1995_Micron_DRAM_Data_Book 1995 Micron DRAM Data Book

User Manual: 1995_Micron_DRAM_Data_Book

Open the PDF directly: View PDF PDF.
Page Count: 994

Download1995_Micron_DRAM_Data_Book 1995 Micron DRAM Data Book
Open PDF In BrowserView PDF
ORRM
ORTR
BOOH

'

EDO DRAMs .................................................... . .
FPM DRAMs .................................................... . .
~c:JRAM ............................................................ ~

DRAM ~IMMs .................................................. _ _
DRAM DIMMs ..... ............................................. _ _
DRAM CARD~ .................. ... ......... ........... ..... ... _ _
TECHNICAL NOTE~ ........................................ . .
PRODUCT RELIABILITy................................. . .
PACKAc:JE INFORMATION .............................. . .
~ALE~ AND ~ERVICE INFORMATION ........... . . .

MICRON DATAFAX INDEX ..............................

II1II

DRAM DATA BOOK

2805 East Columbia Road
P.O. Box 6
Boise, Idaho 83707-0006
Telephone: 208-368-3900
Fax: 208-368-4431
Micron DataFaxsM : 208-368-5800
Customer Comment Line:
U.s.A. 800-932-4992
IntI. 01-208-368-3410
Fax 208-368-3342
©1995, Micron Technology, Inc.
Printed in the U.s.A.
Micron Technology, Inc., reserves the right to change products or specifications without notice.
Micron is a trademark of Micron Technology, Inc.
Micron DataFax is a service mark of Micron Technology, Inc.

ABOUT THE COVER:
Front - A variety of features highlight Micron's DRAM
product line. Shown at left, a circuitry backdrop rendered
from a scanning electron microscope. Bottom right, the
intricate memory of a 4 Meg DRAM wafer, etched in silicon,
which reflects the many hues of the natural color spectrum.
Back - Micron's Boise, Idaho, headquarters.

MIr-r""IIICN

1-· --.....

,

c

PREFACE
GENERAL INFORMATION

IMPORTANT NOTICE
Micron Technology, Inc. (Micron), reserves the
right to change products or specifications without notice. Customers are advised to obtain the
latest versions of product specifications, which
should be considered in evaluating a product's
appropriateness for a particular use. There is no
assurance that Micron's semiconductor products are appropriate for any application by a
customer.
MICRON MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE, OTHER THAN COMPLIANCE
WITH MICRON'S SPECIFICATION SHEET
FOR THE PRODUCT AT THE TIME OF DELIVERY. IN NO EVENT SHALL MICRON BE
LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES AS A RESULT OF THE PERFORMANCE,ORFAILURETOPERFORM,OFANY
MICRON PRODUCT.
ANY CLAIM AGAINST MICRON MUST BE
MADE WITHIN 90 DAYS FROM THE DATE
OF SHIPMENT BY MICRON AND MICRON
HAS NO LIABILITY THEREAFTER. Micron's

PREFACE
Rev. 2195

liability is limited to replacement of defective
product or either Customer orMicron may elect
refund of amounts paid in lieu of replacement.
The warranty covers only defects arising under
normal use and not malfunctions resulting from
misuse, abuse, modification, or repairs by anyone other than Micron.
MICRON'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF
MICRON. Life support devices or systems are
those which are intended to support or sustain
life and whose failure to perform can be reasonably expected to result in a significant injury or
death to the user. Critical components are those
whose failure to perform can be reasonably
expected to cause failure of a life support device
or system or affect its safety or effectiveness.
MICRON DOES NOT WARRANT PRODUCT
TO BE FREE OF CLAIMS OF PATENT INFRINGEMENT BY ANY THIRD PARTY AND
DISCLAIMS ANY SUCH WARRANTY OR
INDEMNIFICATION AGAINST PATENT INFRINGEMENT.

Micron Technology, Inc., reserves the rlg~11o change p(Qducts or specifications without notice.
@1995,MicronTechnology,lnc.

PREFACE
GENERAL INFORMATION

I'IIIC::I=U?,N

PREFAQE,
Rev. 2195

ii

Micron Technology, Inc., reserves the right to change products:=~=~=~::

\

MICRON
1-·

PREFACE
GENERAL INFORMATION

","",w"""

Dear Customer:
Micron Technology, Inc., is dedicated to the design,
manufacture and marketing of high-quality, highly reliable
memory components. Our corporate mission is:

"To be a world-class team.
developing advantages for our customers."
. At Micron, we are investing time, talent and resources
to bring you the finest DRAMs, SRAMs and other specialty
memory products. We have developed a unique intelligent
burn-in system, AMBYX®, which evaluates and reports the
quality level of each and every component we produce.
We are dedicated to continuous improvement of all our
products and services. This means continual reduction of
electrical and mechanical defect levels. It also means the
addition of new services such as "just-in-time" delivery
and electronic data interchange programs. And when you
have a design or application question, you can get the
answers you need from one of Micron's applications
engineers.
We're proud of our products, our progress and our
performal1ce. And we're pleased that you're choosing
Micron as your memory supplier.

The Micron Team

PREFACE
Rev. 2195

iii

Micron Technology, Inc., reserves the nght to change products or speCifications without notice.
©1995,MicronTachnology, Inc.
AMBYX is a registered trademark of Micron Technology, Inc.

UII::::I=ICN
1-·

PREFACE
GENERAL INFORMATION

'"''MOO'''

ADVANTAGES

MICRON DATAFAxsM

Micron Technology brings quality, productivity and
innovation together to provide advantages for our customers. Our products feature some of the industry's
fastest speeds. And we establish delivery standards based
on customer expectations, including JIT programs, made
possible by ever-increasing product reliability.

When you can't afford to wait for critical product
information or specifications, Micron offers a convenient
solution available 24 hours a day, every day. Micron
DataFax enables you to make automated requests for
data sheets, product literature, and other information
from your fax machine. Just dial 208-368-5800 from your
fax machine and Micron DataFax will give you instructions on how to order documents, including an index of
documents. Once your order is placed, Micron DataFax
will process your order, faxing up to two documents per
call to your fax machine.

COMPONENT INTEGRATED CIRCUITS
Micron entered the memory market in 1978, first designing, then manufacturing dynamic random access
memory (DRAM). From there, we developed high-performance fast static RAM (SRAM) and a variety of other
memory products.

QUALITY
Quality is the most important thing we provide to
Micron customer with each Micron shipment. That's
because we believe that quality must be internalized
consistently at each level of our company. We provide
every Micron team member with the training and motivation needed to make Micron's quality philosophy a
reality.
One way we have measurably improved both productivity and product quality is through our own quality
improvement program formed by individuals throughout the company. Micron quality teams get together to
address a wide range of issues within their areas. We
consistently and regularly perform a company-wide selfassessment based on the Malcolm Baldrige National
Quality Award criteria. We've also implemented statistical process controls to evaluate every facet of the memory
design, fabrication, assembly and shipping process. And
our AMBYXintelligent burn-in and test system** gives
Micron a unique edge in product reliability.
These quality programs have resulted in Micron becoming one of the first U.S. semiconductor manufacturers to receive ISO 9001 certification: ISO 9001 is the most
comprehensive level of certification in the internationally
recognized ISO family of specifications. The certification
implies that Micron's systems for accepting orders, reviewing customers' specifications, manufacturing and
testing products, and delivering those products to its
customers are quality controlled and produce consistent
results.
~very

SPECIALTY MEMORY PRODUCTS
Beyond our standard component memory, Micron is
introducing many new products, including nonvolatile
flash memory, 64 Meg DRAM, and synchronous graphics
RAM, and continues to offer the broadest line of 3.3V
SRAMs available. Micron is forging ahead into new and
exciting frontiers by evaluating 8-inch wafer development and its processing capabilities.
We are pleased to be first to market with our compact,
easy-to-install 88-pin DRAM card. Ideal for laptop, notebook and other portable systems, Micron's DRAM Card
offers both high density and low power within JEDEC
and JEIDA specifications.*

DIE SALES
In addition to our durable packaging, Micron leads the
industry in bare die procurement and the testing of
Micron's KGDPlu,® (known good die). Demand for these is
increasing for use in highly specialized applications.
Micron's bare die products are available both in 6" wafers
and wafflepacks.

CUSTOM MANUFACTURING SERVICES
For total project management, Micron offers valueadded services. These include both standard contract
manufacturing services for system-level products include
ing design, assembly, customer kitted assembly, comprehensive quality testing or shipping as well as complete
turnkey services covering all phases of production. Our
component and system-level manufacturing facilities
are located in Boise, Idaho, so the component products
you need are readily available.

*See NOTE, page v.
**For more information on AMBYX, see Section 8.
PREFACE

Aev.2195

iv

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.
KGDPIus is a registered trademark of Micron Technology, Inc.
Micron DataFax is a service mark of Micron Technology, Inc.

MIC:RON

1-·

PREFACE
GENERAL INFORMATION

'","'cco","

DATA SHEET SEQUENCE
Data sheets in this book are ordered first by width and
second by depth.· For example, the EDO DRAM section
begins with the 1 Meg x 4 followed by all other x4 configurations in· order of ascending depth. Next come the x8
products, etc., as applicable to the specific product family.

ABOUT THIS BOOK
CONTENT
The 1995 DRAM Data Book from Micron Technology
provides complete specifications on Micron's standard
DRAMs, synchronous graphics RAM (SGRAM), DRAM
modules and DRAM cards.
The DRAM Data Book is one of three product data books
Micron currently publishes. Its two companion volumes
include our SRAM Data Book and Flash Memory Data Book.

DATA SHEET DESIGNATIONS
As detailed. in the. table below, each Micron product
data sheet is classified as either Advance, Preliminary (indicated on the top of each data sheet) or Final (final data
sheets have no marking). In addition, new product data
sheets that are new additions are deSignated with a "New"
indicator in the tab area of each page.

SECTION ORGANIZATION
Micron's 1995 DRAM Data Book contains a detailed Table
of Contents with sequential and numerical indexes of products as well as a complete product selection guide. The Data
Book is organized into twelve sections:
•

•
•

•
•

•

SURVEY
We have included a removable, postage-paid survey
form in the front of this book. Your time in completing and
returning this survey will enhance our efforts to continually
improve our product literature.
For more information on Micron product literature, or to
order additional copies of this publication, contact:

Sections 1-6: Individual product families. Each
contains a product selection guide followed by
data sheets.
Section 7: Technical notes.
Section 8: Summary of Micron's unique
quality and reliability programs ,and testing
operation, including our AMBYX intelligent
burn-in and test system.*
Section 9: Packaging information.
Section 10: Customer service notes and sales
information, including a list of sales representatives and distributors worldwide.
Section 11: Micron DataFax index.

Micron Technology, Inc.
2805 East Columbia Road
P.O. Box 6
Boise, ID 83707-0006
Phone: 208-368-3900
Fax: 208-368-4431
Micron DataFax: 208-368-5800
Customer Comment Line:
U.s.A. 800-932-4992
Intl. 01-208-368-3410
Fax 208-368-3342

DATA SHEET DESIGNATIONS
DATA SHEET MARKING

DEFINITION

Advance

This data sheet contains initial descriptions of products still under development.

Preliminary

This data sheet contains initial characterization limits that are subject to change upon full
characterization of production devices.

No Marking

This data sheElt contains minimum and maximum limits specifiedoverthe complete power
supply and temperature range for production devices. Although considered final, these
specifications are subject to change, as further product development and data characterization sometimes occur.

New

This data sheet (which may be either Advance, Preliminary or Final) is a new addition to
the data book.

NOTE:

Micron uses acronyms to refer to certain industry-standard-setting bodies. These are defined below:
EIAIJEDEC-Electronics Industry Association/Joint Electron Device Engineering Council
JEIDA-Japanese Electronics Industry Development Association
PCMCIA-Personal Computer Memory Card International Association

'Micron's Quality/Reliability Handbook is available by calling 208-368-3900.
PREFACE
Rev. 2/95

v

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©t 995, Micron Technology, Inc.

MICRON
1-·

PREFACE
PRODUCT NUMBERING

"'~"wc,,"

EXPANDED COMPONENT NUMBERING SYSTEM

AA BS CC DODD
I

-Ll..-L

FFF -GG

zzzz

-L-L -L

TIT··.11--,---c...__

MT4C40010J-7
MDRicAroMn
CMOS
1 Meg x 4

I

-

-

Processing Codes
lOns Access Time
SOJ Package

I

AA - PRODUCT LINE IDENTIFIER

FFF - PACKAGE CODES

Micron Product ................................................................ MT

PLASTIC
DIP ............................................................................ Blank
DIP (Wide Body) """"""".""""""""""""""""""""""". W
ZIP .................................................................................... Z

BB - PRODUCT FAMILY

DRAM .................................................................................. 4
SRAM .................................................................................. 5

~ •.....••.•••...•.•••.......•••........••.•.....•.•••........••••••....••••••..... ~

SOP/SOIC ...................................................................... SG
Q~ ................................................................................. ~
TSOP (Type I) ."""""""""""""""""""""""""""""""" VG
TSOP (Type I, Reversed) ............................................... XG
TSOP (Type II) ............... :................................................ TG
TSOP (Reversed) ........................................................... RG
TSOP (Longer) .. ;............................................................ TL
SOJ ................................................................................. OJ
SOJ (Reversed) ............................................................. DR
SOJ (Longer) """"""""""""" .. """"""""""""""""."". DL

CC - PROCESS TECHNOLOGY

CMOS .................................................................................. C
Low Voltage CMOS ............................................................ LC
DODD - DEVICE NUMBER

(Can be modified to indicate variations)
DRAM ............................................................. Width, Density
TPDRAM ......................................................... Width, Density
SRAM .......................................................... Total Bits, Width
Synchronous SRAM ....................................... DenSity, Width

E - DEVICE VERSIONS
(Alphabetic characters only; located between D and F when
required.)
JEDEC Test Mode (4 Meg DRAM) ....................................... J
Errata on Base Part .............................................................. Q

PREFACE
Rev. 2/95

vi

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

UU::::RCN

1-·

,","00,0"

PREFACE
PRODUCT NUMBERING

cc

EXPANDED COMPONENT NUMBERING SYSTEM (continued)

AA BB CC DODD

C~M~AOroMSn

FFF -GG

zzzz

-L 1.. -1.
I
....L....L ---L
MT4C40010J-7
I

TT

I

1TL.._-----c....
__ ~~~~e~~~:s;~::
-

SOJ Package

1 Meg x 4 - - - - - - - '

DRAMs
Low Power (Extended Refresh) ........................................ L
Low Power (Self Refresh/Extended Refresh) .................... S
SRAMs
Low Volt Data Retention ............................... :................... L
Low Power ....................................................................... P
Low Power, Low Volt Data Retention ............................. LP
EPI Wafer· ............................................................................ E
Operating Temperature Range
O°C to +70°C ............................................................. Blank
-40°C to +85°C ................................................................ IT
-40°C to +125°C ............................................................. AT
-55°C to +125°C ............................................................. XT
Special ProceSSing
Engineering Sample ........................................................ ES
Mechanical Sample ....................................................... MS
Sample Kit* .................................................................... SK
Tape-and-Reel* .............................................................. TR
Bar Code * ....................................................................... BC

GG - ACCESS TIME

-5 ...................................................................... 5ns or 50ns
-6 ...................................................................... 6ns or 60ns
-7 ...................................................................... 7ns or 70ns
-8 ...................................................................... 8ns or 80ns
-10 .................................................................. iOns or 100ns
-12 .................................................................. 12ns or 120ns
-15 .................................................................. 15ns or 150ns
-17 ................................................................................. 17ns
-20 ................................................................................. 20ns
-25 ................................................................................. 25ns
-35 ................................................................................. 35ns
-45 ................................................................................. 45ns
-53 ................................................................................. 53ns
-55 ................................................................................. 55ns

zz ZZ -

PROCESSING CODES

(Multiple processing codes are separated by a space and are
listed in hierarchical ordeL)
Example:
A DRAM supportIng low power, extended refresh (L); low voltage
(V) and the IndustrIal temperature range (IT) would be indicated as
V LIT.

*Used in device order codes; this code is not marked on device.

Interim .................................................................................. I
Low Voltage .......................... c•••••••••••••••••••••••••••••••••••••••••••••• V

PREFACE
Rev. 2195

vii

Micron Technology, Inc., reserves the- right to change products or specifications without notice.

©1995, Micron Technology, Inc.

MICRON
1-·

PREFACE
PRODUCT NUMBERING

'''''"'co"'''

NEW COMPONENT NUMBERING SYSTEM
AA BB CC DDDDDD EE FFF ·GG ZZ ZZ
I
~.....L-L---.L

111

---.l......L 1.
Micron
DRAM
CMOS
1 Meg x 16

TJ

MT4C1 M16A 1 DJ-8 VL
I
I
~
-

-

M ............................................................................. Megabits

AA - PRODUCT LINE IDENTIFIER

G............................................................................... Gigabits

Micron Product .............................................:.................. MT

Flash ................................................... Density, Configuration

BB - PRODUCT FAMILY

EE - DEVICE VERSIONS

Flash (Dual Supply) ........................................................... 28
DRAM .................................................................................. 4
SGRAM .............................................................................. 41
Synchronous DRAM .......................................................... 48
SRAM .................................................................................. 5
Synchronous SRAM .......................................................... 58

(The first character is an alphabetic character only; the
second character is a numeric character only.)
Specified by individual data sheet.
FFF - PACKAGE CODES

Plastic
DIP ............................................................................ Blank
DIP (Wide Body) .............................................................. W

CC - PROCESS TECHNOLOGY

CMOS .................................................................................. C
Low Voltage CMOS ............................................................ LC
BiCMOS ............................................................................... B
Low Voltage BiCMOS ........................................................ LB
Flash CMOS ......................................................................... F
Low Voltage Flash CMOS .................................................. LF
AP Flash CMOS ................................................................. AF

~P

SOP/SOIC ...................................................................... SG
OFP ................................................................................. LG
TSOP (Type II) ............................................................,... TG
TSOP (Reversed) ........................................................... RG
TSOP (Longer) ......................................... ;..................... TL
SOJ ................................................................................. DJ
SOJ (Wide) ................................................................... DW
SOJ (Reversed) ............................................................. DR
SOJ (Longer) .................................................................. DL

Depth, Width
~

.................................................................................... Z

~ ................................................................................. ~

DDDDDD - DEVICE NUMBER
Example:
lM16 ~ 1 megabit deep by 16 bits wide
memory.

Low Voltage, L~w Power (Extended Refresh)
70ns Access Time
SOJ Package
Data Sheet Defined

16 megabits of total

No Letter ......................................................................... Bits
K................................................................................ Kilobits

PREFACE
Rev. 2195

viii

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

MICRON

PREFACE
PRODUCT NUMBERING

"'~"'wc,"'

1-·

NEW COMPONENT NUMBERING SYSTEM (continued)
AA BB CC DDDDDD
I

- L 1- 1.

TJ

EE

FFF -GG 11 11

11T.

--..L -L.-L ----.L

MT4C1M16A1DJ-8VL
Micron
DRAM
CMOS
1 Meg x 16

.I

-

I.

-

~

.

DRAMs
Low Power (Extended Refresh) ........................................ L
Low Power (Self Refresh/Extended Refresh) .................... S
SRAMs
Low Volt Data Retention ......•........................ :................... L
Low Power ....................................................................... P
Low Volt Data Retention, Low Power ............................. LP
Flash
3.3V Read (AP) ................................................................. V
Bottom Boot Block ........................................................... B
Top Boot Block ................................................................. T
EPI Wafer ................................................................:........... E
Commercial Testing
O°C to +70°C ............................................................. Blank
-40°C to +85°C ............................................................... IT
-40°C to +125°C ............................................................. AT
-55°C to +125°C .................................................:........... XT
Special Processing
Engineering Sample .............. :..................... :................... ES
Mechanical Sample ....................................................... MS
Sample Kit* .................................................................... SK
Tape-and-Reel* ........................................•..................... TR
Bar Code * ....................................................................... BC

GG - ACCESS TIME

-5 ...................................................................... 5ns or 50ns
-6 ...................................................................... 6ns or 60ns
-T ...................................................................... 7ns or 70ns
-8 ...................................................................... 8ns or 80ns
-9 ...................................................................... 9ns or 90ns
-10 .................................................................. iOns or 100ns
-12 ...............•.................................................. 12ns or 120ns
-15 .................................................................. 15ns or 150ns
-17 ................................................................................. 17ns
'20 ................................................................................. 20ns
-25 .................................................................................. 25ns
-35 ................................................................................. 35ns
-45 ................................................................................. 45ns
-53 ................................................................................. 53ns
-55 ................................................................................. 55ns

zz ZZ -

PROCESSING CODES

(Multiple processing codes are separated by a space and are
listed in hierarchical order.)
Example:
A DRAM supporting low power, extended refresh (L); low voltage
(V) and the industrial temperature range (IT) would be indicated as
V LIT.

* Used in device order ,?odes; this code is not marked on device,.

Interim .................................................................................. I
Low Voltage ......................................................................... V

PREFACE
Rev. 2195

Low Voltage, L~w Power (Extended Refresh)
70ns Access Time
SOJ Package
Data Sheet Defined

ix

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology. Inc.

MIC:RON
1-·

PREFACE
PRODUCT NUMBERING

"'"'0"","

MODULE NUMBERING SYSTEM
AA

BB CDDDEEEFFF GG HH JJ KK

---L ---.L L L.l-L -L -..L.' --L .-L

MT12LD136xxG-7 L

Micron
12 Components
3.3 Volt
DRAM Module
1 Meg

-==r-2fr11T~T
L-.
..
I

DRAM Low Power
70ns ACcess Time
Gold Plating
Device Version
1'--_ _ _ _ _ _ x36

JJ - ACCESS TIME
-10 ................................................................................. 10ns
-12 ................................................................................. 12ns
-15 ................................................................................. 15ns
-17 ................................................................................. 17ns
-20 ................................................................................. 20ns
-25 ................................................................................. 25ns

AA - PRODUCT LINE IDENTIFIER

Micron Product ................................................................ MT
BB - NUMBER OF MEMORY COMPONENTS

C - PROCESS TECHNOLOGY
LOW VOLTAGE (3.3V) ......................................................... L
DOD - RAM FAMILY

~ ...•............................................................................. ~~

DRAM .................................................................................. D
DRAM TSOP ...................................................................... DT
SRAM .................................................................................. S
SRAM TSOP ...................................................................... ST
SYNCHRONOUS SRAM ..................................................... SY
SYNCHRONOUS SRAM TQFP .......................................... SYT

-6 ................................................................................... 60ns
-7 ................................................................................... 70ns
~ ................................................................................... 8~s
KK - MODULE SPECIAL DESIGNATOR

SRAM
2V data retention .............................................................. L
Low Power ....................................................................... P
Low Power, 2V data retention ........................................ LP
DRAM
Low Power (Extended Refresh) ........................................ L
ECC ................................................................................... C
Extended Data Out ............................................................ X
Self Refresh ...................................................................... S
16 Meg DRAM 4,096 Refresh ........................................... A

EEE-DEPTH
FFF-WIDTH
GG - DEVICE VERSIONS

Specified by individual data sheet (Synchronous SRAM only)
HH - PACKAGE CODE

Gold Plated SIMM/DIMM .................................................... G
~P

....................................................................................... Z

SIP ...................................................;.................................. N
SIMM/DIMM ....................................................................... M
Small Outline DIMM ............................................................ H
Small Outline Gold DIMM ................................................. HG
Double-Sided SIMM (1 or 4 Meg x 36 Only) ................... DM
Double-Sided SIMM (Gold 1 or 4 Meg x 36 Only) ............ DG

PREFACE
Rev. 2/95

x

Micron Technology, Inc., reserves the right to change products or specifications without'notice.
©1995, Micron Technology, Inc.

MICRON
1-·

PREFACE
PRODUCT NUMBERING

'"''''''00'''

DRAM CARD NUMBERING SYSTEM
AA BB

ecce

DOD EE

FF -G H

----L.l
I
.1-L -L....L -.L
MT8D88C132VH-8S

----=::r-T I IT~L
L.-

Micron
8 Components
.88-Pin DRAM Card - - - - - - - ' .
1 Meg _ _ _ _ _ _--...J

AA - Product Line Identifier

Special Designator
80ns Access Time
Special Designator
x32

G - ACCESS TIME

-5 ................................................................................... 50ns
-6 ................................................................................... 60ns
-7 ......................................................... ,......................... 70ns
-8 ................................................................................... 80ns

Micron Product ................................................................ MT
BB - NUMBER OF MEMORY COMPONENTS
CCCC - DRAM CARD DESIGNATOR AND PIN COUNT

88-Pin DRAM Card ....................................................... D88C

H- SPECIAL DESIGNATOR

Self Refresh ......................................................................... S

DDD-DEPTH
EE-WIDTH
FF - SPECIAL DESIGNATOR

3.3 Volts .............................................................................. V
Reduced length (2") ............................................................. H

PREFACE
Rev. 2195

xi

Micron Technology, Inc., rese!ves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

MICRON
1-·

PREFACE
PRODUCT NUMBERING

",","we,,,,,

DIE PRODUCT NUMBERING SYSTEM

AA BBCC 000000
I

----L .1...1..

EEEE
F GG·HH
I . . L -L ...L

MT4C4001J D30ADC2-7

Micron
DRAM
CMOS
1 Meg x 4

~TTTTL1

70ns Access Time
Hot Speed Probe
Die Form (individual)
1 ' - - - - - - - - D30A Die Data Base

AA - PRODUCT LINE IDENTIFIER
Component Product ......................................................... MT

EEEE - DIE DATA BASE REVISION
F-FORM

Die Form .............................................................................. 0
Wafer Form (6" Wafer) .................... :.................................. W

BB - PRODUCT FAMILY

SRAM .................................................................................. 5
DRAM .................................................................................. 4
Synchronous SRAM .......................................................... 58

GG - TESTING LEVELS

Standard Probe (0 0 to 70°C) ............................................. C1
Hot Speed Probe (0 0 to 70°C) ........................................... C2
Known Good Die (0 0 to 70°C) ........................................... C3
KG DPlus® ............................................................................ C7

CC - PROCESS TECHNOLOGY

CMOS .................................................................................. C
Low Voltage CMOS ............................................................ LC
000000 - DEVICE NUMBER

HH - ACCESS TIME

When no alpha character appears as part of this section, the
section is defined as:
DRAM ............................................................. Width, Density
SRAM .......................................................... Total Bits, Width
Synchronous SRAM ......................................... Depth, Width

(Applicable for C2 and C3 only)
·5 ............................................................. 5ns or 50ns
·6 ............................................................. 6ns or 60ns
·7 ............................................................. 7ns or 70ns
·8 ............................................................. 8ns or 80ns
·9 ............................................................. 9ns or 90ns
·10 ........................................................ 1Ons or 100ns
·12 ........................................................ 12ns or 120ns
·15 ........................................................ 15ns or 150ns
·17 ....................................................................... 17ns
·20 ....................................................................... 20ns
·25 ....................................................................... 25ns
·35 ....................................................................... 35ns
·45 ....................................................................... 45ns
·50 (SRAM only) .................................................. 50ns
·SS (C2 only) .......................................... speed sorted

When an alpha character occurs as part of this section, the
section is defined as:
Depth, Width
Example:
IM16 = 1 megabit deep by 16 bits wide = 16 megabits of total
memory.

No Letter ......................................................................... Bits
K................................................................................ Kilobits
M ............................................................................. Megabits
G............................................................................... Gigabits

PREFACE

Rev. 2195

xii

Micron Technology, Inc., reserves the right to change products or specJficalions without nolice.
©1995, Micron Technology, Inc.
KGD .... is a registered trademark of Micron Technology, Inc,

MICRON

1-·

PREFACE
TABLE OF CONTENTS

",","owe,,",

EDODRAMs

PAGE

MT4C4007J ............................................................. 1 Meg x 4
MT4C4007J s .......................................................... 1 Meg x 4
MT4LC4007J .......................................................... 1 Meg x 4
MT4LC4007J s ....................................................... 1 Meg x 4
MT4LC4M4ES ....................................................... 4 Meg x 4
MT4LC4M4ES S .................................................... 4 Meg x 4
MT4LC16M4G3 ................................................... 16 Meg x 4
MT4LC16M4H9 .................................................. 16 Meg x 4
MT4LC2MSE7 ....................................................... 2 Meg x S
MT4LC2MSE7 S .................................................... 2 Meg x S
MT4LCSMSP4 ....................................................... S Meg x S
MT4LCSMSC2 ....................................................... S Meg x S
MT4C16270 ............................................................. 256K x 16
MT4LC16270 .......................................................... 256K x 16
MT4LCIM16E5 ..................................................... 1 Meg x 16
MT4LCIMI6E5 S .................................................. 1 Meg x 16

5V................................................................................
5V,S ............................................................................
3.3V.............................................................................
3.3V,S .........................................................................
3.3V,2KR ....................................................................
3.3V, 2KR, S ...............................................................
3.3V, SKR....................................................................
3.3V, 4KR ....................................................................
3.3V,2KR ....................................................................
3.3V, 2KR, S ...............................................................
3.3V, SKR....................................................................
3.3V, 4KR....................................................................
5V, DC ........................................................................
3.3V, DC .....................................................................
3.3V, DC, lKR............................................................
3.3V, DC, lKR, S ........................................................

DC ..... .

lKR
4KR

2KR ................................................ .
BKR .... .
5V ..

.......................... Dual CAS
.. ..................... 2,048 Refresh
.. .............. 8,192 Refresh

........................ 5 volt Vee

5 ...
3.3V ......

.................................................. 1,024 Refresh
.......... 4,096 Refi:esh

..... SELF REFRESH
.3.3 volt Vee

FPMDRAMs

PAGE

MT4CI004J ............................................................ 4 Meg x 1
MT4C1004J s ......................................................... 4 Meg x 1
MT4C400lJ ............................................................. 1 Meg x 4
MT4C400lJ s .......................................................... 1 Meg x 4
MT4LC4001J .......................................................... 1 Meg x 4
MT4LC4001J s ....................................................... 1 Meg x 4
MT4C4004J ............................................................. 1 Meg x 4
MT4C4M4Bl .......................................................... 4 Meg x 4
MT4LC4M4Bl ....................................................... 4 Meg x 4
MT4LC4M4Bl S .................................................... 4 Meg x 4
MT4LC16M4A7 ................................................... 16 Meg x 4
MT4LC16M4TS ................................................... 16 Meg x 4
MT4LC2MSBI ....................................................... 2 Meg x S
MT4LC2MSBI S .................................................... 2 Meg x S
MT4LCSMSEI ....................................................... S Meg x S
MT4LCSMSB6 ....................................................... S Meg x S
MT4C16257 .............................................................. 256K x 16
MT4LC16257 ........................................................... 256K x 16
MT4LC16257 S ........................................................ 256K x 16
MT4C1MI6C3 ....................................................... 1 Meg x 16
MT4LC1M16C3 ..................................................... 1 Meg x 16
MT4LCIM16C3 S .................................................. 1 Meg x 16
DC
lKR.
4KR .. ..
5 .... ..
3.3V ..................... .

PREFACE

Rev. 2195

1-1
1-1
1-15
1-15
1-31
1-31
1-47
1-47
1-63
1-63
1-77
1-77
1-91
1-107
1-123
1-123

............ Dual CAS
.. .... 1,024 Refresh
... 4,096 Refresh

...... SELF REFRESH
.. ...... 3.3 volt Vee

xiii

5V................................................................................
5V, S ............................................................................
5V ................................................................................
5V, S .. :.........................................................................
3.3V .............................................................................
3.3V, S .........................................................................
5V, QC ........................................................................
SV,2KR.......................................................................
3.3V, 2KR ....................................................................
3.3V, 2KR, S ...............................................................
3.3V, SKR....................................................................
3.3V, 4KR ....................................................................
3.3V,2KR....................................................................
3.3V, 2KR, S ...............................................................
3.3V, SKR....................................................................
3.3V,4KR ....................................................................
5V, DC ........................................................................
3.3V, DC ................................................................ :....
3.3V, DC,S.................................................................
5V, DC, lKR...............................................................
3.3V, DC, 1KR............................................................
3.3V, DC, 1KR, S ........................................................
QC .. .
2KR .. ..
BKR .... ..
5V .... .

2-1
2-1
2-15
2-15
2-29
2-29
2-41
2-53
2-65
2-65
2-79
2-79
2-91
2-91
2-105
2-105
2-117
2-131
2-131
2-147
2-163
2-163

..... QuadCAS
......... 2,048 Refresh
.. 8,192 Refresh
.................................. " .......... 5 volt Vee

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, !nco

MIC:RON

1-·

PREFACE
TABLE OF CONTENTS

'''",cccc""

SGRAM

PAGE

MT41LC256K32D4 ................................................. 256Kx32
MT41LC256K32D4 5 .............................................. 256K x 32
S ...... .

.................... SELF REFRESH

3.3V .............................................................................
3.3V, 5 .........................................................................
3.3V ......

......................... . ............................... 3.3 volt Vee

DRAM SIMMs

PAGE

MT2D18 .................................................................. 1 Meg x 8
MT2D48 .................................................................. 4 Meg x 8
MT8D48 .................................................................. 4 Meg x 8
MT3D49 .................................................................. 4 Meg x 9
MT9D49 .................................................................. 4 Meg x 9
MT2D25632 .............................................................. 256K x 32
MT4D51232 .............................................................. 512K x 32
MT8D132 ................................................................ 1 Meg x 32
MT8D132 5 ............................................................. 1 Meg x 32
MT8LD(T)I32 ........................................................ 1 Meg x 32
MT8LD(T)I32 5 ..................................................... 1 Meg x 32
MT8LD(T)I32 X .................................................... 1 Meg x 32
MT8LD(T)I32 XS .................................................. 1 Meg x 32
MT16D232 .............................................................. 2 Meg x 32
MT16D232 5 ........................................................... 2 Meg x 32
MT16LD(T)232 ...................................................... 2 Meg x 32
MT16LD(T)232 5 ................................................... 2 Meg x 32
MT16LD(T)232 X .................................................. 2 Meg x 32
MT16LD(T)232 XS ................................................ 2 Meg x 32
MT4LD232 ............................................................. 2 Meg x 32
MT4LD232 5 .......................................................... 2 Meg x 32
MT4LD232 X .......................................................... 2 Meg x 32
MT4LD232 XS ....................................................... 2 Meg x 32
MT8D432 ................................................................ 4 Meg x 32
MT8D432 5 ............................................................. 4 Meg x 32
MT8LD432 ............................................................. 4 Meg x 32
MT8LD432 5 .......................................................... 4 Meg x 32
MT8LD432 X .......................................................... 4 Meg x 32
MT8LD432 XS ....................................................... 4 Meg x 32
MT16D832 .............................................................. 8 Meg x 32
MT16D832 5 ........................................................... 8 Meg x 32
MT16LD832 ........................................................... 8 Meg x 32
MT16LD832 5 ........................................................ 8 Meg x 32
MT16LD832 X ........................................................ 8 Meg x 32
MT16LD832 XS ..................................................... 8 Meg x 32
MT9D136 ................................................................ 1 Meg x 36
MT18D236 .............................................................. 2 Meg x 36
MT12D436 .............................................................. 4 Meg x 36
MT12D436 5 ........................................................... 4 Meg x 36
MT24D836 .............................................................. 8 Meg x 36
MT24D836 5 ........................................................... 8 Meg x 36
S .............. .
5V ........................................................................

PREFACE
Rev. 2195

3-1
3-1

.................... SELF REFRESH
.. .. 5 volt Vee

xiv

5V................................................................................
5V................................................................................
5V ................................................................................
5V ................................................................................
5V ................................................................................
5V ................................................................................
5V ................................................................................
5V ................................................................................
5V,S ............................................................................
3.3V .............................................................................
3.3V, 5 .........................................................................
3.3V, EDO ..................................................................
3.3V, EDO, 5 ..............................................................
5V ................................................................................
5V, 5 ............................................................................
3.3V .............................................................................
3.3V, 5 .........................................................................
3.3V, EDO ..................................................................
3.3V, EDO, 5 ..............................................................
3.3V .............................................................................
3.3V, 5 .........................................................................
3.3V, EDO ..................................................................
3.3V, EDO, 5 ..............................................................
5V................................................................................
5V,S ............................................................................
3.3V.............................................................................
3.3V, 5 .........................................................................
3.3V, EDO ..................................................................
3.3V, EDO, 5..............................................................
5V................................................................................
5V,S ............................................................................
3.3V .............................................................................
3.3V,S.........................................................................
3.3V, EDO ..................................................................
3.3V, EDO, 5..............................................................
5V................................................................................
5V .................................................................................
5V................................................................................
5V,S............................................................................
5V................................................................................
5V,S ............................................................................
EDO
3.3V ..........

4-1
4-11
4-21
4-31
4-41
4-51
4-51
4-63
4-63
4-77
4-77
4-77
4-77
4-63
4-63
4-77
4-77
4-77
4-77
4-99
4-99
4-99
4-99
4-119
4-119
4-133
4-133
4-133
4-133
4-119
4-119
4-133
4-133
4-133
4-133
4-155
4-155
4-167
4-167
4-167
4-167

.. .......... Extended Data-Out
.. ............................ 3.3 volt Vee

Micron Technology, Inc., reserves the right to change products or spec ltications wilhout notice.
©1995, Micron Technology, Inc.

MICRON
1-·

PREFACE
TABLE OF CONTENTS

'CC","w", '"

DRAMDIMMs

PAGE

MT2LD(T)132H ..................................................... 1 Meg x 32
MT2LD(T)132H 5 .................................................. 1 Meg x 32
MT4LD(T)232H ..................................................... 2 Meg x 32
MT4LD(T)232H 5 .................................................. 2 Meg x 32
MT8LD(T)432H ..................................................... 4 Meg x 32
MT8LD(T)432H 5 .................................................. 4 Meg x 32
MT16D(T)164 ......................................................... 1Megx64
MT16D(T)164S ..................................................... 1 Meg x 64
MT16LD(T)164 ...................................................... 1 Meg x 64
MT16LD(T)164S ................................................... 1 Meg x 64
MT8LD(T)264 ........................................................ 2 Meg x 64
MT8LD(T)264 5 ..................................................... 2 Meg x 64
MT8LD(T)264 X .................................................... 2 Meg x 64
MT8LD(T)264 XS .................................................. 2 Meg x 64
MT16D(T)464 ......................................................... 4 Meg x 64
Mf16LD(T)464 ...................................................... 4 Meg x 64
MT16LD(T)464S ................................................... 4 Meg x 64
MT16LD(T)464 X .................................................. 4 Meg x 64
MT16LD(T)464 XS ................................................ 4 Meg x 64
MT18D(T)172 ......................................................... 1 Meg x 72
MT18D(T)172 5 ..................................................... 1 Meg x 72
MT18LD(T)172 ...................................................... 1 Meg x 72
MT18LD(T)172 5 ................................................... 1 Meg x 72
MT9LD(T)272 ........................................................ 2 Meg x 72
MT9LD(T)272 5 ..................................................... 2 Meg x 72
MT9LD(T)272 X .................................................... 2 Meg x 72
MT9LD(T)272 XS .................................................. 2 Meg x 72
MT18D(T)472 ......................................................... 4 Meg x 72
MT18LD(T)472 ...................................................... 4 Meg x 72
MT18LD(T)472 5 ................................................... 4 Meg x 72
MT18LD(T)472 X .................................................. 4 Meg x 72
MT18LD(T)472 XS ................................................ 4 Meg x 72

3.3V .............................................................................
3.3V, 5 ............... "........................................................
3.3V .............................................................................
3.3V, 5 .........................................................................
3.3V .............................................................................
3.3V, 5 .........................................................................
5V ................................................................................
5V, 5 ............... ;.......................... ,..................................
3.3V .. ;..........................................................................
3.3V, 5 .........................................................................
3.3V .............................................................................
3.3V, 5 .........................................................................
3.3V, EDO ..................................................................
3.3V, EDO, 5 ..............................................................
5V ................................................................................
3.3V .............................................................................
3.3V, 5 .........................................................................
3.3V, EDO ..................................................................
3.3V, EDO, 5 ..............................................................
5V ........................................ ;.......................................
5V, 5 ............................................................................
3.3V .............................. ,..............................................
3.3V,S.........................................................................
3.3V .............................................................................
3.3V, 5 .........................................................................
3.3V, EDO ..................................................................
3.3V, EDO, 5..............................................................
5V ................................................................................
3.3V .............................................................................
3.3V, 5 .........................................................................
3.3V, EDO ..................................................................
3.3V, EOO, 5 .............................................. ,...............

S ....................................................................................................... SELF REFRESH
5V ............................................................................................................. 5 volt Vee

EDO ,............................................................................. ,......... Extended Data-Out
3.3V ..................................................................................................... 3.3 volt Vee

DRAM CARDS

5-1
5-1
5-1
5-1
5-15
5-15
5-29
5-29
5-47
5-47
5-69
5-69
5-69
5-69
5-29
547
5-47
5-47
547
5-91
5-91
5-109
5-109
5-131
5-131
5-131
5-131
5-91
5-109
5-109
5-109
5-109

PAGE

MT8D88C132(S) .................................................... 1 Meg x 32
MT8D88C132H(S) ................................................. 1 Meg x 32
MT8D88C132V(S) ................................................. 1 Meg x 32
MT8D88C132VH(S) .............................................. 1 Meg x 32
MT16D88C232(S) .................................................. 2 Meg x 32
MT16D88C232H(S) ............................................... 2 Meg x 32
MT16D88C232V(S) ......................, ........................ 2 Meg x 32
MT16D88C232VH(S) ............................................ 2 Meg x 32
MT8D88C432V(S) ................................................. 4 Meg x 32
MT8D88C432VH(S) .............................................. 4 Meg x 32
MT16D88C832V(S) ............................................... 8 Meg x 32
MT16D88C832VH(S) ............................................ 8 Meg x 32

5V ............................................................ ,...................
5V................................................................................
3.3V ............... ;.............................................................
3.3V .............................................................................
5V ................................................................................
5V ................................................................................
3.3V .............................................................................
3.3V ..................................................... ::......................
3.3V .............................................................................
3.3V .............................................................................
3.3V ..............................................................................
3.3V .............................................................................

5V ............................................................................................................... 5 volt Vee

3.3V ....................................................................................................... 3.3 volt Vee

PREFACE

Rev. 2195

xv

6-1
6-17
6-33
6-49
6-1
6-17
6-33
649
6-33
6-49
6-33
6·49

Micron Technology, Inc., reserves the right to change products or specifICations without notice.
©1995, Micron Technology, Inc.

MICRON
1-·

PREFACE
TABLE OF CONTENTS

"'""'00'"

TECHNICAL NOTES
TN-OO-Ol
TN-00-02
TN-00-03
TN-04-0l
TN-04-06
TN-04-12
TN-04-15
TN-04-16
TN-04-19
TN-04-20
TN-04-21
TN-04-22
TN-04-23
TN-04-24
TN-04-26
TN-04-28
TN-04-29
TN-04-30
TN-04-31
TN-04-32
TN-41-01
TN-88-0l

PAGE

Moisture Absorption in Plastic Packages .................................................................................................
Tape-and-Reel Procedures ..........................................................................................................................
Using Gel-Pak®Packaging With Micron Die ............ ;..............................................................................
DRAM Power-Up and Refresh Constraints .............................................................................................
OE-Controlled/LATE WRITE Cycles (DRAM) .......................................................................................
LPDRAM Extended Refresh Current vs. RAS Active Time (4 Meg) ....................................................
DRAM Considerations for PC Memory Design ......................................................................................
16 Meg DRAM-2K vs. 4K Refresh Comparison ....................................................................................
Low-Power DRAMs vs. Slow SRAMs for Main Memory ......................................................................
SELF REFRESH DRAMs .............................................................................................................................
Reduce DRAM Cycle Times with Extended Data-Out ..........................................................................
256K x 16 DRAM Typical Operating Curves ...........................................................................................
4 Meg DRAM Typical Operating Curves .................................................................................................
4 Meg DRAM-Access Time vs. Capacitance .........................................................................................
256K x 16-Access Time vs. Capacitance .................................................................................................
DRAM Soft Error Rate Calculations ..........................................................................................................
Maximizing EDO Advantages at the System Level................................................................................
Various Methods of DRAM Refresh .........................................................................................................
PCB Layout for 4 Meg x 4 300 Mil or 400 Mil SOJ ...................................................................................
Reduce DRAM Memory Cost with Cache................................................................................................
Decrement Bursting with the SGRAM ...... ....... ...... ................................. ........ ......... ................... .......... ....
88-Pin DRAM Cards ....................................................................................................................................

PRODUCT RELIABILITY

7-1
7-3
7-9
7-11
7-13
7-15
7-17
7-23
7-25
7"27
7-29
7-37
7-39
7-45
7-47
7-49
7-53
7-65
7-69
7-71
7-75
7-79

PAGE

Overview .............................................. ... ... ....... ....... .......... ...... ....... ........ ..... .......................... ........... ...... ............... ................. 8-1
Process Flow Chart ........................... ............... .................. .......... ......... ...... .......................... ................. ............................ .... 8-8

PACKAGE INFORMAnON

PAGE

Package Drawings .................................................................................................................................................................

SALES AND SERVICE INFORMAnON

PAGE

CSN-Ol
Standard Shipping Bar Code Labels ........................................................................................................
CSN-02
Individual Box and Container Bar Code Labels .....................................................................................
CSN-03
Surface-Mount Product Labeling ..............................................................................................................
CSN-04
Box and Tape-and-Reel Quantity and Weight Chart .............................................................................
CSN-05
Environmental Programs ...........................................................................................................................
CSN-06
Electronic Data Interchange ......................................................................................................................
Return Material Authorization (RMA) Procedures ...............................................................................
CSN-07
CSN-08
ISO 9001 Certification ..................................................................................................................... :...........
Micron DataFax ...........................................................................................................................................
CSN-09
CSN-lO
Customer Comment Line ...........................................................................................................................
CSN-ll
Part Marking ................................................................................................................................................
CSN-12
Product Change Notification (PCN) System ...........................................................................................
Product Numbering System ...............................................................................................................................................
Ordering Information and Examples ................................................................................................................................
North American Sales Representatives and Distributors ......................................... :.................... ;................................
International Sales Representatives and Distributors .....................................................................................................

MICRON DATAFAX INDEX

lOcI
10-2
10-3
10-4
10-6
10-8
10-9
10-10
10"12
10-13
10-14
10-15
10-16
10-23
10-24
10-36

PAGE

Document Index for Micron DataFax ................................................................................................................................
PREFACE
Rev. 2/95

9-1

xvi

11-1

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.
Gel-Pak is a registered trademark of Vichem Corporation.

MIc: ........ CN

1-·

~

00"

PREFACE
TABLE OF CONTENTS

,

PAGE

NUMERICAL INDEX

Part#,MT:
12D436 .............................................................. DRAM SIMM
.: ........ ;............................................................................ 4-167
12D436 5 ........................................................... DRAM SIMM
..................................................................................... 4-167
16D(T)164 ........................................................ DRAM DIMM
..................................................................................... 5-29
16D(T)164 5 ..................................................... DRAM DIMM
....................................................................................... 5-29
16D(T)464 ........................................................ DRAM DIMM
...................................................................................... 5-29
..................................................................................... " 4-63
16D232 .............................................................. DRAM SIMM
..................................................................................... 4-63
16D232 5 ........................................................... DRAM SIMM
16D832 .............................................................. DRAM SIMM
..................................................................................... 4-119
16D832 5 ........................................................... DRAM SIMM
..................................................................................... 4-119
16D88C232(S) .................................................. DRAM CARD
..................................................................................... '6='{'"
16D88C232H(S) ............................................... DRAM CARD
...................................................................................... 6-17
..................................................................................... 6-33
16D88C232V(S) ............................................... DRAM CARD
16D88C232VH(S) ............................................. DRAM CARD
..................................................................................... 6-49
16D88C832V(S) ............................................... DRAM CARD
.•.................................................................................•. 6-33
16D88C832VH(S) ...........•................................ DRAM CARD
..................................................................................... 6-49
16LD(T)164 ..................................................... DRAM DIMM
..................................................................................... 5-47
16LD(T)164 5 .................................................. DRAM DIMM
..................................................................................... 5-47
16LD(T)232 ...................................................... DRAM SIMM'
..................................................................................... 4-77
16LD(T)232 5 ................................................... DRAM SIMM
..................................................................................... 4-77
..................................................................................... 4-77
16LD(T)232 X .................................. c••••••••••.•••••• DRAM SIMM
..................................................................................... 4-77
16LD(T)232 XS .............................................•... DRAM SIMM'
16LD(T)464 ..................................................... DRAM DIMM
..................................................................................... 5-47
..................................................................................... 5-47
16LD(T)464 5 .................................................. DRAM DIMM
...................................................................................... 5-47
16LD(T)464 X ................................................... DRAM DIMM
..................................................................................... 5-47
16LD(T)464 XS ................................................ DRAM DIMM
..................................................................................... 4-133
·16LD832 ........................................................... DRAM SIMM
.16LD832 5 ........................................................ DRAM SIMM:
...................................................................................... 4-133
..................................................................................... 4-133
16LD832 X ........................................................ DRAM SIMM
..................................................................................... 4-133
16LD832 XS ...................................................... DRAM SIMM
..................................................................................... 5-91
18D(T)172 ........................................................ DRAM DIMM
18.o(T)172 5 ..................................................... DRAM DIMM
..................................................................................... 5-91
18D(T)472 ........................................................ DRAM DIMM
..................................................................................... 5"91
'18D236 .............................................................. DRAM SIMM
..................................................................................... 4-155
18LD(T)172 ..................................................... DRAM DIMM
..................................................................................... 5-109
18LD(T)172 5 .................................................. DRAM DIMM
..................................................................................... 5-109
..................................................................................... 5-109
18LD(T)472 ..................................................... DRAM DIMM
18LD(T)472 5 .................................................. DRAM DIMM . ...................................................................................... 5-109
18LD(T)472 X .................................................. DRAM DIMM '..................................................................................... 5-109
18LD(T)472 XS'................................................ DRAM DIMM
..................................................................................... 5c109
24D836 .............................................................. DRAM SIMM
..................................................................................... 4-167
24D836 5 ........................................................... DRAM SIMM
..................................................................................... , 4-167
..................................................................................... 4-1
, '2D18 .................................................................. DRAM SIMM
..................................................................................... 4-51
2D25632 ............................................................ DRAM SIMM
................................................................................... ,. 4-11
2D48 .................................................................. DRAM SIMM
..................................................................................... 5-1
2LD(T)132H .................................................... DRAM DIMM
..................................................................................... 5-1
2LD(T)132H S ................................................. DRAM DIMM
..................................................................................... ',4-31
3D49 .................................................................. DRAM SIMM
..................................................................................... 3-1
41LC256K32D4 .......................................................... SGRAM
..................................................................................... 3el
41LC256K32D4S ....................................................... SGRAM
..................................................................................... 2-1
4CI004J ................................................................ FPM DRAM

PREFACE

Rev.2195

xvii

Mlcmll Tochnology. Inc., reserves the right to change pmclllt;lll or specifications without notice.
01995, Micron Technology,lnc.

MICRON

1-·

PREFACE
TABLE OF CONTENTS

"""",,eoc,",,"

NUMERICAL INDEX (continued)

PAGE

Part#,MT:
4C1004J S ............................................................. PPM DRAM
4C16257 ............................................................... PPM DRAM
4C16270 ............................................................... EDO DRAM
4C1M16C3 ........................................................... FPM DRAM
4C4001J ................................................................ FPM DRAM
4C400lJ S ............................................................. FPM DRAM
4C4004J ................................................................ FPM DRAM
4C4007J ................................................................ EDO DRAM
4C4007J s ............................................................. EDO DP,,-,A:t.:r-v1
4C4M4B1 ............................................................. FPM DRAM
4D51232 ............................................................ DRAM SIMM
4LC16257 ............................................................. FPM DRAM
4LC16257 S .......................................................... PPM DRAM
4LC16270 ............................................................. EDO DRAM
4LC16M4A7 ........................................................ FPM DRAM
4LC16M4G3 ........................................................ EDO DRAM
4LC16M4H9 ........................................................ EDO DRAM
4LC16M4T8 ........................................................ PPM DRAM
4LC1M16C3 ........................................................ PPM DRAM
4LC1M16C3 S ..................................................... FPM DRAM
4LC1M16E5 ......................................................... EDO DRAM
4LC1M16E5 S ..................................................... EDO DRAM
4LC2M8B1 ........................................................... PPM DRAM
4LC2M8B1 S ....................................................... PPM DRAM
4LC2M8E7 ........................................................... EDO DRAM
4LC2M8E7 S ....................................................... EDO DRAM
4LC4001} ............................................................. FPM DRAM
4LC4001} S .......................................................... PPM DRAM
4LC4007J ............................................................. EDO DRAM
4LC4007} S .......................................................... EDO DRAM
4LC4M4Bl ........................................................... PPM DRAM
4LC4M4Bl S ....................................................... FPM DRAM
4LC4M4EH ........................................................... EDO DRAM
4LC4M4EH S ....................................................... EDO DRAM
4LC8M8B6 ........................................................... PPM DRAM
4LC8M8C2 .......................................................... EDO DRAM
4LC8M8El ........................................................... FPM DRAM
4LC8M8P4 ........................................................... EDO DRAM
4LD{T)232H .................................................... DRAM DIMM
4LD{T)232H S ................................................. DRAM DIMM
4LD232 ............................................................. DRAM SIMM
4LD232 S .......................................................... DRAM SIMM
4LD232 X .......................................................... DRAM SIMM
4LD232 XS ........................................................ DRAM SIMM
80132 ................................................................ DRAM SIMM
80132 S ............................................................. DRAM SIMM
80432 ................................................................ DRAM SIMM
80432 S ............................................................. DRAM SIMM
8048 .................................................................. DRAM SIMM
8D88C132(S) .................................................... DRAM CARD

PREFACE
Rev. 2195

xviii

2-1
2-117
1-91
2-147
2-15
2-15
2-41
1-1

.....................................................................................

1-1
2-53
4-51
2-131
2-131

H07
2-79
1-47
1-47
2-79
2-163
2-163
1-123
1-123
2-91
2-91
1-63
1-63
2-29
2-29
1-15
1-15
2-65
2-65
1-31
1-31
2-105
1-77
2-105
1-77
5-1
5-1
4-99
4-99
4-99
4-99
4-63
4-63
4-119
4-119
4-21
6-1

Micron Technology, Inc .. reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

MICRON
1-·

PREFACE
TABLE OF CONTENTS

",<"w,",,,

NUMERICAL INDEX (continued)

PAGE

Part#,MT:
8D88C132H(S) ................................................. DRAM CARD
8D88C132V(S) ................................................. DRAM CARD
8D88C132VH(S) .............................................. DRAM CARD
8D88C432V(S) ................................................. DRAM CARD
8D88C432VH(S) .............................................. DRAM CARD
8LD(T)132 ........................................................ DRAM SIMM
8LD(T)132 5 ..................................................... DRAM SIMM
8LD(T)132 X ..................................................... DRAM SIMM
8LD(T)132 XS ................................................... DRAM SIMM .
8LD(T)264 ....................................................... DRAM DIMM
8LD(T)264 5 ................................ :................... DRAM DIMM
8LD(T)264 X .................................................... DRAM DIMM
8LD(T)264 XS .................................................. DRAM DIMM
8LD(T)432H .................................................... DRAM DIMM
8LD(T)432H 5 ................................................. DRAM DIMM
8LD432 ............................................................. DRAM SIMM
8LD432S .......................................................... DRAM SIMM
8LD432 X .......................................................... DRAM SIMM
8LD432 XS ........................................................ DRAM SIMM
9D136 ................................................................. DRAM SIMM
9D49 .................................................................. DRAM SIMM
9LD(T)272 ....................................................... DRAM DIMM
9LD(T)272 5 .................................................... DRAM DIMM
9LD(T)272 X .................................................... DRAM DIMM
9LD(T)272 XS .................................................. DRAM DIMM

PREFACE

,I

Rev. 2195

xix

6-17
6-33
6-49
6-33
6-49
4-77
4-77
4-77
4-77
5-69
5-69
5-69
5-69
5-15
5-15
4-107
4-107
4-107
4-107
4-155
4-41
5-131
5-131
5-131
5-131

Micron Technology, Inc .. reserves the right to change products or specifications without nolfce.
©1995, Micron Technology, Inc.

MICRON
1-·

PREFACE
PRODUCT SELECTION

",""oeoo,",

EDODRAM PRODUCT SELECTION GUIDE
Memory
Optional
Configuration Access Cycle
3.3V EDO DRAMs

Part
Number

Access
Time (ns)

Typical Power Dissipation Package/No. of Pins
Standby
Active
TSOP
SOJ

Page

1 Meg x 4

EDO

MT4LC4007J

60,70,80

1mW

11SmW

20/26

EDO,S

MT4LC4007J S

60,70,80

0.2SmW

11SmW

20/26

-

1-1S

1 Meg x 4
4Megx4

EDO,2KR

MT4LC4M4E8

60, 70

1mW

1S0mW

24/26

24/26

1-31

4 Meg x4

EDO, 2KR. S

MT4LC4M4E8 S

........

An , 7n
.....

1'\ A ........ \AI
V."1"IIIVV

150rnVv

24i26

24i26

1-31

SO,60,70

1mW

16SmW

34

34

1-47

1-1S

EDO,8KR

. MT4LC16M4G3

16 Meg x 4

EDO,4KR

MT4LC16M4H9

SO,60,70

1mW

16SmW

34

34

1-47

2Megx8

EDO,2KR

MT4LC2M8E7

60, 70

1mW

1S0mW

28

28

1-63

2 Meg x 8

EDO, 2KR, S

MT4LC2M8E7 S

60, 70

0.3mW

1S0mW

28

28

1-63

8Megx 8

EDO,8KR

MT4LC8M8P4

SO,60,70

1mW

170mW

34

34

1-77

8 Meg x8

EDO,4KR

MT4LC8M8C2

SO,60,70

1mW

170mW

34

34

1-77
1-107

16 Meg x 4

EDO, DC

MT4LC16270

60,70,80

1mW

8SmW

40

40/44

1Meg x 16

EDO, DC, 1KR

MT4LC1 M16ES

60, 70

0.9mW

180mW

44/S0

1-123

1 Megx 16

EDO, DC, 1KR, S

MT4LC1M16ES S

60, 70

0.3mW

180mW

-

44/S0

1-123

2S6Kx 16

5VEDO DRAMs
1 Meg x 4

EDO

MT4C4007J

60, 70

3mW

17SmW

20/26

-

1 Meg x4

EDO,S

MT4C4007J S

60, 70

0.8mW

17SmW

20/26

-

1-1

EDO,DC

MT4C16270

60,70,80

3mW

300mW

40

40/44

1-91

2S6K x 16

EDO = Extended Data-Out, DC = Dual CAS, 1KR
8KR = 8,192 Refresh, S = SELF REFRESH

PREFACE
Rev. 2195

1-1

= 1,024 Refresh, 2KR =2,048 Refresh, 4KR = 4,096 Refresh,

xx

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

MICRON

1-·

PREFACE
PRODUCT SELECTION

'''"",co", ,"c

FPM DRAM PRODUCT SELECTION GUIDE
Memory
Optional
Configuration Access Cycle
3.3V FPM DRAMs

Part
Number

Access
Time (ns)

Typical Power Dissipation Package/No. of Pins
Standby
Active
SOJ
TSOP

1 Meg x4

FPM

MT4LC4001J

60,70,80

1mW

100mW

20/26

1 Meg x 4

FPM, S

MT4LC4001J S

60,70,80

0.3mW

100mW

4 Meg x4

FPM,2KR

MT4LC4M4B1

60, 70

1mW

180mW

4 Meg x4

FPM, 2KR, S

MT4LC4M4B1 S

60, 70

0.3mW

180rhW

20/26
24/26
24/26

16 Meg x4

FPM,8KR

MT4LC16M4A7

50,60,70

1mW

165mW

16 Meg x 4

FPM,4KR

MT4LC16M4T8

50,60,70

1mW

2 Meg x 8

FPM,2KR

MT4LC2M8B1

60, 70

2 Meg x8

FPM,2KR,S

MT4LC2M8B1 S

60, 70

8 Meg x 8

FPM,8KR

MT4LC8M8E1

50,60,70

8 Meg x8

FPM,4KR

MT4LC8M8B6

256K x 16

FPM, DC

256K x 16

FPM, DC, S

Page

20/26
20/26
24/26

.2-29
2-29

24/26

2-65

34

34

2-79

225mW

34

34

2-79

1mW

200mW

28

28

2-91

0.3mW

200mW

28

28

2-91

1mW

170mW

34

34

2-105

50,60,70

1mW

230mW

34

34

2-105

MT4LC16257

60,70,80

3mW

150mW

40

2-131

MT4LC16257 S

60,70,80

0.3mW

150mW

40

40/44
40/44
44/50
44/50

2-163

20/26
20/26

2-1

20/26
20/26

2-15

1 Meg x 16

FPM, DC, 1KR

MT4LC1 M16C3

60, 70

3mW

250mW

-

1 Meg x 16

FPM, DC, 1KR, S

MT4LC1M16C3 S

60, 70

0.3mW

250mW···

-

4 Meg x 1

FPM

MT4C1004J

60, 70

20/26

FPM, S

MT4C1004JS

60, 70

3mW
0.8mW·

225mW

4 Megx 1

225mW

1 Meg x 4

FPM

MT4C4001J

60, 70

3mW

225mW

1 Meg x 4
1 Meg x 4 ..

FPM, S

MT4C4001J S

60, 70

0.8mW

225mW

FPM, QC

MT4C4004J

60, 70

3mW

225mW

4 Meg x4

FPM,2KR

MT4C4M4B1

60, 70

3mW

250mW

20/26
20/26
20/26
24/26
24/26

FPM,DC

MT4C16257

60,70,80

3mW

375mW

FPM, DC, 1KR

MT4C1M16C3

60, 70

1mW

350mW

2-65

2-131
2-163

5V FPMDRAMs

256K x 16
1 Meg x 16

2-1
2-15

-

2-41
2-53

40

24/26
40/44

42

-

2-147

2-117

FPM= FAST PAGE MODE, DC = Dual CAS, QC = Quad CAS, 1KR = 1,024 Refresh, 2KR= 2,048 Refresh,
4KR = 4,096 Refresh, 8KR = 8,192 Refresh, S = SELF REFRESH

SGRAM PRODUCT SELECTION GUIDE
Memory
Configuration
256K x 32
256K x 32

1
I

Power Dissipation
Standby
Active

No, of Pins
TQFP

Part
Number

Speed
Grade (ns)

3.3V

MT41 LC256K32D4

10,12,15

TBD

TBD

100

3-1

3.3V

MT41 LC256K32D4 S

10,12,15

TBD

TBD

100

3-1

Page

S = SELF REFRESH

PREFACE

Rev. 2195

xxi

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

MICRON
1-·

PREFACE
PRODUCT SELECTION

,,,""CO,,,,,,

DRAM SIMM PRODUCT SELECTION GUIDE
Memory
Configuration
3.3V SIMMs
1 Meg x 32
1 Meg x 32
1 Meg x 32
1 Meg x 32
2 Megx32
2Megx32
2Megx32
2 Meg x 32
2 Meg x 32
2Megx32
2 Meg x 32
2 Meg x32
4 Megx32
4 Meg x 32
4 Megx32
4 Meg x 32
B Megx32
B Meg x 32
BMegx32
B Megx32
5VSIMMs
1 Meg x B
4 Meg x B
4 Meg x B
4 Megx 9
4 Meg x 9
256K x 32
512K x 32
1 Megx32
lMegx32
2 Meg x 32
2 Meg x 32
4Megx32
4Megx32
8 Meg x 32
8 Meg x 32
1 Megx36
2Megx36
4 Meg x 36
4Megx36
B Meg x 36
B,Megx36
S

Pari
Number
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
3.3V
5V
5V
5V
5V
5V
5V
5V
5V
5V
5V
5V
5V
5V
5V
5V
5V
5V
5V
5V
5V
5V

MTBLD(T)132
MTBLD(T)132 S
MTBLD(T)132 X
MTBLD(T)132 XS
MT16LD(T)232
MT16LD(T)232 S
MT16LD(T)232 X
MT16LD(T)232 XS
MT4LD232
MT4LD232 S
MT4LD232 X ..
MT4LD232 XS
MTBLD432
MTBLD432S
MTBLD432 X
MTBLD432 XS
MT16LDB32
MT16LDB32 S
MT16LDB32X
MT16LDB32 XS
MT2D1B
MT2D4B
MTBD4B
MT3D49
MT9D49
MT2D25632
MT4D51232
MTBD132
MTBD132 S
MT16D232
MT16D232 S
MTBD432
MTBD432 S
MT16DB32
MT16DB32 S
MT9D136
MT1BD236
MT12D436
MT12D436 S
MT24DB36
MT24DB36 S

Optional
Access Cycle

S
EDO
EDO,S
S
EDO
EDO,S
S
EDO
E:DO, S
S
EDO
EDO,S
S
EDO
EDO,S

S
S
S
S

S
S

Access
Time (ns)

Typical Power Dissipation
Standby
Active

60,70,BO
60, 70,BO
60,70,BO
60,70,BO
60,70,BO
60,70,80
60,70,BO
60,70,BO
60, 70
60, 70
60, 70
60, 70
60, 70
60, 70
60, 70
60, 70
60, 70
60, 7.0
60, 70
60, 70

9.6mW
2.4mW
BmW
2mW
19.2mW
4.8mW

BOOmW
BOOmW
920mW
920mW
B10mW

16mW
4mW
4mW
1.2mW
4mW
1.2mW
BmW
2.4mW
BmW
3.2mW
16mW
4.BmW
16mW
6.4mW

92BmW
922mW
BOOmW
BOOmW
600mW
600mW
1,440mW
1,440mW
1,200mW
1,200mW
1,40BmW
1,442mW
1,20BmW
1,203mW

6mW
6mW
24mW
gmW

450mW
500mW
1,BOOmW
725mW
2,025mW
750mW
756mW
1,BOOmW
1,BOOmW
1,B24mW
1,B24mW
2,000mW
1,440mW
2,024mW

30
30
30
30
30
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72

4-1
4-11
4-21
4-31
4-41
4-51
4-51
4-63
4-63
4-63
4-63
4-119
4-119
4-119
4-119
4-155

60,
60,
60,
60,
60,
60,
60,
60,
60,
60,
60,
60,
60,
60,
60,
60,
60,
60,
60,
60,
60,

70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70

27mW
6mW
12mW
24mW
24mW
4BmW
4BmW
24mW
2.4mW
4BmW
4.BmW
21mW
54mW
36mW
3.6mW
72mW
7.2mW

0'"·)
....... \'''
UU.c..IIIVV

1,443mW
2,025mW
2,052mW
2,500mW
2,340mW
2,536mW
2,348mW

No. of Pins
SIMM

Page

72
72
72
72
72

4-77
4-77
4-77
4-77
4-77

72

4-//

72
72
72
72
72
72
72
72
72
72
72
72
72.
72

4,77
4-77
4-99
4-99
4-99
4-99
4-133
4-133
4-133
4-133
4-133
4-133
4-133
4-133

4"155
4-167
4-167
4-167
4-167

=SELF REFRESH; EDO =Extended Data-Out

PREFACE
Aev.2195

xxii

Micron Technology, Inc., reserves the righllo change products or specifications without notice.
©1995, Micron Technology, Inc.

UU:::I=ICN
1-·

PREFACE
PRODUCT SELECTION

",",owe,,",

DRAM DIMM PRODUCT SELECTION GUIDE
Memory
Configuration
3.3V DlMMs

I

i
I
I

!
I
i

:

Part
Number

1 Meg x 32

3.3V

MT2LD(T) 132H

1 Meg x 32

3.3V

MT2LD(T)132H S

2 Meg x32

3.3V

MT4LD(T)232H

2 Meg x32

3.3V

MT4LD(T)232H S

4 Meg x32

3.3V

MT8LD(T)432H

41111eg x 32

3.3V

MT8LD(T)432H S

1 Meg x 64

3.3V

MT16LD(T) 164

Optional
Access Cycle

Access
Typical Power Dissipation No. of Pins
Time (ns)
Standby
Active
DlMM

Page

60, 70

6mW

500mW

72

5-1

S

60, 70

.6mW

500mW

72

5-1

60, 70

12mW

506mW

72

5-1

S

60, 70

1.2mW

501mW

72

5-1

60, 70

8mW

1,440mW

72

5-15

S

60;70

2.4mW

1,440mW

72

5-15

60, 70

19.2mW

1,600mW

168

5-47

60, 70

4.8mW

1,600mW

168

5-47

60, 70

8mW

1,600mW

168

5-69

1 Meg x 64

3.3V

MT16LD(T) 164 S

2 Meg x 64

3.3V

MT8LD(T)264

2 Meg x64

3.3V

MT8LD(T)264 S

S

60,70

2.4mW

1,600mW

168

5-69

2 Meg x 64

3.3V

MT8LD(T)264 X

EDO

60, 70

8mW

1,200mW

168

5-69

2 Megx64

3.3V

MT8LD(T)264 XS

EDO,S

4 Megx64

3.3V

MT16LD(T)464

4 Meg x64

3.3V

MT16LD(T)464 S

4 Meg x 64

3.3V

MT16LD(T)464 X

4 Meg x 64

3.3V

MT16LD(T)464 XS

1 Meg x 72

3.3V

MT18LD(T)172

1 Meg x 72

3.3V

MT18LD(T) 172 S

S

60, 70

2.4mW

1,200mW

168

5-69

60, 70

16mW

2,880mW

168

5-47

S

60, 70

4.8mW

2,880mW

168

5-47

EDO

60, 70

16mW

2,400mW

168

5-47

EDO,S

60, 70

6.4mW

2,400mW

168

5-47

60, 70

21.6mW

1,800mW

168

5-109

60, "70

5.4mW

1,800mW

168

5-109

S

2 Meg x72

3.3V

MT9LD(T)272

60, 70

9mW

1,800mW

168

5-131

2 Meg x 72

3.3V

MT9LD(T)272 S

S

60, 70

2.7mW

1,800mW

168

5-131

2 Megx72

3.3V

MT9LD(T)272 X

EDO

60, 70

9mW

1,350mW

168

5-131

2 Meg x72

3.3V

MT9LD(T)272 XS

EDO, S

60, 70

2.7mW

1,350mW

168

5-131

4 Meg x72

3.3V

MT18LD(T)472

60, 70

18mW

3,240mW

168

5-109

4Megx72

3.3V

MT18LD(T)472 S

S

60, 70

5.4mW

3,240mW

168

5-109

4 Meg x 72

3.3V

MT18LD(T)472 X

EDO

60, 70

18mW

2,700mW

168

5-109

4 Meg x 72

3.3V

MT18LD(T)472 XS

EDO,S

60, 70

5.4mW

2,700mW

168

5-109

60, 70

48mW

3,600mW

168

5-29

60, 70

12.8mW

3,600mW

168

5-29
5-29

5V DlMMs
1 Meg x 64

5V

MT16D(T)164

1 Meg x 64

5V

MT16D(T)164 S

4 Megx64

5V

MT16D(T)464

60, 70

48mW

4,000mW

168

1 Meg x 72

5V

MT18D(T) 172

60, 70

54mW

4,050mW

168

5-91

1 Meg x 72

5\1

MT18D(T)172 S

60, 70

14.4mW

4,050mW

168

5-91

4 Meg x 72

5V

MT18D(T)472

60, 70

54mW

4,500mW

168

5-91

EDO

PREFACE

Rev. 2195

S

S

=Extended Data-Out; S = SELF REFRESH

xxiii

Micron Technology, inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

MICRON

1-·

PREFACE
PRODUCT SELECTION

'''""''00' "'

DRAM CARD PRODUCT SELECTION GUIDE
Memory
Configuration
3.3V DRAM Cards

Part
Number

Access
Time (ns)

Number of Pins
Card

Page

1 Meg x 32

3.3V

4 Megabytes

MT8D88C132V(S)

60,70,80

88

6-33

1 Meg x 32

3.3V

4 Megabytes

MT8D88C132VH(S)

60,70,80

88

6-49

2 Megx32

3.3V

8 Megabytes

MT16D88C232V(S)

60,70,80

88

6-33

2 Meg x32

3.3V

8 Megabytes

MT16D88C232VH(S)

60,70,80

88

6-49

4 Meg x 32

3.3V

16 Megabytes

MT8D88C432V(S)

60,70,80

88

6-33

4 Meg x32

3.3V

16 Megabytes

MT8D88C432VH(S)

60,70,80

88

6-49

8 Meg x 32

3.3V

32 Megabytes

MT16D88C832V(S)

60,70,80

88

6-33

8 Meg x32

3.3V

32 Megabytes

MT16D88C832VH(S)

60,70,80

88

6-49

1 Meg x 32

5V

4 Megabytes

MT8D88C132(S)

60, 70

88

6-1

1 Meg x 32

5V

4 Megabytes

MT8D88C132H(S)

60, 70

88

6-17

2 Meg x 32

5V

8 Megabytes

MT16D88C232(S)

60, 70

88

6-1

2 Meg x32

5V

8 Megabytes

MT16D88C232H(S)

60, 70

88

6-17

5V DRAM Cards

PREFACE
Rev. 2195

xxiv

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

MICRON
1--·

PREFACE
TABLE OF CONTENTS

'""" , ,

TECHNICAL NOTE SELECTION GUIDE
Technical Note

Title

Page

TN-00-01

Moisture Absorption in Plastic Packages

7-1

TN-00-02

Tape-and-Reel Procedures

7-3

TN-00-03

Using Gel-Pak® Packaging With Micron Die

7-9

TN-04-01

DRAM Power-Up and Refresh Constraints

7-11

TN-04-06

OE-ControlledlLATE WRITE Cycles (DRAM)

7-13
7-15

TN-04-12

LPDRAM Extended Refresh Current vs. RAS Active Time (4 Meg)

TN-04-15

DRAM Considerations for PC Memory Design

7-17

TN-04-16

16 Meg DRAM-2K vs. 4K Refresh Comparison

7-23
7-25

TN-04-19

Low-Power DRAMs vs. Slow SRAMs for Main Memory

TN-04-20

SELF REFRESH DRAMs

7-27

TN-04-21

Reduce DRAM Cycle Times with Extended Data-Out

7-29

TN-04-22

256K j( 16 DRAM Typical Operating Curves

7-37

TN-04-23

4 Meg DRAM Typical Operating Curves

7-39

TN-04-24

4 Meg DRAM-Access Time vs. Capacitance

7-45

TN-04-26

256K x 16--Access Time vs. Capacitance

7-47
7-49

TN-04-28

DRAM Soft Error Rate Calculations

TN-04-29

Maximizing EDO Advantages at the System Level

7-53

TN-04-30

Various Methods of DRAM Refresh

7-65

TN-04-31

PCB Layout for 4 Meg x 4 300 Mil or 400 Mil SOJ

7-69

TN-04-32

Reduce DRAM Memory Cost with Cache

7-71

TN-41-01

Decrement Bursting with the SGRAM

7-75

TN-88-01

88-Pin DRAM Cards

7-79

For the latest technical information on Micron products, read our quarterly technical newsletter Design Line.
Call 208-368-3900 to be added to our mailing list.
PREFACE
Rev. 2195

xxv

""rcron T~hnology. Inc., reserve&; the right to change. products or spectflcaUons without,no~,
,
@1995.MicronTechnology, Inc.
Gel-Pak is a registered trademark of Vichem Corporation.

PREFACE
TABLE OF CONTENTS

I'IIIC:F=lg~

PREFACE
Rev. 2/95

xxvi

EDO DRAMs ....................................................

I
I

EDO DRAM PRODUCT SELECTION GUIDE
Memory
Optional
Configuration Access Cycle
3.3V EDO DRAMs

Part
Number

Access
Time (ns)

Typical Power Dissipation Package/No. of Pins
Standby
Active
TSOP
SOJ

Page

1 Meg x 4

EDO

MT4LC4007J

60, 70, 80

1mW

115mW

20/26

1 Meg x 4

EDO,S

MT4LC4007J S

60,70,80

0.25mW

115mW

20/26

-

4 Megx4

EDO,2KR

MT4LC4M4E8

60, 70

1mW

150mW

24/26

24/26

1-31

4 Meg x4

EDO, 2KR, S

MT4LC4M4E8 S

60, 70

OAmW

150mW

24/26

24/26

1-31

1-15
1-15

16 Meg x 4

EDO,8KR

MT4LC16M4G3

50,60,70

1mW

165mW

34

34

1-47

16 Meg x4

EDO,4KR

MT4LC16M4H9

50,60,70

1mW

165mW

34

34

1-47

2 Meg x 8

EDO,2KR

MT4LC2M8E7

60, 70

1mW

150mW

28

28

1-63

2 Megx8

EDO, 2KR, S

MT4LC2M8E7 S

60, 70

0.3mW

150mW

28

28

1-63

8Meg x8

EDO,8KR

MT4LC8M8P4

50,60,70

1mW

170mW

34

34

1-77

8Meg x 8

EDO,4KR

MT4LC8M8C2

50,60,70

1mW

170mW

34

34

1-77

EDO,DC

MT4LC16270

60,70,80

1mW

85mW

40

40/44

1-107

1 Meg x 16

EDO, DC, 1KR

MT4LC1M16E5

60, 70

0.9mW

180mW

-

44/50

1-123

1 Meg x 16

EDO, DC, 1KR, S

MT4LC1M16E5S

60, 70

0.3mW

180mW

-

44/50

1-123

256Kx 16

5V EDO DRAMs
1 Meg x 4

EDO

MT4C4007J

60, 70

3mW

175mW

20/26

-

1 Megx4

EDO,S

MT4C4007J S

60, 70

0.8mW

175mW

20/26

-

1-1

EDO,DC

MT4C16270

60,70,80

3mW

300mW

40

40/44

1-91

256Kx 16

EDO = Extended Data-Out, DC = Dual CAS, 1KR
8KR =8,192 Refresh, S =SELF REFRESH

= 1,024 Refresh, 2KR =2,048 Refresh, 4KR =4,096 Refresh,

1-1

PRELIMINARY

z

m

1 MEG x4DRAM

DRAM

5V, EDO PAGE MODE,
OPTIONAL SELF REFRESH
FEATURES
PIN ASSIGNMENT (Top View)

•
•
•
•
•

Single +5V ±10% power supply
JEDEC-standard pinout and packages
High-performance CMOS silicon-gate process
All inputs, outputs and clocks are TTL-compatible
Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR),
HIDDEN; optional Extended and SELF REFRESH
modes
• Extended Data-Out (EDO) PAGE MODE access cycle
• 1,024-cycle Extended Refresh distributed across 16ms
or 128ms
• EDO PAGE MODE cycle times, 25-35ns

OPTIONS

20/26-Pin SOJ
(DA-1)

MARKING

• Timing
60ns access
70ns access

1
2
3
4
5

26
25
24
23
22

AO

9

A1

10
11
12
13

18
17
16
15
14

A2

-6
-7

• Refresh Rate
Standard 16ms period
SELF REFRESH and 128ms period

A3
Vee

None
S

• Packages
Plastic SOJ (300 mil)

Vss
OQ4
OQ3
CAS

DE

AS
A7

A6
A5
A4

as the results are not predictable. When WE goes LOW prior
to CAS going LOW (EARLY WRITE cycle), the output pins
remain open (High-Z) until the next CAS cycle.
The four data inputs and four data outputs are routed
through four pins using common I/O, and pin direction is
controlled by WE and OE.

DJ

• Part Number Example: MT4C4007JDJ-7

KEY TIMING PARAMETERS

PAGE ACCESS

SPEED

tRC

tRAC

tpc

tAA

tCAC

tCAS

-6
-7

110ns
l30ns

60ns
70ns

25ns
33ns

30ns
35ns

l8ns
22ns

10ns
l5ns

PAGE operations allow faster data operations (READ or
WRITE) within a row-address-defined (AO-A9) page
boundary.
The PAGE cycle is always initiated with a row-address
strobed-in by RAS followed by a column-address
strobed-in by CAS. CAS may be toggled-in by holding
RAS LOW and strobing-in different column-addresses,
thus executing faster memory cycles. Returning RAS
HIGH terminates PAGE operation.

GENERAL DESCRIPTION
The MT4C4007J(S) is a randomly accessed solid-state
memory containing 4, 194,304 bits organized in a x4 configuration with optional SELF REFRESH. During READ or
WRITE cycles, each of the 4 memory bits (1 bit per DQ) is
uniquely addressed through the 20 address bits, which are
entered 10 bits (AO-A9)ata time. RAS latches the first 10 bits
and CAS latches the latter 10 bits.
A READ or WRITE cycle is selected with the WE input.
A logic HIGH on WE dictates READ mode while a logic
LOW on WE dictates WRITE mode. During a WRITE cycle,
data-in (D) is latched by the falling edge of WE or CAS,
whichever occurs last, however, only EARLY WRITE cycles
are supported. LATE WRITE cycles should not be attempted
MT4C4007J(S}
D23.pm5 - Rev. 2/95

OQ1
OQ2
WE
RAS
A9

EDO PAGE MODE
The MT4C4007J provides EDO PAGE MODE, which is
an accelerated FAST PAGE MODE cycle. The primary
advantage of EDO is the availability of data-out even after
CAS goes back HIGH. EDO provides for CAS precharge
time (ICP) to occur without the output data going invalid.
This elimination of CAS output control provides for pipeline READs.
PAGE MODE DRAMs have traditionally turned the output buffers off (High-Z) with the rising edge of CAS. EDO

1-1

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

:e

•
m

c
o
C

::D

»
s:

PRELIMINARY

z

m

MICRON
1-·

c

"

MT4C4007J(S)
1 MEG x 4 DRAM

"

:e

•

m

c

o
C

Jl

l>
3:

EDOPAGE MODE (c:ontinued)
HIGH for a minimum of tOEP anytime during the CAS
HIGH period and the DQs will tristate and remain tristate,
regardless of OE, until CAS falls again (please reference
Figure 1 for further detail on the toggling OE condition).
During cycles other than PAGE-MODE READ, the outputs
are disabled at tOFF time after RAS and CAS are HIGH, or
twHZ after WE transitions LOW. The toFF time is referenced from the rising edge of RAS .or CAS, whichever
occurs last. WE can also perform the function of turning off
the output drivers under certain conditions, .as shown in
Figure 2.

operates as any DRAM READ or FAST7 PAGE-MODE
READ, except data will be held valid after CAS gees HIGH,
as long as RAS and OEare held LOW alld WE is held HIGI::I.
OE can be brought LOW or HIGH while CAS and RAS are
LOW, and the DQs will transition between valid data and
High-Z. Using OE, there are two methods to disable the
outputs and keep them disabled, during .the CAS HIGH
time. The first method is to have OE HIGH when CAS
transitions HIGH and keep OE HIGH for toEHC. This will
tristate the DQs and they will reJnain tristate, regardless of
OE, until CAS falls again. The second method is to have
OE LOW when CAS tra.nsitions HIGH. Then OE can pulse

RAs ~:~:~~_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~

~..
-

~

(l

!

('

('

~ff////ffffff///ff/~/ff///ffrff///,@(q'\~~<~.~N~.(C~1~~W4~~W<'.~\~~\~""~N(~DI)~~Wl2

:' -~4 _.. ~ ~,-____'__VAU_D-f~~I'
The

I

!

DOs go back to

The DOs remain High-Z

untillhe next CAS cyCle
if IOEHC is met.

Low-Z if toES Is met.

--.

!

The DOs remain High-Z
until the next CAS cycle
if\'QEP is met.

~

DON'TeARE

~

UNDEFINED

'Figure 1
OUTPUT ENABLE AND DISABLE

MT4C4007J(S)

023.pm5 - Rev. 2/95

1-2

Micron Technology, Inc., reserves the right to change products or sp6(lificatiOllS without notice.
@1995,MlcronTechn%gy,lnc.

PRELIMINARY

MICRON

1-·

MT4C4007J(S)
1 MEG x 4 DRAM

'''"M"", "'

z

m

::e

REFRESH
Preserve correct memory cell data by maintaining power
and executing any RAS cycle (READ, WRITE) or RAS
refresh cycle (RAS ONLY, CBR, or HIDDEN) so that all
1,024 combinations ofRAS addresses (AO-A9) are executed
within tREF max, regardless of sequence. The CBR and
SELF REFRESH cycles will invoke the internal refresh
counter for automatic RAS addressing.
An optional SELF REFRESH mode is also available on
the MT4C4007J S. The "s" version allows the user the choice
of a fully static low-power data retention mode, or a dynamic refresh mode at the extended refresh period of 128ms.
The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle, and holding RAS LOW for
the specified tRASS. Additionally, the "s" version allows
for an extended refresh period of 128ms, or 125Jls per row
if using distributed CBR REFRESH. This refresh rate can be
applied during normal operation, as well as during a standby
or BATTERY BACKUP mode.

RAs ~:r:~,--

00

:

Returning RAS and CAS HIGH terminates a memory
cycle and decreases chip current to a reduced standby level.
The chip is preconditioned for the next cycle during the
RAS HIGH time.

VALID DATA (A)

_ _ _

VALID DATA (B)

-----+~_~WPZ
-I--- ------+--1_--+---c
-+

-----r--I
/_/_

r

The DOs go to High-Z if WE falis, and if IWPZ is met,
will remain High-Z until CAS goes LOW with
iiiiE HIGH {Le., until a READ cycle is initiated).

I

WE may be used to disable the DOs to prepare
for input data in an EARLY WRITE 'CYcle. Th'e DOs
will remain High-Z until CAS goes LOW with

WE HIGH (Le., until a READ cycle 'is'initiated).

~

DON'T CARE

~

UNDEFINED

Figure 2
OUTPUT ENABLE AND DISABLE USING WE

MT4C4007J(S)
D23.pm5 - Rev. 2/95

1-3

•
m

c
o

C
::D

l>

S

STANDBY

__________________~_______~_____________

~lgr:----~

~:~:

The SELF REFRESH mode is terminated by driving RAS
HIGH for a minimum time of IRpS. This delay allows for
the completion of any internal refresh cycles that may be in
process at the time ofthe RAS LOW-to-HIGH transition. If
the DRAM controller uses a distributed refresh sequence,
a burst refresh is not required upon exiting SELF REFRESH. However, if the DRAM controller utilizes RAS
ONLY or burst refresh sequence, all 1,024 rows must be
refreshed within the average internal refresh rate, prior to
the resumption of normal operation.

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc,

PRELIMINARY

z
:E

m

•

FUNCTIONAL BLOCK DIAGRAM
EDO PAGE MODE

m

c
o

c~~:~--~----------------------_,

DOl
D02
D03
D04

C

::D

L---------------------~~----~OE

l>

s:

AO
Al
A2
A3
A4

AS
A6

A7
A8

1024 x 1024 x 4

A9

MEMORY
ARRAY

Vee

RAS

Vss

TRUTH TABLE
ADDRESSES
IR
IC

DATA-IN/OUT

FUNCTION

liAS

"CAs-

WE

Of

Standby

H

H-X

X

X

X

X

High-Z

READ

L

L

H

L

ROW

COL

Data-Out

EARLY WRITE

DQ1-DQ4

L

L

L

X

ROW

COL

Data-In

EDO-PAGE-MODE

1st Cycle

L

H-'+L

H

L

ROW

COL

Data-Out

READ

2nd Cycle

L

H-L

H

L

n/a

COL

Data-Out

EDO-PAGE-MODE

1st Cycle

L

H-L

L

X

ROW

COL

Data-In

EARLY-WRITE

2nd Cycle

L

H-L

L

X

n/a

COL

Data-In

L

H

X

X

ROW

n/a

High-Z

L

H

L

ROW

COL

Data-Out

RAS-ONLY REFRESH
HIDDEN

READ

L-H-L

REFRESH

WRITE

L'-+H-L

L

L

X

ROW

COL

Data-In

CSR REFRESH

H-L

L

H

X

X

X

High-Z

SELF REFRESH

H-L

L

H

X

X

X

High-Z

MT4C4007J(S)
D23.pm5 - Rev. 2/95

1-4

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

PRELIMINARY

z
m

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability.

ABSOLUTE MAXIMUM RATINGS*
Voltage on Any Pin Relative to Vss ................. -1.0V to +7V
Operating Temperature, TA (ambient) .......... DoC to +70°C
Storage Temperature (plastic) .................... -55°C to +150°C
Power Dissipation ............................................................. 1W
Short Circuit Output Current ..................................... 50mA

:e

•
m
c

o
C

lJ
ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
=+5V +10%)
-

(Notes: 1,6, 7) (Vee

SYMBOL

MIN

MAX

UNITS

Supply Voltage

Vee

4.5

5.5

V

Input High (Logic 1) Voltage, all inputs

VIH

2.4

Vee+1

V

Input Low (Logic 0) Voltage, all inputs

VIL

-1.0

0.8

V

PARAMETER/CONDITION

INPUT LEAKAGE CURRENT
Any input OV ::;; VIN ::;; 6.5V (All other pins not under test =OV)
OUTPUT LEAKAGE CURRENT (Q is disabled; OV ::;; VOUT::;; 5.5V)
TTL OUTPUT LEVELS

MT4C4Q07J{S)

D23.pm5-Rev.2f95

I
I

=-5mA)
Low Voltage (lOUT =4.2mA)

High Voltage (lOUT

1-5

II

-2

2

~A

loz

-10

10

~A

VOH

2.4

VOL

NOTES

V
0.4

V

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

l>
3:

PRELIMINARY

z

m

~------~------------------------------

•

m

c
o

C
JJ

»
3:

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DCOPERATfNG CONDITIONS
(Notes: 1, 6, 7) (Vcc = +5V ±1 0%)

MAX
SYMBOL

-6

-7

ICC1

2

2

mA

ICC2
ICC2
(S only)

1
200

1
200

!1A
!1A

OPERATING CURRENT: Random READIWRITE
AVeiage power supply curreni
(RAS, CAS, address cycling: IRC = IRC [MIN])

ICC3

110

100

OPERATING CURRENT: EDO PAGE MODE
Average power supply current
(RAS = VIL, CAS, address cycling: IpC = IpC [MIN])

ICC4

80

REFRESH CURRENT: RAS ONLY
Average power supply current
(RAS cycling, CAS = VIH: IRC = IRC [MIN])

Iccs

REFRESH CURRENT: CBR
Average power supply current
(RAS, CAS, address cycling: IRC = IRC [MIN])

PARAMETER/CONDITION
STANDBY CURRENT: (TTL)
(RAS = CAS = VIH)
STANDBY CURRENT: (CMOS)
(RAS = CAS = Other Inputs = Vcc -0.2V)

REFRESH CURRENT: Extended (S version only)
Average power supply current during Extended Refresh:
CAS = 0.2V or CBR cycling; RAS = IRAS (MIN); WE= Vcc -0.2V;
AO-A9 and DIN = Vcc -0.2V or 0.2V (DIN may be left open);
IRC = 12511S (1,024 rows at 12511S = 128ms)
REFRESH CURRENT: SELF (S version only)
Average power supply current during SELF REFRESH:
CBR cycle with IRAS ~ IRASS (MIN) and CAS held LOW;
WE = Vcc -0.2; AO-A9 and DIN = Vcc -0.2V or 0.2V
(DIN may be left open)

UNITS NOTES

I

mA

3,4,
30

70

mA

3,4,
30

110

100

mA

3,30

ICC6

110

100

mA

3,5

Icc?
(S only)

300

300

!1A

3,5,
28

Icca
(S only)

300

300

I1A

5,29

CAPACITANCE
PARAMETER

SYMBOL

MAX

UNITS

NOTES

Input Capacitance: AO-A9

CI1

5

pF

2

Input Capacitance: RAS, CAS, WE, OE

CI2

7

pF

2

Input/Output Capacitance: DO

CIO

7

pF

2

MT4C4Q07J(S)
D23.pm5 - Rev. 2195

1-6

Micron Technology, Inc., reselVes the right to change products or specifications without-notice.

©1995, Micron Technology, Inc.

PRELIMINARY

z

m

=e
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vee

=+5V ±1 0%)

AC CHARACTERISTICS
PARAMETER
Access time from column-address
Column-address setup to CAS precharge during WRITE
Column-address hold time (referenced to RAS)
Column-address setup time
Row-address setup time
Access time from CAS
Column-address hold time
CAS pulse width
RAS LOW to "don't care" during SELF REFRESH cycle
CAS hold time (CBR REFRESH)
CAS to output in Low-Z
Data output hold after CAS LOW
CAS precharge time
Access time from CAS precharge
CAS to RAS precharge time
CAS hold time
CAS setup time (CBR REFRESH)
Write command to CAS lead time
Data-in hold time
Data-in hold time (referenced to RAS)
Data-in setup time
Output disable
Output Enable time
OE HIGH hold time from CAS HIGH
OE HIGH pulse width
OE LOW to CAS HIGH setup time
Output buffer turn-off delay
OE setup prior to RAS during HIDDEN REFRESH cycle
EDO-PAGE-MODE READ or WRITE cycle time
Access time from RAS
RAS to column-address delay time
Row-address hold time
Column-address to RAS lead time

MT4C4007J(S)
D23.pm5~Rev.2I95

MIN

tAA
tACH
tAR
tASC
tASR
tCAC
tCAH
tCAS
tCHD
tCHR
tCLZ
tCOH
tcp
tCPA
tCRP
tCSH
tCSR
tCWL
tDH
tDHR
tDS

MIN

30

10,000

10
50
10
15
10
45
0

15
15
10
10
3
5
10

tRAC
tRAD
tRAH
tRAL

15
10
30

35

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

10,000

40
10
55
10
20
13
55
0

15
15
10
10
5
3
0
25

UNITS

22

35

tOEHC
tOEP
tOES
tOFF
tORD
tpc

MAX

15
50
0
0
18

toD
tOE

1-1'

MAX

15
45
0
0
10
10
10
10
3
5
10

m

-7

-6

SYM

15

60
30

20
20
10
10
5
3
0
33
15
10
35

II

20

70
35

NOTES

c

o
C

Jl

15

28
5

16

5
22
22
26
23

20

14
18

Micron Technology, Inc., reserves the right to change products or specifications without notice.

©1995,MicronTechnoiogy, Inc.

l>
S

PRELIMINARY

z

m

=e
III

m

c

o

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vee

=+5V ±1 0%)

PARAMETER
RAS pulse width

-7

·6

AC CHARACTERISTICS
SYM
tRAS

MIN

MAX

MIN

60
60

10,000
100,000

70
70

MAX
10,000

UNITS

RAS pulse width (EDO PAGE MODE)

tRASP

C
Jl

RAS pulse width during SELF REFRESH cycle
Random READ or WRITE cycle time

tRASS
tRC

100

100

~s

110

130

ns

RAS to CAS delay time

tRCD

20

s::

Read command hold time (referenced to CAS)

tRCH

0

Read command setup time
Refresh period (1,024 cycles)

tRCS
tREF

0

Refresh period (1,024 cycles) S version

tREF
tRP

40

50

ns

tRPC
tRPS

0
110

0
130

ns

RAS" hold time

tRRH
tRSH

0
15

0
20

ns
ns

Write command to RAS lead time

l>

RAS precharge time
RAS to CAS precharge time
RAS precharge time during SELF REFRESH cycle
Read command hold time (referenced to RAS)

15

IT

2

Write command hold time

tWCH

Write command hold time (referenced to RAS)

tWCR
twcs

10
45

Write command pulse width
WE pulse width for output disable when CAS HIGH
WE hold time (CBR REFRESH)
WE setup time (CBR REFRESH)

MT4C4007J(S)

D23.pms- Rev. 2/95

WPZ
WRH
tWRP

1-8

0

2

ns
ms

128

ms

ns

17

19

28
19

ns

9,10

ns
ns

55
0
3

28

ns
50

15

15

ns
ns

16

20
50

0
3

50

0

128

tRWL

WHZ
twp

20

16

Transition time (rise or fall)

WE command setup time
Output disable delay from WE (CAS HIGH)

45

100,000

NOTES

ns
ns

ns
20

21,26

ns
ns

10
10

15
10

10

10

ns

25

10

10

ns

25

ns

Micron Technology, Inc., reserves the righllo change products or specifications without notice.
©1995, Micron Technology, Inc.

PRELIMINARY

z

m

:e

NOTES
1.
2.
3.
4.

All voltages referenced to Vss.
This parameter is sampled. Vee = +SV; f = 1 MHz.
Ice is dependent on cycle rates.
Ice is dependent on output loading and cycle rates.
Specified values are obtained with minimum cycle
time and the outputs open.
S. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate
cycle time at which proper operation over the full
temperature range is assured.
7. An initial pause of 100/1s is reqUired after power-up
followed by eight RAS refresh cycles (RAS ONLY or
CBR with WE HIGH) before proper device operation
is assured. The eight RAS cycle wake-ups should be
repeated any time the IREF refresh requirement is
exceeded.
8. AC characteristics assume tT = 2.5ns.
9. VIH (MIN) and VIL (MAX) are reference levels for
measuring timing of input signals. Transition times
are measured between VIH and VIL (or between VIL
and VIH).
10. In addition to meeting the transition rate specification, all input signals must transit between VIH and'
VIL (or between VIL and VIH) in a monotonic martner.
11. If CAS and RAS = VIH, data output is High-Z.
12. If CAS = VIL, data output may contain data from the
last valid READ cycle.
13. Measured with a load equivalent to two TTL gates
and 100pF.
14. Assumes that IRCD < tRCD (MAX). If IRCD is greater
than the maximum recommended value shown in this
table, lRAC will increase by the amount that IRCD
exceeds the value shown.
IS. Assumes that IRCD 2: tRCD (MAX).
16. If CAS is LOW at the falling edge of RAS, Q will be
maintained from the previous cycle. To initiate a new
cycle and clear the data-out buffer, CAS must be
pulsed HIGH for tcP.
17. Operation within the IRCD (MAX) limit ensures that
lRAc (MAX) can be met. IRCD (MAX) is specified as

MT4C4007J{S)

023.pmS - Rev. 2195

a reference point only; if IRCD is greater than the
specifiedIRCD (MAX) limit, then access time is
controlled exclusively by ICAe.
18. Operation within the tRAD (MAX) limit ensures that
tRCD (MAX) can be met. lRAD (MAX) is specified as
a reference point only; if lRAD is greater than the
specified lRAD (MAX) limit, access time is controlled
exclusively by IAA.
19. Either tRCH or IRRH must be satisfied for a READ
cycle.
20. tOFF (MAX) defines the time at which the output
achieves the open circuit condition and is not
referenced to VOH or VOL.
21. If the cycle is a READ-MODIFY-WRITE, the state of
data-out is indeterminate. OE held HIGH and WE
taken LOW after CAS goes LOW results in a LATE
WRITE (OE-controlled) cycle.
22. These parameters are referenced to CAS leading edge
in EARLY WRITE cycles.
23. Even if OE is HIGH, LATE WRITE or READMODIFY-WRITE operations are not permissible and
should not be attempted.
24. A HIDDEN REFRESH may also be performed after a
WRITE cycle. In this case, WE= LOW and OE=HIGH.
2S. tWTS and twTH are setup and hold specifications for
the WE pin being held LOW to enable the JEDEC test
mode (with CBR timing constraints). These two
parameters are the inverts of IWRP and IWRH in the
CBR REFRESH cycle.
26. The DQs open during READ cycles once taD or IOFF
occur.
27. Extended refresh current is reduced as lRAS is
reduced from its maximum specification during the
extended refresh cycle.
28. If the DRAM controller uses a burst refresh, a burst
refresh of all rows must be executed upon exiting
SELF REFRESH.
29. Column-address changed once each cycle.

1-9

Micron Technology, 1m:., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

•
m

c
o

C
JJ

»
s:

PRELIMINARY

z

m

MICRON
1-·

MT4C4007J(S)
1 MEGx 4 DRAM

,""""0,"'"

~--------------------------

II

READ CYCLE
RC

m

c
o

\'------

ICSH

C

:IJ

»
s:

ROW

I

tRAG

I

'CAG

I~NOTE 2

~I.

DO

~gr -=---~-~-OPEN ___----~~~VAl~IDD~AT~Aj~OPEN.. I.

DE

I.

tOE

~:~ -_T.fj;=W/;TTT~/;TTT%777fj;777///;7Ti7l/;'Tr,1I/;77C7//;,"@TTT7I/;TT71//;7771j;Tn1//;"'1//;=1//;=1//;rrTTl/!?>J,

too

!/;CTT.1//;'"1/J;TT71//;7771//;7771j;Tn1/!;"'1//;=1//;=1/J;'"1//;n-T1//;TTn1j;

EARLY WRITE CYCLE
RC
tRP

'RAS

I

\

d::

tCSH

=f--~

tRCD

1

r

tAR

I

'RAD

I~I

I~ ~I

ADDR

~:r

_~

ROW

~ :r 7~

I

~:gr

tRAl

COLUMN

I

I

1

I~!
I
I

tACH

I

~

ROW

'CWL
'RWl

'WGR

!,;,///J I I ~
~_tDSi i--=--~
_
~ ~

DO

J0Z0t

I

~I

I~
twp

I

VALID DATA

fZI DON'T CARE
I:I2Jl UNDEFINED
NOTE:

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for 'WRP and 'WRH. This design implementation will facilitate compatibility with
future EDO DRAMs.
2. 'OFF is referenced from rising edge of RAS or CAS, which ever occurs last.

MT4C4007J(S)
D23.pmS - Rev, 2195

1-10

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron TechnologY,lnc.

PRELIMINARY

MIC:RON

1-·

MT4C4007J(S)
1 MEG x 4 DRAM

<,

<

z

m

~~~--~----------------------------~

•

EDO-PAGE-MODE READ CYCLE
1________________________t~AA~SP~·_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~~

m

c

o

C
:xl
)l-

ADDA

s:
fL--+m~=)V~AL1[D=~
DATA

0.

~LLLLLLLLI.~r.LLLlJ..LLLLLLLLLI.~UL_._

~

_ _ _C_J

1__

~__l'----toEs----

EDO-PAGE.-MOD'EEARlY-WRITE CYCLE
RAS

~:~=~'

:

~P

CAS

AODR

~:~ =J
~:~

I

tRCO

tAR

~~

I~~'WI;?;tI~I I~

7//,1t

ROW

'EtRP

tpc
1_I-7:tRs~H_ _
~II~~II~~
!~I

tcs...

~

OPEN

too

COWMN

~..

I
~ll~·,.
I

I

I

I~ ~H·I
COLUMN

f'

I~II~I

!

'

,

II

COLUMN

ROW

'ewL

II

OE

~:~, 1I!I!!III/(I/II!I!I!!!11///I/I!I!!/I!II!!II//1!1!!1!1!I!!II/!$/I!I!//!!11//I!I!!/I/I!!II!II1!!!III!IIII!#III!!1/I!/Ih
~

DON'T CARE

!88S UNDEFINED
NOTE:

t Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE). the system designer

.... should implement WE HIGH for WRP and .WRH. This design implementation .will facilitate compatibility with
future EDO DRAMs.

MT4C4007J(S)
D23.pm5:- Rev. 2/95

1-11

Micron Technology, Inc., reserves the right to change products or specifications without notice.
@1995, MlcrorrTeclmology, Inc-.

PRELIMINARY

z

m

:e

II

EDO-PAGE-MODE READ-EARL Y-WRITE CYCLE
(Pseudo READ-MODI FY-WRITE)

m

c
o

!RASP

AAS

VIHVIL-

tCSH

Ipe

Ipe

C

teRP

:D

CAS

~

tRCD

~

lep

lep

VIHVIl-

l>
S

lAR

DQ

~:gt=----- OPEN ---~-t=~VA~LlD~DA~TA~{A~)=jt~~)
IDE

0.

~:t= W;1@'$$$$$$;1#MiHIDDEN REFRESH CYCLE 24
(WE = HIGH; OE = LOW)
(REFRESH)

(READ)
I RAS

tRSH

IRCD

'1

l'
_,,.,j
- .'I
~IH-~
"~~~M~
I'
II'
I~
_J

,

tCHR

Ji

IAR

•

II t~1

tRAD

tRAH

:IAse.ll~

t-------

IL-

IRAe

DO

tRAS

r-------i

I~'

ADDR

f----=----I '

~gr:::::------OPEN

__

leAe

:

leLZ--{'L~=t=:=~~==t
VAlfDDATA

>---OPEN-

~

o.~:t =W'/#//PP//P#PM/$#P//I;"//#Jr~D
NOTE:

~

DON'T CARE

~

UNDEFINED

1. Although WE is a"don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for tWRP and WRH. This design implementation will facilitate compatibility with
future EDO DRAMs.

MT4C4007J(S}

D23.pm5 - Rev. 2/95

1-12

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

PRELIMINARY

z

m

--------------------------------------~

II

CBR REFRESH CYCLE
(Addresses and OE =DON'T CARE)
tRAS

'RP

-1."~
=J'
cp

~

CAS

DO

WE

'CHR

~:t-

'RP

2

'RPC~~

II
'WRP

I

m

c

'RAS

o
C

~k

:IJ

OPEN-------iill-----'WRH

.

'WRP

Ib

~:t -W'/$/ffO- -Wff/$ffffff/ff$$-

Wff/ff/$///ff/ffffff/$$k;

RAS-ONLY REFRESH CYCLE

NOTE:

~

DON'TCARE

~

UNDEFINED

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with
future EDO DRAMs.

MT4C4007J(S)
D23.pmS - Rev. 2/95

1-13

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

l>
S

PRELIMINARY

z

m

MICRON
1-·

MT4C4007J(S)
1 MEG x 4 DRAM

,,,","coene

~--------------------------------------

II

SELF REFRESH CYCLE
(Addresses and OE DON'T CARE)

=

m

NOTE 1

lAP

c

tRASS

((

tAPS

: :;)~ ~~/_#ff/$/';~#;J~jr~

o
C

:0
):-

~gt -

DO

s::

II

lWRP

WE

II

I

\\-O?EN

IWRH,

tWAP

II

tWRH

~:t :'i'$/;I/$g- -~fJ/;Iij$/ijij/$//ij///;//#ij/$J;i//J- -W$//ij///ij/;l&

READ CYCLE
(with WE-controlled disable)
RAS

VIH

:--------,~

VIL_

tCSH

CAS VIH -

tCRP . =:==========tR:CD=====t:CA:S====:

.1

tC?

r+------.J.

V IL -

r-----

ADDR

WE

DO

IH

V _.7TTj'?TT;'777:!,------;---,I:rn;'777",,.,r--;----i-----'----,J
VIL -.LLL.LLLL.LI~

~gt --------OPEN--------1~~~~~~
tOE

.!

1_

too

~OPEN-

~

I

//;;/J;iij;;/lf$/J$//I/J/I

NOTE:

~

DON'T CARE

12221

UNDEFINED

1. Once tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.
2. Once tRPS is satisfied, a complete burst of all rows should be executed.
3. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for tWRP and tvvRH: This design implementation will facilitate compatibility with
future EDO DRAMs.

MT4C4007J(S)

D23.pmS-Rev.2195

1-14

Micron

Techn~ogy,

Inc., reserves the right

to change products or specifications without notice.
©1995, Micron Technology, Inc.

PRELIMINARY

MICRON
1-·

MT4LC4007 J(S)
1 MEG x 4 D6AM

"'<",ce",,",

1 MEG x 4 DRAM

DRAM

3.3V, EDO PAGE MODE,
OPTIONAL SELF· REFRESH
FEATURES
•
•
•
•
•
•

•
•
•
•

Single +3.3V ±O.3V power supply
Low power, 0.25mW standby; 115mW active, typical
JEDEC-standard pinout and packages
High-performance CMOS silicon-gate process
All inputs, outputs and clocks are LVTTL-compatible
Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR),
HIDDEN; optional Extended and SELF REFRESH
modes
Extended Data-Out (EDO) PAGE MODE access cycle
1,024-cycle Extended Refresh distributed across 16ms
or 128ms
Low SELF REFRESH current, lOOIlA typical, 150llA
(MAX)
EDO PAGE MODE cycle times, 25-35ns

OPTIONS

MARKING

• Timing
60ns access
70ns access
80ns access

-6
-7
-8

• Refresh Rate
Standard 16ms period
SELF REFRESH and 128ms period

PIN ASSIGNMENT (Top View)
20/26-Pin SOJ
(DA-1)

KEY TIMING PARAMETERS
tRC

tRAC

tpc

tAA

teAc

tCAS

110ns
l30ns
l50ns

60ns
70ns
80ns

25ns
30ns
33ns

30ns
35ns
40ns

l8ns
22ns
22ns

10ns
l2ns
12ns

10
11
12
13

b Vss

26
25
24
23

P D04
PD03
P CAS

18

PA8

22P DE
17p A7

P

16 A6
15 PA5
14 PA4

time. RAS latches the first 10 bits and CAS latches the latter
10 bits.
A READ or WRITE cycle is selected with the WE input. A
logic HIGH on WE dictates READ mode while a logic LOW
on WE dictates WRITE mode. During a WRITE cycle, datain (D) is latched by the falling edge of WE or CAS, whichever occurs last. If WE goes LOW prior to CAS going LOW,
the output pins remain open (High-Z) until the next CAS
cycle, which is an EARLY WRITE cycle.
The four data inputs and four data outputs are routed
through four pins using common I/O, and pin direction is
controlled by WE and OE.

• Part Number Example: MT4LC4007JDJ-7 S

-6
-7
-8

9

A1
A2
A3
Vee

DJ
TG

SPEED

AO

D02

None
S

• Packages
Plastic SOJ (300 mil)
Plastic TSOP (300 mil)

WE
RAS
A9

1
2
3
4
5

DOl

PAGE ACCESS
PAGE operations allow faster data operations (READ,
WRITE or READ-MODIFY-WRITE) within a row-addressdefined (AO-A9) page boundary.
The PAGE cycle is always initiated with a row-address
strobed-in by RAS followed by a column-address
strobed-in by CAS. CAS may be toggled-in by holding
RAS LOW and strobing-in different column-addresses,
thus executing faster memory cycles. Returning RAS
HIGH terminates PAGE operation.

GENERAL DESCRIPTION
I

The MT4LC4007J(S) is specially designed to operate from
3.0V to 3.6V for low-voltage memory systems. It is a randomly accessed solid-state memory containing 4,194,304
bits organized in a x4 configuration with optional SELF
REFRESH. During READ or WRITE cycles, each of the 4
memory bits (1 bit per DQ) is uniquely addressed through
the 20 address bits, which are entered 10 bits (AO-A9) at a
MT4LG40Q7J(S}

D12.pmS- Rev. 2/95

1-15

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

m

c
o
C

lJ

»
s:

PRELIMINARY

•

m

c
o
c
::c

»
s

EDO PAGE MODE
The MT4LC4007J provides EDO PAGE MODE, which is
an accelerated FAST PAGE MODE cycle. The primary
advantage of EDO is the availability of data-out even after
CAS goes back HIGH. EDO provides for CAS precharge
time (tcP) to occur without the output data going invalid.
This elimination of CAS output control provides for pipeline READs.
PAGE MODE DRAMs have traditionally turned the output buffers off (High-Z) with the rising edge of CAS. EDO
operates as any DRAM READ or FAST-PAGE-MODE
READ, except data will be held valid after CAS goes HIGH,
as long as RAS and OE are held LOW and WE is held HIGH.
OE can be brought LOW or HIGH while CAS and RAS are
LOW, and the DQs will transition between valid data and
High-Z. Using OE, there are two methods to disable the
outputs and keep them disabled during the CAS HIGH

RAs ~:~=~L

_____________________________________

~:t~///41/////////#~/////////////////,@G~;;:A7lll2~WZ7lll2~~~f!l1l:ZZ

"0"

'" ,
DO

time. The first method is to have OE HIGH when CAS
transitions HIGH and keep OE HIGH for tOEHC. This will
tristate the DQs and they will remain tristate, regardless of
OE, until CAS falls again. The second method is to have
OE LOW when CAS transitions HIGH. Then OE can pulse
HIGH for a minimum of toEP anytime during the CAS
HIGH period and the DQs will tristate and remain tristate,
regardless of OE, until CAS falls again (please reference
Figure 1 for further detail on the toggling OE condition).
During cycles other than PAGE-MODE READ, the outputs
are disabled at toFF time after RAS and CAS are HIGH, or
twHZ after WE transitions LOW. The tOFF time is referenced from the rising edge of RAS or CAS, whichever
occurs last. WE can also perform the function of turning off
the output drivers under certain conditions, as shown in
Figure 2.

~:gt

DE

.'

'.ALI~IDD:~:(AJ

I
I

------~LJi~

I

"'"

'''I'~";,

"UODm('1

A

~:r-

I

The DOs go back to
Low-Z if tOES is met.

VALID DATA (C)

VALID DATA (D)

II~

'-----------+A;}~-------

The DOs remain High-Z
untillhe next CAS cycle
jf toEHC is mel.

I
The DOs remain High-Z
until the next CAS cycle
iftOEP is met.

~

Oo"N'T CARE

~

UNDEFINED

Figure 1
OUTPUT ENABLE AND DISABLE

MT4lC4007J(S)
D12.pm5-Rev.2195

1-16

Micron Technology, Inc., reserves Ihe right to change products or specifications wftholJt notice.
©1995, Micron Technology, Inc

PRELIMINARY

REFRESH
The SELF REFRESH mode is terminated by driving RAS
HIGH for a minimum time of tRPS. This delay allows for
the completion of any internal refresh cycles that may be in
process at the time of the RAS LOW-to-HIGH transition. If
the DRAM controller uses a distributed refresh sequence,
a burst refresh is not required upon exiting SELF REFRESH. However, if the DRAM controller utilizes RAS
ONLY or burst refresh sequence, all 1,024 rows must be
refreshed within the average internal refresh rate, prior to
the resumption of normal operation.

Preserve correct memory cell data by maintaining power
and executing any RAS cycle (READ, WRITE) or RAS
refresh cycle (RAS ONLY, CBR, or HIDDEN) so that all
1,024 combinations ofRAS addresses (AO-A9) are executed
within tREF max, regardless of sequence. The CBR and
SELF REFRESH cycles will invoke the internal refresh
counter for automatic RAS addressing.
An optional SELF REFRESH mode is also available on
the MT4LC4007J S. The "5" version allows the user the
choice of a fully static low-power data retention mode, or a
dynamic refresh mode at the extended refresh period of
128ms. The optional SELF REFRESH feature is initiated by
performing a CBR REFRESH cycle, and holding RAS LOW
for the specified tRASS. Additionally, the "5" version allows for an extended refresh perio

s:

PRELIMINARY

MICRON
1-·

•

MT4LC4007J(S)
1 MEG x 4 DRAM

"'""0""""

FUNCTIONAL BLOCK DIAGRAM
EDO PAGE MODE

m
c
0

c~;

:

001
002
003
004

C
::D

~--------------------~~----~OE

l>

s:

AO
A1
A2
A3
A4
AS
A6
A7
AS

1024 x 1024 x 4

A9

MEMORY
ARRAY

Vee

RAS

Vss

TRUTH TABLE
ADDRESSES
IR
IC

DATA-IN/OUT

FUNCTION

RAS

"CAS"

WE"

OE

Standby

H

H-X

X

X

X

X

High-Z

READ

L

L

H

L

ROW

COL

Data-Out

EARLY WRITE

L

L

L

X

ROW

COL

Data-In

L-H

ROW

COL

Data-Out, Data-In

READ WRITE

DQ1-DQ4

L

L

H-L

EDO-PAGE-MODE

1st Cycle

L

H-L

H

L

ROW

COL

Data-Out

READ

2nd Cycle

L

H-L

H

L

n/a

COL

Data-Out

EDO-PAGE-MODE

1st Cycle

L

H-L

L

X

ROW

COL

Data-In

EARLY WRITE

2nd Cycle

L

H-L

L

X

n/a

COL

Data-In

EDO-PAGE-MODE

1st Cycle

L

H-L

H-L

L-H

ROW

COL

Data-Out, Data-In

READ-WRITE

2nd Cycle

L

H-L

H-L

L-H

rVa

COL

Data-Out, Data-In

L

H

X

X

ROW

n/a

High-Z

H

L

ROW

COL

Data-Out

RAS-ONLY REFRESH
HIDDEN

READ

L-H-L

L

REFRESH

WRITE

L-H-L

L

L

X

ROW

COL

Data-In

CBR REFRESH

H-L

L

H

X

X

X

High-Z

SELF REFRESH

H-->L

L

H

X

X

X

High-Z

MT4LC40Q7J(S)
D12.pm5 - Rev. 2195

1-18

Micron Technology, Inc., reserves the right to change products or specifications without nolice.
©1995, Micron Technology, Inc.

PRELIMINARY

MICRON
I ~.

~BSOLUTE

MT 4LC4007 J(S)
1 MEG x 4 DRAM

"'""'"00""

*Stresses greater than those listed under"Absolute Maximum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability.

MAXIMUM RATINGS*

loltage on Any Pin Relative to Vss .............. -l.OV to +4.6V
Jperating Temperature, TA (ambient) .......... O°C to +70°C
;torage Temperature (plastic) .................... -55°C to +150°C
'ower Dissipation ............................................................. lW
;hort Circuit Output Current ..................................... 50mA

m

C

o

C
:::D

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes' 1 , 6 7) (Vee = +3 3V +0 .3V)
~

PARAMETER/CONDITION
I

SYMBOL

MIN

Supply Voltage

Vee

3.0

3.6

V

Input High (Logic 1) Voltage, all inputs

VIH

2.0

Vec+1

V

Input Low (Logic 0) Voltage, all inputs

VIL

-1.0

0.8

V

INPUT LEAKAGE CURRENT
Any input OV ~ VIN ~ Vce+0.5V (All other pins not under test

=OV)

OUTPUT LEAKAGE CURRENT (Q is disabled; OV ~ VOUT ~ Vcc+0.5V)
TTL OUTPUT LEVELS

MT4LC4007J(S)

I D12.pm5-Rev.2195

= -2mA)
I
Low
Voltage
(lOUT
=
2mA)
I
High Voltage (lOUT

1-19

MAX

UNITS

Ii

-2

2

IlA

loz

-10

10

VOH

2.4

IlA
V

0.4

V

VOL

NOTES

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology,' Inc.

»
s:

PRELIMINARY

-

m

c
o

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: 1, 6, 7) (Vcc = +3.3V ±0.3V)

MAX

PARAMETER/CONOITION

-6

-7

-8

UNITS

NOTES

.lcc1

1

1

1

mA

Icc2
Icc2
(S only)

500
100

500
100

500
100

~

SYM

STANDBY CURRENT: (TTL)
(RAS = CAS = VIH)

C

STANDBY CURRENT: (CMOS)
(RAS = CAS = Other Inputs = Vcc -0.2V)

»
s:

OPERATING CURRENT: Random READIWRITE
Average power supply current
(RAS, CAS, address cycling: tRC = tRC [MIN])

Icc3

80

70

60

mA

3,4,
30

OPERATING CURRENT: EDG PAGE iv10DE
Average power supply current
(RAS = VIL, CAS, address cycling: tpc = tpc [MIN])

Icc4

60

50

40

mA

3,4,
30

REFRESH CURRENT: RAS ONLY
Average power supply current
(RAS cycling, CAS = VIH: tRC = tRC [MIN])

Iccs

80

70

60

mA

3,30

REFRESH CURRENT: CBR
Average power supply current
(RAS, CAS, address cycling: tRC = tRC [MIN])

Iccs

80

70

60

mA

3,5

Icc?
(S only)

150

150

150

~

3,5,
28

Icc8
(S only)

150

150

150

~

5,29

::D

REFRESH CURRENT: Extended (S version only)
Average power supply current during Extended Refresh:
CAS = 0.2V or CBR cycling; RAS = tRAS (MIN); WE= Vcc -0.2V;
AO-A9, OE, and DIN = Vcc -0.2V or 0.2V (DIN may be left open);
IRC = 12511S (1,024 rows at 12511S = 128ms)
REFRESH CURRENT: SELF (S version only)
Average power supply current during SELF REFRESH:
CBR cycle with IRAS <': IRASS (MIN) and CAS held LOW;
WE = Vcc -0.2; AO-A9,OE, and DIN = Vcc -0.2V or 0.2V
(DIN may be left open)

~

CAPACITANCE
PARAMETER

SYMBOL

MAX

UNITS

NOTES

Input Capacitance: AO-A9

CI1

5

pF

2

Input Capacitance: RAS, CAS, WE, OE

CI2

7

pF

2

InpuVOutput Capacitance: DO

CIO

7

pF

2

MT4LC4007J(S)
D12.pm5- Rev. 2195

1-20

Micron Technology, inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

PRELIMINARY

MICRON

1-·

MT4LC4007J(S)
1 MEG x 4 DRAM

",""CCO,",

::LECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vee = +3.3V ±0.3V)
AC CHARACTERISTICS
PARAMETER
Access time from column-address
Column-address setup to CAS precharge
during WRITE
Column-address hold time (referenced to RAS)
Column-address setup time
Row-address setup time
Column-address to WE delay time
Access time from CAS
Column-address hold time
CAS pulsewidth
RAS lOW to "don't care" during
SELF REFRESH cycle
CAS hold time (CBR REFRESH)
CAS to output in low-Z
Data output hold after CAS lOW
CAS precharge time
Access time from CAS precharge
CAS to RAS precharge time
CAS hold time
CAS setup time (CBR REFRESH)
CAS to WE delay time
Write command to CAS lead time
Data-in hold time
Data-in hold time (referenced to RAS)
Data-in setup time
Output disable
Output Enable time
OE hold time from WE during
READ-MODIFY-WRITE cycle
OE HIGH hold time from CAS HIGH
OE HIGH pulse width
OE lOW to CAS HIGH setup time
Output buffer turn-off delay
OE setup prior to RAS during
HIDDEN REFRESH cycle
EDO-PAGE-MODE
READ or WRITE cycle time
EDO-PAGE-MODE
READ-WRITE cycle time
Access time from RAS
RAS to column-address delay time
Row-address hold time
Column-address to RAS lead time
RAS pulse width

,IMT4LC4007J(S)

b12.pm5 - Rev. 2/95

-6

-7
MIN

MAX

SYM
tAA

MIN

tACH

15

15

20

tAR

45
0
0
55

50
0
0
65

55
0
0
70

tASC
tASR
tAWD
tCAC
tCAH
tCAS

MAX

-8

30

tcHD
tcHR
tClZ
tCOH
tcp

10
3
5
10

10,000

22
15
15
10

10,000

10
3
5
10

MAX

40

35

18
10
10
10

MIN

22
15
15
10

10,000

10
3
5
10

UNITS
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

tOEH

15

20

20

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

tOEHC
tOEP
toES
tOFF
tORD

10
10
5
3
0

10
10
5
3
0

10
10
5
3
0

ns
ns
ns
ns
ns

tpc

25

33

35

ns

tpRWC

85

100

105

ns

tRAC
tRAD
tRAH
tRAl
tRAS

15
10
30
60

tCPA
tCRP
tCSH
tCSR
tCWD
tCWl
tDH
tDHR
tDS

40

35
10
50
10
40
15
10
45
0

10
55
10
50
20
15
55
0
15
15

toD
tOE

15

60
30

10,000

1-21

45
10
65
10
50
20
15
60
0

20
20

15
10
35
70

20

70
35

10,000

20
20

15
10
40
80

20

80
40

10,000

ns
ns
ns
ns
ns

NOTES

m
c

o
C

::D

21
15

29
5

16

5
21
22
22
27
23
26

20

14
18

Micron Technology, Inc., reserves the right to change pToducts or specifications without notice.
©1995, Micron Technology, Inc.

»
s:

PRELIMINAR'Y

MICRON

1-·

-

m
c
o
C
JJ

l>

s:

"'""'00'

MT4LC4007J(S)
1 MEG x 4 DRAM

K

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vee

=+3.3V ±0.3V)

AC CHARACTERISTICS
PARAMETER
'.,

AAS pulse width

(EDO PAGE MODE)
RAS pulse width during
SELF REFRESH cycle

RimdomREAD or WRITE cycle time
RAS to CAS delay time

tRASP
tRASS
tRC

Read command hold time (referenced to CAS)

tRCD
tRCH

Read command setup time
Refresh period (1,024 cycles)

tRCS
tREF

Refresh period (1,024 cycies) S version

'REF
tRP

RAS precharge time
RAS to CAS precharge time

tRPC

RAS precharge time during
SELF REFRESH cycle

tRPS

Read command hold time (referenced to RAS)

tRRH

RAS hold time
READ WRITE cycle time

tRSH

RAS to WE delay time

tRWC
tRWD

Write command to RAS lead time
Transition time (rise or fall)

tRWL
tT

Write command hold time

twCH
tWCR

Write command hold time (referenced to RAS)
WE command setup time
Output disable delay from WE (CAS HIGH)

twcs
tWHZ

Write command pulse width
WE pulse width for output
disable when CAS HIGH

twP
twpz

WE hold time (CBR REFRESH)

tWRH

WE setup time (CBR REFRESH)

tWRP

MT4lC4007J(S)
D12.pmS - Rev. 2/95

-7

-6

SYM

MIN
60
100

MAX
100,000

110
20
0
0

45

MIN
70
100
130
20

-8

MAX
100,000

50

0

0

MIN
80
100
150
20
0
0

16
128

16
128
50
0
130

60
0
150

0
15
150
85
15
2
10
45
0
3
10
10

0
20
180
100
20
2
15
55
0
3'
15
10

0
20
200
110
20
2
15
60
0
3
15
10

15

50

15

UNITS

NOTES

ns
~s

29

ns',

60

16
128

40
0
110

50

MAX
100,000

ns

17

ns
ns

19

ms
ms

".

ns
ns
ns

29

ns
ns

19

ns

50

ns

21

ns
ns

9,10

ns
ns
ns

15

21,27

ns'
ns
ns
i

10
10

10
10

1-22

10
10

ns
ns

25
25

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

i
I

PRELIMINARY

MICRON
1-·

MT 4LC4007 J(S)
1 MEG x 4 DRAM

"'"'0",","

~UTES

specified IRAD (MAX) limit, access time is controlled
exclusively by IAA.
19. Either IRCH or IRRH must be satisfied for a READ
cycle.
20. IOFF (MAX) defines the time at which the output
achieves the open circuit condition and is not
referenced to VOH or VOL.
21. IWCS, tRWD, IAWD and ICWD are restrictive
operating parameters in LATE WRITE and READMODIFY-WRITE cycles only. If twCS? twcs (MIN),
the cycle is an EARLY WRITE cycle and the data
output will remain an open circuit throughout the
entire cycle. IftRWD? IRWD (MIN), IAWD? IAWD
(MIN) and tCWD ? ICWD (MIN), the cycle is a
READ-MODIFY-WRITE and the data output will
contain data read from the selected cell. If neither of
the above conditions is met, the state of data-out is
indeterminate. OE held HIGH and WE taken LOW
after CAS goes LOW results in a LATE WRITE (OEcontrolled) cycle.
22. These parameters are referenced to CAS leading edge
in EARLY WRITE cycles and WE leading edge in
LATE WRITE or READ-MODIFY-WRITE cycles.
23. If OE is tied permanently LOW, LATE WRITE or
READ"MODIFY-WRITE operations are not permissible and should not be attempted.
24. A HIDDEN REFRESH may also be performed after a
WRITE cycle. In this case, WE =LOW and OE =HIGH.
25. IWTS and twTH are setup and hold specifications for
the WE pin being held LOW to enable the JEDEC test
mode (with CBR timing constraints). These two
parameters are the inverts of IWRP and twRH in the
CBR REFRESH cycle.
26. LATE WRITE and READ-MODIFY-WRITE cycles
must have both tOD and tOEH met (OE HIGH during
WRITE cycle) in order to ensure that the output
buffers will be open during the WRITE cycle. If OE is
taken back LOW while CAS remains LOW, the DQs
will remain open.
27. The DQs open during READ cycles once tOD or IOFF
occur.
28. Extended refresh current is reduced as IRAS is
reduced from its maximum specification during the
extended refresh cycle.
29. If the DRAM controller uses a burst refresh, a burst
refresh of all rows must be executed upon exiting
SELF REFRESH.
30. Column-address changed once each cycle.

All voltages referenced to Vss.
, This parameter is sampled. Vee = +3.3V ±O.3V;
f= 1 MHz.
\. Ice is dependent on cycle rates.
L Ice is dependent on output loading and cycle rates.
Specified values are obtained with minimum cycle
time and the outputs open.
J. Enables on-chip refresh and address counters.
J. The minimum specifications are used only to indicate
cycle time at which proper operation over the full
temperature range is assured.
7. An initial pause of lOOlls is required after power-up
followed by eight RAS refresh cycles (RAS ONLY or
CBR with WE HIGH) before proper device operation
is assured. The eight RAS cycle wake-ups should be
repeated any time the tREF refresh requirement is
exceeded.
3. AC characteristics assume IT = 2.5ns.
9. VlH (MIN) and VIL (MAX) are reference levels for
measuring timing of input signals. Transition times
are measured between VIH and VIL (or between VIL
and VIH).
10. In addition to meeting the transition rate specification, all input signals must transit between VIH and
VIL (or between VIL and VIH) in a monotonic manner.
11. If CAS and RAS = VlH, data output is High-Z.
12. If CAS = VIL, data output may contain data from the
last valid READ cycle.
13. Measured with a load equivalent to two TTL gates
I
and 100pF. Output reference voltages are 0.8V for a
low level and 2.0V for a high level.
'14. Assumes that IRCD < IRCD (MAX). If IRCD is greater
: than the maximum recommended value shown in this
table, lRAC will increase by the amount that IRCD
I
exceeds the value shown.
15. Assumes that IRCD? IRCD (MAX).
16. If CAS is LOW at the falling edge of RAS, Q will be
. maintained from the previous cycle. To initiate a new
I
cycle and clear the data-out buffer, CAS must be
. pulsed HIGH for ICp.
\17. Operation within the IRCD (MAX) limit ensures that
IRAC (MAX) can be met. IRCD (MAX) is specified as
a reference point only; if IRCD is greater than the
specified IRCD (MAX) limit, then access time is
controlled exclusively by ICAe.
Operation within the lRAD (MAX) limit ensures that
IRCD (MAX) can be met. IRAD (MAX) is specified as
a reference point only; if IRAD is greater than the
1

~I

t:~;4LC4007J(S)

.

,

f

~

~ D12.pm5 - Rev. 2/95

1-23

Micron Technology, Inc., reserves the righllo change products or specifications without notice.
©1995, Micron Technology, Ino•

m

c

o

C
JJ

l>
S

PRELIMINAR'J

•

READ CYCLE

m
c

RC
tRP

tRAS

RAS

0
C
::xJ

V ,H
V"

\

leSH

1

'RSH

'CRP
CAS

»
s:

V,H
V"

=---.1
tAR

I~
ADDR

V,H
V"

.

~
i

IRAD

lAse.]

tRAH~1
~W!j'II!f

ROW

V,H
V"
NOTE 1

I.

V!!IIIfI

,I

I

i'

COLUMN

~I

tRCS

\

~I

Y
I tRAL • [
~l

~

~),{

I~ tWRP.:I· tWRH~1
WE

tCAS

'ACD

[.

I

tAA

I

'RAG

ROW

\

NOTE 2

~

tCAG

DO

~gt ::::-------OPEN------~~~VA~LlD~DA~TAj_--OPEN---

DE

777
TT7
TT7
TT7
~:t =7T;1//'7TW/
W/;
1/;7Ti
W/;77011/;'7TW/;777W/
0j7TiW/7Ti
W/;""1!/7771!/777W/
1;j77lW/;770W/'7TTW
;0lWIIIIII/1/1/11111/I/lIIIINII/I/;

1-

J

tOE

too

EARLY WRITE CYCLE
RC
'RP

'RAS

\
'oSH

J~

tRCD

'AR

ADDR

~I

I~ ~I

~i~ .w~

ROW

f ~::
I

tRAD

W/#~

I

I

IRAl

f

I

I~I

tACH

K0@';

COLUMN

ROW

'oWL

I
~ ~

I
I

~I

I
I

'RWl
'WeR

I~
'WP

~

DONTCARE

tIl&l UNDEFINED
NOTE:

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for tWRP and 'WRH. This design implementation will facilitate compatibility with
future EDO DRAMs.
2. tOFF is referenced from rising edge of RAS or CAS, which ever occurs last.

MT4LC4007J(S)

D12.pm5 - Rev. 2/95

1-24

Micron Technology, Inc., reserves the right to change products or specifications without notice
©1995, Micron Technology, Inc

PRELIMINARY

IC::I=ICN
'"

MT4LC4007J(S)
1 MEG x 4 DRAM

,

READ WRITE CYCLE
(LATE WRITE and READ-MODIFY-WRITE cycles)

00

OE

~igr :~--------OPEN--:--4lm~~~~~;j

OPEN---

~:~ :J/"w/$$/ffllffll//$/$/$.1'lM"ffllr
EDO-PAGE-MODE READ CYCLE

~

DON'T CARE

~

UNDEFINED

1. Although WE is a "don't care" at RAStime during an accesscycIEi·~REAOor WRITE), the system designer
should implement WE HIGH fot 'WRP and'WRH: This'desigh implementation will facilitatacompatibility with
future EDO DRAMs.

1-25

Micron TechnolOgy, Inc., reserves the rightto change products or specifications Without notice.
Cl1995. Micron Technology, 1nc.

PRELIMINAR

MIC:RON

1-·

MT4LC4007J(S)
1 MEG x 4 DRAM

'" "

-

EDO-PAGE-MODE EARLY-WRITE CYCLE

m
C

o
C
::D

»
s:
~:~

OE

='#I!!//I!I!II!!I!!I!I!III!/i/i/ii/i/i/i1/i/iI!ll!!I1!///i/i/i/l/II!I!!/ill!!////II!/iIII!/i/iII!/i/i/i//11/!I!I!!II!!/ih
EDO-PAGE-MODE READ-WRITE CYCLE
(LATE WRITE and READ-MODIFY-WRITE cycles)

_

vIH------.

RAS VIL -

1}------;:'c=sH:----------;:,PC-:-;/r.::'PR=wc::-:N""oT""'E'-----.:'R=SH------1
~H----'-_'=RCO"---_I--""CA"'-S_ _I ~

'cAs

~11_----",tcAS"----_1

00 ~:gr ::-~_-_

NOTE:

OPEN-

~

DON'T CARE

~

UNDEFINED

1.lpC is fo; LATE WRITE cycles only.
2. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE}. the system designer
should implement WE HIGH for IWRP e8ncl 'WRI·( This design implementation will facilitate compatibility with
future EDO DRAMs.

MT4LC4007J(S)

D12.pm5 - Rev. 2195

1-26

Micron Technology, Inc., reserves the right to change products or specifications without notice
©1995, MicrQn Technology, Inc

~

PRELIMINARY

-

EDO-PAGE-MODE READ-EARLY-WRITE CYCLE
(Pseudo READ-MODIFY-WRITE)

m

c

'RASP

RAS

o

V1H_
VILtCSH

tpc

~

CAS

tpc

1l===tC=P==l ~ r-':t--,[

'ACD

VIH-

V1L-

C
JJ

»

S
ADDR

DQ

OE

~:r

~\gt

-----OPEN

----:=-C~V~AL~ID~DA~TA~IAI==:jC~~j

~:r= ~/&/$$//$j;lffii~
HIDDEN REFRESH CYCLE 24
(WE =HIGH; OE = LOW)
IREAD)

(REFRESH)

tRAS
l~

.

IRCD

:~
~

ADDR

~IHIL-~lr---I~

tRAH

tRAS

1

IRSH

tAR
tRAD

.~

~II

II t~LI
~II~

tCHR

_.j

~

__

too

}$$//$$i
r-.lOTE:
I
I

I:ZZJ

DON'T CARE

~

UNDEFINED

1~ Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for IWRP and twRH~ This design implementation will facilitate compatibility with
future EDO DRAMs~

I

~T4LC4007J('S)

I 12.pm5-Rev. 2195

1-27

Micron Technology, inc., reserves the right to change products or specifications without notice.

©1995, Micron Technology, Inc.

PRELIMINAR't

-

CBR REFRESH CYCLE
(Addresses and OE = DON'T CARE)

m

o
o
o

RP

----.1

:IJ

»
s:

CAS

..-I

0:;:~~ 1

RAS

,I

~~

OPEN---fIIC----------

I~II~I

I~II~I

'o//j////II////////J///J}

)'/////////////-

.

Y

II

DO

,

~r29~

~:~_

~:~

RP

III

1

'RPC

WE

RAS

WII/I!IIIII!IIIII/J///II//I////2

RAS-ONL Y REFRESH CYCLE
(WE = DON'T CARE)

:::d
ADDR

DQ

~:t ::wd

~gt

'w
•

'ASR

'RAH

ROW'

tWRP

WE

"~

!"
II(I

"~ "~

'~;///////m/;lm/;l;/$U/////$;I//////,..0(
OPEN

'WRH

'WAP

ROW

III
\

tWRH

~:t Ju;@///,d----:T;;--Wmm;///01///01;1;///$$;/'/;1///01)- - .
~

DON'T CARE

m

UNDEFINED

NOTE:

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with
future EDO DRAMs.

MT4LC4007J{S)
D12.pm5 - Rev, 2195

1-28

Micron Technology, Inc., reserves the right to change products or specifications without notice. ©1995, Micron Technology, Inc.

PRELIMINARY

-

SELF REFRESH CYCLE
(Addresses and OE = DON'T CARE)

m

c

o
C

::D

l>
S
~

DON'TCARE

~

UNDEFINED

I

I

I

!NOTE:

1. Once tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.
2. Once tRPS is satisfied, a complete burst of all rows should be executed .

.1

rl-MT4-LC4-007J-(S)-------------1.-29---M-icro-cT'-Cho-Olog-y,ln-c.,r-eserv-"-th,-right-t"-h"-9,pro-"-"",-,,p-ecil-icatiO-C'-Wilho-"c-olice.
: D12.pm5 - Rev. 2f95

I

I

©1995, Micron Technology, Inc,

PRELIMINARY

-

READ CYCLE
(with WE-controlled disable)

m
c

RAS

V,H

V1L _

0

teRP

C

::c

CAS

VIH -

VIL -

1

toSH

I.

teAs

l>

tcp

'I

s:

ADDR

COLUMN

1-----7---"""---.-,1

I

WE

DO

~gt -'-------OPEN-------~~=~~~1

op::CLZ

'b

1_ too

1$/1111$;;1111/111III!I//;
IZZI DON'T CARE
~

NOTE:

UNDEFINED

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for IWRP and IWRH. This design implementation will facilitate compatibility with
future EDO DRAMs.

MT4lC4007J(S)
D12.pm5- Rev. 2195

1-30

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

PRELIMINARY

MICRON

1-·

MT4LC4M4E8(S)
4 MEG x 4 DRAM

'"'"""""'''

DRAM

4 MEG x 4 DRAM

24/26-Pin SOJ
(DA-2)

24/26-Pin TSOP
(DB-2)

Vee

Vss

Vee

Vss

DQ1
DQ2

DQ4
DQ3
CAS

DQ1
DQ2

DQ4
DQ3
CAS

OE

RAS
NC

WE

RAS
NC

OPTIONS

MARKING

• Timing
60ns access
70ns access

AlO
AD
A1
A2
A3

-6

Vee

A9
AS
A7
A6
AS
A4
Vss

WE

OE

A9

A1D
AD
A1
A2
A3
Vee

-7

• Packages
Plastic SOl (300 mil)
Plastic TSOP (300 mil)

DJ
TG

• Refresh Rate
Standard 32ms period
SELF REFRESH and 128ms period

None
S

• Part Number Example: MT4LC4M4E8DJ-7 S
If WE goes LOW after CAS goes LOW, data-out (Q) is
activated and retains the selected cell data as long as OE
remains LOW and RAS or CAS remains LOW (regardless of
WE). This late WE pulse results in a READ WRITE cycle. If
WE toggles LOW after CAS goes back HIGH, the output
pins will open (High- Z) until the next CAS cycle, regardless
ofOE.
The four data inputs and the four data outputs are routed
through four pins using common I/O, and pin direction is
controlled by WE and OE.

KEY TIMING PARAMETERS
I

I

SPEED

tRC

tRAC

tpc

tAA

tCAC

tCAS

I

-6
-7

110ns
130ns

60ns
70ns

25ns
30ns

30ns
35ns

15ns
20ns

10ns
12ns

GENERAL DESCRIPTION
The MT4LC4M4E8(S) is a randomly accessed solid-state
memory containing 16,777,216 bits organized in a x4 configuration. The MT4LC4M4E8(S) RAS is used to latch the
first 11 bits and CAS the latter 11 bits. READ and WRITE
cycles are selected with the WE input. A logic HIGH on
WE dictates READ mode while a logic LOW on WE dictates
WRITE mode. During a WRITE cycle, data-in (D) is latched
by the falling edge of WE or CAS, whichever occurs last. If
WE goes LOW prior to CAS going LOW, the output pins
remain open (High- Z) until the next CAS cycle, regardless
ofOE.
MT4LC4M4E8(S)
D24.pmS - Rev. 2/95

PAGE ACCESS
PAGE operations allow faster data operations (READ,
WRITE or READ-MODIFY-WRITE) within a row-addressdefined page boundary. The PAGE cycle is always initiated
with a row-address strobed-in by RAS followed by a column-address strobed-in by CAS. CAS may be toggled-in
by holding RAS LOW and strobing-in different columnaddresses, thus executing faster memory cycles. Returning
RAS HIGH terminates the PAGE MODE of operation.

1-31

:e

•
c
o

PIN ASSIGNMENT (Top View)

• Industry-standard x4 pinout, timing, functions and
packages
• High-performance CMOS silicon-gate process
• Single +3.3V ±0.3V power supply
• Low power, O.4mW standby; 150mW active, typical
• All inputs, outputs and clocks are TTL-compatible
• Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR),
HIDDEN and SELF
2,048-cycle (11 row-,ll column-addresses)
• Optional SELF REFRESH, Extended Refresh rate (4x)
• Extended Data-Out (EOO) PAGE access cycle
• 5Vtolerant I/Os (5.5V maximum VIH level)

m
m

3.3V, EDO PAGE MODE,
OPTIONAL SELF REFRESH
FEATURES

z

Micron Technology, Inc" reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

C
JJ

»
s:

PRELIMINARY

z

m

:e

•

m

c
o
c
:a

»
s:

EDO PAGE MODE

REFRESH

TheMT4LC4M4E8(S) provides EDOPAGE MODE which
is an accelerated FAST PAGE MODE cycle, The primary
advantage of EDO is the availability of data-out.even after
CAS returns HIGH. EDO allows CAS precharge time (tcP)
to occur without the output data going invalid. This elimination of CAS output control allows pipeline READs.
FAST-PAGE-MODE DRAMs have traditionally turned
the output buffers off (High-Z) with the rising edge of
CAS. EDO-PAGE-MODE DRAMs operate Similarly to
FAST-PAGE-MODE DRAMs, except data will remain valid
or become valid after CAS goes HIGH during READs,
provided RAS and OE are held LOW. If OE is pulsed while
RAS and CAS are LOW, data will toggle from valid data to
High-Z and back to the same valid d~ta. If OE is toggled or
pulsed after CAS goes HIGH while RAS remains LOW,
data will transition to and remain High-Z (refer to Figure 1).
WE can also perform the function of disabling the output
devices under certain conditions, as shown in Figure 2.
If the DQ outputs are wire OR'd, OE must be used to
disable idle banks of DRAMs. Alternatively, pulsing WE to
the idle banks during CAS high time will also High-Z the
outputs. Independent of OE control, the outputs will disable after tOFF, which is referenced from the rising edge of
RAS or CAS, whichever occurs last.

Preserve correct memory cell data by maintaining power
and executing a RAS cycle (READ, WRITE) or RAS refresh
cycle (RAS ONLY, CBR, or HIDDEN) so that all 2,048
combinations of RAS addresses are executed at least every
32ms, regardless of sequence. The CBR REFRESH cycle will
invoke the refresh counter for automatic RAS addreSSing.
An optional SELF REFRESH mode is also available on the
MT4LC4M4E8 S. The "5" version allows the user the choice
of a fully static low-power data retention mode, or a dynamic refresh mode at the extended refresh period of 128ms
four times longer than the standard 32ms specification.
The optional SELF REFRESH feature is initiated by
performing a CBR REFRESH cycle, and holding RAS LOvV
for the specified tRASS. Additionally, the "S" version allows for an extended refresh rate of 62.5f..ls per row if using
distributed CBR REFRESH. This refresh rate can be applied
during normal operation or during a standby or BATTERY
BACKUP mode.
The SELF REFRESH mode is terminated by driving RAS
HIGH fora minimum timeoftRPS(~tRC). This delay allows
for the completion of any internal refresh cycles that may be
in process at the time of the RAS LOW-to-HIGH transition.
If the DRAM controller uses a distributed CBR REFRESH
sequence, a burst refresh is not reqUired upon exiting SELF
REFRESH mode. However, if the DRAM controller utilizes
RAS ONLY or burst refresh sequence, all 2,048 rows must
be refreshed within 300f..ls prior to the resumption of normal
operation.

MT4lC4M4E8(S)
D24.pmS- Rev. 2195

1-32

Micron Technology, Inc., reserves the righllo change products or specifications wH:hout notice.
©1995, Micron Technology, Inc.

PRELIMINARY

MIC:RON
I~·

MT4LC4M4E8(S)
4 MEG x 4 DRAM

"'""'''"''''

~:~=~~

RAs

____________________________-'-_______________

z

m
:E

•
m

\COLUMN (S)

DO

~:gr

:-----

'".::.
~

--------~.

OE

~:~-

II

\COLUMN{C)

VAU~D : :(B)

VAUD DATA (A)

l~

'°','o,

~--"=--_ _ _ _ _ _ _ _~

COLUMN (D)

:c

VALlDDA1sTA(C)
too

VAUODATAlD)

-

~_ _ _ _ _ _ _---;I toE; ~--------

!
The DOs go back to
Low-Z if tOES is met.

c
o
c

!

The DOs remain High-Z
until the next CAS cycle
if tOEHC is met.

The DOs remain High-Z
until the next
cycle
if tOEP is met.

CAs

Figure 1
OUTPUT ENABLE AND DISABLE

~

~i~:~~

_______________________________________________

ADDR

DO ~:g~-

______

VALID DATA (Al

VALID DATA (8)

6E ~:t:--------

,--------+--1_~, I~I'

t.WPZ
~
tWHZ

~ ,I

,I

I

/

/ /

____-_-_--_
+-----__
_
-+--_________I-______-T_'--_ _ _ _ _ __
I

WE may be used to disable the DOs to prepare

The DOs go to High-Z if \iVE falis, and if twpz is met,
will remain High-Z until CAS goes LOW with
WE HIGH (i.e., until a READ cycle is initiated).

for input data in an EARLY WRITE cycle. The DOs
will remain High-Z until GAS goes LOW with
WE HIGH (Le., until a READ cycle is initiated).

~

DON'TCAHE

!&&\l

UNDEFINED

Figure 2
WE CONTROL OF DOs

MT4LC4M4E8(S)
D24.pm5 - Rev. 2/95

1-33

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, InC.

»
s::

PRELIMINARY

z
m
:E

MICRON
1-·

•

MT4LC4M4E8(S)
4 MEG x 4 DRAM

",""",00"",

FUNCTIONAL BLOCK DIAGRAM
WE~------------------------------~--------------+l----~

m

DQ1
DQ2
DQ3
DQ4

CAS~~----------------------------1-~----------~

c

o

'--____.----0

c

:c
l>

OE

AO~~~~
~

s:

A1
A2
A3

'------""-"".,

A4

AS
A6
A7

AS
A9
A10

RAS

TRUTH TABLE
ADDRESSES
IC

DATA-IN/OUT

RAS

CAS

WE

Of

tR

Standby

H

H--+X

X

X

X

X

High-Z

READ

L

L

H

L

ROW

COL

Data-Out

EARLY WRITE

L

L

L

X

ROW

COL

Data-In

READ WRITE

L

L

H--+L

L--+H

ROW

COL

Data-Out, Data-In

FUNCTION

DQ1-DQ4

EDO-PAGE-MODE

1st Cycle

L

H--+L

H

L

ROW

COL

Data-Out

READ

2nd Cycle

L

H--+L

H

L

n/a

COL

Data-Out

EDO-PAGE-MODE

1st Cycle

L

H--+L

L

X

ROW

COL

Data-In

EARLY-WRITE

2nd Cycle

L

H--+L

L

X

n/a

COL

Data-In

EDO-PAGE-MODE

1st Cycle

L

H--+L

H--+L

L--+H

ROW

COL

Data-Out, Data-In

READ-WRITE

2nd Cycle

L

H--+L

H--+L

L--+H

n/a

COL

Data-Out, Data-In

L

H

X

X

ROW

n/a

High-Z

L

H

L

ROW

COL

Data-Out

RAS-ONLY REFRESH
HIDDEN

READ

L--+H--+L

REFRESH

WRITE

L--+H-L

L

L

X

ROW

COL

Data-In

CBR REFRESH

H-L

L

H

X

X

X

High-Z

SELF REFRESH

H-L

L

H

X

X

X

High-Z

MT4LC4M4E8(S)
D24.pm5 - Rev. 2195

1-34

Micron Technology, Inc., reserves the right to change products or specilicatlons without notice.
©1995, Micron Technology, Inc.

PRELIMINARY

MICRON

1-·

'"

MT4LC4M4E8(S)
4MEGx4DRAM

W

z

m

=e

'Stresses greater than those listed under"Absolute Maximum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sectionS of this speCification is not
implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability. -

A.BSOLUTE MAXIMUM RATINGS*
Voltage on Vee pin Relative to Vss ................. -IV to +4.6V
Voltage on Inputs or I/O pins
Relative to Vss ........ :............................................ -IV to +S.5V
Operating Temperature, TA(ambient) .......... O°C to +70°C
Storage Temperature (plastic) ................... -SsoC to +IS0°C
Power Dissipation ............................................................. IW
Short Circuit' OutputCurrent ..................................... SOmA

m
c

o
C

::D

ELECtRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: 1, 6, 7) (Vce = +3.3V ±0.3V)

PARAMETER/CONDITION

SYMBOL

MIN

MAX

Supply Voltage

Vee

3.0

3.6

V

Input High (Logie 1) Voltage, all inputs (including NC pins)

VIH
VILo

2.0
-1:0

5.5

V

0.8

V

II

-2

2

IlA

10

!lA

Inpllt Low (Logic 0) Voltage, all inputs (including f\jC pins)
INPUT LEAKAGE CURRENT
-Any input OV ::; VIN ::; 5.5V
(All other pins not under test = OV)
OUTPUT LEAKAGE CURRENT (Q is disabled; OV < VOUT < 5.5V)

loz

I- -10

OUTPUT LEVELS
Output High Voltage (lOUT = -2mA)
Output Low Voltage (lOUT = 2mA)

VOH

'2,.4

MT4LC4M4E8(S),

D24.pm5 - Rev. 2/95

VOL

1-35

UNITS NOTES

V

0.4

V

Micron Technology, Inc., reserves the right to change prOducts or specifications without notice.
@1995,MicronTechnology,Inc.

l>
-=:

PRELIMINARY

z

m

MICRON
1-·

MT4LC4M4E8(S)
4 MEG x 4 DRAM

,~,

~--------------------------------------

-

m

c
o

C
::D

»
:s::

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: 1, 6, 7) (Vcc= +3.3V±0.3V)
,"
"

MAX
SYMBOL

-6

-7

UNITS

ICC1

,2

2

mA

ICC2
Icc2
(S only)

500
150

500
150

).lA'

OPERATING CURRENT: Random READIWRITE
Average power supply current
(RAS; CAS, Address Cycling:,IRC= IRC[MIN])

ICC3

120

110

mA

3,4,12

OPERAT!NG CURRENT: fDO PAGE MODE
.l\verage power supply ~urrent
(RAS = VIL, CAS, Address Cycling: IpC = IpC[MIN)

ICC4

110

100

rnA

3,4,12

REFRESH CURRENT: RAS ONLY
Average powersupplycurrent
(RAS Cycling, PAS", VIH:,iRC = IRC [MIN)

'ICC5

120

110

mA

3, 12

REFRESH CURRENT: CBR
Average power supply current
(RAS, CAS, Address Cycling: IRC = IRC [MIN])

Iccs

120

110

mA

3,5

REFRESH CURRENT: Extended (S version only)
Average power supply current, CAS = 0.2Vor CBR cycling;
RAS = IRAS (MIN); WE = Vcc -0.2V; AO-A10, OE and DIN =
Vcc -0.2V orO.2V(DIN may be iaft open); IRC = 62.5J.1.S

ICC7
(Sonly)

300

300

~

3,5

REFRESH CURRENT: SELF (S version only)
Average power supply current, CBR cycling with RAS ~ IRASS(MIN)
and CAS held LOW; WE = Vcc -0.2V; AO-A10,
OE and DIN = Vcc -0.2V or 0.2V(DIN may be left open)

ICC8
(Sonly)

300

300

~

5

PARAMETER/CONDITION
STANDBY CURRENT: (TTL)
(RAS = CAS = VIH)
,

"

"

STANDBY CURRENT: (CMOS)
(RAS = CAS = Other Inputs = Vcc -0.2V)

MT4lC4M4Ea(S)

D24.pmS - Rev. 2195

NOTES

1-36

~

Micron Technology, Inc., reserves the right to change products or specllk:atlons without notice.
@1995,MicronTechnology, Inc.

PRELIMINARY

MICRON
1-·

MT4LC4M4E8(S)
4 MEG x 4 DRAM

"'""'w,'"'

CAPACITANCE
SYMBOL

MAX

UNITS

NOTES

Input Capacitance: Address pins

Cit

5

pF

Input Capacitance: RAS, CAS, WE, OE

CI2

7

pF

Input/Output Capacitance: DO

CIO

7

pF

2
2
2

PARAMETER

z

m

:e

m

c
o
C

:D
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, to, 11, 12) (Vcc =+3.3V ±0.3V)
AC CHARACTERISTICS
PARAMETER
Access time from column-address
Column-address set-up to CAS precharge during WRITE
Column-address hold time (referenced to RAS)
Column-address setup time
Row-address setup time
Column-address to WE delay time
Accesstime from CAS
Column-addresS hold time
CAS pulse width
CAS LOW to "don't care" during SELF REFRESH cycle
CAS hold time (CBR REFRESH)
CAS to output in Low-Z
Data output hold after next CAS LOW
CAS precharge time
. Access time from CAS precharge
CAS to RAS precharge time
CAS hold time
CAS setup time (CBR REFRESH)
CAS to WE delay time
Write command to CAS lead time
Data-in hold time
.
Data-in hold time (referenced to RAS)
Data-in setup time
Output disable
Output Enable
OE hold time from WE during READ'MODIFY-WRITE cycle
OE HIGH hold from CAS HIGH

MT4LC4M4E8(S)
D24.pm5 - Rev. 2195

-7

-6
SYM

MIN

tAA
tACH
tAR
tASC
tASR
tAWD
tCAC
tcAH
tCAS
tCHD
tCHR
tcLZ
tCOH
tcp
tCPA
tCRP
tCSH
tCSR
tCWD
tCWL
tDH
tDHR
IDS
tOD
tOE
IOEH
IOEHC

1-37

MAX

MIN

30
15
45
0
0
55

10
10

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

10,000

20
12
12
15
12
0
5
10

15
15

10,000

40

35
5
50
5
35
15
10
45
0
0

UNITS

35
15
55
0
0
65

15
10
10
15
10
0
5
10

MAX

5
55
5
40
15
12
55
0
0
12
10

15
15

NOTES

20
14

25
5

15

5
20
21
21
22

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

l>
S

PRELIMINARY

z

m

:e

•

m

c
o
C

::D

»
s:

MICRON
1- •

MT4LC4M4E8(S)
4 MEG x 4 DRAM

m~'occ" '"

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vee = +3.3V ±0.3V)
AC CHARACTERISTICS
PARAMETER
OE HIGH pulse width
OE LOW to CAS HIGH setup time
Output buffer turn-off delay
OE setup prior to RAS during HIDDEN REFRESH cycle
EDO-PAGE-MODE READ or WRITE cycle time
EDO-PAGE-MODE READ-WRITE cycle time
Access time from RAS
RAS to column-address delay time
Row-address hoid time
Column-address to RAS lead time
RAS pulse width
RAS pulse width (EDO PAGE MODE)
RAS pulse width during SELF REFRESH cycle
Random READ or WRITE cycle time
RAS to CAS delay time
Read command hold time (referenced to CAS)
Read command setup time
Refresh period (2,048 cycles)
Refresh period (2,048 cycles) S version
RAS precharge time
RAS to CAS precharge time
RAS precharge time during SELF REFRESH cycle
Read commaod hold time (referenced to RAS)
RAS hold time
READ WRITE cycle time
RAS to WE delay time
Write command to RAS lead time
Transition time (rise or fall)
Write command hold time
Write command hold time (referenced to RAS)
WE command setup time
Output disable delay from WE
Write command pulse width
WE pulse to disable at CAS HIGH
WE hold time (CBR REFRESH)
WE setup time (CBR REFRESH)

MT4lC4M4E8(S)

D24.pm5- Rev. 2/95

-7

-6
SYM
tOEP
tOES
tOFF
'ORD
tpc
tpRWC
tRAC
tRAD
tRAH
'RAL
'RAS
'RASP
'RASS
'RC
'RCD
'RCH
'RCS
'REF
'REF
tRP
'RPC
'RPS
'RRH
'RSH
tRWC
'RWD
tRWL
'T
tWCH
tWCR
twcs
twHz
twp
WPZ
tWRH
'WRP

1-38

MIN
10
5
3
0
25
75
12
10
30
60
60
100
110
14

MAX

15

60
30

10,000
125,000

45

0
0

MIN
10
5
3
0
30
85
12
10
35
70
70
100
130
14

15

70
35

10,000
125,000

50

0
0
32
128

40
0
110
0
10
150
80
15
2
10
45
0
0
10
10
10
10

MAX

50

13

32
128
50
0
130
0
12
177
90
15
2
12
55
0
0
12
12
10
10

50

15

UNITS
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

NOTES

J.lS

25

ns
ns
ns
ns
ms
ms
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

13
17

16
18

25
18

20

20

24
24

Micron Technology, Inc., reserves the right to change products or specifications without nolice.

@1995,MicronTechnology,lnc.

PRELIMINARY

UII::::I=ICN
1-·

MT 4LC4M4E8(S)
4 MEG x 4 DRAM

,ec~"OCOC""

NOTES
18. Either tRCH or tRRH must be satisfied for a READ
cycle.
19. tOFF (MAX) defines the time at which the output
achieves the open circuit condition, and is not
referenced to VOH or VOL. It is referenced from the
rising edge of RAS or CAS, whichever occurs last.
20. twcs, IRWD, tAWD and tCWD are not restrictive
operating parameters. twcs applies to EARLY
WRlTE cycles. tRWD, tAWD and tcWD apply to
READ-MODIFY-WRlTE cycles. If tWCS;:: twcs
(MIN), the cycle is an EARLY WRITE cycle and the
data output will remain an open circuit throughout
the entire cycle. If twcs < twcs (MIN) and tRWD ;::
tRWD (MIN), tAWD;:: tAWD (MIN) and tCWD;::
tCWD (MIN), the cycle is a READ-MODIFY-WRlTE
and the data output will contain data read from the
selected cell. If neither of the above conditions is met,
the state of data-out is indeterminate. OE held HIGH
and WE taken LOW after CAS goes LOW results in n
LATE WRITE (OE-controlled) cycle. twcs, tRWD,
tCWD and tAWD are not applicable in a LATE
WRITE cycle.
21. These parameters are referenced to CAS leading edge
in EARLY WRITE cycles and WE leading edge in
LATE WRlTE or READ-MODIFY-WRITE cycles.
22. If OE is tied permanently LOW, LATE WRITE or
READ-MODIFY-WRlTE operations are not permissible and should not be attempted. Additionally, WE
must be pulsed during CAS HIGH time in order to
place I/O buffers in High-Z.
23. A HIDDEN REFRESH may also be performed after a
WRlTE cycle. In this case, WE =LOW and OE =HIGH.
24. twTS and twTH are setup and hold specifications for
the WE pin being held LOW to enable the JEDEC test
mode (with CBR timing constraints). These two
parameters are the inverts of twRP and IWRH in the
CBR REFRESH cycle.
25. Refresh must be completed within the time of three
external refresh rate periods prior to active use of the
DRAM (provided distributed CBR REFRESH is used
when in the active mode). Alternatively, a complete
set of row refreshes must be executed when exiting
SELF REFRESH prior to active use of the DRAM if
anything other than distributed CBR REFRESH is
used in the active mode.

1.
2.
3.
4.

All voltages referenced to Vss.
This parameter is sampled. Vee = +3.3V; f = 1 MHz.
Ice is dependent on cycle rates.
Ice is dependent on output loading and cycle rates.
Specified values are obtained with minimum cycle
time and the outputs open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate
cycle time at which proper operation over the full
temperature range is assured.
7. An initial pause of lOOlls is required after power-up
followed by eight RAS refresh cycles (RAS ONLY or
CBR with WE HIGH) before proper device operation
is assured. The eight RAS cycle wake-ups should be
repeated any time the IREF refresh requirement is
exceeded.
8. AC characteristics assume tT = 2.5ns.
9. VIH (MIN) and VIL (MAX) are reference levels for
measuring timing of input signals. Transition times
are measured between VIH and VIL (or between VIL
and VIH).
10. In addition to meeting the transition rate specification, all input signals must transit between VIH and
VIL (or between VIL and VIH) in a monotonic manner.
11. Column address changed once each cycle.
12. Measured with a load equivalent to two TTL gates,
100pF and VOL = 0.8V and VOH = 2.0V.
13. Assumes that IRCD < IRCD (MAX). If IRCD is greater
than the maximum recommended value shown in this
table, tRAC will increase by the amount that IRCD
exceeds the value shown.
14. Assumes that IRCD;:: IRCD (MAX).
15. If CAS is LOW at the falling edge of RAS, Q will be
maintained from the previous cycle. To initiate a new
cycle and clear the data-out buffer, CAS must be
pulsed HIGH for ICp.
16. Operation within the IRCD (MAX) limit ensures that
IRAC (MAX) can be met. IRCD (MAX) is specified as
a reference point only; if IRCD is greater than the
specified tRCD (MAX) limit, then access time is
controlled exclusively by tCAC, provided lRAD is not
exceeded.
17. Operation within the IRAD (MAX) limit ensures that
tRAC (MIN) and ICAC (MIN) can be met. lRAD
(MAX) is specified as a reference point only; if IRAD
is greater than the specified lRAD (MAX) limit, then
access time is controlled exclusively by IAA, provided
tRCD is not exceeded.

MT4LC4M4E8(S)
D24.pmS - Rev. 2195

1-39

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

z

m

:e

•
m

C

o

c
:c
l>

5

PRELIMINARY

z

m

~--------------------------------------

•

READ CYCLE
'RC

m
c

o

\'------

tCSH

I---""'RS,,,-H_ _
'CRP

C

teAS

~~:=~~-----*--~-------.~
'ynr--~--------~'---1'--------L..{1

CAS

::D

tRCD

---+11 i'RRH

tAR

l>

'RAD

s:

I

•

I~ ~11TTTTTn ~I
~Jt _ _
W////h-

ADDA

ROW

'RAL
leAH

'WAH

'RCS

I

•

:!

~

COLUMN

II· I
I
~'~'
I tWRP..

I

I

!~!

Vt///,@////;///;/£
NOTE 2

~

tCAe

I~
DQ

~gt ::::_----------OPEN---------------:~~V~AL~IDD~AT~A= t - - - - O P E N - 'OE

I_

1_

~:~ =j1J//,@/,@$//$//;//ffi'l'$;/;Wl1llmWA

DE

'00

/#//$/#///$/$/1////#//##'-/

EARLY WRITE CYCLE
'RAS

'RP

\

f:

tCSH

j~

'RCD

f

'AR

I

'RAD

ADOR

~:t

~I

I~~I

W;x

ROW

Y@::i',1i

I

I

'RAL.

I

f

I

I~f

tACH_l

~

COLUMN

ROW

'CWL

I

I

'AWL

I

I

'WCR

~ ",wszt'
l ~///J !! •• ~
~_tDSI 1----~t4-.J~
~ ~

DQ

NOTE:

~:gt

:

~I

l~
'WP

VALID DATA

~

DON'T CARE

~

UNDEFINED

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with
future EDO DRAMs.
2. tOFF is referenced from rising edge of RAS or CAS, which ever occurs last.

MT4LC4M4E8(S)
D24l
T77

)~I

~

W//$$$/"$;)2

.

EDO-PAGE-MODJ: READ CYCLE

rz:I DON'T CARE
!2\ll UNDEFINED
NOTE:

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for IWRP and twRH. This design implementation will facilitate compatibility with
future EDO DRAMs.

MT4LC4M4E8(S}
D24.pm5 - Rev. 2/95

1-41

Micron Technology, Inc., reserves the right 10 change products or specifications without notice.

©1995, Micron Technology,lnc.

PRELIMINARY

z

m

~-------------------------

•

EDO-PAGE-MODE EARLY-WRITE CYCLE

A-

RASP

m

---

c

-

IpC

tCSH

o

I~

tRCD

t~

=J

c
::c

IAR
IRAD

I~

l>

ADDR

s::

~:~

IASR

=:I/;2{

tRAH

ROW

!~

--I

WE

~:~ ~

NOTE

lAse

__

I~II~I

'I

IRSH

_ICp_~

teAS

~ ~

I~I

I

I I~

I~

I

lAse

COLUMN

1-

leAH __

~~

COLUMN

'Ase

iI

IRAL
leAH

~I

I

I

.~~
ROW

COLUMN

---=---

1,_lwc_s

l--11

1@UL~"-----------+-!--+--,------'fL'L'=-----:-;---=LLLLJL---7+--:--.ILLLf'ULLLLULLLL!.LLL<
~I

OE

~:~ lI/////$$$$;I/P$;I/$/P////$$//P)t$P$P;W'!!$/$/$$;I$ffi!$P//P/$P///$P)t$t0%

EDO-PAGE-MODE READ-WRITE CYCLE
(LATE WRITE and READ-MODIFY-WRITE cycles)
RASP

RP

IpC /IPRWC NOTE 1

teSH

_t teRP

tRCD

=J

IAR

.t
ADDR

~:~

IRAD
lRAH"

tASR

=I'/i2{

W/;;)

ROW

l.

tWRP

=UNOTE'I

1

~~
I I~
COLUMN

I

f'
Wbl
I

I

I
I

Iwp-l

I~

-lAA

'CWl-IAWD

~:g~

-

~-r

OPEN----W

tOE-

NOTE:

11

lRAL

I~

VALID

VALID

~

..-

J.

'wP--

lAWD

I~

I
L-

I

I~tePA

IDS_

I~

VALID
DOUl

VALID
DIN

-~ ~

__ too

IOE-

-

--

I

--

IAWD

II~IRWL
--ICWL
.-.twp

I~

11 _
IAA _
I

'DH---.-;

~~r

~ r..-E.!!L

-

ROW

Ii

'CWL--

I

I

COLUMN

II _
IA.I_

IDS_

I
~

i~

IOH__.-;

f'fl

~II~I

~I

COLUMN

!

'RWD

I

DQ

~

IRSH

~=-~

tCAS

r--

~

[WRH"

tRAG

ICp

'CAS

I

~tDH

tCPA
I~-

1

IDS_

-~ ~

~-r

VALID

-W~

__ too
tOE-

-

-

VALID

0"

~OPEN-

_'00

'OEH

~

DON'T CARE

~

UNDEFINED

1. IpC is for LATE WRITE cycles only.
2. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for IWRP and WRH. This design implementation will facilitate compatibility with
future EDO DRAMs.

MT4LC4M4E8(S)
D24.pmS - Rev. 2/95

1-42

Micron Technology, Inc., reserves the right to change products or specificatioris without notice.

©1995, Micron Technology, Inc.

PRELIMINARY

z

m
~

•

EDO-PAGE-MODE READ-EARLY-WRITE CYCLE
(Pseudo READ-MODI FY-WRITE)

m

c
o

tRASP

tCSH
teRP

~

tRCD

lep

~

tcp

leAS

lep

C
::rJ

»
:s:
ADDR

~:t-

WE

I~
DQ

~:gt=----- OPEN ---~-i==V~AL~ID~DA~TA:t;(AI==lC~O
tOE

DE

~:~= W;1;1/tl$//m;1////$/;0'd~

RAS-ONlY REFRESH CYCLE

RAS

CAS

ADDR

V,H
VIL "_

~:~-.:=0

-wd

tASR

V,H
Vil _

DO VOH VOL

WE

teRP

tAC

~.
II

tRAH

ROW

II

~$/$;I#/$//$$#//,@'$#$#~
OPEN

~II~

~:~ :/,1,1;1$/)

~"~b :~
tRP

tRAS

ROW

II

~l!~

NOTE1V!$;1$$/////I,I/;1ao///;1$//m$/$

.1

II
~

~

DONTCARE

~

UNDEFINED

I
!
-I
,

111
I
1

NOTE:

I

D24.pmS _ Rev. 2/95

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibilitywith
future EDO DRAMs.

MT4LC4M4E8(S)

1-43

Micron Technology, Inc., reserves the right 10 change products or specifications without notice.
©1995, Micron Technology, Inc.

PRELIMINARY

z

m

~------~-------------------------------

•

CBRREFRESH CYCLE
(Addresses and OE = DON'T CARE)

m

c
o
c

,
.---.1

tRP

, ,

tRPC

0~
2
II
.

:c
l>

CAS

s:

DQ

tCHR

~:t-

.-'

.

1

II

tRP

..

~r~~

!CHR

II

II

tWRP

WE

tRAS

tRAS

,I

1

OPEN--;-;II---------

tWRH

tWRP

II

tWRH

~:t $j'$////J~ ~W#//#/jj/jj!ll!j'J~ --~$//#$//#/;@/$$j'ffi
SELF REFRESH CYCLE
(Addresses and OE = DON'T CARE)

NOTE:

~

DON'TeARE

~

UNDEFINED

1. Once tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH. mode.
2. Once tRPS is satisfied, a complete burst of all rows should be executed.

MT4LC4M4E8{S)
D24.pm5 - Rev. 2/95

1-44

Micron Technology, Jnc., reserves the right to change products or specifications without nolice.
©1995, Micron Technology, Inc.

PRELIMINARY

MICRON
1-·

MT4LC4M4E8(S)
4 MEG x 4 DRAM

" ,

z

m

--------------------------------------~

•

READ CYCLE
(with WE-controlled disable)
RAs

VIH
VIL _

,
CAS

'cRP

VIH VIL -

.~:

m
c

o

'cSH
tCAS

I'

'cP

.'

C

::D

»

3:

tASR

ADDR

WE

DO

NOTE:

VIH VIL _

~g~ - ' - - - - - - - - - O P E N - - - - - - - - - « X X X J l I I

r-------1

~

DON'T CARE

~

UNDEFINED

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with
future EDO DRAMs.

MT4LC4M4EB(S)
D24.pm5 - Rev. 2/95

1-45

Micron Technology. Inc., reserves the rightltl Ch~ products or specifications without notice.
'.
@1995,MicronTechnology,lnc.

PRELIMINARY

z

m

MICRON
1-·

MT4LC4M4E8(S)
4 MEG x 4 DRAM

c,

~--------~------------~-

•

HIDDEN REFRESH CYCLE 24
(WE = HIGH; OE=LOW)

m

c
o

(READ)

.

(REFRESH)

'RAS

• 1----"'---1

~

~

C
::D

Jj

l>

s:

ADDR

DO

'RAS

Ir---------.,J
tRCD

'AR
•

11

IRSH

tRAD

~

~II
II

:tASC.!

tCHR

ji

'~LI

I

'eAH

Ie----

~g~=C------OPENI-----~~t~==~V~AL~ID~DA~TA~===j

OPEN-

~ ~E

Oe

~:~ :1/!/!//////!///l/////////////////////1iO

:-:0 .
m

DON'T CARE

~

MT4~M4E8(S)

D24.pm5 - Rev. 2195

1-46

UNDEFINED

Micron Technology. Inc., reserves the rJgIlt to change products or specifications without notloe.
@1995,MlcronTechnology,lnc.

ADVANCE

MICRON
1-·

MT4LC16M4G3/H9
16 MEG x 4 DRAM

'''""'c'"''"'

m
~

DRAM

16 MEG x4 DRAM_
m

3.3V, EDO PAGE MODE

c
o

FEATURES
• Single +3.3V ±0.3V power supply
• Industry-standard x4 pinout, timing, functions and
packages
• 13 row-addresses, 11 column-addresses (G3) or
12 row-addresses, 12 column-addresses (H9)
• High-performance CMOS silicon-gate process
• All inputs and outputs are LVTTL-compatible
• Extended Data-Out (EDO) PAGE MODE access
• 4,096-cycle CAS-BEFORE-RAS (CBR) REFRESH
distributed across 64ms

OPTIONS

MARKING

• Timing
SOns access
60ns access
70ns access

-5
-6

PIN ASSIGNMENT (Top View)

Vee
DQ1
DQ2
NC
NC
NC
NC
RAS
NC
AD
A1
A2
A3

-7

DW
TW

A4

• Part Number Example: MT4LC16M4G3DW"7

A5
Vee

KEY TIMING PARAMETERS
SPEED

tRC

tRAC

tpc

tAA

tCAC

tCAS

-5
-6
-7

90ns
110ns
130ns

50ns
60ns
70ns

20ns
25ns
30ns

25ns
30ns
35ns

13ns
15ns
20ns

8ns
10ns
12ns

1•
2
3
4
5

6
7
8
9
10
11
12
13
14
15
16
17

34
33
32
31
30
29
28
27
26
25
24
23
22
21
2D
19
18

S
Vss
DQ4
DQ3
NC
NC
NC
CAS
OE

NC
A12/NC
A11
A1D
A9
A8
A7
A6
Vss

34-Pin TSOP*
Vee
DQ1
DQ2
NC
NC
NC
NC

GENERAL DESCRIPTION
The MT4LC16M4G3 andMT4LC16M4H9 are high-speed
CMOS dynamic random accessmemory devices containing
67,108,864 bits, and designed to operate from 3.0V to 3.6V.
The MT4LC16M4G3 and MT4LC16M4H9 are functionally
organized as 16,777,216Iocations containing4bits each. The
16,777,216 memory locations are arranged in 8,192 rows by
2,048 columns for the MT4LC16M4G3 or 4,096 rows by
4,096 columns for the MT4LC16M4H9. During READ or
WRITE cycles, each location is uniquely addressed via the
address bits. First, the row address is latched by the RAS
signal, then the column address by CAS. Both devices
provide EDO PAGE MODE operation, allowing for fast
successive data operations (READ, WRITE or READMODIFY-WRITE) within a given row.
The MT4LC16M4G3 and MT4LC16M4H9 must be refreshed periodically in order to retain stored data.

WE

RAS
NC
AD
A1
A2
A3
A4

A5
Vee

Vss
DQ4
DQ3
NC
NC
NC
CAS
OE

NC
A12/NC
A11
A10
A9
A8
A7
A6
Vss

'C6nsult factory for dimensions and availability.

1-47

C
lJ

l>

34-Pin SOJ
(DA-6)

WE

• Packages
Plastic SOJ (500 mil)
Plastic TSOP (500 mil)

MT4LC16M4G3IH9
D22.pmS ~ Rev. 2/95

z

Micron Technology, Inc., reserves the right to change products or specifications without notlCe.
©1995, Micron Technology, Inc.

ADVANCE

z
m
:E

MICRON

MT 4LC16M4G3/H9
16 MEG x 4 DRAM

"c~"ocoo"c

1-·

•

FUNCTIONAL BLOCK DIAGRAM
MT4LC16M4G3 (13 row-addresses)

m

c
o
c

WEO

DOl
D02
D03
D04

CASO~-,r--------------------r==~~;.;~__~________~

XI

L-----------------------~~------~OE

l>
3:
A3
A4
A5

A6
A7

AB
A9
8192x2048x4

Al0

MEMORY
ARRAY

<>----~~~~iJ.~•••~

A 12 <>---"'"¥~I.!
All

Vee

RAS

Vss

FUNCTIONAL BLOCK DIAGRAM
MT4LC16M4H9 (12 row-addresses)
WEO

DQl
DQ2
DQ3
DQ4

CAS~o--~--------------------------.

L-------------------------~~~~--~OE

AO

Al
A2
A3
A4
A5
A6
A7
A8
A9

Al0

4096 x 4096 x 4

All

ARRAY

MEMORY

RAS

MT4lCl SM4G3JH9
D22.pm5 - Rev. 2/95

1-48

Micron Technology, Inc., reselVes the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

ADVANCE

MICRON
1-·

MT4LC16M4G3/H9
16MEGx4DRAM

,,'

FUNCTIONAL DESCRIPTION
The functional description for the MT4LC16M4G3 and
MT4LC16M4H9 is divided into the two areas described
below (DRAM access and DRAM refresh). Relevant timing
diagrams are included in this data sheet, following the
timing specifications tables.

DRAM ACCESS
Each location in the DRAM is uniquely addressable as
mentioned in the General Description. The data for each
location is accessed via the four I/O pins (DQl-4). The WE
signal must be activated to execute a write operation, otherwise a read operation will be performed. The OE signal
must be activated to enable the DQ output drivers for' a read
access and can be deactivated to disable output data if
necessary.

EDO PAGE MODE
DRAM READ cycles have traditionally turned the output buffers off (High-Z) with the rising edge of CAS. If
CAS went HIGH, and OE was LOW (active), the output
buffers would be disabled. The MT4LC16M4G3 and
MT4LC16M4H9 offer an accelerated PAGE MODE cycle'by
eliminating output disable from CAS HIGH. This option is
called EDO and it allows CAS precharge time (tcP) to occur
without the output data going invalid (see READ and EOOPAGE-MODE READ waveforms).
EDO operates as any DRAM READ or FA5T-PAGEMODE READ, except data will be held valid after CAS
goes HIGH, as long as RAS and OE are held' LOW and
WE is held HIGH. OE can be brought LOW or HIGH while
CAS and RAS are LOW, and the DQs will transition between valid data and High-Z. Using OE, there are two
methods to disable the outputs and keep them disabled
during the CAS HIGH time. The first method is to have
OE HIGH when CAS transitions HIGH and keep OE
HIGH for tOEHC thereafter. This will disable the DQs and
they will remain disabled (regardless of the state of OE after
that point) until CAS falls again~ The second method is to

MT4LC16M4G3JH9
022.pm5 - Rev: 2195

have OE LOW when CAS transitions HIGH. Then bringing
OE HIGH for a minimum of toEP anytime during the
CAS HIGH period will disable the DQs; the DQs will
remain disabled (regardless of the state of OE after that
point) until CAS falls again (please refer to Figure 1).
During other cycles, the outputs are disabled at tOFF time
after RAS and CAS are HIGH, or twHzafter WE transitions
LOW. The tOFF time is referenced from the rising edge of
RAS or CAS, whichever occurs last. WE can also perform
the function of disabling the output drivers under certain
conditions, as shown in Figure 2:
'
EDO PAGE MODE operations are always initiated with
a row-address strobed-in by the RAS signal, followed by
a column-address strobed-in by CAS, just like for single
location accesses. However, subsequent column locations
within the row may then be accessed atthe page mode cycle
time. This is accomplished by cycling CAS while holding
RAS LOW, and entering new column addresses with each
CAS cycle. Returning RAS HIGH terminates the EOO
PAGE MODE operation.

DRAM REFRESH
The supply voltage must be maintained at the specified
levels, and the refresh requirements must be met in order to
retain stored data in the DRAM. The refresh requirements
are met by refreshing all 8,192 rows (G3) or all 4,096 rows
(H9) in the DRAM array at least once every 64ms. The
recommended procedure is to execute4,096 CBRREFRESH
cycles, either uniformly spaced or grouped in bursts, every
64rns. The MT4LC16M4G3 internally refreshes two rows
for every CBR cycle, whereas the MT4LC16M4H9 refreshes
one row for every CBR cycle. So with either device, executing 4,096 CBR cycles covers all rows. Alternatively,
RAS-ONLY REFRESH capability is inherently provided.
However, with this method only one row is refreshed at
a time, so for the MT4LC16M4G3, 8,192 RAS-ONLY
REFRESH cycles must be executed every 64ms to cover all
rows.

Micron Technology, Inc., reserves the right to chan;l8 products or specifications withOut DOtIce.
@1995,MlcronTeohnology,lnc.

z
m

:e

•
m

c

o

C
:IJ

l>

s:

ADVANCE

z:

m

MIC:I=ICN

1-·

cc,

MT4LC16M4G3/H9
16MEGx4DRAM

c

=e

•

~:~:~L____________________________________________

RAi

m

C

o
c

AboJl

: COLUMN (A)

\

\POl.UMN{C)

COLUMN (D)

:c

»
s::

OQ

~lgr

-----

"',

VAUO DATA (e)

VAUDDATA(A)

I
~~L

VALlO DATA (O)

I~

~

OE ~i~:C---------

____________

I

I

The DOs go back to
low-Z If toES is met.

_ _ _ _ _ _ _ _ _ _ _ __

I

The DOs, remain High-Z
until the next CAS cycle

The DOs remain High·Z
until the next CAS cycle
if toEHC is met.

if tOEP Is met.

Figure 1
OE CONTROL OF DQs

~ ~lr:~L~

____________________________________________

1 iW'$'~/'@< 1 Y#t7~#t7+

/'\'----~
AOOR

DC

~:r:~ (~UMN(A) >Wt7#lt7!1l$t7#&WffY

COLUMN (B)

COLUMN{Cj

I
-'--.
I
~:gr:---~--OPEN '---'--~~!::=~~~~=~"-~----~![==~~~===f

~ ~:r:

VALIOOATA(A)

I

r

VAUDDAT.A(B)

I

I

I

q

"

INPUT DAT~ (0)

I "I

Z

/

__________________-+______-+_________-+_~___~_______
I

The DOs go to Hlgh-Z if WE faJls. and If twpz is met,
will remain High-Z until CAS goes LOW with
WE HIGH (i.e.• until a READ cycle is in1tiated).

7

WE may be used to disable the DOs to prepare
for input data In an EARLY WRITE cycle. The DOs
will remain High-Z until CAS goes LOW with
WE HIGH (i.e., until a READ cycle il;! initiated).

~DON'TCARE

~

UNDEF(NED

Figure 2
WE CONTROL OF DQs

MT4lCt6M.f.G3JH9
D22.pm5 ~ Rev. 2/95

1-50

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

ADVANCE

MICRON
I-a

MT4LC16M4G3/H9
16 MEG X 4 DRAM

",""ococne

z

m
~

ABSOLUTE MAXIMUM RATINGS*

'Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximUJ;n rating conditions
for extended periods may affect reliability.

Voltage on Vee Relative to Vss ..................... -l.OV to +4.6V
Voltage on Inputs or I/O Pins
Relative to Vss ................................................. -l.OV to +S.5V
Operating Temperature, TA (ambient) .......... O°C to +70°C:
Storage Temperature (plastic) .................... -SsoC to +ISO°C
Power Dissipation ............................................................. IW
Short Circuit Output Current ..................................... SOmA

•
m

c
o

C
:::D

l>
ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: 1, 6, 7) (Vee

=+3.3V ±0.3V)

PARAMETER/CONDITION

SYMBOL

MIN

MAX

UNITS

Supply Voltage

Vee

3.0

3.6

V

Input High (Logic 1) Voltage, all inputs

VIH

2.0

5.5

V

Input Low (Logic 0) Voltage, all inputs

VIL

-1.0

O.B

V

Ii

-2

2

)lA

loz

-10

10

~A

VOH

2.4

INPUT LEAKAGE CURRENT
Any input OV :s; VIN :s; 5.5V
(All other pins not under test = OV)
OUTPUT LEAKAGE CURRENT (Q is disabled; OV < VOUT < 5.5V)
OUTPUT LEVELS
Output High Voltage (lOUT = -2mA)
Output Low Voltage (lOUT = 2mA)

MT4LC16M4G3JH9
D22.pmS - Rev. 2195

VOL

1-51

NOTES

V
0.4

V

Micron Technology, Inc., reserves the right to change products or specifications without !,\otiee.
©1995, Micron Technology, Inc.

s:

ADVANCE

z

m

MICRON
1-·

MT 4LC16M4G3/H9
16 MEG x 4 DRAM

,<,~'c'c,,"

~-------------------------

•

m
c
o
C
::tJ

l>

:s:

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: 1, 6, 7) (Vcc = +3.3V ±0.3V)

MAX
VERSION

SYMBOL

-5

-6

-7

STANDBY CURRENT: (TTL)
(RAS = CAS = VIH)

MT4LC16M4G3
MT4LC16M4H9

ICCl
ICCl

1
1

1
1

1
1

STANDBY CURRENT: (CMOS)
(RAS = CAS;>: Vcc -0.2V, DOs may be left open,
Other inputs: VIN ;>: Vcc -0.2V or VIN :0; 0.2V)

MT4LC16M4G3
MT4LC16M4H9

Icc2
Icc2

500
500

500
500

500
500

~

OPERATING CURRENT: Random READIWRITE
Average power supply current
(RAS, CAS, Address Cycling: tRC= tRC [MIN])

MT4LC16M4G3
MT4LC16M4H9

Icc3
Icc3

130
170

120
160

110
150

mA

3,4,
29

OPERATING CURRENT: EDO PAGE iviODE
Average power supply current
(RAS = VIL, CAS, Address Cycling: tpc = tpc [MIN])

fviT4LCi6M4G3
MT4LC16M4H9

Icc4
Icc4

150
150

120
120

100
100

mA

3,4,
29

REFRESH CURRENT: RAS ONLY
Average power supply current
(RAS Cycling, CAS = VIH: tRC = tRC [MIN])

MT4LC16M4G3
MT4LC16M4H9

Iccs
Iccs

130
170

120
160

110
150

mA

REFRESH CURRENT: CBR
Average power supply current
(RAS, CAS, Address Cycling: tRC = tRC [MIN])

MT4LC16M4G3
MT4LC16M4H9

Icc6
Icc6

140
170

.130
160

120
150

mA

PARAMETER/CONDITION

MT4lC16M4G3IH9
D22.pm5 - Rev. 2195

1-52

UNITS NOTES
mA

3,26

3,5

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

ADVANCE

z

m

:e

CAPACITANCE
SYMBOL

MAX

UNITS

NOTES

Input Capacitance: Address pins

CI1

5

pF

2

Input Capacitance: RAS, CAS, WE, OE

CI2

7

pF

2

Input/Output Capacitance: DQ

CIO

9

pF

2

PARAMETER

AC CHARACTERISTICS
PARAMETER
Access time from column-address
Column-address set-up to CAS
going HIGH during WRITE
Column-address hold time
(referenced to RAS)
Column-address setup time
Row-address setup time
Column-address to WE delay time
Access time from CAS
Column-address hold time
CAS pulse width
CAS hold time (CBR REFRESH)
CAS to output in Low-Z
Data output hold after CAS LOW
CAS precharge time
Access time from CAS precharge
CAS to RAS precharge time
CAS hold time
CAS setup time (CBR REFRESH)
CAS to WE delay time
Write command to CAS lead time
Data-in hold time
Data-in hold time (referenced to RAS)
Data-in setup time
Output disable
Output Enable time
OE hold time from WE during
READ-MODIFY-WRITE cycle
OE HIGH hold time from CAS HIGH
OE HIGH pulse width
OE LOW to CAS HIGH setup time

MT4lC16M4G31H9
D22.pm5 - Rev. 2195

-5

-7

-6

MIN

MAX

tAA

MIN

25

MAX

MIN

30

MAX

UNITS

35

tACH

15

15

15

ns
ns

tAR

40

45

55

ns

tASC
tASR
tAWD
tCAC
tCAH
tCAS
tCHR
tCLZ

0
0
48

0
0
55

0
0
65

toEH

8

10

12

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

tOEHC
tOEP
tOES

7
7
4

10
10
5

10
10
5

ns
ns
ns

tCOH
tcp
tCPA
tCRP
tCSH
tCSR
tCWD
tCWL
tDH
tDHR
tDS
tOD
tOE

13
8
8

10,000

8

0
5
8

10
10
10
0
5
10

28
5
44
5
30
8
8
40
0
0

1-53

13
13

20

15
10,000

12
12
12
0
5
10

40

35
5
50
5
35
15
10
45
0
0

15
15

10,000

5
55
5
40
15
12
55
0
0

15
15

o

»
:s:

=+3.3V ±0.3V)
SYM

m

C

c
::c

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc

•

NOTES

21
15

5

16

5
21
22
22
27,28
28

Micron Technology, Inc., reserves the right 10 change products or specifications without notice.
©1995, Micron Technology. Inc.

ADVANCE

z

m

MIC:RON
I ~.

MT4LC16M4G3/H9
16 MEG x 4 DRAM

",""cecc,",

:e

•

m

c
o
c

:c
l>

s::

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vee

AC CHARACTERISTICS
PARAMETER

=+3.3V ±0.3V)
-7

-6

-5

MAX
15

UNITS

tpc

20

25

30

ns

EDO-PAGE-MODE
READ-WRITE cycle time

tpRWC

71

75

85

ns

Access time from RAS
RAS to column-address delay time
Row-address hold time
Column-address to RAS lead time

tRAC
tRAD
tRAH
tRAL
tRAS
tRASP
tRC

RAS pulse width
RAS pulse width (EDO PAGE MODE)
Random READ or WRITE cycle time
RAS to CAS" delay time
Read command hold time
(referenced to CAS)

tRCD
tRCH

Read command setup time
Refresh period
RAS precharge time
RAS to CAS" precharge time
Read command hold time
(referenced to RAS)

tRCS
tREF
tRP

RAS hold time
READ WRITE cycle time
RAS to WE delay time
Write command to RAS lead time
Transition time (rise or fall)
Write command hold time
Write command hold time
(referenced to RAS)

tRSH
tRWC
tRWD
tRWL

WE command setup time
WE to outputs in High-Z
Write command pulse width
WE pulse width to disable outputs
WE hold time (CBR REFRESH)
WE setup time (CBR REFRESH)

twcs
tWHZ
twp

MT4LC16M4G3IH9
D22.pmS- Rev. 2195

tRPC
tRRH

'T
tINCH
tWCR

twpz
tWRH
tWRP

9
8
25
50
50
90
11
0

50
25

10,000
125,000
37

0

MIN
0
0

MIN
0
0

tOFF
tORD

EDO-PAGE-MODE
READ or WRITE cycle time

MAX
13

MAX
15

MIN
0
0

Output buffer turn-off delay
OE setup prior to RAS during
HIDDEN REFRESH cycle

SYM

12
10
30
60
60
110
14
0

60
30

10,000
125,000
45

12
10
35
70
70
130
14
0

70
35

10,000
125,000
50

0

0

ns
ns

ns
ns
ns
ns
ns
ns
ns
ns
ns

30
0
0

40
0
0

50
0
0

ns
ms
ns
ns
ns

8
126
73
8
1
8
40

10
150
80
15
2
10
45

12
177
90
15
2
12
55

ns
ns
ns
ns
ns
ns
ns

64

64

50

0

8

1-54

13
10
10
10
10

50

0

0
10

7
7
8

50

64

15
12
12
10
10

ns
ns
ns
ns
ns
ns

NOTES
20,27

14
18

17
19

26

19

21

21

25
25

Micron Technology, Inc., reserves the right to change products or specifications without notice.
© 1995, Micron Technology. Inc.

ADVANCE

MICRON
1-·

MT4LC16M4G3/H9
16 MEG x 4 DRAM

"'e"""","

z

m
~

NOTES
1.
2.
3.
4.

All voltages referenced to Vss.
This parameter is sampled. Vee = +3.3V; f = 1 MHz.
Ice is dependent on cycle rates.
Ice is dependent on output loading and cycle rates.
Specified values are obtained with minimum cycle
time and the outputs open.
S. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate
cycle time at which proper operation over the full
temperature range is assured.
7. An initial pause of 100~s is required after power-up
followed by eight RAS refresh cycles (RAS ONLY or
CBR with WE HIGH) before proper device operation
is assured. The eight RAS cycle wake-ups should be
repeated any time the tREF refresh requirement is
exceeded.
8. AC characteristics assume tTof 2ns for -S and 2.5ns for
-6 and -7.
9. VIH (MIN) and VIL (MAX) are reference levels for
measuring timing of input Signals. Transition times
are measured between VIH and VIL (or between VIL
and VIH).
10. In addition to meeting the transition rate specification, all input signals must transit between VIH and
VIL (or between VIL and VIH) in a monotonic manner.
11. If CAS and RAS = VIH, data output is High-Z.
12. If CAS = VIL, data output may contain data from the
last valid READ cycle.
13. Measured with a load equivalent to two TTL gates,
100pF and VOL = 0.8V and VOH = 2.0V.
14. Assumes that tRCD < IRCD (MAX). If tRCD is greater
than the maximum recommended value shown in this
table, tRAC will increase by the amount that tRCD
exceeds the value shown.
IS. Assumes that tRCD 2: tRCD (MAX).
16. If CAS is LOW at the falling edge of RAS, output data
will be maintained from the previous cycle. To initiate
a new cycle and clear the data-out buffer, CAS must
be pulsed HIGH for tcP.
17. Operation within the tRCD (MAX) limit ensures that
tRAC (MAX) can be met. tRCD (MAX) is specified as
a reference point only; if IRCD is greater than the
specified tRCD (MAX) limit, then access time is
controlled exclusively by tCAe.
18. Operation within the tRAD (MAX) limit ensures that
tRAC (MIN) and tCAC (MIN) can be met. tRAD
(MAX) is specified as a reference point only; if tRAD
is greater than the specified tRAD (MAX) limit, then
access time is controlled exclusively by tAA.

MT4lC16M4G3/H9
D22.pm5 - Rev. 2/95

19. Either IRCH or IRRH must be satisfied for a READ
cycle.
20. tOFF (MAX) defines the time at which the output
achieves the open circuit condition, and is not
referenced to VOH or VOL.
21. twcs, tRWD, tAWD and tCWD are not restrictive
operating parameters. twcs applies to EARLY WRITE
cycles. If twcs > twcs MIN, the cycle is an EARLY
WRITE cycle and the data output will remain an open
circuit throughout the entire cycle. tRWD, tAWD and
tCWD define READ-MODIFY-WRITE cycles. Meeting
these limits allows for reading and disabling output
data and then applying input data. OE held HIGH and
WE taken LOW after CAS goes LOW results in a LATE
WRITE (OE-controlled) cycle. twcs, tRWD, tCWD and
tAWD are not applicable in a LATE WRITE cycle.
22. These parameters are referenced to CAS leading edge
in EARLY WRITE cycles and WE leading edge in
LATE WRITE or READ-MODIFY-WRITE cycles.
23. If OE is tied permanently LOW, LATE WRITE or
READ-MODIFY-WRITE operations are not possible.
24. A HIDDEN REFRESH may also be performed after a
WRITE cycle. In this case, WE = LOW and
OE = HIGH.
2S. twTS and tWTH are setup and hold specifications for
the WE pin being held LOW to enable the JEDEC test
mode (with CBR timing constraints). These two
parameters are the inverts of tWRP and tWRH in the
CBR REFRESH cycle.
26. RAS-ONLY REFRESH requires that all 8,192 rows of
the MT4LC16M4G3, or all 4,096 rows of the
MT4LC16M4H9, be refreshed at least once every
64ms. CBR REFRESH, for either device, requires that
at least 4,096 cycles be completed every 64ms.
27. The DQs open during READ cycles once tOD or toFF
occur. If CAS stays LOW while OE is brought HIGH,
the DQs will open. If OE is brought back LOW (CAS
still LOW), the DQs will provide the previously read
data.
28. LATE WRITE and READ-MODIFY-WRITE cycles
must have both tOD and tOEH met (OE HIGH during
WRITE cycle) in order to ensure that the output
buffers will be open during the WRITE cycle. If OE is
taken back LOW while CAS remains LOW, the DQs
will remain open.
29. Column-address changed once each cycle.

1-55

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

m

c

o

C
lJ

»
3:

ADVANCE

z
m

MICRON
1-·

MT4LC16M4G3/H9
16 MEG x 4 DRAM

",",CW,,,,,

;e

•

READ CYCLE

m

c
o

VtH -

RAS

V1l _
tCSH

~I

teRP

C
::D

V1H -

CAS

Vil -

l>
3:

ADDA

V,H
Vil

WE

V,H
Vil

ROW

NOTE 2

I
DO

~

tCAC

:1---0PEN---

~g~ -'--~----OPEN-------m~~VA~lID~D~AT~A
1

~:t

DE

I"

tOE

M4

too

1//1////1/1/1////////1//1/&'JIIJII/;

==l/j;rTTlI/;T771//;77711/;777j0Tn
1l/7r.1I/;'7T;;//;rTT1//;T771//;777;1/;Tnm7n1lj;7r.1//;'7TWT7711/;77711;;TT7
;/

EARLY WRITE CYCLE
RC
tRAS

tRP

\
ICSH

J~

:

tAR

IRAD

WAi

ROW

f ,,_

.I~I

I~ ~I
AODR

~~ ~I

tRCD

~;:?i

r

I

I~I

tACH

I

~

COLUMN

ROW

tCWL

I

~".w.J
~//J
..
~ ~

I

I
I

~I

I
I

IRWL
iWCR

II

NOTE1'~~i i~1

DO

NOTE:

~:g~ _

~

I~
twp

VALID DATA

~777i'77T,~'777:.77TT77.
77777777777777.77n77T,

~

DON'T CARE

~

UNDEFINED

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for tWRP and twRH. This design implementation will facilitate compatibility with
future EDO DRAMs.
2. tOFF is referenced from rising edge of RAS or CAS, which ever occurs last.

MT4L~16M4G3IH9
D22.pmS - Rev. 2/95

1-56

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

ADVANCE

MICRON
1-·

MT 4LC16M4G3/H9
16 MEG x 4 DRAM

"'""00"""

z

m
~

•

READ WR1TE CYCLE
(LATE WRITE and READ-MODIFY-WRITE cycles)

m

c

o

=1

C

~RP

JJ

l>

s:

ROW

-=-

I
tcLZ--DQ

i5E

~:gt

- - - - - - - - - - O P E N -___

~Ae

--1l~~~~~~$j

OPEN---

~:t :1#UUUU/####$$#$#/#aJ$&I,d~
EDO-PAGE-MODE READ CYCLE

A-

RASP

tpc
__
tcp_~

tCSH

l~

tRCD

:-'

tAR

I~
ADOR

~l~

:~

tRAD
'RAH

'ASR
ROW

I

___

tCAS

~~

~

~

f--1

1 1

_I

~

II

II
I

'CLZ-

DO

~g~

-

~ ~1

J

"UD
>At"
~~

r- -V,,"

-

c'"

--tCWl

I--twP

I~

toH- 'os- 1-

I

I~

~~ I:

teL>

VAL"

___

toE

---

f-II~

~~~

~IOD

tAwD

ROW

II-'Rw,

too

WIIIIIIIIIIIII/,
i-'OH

1-1
tos-

~

'W'DOUT

VAUD
DIN

~OPEN-

_ _ too

'ce- -

toEH

tz::l DON'T CARE
NOTE:

~UNDEFINED

1. tpc ill for LATl= WRITE cycles only.
2. Although WE is a "don't care" atRAS time during an access cycle (READ or WRITE). the system designer
should implement WE HIGH for twRP and twRH. This design implementation will. facilitate compatibility with
future EDO DRAMs.

1-58

Micron Technology, Inc., reserves the right to change produas or specifications without notice.
@1995.MIcronTechnology,lnc.

ADVANCE

MICRON

1-·

MT4LC16M4G3/H9
16MEGx4DRAM

,,,""oeoc,,,

z

m

--------------------------~

•

EDO-PAGE-MODE READ-EARLY-WRITE CYCLE
(Pseudo READ-MODI FY-WRITE)

m

I RASP

C

o

tCSH
tpc

tpc

~

'RCD

tcp

~

IRSH

teAs

tcp

tcp

l>

s:

tRAL

II

I~
ADDR

tACH

~!I~

COLUMN (A)

COLUMN (N)

tAAl

1~

IWHZ_
VALID DATA (A)

OPEN

tOE
OE

~:t= W/$///;@//$$///;/';@/mRAS-ONL Y REFRESH CYCLE
(WE = DON'T CARE)

: : : ~3 """
_ __. I'

ADDR

H

tRAS

tRP

:l~

·~II-'-----------~l"·qb ~
II

tASR . ,tRAH

~:t :::~~---'RO-'--W--'~!@//;/'/$//;/'////$$$;/,#/##h(~-'----RO-W- -

~

DON'TCARE

m

UNDEFINED

NOTE:

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for tWRP and 'WRH. This design implementation will facilitate compatibility with
.
future EDO DRAMs.

MT4LC16M4G3IH9
D22.prn5 - Rev. 2/95

1-59

C

:rJ

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

ADVANCE

z

m

MIC:RON
1-·

MT 4LC16M4G3/H9
16 MEG x 4 DRAM

"C"'"''""'''

~-------------------------

•

CBR REFRESH CYCLE
(Addresses and OE = DON'T CARE)

m

.

c

o

RAS

C
::D

»
s:

CAS

DO

~l~-

RP

..

~ '"°
=J:'cp:~

~lt-

4

."1 •

1

11

RP

,

'RPC~~

.

RAS

,I

~k

_" OPEN--:-:I1 - - - - - - - - II
II
~:~ 4'wffM'/j- -~/I/$####//M~- -W/#/$I###;//$#/#//m;
-

II

'WRP

WE

RAS

'WRH

'WRP

'WRH

HIDDEN REFRESH CYCLE 24
(WE = HIGH; OE = LOW)
(READ)

(REFRESH)

'OE

DE

~:t -W####mm##&$##mmd~D

'00

)@$#m#m
t!ZI DON'T CARE
~

MT4lCtSM4G3/H9
D22.pm5- Rev. 2/95

1-60

UNDEFINED

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

ADVANCE

UII::::RCN

MT4LC16M4G3/H9
16 MEG x 4 DRAM

"c~"'oc"c

1-·

z

m

::e

•

READ CYCLE
(with WE-controlled disable)
RAS

V,H
V,L _

tCRP
CAS

VIH VIL -

.~:

m

c

o

tCSH

teAs

!

I

tep

'I

C

:D

tAR

l>

s::

tASR

ADDR

WE

I

tRAC

DO ~gt ---------OPEN-------~~t~~~=t
~

DON'T CARE

~

UNDEFINED

I
I
I
I

I NOTE:

I

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for IWRP and 'WRH. This design implementation will facilitate compatibility with
future EDO DRAMs.

MT4LC16M4G3JH9
D22.pmS - Rev. 2195

1-61

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

ADVANCE

z

m

MICRON
1-·

MT4LC16M4G3/H9
16 MEG x 4 DRAM

","",cO'",

~-----------------------------------

•

m

c
o

C
:D

l>

s:

MT4LC16M4G31H9

D22.pm5- Rev. 2/95

1-62

Micron Technology, !nc., reserves the righllo change products or specifications without notice.
©1995, Micron Technology, Inc.

PRELIMINARY

DRAM

x 8 DRAM

2 MEG

3.3V, EDOPAGE MODE,
OPTIONAL SELF REFRESH
FEATURES

28-Pin SOJ
(DA-5)
Vee [ 1

DOl [ 2
D02 [3
D03 [ 4
D04 [ 5

WE [ 6
7
8
9
10
11
12
13
Vee [ 14

RAS [
NC [
Al0 [
AO [
Al [
A2 [
A3 [

MARKING

OPTIONS
• Timing
60ns access
70ns access

-6
-7

• Packages
Plastic SOJ (300 mil)
Plastic TSOP (300 mil)

m

c
o

PIN ASSIGNMENT (Top View)

• Industry-standard x8 pinout, timing, functions and
packages
• High-performance CMOS silicon-gate process
• Single +3.3V ±0.3V power supply
• Low power, 0.3mW standby; 150mW active, typical
• All inputs, outputs and clocks are TTL-compatible
• Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR),
HIDDEN and SELF
• 2,048-cycle refresh (11 row-, 10 column-addresses)
• Optional SELF REFRESH, Extended Refresh rate (4x)
• Extended Data-Out (EDO) PAGE access cycle
• 5V tolerant I/Os (5.5V maximumVIH level)

28
27
26
25
24
23
22
21
20
19
18
17
16
15

28-Pin TSOP
(DB-3 )

Vss

Vee

Vss

DOB
D07
D06
D05
CAS

DOl
D02
D03
DQ4

DOB
D07
DOS
D05
CAS

OE

RAS

OE

A9

NC
Al0
AO
Al

A9

WE

A2

AB
A7
A6
A5

A4

A3

A4

Vss

Vee

Vss

AB
A7
A6
A5

OJ
TG

• Refresh Rate
Standard 32ms period
SELF REFRESH and 128ms periods

None
S

• Part Number Example: MT4LC2M8E7DJ-7 S
If WE goes LOW after CAS goes LOW, data-out (Q) is
activated and retains the selected cell data as long as OE
remains LOW and RAS or CAS remains LOW (regardless of
WE). This late WE pulse results in a READ WRITE cycle.
If WE toggles LOW after CAS goes )Jack HIGH, the output
pins will open (High- Z) until the next CAS cycle, regardless
ofOE.
The eight data inputs and the eight data outputs are
routed through eight pins using common I/O, and pin
direction is controlled by WE and OE.

KEY TIMING PARAMETERS

I

SPEED

tRC

tRAC

tpc

tAA

tCAC

tCAS

·6
·7

110ns
130ns

60ns
70ns

25ns
30ns

30ns
3.5ns

15ns
20ns

10ns
12ns

GENERAL DESCRIPTION

I

I

The MT4LC2M8E7(S) is a randomly accessed solid-state
memory containing 16,777,216 bits organized in a x8 con~
figuration. The MT4LC2M8E7(S) RAS is used to latch the
first 11 bits and CAS the latter 10 bits (AI0 is ignored during
CAS falling edge.) READ and WRITE cycles are selected
with the WE input. A logic HIGH on WE dictates READ
mode while a logic LOW on WE dictates WRITE mode.
During a WRITE cycle, data-in (D) is latched by the falling
edge of WE or CAS, whichever occurs last. If WE goes LOW
prior to CAS going LOW, the output pins remain open
(High-Z) until the next CAS cycle, regardless of OE.
MT4LC2M8E7(S)

W09.pmS - Rs,V. 2/95

PAGE ACCESS
PAGE operations allow faster data operations (READ,
WRITE or READ-MODIFY-WRITE) within a row-addressdefined page boundary. The PAGE cycle is always initiated
with a row-address strobed-in by RAS followed by a column-address strobed-in by CAS. CAS may be toggled-in
by holding RAS LOW and strobing-in different columnaddresses, thus executing faster memory cycles. Returning
RAS HIGHterminates the PAGE MODE of operation.

1-63

•

Micron Technology, Inc., reserves the right 10 change products or specifications without notice,©1995, Micron TechnOlogy, Inc,

C
:D

l>

s:

PRELIMINARY

MIC:RON

1-·

•

m

c

o
C
:0

»
:s:

MT4LC2M8E7(S)
2 MEG x 8 DRAM

HC~~O"''''

EDO PAGE MODE
The MT4LC2M8E7(S) provides EDOPAGE MODE, which
is an accelerated FAST PAGE MODE cycle. The primary
advantage of EDO is the availability of data-out even after
CAS returns HIGH. EDO provides for CAS precharge time
(tcP) to occur without the output data going invalid. This
elimination of CAS output control provides for pipeline
READs.
FAST-PAGE-MODE DRAMs have traditionally turned
the output buffers off (High-Z) with the rising edge of
CAS. EDO-PAGE-MODE DRAMs operate similar to FASTPAGE-MODE DRAMs, except data will remain valid or
become valid after CAS goes HIGH during READs, provided RAS and OE are held LOW. If OE is pulsed while
RAS and CAS are LOW, data will toggle from valid data to
High-Z and back to the same valid data. If OE is toggled or
pulsed after CAS goes HIGH while RAS remains LOW,
data will transition to and remain High-Z (refer to Figure 1).
If the DQ outputs are wire OR'd, OE must be used to
disable idle banks of DRAMs. Alternatively, pulsing WE to
the idle banks during CAS HIGH time will also High-Z the
outputs. Independent of OE control, the outputs will disable after toFF, which is referenced from the rising edge of
RAS or CAS, whichever occurs last.

refresh cycle (RAS ONLY, CBRor HIDDEN) so that all 2,048
combinations of RAS addresses are executed at least every
32ms, regardless of sequence. The CBR REFRESH cycle will
invoke the refresh counter for automatic RAS addressing.
An optional SELF REFRESH mode is also available on
the MT4LC2M8E7 S. The "5" version allows the user the
choice of a fully static low-power data retention mode or a
dynamic refresh mode at the extended refresh period of
128ms, four times longer than the standard 32ms
specification.
The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle and holding RAS LOW for
the specified tRASS. Additionally, the "5" version allows
for an extended refresh rate of 62.5~s per row if using
distributed CBR REFRESH. This refresh rate can be applied
during normal operation or during a standby or BATTERY
BACKUP mode.
The SELF REFRESH mode is terminated by driving RAS
HIGH for a minimum timeoftRPS (~tRC). This delay allows
for the completion of any internal refresh cycles that may be
in process at the time of the RAS LOW-to-HIGH transition.
If the DRAM controller uses a distributed CBR REFRESH
sequence, a burst refresh is not required upon exiting SELF
REFRESH mode. However, if the DRAM controller utilizes
RAS ONLY or burst refresh sequence, all 2,048 rows must
be refreshed within 300~s prior to the resumption of normal
operation.

REFRESH
Preserve correct memory cell data by maintaining
power and executing a RAS cycle (READ, WRITE) or RAS

RAs ~:~=~~

____________________________________

The DOs go back to
Low-Z if tOES is met.

The DOs remain High-Z
until the next CAS cycle
jf 'OEHC is met.

The DOs remain High-Z
until the next CAS cycle
if to,EP is met.

~

DON'T CARE

~

UNDEFINED

Figure 1
OUTPUT ENABLE AND DISABLE
MT4LC2M8E7(S)
W09.pm5 - Rev. 2195

1-64

Micron Technology, Inc., reserves the right to change products or specifications without nolies.
©1995, Micron Technology, fnc.

PRELIMINARY

-

FUNCTIONAL BLOCK DIAGRAM

m

WE~--~~--------------------,

c

001

••
008
OE

AO
A1
A2
A3
A4
AS
A6
A7
A8
A9
A10

RAS

2048 x 1024 X 8

MEMORY
ARRAY

0-------1

.---....0

Vee

+----0

Vss

TRUTH TABLE
ADDRESSES
FUNCTION
Standby

CAS

WE

OE

IR

IC

DQ1-DQ4

H

H~X

X

X

X

X

High-Z
Data-Out

READ

L

L

H

L

ROW

COL

EARLY WRITE

L

L

L

X

ROW

COL

Data-In

READ WRITE

L

L

H~L

L~H

ROW

COL

Data-Out, Data-In

EDO-PAGE-MODE

1st Cycle

L

H~L

H

L

ROW

COL

Data-Out

READ

2nd Cycle

L

H~L

H

L

n/a

COL

Data-Out

EDO-PAGE-MODE

1st Cycle

L

H~L

L

X

ROW

COL

Data-In

EARLY-WRITE

2nd Cycle

L

H~L

L

X

n/a

COL

Data-In

EDO-PAGE-MODE

1st Cycle

L

H~L

H~L

L~H

ROW

COL

Data-Out, Data-In

READ-WRITE

2nd Cycle

L

H~L

H~L

L~H

n/a

COL

Data-Out, Data-In

L

H

X

X

ROW

n/a

High-Z

RAS-ONLY REFRESH

I

DATA-IN/OUT

RAS

HIDDEN

READ

L~H~L

L

H

L

ROW

COL

Data-Out

REFRESH

WRITE

L~H~L

L

L

X

ROW

COL

Data-In

CBR REFRESH

H~L

L

H

X

X

X

High-Z

SELF REFRESH

H~L

L

H

X

X

X

High-Z

I

I

i

MT4LC2M8E7(S)
W09.pmS- Rev. 2195

1-65

Micron Technology, Inc., reserves the right to change products or specifIcations without notice.
©1995, Micron Technology, Inc.

0

C

lJ

l>

s:

PRELIMINARY

•

m

c

o
C
:IJ

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability.

ABSOLUTE MAXIMUM RA TINGS*
Voltage on Vee pin Relative to Vss ................. -IV to +4.6V
Voltage on Inputs or I/O pins
Relative to Vss .................................................... -IV to +S.SV
Operating Temperature, TA (ambient) .......... O°C to +70°C
Storage Temperature (plastic) ................... -SsoC to +ISO°C
Power Dissipation ............................................................. lW
Short Circuit Output Current ..................................... SOmA

l>

:s:

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: 1, 6, 7) (Vee

=+3.3V ±0.3V)

PARAMETER/CONDITION

SYMBOL

MIN

MAX

UNITS

Supply Voltage

Vee

3.0

3.6

V

Input High (Logic 1) Voltage, all inputs (including NC pins)

VIH

2.0

5.5

V

VIL

-1.0

0.8

V

II

-2

2

f.lA

loz

-10

10

f.lA

VOH

2.4

Input Low (Logic 0) Voltage, all inputs (including NC pins)
INPUT LEAKAGE CURRENT
Any input OV :s; VIN :s; 5.5V
(All other pins not under test = OV)
OUTPUT LEAKAGE CURRENT (Q is disabled; OV:S; VOUT :s; 5.5V)
OUTPUT LEVELS
Output High Voltage (lOUT = -2mA)
Output Low Voltage (lOUT = 2mA)

MT4lC2M8E7(S)
W09.pm5 - Rev. 2f95

VOL

1-66

NOTES

V
0.4

V

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

PRELIMINARY

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
:Notes: 1, 6, 7) (Vcc

=+3.3V ±0.3V)

MAX
SYMBOL

-6

-7

UNITS

Icc1

2

2

mA

Icc2
Icc2
(S only)

500
150

500
150

f.lA
I1A

OPERATING CURRENT: Random READIWRITE
Average power supply current
(RAS, CAS, Address Cycling: IRC =IRC [MIN])

Icc3

130

120

mA

3,4,12

OPERATING CURRENT: EDO PAGE MODE
Average power supply current
(RAS = VIL, CAS, Address Cycling: IpC =IpC [MIN])

Icc4

120

110

mA

3,4,12

REFRESH CURRENT: RAS ONLY
Average power supply current
(RAS Cycling, CAS =VIH: IRC =IRC [MIN])

Icc5

130

120

mA

3, 12

REFRESH CURRENT: CBR
Average power supply current
(RAS, CAS,Address Cycling: IRC

Icc6

130

120

mA

3, 5

Icc7
(S only)

300

300

I1A

3, 5

Icc8
(S only)

300

300

f.lA

5

PARAMETER/CONDITION
STANDBY CURRENT: (TTL)
(RAS =CAS =VIH)
STANDBY CURRENT: (CMOS)
(RAS =CAS =Other Inputs =Vcc -0.2V)

i

=IRC [MIN])

REFRESH CURRENT: Extended (S version only)
Average power supp'ly current, CAS =0.2V or CBR cycling;
RAS =IRAS(MIN); WE =Vcc -0.2V; AO-A10, OE and
DIN =Vcc - 0.2V or 0.2V (DIN may be left open); IRC = 62.511S
REFRESH CURRENT: SELF (S version only)
Average power supply current, CBR cycling with RAS :2: IRASS(MIN)
,
and CAS held LOW; WE = Vcc -0.2V; AO-A 10,
I OE and DIN = Vcc -0.2V or 0.2V (DIN may be left open)
I

NOTES

T4LC2M8E7(S)

W09,pr'llS-Rev.2J95

I

I!

1-67

m

c

o

C
II

,,
,

,t

-

Micron Technology, Inc., reserves the right to change products or specifications without notice.

©1995,MicronTechnology, Inc.

»
S

PRELIMINARY

MICRON
1-·

•

MT4LC2M8E7(S)
2 MEG X 8 DRAM

',,"",coon,

CAPACITANCE
PARAMETER

SYMBOL

MAX

UNITS

NOTES

5
7
7

pF

2

pF

2

pF

2

MAX

UNITS

NOTES

35

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

m
c
o
c
:c
»
AND RECOMMENDED AC OPERATING CONDITIONS
s ELECTRICAL CHARACTERISTICS
=
Inpot Capacitance: Address pins

CI1

Input Capacitance: RAS, CAS, WE, OE

CI2

Input/Output Capacitance: DO

CIO

(Notes: 6, 7, 8, 9, 10, 11, 12) (Vee

+3.3V ±0.3V)

AC CHARACTERISTICS
PARAMETER
Access time from column-address
Column-address set-up to CAS precharge during WRITE
Column-address hold time (referenced to RAS)
Column-address setup time
Row-address setup time
Column-address to WE delay time
Access time from CAS
Column-address hold time
CAS pulse width
CAS LOW to "don't care" during SELF REFRESH cycle
CAS hold time (CBR REFRESH)
CAS to output in Low-Z
Data output hold after next CAS lOW
CAS precharge time
Access time from CAS precharge
CAS to RAS precharge time
CAS hold time
CAS setup time (CBR REFRESH)
CAS to WE delay time
Write command to CAS lead time
Data-in hold time
Data-in hold time (referenced to F'lAS")
Data-in setup time
Output disable
Output Enable
OE hold time from WE during READ-MODIFY-WRITE cycle
OE HIGH hold from CAS HIGH

MT4LC2M8E7{S)
W09.pm5 -"Rev. 2195

-6
SYM

MIN

tAA
tACH
tAR
tASC
tASR
tAWD
tCAC
tCAH
tCAS
tCHD
ICHR
IClZ
ICOH
ICp
ICPA
ICRP
ICSH
ICSR
ICWD
ICWl
IDH
IDHR
IDS
10D
10E
tOEH
10EHC

1-68

-7

MAX

MIN

30
15
45
0
0
55

15
55
0
0
65
15

10
10
15
10
0
5
10

10,000

20
12
12
15
12
0
5
10

35
5
50
5
35
15
10
45
0
0
12
10

15
15

10,000

40
5
55
5
40
15
12
55
0
0
12
10

15
15

I
I

20
14

25
5

15

5
20
21
21
22

Micron Technology, Inc., reserves the right to change products or specifications without notice'
©1995, Micron Technology, Inc

I

PRELIMINARY

UII=I=ICN

1-·

MT4LC2M8E7(S)
2 MEG x 8 DRAM

'''""'co"' '"'

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12) (Vee

=+3.3V ±0.3V)

PARAMETER
OE HIGH pulse width

SYM
tOEP

MIN
10

OE LOW to CAS HIGH setup time

tOES

5

Output buffer turn-off delay
OE setup prior to RAS during HIDDEN REFRESH cycle
EDO-PAGE-MODE READ or WRITE cycle time
EDO-PAGE-MODE READ-WRITE cycle time
Access time from RAS

3
0
25

tpRWC

75

RAS to column-address delay time

tRAC
tRAD

12

Row-address hold time

tRAH

10

Column-address to RAS lead time

tRAL

30

RAS pulse width

tRAS

60

tRASP
tRASS
tRC

60
100

RAS pulse width (EDO PAGE MODE)
RAS pulse width during SELF REFRESH cycle
Random READ or WRITE cycle time
RAS to CAS delay time

tRCD

110
14

Read command hold time (referenced to CAS)

tRCH

0

Read command setup time

tRCS
tREF

0

Refresh period (2,048 cycles) S version
Refresh period (2,048 cycles)

MIN

MAX

10
3

15

70

ns
ns

13

35

ns

17

10
10,000
125,000

35
70
70
100

ns
ns
10,000
125,000

ns
ns
25

50

/-ls
ns
ns
ns

18

130
45

14
0
0

16

ns
128

128
32

ms
ms

RAS precharge time

40

50

ns

RAS to CAS precharge time

tRPC

0

RAS precharge time during SELF REFRESH cycle

tRPS

110

0
130

ns
ns

25

Read command hold time (referenced to RAS)
RAS hold time

tRRH
tRSH

0
10

ns

18

READ WRITE cycle time
RAS to WE delay time

tRWC
tRWD

150

0
12
177

Write command to RAS lead time

tRWL

80
15

32

ns
ns

90

ns

15

ns

IT

2

Write command hold time
Write command hold time (referenced to RAS)

tWCH
tWCR

10
45

WE command setup time

twcs

0

Output disable delay from WE
Write command pulse width

tvvHZ
tvvp
twpz

0
10
10

12

ns
ns

tWRH

10
10

10
10

ns
ns

WE pulse to disable at CAS HIGH
WE hold time (CBR REFRESH)
WE setup time (CBR REFRESH)

Mi4LC2M8E7(S)
W09.pmS - Rev. 2195

tvvRP

1-69

50

2
12

50

55
0
12

15

20

ns
ns
ns
ns

0
13

o
o
o

::0

ns

85
12

ns
ns

0
30
60
30

NOTES

ns
ns

5
15

UNITS

tREF
tRP

Transition time (rise or fall)

I

tOFF
tORD
tpc

MAX

•
m

-7

-6

AC CHARACTERISTICS

20

ns

24
24

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

»
s:

PRELIMINARY

•

m
o
c

C
::D

»
s:

~~~:~tages

referenced to Vss.
2. This parameter is sampled. Vee = +3.3V; f = 1 MHz.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates.
Specified values are obtained with minimum cycle
time and the outputs open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate
cycle time at which proper operation over the full
temperature range is assured.
7. An initial pause of 100~s is required after power-up
followed by eight RAS refresh cycles (RAS ONLY or
CBR with WE HIGH) before proper device operation
is assured. The eight RAS cycle wake-ups should be
repeated any time the IREF refresh requirement is
exceeded.
8. AC characteristics assume ty = 2.5ns.
9. VIH (MIN) and VIL (MAX) are reference levels for
measuring timing of input signals. Transition times
are measured between VIH and VIL (or between VIL
and VIH).
10. In addition to meeting the transition rate specification, all input signals must transit between VIH and
VIL (or between VIL and VIH) in a monotonic manner.
11. Column address changed once each cycle.
12. Measured with a load equivalent to two TTL gates,
100pF and VOL = 0.8V and VOH = 2.0V.
13. Assumes that IRCD < IRCD (MAX). If IRCD is greater
than the maximum recommended value shown in this
table, lRAC will increase by the amount that IRCD
exceeds the value shown.
14. Assumes that IRCD <': IRCD (MAX).
15. If CAS is LOW at the falling edge of RAS, Q will be
maintained from the previous. cycle. To initiate a new
cycle and clear the data-out buffer, CAS must be
pulsed HIGH for ICp.
16. Operation within the IRCD (MAX) limit ensures that
lRAC (MAX) can be met. IRCD (MAX) is specified as
a reference point only; if IRCD is greater than the
specified IRCD (MAX) limit, then access time is
controlled exclusively by ICAe, provided lRAD is not
exceeded.
17. Operation within the lRAD (MAX) limit ensures that
!RAc (MIN) and ICAC (MIN) can be met. IRAD
(MAX) is specified as a reference point only; if IRAD
is greater than the specified IRAD (MAX) limit, then
access time is controlled exclusively by IAA, provided
IRCD is not exceeded.

MT4LC2M8E7(S)

W09.pm5 - Rev. 2195

18. Either IRCH or IRRH must be satisfied for a READ
cycle.
19. 10FF (MAX) defines the time at which the output
achieves the open circuit condition, and is not
referenced to VOH or VOL. It is referenced from the
rising edge of RAS or CAS, whichever occurs last.
20. twcs, IRWD, IAWD and ICWD are not restrictive
operating parameters. twcs applies to EARLY
WRITE cycles. IRWD, IAWD and ICWD apply to
READ-MODIFY-WRITE cycles. If twcs <': twcs
(MIN), the cycle is an EARLY WRITE cycle and
the data output will remain an open circuit throughout the entire cycle. If twcs < IWCS (MIN) and
IRWD <': IRWD (MIN), IAWD <': IAWD (MIN) and
ICWD <': ICWD (MIN), the cycle is a READ-MODIFYWRITE and the data output will contain data read
from the selected cell. If neither of the above
conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS
goes LOW results in a LATE WRITE (OE-controlled)
cycle. twcs, IRWD, ICWD and IAWD are not
applicable in a LATE WRITE cycle.
21. These parameters are referenced to CAS leading edge
in EARLY WRITE cycles and WE leading edge in
LATE WRITE or READ-MODIFY-WRITE cycles.
22. If OE is tied permanently LOW, LATE WRITE or
READ-MODIFY-WRITE operations are not permissible and should not be attempted. Additionally, WE
must be pulsed during CAS HIGH time in order to
palce I/O buffers in High-Z.
23. A HIDDEN REFRESH may also be performed after a
WRITE cycle. In this case, WE = LOW and OE = HIGH.
24. twTS and IWTH are setup and hold specifications for
the WE pin being held LOW to enable the JEDEC test
mode (with CBR timing constraints). These two
parameters are the inverts of IWRP and IWRH in the
CBR REFRESH cycle.
25. Refresh must be completed within the time of three
external refresh rate periods prior to active use of the
DRAM (provided distributed CBR REFRESH is used
when in the active mode). Alternatively, a complete
set of row refreshes must be executed when exiting
SELF REFRESH prior to active use of the DRAM if
anything other than distributed CBR REFRESH is
used in the active mode.

1-70

Micron Technology, Inc., reservaslhe nghtto change products orspeciflcalions without notice.

©Hl95, Micron Technology, Inc.

PRELIMINARY

READ CYCLE
tRe
RAS

=----.1

tCAS

I

ADDR

WE

V,H
VIL

WJ7PJ

ROW

I

-I

tRAL

ROW

)

COLUMN

~

tRCS

:1///#////"NOTE'I. VLl!Uff

C
lJ

I

i~l~

tWRH~1

I'" tWRP

~I

Y

~

tAR
1~~1

_

'1

'RSH

tRCD

tRAD

V,H
V IL

c
o

\
teRP

V,H
V IL

m

I

-tCSH

CAS

-

tRP

'RAS
V ,H
VIL

I.

II

'M
tRAG

NOTE 2

I~

~

'CAG

~g~ =:---------OPEN-------~~r~--;;VA~LI~D;;-,:D~AT~A.J_r--OPEN--I. tOE
I. too
DE ~:t =7Til!!J'TT.0'!J=1I!JTT711j;7771;;TT7m7Ti1l!JrTr.1I!J=1I!JTT70'!J777~TT7W!J7Ti1(!J'TT.0'j;""Wj;TT7
W777
11!J777J02i
/##;//;//#M1//////;/#////#,0
DO

EARLY WRITE CYCLE
'RC

'RP

'RAS

\

teSH
1

j~:

tRCO

'AR
'RAD

I~~I
ADDR

~:r

WAt
~

ROW

ff:::
I

I~I

=

~

I

tAAL

f

1

I~I

tACH

~

DO

~lg~

I!

'WRH

I

I
I

ROW

-I

'eWL

I

I

~A2

COLUMN

'RWl

'weR
~! !~
'WP
I

1

~_'DS I-~!<--J~

=

VALID DATA

-, "

lilll DON'T CARE
~
I

NOTE:

UNDEFINED

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for tWRP and WRH. This design implementation will facilitate compatibility. with
future EDO DRAMs.
.
i tOFF is referenced from rising edge of RAS or CAS, which ever occurs last.

MT4LC2MSE7(S)

W09.pm5,",," Rev. 2195

Micron Technology, Inc., reserves the right to change products or specifications wrthout notice.
©1995, Micron Technology, Inc.

»
s:

PRELIMINARY

•

READ WRITE CYCLE
(LATE WRITE and READ-MODIFY-WRITE cycles)

m

c
o

leSH

C

JJ

»
s:
ADDR

I

tRAG •
ICAC

I
teLl---

DQ

i5E

-

~:g~ ----------OPEN---4~~~~~~-.-'--"

OPEN---

~:t 4$###/;I$##$#$#/;I/;I/;I#$/;I#/;Id~
EDO-PAGE-MODE READ CYCLE
RASP

fZ1 DON'T CARE
~

NOTE:

UNDEFINED

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for IWRP and twRH. This design implementation will facilitate compatibility with
future EDO DRAMs.

MT4LC2M8E7(S)
W09.pm5 - Rev. 2195

1-72

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

PRELIMINARY

•

EDO-PAGE-MODE EARLY-WRITE CYCLE
t

RASP

-

tpe
tep

leSH

I'"

tRCD

teRP

=~

ADDR

~It

~i

ROW

:{Wi

~I.~

tRAD

t RAH _)

W//M

ll~

leAS

I

'RAL

1_

'Ase

I~II 'eAH~1

'leAH_)

COLUMN

COLUMN

I tewL

~II~
twp

m
C

o

I~I

~

If

COLUMN

I

'RSH

If

I I~

tAR
1_ 'ASR

tCAS

P

r==L

--

I

C

::D

»
s:

ROW

~~

I

EDO-PAGE-MODE READ-WRITE CYCLE
(LATE WRITE and READ~MODIFY-WRITE cycles)
tRP

IpC

leSH

1_

=~
1_
ADDR

~:t

::j'/;0t

\cAS

'RCo

teRP

tAR
'RAD

tRAH~1

tASR

ROW

~'i
I I~

fl I

, 1_ tWRP

=w#NOTEZI

t WRH"

1

YIiII

tAA

NOTE:

'!
"

I

~lgt

I

'RWD

t::d
IAWD

_I

~Il'

Ii

..L

'CWl--IWp ___

'AWD

I~

I

!OH---

\cPA

leAH

Ii

..L

I

I

I

~I

IAWD

--

--

ROW

II-t RwL
-- 'CWl
-twp

l~

~II~
'DH---

F=L

t=l

'CAS

COLUMN

~JI~

I
I

leAH

COLUMN

I~

tRAG

00

I

'RSH

~

f--

~

COLUMN

I

ICAS

tRAL

~

WI;;)

!PRWC NOTE 1

~
f--

'CPA

-

--.tOH

OPEN-

::::'-------OPEN

~

DON'T CARE

~

UNDEFINED

1. tpc is for LATE WRITE cycles only.
2. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for tWRP and twRH. This.designimplementation will facilitate compatibility with
future EDO DRAMs.

MT4LC2M8E7(S)

W09.pm5 - Rev. 2/95

1-73

Micron Technology, Inc., reserves the right to change products or specifications without nolice.

©1995, Micron Technology, Inc.

PRELIMINARY

MICRON

1-·

MT4LC2M8E7(S)
2 MEG x 8 DRAM

,"""",00'",

•

EDO-PAGE-MODE READ-EARL Y-WRITE CYCLE
(Pseudo READ-MODIFY-WRITE)

m

I RASP

C

o

tCSH
tpc

C
:0

tpc

'CRP

»
s:
ADDR

WE

DQ

~[~_

VIHVIL-

~lg~-----OPEN ---~-t~V~ALI~DD~ATA~(A~)~"-----"='--"
tOE

OE

~:~= all#11//#////#$##$1#;01-

RAS-ONL Y REFRESH CYCLE

RAS

CAS

ADDR

NOTE:

V,H
VJL -

d'

tCAP

~:t ~

V
V1L I
_ H-_

IASA

tRC

.~

,II.
ROW

tAP

tRAS

tRAH

~

'k/~$#/####//$~$$tf/;1#~tk(

:~
II
ROW

~

DON'TCARE

~

UNDEFINED

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for 'WRP and 'WRH. This design implementation will facilitate compatibility with
future EDO DRAMs.

MT4LC2M8E7(S)

W09.pmS- Rev. 2/95

1-74

Micron Technology, Inc., r9S9JV9S the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

PRELIMINARY

•

CBR REFRESH CYCLE
(Addresses and OE = DON'T CARE)

.
----.i

tRP

..

tRAS

.. J

1

tRPC

:J:;:~~

..

tCHR

2

II

DO
tWRP

II

tRP

III

..

~~~

tRAS

!CHR

m

c
o
c

,I

:c

1

OPEN----;-,II.------------

tWRH

tWRP

II

tWRH

~:~ --W$M/!j-:T~W;/m;/m;/$;/mJ- --'W$§/!!;!;//$;/U;/;//;/;2

WE

SELF REFRESH CYCLE
(Addresses and OE = DON'T CARE)
NOTE 2

tRP

tRASS

(( ' ,

tRPS

::;A~ ~~~$ff#!Iff$ff$ff!ff;rtr~~
DO

VOH -

WE

NOTE:

.

I

()-

II

OPEN

II
II
~:t 4#/#//;J--:TE-:-~f;@///;I$/;IM'/;I#/#//;I$###//J- -~$j/M/M/4

VOL

tWRP

IWRH

)

tWRP

IWRH

fZ;:l

DON'T CARE

~

UNDEFINED

1. IWRP and twRH are for system design reference only. The WE signal is actually a "don't care" at RAS time
during aCBR REFRESH. However, WE should be held HIGH at RAS time during a CBR REFRESH to
ensure compatibility with other DRAMs that require WE HIGHat RAS time during a CBR REFRESH.
2. Once tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.
3. Once tRPS is satisfied, a complete burst of all rows should be executed.

MT4LC2M8E7(S)
W09.pm5 - Rev. 2195

1-75

Micron Technology, Inc., reserves the right to change products or specifications without nolice.
©1995, Micron Technology, Inc.

»
s

PRELIMINARY

UU:::I=ICN

MT4LC2M8E7(S)
2 MEG x 8 DRAM

m~",co""

1-·

•

READ CYCLE
(with WE-controlled disable)

m

~

C

o

'eSH

,11-:------'R-CD-----"e"'As"-----1

'eRP

C

'ep

.'

r+------J

::D

»
s:

ADDR

WE

V IH

_TTT77d,----------'-'------,L rTTTT;'A r--'---'------,[.'TT777TTrl-n7"T71'77T" Jr----'-'------

V,L

-liLI.:LJ,'---------;c-~,.-;cc:c_:_----' "-'u..LLul'--;--_,------,----_~'CLLLL1.LI.CLfLLLLLLLLJ~l'--_,erOL-UM-N--

V,H __7TTTTT77"T71.r----;.----bTTTJ77Tk--:-------;--------'-------J
v IL

-LLLLCLLLLLLJ

DO ~gt -'------------OPEN-------~~r____;;;:;;;-;;;;:;:;;:-__j

HIDDEN REFRESH CYCLE 24
(WE = HIGH; OE = LOW)
(READ)

~:
:--'
~
}---

(REFRESH)

RAS

tRCD

'I'
'AR

.m.
'RAH

1t-II IR:LI

:tAsc.I!~

tRSH

'F=r

RAS

tCHR

I

-,I

I2ZI DON'T CARE
~
NOTE:

UNDEFINED

1. AlthOugh WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for tWRP and WRH. This design implementation will facilitate compatibility with
future EDO DRAMs.

MT4LC2MSE7(S)
W09.pm5 -Rev. 2195

1-76

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©199S, Micron Technology, Inc.

ADVANCE

MICRON

1-·

MT4LC8M8P4/C2
8 MEG x 8 DRAM

"'""oco"""

8 MEG x 8 DRAM

DRAM

PIN ASSIGNMENT (Top View)

• Timing
SOns access
60ns access
70ns access

Vss

D08
DQ?
D06
DOS
VSS

CAS
OE
NC

RAS
NC
AO
A1
A2
A3

-5
-6
-7

• Packages
Plastic SOJ (500 mil)
Plastic TSOP (500 mil)

Vee

D01
D02
D03
D04
NC
Vee
WE

DW
TW

A12/NC
A11
A10
A9
A8
A?
A6

A4

AS

• Part Number Example: MT4LC8M8P4DW-7

Vss

Vee

KEY TIMING PARAMETERS

I

SPEED
-5
-6
-?

tRC
90ns
110ns
130ns

tRAC
50ns
60ns
?Ons

tpc
20ns
25ns
30ns

tAA
25ns
30ns
35ns

tCAC
13ns
15ns
20ns

tCAS
8ns
10ns
12ns

34-Pin TSOP*

GENERAL DESCRIPTION
The MT4LC8M8P4 and MT4LC8M8C2 are high-s Peed
CMOS dynamic random access memory devices containing
67,108,864 bits, and designed to operate from 3.0V to 3.6V.
The MT4LC8M8P4 and MT4LC8M8C2 are functionally
organized as 8,388,608 locations containing 8 bits each. The
I 8,388,608 memory locations are arranged in 8,192 rows by
I 1,024 columns for the MT4LC8M8P4 or 4,096 rows by 2,048
i columns for the MT4LC8M8C2. During READ or WRITE
I cycles, each location is uniquely addressed via the address
I bits. First, the row address is latched by the RAS signal, then
I the column address by CAS . Both devices provide EDO
I PAGE MODE operation, allowing for fast successive data
I operations (READ, WRITE or READ-MODIFY-WRITE)
: within a given row.
The MT4LC8M8P4 and MT4LC8M8C2 must be refreshed
I periodically in order to retain stored data.

,I

MT4LC8M8P4IC2
D20.pmS - Rev. 2/95

Vee

Vss

D01
D02
D03
D04
NC

D08
DO?
D06
DOS

Vee
WE

RAS
NC
AO
A1
A2
A3
A4
AS
Vee

Vss

CAS
OE

NC
A12/NC
A11
A10
A9
A8
A?
A6
Vss

'Consult factory for dimensions and availability.

1-77

c

::c

»
s:

34-Pin SOJ
(OA-6)

MARKING

•
c
o

FEATURES

OPTIONS

:e

m

3.3V, EDO PAGE MODE

• Single +3.3V ±0.3V power supply
• Industry-standard x8 pinout, timing, functions and
packages
• 13 row-addresses, 10 column-addresses (P4) or
12 row-addresses, 11 column-addresses (C2)
• High-performance CMOS silicon-gate process
• All inputs and outputs are LVTTL-compatible
• Extended Data-Out (EDO) PAGE MODE access
• 4,096-cycle CAS-BEFORE-RAS (CBR) REFRESH
distributed across 64ms

z

m

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

ADVANCE

z

m

=e

•

FUNCTIONAL BLOCK DIAGRAM
MT4LC8M8P4 (13 row-addresses)

m
c

WE

0

CASO~~r---------------------j===~~~~____l-______~

o

D01DOB

c

:c

»

L-----------------------1I11~----~

OE

s:
ADA12

8192x8

~
5a:
~

8192x1024x8

MEMORY
ARRAY

Vee

Vss

FUNCTIONAL BLOCK DIAGRAM
MT4LC8M8C2 (12 row-addresses)
WE

0

CASo~--~------------------------~

D01D08

-------<> OE

ADAll

4096x8

~
~

~
RAS

4096 x 2048 x 8

MEMORY
ARRAY

Vee
Vss

MT4LC8M8P4/C2

D20.pm5- Rev. 2/95

1-78

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

ADVANCE

z

m

~

FUNCTIONAL DESCRIPTION
The functional description for the MT4LC8M8P4 and
MT4LC8M8C2 is divided into the two areas described
below (DRAM access and DRAM refresh). Relevant timing
diagrams are included in this data sheet, following the
timing specification tables.

have OE LOW when CAS transitions HIGH. Then bringing
OE HIGH for a minimum of tOEP anytime during the
CAS HIGH period will disable the DQs; the DQs will
remain disabled (regardless of the state of OE after that
point) until CAS falls again (see Figure 1). During other
cycles, the outputs are disabled at tOFF time after RAS and
CAS are HIGH, or twHZ after WE transitions LOW. The
tOFF time is referenced from the rising edge of RAS or
CAS, whichever occurs last. WE can also perform the function of disabling the output drivers under certain conditions, as shown in Figure 2.
EDO PAGE MODE operations are always initiated with
a row-address strobed-in by the RAS signal, followed by a
column-address strobed-in by CAS, just like for single locationaccesses. However, subsequent column locations within
the row may then be accessed at the page mode cycle time.
This is accomplished by cycling CAS while holding RAS
LOW, and entering new column addresses with each CAS
cycle. Returning RAS HIGH terminates the EOO PAGE
MODE operation.

DRAM ACCESS
Each location in the DRAM is uniquely addressable as
mentioned in the General Description. The data for each
location is accessed via the eight I/O pins (DQl-8). The
WE signal must be activated to execute a write operation,
otherwise a read operation will be performed. The OE
signal must be activated to enable the DQ output drivers for
a read access and can be deactivated to disable output data
if necessary.

EDO PAGE MODE
DRAM READ cycles have traditionally turned the output buffers off (High-~ith the rising edge of CAS. If
CAS went HIGH, and OE was LOW (active), the output
buffers would be disabled. The MT4LC8M8P4 and
MT4LC8M8C2 offer an accelerated PAGE MODE cycle by
eliminating output disable from CAS HIGH. This option is
called EDO and it allows CAS precharge time (tcP) to occur
without the output data going invalid (see READ and EDOPAGE-MODE READ waveforms in the noted appendix).
EDO operates as any DRAM READ or FAST-PAGEMODE READ, except data will be held valid after CAS
goes HIGH, as long as RAS and OE are held LOW and WE
is held HIGH. OE can be brought LOW or HIGH while
CAS and RAS are LOW, and the DQs will transition between valid data and High-Z. Using OE, there are two
methods to disable the outputs and keep them disabled
during the CAS HIGH time. The first method is to have
OE HIGH when CAS transitions HIGH and keep OE
HIGH for tOEHC thereafter. This will disable the DQs and
they will remain disabled (regardless of the state of OE after
that point) until CAS falls again. The second method is to

MT4lC8M8P4/C2
D20.pm5 - Rev. 2/95

DRAM REFRESH
The supply voltage must be maintained at the specified
levels, and the refresh requirements must be met in order to
retain stored data in the DRAM. The refresh requirements
are met by refreshing all 8,192 rows (P4) or all 4,096 rows
(C2) in the DRAM array at least once every 64ms. The
recommended procedure is to execute 4,096 CBR REFRESH
cycles, either uniformly spaced or grouped in bursts, every
64ms. The MT4LC8M8P4 internally refreshes two rows for
every CBR cycle, whereas the MT4LC8M8C2 refreshes one
row for every CBR cycle. So with either device, executing
4,096 CBR cycles covers all rows. Alternatively, RASONLY REFRESH capability is inherently provided. However, with this method only one row is refreshed at a time,
so for the MT4LC8M8P4, 8,192 RAS-ONLY REFRESH
cycles must be executed every 64ms to cover all rows.

1-79

Micron Technology, Inc., reserves the right to change products or specifications Without notice:
©1995, Micron Technology, Inc.

m

c
o
C

:::D

»

S

ADVANCE

z

m

M

1-·

:e
•

liAS

II::I=ICN
;~

~:r:~,--

c

MT4LC8M8P4/C2
8 MEG x 8 DRAM

;

______________________________,-____-,--,-__~____

m

c

o
C

::D

l>

s::

DQ~:8t':-----

The DOs go back to

The DOs remain High-Z
until the next CAs cycle
ift()EP Is met.

The DOs remain High-Z

until the next CAS cycle
If tOEHC Is met.

Low-Z if toES Is met.

Figure 1

OE CONTROL OF DQs

~ ~l~:~,--___________________~_________~~____________________

CAS

ADDR

DQ

~:r-

/)\

f'

l' /

I

I

1

J.

/L

~~:~,-f(~-\U-MN-(A)~WI/I !/kl$l I !l/lI!l/ / J);(r- :C Dl:C U:'c-MN- :C(.)- -;·X'#II!$///$$I/,0(r-'CDl--.JuLMN-'-(C)'>WI#J71$/~
. . ~ VALIDDA.L. ~r------I~~~=-=V~AlIO~DAT~A(.)C~-=~
"~

~~-------OP.EN

lvoaj.

IWHZ.I

I

/

:~:~~========~+--' --+-1----+5--'-,.-!--r-7Z~._
twPZ_.

The DOs go to High-Z if WE falls, and if IWPZ is mel,
will remain High-Z until CAS goes LOW with
WE HIGH (Le., until a READ cyCle is initiated).

WE may be used to disable the DOs to prepare
for Input data in an EARLY WRITE cycle. The DOs
will remain High-Z until CAS goes LOW with
WE HIGH (i.e., until a READ cycle is initialed).

I2Zl DON'T CARE
~

UNDEFINED

Figure 2
WE CONTROL OF DQs

MT4LC8MSP4IC2
D20.pmS-Rev.2195

1-80

Micron Technology, Inc., reserves the right to change products or specifications without notice.
@1995.MlcronTechnology.lnc

ADVANCE

MICRON
1-·

MT4LC8M8P4/C2
8MEGx8DRAM

,~,~,

zm

--~--------------------------------~~
ABSOLUTE MAXIMUM RATINGS*

*Stresses greater than those listed under"Absohlte Maximum Ratings" may cause permanent damage to the device.
This is a stress rating only and function,!l operation of the
device at these or any other conditions ,above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability.

Voltage on Vee Relative to Vss ..................... -1.0V to +4.6V
Voltage on Inputs or I/O Pins
Relative to Vss ...........................•.................•... -1.0V to +S.5V
Operating Temperature, TA (ambiep.t) .......... O°C to +70°C
Storage Temperature (plastic) .................... -SsoC to +1S0°C
Power Dissipation ............................................................. 1W
Short Circuit Output Current ..................................... SOmA

•
m
C

o

C
::D

:J>

s:

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: 1, 6, 7) (Vcc = +3.3V ±0.3V)

SYMBOL

MIN

MAX

UNITS

Supply Voltage

PARAMETER/CONDITION

Vcc

3.0

3.6

V

Input High (Logic 1) Voltage, all inputs

VIH

2.0

5.5

V

Input Low (Logic 0) Voltage, all Inputs

VIL

-1.0

O.B

V

-2

2

~

loz

-10

10

'VOH

2.4

INPUT LEAKAGE CURRENT
Any input OV,:::; VIN :::; 5.5V
(All other pins not under test = OV)

II
.;

OUTPUT LEAKAGE CURRENT (0 is disabled; OV :;; VOUT :;; 5.5V)
OUTPUT lEVELS
Output High Voltage (lOUT = -2rnA)
Output Low Voltage (lOUT =2rnA)

VOL
'.

. PAIlAMETfR/CONDITION
STANDBY CURRENT: (TTL)
(RAS = CAS = VIH)
..

VERSION

..... SYMBOL

MT4LCBMBP4
MT4LCBM8C2 ;

ICCl
Icel

0.4

.

-5
1
1

j.iA

.V

MAX
-6
1
. 1

V

UNITS. NOTES

~7

1

rnA

1

'.

';'

STANDBY CURRENT: (CMOS)
(RAS = CAS ~ Vec -0.2V, POs rnay Qe .Ieft open,
Other inputs: VI!'l~ Vec ..o.2V orVIN :::;0.2,,) .

MT4LCBMBP4
MT4LCBM8C2

OPERATING CURRENT: RandornREAPIWRITE
Average power supply current
(RAS, CAS, Adc;lresl:! Cycling: tRC = tRC [MIN])

MT4LCBMBP4
MT4LCBM8C2

ICC3
.lcc3

1-35
175

125
165

115
155

rnA

OPERATING CIJRRENT: EDO PAGE MODE
Average power supply current
."
(RAS = VIL, CAS, Address Gycling: tpc =tpc [MIN])

MT4LC8M8P4
MT4LCBM8C2

lCC4
ICC4

155
155

125
105
125 . 105

rnA

REFRESH CURRENT: RAS ONLY
Average power supply current
(RAS Cycling, CAS = VIH: IRc = tRC [MIN])

MT4LC8M8P4
MT4LC8M8C2

1CC5
Ices

135
175

125
165

115
155

rnA

REFRESH CURRENT: CBR
Average power supply current
(RAS, CAS, Address Cycling: tRC = tRC [MIN])

MT4LC8M8P4
MT4LC8M8C2

Icc6
Icc6

145
175

135
165

125
155

rnA

MT4LCSME!p4lG2
D20.proS- Rev. zt95

NQTES

.IC.C2
Icc2

500
500

500
. 500

500.
500

~.

"

,

-=

1-81

"3,-4..
29
3,.4;

2,9
3,26

3,5

Micron Technology, Inc., rEiselVea the right to change prod~ or spacificationa without notice.
@1995,MlcronTeehnology,lnc.

ADVANCE

z

m

:s

•

m

o

o

C
l'J

l>

s:

MIC:RON

1-·

MT4LC8M8P4/C2
8MEGx8DRAM

,'"

CAPACITANCE

,

: PARAMETER

SYMBOL

MAX
5

UNITS

NOTES

CI1

pF

2

Input Capacitance: RAl:l; CAS, WE, OE

CI2

7

pF

2

InpuVOutput Capacitance: DO

Cia

9

pF

2

Input Capacitance: Address pins

"

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vee = +3.3V ±0.3V)

-5

AC CHARACTERISTICS
PARAMETER
Acc~ss tim~

from

column-addr~ss

Column-addr~ss s~t-up to CAS"
going HIGH during WRITE
Column-addr~ss

hold tim~

-7

-6

SYM
'M

MIN

MAX
25

MIN

MAX
30

MIN

"ACH

15

15

15

ns
ns

IAR

40

45

55

ns

IASC
'ASR
'AWD
'CAC
'CAH
'CAS
'CHR

0
0
48

0
0
55

0
0
65

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns·
ns.
ns
os
ns

(ref~r~hc~d to RAS)
Column-addr~ss·s~tup tim~

Row-addr~ss s~iup

time
Column-addr~ss to WE d~lay tim~
Ac~ss iim~ from CAS"
Column-addr~sshold tim~

CAS puls~ width
CAS hold tim~ (CBR REFRESH)
. CAS to outPut in Low-Z
Data output hold aft~r CAS LOW
CAS pr~harg~ tim~
Acc~ss tim~ from CAS pr~charg~
CAS to RAS pr~liarg~ tim~
CAS'hc;>ld tim~
CAS setup time (CBR REFRESH)
CAS to WE d~lay tim~
Writ~ command to CAS" I~ad tim~
Data-in hold tim~
Data-in hold tim~ (rej~r~ncooto RAS)]
Data-in s~tup tim~
Output disabl~
Output Enabl~ tim~
OJ: hold tim~ from WE dl'Jring
READ-MODIFY-WRITEcycl~

OJ: HIGH hold tim~ from CAS' HIGH
OJ: HIGH puls~ width
. OJ: LOW to CAS HIGH s~tup tim~

MT4LCBM8P4I02

D20.pm5 - Rev. 2195

'eLZ
'COH
ICp

.'

-

'CPA
'CRP
'CSH
'CSA.
'CWD
'CWL
'DH
'DHR
'DS
'OD
tOE
'OEH

13
8
8
8
0
5
8

10,000

15
10
10
10
0
5
10

28
5
44

5
30
8
8
40
0
0
8

13
13

20
12
12
12
0
5
10

10,000

35
5
50
5
35
15
10
45
0
0
10.

MAX
35

10,000

40
5
55
5
40
15
12
55
0
0

15
15
.:

12

,

15
15

UNITS

NOTES

21
15

5

16

5
21 .
22 :
22
27,.28
28

.,

'OEHG
'OEP
'OES

7
7
4

1-82

10
10
5

10
10

5

ns
ns
ns

Micron Technology, Inc., reserves the right 10 change products or specifications witHout notice.
1l:I1995, MIcron Technology,lnc.

:

ADVANCE

z
=E

m
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vee = +3.3V ±0.3V)
AC CHARACTERISTICS
PARAMETER

-6

-5
MIN

MAX

MIN

MAl(

MIN

MAX

UNITS

NOTES

tOFF
tORD

0
0

13

0
0

15

0
0

15

ns
ns

20,27

tpc

20

25

30

ns

EDO-PAGE-MODE
READ-WRITE cycle time

tpRWC

71

75

85

ns

Access time from RAS
RAS to column-address delay time
Row-address hold time
Column-address to RAS lead time
RAS pulse width
RAS pulse width (EDO PAGE MODE)
Random READ or WRITE cycle time
RAS to CAS delay time
Read command hold time
(referenced to CAS)

tRAC
tRAD
tRAH
tRAL
tRAS
tRASP
tRC
tRCD
tRCH

Read command setup time
Refresh period
RAS precharge time
RAS to CAS precharge time
Read command hold time
(referenced toRAS)

tRCS
tREF
tRP

Output buffer turn-off delay
OE setup prior to RAS during
HIDDEN REFRESH cycle
EDO-PAGE-MODE
READ or WRITE cycle time

tRPC
tRRH

9
8
25
50
50
90
11
0

10,000
125,000
45

0

12
10
35
70
70
130
14
0

70
35

10,000
125,000
50

0

ns
ns
ns
ns
ns
ns
ns
ns
ns

30
0
0

40
0
0

50
0
0

8
126
73
8
1
8
40

10
150
80
15
2
10
45

12
177
90
15
2
12
55

ns
ns
ns
ns
ns
ns
ns

twcs
lWHZ

0

twp

7
7
8
8

MT4LC8M8P4!C2
D20.pm5 - Rev. 2/95

60
30

ns
ms
ns
ns
ns

WE command setup time
WE to outputs in High-Z
Write command pulse width
WE pulse widths to disable outputs
WE hold time (CBR REFRESH)
WE setup time (CBR REFRESH)

twpz
tWRH
tWRP

37

12
10
30
60
60
110
14
0

64

tRSH
tRWC
tRWD
tRWL

IT

10,000
125,000

0

RAS hold time
READ WRITE cycle time
RAS to WE delay time
Write command to RAS lead time
Transition time (rise or fall)
Write command hold time
Write command hold time
(referenced to RAS)

twCH
twCR

50
25

50

64

0
10

1-83

50

64

10
10
10
10

50

0
15

13
12
12
10
10

•
m

-7

SYM

ns
ns
ns
ns
ns
ns

c
o

C
JJ

l>

14
18

17
19

26

19

21

21

25
25

Micron Technology. Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology. Inc.

S

ADVANCE

z

m

:e
•

m

c
o

C
::D

l>

s:

~~Jr;~tages

referenced to Vss.
2. This parameter is sampled. Vee = +3.3V; f = 1 MHz.
3. Ice is dependent on cycle rates.
4. Ice is dependent on output loading and cycle rates.
Specified values are obtained with minimum cycle
time and the outputs open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate
cycle time at which proper operation over the full
temperature range is assured.
7. An initial pause of lOOf.l,s is required after power-up
followed by eight RAS refresh cycles (RAS ONLY or
CBR with WE HIGH) before proper device operation
is assured. The eight RAS cycle wake-ups should be
repeated any time the IREF refresh requirement is
exceeded.
S. AC characteristics assume IT = 2ns for -5 and 2.5ns for
-6 and -7.
9. VIH (MIN) and VIL (MAX) are reference levels for
measuring timing of input signals. Transition times
are measured between VIH and VIL (or between VIL
and VIH).
10. In addition to meeting the transition rate specification, all input signals must transit between VIH and
VIL (or between VIL and VIH) in a monotonic manner.
11. If CAS and RAS = VIH, data output is High-Z.
12. If CAS = VIL, data output may contain data from the
last valid READ cycle.
13. Measured with a load equivalent to two TTL gates,
100pF and VOL = O.SV andVoH = 2.0V.
14. Assumes that IRCD < IRCD (MAX). If IRCD is greater
than the maximum recommended value shown in this
table, iRAC will increase by the amount that IRCD
exceeds the value shown.
15. Assumes that IRCD ~ IRCD (MAX).
16. If CAS is LOW at the falling edge of RAS, output data
will be maintained from the previous cycle. To initiate
a new cycle and clear the data-out buffer, CAS must
be pulsed HIGH for ICp.
17. Operation within the IRCD (MAX) limit ensures that
IRAC (MAX) can be met. IRCD (MAX) is specified as
a reference point only; if IRCD is greater than the
specified IRCD (MAX) limit, then access time is
controlled exclusively by ICAe.
IS. Operation within the IRAD (MAX) limit ensures that
IRAC (MIN) and ICAC (MIN) can be met. IRAD
(MAX) is specified as a reference point only; if IRAD
is greater than the specified lRAD (MAX) limit, then
access time is controlled exclusively by IAA.

MT4LC8MBP4/C2
D20.pm5':" Rev, 2195

19. Either IRCH or IRRH must be satisfied for a READ
cycle.
20. IOFF (MAX) defines the time at which the output
achieves the open circuit condition, and is not
referenced to VOH or VOL.
21 twcs, IRWD, IAWD and ICWD are not restrictive
operating parameters. twcs applies to EARLY WRITE
cycles. If twcs > twcs MIN, the cycle is an EARLY
WRITE cycle and the data output will remain an open
circuit throughout the entire cycle. IRWD, IAWD and
ICWD define READ-MODIFY-WRITE cycles. Meeting
these limits allows for reading and disabling output
data and then applying input data. OE held HIGH and
WE taken LOW after CAS goes LOW results in a LATE
WRITE (OE-controlled) cycle. IWCS, IRWD, ICWD and
IAWD are not applicable in a LATE WRITE cycle.
22. These parameters are referenced to CAS leading edge
in EARLY WRITE cycles and WE leading edge in
LATE WRITE or READ-MODIFY-WRITE cycles.
23. If OE is tied permanently LOW, LATE WRITE or
READ-MODIFY-WRITE operations are not possible.
24. A HIDDEN REFRESH may also be performed after a
WRITE cycle. In this case, WE = LOW and
OE=HIGH.
25. twTS and twTH are setup and hold specifications for
the WE pin being held LOW to enable the JEDEC test
mode (with CBR timing constraints). These two
parameters are the inverts of twRP and IWRH in the
CBR REFRESH cycle.
26. RAS-ONLY REFRESH requires that allS,192 rows of
the MT4LCSMSP4, or all 4,096 rows of the
MT4LCSMSC2, be refreshed at least once every 64ms.
CBR REFRESH, for either device, requires that at least
4,096 cycles be completed every 64ms.
27. The DQs open during READ cycles once IOD or IOFF
occur. If CAS stays LOW while OE is brought HIGH,
the DQs will open. If OE is brought back LOW (CAS
still LOW), the DQs will provide the previously read
data.
2S. LATE WRITE and READ-MODIFY-WRITE cycles
must have both IOD and IOEH met (OE HIGH during
WRITE cycle) in order to ensure that the output
buffers will be open during the WRITE cycle. If OE is
taken back LOW while CAS remains LOW, the DQs
will remain open.
29. Column-address changed once each cycle.

1-84

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc,

ADVANCE

MICRON

1-·

,"

MT 4LC8M8P4/C2
8 MEG x 8 DRAM

,

READ CYCLE
,"p

'cSH

V,H 1T7=J~.""...,.4J:~~-{ m"""'rd:...---'-.........i--if777Tn7Tn"Ti-n'777;'77T,,J,.n
AOOR

DO

VH..

r,...-------

-.4l!~1~~::cT1"i::::::,...---J'U..l.LLI.;u}-c:.,-::--T=;'-c-;-_'Y.LlLLLlLLLLtfLLLf!:LlL.l'fLU'---._ _
RO_W_ _

~: =:_ _~~_~_OPEN _ _ _ _ _--j~~~~~~-_OPEN

__-

EARLY WRITE CYCLE

ADDR

~:t:

COLUMN

.'

I

:

I

ROW

I

::

~ ~:_:'I;;~(1n
'r-~
... '
I-"'~i i :~:R
DQ~:ge~.·.

OE

NOTE:

':1

VALiDD!>A

.

_

~:r
~

DON'T CARE

~

UNDEFINED

1. Although WE i$ a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for~WRP and 'WRH. Tbis.design implementation will facilitate compatibility with,.
future EDO DRAMs: .
. "
.
2. tOFF is referenced from rising edge of RAS or CAS, which ever occurs last.

MT4LC8M8P4lC2
D20~-Rev.~ <

h85

Micron Technology, Inc., reserves the right to change products or specifications Wiih()tJtnotlce;
C1995, Micron Technology, Inc.

ADVANCE

z

m

MII:::F=lCN

1-·

MT 4LC8M8P4/C2
8MEGx8DRAM

,

-

==

READ WRITE CYCLE
(LATE WRITE and READ-MODIFY-WRITE cycles)

m

c
o
c

tcsH

::c
l>

s:

EDO-PAGE-MODE READ CYCLE
RAS

-j

'RASP
,----=",-------EFl.'cp'RP.
~:r: .~ '-:--.;-CS::-H--.R-CD---------;.PC=---------,~~::::----k~
"----1

CAs

II

'~I.

V,H v"
_

ADDR

NOTE:

~

DON'T CARE

~

UNDEFINED

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for IWRP and WRH. This design implementation will facilitate compatibility with
future EDO DRAMs.

MT4LC8MBP4/C2
D20.pmS-Rev.2J95

1-86

Micron Tactinology. Inc., reserves the right to change products or specifications without notice.

@1995, Micron Technology, Inc.

ADVANCE

z

m
=E

•

EDO-PAGE-MODE EARLY-WRITE CYCLE

m

c
o

~:~ :Z2t=jt=iWJC:::CO~l~UM~N=~~W~~~~~WC~~=kw4(zz~

ADDR

I 'eWl

I

~:~

ROW

1

~II~
'WP

Oe

C
lJ

W//)I/$//;@//$§#/;0'$/$$/§$/#$/#)Iff/$N§$/$///$J!§/#J!J!J!/;0'//$§///;@/$/iZ0
EDO-PAGE-MODE READ-WRITE CYCLE
(LATE WRITE and READ-MODIFY-WRITE cycles)

~

RASP

-

I~I

leSH

=-.1

!~
ADDR

~:~

::;J;2\

tRAH~!

'ASR

ROW

W,0

I I~

:{!dffNOTE21

I

f'
~ I 'M!

I

.!

t WRH

I

2§£\!

leAH __

tcWl-twp-l

Ii

ILl I
I I~

tCWL--

~

I

II

leAH __

ROW

COLUMN

)

'AWD

'RAL

1

IWp __

IAWD

I

'AWD

--

,l.1-'RWl
--'CWL
_twp

I~

~II~ ~ II~'M
I
I
~- l
I
I· '05_1_ I~ 'os-I- ~ '05_ T-~

-- -

~~

-~-I J; -

1:-

OPEN~
'OE-

NOTE:

'RWD

A

'CAS

r---,

COLUMN

I~

'cLz -

-

I~ lAse

COLUMN

IRSH

~

r---,

~

I

teAS

~

~i

'AR
'RAO

.t'WRP

IpC / tpRWC NOTE 1
tCAS

IRCD

VAUD

Dour

-

.0.-

'eLZ

~~

VAUO
DIN

-~-I 1:-

'eLZ

VAU~p

"'W'~~

OOlIT

___ too

__ '00

toE- --

VALID ! , - - O P E N 01111

_;'12'00
'OE-

-

tOEH

~

DON'T CARE

~

UNDEFINED

1. tpc is for LATE WRITE cycles only.
2. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WEHIGH for tWRP and tWRH. This design implementation will facilitate compatibility with
future EDO DRAMs.

MT4LC8M8P4IC2
D20.pm5- Rev. 2/95

1-87

Micron Technoiogy, Inc., reserves the right to change products or specifications without nolice.
©1995, Micron Technology, Inc.

»
s:

ADVANCE

z

m

~-------------------------

•

EDO-PAGE~MODE

READ-EARL Y-WRITE CYCLE
(Pseudo READ-MODiFY-WRiTE)

m

c

tAASP

o

tCSH

C
::xJ

teAP

tpc
~

tRCD

»
:s::

tpc
tcp

tcp

leAS

I~
ADDR

COLUMN (Al

WE

tAAC
DO

~:gr

-----

OPEN

tePA I
~

I

I

~

-----:f----;V;;;;AL;,D;;;;DAT:;;;-A;;;;(A)-~

tWHZ_

VALID
DATA (8

tOE

GE

~:~= W/;"/////$////$//;"$//;"//MJ,-

RAS-ONL Y REFRESH CYCLE

AAS
CAS

MOO

NOTE:

~:t _ __--"'tc=AP_.li~·_~

'll~R~b'W :l _____

___
tRA_S_ _ _ _ _ _

~:t _-d---1~·----~··~-;--------------,----jl-.~--l:-------;~----;~-;------::t

=- ', " ±.~

"kw#/#M###$ff#$/###ffa'!0<

II

"~

.~

DON'T CARE

~

UNDEFINED

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for IWRP and IWRH. This design implementation will facilitate compatibility with
future EDO DRAMs.

MT4LC8M8P4/C2
D20.pm5 - Rev. 2/95

1-88

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

ADVANCE

z

m

--------------------------------------~

•

CBR REFRESH CYCLE
(Addresses and OE = DON'T CARE)

.

'RP

., .

. . 'RAS

=ie:~l

'RPC

II

-

'CSR

m

c
o

I

l

V

'cHR

C
::D

-~--

CAS ~:t-

oPEN---'-'-II---------

'wRPll'WRH

WE

'RAS

.~

~ '"~~

DQ

..

'RP

.

'wRPll'WRH

.

~:t 4/;1;1///#;)- -W/;1;/';1;1////;1arJ- -W$//;1;1;1$$;l##/;1;1J;
HIDDEN REFRESH CYCLE 24
(WE = HIGH; OE = LOW)
(READ)

.

tRAS

J

~.

IRSH

tRCO

i

II
II

'AR
tRAD

H

---,..-

.

.

(REFRESH)

'R AS

tCHR

~I

tR:LI

~~:
=~":M !w~~
I
I

~
Jc---

tRAH" ~II~
'RAG

.

DO

DE

~gt

:=c-----

OPEN

I

I~l~~

~

~:~ -W#/##/#/##//#/J1$##~~D

1-89

>-- OPEN-

VALID DATA

'flOO('£Y.

too

I

_$$#/;)
~

DON'T CARE

~

UNDEFINED

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

l>

s:

ADVANCE

z
m

MICRON

1-·

MT 4LC8M8P4/C2

8 MEG x 8 DRAM

,""00>00'"

~--------------------------------------

•

READ. CYCLE
(with WE-controlled disable)

m

c

o

tcp

C
JJ

:t>

s:

ADDR

I_

CE

NOTE:

~:t ]I!//!!I!!II!/!/I//!/////!/////!!I!//!//!!I///!I/I!M-

'OE

~

DON'T CARE

12221

UNDEFINED

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer
should implement WE HIGH for IWRP and twRH. This design implementation will facilitate compatibility with
future EDO DRAMs.

MT4lC8M8P4IC2
D20.pm5- Rev. 2/95

1-90

Micron Technology, Inc., reserves the right 10 change products or specifications without notice.

©1995,MlcronTechnology,lnc.

UII::::I=ICN

MT4C16270
256K x 16 DRAM

m~,occc,"c

1-·

256K x 16 DRAM

DRAM

•
m

5V, EDO PAGE MODE

C

FEATURES

PIN ASSIGNMENT (Top View)

• Industry-standard x16 pinouts, timing, functions
and packages
• High-performance CMOS silicon-gate process
• Single +5V ±10% power supply*
• Low power, 3mW standby; 300mW active, typical
• All device pins are TTL-compatible
• 512-cycle refresh in 8ms (nine rows and nine columns)
• Refresh modes: RASONLY, CAS-BEFORE-RAS (CBR)
and HIDDEN
• Extended Data-Out (EDO) PAGE MODE access cycle
• BYTE WRITE and BYTE READ access cycles

OPTIONS

V"
001
002
003
DO'
V"
DOS
DO'
DO?
008
NC
NC

MARKING

• Timing
60ns access
70ns access
80ns access

WE
AAS

NC

AO
A1

-6*
-7
-8

• Write Cycle Access
BYTE or WORD via CAS

A2

A3
V"

Vco
001
002
003
DO'

are limited to a Vee range of ±5%. Contact factory for

',KEY TIMING PARAMETERS
SPEED
-6
I
I -7
-8
I
I

I

tRC
110ns
130ns
150ns

tRAC
60ns
70ns
80ns

tpc
25ns
30ns
33ns

IAA
30ns
35ns
40ns

ICAC
15ns
20ns
20ns

ICAS
10ns
12ns
12ns

W06.pm5 - Rev. 2195

I

5

36
35
34
33

,
,
7
8
9
10

11
12
13
14
15

16
17
18
19
20

38
37

Vso
0016
0015
D014
OQ13

Vso
0012
0011

32
31

OQ10

30
29
2B
27

NC

liE

26

A8

25
24

A7

23

22
21

DO'
CASl
CASH

A6

AS
A4

V"

V"
DQ16

0015
D01.

0013
V"

DOS
D06
007
DOS

OQ12
0011
DQlO
DQ9

NC
NC

The MT4C16270 is a randomly accessed solid-state
memory containing 4,194,304 bits organized in a x16 con,figuration. The MT4C16270 has both BYTE WRITE and
: I WORD WRITE access cycles via two CAS pins.
'I The MT4C16270 offers an accelerated cycle access called
IEDO PAGE MODE.
, The MT4C16270 CAS function and timing are deterImined by the first CAS (CASL or CASH) to transition LOW
: and by the last to transition back HIGH. CASL and CASH
} MT4C16270

39

Vc<

WE

GENERAL DESCRIPTION

,

40

40/44-Pin TSOP
(DB-4)

DJ
TG

Part Number Example: MT4C16270DJ-7

I *60ns specifications
I availability of 6Ons.

1

2
3

16270

• Packages
Plastic SOJ (400 mil)
Plastic TSOP (400 mil)

I'

40-Pin SOJ
(DA-7)

NC

CASL
CASH

AAS
NC
AO
A1
A2
A3

liE

Vco

V"

A.
A7
A'
AS
A'

function in an identical manner to CAS in that either CASL
or CASH will generate an internal CAS. Use of only one of
the two results in a BYTE WRITE cycle. CASL transitioning
LOW selects a WRITE cycle for the lower byte (DQ1-DQ8)
and CASH transitioning LOW selects a WRITE cycle for the
upper byte (DQ9-DQ16). BYTE READ cycles are achieved
through CASL or CASH in the same manner.

1-91

Micron Technology, Inc., reserves the right to change products or speclflcations without notice.
©1995,MlcronTechnology, Inc.

o

c
::a

»
s:

MICRON
1-·

MT4C16270
256K x 16 DRAM

,",",ocoon,

FUNCTIONAL BLOCK DIAGRAM

WE -+-f---'---------,
CASL o-l.....f,--'<5i0
CASH
~~~---~

CONTROL
LOGIC

DATA-IN BUFFER
001

••

0016

1+-----oOE

AD
A1
A2
A3
A4
A5
A6
A7
AS
512x512x16
MEMORY
ARRAY

MT4C16270
W06.pm5 - Rev. 2/95

1-92

-----0

Vee

+------0

Vss

Micro"n Technology, Inc., reserves the right to change products or specifications without notice
©1995, Micron Technology, Inc.

FUNCTIONAL DESCRIPTION
data-in (D) is latched by the falling edge of WE or CAS,
whichever occurs last. Taking WE LOW will initiate a
WRITE cycle, selecting DQl through DQI6. If WE goes
LOW prior to CAS going LOW, the output pin(s) remain
open (High- Z) until the next CAS cycle. If WE .goes LOW
after CAS goes LOW and data reaches the output pins, dataout (Q) is activated and retains the selected cell data as long
as CAS and OE remain LOW (regardless of WE or RAS).
This late WE pulse results in a READ WRITE cycle.
The 16 data inputs and 16data outputs are routed through
16 pins using common I/O, and pin direction is controlled
by OE , WE and RAS.
EDO PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a
row-address-defined (AO-AS) page boundary. The EDO
PAGE MODE cycle is always initiated with a row-address
strobed-in by RAS followed by a column-address strobedin by CAS. CAS may be toggled by holding RAS LOW and
strobing-in different column-addresses, thus executing
faster memory cycles. Returning RAS HIGH terminates
the EDO PAGE MODE operation.

Each bit is uniquely addressed through the IS address
bits during READ or WRITE cycles. These are entered 9 bits
(AO-AS) at a time. RAS is used to latch the first 9 bits and
CAS the latter 9 bits.
The CAS control also determines whether the cycle will
be a refresh cycle (RAS ONLY) or an active cycle (READ,
WRITE or READ WRITE) once RAS goes LOW. The
MT4C16270 has two CAS controls, CASL and CASH.
The CASL and CASH inputs internally generate a CAS
signal functioning in an identical manner to the single
CAS input on the other 256K x 16 DRAMs. The key difference is that each CAS controls its corresponding DQ tristate
logic (in conjunction with OE and WE and RAS). CASL
controls DQl through DQS and CASH controls DQ9 through
DQI6.
The MT4C16270 CAS function is determined by the first
CAS (CASL or CASH) transitioning LOW and the last
transitioning back HIGH. The two CAS controls give
the MT4C16270 both byte READ and byte WRITE cycle
capabilities.
A logic HIGH on WE dictates READ mode while a logic
LOW on WE dictates WRITE mode. During a WRITE cycle,

I

+ - - - - WORD WRITE _______________ [ ••- - - - L O W E R BYTE WRITE

RAS~

I

\
\~

\ ! c - . - - - - _I

\'--+-_--+-_ _~I

WE

STORED
DATA

UPPER BYTE
(009·0016)
OF WORD

r____r-

\~--~/

CASH

LOWER BYTE
(001·008)
OF WORD

~I

~
~

INPUT

INPUT

STORED! STORED

~ D~r D~r

DATA

1----

o -

DATA.:

-»

0
0
0

0
0
0

,.

0

0

-

-;i>

,.

•••
---:0>
0>

---;,.

'"","~0

0
t
0

-----3>

.-----»
-----;0>

1
0

---?;>

1·-----;,.
1·-----;:.
1 -----;,..

1
1
1

---3>

1------3>

1

---3>

---3>
---~

ADDRESSO

~

INPUT

INPUT

STORED

DATA

DATA

DATA

::~'

~ :::.:

x ----- --X
X

..

--

--3>

0

--»

1

--3>

--3>

1
1

--;>

1

--3>

1

::~'

•• _._._...

••

,.

1
0

----------

--

3>

1

-

-3>

---?

1

.0>

1
1

.0>

~ ••- - - - - ADDRESS 1

-------+1

X", NOT EFFECTIVE (DON'T CARE)

Figure 1
WORD AND BYTE WRITE EXAMPLE
MT4C16270
W06.pm5 - Rev. 2195

1-93

Micron Technology, Inc.• reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

•
m
c

o
C

JJ

l>
S

MICRON

1-·

•

m

c
o
c

:c
l>

s:

MT4C16270
256K x 16 DRAM

"'"'"CC""'''

BYTE ACCESS CYCLE
The BYTE WRITE cycle is determined by the use· of
CASL and CASH. Enabling CASL will select a lower BYTE
WRITE cycle (DQI-DQ8) while enabling CASH will select
an upper BYTE WRITE cycle (DQ9-DQ16). Enabling both
CASL and CASH selects a WORD WRITE cycle.
The MT4C16270 can be viewed as two 256K x 8 DRAMs
which have common input controls. Figure 1 illustrates the
MT4C16270 BYTE WRITE and WORD WRITE cycles. The
BYTE READ is accomplished in the same manner.

going invalid (see READ and EDO-PAGE-MODE READ
waveforms).
EDO operates as any DRAM READ or FAST-PAGEMODE READ, except data will be held valid after CAS
goes HIGH, as long as RAS and OE are held LOW and WE
is held HIGH. OE can be brought LOW or HIGH while
CAS and RAS are LOW, and the DQs will transition between valid data and High-Z. Using OE, there are two
methods to disable the outputs and keep them disabled
during the CAS HIGH time. The first method is to have
OE HIGH when CAS transitions HIGH and keep OE
HIGH for tOEHC. This will tristate the DQs and they will
remain tristate, regardless of OE, until CAS falls again. The
second method is to have OE LOW when CAS transitions
HIGH. Then OE can pulse HIGH for a minimum of tOEP
anytime during the CAS HIGH period and the DQs will
tristate and remain tristate, regardless ofOE, until CAS falls
again (please reference Figure 2 for further detail on the

EDO PAGE MODE
DRAM READ cycles have traditionally turned the output buffers off (High-Z) with the rising edge of CAS. If
CAS goes HIGH, and OE is LOW (active), the output
buffers will be disabled. The MT4C16270 offers an accelerated PAGE MODE cycle by eliminating output disable
from CAS HIGH. This option is called EDO and it allows
CAS precharge time (tcP) to occur without the output data

RAs

~i~=~~_______________________________________

-

VIH

CAS

VIL-

--------~

\

)\

1

:

:
ADDR

~:t:

. \ _ _-.-.1

1

=>@~OO~~~~~~~~~>C~\C~OL~UM~N~{B)0<:~~~~~KJ"~~OL~UM~N£{C;::))fZ~~~~~~{(\

COLUMN (D)

XZM.

I

DQ '110H

VIOL

6E

-----.:~~~:a
I
~~~~~~~~~_O'_'N ~
i:~:, I
,...,..
~I-·r:!

~:~_

,
~··lsTA{c)
too

__

~

t
_o~,

________

!

r-9

~

L _ _ _ _ _ _~I

!

VALID DATA (D)

tm; - - - - - - - -

!

The DOs go back to

The DOs remain High-Z

The DOs remain High-Z

Low-Z if toES is met.

until the next CAS cycle
if tOEHC is met

until the next CAs cycle
if tOEP is met.

~

DON'TeARE

~

UNDEFINED

Figure 2
OUTPUT ENABLE AND DISABLE

MT4C16270

W06.pm5- Rev. 2195

1-94

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

toggling OE condition). During other cycles, the outputs are
disabled at tOFF time after RAS and CAS are HIGH, or
tWHZ after WE transitions LOW. The tOFF 'time is referenced from the rising edge of RAS or CAS, whichever
occurs last. WE can also perform the function of turning off
the output drivers under certain conditions, as shown in
Figure 3.
Returning RAS and CAS HIGH terminates a memory
cycle and decreases chip current to a reduced standby leveL

The chip is also preconditioned for the next cycle during the
RAS HIGH time. Memory cell data is retained in its correct
state by maintaining power and executing any RAS cycle
(READ, WRITE) or RAS refresh cycle (RAS ONLY,
CBR, or HIDDEN) so that all 512 combinations of RAS
addresses (AD-A8) are executed at least every 8ms, regardless of sequence. The CBR REFRESH cycle will also invoke
the refresh counter and controller for row-address controL

•
m

c

o
C

II

l>

s:

VALID DATA (A)

~:~

VALID DATA (B)

fi1+--tW~wpz_--+-I_ _~-,---+/z_/~
+---

: ____

r

The DOs go to High-Z if WE falls, and if twpz is met,
will remain High-Z until CAS goes LOW with
WE HIGH (i.e., until a READ cycle is initiated).

/

WE may be used to disable the DOs to prepare

for input data in an EARLY WRITE cycle. The DOs
will remain High-Z until CAS goes LOW with

WE HIGH (i.e., until a READ cycle is initiated).

!tZ1 DON'TCAA.E
~

UNDEFINED

Figure 3
OUTPUT ENABLE AND DISABLE WITH WE

MT4C16270
W06.pmS ~ Rev. 2195

Micron TechnologY,lnc.,

r~serves the right to change products or specifications withollt notice.
©1995, Micron Technology, Inc.

MICRON

1-·

•

m

c
o

C
::xJ

l>

s:

MT4C16270
256K X 16 DRAM

,,"""",00,"'

TRUTH TABLE
ADDRESSES
IR
IC

FUNCTION

RAs-

CASl

CASH

WE

or

Standby

H

H~X

H~X

X

X

X

READ: WORD

L

L

L

H

L

ROW

COL

Data-Out

READ: LOWER BYTE

L

L

H

H

L

ROW

COL

Lower Byte, Data-Out
Upper Byte, High-Z

READ: UPPER BYTE

L

H

L

H

L

ROW

COL

Lower Byte, High-Z
Upper Byte, Data Out

WRiTE: WORD
(EARLY WRITE)

L

L

L

L

X

ROW

COL

Data-In

WRITE: LOWER
BYTE (EARLY)

L

L

H

L

X

ROW

COL

Lower Byte, Data-In
Upper Byte, High-Z

WRITE: UPPER
BYTE (EARLY)

L

H

L

L

X

ROW

COL

Lower Byte, High-Z
Upper Byte, Data-In

X

DOs

NOTES

High-Z

L

L

L

H-'+L

L~H

ROW

COL

Data-Out, Data-In

1,2

EDO-PAGE-

1st Cycle

L

H~L

H~L

H

L

ROW

COL

Data-Out

2

MODE READ

2nd Cycle

L

H~L

H-+L

H

L

n/a

COL

Data-Out

2

EDO-PAGE-

1st Cycle

L

H-+L

H~L

L

X

ROW

COL

Data-In

1

MODE WRITE 2nd Cycle

L

H-+L

H~L

L

X

n/a

COL

Data-In

1

EDO-

L

H.,..L

H-+L

H~L

L~H

ROW

COL

Data-Out, Data-In

1,2

L

H~L

H~L

H-+L

L-+H

n/a

COL

Data-Out, Data-In

1,2

READ WRITE

1st Cycle

PAGE-MODE 2nd Cycle
READ-WRITE
HIDDEN

READ

L~H~L

L

L

H

L

ROW

COL

Data-Out

2

REFRESH

WRITE

L~H~L

L

L

L

X

ROW

COL

Data-In

1,3

L

H

H

X

X

ROW

n/a

High-Z

H~L

L

L

X

X

X

X

High-Z

RAS-ONLY REFRESH
CBR REFRESH
NOTE:

1.
2.
3.
4.

MT4C16270
W06.pm5 - Rev. 2/95

4

These WRITE cycles may also be BYTE WRITE cycles (either CASL or CASH active).
These READ cycles may also be BYTE READ cycles (either CASL or CASH active).
EARLY WRITE only.
At least one of the two CAS signals must be active (CASL or CASH).

1-96

Micron Technology, Inc., reserves the right to change products or specifications without notice
©1995, Micron Technology, Inc

MICRON

1-·

MT4C16270
256K X 16 DRAM

"'"",WGne

*Stresses greater than those listed under" Absolute Maximum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability.

ABSOLUTE MAXIMUM RATINGS*
Voltage on Vee Supply Relative to Vss .............. -IV to +7V
Operating Temperature, TA (ambient) .......... O°C to +70°C
Storage Temperature (plastic) .................... -55°C to +150°C
Power Dissipation ....................................................... :.. 1.2W
Short Circuit Output Current ..................................... 50mA

•
m

c
o
C

JJ

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: 1, 6, 7) (Vcc = +5V ±1 0%)**

PARAMETER/CONDITION

SYMBOL

MIN

MAX

UNITS

Vcc'*

4.5

5.5

V

Input High (Logic 1) Voltage, all inputs

VIH

2.4

Vcc+1

V

Input Low (Logic 0) Voltage, all inputs

VIL

-1.0

0.8

V

Ii

-2

2

iJ A

loz

-10

10

VOH

2.4

iJ A
V

0.4

V

Supply Voltage

INPUT LEAKAGE CURRENT
Any input OV ~ VIN ~ Vcc
(All other pins not under test = OV)
OUTPUT LEAKAGE CURRENT (0 is disabled; OV ~ VOUT ~ 5.5V)
OUTPUT LEVELS
Output High Voltage (lOUT = -2.5mA)
Output Low Voltage (lOUT = 2.1 mAl

VOL

NOTES

MAX
PARAMETER/CONDITION

SYMBOL

-6*'

·7

-8

STANDBY CURRENT: (TTL)
(RAS = CAS = VIH)

Icc1

2

2

2

UNITS NOTES
mA

STANDBY CURRENT: (CMOS)
(RAS = CAS = Vcc -0.2V)

Icc2

1

1

1

mA

25

.

OPERATING CURRENT: Random READIWRITE
Average power supply current
(RAS, CAS, Address Cycling: tRC = tRC [MIND

Icc3

.195

175

160

mA

3,4,40

OPERATING CURRENT: EDO PAGE MODE
Average power supply current
(RAS = VIL, CAS, AddressCycling: tpc = tpG[MIN]; tcp, tASC = 10ns)

ICC4

130

125

120

mA

3,4,40

REFRESH CURRENT: RAS ONLY
Average power supply current
(RAS Cycling, CAS=VIH: tRC = tRC[MIND

Icc5

195

175

160

mA

3

REFRESH CURRENT: CBR
Average power supply current
(RAS, CAS, Address Cycling: tRC = tRC [MIN])

Icc6

180

160

140

mA

3,5

**60ns specifications are limited to a Vcc range of ±5%.
MT4C16270

WOS.pmS - Rev. 2/95

1-97

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

l>

s:

UII:::F=lCN
1-·

•

m

MT4C16270
256K x 16 DRAM

m~"co"""

CAPACITANCE
PARAMETER

SYMBOL

MAX

UNITS

NOTES

c
o
c
:c ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

»
s

Input Capacitance: AO-A8

Cll

5

pF

2

Input Capacitance: RAS, CASL, CASH, WE, OE

CI2

7

pF

2

Input/Output Capacitance: DQ

Cia

7

pF

2

(Notes: 6, 7, 8, 9,10, 11, 12, 13) (Vcc
AC CHARACTERISTICS
PARAMETER

=+5V ±1 0%)*
-6'

-7

MIN

tACH

15

15

20

ns

tAR

40

40

55

ns

tAse
tASR

0
0

0
0

0

ns

Row-address setup time

0

55

ns
ns

Access time from column-address
Column-address setup to CAS
precharge during WRITE
Column-address hold time
(referenced to RAS)
Column-address setup time
Column-address to WE delay time

tAWD

Access time from CAS
Column-address hold time

tCAC
tCAH

CAS pulse width

tCAS

CAS hold time (CBR REFRESH)
last CAS going lOW to first CAS
returning HIGH
CAS to output in low-Z
Data output hold after CAS lOW

MAX

MIN

-8

SYM
tAA

30

MAX
35

60
15

MAX

UNITS

40

ns

65
20

12

10

MIN

ns
ns

10,000

ns

29
37

15

10

10

ns

5,30

10

10

10

ns

32

tClZ

3
5
10

3
5
10

3
5
10

ns
ns

31,41

ns
ns

16,34

ns

30

ns
ns

30
5,29

45

ns

21,29

12
15

ns

26,30

ns

22,31

60
0

ns
ns

22,31

ns
ns

28,39,41
23,31
27

tCPA

CAS to RAS precharge time
CAS hold time

tCRP

5

5

tCSH

40
10

40

CAS setup time (CBR REFRESH)

35

10,000

12

40

45
5
60
110

CAS to WE delay time

tCSR
tCWD

Write command to CAS lead time
Data-in hold time

tCWl
tDH

10
10

Data-in hold time (referenced to RAS)
Data-in setup time

tDHR
tDS

40

tOD
tOE

3

tOEH

15

20

20

ns

tOEHC
tOEP
tOES

10
10

10

10

ns

10
5

10
5

ns
ns

tOFF

3

OE LOW to CAS HIGH setup time
Output buffer turn-off delay from
CASorRAS

15,31

tCHR

12

CAS precharge time

OE hold time from WE during
READ-MODIFY-WRITE cycle
OE HIGH hold time from CAS HIGH
OE HIGH pulse width

21

20

tClCH

10,000

Access time from CAS precharge

Output Enable time

29

10
10

tCOH
tcp

Output disable time

NOTES

10
45

40

12
15
40

0
15

0
3

15

3

20

15

5

15

3

15

15
20

3

15

ns

31

20,28,31,
41

*60ns speCifications are limited to a Vcc range of ±5%.

MT4C16270

W06.pm5-Rev.2195

1-98

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

MICRON

1-·

256K

,",""coon,

MT4C16270
X 16 DRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vee = +5V ±10%)*

PARAMETER
OE setup prior to RAS during
HIDDEN REFRESH cycle
EDO-PAGE-MODE READ or WRITE
cycle time
EDO-PAGE-MODE READ-WRITE
cycle time
Access time from RAS
RAS to columnaddress delay time
Row-address hold time
Column-address to
RAS lead time

-7

-6*

AC CHARACTERISTICS

MAX

MIN

MAX

MIN
0

0

0

ns

tpc

25

30

33

ns

33

tpRWC

72

79

84

ns

33

ns
ns

14
18

10

10

10

ns

22

27

30

ns

60

10,000

70

10,000

60

100,000

70

100,000

Random READ or WRITE cycle time

110

RAS to CAS delay time

tRCD

20

Read command hold time
(referenced to CAS)

tRCH

0

Read command setup time
Refresh period (512 cycles)

tRCS

0

RAS precharge time
RAS to CAS precharge time
Read command hold time
(referenced to RAS)

UNITS

tRAH
tRAL

15

tRAS

RAS pulse width (EDO PAGE MODE)

MAX

15

70
35

tRASP
tRC

RAS pulse width

MIN

tRAC
tRAD

60
30

tREF
tRP
tRPC
tRRH

20

50

0

ns
ns

60

ns
ns

20

ns

0
0

0
8

10,000
100,000

150

130
45

80
40

15

80
80

8

8

ns
ms

NOTES

17,29
19,26,30
26,29

35
10

40

60

10

10

ns
ns

0

0

0

ns

19
38

RAS hold time

tRSH

10

15

15

ns

READ WRITE cycle time

140

157

187

ns

RAS to WE delay time

tRWC
tRWD

85

95

105

ns

21

Write command to RAS lead time
Transition time (rise or fall)

tRWL
tT

10

12

12
2

ns
ns

26
9, 10

Write command hold time

tvvCH
tvvCR

10

ns

40

ns

26,38
26

twcs

0

ns

21,26,29

tWHZ
twp

3
10

Write command hold time
(referenced to RAS)
Write command setup time
Output disable delay from WE
Write command pulse width

2

50

2

50

10
40

3
10

50

10
60

0
15

0
15

3
10

15

ns
ns

26

*60ns specifications are limited to a Vcc range of ±5%.

I

MT4C1~270
WOS.pm5 - Rev. 2f95

1-99

m

-8

SYM
tORD

Micron Technology. Inc., reserves the right

to change products or specifications without notice.
©1995, Micron Technology, Inc.

c

o

C
JJ

l>
S

MIC:RON

1-·

•

m

c

o
C

::rJ

l>
S

~~~~~tages

MT4C16270
256K x 16 DRAM

'c'"""", "

referenced to Vss.
2. This parameter is sampled. Vee = 5V ±10%; f = 1 MHz.
3. Ice is dependent on cycle rates.
4. Ice is dependent on output loading and cycle rates.
Specified values are obtained with minimum cycle
time and the output open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate
cycle time at which proper operation over the full
temperature range (O°C ~ TA ~ 70°C) is assured.
7. An initial pause of lOOf.ls is required after power-up
followed by eight RAS refresh cycles (RAS ONLY or
CBR) before proper device operation is assured. The
eight RAS cycle wake-ups should be repeated any
time the IREF refresh requirement is exceeded.
8. AC characteristics assume IT = 2.5ns.
9. VIH (MIN) and VIL (MAX) are reference levels for
measuring timing of input signals. Transition times
are measured between VIH and VIL (or between VIL
and VIH).
10. In addition to meeting the transition rate specification, all input signals must transit between VIH and
VIL (or between VIL and VIH) in a monotonic manner.
11. If CAS and RAS = VIH, data output is High-Z.
12. If CAS = VIL, data output may contain data from the
last valid READ cycle.
13. Measured with a load equivalent to one TTL gate and
SOpF, VOL = 0.8V and VOH = 2.0V.
14. Assumes that IRCD < IRCD (MAX). If IRCD is greater
than the maximum recommended value shown in this
table, lRAC will increase by the amount that IRCD
exceeds the value shown.
15. Assumes that IRCD ~ IRCD (MAX).
16. If CAS is LOW at the falling edge of RAS, Q will be
maintained from the previous cycle. To initiate a new
cycle and clear the Q buffer, CAS and RAS must be
pulsed HIGH for ICp.
17. Operation within the IRCD (MAX) limit ensures that
lRAC (MAX) can be met. IRCD (MAX) is specified as
a reference point only; if tRCD is greater than the
specified IRCD (MAX) limit, access time is controlled
exclusively by tCAe.
18. Operation within the lRAD limit ensures that tRCD
(MAX) can be met. tRAD (MAX) is specified as a
reference point only; if tRAD is greater than the
specified tRAD (MAX) limit, access time is controlled
exclusively by tAA.
19. Either IRCH or IRRH must be satisfied for a READ
cycle.
20. IOFF (MAX) defines the time at which the output
achieves the open circuit condition; it is not a
reference to VOH or VOL.
MT4C16270

W06.pmS-Rev.2195

21. IWCS, tRWD, tAWD and tCWDare restrictive
operating parameters in LATE WRITE and READMODIFY-WRITE cycles only. If IWCS ~ twcs (MIN),
the cycle is an EARLY WRITE cycle and the data
output will remain an open circuit throughout the
entire cycle. If tRWD ~ tRWD (MIN), tAWD ~ tAWD
(MIN) and ICWD ~ tCWD (MIN), the cycle is a
READ-WRITE and the data output will contain data
read from the selected celL If neither of the above
conditions is met, the state of Q (at access time and
until CAS and RAS or OE go back to VIH) is indeterminate. OE held HIGH and WE taken LOW after CAS
goes LOW result in a LATE WRITE (OE-controlled)
cycle.
22. These parameters are referenced to CAS leading edge
in EARLY WRITE cycles and WE leading edge in
LATE WRITE or READ-MODIFY-WRITE cycles.
23. During a READ cycle, if OE is LOW then taken HIGH
before CAS goes HIGH, Q goes open. If OE is tied
permanently LOW, a LATE WRITE or READMODIFY-WRITE operation is not possible.
24. A HIDDEN REFRESH may also be performed after a
WRITE cycle. In this case, WE = LOW and OE = HIGH.
25. All other inputs at Vcc -O.2V.
26. Write command is defined as WE going LOW.
27. LATE WRITE and READ-MODIFY-WRITE cycles
must have both tOD and tOEH met (OE HIGH during
WRITE cycle) in order to ensure that the output
buffers will be open during the WRITE cycle. The
DQs will provide the previously written data if CAS
remains LOW and OE is taken back LOW after tOEH
is met.
28. The DQs open during READ cycles once tOD or tOFF
occur.
29. The first CASx edge to transition LOW.
30. The last CASx edge to transition HIGH.
31. Output parameter (DQx) is referenced to corresponding CAS input, DQI-DQ8 by CASL and DQ9-DQI6
by CASH.
32. Last falling CASx edge to first rising CASx edge.
33. Last rising CASx edge to next cycle's last rising CASx
edge.
34. Last rising CASx edge to first falling CASx edge.
35. First DQs controlled by the first CASx to go LOW.
36. Last DQs controlled by the last CASx to go HIGH.
37. Each CASx must meet minimum pulse width.
38. Last CASx to go LOW.
39. All DQs controlled, regardless CASL and CASH.
40. Column-address changed once each cycle.
41. The 3ns minimum is a parameter guaranteed by
design.

1-100

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

MIC::RON
1-·

MT4C16270
256K x 16 DRAM

,,,",,,,,,,,,

•

READ CYCLE
tRAS

m

IRP

~I

IRSH

I~

r-"'--i

J
ADDR

V,H
VIL

ij'///~

tRCD

telcH

'CAS

IAR

I

~

tRAL

I

I

~1

lAse ~I

~1

ROW

I
I

tRAD

ROW

COLUMN

~

I

j'///////////////////////////////

DE

c

:c

1\

IRCS

DQ

c

o

\

leSH

I

1M

I

'RAG

'\2

I

NOTE 1

I 'CAG
~I,

~g~-

OPEN

~

I~

~OPEN--

VAUDDATA

~

~:~ -I1U//U/U/U/jijU/U/U//UU/jijU///UU///uml

EARLY WRITE CYCLE
RC
IRP

'RAS

-

fr

\

le8H

~J~

tRCD

IAR

I

tRAD

ADDR

I~~I
~:~ :w-"x
~
ROW

I

~I

I

I~I

f

tACH

ROW
tCWL

I
I

V1H

v"

tRAL

'CLCH

COLUMN

tt~'~i
WE

I

I

I

I
I

'RWL

'WCR

I~
IWp

I
I

~OHR

~_'DSII~~

DO

i NOTE:

~:g~ ~

VALID DATA

~

DON'T CARE

~

UNDEFINED

1. toFF is referenced from the rising edge of RAS or CAS, whichever occurs last.

)

MT4C16270

I

W06.pm5 - Rev. 2195

1-101

Micron Technology, Inc., reserves the right to change products or specifications without notice.
©199S, Micron Technology, Inc.

»
s:

MICRON
1-·

MT4C16270
256K x 16 DRAM

"'""'w"' '"

•

READ WRITE CYCLE
(LATE WRITE and READ-MODIFY-WRITE cycles)

m

RWC

c

'RP

'RAS

o

-

C
:IJ

J~I

. r~J ~

l>
S

'AR
tRAD

~:c

ROW

::!1111i;t

I

ROW

COLUMN

I

I

~II

IRWD
leWD

::' -I

'AWD

1

I

I

I

I

I

tACH

Iii

I

r

I

I

WIIIIJ

I
'CLCH

'RAl I
I~I

I

~I

~I

ADDR

'cSH
'cAS

IRSH

f~

tRCD

'M
tRAG

I

I

'CAG

'Cl2- .~

-

~~,
-tOD:l' -VALID DOUT

OPEN

~

VALID DIN

OPEN--

IOEH

EDO-PAGE-MODE READ CYCLE
'RASP

'CSH

I~

J
~:~

j,,//x

tASR

'AR

II 'RAD

~I

'RAH

ROW

Wla

I
f'$II_II~

I

COLUMN

'RCS

I

!

I

'AA

I

'RAG

'ClZ-

Killilia

'CP

I

I
I

I
'CPA

'cOH_
VALID

I
I

.I
J//;@II/;@MIII!;0?/$##/ml~

DATA

'AA

'CPA

I 'CAC

1_
~

,I
VALID

DATA

ROW

I'RC~!~

I

I

'AA

I

COLUMN

I 'CAC

1:'OE

WIIIII,1

I

I

~ll tCAH~1

leAH"1

COLUMN

'CAG

OPEN

NOTE:

II

'RAL

~

I

I

I

'RSH

_'_CP_ 'cAS, 'C'Cl;!.y

ICAS, tCLC~\

~

~I I~
I

~=L

(NOTE 1)

_'C_P_

teAS, tCLCt!1

~:i

II

I~
ADDR

IpC

tRCD

I

'CLZ toEH2

1:tOE

~

~

VALID
DATA

--tOFF

t--- OPEN

;;~/$~
~

DON'T CARE

~

UNDEFINED

1,tpc can be measured from falling edge of CAS to falling edge of CAS, or from rising edge of CAS to rising
edge of CAS, Both measurements must meet the tpc specification,

MT4C16270

W06.pmS-Rev.2195

1-102

Micron Technology, Inc., reserves the right to change prcducts or spe ciflcations W1thout notice.
©1995, MicrcnTechnology, Inc.

UII:::I=ICN

MT4C16270
256K x 16 DRAM

"'~'cco,,'"

1-·

•

EDO-PAGE-MODE EARLY-WRITE CYCLE

m

CASLand CASH

V,H

c
o

_c-i---ii-------,,,

'---+---1

V,L -

C

:XJ

»
5

DE

~:~

-1'/11///11///11//1/1/$$$//1$$/1/$1/1$//1/1$$/1/////$///1/I/II/$/i/i$/i/i$//i/II//i/iI///$/h

EDO-PAGE-MODE READ-WRITE CYCLE
(LATE WRITE and READ-MODIFY-WRITE cycles)
RASP

----.
1CASLandCASH

VIH

V"

~

=J

I~II ::::
ADDR

~1~

1//M

'Ipe !lpRWC NOTE 1

tOSH
tRCD

teRP

ROW

lASe
r&'.bi

~

teAS tCLCH

~1

l.r-----c

I I~I
I

I

-1"'1 I ,~i:y
I~

tRAC

I'M

--

I

II

telz --

~
'05-

r-

OPEN~ ~ALlD

_

NOTE:

,:~:

ll~
I

~' I

1- I----"""ftePA

f-

~ALlD

VAllO

-~ -

t CLZ

):-

~ALIO

~-~

IUJ

--

tOE-

COLUMN

I

-

ROW

II-'Rwl

1

--~

1 - - '05tePA

-~--I !:-

teLz

VALID

I~ I-E..!!L
-'aD

-

~

-

I~

~ll~
- I

'05-

:I

[ :(

==rr

I~

-'00

toE-

'RAL

~II tCPJi'~1

WI/llllih

COLUMN

~

'RWO I

I

ICAS, tcLCH

r----J

l~ ~I

WI/II///t?

COLUMN

PL
vY==l

IRSH

'ep

leAs tCLCH

~AlI ~OPEN-

:v:u'~tf;:
-too
tOE

-

I~

~

DON'TCAAE

~

UNDEFINED

1. tpc can be measured from falling edge to falling edge of CAS, or from rising edge to rising edge of CAS.
Both measurements must meet the tpc specification.

MT4C16270
W06.pm5- Rev. 2195

1-103

Micron Technology, Inc., resetves the right to change products or specifications without notice.
©1995, Micron Technology, Inc.

MICRON
1-·

256K

"'"""C,,""'

•

MT 4C16270
x 16 DRAM

EDO-PAGE-MODE READ-EARLY-WRITE CYCLE
(Psuedo READ-MODiFY-WRiTE)

m

c
o

'RASP

tRP

C
:II

l>
3:

DQ

~~g~=:

_ _ _ _ OPEN

RAS-ONL Y REFRESH CYCLE
(OE, WE = DON'T CARE)

RAS

CASL ,M CASH

V,H
VIL _

~IH
IL

-

d

IcRP

1

tASR

AOOR

NOTE:

~IH-~
IL

_

'RC
IRAS

IRP

't