATC14

LATC13

LATC12

—

—

—

—

—

—

—

—

—

—

—

—

xxxx

ODCC

0E26

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

0000

CNENC

0E28

CNIEC15

CNIEC14

CNIEC13

CNIEC12

—

—

—

—

—

—

—

—

—

—

—

—

0000

CNPUC

0E2A CNPUC15 CNPUC14 CNPUC13 CNPUC12

—

—

—

—

—

—

—

—

—

—

—

—

0000

CNPDC

0E2C CNPDC15 CNPDC14 CNPDC13 CNPDC12

—

—

—

—

—

—

—

—

—

—

—

—

0000

—

—

—

—

—

—

—

—

—

—

—

—

6000

ANSELC 0E2E
Legend:

ANSC14

ANSC13

—

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-59:
File
Name

—

PORTD REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

TRISD

0E30

TRISD15

TRISD14

TRISD13

TRISD12

TRISD11

TRISD10

TRISD9

TRISD8

TRISD7

TRISD6

TRISD5

TRISD4

TRISD3

TRISD2

TRISD1

TRISD0

FFFF

PORTD

0E32

RD15

RD14

RD13

RD12

RD11

RD10

RD9

RD8

RD7

RD6

RD5

RD4

RD3

RD2

RD1

RD0

xxxx

LATD

0E34

LATD15

LATD14

LATD13

LATD12

LATD11

LATD10

LATD9

LATD8

LATD7

LATD6

LATD5

LATD4

LATD3

LATD2

LATD1

LATD0

xxxx

ODCD

0E36

ODCD15

ODCD14

ODCD13

ODCD12

ODCD11

ODCD10

ODCD9

ODCD8

—

—

ODCD5

ODCD4

ODCD3

ODCD2

ODCD1

ODCD0

0000

CNEND

0E38

CNIED15

CNIED14

CNIED13

CNIED12

CNIED11

CNIED10

CNIED9

CNIED8

CNIED7

CNIED6

CNIED5

CNIED4

CNIED3

CNIED2

CNIED1

CNIED0

0000

CNPUD

0E3A CNPUD15 CNPUD14 CNPUD13 CNPUD12 CNPUD11 CNPUD10 CNPUD9 CNPUD8 CNPUD7 CNPUD6 CNPUD5 CNPUD4 CNPUD3 CNPUD2 CNPUD1 CNPUD0

0000

CNPDD

0E3C CNPDD15 CNPDD14 CNPDD13 CNPDD12 CNPDD11 CNPDD10 CNPDD9 CNPDD8 CNPDD7 CNPDD6 CNPDD5 CNPDD4 CNPDD3 CNPDD2 CNPDD1 CNPDD0

ANSELD 0E3E
Legend:

—

—

—

—

—

—

—

ANSD7

ANSD6

—

—

—

—

0000

—

—

00C0

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-60:
 2009-2012 Microchip Technology Inc.

File
Name

—

PORTD REGISTER MAP FOR dsPIC33EPXXX(GP/MC/MU)806 AND PIC24EPXXXGP806 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

TRISD

0E30

—

—

—

—

TRISD11

TRISD10

TRISD9

TRISD8

TRISD7

TRISD6

TRISD5

TRISD4

TRISD3

TRISD2

TRISD1

TRISD0

0FFF

PORTD

0E32

—

—

—

—

RD11

RD10

RD9

RD8

RD7

RD6

RD5

RD4

RD3

RD2

RD1

RD0

xxxx

LATD

0E34

—

—

—

—

LATD11

LATD10

LATD9

LATD8

LATD7

LATD6

LATD5

LATD4

LATD3

LATD2

LATD1

LATD0

xxxx

ODCD

0E36

—

—

—

—

ODCD11

ODCD10

ODCD9

ODCD8

—

—

ODCD5

ODCD4

ODCD3

ODCD2

ODCD1

ODCD0

0000

CNEND

0E38

—

—

—

—

CNIED11

CNIED10

CNIED9

CNIED8

CNIED7

CNIED6

CNIED5

CNIED4

CNIED3

CNIED2

CNIED1

CNIED0

0000

CNPUD

0E3A

—

—

—

—

CNPUD11 CNPUD10 CNPUD9 CNPUD8 CNPUD7 CNPUD6 CNPUD5 CNPUD4 CNPUD3 CNPUD2 CNPUD1 CNPUD0

0000

CNPDD

0E3C

—

—

—

—

CNPDD11 CNPDD10 CNPDD9 CNPDD8 CNPDD7 CNPDD6 CNPDD5 CNPDD4 CNPDD3 CNPDD2 CNPDD1 CNPDD0

0000

ANSELD 0E3E

—

—

—

—

Legend:

—

—

—

—

ANSD7

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

ANSD6

—

—

—

—

—

—

00C0

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 116

TABLE 4-58:

File
Name

PORTE REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

TRISE

0E40

—

—

—

—

—

—

TRISE9

TRISE8

TRISE7

TRISE6

TRISE5

TRISE4

TRISE3

TRISE2

TRISE1

TRISE0

03FF

PORTE

0E42

—

—

—

—

—

—

RE9

RE8

RE7

RE6

RE5

RE4

RE3

RE2

RE1

RE0

xxxx

LATE

0E44

—

—

—

—

—

—

LATE9

LATE8

LATE7

LATE6

LATE5

LATE4

LATE3

LATE2

LATE1

LATE0

xxxx

ODCE

0E46

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

0000

CNENE

0E48

—

—

—

—

—

—

CNIEE9

CNIEE8

CNIEE7

CNIEE6

CNIEE5

CNIEE4

CNIEE3

CNIEE2

CNIEE1

CNIEE0

0000

CNPUE

0E4A

—

—

—

—

—

—

CNPUE9 CNPUE8 CNPUE7 CNPUE6 CNPUE5 CNPUE4 CNPUE3 CNPUE2 CNPUE1 CNPUE0

0000

CNPDE

0E4C

—

—

—

—

—

—

CNPDE9 CNPDE8 CNPDE7 CNPDE6 CNPDE5 CNPDE4 CNPDE3 CNPDE2 CNPDE1 CNPDE0

0000

ANSELE 0E4E

—

—

—

—

—

—

Legend:

ANSE8

ANSE7

ANSE6

ANSE5

ANSE4

ANSE3

ANSE2

ANSE1

ANSE0

03FF

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-62:
File
Name

ANSE9

PORTE REGISTER MAP FOR dsPIC33EPXXX(GP/MC/MU)806 AND PIC24EPXXXGP806 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

TRISE

0E40

—

—

—

—

—

—

—

—

TRISE7

TRISE6

TRISE5

TRISE4

TRISE3

TRISE2

TRISE1

TRISE0

00FF

PORTE

0E42

—

—

—

—

—

—

—

—

RE7

RE6

RE5

RE4

RE3

RE2

RE1

RE0

xxxx

LATE

0E44

—

—

—

—

—

—

—

—

LATE7

LATE6

LATE5

LATE4

LATE3

LATE2

LATE1

LATE0

xxxx

ODCE

0E46

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

0000

CNENE

0E48

—

—

—

—

—

—

—

—

CNIEE7

CNIEE6

CNIEE5

CNIEE4

CNIEE3

CNIEE2

CNIEE1

CNIEE0

0000

CNPUE

0E4A

—

—

—

—

—

—

—

—

CNPUE7 CNPUE6 CNPUE5 CNPUE4 CNPUE3 CNPUE2 CNPUE1 CNPUE0

0000

CNPDE

0E4C

—

—

—

—

—

—

—

—

CNPDE7 CNPDE6 CNPDE5 CNPDE4 CNPDE3 CNPDE2 CNPDE1 CNPDE0

ANSELE 0E4E

—

—

—

—

—

—

—

—

Legend:

ANSE7

ANSE6

ANSE5

ANSE4

ANSE3

ANSE2

0000

ANSE1

ANSE0

00FF

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-63:

PORTF REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

TRISF

0E50

—

—

TRISF13

TRISF12

—

—

—

TRISF8

—

—

TRISF5

TRISF4

TRISF3

TRISF2

TRISF1

TRISF0

313F

PORTF

0E52

—

—

RF13

RF12

—

—

—

RF8

—

—

RF5

RF4

RF3

RF2

RF1

RF0

xxxx

LATF

0E54

—

—

LATF13

LATF12

—

—

—

LATF8

—

—

LATF5

LATF4

LATF3

LATF2

LATF1

LATF0

xxxx

ODCF

0E56

—

—

ODCF13

ODCF12

—

—

—

ODCF8

—

—

ODCF5

ODCF4

ODCF3

ODCF2

ODCF1

ODCF0

0000

CNENF

0E58

—

—

CNIEF13

CNIEF12

—

—

—

CNIEF8

—

—

CNIEF5

CNIEF4

CNIEF3

CNIEF2

CNIEF1

CNIEF0

0000

CNPUF

0E5A

—

—

CNPUF13

CNPUF12

—

—

—

CNPUF8

—

—

CNPUF5 CNPUF4 CNPUF3 CNPUF2 CNPUF1 CNPUF0

0000

CNPDF

0E5C

—

—

CNPDF13

CNPDF12

—

—

—

CNPDF8

—

—

CNPDF5 CNPDF4 CNPDF3 CNPDF2 CNPDF1 CNPDF0

ANSELF

0E5E

—

—

—

—

—

—

—

—

—

—

File
Name

DS70616G-page 117

Legend:

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

—

—

—

—

—

—

0000
0000

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-61:

File
Name

PORTF REGISTER MAP FOR dsPIC33EPXXX(GP/MC)806 AND PIC24EPXXXGP806 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

TRISF

0E50

—

—

—

—

—

—

—

—

—

TRISG6

TRISF5

TRISF4

TRISF3

TRISF2

TRISF1

TRISF0

003B

PORTF

0E52

—

—

—

—

—

—

—

—

—

RG6

RF5

RF4

RF3

RF2

RF1

RF0

xxxx

LATF

0E54

—

—

—

—

—

—

—

—

—

LATG6

LATF5

LATF4

LATF3

LATF2

LATF1

LATF0

xxxx

ODCF

0E56

—

—

—

—

—

—

—

—

—

ODCF6

ODCF5

ODCF4

ODCF3

ODCF2

ODCF1

ODCF0

0000

CNENF

0E58

—

—

—

—

—

—

—

—

—

CNIEG6

CNIEF5

CNIEF4

CNIEF3

CNIEF2

CNIEF1

CNIEF0

0000

CNPUF

0E5A

—

—

—

—

—

—

—

—

—

CNPUG6 CNPUF5 CNPUF4 CNPUF3 CNPUF2 CNPUF1 CNPUF0

0000

CNPDF

0E5C

—

—

—

—

—

—

—

—

—

CNPDG6 CNPDF5 CNPDF4 CNPDF3 CNPDF2 CNPDF1 CNPDF0

ANSELF

0E5E

—

—

—

—

—

—

—

—

—

Legend:

—

—

—

—

—

—

0000

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-65:
File
Name

0000

—

PORTF REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

TRISF

0E50

—

—

—

—

—

—

—

—

—

—

TRISF5

TRISF4

TRISF3

—

TRISF1

TRISF0

003B

PORTF

0E52

—

—

—

—

—

—

—

—

—

—

RF5

RF4

RF3

—

RF1

RF0

xxxx

LATF

0E54

—

—

—

—

—

—

—

—

—

—

LATF5

LATF4

LATF3

—

LATF1

LATF0

xxxx

ODCF

0E56

—

—

—

—

—

—

—

—

—

—

ODCF5

ODCF4

ODCF3

—

ODCF1

ODCF0

0000

CNENF

0E58

—

—

—

—

—

—

—

—

—

—

CNIEF5

CNIEF4

CNIEF3

—

CNIEF1

CNIEF0

0000

CNPUF

0E5A

—

—

—

—

—

—

—

—

—

—

CNPUF5 CNPUF4 CNPUF3

—

CNPUF1 CNPUF0

0000

CNPDF

0E5C

—

—

—

—

—

—

—

—

—

—

CNPDF5 CNPDF4 CNPDF3

—

CNPDF1 CNPDF0

ANSELF

0E5E

—

—

—

—

—

—

—

—

—

—

Legend:

—

—

—

0000

 2009-2012 Microchip Technology Inc.

—

—

0000

Bit 2

Bit 1

Bit 0

All
Resets
F3C3

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-66:
File
Name

—

PORTG REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

TRISG

0E60

TRISG15

TRISG14

TRISG13

TRISG12

—

—

TRISG9

TRISG8

TRISG7

TRISG6

—

—

—

—

TRISG1

TRISG0

PORTG

0E62

RG15

RG14

RG13

RG12

—

—

RG9

RG8

RG7

RG6

—

—

RG3(1)

RG2(1)

RG1

RG0

xxxx

LATG

0E64

LATG15

LATG14

LATG13

LATG12

—

—

LATG9

LATG8

LATG7

LATG6

—

—

—

—

LATG1

LATG0

xxxx

ODCG

0E66

ODCG15

ODCG14

ODCG13

ODCG12

—

—

—

—

—

—

—

—

—

—

ODCG1

ODCG0

0000

CNENG

0E68

CNIEG15

CNIEG14

CNIEG13

CNIEG12

—

—

CNIEG9

CNIEG8

CNIEG7

CNIEG6

—

—

CNIEG3(1)

CNIEG2(1)

CNIEG1

CNIEG0

0000

CNPUG

0E6A

CNPUG15

CNPUG14

CNPUG13

CNPUG12

—

—

CNPUG9 CNPUG8 CNPUG7 CNPUG6

—

—

—

—

CNPUG1 CNPUG0

0000

CNPDG

0E6C

CNPDG15

CNPDG14

CNPDG13

CNPDG12

—

—

CNPDG9 CNPDG8 CNPDG7 CNPDG6

—

—

—

—

CNPDG1 CNPDG0

0000

ANSELG

0E6E

—

—

—

—

—

—

—

—

—

—

Legend:
Note 1:

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
If RG2 and RG3 are used as general purpose inputs, the VUSB3V3 pin must be connected to VDD.

ANSG9

ANSG8

ANSG7

ANSG6

Bit 3

—

—

03C0

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 118

TABLE 4-64:

File
Name

PORTG REGISTER MAP FOR dsPIC33EPXXX(GP/MC)806 AND PIC24EPXXXGP806 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

TRISG

0E60

—

—

—

—

—

—

TRISG9

TRISG8

TRISG7

TRISG6

—

—

TRISG3

TRISG2

—

—

03C0

PORTG

0E62

—

—

—

—

—

—

RG9

RG8

RG7

RG6

—

—

RG3(1)

RG2(1)

—

—

xxxx

LATG

0E64

—

—

—

—

—

—

LATG9

LATG8

LATG7

LATG6

—

—

LATG3

LATG2

—

—

xxxx

ODCG

0E66

—

—

—

—

—

—

—

—

—

—

—

—

ODCG3

ODCG2

—

—

0000

CNENG

0E68

—

—

—

—

—

—

CNIEG9

CNIEG8

CNIEG7

CNIEG6

—

—

CNIEG3(1) CNIEG2(1)

—

—

0000

CNPUG

0E6A

—

—

—

—

—

—

CNPUG9 CNPUG8 CNPUG7 CNPUG6

—

—

CNPUG3

CNPUG2

—

—

0000

CNPDG

0E6C

—

—

—

—

—

—

CNPDG9 CNPDG8 CNPDG7 CNPDG6

—

—

CNPDG3

CNPDG2

—

—

0000

ANSELG 0E6E

—

—

—

—

—

—

—

—

—

—

—

—

03C0

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

Legend:
Note 1:

ANSG8

ANSG7

ANSG6

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
If RG2 and RG3 are used as general purpose inputs, the VUSB3V3 pin must be connected to VDD.

TABLE 4-68:
File
Name

ANSG9

PORTG REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

TRISG

0E60

—

—

—

—

—

—

TRISG9

TRISG8

TRISG7

TRISG6

—

—

—

—

—

—

03C0

PORTG

0E62

—

—

—

—

—

—

RG9

RG8

RG7

RG6

—

—

RG3(1)

RG2(1)

—

—

xxxx

LATG

0E64

—

—

—

—

—

—

LATG9

LATG8

LATG7

LATG6

—

—

—

—

—

—

xxxx

ODCG

0E66

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

0000

CNENG

0E68

—

—

—

—

—

—

CNIEG9

CNIEG8

CNIEG7

CNIEG6

—

—

—

—

0000

CNPUG

0E6A

—

—

—

—

—

—

CNPUG9 CNPUG8 CNPUG7 CNPUG6

—

—

—

—

—

—

0000

CNPDG

0E6C

—

—

—

—

—

—

CNPDG9 CNPDG8 CNPDG7 CNPDG6

—

—

—

—

—

—

0000

ANSELG 0E6E

—

—

—

—

—

—

—

—

—

—

—

—

03C0

Legend:
Note 1:

ANSG9

ANSG8

ANSG7

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
If RG2 and RG3 are used as general purpose inputs, the VUSB3V3 pin must be connected to VDD.

ANSG6

CNIEG3(1) CNIEG2(1)

DS70616G-page 119

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-67:

File
Name

PORTH REGISTER MAP FOR dsPIC33EPXXXMU814 AND PIC24EPXXXGU814 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

TRISH

0E70

TRISH15

TRISH14

TRISH13

TRISH12

TRISH11

TRISH10

TRISH9

TRISH8

TRISH7

TRISH6

TRISH5

TRISH4

TRISH3

TRISH2

TRISH1

TRISH0

FFFF

PORTH

0E72

RH15

RH14

RH13

RH12

RH11

RH10

RH9

RH8

RH7

RH6

RH5

RH4

RH3

RH2

RH1

RH0

xxxx

LATH

0E74

LATH15

LATH14

LATH13

LATH12

LATH11

LATH10

LATH9

LATH8

LATH7

LATH6

LATH5

LATH4

LATH3

LATH2

LATH1

LATH0

xxxx

ODCH

0E76

ODCH15

ODCH14

ODCH13

ODCH12

ODCH11

ODCH10

ODCH9

ODCH8

ODCH7

ODCH6

ODCH5

ODCH4

ODCH3

ODCH2

ODCH1

ODCH0

0000

CNENH

0E78

CNIEH15

CNIEH14

CNIEH13

CNIEH12

CNIEH11

CNIEH10

CNIEH9

CNIEH8

CNIEH7

CNIEH6

CNIEH5

CNIEH4

CNIEH3

CNIEH2

CNIEH1

CNIEH0

0000

CNPUH

0E7A CNPUH15 CNPUH14 CNPUH13 CNPUH12 CNPUH11 CNPUH10 CNPUH9 CNPUH8 CNPUH7 CNPUH6 CNPUH5 CNPUH4 CNPUH3 CNPUH2 CNPUH1 CNPUH0

0000

CNPDH

0E7C CNPDH15 CNPDH14 CNPDH13 CNPDH12 CNPDH11 CNPDH10 CNPDH9 CNPDH8 CNPDH7 CNPDH6 CNPDH5 CNPDH4 CNPDH3 CNPDH2 CNPDH1 CNPDH0

0000

ANSELH 0E7E
Legend:

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

0000

All
Resets

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-70:
File
Name

—

PORTJ REGISTER MAP FOR dsPIC33EPXXXMU814 AND PIC24EPXXXGU814 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

TRISJ

0E80

TRISJ15

TRISJ14

TRISJ13

TRISJ12

TRISJ11

TRISJ10

TRISJ9

TRISJ8

TRISJ7

TRISJ6

TRISJ5

TRISJ4

TRISJ3

TRISJ2

TRISJ1

TRISJ0

FFFF

PORTJ

0E82

RJ15

RJ14

RJ13

RJ12

RJ12

RJ10

RJ9

RJ8

RJ7

RJ6

RJ5

RJ4

RJ3

RJ2

RJ1

RJ0

xxxx

LATJ

0E84

LATJ15

LATJ14

LATJ13

LATJ12

LATJ11

LATJ10

LATJ9

LATJ8

LATJ7

LATJ6

LATJ5

LATJ4

LATJ3

LATJ2

LATJ1

LATJ0

xxxx

ODCJ

0E86

ODCJ15

ODCJ14

ODCJ13

ODCJ12

ODCJ11

ODCJ10

ODCJ9

ODCJ8

ODCJ7

ODCJ6

ODCJ5

ODCJ4

ODCJ3

ODCJ2

ODCJ1

ODCJ0

0000

CNENJ

0E88

CNIEJ15

CNIEJ14

CNIEJ13

CNIEJ12

CNIEJ11

CNIEJ10

CNIEJ9

CNIEJ8

CNIEJ7

CNIEJ6

CNIEJ5

CNIEJ4

CNIEJ3

CNIEJ2

CNIEJ1

CNIEJ0

0000

CNPUJ

0E8A CNPUJ15

CNPUJ14

CNPUJ13

CNPUJ12

CNPUJ11

CNPUJ10

CNPUJ9

CNPUJ8

CNPUJ7

CNPUJ6

CNPUJ5

CNPUJ4

CNPUJ3

CNPUJ2

CNPUJ1

CNPUJ0

0000

CNPDJ

0E8C CNPDJ15

CNPDJ14

CNPDJ13

CNPDJ12

CNPDJ11

CNPDJ10

CNPDJ9

CNPDJ8

CNPDJ7

CNPDJ6

CNPDJ5

CNPDJ4

CNPDJ3

CNPDJ2

CNPDJ1

CNPDJ0

0000

ANSELJ

0E8E

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

0000

Legend:

—

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 120

TABLE 4-69:

File
Name

PORTK REGISTER MAP FOR dsPIC33EPXXXMU814 AND PIC24EPXXXGU814 DEVICES ONLY

Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

TRISK

0E90

TRISK15

TRISK14

TRISK13

TRISK12

TRISK11

—

—

—

—

—

—

—

—

—

TRISK1

TRISK0

F803

PORTK

0E92

RK15

RK14

RK13

RK12

RK11

—

—

—

—

—

—

—

—

—

RK1

RK0

xxxx

LATK

0E94

LATK15

LATK14

LATK13

LATK12

LATK11

—

—

—

—

—

—

—

—

—

LATK1

LATK0

xxxx

ODCK

0E96

ODCK15

ODCK14

ODCK13

ODCK12

ODCK11

—

—

—

—

—

—

—

—

—

ODCK1

ODCK0

0000

CNENK

0E98

CNIEK15

CNIEK14

CNIEK13

CNIEK12

CNIEK11

—

—

—

—

—

—

—

—

—

CNIEK1

CNIEK0

0000

CNPUK

0E9A

CNPUK15

CNPUK14

CNPUK13

CNPUK12

CNPUK11

—

—

—

—

—

—

—

—

—

CNPUK1

CNPUK0

0000

CNPDK

0E9C CNPDK15

CNPDK14

CNPDK13

CNPDK12

CNPDK11

—

—

—

—

—

—

—

—

—

CNPDK1

CNPDK0

0000

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

0000

ANSELK 0E9E
Legend:

—

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

TABLE 4-72:

PAD CONFIGURATION REGISTER MAP

File Name Addr.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

All
Resets

PADCFG1 0EFE

—

—

—

—

—

—

—

—

—

—

—

—

—

—

RTSECSEL

PMPTTL

0000

Legend:

x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

DS70616G-page 121

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

TABLE 4-71:

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
4.4.1

PAGED MEMORY SCHEME

Construction of the EDS address is shown in Figure 4-1.
When DSRPAG<9> = 0 and the base address bit,
EA<15> = 1, DSRPAG<8:0> is concatenated onto
EA<14:0> to form the 24-bit EDS read address.
Similarly, when the base address bit, EA<15> = 1,
DSWPAG<8:0> is concatenated onto EA<14:0> to form
the 24-bit EDS write address.

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 architecture extends
the available data space through a paging scheme,
which allows the available data space to be accessed
using MOV instructions in a linear fashion for pre- and
post-modified Effective Addresses (EA). The upper half
of Base Data Space address is used in conjunction with
the Data Space Page registers, the 10-Bit Read Page
register (DSRPAG) or the 9-Bit Write Page register
(DSWPAG), to form an Extended Data Space (EDS)
address or Program Space Visibility (PSV) address.
The Data Space Page registers are located in the SFR
space.

EXAMPLE 4-1:

EXTENDED DATA SPACE (EDS) READ ADDRESS GENERATION
16-Bit DS EA

EA<15> = 0
(DSRPAG = Don't Care)

0

No EDS Access

Byte
Select

EA

EA<15>
Generate
PSV Address

Y

DSRPAG<9>
= 1?

1

EA

N
Select
DSRPAG
0

DSRPAG<8:0>

9 Bits

15 Bits

Byte
Select

24-Bit EDS EA
Note: DS read access when DSRPAG = 0x000 will force an address error trap.

DS70616G-page 122

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
EXAMPLE 4-2:

EXTENDED DATA SPACE (EDS) WRITE ADDRESS GENERATION
16-Bit DS EA

Byte
Select

EA<15> = 0
(DSWPAG = Don’t Care)
Generate
PSV Address

0

No EDS Access

EA

EA<15>
1

EA

DSWPAG<8:0>

9 Bits

15 Bits

24-Bit EDS EA

Byte
Select

Note: DS read access when DSRPAG = 0x000 will force an address error trap.

The paged memory scheme provides access to
multiple 32-Kbyte windows in the EDS and PSV
memory. The Data Space Page registers DSxPAG, in
combination with the upper half of data space address
can provide up to 16 Mbytes of additional address
space in the EDS and 12 Mbytes (DSRPAG only) of
PSV address space. The paged data memory space is
shown in Example 4-3.

 2009-2012 Microchip Technology Inc.

The Program Space (PS) can be accessed with
DSRPAG of 0x200 or greater. Only reads from PS are
supported using the DSRPAG. Writes to PS are not
supported, so DSWPAG is dedicated to DS, including
EDS, only. The data space and EDS can be read from
and written to using DSRPAG and DSWPAG,
respectively.

DS70616G-page 123

PAGED DATA MEMORY SPACE
Local Data Space

Program Space
(Instruction and Data)

EDS
(DSRPAG<9:0>/DSWPAG<8:0>)
DS_Addr<14:0>
0x0000
Page 0

0x7FFF
0x0000

0x7FFF

Reserved
(Will produce an
address error trap)

Table Address Space
(TBLPAG<7:0>)

DS_Addr<15:0>
0x0000

EDS Page 0x001
(DSRPAG = 0x001)
(DSWPAG = 0x001)

Program Memory
(lsw – <15:0>)
0x00_0000
0xFFFF

DS_Addr<15:0>
0x0000

0x0000
SFR Registers

0x0FFF
0x1000

0x7FFF
0x0000
Up to 28 Kbytes
RAM

0x7FFF

0x7FFF

EDS Page 0x1FF
(DSRPAG = 0x1FF)
(DSWPAG = 0x1FF)
EDS Page 0x200
(DSRPAG = 0x200)
No Writes Allowed

0x0000

0xFFFF
 2009-2012 Microchip Technology Inc.

0x7FFF
0x0000

0x7FFF

0x0000

0x7FFF

0x7F_FFFF
PSV
Program
Memory
(lsw)

0x8000
32 Kbytes
EDS Window

0x0000

EDS Page 0x2FF
(DSRPAG = 0x2FF)
No Writes Allowed

0xFFFF
Program Memory
(MSB – <23:16>)
0x00_0000

EDS Page 0x300
(DSRPAG = 0x300)
No Writes Allowed
PSV
Program
Memory
(MSB)
EDS Page 0x3FF
(DSRPAG = 0x3FF)
No Writes Allowed

0x7F_FFFF

(TBLPAG = 0x00)
lsw using
TBLRDL/TBLWTL
MSB using
TBLRDH/TBLWTH

(TBLPAG = 0x7F)
lsw using
TBLRDL/TBLWTL
MSB using
TBLRDH/TBLWTH

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 124

EXAMPLE 4-3:

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
Allocating different Page registers for read and write
access allows the architecture to support data
movement between different pages in data memory.
This is accomplished by setting the DSRPAG register
value to the page from which you want to read and
configuring the DSWPAG register to the page to which
it needs to be written. Data can also be moved from
different PSV to EDS pages, by configuring the
DSRPAG and DSWPAG registers to address PSV and
EDS space, respectively. The data can be moved
between pages by a single instruction.

In general, when an overflow is detected, the DSxPAG
register is incremented and the EA<15> bit is set to
keep the base address within the EDS or PSV window.
When an underflow is detected, the DSxPAG register is
decremented and the EA<15> bit is set to keep the
base address within the EDS or PSV window. This
creates a linear EDS and PSV address space, but only
when using Register Indirect Addressing modes.
Exceptions to the operation described above arise
when entering and exiting the boundaries of Page 0,
EDS and PSV spaces. Table 4-73 lists the effects of
overflow and underflow scenarios at different
boundaries.

When an EDS or PSV page overflow or underflow
occurs, EA<15> is cleared as a result of the register
indirect EA calculation. An overflow or underflow of the
EA in the EDS or PSV pages can occur at the page
boundaries when:

In the following cases, when overflow or underflow
occurs, the EA<15> bit is set and the DSxPAG is not
modified; therefore, the EA will wrap to the beginning of
the current page:

• The initial address, prior to modification,
addresses an EDS or PSV page.
• The EA calculation uses Pre- or Post-Modified
Register Indirect Addressing. However, this does
not include Register Offset Addressing.

TABLE 4-73:

• Register Indirect with Register Offset Addressing
• Modulo Addressing
• Bit-Reversed Addressing

OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS and
PSV SPACE BOUNDARIES(2,3,4)
Before

O/U,
R/W

Operation

O,
Read

DSxPAG

DS
EA<15>

After
Page
Description

DSxPAG

DS
EA<15>

Page
Description

DSRPAG = 0x1FF

1

EDS: Last page

DSRPAG = 0x1FF

0

See Note 1

DSRPAG = 0x2FF

1

PSV: Last lsw
page

DSRPAG = 0x300

1

PSV: First MSB
page

DSRPAG = 0x3FF

1

PSV: Last MSB
page

DSRPAG = 0x3FF

0

See Note 1

O,
Write

DSWPAG = 0x1FF

1

EDS: Last page

DSWPAG = 0x1FF

0

See Note 1

U,
Read

DSRPAG = 0x001

1

EDS page

DSRPAG = 0x001

0

See Note 1

DSRPAG = 0x200

1

PSV: First lsw
page

DSRPAG = 0x200

0

See Note 1

DSRPAG = 0x300

1

PSV: First MSB
page

DSRPAG = 0x2FF

1

PSV: Last lsw
page

O,
Read

[++Wn]
or
[Wn++]

O,
Read

[--Wn]
or
[Wn--]

U,
Read
U,
Read
Legend:
Note 1:
2:
3:
4:

O = Overflow, U = Underflow, R = Read, W = Write
Register Indirect Addressing now addresses a location in the Base Data Space (0x0000-0x8000).
An EDS access with DSxPAG = 0x000 will generate an address error trap.
Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate
an address error trap.
Pseudo-Linear Addressing is not supported for large offsets.

 2009-2012 Microchip Technology Inc.

DS70616G-page 125

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
4.4.2

EXTENDED X DATA SPACE

The lower half of the base address space range, between
0x0000 and 0x7FFF, is always accessible regardless of
the contents of the Data Space Page registers. It is
indirectly addressable through the register indirect
instructions. It can be regarded as being located in the
default EDS Page 0 (i.e., EDS address range of
0x000000 to 0x007FFF with the base address bit,
EA<15> = 0, for this address range). However, Page 0
cannot be accessed through the upper 32 Kbytes
(0x8000 to 0xFFFF) of Base Data Space, in combination
with DSRPAG = 0x00 or DSWPAG = 0x00.
Consequently, DSRPAG and DSWPAG are initialized to
0x001 at Reset.
Note 1: DSxPAG should not be used to access
Page 0. An EDS access with DSxPAG
set to 0x000 will generate an address
error trap.
2: Clearing DSxPAG in software has no
effect.

FIGURE 4-7:

The remaining pages including both EDS and PSV
pages are only accessible using the DSRPAG or
DSWPAG registers in combination with the upper
32 Kbytes, 0x8000 to 0xFFFF, of the base address,
where base address bit, EA<15> = 1.
For example, when DSRPAG = 0x01 or
DSWPAG = 0x01, accesses to the upper 32 Kbytes,
0x8000 to 0xFFFF, of the data space will map to the
EDS address range of 0x008000 to 0x00FFFF.
When DSRPAG = 0x02 or DSWPAG = 0x02,
accesses to the upper 32 Kbytes of the data space
will map to the EDS address range of 0x010000 to
0x017FFF and so on, as shown in the EDS memory
map in Figure 4-7.
For more information of the PSV page access using
Data Space Page registers refer to Section 4.5
“Program Space Visibility from Data Space” in
Section 4. “Program Memory” (DS70613) of the
“dsPIC33E/PIC24E Family Reference Manual”.

EDS MEMORY MAP
EA<15:0>
0x0000

Conventional
DS Address

SFR/DS

0x8000
DS

(PAGE 0)
Page 1

0xFFFF
Page 2
Page 3

0x008000
0x010000
0x018000

DSRPAG<9> = 0
EDS EA Address (24 bits)
(DSRPAG<8:0>, EA<14:0>)
(DSWPAG<8:0>, EA<14:0>)
Page 1FD
Page 1FE
Page 1FF

DS70616G-page 126

0xFE8000
0xFF0000
0xFF8000

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
4.4.3

EDS ARBITRATION AND BUS
MASTER PRIORITY

respectively (M1 is reserved and cannot be used). The
user application may raise or lower the priority of the
masters to be above that of the CPU by setting the
appropriate bits in the EDS Bus Master Priority Control
(MSTRPR) register. All bus masters with raised
priorities will maintain the same priority relationship
relative to each other (i.e., M1 being highest and M3
being lowest, with M2 in between). Also, all the bus
masters with priorities below that of the CPU maintain
the same priority relationship relative to each other.
The priority schemes for bus masters with different
MSTRPR values are tabulated in Table 4-74.

EDS accesses from bus masters in the system are
arbitrated.
The arbiter for data memory (including EDS) arbitrates
between the CPU, the DMA, the USB module and the
ICD module. In the event of coincidental access to a
bus by the bus masters, the arbiter determines which
bus master access has the highest priority. The other
bus masters are suspended and processed after the
access of the bus by the bus master with the highest
priority.

This bus master priority control allows the user
application to manipulate the real-time response of the
system, either statically during initialization, or
dynamically in response to real-time events.

By default, the CPU is Bus Master 0 (M0) with the
highest priority and the ICD is Bus Master 4 (M4) with
the lowest priority. The remaining bus masters (USB
and DMA Controllers) are allocated to M2 and M3,

TABLE 4-74:
Priority
M0 (highest)

EDS BUS ARBITER PRIORITY
MSTRPR<15:0> Bit Setting(1)
0x0000

0x0008

0x0020

0x0028

CPU

USB

DMA

USB

M1

Reserved

CPU

CPU

DMA

M2

USB

Reserved

Reserved

CPU

M3

DMA

DMA

USB

Reserved

M4 (lowest)

ICD

ICD

ICD

ICD

Note 1:

All other values of MSTRPR<15:0> are reserved.

FIGURE 4-8:

EDS ARBITER ARCHITECTURE

DPSRAM

DMA

USB

CPU

ICD

Reserved

MSTRPR<15:0>

M0

M1

M2

M3

M4

EDS Arbiter

SRAM

 2009-2012 Microchip Technology Inc.

DS70616G-page 127

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
4.4.4

SOFTWARE STACK

FIGURE 4-9:

The W15 register serves as a dedicated software Stack
Pointer (SP) and is automatically modified by exception
processing, subroutine calls and returns; however,
W15 can be referenced by any instruction in the same
manner as all other W registers. This simplifies
reading, writing and manipulating of the Stack Pointer
(for example, creating stack frames).

0x0000 15

To protect against misaligned stack
accesses, W15<0> is fixed to ‘0’ by the
hardware.

W15 is initialized to 0x1000 during all Resets. This
address ensures that the SP points to valid RAM in
all dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 devices and permits
stack availability for non-maskable trap exceptions.
These can occur before the SP is initialized by the user
software. You can reprogram the SP during
initialization to any location within data space.
The Stack Pointer always points to the first available
free word and fills the software stack working from
lower toward higher addresses. Figure 4-9 illustrates
how it pre-decrements for a stack pop (read) and
post-increments for a stack push (writes).
When the PC is pushed onto the stack, PC<15:0> is
pushed onto the first available stack word, then
PC<22:16> is pushed into the second available stack
location. For a PC push during any CALL instruction,
the MSB of the PC is zero-extended before the push,
as shown in Figure 4-9. During exception processing,
the MSB of the PC is concatenated with the lower 8 bits
of the CPU STATUS Register, SR. This allows the
contents of SRL to be preserved automatically during
interrupt processing.
Note 1: For main system Stack Pointer (W15)
coherency, W15 is never subject to
(EDS) paging and is therefore,
restricted to the address range of
0x0000 to 0xFFFF. The same applies to
W14 when used as a Stack Frame
Pointer (SFA = 1).
2: As the stack can be placed in and
across X, Y and DMA RAM spaces,
care must be exercised regarding its
use, particularly with regard to local
automatic variables in a C development
environment.

4.5

PC<15:1>

W15 (before CALL)

b‘000000000’ PC<22:16>



W15 (after CALL)

Instruction Addressing Modes

The addressing modes, shown in Table 4-75, form the
basis of the addressing modes optimized to support the
specific features of individual instructions. The
addressing modes provided in the MAC class of
instructions differ from those in the other instruction
types.

4.5.1

FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field
(f) to directly address data present in the first
8192 bytes of data memory (Near Data Space). Most
file register instructions employ a working register, W0,
which is denoted as WREG in these instructions. The
destination is typically either the same file register or
WREG (with the exception of the MUL instruction),
which writes the result to a register or register pair. The
MOV instruction allows additional flexibility and can
access the entire data space.

4.5.2

MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:
Operand 3 = Operand 1  Operand 2
where Operand 1 is always a working register (that is,
the addressing mode can only be Register Direct),
which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The
result location can be either a W register or a data
memory location. The following addressing modes are
supported by MCU instructions:
•
•
•
•
•

Register Direct
Register Indirect
Register Indirect Post-Modified
Register Indirect Pre-Modified
5-bit or 10-bit Literal
Note:

DS70616G-page 128

0
CALL SUBR

Stack Grows Toward
Higher Address

Note:

CALL STACK FRAME

Not all instructions support all of the
addressing modes given above. Individual instructions can support different
subsets of these addressing modes.

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

TABLE 4-75:

FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode
File Register Direct

Description
The address of the file register is specified explicitly.

Register Direct

The contents of a register are accessed directly.

Register Indirect

The contents of Wn forms the Effective Address (EA).

Register Indirect Post-Modified

The contents of Wn forms the EA. Wn is post-modified (incremented
or decremented) by a constant value.

Register Indirect Pre-Modified

Wn is pre-modified (incremented or decremented) by a signed constant value
to form the EA.

Register Indirect with Register Offset The sum of Wn and Wb forms the EA.
(Register Indexed)
Register Indirect with Literal Offset

4.5.3

The sum of Wn and a literal forms the EA.

MOVE AND ACCUMULATOR
INSTRUCTIONS

Move instructions (dsPIC33EPXXXMU806/810/814
and PIC24EPXXXGU810/814) and the DSP accumulator class of instructions (dsPIC33EPXXXMU806/810/
814 only) provide a greater degree of addressing
flexibility than other instructions. In addition to the
addressing modes supported by most MCU
instructions, move and accumulator instructions also
support Register Indirect with Register Offset
Addressing mode, also referred to as Register Indexed
mode.
Note:

For the MOV instructions, the addressing
mode specified in the instruction can differ
for the source and destination EA.
However, the 4-bit Wb (Register Offset)
field is shared by both source and
destination (but typically only used by
one).

In summary, the following addressing modes are
supported by move and accumulator instructions:
•
•
•
•
•
•
•
•

Register Direct
Register Indirect
Register Indirect Post-modified
Register Indirect Pre-modified
Register Indirect with Register Offset (Indexed)
Register Indirect with Literal Offset
8-Bit Literal
16-Bit Literal
Note:

Not all instructions support all the
addressing modes given above. Individual
instructions may support different subsets
of these addressing modes.

 2009-2012 Microchip Technology Inc.

4.5.4

MAC INSTRUCTIONS
(dsPIC33EPXXXMU806/810/814
DEVICES ONLY)

The dual source operand DSP instructions (CLR, ED,
EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred
to as MAC instructions, use a simplified set of addressing
modes to allow the user application to effectively
manipulate the Data Pointers through register indirect
tables.
The two-source operand prefetch registers must be
members of the set {W8, W9, W10, W11}. For data
reads, W8 and W9 are always directed to the X RAGU,
and W10 and W11 are always directed to the Y AGU.
The Effective Addresses generated (before and after
modification) must, therefore, be valid addresses within
X data space for W8 and W9 and Y data space for W10
and W11.
Note:

Register Indirect with Register Offset
Addressing mode is available only for W9
(in X space) and W11 (in Y space).

In summary, the following addressing modes are
supported by the MAC class of instructions:
•
•
•
•
•

Register Indirect
Register Indirect Post-Modified by 2
Register Indirect Post-Modified by 4
Register Indirect Post-Modified by 6
Register Indirect with Register Offset (Indexed)

4.5.5

OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some
instructions use literal constants of various sizes. For
example, BRA (branch) instructions use 16-bit signed
literals to specify the branch destination directly, whereas
the DISI instruction uses a 14-bit unsigned literal field. In
some instructions, such as ULNK, the source of an
operand or result is implied by the opcode itself. Certain
operations, such as NOP, do not have any operands.

DS70616G-page 129

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
4.6

Modulo Addressing
(dsPIC33EPXXXMU806/810/814
Devices Only)

Modulo Addressing mode is a method of providing an
automated means to support circular data buffers using
hardware. The objective is to remove the need for
software to perform data address boundary checks
when executing tightly looped code, as is typical in
many DSP algorithms.
Modulo Addressing can operate in either data or
Program Space (since the Data Pointer mechanism is
essentially the same for both). One circular buffer can be
supported in each of the X (which also provides the pointers into Program Space) and Y data spaces. Modulo
Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo
Addressing since these two registers are used as the
Stack Frame Pointer and Stack Pointer, respectively.
In general, any particular circular buffer can be configured to operate in only one direction as there are
certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing
buffers), based upon the direction of the buffer.
The only exception to the usage restrictions is for
buffers that have a power-of-two length. As these
buffers satisfy the start and end address criteria, they
can operate in a bidirectional mode (that is, address
boundary checks are performed on both the lower and
upper address boundaries).

4.6.1

START AND END ADDRESS

The Modulo Addressing scheme requires that a
starting and ending address be specified and loaded
into the 16-bit Modulo Buffer Address registers:
XMODSRT, XMODEND, YMODSRT and YMODEND
(see Table 4-1).
Note:

Y space Modulo Addressing EA calculations assume word-sized data (LSb of
every EA is always clear).

The length of a circular buffer is not directly specified. It
is determined by the difference between the
corresponding start and end addresses. The maximum
possible length of the circular buffer is 32K words
(64 Kbytes).

4.6.2

W ADDRESS REGISTER
SELECTION

The Modulo and Bit-Reversed Addressing Control
register, MODCON<15:0>, contains enable flags as well
as a W register field to specify the W Address registers.
The XWM and YWM fields select the registers that
operate with Modulo Addressing:
• If XWM = 1111, X RAGU and X WAGU Modulo
Addressing is disabled.
• If YWM = 1111, Y AGU Modulo Addressing is
disabled.
The X Address Space Pointer W register (XWM), to
which Modulo Addressing is to be applied, is stored in
MODCON<3:0> (see Table 4-1). Modulo Addressing is
enabled for X data space when XWM is set to any value
other than ‘1111’ and the XMODEN bit is set at
MODCON<15>.
The Y Address Space Pointer W register (YWM) to
which Modulo Addressing is to be applied is stored in
MODCON<7:4>. Modulo Addressing is enabled for Y
data space when YWM is set to any value other than
‘1111’ and the YMODEN bit is set at MODCON<14>.

FIGURE 4-10:

MODULO ADDRESSING OPERATION EXAMPLE

Byte
Address
0x1100

0x1163

Start Addr = 0x1100
End Addr = 0x1163
Length = 0x0032 words

DS70616G-page 130

MOV
MOV
MOV
MOV
MOV
MOV

#0x1100, W0
W0, XMODSRT
#0x1163, W0
W0, MODEND
#0x8001, W0
W0, MODCON

MOV

#0x0000, W0

;W0 holds buffer fill value

MOV

#0x1110, W1

;point W1 to buffer

DO
AGAIN, #0x31
MOV
W0, [W1++]
AGAIN: INC W0, W0

;set modulo start address
;set modulo end address
;enable W1, X AGU for modulo

;fill the 50 buffer locations
;fill the next location
;increment the fill value

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
4.6.3

MODULO ADDRESSING
APPLICABILITY

Modulo Addressing can be applied to the Effective
Address (EA) calculation associated with any W
register. Address boundaries check for addresses
equal to:
• The upper boundary addresses for incrementing
buffers
• The lower boundary addresses for decrementing
buffers
It is important to realize that the address boundaries
check for addresses less than or greater than the upper
(for incrementing buffers) and lower (for decrementing
buffers) boundary addresses (not just equal to).
Address changes can, therefore, jump beyond
boundaries and still be adjusted correctly.
Note:

4.7

The modulo corrected Effective Address
is written back to the register only when
Pre-Modify or Post-Modify Addressing
mode is used to compute the Effective
Address. When an address offset (such
as [W7 + W2]) is used, Modulo
Addressing correction is performed but
the contents of the register remain
unchanged.

Bit-Reversed Addressing
(dsPIC33EPXXXMU806/810/814
Devices Only)

Bit-Reversed Addressing mode is intended to simplify
data reordering for radix-2 FFT algorithms. It is
supported by the X AGU for data writes only.
The modifier, which can be a constant value or register
contents, is regarded as having its bit order reversed.
The address source and destination are kept in normal
order. Thus, the only operand requiring reversal is the
modifier.

4.7.1

If the length of a bit-reversed buffer is M = 2N bytes,
the last ‘N’ bits of the data buffer start address must
be zeros.
XB<14:0> is the Bit-Reversed Address modifier, or
‘pivot point,’ which is typically a constant. In the case of
an FFT computation, its value is equal to half of the FFT
data buffer size.
Note:

All bit-reversed EA calculations assume
word-sized data (LSb of every EA is
always clear). The XB value is scaled
accordingly to generate compatible (byte)
addresses.

When enabled, Bit-Reversed Addressing is executed
only for Register Indirect with Pre-Increment or PostIncrement Addressing and word-sized data writes. It
does not function for any other addressing mode or for
byte-sized data and normal addresses are generated
instead. When Bit-Reversed Addressing is active, the
W Address Pointer is always added to the address
modifier (XB) and the offset associated with the
Register Indirect Addressing mode is ignored. In
addition, as word-sized data is a requirement, the LSb
of the EA is ignored (and always clear).
Note:

Modulo Addressing and Bit-Reversed
Addressing can be enabled simultaneously
using the same W register, but BitReversed Addressing operation will always
take precedence for data writes when
enabled.

If Bit-Reversed Addressing has already been enabled
by setting the BREN (XBREV<15>) bit, a write to the
XBREV register should not be immediately followed by
an indirect read operation using the W register that has
been designated as the Bit-Reversed Pointer.

BIT-REVERSED ADDRESSING
IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of
these situations:
• BWMx bits (W register selection) in the MODCON
register are any value other than ‘1111’ (the stack
cannot be accessed using Bit-Reversed
Addressing)
• The BREN bit is set in the XBREV register
• The addressing mode used is Register Indirect
with Pre-Increment or Post-Increment

 2009-2012 Microchip Technology Inc.

DS70616G-page 131

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

FIGURE 4-11:

BIT-REVERSED ADDRESS EXAMPLE
Sequential Address

b15 b14 b13 b12 b11 b10 b9 b8

b7 b6 b5 b4

b3 b2

b1

0
Bit Locations Swapped Left-to-Right
Around Center of Binary Value

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1 b2 b3 b4

0

Bit-Reversed Address
Pivot Point

TABLE 4-76:

XB = 0x0008 for a 16-Word Bit-Reversed Buffer

BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)
Normal Address

A3

A2

A1

A0

Bit-Reversed Address
Decimal

A3

A2

A1

A0

Decimal

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

8

0

0

1

0

2

0

1

0

0

4

0

0

1

1

3

1

1

0

0

12

0

1

0

0

4

0

0

1

0

2

0

1

0

1

5

1

0

1

0

10

0

1

1

0

6

0

1

1

0

6

0

1

1

1

7

1

1

1

0

14

1

0

0

0

8

0

0

0

1

1

1

0

0

1

9

1

0

0

1

9

1

0

1

0

10

0

1

0

1

5

1

0

1

1

11

1

1

0

1

13

1

1

0

0

12

0

0

1

1

3

1

1

0

1

13

1

0

1

1

11

1

1

1

0

14

0

1

1

1

7

1

1

1

1

15

1

1

1

1

15

DS70616G-page 132

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
4.8

Interfacing Program and Data
Memory Spaces

Table instructions allow an application to read or write
to small areas of the program memory. This capability
makes the method ideal for accessing data tables that
need to be updated periodically. It also allows access
to all bytes of the program word. The remapping
method allows an application to access a large block of
data on a read-only basis, which is ideal for look-ups
from a large table of static data. The application can
only access the least significant word of the program
word.

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 architecture uses a
24-bit wide Program Space and a 16-bit wide data
space. The architecture is also a modified Harvard
scheme, meaning that data can also be present in the
Program Space. To use this data successfully, it must
be accessed in a way that preserves the alignment of
information in both spaces.
Aside
from
normal
execution,
the
dsPIC33EPXXX(GP/MC/MU)806/810/814
and
PIC24EPXXX(GP/GU)810/814 architecture provides
two methods by which Program Space can be
accessed during operation:
• Using table instructions to access individual bytes
or words anywhere in the Program Space
• Remapping a portion of the Program Space into
the data space (Program Space Visibility)

TABLE 4-77:

PROGRAM SPACE ADDRESS CONSTRUCTION
Access
Space

Access Type
Instruction Access
(Code Execution)

User

TBLRD/TBLWT
(Byte/Word Read/Write)

User

Program Space Address
<23>

<15>

<14:1>

PC<22:1>

0
0xx

xxxx

xxxx

0xxx xxxx

<0>
0

xxxx

TBLPAG<7:0>

Configuration

FIGURE 4-12:

<22:16>

xxxx xxx0

Data EA<15:0>
xxxx xxxx xxxx xxxx

TBLPAG<7:0>

Data EA<15:0>

1xxx xxxx

xxxx xxxx xxxx xxxx

DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

Program Counter(1)

Program Counter

0

0

23 Bits
EA
Table Operations(2)

1/0

1/0

TBLPAG
8 Bits

16 Bits
24 Bits

User/Configuration Space Select
Note 1:
2:

Byte Select

The Least Significant bit (LSb) of Program Space addresses is always fixed as ‘0’ to maintain word
alignment of data in the program and data spaces.
Table operations are not required to be word-aligned. Table read operations are permitted in the
configuration memory space.

 2009-2012 Microchip Technology Inc.

DS70616G-page 133

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
4.8.1

DATA ACCESS FROM PROGRAM
MEMORY USING TABLE
INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct
method of reading or writing the lower word of any
address within the Program Space without going
through data space. The TBLRDH and TBLWTH
instructions are the only method to read or write the
upper 8 bits of a Program Space word as data.
The PC is incremented by two for each successive
24-bit program word. This allows program memory
addresses to directly map to data space addresses.
Program memory can thus be regarded as two 16-bit
wide word address spaces, residing side by side, each
with the same address range. TBLRDL and TBLWTL
access the space that contains the least significant
data word. TBLRDH and TBLWTH access the space that
contains the upper data byte.
Two table instructions are provided to move byte or
word-sized (16-bit) data to and from Program Space.
Both function as either byte or word operations.
• TBLRDL (Table Read Low):
- In Word mode, this instruction maps the
lower word of the Program Space
location (P<15:0>) to a data address
(D<15:0>).

FIGURE 4-13:

- In Byte mode, either the upper or lower byte
of the lower program word is mapped to the
lower byte of a data address. The upper byte
is selected when Byte Select is ‘1’; the lower
byte is selected when it is ‘0’.
• TBLRDH (Table Read High):
- In Word mode, this instruction maps the entire
upper word of a program address (P<23:16>)
to a data address. The ‘phantom’ byte
(D<15:8>), is always ‘0’.
- In Byte mode, this instruction maps the upper
or lower byte of the program word to D<7:0>
of the data address, in the TBLRDL instruction. The data is always ‘0’ when the upper
‘phantom’ byte is selected (Byte Select = 1).
In a similar fashion, two table instructions, TBLWTH
and TBLWTL, are used to write individual bytes or
words to a Program Space address. The details of
their operation are explained in Section 5.0 “Flash
Program Memory”.
For all table operations, the area of program memory
space to be accessed is determined by the Table Page
register (TBLPAG). TBLPAG covers the entire program
memory space of the device, including user application
and configuration spaces. When TBLPAG<7> = 0, the
table page is located in the user memory space. When
TBLPAG<7> = 1, the page is located in configuration
space.

ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS
Program Space

TBLPAG

02
23

15

0

0x000000

23

16

8

0

00000000

0x020000
0x030000

00000000
00000000
00000000

‘Phantom’ Byte

TBLRDH.B (Wn<0> = 0)
TBLRDL.B (Wn<0> = 1)
TBLRDL.B (Wn<0> = 0)
TBLRDL.W

0x800000

DS70616G-page 134

The address for the table operation is determined by the data EA
within the page defined by the TBLPAG register.
Only read operations are shown; write operations are also valid in
the user memory area.

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
5.0

FLASH PROGRAM MEMORY

pin pairs: PGECx/PGEDx), and three other lines for
power (VDD), ground (VSS) and Master Clear (MCLR).
This allows customers to manufacture boards with
unprogrammed devices and then program the device
just before shipping the product. This also allows the
most recent firmware or a custom firmware to be
programmed.

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this data
sheet, refer to Section 5. “Flash Programming” (DS70609) of the “dsPIC33E/
PIC24E Family Reference Manual”, which
is available from the Microchip web site
(www.microchip.com).

RTSP is accomplished using TBLRD (table read) and
TBLWT (table write) instructions. With RTSP, the user
application can write program memory data either in
blocks or ‘rows’ of 128 instructions (384 bytes) at a time
or a single program memory word, and erase program
memory in blocks or ‘pages’ of 1024 instructions
(3072 bytes) at a time.

2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.

5.1

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814
devices
contain
internal Flash program memory for storing and
executing application code. The memory is readable,
writable and erasable during normal operation over the
entire VDD range.
Flash memory can be programmed in two ways:
• In-Circuit Serial Programming™ (ICSP™)
programming capability
• Run-Time Self-Programming (RTSP)
ICSP allows a dsPIC33EPXXX(GP/MC/MU)806/810/
814 and PIC24EPXXX(GP/GU)810/814 device to be
serially programmed while in the end application circuit.
This is done with two lines for programming clock and
programming data (one of the alternate programming

FIGURE 5-1:

Table Instructions and Flash
Programming

Regardless of the method used, all programming of
Flash memory is done with the table read and table
write instructions. These allow direct read and write
access to the program memory space from the data
memory while the device is in normal operating mode.
The 24-bit target address in the program memory is
formed using bits<7:0> of the TBLPAG register and the
Effective Address (EA) from a W register, specified in
the table instruction, as shown in Figure 5-1.
The TBLRDL and the TBLWTL instructions are used to
read or write to bits<15:0> of program memory.
TBLRDL and TBLWTL can access program memory in
both Word and Byte modes.
The TBLRDH and TBLWTH instructions are used to read
or write to bits<23:16> of program memory. TBLRDH
and TBLWTH can also access program memory in Word
or Byte mode.

ADDRESSING FOR TABLE REGISTERS
24 Bits
Using
Program Counter

Program Counter

0

0

Working Reg EA
Using
Table Instruction

1/0

TBLPAG Reg
8 Bits

User/Configuration
Space Select

 2009-2012 Microchip Technology Inc.

16 Bits

24-Bit EA

Byte
Select

DS70616G-page 135

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
5.2

RTSP Operation

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 Flash program memory
array is organized into rows of 128 instructions or
384 bytes. RTSP allows the user application to erase a
page of memory, which consists of eight rows
(1024 instructions) at a time, and to program one row
or one word at a time. Table 32-12 lists typical erase and
programming times. The 8-row erase pages and single
row write rows are edge-aligned from the beginning of
program memory, on boundaries of 3072 bytes and
384 bytes, respectively.
The program memory implements holding buffers,
which are located in the write latch area, that can contain 128 instructions of programming data. Prior to the
actual programming operation, the write data must be
loaded into the buffers sequentially. The instruction
words loaded must always be from a group of
64 boundary.
The basic sequence for RTSP programming is to set up
a Table Pointer, then do a series of TBLWT instructions
to load the buffers. Programming is performed by
setting the control bits in the NVMCON register. A total
of 128 TBLWTL and TBLWTH instructions are required
to load the instructions.
All of the table write operations are single-word writes
(two instruction cycles) because only the buffers are
written. A programming cycle is required for programming each row. For more information on erasing and
programming Flash memory, refer to Section 5.
“Flash Programming” (DS70609) in the “dsPIC33E/
PIC24E Family Reference Manual”.

5.3

Programming Operations

A complete programming sequence is necessary for
programming or erasing the internal Flash in RTSP
mode. The processor stalls (waits) until the
programming operation is finished.
The programming time depends on the FRC accuracy
(see Table 32-19) and the value of the FRC Oscillator
Tuning register (see Register 9-4). Use the following
formula to calculate the minimum and maximum values
for the Row Write Time, Page Erase Time and Word
Write Cycle Time parameters (see Table 32-12).

EQUATION 5-1:

PROGRAMMING TIME

T
------------------------------------------------------------------------------------------------------------------------7.37 MHz   FRC Accuracy %   FRC Tuning %
For example, if the device is operating at +125°C, the
FRC accuracy will be ±5%. If the TUN<5:0> bits (see
Register 9-4) are set to ‘b111111, the minimum row
write time is equal to Equation 5-2.

EQUATION 5-2:

MINIMUM ROW WRITE
TIME

11064 Cycles
T RW = ---------------------------------------------------------------------------------------------- = 1.435ms
7.37 MHz   1 + 0.05    1 – 0.00375 

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3:

MAXIMUM ROW WRITE
TIME

11064 Cycles
T RW = ---------------------------------------------------------------------------------------------- = 1.586ms
7.37 MHz   1 – 0.05    1 – 0.00375 

Setting the WR bit (NVMCON<15>) starts the
operation and the WR bit is automatically cleared
when the operation is finished.

DS70616G-page 136

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
5.4

Flash Program Memory
Resources

Many useful resources related to Flash program
memory are provided on the main product page of the
Microchip web site for the devices listed in this data
sheet. This product page, which can be accessed using
this link, contains the latest updates and additional
information.
Note:

5.4.1

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

KEY RESOURCES

• Section 5. “Flash Programming” (DS70609) in
the “dsPIC33E/PIC24E Family Reference
Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

 2009-2012 Microchip Technology Inc.

5.5

Control Registers

Four SFRs are used to read and write the program
Flash memory: NVMCON, NVMKEY, NVMADRU and
NVMADR.
The NVMCON register (Register 5-1) controls which
blocks are to be erased, which memory type is to be
programmed and the start of the programming cycle.
NVMKEY (Register 5-4) is a write-only register that is
used for write protection. To start a programming or
erase sequence, the user application must
consecutively write 0x55 and 0xAA to the NVMKEY
register.
There are two NVM Address registers: NVMADRU and
NVMADR. These two registers, when concatenated,
form the 24-bit Effective Address (EA) of the selected
row or word for programming operations, or the
selected page for erase operations.
The NVMADRU register is used to hold the upper 8 bits
of the EA, while the NVMADR register is used to hold
the lower 16 bits of the EA.

DS70616G-page 137

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 5-1:

NVMCON: NON-VOLATILE MEMORY (NVM) CONTROL REGISTER

R/SO-0(1)

R/W-0(1)

R/W-0(1)

R/W-0

U-0

U-0

U-0

U-0

WR

WREN

WRERR

NVMSIDL(2)

—

—

—

—

bit 15

bit 8

U-0

U-0

—

—

U-0
—

U-0

R/W-0(1)

R/W-0(1)

R/W-0(1)

R/W-0(1)

(3,4)

—

NVMOP<3:0>

bit 7

bit 0

Legend:

SO = Settable Only bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

WR: Write Control bit(1)
1 = Initiates a Flash memory program or erase operation; the operation is self-timed and the bit is
cleared by hardware once operation is complete
0 = Program or erase operation is complete and inactive

bit 14

WREN: Write Enable bit(1)
1 = Enables Flash program/erase operations
0 = Inhibits Flash program/erase operations

bit 13

WRERR: Write Sequence Error Flag bit(1)
1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically
on any set attempt of the WR bit)
0 = The program or erase operation completed normally

bit 12

NVMSIDL: NVM Stop-in-Idle Control bit(2)
1 = Flash voltage regulator goes into Stand-by mode during Idle mode
0 = Flash voltage regulator is active during Idle mode

bit 11-4

Unimplemented: Read as ‘0’

bit 3-0

NVMOP<3:0>: NVM Operation Select bits(1,3,4)
1111 = Reserved
1110 = Reserved
1101 = Bulk erase primary program Flash memory
1100 = Reserved
1011 = Reserved
1010 = Bulk erase auxiliary program Flash memory
0011 = Memory page erase operation
0010 = Memory row program operation
0001 = Memory word program operation(5)
0000 = Program a single Configuration register byte

Note 1:
2:
3:
4:
5:

These bits can only be reset on a POR.
If this bit is set, upon exiting Idle mode, there is a delay (TVREG) before Flash memory becomes
operational.
All other combinations of NVMOP<3:0> are unimplemented.
Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.
Two adjacent words are programmed during execution of this operation.

DS70616G-page 138

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 5-2:
U-0
—
bit 15

NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER
U-0
—

U-0
—

U-0
—

U-0
—

U-0
—

U-0
—

U-0
—
bit 8

R/W-x

R/W-x

R/W-x

R/W-x
R/W-x
NVMADRU<7:0>

R/W-x

R/W-x

R/W-x

bit 7

bit 0

Legend:
R = Readable bit
-n = Value at POR
bit 15-8
bit 7-0

W = Writable bit
‘1’ = Bit is set

U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown

Unimplemented: Read as ‘0’
NVMADRU<7:0>: Nonvolatile Memory Upper Write Address bits
Selects the upper 8 bits of the location to program or erase in program Flash memory. This register
may be read or written by the user application.

REGISTER 5-3:
R/W-x

NVMADR: NONVOLATILE MEMORY ADDRESS REGISTER
R/W-x

R/W-x

R/W-x
R/W-x
NVMADR<15:8>

R/W-x

R/W-x

R/W-x

bit 15

bit 8

R/W-x

R/W-x

R/W-x

R/W-x
R/W-x
NVMADR<7:0>

R/W-x

R/W-x

R/W-x

bit 7

bit 0

Legend:
R = Readable bit
-n = Value at POR
bit 15-0

W = Writable bit
‘1’ = Bit is set

U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown

NVMADR<15:0>: Nonvolatile Memory Write Address bits
Selects the lower 16 bits of the location to program or erase in program Flash memory. This register
may be read or written by the user application.

REGISTER 5-4:

NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0
—
bit 15

U-0
—

W-0

W-0

U-0
—

U-0
—

U-0
—

U-0
—

U-0
—

U-0
—
bit 8

W-0

W-0
W-0
NVMKEY<7:0>

W-0

W-0

W-0

bit 7

bit 0

Legend:
R = Readable bit
-n = Value at POR
bit 15-8
bit 7-0

W = Writable bit
‘1’ = Bit is set

U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown

Unimplemented: Read as ‘0’
NVMKEY<7:0>: Key Register (write-only) bits

 2009-2012 Microchip Technology Inc.

DS70616G-page 139

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
NOTES:

DS70616G-page 140

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
6.0

RESETS

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this
data sheet, refer to Section 8. “Reset”
(DS70602) of the “dsPIC33E/PIC24E
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.

The Reset module combines all Reset sources and
controls the device Master Reset Signal, SYSRST. The
following is a list of device Reset sources:
•
•
•
•
•
•
•
•

POR: Power-on Reset
BOR: Brown-out Reset
MCLR: Master Clear Pin Reset
SWR: RESET Instruction
WDTO: Watchdog Timer Reset
CM: Configuration Mismatch Reset
TRAPR: Trap Conflict Reset
IOPUWR: Illegal Condition Device Reset
- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

A simplified block diagram of the Reset module is
shown in Figure 6-1.
Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers
associated with the CPU and peripherals are forced to
a known Reset state and some are unaffected.
Note:

FIGURE 6-1:

Refer to the specific peripheral section or
Section 4.0 “Memory Organization” of
this manual for register Reset states.

RESET SYSTEM BLOCK DIAGRAM
RESET Instruction
Glitch Filter
MCLR
WDT
Module
Sleep or Idle

VDD

BOR

Internal
Regulator

SYSRST
VDD Rise
Detect

POR

Trap Conflict
Illegal Opcode
Uninitialized W Register
Security Reset
Configuration Mismatch

 2009-2012 Microchip Technology Inc.

DS70616G-page 141

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
6.1

Resets Resources

Many useful resources related to Resets are provided
on the main product page of the Microchip web site for
the devices listed in this data sheet. This product page,
which can be accessed using this link, contains the
latest updates and additional information.
Note:

6.1.1

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

KEY RESOURCES

• Section 8. “Reset” (DS70602) in the “dsPIC33E/
PIC24E Family Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

DS70616G-page 142

6.2

RCON Control Register

All types of device Resets set a corresponding status
bit in the RCON register to indicate the type of Reset
(see Register 6-1).
A POR clears all the bits, except for the POR and BOR
bits (RCON<1:0>), that are set. The user application
can set or clear any bit at any time during code
execution. The RCON bits only serve as status bits.
Setting a particular Reset status bit in software does
not cause a device Reset to occur.
The RCON register also has other bits associated with
the Watchdog Timer and device power-saving states.
The function of these bits is discussed in other sections
of this manual.
Note:

The status bits in the RCON register
should be cleared after they are read so
that the next RCON register value after a
device Reset is meaningful.

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
RCON: RESET CONTROL REGISTER(1)

REGISTER 6-1:
R/W-0

R/W-0

U-0

U-0

R/W-0

U-0

R/W-0

R/W-0

TRAPR

IOPUWR

—

—

VREGSF

—

CM

VREGS

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-1

R/W-1

EXTR

SWR

SWDTEN(2)

WDTO

SLEEP

IDLE

BOR

POR

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

TRAPR: Trap Reset Flag bit
1 = A Trap Conflict Reset has occurred
0 = A Trap Conflict Reset has not occurred

bit 14

IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit
1 = An illegal opcode detection, an illegal address mode or uninitialized W register used as an
Address Pointer caused a Reset
0 = An illegal opcode or uninitialized W Reset has not occurred

bit 13-12

Unimplemented: Read as ‘0’

bit 11

VREGSF: Flash Voltage Regulator Standby During Sleep bit
1 = Flash voltage regulator is active during Sleep
0 = Flash voltage regulator goes into Standby mode during Sleep

bit 10

Unimplemented: Read as ‘0’

bit 9

CM: Configuration Mismatch Flag bit
1 = A Configuration Mismatch Reset has occurred.
0 = A Configuration Mismatch Reset has NOT occurred

bit 8

VREGS: Voltage Regulator Standby During Sleep bit
1 = Voltage regulator is active during Sleep
0 = Voltage regulator goes into Standby mode during Sleep

bit 7

EXTR: External Reset (MCLR) Pin bit
1 = A Master Clear (pin) Reset has occurred
0 = A Master Clear (pin) Reset has not occurred

bit 6

SWR: Software Reset (Instruction) Flag bit
1 = A RESET instruction has been executed
0 = A RESET instruction has not been executed

bit 5

SWDTEN: Software Enable/Disable of WDT bit(2)
1 = WDT is enabled
0 = WDT is disabled

bit 4

WDTO: Watchdog Timer Time-out Flag bit
1 = WDT time-out has occurred
0 = WDT time-out has not occurred

Note 1:
2:

All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not
cause a device Reset.
If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the
SWDTEN bit setting.

 2009-2012 Microchip Technology Inc.

DS70616G-page 143

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 6-1:

RCON: RESET CONTROL REGISTER(1) (CONTINUED)

bit 3

SLEEP: Wake-up from Sleep Flag bit
1 = Device has been in Sleep mode
0 = Device has not been in Sleep mode

bit 2

IDLE: Wake-up from Idle Flag bit
1 = Device was in Idle mode
0 = Device was not in Idle mode

bit 1

BOR: Brown-out Reset Flag bit
1 = A Brown-out Reset has occurred
0 = A Brown-out Reset has not occurred

bit 0

POR: Power-on Reset Flag bit
1 = A Power-on Reset has occurred
0 = A Power-on Reset has not occurred

Note 1:
2:

All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not
cause a device Reset.
If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the
SWDTEN bit setting.

DS70616G-page 144

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
7.0

INTERRUPT CONTROLLER

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this
data sheet, refer to Section 6. “Interrupts” (DS70600) of the “dsPIC33E/
PIC24E Family Reference Manual”,
which is available from the Microchip web
site (www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.
The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 interrupt controller
reduces the numerous peripheral interrupt request
signals to a single interrupt request signal to
the dsPIC33EPXXX(GP/MC/MU)806/810/814
and
PIC24EPXXX(GP/GU)810/814 CPU.
The interrupt controller has the following features:
• Up to eight processor exceptions and software
traps
• Eight user-selectable priority levels
• Interrupt Vector Table (IVT) with a unique vector
for each interrupt or exception source
• Fixed priority within a specified user priority level
• Fixed interrupt entry and return latencies

7.1

Interrupt Vector Table

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 Interrupt Vector Table
(IVT), shown in Figure 7-1, resides in the General
Segment of program memory, starting at location,
0x000004, and is used when executing code from the
General Segment. The IVT contains seven nonmaskable trap vectors and up to 114 sources of
interrupt. In general, each interrupt source has its own
vector. Each interrupt vector contains a 24-bit wide
address. The value programmed into each interrupt
vector location is the starting address of the associated
Interrupt Service Routine (ISR).
Interrupt vectors are prioritized in terms of their natural
priority. This priority is linked to their position in the
vector table. Lower addresses generally have a higher
natural priority. For example, the interrupt associated
with vector 0 takes priority over interrupts at any other
vector address.
Note:

7.2

Any unimplemented or unused vector
locations in the IVT should be
programmed with the address of a default
interrupt handler routine that contains a
RESET instruction.

Auxiliary Interrupt Vector

When code is being executed in the Auxiliary Segment,
a special single interrupt vector, located at address,
0x7FFFFA, is used for all interrupt sources and traps.
Once vectored to this single routine, the
VECNUM<7:0> bits (INTTREG<7:0>, Register 7-7)
can be examined to determine the source of the
interrupt or trap so that it can be properly processed.

7.3

Reset Sequence

A device Reset is not a true exception because the
interrupt controller is not involved in the Reset process.
The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 devices clear their
registers in response to a Reset, which forces the PC
to zero. The digital signal controller then begins
program execution at location, 0x000000. A GOTO
instruction at the Reset address can redirect program
execution to the appropriate start-up routine.
Note:

 2009-2012 Microchip Technology Inc.

Reset locations are also located in the
Auxiliary Segment at the addresses
0x7FFFFC and 0x7FFFFE. The Reset
Target Vector Select bit, RSTPRI
(FICD<2>) controls whether the primary
(General Segment) or Auxiliary Segment
Reset location is used.

DS70616G-page 145

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Note 1:

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
INTERRUPT VECTOR TABLE

IVT

Decreasing Natural Order Priority

FIGURE 7-1:

Reset – GOTO Instruction(1)
Reset – GOTO Address(1)
Oscillator Fail Trap Vector
Address Error Trap Vector
Generic Hard Trap Vector
Stack Error Trap Vector
Math Error Trap Vector
DMAC Error Trap Vector
Generic Soft Trap Vector
Reserved
Interrupt Vector 0
Interrupt Vector 1
:
:
:
Interrupt Vector 52
Interrupt Vector 53
Interrupt Vector 54
:
:
:
Interrupt Vector 116
Interrupt Vector 117
Interrupt Vector 118
Interrupt Vector 119
Interrupt Vector 120
:
:
:
Interrupt Vector 244
Interrupt Vector 245
START OF CODE

0x000000
0x000002
0x000004
0x000006
0x000008
0x00000A
0x00000C
0x00000E
0x000010
0x000012
0x000014
0x000016
:
:
:
0x00007C
0x00007E
0x000080
:
:
:
0x0000FC
0x0000FE
0x000100
0x000102
0x000104
:
:
:
0x0001FC
0x0001FE
0x000200

See Table 7-1 for
Interrupt Vector Details

Reset locations are also located in the Auxiliary Segment at the addresses 0x7FFFFC and
0x7FFFFE. The Reset Target Vector Select bit, RSTPRI (FICD<2>) controls whether the
primary (General Segment) or Auxiliary Segment Reset location is used.

DS70616G-page 146

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 7-1:

INTERRUPT VECTOR DETAILS

Interrupt Source

Vector
#

IRQ #

IVT
Address

Interrupt Bit Location
Flag

Enable

Priority

Highest Natural Order Priority
INT0 – External Interrupt 0

8

0

0x000014

IFS0<0>

IEC0<0>

IPC0<2:0>

IC1 – Input Capture 1

9

1

0x000016

IFS0<1>

IEC0<1>

IPC0<6:4>

OC1 – Output Compare 1

10

2

0x000018

IFS0<2>

IEC0<2>

IPC0<10:8>

T1 – Timer1

11

3

0x00001A

IFS0<3>

IEC0<3>

IPC0<14:12>

DMA0 – DMA Channel 0

12

4

0x00001C

IFS0<4>

IEC0<4>

IPC1<2:0>

IC2 – Input Capture 2

13

5

0x00001E

IFS0<5>

IEC0<5>

IPC1<6:4>

OC2 – Output Compare 2

14

6

0x000020

IFS0<6>

IEC0<6>

IPC1<10:8>

T2 – Timer2

15

7

0x000022

IFS0<7>

IEC0<7>

IPC1<14:12>

T3 – Timer3

16

8

0x000024

IFS0<8>

IEC0<8>

IPC2<2:0>

SPI1E – SPI1 Error

17

9

0x000026

IFS0<9>

IEC0<9>

IPC2<6:4>

SPI1 – SPI1 Transfer Done

18

10

0x000028

IFS0<10>

IEC0<10>

IPC2<10:8>

U1RX – UART1 Receiver

19

11

0x00002A

IFS0<11>

IEC0<11>

IPC2<14:12>

U1TX – UART1 Transmitter

20

12

0x00002C

IFS0<12>

IEC0<12>

IPC3<2:0>

AD1 – ADC1 Convert Done

21

13

0x00002E

IFS0<13>

IEC0<13>

IPC3<6:4>

DMA1 – DMA Channel 1

22

14

0x000030

IFS0<14>

IEC0<14>

IPC3<10:8>

NVM – NVM Write Complete

23

15

0x000032

IFS0<15>

IEC0<15>

IPC3<14:12>

SI2C1 – I2C1 Slave Event

24

16

0x000034

IFS1<0>

IEC1<0>

IPC4<2:0>

MI2C1 – I2C1 Master Event

25

17

0x000036

IFS1<1>

IEC1<1>

IPC4<6:4>

CM – Comparator Combined Event

26

18

0x000038

IFS1<2>

IEC1<2>

IPC4<10:8>

CN – Input Change Interrupt

27

19

0x00003A

IFS1<3>

IEC1<3>

IPC4<14:12>

INT1 – External Interrupt 1

28

20

0x00003C

IFS1<4>

IEC1<4>

IPC5<2:0>

AD2 – ADC2 Convert Done

29

21

0x00003E

IFS1<5>

IEC1<5>

IPC5<6:4>

IC7 – Input Capture 7

30

22

0x000040

IFS1<6>

IEC1<6>

IPC5<10:8>
IPC5<14:12>

IC8 – Input Capture 8

31

23

0x000042

IFS1<7>

IEC1<7>

DMA2 – DMA Channel 2

32

24

0x000044

IFS1<8>

IEC1<8>

IPC6<2:0>

OC3 – Output Compare 3

33

25

0x000046

IFS1<9>

IEC1<9>

IPC6<6:4>

OC4 – Output Compare 4

34

26

0x000048

IFS1<10>

IEC1<10>

IPC6<10:8>

T4 – Timer4

35

27

0x00004A

IFS1<11>

IEC1<11>

IPC6<14:12>

T5 – Timer5

36

28

0x00004C

IFS1<12>

IEC1<12>

IPC7<2:0>

INT2 – External Interrupt 2

37

29

0x00004E

IFS1<13>

IEC1<13>

IPC7<6:4>

U2RX – UART2 Receiver

38

30

0x000050

IFS1<14>

IEC1<14>

IPC7<10:8>

U2TX – UART2 Transmitter

39

31

0x000052

IFS1<15>

IEC1<15>

IPC7<14:12>

SPI2E – SPI2 Error

40

32

0x000054

IFS2<0>

IEC2<0>

IPC8<2:0>

SPI2 – SPI2 Transfer Done

41

33

0x000056

IFS2<1>

IEC2<1>

IPC8<6:4>

C1RX – CAN1 RX Data Ready

42

34

0x000058

IFS2<2>

IEC2<2>

IPC8<10:8>

C1 – CAN1 Event

43

35

0x00005A

IFS2<3>

IEC2<3>

IPC8<14:12>

DMA3 – DMA Channel 3

44

36

0x00005C

IFS2<4>

IEC2<4>

IPC9<2:0>

IC3 – Input Capture 3

45

37

0x00005E

IFS2<5>

IEC2<5>

IPC9<6:4>

IC4 – Input Capture 4

46

38

0x000060

IFS2<6>

IEC2<6>

IPC9<10:8>

IC5 – Input Capture 5

47

39

0x000062

IFS2<7>

IEC2<7>

IPC9<14:12>

IC6 – Input Capture 6

48

40

0x000064

IFS2<8>

IEC2<8>

IPC10<2:0>

Note 1:
2:

This interrupt source is available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.
This interrupt source is available on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices only.

 2009-2012 Microchip Technology Inc.

DS70616G-page 147

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 7-1:

INTERRUPT VECTOR DETAILS (CONTINUED)
Interrupt Bit Location

Vector
#

IRQ #

IVT
Address

OC5 – Output Compare 5

49

41

0x000066

IFS2<9>

IEC2<9>

IPC10<6:4>

OC6 – Output Compare 6

50

42

0x000068

IFS2<10>

IEC2<10>

IPC10<10:8>

OC7 – Output Compare 7

51

43

0x00006A

IFS2<11>

IEC2<11> IPC10<14:12>

OC8 – Output Compare 8

52

44

0x00006C

IFS2<12>

IEC2<12>

IPC11<2:0>

PMP – Parallel Master Port

53

45

0x00006E

IFS2<13>

IEC2<13>

IPC11<6:4>

DMA4 – DMA Channel 4

54

46

0x000070

IFS2<14>

IEC2<14>

IPC11<10:8>

T6 – Timer6

55

47

0x000072

IFS2<15>

IEC2<15> IPC11<14:12>

T7 – Timer7

56

48

0x000074

IFS3<0>

IEC3<0>

Interrupt Source

Flag

Enable

Priority

IPC12<2:0>

SI2C2 – I2C2 Slave Event

57

49

0x000076

IFS3<1>

IEC3<1>

IPC12<6:4>

MI2C2 – I2C2 Master Event

58

50

0x000078

IFS3<2>

IEC3<2>

IPC12<10:8>

T8 – Timer8

59

51

0x00007A

IFS3<3>

IEC3<3>

IPC12<14:12>

T9 – Timer9

60

52

0x00007C

IFS3<4>

IEC3<4>

IPC13<2:0>

INT3 – External Interrupt 3

61

53

0x00007E

IFS3<5>

IEC3<5>

IPC13<6:4>

INT4 – External Interrupt 4

62

54

0x000080

IFS3<6>

IEC3<6>

IPC13<10:8>

C2RX – CAN2 RX Data Ready

63

55

0x000082

IFS3<7>

IEC3<7>

IPC13<14:12>

C2 – CAN2 Event

64

56

0x000084

IFS3<8>

IEC3<8>

IPC14<2:0>

PSEM – PWM Special Event

Match(1)

65

57

0x000086

IFS3<9>

IEC3<9>

IPC14<6:4>

QEI1 – QEI1 Position Counter
Compare(1)

66

58

0x000088

IFS3<10>

IEC3<10>

IPC14<10:8>

DCIE – DCI Fault Interrupt

67

59

0x00008A

IFS3<11>

IEC3<11> IPC14<14:12>

DCI – DCI Transfer Done

68

60

0x00008C

IFS3<12>

IEC3<12>

DMA5 – DMA Channel 5

69

61

0x00008E

IFS3<13>

IEC3<13>

IPC15<6:4>

RTC – Real-Time Clock and Calendar

70

62

0x000090

IFS3<14>

IEC3<14>

IPC15<10:8>

Reserved

IPC15<2:0>

71-72

63-64

0x000092-0x000094

—

—

—

U1E – UART1 Error Interrupt

73

65

0x000096

IFS4<1>

IEC4<1>

IPC16<6:4>

U2E – UART2 Error Interrupt

74

66

0x000098

IFS4<2>

IEC4<2>

IPC16<10:8>

CRC – CRC Generator Interrupt

75

67

0x00009A

IFS4<3>

IEC4<3>

IPC16<14:12>

DMA6 – DMA Channel 6

76

68

0x00009C

IFS4<4>

IEC4<4>

IPC17<2:0>

DMA7 – DMA Channel 7

77

69

0x00009E

IFS4<5>

IEC4<5>

IPC17<6:4>

C1TX – CAN1 TX Data Request

78

70

0x0000A0

IFS4<6>

IEC4<6>

IPC17<10:8>

C2TX – CAN2 TX Data Request

79

71

0x0000A2

IFS4<7>

IEC4<7>

IPC17<14:12>

Reserved

80

72

0x0000A4

—

—

—

PSESM – PWM Secondary Special
Event Match(1)

81

73

0x0000A6

IFS4<9>

IEC4<9>

IPC18<6:4>

Reserved

82

74

0x0000A8

—

—

—

QEI2 – QEI2 Position Counter
Compare(1)

83

75

0x0000AA

IFS4<11>

84-88

76-80

0x0000AC-0x0000B4

—

Reserved

IEC4<11> IPC18<14:12>
—

—

U3E – UART3 Error Interrupt

89

81

0x0000B6

IFS5<1>

IEC5<1>

IPC20<6:4>

U3RX – UART3 Receiver

90

82

0x0000B8

IFS5<2>

IEC5<2>

IPC20<10:8>

U3TX – UART3 Transmitter
Reserved
Note 1:
2:

91

83

0x0000BA

IFS5<3>

IEC5<3>

IPC20<14:12>

9293

84-85

0x0000BC-0x0000BE

—

—

—

This interrupt source is available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.
This interrupt source is available on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices only.

DS70616G-page 148

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 7-1:

INTERRUPT VECTOR DETAILS (CONTINUED)

Interrupt Source
USB1 – USB OTG Interrupt

(2)

Interrupt Bit Location

Vector
#

IRQ #

IVT
Address

Flag

Enable

Priority

94

86

0x0000C0

IFS5<6>

IEC5<6>

IPC21<10:8>

U4E – UART4 Error Interrupt

95

87

0x0000C2

IFS5<7>

IEC5<7>

IPC21<14:12>

U4RX – UART4 Receiver

96

88

0x0000C4

IFS5<8>

IEC5<8>

IPC22<2:0>

U4TX – UART4 Transmitter

97

89

0x0000C6

IFS5<9>

IEC5<9>

IPC22<6:4>

SPI3E – SPI3 Error

98

90

0x0000C8

IFS5<10>

IEC5<10>

IPC22<10:8>

SPI3 – SPI3 Transfer Done

99

91

0x0000CA

IFS5<11>

IEC5<11> IPC22<14:12>

OC9 – Output Compare 9

100

92

0x0000CC

IFS5<12>

IEC5<12>

IPC23<2:0>

IC9 – Input Capture 9

101

93

0x0000CE

IFS5<13>

IEC5<13>

IPC23<6:4>

PWM1 – PWM Generator 1(1)

102

94

0x0000D0

IFS5<14>

IEC5<14>

IPC23<10:8>

PWM2 – PWM Generator 2(1)

103

95

0x0000D2

IFS5<15>

IEC5<15> IPC23<14:12>

(1)

104

96

0x0000D4

IFS6<0>

IEC6<0>

PWM4 – PWM Generator 4(1)

105

97

0x0000D6

IFS6<1>

IEC6<1>

IPC24<6:4>

PWM5 – PWM Generator 5(1)

106

98

0x0000D8

IFS6<2>

IEC6<2>

IPC24<10:8>

PWM6 – PWM Generator 6(1)

107

99

0x0000DA

IFS6<3>

IEC6<3>

IPC24<14:12>

PWM7 – PWM Generator 7(1)

108

100

0x0000DC

IFS6<4>

IEC6<4>

IPC25<2:0>

PWM3 – PWM Generator 3

Reserved

109-125 101-117 0x0000DE-0x0000FC

IPC24<2:0>

—

—

—

DMA8 – DMA Channel 8

126

118

0x000100

IFS7<6>

IEC7<6>

IPC29<10:8>

DMA9 – DMA Channel 9

127

119

0x000102

IFS7<7>

IEC7<7>

IPC29<14:12>
IPC30<2:0>

DMA10 – DMA Channel 10

128

120

0x000104

IFS7<8>

IEC7<8>

DMA11 – DMA Channel 11

129

121

0x000106

IFS7<9>

IEC7<9>

IPC30<6:4>

SPI4E – SPI4 Error

130

122

0x000108

IFS7<10>

IEC7<10>

IPC30<10:8>

SPI4 – SPI4 Transfer Done

131

123

0x00010A

IFS7<11>

IEC7<11> IPC30<14:12>

OC10 – Output Compare 10

132

124

0x00010C

IFS7<12>

IEC7<12>

IPC31<2:0>

IC10 – Input Capture 10

133

125

0x00010E

IFS7<13>

IEC7<13>

IPC31<6:4>

OC11 – Output Compare11

134

126

0x000110

IFS7<14>

IEC7<14>

IPC31<10:8>

IC11 – Input Capture 11

135

127

0x000112

IFS7<15>

IEC7<15> IPC31<14:12>

OC12 – Output Compare 12

136

128

0x000114

IFS8<0>

IEC8<0>

IPC32<2:0>

IC12 – Input Capture 12

137

129

0x000116

IFS8<1>

IEC8<1>

IPC32<6:4>

DMA12 – DMA Channel 12

138

130

0x000118

IFS8<2>

IEC8<2>

IPC32<10:8>

DMA13– DMA Channel 13

139

131

0x00011A

IFS8<3>

IEC8<3>

IPC32<14:12>

DMA14 – DMA Channel 14

140

132

0x00011C

IFS8<4>

IEC8<4>

IPC33<2:0>

Reserved

141

133

0x00011E

—

—

—

OC13 – Output Compare 13

142

134

0x000120

IFS8<6>

IEC8<6>

IPC33<10:8>

IC13 – Input Capture 13

143

135

0x000122

IFS8<7>

IEC8<7>

IPC33<14:12>
IPC34<2:0>

OC14 – Output Compare14

144

136

0x000124

IFS8<8>

IEC8<8>

IC14 – Input Capture 14

145

137

0x000126

IFS8<9>

IEC8<9>

IPC34<6:4>

OC15 – Output Compare 15

146

138

0x000128

IFS8<10>

IEC8<10>

IPC34<10:8>

IC15 – Input Capture 15

147

139

0x00012A

IFS8<11>

IEC8<11> IPC34<14:12>

OC16 – Output Compare 16

148

140

0x00012C

IFS8<12>

IEC8<12>

IPC35<2:0>

IC16 – Input Capture 16

149

141

0x00012E

IFS8<13>

IEC8<13>

IPC35<6:4>

ICD – ICD Application

150

142

0x000130

IFS8<14>

IEC8<14>

IPC35<10:8>

0x000130-0x0001FE

—

—

—

Reserved

151-245 142-237

Lowest Natural Order Priority
Note 1:
2:

This interrupt source is available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.
This interrupt source is available on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices only.

 2009-2012 Microchip Technology Inc.

DS70616G-page 149

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
7.4

Interrupt Resources

7.5.2

Many useful resources related to Interrupts are provided on the main product page of the Microchip web
site for the devices listed in this data sheet. This
product page, which can be accessed using this link,
contains the latest updates and additional information.
Note:

7.4.1

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

KEY RESOURCES

• Section 6. “Interrupts” (DS70600) in the
“dsPIC33E/PIC24E Family Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

7.5

Interrupt Control and Status
Registers

dsPIC33EPXXX(GP/MC/MU)806/810/814
and
PIC24EPXXX(GP/GU)810/814 devices implement
the following registers for the interrupt controller:
• INTCON1-INTCON4
• INTTREG

7.5.1

Global interrupt control functions are controlled from
INTCON1, INTCON2, INTCON3 and INTCON4.
INTCON1 contains the Interrupt Nesting Disable bit
(NSTDIS) as well as the control and status flags for the
processor trap sources.
The INTCON2 register controls external interrupt
request signal behavior and software trap enable. This
register also contains the Global Interrupt Enable bit
(GIE).
INTCON3 contains the status flags for the USB, DMA
and DO stack overflow status trap sources.
The INTCON4 register contains the
generated Hard Trap Status bit (SGHT).

DS70616G-page 150

The IFS registers maintain all of the interrupt request
flags. Each source of interrupt has a status bit, which is
set by the respective peripherals or external signal and
is cleared via software.

7.5.3

software

IECx

The IEC registers maintain all of the interrupt enable
bits. These control bits are used to individually enable
interrupts from the peripherals or external signals.

7.5.4

IPCx

The IPC registers are used to set the Interrupt Priority
Level for each source of interrupt. Each user interrupt
source can be assigned to one of eight priority levels.

7.5.5

INTTREG

The INTTREG register contains the associated
interrupt vector number and the new CPU Interrupt
Priority Level, which are latched into the vector number
(VECNUM<7:0>) and Interrupt level bit (ILR<3:0>)
fields in the INTTREG register. The new Interrupt
Priority Level is the priority of the pending interrupt.
The interrupt sources are assigned to the IFSx, IECx
and IPCx registers in the same sequence as they are
listed in Table 7-1. For example, the INT0 (External
Interrupt 0) is shown as having Vector Number 8 and a
natural order priority of 0. Thus, the INT0IF bit is found
in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP
bits in the first position of IPC0 (IPC0<2:0>).

7.5.6

INTCON1 THROUGH INTCON4

IFSx

STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the
interrupt control hardware, two of the CPU Control
registers contain bits that control interrupt functionality.
For more information on these registers refer to
Section 2. “CPU” (DS70359) in the “dsPIC33E/
PIC24E Family Reference Manual”.
• The CPU STATUS register, SR, contains the
IPL<2:0> bits (SR<7:5>). These bits indicate the
current CPU Interrupt Priority Level. The user
software can change the current CPU priority
level by writing to the IPL bits.
• The CORCON register contains the IPL3 bit
which, together with IPL<2:0>, also indicates the
current CPU priority level. IPL3 is a read-only bit
so that trap events cannot be masked by the user
software.
All Interrupt registers are described in Register 7-3
through Register 7-7 in the following pages.

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
SR: CPU STATUS REGISTER(1)

REGISTER 7-1:
R/W-0

R/W-0

R/W-0

R/W-0

R/C-0

R/C-0

R-0

R/W-0

OA

OB

SA

SB

OAB

SAB

DA

DC

bit 15

bit 8

R/W-0(3)

R/W-0(3)

R/W-0(3)

IPL<2:0>(2)

R-0

R/W-0

R/W-0

R/W-0

R/W-0

RA

N

OV

Z

C

bit 7

bit 0

Legend:

C = Clearable bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

IPL<2:0>: CPU Interrupt Priority Level Status bits(2,3)
111 = CPU Interrupt Priority Level is 7 (15, user interrupts are disabled)
110 = CPU Interrupt Priority Level is 6 (14)
101 = CPU Interrupt Priority Level is 5 (13)
100 = CPU Interrupt Priority Level is 4 (12)
011 = CPU Interrupt Priority Level is 3 (11)
010 = CPU Interrupt Priority Level is 2 (10)
001 = CPU Interrupt Priority Level is 1 (9)
000 = CPU Interrupt Priority Level is 0 (8)

bit 7-5

Note 1:
2:
3:

For complete register details, see Register 3-1: “SR: CPU Status Register”.
The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority
Level. The value in parentheses indicates the IPL, if IPL<3> = 1.
The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

 2009-2012 Microchip Technology Inc.

DS70616G-page 151

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 7-2:

CORCON: CORE CONTROL REGISTER(1)

R/W-0

U-0

VAR

—

R/W-0

R/W-0

US<1:0>

R/W-0

R-0

EDT

R-0

R-0

DL<2:0>

bit 15

bit 8

R/W-0

R/W-0

SATA

SATB

R/W-1
SATDW

R/W-0
ACCSAT

R/C-0

R-0

R/W-0

R/W-0

(2)

SFA

RND

IF

IPL3

bit 7

bit 0

Legend:

C = Clearable bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15

VAR: Variable Exception Processing Latency Control bit
1 = Variable exception processing is enabled
0 = Fixed exception processing is enabled

bit 3

IPL3: CPU Interrupt Priority Level Status bit 3(2)
1 = CPU Interrupt Priority Level is greater than 7
0 = CPU Interrupt Priority Level is 7 or less

Note 1:
2:

x = Bit is unknown

For complete register details, see Register 3-2: “CORCON: Core Control Register”.
The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

DS70616G-page 152

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 7-3:

INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0

R/W-0

NSTDIS

OVAERR(1)

R/W-0

R/W-0

R/W-0

OVBERR(1) COVAERR(1) COVBERR(1)

R/W-0

R/W-0

R/W-0

OVATE(1)

OVBTE(1)

COVTE(1)

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

U-0

SFTACERR(1)

DIV0ERR

DMACERR

MATHERR

ADDRERR

STKERR

OSCFAIL

—

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15

NSTDIS: Interrupt Nesting Disable bit
1 = Interrupt nesting is disabled
0 = Interrupt nesting is enabled

bit 14

OVAERR: Accumulator A Overflow Trap Flag bit(1)
1 = Trap was caused by overflow of Accumulator A
0 = Trap was not caused by overflow of Accumulator A

bit 13

OVBERR: Accumulator B Overflow Trap Flag bit(1)
1 = Trap was caused by overflow of Accumulator B
0 = Trap was not caused by overflow of Accumulator B

bit 12

COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit(1)
1 = Trap was caused by catastrophic overflow of Accumulator A
0 = Trap was not caused by catastrophic overflow of Accumulator A

bit 11

COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit(1)
1 = Trap was caused by catastrophic overflow of Accumulator B
0 = Trap was not caused by catastrophic overflow of Accumulator B

bit 10

OVATE: Accumulator A Overflow Trap Enable bit(1)
1 = Trap overflow of Accumulator A
0 = Trap is disabled

bit 9

OVBTE: Accumulator B Overflow Trap Enable bit(1)
1 = Trap overflow of Accumulator B
0 = Trap is disabled

bit 8

COVTE: Catastrophic Overflow Trap Enable bit(1)
1 = Trap on catastrophic overflow of Accumulator A or B is enabled
0 = Trap is disabled

bit 7

SFTACERR: Shift Accumulator Error Status bit(1)
1 = Math error trap was caused by an invalid accumulator shift
0 = Math error trap was not caused by an invalid accumulator shift

bit 6

DIV0ERR: Divide-by-Zero Error Status bit
1 = Math error trap was caused by a divide-by-zero
0 = Math error trap was not caused by a divide-by-zero

bit 5

DMACERR: DMAC Trap Flag bit
1 = DMAC trap has occurred
0 = DMAC trap has not occurred

Note 1:

x = Bit is unknown

This bit is available on dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.

 2009-2012 Microchip Technology Inc.

DS70616G-page 153

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 7-3:

INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 4

MATHERR: Math Error Status bit
1 = Math error trap has occurred
0 = Math error trap has not occurred

bit 3

ADDRERR: Address Error Trap Status bit
1 = Address error trap has occurred
0 = Address error trap has not occurred

bit 2

STKERR: Stack Error Trap Status bit
1 = Stack error trap has occurred
0 = Stack error trap has not occurred

bit 1

OSCFAIL: Oscillator Failure Trap Status bit
1 = Oscillator failure trap has occurred
0 = Oscillator failure trap has not occurred

bit 0

Unimplemented: Read as ‘0’

Note 1:

This bit is available on dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.

DS70616G-page 154

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 7-4:

INTCON2: INTERRUPT CONTROL REGISTER 2

R/W-1

R/W-0

R/W-0

U-0

U-0

U-0

U-0

U-0

GIE

DISI

SWTRAP

—

—

—

—

—

bit 15

bit 8

U-0

U-0

U-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

—

—

—

INT4EP

INT3EP

INT2EP

INT1EP

INT0EP

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15

GIE: Global Interrupt Enable bit
1 = Interrupts and associated IE bits are enabled
0 = Interrupts are disabled, but traps are still enabled

bit 14

DISI: DISI Instruction Status bit
1 = DISI instruction is active
0 = DISI instruction is not active

bit 13

SWTRAP: Software Trap Status bit
1 = Software trap is enabled
0 = Software trap is disabled

bit 12-5

Unimplemented: Read as ‘0’

bit 4

INT4EP: External Interrupt 4 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
0 = Interrupt on positive edge

bit 3

INT3EP: External Interrupt 3 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
0 = Interrupt on positive edge

bit 2

INT2EP: External Interrupt 2 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
0 = Interrupt on positive edge

bit 1

INT1EP: External Interrupt 1 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
0 = Interrupt on positive edge

bit 0

INT0EP: External Interrupt 0 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
0 = Interrupt on positive edge

 2009-2012 Microchip Technology Inc.

x = Bit is unknown

DS70616G-page 155

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 7-5:

INTCON3: INTERRUPT CONTROL REGISTER 3

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

R/W-0

R/W-0

R/W-0

U-0

U-0

U-0

U-0

—

UAE

DAE

DOOVR

—

—

—

—

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-7

Unimplemented: Read as ‘0’

bit 6

UAE: USB Address Error Soft Trap Status bit
1 = USB address error (soft) trap has occurred
0 = USB address error (soft) trap has not occurred

bit 5

DAE: DMA Address Error Soft Trap Status bit
1 = DMA address error soft trap has occurred
0 = DMA address error soft trap has not occurred

bit 4

DOOVR: Do Stack Overflow Soft Trap Status bit
1 = Do stack overflow soft trap has occurred
0 = Do stack overflow soft trap has not occurred

bit 3-0

Unimplemented: Read as ‘0’

REGISTER 7-6:

x = Bit is unknown

INTCON4: INTERRUPT CONTROL REGISTER 4

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

U-0

U-0

U-0

U-0

U-0

U-0

R/W-0

—

—

—

—

—

—

—

SGHT

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-1

Unimplemented: Read as ‘0’

bit 0

SGHT: Software Generated Hard Trap Status bit
1 = Software generated hard trap has occurred
0 = Software generated hard trap has not occurred

DS70616G-page 156

x = Bit is unknown

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 7-7:

INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0

U-0

U-0

U-0

—

—

—

—

R-0

R-0

R-0

R-0

ILR<3:0>

bit 15

bit 8

R-0

R-0

R-0

R-0

R-0

R-0

R-0

R-0

VECNUM<7:0>(1)
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-12

Unimplemented: Read as ‘0’

bit 11-8

ILR<3:0>: New CPU Interrupt Priority Level bits
1111 = CPU Interrupt Priority Level is 15
•
•
•
0001 = CPU Interrupt Priority Level is 1
0000 = CPU Interrupt Priority Level is 0

bit 7-0

VECNUM<7:0>: Vector Number of Pending Interrupt bits(1)
11111111 = 255, Reserved
•
•
•
00001001 = 9, IC1 – Input Capture 1
00001000 = 8, INT0 – External Interrupt 0
00000111 = 7, Reserved
00000110 = 6, Generic soft error trap
00000101 = 5, DMAC error trap
00000100 = 4, Math error trap
00000011 = 3, Stack error trap
00000010 = 2, Generic hard trap
00000001 = 1, Address error trap
00000000 = 0, Oscillator fail trap

Note 1:

x = Bit is unknown

See Table 7-1 for the complete list of interrupt vector numbers.

 2009-2012 Microchip Technology Inc.

DS70616G-page 157

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

NOTES:

DS70616G-page 158

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
8.0

DIRECT MEMORY ACCESS
(DMA)

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this
data sheet, refer to Section 22. “Direct
Memory Access (DMA)” (DS70348)
of the “dsPIC33E/PIC24E Family
Reference Manual”, which is available
from
the
Microchip
web
site
(www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.
The DMA controller transfers data between
peripheral data registers and data space SRAM.
The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 DMA subsystem uses
dual-ported SRAM memory (DPSRAM) and register
structures that allow the DMA to operate across its
own, independent address and data buses with no
impact on CPU operation. This architecture eliminates
the need for cycle stealing, which halts the CPU when
a higher priority DMA transfer is requested. Both the
CPU and DMA controller can write and read to/from

FIGURE 8-1:

addresses within data space without interference, such
as CPU stalls, resulting in maximized, real-time
performance. Alternatively, DMA operation and data
transfer to/from the memory and peripherals are not
impacted by CPU processing. For example, when a
Run-Time Self-Programming (RTSP) operation is
performed, the CPU does not execute any instructions
until RTSP is finished. This condition, however, does
not impact data transfer to/from memory and the
peripherals.
In addition, DMA can access entire data memory space
(SRAM and DPSRAM). The Data Memory Bus Arbiter
is utilized when either the CPU or DMA attempts to
access non-dual ported SRAM, resulting in potential
DMA or CPU stalls.
The DMA controller supports up to 15 independent
channels. Each channel can be configured for transfers
to or from selected peripherals. Some of the
peripherals supported by the DMA controller include:
•
•
•
•
•
•
•
•

ECAN™
Data Converter Interface (DCI)
Analog-to-Digital Converter (ADC)
Serial Peripheral Interface (SPI)
UART
Input Capture
Output Compare
Parallel Master Port (PMP)

Refer to Table 8-1 for a complete list of supported
peripherals.

DMA CONTROLLER
DPSRAM

PERIPHERAL

DMA

Arbiter

SRAM

 2009-2012 Microchip Technology Inc.

DS70616G-page 159

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
In addition, DMA transfers can be triggered by timers
as well as external interrupts. Each DMA channel is
unidirectional. Two DMA channels must be allocated to
read and write to a peripheral. If more than one channel
receive a request to transfer data, a simple fixed priority
scheme, based on channel number, dictates which
channel completes the transfer and which channel, or
channels, are left pending. Each DMA channel moves
a block of data, after which it generates an interrupt to
the CPU to indicate that the block is available for
processing.
The DMA controller
capabilities:

provides

these

functional

• Up to 15 DMA Channels
• Register Indirect With Post-Increment Addressing
mode
• Register Indirect Without Post-Increment
Addressing mode

TABLE 8-1:

• Peripheral Indirect Addressing mode (peripheral
generates destination address)
• CPU Interrupt after Half or Full Block Transfer
Complete
• Byte or Word Transfers
• Fixed Priority Channel Arbitration
• Manual (software) or Automatic (peripheral DMA
requests) Transfer Initiation
• One-Shot or Auto-Repeat Block Transfer modes
• Ping-Pong mode (automatic switch between two
DPSRAM start addresses after each block
transfer complete)
• DMA Request for Each Channel can be Selected
from Any Supported Interrupt Source
• Debug Support Features
The peripherals that can utilize DMA are listed in
Table 8-1.

DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

Peripheral to DMA Association
INT0 – External Interrupt 0

DMAxREQ Register
IRQSEL<7:0> Bits

DMAxPAD Register
(Values to Read from
Peripheral)

DMAxPAD Register
(Values to Write to
Peripheral)

00000000

—

—

IC1 – Input Capture 1

00000001

0x0144 (IC1BUF)

—

IC2 – Input Capture 2

00000101

0x014C (IC2BUF)

—

IC3 – Input Capture 3

00100101

0x0154 (IC3BUF)

—

IC4 – Input Capture 4

00100110

0x015C (IC4BUF)

—

OC1 – Output Compare 1

00000010

—

0x0906 (OC1R)
0x0904 (OC1RS)

OC2 – Output Compare 2

00000110

—

0x0910 (OC2R)
0x090E (OC2RS)

OC3 – Output Compare 3

00011001

—

0x091A (OC3R)
0x0918 (OC3RS)

OC4 – Output Compare 4

00011010

—

0x0924 (OC4R)
0x0922 (OC4RS)

TMR2 – Timer2

00000111

—

—

TMR3 – Timer3

00001000

—

—

TMR4 – Timer4

00011011

—

—

TMR5 – Timer5

00011100

—

—

SPI1 Transfer Done

00001010

0x0248 (SPI1BUF)

0x0248 (SPI1BUF)

SPI2 Transfer Done

00100001

0x0268 (SPI2BUF)

0x0268 (SPI2BUF)

SPI3 Transfer Done

01011011

0x02A8 (SPI3BUF)

0x02A8 (SPI3BUF)

SPI4 Transfer Done

01111011

0x02C8 (SPI4BUF)

0x02C8 (SPI4BUF)

UART1RX – UART1 Receiver

00001011

0x0226 (U1RXREG)

—

UART1TX – UART1 Transmitter

00001100

—

0x0224 (U1TXREG)

UART2RX – UART2 Receiver

00011110

0x0236 (U2RXREG)

—

UART2TX – UART2 Transmitter

00011111

—

0x0234 (U2TXREG)

UART3RX – UART3 Receiver

01010010

0x0256 (U3RXREG)

—

UART3TX – UART3 Transmitter

01010011

—

0x0254 (U3TXREG)

DS70616G-page 160

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 8-1:

DMA CHANNEL TO PERIPHERAL ASSOCIATIONS (CONTINUED)

Peripheral to DMA Association
UART4RX – UART4 Receiver

DMAxREQ Register
IRQSEL<7:0> Bits

DMAxPAD Register
(Values to Read from
Peripheral)

DMAxPAD Register
(Values to Write to
Peripheral)

01011000

0x02B6 (U4RXREG)

—

UART4TX – UART4 Transmitter

01011001

—

0x02B4 (U4TXREG)

ECAN1 – RX Data Ready

00100010

0x0440 (C1RXD)

—

ECAN1 – TX Data Request

01000110

—

0x0442 (C1TXD)

ECAN2 – RX Data Ready

00110111

0x0540 (C2RXD)

—

ECAN2 – TX Data Request

01000111

—

0x0542 (C2TXD)

DCI – DCI Transfer Done

00111100

0x0290 (RXBUF0)

0x0298 (TXBUF0)

ADC1 – ADC1 Convert Done

00001101

0x0300 (ADC1BUF0)

—

ADC2 – ADC2 Convert Done

00010101

0x0340 (ADC2BUF0)

—

PMP – PMP Data Move

00101101

0x0608 (PMDIN1)

0x0608 (PMDIN1)

FIGURE 8-2:

DMA CONTROLLER TO PERIPHERAL ASSOCIATIONS BLOCK DIAGRAM

SRAM
Peripheral Indirect Address

DPSRAM

DMA Controller
DMA
Control

Arbiter

DMA
Ready
Peripheral 1

DMA
Channels
0

1

2

3

4

·

·

N

PORT 1 PORT 2

CPU

DMA

IRQ to DMA
and Interrupt
Controller
Modules

DMA X-Bus

SRAM X-Bus

CPU Peripheral X-Bus

CPU

Non-DMA
Peripheral

CPU DMA
DMA
Ready
Peripheral 2

CPU DMA
DMA
Ready
Peripheral 3

IRQ to DMA and
IRQ to DMA and
Interrupt Controller Interrupt Controller
Modules
Modules
Note: CPU and DMA address buses are not shown for clarity.

 2009-2012 Microchip Technology Inc.

DS70616G-page 161

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
8.1

DMA Resources

Many useful resources related to DMA are provided on
the main product page of the Microchip web site for the
devices listed in this data sheet. This product page,
which can be accessed using this link, contains the
latest updates and additional information.
Note:

8.1.1

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

KEY RESOURCES

• Section 22. “Direct Memory Access (DMA)”
(DS70348) in the “dsPIC33E/PIC24E Family
Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

DS70616G-page 162

8.2

DMA Control Registers

Each DMAC Channel x (where x = 0 through 14)
contains the following registers:
• 16-Bit DMA Channel Control register (DMAxCON)
• 16-Bit DMA Channel IRQ Select register
(DMAxREQ)
• 32-Bit DMA RAM Primary Start Address register
(DMAxSTA)
• 32-Bit DMA RAM Secondary Start Address
register (DMAxSTB)
• 16-Bit DMA Peripheral Address register (DMAxPAD)
• 14-Bit DMA Transfer Count register (DMAxCNT)
Additional status registers (DMAPWC, DMARQC,
DMAPPS, DMALCA and DSADR) are common to all
DMAC channels. These status registers provide information on write and request collisions, as well as on
last address and channel access information.
The DMA Interrupt Flags (DMAxIF) are located in an
IFSx register in the interrupt controller. The
corresponding interrupt enable control bits (DMAxIE)
are located in an IECx register in the interrupt
controller, and the corresponding interrupt priority
control bits (DMAxIP) are located in an IPCx register in
the interrupt controller.

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 8-1:
R/W-0
CHEN
bit 15

DMAXCON: DMA CHANNEL X CONTROL REGISTER
R/W-0
SIZE

R/W-0
DIR

U-0
—

R/W-0
R/W-0
AMODE<1:0>

bit 7
Legend:
R = Readable bit
-n = Value at POR

bit 14

bit 13

bit 12

bit 11

bit 10-6
bit 5-4

bit 3-2
bit 1-0

R/W-0
NULLW

U-0
—

U-0
—

U-0
—
bit 8

U-0
—

bit 15

R/W-0
HALF

W = Writable bit
‘1’ = Bit is set

U-0
—

U-0
—

R/W-0
R/W-0
MODE<1:0>
bit 0

U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown

CHEN: Channel Enable bit
1 = Channel is enabled
0 = Channel is disabled
SIZE: Data Transfer Size bit
1 = Byte
0 = Word
DIR: Transfer Direction bit (source/destination bus select)
1 = Reads from DPSRAM (or RAM) address, writes to peripheral address
0 = Reads from peripheral address, writes to DPSRAM (or RAM) address
HALF: Block Transfer Interrupt Select bit
1 = Initiates interrupt when half of the data has been moved
0 = Initiates interrupt when all of the data has been moved
NULLW: Null Data Peripheral Write Mode Select bit
1 = Null data write to peripheral in addition to DPSRAM (or RAM) write (DIR bit must also be clear)
0 = Normal operation
Unimplemented: Read as ‘0’
AMODE<1:0>: DMA Channel Addressing Mode Select bits
11 = Reserved
10 = Peripheral Indirect Addressing mode
01 = Register Indirect without Post-Increment mode
00 = Register Indirect with Post-Increment mode
Unimplemented: Read as ‘0’
MODE<1:0>: DMA Channel Operating Mode Select bits
11 = One-Shot, Ping-Pong modes are enabled (one block transfer from/to each DMA buffer)
10 = Continuous, Ping-Pong modes are enabled
01 = One-Shot, Ping-Pong modes are disabled
00 = Continuous, Ping-Pong modes are disabled

 2009-2012 Microchip Technology Inc.

DS70616G-page 163

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 8-2:
R/S-0
FORCE(1)
bit 15

DMAXREQ: DMA CHANNEL X IRQ SELECT REGISTER
U-0
—

U-0
—

U-0
—

U-0
—

U-0
—

U-0
—

U-0
—
bit 8

R/W-0

R/W-0

R/W-0

R/W-0
R/W-0
IRQSEL<7:0>

R/W-0

R/W-0

R/W-0

bit 7

bit 0

Legend:
R = Readable bit
-n = Value at POR
bit 15

bit 14-8
bit 7-0

Note 1:

S = Settable bit
W = Writable bit
‘1’ = Bit is set

U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown

FORCE: Force DMA Transfer bit(1)
1 = Forces a single DMA transfer (Manual mode)
0 = Automatic DMA transfer initiation by DMA request
Unimplemented: Read as ‘0’
IRQSEL<7:0>: DMA Peripheral IRQ Number Select bits
00000000 = INT0 – External Interrupt 0
00000001 = IC1 – Input Capture 1
00000010 = OC1 – Output Compare 1
00000101 = IC2 – Input Capture 2
00000110 = OC2 – Output Compare 2
00000111 = TMR2 – Timer2
00001000 = TMR3 – Timer3
00001010 = SPI1 – Transfer done
00001011 = UART1RX – UART1 Receiver
00001100 = UART1TX – UART1 Transmitter
00001101 = ADC1 – ADC1 convert done
00010101 = ADC2 – ADC2 convert done
00011001 = OC3 – Output Compare 3
00011010 = OC4 – Output Compare 4
00011011 = TMR4 – Timer4
00011100 = TMR5 – Timer5
00011110 = UART2RX – UART2 Receiver
00011111 = UART2TX – UART2 Transmitter
00100001 = SPI2 – Transfer done
00100010 = ECAN1 – RX data ready
00100101 = IC3 – Input Capture 3
00100110 = IC4 – Input Capture 4
00101101 = PMP Data mode
00110111 = ECAN2 – RX data ready
00111100 = DCI – DCI transfer done
01000110 = ECAN1 – TX data request
01000111 = ECAN2 – TX data request
01010010 = UART3RX – UART3 Receiver
01010011 = UART3TX – UART3 Transmitter
01011000 = UART4RX – UART4 Receiver
01011001 = UART4TX – UART4 Transmitter
01011011 = SPI3 – Transfer done
01111011 = SPI4 – Transfer done
The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the
forced DMA transfer is complete or the channel is disabled (CHEN = 0).

DS70616G-page 164

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 8-3:

DMAXSTAH: DMA CHANNEL X START ADDRESS REGISTER A (HIGH)

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

STA<23:16>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7-0

STA<23:16>: Primary Start Address bits (source or destination)

REGISTER 8-4:
R/W-0

DMAXSTAL: DMA CHANNEL X START ADDRESS REGISTER A (LOW)
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

STA<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

STA<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

STA<15:0>: Primary Start Address bits (source or destination)

 2009-2012 Microchip Technology Inc.

DS70616G-page 165

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 8-5:

DMAXSTBH: DMA CHANNEL X START ADDRESS REGISTER B (HIGH)

U-0

U-0

U-0

U-0

R/W-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

STB<23:16>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7-0

STB<23:16>: Secondary Start Address bits (source or destination)

REGISTER 8-6:
R/W-0

DMAXSTBL: DMA CHANNEL X START ADDRESS REGISTER B (LOW)
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

STB<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

STB<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

STB<15:0>: Secondary Start Address bits (source or destination)

DS70616G-page 166

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 8-7:
R/W-0

DMAXPAD: DMA CHANNEL X PERIPHERAL ADDRESS REGISTER(1)
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

PAD<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

PAD<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0
Note 1:

x = Bit is unknown

PAD<15:0>: Peripheral Address Register bits
If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the
DMA channel and should be avoided.

REGISTER 8-8:

DMAXCNT: DMA CHANNEL X TRANSFER COUNT REGISTER(1)

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

CNT<13:8>(2)

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

CNT<7:0>(2)
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-14

Unimplemented: Read as ‘0’

bit 13-0

CNT<13:0>: DMA Transfer Count Register bits(2)

Note 1:
2:

x = Bit is unknown

If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the
DMA channel and should be avoided.
The number of DMA transfers = CNT<13:0> + 1.

 2009-2012 Microchip Technology Inc.

DS70616G-page 167

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 8-9:

DSADRH: MOST RECENT DMA DATA SPACE HIGH ADDRESS REGISTER

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R-0

R-0

R-0

R-0

R-0

R-0

R-0

R-0

DSADR<23:16>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7-0

DSADR<23:16>: Most Recent DMA Address Accessed by DMA bits

REGISTER 8-10:
R-0

DSADRL: MOST RECENT DMA DATA SPACE LOW ADDRESS REGISTER
R-0

R-0

R-0

R-0

R-0

R-0

R-0

DSADR<15:8>
bit 15

bit 8

R-0

R-0

R-0

R-0

R-0

R-0

R-0

R-0

DSADR<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

DSADR<15:0>: Most Recent DMA Address Accessed by DMA bits

DS70616G-page 168

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 8-11:

DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS
REGISTER

U-0

R-0

R-0

R-0

R-0

R-0

R-0

R-0

—

PWCOL14

PWCOL13

PWCOL12

PWCOL11

PWCOL10

PWCOL9

PWCOL8

bit 15

bit 8

R-0

R-0

R-0

R-0

R-0

R-0

R-0

R-0

PWCOL7

PWCOL6

PWCOL5

PWCOL4

PWCOL3

PWCOL2

PWCOL1

PWCOL0

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15

Unimplemented: Read as ‘0’

bit 14

PWCOL14: Channel 14 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 13

PWCOL13: Channel 13 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 12

PWCOL12: Channel 12 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 11

PWCOL11: Channel 11 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 10

PWCOL10: Channel 10 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 9

PWCOL9: Channel 9 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 8

PWCOL8: Channel 8 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 7

PWCOL7: Channel 7 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 6

PWCOL6: Channel 6 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 5

PWCOL5: Channel 5 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 4

PWCOL4: Channel 4 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 3

PWCOL3: Channel 3 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

 2009-2012 Microchip Technology Inc.

x = Bit is unknown

DS70616G-page 169

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 8-11:

DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS
REGISTER (CONTINUED)

bit 2

PWCOL2: Channel 2 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 1

PWCOL1: Channel 1 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 0

PWCOL0: Channel 0 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

DS70616G-page 170

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 8-12:

DMARQC: DMA REQUEST COLLISION STATUS REGISTER

U-0

R-0

R-0

R-0

R-0

R-0

R-0

R-0

—

RQCOL14

RQCOL13

RQCOL12

RQCOL11

RQCOL10

RQCOL9

RQCOL8

bit 15

bit 8

R-0

R-0

R-0

R-0

R-0

R-0

R-0

R-0

RQCOL7

RQCOL6

RQCOL5

RQCOL4

RQCOL3

RQCOL2

RQCOL1

RQCOL0

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15

Unimplemented: Read as ‘0’

bit 14

RQCOL14: Channel 14 Transfer Request Collision Flag bit
1 = User FORCE and interrupt-based request collision detected
0 = No request collision detected

bit 13

RQCOL13: Channel 13 Transfer Request Collision Flag bit
1 = User FORCE and interrupt-based request collision detected
0 = No request collision detected

bit 12

RQCOL12: Channel 12 Transfer Request Collision Flag bit
1 = User FORCE and interrupt-based request collision detected
0 = No request collision detected

bit 11

RQCOL11: Channel 11 Transfer Request Collision Flag bit
1 = User FORCE and interrupt-based request collision detected
0 = No request collision detected

bit 10

RQCOL10: Channel 10 Transfer Request Collision Flag bit
1 = User FORCE and interrupt-based request collision detected
0 = No request collision detected

bit 9

RQCOL9: Channel 9 Transfer Request Collision Flag bit
1 = User FORCE and interrupt-based request collision detected
0 = No request collision detected

bit 8

RQCOL8: Channel 8 Transfer Request Collision Flag bit
1 = User FORCE and interrupt-based request collision detected
0 = No request collision detected

bit 7

RQCOL7: Channel 7 Transfer Request Collision Flag bit
1 = User FORCE and interrupt-based request collision detected
0 = No request collision detected

bit 6

RQCOL6: Channel 6 Transfer Request Collision Flag bit
1 = User FORCE and interrupt-based request collision detected
0 = No request collision detected

bit 5

RQCOL5: Channel 5 Transfer Request Collision Flag bit
1 = User FORCE and interrupt-based request collision detected
0 = No request collision detected

bit 4

RQCOL4: Channel 4 Transfer Request Collision Flag bit
1 = User FORCE and interrupt-based request collision detected
0 = No request collision detected

bit 3

RQCOL3: Channel 3 Transfer Request Collision Flag bit
1 = User FORCE and interrupt-based request collision detected
0 = No request collision detected

 2009-2012 Microchip Technology Inc.

x = Bit is unknown

DS70616G-page 171

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 8-12:

DMARQC: DMA REQUEST COLLISION STATUS REGISTER (CONTINUED)

bit 2

RQCOL2: Channel 2 Transfer Request Collision Flag bit
1 = User FORCE and interrupt-based request collision detected
0 = No request collision detected

bit 1

RQCOL1: Channel 1 Transfer Request Collision Flag bit
1 = User FORCE and interrupt-based request collision detected
0 = No request collision detected

bit 0

RQCOL0: Channel 0 Transfer Request Collision Flag bit
1 = User FORCE and interrupt-based request collision detected
0 = No request collision detected

DS70616G-page 172

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 8-13:

DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

U-0

U-0

U-0

—

—

—

—

R-1

R-1

R-1

R-1

LSTCH<3:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-4

Unimplemented: Read as ‘0’

bit 3-0

LSTCH<3:0>: Last DMAC Channel Active Status bits
1111 = No DMA transfer has occurred since system Reset
1110 = Last data transfer was handled by Channel 14
1101 = Last data transfer was handled by Channel 13
1100 = Last data transfer was handled by Channel 12
1011 = Last data transfer was handled by Channel 11
1010 = Last data transfer was handled by Channel 10
1001 = Last data transfer was handled by Channel 9
1000 = Last data transfer was handled by Channel 8
0111 = Last data transfer was handled by Channel 7
0110 = Last data transfer was handled by Channel 6
0101 = Last data transfer was handled by Channel 5
0100 = Last data transfer was handled by Channel 4
0011 = Last data transfer was handled by Channel 3
0010 = Last data transfer was handled by Channel 2
0001 = Last data transfer was handled by Channel 1
0000 = Last data transfer was handled by Channel 0

 2009-2012 Microchip Technology Inc.

x = Bit is unknown

DS70616G-page 173

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 8-14:

DMAPPS: DMA PING-PONG STATUS REGISTER

U-0

R-0

R-0

R-0

R-0

R-0

R-0

R-0

—

PPST14

PPST13

PPST12

PPST11

PPST10

PPST9

PPST8

bit 15

bit 8

R-0

R-0

R-0

R-0

R-0

R-0

R-0

R-0

PPST7

PPST6

PPST5

PPST4

PPST3

PPST2

PPST1

PPST0

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15

Unimplemented: Read as ‘0’

bit 14

PPST14: Channel 14 Ping-Pong Mode Status Flag bit
1 = DMASTB14 register selected
0 = DMASTA14 register selected

bit 13

PPST13: Channel 13 Ping-Pong Mode Status Flag bit
1 = DMASTB13 register selected
0 = DMASTA13 register selected

bit 12

PPST12: Channel 12 Ping-Pong Mode Status Flag bit
1 = DMASTB12 register selected
0 = DMASTA12 register selected

bit 11

PPST11: Channel 11 Ping-Pong Mode Status Flag bit
1 = DMASTB11 register selected
0 = DMASTA11 register selected

bit 10

PPST10: Channel 10 Ping-Pong Mode Status Flag bit
1 = DMASTB10 register selected
0 = DMASTA10 register selected

bit 9

PPST9: Channel 9 Ping-Pong Mode Status Flag bit
1 = DMASTB9 register selected
0 = DMASTA9 register selected

bit 8

PPST8: Channel 8 Ping-Pong Mode Status Flag bit
1 = DMASTB8 register selected
0 = DMASTA8 register selected

bit 7

PPST7: Channel 7 Ping-Pong Mode Status Flag bit
1 = DMASTB7 register selected
0 = DMASTA7 register selected

bit 6

PPST6: Channel 6 Ping-Pong Mode Status Flag bit
1 = DMASTB6 register selected
0 = DMASTA6 register selected

bit 5

PPST5: Channel 5 Ping-Pong Mode Status Flag bit
1 = DMASTB5 register selected
0 = DMASTA5 register selected

bit 4

PPST4: Channel 4 Ping-Pong Mode Status Flag bit
1 = DMASTB4 register selected
0 = DMASTA4 register selected

bit 3

PPST3: Channel 3 Ping-Pong Mode Status Flag bit
1 = DMASTB3 register selected
0 = DMASTA3 register selected

DS70616G-page 174

x = Bit is unknown

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 8-14:

DMAPPS: DMA PING-PONG STATUS REGISTER (CONTINUED)

bit 2

PPST2: Channel 2 Ping-Pong Mode Status Flag bit
1 = DMASTB2 register selected
0 = DMASTA2 register selected

bit 1

PPST1: Channel 1 Ping-Pong Mode Status Flag bit
1 = DMASTB1 register selected
0 = DMASTA1 register selected

bit 0

PPST0: Channel 0 Ping-Pong Mode Status Flag bit
1 = DMASTB0 register selected
0 = DMASTA0 register selected

 2009-2012 Microchip Technology Inc.

DS70616G-page 175

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

NOTES:

DS70616G-page 176

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
9.0

OSCILLATOR CONFIGURATION

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this
data sheet, refer to Section 7. “Oscillator” (DS70580) of the “dsPIC33E/
PIC24E Family Reference Manual”,
which is available from the Microchip web
site (www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.

 2009-2012 Microchip Technology Inc.

The oscillator system provides:
• Four external and internal oscillator options
• Auxiliary oscillator that provides clock source to
the USB module (if available)
• On-chip Phase-Locked Loop (PLL) to boost
internal operating frequency on select internal and
external oscillator sources
• On-the-fly clock switching between various clock
sources
• Doze mode for system power savings
• Fail-Safe Clock Monitor (FSCM) that detects clock
failure and permits safe application recovery or
shutdown
• Nonvolatile Configuration bits for clock source
selection
A simplified diagram of the oscillator system is shown
in Figure 9-1.

DS70616G-page 177

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
OSCILLATOR SYSTEM DIAGRAM

Primary Oscillator (POSC)
OSC1
R(2)

DOZE<2:0>
XT, HS, EC

POSCCLK

S3
PLL(1)

S1
OSC2

S2

XTPLL, HSPLL,
ECPLL, FRCPLL

DOZE

FIGURE 9-1:

S1/S3

FVCO(1)

FCY

POSCMD<1:0>

FRC
Oscillator

FRCCLK

FRCDIV

FP
FRCDIVN

÷2

S7

FOSC

FRCDIV<2:0>

TUN<5:0>

Reference Clock Generation

FRCDIV16

÷ 16

S6
POSCCLK

FRC

S0

LPRC

LPRC
Oscillator
Secondary Oscillator (SOSC)

S5

REFCLKO
RPn

ROSEL RODIV<3:0>

SOSC

SOSCO

÷N

FOSC

S4

LPOSCEN
SOSCI

Clock Fail

Clock Switch

Reset

S7

NOSC<2:0>

FNOSC<2:0>

WDT, PWRT,
FSCM

Auxiliary Clock Generation
(dsPIC33EPXXMU8XX and
PIC24EPXXXGU8XX Devices Only)
Auxiliary Oscillator

POSCCLK

Timer1
FRCCLK

FVCO(1)
APLL(3)

FAVCO

÷ N

ACLK

USB

ENAPLL
ASRCSEL

Note 1:
2:
3:

FRCSEL

ENAPLL

SELACLK APLLPOST<2:0>

See Figure 9-2 for PLL and FVCO details.
If the oscillator is used with XT or HS modes, an external parallel resistor with the value of 1 M must be connected.
See Figure 9-3 for APLL details.

DS70616G-page 178

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
9.1

CPU Clocking System

Instruction execution speed or device operating
frequency, FCY, is given by Equation 9-1.

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 family of devices
provides seven system clock options:
•
•
•
•
•
•
•

EQUATION 9-1:

Fast RC (FRC) Oscillator
FRC Oscillator with Phase-Locked Loop (PLL)
Primary (XT, HS or EC) Oscillator
Primary Oscillator with PLL
Secondary (LP) Oscillator
Low-Power RC (LPRC) Oscillator
FRC Oscillator with postscaler

FIGURE 9-2:

DEVICE OPERATING
FREQUENCY
FCY = FOSC/2

Figure 9-2 is a block diagram of the PLL module.
Equation 9-2 provides the relation between input
frequency (FIN) and output frequency (FOSC).
Equation 9-3 provides the relation between input
frequency (FIN) and VCO frequency (FVCO).

PLL BLOCK DIAGRAM

0.8 MHz < FREF < 8.0 MHz
120 MHZ < FVCO < 340 MHZ

FIN

FREF

÷ N1

FVCO
PFD

VCO

PLLPRE<4:0>

FOSC < 120 MHz @ +125ºC
FOSC < 140 MHz @ +85ºC

FOSC
÷ N2

PLLPOST<2:0>
÷M

PLLDIV<8:0>

EQUATION 9-2:

FOSC CALCULATION
M
 PLLDIV + 2 
F OSC = F IN   --------------------- = F IN   ----------------------------------------------------------------------------------------
 N1  N2
  PLLPRE + 2   2  PLLPOST + 1 

Where,
N1 = PLLPRE + 2
N2 = 2 x (PLLPOST + 1)
M = PLLDIV + 2

EQUATION 9-3:

FVCO CALCULATION

M
 PLLDIV + 2 
F VCO = F IN   ------- = F IN   -------------------------------------
N1
 PLLPRE + 2 

 2009-2012 Microchip Technology Inc.

DS70616G-page 179

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
Figure 9-3 illustrates a block diagram of the auxiliary
PLL module.
Note:

The auxiliary PLL module is only available on dsPIC33EPXXXMU8XX and
PIC24EPXXXGU8XX devices.

FIGURE 9-3:

APLL BLOCK DIAGRAM
3 MHz < FAREF < 5.5 MHz
60 MHZ < FAVCO < 120 MHZ

FAIN

FAREF
÷ N1

FAVCO
PFD

VCO

APLLPRE<2:0>
÷M

APLLDIV<2:0>

Equation 9-4 shows the relationship between the
auxiliary PLL input clock frequency (FAIN) and the
AVCO frequency (FAVCO).

DS70616G-page 180

EQUATION 9-4:

FAVCO CALCULATION

M
F AVCO = F AIN   -------
 N1

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 9-1:

CONFIGURATION BIT VALUES FOR CLOCK SELECTION
Oscillator Mode

Oscillator
Source

POSCMD<1:0> FNOSC<2:0>

See
Notes

Fast RC Oscillator with Divide-by-N (FRCDIVN)

Internal

xx

111

1, 2

Fast RC Oscillator with Divide-by-16 (FRCDIV16)

Internal

xx

110

1

Low-Power RC Oscillator (LPRC)

Internal

xx

101

1

Secondary

xx

100

1

Primary Oscillator (HS) with PLL (HSPLL)

Primary

10

011

—

Primary Oscillator (XT) with PLL (XTPLL)

Primary

01

011

—

Primary Oscillator (EC) with PLL (ECPLL)

Primary

00

011

Primary Oscillator (HS)

Primary

10

010

Primary Oscillator (XT)

Primary

01

010

Primary Oscillator (EC)

Primary

00

010

1

Fast RC Oscillator (FRC) with Divide-by-N and PLL
(FRCPLL)

Internal

xx

001

1

Fast RC Oscillator (FRC)

Internal

xx

000

1

Secondary (Timer1) Oscillator (SOSC)

Note 1:
2:

9.2

—
—

OSC2 pin function is determined by the OSCIOFNC Configuration bit.
This is the default oscillator mode for an unprogrammed (erased) device.

Oscillator Resources

Many useful resources related to the Oscillator are
provided on the main product page of the Microchip
web site for the devices listed in this data sheet. This
product page, which can be accessed using this link,
contains the latest updates and additional information.
Note:

1

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

 2009-2012 Microchip Technology Inc.

9.2.1

KEY RESOURCES

• Section 7. “Oscillator” (DS70580) in the
“dsPIC33E/PIC24E Family Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

DS70616G-page 181

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
9.3

Oscillator Control Registers
OSCCON: OSCILLATOR CONTROL REGISTER(1,3)

REGISTER 9-1:
U-0

R-0

—

R-0

R-0

COSC<2:0>

U-0

R/W-y

R/W-y

R/W-y

NOSC<2:0>(2)

—

bit 15

bit 8

R/W-0

R/W-0

R-0

U-0

R/C-0

U-0

R/W-0

R/W-0

CLKLOCK

IOLOCK

LOCK

—

CF

—

LPOSCEN

OSWEN

bit 7

bit 0

Legend:

y = Value Set from Configuration bits on POR

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

C = Clearable bit

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-12

COSC<2:0>: Current Oscillator Selection bits (read-only)
111 = Fast RC Oscillator (FRC) with Divide-by-N
110 = Fast RC Oscillator (FRC) with Divide-by-16
101 = Low-Power RC Oscillator (LPRC)
100 = Secondary Oscillator (SOSC)
011 = Primary Oscillator (XT, HS, EC) with PLL
010 = Primary Oscillator (XT, HS, EC)
001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL
000 = Fast RC Oscillator (FRC)

bit 11

Unimplemented: Read as ‘0’

bit 10-8

NOSC<2:0>: New Oscillator Selection bits(2)
111 = Fast RC Oscillator (FRC) with Divide-by-N
110 = Fast RC Oscillator (FRC) with Divide-by-16
101 = Low-Power RC Oscillator (LPRC)
100 = Secondary Oscillator (SOSC)
011 = Primary Oscillator (XT, HS, EC) with PLL
010 = Primary Oscillator (XT, HS, EC)
001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL
000 = Fast RC Oscillator (FRC)

bit 7

CLKLOCK: Clock Lock Enable bit
1 = If (FCKSM0 = 1), then clock and PLL configurations are locked
If (FCKSM0 = 0), then clock and PLL configurations may be modified
0 = Clock and PLL selections are not locked, configurations may be modified

bit 6

IOLOCK: I/O Lock Enable bit
1 = I/O lock is active
0 = I/O lock is not active

bit 5

LOCK: PLL Lock Status bit (read-only)
1 = Indicates that PLL is in lock or PLL start-up timer is satisfied
0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled

bit 4

Unimplemented: Read as ‘0’

Note 1:
2:

3:

Writes to this register require an unlock sequence. Refer to Section 7. “Oscillator” (DS70580) in the
“dsPIC33E/PIC24E Family Reference Manual” (available from the Microchip web site) for details.
Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to
FRC mode as a transition clock source between the two PLL modes.
This register resets only on a Power-on Reset (POR).

DS70616G-page 182

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 9-1:

OSCCON: OSCILLATOR CONTROL REGISTER(1,3) (CONTINUED)

bit 3

CF: Clock Fail Detect bit (read/clear by application)
1 = FSCM has detected clock failure
0 = FSCM has not detected clock failure

bit 2

Unimplemented: Read as ‘0’

bit 1

LPOSCEN: Secondary (LP) Oscillator Enable bit
1 = Enables Secondary Oscillator
0 = Disables Secondary Oscillator

bit 0

OSWEN: Oscillator Switch Enable bit
1 = Requests oscillator switch to selection specified by NOSC<2:0> bits
0 = Oscillator switch is complete

Note 1:
2:

3:

Writes to this register require an unlock sequence. Refer to Section 7. “Oscillator” (DS70580) in the
“dsPIC33E/PIC24E Family Reference Manual” (available from the Microchip web site) for details.
Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to
FRC mode as a transition clock source between the two PLL modes.
This register resets only on a Power-on Reset (POR).

 2009-2012 Microchip Technology Inc.

DS70616G-page 183

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 9-2:
R/W-0

CLKDIV: CLOCK DIVISOR REGISTER(2)
R/W-0

R/W-1

R/W-1

DOZE<2:0>(3)

ROI

R/W-0

R/W-0

(1,4)

DOZEN

R/W-0

R/W-0

FRCDIV<2:0>

bit 15

bit 8

R/W-0

R/W-1

PLLPOST<1:0>

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

PLLPRE<4:0>

bit 7

bit 0

Legend:

y = Value set from Configuration bits on POR

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

ROI: Recover on Interrupt bit
1 = Interrupts will clear the DOZEN bit and the processor clock and peripheral clock ratio is set to 1:1
0 = Interrupts have no effect on the DOZEN bit

bit 14-12

DOZE<2:0>: Processor Clock Reduction Select bits(3)
111 = FCY divided by 128
110 = FCY divided by 64
101 = FCY divided by 32
100 = FCY divided by 16
011 = FCY divided by 8 (default)
010 = FCY divided by 4
001 = FCY divided by 2
000 = FCY divided by 1

bit 11

DOZEN: Doze Mode Enable bit(1,4)
1 = DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks
0 = Processor clock and peripheral clock ratio forced to 1:1

bit 10-8

FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits
111 = FRC divided by 256
110 = FRC divided by 64
101 = FRC divided by 32
100 = FRC divided by 16
011 = FRC divided by 8
010 = FRC divided by 4
001 = FRC divided by 2
000 = FRC divided by 1 (default)

bit 7-6

PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as ‘N2’, PLL postscaler)
11 = Output divided by 8
10 = Reserved
01 = Output divided by 4 (default)
00 = Output divided by 2

bit 5

Unimplemented: Read as ‘0’

Note 1:
2:
3:
4:

This bit is cleared when the ROI bit is set and an interrupt occurs.
This register resets only on a Power-on Reset (POR).
DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to
DOZE<2:0> are ignored.
The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to
set the DOZEN bit is ignored.

DS70616G-page 184

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 9-2:
bit 4-0

CLKDIV: CLOCK DIVISOR REGISTER(2) (CONTINUED)

PLLPRE<4:0>: PLL Phase Detector Input Divider Select bits (also denoted as ‘N1’, PLL prescaler)
11111 = Input divided by 33
•
•
•
00001 = Input divided by 3
00000 = Input divided by 2 (default)

Note 1:
2:
3:
4:

This bit is cleared when the ROI bit is set and an interrupt occurs.
This register resets only on a Power-on Reset (POR).
DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to
DOZE<2:0> are ignored.
The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to
set the DOZEN bit is ignored.

 2009-2012 Microchip Technology Inc.

DS70616G-page 185

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 9-3:

PLLFBD: PLL FEEDBACK DIVISOR REGISTER(1)

U-0

U-0

U-0

U-0

U-0

U-0

U-0

R/W-0

—

—

—

—

—

—

—

PLLDIV<8>

bit 15

bit 8

R/W-0

R/W-0

R/W-1

R/W-1

R/W-0

R/W-0

R/W-0

R/W-0

PLLDIV<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-9

Unimplemented: Read as ‘0’

bit 8-0

PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as ‘M’, PLL multiplier)
111111111 = 513
•
•
•
000110000 = 50 (default)
•
•
•
000000010 = 4
000000001 = 3
000000000 = 2

Note 1:

This register is reset only on a Power-on Reset (POR).

DS70616G-page 186

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 9-4:

OSCTUN: FRC OSCILLATOR TUNING REGISTER(1)

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

TUN<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-6

Unimplemented: Read as ‘0’

bit 5-0

TUN<5:0>: FRC Oscillator Tuning bits
011111 = Center frequency + 11.625% (8.23 MHz)
011110 = Center frequency + 11.25% (8.20 MHz)
•
•
•
000001 = Center frequency + 0.375% (7.40 MHz)
000000 = Center frequency (7.37 MHz nominal)
111111 = Center frequency – 0.375% (7.345 MHz)
•
•
•
100001 = Center frequency – 11.625% (6.52 MHz)
100000 = Center frequency – 12% (6.49 MHz)

Note 1:

x = Bit is unknown

This register resets only on a Power-on Reset (POR).

 2009-2012 Microchip Technology Inc.

DS70616G-page 187

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 9-5:
R/W-0
ENAPLL
bit 15
R/W-0

ACLKCON3: AUXILIARY CLOCK CONTROL REGISTER 3(1,2)
U-0
—

R/W-0
SELACLK

R/W-0
R/W-0
AOSCMD<1:0>

R/W-0
ASRCSEL

R/W-0
FRCSEL

U-0
—
bit 8

R/W-0
APLLPOST<2:0>

R/W-0

U-0
—

U-0
—

R/W-0

R/W-0
APLLPRE<2:0>

R/W-0

bit 7

bit 0

Legend:
R = Readable bit
-n = Value at POR
bit 15

bit 14
bit 13

bit 12-11

bit 10

bit 9

bit 8
bit 7-5

bit 4-3
bit 2-0

Note 1:
2:

W = Writable bit
‘1’ = Bit is set

U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown

ENAPLL: Enable Auxiliary PLL (APLL) and Select APLL as USB Clock Source bit
1 = APLL is enabled, the USB clock source is the APLL output
0 = APLL is disabled, the USB clock source is the input clock to the APLL
Unimplemented: Read as ‘0’
SELACLK: Select Auxiliary Clock Source for Auxiliary Clock Divider bit
1 = Auxiliary PLL or oscillator provides the source clock for auxiliary clock divider
0 = Primary PLL provides the source clock for auxiliary clock divider
AOSCMD<1:0>: Auxiliary Oscillator Mode bits
11 = EC (External Clock) Oscillator mode select
10 = XT (Crystal) Oscillator mode select
01 = HS (High-Speed) Oscillator mode select
00 = Auxiliary Oscillator disabled (default)
ASRCSEL: Select Reference Clock Source for APLL bit
1 = Primary Oscillator is the clock source for APLL
0 = Auxiliary Oscillator is the clock source for APLL
FRCSEL: Select FRC as Reference Clock Source for APLL bit
1 = FRC is the clock source for APLL
0 = Auxiliary Oscillator or Primary Oscillator is the clock source for APLL (determined by ASRCSEL bit)
Unimplemented: Read as ‘0’
APLLPOST<2:0>: Select PLL VCO Output Divider bits
111 = Divided by 1
110 = Divided by 2
101 = Divided by 4
100 = Divided by 8
011 = Divided by 16
010 = Divided by 32
001 = Divided by 64
000 = Divided by 256 (default)
Unimplemented: Read as ‘0’
APLLPRE<2:0>: PLL Phase Detector Input Divider bits
111 = Divided by 12
110 = Divided by 10
101 = Divided by 6
100 = Divided by 5
011 = Divided by 4
010 = Divided by 3
001 = Divided by 2
000 = Divided by 1 (default)
This register resets only on a Power-on Reset (POR).
This register is only available on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices.

DS70616G-page 188

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 9-6:

ACLKDIV3: AUXILIARY CLOCK DIVISOR REGISTER 3(1,2)

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

R/W-0

R/W-0

R/W-0

APLLDIV<2:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-3

Unimplemented: Read as ‘0’

bit 2-0

APLLDIV<2:0>: PLL Feedback Divisor bits (PLL Multiplier Ratio)
111 = 24
110 = 21
101 = 20
100 = 19
011 = 18
010 = 17
001 = 16
000 = 15 (default)

Note 1:
2:

x = Bit is unknown

This register resets only on a Power-on Reset (POR).
This register is only available on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices.

 2009-2012 Microchip Technology Inc.

DS70616G-page 189

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 9-7:

REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

R/W-0

U-0

R/W-0

R/W-0

ROON

—

ROSSLP

ROSEL

R/W-0

R/W-0

R/W-0

R/W-0

RODIV<3:0>(1)

bit 15

bit 8

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15

ROON: Reference Oscillator Output Enable bit
1 = Reference oscillator output is enabled on REFCLK pin(2)
0 = Reference oscillator output is disabled

bit 14

Unimplemented: Read as ‘0’

bit 13

ROSSLP: Reference Oscillator Run in Sleep bit
1 = Reference oscillator output continues to run in Sleep
0 = Reference oscillator output is disabled in Sleep

bit 12

ROSEL: Reference Oscillator Source Select bit
1 = Oscillator crystal used as the reference clock
0 = System clock used as the reference clock

bit 11-8

RODIV<3:0>: Reference Oscillator Divider bits(1)
1111 = Reference clock divided by 32,768
1110 = Reference clock divided by 16,384
1101 = Reference clock divided by 8,192
1100 = Reference clock divided by 4,096
1011 = Reference clock divided by 2,048
1010 = Reference clock divided by 1,024
1001 = Reference clock divided by 512
1000 = Reference clock divided by 256
0111 = Reference clock divided by 128
0110 = Reference clock divided by 64
0101 = Reference clock divided by 32
0100 = Reference clock divided by 16
0011 = Reference clock divided by 8
0010 = Reference clock divided by 4
0001 = Reference clock divided by 2
0000 = Reference clock

bit 7-0

Unimplemented: Read as ‘0’

Note 1:
2:

x = Bit is unknown

The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
This pin is remappable. See Section 11.4 “Peripheral Pin Select” for more information.

DS70616G-page 190

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
10.0

POWER-SAVING FEATURES

10.2

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this
data sheet, refer to Section 9. “Watchdog Timer and Power-Saving Modes”
(DS70615) of the “dsPIC33E/PIC24E
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.
The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 devices provide the
ability to manage power consumption by selectively
managing clocking to the CPU and the peripherals.
In general, a lower clock frequency and a reduction
in the number of circuits being clocked constitutes
lower consumed power.

Instruction-Based Power-Saving
Modes

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 devices have two
special power-saving modes that are entered
through the execution of a special PWRSAV
instruction. Sleep mode stops clock operation and
halts all code execution. Idle mode halts the CPU
and code execution, but allows peripheral modules
to continue operation. The assembler syntax of the
PWRSAV instruction is shown in Example 10-1.
Note:

SLEEP_MODE and IDLE_MODE are constants defined in the assembler include
file for the selected device.

Sleep and Idle modes can be exited as a result of an
enabled interrupt, WDT time-out or a device Reset. When
the device exits these modes, it is said to wake up.

10.2.1

SLEEP MODE

The following occur in Sleep mode:

Combinations of these methods can be used to selectively tailor an application’s power consumption while
still maintaining critical application features, such as
timing-sensitive communications.

• The system clock source is shut down. If an
on-chip oscillator is used, it is turned off.
• The device current consumption is reduced to a
minimum, provided that no I/O pin is sourcing
current.
• The Fail-Safe Clock Monitor does not operate,
since the system clock source is disabled.
• The LPRC clock continues to run in Sleep mode if
the WDT is enabled.
• The WDT, if enabled, is automatically cleared
prior to entering Sleep mode.
• Some device features or peripherals can continue
to operate. This includes items such as the input
change notification on the I/O ports, or peripherals
that use an external clock input.
• Any peripheral that requires the system clock
source for its operation is disabled.

10.1

The device wakes up from Sleep mode on any of the
these events:

dsPIC33EPXXX(GP/MC/MU)806/810/814
PIC24EPXXX(GP/GU)810/814
devices
manage power consumption in four ways:
•
•
•
•

and
can

Clock frequency
Instruction-based Sleep and Idle modes
Software-controlled Doze mode
Selective peripheral control in software

Clock Frequency and Clock
Switching

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 devices allow a wide
range of clock frequencies to be selected under
application control. If the system clock configuration is
not locked, users can choose low-power or highprecision oscillators by simply changing the NOSCx
bits (OSCCON<10:8>). The process of changing a
system clock during operation, as well as limitations to
the process, are discussed in more detail in
Section 9.0 “Oscillator Configuration”.

EXAMPLE 10-1:

• Any interrupt source that is individually enabled
• Any form of device Reset
• A WDT time-out
On wake-up from Sleep mode, the processor restarts
with the same clock source that was active when Sleep
mode was entered.

PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE
PWRSAV #IDLE_MODE

; Put the device into SLEEP mode
; Put the device into IDLE mode

 2009-2012 Microchip Technology Inc.

DS70616G-page 191

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
10.2.2

IDLE MODE

The following occur in Idle mode:
• The CPU stops executing instructions.
• The WDT is automatically cleared.
• The system clock source remains active. By
default, all peripheral modules continue to operate
normally from the system clock source, but can
also be selectively disabled (see Section 10.4
“Peripheral Module Disable”).
• If the WDT or FSCM is enabled, the LPRC also
remains active.
The device wakes from Idle mode on any of these
events:
• Any interrupt that is individually enabled
• Any device Reset
• A WDT time-out
On wake-up from Idle mode, the clock is reapplied to
the CPU and instruction execution will begin (2-4 clock
cycles later), starting with the instruction following the
PWRSAV instruction, or the first instruction in the ISR.

10.2.3

INTERRUPTS COINCIDENT WITH
POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a
PWRSAV instruction is held off until entry into Sleep or
Idle mode has completed. The device then wakes up
from Sleep or Idle mode.

10.3

Doze Mode

The preferred strategies for reducing power
consumption are changing clock speed and invoking
one of the power-saving modes. In some
circumstances, this cannot be practical. For example, it
may be necessary for an application to maintain
uninterrupted synchronous communication, even while
it is doing nothing else. Reducing system clock speed
can introduce communication errors, while using a
power-saving mode can stop communications
completely.
Doze mode is a simple and effective alternative method
to reduce power consumption while the device is still
executing code. In this mode, the system clock
continues to operate from the same source and at the
same speed. Peripheral modules continue to be
clocked at the same speed, while the CPU clock speed
is reduced. Synchronization between the two clock
domains is maintained, allowing the peripherals to
access the SFRs while the CPU executes code at a
slower rate.

DS70616G-page 192

Doze mode is enabled by setting the DOZEN bit
(CLKDIV<11>). The ratio between peripheral and core
clock speed is determined by the DOZE<2:0> bits
(CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default
setting.
Programs can use Doze mode to selectively reduce
power consumption in event-driven applications. This
allows clock-sensitive functions, such as synchronous
communications, to continue without interruption while
the CPU idles, waiting for something to invoke an
interrupt routine. An automatic return to full-speed CPU
operation on interrupts can be enabled by setting the
ROI bit (CLKDIV<15>). By default, interrupt events
have no effect on Doze mode operation.
For example, suppose the device is operating at
20 MIPS and the ECAN module has been configured
for 500 kbps based on this device operating speed. If
the device is placed in Doze mode with a clock
frequency ratio of 1:4, the ECAN module continues to
communicate at the required bit rate of 500 kbps, but
the CPU now starts executing instructions at a
frequency of 5 MIPS.

10.4

Peripheral Module Disable

The Peripheral Module Disable (PMD) registers
provide a method to disable a peripheral module by
stopping all clock sources supplied to that module.
When a peripheral is disabled using the appropriate
PMD control bit, the peripheral is in a minimum power
consumption state. The control and status registers
associated with the peripheral are also disabled, so
writes to those registers do not have effect and read
values are invalid.
A peripheral module is enabled only if both the
associated bit in the PMD register is cleared and the
peripheral is supported by the specific dsPIC® DSC
variant. If the peripheral is present in the device, it is
enabled in the PMD register by default.
Note:

If a PMD bit is set, the corresponding
module is disabled after a delay of one
instruction cycle. Similarly, if a PMD bit is
cleared, the corresponding module is
enabled after a delay of one instruction
cycle (assuming the module control registers are already configured to enable
module operation).

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
10.5

Power-Saving Resources

Many useful resources related to Power-Saving
features are provided on the main product page of the
Microchip web site for the devices listed in this data
sheet. This product page, which can be accessed using
this link, contains the latest updates and additional
information.
Note:

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

10.5.1

KEY RESOURCES

• Section 9. “Watchdog Timer and
Power-Saving Modes” (DS70615) in the
“dsPIC33E/PIC24E Family Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

10.6

Special Function Registers

Seven registers, PMD1: Peripheral Module Disable
Control Register 1 through PMD7: Peripheral Module
Disable Control Register 7, are provided for peripheral
module control.

 2009-2012 Microchip Technology Inc.

DS70616G-page 193

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 10-1:

PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

T5MD

T4MD

T3MD

T2MD

T1MD

QEI1MD(1)

PWMMD(1)

DCIMD

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

I2C1MD

U2MD

U1MD

SPI2MD

SPI1MD

C2MD

C1MD

AD1MD

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15

T5MD: Timer5 Module Disable bit
1 = Timer5 module is disabled
0 = Timer5 module is enabled

bit 14

T4MD: Timer4 Module Disable bit
1 = Timer4 module is disabled
0 = Timer4 module is enabled

bit 13

T3MD: Timer3 Module Disable bit
1 = Timer3 module is disabled
0 = Timer3 module is enabled

bit 12

T2MD: Timer2 Module Disable bit
1 = Timer2 module is disabled
0 = Timer2 module is enabled

bit 11

T1MD: Timer1 Module Disable bit
1 = Timer1 module is disabled
0 = Timer1 module is enabled

bit 10

QEI1MD: QEI1 Module Disable bit(1)
1 = QEI1 module is disabled
0 = QEI1 module is enabled

bit 9

PWMMD: PWM Module Disable bit(1)
1 = PWM module is disabled
0 = PWM module is enabled

bit 8

DCIMD: DCI Module Disable bit
1 = DCI module is disabled
0 = DCI module is enabled

bit 7

I2C1MD: I2C1 Module Disable bit
1 = I2C1 module is disabled
0 = I2C1 module is enabled

bit 6

U2MD: UART2 Module Disable bit
1 = UART2 module is disabled
0 = UART2 module is enabled

bit 5

U1MD: UART1 Module Disable bit
1 = UART1 module is disabled
0 = UART1 module is enabled

bit 4

SPI2MD: SPI2 Module Disable bit
1 = SPI2 module is disabled
0 = SPI2 module is enabled

Note 1:

x = Bit is unknown

This bit is available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.

DS70616G-page 194

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 10-1:

PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

bit 3

SPI1MD: SPI1 Module Disable bit
1 = SPI1 module is disabled
0 = SPI1 module is enabled

bit 2

C2MD: ECAN2 Module Disable bit
1 = ECAN2 module is disabled
0 = ECAN2 module is enabled

bit 1

C1MD: ECAN1 Module Disable bit
1 = ECAN1 module is disabled
0 = ECAN1 module is enabled

bit 0

AD1MD: ADC1 Module Disable bit
1 = ADC1 module is disabled
0 = ADC1 module is enabled

Note 1:

This bit is available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.

 2009-2012 Microchip Technology Inc.

DS70616G-page 195

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 10-2:

PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

IC8MD

IC7MD

IC6MD

IC5MD

IC4MD

IC3MD

IC2MD

IC1MD

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

OC8MD

OC7MD

OC6MD

OC5MD

OC4MD

OC3MD

OC2MD

OC1MD

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15

IC8MD: Input Capture 8 Module Disable bit
1 = Input Capture 8 module is disabled
0 = Input Capture 8 module is enabled

bit 14

IC7MD: Input Capture 2 Module Disable bit
1 = Input Capture 7 module is disabled
0 = Input Capture 7 module is enabled

bit 13

IC6MD: Input Capture 6 Module Disable bit
1 = Input Capture 6 module is disabled
0 = Input Capture 6 module is enabled

bit 12

IC5MD: Input Capture 5 Module Disable bit
1 = Input Capture 5 module is disabled
0 = Input Capture 5 module is enabled

bit 11

IC4MD: Input Capture 4 Module Disable bit
1 = Input Capture 4 module is disabled
0 = Input Capture 4 module is enabled

bit 10

IC3MD: Input Capture 3 Module Disable bit
1 = Input Capture 3 module is disabled
0 = Input Capture 3 module is enabled

bit 9

IC2MD: Input Capture 2 Module Disable bit
1 = Input Capture 2 module is disabled
0 = Input Capture 2 module is enabled

bit 8

IC1MD: Input Capture 1 Module Disable bit
1 = Input Capture 1 module is disabled
0 = Input Capture 1 module is enabled

bit 7

OC8MD: Output Compare 8 Module Disable bit
1 = Output Compare 8 module is disabled
0 = Output Compare 8 module is enabled

bit 6

OC7MD: Output Compare 7 Module Disable bit
1 = Output Compare 7 module is disabled
0 = Output Compare 7 module is enabled

bit 5

OC6MD: Output Compare 6 Module Disable bit
1 = Output Compare 6 module is disabled
0 = Output Compare 6 module is enabled

bit 4

OC5MD: Output Compare 5 Module Disable bit
1 = Output Compare 5 module is disabled
0 = Output Compare 5 module is enabled

DS70616G-page 196

x = Bit is unknown

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 10-2:

PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 (CONTINUED)

bit 3

OC4MD: Output Compare 4 Module Disable bit
1 = Output Compare 4 module is disabled
0 = Output Compare 4 module is enabled

bit 2

OC3MD: Output Compare 3 Module Disable bit
1 = Output Compare 3 module is disabled
0 = Output Compare 3 module is enabled

bit 1

OC2MD: Output Compare 2 Module Disable bit
1 = Output Compare 2 module is disabled
0 = Output Compare 2 module is enabled

bit 0

OC1MD: Output Compare 1 Module Disable bit
1 = Output Compare 1 module is disabled
0 = Output Compare 1 module is enabled

 2009-2012 Microchip Technology Inc.

DS70616G-page 197

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 10-3:

PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

R/W-0

R/W-0

R/W-0

R/W-0

U-0

R/W-0

R/W-0

R/W-0

T9MD

T8MD

T7MD

T6MD

—

CMPMD

RTCCMD

PMPMD

bit 15

bit 8

R/W-0
CRCMD

U-0

R/W-0

U-0

R/W-0

U-0

R/W-0

R/W-0

—

QEI2MD(1)

—

U3MD

—

I2C2MD

AD2MD

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15

T9MD: Timer9 Module Disable bit
1 = Timer9 module is disabled
0 = Timer9 module is enabled

bit 14

T8MD: Timer8 Module Disable bit
1 = Timer8 module is disabled
0 = Timer8 module is enabled

bit 13

T7MD: Timer7 Module Disable bit
1 = Timer7 module is disabled
0 = Timer7 module is enabled

bit 12

T6MD: Timer6 Module Disable bit
1 = Timer6 module is disabled
0 = Timer6 module is enabled

bit 11

Unimplemented: Read as ‘0’

bit 10

CMPMD: Comparator Module Disable bit
1 = Comparator module is disabled
0 = Comparator module is enabled

bit 9

RTCCMD: RTCC Module Disable bit
1 = RTCC module is disabled
0 = RTCC module is enabled

bit 8

PMPMD: PMP Module Disable bit
1 = PMP module is disabled
0 = PMP module is enabled

bit 7

CRCMD: CRC Module Disable bit
1 = CRC module is disabled
0 = CRC module is enabled

bit 6

Unimplemented: Read as ‘0’

bit 5

QEI2MD: QEI2 Module Disable bit(1)
1 = QEI2 module is disabled
0 = QEI2 module is enabled

bit 4

Unimplemented: Read as ‘0’

bit 3

U3MD: UART3 Module Disable bit
1 = UART3 module is disabled
0 = UART3 module is enabled

bit 2

Unimplemented: Read as ‘0’

Note 1:

x = Bit is unknown

This bit is available in dsPIC33EPXXX(MC/MU)806/810/814 devices only.

DS70616G-page 198

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

bit 1

I2C2MD: I2C2 Module Disable bit
1 = I2C2 module is disabled
0 = I2C2 module is enabled

bit 0

AD2MD: ADC2 Module Disable bit
1 = ADC2 module is disabled
0 = ADC2 module is enabled

Note 1:

This bit is available in dsPIC33EPXXX(MC/MU)806/810/814 devices only.

 2009-2012 Microchip Technology Inc.

DS70616G-page 199

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 10-4:

PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

U-0

R/W-0

U-0

R/W-0

U-0

U-0

R/W-0

—

—

U4MD

—

REFOMD

—

—

USB1MD(1)

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-6

Unimplemented: Read as ‘0’

bit 5

U4MD: UART4 Module Disable bit
1 = UART4 module is disabled
0 = UART4 module is enabled

bit 4

Unimplemented: Read as ‘0’

bit 3

REFOMD: Reference Clock Module Disable bit
1 = Reference clock module is disabled
0 = Reference clock module is enabled

bit 2-1

Unimplemented: Read as ‘0’

bit 0

USB1MD: USB Module Disable bit(1)
1 = USB module is disabled
0 = USB module is enabled

Note 1:

x = Bit is unknown

This bit is only available on dsPIC33EPXXXMU8XXX and PIC24EPXXXGU8XX devices.

DS70616G-page 200

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 10-5:

PMD5: PERIPHERAL MODULE DISABLE CONTROL REGISTER 5

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

IC16MD

IC15MD

IC14MD

IC13MD

IC12MD

IC11MD

IC10MD

IC9MD

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

OC16MD

OC15MD

OC14MD

OC13MD

OC12MD

OC11MD

OC10MD

OC9MD

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15

IC16MD: IC16 Module Disable bit
1 = IC16 module is disabled
0 = IC16 module is enabled

bit 14

IC15MD: IC15 Module Disable bit
1 = IC15 module is disabled
0 = IC15 module is enabled

bit 13

IC14MD: IC14 Module Disable bit
1 = IC14 module is disabled
0 = IC14 module is enabled

bit 12

IC13MD: IC13 Module Disable bit
1 = IC13 module is disabled
0 = IC13 module is enabled

bit 11

IC12MD: IC12 Module Disable bit
1 = IC12 module is disabled
0 = IC12 module is enabled

bit 10

IC11MD: IC11 Module Disable bit
1 = IC11 module is disabled
0 = IC11 module is enabled

bit 9

IC10MD: IC10 Module Disable bit
1 = IC10 module is disabled
0 = IC10 module is enabled

bit 8

IC9MD: IC9 Module Disable bit
1 = IC9 module is disabled
0 = IC9 module is enabled

bit 7

OC16MD: OC16 Module Disable bit
1 = OC16 module is disabled
0 = OC16 module is enabled

bit 6

OC15MD: OC15 Module Disable bit
1 = OC15 module is disabled
0 = OC15 module is enabled

bit 5

OC14MD: OC14 Module Disable bit
1 = OC14 module is disabled
0 = OC14 module is enabled

bit 4

OC13MD: OC13 Module Disable bit
1 = OC13 module is disabled
0 = OC13 module is enabled

 2009-2012 Microchip Technology Inc.

x = Bit is unknown

DS70616G-page 201

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 10-5:

PMD5: PERIPHERAL MODULE DISABLE CONTROL REGISTER 5 (CONTINUED)

bit 3

OC12MD: OC12 Module Disable bit
1 = OC12 module is disabled
0 = OC12 module is enabled

bit 2

OC11MD: OC11 Module Disable bit
1 = OC11 module is disabled
0 = OC11 module is enabled

bit 1

OC10MD: OC10 Module Disable bit
1 = OC10 module is disabled
0 = OC10 module is enabled

bit 0

OC9MD: OC9 Module Disable bit
1 = OC9 module is disabled
0 = OC9 module is enabled

DS70616G-page 202

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 10-6:

PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

U-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

—

PWM7MD(1)

PWM6MD(1)

PWM5MD(1)

PWM4MD(1)

PWM3MD(1)

PWM2MD(1)

PWM1MD(1)

bit 15

bit 8

U-0

U-0

U-0

U-0

U-0

U-0

R/W-0

R/W-0

—

—

—

—

—

—

SPI4MD

SPI3MD

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15

Unimplemented: Read as ‘0’

bit 14

PWM7MD: PWM7 Module Disable bit(1)
1 = PWM7 module is disabled
0 = PWM7 module is enabled

bit 13

PWM6MD: PWM6 Module Disable bit(1)
1 = PWM6 module is disabled
0 = PWM6 module is enabled

bit 12

PWM5MD: PWM5 Module Disable bit(1)
1 = PWM5 module is disabled
0 = PWM5 module is enabled

bit 11

PWM4MD: PWM4 Module Disable bit(1)
1 = PWM4 module is disabled
0 = PWM4 module is enabled

bit 10

PWM3MD: PWM3 Module Disable bit(1)
1 = PWM3 module is disabled
0 = PWM3 module is enabled

bit 9

PWM2MD: PWM2 Module Disable bit(1)
1 = PWM2 module is disabled
0 = PWM2 module is enabled

bit 8

PWM1MD: PWM1 Module Disable bit(1)
1 = PWM1 module is disabled
0 = PWM1 module is enabled

bit 7-2

Unimplemented: Read as ‘0’

bit 1

SPI4MD: SPI4 Module Disable bit
1 = SPI4 module is disabled
0 = SPI4 module is enabled

bit 0

SPI3MD: SPI3 Module Disable bit
1 = SPI3 module is disabled
0 = SPI3 module is enabled

Note 1:

x = Bit is unknown

This bit is available in dsPIC33EPXXX(MC/MU)806/810/814 devices only.

 2009-2012 Microchip Technology Inc.

DS70616G-page 203

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 10-7:
U-0
—
bit 15

PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7
U-0
—

U-0
—

U-0
—

U-0
—

U-0
—

U-0
—

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

DMA12MD
DMA13MD
DMA14MD

DMA8MD
DMA9MD
DMA10MD

DMA4MD
DMA5MD
DMA6MD

DMA0MD
DMA1MD
DMA2MD

—

DMA11MD

DMA7MD

DMA3MD

U-0

U-0

U-0

U-0

—

—

—

—

bit 7

bit 0

Legend:
R = Readable bit
-n = Value at POR
bit 15-8
bit 7

U-0
—

W = Writable bit
‘1’ = Bit is set

U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown

Unimplemented: Read as ‘0’
DMA12MD: DMA12 Module Disable bit
1 = DMA12 module is disabled
0 = DMA12 module is enabled
DMA13MD: DMA13 Module Disable bit
1 = DMA13 module is disabled
0 = DMA13 module is enabled

bit 6

DMA14MD: DMA14 Module Disable bit
1 = DMA14 module is disabled
0 = DMA14 module is enabled
DMA8MD: DMA3 Module Disable bit
1 = DMA8 module is disabled
0 = DMA8 module is enabled
DMA9MD: DMA2 Module Disable bit
1 = DMA9 module is disabled
0 = DMA9 module is enabled
DMA10MD: DMA10 Module Disable bit
1 = DMA10 module is disabled
0 = DMA10 module is enabled

bit 5

DMA11MD: DMA11 Module Disable bit
1 = DMA11 module is disabled
0 = DMA11 module is enabled
DMA4MD: DMA4 Module Disable bit
1 = DMA4 module is disabled
0 = DMA4 module is enabled
DMA5MD: DMA5 Module Disable bit
1 = DMA5 module is disabled
0 = DMA5 module is enabled
DMA6MD: DMA6 Module Disable bit
1 = DMA6 module is disabled
0 = DMA6 module is enabled
DMA7MD: DMA7 Module Disable bit
1 = DMA7 module is disabled
0 = DMA7 module is enabled

DS70616G-page 204

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 10-7:
bit 4

PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7 (CONTINUED)

DMA0MD: DMA0 Module Disable bit
1 = DMA0 module is disabled
0 = DMA0 module is enabled
DMA1MD: DMA1 Module Disable bit
1 = DMA1 module is disabled
0 = DMA1 module is enabled
DMA2MD: DMA2 Module Disable bit
1 = DMA2 module is disabled
0 = DMA2 module is enabled

bit 3-0

DMA3MD: DMA3 Module Disable bit
1 = DMA3 module is disabled
0 = DMA3 module is enabled
Unimplemented: Read as ‘0’

 2009-2012 Microchip Technology Inc.

DS70616G-page 205

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

NOTES:

DS70616G-page 206

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
11.0

I/O PORTS

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this
data sheet, refer to Section 10. “I/O
Ports” (DS70598) of the “dsPIC33E/
PIC24E Family Reference Manual”,
which is available from the Microchip web
site (www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.
All of the device pins (except VDD, VSS, MCLR and
OSC1/CLKI) are shared among the peripherals and the
parallel I/O ports. All I/O input ports feature Schmitt
Trigger inputs for improved noise immunity.

11.1

When a peripheral is enabled and the peripheral is
actively driving an associated pin, the use of the pin as
a general purpose output pin is disabled. The I/O pin
can be read, but the output driver for the parallel port bit
is disabled. If a peripheral is enabled, but the peripheral
is not actively driving a pin, that pin can be driven by a
port.
All port pins have eight registers directly associated
with their operation as digital I/O. The Data Direction
register (TRISx) determines whether the pin is an input
or an output. If the data direction bit is a ‘1’, then the pin
is an input. All port pins are defined as inputs after a
Reset. Reads from the latch (LATx) read the latch.
Writes to the latch write the latch. Reads from the port
(PORTx) read the port pins, while writes to the port pins
write the latch.
Any bit and its associated data and control registers
that are not valid for a particular device is disabled. This
means the corresponding LATx and TRISx registers
and the port pin are read as zeros.
When a pin is shared with another peripheral or
function that is defined as an input only, it is
nevertheless regarded as a dedicated port because
there is no other competing source of outputs.

Parallel I/O (PIO) Ports

Generally, a parallel I/O port that shares a pin with a
peripheral is subservient to the peripheral. The
peripheral’s output buffer data and control signals are
provided to a pair of multiplexers. The multiplexers
select whether the peripheral or the associated port
has ownership of the output data and control signals of
the I/O pin. The logic also prevents “loop through,” in
which a port’s digital output can drive the input of a
peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and
the associated I/O pin to which they are connected.

 2009-2012 Microchip Technology Inc.

DS70616G-page 207

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 11-1:

BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE
Peripheral Module

Output Multiplexers

Peripheral Input Data
Peripheral Module Enable
Peripheral Output Enable
Peripheral Output Data

PIO Module

WR TRIS

Output Enable

0
1

Output Data

0

Read TRIS

Data Bus

I/O
1

D

Q

I/O Pin

CK
TRIS Latch
D

WR LAT +
WR Port

Q

CK
Data Latch

Read LAT
Input Data
Read Port

DS70616G-page 208

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
11.1.1

OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for
data control, some port pins can also be individually
configured for either digital or open-drain output. This
is controlled by the Open-Drain Control register,
ODCx, associated with each port. Setting any of the
bits configures the corresponding pin to act as an
open-drain output.
The open-drain feature allows the generation of
outputs higher than VDD (e.g., 5V on a 5V tolerant pin)
by using external pull-up resistors. The maximum
open-drain voltage allowed is the same as the
maximum VIH specification for that pin.
See the “Pin Diagrams” section for the available pins
and their functionality.

11.2

Configuring Analog and Digital
Port Pins

The ANSELx register controls the operation of the
analog port pins. The port pins that are to function as
analog inputs or outputs must have their corresponding
ANSELx and TRISx bits set. In order to use port pins for
I/O functionality with digital modules, such as Timers,
UARTs, etc., the corresponding ANSELx bit must be
cleared.
The ANSELx register has a default value of 0xFFFF;
therefore, all pins that share analog functions are
analog (not digital) by default. Refer to the Pinout I/O
Descriptions (Table 1-1 in Section 1.0 “Device
Overview”) for the complete list of analog pins.
If the TRISx bit is cleared (output) while the ANSELx bit
is set, the digital output level (VOH or VOL) is converted
by an analog peripheral, such as the ADC module or
Comparator module.
When the PORT register is read, all pins configured as
analog input channels are read as cleared (a low level).
Pins configured as digital inputs do not convert an
analog input. Analog levels on any pin defined as a
digital input (including the pins defined as Analog in
Table 1-1 in Section 1.0 “Device Overview”) can
cause the input buffer to consume current that
exceeds the device specifications.

11.2.1

11.3

Input Change Notification

The input change notification function of the I/O ports
allows the dsPIC33EPXXX(GP/MC/MU)806/810/814
and
PIC24EPXXX(GP/GU)810/814
devices
to
generate interrupt requests to the processor in
response to a Change-of-State (COS) on selected input
pins. This feature can detect input Change-of-States
even in Sleep mode, when the clocks are disabled.
Every I/O port pin can be selected (enabled) for
generating an interrupt request on a Change-of-State.
Three control registers are associated with the CN
functionality of each I/O port. The CNENx registers
contain the CN interrupt enable control bits for each of
the input pins. Setting any of these bits enables a CN
interrupt for the corresponding pins.
Each I/O pin also has a weak pull-up and a weak
pull-down connected to it. The pull-ups act as a
current source or sink source connected to the pin,
and eliminate the need for external resistors when
push-button or keypad devices are connected. The
pull-ups and pull-downs are enabled separately using
the CNPUx and the CNPDx registers, which contain
the control bits for each of the pins. Setting any of
the control bits enables the weak pull-ups and/or
pull-downs for the corresponding pins.
Note:

Pull-ups and pull-downs on change notification pins should always be disabled
when the port pin is configured as a digital
output.

EXAMPLE 11-1:
MOV

0xFF00, W0

MOV

W0, TRISB

NOP
BTSS

PORTB, #13

PORT WRITE/READ
EXAMPLE
;
;
;
;
;
;

Configure PORTB<15:8>
as inputs
and PORTB<7:0>
as outputs
Delay 1 cycle
Next Instruction

I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port
direction change or port write operation and a read
operation of the same port. Typically this instruction
would be an NOP, as shown in Example 11-1.

 2009-2012 Microchip Technology Inc.

DS70616G-page 209

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
11.4

Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while
minimizing the conflict of features on I/O pins. The challenge is even greater on low pin-count devices. In an
application where more than one peripheral needs to
be assigned to a single pin, inconvenient workarounds
in application code or a complete redesign may be the
only option.
Peripheral Pin Select configuration provides an
alternative to these choices by enabling peripheral set
selection and their placement on a wide range of I/O
pins. By increasing the pinout options available on a
particular device, users can better tailor the device to
their entire application, rather than trimming the
application to fit the device.
The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may
independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral
Pin Select is performed in software and generally does
not require the device to be reprogrammed. Hardware
safeguards are included that prevent accidental or
spurious changes to the peripheral mapping once it has
been established.

11.4.1

AVAILABLE PINS

The number of available pins is dependent on the
particular device and its pin count. Pins that support the
Peripheral Pin Select feature include the designation
“RPn” or “RPIn” in their full pin designation, where “RP”
designates a remappable function for input or output
and “RPI” designates a remappable functions for input
only, and “n” is the remappable pin number.

11.4.2

AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select
are all digital only peripherals. These include general
serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input
capture and output compare) and interrupt-on-change
inputs.
In comparison, some digital-only peripheral modules are
never included in the Peripheral Pin Select feature. This
is because the peripheral’s function requires special I/O
circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I2C and
the PWM. A similar requirement excludes all modules
with analog inputs, such as the ADC Converter.
A key difference between remappable and nonremappable peripherals is that remappable peripherals
are not associated with a default I/O pin. The peripheral
must always be assigned to a specific I/O pin before it
can be used. In contrast, non-remappable peripherals
are always available on a default pin, assuming that the
peripheral is active and not conflicting with another
peripheral.

DS70616G-page 210

When a remappable peripheral is active on a given I/O
pin, it takes priority over all other digital I/O and digital
communication peripherals associated with the pin.
Priority is given regardless of the type of peripheral that
is mapped. Remappable peripherals never take priority
over any analog functions associated with the pin.

11.4.3

CONTROLLING PERIPHERAL PIN
SELECT

Peripheral Pin Select features are controlled through
two sets of SFRs: one to map peripheral inputs and one
to map outputs. Because they are separately controlled, a particular peripheral’s input and output (if the
peripheral has both) can be placed on any selectable
function pin without constraint.
The association of a peripheral to a peripheral-selectable
pin is handled in two different ways, depending on
whether an input or output is being mapped.

11.4.4

INPUT MAPPING

The inputs of the Peripheral Pin Select options are
mapped on the basis of the peripheral. That is, a control
register associated with a peripheral dictates the pin it
will be mapped to. The RPINRx registers are used to
configure peripheral input mapping (see Register 11-1
through Register 11-22). Each register contains sets of
7-bit fields, with each set associated with one of the
remappable peripherals (see Table 11-1). Programming
a given peripheral’s bit field with an appropriate 7-bit
value maps the RPn/RPIn pin with the corresponding
value to that peripheral (see Table 11-2). For any given
device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin
Selections supported by the device.
For example, Figure 11-2 illustrates remappable pin
selection for the U1RX input.

FIGURE 11-2:

U1RX REMAPPABLE INPUT
U1RXR<6:0>
0

RP0
1
RP1
2
RP3

U1RX Input
to Peripheral

n
RPn/RPIn
Note:

For input only, Peripheral Pin Select functionality
does not have priority over TRISx settings.
Therefore, when configuring RPn/RPIn pin for
input, the corresponding bit in the TRISx register
must also be configured for input (set to ‘1’).

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 11-1:

SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Input Name(1)

Function Name

Register

Configuration Bits

External Interrupt 1

INT1

RPINR0

INT1R<6:0>

External Interrupt 2

INT2

RPINR1

INT2R<6:0>

External Interrupt 3

INT3

RPINR1

INT3R<6:0>

External Interrupt 4

INT4

RPINR2

INT4R<6:0>

Timer2 External Clock

T2CK

RPINR3

T2CKR<6:0>

Timer3 External Clock

T3CK

RPINR3

T3CKR<6:0>

Timer4 External Clock

T4CK

RPINR4

T4CKR<6:0>

Timer5 External Clock

T5CK

RPINR4

T5CKR<6:0>

Timer6 External Clock

T6CK

RPINR5

T6CKR<6:0>

Timer7 External Clock

T7CK

RPINR5

T7CKR<6:0>

Timer8 External Clock

T8CK

RPINR6

T8CKR<6:0>

Timer9 External Clock

T9CK

RPINR6

T9CKR<6:0>

Input Capture 1

IC1

RPINR7

IC1R<6:0>

Input Capture 2

IC2

RPINR7

IC2R<6:0>

Input Capture 3

IC3

RPINR8

IC3R<6:0>

Input Capture 4

IC4

RPINR8

IC4R<6:0>

Input Capture 5

IC5

RPINR9

IC5R<6:0>

Input Capture 6

IC6

RPINR9

IC6R<6:0>

Input Capture 7

IC7

RPINR10

IC7R<6:0>

Input Capture 8

IC8

RPINR10

IC8R<6:0>

Output Compare Fault A

OCFA

RPINR11

OCFAR<6:0>

Output Compare Fault B

OCFB

RPINR11

OCFBR<6:0>

PMW Fault 1(2)

FLT1

RPINR12

FLT1R<6:0>

PMW Fault 2(2)

FLT2

RPINR12

FLT2R<6:0>

3(2)

FLT3

RPINR13

FLT3R<6:0>

PMW Fault 4(2)

FLT4

RPINR13

FLT4R<6:0>

A(2)

QEA1

RPINR14

QEA1R<6:0>

QEI1 Phase A(2)

QEB1

RPINR14

QEB1R<6:0>

PMW Fault

QEI1 Phase
QEI1

Index(2)

INDX1

RPINR15

INDX1R<6:0>

HOME1

RPINR15

HOM1R<6:0>

(2)

QEI2 Phase A

QEA2

RPINR16

QEA2R<6:0>

QEI2 Phase A(2)

QEB2

RPINR16

QEB2R<6:0>

QEI1 Home(2)

QEI2

Index(2)

QEI2 Home(2)
UART1 Receive
UART1 Clear-to-Send
UART2 Receive
UART2 Clear-to-Send

INDX2

RPINR17

INDX2R<6:0>

HOME2

RPINR17

HOM2R<6:0>

U1RX

RPINR18

U1RXR<6:0>

U1CTS

RPINR18

U1CTSR<6:0>

U2RX

RPINR19

U2RXR<6:0>

U2CTS

RPINR19

U2CTSR<6:0>

SPI1 Data Input

SDI1

RPINR20

SDI1R<6:0>

SPI1 Clock Input

SCK1

RPINR20

SCK1R<6:0>

SPI1 Slave Select

SS1

RPINR21

SS1R<6:0>

SPI2 Slave Select

SS2

RPINR23

SS2R<6:0>

Note 1:
2:

Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.
This input source is available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.

 2009-2012 Microchip Technology Inc.

DS70616G-page 211

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 11-1:

SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION) (CONTINUED)

Input Name(1)

Function Name

Register

Configuration Bits

DCI Data Input

CSDI

RPINR24

CSDIR<6:0>

DCI Clock Input

CSCKIN

RPINR24

CSCKR<6:0>

DCI FSYNC Input

COFSIN

RPINR25

COFSR<6:0>

CAN1 Receive

C1RX

RPINR26

C1RXR<6:0>

CAN2 Receive

C2RX

RPINR26

C2RXR<6:0>

UART3 Receive
UART3 Clear-to-Send
UART4 Receive
UART4 Clear-to-Send

U3RX

RPINR27

U3RXR<6:0>

U3CTS

RPINR27

U3CTSR<6:0>

U4RX

RPINR28

U4RXR<6:0>

U4CTS

RPINR28

U4CTSR<6:0>

SPI3 Data Input

SDI3

RPINR29

SDI3R<6:0>

SPI3 Clock Input

SCK3

RPINR29

SCK3R<6:0>

SPI3 Slave Select

SS3

RPINR30

SS3R<6:0>

SPI4 Data Input

SDI4

RPINR31

SDI4R<6:0>

SPI4 Clock Input

SCK4

RPINR31

SCK4R<6:0>

SPI4 Slave Select

SS4

RPINR32

SS4R<6:0>

Input Capture 9

IC9

RPINR33

IC9R<6:0>

Input Capture 10

IC10

RPINR33

IC10R<6:0>

Input Capture 11

IC11

RPINR34

IC11R<6:0>

Input Capture 12

IC12

RPINR34

IC12R<6:0>

Input Capture 13

IC13

RPINR35

IC13R<6:0>

Input Capture 14

IC14

RPINR35

IC14R<6:0>

Input Capture 15

IC15

RPINR36

IC15R<6:0>

Input Capture 16

IC16

RPINR36

IC16R<6:0>

Output Compare Fault C

OCFC

RPINR37

OCFCR<6:0>

PWM Fault 5(2)

FLT5

RPINR42

FLT5R<6:0>

6(2)

FLT6

RPINR42

FLT6R<6:0>

PWM Fault 7(2)

FLT7

RPINR43

FLT7R<6:0>

PWM Dead-Time
Compensation 1(2)

DTCMP1

RPINR38

DTCMP1R<6:0>

PWM Dead-Time
Compensation 2(2)

DTCMP2

RPINR39

DTCMP2R<6:0>

PWM Dead-Time
Compensation 3(2)

DTCMP3

RPINR39

DTCMP3R<6:0>

PWM Dead-Time
Compensation 4(2)

DTCMP4

RPINR40

DTCMP4R<6:0>

PWM Dead-Time
Compensation 5(2)

DTCMP5

RPINR40

DTCMP5R<6:0>

PWM Dead-Time
Compensation 6(2)

DTCMP6

RPINR41

DTCMP6R<6:0>

PWM Dead-Time
Compensation 7(2)

DTCMP7

RPINR41

DTCMP7R<6:0>

PWM Synch Input 1(2)

SYNCI1

RPINR37

SYNCI1R<6:0>

PWM Synch Input 2(2)

SYNCI2

RPINR38

SYNCI2R<6:0>

PWM Fault

Note 1:
2:

Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.
This input source is available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.

DS70616G-page 212

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 11-2:

INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES

Peripheral Pin Select
Input Register Value

Input/
Pin Assignment
Output

Peripheral Pin Select
Input Register Value

Input/
Pin Assignment
Output

I

VSS

000 0001

I

C1OUT(1)

010 1110

I

RPI46

000 0010

I

C2OUT(1)

010 1111

I

RPI47

000 0011

I

C3OUT(1)

011 0000

—

Reserved

000 0100

—

Reserved

011 0001

I

RPI49

000 0101

—

Reserved

011 0010

I

RPI50

000 0110

—

Reserved

011 0011

I

RPI51

000 0000

010 1101

I

RPI45

000 0111

—

Reserved

011 0100

I

RPI52

000 1000

I

FINDX1(1)

011 0101

—

Reserved

000 1001

I

FHOME1(1)

011 0110

—

Reserved

000 1010

I

FINDX2(1)

011 0111

—

Reserved

000 1011

I

FHOME2(1)

011 1000

—

Reserved

000 1100

—

Reserved

011 1001

—

Reserved

000 1101

—

Reserved

011 1010

—

Reserved

000 1110

—

Reserved

011 1011

—

Reserved

000 1111

—

Reserved

011 1100

I

RPI60

001 0000

I

RPI16

011 1101

I

RPI61

001 0001

I

RPI17

011 1110

I

RPI62

001 0010

I

RPI18

011 1111

—

Reserved

001 0011

I

RPI19

100 0000

I/O

RP64

001 0100

I

RPI20

100 0001

I/O

RP65

001 0101

I

RPI21

100 0010

I/O

RP66

001 0110

I

RPI22

100 0011

I/O

RP67

001 0111

I

RPI23

100 0100

I/O

RP68

001 1000

—

Reserved

100 0101

I/O

RP69

001 1001

—

Reserved

100 0110

I/O

RP70

001 1010

—

Reserved

100 0111

I/O

RP71

001 1011

—

Reserved

100 1000

I

RPI72

001 1100

—

Reserved

100 1001

I

RPI73

001 1101

—

Reserved

100 1010

I

RPI74

001 1110

I

RPI30

100 1011

I

RPI75

001 1111

I

RPI31

100 1100

I

RPI76

010 0000

I

RPI32

100 1101

I

RPI77

010 0001

I

RPI33

100 1110

I

RPI78

010 0010

I

RPI34

100 1111

I/O

RP79

010 0011

I

RPI35

101 0000

I/O

RP80

010 0100

I

RPI36

101 0001

I

RPI81

010 0101

I

RPI37

101 0010

I/O

RP82

010 0110

I

RPI38

101 0011

I

RPI83

010 0111

I

RPI39

101 0100

I/O

RP84

010 1000

I

RPI40

101 0101

I/O

RP85

010 1001

I

RPI41

101 0110

I

RPI86

010 1010

I

RPI42

101 0111

I/O

RP87

Note 1:

See Section 11.4.4.2 “Virtual Connections” for more information on selecting this pin assignment.

 2009-2012 Microchip Technology Inc.

DS70616G-page 213

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 11-2:

INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)

Peripheral Pin Select
Input Register Value

Input/
Pin Assignment
Output

Peripheral Pin Select
Input Register Value

Input/
Pin Assignment
Output

010 1011

I

RPI43

101 1000

I

RPI88

010 1100

I

RPI44

101 1001

I

RPI89

101 1010

—

Reserved

110 1101

I/O

RP109

101 1011

—

Reserved

110 1110

—

Reserved

101 1100

—

Reserved

110 1111

—

Reserved

101 1101

—

Reserved

111 0000

I/O

RP112

101 1110

—

Reserved

111 0001

I/O

RP113

101 1111

—

Reserved

111 0010

—

Reserved

110 0000

I/O

RP96

111 0011

—

Reserved

110 0001

I/O

RP97

111 0100

—

Reserved

110 0010

I/O

RP98

111 0101

—

Reserved

110 0011

I/O

RP99

111 0110

I/O

RP118

110 0100

I/O

RP100

111 0111

I

RPI119

110 0101

I/O

RP101

111 1000

I/O

RP120

110 0110

I/O

RP102

111 1001

I

RPI121

110 0111

—

Reserved

111 1010

—

Reserved

110 1000

I/O

RP104

111 1011

—

Reserved

110 1001

—

Reserved

111 1100

I

RPI124

110 1010

—

Reserved

111 1101

I/O

RP125

110 1011

—

Reserved

111 1110

I/O

RP126

110 1100

I/O

RP108

111 1111

I/O

RP127

Note 1:

See Section 11.4.4.2 “Virtual Connections” for more information on selecting this pin assignment.

DS70616G-page 214

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
11.4.4.1

Output Mapping

FIGURE 11-3:

In contrast to inputs, the outputs of the Peripheral Pin
Select options are mapped on the basis of the pin. In
this case, a control register associated with a particular
pin dictates the peripheral output to be mapped. The
RPORx registers are used to control output mapping.
Like the RPINRx registers, each register contains sets
of 6 bit fields, with each set associated with one RPn
pin (see Register 11-44 through Register 11-51). The
value of the bit field corresponds to one of the peripherals and that peripheral’s output is mapped to the pin
(see Table 11-3 and Figure 11-3).
A null output is associated with the Output Register
Reset value of ‘0’. This is done to ensure that remappable outputs remain disconnected from all output pins
by default.

TABLE 11-3:
Function

MULTIPLEXING OF
REMAPPABLE OUTPUT
FOR RPn
RPnR<5:0>

Default
U1TX Output
U1RTS Output

0
1
2
Output Data

QEI2CCMP Output
REFCLK Output

48
49

OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)
RPnR<5:0>

Output Name

DEFAULT PORT

000000

RPn tied to Default Pin

U1TX

000001

RPn tied to UART1 Transmit

U1RTS

000010

RPn tied to UART1 Ready-to-Send

U2TX

000011

RPn tied to UART2 Transmit

U2RTS

000100

RPn tied to UART2 Ready-to-Send

SDO1

000101

RPn tied to SPI1 Data Output

SCK1

000110

RPn tied to SPI1 Clock Output

SS1

000111

RPn tied to SPI1 Slave Select

SS2

001010

RPn tied to SPI2 Slave Select

CSDO

001011

RPn tied to DCI Data Output

CSCK

001100

RPn tied to DCI Clock Output

COFS

001101

RPn tied to DCI FSYNC Output

C1TX

001110

RPn tied to CAN1 Transmit

C2TX

001111

RPn tied to CAN2 Transmit

OC1

010000

RPn tied to Output Compare 1 Output

OC2

010001

RPn tied to Output Compare 2 Output

OC3

010010

RPn tied to Output Compare 3 Output

OC4

010011

RPn tied to Output Compare 4 Output

OC5

010100

RPn tied to Output Compare 5 Output

OC6

010101

RPn tied to Output Compare 6 Output

OC7

010110

RPn tied to Output Compare 7 Output

OC8

010111

RPn tied to Output Compare 8 Output

C1OUT

011000

RPn tied to Comparator Output 1

C2OUT

011001

RPn tied to Comparator Output 2

C3OUT

011010

RPn tied to Comparator Output 3

U3TX

011011

RPn tied to UART3 Transmit

011100

RPn tied to UART3 Ready-to-Send

U3RTS
Note 1:

RPn

This function is available in dsPIC33EPXXX(MC/MU)806/810/814 devices only.

 2009-2012 Microchip Technology Inc.

DS70616G-page 215

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 11-3:

OUTPUT SELECTION FOR REMAPPABLE PINS (RPn) (CONTINUED)

Function

RPnR<5:0>

Output Name

U4TX

011101

RPn tied to UART4 Transmit

U4RTS

011110

RPn tied to UART4 Ready-to-Send

SDO3

011111

RPn tied to SPI3 Data Output

SCK3

100000

RPn tied to SPI3 Clock Output

SS3

100001

RPn tied to SPI3 Slave Select

SDO4

100010

RPn tied to SPI4 Data Output

SCK4

100011

RPn tied to SPI4 Clock Output

SS4

100100

RPn tied to SPI4 Slave Select

OC9

100101

RPn tied to Output Compare 9 Output

OC10

100110

RPn tied to Output Compare 10 Output

OC11

100111

RPn tied to Output Compare 11 Output

OC12

101000

RPn tied to Output Compare 12 Output

OC13

101001

RPn tied to Output Compare 13 Output

OC14

101010

RPn tied to Output Compare 14 Output

OC15

101011

RPn tied to Output Compare 15 Output

OC16

101100

RPn tied to Output Compare 16 Output

SYNCO1(1)

101101

RPn tied to PWM Primary Time Base Sync Output

SYNCO2(1)

101110

RPn tied to PWM Secondary Time Base Sync Output

QEI1CCMP(1)

101111

RPn tied to QEI 1 Counter Comparator Output

QEI2CCMP(1)

110000

RPn tied to QEI 2 Counter Comparator Output

REFCLK

110001

RPn tied to Reference Clock Output

Note 1:

This function is available in dsPIC33EPXXX(MC/MU)806/810/814 devices only.

DS70616G-page 216

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
11.4.4.2

Virtual Connections

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 devices support virtual
(internal) connections to the output of the comparator
modules, CMP1OUT, CMP2OUT and CMP3OUT (see
Figure 25-1 in Section 25.0 “Comparator Module”).
In addition, dsPIC33EPXXXMU806/810/814 devices
support virtual connections to the filtered QEI module
inputs, FINDX1, FHOME1, FINDX2 and FHOME2 (see
Figure 17-1 in Section 17.0 “Quadrature Encoder
Interface (QEI) Module (dsPIC33EPXXX(MC/
MU)8XX Devices Only)”.
Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin.
For example, by setting the FLT1R<6:0> bits of the
RPINR12 register to the value of ‘b0000001, the
output of the analog comparator, CMP1OUT, will be
connected to the PWM Fault 1 input, which allows the
analog comparator to trigger PWM Faults without the
use of an actual physical pin on the device.

EXAMPLE 11-2:

Virtual connection to the QEI module allows
peripherals to be connected to the QEI digital filter
input. To utilize this filter, the QEI module must be
enabled, and its inputs must be connected to a physical
RPn/RPIn pin. Example 11-2 illustrates how the input
capture module can be connected to the QEI digital
filter.

11.4.4.3

Mapping Limitations

The control schema of the peripheral select pins is not
limited to a small range of fixed peripheral
configurations. There are no mutual or hardware
enforced lockouts between any of the peripheral
mapping SFRs. Literally any combination of peripheral
mappings across any or all of the RPn/RPIn pins is
possible. This includes both many-to-one and one-tomany mappings of peripheral inputs and outputs to
pins. While such mappings may be technically possible
from a configuration point of view, they may not be
supportable from an electrical point of view.

CONNECTING IC1 TO HOME1 DIGITAL FILTER INPUT ON PIN 3 OF THE
dsPIC33EP512MU810 DEVICE

RPINR15 = 0x5600;
RPINR7 = 0x009;

/* Connect the QEI1 HOME1 input to RP86 (pin 3) */
/* Connect the IC1 input to the digital filter on the FHOME1 input */

QEI1IOC = 0x4000;
QEI1CON = 0x8000;

/* Enable the QEI digital filter */
/* Enable the QEI module */

 2009-2012 Microchip Technology Inc.

DS70616G-page 217

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
11.5
1.

2.

In some cases, certain pins, as defined in
Table 32-9 in Section 32.0 “Electrical Characteristics” under “Injection Current”, have internal
protection diodes to VDD and VSS; the term
“Injection Current” is also referred to as “Clamp
Current”. On designated pins, with sufficient external current-limiting precautions by the user, I/O pin
input voltages are allowed to be greater or less
than the data sheet absolute maximum ratings
with respect to the VSS and VDD supplies. Note
that when the user application forward biases
either of the high or low side internal input clamp
diodes, that the resulting current being injected
into the device that is clamped internally by the
VDD and VSS power rails, may affect the ADC
accuracy by four to six counts.
I/O pins that are shared with any analog input pin,
(i.e., ANx, see Table 1-1 in Section 1.0 “Device
Overview”), are always analog pins by default
after any Reset. Consequently, configuring a pin
as an analog input pin, automatically disables the
digital input pin buffer and any attempt to read the
digital input level by reading PORTx or LATx will
always return a ‘0’, regardless of the digital logic
level on the pin. To use a pin as a digital I/O pin on
a shared analog pin (see Table 1-1 in Section 1.0
“Device Overview”), the user application needs
to configure the Analog Pin Configuration registers
in the I/O ports module (i.e., ANSELx) by setting
the appropriate bit that corresponds to that I/O port
pin to a ‘0’.
Note:

3.

I/O Helpful Tips

Although it is not possible to use a digital
input pin when its analog function is
enabled, it is possible to use the digital I/O
output function, TRISx = 0x0, while the
analog function is also enabled. However,
this is not recommended, particularly if the
analog input is connected to an external
analog voltage source, which would
create signal contention between the
analog signal and the output pin driver.

Most I/O pins have multiple functions. Referring to
the device pin diagrams in the data sheet, the
priorities of the functions allocated to any pins are
indicated by reading the pin name from left to right.
The left most function name takes precedence
over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1; this
indicates that AN16 is the highest priority in this
example and will supersede all other functions to
its right in the list. Those other functions to its right,
even if enabled, would not work as long as any
other function to its left was enabled. This rule
applies to all of the functions listed for a given pin.
Dedicated peripheral functions are always higher
priority than remappable functions. I/O pins are
always the lowest priority.

DS70616G-page 218

4.

5.

Each pin has an internal weak pull-up resistor and
pull-down resistor that can be configured using the
CNPUx and CNPDx registers, respectively. These
resistors eliminate the need for external resistors
in certain applications. The internal pull-up is up to
~(VDD-0.8), not VDD. This value is still above the
minimum VIH of CMOS and TTL devices.
When driving LEDs directly, the I/O pin can source
or sink more current than what is specified in the
VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only
applies to maintaining the corresponding output at
or above the VOH and at or below the VOL levels.
However, for LEDs, unlike digital inputs of an
externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O
pin output can safely sink or source any current
less than that listed in the absolute maximum
rating section of the data sheet. For example:
VOH = 2.4v @ IOH = -8 mA and VDD = 3.3V
The maximum output current sourced by any 8 mA
I/O pin = 12 mA.
LED source current < 12 mA is technically
permitted. Refer to the VOH/IOH graphs in
Section 32.0 “Electrical Characteristics” for
additional information.

6.

The Peripheral Pin Select (PPS) pin mapping rules
are as follows:
a) Only one “output” function can be active on a
given pin at any time regardless if it is a dedicated or remappable function (one pin, one
output).
b) It is possible to assign a “remappable output”
function to multiple pins and externally short or
tie them together for increased current drive.
c) If any “dedicated output” function is enabled
on a pin, it will take precedence over any
remappable “output” function.
d) If any “dedicated digital” (input or output)
function is enabled on a pin, any number of
“input” remappable functions can be mapped
to the same pin.
e) If any “dedicated analog” function(s) are
enabled on a given pin, “digital input(s)” of any
kind will all be disabled, although a single “digital output”, at the user’s cautionary discretion,
can be enabled and active as long as there is
no signal contention with an external analog
input signal. For example, it is possible for the
ADC to convert the digital output logic level, or
to toggle a digital output on a comparator or
ADC input, provided there is no external
analog input, such as for a built-in self test.
f) Any number of “input” remappable functions
can be mapped to the same pin(s) at the
same time, including any pin with a single output from either a dedicated or remappable
“output”.

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
g)

h)

The TRIS registers control only the digital I/O
output buffer. Any other dedicated or remappable active “output” will automatically override the TRIS setting. The TRIS register does
not control the digital logic “input” buffer.
Remappable digital “inputs” do not automatically override TRIS settings, which means
that the TRIS bit must be set to input for pins
with only remappable input function(s)
assigned.
All analog pins are enabled by default after
any Reset and the corresponding digital input
buffer on the pin is disabled. Only the Analog
Pin Select registers control the digital input
buffer, not the TRIS register. The user must
disable the analog function on a pin using the
Analog Pin Select registers in order to use any
“digital input(s)” on a corresponding pin, no
exceptions.

 2009-2012 Microchip Technology Inc.

11.6

I/O Resources

Many useful resources related to I/O are provided on
the main product page of the Microchip web site for the
devices listed in this data sheet. This product page,
which can be accessed using this link, contains the
latest updates and additional information.
Note:

11.6.1

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554301

KEY RESOURCES

• Section 10. “I/O Ports” (DS70598) in the
“dsPIC33E/PIC24E Family Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

DS70616G-page 219

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
11.7

Peripheral Pin Select Control
Registers

REGISTER 11-1:
U-0

RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0
R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

INT1R<6:0>

bit 15

bit 8

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

INT1R<6:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7-0

Unimplemented: Read as ‘0’

DS70616G-page 220

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-2:
U-0

RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1
R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

INT3R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INT2R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

INT3R<6:0>: Assign External Interrupt 3 (INT3) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

INT2R<6:0>: Assign External Interrupt 2 (INT2) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

 2009-2012 Microchip Technology Inc.

DS70616G-page 221

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-3:

RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INT4R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-7

Unimplemented: Read as ‘0’

bit 6-0

INT4R<6:0>: Assign External Interrupt 4 (INT4) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 222

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-4:
U-0

RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3
R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

T3CKR<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

T2CKR<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

T3CKR<6:0>: Assign Timer3 External Clock (T3CK) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

 2009-2012 Microchip Technology Inc.

DS70616G-page 223

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-5:
U-0

RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4
R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

T5CKR<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

T4CKR<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

T5CKR<6:0>: Assign Timer5 External Clock (T5CK) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

T4CKR<6:0>: Assign Timer4 External Clock (T4CK) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 224

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-6:
U-0

RPINR5: PERIPHERAL PIN SELECT INPUT REGISTER 5
R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

T7CKR<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

T6CKR<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

T7CKR<6:0>: Assign Timer7 External Clock (T7CK) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

T6CKR<6:0>: Assign Timer6 External Clock (T6CK) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

 2009-2012 Microchip Technology Inc.

DS70616G-page 225

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-7:
U-0

RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6
R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

T9CKR<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

T8CKR<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

T9CKR<6:0>: Assign Timer9 External Clock (T9CK) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

T8CKR<6:0>: Assign Timer8 External Clock (T8CK) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 226

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-8:
U-0

RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7
R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

IC2R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

IC1R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

IC2R<6:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

IC1R<6:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

 2009-2012 Microchip Technology Inc.

DS70616G-page 227

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-9:
U-0

RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8
R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

IC4R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

IC3R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

IC4R<6:0>: Assign Input Capture 4 (IC4) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

IC3R<6:0>: Assign Input Capture 3 (IC3) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 228

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-10: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

IC6R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

IC5R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

IC6R<6:0>: Assign Input Capture 6 (IC6) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

IC5R<6:0>: Assign Input Capture 5 (IC5) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

 2009-2012 Microchip Technology Inc.

DS70616G-page 229

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-11: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

IC8R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

IC7R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

IC8R<6:0>: Assign Input Capture 8 (IC8) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

IC7R<6:0>: Assign Input Capture 7 (IC7) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 230

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-12: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

OCFBR<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

OCFAR<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

OCFBR<6:0>: Assign Output Compare Fault B (OCFB) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

OCFAR<6:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

 2009-2012 Microchip Technology Inc.

DS70616G-page 231

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-13: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12
(dsPIC33EPXXXMU806/810/814 DEVICES ONLY)
U-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

FLT2R<6:0>(1)

—
bit 15

bit 8

U-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

FLT1R<6:0>(1)

—
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

FLT2R<6:0>: Assign PWM Fault 2 (FLT2) to the Corresponding RPn/RPIn Pin bits(1)
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

FLT1R<6:0>: Assign PWM Fault 1 (FLT1) to the Corresponding RPn/RPIn Pin bits(1)
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

Note 1:

These pins are available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.

DS70616G-page 232

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-14: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13
(dsPIC33EPXXXMU806/810/814 DEVICES ONLY)
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0
FLT4R<6:0>

R/W-0

R/W-0

R/W-0

(1)

bit 15

bit 8

U-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

FLT3R<6:0>(1)

—
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

FLT4R<6:0>: Assign PWM Fault 4 (FLT4) to the Corresponding RPn/RPIn Pin bits(1)
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

FLT3R<4:0>: Assign PWM Fault 3 (FLT3) to the Corresponding RPn/RPIn Pin bits(1)
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

Note 1:

These pins are available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.

 2009-2012 Microchip Technology Inc.

DS70616G-page 233

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-15: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14
(dsPIC33EPXXXMU806/810/814 DEVICES ONLY)
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

QEB1R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

QEA1R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

QEB1R<6:0>: Assign B (QEB) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

QEA1R<6:0>: Assign A (QEA) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 234

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-16: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15
(dsPIC33EPXXXMU806/810/814 DEVICES ONLY)
U-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

HOME1R<6:0>(1)

—
bit 15

bit 8

U-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INDX1R<6:0>(1)

—
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

HOME1R<6:0>: Assign QEI1 HOME1 (HOME1) to the Corresponding RPn/RPIn Pin bits(1)
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

IND1XR<6:0>: Assign QEI1 INDEX1 (INDX1) to the Corresponding RPn/RPIn Pin bits(1)
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

Note 1:

These bits are available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.

 2009-2012 Microchip Technology Inc.

DS70616G-page 235

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-17: RPINR16: PERIPHERAL PIN SELECT INPUT REGISTER 16
(dsPIC33EPXXXMU806/810/814 DEVICES ONLY)
U-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

(1)

—

QEB2R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

QEA2R<6:0>(1)

—
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

QEB2R<6:0>: Assign B (QEI2) to the Corresponding RPn/RPIn Pin bits(1)
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

QEA2R<6:0>: Assign A (QEI2) to the Corresponding RPn/RPIn Pin bits(1)
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

Note 1:

These bits are available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.

DS70616G-page 236

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-18: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17
(dsPIC33EPXXXMU806/810/814 DEVICES ONLY)
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0
HOME2R<6:0>

R/W-0

R/W-0

R/W-0

(1)

bit 15

bit 8

U-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INDX2R<6:0>(1)

—
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

HOME2R<6:0>: Assign QEI2 HOME2 (HOME2) to the Corresponding RPn/RPIn Pin bits(1)
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

INDX2R<6:0>: Assign QEI2 INDEX2 (INDX2) to the Corresponding RPn/RPIn Pin bits(1)
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

Note 1:

These bits are available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.

 2009-2012 Microchip Technology Inc.

DS70616G-page 237

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-19: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

U1CTSR<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

U1RXR<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

U1CTSR<6:0>: Assign UART1 Clear-to-Send (U1CTS) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

U1RXR<6:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 238

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-20: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

U2CTSR<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

U2RXR<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

U2CTSR<6:0>: Assign UART2 Clear-to-Send (U2CTS) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

U2RXR<6:0>: Assign UART2 Receive (U2RX) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

 2009-2012 Microchip Technology Inc.

DS70616G-page 239

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-21: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

SCK1R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SDI1R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

SCK1R<6:0>: Assign SPI1 Clock Input (SCK1) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

SDI1R<6:0>: Assign SPI1 Data Input (SDI1) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 240

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-22: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

SS1R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-7

Unimplemented: Read as ‘0’

bit 6-0

SS1R<6:0>: Assign SPI1 Slave Select Input (SS1) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

REGISTER 11-23: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SS2R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-7

Unimplemented: Read as ‘0’

bit 6-0

SS2R<6:0>: Assign SPI2 Slave Select Input (SS2) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

 2009-2012 Microchip Technology Inc.

DS70616G-page 241

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-24: RPINR24: PERIPHERAL PIN SELECT INPUT REGISTER 24
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

CSCKR<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

CSDIR<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

CSCKR<6:0>: Assign DCI Clock Input (CSCK) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

CSDIR<6:0>: Assign DCI Data Input (CSDI) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 242

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-25: RPINR25: PERIPHERAL PIN SELECT INPUT REGISTER 25
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

COFSR<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-7

Unimplemented: Read as ‘0’

bit 6-0

COFSR<6:0>: Assign DCI FSYNC Input (COFS) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

 2009-2012 Microchip Technology Inc.

DS70616G-page 243

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-26: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

C2RXR<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

C1RXR<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

C2RXR<6:0>: Assign CAN2 RX Input (CRX2) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

C1RXR<6:0>: Assign CAN1 RX Input (CRX1) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 244

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-27: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

U3CTSR<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

U3RXR<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

U3CTSR<6:0>: Assign UART3 Clear-to-Send (U3CTS) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

U3RXR<6:0>: Assign UART3 Receive (U3RX) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

 2009-2012 Microchip Technology Inc.

DS70616G-page 245

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-28: RPINR28: PERIPHERAL PIN SELECT INPUT REGISTER 28
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

U4CTSR<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

U4RXR<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

U4CTSR<6:0>: Assign UART4 Clear-to-Send (U4CTS) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

U4RXR<6:0>: Assign UART4 Receive (U4RX) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 246

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-29: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

SCK3R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SDI3R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

SCK3R<6:0>: Assign SPI3 Clock Input (SCK3) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

SDI3R<6:0>: Assign SPI3 Data Input (SDI3) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

 2009-2012 Microchip Technology Inc.

DS70616G-page 247

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-30: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SS3R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-7

Unimplemented: Read as ‘0’

bit 6-0

SS3R<6:0>: Assign SPI3 Slave Select Input (SS3) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 248

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-31: RPINR31: PERIPHERAL PIN SELECT INPUT REGISTER 31
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

SCK4R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SDI4R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

SCK4R<6:0>: Assign SPI4 Clock Input (SCK4) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

SDI4R<6:0>: Assign SPI4 Data Input (SDI4) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

 2009-2012 Microchip Technology Inc.

DS70616G-page 249

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-32: RPINR32: PERIPHERAL PIN SELECT INPUT REGISTER 32
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SS4R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-7

Unimplemented: Read as ‘0’

bit 6-0

SS4R<6:0>: Assign SPI4 Slave Select Input (SS4) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 250

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-33: RPINR33: PERIPHERAL PIN SELECT INPUT REGISTER 33
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

IC10R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

IC9R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

IC10R<6:0>: Assign Input Capture 10 (IC10) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

IC9R<6:0>: Assign Input Capture 9 (IC9) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

 2009-2012 Microchip Technology Inc.

DS70616G-page 251

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-34: RPINR34: PERIPHERAL PIN SELECT INPUT REGISTER 34
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

IC12R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

IC11R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

IC12R<6:0>: Assign Input Capture 12 (IC12) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

IC11R<6:0>: Assign Input Capture 11 (IC11) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 252

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-35: RPINR35: PERIPHERAL PIN SELECT INPUT REGISTER 35
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

IC14R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

IC13R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

IC14R<6:0>: Assign Input Capture 14 (IC14) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

IC13R<6:0>: Assign Input Capture 13 (IC13) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

 2009-2012 Microchip Technology Inc.

DS70616G-page 253

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-36: RPINR36: PERIPHERAL PIN SELECT INPUT REGISTER 36
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

IC16R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

IC15R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

IC16R<6:0>: Assign Input Capture 16 (IC16) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

IC15R<6:0>: Assign Input Capture 15 (IC15) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 254

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-37: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

SYNCI1R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

OCFCR<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

SYNCI1R<6:0>: Assign PWM Synchronization Input 1 to the Corresponding RPn/RPIn Pin bits.
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

OCFCR<6:0>: Assign Output Fault C (OCFC) to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

 2009-2012 Microchip Technology Inc.

DS70616G-page 255

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-38: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

DTCMP1R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SYNCI2R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

DTCMP1R<6:0>: Assign PWM Dead-Time Compensation Input 1 to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

SYNCI2R<6:0>: Assign PWM Synchronization Input 2 to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 256

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-39: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

DTCMP3R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

DTCMP2R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

DTCMP3R<6:0>: Assign PWM Dead-Time Compensation Input 3 to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

DTCMP2R<6:0>: Assign PWM Dead-Time Compensation Input 2 to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

 2009-2012 Microchip Technology Inc.

DS70616G-page 257

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-40: RPINR40: PERIPHERAL PIN SELECT INPUT REGISTER 40
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

DTCMP5R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

DTCMP4R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

DTCMP5R<6:0>: Assign PWM Dead-Time Compensation Input 5 to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

DTCMP4R<6:0>: Assign PWM Dead-Time Compensation Input 4 to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 258

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-41: RPINR41: PERIPHERAL PIN SELECT INPUT REGISTER 41
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

DTCMP7R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

DTCMP6R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

DTCMP7R<6:0>: Assign PWM Dead-Time Compensation Input 7 to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

DTCMP6R<6:0>: Assign PWM Dead-Time Compensation Input 6 to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

 2009-2012 Microchip Technology Inc.

DS70616G-page 259

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-42: RPINR42: PERIPHERAL PIN SELECT INPUT REGISTER 42
U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

FLT6R<6:0>

bit 15

bit 8

U-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

FLT5R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-8

FLT6R<6:0>: Assign PWM Fault 6 to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

bit 7

Unimplemented: Read as ‘0’

bit 6-0

FLT5R<6:0>: Assign PWM Fault 5 to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

DS70616G-page 260

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-43: RPINR43: PERIPHERAL PIN SELECT INPUT REGISTER 43
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

R/W-0

R/W-0

R/W-0

—

R/W-0

R/W-0

R/W-0

R/W-0

FLT7R<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-7

Unimplemented: Read as ‘0’

bit 6-0

FLT7R<6:0>: Assign PWM Fault 7 to the Corresponding RPn/RPIn Pin bits
(see Table 11-2 for input pin selection numbers)
1111111 = Input tied to RP127
.
.
.
0000001 = Input tied to CMP1
0000000 = Input tied to VSS

REGISTER 11-44: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0
U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP65R<5:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP64R<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13-8

RP65R<5:0>: Peripheral Output Function is Assigned to RP65 Output Pin bits
(see Table 11-3 for peripheral function numbers)

bit 7-6

Unimplemented: Read as ‘0’

bit 5-0

RP64R<5:0>: Peripheral Output Function is Assigned to RP64 Output Pin bits
(see Table 11-3 for peripheral function numbers)

 2009-2012 Microchip Technology Inc.

DS70616G-page 261

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-45: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1
U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP67R<5:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP66R<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13-8

RP67R<5:0>: Peripheral Output Function is Assigned to RP67 Output Pin bits
(see Table 11-3 for peripheral function numbers)

bit 7-6

Unimplemented: Read as ‘0’

bit 5-0

RP66R<5:0>: Peripheral Output Function is Assigned to RP66 Output Pin bits
(see Table 11-3 for peripheral function numbers)

REGISTER 11-46: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2
U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP69R<5:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP68R<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13-8

RP69R<5:0>: Peripheral Output Function is Assigned to RP69 Output Pin bits
(see Table 11-3 for peripheral function numbers)

bit 7-6

Unimplemented: Read as ‘0’

bit 5-0

RP68R<5:0>: Peripheral Output Function is Assigned to RP68 Output Pin bits
(see Table 11-3 for peripheral function numbers)

DS70616G-page 262

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-47: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3
U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP71R<5:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP70R<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13-8

RP71R<5:0>: Peripheral Output Function is Assigned to RP71 Output Pin bits
(see Table 11-3 for peripheral function numbers)

bit 7-6

Unimplemented: Read as ‘0’

bit 5-0

RP70R<5:0>: Peripheral Output Function is Assigned to RP70 Output Pin bits
(see Table 11-3 for peripheral function numbers)

REGISTER 11-48: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4
U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP80R<5:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP79R<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13-8

RP80R<5:0>: Peripheral Output Function is Assigned to RP80 Output Pin bits
(see Table 11-3 for peripheral function numbers)

bit 7-6

Unimplemented: Read as ‘0’

bit 5-0

RP79R<5:0>: Peripheral Output Function is Assigned to RP79 Output Pin bits
(see Table 11-3 for peripheral function numbers)

 2009-2012 Microchip Technology Inc.

DS70616G-page 263

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-49: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5
U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP84R<5:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP82R<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13-8

RP84R<5:0>: Peripheral Output Function is Assigned to RP84 Output Pin bits
(see Table 11-3 for peripheral function numbers)

bit 7-6

Unimplemented: Read as ‘0’

bit 5-0

RP82R<5:0>: Peripheral Output Function is Assigned to RP82 Output Pin bits
(see Table 11-3 for peripheral function numbers)

REGISTER 11-50: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6
U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP87R<5:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP85R<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13-8

RP87R<5:0>: Peripheral Output Function is Assigned to RP87 Output Pin bits
(see Table 11-3 for peripheral function numbers)

bit 7-6

Unimplemented: Read as ‘0’

bit 5-0

RP85R<5:0>: Peripheral Output Function is Assigned to RP85 Output Pin bits
(see Table 11-3 for peripheral function numbers)

DS70616G-page 264

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-51: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7
U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP97R<5:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP96R<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13-8

RP97R<5:0>: Peripheral Output Function is Assigned to RP97 Output Pin bits
(see Table 11-3 for peripheral function numbers)

bit 7-6

Unimplemented: Read as ‘0’

bit 5-0

RP96R<5:0>: Peripheral Output Function is Assigned to RP96 Output Pin bits
(see Table 11-3 for peripheral function numbers)

REGISTER 11-52: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8
U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP99R<5:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP98R<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13-8

RP99R<5:0>: Peripheral Output Function is Assigned to RP99 Output Pin bits
(see Table 11-3 for peripheral function numbers)

bit 7-6

Unimplemented: Read as ‘0’

bit 5-0

RP98R<5:0>: Peripheral Output Function is Assigned to RP98 Output Pin bits
(see Table 11-3 for peripheral function numbers)

 2009-2012 Microchip Technology Inc.

DS70616G-page 265

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 11-53: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9
U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP101R<5:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP100R<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13-8

RP101R<5:0>: Peripheral Output Function is Assigned to RP101Output Pin bits
(see Table 11-3 for peripheral function numbers)

bit 7-6

Unimplemented: Read as ‘0’

bit 5-0

RP100R<5:0>: Peripheral Output Function is Assigned to RP100 Output Pin bits
(see Table 11-3 for peripheral function numbers)

REGISTER 11-54: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP102R<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-6

Unimplemented: Read as ‘0’

bit 5-0

RP102R<5:0>: Peripheral Output Function is Assigned to RP102 Output Pin bits
(see Table 11-3 for peripheral function numbers)

DS70616G-page 266

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-55: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11
U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP108R<5:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP104R<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13-8

RP108R<5:0>: Peripheral Output Function is Assigned to RP108 Output Pin bits
(see Table 11-3 for peripheral function numbers)

bit 7-6

Unimplemented: Read as ‘0’

bit 5-0

RP104R<5:0>: Peripheral Output Function is Assigned to RP104 Output Pin bits
(see Table 11-3 for peripheral function numbers)

REGISTER 11-56: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12
U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP112R<5:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP109R<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13-8

RP112R<5:0>: Peripheral Output Function is Assigned to RP112 Output Pin bits
(see Table 11-3 for peripheral function numbers)

bit 7-6

Unimplemented: Read as ‘0’

bit 5-0

RP109R<5:0>: Peripheral Output Function is Assigned to RP109 Output Pin bits
(see Table 11-3 for peripheral function numbers)

 2009-2012 Microchip Technology Inc.

DS70616G-page 267

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-57: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13
U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP118R<5:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP113R<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13-8

RP118R<5:0>: Peripheral Output Function is Assigned to RP118 Output Pin bits
(see Table 11-3 for peripheral function numbers)

bit 7-6

Unimplemented: Read as ‘0’

bit 5-0

RP113R<5:0>: Peripheral Output Function is Assigned to RP113 Output Pin bits
(see Table 11-3 for peripheral function numbers)

REGISTER 11-58: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14
U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP125R<5:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP120R<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13-8

RP125R<5:0>: Peripheral Output Function is Assigned to RP125 Output Pin bits
(see Table 11-3 for peripheral function numbers)

bit 7-6

Unimplemented: Read as ‘0’

bit 5-0

RP120R<5:0>: Peripheral Output Function is Assigned to RP120 Output Pin bits
(see Table 11-3 for peripheral function numbers)

DS70616G-page 268

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 11-59: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15
U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP127R<5:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RP126R<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13-8

RP127R<5:0>: Peripheral Output Function is Assigned to RP127 Output Pin bits
(see Table 11-3 for peripheral function numbers)

bit 7-6

Unimplemented: Read as ‘0’

bit 5-0

RP126R<5:0>: Peripheral Output Function is Assigned to RP126 Output Pin bits
(see Table 11-3 for peripheral function numbers)

 2009-2012 Microchip Technology Inc.

DS70616G-page 269

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

NOTES:

DS70616G-page 270

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
12.0

TIMER1

The unique features of Timer1 allow it to be used for
Real-Time Clock (RTC) applications. A block diagram
of Timer1 is shown in Figure 12-1.

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this
data sheet, refer to Section 11. “Timers”
(DS70362) of the “dsPIC33E/PIC24E
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.

The Timer1 module can operate in one of the following
modes:
•
•
•
•

In Timer and Gated Timer modes, the input clock is
derived from the internal instruction cycle clock (FCY).
In Synchronous and Asynchronous Counter modes,
the input clock is derived from the external clock input
at the T1CK pin.
The Timer modes are determined by the following bits:
• Timer Clock Source Control bit (TCS): T1CON<1>
• Timer Synchronization Control bit (TSYNC):
T1CON<2>
• Timer Gate Control bit (TGATE): T1CON<6>

The Timer1 module is a 16-bit timer, which can serve
as the time counter for the real-time clock, or operate
as a free-running interval timer/counter.

Timer control bit setting for different operating modes
are given in the Table 12-1.

The Timer1 module has the following unique features
over other timers:

TABLE 12-1:

• Can be operated from the low-power 32 kHz
crystal oscillator available on the device.
• Can be operated in Asynchronous Counter mode
from an external clock source.
• The external clock input (T1CK) can optionally be
synchronized to the internal device clock and clock
synchronization is performed after the prescaler.

FIGURE 12-1:

Timer mode
Gated Timer mode
Synchronous Counter mode
Asynchronous Counter mode

TIMER MODE SETTINGS

Mode

TCS

TGATE

TSYNC

Timer

0

0

x

Gated Timer

0

1

x

Synchronous Counter

1

x

1

Asynchronous Counter

1

x

0

16-BIT TIMER1 MODULE BLOCK DIAGRAM
Falling Edge
Detect

Gate
Sync

1
Set T1IF Flag
0

FP

(1)

Prescaler
(/n)

10

00

TCKPS<1:0>

T1CLK
TMR1

Reset

SOSCI

x1
Prescaler
(/n)

TCKPS<1:0>

Sync

TSYNC

Data
Latch
CLK

0
SOSCO/
T1CK

TGATE

Comparator

1

Equal

TGATE
TCS

PR1

LPOSCEN(2)

Note 1:
2:

FP is the peripheral clock.
See Section 9.0 “Oscillator Configuration” for information on enabling the Secondary Oscillator (SOSC).

 2009-2012 Microchip Technology Inc.

DS70616G-page 271

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
12.1

Timer Resources

Many useful resources related to Timers are provided
on the main product page of the Microchip web site for
the devices listed in this data sheet. This product page,
which can be accessed using this link, contains the
latest updates and additional information.
Note:

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

DS70616G-page 272

12.1.1

KEY RESOURCES

• Section 11. “Timers” (DS70362) in the
“dsPIC33E/PIC24E Family Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
12.2

Timer1 Control Register

REGISTER 12-1:

T1CON: TIMER1 CONTROL REGISTER

R/W-0

U-0

R/W-0

U-0

U-0

U-0

U-0

U-0

TON(1)

—

TSIDL

—

—

—

—

—

bit 15

bit 8

U-0

R/W-0

—

TGATE

R/W-0

R/W-0

TCKPS<1:0>

U-0

R/W-0

R/W-0

U-0

—

TSYNC(1)

TCS(1)

—

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15

TON: Timer1 On bit(1)
1 = Starts 16-bit Timer1
0 = Stops 16-bit Timer1

bit 14

Unimplemented: Read as ‘0’

bit 13

TSIDL: Timer1 Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode

bit 12-7

Unimplemented: Read as ‘0’

bit 6

TGATE: Timer1 Gated Time Accumulation Enable bit
When TCS = 1:
This bit is ignored.
When TCS = 0:
1 = Gated time accumulation is enabled
0 = Gated time accumulation is disabled

bit 5-4

TCKPS<1:0> Timer1 Input Clock Prescale Select bits
11 = 1:256
10 = 1:64
01 = 1:8
00 = 1:1

bit 3

Unimplemented: Read as ‘0’

bit 2

TSYNC: Timer1 External Clock Input Synchronization Select bit(1)
When TCS = 1:
1 = Synchronizes external clock input
0 = Does not synchronize external clock input
When TCS = 0:
This bit is ignored.

bit 1

TCS: Timer1 Clock Source Select bit(1)
1 = External clock from T1CK pin (on the rising edge)
0 = Internal clock (FP)

bit 0

Unimplemented: Read as ‘0’

Note 1:

x = Bit is unknown

When Timer1 is enabled in External Synchronous Counter mode (TCS = 1, TSYNC = 1, TON = 1), any
attempts by user software to write to the TMR1 register are ignored.

 2009-2012 Microchip Technology Inc.

DS70616G-page 273

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
NOTES:

DS70616G-page 274

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
13.0

TIMER2/3, TIMER4/5, TIMER6/7
AND TIMER8/9

Note 1: This
data
sheet
summarizes
the
features
of
the
dsPIC33EPXXX(GP/MC/MU)806/810/814
and PIC24EPXXX(GP/GU)810/814 family
of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to Section 11. “Timers”
(DS70362) of the “dsPIC33E/PIC24E
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.

Individually, all eight of the 16-bit timers can function as
synchronous timers or counters. They also offer the
features listed above, except for the event trigger; this
is implemented only with Timer2/3. The operating
modes and enabled features are determined by setting
the appropriate bit(s) in the T2CON, T3CON, T4CON,
T5CON, T6CON, T7CON, T8CON and T9CON
registers. T2CON, T4CON, T6CON and T8CON are
shown in generic form in Register 13-1. T3CON,
T5CON, T7CON and T9CON are shown in
Register 13-2.
For 32-bit timer/counter operation, Timer2, Timer4,
Timer6 or Timer8 is the least significant word; Timer3,
Timer5, Timer7 or Timer9 is the most significant word
of the 32-bit timers.
Note:

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9
modules are 32-bit timers, which can also be
configured as four independent 16-bit timers with
selectable operating modes.
As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and
Timer8/9 operate in three modes:
• Two Independent 16-Bit Timers (e.g., Timer2 and
Timer3) with all 16-Bit Operating modes (except
Asynchronous Counter mode)
• Single 32-Bit Timer
• Single 32-Bit Synchronous Counter

For 32-bit operation, T3CON, T5CON,
T7CON and T9CON control bits are
ignored. Only T2CON, T4CON, T6CON
and T8CON control bits are used for setup
and control. Timer2, Timer4, Timer6 and
Timer8 clock and gate inputs are utilized
for the 32-bit timer modules, but an
interrupt is generated with the Timer3,
Timer5, Ttimer7 and Timer9 interrupt
flags.

A block diagram for an example 32-bit timer pair is
shown Figure 13-3.
Note:

Only Timer2, 3, 4 and 5 can trigger a DMA
data transfer.

They also support these features:
•
•
•
•
•

Timer Gate Operation
Selectable Prescaler Settings
Timer Operation during Idle and Sleep modes
Interrupt on a 32-Bit Period Register Match
Time Base for Input Capture and Output Compare
Modules (Timer2 and Timer3 only)
• ADC1 Event Trigger (Timer2/3 only)
• ADC2 Event Trigger (Timer4/5 only)

 2009-2012 Microchip Technology Inc.

DS70616G-page 275

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 13-1:

TYPE B TIMERx BLOCK DIAGRAM (x = 2, 4, 6 AND 8)
Falling Edge
Detect

Gate
Sync

1
Set TxIF Flag
0

FP(1)

10

Prescaler
(/n)

TGATE

TxCLK
Reset

TCKPS<1:0>

TMRx

00

Data
Latch
CLK

TxCK

Prescaler
(/n)

x1

Sync

Comparator

TGATE

TCKPS<1:0>

TCS

Note 1:

Equal

PRx

FP is the peripheral clock.

FIGURE 13-2:

TYPE C TIMERx BLOCK DIAGRAM (x = 3, 5, 7 AND 9)
Falling Edge
Detect

Gate
Sync

1
Set TxIF Flag
0

FP(1)

Prescaler
(/n)

10

TCKPS<1:0>

00

TMRx

Reset

Data
Latch
CLK

TxCK

Prescaler
(/n)

TCKPS<1:0>

x1

Sync

TGATE
TCS

Note 1:
2:

TGATE

TxCLK

Equal
Comparator

ADC Start of
Conversion Trigger(2)

PRx

FP is the peripheral clock.
The ADC trigger is available on TMR3 and TMR5 only.

DS70616G-page 276

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

FIGURE 13-3:

TYPE B/TYPE C TIMER PAIR BLOCK DIAGRAM (32-BIT TIMER)
Falling Edge
Detect

Gate
Sync

1
Set TyIF Flag
PRx

PRy

0
TGATE

FP(1)

Prescaler
(/n)

Prescaler
(/n)

Data

10
lsw
00

TCKPS<1:0>
TxCK

ADC

Equal

Comparator

Sync

msw

TMRx

TMRy

Latch

CLK

Reset

x1
TMRyHLD

TCKPS<1:0>

TGATE
TCS

Data Bus<15:0>

Note 1:
2:
3:

13.1

The ADC trigger is available only on the TMR3:TMR2 andTMR5:TMR4 32-bit timer pairs.
Timerx is a Type B timer (x = 2, 4, 6 and 8).
Timery is a Type C timer (x = 3, 5, 7 and 9).

Timer Resources

Many useful resources related to timers are provided
on the main product page of the Microchip web site for
the devices listed in this data sheet. This product page,
which can be accessed using this link, contains the
latest updates and additional information.
Note:

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

 2009-2012 Microchip Technology Inc.

13.1.1

KEY RESOURCES

• Section 11. “Timers” (DS70362) in the
“dsPIC33E/PIC24E Family Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

DS70616G-page 277

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
13.2

Timerx/y Control Registers

REGISTER 13-1:

TxCON: (T2CON, T4CON, T6CON OR T8CON) CONTROL REGISTER

R/W-0

U-0

R/W-0

U-0

U-0

U-0

U-0

U-0

TON

—

TSIDL

—

—

—

—

—

bit 15

bit 8

U-0

R/W-0

—

TGATE

R/W-0

R/W-0

TCKPS<1:0>

R/W-0
T32

U-0

R/W-0
(1)

—

TCS

bit 7

U-0
—
bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

TON: Timerx On bit
When T32 = 1:
1 = Starts 32-bit Timerx/y
0 = Stops 32-bit Timerx/y
When T32 = 0:
1 = Starts 16-bit Timerx
0 = Stops 16-bit Timerx

bit 14

Unimplemented: Read as ‘0’

bit 13

TSIDL: Timerx Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode

bit 12-7

Unimplemented: Read as ‘0’

bit 6

TGATE: Timerx Gated Time Accumulation Enable bit
When TCS = 1:
This bit is ignored.
When TCS = 0:
1 = Gated time accumulation is enabled
0 = Gated time accumulation is disabled

bit 5-4

TCKPS<1:0>: Timerx Input Clock Prescale Select bits
11 = 1:256
10 = 1:64
01 = 1:8
00 = 1:1

bit 3

T32: 32-Bit Timer Mode Select bit
1 = Timerx and Timery form a single 32-bit timer
0 = Timerx and Timery act as two 16-bit timers

bit 2

Unimplemented: Read as ‘0’

bit 1

TCS: Timerx Clock Source Select bit(1)
1 = External clock from TxCK pin (on the rising edge)
0 = Internal clock (FP)

bit 0

Unimplemented: Read as ‘0’

Note 1:

The TxCK pin is not available on all timers. Refer to the “Pin Diagrams” section for the available pins.

DS70616G-page 278

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 13-2:
R/W-0
TON(1)

TyCON: (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER
U-0

R/W-0

U-0

U-0

U-0

U-0

U-0

—

TSIDL(2)

—

—

—

—

—

bit 15

bit 8

U-0

R/W-0

—

TGATE(1)

R/W-0

R/W-0

TCKPS<1:0>(1)

U-0
—

U-0

R/W-0

U-0

—

TCS(1,3)

—

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15

TON: Timery On bit(1)
1 = Starts 16-bit Timery
0 = Stops 16-bit Timery

bit 14

Unimplemented: Read as ‘0’

bit 13

TSIDL: Timery Stop in Idle Mode bit(2)
1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode

bit 12-7

Unimplemented: Read as ‘0’

bit 6

TGATE: Timery Gated Time Accumulation Enable bit(1)
When TCS = 1:
This bit is ignored.
When TCS = 0:
1 = Gated time accumulation is enabled
0 = Gated time accumulation is disabled

bit 5-4

TCKPS<1:0>: Timery Input Clock Prescale Select bits(1)
11 = 1:256
10 = 1:64
01 = 1:8
00 = 1:1

bit 3-2

Unimplemented: Read as ‘0’

bit 1

TCS: Timery Clock Source Select bit(1,3)
1 = External clock from TyCK pin (on the rising edge)
0 = Internal clock (FP)

bit 0

Unimplemented: Read as ‘0’

Note 1:
2:
3:

x = Bit is unknown

When 32-bit operation is enabled (T2CON<3> = 1), these bits have no effect on Timery operation; all timer
functions are set through TxCON.
When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit
must be cleared to operate the 32-bit timer in Idle mode.
The TyCK pin is not available on all timers. Refer to the “Pin Diagrams” section for the available pins.

 2009-2012 Microchip Technology Inc.

DS70616G-page 279

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

NOTES:

DS70616G-page 280

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
14.0

INPUT CAPTURE

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this
data sheet, refer to Section 12. “Input
Capture” (DS70352) of the “dsPIC33E/
PIC24E Family Reference Manual”,
which is available from the Microchip web
site (www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.

FIGURE 14-1:

The input capture module is useful in applications
requiring frequency (period) and pulse measurement.
The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 devices support up to
16 input capture channels.
Key features of the input capture module include:
• Hardware-configurable for 32-bit operation in all
modes by cascading two adjacent modules
• Synchronous and Trigger modes of output
compare operation, with up to 30 user-selectable
Trigger/Sync sources available
• A 4-level FIFO buffer for capturing and holding
timer values for several events
• Configurable interrupt generation
• Up to six clock sources available for each module,
driving a separate internal 16-bit counter
Note:

INPUT CAPTURE MODULE BLOCK DIAGRAM
ICM<2:0>

ICx Pin

Only IC1, IC2, IC3 and IC4 can trigger a
DMA data transfer. If DMA data transfers
are required, the FIFO buffer size must be
set to ‘1’ (ICI<1:0> = 00).

ICI<1:0>

Edge Detect Logic
and
Clock Synchronizer

Prescaler
Counter
1:1/4/16

Event and
Interrupt
Logic

Set ICxIF

ICTSEL<2:0>
FP
T1CLK

Clock
Select

Increment

16
ICxTMR

4-Level FIFO Buffer

16

T5CLK

Trigger and
Sync Sources

Trigger and Reset
Sync Logic

16
SYNCSEL<4:0>
Trigger(1)

ICxBUF

ICOV, ICBNE
Note 1:

System Bus

The Trigger/Sync source is enabled by default and is set to Timer3 as a source. This timer must be enabled for
proper ICx module operation or the Trigger/Sync source must be changed to another source option.

 2009-2012 Microchip Technology Inc.

DS70616G-page 281

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

14.1

Input Capture Resources

Many useful resources related to input capture are provided on the main product page of the Microchip web
site for the devices listed in this data sheet. This product
page, which can be accessed using this link, contains
the latest updates and additional information.
Note:

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

DS70616G-page 282

14.1.1

KEY RESOURCES

• Section 12. “Input Capture” (DS70352) in the
“dsPIC33E/PIC24E Family Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
14.2

Input Capture Control Registers

REGISTER 14-1:

ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0

U-0

R/W-0

—

—

ICSIDL

R/W-0

R/W-0

R/W-0

ICTSEL<2:0>

U-0

U-0

—

—

bit 15

bit 8

U-0

R/W-0

—

R/W-0
ICI<1:0>

R/HC/HS-0

R/HC/HS-0

ICOV

ICBNE

R/W-0

R/W-0

R/W-0

ICM<2:0>

bit 7

bit 0

Legend:
R = Readable bit

HC = Hardware Clearable bit

HS = Hardware Settable bit

-n = Value at POR

W = Writable bit

U = Unimplemented bit, read as ‘0’

‘0’ = Bit is cleared

bit 15-14

Unimplemented: Read as ‘0’

bit 13

ICSIDL: Input Capture Stop in Idle Control bit
1 = Input capture will Halt in CPU Idle mode
0 = Input capture will continue to operate in CPU Idle mode

bit 12-10

ICTSEL<12:10>: Input Capture Timer Select bits
111 = Peripheral clock (FP) is the clock source of the ICx
110 = Reserved
101 = Reserved
100 = Clock source of T1CLK is the clock source of the ICx (only the synchronous clock is supported)
011 = Clock source of T5CLK is the clock source of the ICx
010 = Clock source of T4CLK is the clock source of the ICx
001 = Clock source of T2CLK is the clock source of the ICx
000 = Clock source of T3CLK is the clock source of the ICx

bit 9-7

Unimplemented: Read as ‘0’

bit 6-5

ICI<1:0>: Number of Captures per Interrupt Select bits (this field is not used if ICM<2:0> = 001 or 111)
11 = Interrupt on every fourth capture event
10 = Interrupt on every third capture event
01 = Interrupt on every second capture event
00 = Interrupt on every capture event

bit 4

ICOV: Input Capture Overflow Status Flag bit (read-only)
1 = Input capture buffer overflow occurred
0 = No input capture buffer overflow occurred

bit 3

ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
1 = Input capture buffer is not empty, at least one more capture value can be read
0 = Input capture buffer is empty

bit 2-0

ICM<2:0>: Input Capture Mode Select bits
111 = Input capture functions as interrupt pin only in CPU Sleep and Idle modes (rising edge detect
only, all other control bits are not applicable)
110 = Unused (module disabled)
101 = Capture mode, every 16th rising edge (Prescaler Capture mode)
100 = Capture mode, every 4th rising edge (Prescaler Capture mode)
011 = Capture mode, every rising edge (Simple Capture mode)
010 = Capture mode, every falling edge (Simple Capture mode)
001 = Capture mode, every edge rising and falling (Edge Detect mode (ICI<1:0>) is not used in this mode)
000 = Input capture module is turned off

 2009-2012 Microchip Technology Inc.

DS70616G-page 283

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 14-2:

ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0

U-0

U-0

U-0

U-0

U-0

U-0

R/W-0

—

—

—

—

—

—

—

IC32

bit 15

bit 8

R/W-0

R/W/HS-0

U-0

ICTRIG(2)

TRIGSTAT(3)

—

R/W-0

R/W-1

R/W-1

R/W-0

R/W-1

SYNCSEL<4:0>(4)

bit 7

bit 0

Legend:
R = Readable bit

HS = Set by Hardware

‘0’ = Bit is cleared

-n = Value at POR

W = Writable bit

U = Unimplemented bit, read as ‘0’

bit 15-9

Unimplemented: Read as ‘0’

bit 8

IC32: 32-Bit Timer Mode Select bit (Cascade mode)
1 = ODD IC and EVEN IC form a single 32-bit input capture module(1)
0 = Cascade module operation is disabled

bit 7

ICTRIG: Trigger Operation Select bit(2)
1 = Input source is used to trigger the input capture timer (Trigger mode)
0 = Input source is used to synchronize the input capture timer to a timer of another module
(Synchronization mode)

bit 6

TRIGSTAT: Timer Trigger Status bit(3)
1 = ICxTMR has been triggered and is running
0 = ICxTMR has not been triggered and is being held clear

bit 5

Unimplemented: Read as ‘0’

Note 1:
2:
3:
4:
5:

The IC32 bit in both the ODD and EVEN IC must be set to enable Cascade mode.
The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
This bit is set by the selected input source (selected by the SYNCSEL<4:0> bits); it can be read, set and
cleared in software.
Do not use the ICx module as its own Sync or Trigger source.
This option should only be selected as a trigger source and not as a synchronization source.

DS70616G-page 284

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 14-2:

ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits(4)
11111 = No Sync or Trigger source for ICx
11110 = No Sync or Trigger source for ICx
11101 = No Sync or Trigger source for ICx
11100 = Reserved
11011 = ADC1 module synchronizes or triggers ICx(5)
11010 = CMP3 module synchronizes or triggers ICx(5)
11001 = CMP2 module synchronizes or triggers ICx(5)
11000 = CMP1 module synchronizes or triggers ICx(5)
10111 = IC8 module synchronizes or triggers ICx
10110 = IC7 module synchronizes or triggers ICx
10101 = IC6 module synchronizes or triggers ICx
10100 = IC5 module synchronizes or triggers ICx
10011 = IC4 module synchronizes or triggers ICx
10010 = IC3 module synchronizes or triggers ICx
10001 = IC2 module synchronizes or triggers ICx
10000 = IC1 module synchronizes or triggers ICx
01111 = Timer5 synchronizes or triggers ICx
01110 = Timer4 synchronizes or triggers ICx
01101 = Timer3 synchronizes or triggers ICx (default)
01100 = Timer2 synchronizes or triggers ICx
01011 = Timer1 synchronizes or triggers ICx
01010 = No Sync or Trigger source for ICx
01001 = OC9 module synchronizes or triggers ICx
01000 = OC8 module synchronizes or triggers ICx
00111 = OC7 module synchronizes or triggers ICx
00110 = OC6 module synchronizes or triggers ICx
00101 = OC5 module synchronizes or triggers ICx
00100 = OC4 module synchronizes or triggers ICx
00011 = OC3 module synchronizes or triggers ICx
00010 = OC2 module synchronizes or triggers ICx
00001 = OC1 module synchronizes or triggers ICx
00000 = No Sync or Trigger source for ICx

bit 4-0

Note 1:
2:
3:
4:
5:

The IC32 bit in both the ODD and EVEN IC must be set to enable Cascade mode.
The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
This bit is set by the selected input source (selected by the SYNCSEL<4:0> bits); it can be read, set and
cleared in software.
Do not use the ICx module as its own Sync or Trigger source.
This option should only be selected as a trigger source and not as a synchronization source.

 2009-2012 Microchip Technology Inc.

DS70616G-page 285

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
NOTES:

DS70616G-page 286

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
15.0

OUTPUT COMPARE

The output compare module can select one of eight
available clock sources for its time base. The module
compares the value of the timer with the value of one or
two Compare registers, depending on the operating
mode selected. The state of the output pin changes
when the timer value matches the Compare register
value. The output compare module generates either a
single output pulse, or a sequence of output pulses, by
changing the state of the output pin on the compare
match events. The output compare module can also
generate interrupts on compare match events.

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this
data sheet, refer to Section 13. “Output
Compare” (DS70358) of the “dsPIC33E/
PIC24E Family Reference Manual”,
which is available from the Microchip web
site (www.microchip.com).

Note 1: Only OC1, OC2, OC3 and OC4 can trigger
a DMA data transfer.

2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.

FIGURE 15-1:

2: See Section 13. “Output Compare”
(DS70358) in the “dsPIC33E/PIC24E
Family Reference Manual” for OCxR and
OCxRS register restrictions.

OUTPUT COMPARE MODULE BLOCK DIAGRAM
OCxCON1
OCxCON2
OCxR
Rollover/Reset

OCxR Buffer
FP
T1CLK

Clock
Select

Increment

OCxTMR

T5CLK

Trigger and
Sync Sources

Comparator

Reset

Trigger and
Sync Logic

Match Event

Comparator

Match
Event
Rollover

OCFC
OC Output and
Fault Logic

Match
Event

OCFB
OCFA

OCxRS Buffer

SYNCSEL<4:0>
Trigger(1)

Rollover/Reset

OCxRS
Reset

Note 1:

OCx Pin

OCx Synchronization/Trigger Event
OCx Interrupt

The Trigger/Sync source is enabled by default and is set to Timer2 as a source. This timer must be enabled for
proper OCx module operation or the Trigger/Sync source must be changed to another source option.

 2009-2012 Microchip Technology Inc.

DS70616G-page 287

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
15.1

Output Compare Resources

Many useful resources related to output compare are
provided on the main product page of the Microchip
web site for the devices listed in this data sheet. This
product page, which can be accessed using this link,
contains the latest updates and additional information.
Note:

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

DS70616G-page 288

15.1.1

KEY RESOURCES

• Section 13. “Output Compare” (DS70358) in
the “dsPIC33E/PIC24E Family Reference
Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
15.2

Output Compare Control Registers

REGISTER 15-1:

OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0

U-0

R/W-0

—

—

OCSIDL

R/W-0

R/W-0

R/W-0

OCTSEL<2:0>

R/W-0

R/W-0

ENFLTC

ENFLTB

bit 15

bit 8

R/W-0

R/W-0, HSC

R/W-0, HSC

R/W-0, HSC

R/W-0

ENFLTA

OCFLTC

OCFLTB

OCFLTA

TRIGMODE

R/W-0

R/W-0

R/W-0

OCM<2:0>

bit 7

bit 0

Legend:

HCS = Hardware Settable/Clearable bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13

OCSIDL: Stop Output Compare x in Idle Mode Control bit
1 = Output Compare x Halts in CPU Idle mode
0 = Output Compare x continues to operate in CPU Idle mode

bit 12-10

OCTSEL<2:0>: Output Compare x Clock Select bits
111 = Peripheral clock (FP)
110 = Reserved
101 = Reserved
100 = Clock source of T1CLK is the clock source of OCx (only the synchronous clock is supported)
011 = Clock source of T5CLK is the clock source of OCx
010 = Clock source of T4CLK is the clock source of OCx
001 = Clock source of T3CLK is the clock source of OCx
000 = Clock source of T2CLK is the clock source of OCx

bit 9

ENFLTC: Fault C Input Enable bit
1 = Output Compare Fault C input (OCFC) is enabled
0 = Output Compare Fault C input (OCFC) is disabled

bit 8

ENFLTB: Fault B Input Enable bit
1 = Output Compare Fault B input (OCFB) is enabled
0 = Output Compare Fault B input (OCFB) is disabled

bit 7

ENFLTA: Fault A Input Enable bit
1 = Output Compare Fault A input (OCFA) is enabled
0 = Output Compare Fault A input (OCFA) is disabled

bit 6

OCFLTC: PWM Fault C Condition Status bit
1 = PWM Fault C condition on OCFC pin has occurred
0 = No PWM Fault C condition on OCFC pin has occurred

bit 5

OCFLTB: PWM Fault B Condition Status bit
1 = PWM Fault B condition on OCFB pin has occurred
0 = No PWM Fault B condition on OCFB pin has occurred

bit 4

OCFLTA: PWM Fault A Condition Status bit
1 = PWM Fault A condition on OCFA pin has occurred
0 = No PWM Fault A condition on OCFA pin has occurred

bit 3

TRIGMODE: Trigger Status Mode Select bit
1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
0 = TRIGSTAT is cleared only by software

Note 1:

OCxR and OCxRS are double-buffered in PWM mode only.

 2009-2012 Microchip Technology Inc.

DS70616G-page 289

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 15-1:
bit 2-0

Note 1:

OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

OCM<2:0>: Output Compare Mode Select bits
111 = Center-Aligned PWM mode: Output set high when OCxTMR = OCxR and set low when
OCxTMR = OCxRS(1)
110 = Edge-Aligned PWM mode: Output set high when OCxTMR = 0 and set low when
OCxTMR = OCxR(1)
101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously
on alternate matches of OCxR and OCxRS
100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of
OCxR and OCxRS for one cycle
011 = Single Compare mode: Compares events with OCxR, continuously toggles OCx pin
010 = Single Compare Single-Shot mode: Initializes OCx pin high, compares event with OCxR, forces
OCx pin low
001 = Single Compare Single-Shot mode: Initializes OCx pin low, compares event with OCxR, forces
OCx pin high
000 = Output compare channel is disabled
OCxR and OCxRS are double-buffered in PWM mode only.

DS70616G-page 290

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 15-2:

OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0

R/W-0

R/W-0

R/W-0

U-0

U-0

U-0

R/W-0

FLTMD

FLTOUT

FLTTRIEN

OCINV

—

—

—

OC32

bit 15

bit 8

R/W-0

R/W-0 HS

R/W-0

OCTRIG

TRIGSTAT

OCTRIS

R/W-0

R/W-1

R/W-1

R/W-0

R/W-0

SYNCSEL<4:0>

bit 7

bit 0

Legend:

HS = Hardware Settable bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

FLTMD: Fault Mode Select bit
1 = Fault mode is maintained until the Fault source is removed; the corresponding OCFLTx bit is
cleared in software and a new PWM period starts
0 = Fault mode is maintained until the Fault source is removed and a new PWM period starts

bit 14

FLTOUT: Fault Out bit
1 = PWM output is driven high on a Fault
0 = PWM output is driven low on a Fault

bit 13

FLTTRIEN: Fault Output State Select bit
1 = OCx pin is tri-stated on Fault condition
0 = OCx pin I/O state defined by FLTOUT bit on Fault condition

bit 12

OCINV: OCMP Invert bit
1 = OCx output is inverted
0 = OCx output is not inverted

bit 11-9

Unimplemented: Read as ‘0’

bit 8

OC32: Cascade Two OCx Modules Enable bit (32-bit operation)
1 = Cascade module operation is enabled
0 = Cascade module operation is disabled

bit 7

OCTRIG: OCx Trigger/Sync Select bit
1 = Triggers OCx from source designated by SYNCSELx bits
0 = Synchronizes OCx with source designated by SYNCSELx bits

bit 6

TRIGSTAT: Timer Trigger Status bit
1 = Timer source has been triggered and is running
0 = Timer source has not been triggered and is being held clear

bit 5

OCTRIS: OCx Output Pin Direction Select bit
1 = OCx is tri-stated
0 = Output compare module drives the OCx pin

Note 1:
2:

Do not use the OCx module as its own Sync or Trigger source.
When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module uses the OCy module
as a Trigger source, the OCy module must be unselected as a Trigger source prior to disabling it.

 2009-2012 Microchip Technology Inc.

DS70616G-page 291

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 15-2:
bit 4-0

Note 1:
2:

OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
11111 = No Sync or Trigger source for OCx
11110 = INT2 pin synchronizes or triggers OCx
11101 = INT1 pin synchronizes or triggers OCx
11100 = Reserved
11011 = ADC1 module synchronizes or triggers OCx
11010 = CMP3 module synchronizes or triggers OCx
11001 = CMP2 module synchronizes or triggers OCx
11000 = CMP1 module synchronizes or triggers OCx
10111 = IC8 module synchronizes or triggers OCx
10110 = IC7 module synchronizes or triggers OCx
10101 = IC6 module synchronizes or triggers OCx
10100 = IC5 module synchronizes or triggers OCx
10011 = IC4 module synchronizes or triggers OCx
10010 = IC3 module synchronizes or triggers OCx
10001 = IC2 module synchronizes or triggers OCx
10000 = IC1 module synchronizes or triggers OCx
01111 = Timer5 synchronizes or triggers OCx
01110 = Timer4 synchronizes or triggers OCx
01101 = Timer3 synchronizes or triggers OCx
01100 = Timer2 synchronizes or triggers OCx (default)
01011 = Timer1 synchronizes or triggers OCx
01010 = No Sync or Trigger source for OCx
01001 = OC9 module synchronizes or triggers OCx(1,2)
01000 = OC8 module synchronizes or triggers OCx(1,2)
00111 = OC7 module synchronizes or triggers OCx(1,2)
00110 = OC6 module synchronizes or triggers OCx(1,2)
00101 = OC5 module synchronizes or triggers OCx(1,2)
00100 = OC4 module synchronizes or triggers OCx(1,2)
00011 = OC3 module synchronizes or triggers OCx(1,2)
00010 = OC2 module synchronizes or triggers OCx(1,2)
00001 = OC1 module synchronizes or triggers OCx(1,2)
00000 = No Sync or Trigger source for OCx
Do not use the OCx module as its own Sync or Trigger source.
When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module uses the OCy module
as a Trigger source, the OCy module must be unselected as a Trigger source prior to disabling it.

DS70616G-page 292

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
16.0

HIGH-SPEED PWM MODULE
(dsPIC33EPXXX(MC/MU)8XX
DEVICES ONLY)

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not
intended to be a comprehensive
reference source. To complement the
information in this data sheet, refer to
Section 14. “High-Speed PWM”
(DS70645) of the “dsPIC33E/PIC24E
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.
The dsPIC33EPXXX(MC/MU)806/810/814 devices
support a dedicated Pulse-Width Modulation (PWM)
module with up to 14 outputs.
The high-speed PWM module consists of the following
major features:
• Two master time base modules with Special
Event Triggers
• PWM module input clock prescaler
• Two synchronization inputs
• Two synchronization outputs
• Up to seven PWM generators
• Two PWM outputs per generator (PWMxH and
PWMxL)
• Individual period, duty cycle and phase shift for
each PWM output
• Period, duty cycle, phase shift and dead-time
resolution of 8.32 ns
• Immediate update mode for PWM period, duty
cycle and phase shift
• Independent Fault and current-limited inputs for
each PWM
• Cycle-by-Cycle and Latched Fault modes
• PWM time-base capture upon current limit
• Seven Fault inputs and three comparator outputs
available for Faults and current limits
• Programmable ADC trigger with interrupt for each
PWM pair

 2009-2012 Microchip Technology Inc.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Complementary PWM outputs
Push-Pull PWM outputs
Redundant PWM outputs
Edge-Aligned PWM mode
Center-Aligned PWM mode
Variable Phase PWM mode
Multi-Phase PWM mode
Fixed Off Time PWM mode
Current-Limit PWM mode
Current Reset PWM mode
PWMxH and PWMxL output override control
PWMxH and PWMxL output pin swapping
Chopping mode (also known as Gated mode)
Dead-time insertion
Dead-time compensation
Enhanced Leading-Edge Blanking (LEB)
8 mA PWM pin output drive
Note:

Duty cycle, dead time, phase shift and
frequency resolution is 16.64 ns in
Center-Aligned PWM mode.

The high-speed PWM module contains up to seven
PWM generators. Each PWM generator provides two
PWM outputs: PWMxH and PWMxL. Two master time
base generators provide a synchronous signal as a
common time base to synchronize the various PWM
outputs. Each generator can operate independently or
in synchronization with either of the two master time
bases. The individual PWM outputs are available on
the output pins of the device. The input Fault signals
and current-limited signals, when enabled, can monitor
and protect the system by placing the PWM outputs
into a known “safe” state.
Each PWM can generate a trigger to the ADC module
to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWM
module also generates two Special Event Triggers to
the ADC module based on the two master time bases.
The high-speed PWM module can synchronize itself
with an external signal or can act as a synchronizing
source to any external device. The SYNCI1 and
SYNCI2 pins are the input pins, which can synchronize
the high-speed PWM module with an external signal.
The SYNCO1 and SYNCO2 pins are output pins that
provides a synchronous signal to an external device.
Figure 16-1 illustrates an architectural overview of the
high-speed PWM module and its interconnection with
the CPU and other peripherals.

DS70616G-page 293

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 16-1:

HIGH-SPEED PWM MODULE ARCHITECTURAL OVERVIEW
SYNCI1/SYNCI2

Data Bus
Primary and Secondary
Master Time Base

FOSC

SYNCO1/SYNCO2

Synchronization Signal
PWM1 Interrupt

PWM1H
PWM
Generator 1
PWM1L
Fault, Current-Limit
and Dead-Time Compensation
Synchronization Signal

PWM2 Interrupt

PWM2H
PWM
Generator 2
PWM2L
Fault, Current-Limit
and Dead-Time Compensation

CPU
PWM3 through PWM5
Synchronization Signal
PWM6 Interrupt

PWM6H
PWM
Generator 6
PWM6L
Fault, Current-Limit
and Dead-Time Compensation
Synchronization Signal

PWM7 Interrupt

PWM7H
PWM
Generator 7
PWM7L

Primary Trigger

ADC Module

Primary Special
Event Trigger
Secondary Special
Event Trigger

DS70616G-page 294

Fault, Current-Limit
and Dead-Time Compensation

FLT1-FLT7 and
DTCMP1-DTCMP7

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 16-2:

HIGH-SPEED PWM MODULE REGISTER INTERCONNECTION DIAGRAM

FOSC
PTCON, PTCON2

SYNCI1

Module Control and Timing

PTPER

SEVTCMP

Comparator

Comparator

SYNCI2

SYNCO1

Special Event Compare Trigger

Special Event
Postscaler

Special Event Trigger

Master Time Base Counter
Clock
Prescaler

PMTMR

PTPER

Comparator

Primary Master Time Base

SYNCO2

Special Event Compare Trigger

SEVTCMP

Special Event
Postscaler

Comparator

Special Event Trigger

Master Time Base Counter
Clock
Prescaler

PMTMR

Duty Cycle Register

PWM Generator 1

PDCx
MUX
Master Period

Synchronization
16-Bit Data Bus

Master Duty Cycle

MDC

Secondary Master Time Base

PWM Output Mode
Control Logic

Comparator
PWMCAPx
ADC Trigger
PTMRx
Comparator

Current-Limit
Override Logic

TRIGx

Fault Override Logic

PHASEx
SDCx

User Override Logic
Dead-Time
Logic

Pin
Control
Logic

PWM1H
PWM1L

Secondary PWM

MUX
Interrupt
Logic

STMRx

Master Period

SPHASEx
Master Duty Cycle

Synchronization

Comparator

PWMCONx

Fault and
Current-Limit
Logic

FCLCONx
TRGCONx

FLT1
DTCMP1

IOCONx
LEBCONx

ALTDTRx
DTRx

PWMxH
PWM Generator 2 – PWM Generator 7

PWMxL
FLTx
DTCMPx

 2009-2012 Microchip Technology Inc.

DS70616G-page 295

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
16.1

PWM Resources

Many useful resources related to the high-speed PWM
are provided on the main product page of the Microchip
web site for the devices listed in this data sheet. This
product page, which can be accessed using this link,
contains the latest updates and additional information.
Note:

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

DS70616G-page 296

16.1.1

KEY RESOURCES

• Section 11. “High-Speed PWM” (DS70645) in
the “dsPIC33E/PIC24E Family Reference
Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
16.2

PWM Control Registers

REGISTER 16-1:
R/W-0

PTCON: PWM TIME BASE CONTROL REGISTER
U-0

PTEN

—

R/W-0

HSC-0

PTSIDL

SESTAT

R/W-0

R/W-0

R/W-0

R/W-0

SEIEN

EIPU(1)

SYNCPOL(1)

SYNCOEN(1)

bit 15

bit 8

R/W-0

R/W-0

SYNCEN(1)

R/W-0

R/W-0

R/W-0

R/W-0

(1)

R/W-0

R/W-0

(1)

SYNCSRC<2:0>

SEVTPS<3:0>

bit 7

bit 0

Legend:

HSC = Hardware Settable/Clearable bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15

PTEN: PWM Module Enable bit
1 = PWM module is enabled
0 = PWM module is disabled

bit 14

Unimplemented: Read as ‘0’

bit 13

PTSIDL: PWM Time Base Stop in Idle Mode bit
1 = PWM time base halts in CPU Idle mode
0 = PWM time base runs in CPU Idle mode

bit 12

SESTAT: Special Event Interrupt Status bit
1 = Special event interrupt is pending
0 = Special event interrupt is not pending

bit 11

SEIEN: Special Event Interrupt Enable bit
1 = Special event interrupt is enabled
0 = Special event interrupt is disabled

bit 10

EIPU: Enable Immediate Period Updates bit(1)
1 = Active Period register is updated immediately
0 = Active Period register updates occur on PWM cycle boundaries

bit 9

SYNCPOL: Synchronize Input and Output Polarity bit(1)
1 = SYNCIx/SYNCO polarity is inverted (active-low)
0 = SYNCIx/SYNCO is active-high

bit 8

SYNCOEN: Primary Time Base Sync Enable bit(1)
1 = SYNCO output is enabled
0 = SYNCO output is disabled

bit 7

SYNCEN: External Time Base Synchronization Enable bit(1)
1 = External synchronization of primary time base is enabled
0 = External synchronization of primary time base is disabled

Note 1:

x = Bit is unknown

These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user
application must program the Period register with a value that is slightly larger than the expected period of
the external synchronization input signal.

 2009-2012 Microchip Technology Inc.

DS70616G-page 297

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-1:

PTCON: PWM TIME BASE CONTROL REGISTER (CONTINUED)

bit 6-4

SYNCSRC<2:0>: Synchronous Source Selection bits(1)
111 = Reserved
•
•
•
010 = Reserved
001 = SYNCI2
000 = SYNCI1

bit 3-0

SEVTPS<3:0>: PWM Special Event Trigger Output Postscaler Select bits(1)
1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event
•
•
•
0001 = 1:2 Postscaler generates Special Event Trigger on every second compare match event
0000 = 1:1 Postscaler generates Special Event Trigger on every compare match event

Note 1:

These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user
application must program the Period register with a value that is slightly larger than the expected period of
the external synchronization input signal.

DS70616G-page 298

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-2:

PTCON2: PWM PRIMARY MASTER CLOCK DIVIDER SELECT REGISTER 2

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

R/W-0

R/W-0

R/W-0

PCLKDIV<2:0>(1)

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-3

Unimplemented: Read as ‘0’

bit 2-0

PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits(1)
111 = Reserved
110 = Divide-by-64
101 = Divide-by-32
100 = Divide-by-16
011 = Divide-by-8
010 = Divide-by-4
001 = Divide-by-2
000 = Divide-by-1, maximum PWM timing resolution (power-on default)

Note 1:

These bits should be changed only when PTEN = 0. Changing the clock selection during operation will
yield unpredictable results.

REGISTER 16-3:
R/W-1

PTPER: PRIMARY MASTER TIME BASE PERIOD REGISTER
R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

PTPER<15:8>
bit 15

bit 8

R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

R/W-0

R/W-0

R/W-0

PTPER<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

PTPER<15:0>: Primary Master Time Base (PMTMR) Period Value bits

 2009-2012 Microchip Technology Inc.

DS70616G-page 299

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-4:
R/W-0

SEVTCMP: PWM PRIMARY SPECIAL EVENT COMPARE REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SEVTCMP<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SEVTCMP<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

SEVTCMP<15:0>: Special Event Compare Count Value bits

DS70616G-page 300

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-5:

STCON: PWM SECONDARY MASTER TIME BASE CONTROL REGISTER

U-0

U-0

U-0

HSC-0

R/W-0

R/W-0

R/W-0

R/W-0

—

—

—

SESTAT

SEIEN

EIPU(1)

SYNCPOL

SYNCOEN

bit 15

bit 8

R/W-0

R/W-0

SYNCEN

R/W-0

R/W-0

R/W-0

SYNCSRC<2:0>

R/W-0

R/W-0

R/W-0

SEVTPS<3:0>

bit 7

bit 0

Legend:

HSC = Set or Cleared in Hardware

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-13

Unimplemented: Read as ‘0’

bit 12

SESTAT: Special Event Interrupt Status bit
1 = Secondary special event interrupt is pending
0 = Secondary special event interrupt is not pending

bit 11

SEIEN: Special Event Interrupt Enable bit
1 = Secondary special event interrupt is enabled
0 = Secondary special event interrupt is disabled

bit 10

EIPU: Enable Immediate Period Updates bit(1)
1 = Active Secondary Period register is updated immediately
0 = Active Secondary Period register updates occur on PWM cycle boundaries

bit 9

SYNCPOL: Synchronize Input and Output Polarity bit
1 = The falling edge of SYNCIN resets the SMTMR; SYNCO2 output is active-low
0 = The rising edge of SYNCIN resets the SMTMR; SYNCO2 output is active-high

bit 8

SYNCOEN: Secondary Master Time Base Synchronization Enable bit
1 = SYNCO2 output is enabled
0 = SYNCO2 output is disabled

bit 7

SYNCEN: External Secondary Master Time Base Synchronization Enable bit
1 = External synchronization of secondary time base is enabled
0 = External synchronization of secondary time base is disabled

bit 6-4

SYNCSRC<2:0>: Secondary Time Base Synchronization Source Selection bits
111 = Reserved
•
•
•
010 = Reserved
001 = SYNCI2
000 = SYNCI1

bit 3-0

SEVTPS<3:0>: PWM Secondary Special Event Trigger Output Postscaler Select bits
1111 = 1:16 Postcale
•
•
•
0001 = 1:2 Postcale
0000 = 1:1 Postscale

Note 1:

This bit only applies to the secondary master time base period.

 2009-2012 Microchip Technology Inc.

DS70616G-page 301

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-6:

STCON2: PWM SECONDARY CLOCK DIVIDER SELECT REGISTER 2

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

U-0

—

—

U-0
—

U-0
—

U-0

R/W-0

R/W-0

R/W-0

PCLKDIV<2:0>(1)

—

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-3

Unimplemented: Read as ‘0’

bit 2-0

PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits(1)
111 = Reserved
110 = Divide-by-64
101 = Divide-by-32
100 = Divide-by-16
011 = Divide-by-8
010 = Divide-by-4
001 = Divide-by-2
000 = Divide-by-1, maximum PWM timing resolution (power-on default)

Note 1:

These bits should be changed only when PTEN = 0. Changing the clock selection during operation will
yield unpredictable results.

REGISTER 16-7:
R/W-1

STPER: SECONDARY MASTER TIME BASE PERIOD REGISTER(1)
R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

STPER<15:8>
bit 15

bit 8

R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

R/W-0

R/W-0

R/W-0

STPER<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

STPER<15:0>: Secondary Master Time Base (PMTMR) Period Value bits

DS70616G-page 302

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-8:
R/W-0

SSEVTCMP: PWM SECONDARY SPECIAL EVENT COMPARE REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SSEVTCMP<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SSEVTCMP<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

SSEVTCMP<15:0>: Special Event Compare Count Value bits

REGISTER 16-9:

CHOP: PWM CHOP CLOCK GENERATOR REGISTER

R/W-0

U-0

U-0

U-0

U-0

U-0

CHPCLKEN

—

—

—

—

—

R/W-0

R/W-0

CHOPCLK<9:8>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

CHOPCLK<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

CHPCLKEN: Enable Chop Clock Generator bit
1 = Chop clock generator is enabled
0 = Chop clock generator is disabled

bit 14-10

Unimplemented: Read as ‘0’

bit 9-0

CHOPCLK<9:0>: Chop Clock Divider bits
The frequency of the chop clock signal is given by the following expression:
Chop Frequency = FPWM/(CHOP<9:0> + 1)
Where, FPWM is FP divided by the value based on the PCLKDIV settings.

 2009-2012 Microchip Technology Inc.

DS70616G-page 303

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-10: MDC: PWM MASTER DUTY CYCLE REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

MDC<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

MDC<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

MDC<15:0>: Master PWM Duty Cycle Value bits

DS70616G-page 304

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-11: PWMCONx: PWMx CONTROL REGISTER
HSC-0

HSC-0

HSC-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

FLTSTAT(1)

CLSTAT(1)

TRGSTAT

FLTIEN

CLIEN

TRGIEN

ITB(2)

MDCS(2)

bit 15

bit 8

R/W-0

R/W-0

DTC<1:0>

R/W-0

U-0

R/W-0

R/W-0

R/W-0

R/W-0

DTCP(3)

—

MTBS

CAM(2,4)

XPRES(5)

IUE(2)

bit 7

bit 0

Legend:

HSC = Set or Cleared in Hardware

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

FLTSTAT: Fault Interrupt Status bit(1)
1 = Fault interrupt is pending
0 = No Fault interrupt is pending
This bit is cleared by setting FLTIEN = 0.

bit 14

CLSTAT: Current-Limit Interrupt Status bit(1)
1 = Current-limit interrupt is pending
0 = No current-limit interrupt is pending
This bit is cleared by setting CLIEN = 0.

bit 13

TRGSTAT: Trigger Interrupt Status bit
1 = Trigger interrupt is pending
0 = No trigger interrupt is pending
This bit is cleared by setting TRGIEN = 0.

bit 12

FLTIEN: Fault Interrupt Enable bit
1 = Fault interrupt is enabled
0 = Fault interrupt is disabled and FLTSTAT bit is cleared

bit 11

CLIEN: Current-Limit Interrupt Enable bit
1 = Current-limit interrupt is enabled
0 = Current-limit interrupt is disabled and CLSTAT bit is cleared

bit 10

TRGIEN: Trigger Interrupt Enable bit
1 = A trigger event generates an interrupt request
0 = Trigger event interrupts are disabled and TRGSTAT bit is cleared

bit 9

ITB: Independent Time Base Mode bit(2)
1 = PHASEx/SPHASEx registers provide time base period for this PWM generator
0 = PTPER register provides timing for this PWM generator

bit 8

MDCS: Master Duty Cycle Register Select bit(2)
1 = MDC register provides duty cycle information for this PWM generator
0 = PDCx and SDCx registers provide duty cycle information for this PWM generator

Note 1:
2:
3:
4:
5:

Software must clear the interrupt status here and in the corresponding IFS bit in the interrupt controller.
These bits should not be changed after the PWM is enabled (PTEN = 1).
DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.
The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the
CAM bit is ignored.
To operate in External Period Reset mode, the ITB bit must be ‘1’ and the CLMOD bit in the FCLCONx
register must be ‘0’.

 2009-2012 Microchip Technology Inc.

DS70616G-page 305

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-11: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)
bit 7-6

DTC<1:0>: Dead-Time Control bits
11 = Dead-Time Compensation mode
10 = Dead-time function is disabled
01 = Negative dead time actively applied for Complementary Output mode
00 = Positive dead time actively applied for all output modes

bit 5

DTCP: Dead-Time Compensation Polarity bit(3)
When set to ‘1’:
If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened.
If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened.
When set to ‘0’:
If DTCMPx = 0, PWMxH is shortened and PWMxL is lengthened.
If DTCMPx = 1, PWMxL is shortened and PWMxH is lengthened.

bit 4

Unimplemented: Read as ‘0’

bit 3

MTBS: Master Time Base Select bit
1 = PWM generator uses the secondary master time base for synchronization and as the clock source
for the PWM generation logic (if secondary time base is available)
0 = PWM generator uses the primary master time base for synchronization and as the clock source
for the PWM generation logic

bit 2

CAM: Center-Aligned Mode Enable bit(2,4)
1 = Center-Aligned mode is enabled
0 = Edge-Aligned mode is enabled

bit 1

XPRES: External PWM Reset Control bit(5)
1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base
mode
0 = External pins do not affect PWM time base

bit 0

IUE: Immediate Update Enable bit(2)
1 = Updates to the active MDC/PDCx/SDCx registers are immediate
0 = Updates to the active PDCx registers are synchronized to the PWM time base

Note 1:
2:
3:
4:
5:

Software must clear the interrupt status here and in the corresponding IFS bit in the interrupt controller.
These bits should not be changed after the PWM is enabled (PTEN = 1).
DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.
The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the
CAM bit is ignored.
To operate in External Period Reset mode, the ITB bit must be ‘1’ and the CLMOD bit in the FCLCONx
register must be ‘0’.

DS70616G-page 306

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-12: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER(1)
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

PDCx<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

PDCx<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0
Note 1:

x = Bit is unknown

PDCx<15:0>: PWM Generator # Duty Cycle Value bits
In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In
the Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of
both the PWMxH and PWMxL.

REGISTER 16-13: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER(1)
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SDCx<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SDCx<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0
Note 1:

x = Bit is unknown

SDCx<15:0>: Secondary Duty Cycle bits for PWMxL Output Pin bits
The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the
SDCx register controls the PWMxL duty cycle.

 2009-2012 Microchip Technology Inc.

DS70616G-page 307

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-14: PHASEx: PWMx PRIMARY PHASE SHIFT REGISTER(1,2)
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

PHASEx<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

PHASEx<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0
Note 1:

2:

x = Bit is unknown

PHASEx<15:0>: PWM Phase Shift Value or Independent Time Base Period for the PWM Generator bits
If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation:
• Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) = 00, 01 or
10), PHASEx<15:0> = Phase shift value for PWMxH and PWMxL outputs.
• True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11), PHASEx<15:0> = Phase
shift value for PWMxH only.
If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation:
• Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01
or 10), PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL.
• True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11),
PHASEx<15:0> = Independent time base period value for PWMxH only.

DS70616G-page 308

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-15: SPHASEx: PWMx SECONDARY PHASE SHIFT REGISTER(1,2)
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SPHASEx<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SPHASEx<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0
Note 1:

2:

x = Bit is unknown

SPHASEx<15:0>: Secondary Phase Offset bits for PWMxL Output Pin
(used in Independent PWM mode only)
If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation:
• Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) = 00, 01 or
10), SPHASEx<15:0> = Not used.
• True Independent Output mode (PMOD<1:0> (IOCON<11:10>) = 11), SPHASEx<15:0> = Phase
shift value for PWMxL only.
If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation:
• Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) = 00, 01 or
10), SPHASEx<15:0> = Not used.
• True Independent Output mode (PMOD<1:0> (IOCON<11:10>) = 11),
SPHASEx<15:0> = Independent time base period value for PWMxL only.

 2009-2012 Microchip Technology Inc.

DS70616G-page 309

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-16: DTRx: PWMx DEAD-TIME REGISTER
U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

DTRx<13:8>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

DTRx<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13-0

DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-17: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER
U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

ALTDTRx<13:8>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

ALTDTRx<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13-0

ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

DS70616G-page 310

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-18: TRGCONx: PWMx TRIGGER CONTROL REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

TRGDIV<3:0>

U-0

U-0

U-0

U-0

—

—

—

—

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

TRGSTRT<5:0>(1)

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-12

TRGDIV<3:0>: Trigger # Output Divider bits
1111 = Trigger output for every 16th trigger event
1110 = Trigger output for every 15th trigger event
1101 = Trigger output for every 14th trigger event
1100 = Trigger output for every 13th trigger event
1011 = Trigger output for every 12th trigger event
1010 = Trigger output for every 11th trigger event
1001 = Trigger output for every 10th trigger event
1000 = Trigger output for every 9th trigger event
0111 = Trigger output for every 8th trigger event
0110 = Trigger output for every 7th trigger event
0101 = Trigger output for every 6th trigger event
0100 = Trigger output for every 5th trigger event
0011 = Trigger output for every 4th trigger event
0010 = Trigger output for every 3rd trigger event
0001 = Trigger output for every 2nd trigger event
0000 = Trigger output for every trigger event

bit 11-6

Unimplemented: Read as ‘0’

bit 5-0

TRGSTRT<5:0>: Trigger Postscaler Start Enable Select bits(1)
111111 = Wait 63 PWM cycles before generating the first trigger event after the module is enabled
•
•
•
000010 = Wait 2 PWM cycles before generating the first trigger event after the module is enabled
000001 = Wait 1 PWM cycle before generating the first trigger event after the module is enabled
000000 = Wait 0 PWM cycles before generating the first trigger event after the module is enabled

Note 1:

The secondary PWM generator cannot generate PWM trigger interrupts.

 2009-2012 Microchip Technology Inc.

DS70616G-page 311

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-19: IOCONx: PWMx I/O CONTROL REGISTER
R/W-0

R/W-0

PENH

PENL

R/W-0
POLH

R/W-0

R/W-0

R/W-0

PMOD<1:0>(1)

POLL

R/W-0

R/W-0

OVRENH

OVRENL

bit 15

bit 8

R/W-0

R/W-0

OVRDAT<1:0>

R/W-0

R/W-0

R/W-0

FLTDAT<1:0>

R/W-0

CLDAT<1:0>

R/W-0

R/W-0

SWAP

OSYNC

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

PENH: PWMxH Output Pin Ownership bit
1 = PWM module controls PWMxH pin
0 = GPIO module controls PWMxH pin

bit 14

PENL: PWMxL Output Pin Ownership bit
1 = PWM module controls PWMxL pin
0 = GPIO module controls PWMxL pin

bit 13

POLH: PWMxH Output Pin Polarity bit
1 = PWMxH pin is active-low
0 = PWMxH pin is active-high

bit 12

POLL: PWMxL Output Pin Polarity bit
1 = PWMxL pin is active-low
0 = PWMxL pin is active-high

bit 11-10

PMOD<1:0>: PWM # I/O Pin Mode bits(1)
11 = PWM I/O pin pair is in the True Independent Output mode
10 = PWM I/O pin pair is in the Push-Pull Output mode
01 = PWM I/O pin pair is in the Redundant Output mode
00 = PWM I/O pin pair is in the Complementary Output mode

bit 9

OVRENH: Override Enable for PWMxH Pin bit
1 = OVRDAT<1> controls output on PWMxH pin
0 = PWM generator controls PWMxH pin

bit 8

OVRENL: Override Enable for PWMxL Pin bit
1 = OVRDAT<0> controls output on PWMxL pin
0 = PWM generator controls PWMxL pin

bit 7-6

OVRDAT<1:0>: Data for PWMxH, PWMxL Pins if Override is Enabled bits
If OVERENH = 1, PWMxH is driven to the state specified by OVRDAT<1>.
If OVERENL = 1, PWMxL is driven to the state specified by OVRDAT<0>.

bit 5-4

FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits
IFLTMOD (FCLCONx<15>) = 0: Normal Fault mode:
If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>.
If Fault is active, PWMxL is driven to the state specified by FLTDAT<0>.
IFLTMOD (FCLCONx<15>) = 1: Independent Fault mode:
If current limit is active, PWMxH is driven to the state specified by FLTDAT<1>.
If Fault is active, PWMxL is driven to the state specified by FLTDAT<0>.

Note 1:

These bits should not be changed after the PWM module is enabled (PTEN = 1).

DS70616G-page 312

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-19: IOCONx: PWMx I/O CONTROL REGISTER (CONTINUED)
bit 3-2

CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits
IFLTMOD (FCLCONx<15>) = 0: Normal Fault mode:
If current limit is active, PWMxH is driven to the state specified by CLDAT<1>.
If current limit is active, PWMxL is driven to the state specified by CLDAT<0>.
IFLTMOD (FCLCONx<15>) = 1: Independent Fault mode:
The CLDAT<1:0> bits are ignored.

bit 1

SWAP: Swap PWMxH and PWMxL Pins bit
1 = PWMxH output signal is connected to PWMxL pins; PWMxL output signal is connected to
PWMxH pins
0 = PWMxH and PWMxL pins are mapped to their respective pins

bit 0

OSYNC: Output Override Synchronization bit
1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base
0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary

Note 1:

These bits should not be changed after the PWM module is enabled (PTEN = 1).

 2009-2012 Microchip Technology Inc.

DS70616G-page 313

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-20: TRIGx: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

TRGCMP<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

TRGCMP<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

TRGCMP<15:0>: PWM Primary Trigger Control Value bits
When the primary PWM functions in local time base, this register contains the compare values that
can trigger the ADC module.

DS70616G-page 314

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-21: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

CLSRC<4:0>(2,3)

IFLTMOD

R/W-0

R/W-0

CLPOL(1)

CLMOD

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

FLTSRC<4:0>(2,3)

R/W-0

R/W-0

FLTPOL(1)

R/W-0

FLTMOD<1:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

IFLTMOD: Independent Fault Mode Enable bit
1 = Independent Fault mode: Current-limit input maps FLTDAT<1> to PWMxH output and Fault input
maps FLTDAT<0> to PWMxL output; the CLDAT<1:0> bits are not used for override functions
0 = Normal Fault mode: Current-Limit mode maps CLDAT<1:0> bits to the PWMxH and PWMxL
outputs; the PWM Fault mode maps FLTDAT<1:0> to the PWMxH and PWMxL outputs.

bit 14-10

CLSRC<4:0>: Current-Limit Control Signal Source Select for PWM Generator # bits(2,3)
11111 = Reserved
•
•
•
01001 = Reserved
01010 = Comparator 3
01001 = Comparator 2
01000 = Comparator 1
00111 = Reserved
00110 = Fault 7
00101 = Fault 6
00100 = Fault 5
00011 = Fault 4
00010 = Fault 3
00001 = Fault 2
00000 = Fault 1

bit 9

CLPOL: Current-Limit Polarity bit for PWM Generator #(1)
1 = The selected current-limit source is active-low
0 = The selected current-limit source is active-high

bit 8

CLMOD: Current-Limit Mode Enable bit for PWM Generator #
1 = Current-Limit mode is enabled
0 = Current-Limit mode is disabled

Note 1:
2:

3:

These bits should be changed only when PTEN = 0. Changing the clock selection during operation will
yield unpredictable results.
When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode
(FLTSRC<4:0> = 01000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an
unused current-limit source to prevent the current-limit source from disabling both the PWMxH and
PWMxL outputs.
When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Current-Limit mode
(CLSRC<4:0> = 01000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused
Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.

 2009-2012 Microchip Technology Inc.

DS70616G-page 315

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-21: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)
bit 7-3

FLTSRC<4:0>: Fault Control Signal Source Select bits for PWM Generator #(2,3)
11111 = Reserved
•
•
•
01011 = Reserved
01010 = Comparator 3
01001 = Comparator 2
01000 = Comparator 1
00111 = Reserved
00110 = Fault 7
00101 = Fault 6
00100 = Fault 5
00011 = Fault 4
00010 = Fault 3
00001 = Fault 2
00000 = Fault 1

bit 2

FLTPOL: Fault Polarity bit for PWM Generator #(1)
1 = The selected Fault source is active-low
0 = The selected Fault source is active-high

bit 1-0

FLTMOD<1:0>: Fault Mode bits for PWM Generator #
11 = Fault input is disabled
10 = Reserved
01 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle)
00 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)

Note 1:
2:

3:

These bits should be changed only when PTEN = 0. Changing the clock selection during operation will
yield unpredictable results.
When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode
(FLTSRC<4:0> = 01000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an
unused current-limit source to prevent the current-limit source from disabling both the PWMxH and
PWMxL outputs.
When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Current-Limit mode
(CLSRC<4:0> = 01000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused
Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.

DS70616G-page 316

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-22: LEBCONx: LEADING-EDGE BLANKING CONTROL REGISTER x
R/W-0
PHR
bit 15

R/W-0
PHF

R/W-0
PLR

R/W-0
PLF

R/W-0
FLTLEBEN

R/W-0
CLLEBEN

U-0
—

U-0
—
bit 8

U-0
—

U-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

—

BCH(1)

BCL(1)

BPHH

BPHL

BPLH

BPLL
bit 0

bit 7
Legend:
R = Readable bit
-n = Value at POR
bit 15

bit 14

bit 13

bit 12

bit 11

bit 10

bit 9-6
bit 5

bit 4

bit 3

bit 2

bit 1

bit 0

Note 1:

W = Writable bit
‘1’ = Bit is set

U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown

PHR: PWMxH Rising Edge Trigger Enable bit
1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter
0 = Leading-Edge Blanking ignores rising edge of PWMxH
PHF: PWMxH Falling Edge Trigger Enable bit
1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter
0 = Leading-Edge Blanking ignores falling edge of PWMxH
PLR: PWMxL Rising Edge Trigger Enable bit
1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter
0 = Leading-Edge Blanking ignores rising edge of PWMxL
PLF: PWMxL Falling Edge Trigger Enable bit
1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter
0 = Leading-Edge Blanking ignores falling edge of PWMxL
FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit
1 = Leading-Edge Blanking is applied to selected Fault input
0 = Leading-Edge Blanking is not applied to selected Fault input
CLLEBEN: Current-Limit Leading-Edge Blanking Enable bit
1 = Leading-Edge Blanking is applied to selected current-limit input
0 = Leading-Edge Blanking is not applied to selected current-limit input
Unimplemented: Read as ‘0’
BCH: Blanking in Selected Blanking Signal High Enable bit(1)
1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high
0 = No blanking when selected blanking signal is high
BCL: Blanking in Selected Blanking Signal Low Enable bit(1)
1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low
0 = No blanking when selected blanking signal is low
BPHH: Blanking in PWMxH High Enable bit
1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high
0 = No blanking when PWMxH output is high
BPHL: Blanking in PWMxH Low Enable bit
1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low
0 = No blanking when PWMxH output is low
BPLH: Blanking in PWMxL High Enable bit
1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high
0 = No blanking when PWMxL output is high
BPLL: Blanking in PWMxL Low Enable bit
1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low
0 = No blanking when PWMxL output is low
The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

 2009-2012 Microchip Technology Inc.

DS70616G-page 317

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-23: LEBDLYx: LEADING-EDGE BLANKING DELAY REGISTER x
U-0

U-0

U-0

U-0

—

—

—

—

R/W-0

R/W-0

R/W-0

R/W-0

LEB<11:8>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

LEB<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-12

Unimplemented: Read as ‘0’

bit 11-0

LEB<11:0>: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits

DS70616G-page 318

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-24: AUXCONx: PWM AUXILIARY CONTROL REGISTER x
U-0

U-0

U-0

U-0

—

—

—

—

R/W-0

R/W-0

R/W-0

R/W-0

BLANKSEL<3:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-0

R/W-0

R/W-0

CHOPSEL<3:0>

R/W-0

R/W-0

R/W-0

CHOPHEN

CHOPLEN

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-12

Unimplemented: Read as ‘0’

bit 11-8

BLANKSEL<3:0>: PWM State Blank Source Select bits
The selected state blank signal will block the current-limit and/or Fault input signals (if enabled via the
BCH and BCL bits in the LEBCONx register).
1001 = Reserved
1000 = Reserved
0111 = PWM7H selected as state blank source
0110 = PWM6H selected as state blank source
0101 = PWM5H selected as state blank source
0100 = PWM4H selected as state blank source
0011 = PWM3H selected as state blank source
0010 = PWM2H selected as state blank source
0001 = PWM1H selected as state blank source
0000 = No state blanking

bit 7-6

Unimplemented: Read as ‘0’

bit 5-2

CHOPSEL<3:0>: PWM Chop Clock Source Select bits
The selected signal will enable and disable (CHOP) the selected PWM outputs.
1001 = Reserved
1000 = Reserved
0111 = PWM7H selected as CHOP clock source
0110 = PWM6H selected as CHOP clock source
0101 = PWM5H selected as CHOP clock source
0100 = PWM4H selected as CHOP clock source
0011 = PWM3H selected as CHOP clock source
0010 = PWM2H selected as CHOP clock source
0001 = PWM1H selected as CHOP clock source
0000 = Chop clock generator selected as CHOP clock source

bit 1

CHOPHEN: PWMxH Output Chopping Enable bit
1 = PWMxH chopping function is enabled
0 = PWMxH chopping function is disabled

bit 0

CHOPLEN: PWMxL Output Chopping Enable bit
1 = PWMxL chopping function is enabled
0 = PWMxL chopping function is disabled

 2009-2012 Microchip Technology Inc.

DS70616G-page 319

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 16-25: PWMCAPx: PRIMARY PWMx TIME BASE CAPTURE REGISTER
R-0

R-0

R-0

R-0

R-0

R-0

R-0

R-0

PWMCAP<15:8>(1,2)
bit 15

bit 8

R-0

R-0

R-0

R-0

R-0

R-0

R-0

R-0

PWMCAP<7:0>(1,2)
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

Note 1:
2:

x = Bit is unknown

PWMCAP<15:0>: Captured PWM Time Base Value bits(1,2)
The value in this register represents the captured PWM time base value when a leading edge is
detected on the current-limit input.
The capture feature is only available on primary output (PWMxH).
This feature is active only after LEB processing on the current-limit input signal is complete.

DS70616G-page 320

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

17.0

QUADRATURE ENCODER
INTERFACE (QEI) MODULE
(dsPIC33EPXXX(MC/MU)8XX
DEVICES ONLY)

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this
data sheet, refer to Section 15.
“Quadrature Encoder Interface (QEI)”
(DS70601) of the “dsPIC33E/PIC24E
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.

 2009-2012 Microchip Technology Inc.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes.
The QEI module provides the interface to incremental
encoders for obtaining mechanical position data.
The operational features of the QEI module include:
•
•
•
•
•
•
•
•
•
•
•

32-Bit Position Counter
32-Bit Index Pulse Counter
32-Bit Interval Timer
16-Bit Velocity Counter
32-Bit Position Initialization/Capture/Compare
High Register
32-Bit Position Compare Low Register
x4 Quadrature Count mode
External Up/Down Count mode
External Gated Count mode
External Gated Timer mode
Internal Timer mode

Figure 17-1 illustrates the QEI block diagram.
Note:

An ‘x’ used in the names of pins, control/
status bits and registers denotes a
particular Quadrature Encoder Interface
(QEI) module number (x = 1 or 2).

DS70616G-page 321

QEI BLOCK DIAGRAM
FLTREN
GATEN
DIR_GATE

FHOMEx

HOMEx

FP

 QFDIV

1

COUNT

COUNT_EN

EXTCNT

0

DIVCLK

INDXx

FINDXx
CCM

Digital
Filter
DIR
DIR_GATE

Quadrature
Decoder
Logic

QEBx

COUNT

CNT_DIR

1’b0

DIR

CNTPOL
EXTCNT

QEAx

DIR_GATE
PCHGE
PCLLE

CNTCMPx

PCLLE

PCHEQ

PCLEQ

PCHGE

32-Bit Less Than
or Equal Comparator

OUTFNC

32-Bit Greater Than
or Equal Comparator
PCHGE

PCLLE

FP

 INTDIV

DIVCLK

32-Bit Less Than or Equal
Compare Register
(QEIxLEC)

COUNT_EN

 2009-2012 Microchip Technology Inc.

(INDXxCNT)
32-Bit Index Counter Register
FINDXx
INDXxCNTH INDXxCNTL

CNT_DIR

16-Bit Index Counter
Hold Register
(INDXxHLD)

32-Bit Interval
Timer Register
(INTxTMR)

32-Bit Interval Timer
Hold Register
(INTxHLD)

COUNT_EN

POSxCNTH POSxCNTL
CNT_DIR
CNT_DIR

COUNT_EN

16-Bit Velocity
Counter Register
(VELxCNT)

Data Bus

Note 1:

32-Bit Greater Than or Equal
Compare Register
(QEIxGEC)(1)

(POSxCNT)
32-Bit Position Counter Register

These registers map to the same memory location.

16-Bit Position Counter
Hold Register
(POSxHLD)

QCAPEN

32-Bit Initialization and
Capture Register
(QEIxIC)(1)

Data Bus

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 322

FIGURE 17-1:

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
17.1

QEI Resources

Many useful resources related to QEI are provided on
the main product page of the Microchip web site for the
devices listed in this data sheet. This product page,
which can be accessed using this link, contains the
latest updates and additional information.
Note:

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

 2009-2012 Microchip Technology Inc.

17.1.1

KEY RESOURCES

• Section 15. “Quadrature Encoder Interface
(QEI)” (DS70601) in the “dsPIC33E/PIC24E
Family Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

DS70616G-page 323

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
17.2

QEI Control Registers

REGISTER 17-1:
R/W-0

QEIxCON: QEIx CONTROL REGISTER
U-0

QEIEN

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

PIMOD<2:0>(1)

QEISIDL

R/W-0

IMV<1:0>(2)

bit 15

bit 8

U-0

R/W-0

R/W-0
INTDIV<2:0>(3)

—

R/W-0

R/W-0

R/W-0

CNTPOL

GATEN

R/W-0

R/W-0

CCM<1:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

QEIEN: Quadrature Encoder Interface Module Counter Enable bit
1 = Module counters are enabled
0 = Module counters are disabled, but SFRs can be read or written to

bit 14

Unimplemented: Read as ‘0’

bit 13

QEISIDL: QEI Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode

bit 12-10

PIMOD<2:0>: Position Counter Initialization Mode Select bits(1)
111 = Reserved
110 = Modulo Count mode for position counter
101 = Resets the position counter when the position counter equals the QEIxGEC register
100 = Second index event after home event initializes position counter with contents of the QEIxIC
register
011 = First index event after home event initializes position counter with contents of the QEIxIC
register
010 = Next index input event initializes the position counter with contents of the QEIxIC register
001 = Every index input event resets the position counter
000 = Index input event does not affect position counter

bit 9-8

IMV<1:0>: Index Match Value bits(2)
11 = Index match occurs when QEB = 1 and QEA = 1
10 = Index match occurs when QEB = 1 and QEA = 0
01 = Index match occurs when QEB = 0 and QEA = 1
00 = Index input event does not affect position counter

bit 7

Unimplemented: Read as ‘0’

Note 1:
2:
3:

When CCM = 10 or CCM = 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are
ignored.
When CCM = 00, and QEA and QEB values match Index Match Value (IMV), the POSCNTH and
POSCNTL registers are reset.
The selected clock rate should be at least twice the expected maximum quadrature count rate.

DS70616G-page 324

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 17-1:

QEIxCON: QEIx CONTROL REGISTER (CONTINUED)

bit 6-4

INTDIV<2:0>: Timer Input Clock Prescale Select bits (interval timer, main timer (position counter),
velocity counter and index counter internal clock divider select)(3)
111 = 1:128 prescale value
110 = 1:64 prescale value
101 = 1:32 prescale value
100 = 1:16 prescale value
011 = 1:8 prescale value
010 = 1:4 prescale value
001 = 1:2 prescale value
000 = 1:1 prescale value

bit 3

CNTPOL: Position and Index Counter/Timer Direction Select bit
1 = Counter direction is negative unless modified by external up/down signal
0 = Counter direction is positive unless modified by external up/down signal

bit 2

GATEN: External Count Gate Enable bit
1 = External gate signal controls position counter operation
0 = External gate signal does not affect position counter/timer operation

bit 1-0

CCM<1:0>: Counter Control Mode Selection bits
11 = Internal Timer mode with optional external count is selected
10 = External clock count with optional external count is selected
01 = External clock count with external up/down direction is selected
00 = Quadrature Encoder Interface (x4 mode) Count mode is selected

Note 1:
2:
3:

When CCM = 10 or CCM = 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are
ignored.
When CCM = 00, and QEA and QEB values match Index Match Value (IMV), the POSCNTH and
POSCNTL registers are reset.
The selected clock rate should be at least twice the expected maximum quadrature count rate.

 2009-2012 Microchip Technology Inc.

DS70616G-page 325

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 17-2:

QEIxIOC: QEIx I/O CONTROL REGISTER

R/W-0

R/W-0

QCAPEN

FLTREN

R/W-0

R/W-0

R/W-0

R/W-0

QFDIV<2:0>

R/W-0

OUTFNC<1:0>

R/W-0
SWPAB

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R-x

R-x

R-x

R-x

HOMPOL

IDXPOL

QEBPOL

QEAPOL

HOME

INDEX

QEB

QEA

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

QCAPEN: Position Counter Input Capture Enable bit
1 = Positive edge detect of home input triggers position capture function
0 = HOMEx input event (positive edge) does not trigger a capture event

bit 14

FLTREN: QEAx/QEBx/INDXx/HOMEx Digital Filter Enable bit
1 = Input pin digital filter is enabled
0 = Input pin digital filter is disabled (bypassed)

bit 13-11

QFDIV<2:0>: QEAx/QEBx/INDXx/HOMEx Digital Input Filter Clock Divide Select bits
111 = 1:256 clock divide
110 = 1:64 clock divide
101 = 1:32 clock divide
100 = 1:16 clock divide
011 = 1:8 clock divide
010 = 1:4 clock divide
001 = 1:2 clock divide
000 = 1:1 clock divide

bit 10-9

OUTFNC<1:0>: QEI Module Output Function Mode Select bits
11 = The CTNCMPx pin goes high when QEIxLEC  POSxCNT  QEIxGEC
10 = The CTNCMPx pin goes high when POSxCNT  QEIxLEC
01 = The CTNCMPx pin goes high when POSxCNT  QEIxGEC
00 = Output is disabled

bit 8

SWPAB: Swap QEA and QEB Inputs bit
1 = QEAx and QEBx are swapped prior to quadrature decoder logic
0 = QEAx and QEBx are not swapped

bit 7

HOMPOL: HOMEx Input Polarity Select bit
1 = Input is inverted
0 = Input is not inverted

bit 6

IDXPOL: HOMEx Input Polarity Select bit
1 = Input is inverted
0 = Input is not inverted

bit 5

QEBPOL: QEBx Input Polarity Select bit
1 = Input is inverted
0 = Input is not inverted

bit 4

QEAPOL: QEAx Input Polarity Select bit
1 = Input is inverted
0 = Input is not inverted

bit 3

HOME: Status of HOMEx Input Pin After Polarity Control bit
1 = Pin is at logic ‘1’
0 = Pin is at logic ‘0’

DS70616G-page 326

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 17-2:

QEIxIOC: QEIx I/O CONTROL REGISTER (CONTINUED)

bit 2

INDEX: Status of INDXx Input Pin After Polarity Control bit
1 = Pin is at logic ‘1’
0 = Pin is at logic ‘0’

bit 1

QEB: Status of QEBx Input Pin After Polarity Control And SWPAB Pin Swapping bit
1 = Pin is at logic ‘1’
0 = Pin is at logic ‘0’

bit 0

QEA: Status of QEAx Input Pin After Polarity Control And SWPAB Pin Swapping bit
1 = Pin is at logic ‘1’
0 = Pin is at logic ‘0’

 2009-2012 Microchip Technology Inc.

DS70616G-page 327

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 17-3:

QEIxSTAT: QEIx STATUS REGISTER

U-0

U-0

HS, R/C-0

R/W-0

HS, R/C-0

R/W-0

—

—

PCHEQIRQ

PCHEQIEN

PCLEQIRQ

PCLEQIEN

HS, R/C-0

R/W-0

POSOVIRQ POSOVIEN

bit 15

bit 8

HS, R/C-0

R/W-0

HS, R/C-0

R/W-0

HS, R/C-0

R/W-0

HS, R/C-0

R/W-0

PCIIRQ(1)

PCIIEN

VELOVIRQ

VELOVIEN

HOMIRQ

HOMIEN

IDXIRQ

IDXIEN

bit 7

bit 0

Legend:

HS = Hardware Settable bit

C = Clearable bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13

PCHEQIRQ: Position Counter Greater Than or Equal Compare Status bit
1 = POSxCNT ≥ QEIxGEC
0 = POSxCNT < QEIxGEC

bit 12

PCHEQIEN: Position Counter Greater Than or Equal Compare Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 11

PCLEQIRQ: Position Counter Less Than or Equal Compare Status bit
1 = POSxCNT ≤ QEIxLEC
0 = POSxCNT > QEIxLEC

bit 10

PCLEQIEN: Position Counter Less Than or Equal Compare Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 9

POSOVIRQ: Position Counter Overflow Status bit
1 = Overflow has occurred
0 = No overflow has occurred

bit 8

POSOVIEN: Position Counter Overflow Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 7

PCIIRQ: Position Counter (Homing) Initialization Process Complete Status bit(1)
1 = POSxCNT was reinitialized
0 = POSxCNT was not reinitialized

bit 6

PCIIEN: Position Counter (Homing) Initialization Process Complete interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 5

VELOVIRQ: Velocity Counter Overflow Status bit
1 = Overflow has occurred
0 = No overflow has not occurred

bit 4

VELOVIEN: Velocity Counter Overflow Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 3

HOMIRQ: Status Flag for Home Event Status bit
1 = Home event has occurred
0 = No Home event has occurred

Note 1:

This status bit is only applicable to PIMOD<2:0> modes ‘011’ and ‘100’.

DS70616G-page 328

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 17-3:

QEIxSTAT: QEIx STATUS REGISTER (CONTINUED)

bit 2

HOMIEN: Home Input Event Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 1

IDXIRQ: Status Flag for Index Event Status bit
1 = Index event has occurred
0 = No Index event has occurred

bit 0

IDXIEN: Index Input Event Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

Note 1:

This status bit is only applicable to PIMOD<2:0> modes ‘011’ and ‘100’.

 2009-2012 Microchip Technology Inc.

DS70616G-page 329

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 17-4:
R/W-0

POSxCNTH: POSITION COUNTER x HIGH WORD REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

POSCNT<31:24>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

POSCNT<23:16>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

POSCNT<31:16>: High Word Used to Form 32-Bit Position Counter Register (POSxCNT) bits

REGISTER 17-5:
R/W-0

POSxCNTL: POSITION COUNTER x LOW WORD REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

POSCNT<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

POSCNT<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

POSCNT<15:0>: Low Word Used to Form 32-Bit Position Counter Register (POSxCNT) bits

REGISTER 17-6:
R/W-0

POSxHLD: POSITION COUNTER x HOLD REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

POSHLD<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

POSHLD<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

POSHLD<15:0>: Hold Register for Reading and Writing POSxCNTH bits

DS70616G-page 330

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 17-7:
R/W-0

VELxCNT: VELOCITY COUNTER x REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

VELCNT<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

VELCNT<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

VELCNT<15:0>: Velocity Counter bits

REGISTER 17-8:
R/W-0

INDXxCNTH: INDEX COUNTER x HIGH WORD REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INDXCNT<31:24>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INDXCNT<23:16>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

INDXCNT<31:16>: High Word Used to Form 32-Bit Index Counter Register (INDXxCNT) bits

REGISTER 17-9:
R/W-0

INDXxCNTL: INDEX COUNTER x LOW WORD REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INDXCNT<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INDXCNT<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

INDXCNT<15:0>: Low Word Used to Form 32-Bit Index Counter Register (INDXxCNT) bits

 2009-2012 Microchip Technology Inc.

DS70616G-page 331

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 17-10: INDXxHLD: INDEX COUNTER x HOLD REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INDXHLD<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INDXHLD<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

INDXHLD<15:0>: Hold Register for Reading and Writing INDXxCNTH bits

REGISTER 17-11: QEIxICH: QEIx INITIALIZATION/CAPTURE HIGH WORD REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

QEIIC<31:24>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

QEIIC<23:16>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

QEIIC<31:16>: QEIx High Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

REGISTER 17-12: QEIxICL: QEIx INITIALIZATION/CAPTURE LOW WORD REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

QEIIC<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

QEIIC<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

QEIIC<15:0>: QEIx Low Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

DS70616G-page 332

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 17-13: QEIxLECH: QEIx LESS THAN OR EQUAL COMPARE HIGH WORD REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

QEILEC<31:24>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

QEILEC<23:16>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

QEILEC<31:16>: QEIx High Word Used to Form 32-Bit Less Than or Equal Compare Register (QEIxLEC) bits

REGISTER 17-14: QEIxLECL: QEIx LESS THAN OR EQUAL COMPARE LOW WORD REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

QEILEC<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

QEILEC<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

QEILEC<15:0>: QEIx Low Word Used to Form 32-Bit Less Than or Equal Compare Register (QEIxLEC) bits

 2009-2012 Microchip Technology Inc.

DS70616G-page 333

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 17-15: QEIxGECH: QEIx GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

QEIGEC<31:24>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

QEIGEC<23:16>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

QEIGEC<31:16>: QEIx High Word Used to Form 32-Bit Greater Than or Equal Compare Register
(QEIxGEC) bits

REGISTER 17-16: QEIxGECL: QEIx GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

QEIGEC<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

QEIGEC<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

QEIGEC<15:0>: QEIx Low Word Used to Form 32-Bit Greater Than or Equal Compare Register
(QEIxGEC) bits

REGISTER 17-17: INTxTMRH: INTERVAL TIMER x HIGH WORD REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INTTMR<31:24>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INTTMR<23:16>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timer Register (INTxTMR) bits

DS70616G-page 334

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 17-18: INTxTMRL: INTERVAL TIMER x LOW WORD REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INTTMR<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INTTMR<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

INTTMR<15:0>: Low Word Used to Form 32-Bit Interval Timer Register (INTxTMR) bits

REGISTER 17-19: INTxHLDH: INTERVAL TIMER x HOLD HIGH WORD REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INTHLD<31:24>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INTHLD<23:16>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

INTHLD<31:16>: Hold Register for Reading and Writing INTxTMRH bits

REGISTER 17-20: INTxHLDL: INTERVAL TIMER x HOLD LOW WORD REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INTHLD<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

INTHLD<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

INTHLD<15:0>: Hold Register for Reading and Writing INTxTMRL bits

 2009-2012 Microchip Technology Inc.

DS70616G-page 335

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

NOTES:

DS70616G-page 336

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
18.0

SERIAL PERIPHERAL
INTERFACE (SPI)

Four SPI modules are provided on a single device.
These modules, which are designated as SPI1, SPI2,
SPI3 and SPI4, are functionally identical with the exception that SPI2 is not remappable. The dedicated SDI2,
SDO2 and SCK2 connections provide improved performance over SPI1, SPI3 and SPI4 (see Section 32.0
“Electrical Characteristics”). Each SPI module
includes an eight-word FIFO buffer and allows DMA bus
connections. When using the SPI module with DMA,
FIFO operation can be disabled.

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this
data sheet, refer to Section 18. “Serial
Peripheral Interface (SPI)” (DS70569)
of the “dsPIC33E/PIC24E Family
Reference Manual”, which is available
from
the
Microchip
web
site
(www.microchip.com).

Note:

2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.

In this section, the SPI modules are
referred to together as SPIx, or separately
as SPI1, SPI2, SPI3 and SPI4. Special
Function Registers follow a similar notation. For example, SPIxCON refers to the
control register for the SPI1, SPI2, SPI3
or SPI4 module.

The SPIx serial interface consists of four pins, as
follows:

The SPI module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be
serial EEPROMs, shift registers, display drivers, ADC
Converters, etc. The SPI module is compatible with the
Motorola® SPI and SIOP interfaces.

•
•
•
•

SDIx: Serial Data Input
SDOx: Serial Data Output
SCKx: Shift Clock Input or Output
SSx/FSYNCx: Active-Low Slave Select or Frame
Synchronization I/O Pulse

The SPIx module can be configured to operate with
two, three or four pins. In 3-pin mode, SSx is not used.
In 2-pin mode, neither SDOx nor SSx is used.
Figure 18-1 illustrates the block diagram of the SPI
module in Standard and Enhanced modes.

FIGURE 18-1:

SPIx MODULE BLOCK DIAGRAM

SCKx

1:1 to 1:8
Secondary
Prescaler

SSx/FSYNCx

Sync
Control

1:1/4/16/64
Primary
Prescaler

Select
Edge

Control
Clock

SPIxCON1<1:0>

Shift Control

SDOx

SPIxCON1<4:2>
Enable
Master Clock

bit 0

SDIx

FP

SPIxSR

Transfer

Transfer

8-Level FIFO
Receive Buffer(1)

8-Level FIFO
Transmit Buffer(1)

SPIxBUF

Read SPIxBUF

Write SPIxBUF
16
Internal Data Bus

Note 1:

In Standard mode, the FIFO is only one level deep.

 2009-2012 Microchip Technology Inc.

DS70616G-page 337

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
18.1
1.

In Frame mode, if there is a possibility that the
master may not be initialized before the slave:
a) If FRMPOL (SPIxCON2<13>) = 1, use a
pull-down resistor on SSx.
b) If FRMPOL = 0, use a pull-up resistor on
SSx.
Note:

2.

This will insure that during power-up and
initialization, the master/slave will not lose
synchronization due to an errant SCKx
transition that would cause the slave to
accumulate data shift errors, for both
transmit and receive, appearing as
corrupted data.

SPI Resources

Many useful resources related to SPI are provided on
the main product page of the Microchip web site for the
devices listed in this data sheet. This product page,
which can be accessed using this link, contains the
latest updates and additional information.
Note:

18.2.1

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554301

KEY RESOURCES

• Section 18. “Serial Peripheral Interface (SPI)”
(DS70569) in the “dsPIC33E/PIC24E Family
Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

FRMEN (SPIxCON2<15>) = 1 and SSEN
(SPIxCON1<7>) = 1 are exclusive and invalid.
In Frame mode, SCKx is continuous and the
Frame Sync pulse is active on the SSx pin,
which indicates the start of a data frame.
Note:

4.

18.2

This insures that the first frame
transmission after initialization is not
shifted or corrupted.

In Non-Framed 3-Wire mode, (i.e., not using
SSx from a master):
a) If CKP (SPIxCON1<6>) = 1, always place a
pull-up resistor on SSx.
b) If CKP = 0, always place a pull-down
resistor on SSx.
Note:

3.

SPI Helpful Tips

Not all third-party devices support Frame
mode timing. Refer to the SPIx electrical
characteristics for details.

In Master mode only, set the SMP bit
(SPIxCON1<9>) to a ‘1’ for the fastest SPI data
rate possible. The SMP bit can only be set at the
same time or after the MSTEN bit
(SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the
user’s master software must ensure enough time for
slave software to fill its write buffer before the user
application initiates a master write/read cycle. It is
always advisable to preload the SPIxBUF Transmit
register in advance of the next master transaction
cycle. SPIxBUF is transferred to the SPIx Shift register
and is empty once the data transmission begins.

DS70616G-page 338

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
18.3

SPI Control Registers

REGISTER 18-1:

SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

R/W-0

U-0

R/W-0

U-0

U-0

SPIEN

—

SPISIDL

—

—

R/W-0

R/W-0

R/W-0

SPIBEC<2:0>

bit 15

bit 8

R/W-0

R/C-0, HS

R/W-0

SRMPT

SPIROV

SRXMPT

R/W-0

R/W-0

R/W-0

R-0, HS, HC R-0, HS, HC

SISEL<2:0>

SPITBF

SPIRBF

bit 7

bit 0

Legend:

C = Clearable bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

HS = Hardware Settable bit

HC = Hardware Clearable bit

U = Unimplemented bit, read as ‘0’

x = Bit is unknown

bit 15

SPIEN: SPIx Enable bit
1 = Enables the module and configures SCKx, SDOx, SDIx and SSx as serial port pins
0 = Disables the module

bit 14

Unimplemented: Read as ‘0’

bit 13

SPISIDL: SPIx Stop in Idle Mode bit
1 = Discontinues the module operation when device enters Idle mode
0 = Continues the module operation in Idle mode

bit 12-11

Unimplemented: Read as ‘0’

bit 10-8

SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode)
Master mode:
Number of SPIx transfers that are pending.
Slave mode:
Number of SPIx transfers that are unread.

bit 7

SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode)
1 = SPIx Shift register is empty and Ready-to-Send or receive the data
0 = SPIx Shift register is not empty

bit 6

SPIROV: SPIx Receive Overflow Flag bit
1 = A new byte/word is completely received and discarded; the user application has not read the
previous data in the SPIxBUF register
0 = No overflow has occurred

bit 5

SRXMPT: SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode)
1 = RX FIFO is empty
0 = RX FIFO is not empty

bit 4-2

SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode)
111 = Interrupt when the SPIx transmit buffer is full
110 = Interrupt when last bit is shifted into SPIxSR, and as a result, the TX FIFO is empty
101 = Interrupt when the last bit is shifted out of SPIxSR and the transmit is complete
100 = Interrupt when one data is shifted into the SPIxSR, and as a result, the TX FIFO has one open
memory location
011 = Interrupt when the SPIx receive buffer is full
010 = Interrupt when the SPIx receive buffer is 3/4 or more full
001 = Interrupt when data is available in the receive buffer (SRMPT bit is set)
000 = Interrupt when the last data in the receive buffer is read, and as a result, the buffer is empty
(SRXMPT bit is set)

 2009-2012 Microchip Technology Inc.

DS70616G-page 339

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 18-1:

SPIxSTAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

bit 1

SPITBF: SPIx Transmit Buffer Full Status bit
1 = Transmit has not yet started, SPIx transmit buffer is full
0 = Transmit has started, SPIx transmit buffer is empty
Standard Buffer Mode:
Automatically set in hardware when the core writes to the SPIxBUF location, loading the SPIx transmit
buffer. Automatically cleared in hardware when the SPIx module transfers data from the SPIx transmit
buffer to SPIxSR.
Enhanced Buffer Mode:
Automatically set in hardware when CPU writes to the SPIxBUF location, loading the last available
buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write
operation.

bit 0

SPIRBF: SPIx Receive Buffer Full Status bit
1 = Receive complete, SPIx receive buffer is full
0 = Receive is incomplete, SPIx receive buffer is empty
Standard Buffer Mode:
Automatically set in hardware when SPIx transfers data from SPIxSR to the SPIx receive buffer.
Automatically cleared in hardware when the core reads the SPIxBUF location, reading the SPIx
receive buffer.
Enhanced Buffer Mode:
Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last
unread buffer location. Automatically cleared in hardware when a buffer location is available for a
transfer from SPIxSR.

DS70616G-page 340

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 18-2:
U-0

SPIXCON1: SPIX CONTROL REGISTER 1
U-0

—

U-0

—

—

R/W-0
DISSCK

R/W-0
DISSDO

R/W-0

R/W-0

R/W-0

MODE16

SMP(4)

CKE(1)

bit 15

bit 8

R/W-0

R/W-0

SSEN(2)

CKP

R/W-0

R/W-0

MSTEN

R/W-0

R/W-0

R/W-0

SPRE<2:0>(3)

R/W-0

PPRE<1:0>(3)

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-13

Unimplemented: Read as ‘0’

bit 12

DISSCK: Disable SCKx Pin bit (SPIx Master modes only)
1 = Internal SPIx clock is disabled, pin functions as I/O
0 = Internal SPIx clock is enabled

bit 11

DISSDO: Disable SDOx Pin bit
1 = SDOx pin is not used by the module; pin functions as I/O
0 = SDOx pin is controlled by the module

bit 10

MODE16: Word/Byte Communication Select bit
1 = Communication is word-wide (16 bits)
0 = Communication is byte-wide (8 bits)

bit 9

SMP: SPIx Data Input Sample Phase bit(4)
Master mode:
1 = Input data is sampled at end of data output time
0 = Input data is sampled at middle of data output time
Slave mode:
The SMP bit must be cleared when SPIx module is used in Slave mode.

bit 8

CKE: SPIx Clock Edge Select bit(1)
1 = Serial output data changes on transition from active clock state to Idle clock state (refer to bit 6)
0 = Serial output data changes on transition from Idle clock state to active clock state (refer to bit 6)

bit 7

SSEN: Slave Select Enable bit (Slave mode)(2)
1 = SSx pin is used for Slave mode
0 = SSx pin is not used by module, pin is controlled by port function

bit 6

CKP: Clock Polarity Select bit
1 = Idle state for clock is a high level; active state is a low level
0 = Idle state for clock is a low level; active state is a high level

bit 5

MSTEN: Master Mode Enable bit
1 = Master mode
0 = Slave mode

Note 1:
2:
3:
4:

The CKE bit is not used in the Framed SPIx modes. Program this bit to ‘0’ for Framed SPIx modes
(FRMEN = 1).
This bit must be cleared when FRMEN = 1.
Do not set both primary and secondary prescalers to a value of 1:1.
The SMP bit must be set only after setting the MSTEN bit. The SMP bit remains cleared if MSTEN = 0.

 2009-2012 Microchip Technology Inc.

DS70616G-page 341

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 18-2:

SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

bit 4-2

SPRE<2:0>: Secondary Prescale bits (Master mode)(3)
111 = Secondary prescale 1:1
110 = Secondary prescale 2:1
•
•
•
000 = Secondary prescale 8:1

bit 1-0

PPRE<1:0>: Primary Prescale bits (Master mode)(3)
11 = Primary prescale 1:1
10 = Primary prescale 4:1
01 = Primary prescale 16:1
00 = Primary prescale 64:1

Note 1:
2:
3:
4:

The CKE bit is not used in the Framed SPIx modes. Program this bit to ‘0’ for Framed SPIx modes
(FRMEN = 1).
This bit must be cleared when FRMEN = 1.
Do not set both primary and secondary prescalers to a value of 1:1.
The SMP bit must be set only after setting the MSTEN bit. The SMP bit remains cleared if MSTEN = 0.

DS70616G-page 342

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 18-3:

SPIXCON2: SPIX CONTROL REGISTER 2

R/W-0

R/W-0

R/W-0

U-0

U-0

U-0

U-0

U-0

FRMEN

SPIFSD

FRMPOL

—

—

—

—

—

bit 15

bit 8

U-0

U-0

U-0

U-0

U-0

U-0

R/W-0

R/W-0

—

—

—

—

—

—

FRMDLY

SPIBEN

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

FRMEN: Framed SPIx Support bit
1 = Framed SPIx support is enabled (SSx pin is used as a Frame Sync pulse input/output)
0 = Framed SPIx support is disabled

bit 14

SPIFSD: Frame Sync Pulse Direction Control bit
1 = Frame Sync pulse input (slave)
0 = Frame Sync pulse output (master)

bit 13

FRMPOL: Frame Sync Pulse Polarity bit
1 = Frame Sync pulse is active-high
0 = Frame Sync pulse is active-low

bit 12-2

Unimplemented: Read as ‘0’

bit 1

FRMDLY: Frame Sync Pulse Edge Select bit
1 = Frame Sync pulse coincides with the first bit clock
0 = Frame Sync pulse precedes the first bit clock

bit 0

SPIBEN: Enhanced Buffer Enable bit
1 = Enhanced Buffer is enabled
0 = Enhanced Buffer is disabled (Standard mode)

 2009-2012 Microchip Technology Inc.

DS70616G-page 343

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
NOTES:

DS70616G-page 344

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

19.0

INTER-INTEGRATED
CIRCUIT™ (I2C™)

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this
data sheet, refer to Section 19. “InterIntegrated
Circuit™
(I2C™)”
(DS70330) of the “dsPIC33E/PIC24E
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.
The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 family of devices contain two Inter-Integrated Circuit (I2C) modules: I2C1
and I2C2.

 2009-2012 Microchip Technology Inc.

The I2C module provides complete hardware support
for both Slave and Multi-Master modes of the I2C serial
communication standard, with a 16-bit interface.
The I2C module has a 2-pin interface:
• The SCLx pin is the clock.
• The SDAx pin is the data.
The I2C module offers the following key features:
• I2C interface supporting both Master and Slave
modes of operation.
• I2C Slave mode supports 7 and 10-bit addressing.
• I2C Master mode supports 7 and 10-bit addressing.
• I2C port allows bidirectional transfers between
master and slaves.
• Serial clock synchronization for I2C port can be
used as a handshake mechanism to suspend and
resume serial transfer (SCLREL control).
• I2C supports multi-master operation, detects bus
collision and arbitrates accordingly.
• IPMI support
• SMBus support

DS70616G-page 345

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
I2C™ BLOCK DIAGRAM (X = 1 OR 2)

FIGURE 19-1:

Internal
Data Bus
I2CxRCV

Read

Shift
Clock

SCLx/
ASDLx(1)

I2CxRSR
LSb

SDAx/
ASDAx(1)

Address Match

Match Detect

Write
I2CxMSK
Write

Read

I2CxADD
Read
Start and Stop
Bit Detect

Write

Start and Stop
Bit Generation
Control Logic

I2CxSTAT

Collision
Detect

Read
Write
I2CxCON

Acknowledge
Generation

Read

Clock
Stretching

Write

I2CxTRN
LSb

Read

Shift Clock
Reload
Control

BRG Down Counter

Write
I2CxBRG
Read

FP

Note 1:

The availability of I2C interfaces varies by device. Refer to the “Pin Diagrams” section for availability.
Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits, ALTI2C1 and
ALTI2C2 (FPOR<5:4>). See Section 29.0 “Special Features” for more information.

DS70616G-page 346

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

19.1

I2C Resources

Many useful resources related to I2C are provided on
the main product page of the Microchip web site for the
devices listed in this data sheet. This product page,
which can be accessed using this link, contains the
latest updates and additional information.
Note:

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

 2009-2012 Microchip Technology Inc.

19.1.1

KEY RESOURCES

• Section 19. “Inter-Integrated Circuit™ (I2C™)”
(DS70330) in the “dsPIC33E/PIC24E Family
Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

DS70616G-page 347

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
19.2

I2C Control Registers

REGISTER 19-1:

I2CxCON: I2Cx CONTROL REGISTER

R/W-0

U-0

R/W-0

R/W-1, HC

R/W-0

R/W-0

R/W-0

R/W-0

I2CEN

—

I2CSIDL

SCLREL

IPMIEN(1)

A10M

DISSLW

SMEN

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0, HC

R/W-0, HC

R/W-0, HC

R/W-0, HC

R/W-0, HC

GCEN

STREN

ACKDT

ACKEN

RCEN

PEN

RSEN

SEN

bit 7

bit 0

Legend:

HC = Hardware Clearable bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

I2CEN: I2Cx Enable bit
1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins
0 = Disables the I2Cx module; all I2C™ pins are controlled by port functions

bit 14

Unimplemented: Read as ‘0’

bit 13

I2CSIDL: I2Cx Stop in Idle Mode bit
1 = Discontinues module operation when device enters an Idle mode
0 = Continues module operation in Idle mode

bit 12

SCLREL: SCLx Release Control bit (when operating as I2C slave)
1 = Releases SCLx clock
0 = Holds SCLx clock low (clock stretch)
If STREN = 1:
The bit is R/W (i.e., software can write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware is clear
at beginning of every slave data byte transmission. Hardware is clear at the end of every slave address
byte reception. Hardware is clear at end of every slave data byte reception.
If STREN = 0:
The bit is R/S (i.e., software can only write ‘1’ to release clock). Hardware is clear at beginning of every
slave data byte transmission. Hardware is clear at the end of every slave address byte reception.

bit 11

IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit(1)
1 = IPMI mode is enabled; all addresses Acknowledged
0 = IPMI mode is disabled

bit 10

A10M: 10-Bit Slave Address bit
1 = I2CxADD is a 10-bit slave address
0 = I2CxADD is a 7-bit slave address

bit 9

DISSLW: Disable Slew Rate Control bit
1 = Slew rate control is disabled
0 = Slew rate control is enabled

bit 8

SMEN: SMBus Input Levels bit
1 = Enables I/O pin thresholds compliant with the SMBus specification
0 = Disables SMBus input thresholds

bit 7

GCEN: General Call Enable bit (when operating as I2C slave)
1 = Enables interrupt when a general call address is received in the I2CxRSR (module is enabled for reception)
0 = General call address is disabled

Note 1:

When performing master operations, ensure that the IPMIEN bit is ‘0’.

DS70616G-page 348

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 19-1:

I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 6

STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)
Used in conjunction with the SCLREL bit.
1 = Enables software or receives clock stretching
0 = Disables software or receives clock stretching

bit 5

ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive)
Value that is transmitted when the software initiates an Acknowledge sequence.
1 = Sends NACK during Acknowledge
0 = Sends ACK during Acknowledge

bit 4

ACKEN: Acknowledge Sequence Enable bit (when operating as I2C master, applicable during master receive)
1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits the ACKDT data bit. Hardware
is clear at the end of a master Acknowledge sequence.
0 = Acknowledge sequence is not in progress

bit 3

RCEN: Receive Enable bit (when operating as I2C master)
1 = Enables Receive mode for I2C. Hardware is clear at the end of the eighth bit of a master receive data byte.
0 = Receive sequence is not in progress

bit 2

PEN: Stop Condition Enable bit (when operating as I2C master)
1 = Initiates Stop condition on SDAx and SCLx pins. Hardware is clear at the end of a master Stop sequence.
0 = Stop condition is not in progress

bit 1

RSEN: Repeated Start Condition Enable bit (when operating as I2C master)
1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware is clear at the end of a master
Repeated Start sequence.
0 = Repeated Start condition is not in progress

bit 0

SEN: Start Condition Enable bit (when operating as I2C master)
1 = Initiates Start condition on SDAx and SCLx pins. Hardware is clear at the end of a master Start sequence.
0 = Start condition is not in progress

Note 1:

When performing master operations, ensure that the IPMIEN bit is ‘0’.

 2009-2012 Microchip Technology Inc.

DS70616G-page 349

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 19-2:

I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC

R-0, HSC

U-0

U-0

U-0

R/C-0, HS

R-0, HSC

R-0, HSC

ACKSTAT

TRSTAT

—

—

—

BCL

GCSTAT

ADD10

bit 15

bit 8

R/C-0, HS

R/C-0, HS

IWCOL

I2COV

R-0, HSC R/C-0, HSC R/C-0, HSC
D_A

P

R-0, HSC

R-0, HSC

R-0, HSC

R_W

RBF

TBF

S

bit 7

bit 0

Legend:

C = Clearable bit

U = Unimplemented bit, read as ‘0’

R = Readable bit

W = Writable bit

HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

ACKSTAT: Acknowledge Status bit
(when operating as I2C™ master, applicable to master transmit operation)
1 = NACK received from slave
0 = ACK received from slave
Hardware is set or clear at the end of a slave Acknowledge.

bit 14

TRSTAT: Transmit Status bit (when operating as I2C master, applicable to master transmit operation)
1 = Master transmit is in progress (8 bits + ACK)
0 = Master transmit is not in progress
Hardware is set at the beginning of a master transmission. Hardware is clear at the end of a slave
Acknowledge.

bit 13-11

Unimplemented: Read as ‘0’

bit 10

BCL: Master Bus Collision Detect bit
1 = A bus collision has been detected during a master operation
0 = No collision
Hardware is set at detection of a bus collision.

bit 9

GCSTAT: General Call Status bit
1 = General call address was received
0 = General call address was not received
Hardware is set when an address matches the general call address. Hardware is clear at a Stop detection.

bit 8

ADD10: 10-Bit Address Status bit
1 = 10-bit address was matched
0 = 10-bit address was not matched
Hardware is set at a match of the 2nd byte of a matched 10-bit address. Hardware is clear at a Stop detection.

bit 7

IWCOL: Write Collision Detect bit
1 = An attempt to write to the I2CxTRN register failed because the I2C module is busy
0 = No collision
Hardware is set at an occurrence of a write to I2CxTRN while busy (cleared by software).

bit 6

I2COV: I2Cx Receive Overflow Flag bit
1 = A byte was received while the I2CxRCV register is still holding the previous byte
0 = No overflow
Hardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

bit 5

D_A: Data/Address bit (when operating as I2C slave)
1 = Indicates that the last byte received was data
0 = Indicates that the last byte received was a device address
Hardware is clear at a device address match. Hardware is set by reception of a slave byte.

bit 4

P: Stop bit
1 = Indicates that a Stop bit has been detected last
0 = Stop bit was not detected last
Hardware is set or clear when a Start, Repeated Start or Stop is detected.

DS70616G-page 350

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 19-2:

I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3

S: Start bit
1 = Indicates that a Start (or Repeated Start) bit has been detected last
0 = Start bit was not detected last
Hardware is set or clear when a Start, Repeated Start or Stop is detected.

bit 2

R_W: Read/Write Information bit (when operating as I2C slave)
1 = Read – indicates data transfer is output from a slave
0 = Write – indicates data transfer is input to a slave
Hardware is set or clear after reception of an I 2C device address byte.

bit 1

RBF: Receive Buffer Full Status bit
1 = Receive is complete, I2CxRCV is full
0 = Receive is not complete, I2CxRCV is empty
Hardware is set when I2CxRCV is written with a received byte. Hardware is clear when software reads
I2CxRCV.

bit 0

TBF: Transmit Buffer Full Status bit
1 = Transmit is in progress, I2CxTRN is full
0 = Transmit is complete, I2CxTRN is empty
Hardware is set when software writes to I2CxTRN. Hardware is clear at completion of a data transmission.

 2009-2012 Microchip Technology Inc.

DS70616G-page 351

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 19-3:

I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0

U-0

U-0

U-0

U-0

U-0

R/W-0

R/W-0

—

—

—

—

—

—

AMSK9

AMSK8

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

AMSK7

AMSK6

AMSK5

AMSK4

AMSK3

AMSK2

AMSK1

AMSK0

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-10

Unimplemented: Read as ‘0’

bit 9-0

AMSKx: Mask for Address bit x Select bit
For 10-Bit Address:
1 = Enables masking for bit Ax of incoming message address; bit match is not required in this position
0 = Disables masking for bit Ax; bit match is required in this position
For 7-Bit Address (I2CxMSK<6:0> only):
1 = Enables masking for bit Ax + 1 of incoming message address; bit match is not required in this position
0 = Disable masking for bit Ax + 1; bit match is required in this position

DS70616G-page 352

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
20.0

UNIVERSAL ASYNCHRONOUS
RECEIVER TRANSMITTER
(UART)

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this
data sheet, refer to Section 17. “UART”
(DS70582) of the “dsPIC33E/PIC24E
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.
The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 family of devices
contains four UART modules.
The Universal Asynchronous Receiver Transmitter
(UART) module is one of the serial I/O modules
available in the dsPIC33EPXXX(GP/MC/MU)806/810/
814 and PIC24EPXXX(GP/GU)810/814 device family.
The UART is a full-duplex, asynchronous system that
can communicate with peripheral devices, such as
personal computers, LIN/J2602, RS-232 and RS-485
interfaces. The module also supports a hardware flow
control option with the UxCTS and UxRTS pins, and
also includes an IrDA® encoder and decoder.

FIGURE 20-1:

The primary features of the UARTx module are:
• Full-Duplex, 8 or 9-Bit Data Transmission through
the UxTX and UxRX Pins
• Even, Odd or No Parity Options (for 8-bit data)
• One or Two Stop bits
• Hardware Flow Control Option with UxCTS and
UxRTS Pins
• Fully Integrated Baud Rate Generator with 16-Bit
Prescaler
• Baud Rates Ranging from 4.375 Mbps to 67 bps at
16x mode at 70 MIPS
• Baud Rates Ranging from 17.5 Mbps to 267 bps at
4x mode at 70 MIPS
• 4-Deep First-In First-Out (FIFO) Transmit Data
Buffer
• 4-Deep FIFO Receive Data Buffer
• Parity, Framing and Buffer Overrun Error Detection
• Support for 9-bit mode with Address Detect
(9th bit = 1)
• Transmit and Receive Interrupts
• A Separate Interrupt for All UARTx Error Conditions
• Loopback mode for Diagnostic Support
• Support for Sync and Break Characters
• Support for Automatic Baud Rate Detection
• IrDA® Encoder and Decoder Logic
• 16x Baud Clock Output for IrDA Support
A simplified block diagram of the UARTx module is
shown in Figure 20-1. The UARTx module consists of
these key hardware elements:
• Baud Rate Generator
• Asynchronous Transmitter
• Asynchronous Receiver

UARTx SIMPLIFIED BLOCK DIAGRAM

Baud Rate Generator

IrDA®

Hardware Flow Control

UxRTS
UxCTS

UARTx Receiver

UxRX

UARTx Transmitter

UxTX

 2009-2012 Microchip Technology Inc.

DS70616G-page 353

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
20.1
1.

2.

UARTx Helpful Tips

In multi-node direct-connect UARTx networks,
UARTx receive inputs react to the complementary logic level defined by the URXINV bit
(UxMODE<4>), which defines the Idle state, the
default of which is logic high (i.e., URXINV = 0).
Because remote devices do not initialize at the
same time, it is likely that one of the devices,
because the RX line is floating, will trigger a
Start bit detection and will cause the first byte
received, after the device has been initialized, to
be invalid. To avoid this situation, the user
should use a pull-up or pull-down resistor on the
RX pin depending on the value of the URXINV
bit.
a) If URXINV = 0, use a pull-up resistor on the
RX pin.
b) If URXINV = 1, use a pull-down resistor on
the RX pin.
The first character received on a wake-up from
Sleep mode, caused by activity on the UxRX pin
of the UARTx module, will be invalid. In Sleep
mode, peripheral clocks are disabled. By the
time the oscillator system has restarted and
stabilized from Sleep mode, the baud rate bit
sampling clock, relative to the incoming UxRX
bit timing, is no longer synchronized resulting in
the first character being invalid. This is to be
expected.

DS70616G-page 354

20.2

UARTx Resources

Many useful resources related to the UARTx are
provided on the main product page of the Microchip
web site for the devices listed in this data sheet. This
product page, which can be accessed using this link,
contains the latest updates and additional information.
Note:

20.2.1

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

KEY RESOURCES

• Section 17. “UART” (DS70582) in the
“dsPIC33E/PIC24E Family Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
20.3

UARTx Registers

REGISTER 20-1:

UxMODE: UARTx MODE REGISTER

R/W-0

U-0

R/W-0

R/W-0

R/W-0

U-0

UARTEN(1)

—

USIDL

IREN(2)

RTSMD

—

R/W-0

R/W-0

UEN<1:0>

bit 15

bit 8

R/W-0, HC

R/W-0

R/W-0, HC

R/W-0

R/W-0

WAKE

LPBACK

ABAUD

URXINV

BRGH

R/W-0

R/W-0

PDSEL<1:0>

R/W-0
STSEL

bit 7

bit 0

Legend:

HC = Hardware Clearable bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

UARTEN: UARTx Enable bit(1)
1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>
0 = UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption is
minimal

bit 14

Unimplemented: Read as ‘0’

bit 13

USIDL: UARTx Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode

bit 12

IREN: IrDA® Encoder and Decoder Enable bit(2)
1 = IrDA encoder and decoder are enabled
0 = IrDA encoder and decoder are disabled

bit 11

RTSMD: Mode Selection for UxRTS Pin bit
1 = UxRTS pin in Simplex mode
0 = UxRTS pin in Flow Control mode

bit 10

Unimplemented: Read as ‘0’

bit 9-8

UEN<1:0>: UARTx Pin Enable bits
11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin is controlled by port latches
10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used
01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by port latches
00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins are controlled by
port latches

bit 7

WAKE: Wake-up on Start Bit Detect During Sleep Mode Enable bit
1 = UARTx continues to sample the UxRX pin; interrupt is generated on falling edge; bit is cleared in
hardware on following rising edge
0 = No wake-up is enabled

bit 6

LPBACK: UARTx Loopback Mode Select bit
1 = Enables Loopback mode
0 = Loopback mode is disabled

bit 5

ABAUD: Auto-Baud Enable bit
1 = Enables baud rate measurement on the next character – requires reception of a Sync field (55h)
before other data; cleared in hardware upon completion
0 = Baud rate measurement is disabled or has completed

Note 1:
2:

Refer to Section 17. “UART” (DS70582) in the “dsPIC33E/PIC24E Family Reference Manual” for
information on enabling the UARTx module for receive or transmit operation.
This feature is only available for the 16x BRG mode (BRGH = 0).

 2009-2012 Microchip Technology Inc.

DS70616G-page 355

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 20-1:

UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 4

URXINV: Receive Polarity Inversion bit
1 = UxRX Idle state is ‘0’
0 = UxRX Idle state is ‘1’

bit 3

BRGH: High Baud Rate Enable bit
1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)
0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)

bit 2-1

PDSEL<1:0>: Parity and Data Selection bits
11 = 9-bit data, no parity
10 = 8-bit data, odd parity
01 = 8-bit data, even parity
00 = 8-bit data, no parity

bit 0

STSEL: Stop Bit Selection bit
1 = Two Stop bits
0 = One Stop bit

Note 1:
2:

Refer to Section 17. “UART” (DS70582) in the “dsPIC33E/PIC24E Family Reference Manual” for
information on enabling the UARTx module for receive or transmit operation.
This feature is only available for the 16x BRG mode (BRGH = 0).

DS70616G-page 356

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 20-2:
R/W-0

UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0

UTXISEL1

UTXINV

R/W-0
UTXISEL0

U-0

R/W-0, HC

R/W-0

R-0

R-1

UTXBRK

UTXEN(1)

UTXBF

TRMT

—

bit 15

bit 8

R/W-0

R/W-0

URXISEL<1:0>

R/W-0

R-1

R-0

R-0

R/C-0

R-0

ADDEN

RIDLE

PERR

FERR

OERR

URXDA

bit 7

bit 0

Legend:

HC = Hardware Clearable bit

C = Clearable bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15,13

UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits
11 = Reserved; do not use
10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR) and as a result, the
transmit buffer becomes empty
01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit
operations are completed
00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at
least one character open in the transmit buffer)

bit 14

UTXINV: UARTx Transmit Polarity Inversion bit
If IREN = 0:
1 = UxTX Idle state is ‘0’
0 = UxTX Idle state is ‘1’
If IREN = 1:
1 = IrDA encoded, UxTX Idle state is ‘1’
0 = IrDA encoded, UxTX Idle state is ‘0’

bit 12

Unimplemented: Read as ‘0’

bit 11

UTXBRK: UARTx Transmit Break bit
1 = Sends Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;
cleared by hardware upon completion
0 = Sync Break transmission is disabled or completed

bit 10

UTXEN: UARTx Transmit Enable bit(1)
1 = Transmit is enabled, UxTX pin is controlled by UARTx
0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin
controlled by port

bit 9

UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
1 = Transmit buffer is full
0 = Transmit buffer is not full, at least one more character can be written

bit 8

TRMT: Transmit Shift Register Empty bit (read-only)
1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
0 = Transmit Shift Register is not empty, a transmission is in progress or queued

bit 7-6

URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)
10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)
0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive
buffer; receive buffer has one or more characters

Note 1:

Refer to Section 17. “UART” (DS70582) in the “dsPIC33E/PIC24E Family Reference Manual” for
information on enabling the UARTx module for transmit operation.

 2009-2012 Microchip Technology Inc.

DS70616G-page 357

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 20-2:

UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5

ADDEN: Address Character Detect bit (bit 8 of received data = 1)
1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect
0 = Address Detect mode is disabled

bit 4

RIDLE: Receiver Idle bit (read-only)
1 = Receiver is Idle
0 = Receiver is active

bit 3

PERR: Parity Error Status bit (read-only)
1 = Parity error has been detected for the current character (character at the top of the receive FIFO)
0 = Parity error has not been detected

bit 2

FERR: Framing Error Status bit (read-only)
1 = Framing error has been detected for the current character (character at the top of the receive
FIFO)
0 = Framing error has not been detected

bit 1

OERR: Receive Buffer Overrun Error Status bit (read/clear only)
1 = Receive buffer has overflowed
0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1  0 transition) resets
the receiver buffer and the UxRSR to the empty state

bit 0

URXDA: Receive Buffer Data Available bit (read-only)
1 = Receive buffer has data, at least one more character can be read
0 = Receive buffer is empty

Note 1:

Refer to Section 17. “UART” (DS70582) in the “dsPIC33E/PIC24E Family Reference Manual” for
information on enabling the UARTx module for transmit operation.

DS70616G-page 358

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
21.0

ENHANCED CAN (ECAN™)
MODULE

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this
data sheet, refer to Section 21.
“Enhanced Controller Area Network
(ECAN™)” (DS70353) of the “dsPIC33E/
PIC24E Family Reference Manual”,
which is available from the Microchip web
site (www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.

21.1

Overview

The Enhanced Controller Area Network (ECAN)
module is a serial interface, useful for communicating with other CAN modules or microcontroller
devices. This interface/protocol was designed to
allow communications within noisy environments.
The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 devices contain two
ECAN modules.
The ECANx module is a communication controller
implementing the CAN 2.0 A/B protocol, as defined in
the BOSCH CAN Specification. The module supports
CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B
Active versions of the protocol. The module implementation is a full CAN system. The CAN Specification is
not covered within this data sheet. The reader can refer
to the BOSCH CAN specification for further details.

 2009-2012 Microchip Technology Inc.

The ECANx module features are as follows:
• Implementation of the CAN Protocol, CAN 1.2,
CAN 2.0A and CAN 2.0B
• Standard and Extended Data Frames
• 0-8 Bytes Data Length
• Programmable Bit Rate up to 1 Mbit/sec
• Automatic Response to Remote Transmission
Requests
• Up to 8 Transmit Buffers with Application-Specific
Prioritization and Abort Capability (each buffer
can contain up to 8 bytes of data)
• Up to 32 Receive Buffers (each buffer can contain
up to 8 bytes of data)
• Up to 16 Full (standard/extended identifier)
Acceptance Filters
• Three Full Acceptance Filter Masks
• DeviceNet™ Addressing Support
• Programmable Wake-up Functionality with
Integrated Low-Pass Filter
• Programmable Loopback mode Supports
Self-Test Operation
• Signaling via Interrupt Capabilities for all CAN
Receiver and Transmitter Error States
• Programmable Clock Source
• Programmable Link to Input Capture Module (IC2
for the ECAN1 and ECAN2 modules) for
Time-Stamping and Network Synchronization
• Low-Power Sleep and Idle mode
The CAN bus module consists of a protocol engine and
message buffering/control. The CAN protocol engine
handles all functions for receiving and transmitting
messages on the CAN bus. Messages are transmitted
by first loading the appropriate data registers. Status
and errors can be checked by reading the appropriate
registers. Any message detected on the CAN bus is
checked for errors and then matched against filters to
see if it should be received and stored in one of the
receive registers.

DS70616G-page 359

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 21-1:

ECANx MODULE BLOCK DIAGRAM
RxF15 Filter
RxF14 Filter
RxF13 Filter
RxF12 Filter
DMA Controller

RxF11 Filter
RxF10 Filter
RxF9 Filter
RxF8 Filter

TRB7 TX/RX Buffer Control Register

RxF7 Filter

TRB6 TX/RX Buffer Control Register

RxF6 Filter

TRB5 TX/RX Buffer Control Register

RxF5 Filter

TRB4 TX/RX Buffer Control Register

RxF4 Filter

TRB3 TX/RX Buffer Control Register

RxF3 Filter

TRB2 TX/RX Buffer Control Register

RxF2 Filter

RxM2 Mask

TRB1 TX/RX Buffer Control Register

RxF1 Filter

RxM1 Mask

TRB0 TX/RX Buffer Control Register

RxF0 Filter

RxM0 Mask

Transmit Byte
Sequencer

Message Assembly
Buffer

CAN Protocol
Engine

Control
Configuration
Logic

CPU
Bus

Interrupts
CxTX

Note:

CxRX

x = 1 or 2.

DS70616G-page 360

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
21.2

Modes of Operation

The ECANx module can operate in one of several
operation modes selected by the user. These modes
include:
•
•
•
•
•
•

Initialization mode
Disable mode
Normal Operation mode
Listen Only mode
Listen All Messages mode
Loopback mode

Modes are requested by setting the REQOP<2:0> bits
(CxCTRL1<10:8>). Entry into a mode is Acknowledged
by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>).
The module does not change the mode and the
OPMODE bits until a change in mode is acceptable,
generally during bus Idle time, which is defined as at least
11 consecutive recessive bits.

 2009-2012 Microchip Technology Inc.

21.3

ECAN Resources

Many useful resources related to ECAN are provided
on the main product page of the Microchip web site for
the devices listed in this data sheet. This product page,
which can be accessed using this link, contains the
latest updates and additional information.
Note:

21.3.1

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

KEY RESOURCES

• Section 21. “Enhanced Controller Area
Network (ECAN™)” (DS70353) in the
“dsPIC33E/PIC24E Family Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

DS70616G-page 361

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
21.4

ECANx Control Registers

REGISTER 21-1:

CxCTRL1: ECANx CONTROL REGISTER 1

U-0

U-0

R/W-0

R/W-0

R/W-0

—

—

CSIDL

ABAT

CANCKS

R/W-1

R/W-0

R/W-0

REQOP<2:0>

bit 15

bit 8

R-1

R-0

R-0

U-0

R/W-0

U-0

U-0

R/W-0

—

CANCAP

—

—

WIN

OPMODE<2:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as ‘0’

bit 13

CSIDL: ECANx Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode

bit 12

ABAT: Abort All Pending Transmissions bit
1 = Signals all transmit buffers to abort transmission
0 = Module will clear this bit when all transmissions are aborted

bit 11

CANCKS: ECANx Module Clock (FCAN) Source Select bit
1 = FCAN is equal to twice FP
0 = FCAN is equal to FP

bit 10-8

REQOP<2:0>: Request Operation Mode bits
111 = Set Listen All Messages mode
110 = Reserved
101 = Reserved
100 = Set Configuration mode
011 = Set Listen Only Mode
010 = Set Loopback mode
001 = Set Disable mode
000 = Set Normal Operation mode

bit 7-5

OPMODE<2:0>: Operation Mode bits
111 = Module is in Listen All Messages mode
110 = Reserved
101 = Reserved
100 = Module is in Configuration mode
011 = Module is in Listen Only mode
010 = Module is in Loopback mode
001 = Module is in Disable mode
000 = Module is in Normal Operation mode

bit 4

Unimplemented: Read as ‘0’

bit 3

CANCAP: CAN Message Receive Timer Capture Event Enable bit
1 = Enables input capture based on CAN message receive
0 = Disables CAN capture

bit 2-1

Unimplemented: Read as ‘0’

bit 0

WIN: SFR Map Window Select bit
1 = Uses filter window
0 = Uses buffer window

DS70616G-page 362

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-2:

CxCTRL2: ECANx CONTROL REGISTER 2

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

U-0

U-0

—

—

—

R-0

R-0

R-0

R-0

R-0

DNCNT<4:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-5

Unimplemented: Read as ‘0’

bit 4-0

DNCNT<4:0>: DeviceNet™ Filter Bit Number bits
10010-11111 = Invalid selection
10001 = Compares up to Data Byte 3, bit 6 with EID<17>
•
•
•
00001 = Compares up to Data Byte 1, bit 7 with EID<0>
00000 = Does not compare data bytes

 2009-2012 Microchip Technology Inc.

x = Bit is unknown

DS70616G-page 363

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-3:

CxVEC: ECANx INTERRUPT CODE REGISTER

U-0

U-0

U-0

—

—

—

R-0

R-0

R-0

R-0

R-0

FILHIT<4:0>

bit 15

bit 8

U-0

R-1

R-0

R-0

—

R-0

R-0

R-0

R-0

ICODE<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-13

Unimplemented: Read as ‘0’

bit 12-8

FILHIT<4:0>: Filter Hit Number bits
10000-11111 = Reserved
01111 = Filter 15
•
•
•
00001 = Filter 1
00000 = Filter 0

bit 7

Unimplemented: Read as ‘0’

bit 6-0

ICODE<6:0>: Interrupt Flag Code bits
1000101-1111111 = Reserved
1000100 = FIFO almost full interrupt
1000011 = Receiver overflow interrupt
1000010 = Wake-up interrupt
1000001 = Error interrupt
1000000 = No interrupt
•
•
•
0010000-0111111 = Reserved
0001111 = RB15 buffer interrupt
•
•
•
0001001 = RB9 buffer interrupt
0001000 = RB8 buffer interrupt
0000111 = TRB7 buffer interrupt
0000110 = TRB6 buffer interrupt
0000101 = TRB5 buffer interrupt
0000100 = TRB4 buffer interrupt
0000011 = TRB3 buffer interrupt
0000010 = TRB2 buffer interrupt
0000001 = TRB1 buffer interrupt
0000000 = TRB0 Buffer interrupt

DS70616G-page 364

x = Bit is unknown

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-4:
R/W-0

CxFCTRL: ECANx FIFO CONTROL REGISTER
R/W-0

R/W-0

DMABS<2:0>

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

bit 15

bit 8

U-0

U-0

U-0

—

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

FSA<4:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-13

DMABS<2:0>: DMA Buffer Size bits
111 = Reserved
110 = 32 buffers in DMA RAM
101 = 24 buffers in DMA RAM
100 = 16 buffers in DMA RAM
011 = 12 buffers in DMA RAM
010 = 8 buffers in DMA RAM
001 = 6 buffers in DMA RAM
000 = 4 buffers in DMA RAM

bit 12-5

Unimplemented: Read as ‘0’

bit 4-0

FSA<4:0>: FIFO Area Starts with Buffer bits
11111 = Read Buffer RB31
11110 = Read Buffer RB30
•
•
•
00001 = TX/RX Buffer TRB1
00000 = TX/RX Buffer TRB0

 2009-2012 Microchip Technology Inc.

x = Bit is unknown

DS70616G-page 365

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-5:

CxFIFO: ECANx FIFO STATUS REGISTER

U-0

U-0

—

—

R-0

R-0

R-0

R-0

R-0

R-0

FBP<5:0>

bit 15

bit 8

U-0

U-0

—

—

R-0

R-0

R-0

R-0

R-0

R-0

FNRB<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-14

Unimplemented: Read as ‘0’

bit 13-8

FBP<5:0>: FIFO Buffer Pointer bits
011111 = RB31 buffer
011110 = RB30 buffer
•
•
•
000001 = TRB1 buffer
000000 = TRB0 buffer

bit 7-6

Unimplemented: Read as ‘0’

bit 5-0

FNRB<5:0>: FIFO Next Read Buffer Pointer bits
011111 = RB31 buffer
011110 = RB30 buffer
•
•
•
000001 = TRB1 buffer
000000 = TRB0 buffer

DS70616G-page 366

x = Bit is unknown

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-6:

CxINTF: ECANx INTERRUPT FLAG REGISTER

U-0
—
bit 15

U-0
—

R-0
TXBO

R-0
TXBP

R-0
RXBP

R-0
TXWAR

R-0
RXWAR

R-0
EWARN
bit 8

R/C-0
IVRIF
bit 7

R/C-0
WAKIF

R/C-0
ERRIF

U-0
—

R/C-0
FIFOIF

R/C-0
RBOVIF

R/C-0
RBIF

R/C-0
TBIF
bit 0

Legend:
R = Readable bit
-n = Value at POR
bit 15-14
bit 13

bit 12

bit 11

bit 10

bit 9

bit 8

bit 7

bit 6

bit 5

bit 4
bit 3

bit 2

bit 1

bit 0

C = Writable bit, but only ‘0’ can be written to clear the bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown

Unimplemented: Read as ‘0’
TXBO: Transmitter in Error State Bus Off bit
1 = Transmitter is in Bus Off state
0 = Transmitter is not in Bus Off state
TXBP: Transmitter in Error State Bus Passive bit
1 = Transmitter is in Bus Passive state
0 = Transmitter is not in Bus Passive state
RXBP: Receiver in Error State Bus Passive bit
1 = Receiver is in Bus Passive state
0 = Receiver is not in Bus Passive state
TXWAR: Transmitter in Error State Warning bit
1 = Transmitter is in Error Warning state
0 = Transmitter is not in Error Warning state
RXWAR: Receiver in Error State Warning bit
1 = Receiver is in Error Warning state
0 = Receiver is not in Error Warning state
EWARN: Transmitter or Receiver in Error State Warning bit
1 = Transmitter or Receiver is in Error State Warning state
0 = Transmitter or Receiver is not in Error State Warning state
IVRIF: Invalid Message Interrupt Flag bit
1 = Interrupt Request has occurred
0 = Interrupt Request has not occurred
WAKIF: Bus Wake-up Activity Interrupt Flag bit
1 = Interrupt Request has occurred
0 = Interrupt Request has not occurred
ERRIF: Error Interrupt Flag bit (multiple sources in CxINTF<13:8> register)
1 = Interrupt Request has occurred
0 = Interrupt Request has not occurred
Unimplemented: Read as ‘0’
FIFOIF: FIFO Almost Full Interrupt Flag bit
1 = Interrupt Request has occurred
0 = Interrupt Request has not occurred
RBOVIF: RX Buffer Overflow Interrupt Flag bit
1 = Interrupt Request has occurred
0 = Interrupt Request has not occurred
RBIF: RX Buffer Interrupt Flag bit
1 = Interrupt Request has occurred
0 = Interrupt Request has not occurred
TBIF: TX Buffer Interrupt Flag bit
1 = Interrupt Request has occurred
0 = Interrupt Request has not occurred

 2009-2012 Microchip Technology Inc.

DS70616G-page 367

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-7:

CxINTE: ECANx INTERRUPT ENABLE REGISTER

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/W-0

R/W-0

R/W-0

U-0

R/W-0

R/W-0

R/W-0

R/W-0

IVRIE

WAKIE

ERRIE

—

FIFOIE

RBOVIE

RBIE

TBIE

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-8

Unimplemented: Read as ‘0’

bit 7

IVRIE: Invalid Message Interrupt Enable bit
1 = Interrupt request is enabled
0 = Interrupt request is not enabled

bit 6

WAKIE: Bus Wake-up Activity Interrupt Enable bit
1 = Interrupt request is enabled
0 = Interrupt request is not enabled

bit 5

ERRIE: Error Interrupt Enable bit
1 = Interrupt request is enabled
0 = Interrupt request is not enabled

bit 4

Unimplemented: Read as ‘0’

bit 3

FIFOIE: FIFO Almost Full Interrupt Enable bit
1 = Interrupt request is enabled
0 = Interrupt request is not enabled

bit 2

RBOVIE: RX Buffer Overflow Interrupt Enable bit
1 = Interrupt request is enabled
0 = Interrupt request is not enabled

bit 1

RBIE: RX Buffer Interrupt Enable bit
1 = Interrupt request is enabled
0 = Interrupt request is not enabled

bit 0

TBIE: TX Buffer Interrupt Enable bit
1 = Interrupt request is enabled
0 = Interrupt request is not enabled

DS70616G-page 368

x = Bit is unknown

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-8:

CxEC: ECANx TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0

R-0

R-0

R-0

R-0

R-0

R-0

R-0

TERRCNT<7:0>
bit 15

bit 8

R-0

R-0

R-0

R-0

R-0

R-0

R-0

R-0

RERRCNT<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-8

TERRCNT<7:0>: Transmit Error Count bits

bit 7-0

RERRCNT<7:0>: Receive Error Count bits

REGISTER 21-9:

x = Bit is unknown

CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SJW<1:0>

R/W-0

R/W-0

R/W-0

BRP<5:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-8

Unimplemented: Read as ‘0’

bit 7-6

SJW<1:0>: Synchronization Jump Width bits
11 = Length is 4 x TQ
10 = Length is 3 x TQ
01 = Length is 2 x TQ
00 = Length is 1 x TQ

bit 5-0

BRP<5:0>: Baud Rate Prescaler bits
11 1111 = TQ = 2 x 64 x 1/FCAN
•
•
•
00 0010 = TQ = 2 x 3 x 1/FCAN
00 0001 = TQ = 2 x 2 x 1/FCAN
00 0000 = TQ = 2 x 1 x 1/FCAN

 2009-2012 Microchip Technology Inc.

x = Bit is unknown

DS70616G-page 369

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2
U-0

R/W-x

U-0

U-0

U-0

—

WAKFIL

—

—

—

R/W-x

R/W-x

R/W-x

SEG2PH<2:0>

bit 15

bit 8

R/W-x

R/W-x

SEG2PHTS

SAM

R/W-x

R/W-x

R/W-x

SEG1PH<2:0>

R/W-x

R/W-x

R/W-x

PRSEG<2:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14

WAKFIL: Select CAN Bus Line Filter for Wake-up bit
1 = Uses CAN bus line filter for wake-up
0 = CAN bus line filter is not used for wake-up

bit 13-11

Unimplemented: Read as ‘0’

bit 10-8

SEG2PH<2:0>: Phase Segment 2 bits
111 = Length is 8 x TQ
•
•
•
000 = Length is 1 x TQ

bit 7

SEG2PHTS: Phase Segment 2 Time Select bit
1 = Freely programmable
0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater

bit 6

SAM: Sample of the CAN Bus Line bit
1 = Bus line is sampled three times at the sample point
0 = Bus line is sampled once at the sample point

bit 5-3

SEG1PH<2:0>: Phase Segment 1 bits
111 = Length is 8 x TQ
•
•
•
000 = Length is 1 x TQ

bit 2-0

PRSEG<2:0>: Propagation Time Segment bits
111 = Length is 8 x TQ
•
•
•
000 = Length is 1 x TQ

DS70616G-page 370

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1
R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

FLTEN15

FLTEN14

FLTEN13

FLTEN12

FLTEN11

FLTEN10

FLTEN9

FLTEN8

bit 15

bit 8

R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

R/W-1

FLTEN7

FLTEN6

FLTEN5

FLTEN4

FLTEN3

FLTEN2

FLTEN1

FLTEN0

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

FLTENn: Enable Filter n to Accept Messages bits
1 = Enables Filter n
0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

F3BP<3:0>

R/W-0

R/W-0

R/W-0

F2BP<3:0>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

F1BP<3:0>

R/W-0

R/W-0

R/W-0

F0BP<3:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-12

F3BP<3:0>: RX Buffer Mask for Filter 3 bits
1111 = Filter hits received in RX FIFO buffer
1110 = Filter hits received in RX Buffer 14
•
•
•
0001 = Filter hits received in RX Buffer 1
0000 = Filter hits received in RX Buffer 0

bit 11-8

F2BP<3:0>: RX Buffer Mask for Filter 2 bits (same values as bit 15-12)

bit 7-4

F1BP<3:0>: RX Buffer Mask for Filter 1 bits (same values as bit 15-12)

bit 3-0

F0BP<3:0>: RX Buffer Mask for Filter 0 bits (same values as bit 15-12)

 2009-2012 Microchip Technology Inc.

x = Bit is unknown

DS70616G-page 371

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-13: CxBUFPNT2: ECANx FILTER 4-7 BUFFER POINTER REGISTER 2
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

F7BP<3:0>

R/W-0

R/W-0

R/W-0

F6BP<3:0>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

F5BP<3:0>

R/W-0

R/W-0

R/W-0

F4BP<3:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-12

F7BP<3:0>: RX Buffer Mask for Filter 7 bits
1111 = Filter hits received in RX FIFO buffer
1110 = Filter hits received in RX Buffer 14
•
•
•
0001 = Filter hits received in RX Buffer 1
0000 = Filter hits received in RX Buffer 0

bit 11-8

F6BP<3:0>: RX Buffer Mask for Filter 6 bits (same values as bit 15-12)

bit 7-4

F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bit 15-12)

bit 3-0

F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bit 15-12)

REGISTER 21-14: CxBUFPNT3: ECANx FILTER 8-11 BUFFER POINTER REGISTER 3
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

F11BP<3:0>

R/W-0

R/W-0

R/W-0

F10BP<3:0>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

F9BP<3:0>

R/W-0

R/W-0

R/W-0

F8BP<3:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-12

F11BP<3:0>: RX Buffer Mask for Filter 11 bits
1111 = Filter hits received in RX FIFO buffer
1110 = Filter hits received in RX Buffer 14
•
•
•
0001 = Filter hits received in RX Buffer 1
0000 = Filter hits received in RX Buffer 0

bit 11-8

F10BP<3:0>: RX Buffer Mask for Filter 10 bits (same values as bit 15-12)

bit 7-4

F9BP<3:0>: RX Buffer Mask for Filter 9 bits (same values as bit 15-12)

bit 3-0

F8BP<3:0>: RX Buffer Mask for Filter 8 bits (same values as bit 15-12)

DS70616G-page 372

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-15: CxBUFPNT4: ECANx FILTER 12-15 BUFFER POINTER REGISTER 4
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

F15BP<3:0>

R/W-0

R/W-0

R/W-0

F14BP<3:0>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

F13BP<3:0>

R/W-0

R/W-0

R/W-0

F12BP<3:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-12

F15BP<3:0>: RX Buffer Mask for Filter 15 bits
1111 = Filter hits received in RX FIFO buffer
1110 = Filter hits received in RX Buffer 14
•
•
•
0001 = Filter hits received in RX Buffer 1
0000 = Filter hits received in RX Buffer 0

bit 11-8

F14BP<3:0>: RX Buffer Mask for Filter 14 bits (same values as bit 15-12)

bit 7-4

F13BP<3:0>: RX Buffer Mask for Filter 13 bits (same values as bit 15-12)

bit 3-0

F12BP<3:0>: RX Buffer Mask for Filter 12 bits (same values as bit 15-12)

 2009-2012 Microchip Technology Inc.

DS70616G-page 373

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-16: CxRXFnSID: ECANx ACCEPTANCE FILTER n STANDARD IDENTIFIER
REGISTER n (n = 0-15)
R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

SID10

SID9

SID8

SID7

SID6

SID5

SID4

SID3

bit 15

bit 8

R/W-x

R/W-x

R/W-x

U-0

R/W-x

U-0

R/W-x

R/W-x

SID2

SID1

SID0

—

EXIDE

—

EID17

EID16

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-5

SID<10:0>: Standard Identifier bits
1 = Message address bit, SIDx, must be ‘1’ to match filter
0 = Message address bit, SIDx, must be ‘0’ to match filter

bit 4

Unimplemented: Read as ‘0’

bit 3

EXIDE: Extended Identifier Enable bit
If MIDE = 1:
1 = Matches only messages with extended identifier addresses
0 = Matches only messages with standard identifier addresses

x = Bit is unknown

If MIDE = 0:
Ignores EXIDE bit.
bit 2

Unimplemented: Read as ‘0’

bit 1-0

EID<17:16>: Extended Identifier bits
1 = Message address bit, EIDx, must be ‘1’ to match filter
0 = Message address bit, EIDx, must be ‘0’ to match filter

DS70616G-page 374

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-17: CxRXFnEID: ECANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER
REGISTER n (n = 0-15)
R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

EID15

EID14

EID13

EID12

EID11

EID10

EID9

EID8

bit 15

bit 8

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

EID7

EID6

EID5

EID4

EID3

EID2

EID1

EID0

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

EID<15:0>: Extended Identifier bits
1 = Message address bit, EIDx, must be ‘1’ to match filter
0 = Message address bit, EIDx, must be ‘0’ to match filter

REGISTER 21-18: CxFMSKSEL1: ECANx FILTER 7-0 MASK SELECTION REGISTER
R/W-0

R/W-0

R/W-0

F7MSK<1:0>

R/W-0

R/W-0

F6MSK<1:0>

R/W-0

R/W-0

F5MSK<1:0>

R/W-0

F4MSK<1:0>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

F3MSK<1:0>

R/W-0

R/W-0

F2MSK<1:0>

R/W-0

R/W-0

F1MSK<1:0>

R/W-0

F0MSK<1:0>

bit 7

bit 0

Legend:

C = Writable bit, but only ‘0’ can be written to clear the bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-14

F7MSK<1:0>: Mask Source for Filter 7 bit
11 = Reserved
10 = Acceptance Mask 2 registers contain mask
01 = Acceptance Mask 1 registers contain mask
00 = Acceptance Mask 0 registers contain mask

bit 13-12

F6MSK<1:0>: Mask Source for Filter 6 bit (same values as bit 15-14)

bit 11-10

F5MSK<1:0>: Mask Source for Filter 5 bit (same values as bit 15-14)

bit 9-8

F4MSK<1:0>: Mask Source for Filter 4 bit (same values as bit 15-14)

bit 7-6

F3MSK<1:0>: Mask Source for Filter 3 bit (same values as bit 15-14)

bit 5-4

F2MSK<1:0>: Mask Source for Filter 2 bit (same values as bit 15-14)

bit 3-2

F1MSK<1:0>: Mask Source for Filter 1 bit (same values as bit 15-14)

bit 1-0

F0MSK<1:0>: Mask Source for Filter 0 bit (same values as bit 15-14)

 2009-2012 Microchip Technology Inc.

x = Bit is unknown

DS70616G-page 375

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-19: CxFMSKSEL2: ECANx FILTER 15-8 MASK SELECTION REGISTER
R/W-0
R/W-0
F15MSK<1:0>
bit 15

R/W-0
R/W-0
F14MSK<1:0>

R/W-0
R/W-0
F13MSK<1:0>

R/W-0
R/W-0
F12MSK<1:0>
bit 8

R/W-0
R/W-0
F11MSK<1:0>
bit 7

R/W-0
R/W-0
F10MSK<1:0>

R/W-0
R/W-0
F9MSK<1:0>

R/W-0
R/W-0
F8MSK<1:0>
bit 0

Legend:
R = Readable bit
-n = Value at POR
bit 15-14

bit 13-12
bit 11-10
bit 9-8
bit 7-6
bit 5-4
bit 3-2
bit 1-0

W = Writable bit
‘1’ = Bit is set

U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown

F15MSK<1:0>: Mask Source for Filter 15 bit
11 = Reserved
10 = Acceptance Mask 2 registers contain mask
01 = Acceptance Mask 1 registers contain mask
00 = Acceptance Mask 0 registers contain mask
F14MSK<1:0>: Mask Source for Filter 14 bit (same values as bit 15-14)
F13MSK<1:0>: Mask Source for Filter 13 bit (same values as bit 15-14)
F12MSK<1:0>: Mask Source for Filter 12 bit (same values as bit 15-14)
F11MSK<1:0>: Mask Source for Filter 11 bit (same values as bit 15-14)
F10MSK<1:0>: Mask Source for Filter 10 bit (same values as bit 15-14)
F9MSK<1:0>: Mask Source for Filter 9 bit (same values as bit 15-14)
F8MSK<1:0>: Mask Source for Filter 8 bit (same values as bit 15-14)

DS70616G-page 376

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-20: CxRXMnSID: ECANx ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER
REGISTER n (n = 0-2)
R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

SID10

SID9

SID8

SID7

SID6

SID5

SID4

SID3

bit 15

bit 8

R/W-x

R/W-x

R/W-x

U-0

R/W-x

U-0

R/W-x

R/W-x

SID2

SID1

SID0

—

MIDE

—

EID17

EID16

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-5

SID<10:0>: Standard Identifier bits
1 = Includes bit, SIDx, in filter comparison
0 = Bit, SIDx, is a don’t care in filter comparison

bit 4

Unimplemented: Read as ‘0’

bit 3

MIDE: Identifier Receive Mode bit
1 = Matches only message types (standard or extended address) that correspond to EXIDE bit in filter
0 = Matches either standard or extended address message if filters match
(i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID))

bit 2

Unimplemented: Read as ‘0’

bit 1-0

EID<17:16>: Extended Identifier bits
1 = Includes bit, EIDx, in filter comparison
0 = Bit, EIDx, is a don’t care in filter comparison

REGISTER 21-21: CxRXMnEID: ECANx ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER
REGISTER n (n = 0-2)
R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

EID15

EID14

EID13

EID12

EID11

EID10

EID9

EID8

bit 15

bit 8

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

EID7

EID6

EID5

EID4

EID3

EID2

EID1

EID0

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

EID<15:0>: Extended Identifier bits
1 = Includes bit, EIDx, in filter comparison
0 = Bit, EIDx, is a don’t care in filter comparison

 2009-2012 Microchip Technology Inc.

DS70616G-page 377

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-22: CxRXFUL1: ECANx RECEIVE BUFFER FULL REGISTER 1
R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

RXFUL15

RXFUL14

RXFUL13

RXFUL12

RXFUL11

RXFUL10

RXFUL9

RXFUL8

bit 15

bit 8

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

RXFUL7

RXFUL6

RXFUL5

RXFUL4

RXFUL3

RXFUL2

RXFUL1

RXFUL0

bit 7

bit 0

Legend:

C = Writable bit, but only ‘0’ can be written to clear the bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

RXFUL<15:0>: Receive Buffer n Full bits
1 = Buffer is full (set by module)
0 = Buffer is empty (cleared by user software)

REGISTER 21-23: CxRXFUL2: ECANx RECEIVE BUFFER FULL REGISTER 2
R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

RXFUL31

RXFUL30

RXFUL29

RXFUL28

RXFUL27

RXFUL26

RXFUL25

RXFUL24

bit 15

bit 8

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

RXFUL23

RXFUL22

RXFUL21

RXFUL20

RXFUL19

RXFUL18

RXFUL17

RXFUL16

bit 7

bit 0

Legend:

C = Writable bit, but only ‘0’ can be written to clear the bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

RXFUL<31:16>: Receive Buffer n Full bits
1 = Buffer is full (set by module)
0 = Buffer is empty (cleared by user software)

DS70616G-page 378

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-24: CxRXOVF1: ECANx RECEIVE BUFFER OVERFLOW REGISTER 1
R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

RXOVF15

RXOVF14

RXOVF13

RXOVF12

RXOVF11

RXOVF10

RXOVF9

RXOVF8

bit 15

bit 8

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

RXOVF7

RXOVF6

RXOVF5

RXOVF4

RXOVF3

RXOVF2

RXOVF1

RXOVF0

bit 7

bit 0

Legend:

C = Writable bit, but only ‘0’ can be written to clear the bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

RXOVF<15:0>: Receive Buffer n Overflow bits
1 = Module attempted to write to a full buffer (set by module)
0 = No overflow condition (cleared by user software)

REGISTER 21-25: CxRXOVF2: ECANx RECEIVE BUFFER OVERFLOW REGISTER 2
R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

RXOVF31

RXOVF30

RXOVF29

RXOVF28

RXOVF27

RXOVF26

RXOVF25

RXOVF24

bit 15

bit 8

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

R/C-0

RXOVF23

RXOVF22

RXOVF21

RXOVF20

RXOVF19

RXOVF18

RXOVF17

RXOVF16

bit 7

bit 0

Legend:

C = Writable bit, but only ‘0’ can be written to clear the bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

RXOVF<31:16>: Receive Buffer n Overflow bits
1 = Module attempted to write to a full buffer (set by module)
0 = No overflow condition (cleared by user software)

 2009-2012 Microchip Technology Inc.

DS70616G-page 379

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 21-26: CxTRmnCON: ECANx TX/RX BUFFER m CONTROL REGISTER
(m = 0, 2, 4, 6; n = 1, 3, 5, 7)
R/W-0

R-0

R-0

R-0

R/W-0

R/W-0

TXENn

TXABTn

TXLARBn

TXERRn

TXREQn

RTRENn

R/W-0

R/W-0

TXnPRI<1:0>

bit 15

bit 8

R/W-0

R-0

TXENm

TXABTm(1)

R-0

R-0
(1)

TXLARBm

TXERRm

(1)

R/W-0

R/W-0

TXREQm

RTRENm

R/W-0

R/W-0

TXmPRI<1:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

See definition for bits 7-0, controls Buffer n

bit 7

TXENm: TX/RX Buffer Selection bit
1 = Buffer TRBn is a transmit buffer
0 = Buffer TRBn is a receive buffer

bit 6

TXABTm: Message Aborted bit(1)
1 = Message was aborted
0 = Message completed transmission successfully

bit 5

TXLARBm: Message Lost Arbitration bit(1)
1 = Message lost arbitration while being sent
0 = Message did not lose arbitration while being sent

bit 4

TXERRm: Error Detected During Transmission bit(1)
1 = A bus error occurred while the message was being sent
0 = A bus error did not occur while the message was being sent

bit 3

TXREQm: Message Send Request bit
1 = Requests that a message be sent; the bit automatically clears when the message is successfully sent
0 = Clearing the bit to ‘0’ while set requests a message abort

bit 2

RTRENm: Auto-Remote Transmit Enable bit
1 = When a remote transmit is received, TXREQm will be set
0 = When a remote transmit is received, TXREQm will be unaffected

bit 1-0

TXmPRI<1:0>: Message Transmission Priority bits
11 = Highest message priority
10 = High intermediate message priority
01 = Low intermediate message priority
00 = Lowest message priority

Note 1:

Note:

This bit is cleared when TXREQm is set.

The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.

DS70616G-page 380

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
21.5

ECAN Message Buffers

ECAN Message Buffers are part of DMA RAM memory.
They are not ECAN Special Function Registers. The
user application must directly write into the DMA RAM
area that is configured for ECAN Message Buffers. The
location and size of the buffer area is defined by the
user application.

BUFFER 21-1:

ECAN™ MESSAGE BUFFER WORD 0

U-0

U-0

U-0

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

—

—

—

SID10

SID9

SID8

SID7

SID6

bit 15

bit 8

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

SID5

SID4

SID3

SID2

SID1

SID0

SRR

IDE

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-13

Unimplemented: Read as ‘0’

bit 12-2

SID<10:0>: Standard Identifier bits

bit 1

SRR: Substitute Remote Request bit
When TXIDE = 0:
1 = Message will request remote transmission
0 = Normal message
When TXIDE = 1:
The SRR bit must be set to ‘1’.

bit 0

IDE: Extended Identifier bit
1 = Message will transmit extended identifier
0 = Message will transmit standard identifier

BUFFER 21-2:

x = Bit is unknown

ECAN™ MESSAGE BUFFER WORD 1

U-0

U-0

U-0

U-0

R/W-x

R/W-x

R/W-x

R/W-x

—

—

—

—

EID17

EID16

EID15

EID14

bit 15

bit 8

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

EID13

EID12

EID11

EID10

EID9

EID8

EID7

EID6

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-12

Unimplemented: Read as ‘0’

bit 11-0

EID<17:6>: Extended Identifier bits

 2009-2012 Microchip Technology Inc.

x = Bit is unknown

DS70616G-page 381

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
(

BUFFER 21-3:

ECAN™ MESSAGE BUFFER WORD 2

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

EID5

EID4

EID3

EID2

EID1

EID0

RTR

RB1

bit 15

bit 8

U-x

U-x

U-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

—

—

—

RB0

DLC3

DLC2

DLC1

DLC0

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-10

EID<5:0>: Extended Identifier bits

bit 9

RTR: Remote Transmission Request bit
When TXIDE = 1:
1 = Message will request remote transmission
0 = Normal message
When TXIDE = 0:
The RTR bit is ignored.

bit 8

RB1: Reserved Bit 1
User must set this bit to ‘0’ per CAN protocol.

bit 7-5

Unimplemented: Read as ‘0’

bit 4

RB0: Reserved Bit 0
User must set this bit to ‘0’ per CAN protocol.

bit 3-0

DLC<3:0>: Data Length Code bits

BUFFER 21-4:
R/W-x

x = Bit is unknown

ECAN™ MESSAGE BUFFER WORD 3
R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

Byte 1
bit 15

bit 8

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

Byte 0
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-8

Byte 1<15:8>: ECAN Message Byte 0

bit 7-0

Byte 0<7:0>: ECAN Message Byte 1

DS70616G-page 382

x = Bit is unknown

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
BUFFER 21-5:
R/W-x

ECAN™ MESSAGE BUFFER WORD 4
R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

Byte 3
bit 15

bit 8

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

Byte 2
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-8

Byte 3<15:8>: ECAN Message Byte 3

bit 7-0

Byte 2<7:0>: ECAN Message Byte 2

BUFFER 21-6:
R/W-x

x = Bit is unknown

ECAN™ MESSAGE BUFFER WORD 5
R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

Byte 5
bit 15

bit 8

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

Byte 4
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-8

Byte 5<15:8>: ECAN Message Byte 5

bit 7-0

Byte 4<7:0>: ECAN Message Byte 4

 2009-2012 Microchip Technology Inc.

x = Bit is unknown

DS70616G-page 383

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
BUFFER 21-7:
R/W-x

ECAN™ MESSAGE BUFFER WORD 6
R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

Byte 7
bit 15

bit 8

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

Byte 6
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-8

Byte 7<15:8>: ECAN Message Byte 7

bit 7-0

Byte 6<7:0>: ECAN Message Byte 6

BUFFER 21-8:

x = Bit is unknown

ECAN™ MESSAGE BUFFER WORD 7

U-0

U-0

U-0

—

—

—

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

FILHIT<4:0>(1)

bit 15

bit 8

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-13

Unimplemented: Read as ‘0’

bit 12-8

FILHIT<4:0>: Filter Hit Code bits(1)
Encodes the number of the filter that resulted in writing this buffer.

bit 7-0

Unimplemented: Read as ‘0’

Note 1:

Only written by the module for receive buffers, unused for transmit buffers.

DS70616G-page 384

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
22.0

USB ON-THE-GO (OTG)
MODULE (dsPIC33EPXXXMU8XX
AND PIC24EPGU8XX DEVICES
ONLY)

The USB module consists of the clock generator, the
USB voltage comparators, the transceiver, the Serial
Interface Engine (SIE), pull-up and pull-down resistors,
and the register interface. Figure 22-1 illustrates the
block diagram of the USB OTG module.

Note 1: This data sheet is not intended to be a
comprehensive reference source. To complement the information in this data sheet,
refer to Section 25. “USB On-The-Go
(OTG)” (DS70571) of the “dsPIC33E/
PIC24E Family Reference Manual”, which
is available from the Microchip web site
(www.microchip.com).

The device auxiliary clock generator provides the
48 MHz clock required for USB communication. The
voltage comparators monitor the voltage on the VBUS
pin to determine the state of the bus. The transceiver
provides the analog translation between the USB bus
and the digital logic. The SIE is a state machine that
transfers data to and from the endpoint buffers and
generates the protocol for data transfers. The
integrated pull-up and pull-down resistors eliminate the
need for external signaling components. The register
interface allows the CPU to configure and
communicate with the module.

2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.

22.1

Note:

Overview

The Universal Serial Bus (USB) On-The-Go (OTG)
module includes the following features:
•
•
•
•
•
•
•
•
•
•

•
•

USB Full-Speed Support for Host and Device
Low-Speed Host Support
USB On-The-Go Support
Integrated Signaling Resistors
Integrated Analog Comparators for VBUS
Monitoring
Integrated USB Transceiver
Hardware Performs Transaction Handshaking
Endpoint Buffering Anywhere in System RAM
Integrated DMA Controller to Access System
RAM
Support for all four transfer types:
- Control
- Interrupt
- Bulk Data
- Isochronous
Queueing of up to Four Endpoint Transfers
without Servicing
USB 5V Charge Pump Controller

22.2

The implementation and use of the USB
specifications and other third party
specifications or technology may require a
license from various entities, including,
but not limited to USB Implementers
Forum, Inc. (also referred to as USB-IF). It
is your responsibility to obtain more
information regarding any applicable
licensing obligations.

Clearing USB OTG Interrupts

Unlike device level interrupts, the USB OTG interrupt
status flags are not freely writable in software. All USB
OTG flag bits are implemented as hardware set-only
bits. Additionally, these bits can only be cleared in
software by writing a ‘1’ to their locations (i.e.,
performing a BSET instruction). Writing a ‘0’ to a flag bit
(i.e., a BCLR instruction) has no effect.
Note:

Throughout this section, a bit that can only
be cleared by writing a ‘1’ to its location is
referred to as “Write ‘1’ to clear bit”. In register descriptions, this function is indicated
by the descriptor, “K”.

The USB module contains the analog and digital
components to provide a USB 2.0 full-speed and lowspeed embedded host, full-speed device or OTG
implementation with a minimum of external
components.

 2009-2012 Microchip Technology Inc.

DS70616G-page 385

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 22-1:

USB INTERFACE DIAGRAM

48 MHz USB Clock
from Auxiliary PLL

Full-Speed Pull-up
Host Pull-down

D+
Registers
and
Control
Interface

USB
Transceiver

DLow-Speed Pull-up
Host Pull-Down

USBID
USB
SIE

VMIO
VPIO
DMH
DPH

External Transceiver Interface

DMLN
DPLN
RCV
USBOEN
System
RAM

VBUSON

SRP Charge

USB
Voltage
Comparators

VBUS

SRP Discharge

VUSB3V3

External
VBUS
Comparator
Interface

VCMPST1
VCMPST2
VCMPST3
VCPCON
VBUSST

DS70616G-page 386

VBUS Boost
Controller

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
22.3

USB OTG Resources

Many useful resources related to USB OTG are
provided on the main product page of the Microchip
web site for the devices listed in this data sheet. This
product page, which can be accessed using this link,
contains the latest updates and additional information.
Note:

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

 2009-2012 Microchip Technology Inc.

22.3.1

KEY RESOURCES

• Section 11. “USB On-The-Go (OTG)”
(DS70571) in the “dsPIC33E/PIC24E Family
Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

DS70616G-page 387

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
22.4

USB Control Registers

REGISTER 22-1:

UxOTGSTAT: USB OTG STATUS REGISTER

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R-0, HSC

U-0

R-0, HSC

U-0

R-0, HSC

R-0, HSC

U-0

R-0, HSC

ID

—

LSTATE

—

SESVD

SESEND

—

VBUSVD

bit 7

bit 0

Legend:

U = Unimplemented bit, read as ‘0’

R = Readable bit

W = Writable bit

HSC = Hardware Settable/Clearable bit

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7

ID: ID Pin State Indicator bit
1 = No cable is attached or a Type B plug has been plugged into the USB receptacle
0 = A Type A plug has been plugged into the USB receptacle

bit 6

Unimplemented: Read as ‘0’

bit 5

LSTATE: Line State Stable Indicator bit
1 = The USB line state (as defined by SE0 and JSTATE) has been stable for the previous 1 ms
0 = The USB line state has NOT been stable for the previous 1 ms

bit 4

Unimplemented: Read as ‘0’

bit 3

SESVD: Session Valid Indicator bit
1 = The VBUS voltage is above VA_SESS_VLD (as defined in the USB OTG Specification) on the A or B
device
0 = The VBUS voltage is below VA_SESS_VLD on the A or B device

bit 2

SESEND: B-Session End Indicator bit
1 = The VBUS voltage is below VB_SESS_END (as defined in the USB OTG Specification) on the B device
0 = The VBUS voltage is above VB_SESS_END on the B device

bit 1

Unimplemented: Read as ‘0’

bit 0

VBUSVD: A-VBUS Valid Indicator bit
1 = The VBUS voltage is above VA_VBUS_VLD (as defined in the USB OTG Specification) on the A device
0 = The VBUS voltage is below VA_VBUS_VLD on the A device

DS70616G-page 388

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-2:

UxOTGCON: USB ON-THE-GO CONTROL REGISTER

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/W-0

R/W-0

DPPULUP

R/W-0

R/W-0

DMPULUP DPPULDWN(1) DMPULDWN(1)

R/W-0

R/W-0

R/W-0

R/W-0

VBUSON(1)

OTGEN(1)

VBUSCHG(1)

VBUSDIS(1)

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7

DPPULUP: D+ Pull-Up Enable bit
1 = D+ data line pull-up resistor is enabled
0 = D+ data line pull-up resistor is disabled

bit 6

DMPULUP: D- Pull-Up Enable bit
1 = D- data line pull-up resistor is enabled
0 = D- data line pull-up resistor is disabled

bit 5

DPPULDWN: D+ Pull-Down Enable bit(1)
1 = D+ data line pull-down resistor is enabled
0 = D+ data line pull-down resistor is disabled

bit 4

DMPULDWN: D- Pull-Down Enable bit(1)
1 = D- data line pull-down resistor is enabled
0 = D- data line pull-down resistor is disabled

bit 3

VBUSON: VBUS Power-on bit(1)
1 = VBUS line is powered
0 = VBUS line is not powered

bit 2

OTGEN: OTG Features Enable bit(1)
1 = USB OTG is enabled; all D+/D- pull-ups and pull-downs are enabled
0 = USB OTG is disabled; D+/D- pull-ups and pull-downs are controlled in hardware by the settings of
the HOSTEN and USBEN bits (UxCON<3,0>)

bit 1

VBUSCHG: VBUS Charge Selection bit(1)
1 = VBUS line is set to charge to 3.3V
0 = VBUS line is set to charge to 5V

bit 0

VBUSDIS: VBUS Discharge Enable bit(1)
1 = VBUS line is discharged through a resistor
0 = VBUS line is not discharged

Note 1:

These bits are only used in Host mode; do not use in Device mode.

 2009-2012 Microchip Technology Inc.

DS70616G-page 389

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-3:

UxPWRC: USB POWER CONTROL REGISTER

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

HS, HC

U-0

U-0

R/W

U-0

U-0

R/W-0, HC

R/W-0

UACTPND

—

—

USLPGRD

—

—

USUSPND

USBPWR(1)

bit 7

bit 0

Legend:

HS = Hardware Settable bit

HC = Hardware Clearable bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7

UACTPND: USB Activity Pending bit
1 = Module should not be suspended at the moment (requires the USLPGRD bit to be set)
0 = Module may be suspended or powered down

bit 6-5

Unimplemented: Read as ‘0’

bit 4

USLPGRD: USB Sleep Guard bit
1 = Indicates to the USB module that it is about to be suspended or powered down
0 = No suspend

bit 3-2

Unimplemented: Read as ‘0’

bit 1

USUSPND: USB Suspend Mode Enable bit
1 = USB OTG module is in Suspend mode
0 = Normal USB OTG operation

bit 0

USBPWR: USB Operation Enable bit(1)
1 = USB OTG module is enabled
0 = USB OTG module is disabled

Note 1:

Do not clear this bit unless the HOSTEN, USBEN and OTGEN bits (UxCON<3,0> and UxOTGCON<2>)
are also cleared.

DS70616G-page 390

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-4:

UxSTAT: USB STATUS REGISTER

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R-0, HSC

R-0, HSC

R-0, HSC

ENDPT<3:0>(2)

R-0, HSC

R-0, HSC

R-0, HSC

U-0

U-0

DIR

PPBI(1)

—

—

bit 7

bit 0

Legend:

U = Unimplemented bit, read as ‘0’

R = Readable bit

W = Writable bit

HSC = Hardware Settable/Clearable bit

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7-4

ENDPT<3:0>: Last Endpoint Activity Number bits
(represents the number of the endpoint BDT updated by the last USB transfer)(2)
1111 = Endpoint 15
1110 = Endpoint 14
•
•
•
0001 = Endpoint 1
0000 = Endpoint 0

bit 3

DIR: Last Buffer Descriptor Direction Indicator bit
1 = The last transaction was a transmit transfer (TX)
0 = The last transaction was a receive transfer (RX)

bit 2

PPBI: Ping-Pong Buffer Descriptor Pointer Indicator bit(1)
1 = The last transaction was to the ODD buffer descriptor bank
0 = The last transaction was to the EVEN buffer descriptor bank

bit 1-0

Unimplemented: Read as ‘0’

Note 1:
2:

This bit is only valid for endpoints with available EVEN and ODD buffer descriptor registers.
In Host mode, all transactions are processed through Endpoint 0 and the Endpoint 0 BDTs. Therefore,
ENDPT<3:0> will always read as ‘0000’.

 2009-2012 Microchip Technology Inc.

DS70616G-page 391

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-5:

UxCON: USB CONTROL REGISTER (DEVICE MODE)

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15
U-0

bit 8
R-x, HSC

—

SE0

R/W-0
PKTDIS

U-0
—

R/W-0
(1)

HOSTEN

R/W-0

R/W-0

R/W-0

RESUME

PPBRST

USBEN

bit 7

bit 0

Legend:

U = Unimplemented bit, read as ‘0’

R = Readable bit

W = Writable bit

HSC = Hardware Settable/Clearable bit

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-7

Unimplemented: Read as ‘0’

bit 6

SE0: Live Single-Ended Zero Flag bit
1 = Single-ended zero is active on the USB bus
0 = No single-ended zero is detected

bit 5

PKTDIS: Packet Transfer Disable bit
1 = SIE token and packet processing are disabled; automatically set when a SETUP token is received
0 = SIE token and packet processing are enabled

bit 4

Unimplemented: Read as ‘0’

bit 3

HOSTEN: USB Host Mode Enable bit(1)
1 = USB host capability is enabled; pull-downs on D+ and D- are activated in hardware
0 = USB host capability is disabled

bit 2

RESUME: USB Resume Signaling Enable bit
1 = Resume signaling is activated
0 = Resume signaling is disabled

bit 1

PPBRST: Ping-Pong Buffers Reset bit
1 = Resets all Ping-Pong Buffer Pointers to the EVEN buffer descriptor banks
0 = Ping-Pong Buffer Pointers are not reset

bit 0

USBEN: USB Module Enable bit
1 = USB module and supporting circuitry are enabled (device attached); D+ pull-up is activated in hardware
0 = USB module and supporting circuitry are disabled (device detached)

Note 1:

This bit should be ‘0’ in Device mode.

DS70616G-page 392

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-6:

UxCON: USB CONTROL REGISTER (HOST MODE)

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R-x, HSC

R-x, HSC

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

JSTATE

SE0

TOKBUSY

USBRST

HOSTEN

RESUME

PPBRST

SOFEN

bit 7

bit 0

Legend:

U = Unimplemented bit, read as ‘0’

R = Readable bit

W = Writable bit

HSC = Hardware Settable/Clearable bit

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7

JSTATE: Live Differential Receiver J State Flag bit
1 = J state (differential ‘0’ in low-speed, differential ‘1’ in full-speed) is detected on the USB
0 = No J state is detected

bit 6

SE0: Live Single-Ended Zero Flag bit
1 = Single-ended zero is active on the USB bus
0 = No single-ended zero is detected

bit 5

TOKBUSY: Token Busy Status bit
1 = Token is being executed by the USB module in On-The-Go state
0 = No token is being executed

bit 4

USBRST: USB Reset bit
1 = USB Reset has been generated; for Software Reset, application must set this bit for 50 ms and
then clear it
0 = USB Reset is terminated

bit 3

HOSTEN: USB Host Mode Enable bit
1 = USB host capability is enabled; pull-downs on D+ and D- are activated in hardware
0 = USB host capability is disabled

bit 2

RESUME: USB Resume Signaling Enable bit
1 = Resume signaling is activated; software must set the bit for 10 ms and then clear to enable remote
wake-up
0 = Resume signaling is disabled

bit 1

PPBRST: Ping-Pong Buffers Reset bit
1 = Resets all Ping-Pong Buffer Pointers to the EVEN buffer descriptor banks
0 = Ping-Pong Buffer Pointers are not reset

bit 0

SOFEN: USB Start-of-Frame (SOF) Enable bit
1 = Start-of-Frame token is sent every one 1 ms
0 = Start-of-Frame token is disabled

 2009-2012 Microchip Technology Inc.

DS70616G-page 393

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-7:

UxADDR: USB ADDRESS REGISTER

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

LSPDEN(1)

R/W-0

R/W-0

R/W-0

R/W-0

DEVADDR<6:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-8

Unimplemented: Read as ‘0’

bit 7

LSPDEN: USB Low-Speed Enable Indicator bit(1)
1 = USB module operates at low-speed
0 = USB module operates at full-speed

bit 6-0

DEVADDR<6:0>: USB Device Address bits

Note 1:

x = Bit is unknown

Host mode only. In Device mode, this bit is unimplemented.

REGISTER 22-8:

UxTOK: USB TOKEN REGISTER (HOST MODE ONLY)

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

PID<3:0>(1)

R/W-0

R/W-0

EP<3:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-8

Unimplemented: Read as ‘0’

bit 7-4

PID<3:0>: Token Type Identifier bits(1)
1101 = SETUP (TX) token type transaction
1001 = IN (RX) token type transaction
0001 = OUT (TX) token type transaction

bit 3-0

EP<3:0>: Token Command Endpoint Address bits
This value must specify a valid endpoint on the attached device.

Note 1:

x = Bit is unknown

All other combinations are reserved and are not to be used.

DS70616G-page 394

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-9:
U-0
—
bit 15
R/W-0

UxSOF: USB OTG START-OF-TOKEN THRESHOLD REGISTER
(HOST MODE ONLY)
U-0
—

U-0
—

U-0
—

U-0
—

U-0
—

U-0
—

U-0
—
bit 8

R/W-0

R/W-0

R/W-0
R/W-0
CNT<7:0>

R/W-0

R/W-0

R/W-0

bit 7

bit 0

Legend:
R = Readable bit
-n = Value at POR
bit 15-8
bit 7-0

W = Writable bit
‘1’ = Bit is set

U = Unimplemented bit, read as ‘0’
‘0’ = Bit is cleared
x = Bit is unknown

Unimplemented: Read as ‘0’
CNT<7:0>: Start-of-Frame Count bits
Value represents 10 + (packet size of n bytes); for example:
0100 1010 = 64-byte packet
0010 1010 = 32-byte packet
0001 0010 = 8-byte packet

REGISTER 22-10: UxCNFG1: USB CONFIGURATION REGISTER 1
U-0
—
bit 15
R/W-0
UTEYE
bit 7

U-0
—

bit 6

bit 5
bit 4

bit 3-0
Note 1:

U-0
—

U-0
—

U-0
—

U-0
—

U-0
—
bit 8

R/W-0
UOEMON(1)

U-0
—

R/W-0
USBSIDL

U-0
—

U-0
—

U-0
—

U-0
—
bit 0

Legend:
R = Readable bit
-n = Value at POR
bit 15-8
bit 7

U-0
—

W = Writable bit
‘1’ = Bit is set

U = Unimplemented bit, read as ‘0’
x = Bit is unknown

‘0’ = Bit is cleared

Unimplemented: Read as ‘0’
UTEYE: USB Eye Pattern Test Enable bit
1 = Eye pattern test is enabled
0 = Eye pattern test is disabled
UOEMON: USB OE Monitor Enable bit(1)
1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving
0 = OE signal is inactive(1)
Unimplemented: Read as ‘0’
USBSIDL: USB OTG Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode
Unimplemented: Read as ‘0’
When the UTRIS (UxCNFG2<0>) bit is set, the OE signal is active regardless of the setting of UOEMON.

 2009-2012 Microchip Technology Inc.

DS70616G-page 395

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-11: UxCNFG2: USB CONFIGURATION REGISTER 2
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

U-0

—

—

R/W-0
UVCMPSEL

R/W-0

R/W-0

PUVBUS

EXTI2CEN

R/W-0

R/W-0
(1)

UVBUSDIS

R/W-0
(1)

UVCMPDIS

UTRDIS(1)

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-6

Unimplemented: Read as ‘0’

bit 5

UVCMPSEL: USB External Comparator Input Mode Select bit

x = Bit is unknown

When UVCMPDIS is Set:
1 = Use 3-pin input for external comparators
0 = Use 2-pin input for external comparators
bit 4

PUVBUS: VBUS Pull-up Enable bit
1 = Pull-up on VBUS pin is enabled
0 = Pull-up on VBUS pin is disabled

bit 3

EXTI2CEN: I2C™ Interface for External Module Control Enable bit
1 = External module(s) controlled via I2C interface
0 = External module(s) controlled via dedicated pins

bit 2

UVBUSDIS: USB On-Chip 5V Boost Regulator Builder Disable bit(1)
1 = On-chip boost regulator builder is disabled; digital output control interface is enabled
0 = On-chip boost regulator builder is active

bit 1

UVCMPDIS: USB On-Chip VBUS Comparator Disable bit(1)
1 = On-chip charge VBUS comparator is disabled; digital input status interface is enabled
0 = On-chip charge VBUS comparator is active

bit 0

UTRDIS: USB On-Chip Transceiver Disable bit(1)
1 = On-chip transceiver is disabled; digital transceiver interface is enabled
0 = On-chip transceiver is active

Note 1:

Do not change this bit while the USBPWR bit is set (UxPWRC<0> = 1).

DS70616G-page 396

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-12: UxOTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/K-0, HS

R/K-0, HS

R/K-0, HS

R/K-0, HS

R/K-0, HS

R/K-0, HS

U-0

R/K-0, HS

IDIF

T1MSECIF

LSTATEIF

ACTVIF

SESVDIF

SESENDIF

—

VBUSVDIF

bit 7

bit 0

Legend:

U = Unimplemented bit, read as ‘0’

R = Readable bit

K = Write ‘1’ to clear bit

HS = Hardware Settable bit

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7

IDIF: ID State Change Indicator bit
1 = Change in ID state is detected
0 = No ID state change

bit 6

T1MSECIF: 1 Millisecond Timer bit
1 = The 1 millisecond timer has expired
0 = The 1 millisecond timer has not expired

bit 5

LSTATEIF: Line State Stable Indicator bit
1 = USB line state (as defined by the SE0 and JSTATE bits) has been stable for 1 ms, but different from
last time
0 = USB line state has not been stable for 1 ms

bit 4

ACTVIF: Bus Activity Indicator bit
1 = Activity on the D+/D- lines or VBUS is detected
0 = No activity on the D+/D- lines or VBUS is detected

bit 3

SESVDIF: Session Valid Change Indicator bit
1 = VBUS has crossed VA_SESS_VLD (as defined in the USB OTG Specification)(1)
0 = VBUS has not crossed VA_SESS_VLD

bit 2

SESENDIF: B-Device VBUS Change Indicator bit
1 = VBUS change on B-device is detected; VBUS has crossed VB_SESS_END (as defined in the USB
OTG Specification)(1)
0 = VBUS has not crossed VA_SESS_END

bit 1

Unimplemented: Read as ‘0’

bit 0

VBUSVDIF: A-Device VBUS Change Indicator bit
1 = VBUS change on A-device is detected; VBUS has crossed VA_VBUS_VLD (as defined in the USB
OTG Specification)(1)
0 = No VBUS change on A-device is detected

Note 1:

VBUS threshold crossings may be either rising or falling.

 2009-2012 Microchip Technology Inc.

DS70616G-page 397

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-13: UxOTGIE: USB OTG INTERRUPT ENABLE REGISTER (HOST MODE ONLY)
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

U-0

R/W-0

IDIE

T1MSECIE

LSTATEIE

ACTVIE

SESVDIE

SESENDIE

—

VBUSVDIE

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-8

Unimplemented: Read as ‘0’

bit 7

IDIE: ID Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 6

T1MSECIE: 1 Millisecond Timer Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 5

LSTATEIE: Line State Stable Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 4

ACTVIE: Bus Activity Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 3

SESVDIE: Session Valid Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 2

SESENDIE: B-Device Session End Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 1

Unimplemented: Read as ‘0’

bit 0

VBUSVDIE: A-Device VBUS Valid Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

DS70616G-page 398

x = Bit is unknown

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-14: UxIR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/K-0, HS

U-0

R/K-0, HS

R/K-0, HS

R/K-0, HS

R/K-0, HS

R-0

R/K-0, HS

STALLIF

—

RESUMEIF

IDLEIF

TRNIF

SOFIF

UERRIF

URSTIF

bit 7

bit 0

Legend:

U = Unimplemented bit, read as ‘0’

R = Readable bit

K = Write ‘1’ to clear bit

HS = Hardware Settable bit

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7

STALLIF: STALL Handshake Interrupt bit
1 = A STALL handshake was sent by the peripheral during the handshake phase of the transaction in
Device mode
0 = A STALL handshake has not been sent

bit 6

Unimplemented: Read as ‘0’

bit 5

RESUMEIF: Resume Interrupt bit
1 = A K-State is observed on the D+ or D- pin for 2.5 s (differential ‘1’ for low speed, differential ‘0’ for
full speed)
0 = No K-State is observed

bit 4

IDLEIF: Idle Detect Interrupt bit
1 = Idle condition is detected (constant Idle state of 3 ms or more)
0 = No Idle condition is detected

bit 3

TRNIF: Token Processing Complete Interrupt bit
1 = Processing of current token is complete; read UxSTAT register for endpoint BDT information
0 = Processing of current token is not complete; clear UxSTAT register or load next token from STAT
(clearing this bit causes the the STAT FIFO to advance)

bit 2

SOFIF: Start-of-Frame Token Interrupt bit
1 = A Start-of-Frame token was received by the peripheral
0 = A Start-of-Frame token has not been received by the peripheral

bit 1

UERRIF: USB Error Condition Interrupt bit (read-only)
1 = An unmasked error condition has occurred; only error states enabled in the UxEIE register can set
this bit
0 = No unmasked error condition has occurred

bit 0

URSTIF: USB Reset Interrupt bit
1 = Valid USB Reset has occurred for at least 2.5 s; Reset state must be cleared before this bit can
be reasserted
0 = No USB Reset has occurred

 2009-2012 Microchip Technology Inc.

DS70616G-page 399

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-15: UxIR: USB INTERRUPT STATUS REGISTER (HOST MODE ONLY)
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/K-0, HS

R/K-0, HS

R/K-0, HS

R/K-0, HS

R/K-0, HS

R/K-0, HS

R-0

R/K-0, HS

STALLIF

ATTACHIF

RESUMEIF

IDLEIF

TRNIF

SOFIF

UERRIF

DETACHIF

bit 7

bit 0

Legend:

U = Unimplemented bit, read as ‘0’

R = Readable bit

K = Write ‘1’ to clear bit

HS = Hardware Settable bit

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7

STALLIF: STALL Handshake Interrupt bit
1 = A STALL handshake was sent by the peripheral device during the handshake phase of the
transaction in Device mode
0 = A STALL handshake has not been sent

bit 6

ATTACHIF: Peripheral Attach Interrupt bit
1 = A peripheral attachment has been detected by the module; set if the bus state is not SE0 and there
has been no bus activity for 2.5 s
0 = No peripheral attachment is detected

bit 5

RESUMEIF: Resume Interrupt bit
1 = A K-State is observed on the D+ or D- pin for 2.5 s (differential ‘1’ for low speed, differential ‘0’ for
full speed)
0 = No K-State is observed

bit 4

IDLEIF: Idle Detect Interrupt bit
1 = Idle condition is detected (constant Idle state of 3 ms or more)
0 = No Idle condition is detected

bit 3

TRNIF: Token Processing Complete Interrupt bit
1 = Processing of current token is complete; read USTAT register for endpoint BDT information
0 = Processing of current token is not complete; clear USTAT register or load next token from STAT

bit 2

SOFIF: Start-of-Frame Token Interrupt bit
1 = Start-of-Frame threshold is reached by the host
0 = No Start-of-Frame token threshold is reached

bit 1

UERRIF: USB Error Condition Interrupt bit
1 = An unmasked error condition has occurred; only error states enabled in the UxEIE register can set
this bit
0 = No unmasked error condition has occurred

bit 0

DETACHIF: Detach Interrupt bit
1 = A peripheral detachment has been detected by the module
0 = No peripheral detachment has been detected

DS70616G-page 400

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-16: UxIE: USB INTERRUPT ENABLE REGISTER (DEVICE MODE)
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/W-0

U-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

STALLIE

—

RESUMEIE

IDLEIE

TRNIE

SOFIE

UERRIE

URSTIE

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-8

Unimplemented: Read as ‘0’

bit 7

STALLIE: STALL Handshake Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 6

Unimplemented: Read as ‘0’

bit 5

RESUMEIE: Resume Interrupt bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 4

IDLEIE: Idle Detect Interrupt bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 3

TRNIE: Token Processing Complete Interrupt bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 2

SOFIE: Start-of-Frame Token Interrupt bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 1

UERRIE: USB Error Condition Interrupt bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 0

URSTIE: USB Reset Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

 2009-2012 Microchip Technology Inc.

x = Bit is unknown

DS70616G-page 401

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-17: UxIE: USB INTERRUPT ENABLE REGISTER (HOST MODE)
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

STALLIE

ATTACHIE(1)

RESUMEIE

IDLEIE

TRNIE

SOFIE

UERRIE

DETACHIE

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-8

Unimplemented: Read as ‘0’

bit 7

STALLIE: STALL Handshake Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 6

ATTACHIE: Peripheral Attach Interrupt bit(1)
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 5

RESUMEIE: Resume Interrupt bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 4

IDLEIE: Idle Detect Interrupt bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 3

TRNIE: Token Processing Complete Interrupt bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 2

SOFIE: Start-of-Frame Token Interrupt bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 1

UERRIE: USB Error Condition Interrupt bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 0

DETACHIE: USB Detach Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

Note 1:

x = Bit is unknown

Unimplemented in OTG mode, read as ‘0’.

DS70616G-page 402

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-18: UxEIR: USB ERROR INTERRUPT STATUS REGISTER (DEVICE MODE)
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/K-0, HS

R/K-0,HS

R/K-0, HS

R/K-0, HS

R/K-0, HS

R/K-0, HS

R/K-0, HS

R/K-0, HS

BTSEF

BUSACCEF

DMAEF

BTOEF

DFN8EF

CRC16EF

CRC5EF

PIDEF

bit 7

bit 0

Legend:

U = Unimplemented bit, read as ‘0’

R = Readable bit

K = Write ‘1’ to clear bit

HS = Hardware Settable bit

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7

BTSEF: Bit Stuff Error Flag bit
1 = Bit stuff error has been detected
0 = No bit stuff error has been detected

bit 6

BUSACCEF: Bus Access Error Flag bit
1 = Peripheral tried to access an unimplemented RAM location
0 = RAM location access was successful

bit 5

DMAEF: DMA Error Flag bit
1 = A USB DMA error condition is detected; the data size indicated by the buffer descriptor byte count
field is less than the number of received bytes; the received data is truncated
0 = No DMA error

bit 4

BTOEF: Bus Turnaround Time-out Error Flag bit
1 = Bus turnaround time-out has occurred
0 = No bus turnaround time-out has occurred

bit 3

DFN8EF: Data Field Size Error Flag bit
1 = Data field was not an integral number of bytes
0 = Data field was an integral number of bytes

bit 2

CRC16EF: CRC16 Failure Flag bit
1 = CRC16 failed
0 = CRC16 passed

bit 1

CRC5EF: CRC5 Host Error Flag bit
1 = Token packet rejected due to CRC5 error
0 = Token packet accepted (no CRC5 error)

bit 0

PIDEF: PID Check Failure Flag bit
1 = PID check failed
0 = PID check passed

 2009-2012 Microchip Technology Inc.

DS70616G-page 403

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-19: UxEIR: USB ERROR INTERRUPT STATUS REGISTER (HOST MODE)
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/K-0, HS

R/K-0,HS

R/K-0, HS

R/K-0, HS

R/K-0, HS

R/K-0, HS

R/K-0, HS

R/K-0, HS

BTSEF

BUSACCEF

DMAEF

BTOEF

DFN8EF

CRC16EF

EOFEF

PIDEF

bit 7

bit 0

Legend:

U = Unimplemented bit, read as ‘0’

R = Readable bit

K = Write ‘1’ to clear bit

HS = Hardware Settable bit

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7

BTSEF: Bit Stuff Error Flag bit
1 = Bit stuff error has been detected
0 = No bit stuff error has been detected

bit 6

BUSACCEF: Bus Access Error Flag bit
1 = Peripheral tried to access an unimplemented RAM location
0 = RAM location access was successful

bit 5

DMAEF: DMA Error Flag bit
1 = A USB DMA error condition is detected; the data size indicated by the buffer descriptor byte count
field is less than the number of received bytes, the received data is truncated
0 = No DMA error

bit 4

BTOEF: Bus Turnaround Time-out Error Flag bit
1 = Bus turnaround time-out has occurred
0 = No bus turnaround time-out has occurred

bit 3

DFN8EF: Data Field Size Error Flag bit
1 = Data field was not an integral number of bytes
0 = Data field was an integral number of bytes

bit 2

CRC16EF: CRC16 Failure Flag bit
1 = CRC16 failed
0 = CRC16 passed

bit 1

EOFEF: End-of-Frame (EOF) Error Flag bit
1 = End-of-Frame error has occurred
0 = End-of-Frame interrupt is disabled

bit 0

PIDEF: PID Check Failure Flag bit
1 = PID check failed
0 = PID check passed

DS70616G-page 404

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-20: UxEIE: USB ERROR INTERRUPT ENABLE REGISTER (DEVICE MODE)
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

BTSEE

BUSACCEE

DMAEE

BTOEE

DFN8EE

CRC16EE

CRC5EE

PIDEE

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-8

Unimplemented: Read as ‘0’

bit 7

BTSEE: Bit Stuff Error Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 6

BUSACCEE: Bus Access Error Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 5

DMAEE: DMA Error Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 4

BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 3

DFN8EE: Data Field Size Error Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 2

CRC16EE: CRC16 Failure Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 1

CRC5EE: CRC5 Host Error Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 0

PIDEE: PID Check Failure Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

 2009-2012 Microchip Technology Inc.

x = Bit is unknown

DS70616G-page 405

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-21: UxEIE: USB ERROR INTERRUPT ENABLE REGISTER (HOST MODE)
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

BTSEE

BUSACCEE

DMAEE

BTOEE

DFN8EE

CRC16EE

EOFEE

PIDEE

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-8

Unimplemented: Read as ‘0’

bit 7

BTSEE: Bit Stuff Error Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 6

BUSACCEE: Bus Access Error Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 5

DMAEE: DMA Error Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 4

BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 3

DFN8EE: Data Field Size Error Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 2

CRC16EE: CRC16 Failure Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 1

EOFEE: End-of-Frame Error interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 0

PIDEE: PID Check Failure Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

DS70616G-page 406

x = Bit is unknown

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-22: UxEPn: USB ENDPOINT n CONTROL REGISTERS (n = 0 TO 15)
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/W-0

R/W-0

U-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

LSPD(1)

RETRYDIS(1)

—

EPCONDIS

EPRXEN

EPTXEN

EPSTALL

EPHSHK

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7

LSPD: Low-Speed Direct Connection Enable bit (UEP0 only)(1)
1 = Direct connection to a low-speed device is enabled
0 = Direct connection to a low-speed device is disabled

bit 6

RETRYDIS: Retry Disable bit (UEP0 only)(1)
1 = Retry NAK transactions is disabled
0 = Retry NAK transactions is enabled; retry done in hardware

bit 5

Unimplemented: Read as ‘0’

bit 4

EPCONDIS: Bidirectional Endpoint Control bit
If EPTXEN and EPRXEN = 1:
1 = Disable Endpoint n from control transfers; only TX and RX transfers are allowed
0 = Enable Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed
For all other combinations of EPTXEN and EPRXEN:
This bit is ignored.

bit 3

EPRXEN: Endpoint Receive Enable bit
1 = Endpoint n receive is enabled
0 = Endpoint n receive is disabled

bit 2

EPTXEN: Endpoint Transmit Enable bit
1 = Endpoint n transmit is enabled
0 = Endpoint n transmit is disabled

bit 1

EPSTALL: Endpoint Stall Status bit
1 = Endpoint n was stalled
0 = Endpoint n was not stalled

bit 0

EPHSHK: Endpoint Handshake Enable bit
1 = Endpoint handshake is enabled
0 = Endpoint handshake is disabled (typically used for isochronous endpoints)

Note 1:

These bits are available only for UxEP0 and only in Host mode. For all other UxEPn registers, these bits
are always unimplemented and read as ‘0’.

 2009-2012 Microchip Technology Inc.

DS70616G-page 407

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-23: UxBDTP1: USB BUFFER DESCRIPTION TABLE REGISTER 1
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

U-0

BDTPTRL<15:9>

—

bit 7

bit 0

Legend:
R = Readable bit

W =Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7-1

BDTPTRL<15:9>: Endpoint BDT Start Address bits
Defines bits 15-9 of the 32-bit endpoint buffer descriptor table start address.

bit 0

Unimplemented: Read as ‘0’

REGISTER 22-24: UxBDTP2: USB BUFFER DESCRIPTION TABLE REGISTER 2
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

BDTPTRH<23:16>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7-0

BDTPTRH<23:16>: Endpoint BDT Start Address bits
Defines bits 23-16 of the 32-bit endpoint buffer descriptor table start address.

DS70616G-page 408

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-25: UxBDTP3: USB BUFFER DESCRIPTION TABLE REGISTER 3
U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

BDTPTRU<31:24>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7-0

BDTPTRU<31:24>: Endpoint BDT Start Address bits
Defines bits 31-24 of the 32-bit endpoint buffer descriptor table start address.

REGISTER 22-26: UxPWMCON: USB VBUS PWM GENERATOR CONTROL REGISTER
R/W-0

U-0

U-0

U-0

U-0

U-0

R/W-0

R/W-0

PWMEN

—

—

—

—

—

PWMPOL

CNTEN

bit 15

bit 8

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

PWMEN: PWM Enable bit
1 = PWM generator is enabled
0 = PWM generator is disabled; output is held in the Reset state specified by PWMPOL

bit 14-10

Unimplemented: Read as ‘0’

bit 9

PWMPOL: PWM Polarity bit
1 = PWM output is active-low and resets high
0 = PWM output is active-high and resets low

bit 8

CNTEN: PWM Counter Enable bit
1 = Counter is enabled
0 = Counter is disabled

bit 7-0

Unimplemented: Read as ‘0’

 2009-2012 Microchip Technology Inc.

DS70616G-page 409

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-27: UxPWMRRS: DUTY CYCLE AND PWM PERIOD REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

DC<7:0>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

PER<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-8

DC<7:0>: Duty Cycle bits
These bits select the PWM duty cycle.

bit 7-0

PER<7:0>: PWM Period bits
These bits select the PWM period.

x = Bit is unknown

REGISTER 22-28: UxFRMH: USB FRAME NUMBER HIGH REGISTER
U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

U-0

bit 15

bit 8
U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

R-0

R-0

R-0

FRM<10:8>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-3

Unimplemented: Read as ‘0’

bit 2-0

FRM<10:8>: 11-Bit Frame Number Upper 3 bits
These register bits are updated with the current frame number whenever a SOF token is received.

DS70616G-page 410

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 22-29: UxFRML: USB FRAME NUMBER LOW REGISTER
U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

U-0

bit 15

bit 8
R-0

R-0

R-0

R-0

R-0

R-0

R-0

R-0

FRM<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7-0

FRM<7:0>: 11-Bit Frame Number Lower 8 bits
These register bits are updated with the current frame number whenever a SOF token is received.

 2009-2012 Microchip Technology Inc.

DS70616G-page 411

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
NOTES:

DS70616G-page 412

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

23.0

10-BIT/12-BIT ANALOG-TODIGITAL CONVERTER (ADC)

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this
data sheet, refer to Section 16. “Analogto-Digital Converter (ADC)” (DS70621)
of the “dsPIC33E/PIC24E Family Reference Manual”, which is available from the
Microchip web site (www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.
The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 devices have two ADC
modules, ADC1 and ADC2. The ADC1 module
supports up to 32 analog input channels. The ADC2
module supports up to 16 analog input channels.
On ADC1, the AD12B bit (AD1CON1<10>) allows each
of the ADC modules to be configured by the user as
either a 10-bit, 4 Sample-and-Hold (S&H) ADC (default
configuration) or a 12-bit, 1 S&H ADC.
Note:

The ADC1 module needs to be disabled
before modifying the AD12B bit.

The ADC2 module only supports 10-bit operation with
4 S&H.

 2009-2012 Microchip Technology Inc.

23.1

Key Features

The 10-bit ADC configuration has the following key
features:
•
•
•
•
•
•
•
•
•
•

Successive Approximation (SAR) Conversion
Conversion Speeds of up to 1.1 Msps
Up to 32 Analog Input Pins
External Voltage Reference Input Pins
Simultaneous Sampling of up to Four Analog
Input Pins
Automatic Channel Scan mode
Selectable Conversion Trigger Source
Selectable Buffer Fill modes
Four Result Alignment Options (signed/unsigned,
fractional/integer)
Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above
features, except:
• In the 12-bit configuration, conversion speeds of
up to 500 ksps are supported
• There is only one S&H amplifier in the 12-bit
configuration, so simultaneous sampling of
multiple channels is not supported.
Depending on the particular device pinout, the ADC
can have up to 32 analog input pins, designated AN0
through AN31. In addition, there are two analog input
pins for external voltage reference connections. These
voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins
and external voltage reference input configuration
depends on the specific device.
A block diagram of the ADC module is shown in
Figure 23-1. Figure 23-2 provides a diagram of the
ADC conversion clock period.

DS70616G-page 413

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 23-1:

ADCx MODULE BLOCK DIAGRAM
AN0

ANy(3)
S&H0

Channel
Scan

+

CH0SB<4:0>

CH0SA<4:0>

-

CSCNA

CH0
AN1
VREFL

CH0NA CH0NB
AN0

VREF+(1)

AN3

AVDD VREF-(1)

AVSS

S&H1
+

CH1(2)

-

CH123SA CH123SB
AN6

VCFG<2:0>

AN9

ADCxBUF0(4)

VREFL

ADCxBUF1(4)
VREFL

VREFH
CH123NA

ADCxBUF2(4)

CH123NB

SAR ADC
AN1
AN4

S&H2
+

CH123SA CH123SB
CH2(2)

ADCxBUFE(4)

-

ADCxBUFF(4)

AN7
AN10
VREFL

CH123NA CH123NB
AN2
AN5
S&H3
+
CH3(2)

CH123SA CH123SB

-

AN8
AN11
VREFL

CH123NA

CH123NB

Alternate
Input Selection

DS70616G-page 414

Note 1: VREF+, VREF- inputs can be multiplexed
with other analog inputs.
2: Channels 1, 2 and 3 are not applicable
for the 12-bit mode of operation.
3: For dsPIC33EPXXX(GP/MC/MU)806 and
PIC24EPXXXGP806 devices, y = 0-15
and 24-31; for ADC2, y = 15; for all others,
y = 32.
4: When ADDMAEN (ADxCON4<8>) = 1,
enabling DMA, only ADCxBUF0 is used.

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

FIGURE 23-2:

ADCx CONVERSION CLOCK PERIOD BLOCK DIAGRAM
ADxCON3<15>

ADCx Internal
RC Clock(1)

1

TAD
ADxCON3<7:0>

0

6
TP(2)

ADCx Conversion
Clock Multiplier
1, 2, 3, 4, 5,..., 64

Note 1: See the ADC electrical characteristics in Section 32.0 “Electrical Characteristics” for the exact RC clock value.
2: TP = 1/FP.

 2009-2012 Microchip Technology Inc.

DS70616G-page 415

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
23.2
1.

2.

3.

4.

ADC Helpful Tips

The SMPIx control bits in the ADxCON2 registers:
a) Determine when the ADC interrupt flag is set
and an interrupt is generated, if enabled.
b) When the CSCNA bit in the ADxCON2 register is set to ‘1’, this determines when the
ADC analog scan channel list, defined in
the AD1CSSL/AD1CSSH registers, starts
over from the beginning.
c) When the DMA peripheral is not used
(ADDMAEN = 0), this determines when the
ADC Result Buffer Pointer to ADC1BUF0ADC1BUFF gets reset back to the
beginning at ADC1BUF0.
d) When the DMA peripheral is used
(ADDMAEN = 1), this determines when the
DMA Address Pointer is incremented after a
sample/conversion operation. ADC1BUF0 is
the only ADC buffer used in this mode. The
ADC Result Buffer Pointer to ADC1BUF0ADC1BUFF gets reset back to the beginning
at ADC1BUF0. The DMA address is incremented after completion of every 32nd
sample/conversion operation. Conversion
results are stored in the ADC1BUF0 register
for transfer to RAM using DMA.
When the DMA module is disabled
(ADDMAEN = 0), the ADC has 16 result buffers.
ADC conversion results are stored sequentially
in ADC1BUF0-ADC1BUFF, regardless of which
analog inputs are being used subject to the
SMPIx bits and the condition described in 1c)
above. There is no relationship between the
ANx input being measured and which ADC
buffer (ADC1BUF0-ADC1BUFF) that the
conversion results will be placed in.
When the DMA module is disabled
(ADDMAEN = 1), the ADC module has only
1 ADC result buffer (i.e., ADC1BUF0) per ADC
peripheral and the ADC conversion result must
be read, either by the CPU or DMA controller,
before the next ADC conversion is complete to
avoid overwriting the previous value.
The DONE bit (ADxCON1<0>) is only cleared at
the start of each conversion and is set at the
completion of the conversion, but remains set
indefinitely, even through the next sample phase
until the next conversion begins. If application
code is monitoring the DONE bit in any kind of
software loop, the user must consider this
behavior because the CPU code execution is
faster than the ADC. As a result, in Manual
Sample mode, particularly where the user’s
code is setting the SAMP bit (ADxCON1<1>),
the DONE bit should also be cleared by the user
application just before setting the SAMP bit.

DS70616G-page 416

23.3

ADC Resources

Many useful resources related to Analog-to-Digital
conversion are provided on the main product page of
the Microchip web site for the devices listed in this data
sheet. This product page, which can be accessed using
this link, contains the latest updates and additional
information.
Note:

23.3.1

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

KEY RESOURCES

• Section 16. “Analog-to-Digital Converter
(ADC)” (DS70621) in the “dsPIC33E/PIC24E
Family Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
23.4

ADC Control Registers

REGISTER 23-1:
R/W-0

ADxCON1: ADCx CONTROL REGISTER 1
U-0

ADON

—

R/W-0
ADSIDL

R/W-0
ADDMABM

U-0

R/W-0

—

AD12B(1)

R/W-0

R/W-0

FORM<1:0>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

SSRC<2:0>

R/W-0
SSRCG

R/W-0

R/W-0

SIMSAM

ASAM(3)

R/W-0, HSC R/C-0, HSC
SAMP

DONE(3)

bit 7

bit 0

Legend:

C = Clearable bit

HSC = Hardware Settable/Clearable bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

ADON: ADC Operating Mode bit
1 = ADC module is operating
0 = ADC is off

bit 14

Unimplemented: Read as ‘0’

bit 13

ADSIDL: ADC Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode

bit 12

ADDMABM: DMA Buffer Build Mode bit
1 = DMA buffers are written in the order of conversion; the module provides an address to the DMA
channel that is the same as the address used for the non-DMA stand-alone buffer
0 = DMA buffers are written in Scatter/Gather mode; the module provides a Scatter/Gather address
to the DMA channel, based on the index of the analog input and the size of the DMA buffer

bit 11

Unimplemented: Read as ‘0’

bit 10

AD12B: ADC 10-Bit or 12-Bit Operation Mode bit(1)
1 = 12-bit, 1-channel ADC operation
0 = 10-bit, 4-channel ADC operation

bit 9-8

FORM<1:0>: Data Output Format bits
For 10-Bit Operation:
11 = Signed fractional (DOUT = sddd dddd dd00 0000, where s = .NOT.d<9>)
10 = Fractional (DOUT = dddd dddd dd00 0000)
01 = Signed integer (DOUT = ssss sssd dddd dddd, where s = .NOT.d<9>)
00 = Integer (DOUT = 0000 00dd dddd dddd)
For 12-Bit Operation:
11 = Signed fractional (DOUT = sddd dddd dddd 0000, where s = .NOT.d<11>)
10 = Fractional (DOUT = dddd dddd dddd 0000)
01 = Signed Integer (DOUT = ssss sddd dddd dddd, where s = .NOT.d<11>)
00 = Integer (DOUT = 0000 dddd dddd dddd)

Note 1:
2:
3:

This bit is only available in the ADC1 module. In the ADC2 module, this bit is unimplemented and is read
as ‘0’.
This setting is available in dsPIC33EPXXX(MC/MU)806/810/814 devices only.
Do not clear the DONE bit in software if ADC Sample Auto-Start is enabled (ASAM = 1).

 2009-2012 Microchip Technology Inc.

DS70616G-page 417

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 23-1:

ADxCON1: ADCx CONTROL REGISTER 1 (CONTINUED)

bit 7-5

SSRC<2:0>: Sample Clock Source Select bits
If SSRCG = 1:
111 = Reserved
110 = PWM Generator 7 primary trigger compare ends sampling and starts conversion(2)
101 = PWM Generator 6 primary trigger compare ends sampling and starts conversion(2)
100 = PWM Generator 5 primary trigger compare ends sampling and starts conversion(2)
011 = PWM Generator 4 primary trigger compare ends sampling and starts conversion(2)
010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion(2)
001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion(2)
000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion(2)
If SSRCG = 0:
111 = Internal counter ends sampling and starts conversion (auto-convert)
110 = Reserved
101 = PWM secondary Special Event Trigger ends sampling and starts conversion(2)
100 = Timer5 compare ends sampling and starts conversion
011 = PWM primary Special Event Trigger ends sampling and starts conversion(2)
010 = Timer3 compare ends sampling and starts conversion
001 = Active transition on the INT0 pin ends sampling and starts conversion
000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)

bit 4

SSRCG: Sample Clock Source Group bit
(See bits<7-5> for details.)

bit 3

SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as ‘0’
1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or samples CH0 and
CH1 simultaneously (when CHPS<1:0> = 01)
0 = Samples multiple channels individually in sequence

bit 2

ASAM: ADC Sample Auto-Start bit(3)
1 = Sampling begins immediately after the last conversion; SAMP bit is auto-set
0 = Sampling begins when the SAMP bit is set

bit 1

SAMP: ADC Sample Enable bit
1 = ADC S&H amplifiers are sampling
0 = ADC S&H amplifiers are holding
If ASAM = 0, software can write ‘1’ to begin sampling. Automatically set by hardware if ASAM = 1.
If SSRC = 000, software can write ‘0’ to end sampling and start conversion. If SSRC 000, automatically
cleared by hardware to end sampling and start conversion.

bit 0

DONE: ADC Conversion Status bit(3)
1 = ADC conversion cycle is completed.
0 = ADC conversion has not started or is in progress
Automatically set by hardware when ADC conversion is complete. Software can write ‘0’ to clear the
DONE status (software not allowed to write ‘1’). Clearing this bit does NOT affect any operation in
progress. Automatically cleared by hardware at the start of a new conversion.

Note 1:
2:
3:

This bit is only available in the ADC1 module. In the ADC2 module, this bit is unimplemented and is read
as ‘0’.
This setting is available in dsPIC33EPXXX(MC/MU)806/810/814 devices only.
Do not clear the DONE bit in software if ADC Sample Auto-Start is enabled (ASAM = 1).

DS70616G-page 418

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 23-2:
R/W-0

AD1CON2: ADC1 CONTROL REGISTER 2
R/W-0

R/W-0

VCFG<2:0>

U-0

U-0

R/W-0

—

—

CSCNA

R/W-0

R/W-0

CHPS<1:0>

bit 15

bit 8

R-0

R/W-0

R/W-0

BUFS

R/W-0

R/W-0

R/W-0

SMPI<4:0>

R/W-0

R/W-0

BUFM

ALTS

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-13

x = Bit is unknown

VCFG<2:0>: Converter Voltage Reference Configuration bits
000
001
010
011
1xx

VREFH
AVDD
External VREF+
AVDD
External VREF+
AVDD

VREFL
Avss
Avss
External VREFExternal VREFAvss

bit 12-11

Unimplemented: Read as ‘0’

bit 10

CSCNA: Input Scan Select bit
1 = Scans inputs for CH0+ during Sample A bit
0 = Does not scan inputs

bit 9-8

CHPS<1:0>: Channel Select bits
When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as ‘0’:
1x = Converts CH0, CH1, CH2 and CH3
01 = Converts CH0 and CH1
00 = Converts CH0

bit 7

BUFS: Buffer Fill Status bit (only valid when BUFM = 1)
1 = ADC is currently filling the second half of the buffer; the user application should access data in the
first half of the buffer
0 = ADC is currently filling the first half of the buffer; the user application should access data in the
second half of the buffer

bit 6-2

SMPI<4:0>: Increment Rate bits
When ADDMAEN = 0:
01111 = Generates interrupt after completion of every 16th sample/conversion operation
01110 = Generates interrupt after completion of every 15th sample/conversion operation
•
•
•
00001 = Generates interrupt after completion of every 2nd sample/conversion operation
00000 = Generates interrupt after completion of every sample/conversion operation
When ADDMAEN = 1:
11111 = Increments the DMA address after completion of every 32nd sample/conversion operation
11110 = Increments the DMA address after completion of every 31st sample/conversion operation
•
•
•
00001 = Increments the DMA address after completion of every 2nd sample/conversion operation
00000 = Increments the DMA address after completion of every sample/conversion operation

 2009-2012 Microchip Technology Inc.

DS70616G-page 419

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 23-2:

AD1CON2: ADC1 CONTROL REGISTER 2 (CONTINUED)

bit 1

BUFM: Buffer Fill Mode Select bit
1 = Starts filling the first half of the buffer on the first interrupt and the second half of the buffer on the
next interrupt
0 = Always starts filling the buffer from the Start address.

bit 0

ALTS: Alternate Input Sample Mode Select bit
1 = Uses channel input selects for Sample A on the first sample and Sample B on the next sample
0 = Always uses channel input selects for Sample A

DS70616G-page 420

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 23-3:
R/W-0

AD2CON2: ADC2 CONTROL REGISTER 2
R/W-0

R/W-0

VCFG<2:0>

U-0

U-0

R/W-0

—

—

CSCNA

R/W-0

R/W-0

CHPS<1:0>

bit 15

bit 8

R-0

U-0

BUFS

—

R/W-0

R/W-0

R/W-0

R/W-0

SMPI<3:0>

R/W-0

R/W-0

BUFM

ALTS

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-13

x = Bit is unknown

VCFG<2:0>: Converter Voltage Reference Configuration bits
000
001
010
011
1xx

VREFH
AVDD
External VREF+
AVDD
External VREF+
AVDD

VREFL
Avss
Avss
External VREFExternal VREFAvss

bit 12-11

Unimplemented: Read as ‘0’

bit 10

CSCNA: Input Scan Select bit
1 = Scans inputs for CH0+ during Sample A bit
0 = Does not scan inputs

bit 9-8

CHPS<1:0>: Channel Select bits
When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as ‘0’:
1x = Converts CH0, CH1, CH2 and CH3
01 = Converts CH0 and CH1
00 = Converts CH0

bit 7

BUFS: Buffer Fill Status bit (only valid when BUFM = 1)
1 = ADC is currently filling the second half of the buffer; the user application should access data in the
first half of the buffer
0 = ADC is currently filling the first half of the buffer; the user application should access data in the
second half of the buffer

bit 6-2

SMPI<3:0>: Increment Rate bits
When ADDMAEN = 0:
1111 = Generates interrupt after completion of every 16th sample/conversion operation
1110 = Generates interrupt after completion of every 15th sample/conversion operation
•
•
•
0001 = Generates interrupt after completion of every 2nd sample/conversion operation
0000 = Generates interrupt after completion of every sample/conversion operation
When ADDMAEN = 1:
1111 = Increments the DMA address after completion of every 16th sample/conversion operation
1110 = Increments the DMA address after completion of every 15th sample/conversion operation
•
•
•
0001 = Increments the DMA address after completion of every 2nd sample/conversion operation
0000 = Increments the DMA address after completion of every sample/conversion operation

 2009-2012 Microchip Technology Inc.

DS70616G-page 421

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 23-3:

AD2CON2: ADC2 CONTROL REGISTER 2 (CONTINUED)

bit 1

BUFM: Buffer Fill Mode Select bit
1 = Starts buffer filling the first half of the buffer on the first interrupt and the second half of the buffer
on the next interrupt
0 = Always starts filling the buffer from the Start address

bit 0

ALTS: Alternate Input Sample Mode Select bit
1 = Uses channel input selects for Sample A on first sample and Sample B on next sample
0 = Always uses channel input selects for Sample A

DS70616G-page 422

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 23-4:

ADxCON3: ADCx CONTROL REGISTER 3

R/W-0

U-0

U-0

ADRC

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SAMC<4:0>(1)

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

ADCS<7:0>(2,3)
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15

ADRC: ADC Conversion Clock Source bit
1 = ADC internal RC clock
0 = Clock Derived From System Clock

bit 14-13

Unimplemented: Read as ‘0’

bit 12-8

SAMC<4:0>: Auto-Sample Time bits(1)
11111 = 31 TAD
•
•
•
00001 = 1 TAD
00000 = 0 TAD

bit 7-0

ADCS<7:0>: ADC Conversion Clock Select bits(2,3)
11111111 = TP • (ADCS<7:0> + 1) = 256 • TCY = TAD
•
•
•
00000010 = TP • (ADCS<7:0> + 1) = 3 • TCY = TAD
00000001 = TP • (ADCS<7:0> + 1) = 2 • TCY = TAD
00000000 = TP • (ADCS<7:0> + 1) = 1 • TCY = TAD

Note 1:
2:
3:

x = Bit is unknown

This bit is only used if ADxCON1<7:5> (SSRC<2:0>) = 111 and ADxCON1<4> (SSRCG) = 0.
This bit is not used if ADxCON3<15> (ADRC) = 1.
TP = 1/FP.

 2009-2012 Microchip Technology Inc.

DS70616G-page 423

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 23-5:

ADxCON4: ADCx CONTROL REGISTER 4

U-0

U-0

U-0

U-0

U-0

U-0

U-0

R/W-0

—

—

—

—

—

—

—

ADDMAEN

bit 15

bit 8

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

R/W-0

R/W-0

R/W-0

DMABL<2:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-9

Unimplemented: Read as ‘0’

bit 8

ADDMAEN: ADC DMA Enable bit
1 = Conversion results are stored in ADCxBUF0 register for transferring to RAM using DMA
0 = Conversion results are stored in ADCxBUF0 through ADCxBUFF registers; DMA will not be used

bit 7-3

Unimplemented: Read as ‘0’

bit 2-0

DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits
111 = Allocates 128 words of buffer to each analog input
110 = Allocates 64 words of buffer to each analog input
101 = Allocates 32 words of buffer to each analog input
100 = Allocates 16 words of buffer to each analog input
011 = Allocates 8 words of buffer to each analog input
010 = Allocates 4 words of buffer to each analog input
001 = Allocates 2 words of buffer to each analog input
000 = Allocates 1 word of buffer to each analog input

DS70616G-page 424

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 23-6:

ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

R/W-0

R/W-0

CH123NB<1:0>

R/W-0
CH123SB

bit 15

bit 8

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

R/W-0

R/W-0

CH123NA<1:0>

R/W-0
CH123SA

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-11

Unimplemented: Read as ‘0’

bit 10-9

CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits
When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as ‘0’:
11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11
10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8
0x = CH1, CH2, CH3 negative input is VREFL

bit 8

CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit
When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as ‘0’:
1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5
0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2

bit 7-3

Unimplemented: Read as ‘0’

bit 2-1

CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits
When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as ‘0’:
11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11
10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8
0x = CH1, CH2, CH3 negative input is VREFL

bit 0

CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit
When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as ‘0’:
1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5
0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2

 2009-2012 Microchip Technology Inc.

DS70616G-page 425

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 23-7:

ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER

R/W-0

U-0

U-0

CH0NB

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

CH0SB<4:0>(1)

bit 15

bit 8

R/W-0

U-0

U-0

CH0NA

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

CH0SA<4:0>(1)

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

CH0NB: Channel 0 Negative Input Select for Sample B bit
Same definition as bit 7.

bit 14-13

Unimplemented: Read as ‘0’

bit 12-8

CH0SB<4:0>: Channel 0 Positive Input Select for Sample B bits(1)
Same definition as bits<4:0>.

bit 7

CH0NA: Channel 0 Negative Input Select for Sample A bit
1 = Channel 0 negative input is AN1
0 = Channel 0 negative input is VREFL

bit 6-5

Unimplemented: Read as ‘0’

bit 4-0

CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits(1)
11111 = Channel 0 positive input is AN31
11110 = Channel 0 positive input is AN30
•
•
•
00010 = Channel 0 positive input is AN2
00001 = Channel 0 positive input is AN1
00000 = Channel 0 positive input is AN0

Note 1:

The AN16 through AN31 pins are not available for the ADC2 module. The AN16 through AN23 pins are
not available for dsPIC33EP256MU806 (64-pin) devices.

DS70616G-page 426

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 23-8:

AD1CSSH: ADC1 INPUT SCAN SELECT REGISTER HIGH(1,2,3)

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

CSS31

CSS30

CSS29

CSS28

CSS27

CSS26

CSS25

CSS24

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

CSS23

CSS22

CSS21

CSS20

CSS19

CSS18

CSS17

CSS16

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

Note 1:
2:
3:

x = Bit is unknown

CSS<31:16>: ADC1 Input Scan Selection bits
1 = Selects ANx for input scan
0 = Skips ANx for input scan
On devices with less than 32 analog inputs, all ADxCSSH bits can be selected by user software. However,
inputs selected for scan without a corresponding input on the device converts to VREFL.
CSSx = ANx, where x = 16-31.
ADC2 only supports analog inputs, AN0-AN15; therefore, no ADC2 Input Scan Select register exists.

REGISTER 23-9:

ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW(1,2)

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

CSS15

CSS14

CSS13

CSS12

CSS11

CSS10

CSS9

CSS8

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

CSS7

CSS6

CSS5

CSS4

CSS3

CSS2

CSS1

CSS0

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

Note 1:
2:

x = Bit is unknown

CSS<15:0>: ADC Input Scan Selection bits
1 = Selects ANx for input scan
0 = Skips ANx for input scan
On devices with less than 16 analog inputs, all ADxCSSL bits can be selected by the user. However,
inputs selected for scan without a corresponding input on the device converts to VREFL.
CSSx = ANx, where x = 0-15.

 2009-2012 Microchip Technology Inc.

DS70616G-page 427

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

NOTES:

DS70616G-page 428

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
24.0

DATA CONVERTER
INTERFACE (DCI) MODULE

24.1

The Data Converter Interface (DCI) module allows
simple interfacing of devices, such as audio coder/
decoders (Codecs), ADC and D/A Converters. The
following interfaces are supported:

Note 1: This data sheet is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to “Section 20. Data
Converter Interface (DCI)” (DS70356)
of the “dsPIC33E/PIC24E Family
Reference Manual”, which is available
from
the
Microchip
web
site
(www.microchip.com).

• Framed Synchronous Serial Transfer (Single or
Multi-Channel)
• Inter-IC Sound (I2S) Interface
• AC-Link Compliant mode
General features include:
• Programmable word size up to 16 bits
• Supports up to 16 time slots, for a maximum
frame size of 256 bits
• Data buffering for up to 4 samples without CPU
overhead

2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.

FIGURE 24-1:

Module Introduction

DCI MODULE BLOCK DIAGRAM
BCG Control Bits
SCKD
FP

Sample Rate
Generator

CSCK

FSD
Word Size Selection bits
Frame Length Selection bits
16-Bit Data Bus

DCI Mode Selection bits

Frame
Synchronization
Generator

COFS

Receive Buffer
Registers w/Shadow
DCI Buffer
Control Unit
15
Transmit Buffer
Registers w/Shadow

0
DCI Shift Register

CSDI

CSDO

 2009-2012 Microchip Technology Inc.

DS70616G-page 429

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
24.2

DCI Resources

Many useful resources related to DCI are provided on
the main product page of the Microchip web site for the
devices listed in this data sheet. This product page,
which can be accessed using this link, contains the
latest updates and additional information.
Note:

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

DS70616G-page 430

24.2.1

KEY RESOURCES

• Section 20. “Data Converter Interface (DCI)”
(DS70356) in the “dsPIC33E/PIC24E Family
Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
24.3

DCI Control Registers

REGISTER 24-1:

DCICON1: DCI CONTROL REGISTER 1

R/W-0

U-0

R/W-0

U-0

R/W-0

R/W-0

R/W-0

R/W-0

DCIEN

r

DCISIDL

r

DLOOP

CSCKD

CSCKE

COFSD

bit 15

bit 8

R/W-0

R/W-0

R/W-0

U-0

U-0

U-0

UNFM

CSDOM

DJST

r

r

r

R/W-0

R/W-0

COFSM<1:0>

bit 7

bit 0

Legend:

r = Reserved bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

DCIEN: DCI Module Enable bit
1 = Module is enabled
0 = Module is disabled

bit 14

Reserved: Read as ‘0’

bit 13

DCISIDL: DCI Stop in Idle Control bit
1 = Module will halt in CPU Idle mode
0 = Module will continue to operate in CPU Idle mode

bit 12

Reserved: Read as ‘0’

bit 11

DLOOP: Digital Loopback Mode Control bit
1 = Digital Loopback mode is enabled; CSDI and CSDO pins are internally connected
0 = Digital Loopback mode is disabled

bit 10

CSCKD: Sample Clock Direction Control bit
1 = CSCK pin is an input when DCI module is enabled
0 = CSCK pin is an output when DCI module is enabled

bit 9

CSCKE: Sample Clock Edge Control bit
1 = Data changes on serial clock falling edge, sampled on serial clock rising edge
0 = Data changes on serial clock rising edge, sampled on serial clock falling edge

bit 8

COFSD: Frame Synchronization Direction Control bit
1 = COFS pin is an input when DCI module is enabled
0 = COFS pin is an output when DCI module is enabled

bit 7

UNFM: Underflow Mode bit
1 = Transmits last value written to the Transmit registers on a transmit underflow
0 = Transmits ‘0’s on a transmit underflow

bit 6

CSDOM: Serial Data Output Mode bit
1 = CSDO pin will be tri-stated during disabled transmit time slots
0 = CSDO pin drives ‘0’s during disabled transmit time slots

bit 5

DJST: DCI Data Justification Control bit
1 = Data transmission/reception begins during the same serial clock cycle as the frame synchronization
pulse
0 = Data transmission/reception begins one serial clock cycle after the frame synchronization pulse

bit 4-2

Reserved: Read as ‘0’

bit 1-0

COFSM<1:0>: Frame Sync Mode bits
11 = 20-Bit AC-Link mode
10 = 16-Bit AC-Link mode
01 = I2S Frame Sync mode
00 = Multi-Channel Frame Sync mode

 2009-2012 Microchip Technology Inc.

DS70616G-page 431

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 24-2:

DCICON2: DCI CONTROL REGISTER 2

U-0

U-0

U-0

U-0

r

r

r

r

R/W-0

R/W-0

U-0

R/W-0

r

COFSG3

BLEN<1:0>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

COFSG<2:0>

U-0

R/W-0

r

R/W-0

R/W-0

R/W-0

WS<3:0>

bit 7

bit 0

Legend:

r = Reserved bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-12

Reserved: Read as ‘0’

bit 11-10

BLEN<1:0>: Buffer Length Control bits
11 = Four data words will be buffered between interrupts
10 = Three data words will be buffered between interrupts
01 = Two data words will be buffered between interrupts
00 = One data word will be buffered between interrupts

bit 9

Reserved: Read as ‘0’

bit 8-5

COFSG<3:0>: Frame Sync Generator Control bits
1111 = Data frame has 16 words
•
•
•
0010 = Data frame has 3 words
0001 = Data frame has 2 words
0000 = Data frame has 1 word

bit 4

Reserved: Read as ‘0’

bit 3-0

WS<3:0>: DCI Data Word Size bits
1111 = Data word size is 16 bits
•
•
•
0100 = Data word size is 5 bits
0011 = Data word size is 4 bits
0010 = Invalid Selection. Do not use. Unexpected results may occur.
0001 = Invalid Selection. Do not use. Unexpected results may occur.
0000 = Invalid Selection. Do not use. Unexpected results may occur.

DS70616G-page 432

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 24-3:

DCICON3: DCI CONTROL REGISTER 3

U-0

U-0

U-0

U-0

r

r

r

r

R/W-0

R/W-0

R/W-0

R/W-0

BCG<11:8>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

BCG<7:0>
bit 7

bit 0

Legend:

r = Reserved bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-12

Reserved: Read as ‘0’

bit 11-0

BCG<11:0>: DCI Clock Generator Control bits

 2009-2012 Microchip Technology Inc.

x = Bit is unknown

DS70616G-page 433

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 24-4:

DCISTAT: DCI STATUS REGISTER

U-0

U-0

U-0

U-0

r

r

r

r

R-0

R-0

R-0

R-0

SLOT<3:0>

bit 15

bit 8

U-0

U-0

U-0

U-0

R-0

R-0

R-0

R-0

r

r

r

r

ROV

RFUL

TUNF

TMPTY

bit 7

bit 0

Legend:

r = Reserved bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-12

Reserved: Read as ‘0’

bit 11-8

SLOT<3:0>: DCI Slot Status bits
1111 = Slot 15 is currently active
•
•
•
0010 = Slot 2 is currently active
0001 = Slot 1 is currently active
0000 = Slot 0 is currently active

bit 7-4

Reserved: Read as ‘0’

bit 3

ROV: Receive Overflow Status bit
1 = A receive overflow has occurred for at least one Receive register
0 = A receive overflow has not occurred

bit 2

RFUL: Receive Buffer Full Status bit
1 = New data is available in the Receive registers
0 = The Receive registers have old data

bit 1

TUNF: Transmit Buffer Underflow Status bit
1 = A transmit underflow has occurred for at least one Transmit register
0 = A transmit underflow has not occurred

bit 0

TMPTY: Transmit Buffer Empty Status bit
1 = The Transmit registers are empty
0 = The Transmit registers are not empty

DS70616G-page 434

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 24-5:

RSCON: DCI RECEIVE SLOT CONTROL REGISTER

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RSE15

RSE14

RSE13

RSE12

RSE11

RSE10

RSE9

RSE8

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

RSE7

RSE6

RSE5

RSE4

RSE3

RSE2

RSE1

RSE0

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

RSE<15:0>: Receive Slot Enable bits
1 = CSDI data is received during the individual time slot n
0 = CSDI data is ignored during the individual time slot n

REGISTER 24-6:

TSCON: DCI TRANSMIT SLOT CONTROL REGISTER

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

TSE15

TSE14

TSE13

TSE12

TSE11

TSE10

TSE9

TSE8

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

TSE7

TSE6

TSE5

TSE4

TSE3

TSE2

TSE1

TSE0

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

TSE<15:0>: Transmit Slot Enable Control bits
1 = Transmit buffer contents are sent during the individual time slot n
0 = CSDO pin is tri-stated or driven to logic ‘0’ during the individual time slot, depending on the state
of the CSDOM bit

 2009-2012 Microchip Technology Inc.

DS70616G-page 435

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

NOTES:

DS70616G-page 436

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
25.0

COMPARATOR MODULE

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this data
sheet, refer to Section 26. “Op Amp/
Comparator”
(DS70357)
of
the
“dsPIC33E/PIC24E Family Reference
Manual”, which is available from the
Microchip web site (www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.

FIGURE 25-1:

The comparator module provides three comparators
that can be configured in different ways. As shown in
Figure 25-1, individual comparator options are
specified by the comparator module’s Special Function
Register (SFR) control bits.
These options allow users to:
• Select the edge for trigger and interrupt generation
• Configure the comparator voltage reference and
band gap
• Configure output blanking and masking
The comparator operating mode is determined by the
input selections (i.e., whether the input voltage is
compared to a second input voltage or to an internal
voltage reference).

COMPARATOR I/O OPERATING MODES
CREF

CxIN1+(1)

0

CVREFIN

1

VIN+

CxIN2-(1)

00

CxIN1-(1)

01

(1)

10

CxIN3-

VIN-

+
CMPx(1)
–

Blanking
Function
(see Figure 25-3)

Digital
Filter
(see Figure 25-4)

CxOUT(1)
Output Data/Control

11
CCH<1:0>

Comparator Voltage
Reference
(see Figure 25-2)

CVREF

VREF+ VREF- AVDD AVSS
Note 1:

2.20V

00

0.60V

01 IVREF

0.20V

10

VREF+

11
BGSEL<1:0>

An ‘x’ is a pin, bit or register name and denotes Comparator 1, 2 or 3.

 2009-2012 Microchip Technology Inc.

DS70616G-page 437

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM
VREFSEL

CVRSS = 1

VREF+
AVDD

CVRCON<3:0>

CVRSRC

CVR3
CVR2
CVR1
CVR0

FIGURE 25-2:

8R

CVRSS = 0

CVREFIN
R

CVREN
R
R
16-to-1 MUX

R
16 Steps

R

CVREF

CVRCON

R
R
CVRR

8R
CVRSS = 1

VREF–

AVSS

CVRSS = 0

FIGURE 25-3:

USER-PROGRAMMABLE BLANKING FUNCTION BLOCK DIAGRAM

SELSRCA<3:0>
(CMxMSKSRC<3:0>)

Blanking
Signals

MUX A

Comparator Output
MAI

“AND-OR” Function

MAI
MBI

Blanking
Logic

To Digital
Filter

ANDI
AND

SELSRCB<3:0>
(CMxMSKSRC<7:4)

MCI

Blanking
Signals

MUX B

MAI
MBI

MBI

OR

MASK

HLMS
(CMxMSKCON<15)

MCI

SELSRCC<3:0>
(CMxMSKSRC<11:8)

Blanking
Signals

MUX C

CMxMSKCON

DS70616G-page 438

MCI

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 25-4:

DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM
TxCLK(1,2)
SYNCOx(3)
FP(4)
FOSC(4)

CFDIV
CFLTREN

CFSEL<2:0>

Digital Filter
CXOUT

Note 1:

See the Type C Timer Block Diagram (Figure 13-2).

2:

See the Type B Timer Block Diagram (Figure 13-1).

25.1

3:

See the PWM Module Register Interconnect Diagram (Figure 16-2).

4:

See the Oscillator System Diagram (Figure 9-1).

Comparator Resources

Many useful resources related to the Comparator are
provided on the main product page of the Microchip
web site for the devices listed in this data sheet. This
product page, which can be accessed using this link,
contains the latest updates and additional information.
Note:

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

 2009-2012 Microchip Technology Inc.

25.1.1

KEY RESOURCES

• Section 26. “Op Amp/Comparator” (DS70357)
in the “dsPIC33E/PIC24E Family Reference
Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

DS70616G-page 439

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
25.2

Comparator Control Registers

REGISTER 25-1:

CMSTAT: COMPARATOR STATUS REGISTER

R/W-0

U-0

U-0

U-0

U-0

R-0

R-0

R-0

CMSIDL

—

—

—

—

C3EVT

C2EVT

C1EVT

bit 15

bit 8

U-0

U-0

U-0

U-0

U-0

R-0

R-0

R-0

—

—

—

—

—

C3OUT

C2OUT

C1OUT

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

CMSIDL: Comparator Stop in Idle Mode bit
1 = Discontinues operation of all comparators when device enters Idle mode
0 = Continues operation of all comparators in Idle mode

bit 14-11

Unimplemented: Read as ‘0’

bit 10

C3EVT: Comparator 3 Event Status bit
1 = Comparator event occurred
0 = Comparator event did not occur

bit 9

C2EVT: Comparator 2 Event Status bit
1 = Comparator event occurred
0 = Comparator event did not occur

bit 8

C1EVT: Comparator 1 Event Status bit
1 = Comparator event occurred
0 = Comparator event did not occur

bit 7-3

Unimplemented: Read as ‘0’

bit 2

C3OUT: Comparator 3 Output Status bit
When CPOL = 0:
1 = VIN+ > VIN0 = VIN+ < VINWhen CPOL = 1:
1 = VIN+ < VIN0 = VIN+ > VIN-

bit 1

C2OUT: Comparator 2 Output Status bit
When CPOL = 0:
1 = VIN+ > VIN0 = VIN+ < VINWhen CPOL = 1:
1 = VIN+ < VIN0 = VIN+ > VIN-

bit 0

C1OUT: Comparator 1 Output Status bit
When CPOL = 0:
1 = VIN+ > VIN0 = VIN+ < VINWhen CPOL = 1:
1 = VIN+ < VIN0 = VIN+ > VIN-

DS70616G-page 440

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 25-2:

CMxCON: COMPARATOR x CONTROL REGISTER

R/W-0

R/W-0

R/W-0

U-0

U-0

U-0

R/W-0

R/W-0

CON

COE

CPOL

—

—

—

CEVT

COUT

bit 15

bit 8

R/W-0

R/W-0

EVPOL<1:0>

U-0

R/W-0

U-0

U-0

—

CREF

—

—

R/W-0

R/W-0

CCH<1:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

CON: Comparator Enable bit
1 = Comparator is enabled
0 = Comparator is disabled

bit 14

COE: Comparator Output Enable bit
1 = Comparator output is present on the CxOUT pin
0 = Comparator output is internal only

bit 13

CPOL: Comparator Output Polarity Select bit
1 = Comparator output is inverted
0 = Comparator output is not inverted

bit 12-10

Unimplemented: Read as ‘0’

bit 9

CEVT: Comparator Event bit
1 = Comparator event according to EVPOL<1:0> settings occurred; disables future triggers and
interrupts until the bit is cleared
0 = Comparator event did not occur

bit 8

COUT: Comparator Output bit
When CPOL = 0 (non-inverted polarity):
1 = VIN+ > VIN0 = VIN+ < VINWhen CPOL = 1 (inverted polarity):
1 = VIN+ < VIN0 = VIN+ > VIN-

bit 7-6

EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits
11 = Trigger/Event/Interrupt generated on any change of the comparator output (while CEVT = 0)
10 = Trigger/Event/Interrupt generated only on high-to-low transition of the polarity selected comparator
output (while CEVT = 0)
If CPOL = 1 (inverted polarity):
Low-to-high transition of the comparator output.
If CPOL = 0 (non-inverted polarity):
High-to-low transition of the comparator output.
01 = Trigger/Event/Interrupt generated only on low-to-high transition of the polarity selected comparator
output (while CEVT = 0)
If CPOL = 1 (inverted polarity):
High-to-low transition of the comparator output.
If CPOL = 0 (non-inverted polarity):
Low-to-high transition of the comparator output.
00 = Trigger/Event/Interrupt generation is disabled

bit 5

Unimplemented: Read as ‘0’

 2009-2012 Microchip Technology Inc.

DS70616G-page 441

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 25-2:

CMxCON: COMPARATOR x CONTROL REGISTER (CONTINUED)

bit 4

CREF: Comparator Reference Select bit (VIN+ input)
1 = VIN+ input connects to internal CVREFIN voltage
0 = VIN+ input connects to CxIN1+ pin

bit 3-2

Unimplemented: Read as ‘0’

bit 1-0

CCH<1:0>: Comparator Channel Select bits
11 = VIN- input of comparator connects to IVREF
10 = VIN- input of comparator connects to CXIN3- pin
01 = VIN- input of comparator connects to CXIN1- pin
00 = VIN- input of comparator connects to CXIN2- pin

DS70616G-page 442

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 25-3:

CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT
CONTROL REGISTER

U-0

U-0

U-0

U-0

—

—

—

—

R/W-0

R/W-0

R/W-0

RW-0

SELSRCC<3:0>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

SELSRCB<3:0>

R/W-0

R/W-0

R/W-0

SELSRCA<3:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-12

Unimplemented: Read as ‘0’

bit 11-8

SELSRCC<3:0>: Mask C Input Select bits
1111 = FLT4
1110 = FLT2
1101 = PWM7H
1100 = PWM7L
1011 = PWM6H
1010 = PWM6L
1001 = PWM5H
1000 = PWM5L
0111 = PWM4H
0110 = PWM4L
0101 = PWM3H
0100 = PWM3L
0011 = PWM2H
0010 = PWM2L
0001 = PWM1H
0000 = PWM1L

bit 7-4

SELSRCB<3:0>: Mask B Input Select bits
1111 = FLT4
1110 = FLT2
1101 = PWM7H
1100 = PWM7L
1011 = PWM6H
1010 = PWM6L
1001 = PWM5H
1000 = PWM5L
0111 = PWM4H
0110 = PWM4L
0101 = PWM3H
0100 = PWM3L
0011 = PWM2H
0010 = PWM2L
0001 = PWM1H
0000 = PWM1L

 2009-2012 Microchip Technology Inc.

x = Bit is unknown

DS70616G-page 443

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 25-3:
bit 3-0

CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT
CONTROL REGISTER (CONTINUED)

SELSRCA<3:0>: Mask A Input Select bits
1111 = FLT4
1110 = FLT2
1101 = PWM7H
1100 = PWM7L
1011 = PWM6H
1010 = PWM6L
1001 = PWM5H
1000 = PWM5L
0111 = PWM4H
0110 = PWM4L
0101 = PWM3H
0100 = PWM3L
0011 = PWM2H
0010 = PWM2L
0001 = PWM1H
0000 = PWM1L

DS70616G-page 444

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 25-4:

CMxMSKCON: COMPARATOR x MASK GATING
CONTROL REGISTER

R/W-0

U-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

HLMS

—

OCEN

OCNEN

OBEN

OBNEN

OAEN

OANEN

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

NAGS

PAGS

ACEN

ACNEN

ABEN

ABNEN

AAEN

AANEN

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

HLMS: High or Low-Level Masking Select bits
1 = The masking (blanking) function will prevent any asserted (‘0’) comparator signal from propagating
0 = The masking (blanking) function will prevent any asserted (‘1’) comparator signal from propagating

bit 14

Unimplemented: Read as '0'

bit 13

OCEN: OR Gate C Input Enable bit
1 = MCI is connected to OR gate
0 = MCI is not connected to OR gate

bit 12

OCNEN: OR Gate C Input Inverted Enable bit
1 = Inverted MCI is connected to OR gate
0 = Inverted MCI is not connected to OR gate

bit 11

OBEN: OR Gate B Input Enable bit
1 = MBI is connected to OR gate
0 = MBI is not connected to OR gate

bit 10

OBNEN: OR Gate B Input Inverted Enable bit
1 = Inverted MBI is connected to OR gate
0 = Inverted MBI is not connected to OR gate

bit 9

OAEN: OR Gate A Input Enable bit
1 = MAI is connected to OR gate
0 = MAI is not connected to OR gate

bit 8

OANEN: OR Gate A Input Inverted Enable bit
1 = Inverted MAI is connected to OR gate
0 = Inverted MAI is not connected to OR gate

bit 7

NAGS: AND Gate Output Inverted Enable bit
1 = Inverted ANDI is connected to OR gate
0 = Inverted ANDI is not connected to OR gate

bit 6

PAGS: AND Gate Output Enable bit
1 = ANDI is connected to OR gate
0 = ANDI is not connected to OR gate

bit 5

ACEN: AND Gate C Input Enable bit
1 = MCI is connected to AND gate
0 = MCI is not connected to AND gate

bit 4

ACNEN: AND Gate C Input Inverted Enable bit
1 = Inverted MCI is connected to AND gate
0 = Inverted MCI is not connected to AND gate

 2009-2012 Microchip Technology Inc.

DS70616G-page 445

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 25-4:

CMxMSKCON: COMPARATOR x MASK GATING
CONTROL REGISTER (CONTINUED)

bit 3

ABEN: AND Gate B Input Enable bit
1 = MBI is connected to AND gate
0 = MBI is not connected to AND gate

bit 2

ABNEN: AND Gate B Input Inverted Enable bit
1 = Inverted MBI is connected to AND gate
0 = Inverted MBI is not connected to AND gate

bit 1

AAEN: AND Gate A Input Enable bit
1 = MAI is connected to AND gate
0 = MAI is not connected to AND gate

bit 0

AANEN: AND Gate A Input Inverted Enable bit
1 = Inverted MAI is connected to AND gate
0 = Inverted MAI is not connected to AND gate

DS70616G-page 446

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 25-5:

CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER

U-0

U-0

U-0

U-0

U-0

U-0

U-0

I-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

R/W-0

—

R/W-0

R/W-0

CFSEL<2:0>

R/W-0

R/W-0

CFLTREN

R/W-0

R/W-0

CFDIV<2:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-7

Unimplemented: Read as ‘0’

bit 6-4

CFSEL<2:0>: Comparator Filter Input Clock Select bits
111 = T5CLK(1)
110 = T4CLK(2)
101 = T3CLK(1)
100 = T2CLK(2)
011 = SYNCO2(3)
010 = SYNCO1(3)
001 = FOSC(4)
000 = FP(4)

bit 3

CFLTREN: Comparator Filter Enable bit
1 = Digital filter is enabled
0 = Digital filter is disabled

bit 2-0

CFDIV<2:0>: Comparator Filter Clock Divide Select bits
111 = Clock Divide 1:128
110 = Clock Divide 1:64
101 = Clock Divide 1:32
100 = Clock Divide 1:16
011 = Clock Divide 1:8
010 = Clock Divide 1:4
001 = Clock Divide 1:2
000 = Clock Divide 1:1

Note 1:
2:
3:
4:

x = Bit is unknown

See the Type C Timer Block Diagram (Figure 13-2).
See the Type B Timer Block Diagram (Figure 13-1).
See the PWM Module Register Interconnect Diagram (Figure 16-2).
See the Oscillator System Diagram (Figure 9-1).

 2009-2012 Microchip Technology Inc.

DS70616G-page 447

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 25-6:

CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0

U-0

U-0

U-0

U-0

R/W-0

—

—

—

—

—

VREFSEL

R/W-0

R/W-0

BGSEL<1:0>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

CVREN

CVROE(1)

CVRR

CVRSS

R/W-0

R/W-0

R/W-0

R/W-0

CVR<3:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-11

Unimplemented: Read as ‘0’

bit 10

VREFSEL: Voltage Reference Select bit
1 = CVREFIN = VREF+
0 = CVREFIN is generated by the resistor network

bit 9-8

BGSEL<1:0>: Band Gap Reference Source Select bits
11 = IVREF = VREF+(2)
10 = IVREF = 0.20V (nominal)
01 = IVREF = 0.60V (nominal)
00 = IVREF = 2.20V (nominal)

bit 7

CVREN: Comparator Voltage Reference Enable bit
1 = Comparator voltage reference circuit powered on
0 = Comparator voltage reference circuit powered down

bit 6

CVROE: Comparator Voltage Reference Output Enable bit(1)
1 = Voltage level is output on CVREF pin
0 = Voltage level is disconnected from CVREF pin

bit 5

CVRR: Comparator Voltage Reference Range Selection bit
1 = CVRSRC/24 step-size
0 = CVRSRC/32 step-size

bit 4

CVRSS: Comparator Voltage Reference Source Selection bit
1 = Comparator voltage reference source, CVRSRC = (VREF+) – (VREF-)(2)
0 = Comparator voltage reference source, CVRSRC = AVDD – AVSS

bit 3-0

CVR<3:0> Comparator Voltage Reference Value Selection 0  CVR<3:0>  15 bits
When CVRR = 1:
CVREFIN = (CVR<3:0>/24) • (CVRSRC)
When CVRR = 0:
CVREFIN = 1/4 • (CVRSRC) + (CVR<3:0>/32) • (CVRSRC)

Note 1:
2:

CVROE overrides the TRIS bit setting.
Selecting BGSEL<1:0> = 11 and CVRSS = 1 is invalid and will produce unpredictable results.

DS70616G-page 448

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
26.0

REAL-TIME CLOCK AND
CALENDAR (RTCC)

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this
data sheet, refer to Section 29. “RealTime Clock and Calendar (RTCC)”
(DS70584) of the “dsPIC33E/PIC24E
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.
This chapter discusses the Real-Time Clock and
Calendar (RTCC) module and its operation.

Some of the key features of this module are:
•
•
•
•
•
•
•
•
•
•
•
•

Time: Hours, Minutes and Seconds
24-Hour Format (military time)
Calendar: Weekday, Date, Month and Year
Alarm Configurable
Year Range: 2000 to 2099
Leap Year Correction
BCD Format for Compact Firmware
Optimized for Low-Power Operation
User Calibration with Auto-Adjust
Calibration Range: ±2.64 Seconds Error per Month
Requirements: External 32.768 kHz Clock Crystal
Alarm Pulse or Seconds Clock Output on RTCC Pin

The RTCC module is intended for applications where
accurate time must be maintained for extended periods
with minimum to no intervention from the CPU. The
RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of
time.
The RTCC module is a 100-year clock and calendar
with automatic leap year detection. The range of the
clock is from 00:00:00 (midnight) on January 1, 2000 to
23:59:59 on December 31, 2099.
The hours are available in 24-hour (military time)
format. The clock provides a granularity of one second
with half-second visibility to the user.

 2009-2012 Microchip Technology Inc.

DS70616G-page 449

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 26-1:

RTCC BLOCK DIAGRAM

dsPIC33E/PIC24E

RTCPTR<1:0>
RTCC Timer

CAL<7:0>
SOSCO
32.768 kHz
Oscillator

Prescaler

1 Hz

SOSCI

RTCC
Pin

—

YEAR

11

MONTH

DATE

10

WEEKDAY

HOUR

01

MINUTES

SECONDS

00

RTCVAL

RTCOE
1
0

Toggle

RTSECSEL
Set RTCIF Flag

ALRMPTR<1:0>
RTCC Alarm

DS70616G-page 450

MONTH

DATE

10

WEEKDAY

HOUR

01

MINUTES

SECONDS

00

ALRMVAL

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
26.1
Note:

Writing to the RTCC Timer
To allow the RTCC module to be clocked by
the secondary crystal oscillator, the Secondary Oscillator Enable (LPOSCEN) bit in
the Oscillator Control (OSCCON<1>) register must be set. For further details, refer to
Section 7. “Oscillator” (DS70580) in the
“dsPIC33E/PIC24E Family Reference
Manual”.

The user application can configure the time and
calendar by writing the desired seconds, minutes,
hours, weekday, date, month and year to the RTCC
registers. Under normal operation, writes to the RTCC
Timer registers are not allowed. Attempted writes will
appear to execute normally, but the contents of the
registers will remain unchanged. To write to the RTCC
register, the RTCWREN bit (RCFGCAL<13>) must be
set. Setting the RTCWREN bit allows writes to the
RTCC registers. Conversely, clearing the RTCWREN
bit prevents writes.
To set the RTCWREN bit, the following procedure must
be executed. The RTCWREN bit can be cleared at any
time:
1.
2.
3.

Write 0x55 to NVMKEY.
Write 0xAA to NVMKEY.
Set the RTCWREN bit using a single-cycle
instruction.

26.2

RTCC Resources

Many useful resources related to RTCC are provided
on the main product page of the Microchip web site for
the devices listed in this data sheet. This product page,
which can be accessed using this link, contains the
latest updates and additional information.
Note:

26.2.1

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

KEY RESOURCES

• Section 29. “Real-Time Clock and Calendar
(RTCC)” (DS70584) in the “dsPIC33E/PIC24E
Family Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

The RTCC module is enabled by setting the RTCEN bit
(RCFGCAL<15>). To set or clear the RTCEN bit, the
RTCWREN bit (RCFGCAL<13>) must be set.
If the entire clock (hours, minutes and seconds) needs
to be corrected, it is recommended that the RTCC
module should be disabled to avoid coincidental write
operation when the timer increments. Therefore, it
stops the clock from counting while writing to the RTCC
Timer register.

 2009-2012 Microchip Technology Inc.

DS70616G-page 451

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
26.3

RTCC Registers

REGISTER 26-1:

RCFGCAL: RTCC CALIBRATION AND CONFIGURATION
REGISTER(1)

R/W-0

U-0

R/W-0

R-0

R-0

R/W-0

RTCEN(2)

—

RTCWREN

RTCSYNC

HALFSEC(3)

RTCOE

R/W-0

R/W-0

RTCPTR<1:0>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

CAL<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

RTCEN: RTCC Enable bit(2)
1 = RTCC module is enabled
0 = RTCC module is disabled

bit 14

Unimplemented: Read as ‘0’

bit 13

RTCWREN: RTCC Value Registers Write Enable bit
1 = RTCVAL register can be written to by the user application
0 = RTCVAL register is locked out from being written to by the user application

bit 12

RTCSYNC: RTCC Value Registers Read Synchronization bit
1 = A rollover is about to occur in 32 clock edges (approximately 1 ms)
0 = A rollover will not occur

bit 11

HALFSEC: Half-Second Status bit(3)
1 = Second half period of a second
0 = First half period of a second

bit 10

RTCOE: RTCC Output Enable bit
1 = RTCC output is enabled
0 = RTCC output is disabled

bit 9-8

RTCPTR<1:0>: RTCC Value Register Pointer bits
Points to the corresponding RTCC Value register when reading the RTCVAL register; the
RTCPTR<1:0> value decrements on every access of the RTCVAL register until it reaches ‘00’.

Note 1:
2:
3:

The RCFGCAL register is only affected by a POR.
A write to the RTCEN bit is only allowed when RTCWREN = 1.
This bit is read-only. It is cleared when the lower half of the MINSEC register is written.

DS70616G-page 452

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 26-1:
bit 7-0

Note 1:
2:
3:

RCFGCAL: RTCC CALIBRATION AND CONFIGURATION
REGISTER(1) (CONTINUED)

CAL<7:0>: RTCC Drift Calibration bits
01111111 = Maximum positive adjustment; adds 508 RTCC clock pulses every one minute
•
•
•
00000001 = Minimum positive adjustment; adds four RTCC clock pulses every one minute
00000000 = No adjustment
11111111 = Minimum negative adjustment; subtracts four RTCC clock pulses every one minute
•
•
•
10000000 = Maximum negative adjustment; subtracts 512 RTCC clock pulses every one minute
The RCFGCAL register is only affected by a POR.
A write to the RTCEN bit is only allowed when RTCWREN = 1.
This bit is read-only. It is cleared when the lower half of the MINSEC register is written.

 2009-2012 Microchip Technology Inc.

DS70616G-page 453

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 26-2:

PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

U-0

—

—

U-0
—

U-0
—

U-0
—

U-0

R/W-0

R/W-0

—

RTSECSEL(1)

PMPTTL

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-2

Unimplemented: Read as ‘0’

bit 1

RTSECSEL: RTCC Seconds Clock Output Select bit(1)
1 = RTCC seconds clock is selected for the RTCC pin
0 = RTCC alarm pulse is selected for the RTCC pin

bit 0

Not used by the RTCC module.

Note 1:

x = Bit is unknown

To enable the actual RTCC output, the RTCOE bit (RCFGCAL<10>) must be set.

DS70616G-page 454

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 26-3:

ALCFGRPT: ALARM CONFIGURATION REGISTER

R/W-0

R/W-0

ALRMEN

CHIME

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

AMASK<3:0>

R/W-0

ALRMPTR<1:0>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

ARPT<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

ALRMEN: Alarm Enable bit
1 = Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 0x00 and
CHIME = 0)
0 = Alarm is disabled

bit 14

CHIME: Chime Enable bit
1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 0x00 to 0xFF
0 = Chime is disabled; ARPT<7:0> bits stop once they reach 0x00

bit 13-10

AMASK<3:0>: Alarm Mask Configuration bits
0000 = Every half second
0001 = Every second
0010 = Every 10 seconds
0011 = Every minute
0100 = Every 10 minutes
0101 = Every hour
0110 = Once a day
0111 = Once a week
1000 = Once a month
1001 = Once a year (except when configured for February 29th, once every 4 years)
101x = Reserved – do not use
11xx = Reserved – do not use

bit 9-8

ALRMPTR<1:0>: Alarm Value Register Window Pointer bits
Points to the corresponding Alarm Value registers when reading the ALRMVAL register. The
ALRMPTR<1:0> value decrements on every read or write of ALRMVAL until it reaches ‘00’.

bit 7-0

ARPT<7:0>: Alarm Repeat Counter Value bits
11111111 = Alarm will repeat 255 more times
•
•
•
00000000 = Alarm will not repeat
The counter decrements on any alarm event. The counter is prevented from rolling over from 0x00 to
0xFF unless CHIME = 1.

 2009-2012 Microchip Technology Inc.

DS70616G-page 455

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 26-4:

RTCVAL (WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER(1)

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

R/W-x

YRTEN<3:0>

R/W-x

R/W-x

YRONE<3:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as ‘0’

bit 7-4

YRTEN<3:0>: Binary Coded Decimal Value of Year’s Tens Digit bits
Contains a value from 0 to 9.

bit 3-0

YRONE<3:0>: Binary Coded Decimal Value of Year’s Ones Digit bits
Contains a value from 0 to 9.

Note 1:

A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 26-5:

RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER(1)

U-0

U-0

U-0

R-x

—

—

—

MTHTEN0

R-x

R-x

R-x

R-x

MTHONE<3:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-x

R/W-x

R/W-x

DAYTEN<1:0>

R/W-x

R/W-x

R/W-x

DAYONE<3:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-13

Unimplemented: Read as ‘0’

bit 12

MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit bit
Contains a value of 0 or 1.

bit 11-8

MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit bits
Contains a value from 0 to 9.

bit 7-6

Unimplemented: Read as ‘0’

bit 5-4

DAYTEN<1:0>: Binary Coded Decimal Value of Day’s Tens Digit bits
Contains a value from 0 to 3.

bit 3-0

DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit bits
Contains a value from 0 to 9.

Note 1:

A write to this register is only allowed when RTCWREN = 1.

DS70616G-page 456

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 26-6:

RTCVAL (WHEN RTCPTR<1:0> = 01): WEEKDAY AND HOURS VALUE REGISTER(1)

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

R/W-x

R/W-x

R/W-x

WDAY<2:0>

bit 15

bit 8
U-0

U-0

—

—

R/W-x

R/W-x

R/W-x

R/W-x

HRTEN<1:0>

R/W-x

R/W-x

HRONE<3:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-11

Unimplemented: Read as ‘0’

bit 10-8

WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
Contains a value from 0 to 6.

bit 7-6

Unimplemented: Read as ‘0’

bit 5-4

HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit bits
Contains a value from 0 to 2.

bit 3-0

HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit bits
Contains a value from 0 to 9.

Note 1:

A write to this register is only allowed when RTCWREN = 1.

REGISTER 26-7:
U-0

RTCVAL (WHEN RTCPTR<1:0> = 00): MINUTES AND SECONDS VALUE REGISTER
R/W-x

—

R/W-x

R/W-x

R/W-x

MINTEN<2:0>

R/W-x

R/W-x

R/W-x

MINONE<3:0>

bit 15

bit 8

U-0

R/W-x

—

R/W-x

R/W-x

R/W-x

SECTEN<2:0>

R/W-x

R/W-x

R/W-x

SECONE<3:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-12

MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit bits
Contains a value from 0 to 5.

bit 11-8

MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit bits
Contains a value from 0 to 9.

bit 7

Unimplemented: Read as ‘0’

bit 6-4

SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit bits
Contains a value from 0 to 5.

bit 3-0

SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit bits
Contains a value from 0 to 9.

 2009-2012 Microchip Technology Inc.

DS70616G-page 457

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 26-8:

ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE
REGISTER(1)

U-0

U-0

U-0

R/W-x

—

—

—

MTHTEN0

R/W-x

R/W-x

R/W-x

R/W-x

MTHONE<3:0>

bit 15

bit 8

U-0

U-0

—

—

R/W-x

R/W-x

R/W-x

DAYTEN<1:0>

R/W-x

R/W-x

R/W-x

DAYONE<3:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-13

Unimplemented: Read as ‘0’

bit 12

MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit bit
Contains a value of 0 or 1.

bit 11-8

MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit bits
Contains a value from 0 to 9.

bit 7-6

Unimplemented: Read as ‘0’

bit 5-4

DAYTEN<1:0>: Binary Coded Decimal Value of Day’s Tens Digit bits
Contains a value from 0 to 3.

bit 3-0

DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit bits
Contains a value from 0 to 9.

Note 1:

A write to this register is only allowed when RTCWREN = 1.

DS70616G-page 458

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 26-9:

ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS
VALUE REGISTER(1)

U-0

U-0

U-0

U-0

U-0

R/W-x

R/W-x

R/W-x

—

—

—

—

—

WDAY2

WDAY1

WDAY0

bit 15

bit 8

U-0

U-0

—

—

R/W-x

R/W-x

R/W-x

R/W-x

HRTEN<1:0>

R/W-x

R/W-x

HRONE<3:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-11

Unimplemented: Read as ‘0’

bit 10-8

WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
Contains a value from 0 to 6.

bit 7-6

Unimplemented: Read as ‘0’

bit 5-4

HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit bits
Contains a value from 0 to 2.

bit 3-0

HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit bits
Contains a value from 0 to 9.

Note 1:

x = Bit is unknown

A write to this register is only allowed when RTCWREN = 1.

 2009-2012 Microchip Technology Inc.

DS70616G-page 459

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 26-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS
VALUE REGISTER
U-0

R/W-x

—

R/W-x

R/W-x

R/W-x

MINTEN<2:0>

R/W-x

R/W-x

R/W-x

MINONE<3:0>

bit 15

bit 8

U-0

R/W-x

—

R/W-x

R/W-x

R/W-x

SECTEN<2:0>

R/W-x

R/W-x

R/W-x

SECONE<3:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as ‘0’

bit 14-12

MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit bits
Contains a value from 0 to 5.

bit 11-8

MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit bits
Contains a value from 0 to 9.

bit 7

Unimplemented: Read as ‘0’

bit 6-4

SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit bits
Contains a value from 0 to 5.

bit 3-0

SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit bits
Contains a value from 0 to 9.

DS70616G-page 460

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
27.0

PROGRAMMABLE CYCLIC
REDUNDANCY CHECK (CRC)
GENERATOR

The programmable CRC generator offers the following
features:
• User-Programmable (up to 32nd order)
Polynomial CRC Equation
• Interrupt Output
• Data FIFO

Note 1: This data sheet summarizes the features of
the dsPIC33EPXXX(GP/MC/MU)806/810/
814 and PIC24EPXXX(GP/GU)810/814
families of devices. It is not intended to be
a comprehensive reference source. To
complement the information in this data
sheet, refer to Section 27. “Programmable Cyclic Redundancy Check (CRC)”
(DS70346) of the “dsPIC33E/PIC24E
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com).

The programmable CRC generator provides a
hardware implemented method of quickly generating
checksums for various networking and security
applications. It offers the following features:
• User-Programmable CRC Polynomial Equation,
up to 32 bits
• Programmable Shift Direction (little or big-endian)
• Independent Data and Polynomial Lengths
• Configurable Interrupt Output
• Data FIFO

2: Some registers and associated bits
described in this section may not be available
on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for
device-specific register and bit information.

FIGURE 27-1:

A simplified block diagram of the CRC generator is
shown in Figure 27-1. A simple version of the CRC shift
engine is shown in Figure 27-2.

PROGRAMMABLE CRC BLOCK DIAGRAM
CRCDATL

CRCDATH

Variable FIFO
(4x32, 8x16 or 16x8)

FIFO Empty Event

CRCISEL

2 * FP Shift Clock

Shift Buffer

0

1

1
LENDIAN
Shift Complete Event

CRC Shift Engine

CRCWDATH

FIGURE 27-2:

Set CRCIF

0

CRCWDATL

CRC SHIFT ENGINE DETAIL
CRCWDATH

CRCWDATL

Read/Write Bus
X(1)(1)
Shift Buffer
Data

Note 1:
2:

Bit 0

X(n)(1)

X(2)(1)

Bit 1

Bit 2

Bit n(2)

Each XOR stage of the shift engine is programmable. See text for details.
Polynomial Length n is determined by ([PLEN<4:0>] + 1).

 2009-2012 Microchip Technology Inc.

DS70616G-page 461

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
27.1

Overview

The CRC module can be programmed for CRC
polynomials of up to the 32nd order, using up to 32 bits.
Polynomial length, which reflects the highest exponent
in the equation, is selected by the PLEN<4:0> bits
(CRCCON2<4:0>).
The CRCXORL and CRCXORH registers control which
exponent terms are included in the equation. Setting a
particular bit includes that exponent term in the
equation; functionally, this includes an XOR operation
on the corresponding bit in the CRC engine. Clearing
the bit disables the XOR.
For example, consider two CRC polynomials, one a
16-bit equation and the other a 32-bit equation:
x16 + x12 + x5 + 1
and
x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7
+ x5 + x4 + x2 + x + 1
To program these polynomials into the CRC generator,
set the register bits as shown in Table 27-1.
Note that the appropriate positions are set to ‘1’ to indicate
that they are used in the equation (for example, X26 and
X23). The 0 bit required by the equation is always XORed;
thus, X0 is a don’t care. For a polynomial of length, N, it is
assumed that the Nth bit will always be used, regardless
of the bit setting. Therefore, for a polynomial length of 32,
there is no 32nd bit in the CRCxOR register.

DS70616G-page 462

TABLE 27-1:

CRC
Control Bits
PLEN<4:0>

CRC SETUP EXAMPLES FOR
16 AND 32-BIT POLYNOMIAL
Bit Values
16-Bit
Polynomial

32-Bit
Polynomial

01111

11111

X<31:16>

0000 0000
0000 000x

0000 0100
1100 0001

X<15:0>

0001 0000
0010 000x

0001 1101
1011 011x

27.2

Programmable CRC Resources

Many useful resources related to Programmable CRC
are provided on the main product page of the Microchip
web site for the devices listed in this data sheet. This
product page, which can be accessed using this link,
contains the latest updates and additional information.
Note:

27.2.1

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

KEY RESOURCES

• Section 27. “Programmable Cyclic Redundancy
Check (CRC)” (DS70346) in the “dsPIC33E/
PIC24E Family Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
27.3

Programmable CRC Registers

REGISTER 27-1:

CRCCON1: CRC CONTROL REGISTER 1

R/W-0

U-0

R/W-0

CRCEN

—

CSIDL

R-0

R-0

R-0

R-0

R-0

VWORD<4:0>

bit 15

bit 8

R-0

R-1

R/W-0

R/W-0

R/W-0

U-0

U-0

U-0

CRCFUL

CRCMPT

CRCISEL

CRCGO

LENDIAN

—

—

—

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

CRCEN: CRC Enable bit
1 = CRC module is enabled
0 = CRC module is disabled, all state machines, pointers and CRCWDAT/CRCDAT are reset; other
SFRs are not reset

bit 14

Unimplemented: Read as ‘0’

bit 13

CSIDL: CRC Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode

bit 12-8

VWORD<4:0>: Pointer Value bits
Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > 7 or
16 when PLEN<4:0> 7.

bit 7

CRCFUL: FIFO Full bit
1 = FIFO is full
0 = FIFO is not full

bit 6

CRCMPT: FIFO Empty Bit
1 = FIFO is empty
0 = FIFO is not empty

bit 5

CRCISEL: CRC Interrupt Selection bit
1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC
0 = Interrupt on shift is complete and CRCWDAT results are ready

bit 4

CRCGO: Start CRC bit
1 = Starts CRC serial shifter
0 = CRC serial shifter is turned off

bit 3

LENDIAN: Data Word Little-Endian Configuration bit
1 = Data word is shifted into the CRC starting with the LSb (little endian)
0 = Data word is shifted into the CRC starting with the MSb (big endian)

bit 2-0

Unimplemented: Read as ‘0’

 2009-2012 Microchip Technology Inc.

DS70616G-page 463

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 27-2:

CRCCON2: CRC CONTROL REGISTER 2

U-0

U-0

U-0

—

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

DWIDTH<4:0>

bit 15

bit 8

U-0

U-0

U-0

—

—

—

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

PLEN<4:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15-13

Unimplemented: Read as ‘0’

bit 12-8

DWIDTH<4:0>: Data Width Select bits
These bits set the width of the data word (DWIDTH<4:0> + 1).

bit 7-5

Unimplemented: Read as ‘0’

bit 4-0

PLEN<4:0>: Polynomial Length Select bits
These bits set the length of the polynomial (Polynomial Length = PLEN<4:0> + 1).

DS70616G-page 464

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 27-3:
R/W-0

CRCXORH: CRC XOR POLYNOMIAL HIGH REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

X<31:24>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

X<23:16>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-0

x = Bit is unknown

X<31:16>: XOR of Polynomial Term Xn Enable bits

REGISTER 27-4:
R/W-0

CRCXORL: CRC XOR POLYNOMIAL LOW REGISTER
R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

X<15:8>
bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

X<7:1>

U-0
—

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-1

X<15:1>: XOR of Polynomial Term Xn Enable bits

bit 0

Unimplemented: Read as ‘0’

 2009-2012 Microchip Technology Inc.

x = Bit is unknown

DS70616G-page 465

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
NOTES:

DS70616G-page 466

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
28.0

PARALLEL MASTER PORT
(PMP)

Note 1: This data sheet summarizes the features
of the dsPIC33EPXXX(GP/MC/MU)806/
810/814 and PIC24EPXXX(GP/GU)810/
814 families of devices. It is not intended
to be a comprehensive reference source.
To complement the information in this data
sheet, refer to Section 28. “Parallel Master Port (PMP)” (DS70576) of the
“dsPIC33E/PIC24E Family Reference
Manual”, which is available from the
Microchip web site (www.microchip.com).
2: Some registers and associated bits
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization” in
this data sheet for device-specific register
and bit information.

The Parallel Master Port (PMP) module is a parallel
8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as
communication peripherals, LCDs, external memory
devices and microcontrollers. Because the interface
to parallel peripherals varies significantly, the PMP is
highly configurable.
Key features of the PMP module include:
•
•
•
•

•
•
•
•
•

•

FIGURE 28-1:

Eight Data Lines
Up to 16 Programmable Address Lines
Up to 2 Chip Select Lines
Programmable Strobe Options:
- Individual read and write strobes, or
- Read/Write strobe with enable strobe
Address Auto-Increment/Auto-Decrement
Programmable Address/Data Multiplexing
Programmable Polarity on Control Signals
Legacy Parallel Slave Port (PSP) Support
Enhanced Parallel Slave Support:
- Address support
- 4-byte deep auto-incrementing buffer
Programmable Wait States

PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

dsPIC33E/PIC24E

PMA<0>
PMALL

Up to 16-Bit Address

PMA<1>
PMALH
PMA<13:2>
PMA<14>
PMCS1

Parallel Master Port

EEPROM

Address Bus
Data Bus
Control Lines

PMA<15>
PMCS2
PMBE
PMRD
PMRD/PMWR

Microcontroller

LCD

FIFO
Buffer

PMWR
PMENB
PMD<7:0>
PMA<7:0>
PMA<15:8>

 2009-2012 Microchip Technology Inc.

8-Bit Data (with or without multiplexed addressing)

DS70616G-page 467

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
28.1

PMP Resources

Many useful resources related to PMP are provided on
the main product page of the Microchip web site for the
devices listed in this data sheet. This product page,
which can be accessed using this link, contains the
latest updates and additional information.
Note:

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

DS70616G-page 468

28.1.1

KEY RESOURCES

• Section 28. “Parallel Master Port (PMP)”
(DS70576) in the “dsPIC33E/PIC24E Family
Reference Manual”
• Code Samples
• Application Notes
• Software Libraries
• Webinars
• All related “dsPIC33E/PIC24E Family Reference
Manual” Sections
• Development Tools

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
28.2

PMP Control Registers

REGISTER 28-1:

PMCON: PARALLEL MASTER PORT CONTROL REGISTER

R/W-0

U-0

R/W-0

PMPEN

—

PSIDL

R/W-0

R/W-0

ADRMUX<1:0>

R/W-0

R/W-0

R/W-0

PTBEEN

PTWREN

PTRDEN

bit 15

bit 8

R/W-0

R/W-0

CSF<1:0>

R/W-0(1)

R/W-0(1)

R/W-0(1)

R/W-0

R/W-0

R/W-0

ALP

CS2P

CS1P

BEP

WRSP

RDSP

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at Reset

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

PMPEN: Parallel Master Port Enable bit
1 = PMP module is enabled
0 = PMP module is disabled, no off-chip access is performed

bit 14

Unimplemented: Read as ‘0’

bit 13

PSIDL: PMP Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode

bit 12-11

ADRMUX<1:0>: Address/Data Multiplexing Selection bits
11 = Reserved
10 = All 16 bits of address are multiplexed on PMD<7:0> pins
01 = Lower eight bits of address are multiplexed on PMD<7:0> pins, upper eight bits are on PMA<15:8>
00 = Address and data appear on separate pins

bit 10

PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode)
1 = PMBE port is enabled
0 = PMBE port is disabled

bit 9

PTWREN: Write Enable Strobe Port Enable bit
1 = PMWR/PMENB port is enabled
0 = PMWR/PMENB port is disabled

bit 8

PTRDEN: Read/Write Strobe Port Enable bit
1 = PMRD/PMWR port is enabled
0 = PMRD/PMWR port is disabled

bit 7-6

CSF<1:0>: Chip Select Function bits
11 = Reserved
10 = PMCS1 and PMCS2 function as Chip Select
01 = PMCS2 functions as Chip Select, PMCS1 functions as Address Bit 14
00 = PMCS1 and PMCS2 function as Address Bits 15 and 14

bit 5

ALP: Address Latch Polarity bit(1)
1 = Active-high (PMALL and PMALH)
0 = Active-low (PMALL and PMALH)

bit 4

CS2P: Chip Select 1 Polarity bit(1)
1 = Active-high (PMCS2)
0 = Active-low (PMCS2)

Note 1:
2:

These bits have no effect when their corresponding pins are used as address lines.
PMCS1 applies to Master mode and PMCS applies to Slave mode.

 2009-2012 Microchip Technology Inc.

DS70616G-page 469

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 28-1:

PMCON: PARALLEL MASTER PORT CONTROL REGISTER (CONTINUED)

bit 3

CS1P: Chip Select 0 Polarity bit(1)
1 = Active-high (PMCS1/PMCS)(2)
0 = Active-low (PMCS1/PMCS)

bit 2

BEP: Byte Enable Polarity bit
1 = Byte enable active-high (PMBE)
0 = Byte enable active-low (PMBE)

bit 1

WRSP: Write Strobe Polarity bit
For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10):
1 = Write strobe is active-high (PMWR)
0 = Write strobe is active-low (PMWR)
For Master Mode 1 (PMMODE<9:8> = 11):
1 = Enables strobe active-high (PMENB)
0 = Enables strobe active-low (PMENB)

bit 0

RDSP: Read Strobe Polarity bit
For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10):
1 = Read strobe is active-high (PMRD)
0 = Read strobe is active-low (PMRD)
For Master Mode 1 (PMMODE<9:8> = 11):
1 = Enables strobe active-high (PMRD/PMWR)
0 = Enables strobe active-low (PMRD/PMWR)

Note 1:
2:

These bits have no effect when their corresponding pins are used as address lines.
PMCS1 applies to Master mode and PMCS applies to Slave mode.

DS70616G-page 470

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 28-2:
R-0

PMMODE: PARALLEL MASTER PORT MODE REGISTER

R/W-0

BUSY

R/W-0

R/W-0

IRQM<1:0>

R/W-0

INCM<1:0>

R/W-0

R/W-0

MODE16

R/W-0

MODE<1:0>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

WAITB<1:0>(1,2,3)

R/W-0

R/W-0

R/W-0

R/W-0

WAITE<1:0>(1,2,3)

WAITM<3:0>

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at Reset

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

BUSY: Busy bit (Master mode only)
1 = Port is busy
0 = Port is not busy

bit 14-13

IRQM<1:0>: Interrupt Request Mode bits
11 = Interrupt is generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP
mode), or on a read/write operation when PMA<1:0> = 11 (Addressable PSP mode only)
10 = Reserved
01 = Interrupt is generated at the end of the read/write cycle
00 = No Interrupt is generated

bit 12-11

INCM<1:0>: Increment Mode bits
11 = PSP read and write buffers auto-increment (Legacy PSP mode only)
10 = Decrements ADDR by 1 every read/write cycle
01 = Increments ADDR by 1 every read/write cycle
00 = No increment or decrement of address

bit 10

MODE16: Parallel Master Port Mode 8/16-Bit Mode bit
1 = 16-bit mode: data register is 16 bits, a read/write to the data register invokes two 8-bit transfers
0 = 8-bit mode: data register is 8 bits, a read/write to the data register invokes one 8-bit transfer

bit 9-8

MODE<1:0>: Parallel Master Port Mode Select bits
11 = Master Mode 1 (PMCSx, PMRD/PMWR, PMENB, PMBE, PMA and PMD<7:0>)
10 = Master Mode 2 (PMCSx, PMRD, PMWR, PMBE, PMA and PMD<7:0>)
01 = Enhanced PSP, controls signals (PMRD, PMWR, PMCSx, PMD<7:0> and PMA<1:0>)
00 = Legacy Parallel Slave Port, controls signals (PMRD, PMWR, PMCSx and PMD<7:0>)

bit 7-6

WAITB<1:0>: Data Setup to Read/Write/Address Phase Wait State Configuration bits(1,2,3)
11 = Data wait of 4 TP (demultiplexed/multiplexed); address phase of 4 TP (multiplexed)
10 = Data wait of 3 TP (demultiplexed/multiplexed); address phase of 3 TP (multiplexed)
01 = Data wait of 2 TP (demultiplexed/multiplexed); address phase of 2 TP (multiplexed)
00 = Data wait of 1 TP (demultiplexed/multiplexed); address phase of 1 TP (multiplexed)

bit 5-2

WAITM<3:0>: Read to Byte Enable Strobe Wait State Configuration bits
1111 = Wait of additional 15 TP
•
•
•
0001 = Wait of additional 1 TP
0000 = No additional Wait cycles (operation forced into one TP)

Note 1:

2:
3:

The applied Wait state depends on whether data and address are multiplexed or demultiplexed. See
Section 28.4.1.8. “Wait States” in Section 28. “Parallel Master Port (PMP)” (DS70576) in the
“dsPIC33E/PIC24E Family Reference Manual” for more information.
WAITB<1:0> and WAITE<1:0> bits are ignored whenever WAITM<3:0> = 0000.
TP = 1/FP.

 2009-2012 Microchip Technology Inc.

DS70616G-page 471

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 28-2:

PMMODE: PARALLEL MASTER PORT MODE REGISTER (CONTINUED)

WAITE<1:0>: Data Hold After Strobe Wait State Configuration bits(1,2,3)
11 = Wait of 4 TP
10 = Wait of 3 TP
01 = Wait of 2 TP
00 = Wait of 1 TP

bit 1-0

Note 1:

2:
3:

The applied Wait state depends on whether data and address are multiplexed or demultiplexed. See
Section 28.4.1.8. “Wait States” in Section 28. “Parallel Master Port (PMP)” (DS70576) in the
“dsPIC33E/PIC24E Family Reference Manual” for more information.
WAITB<1:0> and WAITE<1:0> bits are ignored whenever WAITM<3:0> = 0000.
TP = 1/FP.

DS70616G-page 472

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 28-3:

PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER
(MASTER MODES ONLY)(1)

R/W-0

R/W-0

CS2

CS1

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

ADDR<13:8>

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

ADDR<7:0>
bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at Reset

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15

CS2: Chip Select 2 bit
If PMCON<7:6> = 10 or 01:
1 = Chip Select 2 is active
0 = Chip Select 2 is inactive
If PMCON<7:6> = 11 or 00:
Bit functions as ADDR<15>.

bit 14

CS1: Chip Select 1 bit
If PMCON<7:6> = 10:
1 = Chip Select 1 is active
0 = Chip Select 1 is inactive
If PMCON<7:6> = 11 or 0x:
Bit functions as ADDR<14>.

bit 13-0

ADDR<13:0>: Destination Address bits

Note 1:

x = Bit is unknown

In Enhanced Slave mode, PMADDR functions as PMDOUT1, one of the two Data Buffer registers.

 2009-2012 Microchip Technology Inc.

DS70616G-page 473

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 28-4:

PMAEN: PARALLEL MASTER PORT ADDRESS ENABLE REGISTER

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

PTEN15

PTEN14

PTEN13

PTEN12

PTEN11

PTEN10

PTEN9

PTEN8

bit 15

bit 8

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

R/W-0

PTEN7

PTEN6

PTEN5

PTEN4

PTEN3

PTEN2

PTEN1

PTEN0

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at Reset

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

PTEN15: PMCS2 Strobe Enable bit
1 = PMA15 functions as either PMA<15> or PMCS2
0 = PMA15 functions as port I/O

bit 14

PTEN14: PMCS1 Strobe Enable bit
1 = PMA14 functions as either PMA<14> or PMCS1
0 = PMA14 functions as port I/O

bit 13-2

PTEN<13:2>: PMP Address Port Enable bits
1 = PMA<13:2> function as PMP address lines
0 = PMA<13:2> function as port I/O

bit 1-0

PTEN<1:0>: PMALH/PMALL Strobe Enable bits
1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL
0 = PMA1 and PMA0 function as port I/O

DS70616G-page 474

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 28-5:

PMSTAT: PARALLEL MASTER PORT STATUS REGISTER (SLAVE MODE ONLY)

R-0

R/W-0, HS

U-0

U-0

R-0

R-0

R-0

R-0

IBF

IBOV

—

—

IB3F

IB2F

IB1F

IB0F

bit 15

bit 8

R-1

R/W-0, HS

U-0

U-0

R-1

R-1

R-1

R-1

OBE

OBUF

—

—

OB3E

OB2E

OB1E

OB0E

bit 7

bit 0

Legend:

HS = Hardware Settable bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at Reset

‘1’ = Bit is set

‘0’ = Bit is cleared

x = Bit is unknown

bit 15

IBF: Input Buffer Full Status bit
1 = All writable Input Buffer registers are full
0 = Some or all of the Writable Input Buffer registers are empty

bit 14

IBOV: Input Buffer Overflow Status bit
1 = A write attempt to a full Input Byte register occurred (must be cleared in software)
0 = No overflow occurred

bit 13-12

Unimplemented: Read as ‘0’

bit 11-8

IB3F:IB0F: Input Buffer x Status Full bits
1 = Input buffer contains data that has not been read (reading the buffer will clear this bit)
0 = Input buffer does not contain any unread data

bit 7

OBE: Output Buffer Empty Status bit
1 = All readable Output Buffer registers are empty
0 = Some or all of the readable Output Buffer registers are full

bit 6

OBUF: Output Buffer Underflow Status bit
1 = A read occurred from an empty output byte register (must be cleared in software)
0 = No underflow occurred

bit 5-4

Unimplemented: Read as ‘0’

bit 3-0

OB3E:OB0E: Output Buffer x Status Empty bits
1 = Output buffer is empty (writing data to the buffer will clear this bit)
0 = Output buffer contains data that has not been transmitted

 2009-2012 Microchip Technology Inc.

DS70616G-page 475

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
REGISTER 28-6:

PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0

U-0

U-0

U-0

U-0

U-0

U-0

U-0

—

—

—

—

—

—

—

—

bit 15

bit 8

U-0

U-0

U-0

U-0

U-0

U-0

R/W-0

R/W-0

—

—

—

—

—

—

RTSECSEL

PMPTTL

bit 7

bit 0

Legend:
R = Readable bit

W = Writable bit

U = Unimplemented bit, read as ‘0’

-n = Value at POR

‘1’ = Bit is set

‘0’ = Bit is cleared

bit 15-2

Unimplemented: Read as ‘0’

bit 1

Not used by the PMP module.

bit 0

PMPTTL: PMP Module TTL Input Buffer Select bit
1 = PMP module uses TTL input buffers
0 = PMP module uses Schmitt Trigger input buffers

DS70616G-page 476

x = Bit is unknown

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
29.0
Note:

SPECIAL FEATURES

29.1

This data sheet summarizes the features of
the
dsPIC33EPXXX(GP/MC/MU)806/810/
814 and PIC24EPXXX(GP/GU)810/814
families of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the related section of the
“dsPIC33E/PIC24E
Family
Reference
Manual”, which is available from the
Microchip web site (www.microchip.com).

dsPIC33EPXXX(GP/MC/MU)806/810/814
and
PIC24EPXXX(GP/GU)810/814
devices
include
several features intended to maximize application
flexibility and reliability, and minimize cost through
elimination of external components. These are:
•
•
•
•
•
•

Flexible Configuration
Watchdog Timer (WDT)
Code Protection and CodeGuard™ Security
JTAG Boundary Scan Interface
In-Circuit Serial Programming™ (ICSP™)
In-Circuit Emulation

Configuration Bits

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814
devices
provide
nonvolatile memory implementation for device Configuration bits. Refer to Section 30. “Device Configuration”
(DS70618) of the “dsPIC33E/PIC24E Family Reference
Manual” for more information on this implementation.
The Configuration bits can be programmed (read as
‘0’), or left unprogrammed (read as ‘1’), to select
various device configurations. These bits are mapped,
starting at program memory location, 0xF80000.
The individual Configuration bit descriptions for the
Configuration registers are shown in Table 29-2.
Note that address, 0xF80000, is beyond the user
program memory space. It belongs to the configuration
memory space (0x800000-0xFFFFFF), which can only
be accessed using table reads and table writes.
To prevent inadvertent configuration changes during
code execution, some programmable Configuration
bits are write-once. For such bits, changing a device
configuration requires that the device be reset. For
other Configuration bits, the device configuration
changes immediately after an RTSP operation. The
RTSP effect column in Table 29-2 indicates when the
device configuration changes after a bit is modified
using RTSP.
The device Configuration register map is shown in
Table 29-1.

TABLE 29-1:
Address

DEVICE CONFIGURATION REGISTER MAP
Name

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

0xF80000 Reserved

—

—

—

—

—

—

—

—

0xF80002 Reserved

—

—

—

—

—

—

—

—

—

—

—

—

GSS

GWRP

IESO

—

0xF80004 FGS
0xF80006 FOSCSEL

GSSK<1:0>
—

—

—
—

0xF80008 FOSC

FCKSM<1:0>

IOL1WAY

—

0xF8000A FWDT

FWDTEN WINDIS

PLLKEN

WDTPRE

0xF8000C FPOR

—

0xF8000E FICD

Reserved(1)

0xF80010 FAS

—

0xF80012 FUID0

—
—

ALTI2C2

ALTI2C1

JTAGEN

Reserved(1)

APLK<1:0>

FNOSC<2:0>
OSCIOFNC

POSCMD<1:0>

WDTPOST<3:0>
(2)

BOREN

FPWRT<2:0>

—

RSTPRI

—

—

ICS<1:0>
APL

AWRP

User Unit ID Byte 0

Legend: — = unimplemented bit, read as ‘0’
Note 1: These bits are reserved for use by development tools and must be programmed as ‘1’.
2: BOR should always be enabled for proper operation (BOREN = 1).

 2009-2012 Microchip Technology Inc.

DS70616G-page 477

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 29-2:
Bit Field

CONFIGURATION BITS DESCRIPTION
Register

RTSP Effect

Description

GSSK<1:0>

FGS

Immediate

General Segment Key bits
These bits must be set to ‘00’ if GWRP = 1 and GSS = 1. These bits must
be set to ‘11’ for any other value of the GWRP and GSS bits.
Any mismatch between either the GWRP or GSS bits, and the GSSK bits
(as described above), will result in code protection becoming enabled for
the General Segment. A Flash bulk erase will be required to unlock the
device.

GSS

FGS

Immediate

General Segment Code-Protect bit
1 = User program memory is not code-protected
0 = User program memory is code-protected

GWRP

FGS

Immediate

General Segment Write-Protect bit
1 = User program memory is not write-protected
0 = User program memory is write-protected

IESO

FOSCSEL

Immediate

Two-Speed Oscillator Start-up Enable bit
1 = Start-up device with FRC, then automatically switch to the
user-selected oscillator source when ready
0 = Start-up device with user-selected oscillator source

FNOSC<2:0>

FOSCSEL If clock switch
is enabled, the
RTSP effect is
on any device
Reset;
otherwise,
immediate

Initial Oscillator Source Selection bits
111 = Internal Fast RC (FRC) Oscillator with Postscaler
110 = Internal Fast RC (FRC) Oscillator with Divide-by-16
101 = LPRC Oscillator
100 = Secondary (LP) Oscillator
011 = Primary (XT, HS, EC) Oscillator with PLL
010 = Primary (XT, HS, EC) Oscillator
001 = Internal Fast RC (FRC) Oscillator with PLL
000 = FRC Oscillator

FCKSM<1:0>

FOSC

Immediate

Clock Switching Mode bits
1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled

IOL1WAY

FOSC

Immediate

Peripheral Pin Select Configuration bit
1 = Allows only one reconfiguration
0 = Allows multiple reconfigurations

OSCIOFNC

FOSC

Immediate

OSC2 Pin Function bit (except in XT and HS modes)
1 = OSC2 is the clock output
0 = OSC2 is the general purpose digital I/O pin

POSCMD<1:0>

FOSC

Immediate

Primary Oscillator Mode Select bits
11 = Primary Oscillator is disabled
10 = HS Crystal Oscillator mode
01 = XT Crystal Oscillator mode
00 = EC (External Clock) mode

FWDTEN

FWDT

Immediate

Watchdog Timer Enable bit
1 = Watchdog Timer is always enabled (LPRC Oscillator cannot be disabled.
Clearing the SWDTEN bit in the RCON register has no effect.)
0 = Watchdog Timer is enabled/disabled by user software (LPRC can be
disabled by clearing the SWDTEN bit in the RCON register.)

Note 1:
2:

BOR should always be enabled for proper operation (BOREN = 1).
This register can only be modified when code protection and write protection are disabled for both the
General and Auxiliary Segments (APL = 1, AWRP = 1, APLK = 0, GSS = 1, GWRP = 1 and GSSK = 0).

DS70616G-page 478

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 29-2:
Bit Field

CONFIGURATION BITS DESCRIPTION (CONTINUED)
Register

RTSP Effect

WINDIS

FWDT

Immediate

Watchdog Timer Window Enable bit
1 = Watchdog Timer is in Non-Window mode
0 = Watchdog Timer is in Window mode

PLLKEN

FWDT

Immediate

PLL Lock Wait Enable bit
1 = Clock switches to the PLL source will wait until the PLL lock signal is valid
0 = Clock switch will not wait for PLL lock

WDTPRE

FWDT

Immediate

Watchdog Timer Prescaler bit
1 = 1:128
0 = 1:32

APLK<1:0>

FAS(2)

Immediate

Auxiliary Segment Key bits
These bits must be set to ‘00’ if AWRP = 1 and APL = 1. These bits must
be set to ‘11’ for any other value of the AWRP and APL bits.
Any mismatch between either the AWRP or APL bits and the APLK bits
(as described above), will result in code protection becoming enabled for
the Auxiliary Segment. A Flash bulk erase will be required to unlock the
device.

APL

FAS(2)

Immediate

Auxiliary Segment Code-Protect bit
1 = Auxiliary program memory is not code-protected
0 = Auxiliary program memory is code-protected

AWRP

FAS(2)

Immediate

Auxiliary Segment Write-Protect bit
1 = Auxiliary program memory is not write-protected
0 = Auxiliary program memory is write-protected

WDTPOST<3:0>

FWDT

Immediate

Watchdog Timer Postscaler bits
1111 = 1:32,768
1110 = 1:16,384
•
•
•
0001 = 1:2
0000 = 1:1

FPWRT<2:0>

FPOR

Immediate

Power-on Reset Timer Value Select bits
111 = PWRT = 128 ms
110 = PWRT = 64 ms
101 = PWRT = 32 ms
100 = PWRT = 16 ms
011 = PWRT = 8 ms
010 = PWRT = 4 ms
001 = PWRT = 2 ms
000 = PWRT = Disabled

BOREN(1)

FPOR

Immediate

Brown-out Reset (BOR) Detection Enable bit
1 = BOR is enabled
0 = BOR is disabled

ALTI2C2

FPOR

Immediate

Alternate I2C™ pins for I2C2 bit
1 = I2C2 is mapped to the SDA2/SCL2 pins
0 = I2C2 is mapped to the ASDA2/ASCL2 pins

ALTI2C1

FPOR

Immediate

Alternate I2C pins for I2C1 bit
1 = I2C1 is mapped to the SDA1/SCL1 pins
0 = I2C1 is mapped to the ASDA1/ASCL1 pins

Note 1:
2:

Description

BOR should always be enabled for proper operation (BOREN = 1).
This register can only be modified when code protection and write protection are disabled for both the
General and Auxiliary Segments (APL = 1, AWRP = 1, APLK = 0, GSS = 1, GWRP = 1 and GSSK = 0).

 2009-2012 Microchip Technology Inc.

DS70616G-page 479

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 29-2:
Bit Field

CONFIGURATION BITS DESCRIPTION (CONTINUED)
Register

RTSP Effect

JTAGEN

FICD

Immediate

RSTPRI

FICD

ICS<1:0>

FICD

Note 1:
2:

Description
JTAG Enable bit
1 = JTAG is enabled
0 = JTAG is disabled

On any
Reset Target Vector Select bit
device Reset 1 = Device will reset to Primary Flash Reset location
0 = Device will reset to Auxiliary Flash Reset location
Immediate

ICD Communication Channel Select bits
11 = Communicate on PGEC1 and PGED1
10 = Communicate on PGEC2 and PGED2
01 = Communicate on PGEC3 and PGED3
00 = Reserved, do not use

BOR should always be enabled for proper operation (BOREN = 1).
This register can only be modified when code protection and write protection are disabled for both the
General and Auxiliary Segments (APL = 1, AWRP = 1, APLK = 0, GSS = 1, GWRP = 1 and GSSK = 0).

DS70616G-page 480

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
29.2

On-Chip Voltage Regulator

All of the dsPIC33EPXXX(GP/MC/MU)806/810/814
and PIC24EPXXX(GP/GU)810/814 devices power
their core digital logic at a nominal 1.8V. This can create
a conflict for designs that are required to operate at a
higher typical voltage, such as 3.3V. To simplify system
design, all devices in the dsPIC33EPXXX(GP/MC/
MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
family incorporate an on-chip regulator that allows the
device to run its core logic from VDD.
The regulator provides power to the core from the other
VDD pins. A low-ESR (less than 1 Ohms) capacitor
(such as tantalum or ceramic) must be connected to the
VCAP pin (Figure 29-1). This helps to maintain the
stability of the regulator. The recommended value for
the filter capacitor is provided in Table 32-13 located in
Section 32.0 “Electrical Characteristics”.
Note:

It is important for the low-ESR capacitor to
be placed as close as possible to the VCAP
pin.

FIGURE 29-1:

CONNECTIONS FOR THE
ON-CHIP VOLTAGE
REGULATOR(1,2,3)

3.3V

dsPIC33E/PIC24E
VDD
VCAP

29.3

Brown-out Reset (BOR)

The Brown-out Reset module is based on an internal
voltage reference circuit that monitors the regulated
supply voltage, VCAP. The main purpose of the BOR
module is to generate a device Reset when a brownout condition occurs. Brown-out conditions are
generally caused by glitches on the AC mains (for
example, missing portions of the AC cycle waveform
due to bad power transmission lines, or voltage sags
due to excessive current draw when a large inductive
load is turned on).
A BOR generates a Reset pulse, which resets the
device. The BOR selects the clock source based on the
device Configuration bit values (FNOSC<2:0> and
POSCMD<1:0>).
If an oscillator mode is selected, the BOR activates the
Oscillator Start-up Timer (OST). The system clock is
held until OST expires. If the PLL is used, the clock is
held until the LOCK bit (OSCCON<5>) is ‘1’.
Concurrently, the Power-up Timer (PWRT) Time-out
(TPWRT) is applied before the internal Reset is
released. If TPWRT = 0 and a crystal oscillator is
being used, then a nominal delay of TFSCM is
applied. The total delay in this case is TFSCM. Refer
to Parameter SY35 in Table 32-22 of Section 32.0
“Electrical Characteristics” for specific TFSCM
values.
The BOR Status bit (RCON<1>) is set to indicate that a
BOR has occurred. The BOR circuit, continues to operate while in Sleep or Idle modes and resets the device
should VDD fall below the BOR threshold voltage.

CEFC
VSS

Note 1:

These are typical operating voltages. Refer
to Table 32-13 located in Section 32.1
“DC Characteristics” for the full operating
ranges of VDD and VCAP.

2:

It is important for the low-ESR capacitor to
be placed as close as possible to the VCAP
pin.

3:

Typical VCAP pin voltage is 1.8V when
VDD  VDDMIN.

 2009-2012 Microchip Technology Inc.

DS70616G-page 481

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
29.4

Watchdog Timer (WDT)

29.4.2

For dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 devices, the WDT is
driven by the LPRC Oscillator. When the WDT is
enabled, the clock source is also enabled.

29.4.1

PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz.
This feeds a prescaler that can be configured for either
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.
The prescaler is set by the WDTPRE Configuration bit.
With a 32 kHz input, the prescaler yields a nominal
WDT Time-out (TWDT) period of 1 ms in 5-bit mode or
4 ms in 7-bit mode.
A variable postscaler divides down the WDT prescaler
output and allows for a wide range of time-out periods.
The postscaler is controlled by the WDTPOST<3:0>
Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the
prescaler and postscaler, time-out periods ranging from
1 ms to 131 seconds can be achieved.
The WDT, prescaler and postscaler are reset:
• On any device Reset
• On the completion of a clock switch, whether
invoked by software (i.e., setting the OSWEN bit
after changing the NOSC bits) or by hardware
(i.e., Fail-Safe Clock Monitor)
• When a PWRSAV instruction is executed
(i.e., Sleep or Idle mode is entered)
• When the device exits Sleep or Idle mode to
resume normal operation
• By a CLRWDT instruction during normal execution
Note:

The CLRWDT and PWRSAV instructions
clear the prescaler and postscaler counts
when executed.

FIGURE 29-2:

SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or
Idle modes. When the WDT time-out occurs, the device
wakes the device and code execution continues from
where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) need to be
cleared in software after the device wakes up.

29.4.3

ENABLING WDT

The WDT is enabled or disabled by the FWDTEN
Configuration bit in the FWDT Configuration register.
When the FWDTEN Configuration bit is set, the WDT is
always enabled.
The WDT can be optionally controlled in software
when the FWDTEN Configuration bit has been
programmed to ‘0’. The WDT is enabled in software
by setting the SWDTEN control bit (RCON<5>). The
SWDTEN control bit is cleared on any device Reset.
The software WDT option allows the user application
to enable the WDT for critical code segments and
disable the WDT during non-critical segments for
maximum power savings.
Note:

If the WINDIS bit (FWDT<6>) is cleared,
the CLRWDT instruction should be executed
by the application software only during the
last 1/4 of the WDT period. This CLRWDT
instruction window can be determined by
using a timer. If a CLRWDT instruction is
executed before this window, a WDT Reset
occurs.

The WDT flag bit, WDTO (RCON<4>), is not automatically
cleared following a WDT time-out. To detect subsequent
WDT events, the flag must be cleared in software.

WDT BLOCK DIAGRAM

All Device Resets
Transition to New Clock Source
Exit Sleep or Idle Mode
PWRSAV Instruction
CLRWDT Instruction
Watchdog Timer

SWDTEN
FWDTEN

WDT
Wake-up

RS
Prescaler
(divide-by-N1)

LPRC Clock

Sleep/Idle

WDTPOST<3:0>

WDTPRE

1

RS

Postscaler
(divide-by-N2)
0

WINDIS

WDT
Reset

WDT Window Select

CLRWDT Instruction

DS70616G-page 482

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
29.5

JTAG Interface

dsPIC33EPXXX(GP/MC/MU)806/810/814
and
PIC24EPXXX(GP/GU)810/814 devices implement a
JTAG interface, which supports boundary scan device
testing. Detailed information on this interface is
provided in future revisions of the document.
Note:

29.6

Refer to Section 24. “Programming
and Diagnostics” (DS70608) of the
“dsPIC33E/PIC24E Family Reference
Manual” for further information on usage,
configuration and operation of the JTAG
interface.

In-Circuit Serial Programming

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 devices can be serially
programmed while in the end application circuit. This is
done with two lines for clock and data, and three other
lines for power, ground and the programming
sequence. Serial programming allows customers to
manufacture boards with unprogrammed devices and
then program the digital signal controller just before
shipping the product. Serial programming also allows
the most recent firmware or a custom firmware to be
programmed. Refer to the “dsPIC33E/PIC24E Flash
Programming Specification” (DS70619) for details
about In-Circuit Serial Programming (ICSP).
Any of the three pairs of programming clock/data pins
can be used:
• PGEC1 and PGED1
• PGEC2 and PGED2
• PGEC3 and PGED3

29.7

In-Circuit Debugger

When MPLAB® ICD 3 or REAL ICE™ is selected as a
debugger, the in-circuit debugging functionality is
enabled. This function allows simple debugging
functions when used with MPLAB IDE. Debugging
functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug
Data) pin functions.

 2009-2012 Microchip Technology Inc.

Any of the three pairs of debugging clock/data pins can
be used:
• PGEC1 and PGED1
• PGEC2 and PGED2
• PGEC3 and PGED3
To use the in-circuit debugger function of the device,
the design must implement ICSP connections to
MCLR, VDD, VSS and the PGECx/PGEDx pin pair. In
addition, when the feature is enabled, some of the
resources are not available for general use. These
resources include the first 80 bytes of data RAM and
two I/O pins.

29.8

Code Protection and
CodeGuard™ Security

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 devices offer basic
implementation of CodeGuard Security that supports
only General Segment (GS) security. This feature helps
protect individual Intellectual Property in collaborative
system designs.
When coupled with software encryption libraries,
CodeGuard Security can be used to securely update
Flash even when multiple IPs reside on the single chip.
The code protection features vary depending on the
actual dsPIC33E implemented. The following sections
provide an overview of these features.
The dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 devices do not support
Boot Segment (BS), Secure Segment (SS) and RAM
protection.
Note:

Refer to Section 23. “CodeGuard™
Security” (DS70634) of the “dsPIC33E/
PIC24E Family Reference Manual” for
further information on usage, configuration
and operation of CodeGuard Security.

DS70616G-page 483

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
NOTES:

DS70616G-page 484

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
30.0
Note:

INSTRUCTION SET SUMMARY
This data sheet summarizes the features of
the
dsPIC33EPXXX(GP/MC/MU)806/810/
814 and PIC24EPXXX(GP/GU)810/814
families of devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the related section of the
“dsPIC33E/PIC24E
Family
Reference
Manual”, which is available from the
Microchip web site (www.microchip.com).

The dsPIC33EP instruction set is almost identical to
that of the dsPIC30F and dsPIC33F. The PIC24EP
instruction set is almost identical to that of the PIC24F
and PIC24H.
Most instructions are a single program memory word
(24 bits). Only three instructions require two program
memory locations.
Each single-word instruction is a 24-bit word, divided
into an 8-bit opcode, which specifies the instruction
type and one or more operands, which further specify
the operation of the instruction.
The instruction set is highly orthogonal and is grouped
into five basic categories:
•
•
•
•
•

Word or byte-oriented operations
Bit-oriented operations
Literal operations
DSP operations
Control operations

Table 30-1 lists the general symbols used in describing
the instructions.
The dsPIC33E instruction set summary in Table 30-2
lists all the instructions, along with the status flags
affected by each instruction.
Most word or byte-oriented W register instructions
(including barrel shift instructions) have three
operands:
• The first source operand, which is typically a
register ‘Wb’ without any address modifier
• The second source operand, which is typically a
register ‘Ws’ with or without an address modifier
• The destination of the result, which is typically a
register ‘Wd’ with or without an address modifier
However, word or byte-oriented file register instructions
have two operands:

Most bit-oriented instructions (including simple rotate/
shift instructions) have two operands:
• The W register (with or without an address
modifier) or file register (specified by the value of
‘Ws’ or ‘f’)
• The bit in the W register or file register (specified
by a literal value or indirectly by the contents of
register ‘Wb’)
The literal instructions that involve data movement can
use some of the following operands:
• A literal value to be loaded into a W register or file
register (specified by ‘k’)
• The W register or file register where the literal
value is to be loaded (specified by ‘Wb’ or ‘f’)
However, literal instructions that involve arithmetic or
logical operations use some of the following operands:
• The first source operand, which is a register ‘Wb’
without any address modifier
• The second source operand, which is a literal
value
• The destination of the result (only if not the same
as the first source operand), which is typically a
register ‘Wd’ with or without an address modifier
The MAC class of DSP instructions can use some of the
following operands:
• The accumulator (A or B) to be used (required
operand)
• The W registers to be used as the two operands
• The X and Y address space prefetch operations
• The X and Y address space prefetch destinations
• The accumulator write-back destination
The other DSP instructions do not involve any
multiplication and can include:
• The accumulator to be used (required)
• The source or destination operand (designated as
Wso or Wdo, respectively) with or without an
address modifier
• The amount of shift specified by a W register ‘Wn’
or a literal value
The control instructions can use some of the following
operands:
• A program memory address
• The mode of the table read and table write
instructions

• The file register specified by the value ‘f’
• The destination, which could be either the file
register ‘f’ or the W0 register, which is denoted as
‘WREG’

 2009-2012 Microchip Technology Inc.

DS70616G-page 485

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
Most instructions are a single word. Certain double-word
instructions are designed to provide all the required
information in these 48 bits. In the second word, the
8 MSbs are ‘0’s. If this second word is executed as an
instruction (by itself), it executes as a NOP.
The double-word instructions execute in two instruction
cycles.
Most single-word instructions are executed in a single
instruction cycle, unless a conditional test is true, or the
Program Counter is changed as a result of the
instruction, or a PSV or table read is performed. In these
cases, the execution takes multiple instruction cycles

TABLE 30-1:

with the additional instruction cycle(s) executed as a
NOP. Certain instructions that involve skipping over the
subsequent instruction require either two or three cycles
if the skip is performed, depending on whether the
instruction being skipped is a single-word or two-word
instruction. Moreover, double-word moves require two
cycles.
Note:

For more details on the instruction set,
refer to the “16-bit MCU and DSC
Programmer’s
Reference
Manual”
(DS70157).

SYMBOLS USED IN OPCODE DESCRIPTIONS

Field

Description

#text

Means literal defined by “text”

(text)

Means “content of text”

[text]

Means “the location addressed by text”

{}

Optional field or operation

a  {b, c, d}

a is selected from the set of values b, c, d



Register bit field

.b

Byte mode selection

.d

Double-Word mode selection

.S

Shadow register select

.w

Word mode selection (default)

Acc

One of two accumulators {A, B}

AWB

Accumulator Write-Back Destination Address register {W13, [W13]+ = 2}

bit4

4-bit bit selection field (used in word addressed instructions) {0...15}

C, DC, N, OV, Z

MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero

Expr

Absolute address, label or expression (resolved by the linker)

f

File register address {0x0000...0x1FFF}

lit1

1-bit unsigned literal {0,1}

lit4

4-bit unsigned literal {0...15}

lit5

5-bit unsigned literal {0...31}

lit8

8-bit unsigned literal {0...255}

lit10

10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode

lit14

14-bit unsigned literal {0...16384}

lit16

16-bit unsigned literal {0...65535}

lit23

23-bit unsigned literal {0...8388608}; LSb must be ‘0’

None

Field does not require an entry, can be blank

OA, OB, SA, SB

DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate

PC

Program Counter

Slit10

10-bit signed literal {-512...511}

Slit16

16-bit signed literal {-32768...32767}

Slit6

6-bit signed literal {-16...16}

Wb

Base W register {W0...W15}

Wd

Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }

Wdo

Destination W register 
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }

Wm,Wn

Dividend, Divisor Working register pair (Direct Addressing)

DS70616G-page 486

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 30-1:

SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field

Description

Wm*Wm

Multiplicand and Multiplier working register pair for Square instructions 
{W4 * W4,W5 * W5,W6 * W6,W7 * W7}

Wm*Wn

Multiplicand and Multiplier working register pair for DSP instructions 
{W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}

Wn

One of 16 working registers {W0...W15}

Wnd

One of 16 destination working registers {W0...W15}

Wns

One of 16 source working registers {W0...W15}

WREG

W0 (working register used in file register instructions)

Ws

Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }

Wso

Source W register 
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }

Wx

X Data Space Prefetch Address register for DSP instructions
 {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2,
[W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2,
[W9 + W12], none}

Wxd

X Data Space Prefetch Destination register for DSP instructions {W4...W7}

Wy

Y Data Space Prefetch Address register for DSP instructions
 {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2,
[W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2,
[W11 + W12], none}

Wyd

Y Data Space Prefetch Destination register for DSP instructions {W4...W7}

 2009-2012 Microchip Technology Inc.

DS70616G-page 487

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 30-2:

INSTRUCTION SET OVERVIEW

Base
Assembly
Instr
Mnemonic
#
1

2

3

4

ADD

ADDC

AND

ASR

Assembly Syntax

Description

# of
Words

# of
Cycles(2)

Status Flags
Affected
OA,OB,SA,SB

ADD

Acc(1)

Add Accumulators

1

1

ADD

f

f = f + WREG

1

1

C,DC,N,OV,Z

ADD

f,WREG

WREG = f + WREG

1

1

C,DC,N,OV,Z

ADD

#lit10,Wn

Wd = lit10 + Wd

1

1

C,DC,N,OV,Z

ADD

Wb,Ws,Wd

Wd = Wb + Ws

1

1

C,DC,N,OV,Z

ADD

Wb,#lit5,Wd

Wd = Wb + lit5

1

1

C,DC,N,OV,Z

ADD

Wso,#Slit4,Acc

16-bit Signed Add to Accumulator

1

1

OA,OB,SA,SB

ADDC

f

f = f + WREG + (C)

1

1

C,DC,N,OV,Z

ADDC

f,WREG

WREG = f + WREG + (C)

1

1

C,DC,N,OV,Z

ADDC

#lit10,Wn

Wd = lit10 + Wd + (C)

1

1

C,DC,N,OV,Z

ADDC

Wb,Ws,Wd

Wd = Wb + Ws + (C)

1

1

C,DC,N,OV,Z

ADDC

Wb,#lit5,Wd

Wd = Wb + lit5 + (C)

1

1

C,DC,N,OV,Z

AND

f

f = f .AND. WREG

1

1

N,Z

AND

f,WREG

WREG = f .AND. WREG

1

1

N,Z

AND

#lit10,Wn

Wd = lit10 .AND. Wd

1

1

N,Z

AND

Wb,Ws,Wd

Wd = Wb .AND. Ws

1

1

N,Z

AND

Wb,#lit5,Wd

Wd = Wb .AND. lit5

1

1

N,Z

ASR

f

f = Arithmetic Right Shift f

1

1

C,N,OV,Z

ASR

f,WREG

WREG = Arithmetic Right Shift f

1

1

C,N,OV,Z

ASR

Ws,Wd

Wd = Arithmetic Right Shift Ws

1

1

C,N,OV,Z

ASR

Wb,Wns,Wnd

Wnd = Arithmetic Right Shift Wb by Wns

1

1

N,Z

ASR

Wb,#lit5,Wnd

Wnd = Arithmetic Right Shift Wb by lit5

1

1

N,Z

f,#bit4

Bit Clear f

1

1

None

5

BCLR

BCLR
BCLR

Ws,#bit4

Bit Clear Ws

1

1

None

6

BRA

BRA

C,Expr

Branch if Carry

1

1 (4)

None

BRA

GE,Expr

Branch if greater than or equal

1

1 (4)

None

BRA

GEU,Expr

Branch if unsigned greater than or equal

1

1 (4)

None

BRA

GT,Expr

Branch if greater than

1

1 (4)

None

BRA

GTU,Expr

Branch if unsigned greater than

1

1 (4)

None

BRA

LE,Expr

Branch if less than or equal

1

1 (4)

None

BRA

LEU,Expr

Branch if unsigned less than or equal

1

1 (4)

None

BRA

LT,Expr

Branch if less than

1

1 (4)

None

BRA

LTU,Expr

Branch if unsigned less than

1

1 (4)

None

BRA

N,Expr

Branch if Negative

1

1 (4)

None

BRA

NC,Expr

Branch if Not Carry

1

1 (4)

None

BRA

NN,Expr

Branch if Not Negative

1

1 (4)

None

BRA

NOV,Expr

Branch if Not Overflow

1

1 (4)

None

BRA

NZ,Expr

Branch if Not Zero

1

1 (4)

None

BRA

OA,Expr(1)

Branch if Accumulator A overflow

1

1 (4)

None

BRA

OB,Expr(1)

Branch if Accumulator B overflow

1

1 (4)

None

BRA

OV,Expr(1)

Branch if Overflow

1

1 (4)

None

BRA

SA,Expr(1)

Branch if Accumulator A saturated

1

1 (4)

None

BRA

SB,Expr(1)

Branch if Accumulator B saturated

1

1 (4)

None

BRA

Expr

Branch Unconditionally

1

4

None

BRA

Z,Expr

Branch if Zero

1

1 (4)

None

BRA

Wn

Computed Branch

1

4

None

BSET

f,#bit4

Bit Set f

1

1

None

BSET

Ws,#bit4

Bit Set Ws

1

1

None

7
Note

BSET
1:
2:

This instruction is available in dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.
Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

DS70616G-page 488

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 30-2:

INSTRUCTION SET OVERVIEW (CONTINUED)

Base
Assembly
Instr
Mnemonic
#
8
9
10

11

12

13

14

15

BSW
BTG
BTSC

BTSS

BTST

BTSTS

CALL

CLR

Assembly Syntax

Description

# of
Words

# of
Cycles(2)

Status Flags
Affected

BSW.C

Ws,Wb

Write C bit to Ws

1

1

None

BSW.Z

Ws,Wb

Write Z bit to Ws

1

1

None

BTG

f,#bit4

Bit Toggle f

1

1

None

BTG

Ws,#bit4

Bit Toggle Ws

1

1

None

BTSC

f,#bit4

Bit Test f, Skip if Clear

1

1
(2 or 3)

None

BTSC

Ws,#bit4

Bit Test Ws, Skip if Clear

1

1
(2 or 3)

None

BTSS

f,#bit4

Bit Test f, Skip if Set

1

1
(2 or 3)

None

BTSS

Ws,#bit4

Bit Test Ws, Skip if Set

1

1
(2 or 3)

None

BTST

f,#bit4

Bit Test f

1

1

Z

BTST.C

Ws,#bit4

Bit Test Ws to C

1

1

C

BTST.Z

Ws,#bit4

Bit Test Ws to Z

1

1

Z

BTST.C

Ws,Wb

Bit Test Ws to C

1

1

C

BTST.Z

Ws,Wb

Bit Test Ws to Z

1

1

Z

BTSTS

f,#bit4

Bit Test then Set f

1

1

Z

BTSTS.C Ws,#bit4

Bit Test Ws to C, then Set

1

1

C

BTSTS.Z Ws,#bit4

Bit Test Ws to Z, then Set

1

1

Z

CALL

lit23

Call subroutine

2

4

SFA

CALL

Wn

Call indirect subroutine

1

4

SFA

CALL.L

Wn

Call indirect subroutine (long address)

1

4

SFA

CLR

f

f = 0x0000

1

1

None

CLR

WREG

WREG = 0x0000

1

1

None

CLR

Ws

Ws = 0x0000

1

1

None

CLR

Acc,Wx,Wxd,Wy,Wyd,AWB(1)

Clear Accumulator

1

1

OA,OB,SA,SB

Clear Watchdog Timer

1

1

WDTO,Sleep

16

CLRWDT

CLRWDT

17

COM

COM

f

f=f

1

1

N,Z

COM

f,WREG

WREG = f

1

1

N,Z

COM

Ws,Wd

Wd = Ws

1

1

N,Z

CP

f

Compare f with WREG

1

1

C,DC,N,OV,Z

CP

Wb,#lit8

Compare Wb with lit8

1

1

C,DC,N,OV,Z

CP

Wb,Ws

Compare Wb with Ws (Wb – Ws)

1

1

C,DC,N,OV,Z

CP0

f

Compare f with 0x0000

1

1

C,DC,N,OV,Z

CP0

Ws

Compare Ws with 0x0000

1

1

C,DC,N,OV,Z

CPB

f

Compare f with WREG, with Borrow

1

1

C,DC,N,OV,Z

CPB

Wb,#lit8

Compare Wb with lit8, with Borrow

1

1

C,DC,N,OV,Z

CPB

Wb,Ws

Compare Wb with Ws, with Borrow
(Wb – Ws – C)

1

1

C,DC,N,OV,Z

CPSEQ

CPSEQ

Wb,Wn

Compare Wb with Wn, skip if =

1

1
(2 or 3)

None

CPBEQ

CPBEQ

Wb,Wn,Expr

Compare Wb with Wn, branch if =

1

1 (5)

None

CPSGT

CPSGT

Wb,Wn

Compare Wb with Wn, skip if >

1

1
(2 or 3)

None

CPBGT

CPBGT

Wb,Wn,Expr

Compare Wb with Wn, branch if >

1

1 (5)

None

CPSLT

CPSLT

Wb,Wn

Compare Wb with Wn, skip if <

1

1
(2 or 3)

None

CPBLT

CPBLT

Wb,Wn,Expr

Compare Wb with Wn, branch if <

1

1 (5)

None

CPSNE

CPSNE

Wb,Wn

Compare Wb with Wn, skip if 

1

1
(2 or 3)

None

CPBNE

Wb,Wn,Expr

Compare Wb with Wn, branch if 

1

1 (5)

None

18

19
20

21

22

23

24

CP

CP0
CPB

CPBNE
Note

1:
2:

This instruction is available in dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.
Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

 2009-2012 Microchip Technology Inc.

DS70616G-page 489

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 30-2:

INSTRUCTION SET OVERVIEW (CONTINUED)

Base
Assembly
Instr
Mnemonic
#

Assembly Syntax

# of
Words

Description

# of
Cycles(2)

Status Flags
Affected

25

DAW

DAW

Wn

Wn = decimal adjust Wn

1

1

C

26

DEC

DEC

f

f=f–1

1

1

C,DC,N,OV,Z

DEC

f,WREG

WREG = f – 1

1

1

C,DC,N,OV,Z

DEC

Ws,Wd

Wd = Ws – 1

1

1

C,DC,N,OV,Z

DEC2

f

f=f–2

1

1

C,DC,N,OV,Z

DEC2

f,WREG

WREG = f – 2

1

1

C,DC,N,OV,Z
C,DC,N,OV,Z

27

DEC2

DEC2

Ws,Wd

Wd = Ws – 2

1

1

28

DISI

DISI

#lit14

Disable Interrupts for k instruction cycles

1

1

None

29

DIV

DIV.S

Wm,Wn

Signed 16/16-bit Integer Divide

1

18

N,Z,C,OV

DIV.SD

Wm,Wn

Signed 32/16-bit Integer Divide

1

18

N,Z,C,OV

DIV.U

Wm,Wn

Unsigned 16/16-bit Integer Divide

1

18

N,Z,C,OV

DIV.UD

Wm,Wn

Unsigned 32/16-bit Integer Divide

1

18

N,Z,C,OV

Signed 16/16-bit Fractional Divide

1

18

N,Z,C,OV
None

Wm,Wn(1)

30

DIVF

DIVF

31

DO

DO

#lit15,Expr(1)

Do code to PC + Expr, lit15 + 1 times

2

2

DO

Wn,Expr(1)

Do code to PC + Expr, (Wn) + 1 times

2

2

None

32

ED

ED

Wm*Wm,Acc,Wx,Wy,Wxd(1)

Euclidean Distance (no accumulate)

1

1

OA,OB,OAB,
SA,SB,SAB

33

EDAC

EDAC

Wm*Wm,Acc,Wx,Wy,Wxd(1)

Euclidean Distance

1

1

OA,OB,OAB,
SA,SB,SAB

34

EXCH

EXCH

Wns,Wnd

Swap Wns with Wnd

1

1

None

35

FBCL

FBCL

Ws,Wnd

Find Bit Change from Left (MSb) Side

1

1

C

36

FF1L

FF1L

Ws,Wnd

Find First One from Left (MSb) Side

1

1

C

37

FF1R

FF1R

Ws,Wnd

Find First One from Right (LSb) Side

1

1

C

38

GOTO

GOTO

Expr

Go to address

2

4

None

GOTO

Wn

Go to indirect

1

4

None

39

40

41

INC

INC2

IOR

GOTO.L

Wn

Go to indirect (long address)

1

4

None

INC

f

f=f+1

1

1

C,DC,N,OV,Z

INC

f,WREG

WREG = f + 1

1

1

C,DC,N,OV,Z

INC

Ws,Wd

Wd = Ws + 1

1

1

C,DC,N,OV,Z

INC2

f

f=f+2

1

1

C,DC,N,OV,Z

INC2

f,WREG

WREG = f + 2

1

1

C,DC,N,OV,Z

INC2

Ws,Wd

Wd = Ws + 2

1

1

C,DC,N,OV,Z

IOR

f

f = f .IOR. WREG

1

1

N,Z

IOR

f,WREG

WREG = f .IOR. WREG

1

1

N,Z

IOR

#lit10,Wn

Wd = lit10 .IOR. Wd

1

1

N,Z

IOR

Wb,Ws,Wd

Wd = Wb .IOR. Ws

1

1

N,Z

IOR

Wb,#lit5,Wd

Wd = Wb .IOR. lit5

1

1

N,Z
OA,OB,OAB,
SA,SB,SAB

42

LAC

LAC

Wso,#Slit4,Acc

Load Accumulator

1

1

43

LNK

LNK

#lit14

Link Frame Pointer

1

1

SFA

44

LSR

LSR

f

f = Logical Right Shift f

1

1

C,N,OV,Z

LSR

f,WREG

WREG = Logical Right Shift f

1

1

C,N,OV,Z

LSR

Ws,Wd

Wd = Logical Right Shift Ws

1

1

C,N,OV,Z

LSR

Wb,Wns,Wnd

Wnd = Logical Right Shift Wb by Wns

1

1

N,Z

LSR

Wb,#lit5,Wnd

Wnd = Logical Right Shift Wb by lit5

1

1

N,Z

MAC

Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB(1) Multiply and Accumulate

1

1

OA,OB,OAB,
SA,SB,SAB

MAC

Wm*Wm,Acc,Wx,Wxd,Wy,Wyd(1)

1

1

OA,OB,OAB,
SA,SB,SAB

45

Note

MAC

1:
2:

Square and Accumulate

This instruction is available in dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.
Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

DS70616G-page 490

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 30-2:

INSTRUCTION SET OVERVIEW (CONTINUED)

Base
Assembly
Instr
Mnemonic
#
46

MOV

Assembly Syntax

# of
Cycles(2)

Status Flags
Affected

f,Wn

Move f to Wn

1

1

None

MOV

f

Move f to f

1

1

None

MOV

f,WREG

Move f to WREG

1

1

None

MOV

#lit16,Wn

Move 16-bit literal to Wn

1

1

None

MOV.b

#lit8,Wn

Move 8-bit literal to Wn

1

1

None

MOV

Wn,f

Move Wn to f

1

1

None

MOV

Wso,Wdo

Move Ws to Wd

1

1

None

MOV

WREG,f

Move WREG to f

1

1

None

Wns,Wd

Move Double from W(ns):W(ns + 1) to Wd

1

2

None

Ws,Wnd

Move Double from Ws to W(nd + 1):W(nd)

1

2

None

MOVPAG

#lit10,DSRPAG

Move 10-bit literal to DSRPAG

1

1

None

MOVPAG

#lit9,DSWPAG

Move 9-bit literal to DSWPAG

1

1

None

MOVPAG

#lit8,TBLPAG

Move 8-bit literal to TBLPAG

1

1

None

MOVPAGW Ws, DSRPAG

Move Ws<9:0> to DSRPAG

1

1

None

MOVPAGW Ws, DSWPAG

Move Ws<8:0> to DSWPAG

1

1

None

MOVPAGW Ws, TBLPAG

Move Ws<7:0> to TBLPAG

1

1

None

Prefetch and store accumulator

1

1

None

MOV.D
MOVPAG

# of
Words

MOV

MOV.D
47

Description

Acc,Wx,Wxd,Wy,Wyd,AWB(1)

48

MOVSAC

MOVSAC

49

MPY

MPY

Wm*Wn,Acc,Wx,Wxd,Wy,Wyd(1)

Multiply Wm by Wn to Accumulator

1

1

OA,OB,OAB,
SA,SB,SAB

MPY

Wm*Wm,Acc,Wx,Wxd,Wy,Wyd(1)

Square Wm to Accumulator

1

1

OA,OB,OAB,
SA,SB,SAB

Wm*Wn,Acc,Wx,Wxd,Wy,Wyd(1)

-(Multiply Wm by Wn) to Accumulator

50

MPY.N

MPY.N

51

MSC

MSC

Wm*Wm,Acc,Wx,Wxd,Wy,Wyd,AWB(1) Multiply and Subtract from Accumulator

52

MUL

MUL.SS

Wb,Ws,Wnd

{Wnd + 1, Wnd} = signed(Wb) *
signed(Ws)

MUL.SS

Wb,Ws,Acc(1)

Accumulator = signed(Wb) * signed(Ws)

1

1

None

MUL.SU

Wb,Ws,Wnd

{Wnd + 1, Wnd} = signed(Wb) *
unsigned(Ws)

1

1

None

MUL.SU

Wb,Ws,Acc(1)

Accumulator = signed(Wb) *
unsigned(Ws)

1

1

None

MUL.SU

Wb,#lit5,Acc(1)

Accumulator = signed(Wb) *
unsigned(lit5)

1

1

None

MUL.US

Wb,Ws,Wnd

{Wnd + 1, Wnd} = unsigned(Wb) *
signed(Ws)

1

1

None

MUL.US

Wb,Ws,Acc(1)

Accumulator = unsigned(Wb) *
signed(Ws)

1

1

None

MUL.UU

Wb,Ws,Wnd

{Wnd + 1, Wnd} = unsigned(Wb) *
unsigned(Ws)

1

1

None

MUL.UU

Wb,#lit5,Acc(1)

Accumulator = unsigned(Wb) *
unsigned(lit5)

1

1

None

MUL.UU

Wb,Ws,Acc(1)

Accumulator = unsigned(Wb) *
unsigned(Ws)

1

1

None

Note

1:
2:

1

1

None

1

1

OA,OB,OAB,
SA,SB,SAB

1

1

None

MULW.SS Wb,Ws,Wnd

Wnd = signed(Wb) * signed(Ws)

1

1

None

MULW.SU Wb,Ws,Wnd

Wnd = signed(Wb) * unsigned(Ws)

1

1

None

MULW.US Wb,Ws,Wnd

Wnd = unsigned(Wb) * signed(Ws)

1

1

None

MULW.UU Wb,Ws,Wnd

Wnd = unsigned(Wb) * unsigned(Ws)

1

1

None

MUL.SU

Wb,#lit5,Wnd

{Wnd + 1, Wnd} = signed(Wb) *
unsigned(lit5)

1

1

None

MUL.SU

Wb,#lit5,Wnd

Wnd = signed(Wb) * unsigned(lit5)

1

1

None

MUL.UU

Wb,#lit5,Wnd

{Wnd + 1, Wnd} = unsigned(Wb) *
unsigned(lit5)

1

1

None

MUL.UU

Wb,#lit5,Wnd

Wnd = unsigned(Wb) * unsigned(lit5)

1

1

None

MUL

f

W3:W2 = f * WREG

1

1

None

This instruction is available in dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.
Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

 2009-2012 Microchip Technology Inc.

DS70616G-page 491

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 30-2:

INSTRUCTION SET OVERVIEW (CONTINUED)

Base
Assembly
Instr
Mnemonic
#
53

54
55

NEG

NEG

NOP
POP

Acc(1)

PUSH

# of
Cycles(2)

Status Flags
Affected

Negate Accumulator

1

1

OA,OB,OAB,
SA,SB,SAB

Description

NEG

f

f=f+1

1

1

C,DC,N,OV,Z

NEG

f,WREG

WREG = f + 1

1

1

C,DC,N,OV,Z

NEG

Ws,Wd

Wd = Ws + 1

1

1

C,DC,N,OV,Z

NOP

No Operation

1

1

None

NOPR

No Operation

1

1

None
None

POP

f

Pop f from Top-of-Stack (TOS)

1

1

POP

Wdo

Pop from Top-of-Stack (TOS) to Wdo

1

1

None

POP.D

Wnd

Pop from Top-of-Stack (TOS) to
W(nd):W(nd + 1)

1

2

None

Pop Shadow Registers

1

1

All

f

Push f to Top-of-Stack (TOS)

1

1

None

PUSH

Wso

Push Wso to Top-of-Stack (TOS)

1

1

None

PUSH.D

Wns

Push W(ns):W(ns + 1) to Top-of-Stack
(TOS)

1

2

None

POP.S
56

# of
Words

Assembly Syntax

PUSH

Push Shadow Registers

1

1

None

Go into Sleep or Idle mode

1

1

WDTO,Sleep

Expr

Relative Call

1

4

SFA

Wn

Computed Call

1

4

SFA

PUSH.S
57

PWRSAV

PWRSAV

58

RCALL

RCALL
RCALL

#lit1

59

REPEAT

REPEAT

#lit15

Repeat Next Instruction lit15 + 1 times

1

1

None

REPEAT

Wn

Repeat Next Instruction (Wn) + 1 times

1

1

None

60

RESET

RESET

Software device Reset

1

1

None

61

RETFIE

RETFIE

Return from interrupt

1

6 (5)

SFA

62

RETLW

RETLW

Return with literal in Wn

1

6 (5)

SFA

63

RETURN

RETURN

Return from Subroutine

1

6 (5)

SFA

64

RLC

RLC

f

f = Rotate Left through Carry f

1

1

C,N,Z

RLC

f,WREG

WREG = Rotate Left through Carry f

1

1

C,N,Z
C,N,Z

65

66

67

68

RLNC

RRC

RRNC

SAC

#lit10,Wn

RLC

Ws,Wd

Wd = Rotate Left through Carry Ws

1

1

RLNC

f

f = Rotate Left (No Carry) f

1

1

N,Z

RLNC

f,WREG

WREG = Rotate Left (No Carry) f

1

1

N,Z

RLNC

Ws,Wd

Wd = Rotate Left (No Carry) Ws

1

1

N,Z

RRC

f

f = Rotate Right through Carry f

1

1

C,N,Z

RRC

f,WREG

WREG = Rotate Right through Carry f

1

1

C,N,Z

RRC

Ws,Wd

Wd = Rotate Right through Carry Ws

1

1

C,N,Z

RRNC

f

f = Rotate Right (No Carry) f

1

1

N,Z

RRNC

f,WREG

WREG = Rotate Right (No Carry) f

1

1

N,Z

RRNC

Ws,Wd

Wd = Rotate Right (No Carry) Ws

1

1

N,Z

SAC

Acc,#Slit4,Wdo(1)

Store Accumulator

1

1

None

SAC.R

Acc,#Slit4,Wdo(1)

Store Rounded Accumulator

1

1

None

69

SE

SE

Ws,Wnd

Wnd = sign-extended Ws

1

1

C,N,Z

70

SETM

SETM

f

f = 0xFFFF

1

1

None

SETM

WREG

WREG = 0xFFFF

1

1

None

SETM

Ws

Ws = 0xFFFF

1

1

None

SFTAC

Acc,Wn(1)

Arithmetic Shift Accumulator by (Wn)

1

1

OA,OB,OAB,
SA,SB,SAB

SFTAC

Acc,#Slit6(1)

Arithmetic Shift Accumulator by Slit6

1

1

OA,OB,OAB,
SA,SB,SAB

71

Note

SFTAC

1:
2:

This instruction is available in dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.
Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

DS70616G-page 492

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 30-2:

INSTRUCTION SET OVERVIEW (CONTINUED)

Base
Assembly
Instr
Mnemonic
#
72

73

74

75

76

77

SL

SUB

SUBB

SUBR

SUBBR

SWAP

Assembly Syntax

Description

# of
Words

# of
Cycles(2)

Status Flags
Affected
C,N,OV,Z

SL

f

f = Left Shift f

1

1

SL

f,WREG

WREG = Left Shift f

1

1

C,N,OV,Z

SL

Ws,Wd

Wd = Left Shift Ws

1

1

C,N,OV,Z

SL

Wb,Wns,Wnd

Wnd = Left Shift Wb by Wns

1

1

N,Z

SL

Wb,#lit5,Wnd

Wnd = Left Shift Wb by lit5

1

1

N,Z

SUB

Acc(1)

Subtract Accumulators

1

1

OA,OB,OAB,
SA,SB,SAB

SUB

f

f = f – WREG

1

1

C,DC,N,OV,Z

SUB

f,WREG

WREG = f – WREG

1

1

C,DC,N,OV,Z

SUB

#lit10,Wn

Wn = Wn – lit10

1

1

C,DC,N,OV,Z

SUB

Wb,Ws,Wd

Wd = Wb – Ws

1

1

C,DC,N,OV,Z

SUB

Wb,#lit5,Wd

Wd = Wb – lit5

1

1

C,DC,N,OV,Z

SUBB

f

f = f – WREG – (C)

1

1

C,DC,N,OV,Z

SUBB

f,WREG

WREG = f – WREG – (C)

1

1

C,DC,N,OV,Z

SUBB

#lit10,Wn

Wn = Wn – lit10 – (C)

1

1

C,DC,N,OV,Z

SUBB

Wb,Ws,Wd

Wd = Wb – Ws – (C)

1

1

C,DC,N,OV,Z

SUBB

Wb,#lit5,Wd

Wd = Wb – lit5 – (C)

1

1

C,DC,N,OV,Z

SUBR

f

f = WREG – f

1

1

C,DC,N,OV,Z

SUBR

f,WREG

WREG = WREG – f

1

1

C,DC,N,OV,Z

SUBR

Wb,Ws,Wd

Wd = Ws – Wb

1

1

C,DC,N,OV,Z

SUBR

Wb,#lit5,Wd

Wd = lit5 – Wb

1

1

C,DC,N,OV,Z

SUBBR

f

f = WREG – f – (C)

1

1

C,DC,N,OV,Z

SUBBR

f,WREG

WREG = WREG – f – (C)

1

1

C,DC,N,OV,Z

SUBBR

Wb,Ws,Wd

Wd = Ws – Wb – (C)

1

1

C,DC,N,OV,Z

SUBBR

Wb,#lit5,Wd

Wd = lit5 – Wb – (C)

1

1

C,DC,N,OV,Z

SWAP.b

Wn

Wn = nibble swap Wn

1

1

None

SWAP

Wn

Wn = byte swap Wn

1

1

None

78

TBLRDH

TBLRDH

Ws,Wd

Read Prog<23:16> to Wd<7:0>

1

5

None

79

TBLRDL

TBLRDL

Ws,Wd

Read Prog<15:0> to Wd

1

5

None

80

TBLWTH

TBLWTH

Ws,Wd

Write Ws<7:0> to Prog<23:16>

1

2

None

81

TBLWTL

TBLWTL

Ws,Wd

Write Ws to Prog<15:0>

1

2

None

82

ULNK

ULNK

Unlink Frame Pointer

1

1

SFA

83

XOR

XOR

f

f = f .XOR. WREG

1

1

N,Z

XOR

f,WREG

WREG = f .XOR. WREG

1

1

N,Z

XOR

#lit10,Wn

Wd = lit10 .XOR. Wd

1

1

N,Z

XOR

Wb,Ws,Wd

Wd = Wb .XOR. Ws

1

1

N,Z

XOR

Wb,#lit5,Wd

Wd = Wb .XOR. lit5

1

1

N,Z

ZE

Ws,Wnd

Wnd = Zero-Extend Ws

1

1

C,Z,N

84
Note

ZE
1:
2:

This instruction is available in dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.
Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

 2009-2012 Microchip Technology Inc.

DS70616G-page 493

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
NOTES:

DS70616G-page 494

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
31.0

DEVELOPMENT SUPPORT

The PIC® microcontrollers and dsPIC® digital signal
controllers are supported with a full range of software
and hardware development tools:
• Integrated Development Environment
- MPLAB® IDE Software
• Compilers/Assemblers/Linkers
- MPLAB C Compiler for Various Device
Families
- HI-TECH C® for Various Device Families
- MPASMTM Assembler
- MPLINKTM Object Linker/
MPLIBTM Object Librarian
- MPLAB Assembler/Linker/Librarian for
Various Device Families
• Simulators
- MPLAB SIM Software Simulator
• Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
• In-Circuit Debuggers
- MPLAB ICD 3
- PICkit™ 3 Debug Express
• Device Programmers
- PICkit™ 2 Programmer
- MPLAB PM3 Device Programmer
• Low-Cost Demonstration/Development Boards,
Evaluation Kits and Starter Kits

31.1

MPLAB Integrated Development
Environment Software

The MPLAB IDE software brings an ease of software
development previously unseen in the 8/16/32-bit
microcontroller market. The MPLAB IDE is a Windows®
operating system-based application that contains:
• A single graphical interface to all debugging tools
- Simulator
- Programmer (sold separately)
- In-Circuit Emulator (sold separately)
- In-Circuit Debugger (sold separately)
• A full-featured editor with color-coded context
• A multiple project manager
• Customizable data windows with direct edit of
contents
• High-level source code debugging
• Mouse over variable inspection
• Drag and drop variables from source to watch
windows
• Extensive on-line help
• Integration of select third party tools, such as
IAR C Compilers
The MPLAB IDE allows you to:
• Edit your source files (either C or assembly)
• One-touch compile or assemble, and download to
emulator and simulator tools (automatically
updates all project information)
• Debug using:
- Source files (C or assembly)
- Mixed C and assembly
- Machine code
MPLAB IDE supports multiple debugging tools in a
single development paradigm, from the cost-effective
simulators, through low-cost in-circuit debuggers, to
full-featured emulators. This eliminates the learning
curve when upgrading to tools with increased flexibility
and power.

 2009-2012 Microchip Technology Inc.

DS70616G-page 495

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
31.2

MPLAB C Compilers for Various
Device Families

The MPLAB C Compiler code development systems
are complete ANSI C compilers for Microchip’s PIC18,
PIC24 and PIC32 families of microcontrollers and the
dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration
capabilities, superior code optimization and ease of
use.
For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.

31.3

HI-TECH C for Various Device
Families

The HI-TECH C Compiler code development systems
are complete ANSI C compilers for Microchip’s PIC
family of microcontrollers and the dsPIC family of digital
signal controllers. These compilers provide powerful
integration capabilities, omniscient code generation
and ease of use.
For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.
The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple
platforms.

31.4

MPASM Assembler

The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs.
The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code and COFF files for
debugging.
The MPASM Assembler features include:

31.5

MPLINK Object Linker/
MPLIB Object Librarian

The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler and the
MPLAB C18 C Compiler. It can link relocatable objects
from precompiled libraries, using directives from a
linker script.
The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.
The object linker/library features include:
• Efficient linking of single libraries instead of many
smaller files
• Enhanced code maintainability by grouping
related modules together
• Flexible creation of libraries with easy module
listing, replacement, deletion and extraction

31.6

MPLAB Assembler, Linker and
Librarian for Various Device
Families

MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC devices. MPLAB C Compiler uses
the assembler to produce its object file. The assembler
generates relocatable object files that can then be
archived or linked with other relocatable object files and
archives to create an executable file. Notable features
of the assembler include:
•
•
•
•
•
•

Support for the entire device instruction set
Support for fixed-point and floating-point data
Command line interface
Rich directive set
Flexible macro language
MPLAB IDE compatibility

• Integration into MPLAB IDE projects
• User-defined macros to streamline
assembly code
• Conditional assembly for multi-purpose
source files
• Directives that allow complete control over the
assembly process

DS70616G-page 496

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
31.7

MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code
development in a PC-hosted environment by simulating the PIC MCUs and dsPIC® DSCs on an instruction
level. On any given instruction, the data areas can be
examined or modified and stimuli can be applied from
a comprehensive stimulus controller. Registers can be
logged to files for further run-time analysis. The trace
buffer and logic analyzer display extend the power of
the simulator to record and track program execution,
actions on I/O, most peripherals and internal registers.
The MPLAB SIM Software Simulator fully supports
symbolic debugging using the MPLAB C Compilers,
and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and
debug code outside of the hardware laboratory environment, making it an excellent, economical software
development tool.

31.8

MPLAB REAL ICE In-Circuit
Emulator System

MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs PIC® Flash MCUs and dsPIC® Flash DSCs
with the easy-to-use, powerful graphical user interface of
the MPLAB Integrated Development Environment (IDE),
included with each kit.
The emulator is connected to the design engineer’s PC
using a high-speed USB 2.0 interface and is connected
to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new highspeed, noise tolerant, Low-Voltage Differential Signal
(LVDS) interconnection (CAT5).
The emulator is field upgradable through future firmware
downloads in MPLAB IDE. In upcoming releases of
MPLAB IDE, new devices will be supported, and new
features will be added. MPLAB REAL ICE offers
significant advantages over competitive emulators
including low-cost, full-speed emulation, run-time
variable watches, trace analysis, complex breakpoints, a
ruggedized probe interface and long (up to three meters)
interconnection cables.

 2009-2012 Microchip Technology Inc.

31.9

MPLAB ICD 3 In-Circuit Debugger
System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware
debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU)
devices. It debugs and programs PIC® Flash microcontrollers and dsPIC® DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated
Development Environment (IDE).
The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed
USB 2.0 interface and is connected to the target with a
connector compatible with the MPLAB ICD 2 or MPLAB
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all
MPLAB ICD 2 headers.

31.10 PICkit 3 In-Circuit Debugger/
Programmer and
PICkit 3 Debug Express
The MPLAB PICkit 3 allows debugging and programming of PIC® and dsPIC® Flash microcontrollers at a
most affordable price point using the powerful graphical
user interface of the MPLAB Integrated Development
Environment (IDE). The MPLAB PICkit 3 is connected
to the design engineer's PC using a full speed USB
interface and can be connected to the target via an
Microchip debug (RJ-11) connector (compatible with
MPLAB ICD 3 and MPLAB REAL ICE). The connector
uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming™.
The PICkit 3 Debug Express include the PICkit 3, demo
board and microcontroller, hookup cables and CDROM
with user’s guide, lessons, tutorial, compiler and
MPLAB IDE software.

DS70616G-page 497

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
31.11 PICkit 2 Development
Programmer/Debugger and
PICkit 2 Debug Express

31.13 Demonstration/Development
Boards, Evaluation Kits, and
Starter Kits

The PICkit™ 2 Development Programmer/Debugger is
a low-cost development tool with an easy to use interface for programming and debugging Microchip’s Flash
families of microcontrollers. The full featured
Windows® programming interface supports baseline
(PIC10F,
PIC12F5xx,
PIC16F5xx),
midrange
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit
microcontrollers, and many Microchip Serial EEPROM
products. With Microchip’s powerful MPLAB Integrated
Development Environment (IDE) the PICkit™ 2
enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single
steps the program while the PIC microcontroller is
embedded in the application. When halted at a
breakpoint, the file registers can be examined and
modified.

A wide variety of demonstration, development and
evaluation boards for various PIC MCUs and dsPIC
DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for
adding custom circuitry and provide application firmware
and source code for examination and modification.

The PICkit 2 Debug Express include the PICkit 2, demo
board and microcontroller, hookup cables and CDROM
with user’s guide, lessons, tutorial, compiler and
MPLAB IDE software.

31.12 MPLAB PM3 Device Programmer
The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages and a modular, detachable socket assembly to support various
package types. The ICSP™ cable assembly is included
as a standard item. In Stand-Alone mode, the MPLAB
PM3 Device Programmer can read, verify and program
PIC devices without a PC connection. It can also set
code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices and incorporates an MMC card for file
storage and data applications.

DS70616G-page 498

The boards support a variety of features, including LEDs,
temperature sensors, switches, speakers, RS-232
interfaces, LCD displays, potentiometers and additional
EEPROM memory.
The demonstration and development boards can be
used in teaching environments, for prototyping custom
circuits and for learning about various microcontroller
applications.
In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip
has a line of evaluation kits and demonstration software
for analog filter design, KEELOQ® security ICs, CAN,
IrDA®, PowerSmart battery management, SEEVAL®
evaluation system, Sigma-Delta ADC, flow rate
sensing, plus many more.
Also available are starter kits that contain everything
needed to experience the specified device. This usually
includes a single application and debug capability, all
on one board.
Check the Microchip web page (www.microchip.com)
for the complete list of demonstration, development
and evaluation kits.

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
32.0

ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
electrical characteristics. Additional information will be provided in future revisions of this document as it becomes
available.
Absolute maximum ratings for the dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 family
are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability.
Functional operation of the device at these or any other conditions above the parameters indicated in the operation
listings of this specification is not implied.

Absolute Maximum Ratings
(See Note 1)
Ambient temperature under bias.............................................................................................................-40°C to +125°C
Storage temperature .............................................................................................................................. -65°C to +150°C
Voltage on VDD with respect to VSS .......................................................................................................... -0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to VSS(3).................................................... -0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to VSS when VDD  3.0V(3) ................................................... -0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V(3) ..................................................... -0.3V to 3.6V
Voltage on D+ OR D- pin with respect to VUSB3V3 ................................................................... -0.3V to (VUSB3V3 +0.3V)
Voltage on VBUS with respect to VSS ........................................................................................................ -0.3V to +5.5V
Maximum current out of VSS pin ...........................................................................................................................320 mA
Maximum current into VDD pin(2) ...........................................................................................................................320 mA
Maximum current sourced/sunk by any 4x I/O pin(4) ..............................................................................................15 mA
Maximum current sourced/sunk by any 8x I/O pin(4) ..............................................................................................25 mA
Maximum current sunk by all ports .......................................................................................................................200 mA
Maximum current sourced by all ports(2) ...............................................................................................................200 mA
Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions
above those indicated in the operation listings of this specification is not implied. Exposure to maximum
rating conditions for extended periods may affect device reliability.
2: Maximum allowable current is a function of device maximum power dissipation (see Table 32-2).
3: See the “Pin Diagrams” section for the 5V tolerant pins.
4: Characterized but not tested.

 2009-2012 Microchip Technology Inc.

DS70616G-page 499

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
32.1

DC Characteristics

TABLE 32-1:

OPERATING MIPS VS. VOLTAGE
Maximum MIPS

Characteristic

VDD Range
(in Volts)

—

2.95V-3.6V(1)

-40°C to +85°C

70

—

2.95V-3.6V(1)

-40°C to +125°C

60

Note 1:

Temp Range
(in °C)

dsPIC33EPXXX(GP/MC/MU)806/810/
814 and PIC24EPXXX(GP/GU)810/814

Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have
degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in
Table 32-11 for the minimum and maximum BOR values.

TABLE 32-2:

THERMAL OPERATING CONDITIONS
Rating

Symbol

Min.

Typ.

Max.

Unit

Operating Junction Temperature Range

TJ

-40

—

+125

°C

Operating Ambient Temperature Range

TA

-40

—

+85

°C

Operating Junction Temperature Range

TJ

-40

—

+140

°C

Operating Ambient Temperature Range

TA

-40

—

+125

°C

Industrial Temperature Devices

Extended Temperature Devices

Power Dissipation:
Internal chip power dissipation:
PINT = VDD x (IDD –  IOH)

PD

PINT + PI/O

W

PDMAX

(TJ – TA)/JA

W

I/O Pin Power Dissipation:
I/O =  ({VDD – VOH} x IOH) +  (VOL x IOL)
Maximum Allowed Power Dissipation

TABLE 32-3:

THERMAL PACKAGING CHARACTERISTICS
Characteristic

Symbol

Typ.

Max.

Unit

Notes

Package Thermal Resistance, 64-pin QFN (9x9 mm)

JA

28

—

°C/W

1

Package Thermal Resistance, 64-pin TQFP (10x10 mm)

JA

47

—

°C/W

1

Package Thermal Resistance, 100-pin TQFP (12x12 mm)

JA

43

—

°C/W

1

Package Thermal Resistance, 100-pin TQFP (14x14 mm)

JA

43

—

°C/W

1

Package Thermal Resistance, 121-pin TFBGA (10x10 mm)

JA

40

—

°C/W

1

Package Thermal Resistance, 144-pin LQFP (20x20 mm)

JA

33

—

°C/W

1

Package Thermal Resistance, 144-pin TQFP (16x16 mm)

JA

33

—

°C/W

1

Note 1:

Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations.

DS70616G-page 500

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-4:

DC TEMPERATURE AND VOLTAGE SPECIFICATIONS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

DC CHARACTERISTICS
Param. Symbol

Characteristic

Min.

Typ.(1)

Max.

Units

Conditions

Operating Voltage
DC10

VDD

Supply Voltage(3)

3.0

—

3.6

V

DC12

VDR

RAM Data Retention Voltage(2)

1.8

—

—

V

DC16

VPOR

VDD Start Voltage
to Ensure Internal
Power-on Reset Signal

—

—

VSS

V

DC17

SVDD

VDD Rise Rate
to Ensure Internal
Power-on Reset Signal

1.0

—

—

Note 1:
2:
3:

V/ms 0-3.0V in 3 ms

Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
This is the limit to which VDD may be lowered without losing RAM data.
Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have
degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in
Table 32-11 for the minimum and maximum BOR values.

 2009-2012 Microchip Technology Inc.

DS70616G-page 501

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-5:

DC CHARACTERISTICS: OPERATING CURRENT (IDD)
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

DC CHARACTERISTICS
Param.(2)

Typ.(3)

Max.

Units

Conditions

Operating Current (IDD)(1)
DC20d

12

18

mA

-40°C

DC20a

12

18

mA

+25°C

DC20b

13

20

mA

+85°C

DC20c

14

21

mA

+125°C

DC22d

23

35

mA

-40°C

DC22a

24

36

mA

+25°C

DC22b

24

36

mA

+85°C

DC22c

25

38

mA

+125°C

DC24d

42

63

mA

-40°C

DC24a

43

65

mA

+25°C

DC24b

44

66

mA

+85°C

DC24c

45

68

mA

+125°C

DC25d

61

92

mA

-40°C

DC25a

62

93

mA

+25°C

DC25b

62

93

mA

+85°C

DC25c

63

95

mA

+125°C

DC26d

69

104

mA

-40°C

DC26a

70

105

mA

+25°C

DC26b

70

105

mA

+85°C

Note 1:

2:
3:

3.3V

10 MIPS

3.3V

20 MIPS

3.3V

40 MIPS

3.3V

60 MIPS

3.3V

70 MIPS

IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact
on the current consumption. The test conditions for all IDD measurements are as follows:
• Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square
wave from rail-to-rail (EC Clock Overshoot/Undershoot < 250 mV required)
• CLKO is configured as an I/O input pin in the Configuration Word
• All I/O pins are configured as inputs and pulled to VSS
• MCLR = VDD, WDT and FSCM are disabled
• CPU, SRAM, program memory and data memory are operational
• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits
are set to zero and unimplemented PMDx bits are set to one)
• CPU is executing while(1) statement
• JTAG is disabled
These parameters are characterized but not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25ºC unless otherwise stated.

DS70616G-page 502

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-6:

DC CHARACTERISTICS: IDLE CURRENT (IIDLE)
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

DC CHARACTERISTICS
Param.(2)

Typ.(3)

Idle Current (IIDLE)

Max.

Units

Conditions

(1)

DC40d

6

10

mA

-40°C

DC40a

7

12

mA

+25°C

DC40b

8

13

mA

+85°C

DC40c

9

15

mA

+125°C

DC42d

11

18

mA

-40°C

DC42a

12

20

mA

+25°C

DC42b

13

21

mA

+85°C

DC42c

15

24

mA

+125°C

DC44d

23

37

mA

-40°C

DC44a

24

39

mA

+25°C

DC44b

25

40

mA

+85°C

DC44c

27

44

mA

+125°C

DC45d

34

55

mA

-40°C

DC45a

35

56

mA

+25°C

DC45b

36

58

mA

+85°C

DC45c

38

61

mA

+125°C

DC46d

39

63

mA

-40°C

DC46a

41

66

mA

+25°C

DC46b

42

68

mA

+85°C

Note 1:

2:
3:

3.3V

10 MIPS

3.3V

20 MIPS

3.3V

40 MIPS

3.3V

60 MIPS

3.3V

70 MIPS

Base IIDLE current is measured as follows:
• CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with
external square wave from rail-to-rail (EC Clock Overshoot/Undershoot < 250 mV required)
• CLKO is configured as an I/O input pin in the Configuration Word
• External Secondary Oscillator (SOSC) is disabled (i.e., SOSCO and SOSCI pins are configured as
digital I/O inputs)
• All I/O pins are configured as inputs and pulled to VSS
• MCLR = VDD, WDT and FSCM are disabled
• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits
are set to zero and unimplemented PMDx bits are set to one)
• The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to stand-by while the device is in
Idle mode)
• JTAG is disabled
These parameters are characterized but not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25ºC unless otherwise stated.

 2009-2012 Microchip Technology Inc.

DS70616G-page 503

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-7:

DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

DC CHARACTERISTICS
Param.

Typ.(2)

Max.

Units

100

A

Conditions

Power-Down Current (IPD)(1)
DC60d

50

-40°C

DC60a

60

200

A

+25°C

DC60b

250

500

A

+85°C

DC60c

1600

3000

A

+125°C

DC61d

8

10

A

-40°C

DC61a

10

15

A

+25°C

DC61b

12

20

A

+85°C

13

25

A

+125°C

DC61c
Note 1:

2:
3:
4:

3.3V

Base Power-Down Current(1,4)

3.3V

Watchdog Timer Current: IWDT(3)

IPD (Sleep) current is measured as follows:
• CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with
external square wave from rail-to-rail (EC Clock Overshoot/Undershoot < 250 mV required)
• CLKO is configured as an I/O input pin in the Configuration Word
• External Secondary Oscillator (SOSC) is disabled (i.e., SOSCO and SOSCI pins are configured as
digital I/O inputs)
• All I/O pins are configured as inputs and pulled to VSS
• MCLR = VDD, WDT and FSCM are disabled, all peripheral modules are disabled (PMDx bits are
all ones)
• The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to stand-by while the device is in Sleep
mode)
• RTCC is disabled
• The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to stand-by while the device is in
Sleep mode)
• JTAG is disabled
Data in the “Typ” column is at 3.3V, +25ºC unless otherwise stated.
The Watchdog Timer current is the additional current consumed when the WDT module is enabled. This
current should be added to the base IPD current.
These currents are measured on the device containing the most memory in this family.

DS70616G-page 504

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-8:

DC CHARACTERISTICS: DOZE CURRENT (IDOZE)(1)
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

DC CHARACTERISTICS

Typ.(2)

Max.

Doze
Ratio

Units

DC73a

57

86

1:2

mA

DC73g

40

60

1:128

mA

DC70a

58

87

1:2

mA

DC70g

41

62

1:128

mA

DC71a

58

87

1:2

mA

DC71g

42

63

1:128

mA

DC72a

53

80

1:2

mA

DC72g

38

57

1:128

mA

Parameter

Note 1:

2:

Conditions
-40°C

3.3V

70 MIPS

+25°C

3.3V

70 MIPS

+85°C

3.3V

70 MIPS

+125°C

3.3V

60 MIPS

IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact
on the current consumption. The test conditions for all IDOZE measurements are as follows:
• Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square
wave from rail-to-rail with Overshoot/Undershoot < 250 mV
• CLKO is configured as an I/O input pin in the Configuration Word
• All I/O pins are configured as inputs and pulled to VSS
• MCLR = VDD, WDT and FSCM are disabled
• CPU, SRAM, program memory and data memory are operational
• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits
are set to zero and unimplemented PMDx bits are set to one)
• CPU executing while(1) statement
• JTAG is disabled
Data in the “Typ” column is at 3.3V, +25ºC unless otherwise stated.

 2009-2012 Microchip Technology Inc.

DS70616G-page 505

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-9:

DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

DC CHARACTERISTICS
Param. Symbol
VIL

Characteristic

Min.

Typ(1)

Max.

Units

Conditions

Input Low Voltage

DI10

I/O Pins

VSS

—

0.2 VDD

V

DI11

PMP Pins

VSS

—

0.15 VDD

V

DI15

MCLR

VSS

—

0.2 VDD

V

DI16

I/O Pins with OSC1 or SOSCI

VSS

—

0.2 VDD

V

DI18

I/O Pins with SDAx, SCLx

VSS

—

0.3 VDD

V

SMBus disabled

DI19

I/O Pins with SDAx, SCLx

VSS

—

0.8

V

SMBus enabled

0.7 VDD
0.7 VDD
0.25 VDD + 0.8
0.7 VDD
2.1

—
—
—
—
—

VDD
5.3
—
5.3
5.3

V
V
V
V
V

PMPTTL = 1
SMBus disabled
SMBus enabled

50

250

400

A

VDD = 3.3V, VPIN = VSS

—

50

—

A

VDD = 3.3V, VPIN = VDD

VIH

Input High Voltage
I/O Pins Not 5V Tolerant(4)
I/O Pins 5V Tolerant(4)
PMP Pins
I/O Pins with SDAx, SCLx
I/O Pins with SDAx, SCLx

DI20

ICNPU

Change Notification Pull-up
Current

ICNPD

Change Notification
Pull-down Current(10)

DI30

DI31

PMPTTL = 1

Note 1:
2:

Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current can be measured at different input
voltages.
3: Negative current is defined as current sourced by the pin.
4: See “Pin Diagrams” for the 5V tolerant I/O pins.
5: VIL source < (VSS – 0.3). Characterized but not tested.
6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not
tested.
7: Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5.5V.
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not
exceed the specified limit. Characterized but not tested.
10: These parameters are characterized, but not tested.

DS70616G-page 506

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-9:

DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

DC CHARACTERISTICS
Param. Symbol
IIL

Characteristic

Min.

Typ(1)

Max.

Units

Conditions

Input Leakage Current(2,3)

DI50

I/O Pins 5V Tolerant(4)

—

—

±1

A

VSS  VPIN  VDD,
Pin at high-impedance

DI51

I/O Pins Not 5V Tolerant(4)

—

—

±1

A

VSS  VPIN  VDD,
Pin at high-impedance,
-40°C  TA  +85°C

DI51a

I/O Pins Not 5V Tolerant(4)

—

—

±1

A

Analog pins shared
with external reference
pins,
-40°C  TA  +85°C

DI51b

I/O Pins Not 5V Tolerant(4)

—

—

±1

A

VSS  VPIN  VDD, Pin
at high-impedance,
-40°C  TA  +125°C

DI51c

I/O Pins Not 5V Tolerant(4)

—

—

±1

A

Analog pins shared
with external reference
pins,
-40°C  TA  +125°C

DI55

MCLR

—

—

±1

A

VSS VPIN VDD

DI56

OSC1

—

—

±1

A

VSS VPIN VDD,
XT and HS modes

Note 1:
2:

Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current can be measured at different input
voltages.
3: Negative current is defined as current sourced by the pin.
4: See “Pin Diagrams” for the 5V tolerant I/O pins.
5: VIL source < (VSS – 0.3). Characterized but not tested.
6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not
tested.
7: Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5.5V.
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not
exceed the specified limit. Characterized but not tested.
10: These parameters are characterized, but not tested.

 2009-2012 Microchip Technology Inc.

DS70616G-page 507

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-9:

DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

DC CHARACTERISTICS
Param. Symbol
IICL

Characteristic

Min.

Typ(1)

Max.

Units

Input Low Injection Current

DI60a
0

IICH

—

-5(5,8)

mA

All pins except VDD,
VSS, AVDD, AVSS,
MCLR, VCAP, RB11,
SOSCI, SOSCO, D+,
D-, VUSB3V3 and VBUS
All pins except VDD,
VSS, AVDD, AVSS,
MCLR, VCAP, RB11,
SOSCI, SOSCO, D+,
D-, VUSB3V3 and VBUS,
and all 5V tolerant
pins(7)

Input High Injection Current

DI60b

IICT
DI60c

Conditions

Total Input Injection Current
(sum of all I/O and control
pins)

0

—

+5(6,7,4)

mA

-20(9)

—

+20(9)

mA

Absolute instantaneous
sum of all ± input
injection currents from
all I/O pins
( | IICL + | IICH | )  IICT

Note 1:
2:

Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current can be measured at different input
voltages.
3: Negative current is defined as current sourced by the pin.
4: See “Pin Diagrams” for the 5V tolerant I/O pins.
5: VIL source < (VSS – 0.3). Characterized but not tested.
6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not
tested.
7: Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5.5V.
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not
exceed the specified limit. Characterized but not tested.
10: These parameters are characterized, but not tested.

DS70616G-page 508

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

DC CHARACTERISTICS
Param. Symbol

DO10

DO20

VOL

VOH

DO20A VOH1

Note 1:

Characteristic

Min.

Typ.

Max.

Units

Conditions

Output Low Voltage
I/O Pins:
4x Sink Driver Pins – All I/O Pins
except OSC2 and SOSCO

—

—

0.4

V

IOL  10 mA, VDD = 3.3V

Output Low Voltage
I/O Pins:
8x Sink Driver Pins – OSC2 and
SOSCO

—

—

0.4

V

IOL  15 mA, VDD = 3.3V

Output High Voltage
I/O Pins:
4x Sink Driver Pins – All I/O Pins
except OSC2 and SOSCO

2.4

—

—

V

IOH  -10 mA, VDD = 3.3V

Output High Voltage
I/O Pins:
8x Sink Driver Pins – OSC2 and
SOSCO

2.4

—

—

V

IOH  -15 mA, VDD = 3.3V

Output High Voltage
I/O Pins:
4x Sink Driver Pins – All I/O Pins
except OSC2 and SOSCO

1.5(1)

—

—

2.0(1)

—

—

3.0(1)

—

—

IOH  -7 mA, VDD = 3.3V

Output High Voltage
I/O Pins:
8x Sink Driver Pins – OSC2 and
SOSCO

1.5(1)

—

—

IOH  -22 mA, VDD = 3.3V

2.0(1)

—

—

3.0(1)

—

—

IOH  -14 mA, VDD = 3.3V
V

V

IOH  -12 mA, VDD = 3.3V

IOH  -18 mA, VDD = 3.3V
IOH  -10 mA, VDD = 3.3V

Parameters are characterized, but not tested.

TABLE 32-11: ELECTRICAL CHARACTERISTICS: BOR
Standard Operating Conditions: 3.0V to 3.6V(2)
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

DC CHARACTERISTICS
Param.

Symbol

Characteristic

Min.(1)

Typ.

Max.

Units

2.7

—

2.9

V

Conditions

BO10

VBOR

Note 1:
2:

Parameters are for design guidance only and are not tested in manufacturing.
Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have
degraded performance. Device functionality is tested but not characterized.

BOR Event on VDD Transition
High-to-Low

 2009-2012 Microchip Technology Inc.

VDD

DS70616G-page 509

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

TABLE 32-12: DC CHARACTERISTICS: PROGRAM MEMORY
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

DC CHARACTERISTICS
Param. Symbol

Characteristic

Min.

Typ(1)

Max.

10,000

—

—

Units

Conditions

Program Flash Memory
D130

EP

Cell Endurance

D131

VPR

VDD for Read

3.0

—

3.6

V

D132b

VPEW

VDD for Self-Timed Write

3.0

—

3.6

V

D134

TRETD

Characteristic Retention

20

—

—

Year Provided no other specifications
are violated, -40C to +125C

D135

IDDP

Supply Current during
Programming

—

10

—

mA

D136a

TRW

Row Write Time

1.32

—

1.74

ms

TRW = 11064 FRC cycles,
TA = +85°C, See Note 2

D136b

TRW

Row Write Time

1.28

—

1.79

ms

TRW = 11064 FRC cycles,
TA = +125°C, See Note 2

D137a

TPE

Page Erase Time

20.1

—

26.5

ms

TPE = 168517 FRC cycles,
TA = +85°C, See Note 2

D137b

TPE

Page Erase Time

19.5

—

27.3

ms

TPE = 168517 FRC cycles,
TA = +125°C, See Note 2

D138a

TWW

Word Write Cycle Time

42.3

—

55.9

µs

TWW = 355 FRC cycles,
TA = +85°C, See Note 2

D138b

TWW

Word Write Cycle Time

41.1

—

57.6

µs

TWW = 355 FRC cycles,
TA = +125°C, See Note 2

Note 1:
2:

E/W -40C to +125C

Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
Other conditions: FRC = 7.37 MHz, TUN<5:0> = 'b011111 (for Minimum), TUN<5:0> = 'b100000 (for
Maximum). This parameter depends on the FRC accuracy (see Table 32-20) and the value of the FRC
Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and
Maximum time, see Section 5.3 “Programming Operations”.

TABLE 32-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS
Standard Operating Conditions (unless otherwise stated):
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended
Param.

Symbol

—

EFC(1)

Note 1:

C

Characteristics
External Filter Capacitor
Value

Min.

Typ

Max.

Units

4.7

10

—

F

Comments
Capacitor must have a low
series resistance (< 1 Ohm)

Typical VCAP (CEFC) voltage = 1.8V when VDD  VDDMIN.

DS70616G-page 510

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
32.2

AC Characteristics and Timing
Parameters

This section defines the dsPIC33EPXXX(GP/MC/
MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
AC characteristics and timing parameters.

TABLE 32-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended
Operating voltage VDD range as described in Section 32.1 “DC
Characteristics”.

AC CHARACTERISTICS

FIGURE 32-1:

LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

Load Condition 1 – for all pins except OSC2

Load Condition 2 – for OSC2

VDD/2
CL

Pin

RL

VSS
CL

Pin

RL = 464
CL = 50 pF for All Pins Except OSC2
15 pF for OSC2 Output

VSS

TABLE 32-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS
Param. Symbol

Characteristic

Min.

Typ.

Max.

Units

Conditions

—

—

15

pF

In XT and HS modes when
external clock is used to drive
OSC1

COSCO

OSC2 Pin

DO56

CIO

All I/O Pins and OSC2

—

—

50

pF

EC mode

DO58

CB

SCLx, SDAx

—

—

400

pF

In I2C™ mode

DO50

 2009-2012 Microchip Technology Inc.

DS70616G-page 511

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-2:

EXTERNAL CLOCK TIMING
Q1

Q2

Q3

Q4

Q1

Q2

OS30

OS30

Q3

Q4

OSC1
OS20
OS25

OS31

OS31

CLKO
OS41

OS40

TABLE 32-16: EXTERNAL CLOCK TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param. Symbol
OS10

FIN

Min.

Typ.(1)

Max.

Units

External CLKI Frequency
(External clocks allowed only
in EC and ECPLL modes)

DC

—

60

MHz

EC

Oscillator Crystal Frequency

3.5
10
32.4

—
—
32.768

10
40
33.1

MHz
MHz
kHz

XT
HS
SOSC

Characteristic

Conditions

OS20

TOSC

TOSC = 1/FOSC

8.33
7.14

—
—

DC
DC

ns
ns

+125ºC
+85ºC

OS25

TCY

Instruction Cycle Time(2)

16.67
14.28

—
—

DC
DC

ns
ns

+125ºC
+85ºC

OS30

TosL,
TosH

External Clock In (OSC1)
High or Low Time

0.375 x TOSC

—

0.625 x TOSC

ns

EC

OS31

TosR,
TosF

External Clock In (OSC1)
Rise or Fall Time

—

—

20

ns

EC

OS40

TckR

CLKO Rise Time(3)

—

5.2

—

ns

OS41

TckF

CLKO Fall Time(3)

—

5.2

—

ns

OS42

GM

External Oscillator
Transconductance(4)

—

12

—

mA/V

HS, VDD = 3.3V,
TA = +25ºC

—

6

—

mA/V

XT, VDD = 3.3V,
TA = +25ºC

Note 1:
2:

3:
4:

Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values
are based on characterization data for that particular oscillator type under standard operating conditions
with the device executing code. Exceeding these specified limits may result in an unstable oscillator
operation and/or higher than expected current consumption. All devices are tested to operate at
“Minimum” values with an external clock applied to the OSC1 pin. When an external clock input is used,
the “Maximum” cycle time limit is “DC” (no clock) for all devices.
Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
This parameter is characterized, but not tested in manufacturing.

DS70616G-page 512

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-17: PLL CLOCK TIMING SPECIFICATIONS
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param. Symbol

Characteristic

Min.

Typ.(1)

Max.

Units

OS50

FPLLI

PLL Voltage Controlled
Oscillator (VCO) Input
Frequency Range

0.8

—

8.0

MHz

OS51

FSYS

On-Chip VCO System
Frequency

120

—

340

MHz

OS52

TLOCK

PLL Start-up Time (Lock Time)

0.9

1.5

3.1

mS

OS53

DCLK

CLKO Stability (Jitter)(2)

-5

0.5

5

%

Note 1:
2:

Conditions
ECPLL, XTPLL modes

Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for
individual time bases or communication clocks used by the application, use the following formula:
D CLK
Effective Jitter = ------------------------------------------------------------------------------------------F OSC
-------------------------------------------------------------------------------------Time Base or Communication Clock
For example, if FOSC = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows:
CLK
CLK
D CLKEffective Jitter = D
-------------- = D
-------------- = ------------3.464
120
12
--------10

TABLE 32-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS
(dsPIC33EPXXXMU8XX AND PIC24EPXXXGU8XX DEVICES ONLY)
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise
stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param. Symbol

Characteristic

Min.

Typ.(1)

Max.

Units

OS54

AFPLLI

PLL Voltage Controlled
Oscillator (VCO) Input
Frequency Range

3

—

5.5

MHz

OS55

AFSYS

On-Chip VCO System
Frequency

60

—

120

MHz

OS56

ATLOCK

PLL Start-up Time (Lock Time)

0.9

1.5

3.1

mS

OS57

ADCLK

CLKO Stability (Jitter)

-2

0.25

2

%

Note 1:

Conditions
ECPLL, XTPLL modes

Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.

 2009-2012 Microchip Technology Inc.

DS70616G-page 513

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-19: INTERNAL FRC ACCURACY
AC CHARACTERISTICS
Param.

Characteristic

Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended
Min.

Typ.

Max.

Internal FRC Accuracy @ FRC Frequency = 7.37

Units

Conditions

MHz(1)

F20a

FRC

-2

—

+2

%

-40°C  TA +85°C

F20b

FRC

-5

—

+5

%

-40°C  TA  +125°C VDD = 3.0-3.6V

Note 1:

VDD = 3.0-3.6V

Frequency calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 32-20: INTERNAL LPRC ACCURACY
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Characteristic
LPRC @ 32.768

Min.

Typ.

Max.

Units

Conditions

kHz(1)

F21a

LPRC

-20

±6

+20

%

-40°C  TA  +85°C

F21b

LPRC

-50

—

+50

%

-40°C  TA  +125°C VDD = 3.0-3.6V

Note 1:

VDD = 3.0-3.6V

Change of LPRC frequency as VDD changes.

DS70616G-page 514

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-3:

I/O TIMING CHARACTERISTICS

I/O Pin
(Input)
DI35
DI40
I/O Pin
(Output)

New Value

Old Value
DO31
DO32

Note: Refer to Figure 32-1 for load conditions.

TABLE 32-21: I/O TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic

Min.

Typ.(1)

Max.

Units

DO31

TIOR

Port Output Rise Time

—

5

10

ns

DO32

TIOF

Port Output Fall Time

—

5

10

ns

DI35

TINP

INTx Pin High or Low Time (input)

20

—

—

ns

DI40

TRBP

CNx High or Low Time (input)

2

—

—

TCY

Note 1:

Conditions

Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.

 2009-2012 Microchip Technology Inc.

DS70616G-page 515

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-4:

POWER-ON RESET TIMING CHARACTERISTICS

Power-up Timer Disabled – Clock Sources = (FRC, FRCDIVN, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)
VDD

VPOR

Power-up Sequence
CPU Starts Fetching Code
SY00
(TPU)
(Note 1,2)
Power-up Timer Disabled – Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC)
VDD
VPOR

Power-up Sequence
CPU Starts Fetching Code
SY00
(TPU)
(Note 1,2)

SY10
(TOST)

Power-up Timer Enabled – Clock Sources = (FRC, FRCDIVN, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)
VDD

VPOR

Power-up Sequence

CPU Starts Fetching Code
SY11
SY00
(TPU) (TPWRT)
(Note 1,2)

Power-up Timer Enabled – Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC)
VDD

VPOR

Power-up Sequence

CPU Starts Fetching Code
Greater of
SY00
(TPU) SY10 (TOST)
or
(Note 1,2)
SY11 (TPWRT)

Note 1:
2:

The power-up period will be extended if the power-up sequence completes before the device exits from BOR
(VDD < VBOR).
The power-up period includes internal voltage regulator stabilization delay.

DS70616G-page 516

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-5:

BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

MCLR

TMCLR
(SY20)
BOR

TBOR
(SY30)

Various Delays (depending on configuration)

Reset Sequence
CPU Starts Fetching Code

TABLE 32-22: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.(2)

Max. Units

Conditions

SY00

TPU

Power-up Period

—

400

600

s

SY10

TOST

Oscillator Start-up Time

—

1024 TOSC

—

—

TOSC = OSC1 period

SY11

TPWRT

Power-up Timer Period

—

—

—

—

See Section 29.1 “Configuration
Bits” and LPRC Parameters F21a
and F21b (Table 32-20)

SY12

TWDT

Watchdog Timer
Time-out Period

—

—

—

—

See Section 29.4 “Watchdog
Timer (WDT)” and LPRC
Parameters F21a and F21b
(Table 32-20)

SY13

TIOZ

I/O High-Impedance
from MCLR Low or
Watchdog Timer Reset

0.68

0.72

1.2

s

SY20

TMCLR

MCLR Pulse Width (low)

2

—

—

s

SY30

TBOR

BOR Pulse Width (low)

1

—

—

s

SY35

TFSCM

Fail-Safe Clock Monitor
Delay

—

500

900

s

SY36

TVREG

Voltage Regulator
Standby-to-Active Mode
Transition Time

—

—

30

µs

SY37

TOSCDFRC

FRC Oscillator Start-up
Delay

—

—

29

µs

SY38

TOSCDLPRC LPRC Oscillator Start-up
Delay

—

—

70

µs

Note 1:
2:

-40°C to +85°C

These parameters are characterized but not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.

 2009-2012 Microchip Technology Inc.

DS70616G-page 517

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-6:

TIMER1-TIMER9 EXTERNAL CLOCK TIMING CHARACTERISTICS

TxCK
Tx11

Tx10
Tx15
OS60

Tx20

TMRx

Note: Refer to Figure 32-1 for load conditions.

TABLE 32-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1)
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.
TA10

TA11

Symbol
TTXH

TTXL

Characteristic(2)
TxCK High
Time

TxCK Low
Time

Min.

Typ.

Max.

Units

Conditions

Synchronous
mode

Greater of:
20 or
(TCY + 20)/N

—

—

ns

Must also meet
Parameter TA15,
N = prescaler value
(1, 8, 64, 256)

Asynchronous

35

—

—

ns

Synchronous
mode

Greater of:
20 or
(TCY + 20)/N

—

—

ns

Asynchronous

10

—

—

ns

Synchronous
mode

Greater of:
40 or
(2 TCY + 40)/N

—

—

ns

DC

—

50

kHz

0.75 TCY + 40

—

1.75 TCY + 40

ns

TA15

TTXP

TxCK Input
Period

OS60

Ft1

SOSC1/T1CK Oscillator
Input Frequency Range
(oscillator enabled by setting
bit, TCS (T1CON<1>))

TA20

TCKEXTMRL Delay from External TxCK
Clock Edge to Timer
Increment

Note 1:
2:

Must also meet
Parameter TA15,
N = prescaler value
(1, 8, 64, 256)
N = prescale value
(1, 8, 64, 256)

Timer1 is a Type A.
These parameters are characterized, but are not tested in manufacturing.

DS70616G-page 518

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-24: TIMER2, TIMER4, TIMER6, TIMER8 (TYPE B TIMER) EXTERNAL CLOCK TIMING
REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.

Max.

Units

Conditions

TB10

TtxH

TxCK High Synchronous
Time
mode

Greater of:
20 or
(TCY + 20)/N

—

—

ns

Must also meet
Parameter TB15,
N = prescale
value (1, 8, 64, 256)

TB11

TtxL

TxCK Low Synchronous
Time
mode

Greater of:
20 or
(TCY + 20)/N

—

—

ns

Must also meet
Parameter TB15,
N = prescale
value (1, 8, 64, 256)

TB15

TtxP

TxCK
Input
Period

Synchronous
mode

Greater of:
40 or
(2 TCY + 40)/N

—

—

ns

N = prescale
value (1, 8, 64, 256)

TB20

TCKEXTMRL Delay from External TxCK
Clock Edge to Timer
Increment

0.75 TCY + 40

—

1.75 TCY + 40

ns

Note 1:

These parameters are characterized, but are not tested in manufacturing.

TABLE 32-25: TIMER3, TIMER5, TIMER7, TIMER9 (TYPE C TIMER) EXTERNAL CLOCK TIMING
REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.

Max.

Units

Conditions

TC10

TtxH

TxCK High Synchronous
Time

TCY + 20

—

—

ns

Must also meet
Parameter TC15

TC11

TtxL

TxCK Low
Time

TCY + 20

—

—

ns

Must also meet
Parameter TC15

TC15

TtxP

TxCK Input Synchronous,
Period
with Prescaler

2 TCY + 40

—

—

ns

N = prescale value
(1, 8, 64, 256)

TC20

TCKEXTMRL Delay from External TxCK
Clock Edge to Timer
Increment

0.75 TCY + 40

—

1.75 TCY + 40

ns

Note 1:

Synchronous

These parameters are characterized, but are not tested in manufacturing.

 2009-2012 Microchip Technology Inc.

DS70616G-page 519

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-7:

TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS

QEB
TQ11

TQ10
TQ15

TQ20

POSCNT

TABLE 32-26: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.

Max.

Units

Conditions

TQ10

TtQH

TQCK High
Time

Synchronous,
[Greater of
with Prescaler (12.5 or 0.5 TCY)/N] + 25

—

—

ns

Must also meet
Parameter TQ15

TQ11

TtQL

TQCK Low
Time

Synchronous,
[Greater of
with Prescaler (12.5 or 0.5 TCY)/N] + 25

—

—

ns

Must also meet
Parameter TQ15

TQ15

TtQP

TQCP Input
Period

Synchronous,
with Prescaler

[Greater of (
25 or TCY)/N] + 50

—

—

ns

TQ20

TCKEXTMRL Delay from External TxCK
Clock Edge to Timer Increment

—

1

TCY

—

Note 1:

These parameters are characterized but not tested in manufacturing.

DS70616G-page 520

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-8:

INPUT CAPTURE (ICx) TIMING CHARACTERISTICS
ICx

IC10

IC11
IC15

Note: Refer to Figure 32-1 for load conditions.

TABLE 32-27: INPUT CAPTURE MODULE (ICx) TIMING REQUIREMENTS
AC CHARACTERISTICS
Param. Symbol

Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

Characteristics(1)

Min.

Max.

Units

Conditions

IC10

TCCL

ICx Input Low Time

[Greater of
(12.5 or 0.5 TCY)/N] + 25

—

ns

Must also meet N = prescale
Parameter IC15 value (1, 4, 16)

IC11

TCCH

ICx Input High Time

[Greater of
(12.5 or 0.5 TCY)/N] + 25

—

ns

Must also meet
Parameter IC15

IC15

TCCP

ICx Input Period

[Greater of
(25 or 1 TCY)/N] + 50

—

ns

Note 1:

These parameters are characterized, but not tested in manufacturing.

 2009-2012 Microchip Technology Inc.

DS70616G-page 521

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-9:

OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

OCx
(Output Compare
or PWM Mode)

OC10

OC11

Note: Refer to Figure 32-1 for load conditions.

TABLE 32-28: OUTPUT COMPARE MODULE (OCx) TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Characteristic(1)

Param. Symbol

Min.

Typ.

Max.

Units

Conditions

OC10

TccF

OCx Output Fall Time

—

—

—

ns

See Parameter DO32

OC11

TccR

OCx Output Rise Time

—

—

—

ns

See Parameter DO31

Note 1:

These parameters are characterized but not tested in manufacturing.

FIGURE 32-10:

OCx/PWMx MODULE TIMING CHARACTERISTICS
OC20

OCFA
OC15
OCx

User-Specified Fault State

Active

TABLE 32-29: OCx/PWMx MODE TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.

Max.

Units

OC15

TFD

Fault Input to PWM I/O
Change

—

—

TCY + 20

ns

OC20

TFLT

Fault Input Pulse Width

TCY + 20

—

—

ns

Note 1:

These parameters are characterized but not tested in manufacturing.

DS70616G-page 522

Conditions

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-11:

HIGH-SPEED PWMx MODULE FAULT TIMING CHARACTERISTICS
(dsPIC33EPXXX(MC/MU)806/810/814 DEVICES ONLY)
MP30

Fault Input
(active-low)
MP20
PWMx

FIGURE 32-12:

HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS
(dsPIC33EPXXX(MC/MU)806/810/814 DEVICES ONLY)
MP11

MP10

PWMx
Note: Refer to Figure 32-1 for load conditions.

TABLE 32-30: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS
(dsPIC33EPXXX(MC/MU)806/810/814 DEVICES ONLY)
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.

Max.

Units

Conditions

MP10

TFPWM

PWM Output Fall Time

—

—

—

ns

See Parameter DO32

MP11

TRPWM

PWM Output Rise Time

—

—

—

ns

See Parameter DO31

TFD

Fault Input  to PWM
I/O Change

—

—

15

ns

TFH

Fault Input Pulse Width

15

—

—

ns

MP20
MP30
Note 1:

These parameters are characterized but not tested in manufacturing.

 2009-2012 Microchip Technology Inc.

DS70616G-page 523

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-13:

QEA/QEB INPUT CHARACTERISTICS
(dsPIC33EPXXX(MC/MU)806/810/814 DEVICES ONLY)
TQ36

QEA
(input)
TQ30

TQ31
TQ35

QEB
(input)
TQ41

TQ40

TQ30

TQ31
TQ35

QEB
Internal

TABLE 32-31: QUADRATURE DECODER TIMING REQUIREMENTS
(dsPIC33EPXXX(MC/MU)806/810/814 DEVICES ONLY)
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Max.

Units

6 TCY

—

ns

Conditions

TQ30

TQUL

TQ31

TQUH

Quadrature Input High Time

6 TCY

—

ns

TQ35

TQUIN

Quadrature Input Period

12 TCY

—

ns

TQ36

TQUP

Quadrature Phase Period

3 TCY

—

ns

TQ40

TQUFL

Filter Time to Recognize Low
with Digital Filter

3 * N * TCY

—

ns

N = 1, 2, 4, 16, 32, 64,
128 and 256 (Note 3)

TQ41

TQUFH

Filter Time to Recognize High
with Digital Filter

3 * N * TCY

—

ns

N = 1, 2, 4, 16, 32, 64,
128 and 256 (Note 3)

Note 1:
2:

These parameters are characterized but not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
N = Index Channel Digital Filter Clock Divide Select bits. Refer to Section 15. “Quadrature Encoder
Interface (QEI)” (DS70601) in the “dsPIC33E/PIC24E Family Reference Manual”. Please see the
Microchip web site for the latest family reference manual sections.

3:

DS70616G-page 524

Quadrature Input Low Time

Typ.(2)

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-14:

QEI MODULE INDEX PULSE TIMING CHARACTERISTICS
(dsPIC33EPXXX(MC/MU)806/810/814 DEVICES ONLY)

QEA
(input)

QEB
(input)

Ungated
Index
TQ50

TQ51
Index Internal
TQ55
Position Counter
Reset

TABLE 32-32: QEI INDEX PULSE TIMING REQUIREMENTS
(dsPIC33EPXXX(MC/MU)MU806/810/814 DEVICES ONLY)
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature
-40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param. Symbol

Characteristic(1)

Min.

Max.

Units

Conditions

TQ50

TqIL

Filter Time to Recognize Low
with Digital Filter

3 * N * TCY

—

ns

N = 1, 2, 4, 16, 32, 64,
128 and 256 (Note 2)

TQ51

TqiH

Filter Time to Recognize High
with Digital Filter

3 * N * TCY

—

ns

N = 1, 2, 4, 16, 32, 64,
128 and 256 (Note 2)

TQ55

Tqidxr

Index Pulse Recognized to Position
Counter Reset (ungated index)

3 TCY

—

ns

Note 1:
2:

These parameters are characterized but not tested in manufacturing.
Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for
forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but
index pulse recognition occurs on the falling edge.

 2009-2012 Microchip Technology Inc.

DS70616G-page 525

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-33: SPI1, SPI3 AND SPI4 MAXIMUM DATA/CLOCK RATE SUMMARY
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS

Maximum
Data Rate

Master
Transmit Only
(Half-Duplex)

Master
Transmit/Receive
(Full-Duplex)

Slave
Transmit/Receive
(Full-Duplex)

CKE

CKP

SMP

Table 32-33

—

—

0,1

0,1

0,1

15 MHz
9 MHz

—

Table 32-34

—

1

0,1

1

9 MHz

—

Table 32-35

—

0

0,1

1

15 MHz

—

—

Table 32-36

1

0

0

11 MHz

—

—

Table 32-37

1

1

0

15 MHz

—

—

Table 32-38

0

1

0

11 MHz

—

—

Table 32-39

0

0

0

FIGURE 32-15:

SPI1, SPI3 AND SPI4 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY,
CKE = 0) TIMING CHARACTERISTICS

SCKx
(CKP = 0)
SP10

SP21

SP20

SP20

SP21

SCKx
(CKP = 1)
SP35

MSb

SDOx
SP30, SP31

Bit 14 - - - - - -1

LSb

SP30, SP31

Note: Refer to Figure 32-1 for load conditions.

DS70616G-page 526

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-16:

SPI1, SPI3 AND SPI4 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY,
CKE = 1) TIMING CHARACTERISTICS
SP36

SCKx
(CKP = 0)
SP10

SP21

SP20

SP20

SP21

SCKx
(CKP = 1)
SP35

Bit 14 - - - - - -1

MSb

SDOx

LSb

SP30, SP31
Note: Refer to Figure 32-1 for load conditions.

TABLE 32-34: SPI1, SPI3 AND SPI4 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING
REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.(2)

Max.

Units

Conditions

SP10

TscP

Maximum SCKx Frequency

—

—

15

MHz

SP20

TscF

SCKx Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP21

TscR

SCKx Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP30

TdoF

SDOx Data Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP31

TdoR

SDOx Data Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP35

TscH2doV,
TscL2doV

SDOx Data Output Valid after
SCKx Edge

—

6

20

ns

SP36

TdiV2scH,
TdiV2scL

SDOx Data Output Setup to
First SCKx Edge

30

—

—

ns

Note 1:
2:
3:
4:

See Note 3

These parameters are characterized, but are not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not
violate this specification.
Assumes 50 pF load on all SPIx pins.

 2009-2012 Microchip Technology Inc.

DS70616G-page 527

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-17:

SPI1, SPI3 AND SPI4 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x,
SMP = 1) TIMING CHARACTERISTICS
SP36

SCKx
(CKP = 0)
SP10

SP21

SP20

SP20

SP21

SCKx
(CKP = 1)
SP35
Bit 14 - - - - - -1

MSb

SDOx

SP30, SP31

SP40
SDIx

LSb

MSb In

LSb In

Bit 14 - - - -1

SP41
Note: Refer to Figure 32-1 for load conditions.

TABLE 32-35: SPI1, SPI3 AND SPI4 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)
TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.(2)

Max.

Units

Conditions

SP10

TscP

Maximum SCKx Frequency

—

—

9

MHz

SP20

TscF

SCKx Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP21

TscR

SCKx Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP30

TdoF

SDOx Data Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP31

TdoR

SDOx Data Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP35

TscH2doV, SDOx Data Output Valid After
TscL2doV SCKx Edge

—

6

20

ns

SP36

TdoV2sc,
TdoV2scL

SDOx Data Output Setup to
First SCKx Edge

30

—

—

ns

SP40

TdiV2scH,
TdiV2scL

Setup Time of SDIx Data
Input to SCKx Edge

30

—

—

ns

SP41

TscH2diL,
TscL2diL

Hold Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

Note 1:
2:
3:
4:

See Note 3

These parameters are characterized, but are not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this
specification.
Assumes 50 pF load on all SPIx pins.

DS70616G-page 528

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-18:

SPI1, SPI3 AND SPI4 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x,
SMP = 1) TIMING CHARACTERISTICS

SCKx
(CKP = 0)
SP10

SP21

SP20

SP20

SP21

SCKx
(CKP = 1)
SP35 SP36

MSb

SDOx

Bit 14 - - - - - -1

SP30, SP31
SDIx

MSb In

LSb

SP30, SP31
LSb In

Bit 14 - - - -1

SP40 SP41
Note: Refer to Figure 32-1 for load conditions.

TABLE 32-36: SPI1, SPI3 AND SPI4 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)
TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.(2)

Max.

Units

Conditions

SP10

TscP

Maximum SCKx Frequency

—

—

9

MHz

-40ºC to +125ºC and
see Note 3

SP20

TscF

SCKx Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP21

TscR

SCKx Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP30

TdoF

SDOx Data Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP31

TdoR

SDOx Data Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP35

TscH2doV, SDOx Data Output Valid After
TscL2doV SCKx Edge

—

6

20

ns

SP36

TdoV2scH, SDOx Data Output Setup to
TdoV2scL First SCKx Edge

30

—

—

ns

SP40

TdiV2scH,
TdiV2scL

Setup Time of SDIx Data
Input to SCKx Edge

30

—

—

ns

SP41

TscH2diL,
TscL2diL

Hold Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

Note 1:
2:
3:
4:

These parameters are characterized, but are not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this
specification.
Assumes 50 pF load on all SPIx pins.

 2009-2012 Microchip Technology Inc.

DS70616G-page 529

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-19:

SPI1, SPI3 AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)
TIMING CHARACTERISTICS
SP60

SSx
SP52

SP50
SCKx
(CKP = 0)
SP70

SP73

SCKx
(CKP = 1)

SP72

SP36
SP35
SP72

SDOx

MSb

Bit 14 - - - - - -1

LSb

SP30,SP31
SDIx

MSb In

Bit 14 - - - -1

SP73

SP51
LSb In

SP41
SP40
Note: Refer to Figure 32-1 for load conditions.

DS70616G-page 530

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-37: SPI1, SPI3 AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)
TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.(2)

Max.

Units

Conditions

SP70

TscP

Maximum SCKx Input Frequency

—

—

15

MHz

SP72

TscF

SCKx Input Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP73

TscR

SCKx Input Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP30

TdoF

SDOx Data Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP31

TdoR

SDOx Data Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP35

TscH2doV, SDOx Data Output Valid after
TscL2doV SCKx Edge

—

6

20

ns

SP36

TdoV2scH, SDOx Data Output Setup to
TdoV2scL First SCKx Edge

30

—

—

ns

SP40

TdiV2scH,
TdiV2scL

Setup Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

SP41

TscH2diL,
TscL2diL

Hold Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

SP50

TssL2scH,
TssL2scL

SSx  to SCKx  or SCKx 
Input

120

—

—

ns

SP51

TssH2doZ

SSx  to SDOx Output,
High-Impedance

10

—

50

ns

See Note 4

SP52

TscH2ssH
TscL2ssH

SSx after SCKx Edge

1.5 TCY + 40

—

—

ns

See Note 4

SP60

TssL2doV

SDOx Data Output Valid after
SSx Edge

—

—

50

ns

Note 1:
2:
3:
4:

See Note 3

These parameters are characterized, but are not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must
not violate this specification.
Assumes 50 pF load on all SPIx pins.

 2009-2012 Microchip Technology Inc.

DS70616G-page 531

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-20:

SPI1, SPI3 AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)
TIMING CHARACTERISTICS
SP60

SSx
SP52

SP50
SCKx
(CKP = 0)
SP70

SP73

SCKx
(CKP = 1)

SP72

SP36
SP35
SP72

SDOx

MSb

Bit 14 - - - - - -1

LSb

SP30,SP31
SDIx

MSb In

Bit 14 - - - -1

SP73

SP51
LSb In

SP41
SP40
Note: Refer to Figure 32-1 for load conditions.

DS70616G-page 532

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-38: SPI1, SPI3 AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)
TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.(2)

Max.

Units

Conditions

SP70

TscP

Maximum SCKx Input Frequency

—

—

11

MHz

SP72

TscF

SCKx Input Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP73

TscR

SCKx Input Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP30

TdoF

SDOx Data Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP31

TdoR

SDOx Data Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP35

TscH2doV, SDOx Data Output Valid after
TscL2doV SCKx Edge

—

6

20

ns

SP36

TdoV2scH, SDOx Data Output Setup to
TdoV2scL First SCKx Edge

30

—

—

ns

SP40

TdiV2scH,
TdiV2scL

Setup Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

SP41

TscH2diL,
TscL2diL

Hold Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

SP50

TssL2scH,
TssL2scL

SSx  to SCKx  or SCKx 
Input

120

—

—

ns

SP51

TssH2doZ

SSx  to SDOx Output,
High-Impedance

10

—

50

ns

See Note 4

SP52

TscH2ssH
TscL2ssH

SSx after SCKx Edge

1.5 TCY + 40

—

—

ns

See Note 4

SP60

TssL2doV

SDOx Data Output Valid after
SSx Edge

—

—

50

ns

Note 1:
2:
3:
4:

See Note 3

These parameters are characterized, but are not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not
violate this specification.
Assumes 50 pF load on all SPIx pins.

 2009-2012 Microchip Technology Inc.

DS70616G-page 533

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-21:

SPI1, SPI3 AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)
TIMING CHARACTERISTICS

SSX
SP52

SP50
SCKX
(CKP = 0)
SP70

SP73

SP72

SP72

SP73

SCKX
(CKP = 1)
SP35 SP36
MSb

SDOX

Bit 14 - - - - - -1

LSb
SP51

SP30,SP31
SDIX

MSb In

Bit 14 - - - -1

LSb In

SP41
SP40
Note: Refer to Figure 32-1 for load conditions.

DS70616G-page 534

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-39: SPI1, SPI3 AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)
TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.(2)

Max.

Units

Conditions

SP70

TscP

Maximum SCKx Input Frequency

—

—

15

MHz

SP72

TscF

SCKx Input Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP73

TscR

SCKx Input Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP30

TdoF

SDOx Data Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP31

TdoR

SDOx Data Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP35

TscH2doV, SDOx Data Output Valid after
TscL2doV SCKx Edge

—

6

20

ns

SP36

TdoV2scH, SDOx Data Output Setup to
TdoV2scL First SCKx Edge

30

—

—

ns

SP40

TdiV2scH,
TdiV2scL

Setup Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

SP41

TscH2diL,
TscL2diL

Hold Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

SP50

TssL2scH,
TssL2scL

SSx  to SCKx  or SCKx 
Input

120

—

—

ns

SP51

TssH2doZ

SSx  to SDOx Output
High-Impedance

10

—

50

ns

See Note 4

SP52

TscH2ssH
TscL2ssH

SSx after SCKx Edge

1.5 TCY + 40

—

—

ns

See Note 4

Note 1:
2:
3:
4:

See Note 3

These parameters are characterized, but are not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must
not violate this specification.
Assumes 50 pF load on all SPIx pins.

 2009-2012 Microchip Technology Inc.

DS70616G-page 535

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-22:

SPI1, SPI3 AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)
TIMING CHARACTERISTICS

SSX
SP52

SP50
SCKX
(CKP = 0)
SP70

SP73

SP72

SP72

SP73

SCKX
(CKP = 1)
SP35 SP36
MSb

SDOX

Bit 14 - - - - - -1

LSb
SP51

SP30,SP31
SDIX

MSb In

Bit 14 - - - -1

LSb In

SP41
SP40
Note: Refer to Figure 32-1 for load conditions.

DS70616G-page 536

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-40: SPI1, SPI3 AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)
TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.(2)

Max.

Units

Conditions

SP70

TscP

Maximum SCKx Input Frequency

—

—

11

MHz

SP72

TscF

SCKx Input Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP73

TscR

SCKx Input Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP30

TdoF

SDOx Data Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP31

TdoR

SDOx Data Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP35

TscH2doV, SDOx Data Output Valid after
TscL2doV SCKx Edge

—

6

20

ns

SP36

TdoV2scH, SDOx Data Output Setup to
TdoV2scL First SCKx Edge

30

—

—

ns

SP40

TdiV2scH,
TdiV2scL

Setup Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

SP41

TscH2diL,
TscL2diL

Hold Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

SP50

TssL2scH,
TssL2scL

SSx  to SCKx  or SCKx 
Input

120

—

—

ns

SP51

TssH2doZ

SSx  to SDOx Output
High-Impedance

10

—

50

ns

See Note 4

SP52

TscH2ssH
TscL2ssH

SSx after SCKx Edge

1.5 TCY + 40

—

—

ns

See Note 4

Note 1:
2:
3:
4:

See Note 3

These parameters are characterized, but are not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not
violate this specification.
Assumes 50 pF load on all SPIx pins.

 2009-2012 Microchip Technology Inc.

DS70616G-page 537

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-41: SPI2 MAXIMUM DATA/CLOCK RATE SUMMARY
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS

Maximum
Data Rate

Master
Transmit Only
(Half-Duplex)

Master
Transmit/Receive
(Full-Duplex)

Slave
Transmit/Receive
(Full-Duplex)

CKE

CKP

SMP

15 MHz

Table 32-42

—

—

0,1

0,1

0,1

10 MHz

—

Table 32-43

—

1

0,1

1

10 MHz

—

Table 32-44

—

0

0,1

1

15 MHz

—

—

Table 32-45

1

0

0

11 MHz

—

—

Table 32-46

1

1

0

15 MHz

—

—

Table 32-47

0

1

0

11 MHz

—

—

Table 32-48

0

0

0

FIGURE 32-23:

SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING
CHARACTERISTICS

SCKx
(CKP = 0)
SP10

SP21

SP20

SP20

SP21

SCKx
(CKP = 1)
SP35

MSb

SDOx
SP30, SP31

Bit 14 - - - - - -1

LSb

SP30, SP31

Note: Refer to Figure 32-1 for load conditions.

DS70616G-page 538

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-24:

SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING
CHARACTERISTICS
SP36

SCKx
(CKP = 0)
SP10

SP21

SP20

SP20

SP21

SCKx
(CKP = 1)
SP35

Bit 14 - - - - - -1

MSb

SDOx

LSb

SP30, SP31
Note: Refer to Figure 32-1 for load conditions.

TABLE 32-42: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.(2)

Max.

Units

Conditions

SP10

TscP

Maximum SCKx Frequency

—

—

15

MHz

SP20

TscF

SCKx Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP21

TscR

SCKx Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP30

TdoF

SDOx Data Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP31

TdoR

SDOx Data Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP35

TscH2doV,
TscL2doV

SDOx Data Output Valid after
SCKx Edge

—

6

20

ns

SP36

TdiV2scH,
TdiV2scL

SDOx Data Output Setup to
First SCKx Edge

30

—

—

ns

Note 1:
2:
3:
4:

See Note 3

These parameters are characterized, but are not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not
violate this specification.
Assumes 50 pF load on all SPIx pins.

 2009-2012 Microchip Technology Inc.

DS70616G-page 539

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-25:

SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
CHARACTERISTICS
SP36

SCKx
(CKP = 0)
SP10

SP21

SP20

SP20

SP21

SCKx
(CKP = 1)
SP35
Bit 14 - - - - - -1

MSb

SDOx

SP30, SP31

SP40
SDIx

LSb

MSb In

LSb In

Bit 14 - - - -1

SP41
Note: Refer to Figure 32-1 for load conditions.

TABLE 32-43: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.(2)

Max.

Units

Conditions

SP10

TscP

Maximum SCKx Frequency

—

—

10

MHz

SP20

TscF

SCKx Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP21

TscR

SCKx Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP30

TdoF

SDOx Data Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP31

TdoR

SDOx Data Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP35

TscH2doV, SDOx Data Output Valid after
TscL2doV SCKx Edge

—

6

20

ns

SP36

TdoV2sc,
TdoV2scL

SDOx Data Output Setup to
First SCKx Edge

30

—

—

ns

SP40

TdiV2scH,
TdiV2scL

Setup Time of SDIx Data
Input to SCKx Edge

30

—

—

ns

SP41

TscH2diL,
TscL2diL

Hold Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

Note 1:
2:
3:
4:

See Note 3

These parameters are characterized, but are not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this
specification.
Assumes 50 pF load on all SPIx pins.

DS70616G-page 540

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-26:

SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = X, SMP = 1) TIMING
CHARACTERISTICS

SCKx
(CKP = 0)
SP10

SP21

SP20

SP20

SP21

SCKx
(CKP = 1)
SP35 SP36

Bit 14 - - - - - -1

MSb

SDOx
SP30, SP31
SDIx

MSb In

LSb

SP30, SP31
LSb In

Bit 14 - - - -1

SP40 SP41
Note: Refer to Figure 32-1 for load conditions.

TABLE 32-44: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.(2)

Max.

Units

Conditions

SP10

TscP

Maximum SCKx Frequency

—

—

10

MHz

-40ºC to +125ºC and
see Note 3

SP20

TscF

SCKx Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP21

TscR

SCKx Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP30

TdoF

SDOx Data Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP31

TdoR

SDOx Data Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP35

TscH2doV, SDOx Data Output Valid after
TscL2doV SCKx Edge

—

6

20

ns

SP36

TdoV2scH, SDOx Data Output Setup to
TdoV2scL First SCKx Edge

30

—

—

ns

SP40

TdiV2scH,
TdiV2scL

Setup Time of SDIx Data
Input to SCKx Edge

30

—

—

ns

SP41

TscH2diL,
TscL2diL

Hold Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

Note 1:
2:
3:
4:

These parameters are characterized, but are not tested in manufacturing.
Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated.
The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this
specification.
Assumes 50 pF load on all SPIx pins.

 2009-2012 Microchip Technology Inc.

DS70616G-page 541

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-27:

SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
CHARACTERISTICS
SP60

SSx
SP52

SP50
SCKx
(CKP = 0)
SP70

SP73

SCKx
(CKP = 1)

SP72

SP36
SP35
SP72
MSb

SDOx

Bit 14 - - - - - -1

LSb

SP30,SP31
SDIx

MSb In

Bit 14 - - - -1

SP73

SP51
LSb In

SP41
SP40
Note: Refer to Figure 32-1 for load conditions.

DS70616G-page 542

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-45: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.(2)

Max.

Units

Conditions

SP70

TscP

Maximum SCKx Input Frequency

—

—

15

MHz

SP72

TscF

SCKx Input Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP73

TscR

SCKx Input Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP30

TdoF

SDOx Data Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP31

TdoR

SDOx Data Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP35

TscH2doV, SDOx Data Output Valid after
TscL2doV SCKx Edge

—

6

20

ns

SP36

TdoV2scH, SDOx Data Output Setup to
TdoV2scL First SCKx Edge

30

—

—

ns

SP40

TdiV2scH,
TdiV2scL

Setup Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

SP41

TscH2diL,
TscL2diL

Hold Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

SP50

TssL2scH,
TssL2scL

SSx  to SCKx  or SCKx 
Input

120

—

—

ns

SP51

TssH2doZ

SSx  to SDOx Output,
High-Impedance

10

—

50

ns

See Note 4

SP52

TscH2ssH
TscL2ssH

SSx after SCKx Edge

1.5 TCY + 40

—

—

ns

See Note 4

SP60

TssL2doV

SDOx Data Output Valid after
SSx Edge

—

—

50

ns

Note 1:
2:
3:
4:

See Note 3

These parameters are characterized, but are not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must
not violate this specification.
Assumes 50 pF load on all SPIx pins.

 2009-2012 Microchip Technology Inc.

DS70616G-page 543

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-28:

SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
CHARACTERISTICS
SP60

SSx
SP52

SP50
SCKx
(CKP = 0)
SP70

SP73

SCKx
(CKP = 1)

SP72

SP36
SP35
SP72

SDOx

MSb

Bit 14 - - - - - -1

LSb

SP30,SP31
SDIx

MSb In

Bit 14 - - - -1

SP73

SP51
LSb In

SP41
SP40
Note: Refer to Figure 32-1 for load conditions.

DS70616G-page 544

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-46: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.(2)

Max.

Units

Conditions

SP70

TscP

Maximum SCKx Input Frequency

—

—

11

MHz

SP72

TscF

SCKx Input Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP73

TscR

SCKx Input Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP30

TdoF

SDOx Data Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP31

TdoR

SDOx Data Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP35

TscH2doV, SDOx Data Output Valid after
TscL2doV SCKx Edge

—

6

20

ns

SP36

TdoV2scH, SDOx Data Output Setup to
TdoV2scL First SCKx Edge

30

—

—

ns

SP40

TdiV2scH,
TdiV2scL

Setup Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

SP41

TscH2diL,
TscL2diL

Hold Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

SP50

TssL2scH,
TssL2scL

SSx  to SCKx  or SCKx 
Input

120

—

—

ns

SP51

TssH2doZ

SSx  to SDOx Output,
High-Impedance

10

—

50

ns

See Note 4

SP52

TscH2ssH, SSx after SCKx Edge
TscL2ssH

1.5 TCY + 40

—

—

ns

See Note 4

SP60

TssL2doV

—

—

50

ns

Note 1:
2:
3:
4:

SDOx Data Output Valid after
SSx Edge

See Note 3

These parameters are characterized, but are not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not
violate this specification.
Assumes 50 pF load on all SPIx pins.

 2009-2012 Microchip Technology Inc.

DS70616G-page 545

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-29:

SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
CHARACTERISTICS

SSX
SP52

SP50
SCKX
(CKP = 0)
SP70

SP73

SP72

SP72

SP73

SCKX
(CKP = 1)
SP35 SP36
SDOX

Bit 14 - - - - - -1

MSb

LSb
SP51

SP30,SP31
SDIX

MSb In

Bit 14 - - - -1

LSb In

SP41
SP40
Note: Refer to Figure 32-1 for load conditions.

DS70616G-page 546

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-47: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.(2)

Max.

Units

Conditions

SP70

TscP

Maximum SCKx Input Frequency

—

—

15

MHz

See Note 3

SP72

TscF

SCKx Input Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP73

TscR

SCKx Input Rise Time

—

—

—

ns

See Note 4

SP30

TdoF

SDOx Data Output Fall Time

—

—

—

ns

See Note 4

SP31

TdoR

SDOx Data Output Rise Time

—

—

—

ns

See Note 4

SP35

TscH2doV, SDOx Data Output Valid after
TscL2doV SCKx Edge

—

6

20

ns

SP36

TdoV2scH, SDOx Data Output Setup to
TdoV2scL First SCKx Edge

30

—

—

ns

SP40

TdiV2scH,
TdiV2scL

Setup Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

SP41

TscH2diL,
TscL2diL

Hold Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

SP50

TssL2scH,
TssL2scL

SSx  to SCKx  or SCKx 
Input

120

—

—

ns

SP51

TssH2doZ

SSx  to SDOx Output,
High-Impedance

10

—

50

ns

See Note 4

SP52

TscH2ssH, SSx after SCKx Edge
TscL2ssH

1.5 TCY + 40

—

—

ns

See Note 4

Note 1:
2:
3:
4:

These parameters are characterized, but are not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must
not violate this specification.
Assumes 50 pF load on all SPIx pins.

 2009-2012 Microchip Technology Inc.

DS70616G-page 547

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-30:

SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
CHARACTERISTICS

SSX
SP52

SP50
SCKX
(CKP = 0)
SP70

SP73

SP72

SP72

SP73

SCKX
(CKP = 1)
SP35 SP36

Bit 14 - - - - - -1

MSb

SDOX

LSb
SP51

SP30,SP31
SDIX

MSb In

Bit 14 - - - -1

LSb In

SP41
SP40
Note: Refer to Figure 32-1 for load conditions.

DS70616G-page 548

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-48: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.(2)

Max.

Units

Conditions

SP70

TscP

Maximum SCKx Input Frequency

—

—

11

MHz

SP72

TscF

SCKx Input Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP73

TscR

SCKx Input Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP30

TdoF

SDOx Data Output Fall Time

—

—

—

ns

See Parameter DO32
and Note 4

SP31

TdoR

SDOx Data Output Rise Time

—

—

—

ns

See Parameter DO31
and Note 4

SP35

TscH2doV, SDOx Data Output Valid after
TscL2doV SCKx Edge

—

6

20

ns

SP36

TdoV2scH, SDOx Data Output Setup to
TdoV2scL First SCKx Edge

30

—

—

ns

SP40

TdiV2scH,
TdiV2scL

Setup Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

SP41

TscH2diL,
TscL2diL

Hold Time of SDIx Data Input
to SCKx Edge

30

—

—

ns

SP50

TssL2scH,
TssL2scL

SSx  to SCKx  or SCKx 
Input

120

—

—

ns

SP51

TssH2doZ

SSx  to SDOx Output,
High-Impedance

10

—

50

ns

See Note 4

SP52

TscH2ssH, SSx after SCKx Edge
TscL2ssH

1.5 TCY + 40

—

—

ns

See Note 4

Note 1:
2:
3:
4:

See Note 3

These parameters are characterized, but are not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.
The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not
violate this specification.
Assumes 50 pF load on all SPIx pins.

 2009-2012 Microchip Technology Inc.

DS70616G-page 549

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-31:

I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)

SCLx
IM31

IM34

IM30

IM33

SDAx

Stop
Condition

Start
Condition
Note: Refer to Figure 32-1 for load conditions.

FIGURE 32-32:

I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)
IM20

IM21

IM11
IM10

SCLx
IM30

IM26
IM31

IM25

IM33

SDAx
In
IM40

IM40

IM45

SDAx
Out
Note: Refer to Figure 32-1 for load conditions.

DS70616G-page 550

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-49: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param. Symbol
IM10

IM11

IM20

IM21

IM25

IM26

IM30

IM31

IM33

IM34

IM40

IM45

IM50
IM51
Note 1:

2:
3:
4:

Characteristic(4)

Min.(1)

Max.

Units

Conditions

TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 2)
—
s
—
s
400 kHz mode TCY/2 (BRG + 2)
(2)
TCY/2 (BRG + 2)
—
s
1 MHz mode
THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 2)
—
s
—
s
400 kHz mode TCY/2 (BRG + 2)
—
s
1 MHz mode(2) TCY/2 (BRG + 2)
TF:SCL
SDAx and SCLx 100 kHz mode
—
300
ns
CB is specified to be
Fall Time
from 10 to 400 pF
300
ns
400 kHz mode
20 + 0.1 CB
(2)
—
100
ns
1 MHz mode
TR:SCL SDAx and SCLx 100 kHz mode
—
1000
ns
CB is specified to be
Rise Time
from 10 to 400 pF
300
ns
400 kHz mode
20 + 0.1 CB
(2)
—
300
ns
1 MHz mode
TSU:DAT Data Input
100 kHz mode
250
—
ns
Setup Time
400 kHz mode
100
—
ns
(2)
40
—
ns
1 MHz mode
THD:DAT Data Input
100 kHz mode
0
—
s
Hold Time
400 kHz mode
0
0.9
s
0.2
—
s
1 MHz mode(2)
TSU:STA Start Condition 100 kHz mode TCY/2 (BRG + 2)
—
s
Only relevant for
Setup Time
Repeated Start
—
s
400 kHz mode TCY/2 (BRG + 2)
condition
(2)
TCY/2 (BRG + 2)
—
s
1 MHz mode
THD:STA Start Condition 100 kHz mode TCY/2 (BRG + 2)
—
s
After this period, the
Hold Time
first
clock pulse is
—
s
400 kHz mode
TCY/2 (BRG +2)
generated
(2)
TCY/2 (BRG + 2)
—
s
1 MHz mode
TSU:STO Stop Condition 100 kHz mode TCY/2 (BRG + 2)
—
s
Setup Time
—
s
400 kHz mode TCY/2 (BRG + 2)
(2)
TCY/2 (BRG + 2)
—
s
1 MHz mode
THD:STO Stop Condition 100 kHz mode TCY/2 (BRG + 2)
—
s
—
s
Hold Time
400 kHz mode TCY/2 (BRG + 2)
—
s
1 MHz mode(2) TCY/2 (BRG + 2)
100 kHz mode
—
3500
ns
TAA:SCL Output Valid
From Clock
400 kHz mode
—
1000
ns
—
400
ns
1 MHz mode(2)
TBF:SDA Bus Free Time 100 kHz mode
4.7
—
s
Time the bus must be
free before a new
400 kHz mode
1.3
—
s
transmission can start
(2)
0.5
—
s
1 MHz mode
CB
Bus Capacitive Loading
—
400
pF
Pulse Gobbler Delay
65
390
ns
See Note 3
TPGD
2C Baud Rate Generator. Refer to Section 19. “Inter-Integrated Circuit (I2C™)”
BRG is the value of the I
(DS70330) in the “dsPIC33E/PIC24E Family Reference Manual”. Please see the Microchip web site for
the latest family reference manual sections.
Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
Typical value for this parameter is 130 ns.
These parameters are characterized, but not tested in manufacturing.

 2009-2012 Microchip Technology Inc.

DS70616G-page 551

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-33:

I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

SCLx
IS34

IS31
IS30

IS33

SDAx

Stop
Condition

Start
Condition

FIGURE 32-34:

I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)
IS20

IS21

IS11
IS10

SCLx
IS30

IS25

IS31

SDAx
In
IS40

IS40

IS26
IS33

IS45

SDAx
Out

DS70616G-page 552

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-50: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param. Symbol

Characteristic(3)

IS10

TLO:SCL Clock Low Time

IS11

THI:SCL

IS20

IS21

IS25

IS26

IS30

IS31

IS33

IS34

IS40

IS45

IS50
IS51
Note

Clock High Time

Min.

Max.

Units

100 kHz mode
400 kHz mode
1 MHz mode(1)
100 kHz mode

4.7
1.3
0.5
4.0

—
—
—
—

s
s
s
s

400 kHz mode

0.6

—

s

0.5
—
s
1 MHz mode(1)
SDAx and SCLx 100 kHz mode
—
300
ns
TF:SCL
Fall Time
300
ns
400 kHz mode
20 + 0.1 CB
(1)
1 MHz mode
—
100
ns
—
1000
ns
TR:SCL SDAx and SCLx 100 kHz mode
Rise Time
300
ns
400 kHz mode
20 + 0.1 CB
1 MHz mode(1)
—
300
ns
100 kHz mode
250
—
ns
TSU:DAT Data Input
Setup Time
400 kHz mode
100
—
ns
100
—
ns
1 MHz mode(1)
100 kHz mode
0
—
s
THD:DAT Data Input
Hold Time
400 kHz mode
0
0.9
s
0
0.3
s
1 MHz mode(1)
100 kHz mode
4.7
—
s
TSU:STA Start Condition
Setup Time
400 kHz mode
0.6
—
s
(1)
0.25
—
s
1 MHz mode
100 kHz mode
4.0
—
s
THD:STA Start Condition
Hold Time
400 kHz mode
0.6
—
s
0.25
—
s
1 MHz mode(1)
100 kHz mode
4.7
—
s
TSU:STO Stop Condition
Setup Time
400 kHz mode
0.6
—
s
0.6
—
s
1 MHz mode(1)
100 kHz mode
4
—
s
THD:STO Stop Condition
Hold Time
400 kHz mode
0.6
—
s
0.25
s
1 MHz mode(1)
100 kHz mode
0
3500
ns
TAA:SCL Output Valid
From Clock
400 kHz mode
0
1000
ns
(1)
0
350
ns
1 MHz mode
100 kHz mode
4.7
—
s
TBF:SDA Bus Free Time
400 kHz mode
1.3
—
s
0.5
—
s
1 MHz mode(1)
Bus Capacitive Loading
—
400
pF
CB
Pulse Gobbler Delay
65
390
ns
TPGD
1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
2: The typical value for this parameter is 130 ns.
3: These parameters are characterized, but not tested in manufacturing.

 2009-2012 Microchip Technology Inc.

Conditions

Device must operate at a
minimum of 1.5 MHz
Device must operate at a
minimum of 10 MHz
CB is specified to be from
10 to 400 pF
CB is specified to be from
10 to 400 pF

Only relevant for Repeated
Start condition
After this period, the first
clock pulse is generated

Time the bus must be free
before a new transmission
can start
See Note 2

DS70616G-page 553

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-35:

ECAN™ MODULE I/O TIMING CHARACTERISTICS

CxTx Pin
(output)

New Value

Old Value
CA10 CA11

CxRx Pin
(input)

CA20

TABLE 32-51: ECAN™ MODULE I/O TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.
CA10

Characteristic(1)

Symbol
TioF

Min.

Typ.(2)

Max.

Units

—

—

—

ns

See Parameter DO32
See Parameter DO31

Port Output Fall Time

CA11

TioR

Port Output Rise Time

—

—

—

ns

CA20

TCWF

Pulse Width to Trigger
CAN Wake-up Filter

120

—

—

ns

Note 1:
2:

Conditions

These parameters are characterized but not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.

FIGURE 32-36:

UARTx MODULE I/O TIMING CHARACTERISTICS

UA20
UxRX
UXTX

MSb In

Bit 6-1

LSb In

UA10

TABLE 32-52: UARTx MODULE I/O TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +125°C

AC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

UA10

TUABAUD

UARTx Baud Time

UA11

FBAUD

UARTx Baud Frequency

UA20

TCWF

Start Bit Pulse Width to Trigger
UARTx Wake-up

Note 1:
2:

Min.

Typ.(2)

66.67

—

—

ns

—

—

15

mbps

500

—

—

ns

Max.

Units

Conditions

These parameters are characterized but not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.

DS70616G-page 554

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-53: USB OTG MODULE SPECIFICATIONS
(dsPIC33EPXXXMU8XX AND PIC24EPXXXGU8XX DEVICES ONLY)
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

USB313

VUSB3V3(2)

Characteristics(1)

Min.

Typ.

Max.

Units

Conditions

USB Voltage

3.0

—

3.6

V

Voltage on bus must be in this
range for proper USB operation

USB315 VILUSB

Input Low Voltage for USB
Buffer

—

—

0.8

V

USB316 VIHUSB

Input High Voltage for USB
Buffer

2.0

—

—

V

USB318 VDIFS

Differential Input Sensitivity

—

—

0.2

V

USB319 VCM

Differential Common-Mode
Range

0.8

—

2.5

V

USB320 ZOUT

Driver Output Impedance

28.0

—

44.0



USB321 VOL

Voltage Output Low

0.0

—

0.3

V

14.25 k load connected to
3.6V

USB322 VOH

Voltage Output High

2.8

—

3.6

V

14.25 k load connected to
ground

Note 1:
2:

The difference between D+ and
D- must be within this range
while VCM is met

These parameters are characterized but not tested in manufacturing.
If the USB module is not being used, this pin must be connected to VDD.

 2009-2012 Microchip Technology Inc.

DS70616G-page 555

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-54: ADC MODULE SPECIFICATIONS
AC CHARACTERISTICS
Param. Symbol

Characteristic

Standard Operating Conditions: 3.0V to 3.6V (see Note 3)
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended
Min.

Typ.

Max.

Units

Conditions

Device Supply
AD01

AVDD(2) Module VDD Supply

Greater of
VDD – 0.3
or 3.0

—

Lesser of
VDD + 0.3
or 3.6

V

AD02

AVSS

Module VSS Supply

VSS – 0.3

—

VSS + 0.3

V

AD05

VREFH

Reference Voltage High

Reference Inputs

AD05a
AD06

VREFL

Reference Voltage Low

AD06a

AVSS + 2.5

—

AVDD

V

See Note 1,
VREFH = VREF+,
VREFL = VREF-

3.0

—

3.6

V

VREFH = AVDD,
VREFL = AVSS = 0

AVSS

—

AVDD – 2.5

V

See Note 1

0

—

0

V

VREFH = AVDD,
VREFL = AVSS = 0

AD07

VREF

Absolute Reference
Voltage

2.5

—

3.6

V

VREF = VREFH – VREFL

AD08

IREF

Current Drain

—
—

—
—

10
600

A
A

ADC off
ADC on

AD09

IAD

Operating Current

—

9.0

—

mA

—

3.2

—

mA

ADC operating in 10-bit
mode, see Note 1
ADC operating in 12-bit
mode, see Note 1

Analog Input
AD12

VINH

Input Voltage Range, VINH

VINL

—

VREFH

V

This voltage reflects Sample
& Hold Channels 0, 1, 2 and 3
(CH0-CH3), positive input

AD13

VINL

Input Voltage Range, VINL

VREFL

—

AVSS + 1V

V

This voltage reflects Sample
& Hold Channels 0, 1, 2 and 3
(CH0-CH3), negative input

AD17

RIN

Recommended Impedance
of Analog Voltage Source

—

—

200



Note 1:
2:
3:

These parameters are not characterized or tested in manufacturing.
The voltage difference between AVDD and VDD cannot exceed 300 mV at any time during operation or start-up.
Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have
degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in
Table 32-11 for the minimum and maximum BOR values.

DS70616G-page 556

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-55: ADC MODULE SPECIFICATIONS (12-BIT MODE)
Standard Operating Conditions: 3.0V to 3.6V (see Note 1)
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic

Min.

Typ.

Max.

Units

Conditions

AD20a

Nr

Resolution

AD21a

INL

Integral Nonlinearity

-2

—

+2

LSb

VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.6V

AD22a

DNL

Differential Nonlinearity

>-1

—

<1

LSb

VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.6V

AD23a

GERR

Gain Error

1.25

1.5

3

LSb

VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.6V

AD24a

EOFF

Offset Error

1.25

1.52

2

LSb

VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.6V

AD25a

—

Monotonicity

—

—

—

—

ADC Accuracy (12-Bit Mode) – Measurements with External VREF+/VREF12 Data Bits

bits

Guaranteed(2)

ADC Accuracy (12-Bit Mode) – Measurements with Internal VREF+/VREFAD20a

Nr

Resolution

AD21a

INL

Integral Nonlinearity

-2

12 data bits
—

+2

LSb

bits
VINL = AVSS = 0V, AVDD = 3.6V

>-1

—

<1

LSb

VINL = AVSS = 0V, AVDD = 3.6V

2

3

7

LSb

VINL = AVSS = 0V, AVDD = 3.6V
VINL = AVSS = 0V, AVDD = 3.6V

AD22a

DNL

Differential Nonlinearity

AD23a

GERR

Gain Error

AD24a

EOFF

Offset Error

2

3

5

LSb

AD25a

—

Monotonicity

—

—

—

—

Guaranteed(2)

Dynamic Performance (12-Bit Mode)
AD30a

THD

Total Harmonic Distortion

AD31a

SINAD

Signal to Noise and
Distortion

AD32a

SFDR

AD33a
AD34a
Note 1:

2:

—

—

-75

dB

68.5

69.5

—

dB

Spurious Free Dynamic
Range

80

—

—

dB

FNYQ

Input Signal Bandwidth

—

—

250

kHz

ENOB

Effective Number of Bits

11.09

11.3

—

bits

Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have
degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in
Table 32-11 for the minimum and maximum BOR values.
The Analog-to-Digital conversion result never decreases with an increase in input voltage and has no
missing codes.

 2009-2012 Microchip Technology Inc.

DS70616G-page 557

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-56: ADC MODULE SPECIFICATIONS (10-BIT MODE)
Standard Operating Conditions: 3.0V to 3.6V (see Note 1)
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Symbol

Characteristic

Min.

Typ.

Max.

Units

Conditions

ADC Accuracy (10-Bit Mode) – Measurements with External VREF+/VREFAD20b

Nr

Resolution

AD21b

INL

Integral Nonlinearity

-1

10 data bits
—

+1

LSb

bits
VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.6V

AD22b

DNL

Differential Nonlinearity

>-1

—

<1

LSb

VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.6V

AD23b

GERR

Gain Error

1

3

6

LSb

VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.6V

AD24b

EOFF

Offset Error

1

2

3

LSb

VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.6V

AD25b

—

Monotonicity

—

—

—

—

AD20b

Nr

Resolution

Guaranteed(2)

ADC Accuracy (10-Bit Mode) – Measurements with Internal VREF+/VREF10 data bits

bits

AD21b

INL

Integral Nonlinearity

-1.5

—

+1.5

LSb

VINL = AVSS = 0V, AVDD = 3.6V

AD22b

DNL

Differential Nonlinearity

>-1

—

<1

LSb

VINL = AVSS = 0V, AVDD = 3.6V

AD23b

GERR

Gain Error

1

5

6

LSb

VINL = AVSS = 0V, AVDD = 3.6V

AD24b

EOFF

Offset Error

1

2

5

LSb

VINL = AVSS = 0V, AVDD = 3.6V

AD25b

—

Monotonicity

—

—

—

—

Guaranteed(2)

Dynamic Performance (10-Bit Mode)
AD30b

THD

Total Harmonic Distortion

—

—

-64

dB

AD31b

SINAD

Signal to Noise and
Distortion

57

58.5

—

dB

AD32b

SFDR

Spurious Free Dynamic
Range

72

—

—

dB

AD33b

FNYQ

Input Signal Bandwidth

—

—

550

kHz

AD34b

ENOB

Effective Number of Bits

9.16

9.4

—

bits

Note 1:

2:

Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have
degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in
Table 32-11 for the minimum and maximum BOR values.
The Analog-to-Digital conversion result never decreases with an increase in input voltage and has no
missing codes.

DS70616G-page 558

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-37:

ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS
(ASAM = 0, SSRC<2:0> = 000, SSRCG = 0)
AD50

ADCLK
Instruction
Execution Set SAMP

Clear SAMP

SAMP
AD61

AD60
TSAMP

AD55

DONE
AD1IF

1

2

3

4

5

6

7

8

9

1 – Software sets AD1CON1. SAMP to start sampling.

5 – Convert bit 11.

2 – Sampling starts after discharge period. TSAMP is described in
Section 16. “Analog-to-Digital Converter (ADC)” (DS70621) of the
“dsPIC33E/PIC24E Family Reference Manual”.
3 – Software clears AD1CON1. SAMP to start conversion.

6 – Convert bit 10.

4 – Sampling ends, conversion sequence starts.

9 – One TAD for end of conversion.

 2009-2012 Microchip Technology Inc.

7 – Convert bit 1.
8 – Convert bit 0.

DS70616G-page 559

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-57: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V (see Note 4)
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param. Symbol

Characteristic

Min.

Typ.(2)

Max.

Units

Conditions

Clock Parameters
AD50

TAD

ADC Clock Period

AD51

tRC

ADC Internal RC Oscillator
Period

117.6

—

—

ns

—

250

—

ns

Conversion Rate
AD55

tCONV

Conversion Time

—

14 TAD

AD56

FCNV

Throughput Rate

—

—

500

Ksps

AD57

TSAMP

Sample Time

3 TAD

—

—

—

ns

Timing Parameters
AD60

tPCS

Conversion Start from Sample
Trigger(1)

2 TAD

—

3 TAD

—

AD61

tPSS

Sample Start from Setting
Sample (SAMP) bit(1)

2 TAD

—

3 TAD

—

AD62

tCSS

Conversion Completion to
Sample Start (ASAM = 1)(1)

—

0.5 TAD

—

—

AD63

tDPU

Time to Stabilize Analog Stage
from ADC Off to ADC On(1)

—

—

20

s

Note 1:
2:
3:
4:

Auto-Convert Trigger
not selected

See Note 3

Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity
performance, especially at elevated temperatures.
These parameters are characterized but not tested in manufacturing.
The tDPU parameter is the time required for the ADC module to stabilize at the appropriate level when the
module is turned on (ADON (ADxCON1<15>) = 1). During this time, the ADC result is indeterminate.
Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have
degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in
Table 32-11 for the minimum and maximum BOR values.

DS70616G-page 560

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

FIGURE 32-38:

ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS
(CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000, SSRCG = 0)
AD50

ADCLK
Instruction
Execution Set SAMP

Clear SAMP

SAMP
AD61

AD60
TSAMP

AD55

AD55

DONE
ADxIF

1

2

3

4

5

6

7

8

5

6

7

1 – Software sets ADx1CON1. SAMP to start sampling.

5 – Convert bit 9.

2 – Sampling starts after discharge period. TSAMP is described in
Section 16. “Analog-to-Digital Converter (ADC)” (DS70621) of the
“dsPIC33E/PIC24E Family Reference Manual”.
3 – Software clears ADxCON1. SAMP to start conversion.

6 – Convert bit 8.

8

7 – Convert bit 0.
8 – One TAD for end of conversion.

4 – Sampling ends, conversion sequence starts.

FIGURE 32-39:

ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

AD50
ADCLK
Instruction
Set ADON
Execution

AD62

SAMP
TSAMP

AD55

TSAMP

AD55

AD55

ADxIF

DONE

1

2

3

4

5

6

7

3

4

5

6

8

1 – Software sets ADxCON1. ADON to start AD operation.

5 – Convert bit 0.

2 – Sampling starts after discharge period. TSAMP is described in
Section 16. “Analog-to-Digital Converter (ADC)” (DS70621)
of the “dsPIC33E/PIC24E Family Reference Manual”.
3 – Convert bit 9.

6 – One TAD for end of conversion.
7 – Begin conversion of next channel.
8 – Sample for time specified by SAMC<4:0>.

4 – Convert bit 8.

 2009-2012 Microchip Technology Inc.

DS70616G-page 561

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-58: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V (see Note 4)
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param. Symbol

Characteristic

Min.

Typ.(1)

Max.

Units

Conditions

Clock Parameters
AD50

TAD

ADC Clock Period

76

—

—

ns

AD51

tRC

ADC Internal RC Oscillator Period

—

250

—

ns

AD55

tCONV

Conversion Time

—

12 TAD

—

—

AD56

FCNV

Throughput Rate

—

—

1.1

Msps

AD57

TSAMP

Sample Time

2 TAD

—

—

—

Conversion Rate
Using sequential
sampling

Timing Parameters
AD60

tPCS

Conversion Start from Sample
Trigger(2)

2 TAD

—

3 TAD

—

AD61

tPSS

Sample Start from Setting
Sample (SAMP) bit(2)

2 TAD

—

3 TAD

—

AD62

tCSS

Conversion Completion to
Sample Start (ASAM = 1)(2)

—

0.5 TAD

—

—

AD63

tDPU

Time to Stabilize Analog Stage
from ADC Off to ADC On(2)

—

—

20

s

Note 1:
2:
3:
4:

Auto-Convert Trigger
not selected

See Note 3

These parameters are characterized but not tested in manufacturing.
Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity
performance, especially at elevated temperatures.
The tDPU parameter is the time required for the ADC module to stabilize at the appropriate level when the
module is turned on (ADON (ADxCON1<15>) = 1). During this time, the ADC result is indeterminate.
Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have
degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in
Table 32-11 for the minimum and maximum BOR values.

DS70616G-page 562

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

FIGURE 32-40:

DCI MODULE (MULTI-CHANNEL, I2S MODES) TIMING CHARACTERISTICS

CSCK
(SCKE = 0)
CS11

CS10

CS21

CS20

CS20

CS21

CSCK
(SCKE = 1)

COFS

CS55 CS56
CS35
CS51

CSDO

70

CS50

High-Z

LSb

MSb
CS30

CSDI

MSb In

High-Z

CS31
LSb In

CS40 CS41

Note: Refer to Figure 32-1 for load conditions.

 2009-2012 Microchip Technology Inc.

DS70616G-page 563

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-59: DCI MODULE (MULTI-CHANNEL, I2S MODES) TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param. Symbol
CS10

TCSCKL

Characteristic(1)

Min.

Typ.(2)

Max.

Units

TCY/2 + 20

—

—

ns

30

—

—

ns

TCY/2 + 20

—

—

ns

CSCK Output High Time(3)
(CSCK pin is an output)

30

—

—

ns

CSCK Input Low Time
(CSCK pin is an input)
CSCK Output Low Time(3)
(CSCK pin is an output)

CS11

TCSCKH

CSCK Input High Time
(CSCK pin is an input)

Conditions

CS20

TCSCKF

CSCK Output Fall Time
(CSCK pin is an output)

—

—

—

ns

See Parameter DO32

CS21

TCSCKR

CSCK Output Rise Time
(CSCK pin is an output)

—

—

—

ns

See Parameter DO31

CS30

TCSDOF

CSDO Data Output Fall Time

—

—

—

ns

See Parameter DO32

CS31

TCSDOR

CSDO Data Output Rise Time

—

—

—

ns

See Parameter DO31

CS35

TDV

Clock Edge to CSDO Data Valid

—

—

10

ns

CS36

TDIV

Clock Edge to CSDO Tri-Stated

10

—

20

ns

CS40

TCSDI

Setup Time of CSDI Data Input
to CSCK Edge (CSCK pin is
input or output)

20

—

—

ns

CS41

THCSDI

Hold Time of CSDI Data Input to
CSCK Edge (CSCK pin is input
or output)

20

—

—

ns

CS50

TCOFSF

COFS Fall Time
(COFS pin is output)

—

—

—

ns

See Parameter DO32

CS51

TCOFSR

COFS Rise Time
(COFS pin is output)

—

—

—

ns

See Parameter DO31

CS55

TSCOFS

Setup Time of COFS Data Input
to CSCK Edge (COFS pin is
input)

20

—

—

ns

CS56

THCOFS

Hold Time of COFS Data Input to
CSCK Edge (COFS pin is input)

20

—

—

ns

Note 1:
2:
3:

These parameters are characterized but not tested in manufacturing.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
The minimum clock period for CSCK is 100 ns. Therefore, the clock generated in Master mode must not
violate this specification.

DS70616G-page 564

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-41:

DCI MODULE (AC-LINK MODE) TIMING CHARACTERISTICS

BIT_CLK
(CSCK)
CS61

CS60

CS62

CS21

CS20

CS70

CS71
CS72
SYNC
(COFS)
CS76

CS75

CS80
SDOx
(CSDO)

LSb

MSb

LSb
CS76

SDIx
(CSDI)

CS75

MSb In
CS65 CS66

 2009-2012 Microchip Technology Inc.

DS70616G-page 565

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

TABLE 32-60: DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS

Min.

Typ.(3)

Max.

Units

BIT_CLK Low Time

36

40.7

45

ns

BIT_CLK High Time

36

40.7

45

ns

TBCLK

BIT_CLK Period

—

81.4

—

ns

TSACL

Input Setup Time to
Falling Edge of BIT_CLK

—

—

10

ns

THACL

Input Hold Time from
Falling Edge of BIT_CLK

—

—

10

ns

Param.

Symbol

CS60

TBCLKL

CS61

TBCLKH

CS62
CS65
CS66

Characteristic(1,2)

Conditions

Bit clock is input

CS70

TSYNCLO

Sync Data Output Low Time

—

19.5

—

s

CS71

TSYNCHI

Sync Data Output High Time

—

1.3

—

s

CS72

TSYNC

Sync Data Output Period

—

20.8

—

s

CS77

TRACL

Rise Time, Sync, SDATA_OUT

—

—

—

ns

See Parameter DO32

CS78

TFACL

Fall Time, Sync, SDATA_OUT

—

—

—

ns

See Parameter DO31

CS80

TOVDACL

Output Valid Delay from Rising
Edge of BIT_CLK

—

—

15

ns

Note 1:
2:
3:

These parameters are characterized but not tested in manufacturing.
These values assume the BIT_CLK frequency is 12.288 MHz.
Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.

DS70616G-page 566

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-61: COMPARATOR TIMING SPECIFICATIONS
Standard Operating Conditions: 3.0V to 3.6V (see Note 3)
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.

Characteristic(1)

Symbol

Min.

Typ.

Max.

Units

300

TRESP

Response Time(2)

—

150

400

ns

301

TMC2OV

Comparator Mode Change
to Output Valid

—

—

10

s

Note 1:
2:
3:

Conditions

Parameters are characterized but not tested.
Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions
from VSS to VDD.
Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have
degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in
Table 32-11 for the minimum and maximum BOR values.

TABLE 32-62: COMPARATOR MODULE SPECIFICATIONS
Standard Operating Conditions: 3.0V to 3.6V (see Note 2)
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

DC CHARACTERISTICS
Param. Symbol
D300

VIOFF

Characteristic(1)
Input Offset Voltage

Min.

Typ.

Max.

Units

—

±10

—

mV

Conditions

D301

VICM

Input Common-Mode Voltage

AVSS

—

AVDD

V

D302

CMRR

Common-Mode Rejection Ratio

-54

—

—

dB

D305

IVREF

Internal Voltage Reference

0.19

0.20

0.21

V

BGSEL<1:0> = 10

0.57

0.60

0.63

V

BGSEL<1:0> = 01

1.14

1.20

1.26

V

BGSEL<1:0> = 00

Note 1:
2:

Parameters are characterized but not tested.
Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have
degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in
Table 32-11 for the minimum and maximum BOR values.

 2009-2012 Microchip Technology Inc.

DS70616G-page 567

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
TABLE 32-63: COMPARATOR REFERENCE VOLTAGE SETTLING TIME SPECIFICATIONS
Standard Operating Conditions: 3.0V to 3.6V (see Note 3)
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Param.
VR310
Note 1:
2:
3:

Characteristic(2)

Symbol
TSET

Settling Time(1)

Min.

Typ.

Max.

Units

—

—

10

s

Conditions

Setting time measured while CVRR = 1 and CVR<3:0> bits transition from ‘0000’ to ‘1111’.
These parameters are characterized, but not tested in manufacturing.
Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have
degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in
Table 32-11 for the minimum and maximum BOR values.

TABLE 32-64: COMPARATOR REFERENCE VOLTAGE SPECIFICATIONS
Standard Operating Conditions: 3.0V to 3.6V (see Note 2)
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

DC CHARACTERISTICS
Param.

Symbol

Characteristic(1)

Min.

Typ.

Max.

Units

CVRSRC/24

—

CVRSRC/32

LSb

VRD310 CVRES

Resolution

VRD311 CVRAA

Absolute Accuracy

—

—

0.5

LSb

VRD312 CVRL

Maximum Load on CVREF
Output Pin

—

—

0.75

A

Note 1:
2:

Conditions

AVDD = 3.6V,
CVRSS = 0,
CVRR = 0,
CVR<3:0> = 1111

These parameters are characterized, but not tested in manufacturing.
Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have
degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in
Table 32-11 for the minimum and maximum BOR values.

DS70616G-page 568

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-42:

PARALLEL SLAVE PORT TIMING

CS

PS5
RD

PS6
WR

PS4

PS7

PMD<7:0>
PS1

PS3

PS2

TABLE 32-65: PARALLEL SLAVE PORT TIMING SPECIFICATIONS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended

AC CHARACTERISTICS
Symbol

Characteristic(1)

Min.

Typ.

Max.

Units

PS1

TdtV2wrH

Data In Valid Before WR or CS
Inactive (setup time)

20

—

—

ns

PS2

TwrH2dtI

WR or CS Inactive to Data In
Invalid (hold time)

20

—

—

ns

PS3

TrdL2dtV

RD and CS to Active Data Out
Valid

—

—

80

ns

PS4

TrdH2dtI

RD or CS Inactive to Data Out
Invalid

10

—

30

ns

PS5

Tcs

CS Active Time

33.33

—

—

ns

PS6

Twr

RD Active Time

33.33

—

—

ns

PS7

Trd

WR Active Time

33.33

—

—

ns

Param.

Note 1:

Conditions

These parameters are characterized, but not tested in manufacturing.

 2009-2012 Microchip Technology Inc.

DS70616G-page 569

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-43:

PARALLEL MASTER PORT READ TIMING DIAGRAM
P1

P2

P3

P4

P2

P1

P3

P4

P1

P2

System
Clock

PMA<13:8>

Address

PMD<7:0>

Data

Address <7:0>
PM6

PM2

PM7

PM3

PMRD

PM5
PMWR
PMALL/PMALH

PM1

PMCS1

TABLE 32-66: PARALLEL MASTER PORT READ TIMING REQUIREMENTS
AC CHARACTERISTICS
Characteristic(1)

Param.

Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended
Min.

Typ.

Max.

Units

PM1

PMALL/PMALH Pulse Width

—

0.5 TCY

—

ns

PM2

Address Out Valid to PMALL/PMALH Invalid
(address setup time)

—

1 TCY

—

ns

PM3

PMALL/PMALH Invalid to Address Out Invalid
(address hold time)

—

0.5 TCY

—

ns

PM5

PMRD Pulse Width

—

0.5 TCY

—

ns

PM6

PMRD or PMENB Active to Data In Valid (data
setup time)

150

—

—

ns

PM7

PMRD or PMENB Inactive to Data In Invalid
(data hold time)

—

—

5

ns

Note 1:

Conditions

These parameters are characterized, but not tested in manufacturing.

DS70616G-page 570

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
FIGURE 32-44:

PARALLEL MASTER PORT WRITE TIMING DIAGRAM
P1

P2

P3

P4

P1

P2

P3

P4

P2

P1

System
Clock

PMA<13:8>

Address

PMD<7:0>

Address <7:0>

Data Data
PM12
PM13

PMRD
PMWR

PM11

PMALL/PMALH

PMCS1

PM16

TABLE 32-67: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS
AC CHARACTERISTICS
Param.

Characteristic(1)

Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended
Min.

Typ.

Max.

Units

PM11

PMWR Pulse Width

—

0.5 TCY

—

ns

PM12

Data Out Valid Before PMWR or PMENB
goes Inactive (data setup time)

—

1 TCY

—

ns

PM13

PMWR or PMEMB Invalid to Data Out Invalid
(data hold time)

—

0.5 TCY

—

ns

PM16

PMCSx Pulse Width

TCY - 5

—

—

ns

Note 1:

Conditions

ADRMUX<1:0> = 00
(demultiplexed
address)

These parameters are characterized, but not tested in manufacturing.

TABLE 32-68: DMA MODULE TIMING REQUIREMENTS
AC CHARACTERISTICS
Param.
DM1
Note 1:

Characteristic(1)
DMA Byte/Word Transfer Latency

Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C  TA  +85°C for Industrial
-40°C  TA  +125°C for Extended
Min.

Typ.

Max.

Units

1 TCY

—

—

ns

Conditions

These parameters are characterized, but not tested in manufacturing.

 2009-2012 Microchip Technology Inc.

DS70616G-page 571

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

NOTES:

DS70616G-page 572

 2009-2012 Microchip Technology Inc.

DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note:

The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes
only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating
range (e.g., outside specified power supply range) and therefore, outside the warranted range.

FIGURE 33-1:

VOH – 4x DRIVER PINS @ +85ºC

-0.045

VOL(V)

0.050

3.6V

3.6V

0.045

-0.040

0.040

3.3V

-0.035

3.3V

0.035

3V

IOH(A)

-0.030
-0.025
-0.020

Absolute Maximum

-0.015

3V

0.030
0.025
0.020
0.015

-0.010

0.010

-0.005

0.005

Absolute Maximum

0.000

0.000
0.00

0.50

FIGURE 33-2:
-0.080

1.00

1.50

2.00

2.50

3.00

3.50

0.00

4.00

VOH – 8x DRIVER PINS @ +85ºC

FIGURE 33-4:

VOH(V)

0.080

3.6V

-0.070

IOH(A)

-0.040

DS70616G-page 573

0 030
-0.030

Absolute Maximum

2.50

0.010

0.000

0.000
1.50

2.00

2.50

3.00

3.50

4.00

3.00

3.50

4.00

VOL – 8x DRIVER PINS @ +85ºC
8X
VOL(V)
3.6V
3.3V
3V

0.030

-0.010
1.00

2.00

0.040

0 020
0.020

0.50

1.50

0.050

-0.020

0.00

1.00

0.060
3V

-0.050

0.50

0.070

3.3V

-0.060

IOH(A)

VOL – 4x DRIVER PINS @ +85ºC

VOH (V)

-0.050

IOH(A)

FIGURE 33-3:

Absolute Maximum

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

33.0

FIGURE 33-7:

TYPICAL IPD CURRENT @ VDD = 3.3V

TYPICAL IDOZE CURRENT @ VDD = 3.3V

1,800

80

1,600

70

1,400

60
50

1,000

IDOZE (mA)

IPD (µA)

1,200

800
600

40
30

400

20

200

10

0
-40 -30 -20 -10

0

10

20

30

40

50

60

70

80

90

0

100 110 120

1:1

1:2

1:64

Doze Ratio

1:128

Temperature (Celsius)

FIGURE 33-6:

TYPICAL IDD CURRENT – VDD = 3.3V @ +85ºC

80.00

45.00

70.00

40.00

60.00

35.00
IIDLLE Current (mA)

 2009-2012 Microchip Technology Inc.

ID
DD Current (mA)

TYPICAL IIDLE CURRENT – VDD = 3.3V @ +85ºC

FIGURE 33-8:

50.00
40.00
30.00
20.00

30.00
25.00
20.00
15 00
15.00
10.00

10.00

5.00

0.00

0.00

0

10

20

30

40
MIPS

50

60

70

0

10

20

30

40
MIPS

50

60

70

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 574

FIGURE 33-5:

TYPICAL FRC FREQUENCY @ VDD = 3.3V

FIGURE 33-10:

7400

33.2

7380

33.0
LPRC Frequency (kHz)

FRC Frequency (kHz)

TYPICAL LPRC FREQUENCY @ VDD = 3.3V

7360

7340

7320

7300

32.8
32.6
32.4
32.2
32.0
31.8

7280
-40 -30 -20 -10

0

10 20 30 40 50 60 70 80 90 100 110 120
Temperature (Celsius)

-40 -30 -20 -10

0

10 20 30 40 50 60 70 80 90 100 110 120
Temperature (Celsius)

DS70616G-page 575

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

FIGURE 33-9:

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

NOTES:

DS70616G-page 576

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
34.0

PACKAGING INFORMATION

34.1

Package Marking Information
64-Lead QFN (9x9x0.9 mm)

XXXXXXXXXX
XXXXXXXXXX
YYWWNNN

XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
YYWWNNN

XXXXXXXXXXXX
XXXXXXXXXXXX
YYWWNNN

e3

Note:

Example

dsPIC33EP256
MU810-I/PT e3
0510017

100-Lead TQFP (14x14x1 mm)

*

Example

dsPIC33EP
256MU806
-I/PT e3
0510017

100-Lead TQFP (12x12x1 mm)

Legend: XX...X
Y
YY
WW
NNN

33EP256MU
806-I/MR e3
0610017

64-Lead TQFP (10x10x1 mm)

XXXXXXXXXXXX
XXXXXXXXXXXX
YYWWNNN

Example

Example

dsPIC33EP256
MU810-I/PF e3
0510017

Customer-specific information
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ( e3 )
can be found on the outer packaging for this package.

In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.

 2009-2012 Microchip Technology Inc.

DS70616G-page 577

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

34.1

Package Marking Information (Continued)
121-Lead TFBGA (10x10x1.2 mm)

XXXXXXXXXX
XXXXXXXXXX
YYWWNNN

144-Lead LQFP (20x20x1.4 mm)

XXXXXXXXXXXX
XXXXXXXXXXXX
YYWWNNN

144-Lead TQFP (16x16x1 mm)

XXXXXXXXXXXX
XXXXXXXXXXXX
YYWWNNN

DS70616G-page 578

Example

33EP256MU
810-I/BG e3
0610017

Example

dsPIC33EP256
MU814-I/PL e3
0510017

Example

dsPIC33EP256
MU814-I/PH e3
0510017

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
34.2

Note:

Package Details

For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

 2009-2012 Microchip Technology Inc.

DS70616G-page 579

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Note:

For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

DS70616G-page 580

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Note:

For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

 2009-2012 Microchip Technology Inc.

DS70616G-page 581

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]
Note:

For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

D
D1

E
e
E1

N
b
NOTE 1

123

NOTE 2
α

A
φ

c

A2

β

A1
L

L1

Units
Dimension Limits
Number of Leads

MILLIMETERS
MIN

N

NOM

MAX

64

Lead Pitch

e

Overall Height

A

–

0.50 BSC
–

Molded Package Thickness

A2

0.95

1.00

1.05

Standoff

A1

0.05

–

0.15

Foot Length

L

0.45

0.60

0.75

Footprint

L1

1.20

1.00 REF

Foot Angle

φ

Overall Width

E

12.00 BSC

Overall Length

D

12.00 BSC

Molded Package Width

E1

10.00 BSC

Molded Package Length

D1

10.00 BSC

0°

3.5°

7°

Lead Thickness

c

0.09

–

0.20

Lead Width

b

0.17

0.22

0.27

Mold Draft Angle Top

α

11°

12°

13°

Mold Draft Angle Bottom

β

11°

12°

13°

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Chamfers at corners are optional; size may vary.
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-085B

DS70616G-page 582

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Note:

For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

 2009-2012 Microchip Technology Inc.

DS70616G-page 583

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]
Note:

For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
D
D1

e
E
E1

N

b

NOTE 1

1 23

NOTE 2

α

c
A
φ
L

β

A1

Units
Dimension Limits
Number of Leads

A2

L1
MILLIMETERS
MIN

N

NOM

MAX

100

Lead Pitch

e

Overall Height

A

–

0.40 BSC
–

Molded Package Thickness

A2

0.95

1.00

1.05

Standoff

A1

0.05

–

0.15

Foot Length

L

0.45

0.60

0.75

Footprint

L1

1.20

1.00 REF

Foot Angle

φ

Overall Width

E

14.00 BSC

Overall Length

D

14.00 BSC

Molded Package Width

E1

12.00 BSC

Molded Package Length

D1

12.00 BSC

0°

3.5°

7°

Lead Thickness

c

0.09

–

0.20

Lead Width

b

0.13

0.18

0.23

Mold Draft Angle Top

α

11°

12°

13°

Mold Draft Angle Bottom

β

11°

12°

13°

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Chamfers at corners are optional; size may vary.
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-100B

DS70616G-page 584

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Note:

For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

 2009-2012 Microchip Technology Inc.

DS70616G-page 585

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]
Note:

For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

D
D1

e

E1
E

b
N
α
NOTE 1

1 23

A

NOTE 2

φ

c
β

A2
A1

L

L1

Units
Dimension Limits
Number of Leads

MILLIMETERS
MIN

N

NOM

MAX

100

Lead Pitch

e

Overall Height

A

–

0.50 BSC
–

Molded Package Thickness

A2

0.95

1.00

1.05

Standoff

A1

0.05

–

0.15

Foot Length

L

0.45

0.60

0.75

Footprint

L1

1.20

1.00 REF

Foot Angle

φ

Overall Width

E

16.00 BSC

Overall Length

D

16.00 BSC

Molded Package Width

E1

14.00 BSC

Molded Package Length

D1

14.00 BSC

0°

3.5°

7°

Lead Thickness

c

0.09

–

0.20

Lead Width

b

0.17

0.22

0.27

Mold Draft Angle Top

α

11°

12°

13°

Mold Draft Angle Bottom

β

11°

12°

13°

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Chamfers at corners are optional; size may vary.
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-110B

DS70616G-page 586

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Note:

For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

 2009-2012 Microchip Technology Inc.

DS70616G-page 587

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 588

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

DS70616G-page 589

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DS70616G-page 590

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

144-Lead Plastic Low Profile Quad Flatpack (PL) – 20x20x1.40 mm Body, with 2.00 mm
Footprint [LQFP]
Note:

For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

 2009-2012 Microchip Technology Inc.

DS70616G-page 591

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

144-Lead Plastic Low Profile Quad Flatpack (PL) – 20x20x1.40 mm Body, with 2.00 mm
Footprint [LQFP]
Note:

For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

DS70616G-page 592

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

 2009-2012 Microchip Technology Inc.

DS70616G-page 593

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Note:

For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

DS70616G-page 594

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Note:

For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

 2009-2012 Microchip Technology Inc.

DS70616G-page 595

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Note:

For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

DS70616G-page 596

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

APPENDIX A:

REVISION HISTORY

Revision A (December 2009)
This is the initial released version of this document.

Revision B (July 2010)
This revision includes minor typographical and
formatting changes throughout the data sheet text.
The major changes are referenced by their respective
section in Table A-1.

TABLE A-1:

MAJOR SECTION UPDATES

Section Name

Update Description

“High-Performance, 16-bit Digital Removed reference to dual triggers for Motor Control Peripherals.
Signal Controllers and
Relocated the VBUSST pin in all pin diagrams (see “Pin Diagrams”, Table 2
Microcontrollers”
and Table 3).
Added SCK2, SDI2, SDO2 pins in pin location 4,5 and 6 respectively in 64-pin
QFN.
Added SCK2, SDI2, SDO2 pins in pin location 4,5 and 6 respectively in 64-pin
TQFP.
Added SCK2, SDI2, SDO2 pins in pin location 10,11 and 12 respectively in
100-pin TQFP.
Added SCK2, SDI2, SDO2 pins in Table 2 and Table 3.
Moved the RP30 pin to pin location 95, and the RP31 pin to pin location 96 in
the 144-pin TQFP and 144-pin LQFP pin diagrams.
Section 1.0 “Device Overview”

Removed the SCL1 and SDA1 pins from the Pinout I/O Descriptions (see
Table 1-1).

Section 2.0 “Guidelines for
Removed Section 2.8 “Configuration of Analog and Digital Pins During ICSP
Getting Started with 16-bit Digital Operations”
Signal Controllers and
Microcontrollers”
Section 3.0 “CPU”

Added Note 4 to the CPU Status Register (SR) in Register 3-1.
Added the VAR bit (CORCON<15>) to Register 3-2.

 2009-2012 Microchip Technology Inc.

DS70616G-page 597

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

TABLE A-1:

MAJOR SECTION UPDATES (CONTINUED)

Section Name
Section 4.0 “Memory
Organization”

Update Description
Added the Write Latch and Auxiliary Interrupt Vector to the Program Memory
Map (see Figure 4-1).
Updated the All Resets value for the DSRPAG and DSWPAG registers in the
CPU Core Register Maps (see Table 4-1 and Table 4-2).
Updated the All Resets value for the INTCON2 register in the Interrupt
Controller Register Maps (see Table 4-3 through Table 4-6).
Updated the All Resets values for all registers in the Output Compare 1 Output Compare 16 Register Map, with the exception of the OCxTMR and
OCxCON1 registers (see Table 4-9).
Removed the DTM bit (TRGCON1<7> from all PWM Generator # Register
Maps (see Table 4-11 through Table 4-17).
Updated the All Resets value for the QEI1IOC register in the QEI1 Register
Map (see Table 4-18).
Updated the All Resets value for the QEI2IOC register in the QEI1 Register
Map (see Table 4-19).
Added Note 4 to the USB OTG Register Map (see Table 4-25)
Updated all addresses in the Real-Time Clock and Calendar Register Map (see
Table 4-34).
Removed RPINR22 from Table 4-37 through Table 4-40.
Updated the All Resets values for all registers in the Peripheral Pin Select Input
Register Maps and modified the RPIN37-RPINR43 registers (see Table 4-37
through Table 4-40).
Added the VREGSF bit (RCON<11>) to the System Control Register Map (see
Table 4-43).
Added the REFOMD bit (PMD4<3>) to the PMD Register Maps (see Table 4-44
through Table 4-47).
Changed the bit range for CNT from <15:0> to <13:0> for all DMAxCNT
registers in the DMAC Register Map (see Table 4-49).
Updated the All Resets value and removed the ANSC15 and ANSC12 bits in
the ANSLEC registers in the PORTC Register Maps (see Table 4-52 and
Table 4-53).
Updated DSxPAG and Page Description of O, Read and U, Read in Table 4-66.
Added Note to the Table 4-67.
Updated Arbiter Architecture in Figure 4-8.
Updated the Unimplemented value and removed the LATG3 and LATG2 bits in
the LATG registers and the CNPUG3 and CNPUG2 bits from the CNPUG
registers in the PORTG Register Maps (see Table 4-60 and Table 4-61)
Updated the All Resets value and removed the TRISG3 and TRISG2 bits in the
TRISG registers and the ODCG3 and ODCG2 bits from the ODCG registers in
the PORTG Register Maps (see Table 4-60 and Table 4-61).

Section 5.0 “Flash Program
Memory”

Updated the NVMOP<3:0> = 1110 definition to Reserved and added Note 6 to
the Nonvolatile Memory (NVM) Control Register (see Register 5-1).

Section 6.0 “Resets”

Added the VREGSF bit (RCON<11>) to the Reset Control Register (see
Register 6-1).

DS70616G-page 598

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

TABLE A-1:

MAJOR SECTION UPDATES (CONTINUED)

Section Name

Update Description

Section 7.0 “Interrupt Controller” Added the VAR bit (CORCON<15>) to the Core Control Register (see
Register 7-2)
Changed the default POR value for the GIE bit (INTCON2<15) to R/W-1 (see
Register 7-4).
Changed the VECNUM<7:0> = 11111111 pending interrupt vector number to
263 in the Interrupt Control and Status Register (see Register 7-7).
Section 8.0 “Direct Memory
Access (DMA)”

Updated Section 8.1 “DMAC Registers”.
Updated DMA Controller in Figure 8-1.
Added Note 1 to the DMA Channel x Peripheral Address Register (see
Register 8-7).
Added Note 1 and Note 2 to the DMA Channel x Transfer Count Register (see
Register 8-8).
Updated all RQCOLx bit definitions, changing Peripheral Write to Transfer
Request in the DMA Request Collision Status Register (see Register 8-12).

Section 9.0 “Oscillator
Configuration”

Added the Reference Oscillator Control Register (see Register 9-7).

Section 10.0 “Power-Saving
Features”

Added the DCIMD and C2MD bits to the Peripheral Module Disable Control
Register 1 (see Register 10-1)

Added Note 3 and 4 to the CLKDIV Register (see Register 9-2)

Added the IC6MD, IC5MD, IC4MD, IC3MD, OC8MD, OC7MD, OC6MD, and
OC5MD bits to the Peripheral Module Disable Control Register 2 (see
Register 10-2)
Added the T9MD, T8MD, T7MD, and T6MD bits and removed the DSC1MD bit
in the Peripheral Module Disable Control Register 3 (see Register 10-3).
Added the REFOMD bit (PMD4<3>) to the Peripheral Module Disable Control
Register 4 (see Register 10-4).
Section 11.0 “I/O Ports”

Updated the first paragraph of Section 11.2 “Configuring Analog and Digital
Port Pins”.
Updated the PWM Fault, Dead-Time Compensation, and Synch Input register
numbers of the Selectable Input Sources (see Table 11-2).
Removed RPINR22 register.
Bit names and definitions were modified in the following registers:
•
•
•
•
•
•
•

Peripheral Pin Select Input Register 37 (see Register 11-37)
Peripheral Pin Select Input Register 38 (see Register 11-38)
Peripheral Pin Select Input Register 39 (see Register 11-39)
Peripheral Pin Select Input Register 40 (see Register 11-40)
Peripheral Pin Select Input Register 41 (see Register 11-41)
Peripheral Pin Select Input Register 42 (see Register 11-42)
Peripheral Pin Select Input Register 43 (see Register 11-43)

Section 12.0 “Timer1”

Added Note in Register 12-1.

Section 14.0 “Input Capture”

Added Note 1 to the Input Capture Block Diagram (see Figure 14-1).

Section 15.0 “Output Compare”

Added Note 1 to the Output Compare Module Block Diagram (see Figure 15-1).

Section 16.0 “High-Speed PWM
Module (dsPIC33EPXXXMU806/
810/814 Devices Only)”

Added Comparator bit values for the CLSRC<4:0> and FLTSRC<4:0> bits in
the PWM Fault Current-Limit Control Register (see Register 16-21).

Added Note 2 to the Output Compare x Control Register 2 (see Register 15-2).

 2009-2012 Microchip Technology Inc.

DS70616G-page 599

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

TABLE A-1:

MAJOR SECTION UPDATES (CONTINUED)

Section Name

Update Description

Section 17.0 “Quadrature
Encoder Interface (QEI) Module
(dsPIC33EPXXXMU806/810/814
Devices Only)”

Reordered the bit values for the OUTFNC<1:0> bits and updated the default
POR bit value to ‘x’ for the HOME, INDEX, QEB, and QEA bits in the QEI I/O
Control Register (see Register 17-2).

Section 23.0 “10-bit/12-bit
Analog-to-Digital Converter
(ADC)”

Updated VREFL in the ADC1 and ADC2 Module Block Diagram (see
Figure 23-1).

Section 25.0 “Comparator
Module”

Added Note 1 to the Comparator I/O Operating Modes (see Figure 25-1).

Section 29.0 “Special Features”

Added a new first paragraph to Section 29.1 “Configuration Bits”

Section 30.0 “Instruction Set
Summary”

The following instructions have been updated (see Table 30-2):

Section 32.0 “Electrical
Characteristics”

Updated the Typical and Maximum values for DC Characteristics: Operating
Current (IDD) (see Table 32-5).

Removed the CLPWR bit (CMxCON<12>) (see Register 25-2).

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

BRA
CALL
CPBEQ
CPBGT
CPBLT
CPBNE
GOTO
MOVPAG
MUL
RCALL
RETFIE
RETLW
RETURN
TBLRDH
TBLRDL

Updated the Typical and Maximum values for DC Characteristics: Idle Current
(IIDLE) (see Table 32-6).
Updated the Maximum values for DC Characteristics: Power-down Current
(IPD) (see Table 32-7).
Updated the Maximum values for DC Characteristics: Doze Current (IDOZE)
(see Table 32-8).
Updated the parameter numbers for Internal FRC Accuracy (see Table 32-19).
Updated the parameter numbers and the Typical value for parameter F21b for
Internal RC Accuracy (see Table 32-20).
Updated the Minimum value for PM6 and the Typical and Maximum values for
PM7 in Parallel Master Port Read Requirements (see Table 32-52).
Added DMA Module Timing Requirements (see Table 32-54).

DS70616G-page 600

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Revision C (May 2011)
This revision includes minor typographical and
formatting changes throughout the data sheet text.
These global changes were implemented:
• All instances of VDDCORE have been removed.
• References to remappable pins have been
updated to clarify output-only pins (RPn) versus
input/output pins (RPIn).
• The minimum VDD value was changed from 2.7V to
3.0V to adhere to the current BOR specification.
The major changes are referenced by their respective
section in Table A-2.

TABLE A-2:

MAJOR SECTION UPDATES

Section Name
High-Performance, 16-bit Digital
Signal Controllers and
Microcontrollers

Update Description
Removed the shading for D+/RG2 and D-/RG3 pin designations in all pin
diagrams, as these pins are not 5V tolerant.
References to remappable pins have been updated to clarify input/output pins
(RPn) and input-only pins (RPIn).

Section 2.0 “Guidelines for
Add information on the VUSB pin in Section 2.1 “Basic Connection
Getting Started with 16-bit Digital Requirements”.
Signal Controllers and
Updated the title of Section 2.3 to Section 2.3 “CPU Logic Filter Capacitor
Microcontrollers”
Connection (VCAP)” and modified the first paragraph.
Section 3.0 “CPU”

Added Note 2 to the Programmer’s Model Register Descriptions
(see Table 3-1).

Section 4.0 “Memory
Organization”

Added the CANCKS bit (CxCTRL1<11>) to the ECAN1 and ECAN 2 Register
Maps (see Table 4-26 and Table 4-29).
Added the SBOREN bit (RCON<13>) to the System Control Register Map (see
Table 4-43).
Added Note 1 to the PORTG Register maps (see Table 4-60 and Table 4-61).
Updated the Page Description for DSRPAG = 0x1FF and DSRPAG = 0x200 in
Table 4-66.
Updated the second paragraph of Section 4.2.9 “EDS Arbitration and Bus
Master Priority”.
Updated the last note box in Section 4.2.10 “Software Stack”.

Section 5.0 “Flash Program
Memory”
Section 6.0 “Resets”

Updated the equation formatting in Section 5.3 “Programming Operations”.
Added the Non-Volatile Memory Upper Address (NVMADRU) and Non-Volatile
Memory Address (NVMADR) registers (see Register 5-2 and Register 5-3).
Added Security Reset to the Reset System Block Diagram (see Figure 6-1).
Added the SBOREN bit (RCON<13>) and Notes 3 and 4 to the Reset Control
register (see Register 6-1).

Section 11.0 “I/O Ports”

References to remappable pins have been updated to clarify input/output pins
(RPn) and input-only pins (RPIn).
Added the new column, Input/Output, to Input Pin Selection for Selectable Input
Sources (see Table 11-2).

Section 17.0 “Quadrature
Encoder Interface (QEI) Module
(dsPIC33EPXXXMU806/810/814
Devices Only)”

 2009-2012 Microchip Technology Inc.

Updated the definition for the INTHLD<31:0> bits (see Register 17-19 and
Register 17-20).

DS70616G-page 601

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

TABLE A-2:

MAJOR SECTION UPDATES (CONTINUED)

Section Name

Update Description

Section 21.0 “Enhanced CAN
(ECAN™) Module”

Added the CANCKS bit to the ECAN Control Register 1 (CiCTRL1)
(see Register 21-1).

Section 22.0 “USB On-The-Go
(OTG) Module”

Removed the USB 3.3V Regulator logic from the USB Interface Diagram
(see Figure 22-1).

Section 23.0 “10-bit/12-bit
Analog-to-Digital Converter
(ADC)”

Updated the ADC Conversion Clock Period Block Diagram (see Figure 23-2).

Section 29.0 “Special Features”

Updated the last paragraph of Section 29.1 “Configuration Bits”
Added a note box after the last paragraph of Section 29.3 “BOR: Brown-out
Reset (BOR)”.
Added the RTSP Effect column to the Configuration Bits Description
(see Table 29-2).

Section 30.0 “Instruction Set
Summary”

Updated all Status Flags Affected to None for the MOV instruction and added
Note 2 (see Table 30-2).

Section 32.0 “Electrical
Characteristics”

Updated the Absolute Maximum Ratings (see page 457).
Added Note 1 to the Operating MIPS vs. Voltage (see Table 32-1).
Added parameter DI31 (ICNPD) to the I/O Pin Input Specifications (see
Table 32-9).
Updated the Minimum value for parameter DO26 in the I/O Pin Output
Specifications (see Table 32-10).
Updated the Minimum value for parameter D132b and the Minimum and
Maximum values for parameters D136a, D136b, D137a, D137b, D138a, and
D138b in the Program Memory specification (see Table 32-12).
Updated the Minimum, Typical, and Maximum values for parameter OS10
(Oscillator Crystal Frequency: SOSC) in the External Clock Timing
Requirements (see Table 32-16).
Added Note 2 to the PLL Clock Timing Specifications (see Table 32-17).
Updated all Timer1 External Clock Timing Requirements (see Table 32-23).
Replaced Table 32-34 with Timer2, Timer4, Timer6, Timer8 External Clock
Timing Requirements and Timer3, Timer5, Timer7, Timer9 External Clock
Timing Requirements (see Table 32-24 and Table 32-25, respectively).
Updated the Maximum value for parameter OC15 and the Minimum value for
parameter OC20 in the OC/PWM Mode Timing Requirements
(see Table 32-29).
Updated the Operating Temperature in the ECAN Module I/O Timing
Requirements and USB OTG Timing Requirements (see Table 32-51 and
Table 32-53, respectively).
Updated all SPI specifications (see Figure 32-15 through Figure 32-30 and
Table 32-33 through Table 32-48).
Removed Note 4 from the DCI Module Timing Requirements
(see Table 32-59).
Updated the Standard Operating Conditions voltage for the Comparator
Specifications (see Table 32-61 through Table 32-64).

DS70616G-page 602

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Revision D (August 2011)
This revision includes minor typographical and
formatting changes throughout the data sheet text.
The Data Converter Interface (DCI) module is available
on all dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814 devices. References
throughout the document have been updated
accordingly.

The following pin name changes were implemented
throughout the document:
•
•
•
•
•
•
•
•
•
•
•
•

C1INA renamed to C1IN1+
C1INB renamed to C1IN2C1INC renamed to C1IN1C1IND renamed to C1IN3C2INA renamed to C2IN1+
C2INB renamed to C2IN2C2INC renamed to C2IN1C2IND renamed to C2IN3C3INA renamed to C3IN1+
C3INB renamed to C3IN2C3INC renamed to C3IN1C3IND renamed to C3IN3-

The other major changes are referenced by their
respective section in Table A-3.

TABLE A-3:

MAJOR SECTION UPDATES

Section Name

Update Description

Section 1.0 “Device Overview”

Added Section 1.1 “Referenced Sources”.

Section 2.0 “Guidelines for Getting
Started with 16-bit Digital Signal
Controllers and Microcontrollers”

Updated the Note in Section 2.1 “Basic Connection Requirements”.

Section 3.0 “CPU”

Updated Section 3.1 “Registers”.

Section 4.0 “Memory Organization” Updated FIGURE 4-3: “Data Memory Map for dsPIC33EP512MU810/814
Devices with 52 KB RAM” and FIGURE 4-5: “Data Memory Map for
dsPIC33EP256MU806/810/814 Devices with 28 KB RAM”.
Updated the IFS3, IEC3, IPC14, and IPC15 SFRs in the Interrupt Controller
Register Map (see Table 4-6).
Updated the SMPI bits for the AD1CON2 and AD2CON2 SFRs in the ADC1
and ADC2 Register Map (see Table 4-23).
Updated the All Resets values for the CLKDIV and PLLFBD SFRs and
removed the SBOREN bit in the System Control Register Map
(see Table 4-43).
Section 6.0 “Resets”

Removed the SBOREN bit and Notes 3 and 4 from the Reset Control
Register (see Register 6-1).

Section 8.0 “Direct Memory Access Removed Note 2 from the DMA Channel x IRQ Select Register (see
(DMA)”
Register 8-2).
Section 9.0 “Oscillator
Configuration”

Updated the PLL Block Diagram (see Figure 9-2).

Section 23.0 “10-bit/12-bit Analogto-Digital Converter (ADC)”

Added Note 4 and updated the ADC Buffer names in the ADCx Module
Block Diagram (see Figure 23-1).

Updated the value at PORT and the default designations for the
DOZE<2:0>, FRCDIV<2:0>, and PLLPOST<1:0> bits in the Clock Divisor
Register and the PLLDIV<8:0> bits in the PLLFBD register (see Register 9-2
and Register 9-3).

Added Note 3 to the ADCx Control Register 1 (see Register 23-1).
Added the new ADC2 Control Register 2 (see Register 23-3).
Updated the SMPI<4:0> bit value definitions in the ADC1 Control Register 2
(see Register 23-2).

 2009-2012 Microchip Technology Inc.

DS70616G-page 603

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

TABLE A-3:

MAJOR SECTION UPDATES (CONTINUED)

Section Name
Section 25.0 “Comparator Module”

Update Description
Updated the Comparator I/O Operating Modes diagram (see Figure 25-1).
Added Note 2 to the Comparator Voltage Reference Control Register (see
Register 25-6).

Section 29.0 “Special Features”

Added Note 3 to the Connections for the On-chip Voltage Regulator (see
Figure 29-1).

Section 32.0 “Electrical
Characteristics”

Removed the Voltage on VCAP with respect to VSS from the Absolute
Maximum Ratings(1).
Removed Note 3 and parameter DC18 from the DC Temperature and
Voltage Specifications (see Table 32-4).
Updated the notes in the DC Characteristics: Operating Current (IDD)
(see Table 32-5).
Updated the notes in the DC Characteristics: Idle Current (IIDLE)
(see Table 32-6).
Updated the Typical and Maximum values for parameter DC60c and the
notes in the DC Characteristics: Power-down Current (IPD) (see Table 32-7).
Updated the notes in the DC Characteristics: Doze Current (IDOZE)
(see Table 32-8).
Updated the conditions for parameters DI60a and DI60b (see Table 32-9).
Updated the conditions for parameter BO10 in the BOR Electrical
Characteristics (see Table 32-10).
Added Note 1 to the Internal Voltage Regulator Specifications
(see Table 32-13).
Updated the Minimum and Maximum values for parameter OS53 in the PLL
Clock Timing Specifications (see Table 32-17).
Updated the Minimum and Maximum values for parameter F21b in the
Internal LPRC Accuracy specifications (see Table 32-20).
Added Note 2 to the ADC Module Specifications (see Table 32-54).

DS70616G-page 604

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Revision E (August 2011)
This revision includes the following updates to
Section 32.0 “Electrical Characteristics”:
• The maximum HS value for parameter OS10 was
updated (see Table 32-16)
• The OC/PWM Module Timing Characteristics for
OCx were updated (see Figure 32-10)
• The Maximum Data Rate values were updated for
the SPI1, SPI3, and SPI4 Maximum Data/Clock
Rate Summary (see Table 32-33)
• These SPI1, SPI3, and SPI4 Timing Requirements
were updated:
- Maximum value for parameter SP10 and the
minimum clock period value for SCKx in Note 3
(see Table 32-34, Table 32-35, and Table 32-36)
- Maximum value for parameter SP70 and the
minimum clock period value for SCKx in Note 3
(see Table 32-38 and Table 32-40)
• The Maximum Data Rate values were updated for
the SPI2 Maximum Data/Clock Rate Summary
(see Table 32-41)
• These SPI2 Timing Requirements were updated:
- Maximum value for parameter SP10 and the
minimum clock period value for SCKx in Note 3
(see Table 32-42, Table 32-43, and Table 32-44)
- Maximum value for parameter SP70 and the
minimum clock period value for SCKx in Note 3
(see Table 32-45 through Table 32-48)
- Minimum value for parameters SP40 and SP41
see Table 32-43 through Table 32-48)
• These ADC Module Specifications were updated
(see Table 32-54):
- Minimum value for parameter AD05
- Maximum value for parameter AD06
- Minimum value for parameter AD07

 2009-2012 Microchip Technology Inc.

DS70616G-page 605

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Revision F (February 2012)
This revision includes typographical and formatting
changes throughout the data sheet text.
Throughout the document, references to the package
formerly known as XBGA where changed to TFBGA.

TABLE A-4:

In addition, where applicable, new sections were added
to each peripheral chapter that provide information and
links to related resources, as well as helpful tips. For
examples, see Section 18.1 “SPI Helpful Tips” and
Section 18.2 “SPI Resources”. The major changes
are referenced by their respective section in Table A-4.

MAJOR SECTION UPDATES

Section Name
“16-Bit Microcontrollers and
Digital Signal Controllers with
High-Speed PWM, USB and
Advanced Analog”

Update Description
The content on the first page of this section was extensively reworked to
provide the reader with the key features and functionality of this device family in
an “at-a-glance” format.
The following devices were added to the Controller Families table (see Table 1
and the “Pin Diagrams” section):
• dsPIC33EP512MC806
• dsPIC33EP512GP806
• PIC24EP512GP806

Added Section 2.9 “Application Examples”
Section 2.0 “Guidelines for
Getting Started with 16-Bit Digital
Signal Controllers and
Microcontrollers”
Section 3.0 “CPU”

Updated the Status Register information in the Programmer’s Model (see
Figure 3-2).

Section 4.0 “Memory
Organization”

Added Interrupt Controller Register Maps (see Table 4-6 and Table 4-7).
Added Peripheral Pin Select Output Register Map (see Table 4-39).
Added PMD Register Maps (see Table 4-50 and Table 4-51).
Added PORTF Register Map (see Table 4-64).
Added PORTG Register Map (see Table 4-67).
Updated the second note in Section 4.7 “Bit-Reversed Addressing
(dsPIC33EPXXXMU806/810/814 Devices Only)”.

Section 11.0 “I/O Ports”

Added RPOR10: Peripheral Pin Select Output Register 10
(see Register 11-54).

Section 14.0 “Input Capture”

Updated the Input Capture Module Block Diagram (see Figure 14-1).

Section 15.0 “Output Compare”

Updated the Output Compare Module Block Diagram (see Figure 15-1).

Section 25.0 “Comparator
Module”

Updated the User-programmable Blanking Function Block Diagram (see
Figure 25-3).
Updated the bit definitions in the Comparator Mask Gating Control Register
(see Register 25-4).

Section 29.0 “Special Features”

Added Note 3 to the Configuration Bits Description (see Table 29-2).

Section 32.0 “Electrical
Characteristics”

Updated the I/O pin Absolute Maximum Ratings.
Updated Note 1 in the DC Characteristics: Operating Current (see Table 32-5).
Updated Note 1 in the DC Characteristics: Idle Current (see Table 32-6).
Updated Note 1 in the DC Characteristics: Power-down Current
(see Table 32-7).
Updated Note 1 in the DC Characteristics: Doze Current (see Table 32-8).
Removed parameters DO16 and DO26, added parameter DO26a, updated
parameters DO10 and DO20, and added Note 1 in the DC Characteristics: I/O
Pin Output Specifications (see Table 32-10).

DS70616G-page 606

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Revision G (October 2012)
This revision includes updates to the packaging
diagrams in Section 34.0 “Packaging Information”.
Preliminary has been removed and there are minor text
edits throughout the document.

 2009-2012 Microchip Technology Inc.

DS70616G-page 607

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

NOTES:

DS70616G-page 608

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

INDEX
A
AC Characteristics ............................................................ 511
Capacitive Loading Requirements on
Output Pins ....................................................... 511
Comparator ............................................................... 567
Comparator Reference Voltage Settling Time .......... 568
I/O Timing Requirements .......................................... 515
Internal FRC Accuracy.............................................. 514
Internal LPRC Accuracy............................................ 514
Load Conditions ........................................................ 511
Temperature and Voltage Specifications .................. 511
ADC
Control Registers ...................................................... 417
Helpful Tips ............................................................... 416
Key Features............................................................. 413
Resources................................................................. 416
Analog-to-Digital Converter (ADC).................................... 413
Arithmetic Logic Unit (ALU)................................................. 46
Assembler
MPASM Assembler................................................... 496

B
Bit-Reversed Addressing .................................................. 131
Example .................................................................... 132
Implementation ......................................................... 131
Sequence Table (16-Entry)....................................... 132
Block Diagrams
16-Bit Timer1 Module................................................ 271
ADCx Conversion Clock Period ................................ 415
ADCx Module............................................................ 414
APLL Module ............................................................ 180
Comparator I/O Operating Modes............................. 437
Comparator Voltage Reference ................................ 438
Connections for On-Chip Voltage Regulator............. 481
CPU Core.................................................................... 38
CRC Shift Engine...................................................... 461
DCI Module ............................................................... 429
Digital Filter Interconnect .......................................... 439
DMA Controller ......................................................... 159
DMA Controller to Peripheral Associations............... 161
dsPIC33EPXXX(GP/MC/MU)806/810/814
and
PIC24EPXXX(GP/GU)810/814 ........................... 24
ECAN Module ........................................................... 360
EDS Arbiter Architecture........................................... 127
EDS Read Address Generation ................................ 122
EDS Write Address Generation ................................ 123
High-Speed PWM Architectural Overview ................ 294
High-Speed PWM Register Interconnection ............. 295
I2C Module................................................................ 346
Input Capture Module ............................................... 281
Multiplexing of Remappable Output for RPn............. 215
Oscillator System ...................................................... 178
Output Compare Module........................................... 287
PLL Module............................................................... 179
PMP Module Pinout, Connections to
External Devices ............................................... 467
Programmable CRC Module..................................... 461
Quadrature Encoder Interface Module...................... 322
Reset System............................................................ 141
RTCC Module ........................................................... 450
Shared Port Structure ............................................... 208
SPIx module.............................................................. 337

 2009-2012 Microchip Technology Inc.

Type B Timerx (Timer2, Timer4, Timer6, Timer8) .... 276
Type B, Type C Timer Pair (32-Bit Timer) ................ 277
Type C Timerx (Timer3, Timer5, Timer7, Timer9).... 276
U1RX Remappable Input.......................................... 210
UARTx Module ......................................................... 353
USB Interface ........................................................... 386
User-Programmable Blanking Function.................... 438
Watchdog Timer (WDT)............................................ 482
Brown-out Reset (BOR).................................................... 481

C
C Compilers
MPLAB C18.............................................................. 496
Code Examples
Connecting IC1 to HOME1 Digital Filter Input
on Pin 3 ............................................................ 217
Port Write/Read ........................................................ 209
PWRSAV Instruction Syntax .................................... 191
Code Protection ................................................................ 483
CodeGuard Security ......................................................... 483
Comparator
Control Registers...................................................... 440
Resources ................................................................ 439
Configuration Bits ............................................................. 477
Description................................................................ 478
Configuration Register Map .............................................. 477
CPU
Addressing Modes...................................................... 37
Control Registers........................................................ 42
Data Space Addressing.............................................. 37
Instruction Set............................................................. 37
Resources .................................................................. 41
CRC
Overview................................................................... 462
Registers .................................................................. 463
Resources ................................................................ 462
Customer Change Notification Service............................. 616
Customer Notification Service .......................................... 616
Customer Support............................................................. 616

D
Data Address Space........................................................... 49
Memory Map for dsPIC33EP256MU806/810/814
Devices with 28-Kbyte RAM.................................... 52
Memory Map for dsPIC33EP512(GP/MC/MU)806/810/814
Devices with 52-Kbyte RAM.................................... 50
Memory Map for PIC24EP256GU810/814 Devices
with 28-Kbyte RAM.................................................. 53
Memory Map for PIC24EP512(GP/GU)806/810/814
Devices with 52-Kbyte RAM................................. 51
Near Data Space ........................................................ 49
Organization and Alignment ....................................... 49
SFR ............................................................................ 49
Width .......................................................................... 49
Data Converter Interface (DCI) Module ............................ 429
Data Memory
Paged Space ............................................................ 124
Data Space
Extended X ............................................................... 126
DC and AC Characteristics
Graphs and Tables ................................................... 573

DS70616G-page 609

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

DC Characteristics
Brown-out Reset (BOR) ............................................ 509
Comparator ............................................................... 567
Comparator Reference Voltage ................................ 568
Doze Current (IDOZE) ................................................ 505
I/O Pin Input Specifications ....................................... 506
I/O Pin Output Specifications .................................... 509
Idle Current (IIDLE) .................................................... 503
Internal Voltage Regulator Specifications ................. 510
Operating Current (IDD)............................................. 502
Operating MIPS vs. Voltage...................................... 500
Power-Down Current (IPD) ........................................ 504
Program Memory ...................................................... 510
Temperature and Voltage Specifications .................. 501
Thermal Operating Conditions .................................. 500
DCI
Control Registers ...................................................... 431
Introduction ............................................................... 429
Resources ................................................................. 430
Development Support ....................................................... 495
DMA Controller
Control Registers ...................................................... 162
Registers
DMA Channel IRQ Select ................................. 162
DMA Peripheral Address .................................. 162
DMA RAM Primary Start Address..................... 162
DMA RAM Secondary Start Address ................ 162
DMA Transfer Count ......................................... 162
DMAxCON ........................................................ 162
Resources ................................................................. 162
Supported Peripherals .............................................. 159
DSP Engine......................................................................... 46

E
ECAN Module
Control Registers ...................................................... 362
Message Buffers ....................................................... 381
Modes of Operation .................................................. 361
Overview ................................................................... 359
Resources ................................................................. 361
Electrical Characteristics................................................... 499
Absolute Maximum Ratings ...................................... 499
AC ............................................................................. 511
Enhanced CAN Module..................................................... 359
Equations
Device Operating Frequency .................................... 179
FAVCO Calculation ..................................................... 180
Maximum Row Write Time ........................................ 136
Minimum Row Write Time ......................................... 136
Programming Time ................................................... 136
Errata .................................................................................. 20

F
Flash Program Memory..................................................... 135
Control Registers ...................................................... 137
Operations ................................................................ 136
RTSP Operation........................................................ 136
Table Instructions...................................................... 135

H
High-Speed PWM ............................................................. 293
Resources ................................................................. 296

DS70616G-page 610

I
I/O Ports............................................................................ 207
Configuring Analog Port Pins.................................... 209
Helpful Tips............................................................... 218
Input Change Notification ......................................... 209
Input Pin Selection.................................................... 213
Open-Drain Configuration......................................... 209
Output Selection for Remappable Pins (RPn) .......... 215
Parallel I/O (PIO) ...................................................... 207
Peripheral Pin Select (PPS)...................................... 210
Resources ................................................................ 219
Selectable Input Sources.......................................... 211
Write/Read Timing .................................................... 209
I2 C
Control Registers ...................................................... 348
Resources ................................................................ 347
In-Circuit Debugger........................................................... 483
In-Circuit Serial Programming (ICSP)............................... 483
Input Capture .................................................................... 281
Control Registers ...................................................... 283
Resources ................................................................ 282
Instruction Addressing Modes .......................................... 128
File Register Instructions .......................................... 128
Fundamental Modes Supported ............................... 129
MAC Instructions ...................................................... 129
MCU Instructions ...................................................... 128
Move and Accumulator Instructions.......................... 129
Other Instructions ..................................................... 129
Instruction Set
Overview................................................................... 488
Summary .................................................................. 485
Inter-Integrated Circuit (I2C) ............................................. 345
Internal RC Oscillator
Use with WDT........................................................... 482
Internet Address ............................................................... 616
Interrupt Control and Status Registers ............................. 150
IECx .......................................................................... 150
IFSx .......................................................................... 150
INTCON1-INTCON4 ................................................. 150
INTTREG .................................................................. 150
IPCx .......................................................................... 150
Interrupt Controller
Auxiliary Interrupt Vector .......................................... 145
Interrupt Vector Table (IVT) ...................................... 145
Reset Sequence ....................................................... 145
Resources ................................................................ 150

J
JTAG Interface.................................................................. 483

M
Memory Maps
EDS .......................................................................... 126
Memory Organization ......................................................... 47
Message Buffers
ECAN Word 0 ........................................................... 381
ECAN Word 1 ........................................................... 381
ECAN Word 2 ........................................................... 382
ECAN Word 7 ........................................................... 384
Microchip Internet Web Site.............................................. 616

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Modulo Addressing ........................................................... 130
Applicability ............................................................... 131
Operation Example ................................................... 130
Start and End Address.............................................. 130
W Address Register Selection .................................. 130
MPLAB ASM30 Assembler, Linker, Librarian ................... 496
MPLAB Integrated Development Environment
Software.................................................................... 495
MPLAB PM3 Device Programmer .................................... 498
MPLAB REAL ICE In-Circuit Emulator System................. 497
MPLINK Object Linker/MPLIB Object Librarian ................ 496

O
Oscillator
Control Registers ...................................................... 182
Oscillator Configuration..................................................... 177
Bit Values for Clock Selection................................... 181
CPU Clocking System............................................... 179
Resources................................................................. 181
Output Compare ............................................................... 287
Resources................................................................. 288

P
Packaging ......................................................................... 577
Details ....................................................................... 582
Marking ............................................................. 577, 578
Parallel Master Port (PMP) ............................................... 467
Peripheral Module Disable (PMD) .................................... 192
Peripheral Pin Select
Control Registers ...................................................... 220
Peripherals Supported by DMA ........................................ 159
Pinout I/O Descriptions (table) ............................................ 25
PMP
Control Registers ...................................................... 469
Resources................................................................. 468
Power-Saving Features .................................................... 191
Clock Frequency, Clock Switching............................ 191
Doze Mode................................................................ 192
Instruction-Based Modes .......................................... 191
Idle .................................................................... 192
Sleep................................................................. 191
Interrupts Coincident with Power
Save Instructions .............................................. 192
Resources................................................................. 193
Special Function Registers ....................................... 193
Program Address Space ..................................................... 47
Construction.............................................................. 133
Data Access from Address Generation..................... 133
Data Access from Program Memory Using
Table Instructions ............................................. 134
Memory Map ............................................................... 47
Table Read Instructions
TBLRDH ........................................................... 134
TBLRDL ............................................................ 134
Program Memory
Interrupt and Trap Vectors .......................................... 48
Organization................................................................ 48
Reset Vector ............................................................... 48
Resources................................................................... 54
Programmable Cyclic Redundancy Check (CRC)
Generator.................................................................. 461
Programmer’s Model........................................................... 39
Register Description.................................................... 39

 2009-2012 Microchip Technology Inc.

PWM
Control Registers...................................................... 297

Q
QEI
Control Registers...................................................... 324
Quadrature Encoder Interface (QEI)................................. 321
Resources ................................................................ 323

R
RCON
Control Register........................................................ 142
Reader Response............................................................. 617
Real-Time Clock and Calender (RTCC) ........................... 449
Register Maps
ADC1 and ADC2 ........................................................ 85
Comparator............................................................... 110
CPU Core (dsPIC33EPXXX(GP/MC/MU)806/810/814
Devices Only)........................................................... 55
CPU Core (PIC24EPXXX(GP/GU)810/814
Devices Only) ...................................................... 57
CRC............................................................................ 96
DCI ............................................................................. 87
DMAC ....................................................................... 111
ECAN1 (WIN (C1CTRL) = 0 or 1)............................... 90
ECAN1 (WIN (C1CTRL) = 0)...................................... 90
ECAN1 (WIN (C1CTRL) = 1)...................................... 91
ECAN2 (WIN (C2CTRL) = 0 or 1)............................... 93
ECAN2 (WIN (C2CTRL) = 0)...................................... 93
I2C1 and I2C2 ............................................................ 82
Input Capture 1 through Input Capture 16.................. 71
Interrupt Controller (dsPIC33EPXXXGP806 and
PIC24EPXXXGP806 Devices Only)....................... 66
Interrupt Controller (dsPIC33EPXXXMC806
Devices Only)........................................................... 64
Interrupt Controller (dsPIC33EPXXXMU806
Devices Only)........................................................... 62
Interrupt Controller (dsPIC33EPXXXMU810
Devices Only)........................................................... 60
Interrupt Controller (dsPIC33EPXXXMU814
Devices Only)........................................................... 58
Interrupt Controller (PIC24EPXXXGU810/814
Devices Only)........................................................... 68
NVM.......................................................................... 106
Output Compare 1 through Output Compare 16 ........ 73
Pad Configuration..................................................... 121
Parallel Master/Slave Port .......................................... 96
Peripheral Pin Select Input (dsPIC33EPXXX(MC/MU)806
Devices Only)......................................................... 103
Peripheral Pin Select Input (dsPIC33EPXXXMU810
Devices Only)......................................................... 101
Peripheral Pin Select Input (dsPIC33EPXXXMU814
Devices Only)........................................................... 99
Peripheral Pin Select Input (PIC24EPXXXGU810/814
Devices Only)......................................................... 105
Peripheral Pin Select Output (dsPIC33EPXXX(GP/MC/
MU)806 and PIC24EPXXXGP806
Devices Only)........................................................... 98
Peripheral Pin Select Output (dsPIC33EPXXXMU806
Devices Only)........................................................... 98
Peripheral Pin Select Output (dsPIC33EPXXXMU810/814
and PIC24EPXXXGU810/814 Devices Only) ........ 97

DS70616G-page 611

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

PMD (dsPIC33EPXXXGP8XX and
PIC24EPXXXGP8XX Devices Only)................. 109
PMD (dsPIC33EPXXXMC806 Devices Only) ........... 108
PMD (dsPIC33EPXXXMU806 Devices Only) ........... 108
PMD (dsPIC33EPXXXMU810 Devices Only) ........... 107
PMD (dsPIC33EPXXXMU814 Devices Only) ........... 107
PMD (PIC24EPXXXGU810/814 Devices Only) ........ 109
PORTA (dsPIC33EPXXXMU810/814 and
PIC24EPXXXGU810/814 Devices Only) .......... 115
PORTB...................................................................... 115
PORTC (dsPIC33EPXXX(GP/MC/MU)806 and
PIC24EPXXXGP806 Devices Only) ................. 116
PORTC (dsPIC33EPXXXMU810/814 and
PIC24EPXXXGU810/814 Devices Only) .......... 115
PORTD (dsPIC33EPXXX(GP/MC/MU)806 and
PIC24EPXXXGP806 Devices Only) ................. 116
PORTD (dsPIC33EPXXXMU810/814 and
PIC24EPXXXGU810/814 Devices Only) .......... 116
PORTE (dsPIC33EPXXX(GP/MC/MU)806 and
PIC24EPXXXGP806 Devices Only) ................. 117
PORTE (dsPIC33EPXXXMU810/814 and
PIC24EPXXXGU810/814 Devices Only) .......... 117
PORTF (dsPIC33EPXXX(GP/MC)806 and
PIC24EPXXXGP806 Devices Only) ................. 118
PORTF (dsPIC33EPXXXMU806 Devices Only) ....... 118
PORTF (dsPIC33EPXXXMU810/814 and
PIC24EPXXXGU810/814 Devices Only) .......... 117
PORTG (dsPIC33EPXXX(GP/MC)806 and
PIC24EPXXXGP806 Devices Only) ................. 119
PORTG (dsPIC33EPXXXMU806 Devices Only) ...... 119
PORTG (dsPIC33EPXXXMU810/814 and
PIC24EPXXXGU810/814 Devices Only) .......... 118
PORTH (dsPIC33EPXXXMU814 and
PIC24EPXXXGU814 Devices Only) ................. 120
PORTJ (dsPIC33EPXXXMU814 and
PIC24EPXXXGU814 Devices Only) ................. 120
PORTK (dsPIC33EPXXXMU814 and
PIC24EPXXXGU814 Devices Only) ................. 121
PWM (dsPIC33EPXXX(MC/MU)806/810/814
Devices Only) ...........................................................76
PWM Generator 1 (dsPIC33EPXXX(MC/MU)806/810/814
Devices Only) ...........................................................76
PWM Generator 2 (dsPIC33EPXXX(MC/MU)806/810/814
Devices Only) ...........................................................77
PWM Generator 3 (dsPIC33EPXXX(MC/MU)806/810/814
Devices Only) ...........................................................77
PWM Generator 4 (dsPIC33EPXXX(MC/MU)806/810/814
Devices Only) ...........................................................78
PWM Generator 5 (dsPIC33EPXXX(MC/MU)810/814
Devices Only) ...........................................................78
PWM Generator 6 (dsPIC33EPXXX(MC/MU)810/814
Devices Only) ...........................................................79
PWM Generator 7 (dsPIC33EPXXX(MC/MU)814
Devices Only) ...........................................................79
QEI1 (dsPIC33EPXXX(MC/MU)806/810/814
Devices Only) ...........................................................80
QEI2 (dsPIC33EPXXX(MC/MU)806/810/814
Devices Only) ...........................................................81
Real-Time Clock and Calendar (RTCC)...................... 96
Reference Clock ....................................................... 106
SPI1, SPI2, SPI3 and SPI4 ......................................... 84
System Control ......................................................... 106
Timer1 through Timer9 ............................................... 70

DS70616G-page 612

UART1, UART2, UART3 and UART4......................... 83
USB OTG (dsPIC33EPMU806/810/814 and
PIC24EPGU806/810/814 Devices Only) ............ 88
Registers
ACLKCON3 (Auxiliary Clock Control 3).................... 188
ACLKDIV3 (Auxiliary Clock Divisor 3) ...................... 189
AD1CON2 (ADC1 Control 2) .................................... 419
AD1CSSH (ADC1 Input Scan Select High) .............. 427
AD2CON2 (ADC2 Control 2) .................................... 421
ADxCHS0 (ADCx Input Channel 0 Select) ............... 426
ADxCHS123 (ADCx Input Channel 1, 2, 3
Select) .............................................................. 425
ADxCON1 (ADCx Control 1)..................................... 417
ADxCON3 (ADCx Control 3)..................................... 423
ADxCON4 (ADCx Control 4)..................................... 424
ADxCSSL (ADCx Input Scan Select Low) ................ 427
ALCFGRPT (Alarm Configuration) ........................... 455
ALRMVAL (Alarm Minutes and Seconds,
ALRMPTR = 00) ............................................... 460
ALRMVAL (Alarm Month and Day Value,
ALRMPTR = 10) ............................................... 458
ALRMVAL (Alarm Weekday and Hours,
ALRMPTR = 01) ............................................... 459
ALTDTRx (PWMx Alternate Dead-Time).................. 310
AUXCONx (PWM Auxiliary Control x) ...................... 319
CHOP (PWM Chop Clock Generator) ...................... 303
CLKDIV (Clock Divisor) ............................................ 184
CMSTAT (Comparator Status) ................................. 440
CMxCON (Comparator x Control)............................. 441
CMxFLTR (Comparator x Filter Control)................... 447
CMxMSKCON (Comparator x Mask Gating
Control)............................................................. 445
CMxMSKSRC (Comparator x Mask Source
Select Control).................................................. 443
CORCON (Core Control) .................................... 44, 152
CRCCON1 (CRC Control 1) ..................................... 463
CRCCON2 (CRC Control 2) ..................................... 464
CRCXORH (CRC XOR Polynomial High)................. 465
CRCXORL (CRC XOR Polynomial Low) .................. 465
CVRCON (Comparator Voltage
Reference Control) ........................................... 448
CxBUFPNT1 (ECANx Filter 0-3 Buffer Pointer)........ 371
CxBUFPNT2 (ECANx Filter 4-7 Buffer Pointer)........ 372
CxBUFPNT3 (ECANx Filter 8-11 Buffer Pointer)...... 372
CxBUFPNT4 (ECANx Filter 12-15
Buffer Pointer) .................................................. 373
CxCFG1 (ECANx Baud Rate Configuration 1) ......... 369
CxCFG2 (ECANx Baud Rate Configuration 2) ......... 370
CxCTRL1 (ECANx Control 1) ................................... 362
CxCTRL2 (ECANx Control 2) ................................... 363
CxEC (ECANx Transmit/Receive Error Count)......... 369
CxFCTRL (ECANx FIFO Control)............................. 365
CxFEN1 (ECANx Acceptance Filter Enable) ............ 371
CxFIFO (ECANx FIFO Status).................................. 366
CxFMSKSEL1 (ECANx Filter 7-0
Mask Selection) ................................................ 375
CxFMSKSEL2 (ECANx Filter 15-8
Mask Selection) ................................................ 376
CxINTE (ECANx Interrupt Enable) ........................... 368
CxINTF (ECANx Interrupt Flag)................................ 367
CxRXFnEID (ECANx Acceptance Filter n
Extended Identifier) .......................................... 375

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

CxRXFnSID (ECANx Acceptance Filter n
Standard Identifier) ........................................... 374
CxRXFUL1 (ECANx Receive Buffer Full 1) .............. 378
CxRXFUL2 (ECANx Receive Buffer Full 2) .............. 378
CxRXMnEID (ECANx Acceptance Filter Mask n
Extended Identifier)........................................... 377
CxRXMnSID (ECANx Acceptance Filter Mask n
Standard Identifier) ........................................... 377
CxRXOVF1 (ECANx Receive Buffer Overflow 1) ..... 379
CxRXOVF2 (ECANx Receive Buffer Overflow 2) ..... 379
CxTRmnCON (ECANx TX/RX Buffer m Control)...... 380
CxVEC (ECANx Interrupt Code) ............................... 364
DCICON1 (DCI Control 1)......................................... 431
DCICON2 (DCI Control 2)......................................... 432
DCICON3 (DCI Control 3)......................................... 433
DCISTAT (DCI Status).............................................. 434
DMAPPS (DMA Ping-Pong Status) .......................... 174
DMAPWC (DMA Peripheral Write
Collision Status) ................................................ 169
DMARQC (DMA Request Collision Status) .............. 171
DMAxCNT (DMA Channel x Transfer Count) ........... 167
DMAxCON (DMA Channel x Control) ....................... 163
DMAxPAD (DMA Channel x Peripheral Address)..... 167
DMAxREQ (DMA Channel x IRQ Select) ................. 164
DMAxSTAH (DMA Channel x Start
Address A, High)............................................... 165
DMAxSTAL (DMA Channel x Start
Address A, Low) ............................................... 165
DMAxSTBH (DMA Channel x Start
Address B, High)............................................... 166
DMAxSTBL (DMA Channel x Start
Address B, Low) ............................................... 166
DSADRH (Most Recent DMA Data Space
High Address) ................................................... 168
DSADRL (Most Recent DMA Data Space
Low Address) .................................................... 168
DTRx (PWMx Dead-Time) ........................................ 310
FCLCONx (PWMx Fault Current-Limit Control) ........ 315
I2CxCON (I2Cx Control) ........................................... 348
I2CxMSK (I2Cx Slave Mode Address Mask) ............ 352
I2CxSTAT (I2Cx Status) ........................................... 350
ICxCON1 (Input Capture x Control 1) ....................... 283
ICxCON2 (Input Capture x Control 2) ....................... 284
INDXxCNTH (Index Counter x High Word)............... 331
INDXxCNTL (Index Counter x Low Word) ................ 331
INDXxHLD (Index Counter x Hold) ........................... 332
INTCON1 (Interrupt Control 1).................................. 153
INTCON2 (Interrupt Control 2).................................. 155
INTCON3 (Interrupt Control 3).................................. 156
INTCON4 (Interrupt Control 4).................................. 156
INTTREG (Interrupt Control and Status)................... 157
INTxHLDH (Interval Timer x Hold High Word) .......... 335
INTxHLDL (Interval Timer x Hold Low Word) ........... 335
INTxTMRH (Interval Timer x High Word).................. 334
INTxTMRL (Interval Timer x Low Word) ................... 335
IOCONx (PWMx I/O Control) .................................... 312
LEBCONx (Leading-Edge Blanking Control) ............ 317
LEBDLYx (Leading-Edge Blanking Delay x)............. 318
MDC (PWM Master Duty Cycle) ............................... 304
NVMADR (Nonvolatile Memory Address) ................. 139
NVMADRU (Nonvolatile Memory
Upper Address)................................................. 139
NVMCON (Nonvolatile Memory (NVM) Control)....... 138
NVMKEY (Nonvolatile Memory Key) ........................ 139
OCxCON1 (Output Compare x Control 1) ................ 289

 2009-2012 Microchip Technology Inc.

OCxCON2 (Output Compare x Control 2) ................ 291
OSCCON (Oscillator Control)................................... 182
OSCTUN (FRC Oscillator Tuning)............................ 187
PADCFG1 (Pad Configuration Control)............ 454, 476
PDCx (PWMx Generator Duty Cycle)....................... 307
PHASEx (PWMx Primary Phase Shift)..................... 308
PLLFBD (PLL Feedback Divisor) ............................. 186
PMADDR (Parallel Master Port Address)................. 473
PMAEN (Parallel Master Port Address Enable) ....... 474
PMCON (Parallel Master Port Control)..................... 469
PMD1 (Peripheral Module Disable Control 1) .......... 194
PMD2 (Peripheral Module Disable Control 2) .......... 196
PMD3 (Peripheral Module Disable Control 3) .......... 198
PMD4 (Peripheral Module Disable Control 4) .......... 200
PMD5 (Peripheral Module Disable Control 5) .......... 201
PMD6 (Peripheral Module Disable Control 6) .......... 203
PMD7 (Peripheral Module Disable Control 7) .......... 204
PMMODE (Parallel Master Port Mode) .................... 471
PMSTAT (Parallel Master Port Status)..................... 475
POSxCNTH (Position Counter x High Word) ........... 330
POSxCNTL (Position Counter x Low Word)............. 330
POSxHLD (Position Counter x Hold)........................ 330
PTCON (PWM Time Base Control) .......................... 297
PTCON2 (Primary Master Clock
Divider Select 2) ............................................... 299
PTPER (Primary Master Time Base Period) ............ 299
PWMCAPx (Primary PWMx Time Base Capture) .... 320
PWMCONx (PWMx Control) .................................... 305
QEIxCON (QEIx Control).......................................... 324
QEIxGECH (QEIx Greater Than or Equal Compare
High Word)............................................................. 334
QEIxGECL (QEIx Greater Than or Equal Compare
Low Word).............................................................. 334
QEIxICH (QEIx Initialization/Capture High Word) .... 332
QEIxICL (QEIx Initialization/Capture Low Word)...... 332
QEIxIOC (QEIx I/O Control) ..................................... 326
QEIxLECH (QEIx Less Than or Equal Compare
High Word)............................................................. 333
QEIxLECL (QEIx Less Than or Equal Compare
Low Word).............................................................. 333
QEIxSTAT (QEIx Status).......................................... 328
RCFGCAL (RTCC Calibration and
Configuration) ................................................... 452
RCON (Reset Control).............................................. 143
REFOCON (Reference Oscillator Control) ............... 190
RPINR0 (Peripheral Pin Select Input 0) ................... 220
RPINR1 (Peripheral Pin Select Input 1) ................... 221
RPINR10 (Peripheral Pin Select Input 10) ............... 230
RPINR11 (Peripheral Pin Select Input 11) ............... 231
RPINR12 (Peripheral Pin Select Input 12) ............... 232
RPINR13 (Peripheral Pin Select Input 13) ............... 233
RPINR14 (Peripheral Pin Select Input 14) ............... 234
RPINR15 (Peripheral Pin Select Input 15) ............... 235
RPINR16 (Peripheral Pin Select Input 16) ............... 236
RPINR17 (Peripheral Pin Select Input 17) ............... 237
RPINR18 (Peripheral Pin Select Input 18) ............... 238
RPINR19 (Peripheral Pin Select Input 19) ............... 239
RPINR2 (Peripheral Pin Select Input 2) ................... 222
RPINR20 (Peripheral Pin Select Input 20) ............... 240
RPINR21 (Peripheral Pin Select Input 21) ............... 241
RPINR23 (Peripheral Pin Select Input 23) ............... 241
RPINR24 (Peripheral Pin Select Input 24) ............... 242
RPINR25 (Peripheral Pin Select Input 25) ............... 243
RPINR26 (Peripheral Pin Select Input 26) ............... 244
RPINR27 (Peripheral Pin Select Input 27) ............... 245

DS70616G-page 613

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

RPINR28 (Peripheral Pin Select Input 28) ................ 246
RPINR29 (Peripheral Pin Select Input 29) ................ 247
RPINR3 (Peripheral Pin Select Input 3) .................... 223
RPINR30 (Peripheral Pin Select Input 30) ................ 248
RPINR31 (Peripheral Pin Select Input 31) ................ 249
RPINR32 (Peripheral Pin Select Input 32) ................ 250
RPINR33 (Peripheral Pin Select Input 33) ................ 251
RPINR34 (Peripheral Pin Select Input 34) ................ 252
RPINR35 (Peripheral Pin Select Input 35) ................ 253
RPINR36 (Peripheral Pin Select Input 36) ................ 254
RPINR37 (Peripheral Pin Select Input 37) ................ 255
RPINR38 (Peripheral Pin Select Input 38) ................ 256
RPINR39 (Peripheral Pin Select Input 39) ................ 257
RPINR4 (Peripheral Pin Select Input 4) .................... 224
RPINR40 (Peripheral Pin Select Input 40) ................ 258
RPINR41 (Peripheral Pin Select Input 41) ................ 259
RPINR42 (Peripheral Pin Select Input 42) ................ 260
RPINR43 (Peripheral Pin Select Input 43) ................ 261
RPINR5 (Peripheral Pin Select Input 5) .................... 225
RPINR6 (Peripheral Pin Select Input 6) .................... 226
RPINR7 (Peripheral Pin Select Input 7) .................... 227
RPINR8 (Peripheral Pin Select Input 8) .................... 228
RPINR9 (Peripheral Pin Select Input 9) .................... 229
RPOR0 (Peripheral Pin Select Output 0) .................. 261
RPOR1 (Peripheral Pin Select Output 1) .................. 262
RPOR10 (Peripheral Pin Select Output 10) .............. 266
RPOR11 (Peripheral Pin Select Output 11) .............. 267
RPOR12 (Peripheral Pin Select Output 12) .............. 267
RPOR13 (Peripheral Pin Select Output 13) .............. 268
RPOR14 (Peripheral Pin Select Output 14) .............. 268
RPOR15 (Peripheral Pin Select Output 15) .............. 269
RPOR2 (Peripheral Pin Select Output 2) .................. 262
RPOR3 (Peripheral Pin Select Output 3) .................. 263
RPOR4 (Peripheral Pin Select Output 4) .................. 263
RPOR5 (Peripheral Pin Select Output 5) .................. 264
RPOR6 (Peripheral Pin Select Output 6) .................. 264
RPOR7 (Peripheral Pin Select Output 7) .................. 265
RPOR8 (Peripheral Pin Select Output 8) .................. 265
RPOR9 (Peripheral Pin Select Output 9) .................. 266
RSCON (DCI Receive Slot Control).......................... 435
RTCVAL (Minutes and Seconds Value,
RTCPTR = 00) .................................................. 457
RTCVAL (Month and Day Value,
RTCPTR = 10) .................................................. 456
RTCVAL (Weekday and Hours Value,
RTCPTR = 01) .................................................. 457
RTCVAL (Year Value Register, RTCPTR = 11)........ 456
SDCx (PWMx Secondary Duty Cycle) ...................... 307
SEVTCMP (PWM Primary Special
Event Compare)................................................ 300
SPHASEx (PWMx Secondary Phase Shift) .............. 309
SPIxCON1 (SPIx Control 1) ...................................... 341
SPIxCON2 (SPIx Control 2) ...................................... 343
SPIxSTAT (SPIx Status and Control) ....................... 339
SR (CPU Status) ................................................. 42, 151
SSEVTCMP (PWM Secondary Special
Event Compare)................................................ 303
STCON (PWM Secondary Master Time Base
Control) ............................................................. 301
STCON2 (PWM Secondary Clock
Divider Select 2)................................................ 302
T1CON (Timer1 Control)........................................... 273
TRGCONx (PWMx Trigger Control).......................... 311
TRIGx (PWM Primary Trigger Compare Value)........ 314
TSCON (DCI Transmit Slot Control) ......................... 435

DS70616G-page 614

TxCON (T2CON, T4CON, T6CON or T8CON)
Control)............................................................. 278
TyCON (T3CON, T5CON, T7CON or T9CON)
Control)............................................................. 279
UxADDR (USB Address) .......................................... 394
UxBDTP1 (USB Buffer Description Table 1) ............ 408
UxBDTP2 (USB Buffer Description Table 2) ............ 408
UxBDTP3 (USB Buffer Description Table 3) ............ 409
UxCNFG1 (USB Configuration 1) ............................. 395
UxCNFG2 (USB Configuration 2) ............................. 396
UxCON (USB Control, Device Mode) ....................... 392
UxCON (USB Control, Host Mode)........................... 393
UxEIE (USB Error Interrupt Enable,
Device Mode) ................................................... 405
UxEIE (USB Error Interrupt Enable, Host Mode)...... 406
UxEIR (USB Error Interrupt Status,
Device Mode) ................................................... 403
UxEIR (USB Error Interrupt Status, Host Mode)....... 404
UxEPn (USB Endpoint n Control) ............................. 407
UxFRMH (USB Frame Number High)....................... 410
UxFRML (USB Frame Number Low) ........................ 411
UxIE (USB Interrupt Enable, Device Mode).............. 401
UxIE (USB Interrupt Enable, Host Mode) ................. 402
UxIR (USB Interrupt Status, Device Mode Only) ...... 399
UxIR (USB Interrupt Status, Host Mode Only).......... 400
UxMODE (UARTx Mode).......................................... 355
UxOTGCON (USB OTG Control) ............................. 389
UxOTGIE (USB OTG Interrupt Enable,
Host Mode Only)............................................... 398
UxOTGIR (USB OTG Interrupt Status,
Host Mode Only)............................................... 397
UxOTGSTAT (USB OTG Status).............................. 388
UxPWMCON (USB VBUS PWM
Generator Control)............................................ 409
UxPWMRRS (Duty Cycle and PWM Period) ............ 410
UxPWRC (USB Power Control)................................ 390
UxSOF (USB OTG Start-of-Token Threshold,
Host Mode Only)............................................... 395
UxSTA (UARTx Status and Control)......................... 357
UxSTAT (USB Status) .............................................. 391
UxTOK (USB Token, Host Mode Only) .................... 394
VELxCNT (Velocity Counter x) ................................. 331
Resets............................................................................... 141
Brown-out Reset (BOR)............................................ 141
Configuration Mismatch Reset (CM)......................... 141
Illegal Condition Device Reset (IOPUWR)................ 141
Illegal Opcode........................................................... 141
Master Clear Pin Reset (MCLR ................................ 141
Power-on Reset (POR)............................................. 141
RESET Instruction (SWR) ........................................ 141
Security Reset .......................................................... 141
Trap Conflict Reset (TRAPR) ................................... 141
Uninitialized W Register............................................ 141
Watchdog Timer Reset (WDTO)............................... 141
Resources Required for Digital PFC............................. 34, 36
Revision History................................................................ 597
RTCC
Resources ................................................................ 451
Writing to the Timer .................................................. 451

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

S
Serial Peripheral Interface (SPI) ....................................... 337
Software Simulator (MPLAB SIM)..................................... 497
Software Stack Pointer, Frame Pointer
CALL Stack Frame.................................................... 128
Special Features
Code Protection ........................................................ 477
CodeGuard Security ................................................. 477
Flexible Configuration ............................................... 477
In-Circuit Emulation................................................... 477
In-Circuit Serial Programming (ICSP) ....................... 477
JTAG Boundary Scan Interface ................................ 477
Watchdog Timer (WDT) ............................................ 477
Special Features of the CPU ............................................ 477
SPI
Control Registers ...................................................... 339
Helpful Tips ............................................................... 338
Resources................................................................. 338
Symbols Used in Opcode Descriptions............................. 486

T
Timer1 ............................................................................... 271
Control Register ........................................................ 273
Timer2/3, Timer4/5, Timer6/7 and Timer8/9 ..................... 275
Timerx/y
Control Registers ...................................................... 278
Timing Diagrams
10-Bit ADC Conversion (CHPS<1:0> = 01, SIMSAM = 0,
ASAM = 0, SSRC<2:0> = 000, SSRCG = 0)....... 561
10-Bit ADC Conversion (CHPS<1:0> = 01, SIMSAM = 0,
ASAM = 1, SSRC<2:0> = 111, SSRCG = 0,
SAMC<4:0> = 00010)............................................ 561
12-Bit ADC Conversion (12-Bit Mode, ASAM = 0,
SSRC<2:0> = 000, SSRCG = 0)........................... 559
BOR and Master Clear Reset ................................... 517
DCI AC-Link Mode .................................................... 565
DCI Multi -Channel, I2S Modes................................. 563
ECAN I/O .................................................................. 554
External Clock........................................................... 512
High-Speed PWMx (dsPIC33EPXXX(MC/MU)806/
810/814 Devices)................................................... 523
High-Speed PWMx Fault (dsPIC33EPXXX(MC/MU)
806/810/814 Devices)............................................ 523
I/O Pins ..................................................................... 515
I2Cx Bus Data (Master Mode) .................................. 550
I2Cx Bus Data (Slave Mode) .................................... 552
I2Cx Bus Start/Stop Bits (Master Mode) ................... 550
I2Cx Bus Start/Stop Bits (Slave Mode) ..................... 552
Input Capture (ICx) ................................................... 521
OCx/PWMx ............................................................... 522
Output Compare (OCx)............................................. 522
Parallel Master Port Read......................................... 570
Parallel Master Port Write ......................................... 571
Parallel Slave Port .................................................... 569
Power-on Reset ........................................................ 516
QEA/QEB Input......................................................... 524
QEI Module Index Pulse ........................................... 525
SPI1, SPI3 and SPI4 Master Mode (Full-Duplex,
CKE = 0, CKP = x, SMP = 1) ............................ 529
SPI1, SPI3 and SPI4 Master Mode (Full-Duplex,
CKE = 1, CKP = x, SMP = 1) ............................ 528
SPI1, SPI3 and SPI4 Master Mode (Half-Duplex,
Transmit Only, CKE = 0)................................... 526
SPI1, SPI3 and SPI4 Master Mode (Half-Duplex,
Transmit Only, CKE = 1)................................... 527

 2009-2012 Microchip Technology Inc.

SPI1, SPI3 and SPI4 Slave Mode (Full-Duplex,
CKE = 0, CKP = 0, SMP = 0) ................................ 536
SPI1, SPI3 and SPI4 Slave Mode (Full-Duplex,
CKE = 0, CKP = 1, SMP = 0) ................................ 534
SPI1, SPI3 and SPI4 Slave Mode (Full-Duplex,
CKE = 1, CKP = 0, SMP = 0) ................................ 530
SPI1, SPI3 and SPI4 Slave Mode (Full-Duplex,
CKE = 1, CKP = 1, SMP = 0) ................................ 532
SPI2 Master Mode (Full-Duplex, CKE = 0,
CKP = x, SMP = 1) ................................................ 541
SPI2 Master Mode (Full-Duplex, CKE = 1,
CKP = x, SMP = 1) ................................................ 540
SPI2 Master Mode (Half-Duplex, Transmit Only,
CKE = 0) ................................................................ 538
SPI2 Master Mode (Half-Duplex, Transmit Only,
CKE = 1) ................................................................ 539
SPI2 Slave Mode (Full-Duplex, CKE = 0,
CKP = 0, SMP = 0) ................................................ 548
SPI2 Slave Mode (Full-Duplex, CKE = 0,
CKP = 1, SMP = 0) ................................................ 546
SPI2 Slave Mode (Full-Duplex, CKE = 1,
CKP = 0, SMP = 0) ................................................ 542
SPI2 Slave Mode (Full-Duplex, CKE = 1,
CKP = 1, SMP = 0) ................................................ 544
Timer1-Timer9 External Clock.................................. 518
TimerQ (QEI Module) External Clock ....................... 520
UARTx I/O ................................................................ 554
Timing Specifications
10-Bit ADC Conversion Requirements ..................... 562
12-Bit Mode ADC Conversion Requirements ........... 560
ADC .......................................................................... 556
ADC (10-Bit Mode) ................................................... 558
ADC (12-Bit Mode) ................................................... 557
Auxiliary PLL Clock................................................... 513
DCI AC-Link Mode.................................................... 566
DCI Multi-Channel, I2S Modes ................................. 564
DMA Module............................................................. 571
ECAN I/O.................................................................. 554
External Clock Requirements ................................... 512
High-Speed PWMx Requirements (dsPIC33EPXXX
(MC/MU)806/810/814 Devices) ........................ 523
I2Cx Bus Data Requirements (Master Mode)........... 551
I2Cx Bus Data Requirements (Slave Mode)............. 553
Input Capture (ICx) Requirements............................ 521
OCx/PWMx Mode Requirements ............................. 522
Output Compare (OCx) Requirements ..................... 522
Parallel Master Port Read ........................................ 570
Parallel Master Port Write......................................... 571
Parallel Slave Port .................................................... 569
PLL Clock ................................................................. 513
QEI External Clock Requirements............................ 520
QEI Index Pulse Requirements ................................ 525
Quadrature Decoder Requirements ......................... 524
Reset, Watchdog Timer, Oscillator Start-up Timer,
Power-up Timer Requirements ............................. 517
SPI1, SPI3 and SPI4 Master Mode (Full-Duplex,
CKE = 0, CKP = x, SMP = 1) ................................ 529
SPI1, SPI3 and SPI4 Master Mode (Full-Duplex,
CKE = 1, CKP = x, SMP = 1) ................................ 528
SPI1, SPI3 and SPI4 Master Mode (Half-Duplex,
Transmit Only) ....................................................... 527
SPI1, SPI3 and SPI4 Maximum Data/Clock
Rate Summary....................................................... 526
SPI1, SPI3 and SPI4 Slave Mode (Full-Duplex,
CKE = 0, CKP = 0, SMP = 0) ................................ 537

DS70616G-page 615

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

SPI1, SPI3 and SPI4 Slave Mode (Full-Duplex,
CKE = 0, CKP = 1, SMP = 0).................................535
SPI1, SPI3 and SPI4 Slave Mode (Full-Duplex,
CKE = 1, CKP = 0, SMP = 0).................................531
SPI1, SPI3 and SPI4 Slave Mode (Full-Duplex,
CKE = 1, CKP = 1, SMP = 0).................................533
SPI2 Master Mode (Full-Duplex, CKE = 0,
CKP = x, SMP = 1) .................................................541
SPI2 Master Mode (Full-Duplex, CKE = 1,
CKP = x, SMP = 1) .................................................540
SPI2 Master Mode (Half-Duplex, Transmit Only)...........539
SPI2 Slave Mode (Full-Duplex, CKE = 0,
CKP = 0, SMP = 0).................................................549
SPI2 Slave Mode (Full-Duplex, CKE = 0,
CKP = 1, SMP = 0).................................................547
SPI2 Slave Mode (Full-Duplex, CKE = 1,
CKP = 0, SMP = 0).................................................543
SPI2 Slave Mode (Full-Duplex, CKE = 1,
CKP = 1, SMP = 0).................................................545
Timer1 External Clock Requirements.............................518
Timer2, Timer4, Timer6, Timer8 External
Clock Requirements ...............................................519
Timer3, Timer5, Timer7, Timer9 External
Clock Requirements ...............................................519
UARTx I/O .......................................................................554
USB OTG (dsPIC33EPXXXMU8XX,
PIC24EPXXXGU8XX Devices) .............................555

DS70616G-page 616

U
UARTx
Control Registers ...................................................... 355
Helpful Tips............................................................... 354
Resources ................................................................ 354
Universal Asynchronous Receiver
Transmitter (UART) .................................................. 353
USB On-The-Go (OTG) .................................................... 385
Clearing Interrupts .................................................... 385
Control Registers ...................................................... 388
Overview................................................................... 385
Resources ................................................................ 387

V
Voltage Regulator (On-Chip) ............................................ 481

W
Watchdog Timer (WDT).................................................... 482
Programming Considerations ................................... 482
WWW Address ................................................................. 616
WWW, On-Line Support ..................................................... 20

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

THE MICROCHIP WEB SITE

CUSTOMER SUPPORT

Microchip provides online support via our WWW site at
www.microchip.com. This web site is used as a means
to make files and information easily available to
customers. Accessible by using your favorite Internet
browser, the web site contains the following
information:

Users of Microchip products can receive assistance
through several channels:

• Product Support – Data sheets and errata,
application notes and sample programs, design
resources, user’s guides and hardware support
documents, latest software releases and archived
software
• General Technical Support – Frequently Asked
Questions (FAQs), technical support requests,
online discussion groups, Microchip consultant
program member listing
• Business of Microchip – Product selector and
ordering guides, latest Microchip press releases,
listing of seminars and events, listings of
Microchip sales offices, distributors and factory
representatives

•
•
•
•
•

Distributor or Representative
Local Sales Office
Field Application Engineer (FAE)
Technical Support
Development Systems Information Line

Customers
should
contact
their
distributor,
representative or field application engineer (FAE) for
support. Local sales offices are also available to help
customers. A listing of sales offices and locations is
included in the back of this document.
Technical support is available through the web site
at: http://microchip.com/support

CUSTOMER CHANGE NOTIFICATION
SERVICE
Microchip’s customer notification service helps keep
customers current on Microchip products. Subscribers
will receive e-mail notification whenever there are
changes, updates, revisions or errata related to a
specified product family or development tool of interest.
To register, access the Microchip web site at
www.microchip.com. Under “Support”, click on
“Customer Change Notification” and follow the
registration instructions.

 2009-2012 Microchip Technology Inc.

DS70616G-page 617

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

READER RESPONSE
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our
documentation can better serve you, please FAX your comments to the Technical Publications Manager at
(480) 792-4150.
Please list the following information, and use this outline to provide us with your comments about this document.
TO:

Technical Publications Manager

RE:

Reader Response

Total Pages Sent ________

From: Name
Company
Address
City / State / ZIP / Country
Telephone: (_______) _________ - _________

FAX: (______) _________ - _________

Application (optional):
Would you like a reply?

Y

N

Device: dsPIC33EPXXX(GP/MC/MU)806/810/814 and
PIC24EPXXX(GP/GU)810/814
Questions:

Literature Number: DS70616G

1. What are the best features of this document?

2. How does this document meet your hardware and software development needs?

3. Do you find the organization of this document easy to follow? If not, why?

4. What additions to the document do you think would enhance the structure and subject?

5. What deletions from the document could be made without affecting the overall usefulness?

6. Is there any incorrect or misleading information (what and where)?

7. How would you improve this document?

DS70616G-page 618

 2009-2012 Microchip Technology Inc.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
dsPIC 33 EP 512 MU8 14 T - E / PH - XXX

Examples:
a)

Microchip Trademark
Architecture

dsPIC33EP512MU814T-E/PH:
Motor Control with USB dsPIC33,
512 KB program memory, 144-pin,
Extended temperature, TQFP package.

Flash Memory Family
Program Memory Size (KB)
Product Group
Pin Count
Tape and Reel Flag (if applicable)
Temperature Range
Package
Pattern

Architecture:

33
24

=
=

16-bit Digital Signal Controller
16-bit Microcontroller

Flash Memory Family:

EP

=

Enhanced Performance

Product Group:

MU8
GU8

=
=

Motor Control family with USB
General Purpose family with USB

Pin Count:

06
10
14

=
=
=

64-pin
100-pin, 121-pin
144-pin

Temperature Range:

I
E

=
=

-40C to+85C (Industrial)
-40C to+125C (Extended)

Package:

PT
PF
MR
BG

=
=
=
=

PH
PL

=
=

10x10 or 12x12 mm TQFP (Thin Quad Flatpack)
14x14 mm TQFP (Thin Quad Flatpack)
9x9 mm QFN (Plastic Quad Flatpack)
10x10 mm TFBGA (Plastic Thin Profile Ball Grid
Array )
16x16 mm TQFP (Thin Quad Flatpack)
20x20 mm LQFP (Low-Profile Quad Flatpack)

 2009-2012 Microchip Technology Inc.

DS70616G-page 619

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

NOTES:

DS70616G-page 620

 2009-2012 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
•

Microchip products meet the specification contained in their particular Microchip Data Sheet.

•

Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

•

There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

•

Microchip is willing to work with the customer who is concerned about the integrity of their code.

•

Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PIC32 logo, rfPIC, SST, SST Logo, SuperFlash
and UNI/O are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MTP, SEEVAL and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.
Analog-for-the-Digital Age, Application Maestro, BodyCom,
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA
and Z-Scale are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
GestIC and ULPP are registered trademarks of Microchip
Technology Germany II GmbH & Co. & KG, a subsidiary of
Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their
respective companies.
© 2009-2012, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.
Printed on recycled paper.
ISBN: 978-1-62076-624-8

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
 2009-2012 Microchip Technology Inc.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS70616G-page 621

Worldwide Sales and Service
AMERICAS

ASIA/PACIFIC

ASIA/PACIFIC

EUROPE

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Japan - Osaka
Tel: 81-66-152-7160
Fax: 81-66-152-9310

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-330-9305

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

DS70616G-page 622

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

11/29/11

 2009-2012 Microchip Technology Inc.



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : Yes
Encryption                      : Standard V1.2 (40-bit)
User Access                     : Print, Copy, Annotate, Fill forms, Extract, Assemble, Print high-res
Author                          : Microchip Technology Inc.
Copyright                       : 2009-2012
Create Date                     : 2012:10:17 16:51:35Z
Keywords                        : "Motor Control, DCI, QEI, PWM, Enhanced Performance"
Modify Date                     : 2012:10:17 17:23:27-07:00
XMP Toolkit                     : Adobe XMP Core 5.2-c001 63.139439, 2010/09/27-13:37:26
Creator Tool                    : FrameMaker 9.0
Metadata Date                   : 2012:10:17 17:23:27-07:00
Format                          : application/pdf
Description                     : High-Performance, 16-Bit Digital Signal Controllers and Microcontrollers
Title                           : dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 Data Sheet
Creator                         : Microchip Technology Inc.
Subject                         : Motor Control, DCI, QEI, PWM, Enhanced Performance
Producer                        : Acrobat Distiller 10.1.4 (Windows)
Document ID                     : uuid:6cf5a4c0-9b87-4e57-bd32-f4ad4221c1b2
Instance ID                     : uuid:7a2a8d6c-9058-4e76-a0bb-15765f9ce10c
Page Mode                       : UseOutlines
Page Count                      : 622
EXIF Metadata provided by EXIF.tools

Navigation menu