ADL5801 (Rev. E) RF 3800

User Manual: RF-3800

Open the PDF directly: View PDF PDF.
Page Count: 41

DownloadADL5801 (Rev. E) RF-3800
Open PDF In BrowserView PDF
High IP3,
10 MHz to 6 GHz, Active Mixer
ADL5801

Data Sheet
FEATURES

FUNCTIONAL BLOCK DIAGRAM
VPLO GND NC IFON IFOP GND
24

23

22

21

20

18

VPRF

17

GND

16

RFIP

LOIN 4

15

RFIN

GND

5

14

GND

GND

6

13

VPDT

GND

1

GND

2

ADL5801

LOIP 3
V2I

BIAS

APPLICATIONS
Cellular base station receivers
Radio link downconverters
Broadband block conversion
Instrumentation

19

7

8

9

DET

10

11

12

VPLO GND ENBL VSET DETO GND

08079-001

Broadband upconverter/downconverter
Power conversion gain of 1.8 dB
Broadband RF, LO, and IF ports
SSB noise figure (NF) of 9.75 dB
Input IP3: 28.5 dBm
Input P1dB: 13.3 dBm
Typical LO drive: 0 dBm
Single-supply operation: 5 V at 130 mA
Adjustable bias for low power operation
Exposed paddle, 4 mm × 4 mm, 24-lead LFCSP package

Figure 1.

GENERAL DESCRIPTION
The ADL5801 uses a high linearity, doubly balanced, active
mixer core with integrated LO buffer amplifier to provide high
dynamic range frequency conversion from 10 MHz to 6 GHz.
The mixer benefits from a proprietary linearization architecture
that provides enhanced input IP3 performance when subject to
high input levels. A bias adjust feature allows the input linearity,
SSB noise figure, and dc current to be optimized using a single
control pin. An optional input power detector is provided for
adaptive bias control. The high input linearity allows the device
to be used in demanding cellular applications where in-band
blocking signals may otherwise result in degradation in dynamic
performance. The adaptive bias feature allows the part to provide
high input IP3 performance when presented with large blocking
signals. When blockers are removed, the ADL5801 can automatically bias down to provide low noise figure and low power
consumption.

Rev. E

The balanced active mixer arrangement provides superb LO-toRF and LO-to-IF leakage, typically better than −40 dBm. The IF
outputs are designed to provide a typical voltage conversion
gain of 7.8 dB when loaded into a 200 Ω load. The broad
frequency range of the open-collector IF outputs allows the
ADL5801 to be applied as an upconverter for various transmit
applications.
The ADL5801 is fabricated using a SiGe high performance IC
process. The device is available in a compact 4 mm × 4 mm,
24-lead LFCSP package and operates over a −40°C to +85°C
temperature range. An evaluation board is also available.

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2010–2014 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com

ADL5801* PRODUCT PAGE QUICK LINKS
Last Content Update: 02/23/2017

COMPARABLE PARTS

REFERENCE MATERIALS

View a parametric search of comparable parts.

Press

EVALUATION KITS

• Analog Devices’ 4-GHz PLL Synthesizer Offers Leading
Phase Noise Performance

• ADL5801 Evaluation Board

• New Analog Devices’ PLL Synthesizers Deliver Utmost
Flexibility and Phase Noise Performance

DOCUMENTATION

• New PLLs Deliver Widest Frequency Range Coverage and
Lowest VCO Phase Noise in a Single Device

Data Sheet
• ADL5801: High IP3, 10 MHz to 6 GHz, Active Mixer Data
Sheet

Product Selection Guide
• RF Source Booklet
Technical Articles

TOOLS AND SIMULATIONS
• ADIsimPLL™
• ADIsimRF

REFERENCE DESIGNS
• CN0239
• CN0360
• CN0369

• MS-2739: High Dynamic IF Receiver Simplifies Design of
Next Generation µW Point-to-Point Modems

DESIGN RESOURCES
• ADL5801 Material Declaration
• PCN-PDN Information
• Quality And Reliability
• Symbols and Footprints

DISCUSSIONS
View all ADL5801 EngineerZone Discussions.

SAMPLE AND BUY
Visit the product page to see pricing options.

TECHNICAL SUPPORT
Submit a technical question or find your regional support
number.

DOCUMENT FEEDBACK
Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

ADL5801

Data Sheet

TABLE OF CONTENTS
Features .............................................................................................. 1

Circuit Description......................................................................... 27

Applications ....................................................................................... 1

LO Amplifier and Splitter.......................................................... 27

Functional Block Diagram .............................................................. 1

RF Voltage-to-Current (V-to-I) Converter ............................. 27

General Description ......................................................................... 1

Mixer Core .................................................................................. 27

Revision History ............................................................................... 2

Mixer Output Load .................................................................... 27

Specifications..................................................................................... 3

RF Detector ................................................................................. 28

Absolute Maximum Ratings............................................................ 6

Bias Circuit .................................................................................. 28

ESD Caution .................................................................................. 6

Applications Information .............................................................. 31

Pin Configuration and Function Descriptions ............................. 7

Basic Connections ...................................................................... 31

Typical Performance Characteristics ............................................. 8

RF and LO Ports ......................................................................... 31

Downconverter Mode with a Broadband Balun ...................... 8

IF Port .......................................................................................... 32

Downconverter Mode with a Mini-Circuits® TC1-1-43M+
Input Balun .................................................................................. 12

Downconverting to Low Frequencies ...................................... 33

Downconverter Mode with a Johanson 3.5 GHz
Input Balun .................................................................................. 14

Single-Ended Drive of RF and LO Inputs ............................... 36

Downconverter Mode with a Johanson 5.7 GHz
Input Balun .................................................................................. 16
Upconverter Mode with a 900 MHz Output Match .............. 18

Broadband Operation ................................................................ 34
Evaluation Board ............................................................................ 38
Outline Dimensions ....................................................................... 40
Ordering Guide .......................................................................... 40

Upconverter Mode with a 2.1 GHz Output Match ................ 20
Spur Performance ....................................................................... 23

REVISION HISTORY
4/14—Rev. D to Rev. E
Changes to Figure 1 .......................................................................... 1
Changes to Table 1 ............................................................................ 4
Changes to Figure 87 and Deleted Table 4; Renumbered
Sequentially ..................................................................................... 27
Changes to RF Detector Section and Bias Circuit Section;
Added Table 4 and Table 5; Renumbered Sequentially, and
Added Figure 92, Figure 93, Figure 94, and Figure 95;
Renumbered Sequentially.............................................................. 29
3/14—Rev. C to Rev. D
Changes to Pin 9, Table 3 ................................................................. 7
8/13—Rev. B to Rev. C
Changes to Table 8 .......................................................................... 38
7/13—Rev. A to Rev. B
Added Disable Voltage and Enable Voltage; Table 1 .................... 3
Changes to Table 5 and Figure 96 ................................................. 31

Added Downconverting to Low Frequencies Section and
Figure 97; Renumbered Sequentially ........................................... 32
Added Broadband Operation Section and Figure 98 to
Figure 101 ........................................................................................ 33
Added Single-Ended Drive of RF and LO Inputs Section and
Figure 102 to Figure 105 ................................................................ 35
Updated Outline Dimensions ....................................................... 39
7/11—Rev. 0 to Rev. A
Changes to Specifications Section ...................................................3
Changes to Typical Performance Characteristics Section ...........8
Changes to Spur Performance Section ........................................ 23
Changes to RF Voltage-to-Current (V-to-I) Converter
Section.............................................................................................. 27
Changes to RF Detector Section................................................... 28
Changes to RF and LO Ports Section........................................... 30
2/10—Revision 0: Initial Version

Rev. E | Page 2 of 40

Data Sheet

ADL5801

SPECIFICATIONS
VS = 5 V, TA = 25°C, fRF = 900 MHz, fLO = (fRF − 153 MHz), LO power = 0 dBm, Z0 1 = 50 Ω, VSET = 3.6 V, unless otherwise noted.
Table 1.
Parameter
RF INPUT INTERFACE
Return Loss
Input Impedance
RF Frequency Range
OUTPUT INTERFACE
Output Impedance
IF Frequency Range
DC Bias Voltage 2
LO INTERFACE
LO Power
Return Loss
Input Impedance
LO Frequency Range
POWER INTERFACE
Supply Voltage
Quiescent Current
Disable Current
Disable Voltage
Enable Voltage
Enable Time
Disable Time
DYNAMIC PERFORMANCE at fRF = 900 MHz/1900 MHz 3
Power Conversion Gain 4
Voltage Conversion Gain 5
SSB Noise Figure
SSB Noise Figure Under Blocking 6
Input Third-Order Intercept 7
Input Second-Order Intercept 8
Input 1 dB Compression Point
LO-to-IF Output Leakage
LO-to-RF Input Leakage
RF-to-IF Output Isolation
IF/2 Spurious 9
IF/3 Spurious9

Test Conditions

Min

Tunable to >20 dB over a limited bandwidth

Typ

LF
4.75

VS
0
15
50

10
4.75

fRF = 900 MHz
fRF = 1900 MHz
fRF = 900 MHz
fRF = 1900 MHz
fCENT = 900 MHz, VSET = 2.0 V
fCENT = 1900 MHz, VSET = 2.0 V
fCENT = 900 MHz
fCENT = 1900 MHz
fCENT = 900 MHz
fCENT = 1900 MHz
fCENT = 900 MHz
fCENT = 1900 MHz
fRF = 900 MHz
fRF = 1900 MHz
Unfiltered IF output

0 dBm input power, fRF = 900 MHz
0 dBm input power, fRF = 1900 MHz
0 dBm input power, fRF = 900 MHz
0 dBm input power, fRF = 1900 MHz

Rev. E | Page 3 of 40

6000

dB
Ω
MHz

600
5.25

Ω
MHz
V

230

−10

Resistor programmable
ENBL pin high to disable the device
ENBL pin high to disable the device
ENBL pin low to enable the device
Time from ENBL pin low to enable
Time from ENBL pin high to disable

Unit

12
50
10

Differential impedance, f = 200 MHz
Can be matched externally to 3000 MHz
Externally generated

Max

+10

6000
5
130
50

182
28

V
mA
mA
V
V
ns
ns

1.8
1.8
7.8
7.8
9.75
11.5
19.5
20
28.5
26.4
63
49.7
13.3
12.7
−27
−30
−35
−67.5
−53
−65.5
−72.6

dB
dB
dB
dB
dB
dB
dB
dB
dBm
dBm
dBm
dBm
dBm
dBm
dBm
dBm
dBc
dBc
dBc
dBc
dBc

2.5
0

5.25
200

dBm
dB
Ω
MHz

5
1.8

ADL5801
Parameter
DYNAMIC PERFORMANCE at fRF = 2500 MHz 10
Power Conversion Gain 11
Voltage Conversion Gain5
SSB Noise Figure
Input Third-Order Intercept 12
Input Second-Order Intercept 13
Input 1 dB Compression Point
LO-to-IF Output Leakage
LO-to-RF Input Leakage
RF-to-IF Output Isolation
IF/2 Spurious9
IF/3 Spurious9
DYNAMIC PERFORMANCE at fRF = 3500 MHz 14
Power Conversion Gain 15
Voltage Conversion Gain5
SSB Noise Figure
Input Third-Order Intercept7
Input Second-Order Intercept8
Input 1 dB Compression Point
LO-to-IF Output Leakage
LO-to-RF Input Leakage
RF-to-IF Output Isolation
IF/2 Spurious9
IF/3 Spurious9
DYNAMIC PERFORMANCE at fRF = 5500 MHz 16
Power Conversion Gain 17
Voltage Conversion Gain5
SSB Noise Figure
Input Third-Order Intercept7
Input Second-Order Intercept 8
Input 1 dB Compression Point
LO-to-IF Output Leakage
LO-to-RF Input Leakage
RF-to-IF Output Isolation
IF/2 Spurious9
IF/3 Spurious9
DYNAMIC PERFORMANCE at fIF = 900 MHz 18
Power Conversion Gain 19
Voltage Conversion Gain5
SSB Noise Figure
Output Third-Order Intercept 20
Output Second-Order Intercept 21
Output 1 dB Compression Point
LO-to-IF Output Leakage
LO-to-RF Input Leakage
IF/2 Spurious9
IF/3 Spurious9

Data Sheet
Test Conditions

fCENT = 2500 MHz, VSET = 2.0 V
fCENT = 2500 MHz
fCENT = 2500 MHz
fCENT = 2500 MHz
Unfiltered IF output

0 dBm input power, fRF = 2600 MHz
0 dBm input power, fRF = 2600 MHz

fCENT = 3500 MHz, VSET = 3.6 V
fCENT = 3500 MHz, VSET = 3.6 V
fCENT = 3500 MHz, VSET = 3.6 V
Unfiltered IF output

0 dBm input power, fRF = 3800 MHz
0 dBm input power, fRF = 3800 MHz

fCENT = 5500 MHz, VSET = 3.6 V
fCENT = 5500 MHz, VSET = 3.6 V
fCENT = 5500 MHz, VSET = 3.6 V
Unfiltered IF output

0 dBm input power, fRF = 5800 MHz
0 dBm input power, fRF = 5800 MHz

fIF = 900 MHz, fRF = 250 MHz, VSET = 2.0 V
fCENT = 153 MHz, VSET = 3.6 V
fCENT = 153 MHz, VSET = 3.6 V
Unfiltered IF output
0 dBm input power, fRF = 140 MHz,
fIF = 806 MHz
0 dBm input power, fRF = 140 MHz,
fIF = 806 MHz

Rev. E | Page 4 of 40

Min

Typ

Max

Unit

−6.1
−0.1
10.6
25.5
45.3
13.8
−31.5
−31.2
−42.5
−50.6
−59.8

dB
dB
dB
dBm
dBm
dBm
dBm
dBm
dBc
dBc
dBc

−6.44
−0.44
15.8
26.5
42.3
12.5
−30.2
−29.4
−29.7
−47.1
−57.8

dB
dB
dB
dBm
dBm
dBm
dBm
dBm
dBc
dBc
dBc

−5.2
0.8
16.2
22.7
35.4
11.3
−42.6
−28.9
−46.7
−44
−47

dB
dB
dB
dBm
dBm
dBm
dBm
dBm
dBc
dBc
dBc

−6
0
10.6
30.6
68.7
11.1
−33.8
−33.4
−62.6

dB
dB
dB
dBm
dBm
dBm
dBm
dBm
dBc

−68.9

dBc

Data Sheet
Parameter
DYNAMIC PERFORMANCE at fIF = 2140 MHz 22
Power Conversion Gain 23
Voltage Conversion Gain5
SSB Noise Figure
Output Third-Order Intercept 24
Output Second-Order Intercept 25
Output 1 dB Compression Point
LO-to-IF Output Leakage
LO-to-RF Input Leakage
IF/2 Spurious9

ADL5801
Test Conditions

fIF = 2140 MHz, fRF = 190 MHz, VSET = 2.0 V
fCENT = 170 MHz, VSET = 3.6 V
fCENT = 170 MHz, VSET = 3.6 V
Unfiltered IF output
0 dBm input power, fRF = 140 MHz,
fIF = 2210 MHz

Min

Typ
−7.25
−1.25
13.6
24
70
9.9
−23.8
−33.2
−51.5

Z0 is the characteristic impedance assumed for all measurements and the PCB.
Supply voltage must be applied from an external circuit through choke inductors
3
VS = 5 V, TA = 25°C, fRF = 900 MHz/1900 MHz, fLO = (fRF – 153 MHz), LO power = 0 dBm, Z01= 50 Ω, VSET = 3.8 V, unless otherwise noted.
4
Excluding 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (TC1-1-13M+), and PCB loss.
5
ZSOURCE = 50 Ω, differential; ZLOAD = 200 Ω differential; ZSOURCE is the impedance of the source instrument; ZLOAD is the load impedance at the output.
6
fRF = fCENT, fBLOCKER = (fCENT − 5) MHz, fLO = (fCENT − 153) MHz, blocker level = 0 dBm.
7
fRF1 = (fCENT − 1) MHz, fRF2 = (fCENT) MHz, fLO = (fCENT – 153) MHz, each RF tone at −10 dBm.
8
fRF1 = (fCENT ) MHz, fRF2 = (fCENT + 100) MHz, fLO = (fCENT – 153) MHz, each RF tone at −10 dBm.
9
For details, see the Spur Performance section.
10
VS = 5 V, TA = 25°C, fRF = 2500 MHz, fLO = (fRF – 211 MHz), LO power = 0 dBm, Z01 = 50 Ω, VSET = 3.8 V, unless otherwise noted.
11
Including 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (TC1-1-43M+ and TC1-1-13M+ respectively), and PCB loss.
12
fRF1 = (fCENT − 1) MHz, fRF2 = (fCENT) MHz, fLO = (fCENT – 211) MHz, each RF tone at −10 dBm.
13
fRF1 = (fCENT ) MHz, fRF2 = (fCENT + 100) MHz, fLO = (fCENT – 211) MHz, each RF tone at −10 dBm
14
VS = 5 V, TA = 25°C, fRF = 3500 MHz, fLO = (fRF – 153 MHz), LO power = 0 dBm, Z01 = 50 Ω, VSET = 3.6 V, unless otherwise noted.
15
Including 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (3600BL14M050), and PCB loss.
16
VS = 5 V, TA = 25°C, fRF = 5500 MHz, fLO = (fRF – 153 MHz), LO power = 0 dBm, Z01 = 50 Ω, VSET = 3.6 V, unless otherwise noted.
17
Including 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (5400BL14B050), and PCB loss.
18
VS = 5 V, TA = 25°C, fRF = 153 MHz, fLO = (fRF + 900 MHz), LO power = 0 dBm, Z01 = 50 Ω, VSET = 3.6 V, unless otherwise noted.
19
Including 4:1 IF port transformer (TC4-14+), RF and LO transformers (TC1-1-13M+), and PCB loss.
20
fRF1 = (fCENT − 1) MHz, fRF2 = (fCENT) MHz, fLO = (fCENT + 900 MHz), each RF tone at −10 dBm.
21
fRF1 = (fCENT ) MHz, fRF2 = (fCENT + 100) MHz, fLO = (fCENT + 900) MHz, each RF tone at −10 dBm.
22
VS = 5 V, TA = 25°C, fRF = 153MHz, fLO = (fRF + 2140 MHz), LO power = 0 dBm, Z01 = 50 Ω, VSET = 4 V, unless otherwise noted.
23
Including 4:1 IF port transformer (1850BL15B200), RF and LO port transformers (TC1-1-13M+), and PCB loss.
24
fRF1 = (fCENT − 1) MHz, fRF2 = (fCENT) MHz, fLO = (fCENT + 2140 MHz), each RF tone at −10 dBm.
25
fRF1 = (fCENT ) MHz, fRF2 = (fCENT + 100) MHz, fLO = (fCENT + 2140) MHz, each RF tone at −10 dBm.
1
2

Rev. E | Page 5 of 40

Max

Unit
dB
dB
dB
dBm
dBm
dBm
dBm
dBm
dBc

ADL5801

Data Sheet

ABSOLUTE MAXIMUM RATINGS

Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.

Table 2.
Parameter
Supply Voltage, VPOS
VSET, ENBL
IFOP, IFON
RFIN Power
Internal Power Dissipation
θJA (Exposed Paddle Soldered Down)1
θJC (at Exposed Paddle)
Maximum Junction Temperature
Operating Temperature Range
Storage Temperature Range
1

Rating
5.5 V
5.5 V
5.5 V
20 dBm
1.2 W
26.5°C/W
8.7°C/W
150°C
−40°C to +85°C
−65°C to +150°C

ESD CAUTION

As measured on the evaluation board. For details, see the Evaluation Board
section.

Rev. E | Page 6 of 40

Data Sheet

ADL5801

24
23
22
21
20
19

VPLO
GND
NC
IFON
IFOP
GND

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

1
2
3
4
5
6

PIN 1
INDICATOR

ADL5801
TOP VIEW
(Not to Scale)

18
17
16
15
14
13

VPRF
GND
RFIP
RFIN
GND
VPDT

NOTES
1. THERE IS AN EXPOSED PADDLE THAT
MUST BE SOLDERED TO GROUND.
2. NC = NO CONNECT.

08079-002

VPLO 7
GND 8
ENBL 9
VSET 10
DETO 11
GND 12

GND
GND
LOIP
LOIN
GND
GND

Figure 2. Pin Configuration

Table 3. Pin Function Descriptions
Pin No.
1, 2, 5, 6, 8, 12,
14, 17, 19, 23
3, 4
7, 24
9

Mnemonic
GND

Description
Device Common (DC Ground).

LOIP, LOIN
VPLO
ENBL

10

VSET

11

DETO

13
15, 16

VPDT
RFIN, RFIP

18
20, 21

VPRF
IFOP, IFON

22

NC
EPAD

Differential LO Input Terminal. Internally matched to 50 Ω. Must be ac-coupled.
Positive Supply Voltage for LO System.
Detector and Mixer Bias Enable. Pull the pin high to disable the internal detector and mixer bias circuit.
The device can be operated in this mode by setting the bias level using an external supply or connecting
a resistor from the VSET pin to the positive supply. See the Circuit Description section for more details.
Pull the pin low to enable the internal detector and mixer bias circuit.
Input IP3 Bias Adjustment. The voltage presented to the VSET pin sets the internal bias of the mixer core
and allows for adaptive control of the input IP3 and NF characteristics of the mixer core.
Detector Output. The DETO pin should be loaded with a capacitor to ground. The developed voltage is
proportional to the rms input level. When the DETO output voltage is connected to the VSET input pin,
the part auto biases and increases input IP3 performance when presented with large signal input levels.
Positive Supply Voltage for Detector.
Differential RF Input Terminal. Internally matched to 50 Ω differential input impedance. Must be
ac-coupled.
Positive Supply Voltage for RF Input System.
Differential IF Output Terminal. Bias must be applied through pull-up choke inductors or the center tap
of the IF transformer.
Not Connected.
The exposed paddle must be soldered to ground.

Rev. E | Page 7 of 40

ADL5801

Data Sheet

TYPICAL PERFORMANCE CHARACTERISTICS
DOWNCONVERTER MODE WITH A BROADBAND BALUN
VS = 5 V, TA = 25°C, VSET = 3.8 V, IF = 153 MHz, as measured using a typical circuit schematic with low-side local oscillator (LO), unless
otherwise noted. Insertion loss of input and output baluns (TC1-1-13M+, TC4-1W+) is extracted from the gain measurement.
6

6

35

5

30

4

25

5
4
3

TA = +25°C

GAIN (dB)

GAIN (dB)

2
1
TA = +85°C

0
–1
–2

GAIN = 900MHz
GAIN = 1900MHz
INPUT IP3 = 900MHz
INPUT IP3 = 1900MHz

3

20

2

15

1

10

INPUT IP3 (dBm)

TA = –40°C

–3

2000

1500

2500

3000

RF FREQUENCY (MHz)

0
–15

5
–10

0

–5

10

5

08079-006

1000

08079-003

–4
500

15

LO LEVEL (dBm)

Figure 6. Power Conversion Gain and Input IP3 vs. LO Power

Figure 3. Power Conversion Gain vs. RF Frequency

100

4.0

90

3.5

MEAN = 1.87
SD = 0.03

80
3.0

FREQUENCY (%)

70
GAIN (dB)

2.5

900MHz
2.0
1.5

60
50
40
30

1900MHz
1.0

20
0.5

10

0.10

0.5

0.08

0

0.06

–0.5

0.04

3.5

4.0

4.5

0.02
5.0

VSET (V)

GAIN (dB)

1.0

SUPPLY CURRENT (A)

0.12

2.100

08079-007

TA = +25°C
2.0
TA = +85°C
1.5

1.0

0.5

08079-005

1.5

3.0

2.060

2.5
0.14

2.5

2.020

TA = –40°C

0.16

2.0

–1.0
2.0

1.980

3.0

0
4.7

4.8

4.9

5.0

5.1

5.2

SUPPLY (V)

Figure 8. Power Conversion Gain vs. Supply Voltage

Figure 5. Power Conversion Gain and Supply Current vs. VSET

Rev. E | Page 8 of 40

5.3

08079-008

2.5

GAIN (dB)

Figure 7. Power Conversion Gain Distribution
0.18

GAIN = 900MHz
GAIN = 1900MHz
IPOS = 900MHz
IPOS = 1900MHz

1.940

POWER CONVERSION GAIN (dB)

Figure 4. Power Conversion Gain vs. IF Frequency
3.0

1.900

IF FREQUENCY (MHz)

1.860

250

1.820

200

1.780

150

1.740

100

1.700

50

0

08079-004

0

0

Data Sheet

ADL5801
70

35
TA = +25°C

60
TA = –40°C
TA = +25°C
TA = +85°C

TA = +85°C
15

40
30

10

20

5

10

0
500

1000

1500

2000

2500

3000

RF FREQUENCY (MHz)

0
500

1000

2000

1500

2500

3000

08079-012

20

250

08079-013

INPUT IP2 (dBm)

50

08079-009

INPUT IP3 (dBm)

25

5.0

08079-014

TA = –40°C

30

RF FREQUENCY (MHz)

Figure 9. Input IP3 vs. RF Frequency

Figure 12. Input IP2 vs. RF Frequency

40

80
70

35

900MHz

30

900MHz

INPUT IP2 (dBm)

INPUT IP3 (dBm)

60

1900MHz

25

20

50
1900MHz
40
30
20

15

10
0

100

50

0

150

200

250

IF FREQUENCY (MHz)

08079-010

10

0

100

50

150

200

IF FREQUENCY (MHz)

Figure 13. Input IP2 vs. IF Frequency

Figure 10. Input IP3 vs. IF Frequency
30

20

25

18

80
70
900MHz

15

14

10

12

INPUT IP2 (dBm)

16

NOISE FIGURE (dB)

20

50
1900MHz
40
30
20

INPUT IP3 = 900MHz
INPUT IP3 = 1900MHz
NF = 900MHz
NF = 1900MHz

5

10

10
0

8

0
2.0

2.5

3.0

3.5

4.0

4.5

VSET (V)

5.0

08079-011

INPUT IP3 (dBm)

60

Figure 11. Input IP3 and Noise Figure vs. VSET

2.0

2.5

3.0

3.5

4.0

VSET (V)

Figure 14. Input IP2 vs. VSET

Rev. E | Page 9 of 40

4.5

ADL5801

Data Sheet

20

25

18
TA = +25°C

TA = +85°C

20

SSB NOISE FIGURE (dB)

INPUT P1dB (dBm)

16
14
12

TA = –40°C

10
8
6

15

1900MHz

10

900MHz

5

4

0
1000

2000

1500

2500

3000

RF FREQUENCY (MHz)

08079-015

0
500

0

100

300

200

400

500

600

700

IF FREQUENCY (MHz)

08079-018

2

Figure 18. SSB Noise Figure vs. IF Frequency (VSET = 2.0 V)

Figure 15. Input P1dB vs. RF Frequency

30

20
18

25

14

900MHz

12

1900MHz

SSB NOISE FIGURE (dB)

INPUT P1dB (dBm)

16

10
8
6
4

RF = 1846MHz, IF = 153 MHz
BLOCKER = 1841MHz

20

15

10
RF = 951MHz, IF = 153 MHz
BLOCKER = 946MHz
5

50

100

150

200

250

IF FREQUENCY (MHz)

0
–30

–15

–10

–5

0

5

Figure 19. SSB Noise Figure vs. Blocker Level (VSET = 2.0 V)
20

18
TA = +85°C

16
14

18
16

SSB NOISE FIGURE (dB)

TA = +25°C

12
10
TA = –40°C
8
6

14

10
900MHz
8
6
4

2

2

1000

1500

2000

2500

3000

RF FREQUENCY (MHz)

1900MHz

12

4

0
–15

08079-017

SSB NOISE FIGURE (dB)

–20

BLOCKER LEVEL (dBm)

Figure 16. Input P1dB vs. IF Frequency

0
500

–25

–10

–5

0
5
LO LEVEL (dBm)

10

Figure 20. SSB Noise Figure vs. LO Power (VSET = 2.0 V)

Figure 17. SSB Noise Figure vs. RF Frequency (VSET = 2.0 V)

Rev. E | Page 10 of 40

15

08079-020

0

08079-016

0

08079-019

2

Data Sheet

ADL5801

0

–10
–15

5

LO-TO-IF LEAKAGE (dBm)

RF RETURN LOSS (dB)

–20

10
15
20
25

TA = –40°C
TA = +25°C
TA = +85°C

–25
–30
–35
–40
–45
–50

30

0

500

1000

1500

2000

2500

3000

RF FREQUENCY (MHz)

–60
500

08079-021

35

2500

3000

LO FREQUENCY (MHz)

Figure 21. RF Return Loss vs. RF Frequency

Figure 24. LO-to-IF Leakage vs. LO Frequency

0

–10
–15

5

LO-TO-RF LEAKAGE (dBm)

–20

LO RETURN LOSS (dB)

2000

1500

1000

08079-024

–55

10

15

20

25

TA = –40°C
TA = +25°C
TA = +85°C

–25
–30
–35
–40
–45
–50

30

500

1000

1500

2000

2500

3000

LO FREQUENCY (MHz)

–60
500

2500

3000

300

0

200

–2

100

RF-TO-IF OUTPUT ISOLATION (dBc)

2

CAPACITANCE (pF)

400

0

–4

–6

0

08079-023

RESISTANCE (Ω)

4

1000

2000

Figure 25. LO-to-RF Leakage vs. LO Frequency

500

100

1500

LO FREQUENCY (MHz)

Figure 22. LO Return Loss vs. LO Frequency

10

1000

3000

IF FREQUENCY (MHz)

Figure 23. IF Differential Output Impedance (R Parallel C Equivalent)

Rev. E | Page 11 of 40

–10

–20

–30

TA = +85°C

–40
TA = –40°C

TA = +25°C

–50

–60
500

1000

1500

2000

2500

RF FREQUENCY (MHz)

Figure 26. RF-to-IF Leakage vs. RF Frequency

3000

08079-026

0

08079-022

35

08079-025

–55

ADL5801

Data Sheet

DOWNCONVERTER MODE WITH A MINI-CIRCUITS® TC1-1-43M+ INPUT BALUN
VS = 5 V, TA = 25°C, VSET = 3.8 V, IF = 211 MHz, as measured using a typical circuit schematic with low-side local oscillator (LO), unless
otherwise noted. Insertion loss of input and output baluns (TC1-1-43M+, TC4-1W+) is included in the gain measurement.
6

30

20

25

18

4

IIP3 2500MHz

INPUT IP3 (dBm)

3
GAIN (dB)

2
1
0
–1

20

16

15

14

10

12

NOISE FIGURE (dB)

5

NF 2500MHz

–2

10

5

–3

4.5

Figure 30. Input IP3 and Noise Figure vs. VSET
60

0.16

GAIN 2500M

50

0.10

IPOS 2500M

–1.0
0.08

–1.5
0.06

–2.0

INPUT IP2 (dBm)

0.12

–0.5

SUPPLY CURRENT (A)

0.14

0

40

30

20

0.04
10

–2.5

3.0

3.5

4.0

4.5

0
5.0

0
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

08079-028

2.5

VSET (V)

RF FREQUENCY (MHz)

08079-031

0.02

–3.0
2.0

Figure 31. Input IP2 vs. RF Frequency

Figure 28. Power Conversion Gain and IPOS vs. VSET
30

80

29

70

28

60

INPUT IP2 (dBm)

27
26
25
24

50
40
30

23

20
22

20
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000
RF FREQUENCY (MHz)

Figure 29. Input IP3 vs. RF Frequency

0
2.0

2.5

3.0

3.5

4.0

VSET (V)

Figure 32. Input IP2 vs. VSET

Rev. E | Page 12 of 40

4.5

5.0

08079-032

10

21
08079-029

INPUT IP3 (dBm)

GAIN (dB)

4.0

VSET (V)

0.18

0.5

3.5

3.0

2.5

08079-030

2.0

Figure 27. Power Conversion Gain vs. RF Frequency
1.0

8
5.0

0

08079-027

–4
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000
RF FREQUENCY (MHz)

ADL5801
–10

18

–15

16

–20

14
12
10
8
6

–25
–30
–35
–40
–45

4

–50

2

–55

0
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

–60
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

RF FREQUENCY (MHz)

LO FREQUENCY (MHz)

Figure 33. Input P1dB vs. RF Frequency

Figure 36. LO to RF Leakage vs. LO Frequency

25

–20
+85°C VSET 2V
+25°C VSET 2V
–40°C VSET 2V

15

10

0
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000
RF FREQUENCY (MHz)

08079-034

5

Figure 34. Noise Figure vs. RF Frequency

–15

–25
–30
–35
–40
–45
–50
–55
08079-035

LO TO IF LEAKAGE (dBm)

–20

LO FREQUENCY (MHz)

–40

–50

–60

–70

–80
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000
RF FREQUENCY (MHz)

Figure 37. RF to IF Output Isolation vs. RF Frequency

–10

–60
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

–30

Figure 35. LO to IF Leakage vs. LO Frequency

Rev. E | Page 13 of 40

08079-037

+85°C VSET 3.6V
+25°C VSET 3.6V
–40°C VSET 3.6V

RF TO IF OUTPUT ISOLATION (dBc)

NOISE FIGURE (dB)

20

08079-036

LO TO RF LEAKAGE (dBm)

20

08079-033

INPUT P1dB (dBm)

Data Sheet

ADL5801

Data Sheet

DOWNCONVERTER MODE WITH A JOHANSON 3.5 GHZ INPUT BALUN
VS = 5 V, TA = 25°C, VSET = 3.6 V, IF = 153 MHz, as measured using a typical circuit schematic with low-side local oscillator (LO), unless
otherwise noted. Insertion loss of input and output baluns (3600BL14M050, TC4-1W+) is included in the gain measurement.
5
4

28

30

6

–40°C
+25°C
+85°C

25

2
1
0

18

15

10

–1
–2

IIP3, –40°C
IIP3, +25°C
IIP3, +85°C
NF, –40°C
NF, +25°C
NF, +85°C

5

–3

RF FREQUENCY (MHz)

0
2.0

08079-038

–4
3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

8
2.5

3.0

3.5

4.0

4.5

Figure 41. Input IP3 and Noise Figure vs. VSET
0.20

50

0.18

0

0.08

GAIN –40°C
GAIN +25°C
GAIN +85°C
IPOS –40°C
IPOS +25°C
IPOS +85°C

–12
2.0

2.5

40

35

30

0.04

25
0.02

3.0

3.5

4.0

4.5

0
5.0

20
3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

VSET (V)

RF FREQUENCY (MHz)

Figure 42. Input IP2 vs. RF Frequency

Figure 39. Power Conversion Gain and IPOS vs. VSET
80

30

25

08079-042

–10

0.06

08079-039

–8

INPUT IP2 (dBm)

0.10

–6

SUPPLY CURRENT (A)

0.12

–4

–40°C
+25°C
+85°C

70

+85°C
+25°C
–40°C

60

INPUT IP2 (dBm)

20

15

10

50
40
30
20

5

0
3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
RF FREQUENCY (MHz)

Figure 40. Input IP3 vs. RF Frequency

0
2.0

2.5

3.0

3.5

4.0

VSET (V)

Figure 43. Input IP2 vs. VSET

Rev. E | Page 14 of 40

4.5

5.0

08079-043

10

08079-040

INPUT IP3 (dBm)

GAIN (dB)

0.14

+85°C
+25°C
–40°C

45

0.16

–2

5.0

VSET (V)

Figure 38. Power Conversion Gain vs. RF Frequency
2

13

08079-041

INPUT IP3 (dBm)

GAIN (dB)

20

NOISE FIGURE (dB)

23

3

Data Sheet

ADL5801
–10

20

–15
–20

12
10
8

–25
–30
–35
–40
–45
–50

2

–55

0
3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

–60
3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

RF FREQUENCY (MHz)

08079-044

4

LO FREQUENCY (MHz)

Figure 47. LO to RF Leakage vs. LO Frequency

Figure 44. Input P1dB vs. RF Frequency
–20

25
+25°C, 3.6V

–40°C, 3.6V

RF TO IF OUTPUT ISOLATION (dBc)

+85°C, 3.6V

NOISE FIGURE (dB)

20

15
+85°C, 2.0V

+25°C, 2.0V

–40°C, 2.0V

10

0
3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
RF FREQUENCY (MHz)

08079-045

5

–10
–15
+85°C
+25°C
–40°C

–25
–30
–35
–40
–45
–50

LO FREQUENCY (MHz)

08079-046

–55
–60
3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

–30

–40

+85°C
+25°C
–40°C

–50

–60

–70

–80
3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
RF FREQUENCY (MHz)

Figure 48. RF to IF Output Isolation vs. RF Frequency

Figure 45. Noise Figure vs. RF Frequency

–20

08079-047

14

6

LO TO IF LEAKAGE (dBm)

+85°C
+25°C
–40°C

Figure 46. LO to IF Leakage vs. LO Frequency

Rev. E | Page 15 of 40

08079-048

INPUT P1dB (dBm)

16

+85°C
+25°C
–40°C

LO TO RF LEAKAGE (dBm)

18

ADL5801

Data Sheet

DOWNCONVERTER MODE WITH A JOHANSON 5.7 GHZ INPUT BALUN
VS = 5 V, TA = 25°C, VSET = 3.6 V, IF = 153 MHz, as measured using a typical circuit schematic with low-side local oscillator (LO), unless
otherwise noted. Insertion loss of input and output baluns (5400BL14B050, TC4-1W+) is included in the gain measurement.

30

20

3

1
0

15
20

10
15

–1
IIP3, –40°C
IIP3, +25°C
IIP3, +85°C
NF, –40°C
NF, +25°C
NF, +85°C

5

–2
–3

RF FREQUENCY (MHz)

0
2.0

08079-049

–4
5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

70

0

0.18

65

–2

0.16

60

–6
0.10

–8
0.08
0.06

GAIN –40°C
GAIN +25°C
GAIN +85°C
IPOS –40°C
IPOS +25°C
IPOS +85°C

–14
–16
2.0

2.5

3.0

3.5

4.0

4.5

4.5

5
5.0

45
40
35
30

0.02

25

0
5.0

+85°C
+25°C
–40°C

50

0.04

VSET (V)

20
5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000
RF FREQUENCY (MHz)

Figure 53. Input IP2 vs. RF Frequency

Figure 50. Power Conversion Gain and IPOS vs VSET
30

4.0

55

08079-050

GAIN (dB)

0.12

INPUT IP2 (dBm)

0.14

SUPPLY CURRENT (A)

0.20

–12

3.5

Figure 52. Input IP3 and Noise Figure vs. VSET

2

–10

3.0

10

VSET (V)

Figure 49. Power Conversion Gain vs. RF Frequency

–4

2.5

NOISE FIGURE (dB)

25

INPUT IP3 (dBm)

GAIN (dB)

2

08079-052

4

–40°C
+25°C
+85°C

08079-053

5

35

25

6

80
–40°C
+25°C
+85°C

70

25

+85°C
+25°C
–40°C

INPUT IP2 (dBm)

20

15

50
40
30

10

20
5

0
5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000
RF FREQUENCY (MHz)

0
2.0

2.5

3.0

3.5

4.0

VSET (V)

Figure 54. Input IP2 vs. VSET

Figure 51. Input IP3 vs. RF Frequency

Rev. E | Page 16 of 40

4.5

5.0

08079-054

10

08079-051

INPUT IP3 (dBm)

60

Data Sheet

ADL5801

20

–15
–20

14
12
10
8
6

–25
–30
–35
–40
–45
–50

2

–55

0
5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

–60
5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

RF FREQUENCY (MHz)

08079-055

4

LO FREQUENCY (MHz)

Figure 55. Input P1dB vs. RF Frequency

Figure 58. LO to RF Leakage vs. LO Frequency

25

–20
+25°C, 3.6V

–40°C, 3.6V

RF TO IF OUTPUT ISOLATION (dBc)

+85°C, 3.6V

NOISE FIGURE (dB)

20

15
+85°C, 2.0V

+25°C, 2.0V

–40°C, 2.0V

10

0
5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000
RF FREQUENCY (MHz)

08079-056

5

Figure 56. Noise Figure vs. RF Frequency, VSET = 3.6 V

–15

–25
–30
–35
–40
–45
–50
–55

LO FREQUENCY (MHz)

08079-057

LO TO IF LEAKAGE (dBm)

+85°C
+25°C
–40°C

–60
5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

–30

+85°C
+25°C
–40°C

–40

–50

–60

–70

–80
5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000
RF FREQUENCY (MHz)

Figure 59. RF to IF Output Isolation vs. RF Frequency

–10

–20

08079-058

LO TO RF LEAKAGE (dBm)

INPUT P1dB (dBm)

16

+85°C
+25°C
–40°C

Figure 57. LO to IF Leakage vs. LO Frequency

Rev. E | Page 17 of 40

08079-059

18

–10
+85°C
+25°C
–40°C

ADL5801

Data Sheet

UPCONVERTER MODE WITH A 900 MHZ OUTPUT MATCH
VS = 5 V, TA = 25°C, VSET = 3.6 V, RF = 153 MHz, as measured using a typical circuit schematic with low-side local oscillator (LO),
unless otherwise noted. Insertion loss of input and output baluns (TC1-1-13M+, TC4-14) is included in the gain measurement.
2

35

1

+85°C
+25°C
–40°C

0

30

OUTPUT IP3 (dBm)

GAIN (dB)

–1
–2
–3
–4
–5

25

20

15
OUTPUT IP3, –40°C
OUTPUT IP3, +25°C
OUTPUT IP3, +85°C

10

–6

5

300

400

500

600

700

800

900

1000 1100 1200 1300

IF FREQUENCY (MHz)

0
2.0

08079-077

–8

2.5

5.0

0.16

75
0.14
0.12

0.2
0.1

0
0.08

–0.2
0.06

–0.4

OUTPUT IP2 (dBm)

GAIN (dB)

0.4

4.5

80

SUPPLY CURRENT (A)

0.6

4.0

Figure 63. Output IP3 vs. VSET
0.18

GAIN –40°C
GAIN +25°C
GAIN +85°C
IPOS –40°C
IPOS +25°C
IPOS +85°C

0.8

3.5

VSET (V)

Figure 60. Power Conversion Gain vs. IF Frequency
1.0

3.0

08079-080

–7

+85°C
+25°C
–40°C

70

65

60

0.04

–0.6

55

2.5

3.5

3.0

4.0

4.5

0
5.0

50
300

400

500

VSET (V)

800

900

1000 1100 1200 1300

Figure 64. Output IP2 vs. IF Frequency

35

80

30

75
70

OUTPUT IP2 (dBm)

25

20
+85°C
+25°C
–40°C

15

10

65
+85°C
+25°C
–40°C

60
55
50

5

45

400

500

600

700

800

900

1000 1100 1200 1300

IF FREQUENCY (MHz)

08079-079

OUTPUT IP3 (dBm)

700

IF FREQUENCY (MHz)

Figure 61. Power Conversion Gain and IPOS vs. VSET

0
300

600

Figure 62. Output IP3 vs. IF Frequency

40
2.0

2.5

3.0

3.5

4.0

VSET (V)

Figure 65. Output IP2 vs. VSET

Rev. E | Page 18 of 40

4.5

5.0

08079-082

–1.0
2.0

08079-081

0.02

–0.8

Data Sheet

ADL5801
–10

12

–15
–20

LO TO IF LEAKAGE (dBm)

OUTPUT P1dB (dBm)

10

8

6
+85°C
+25°C
–40°C

4

–25

+85°C
+25°C
–40°C

–30
–35
–40
–45
–50

2

400

500

600

700

800

900

1000

1100

IF FREQUENCY (MHz)

–60
453

08079-083

0
300

553

653

753

853

953

1053 1153 1253 1353 1453

LO FREQUENCY (MHz)

08079-085

–55

Figure 68. LO to IF Leakage vs. LO Frequency

Figure 66. Output P1dB vs. IF Frequency
–10

16

–15

14

LO TO RF LEAKAGE (dBm)

–20

10
8
6
NF
NF
NF

4

VSET = 3.6V, –40°C
VSET = 3.6V, +25°C
VSET = 3.6V, +85°C

NF
NF
NF

VSET = 2.0V, –40°C
VSET = 2.0V, +25°C
VSET = 2.0V, +85°C

–25
–30
–35
–40
+85°C
+25°C
–40°C

–45
–50

2

750

800

850

900

950

IF FREQUENCY (MHz)

1000

–60
453

553

653

753

853

953

1053 1153 1253 1353 1453

LO FREQUENCY (MHz)

Figure 69. LO to RF Leakage vs. LO Frequency

Figure 67. Noise Figure vs. IF Frequency, FLO = 650 MHz

Rev. E | Page 19 of 40

08079-086

–55

0
700

08079-084

NOISE FIGURE (dB)

12

ADL5801

Data Sheet

UPCONVERTER MODE WITH A 2.1 GHZ OUTPUT MATCH
VS = 5 V, TA = 25°C, VSET = 4 V, RF = 170 MHz, as measured using a typical circuit schematic with low-side local oscillator (LO), unless
otherwise noted. Insertion loss of input and output baluns (TC1-1-13M+, 1850BL15B200) is included in the gain measurement.
4

35

3

30
2

OUTPUT IP3 (dBm)

0
–1
–2
–3

170

190

210

230

250

270

290

RF FREQUENCY (MHz)

0
110

0.16

75

0.08

–3.0
2.0

0.06

250

270

290

+85°C
+25°C
–40°C

70

65

60

55
0.02

3.0

2.5

230

0.04

3.5

4.0

0
5.0

4.5

50
1900

08079-062

–2.5

VSET (V)

2000

2100

2200

2300

2400

2500

2600

2700

IF FREQUENCY (MHz)

Figure 74. Output IP2 vs. IF Frequency

Figure 71. Power Conversion Gain and IPOS vs. VSET
80

35

75

30

+85°C
+25°C
–40°C

70

OUTPUT IP2 (dBm)

25

20

15

10

65
60
55
50

OUTPUT IP3 –40°C
OUTPUT IP3 +25°C
OUTPUT IP3 +85°C

45

0
2.0

2.5

3.0

3.5
VSET (V)

4.0

4.5

5.0

40
2.0

2.5

3.0

3.5

4.0

VSET (V)

Figure 75. Output IP2 vs. VSET

Figure 72. Output IP3 vs. VSET

Rev. E | Page 20 of 40

4.5

5.0

08079-070

5

08079-067

OUTPUT IP3 (dBm)

GAIN (dB)

0.10

–1.5

OUTPUT IP2 (dBm)

0.12

SUPPLY CURRENT (A)

0.14

GAIN –40°C
GAIN +25°C
GAIN +85°C
IPOS –40°C
IPOS +25°C
IPOS +85°C

210

80

–0.5

–2.0

190

Figure 73. Output IP3 vs. RF Frequency
0.18

–1.0

170

RF FREQUENCY (MHz)

Figure 70. Power Conversion Gain vs. RF Frequency
0

150

130

08079-065

150

08079-060

130

–40°C
+25°C
+85°C

15

5

–5
–6
110

20

10

–40°C
+25°C
+85°C

–4

25

08079-069

GAIN (dB)

1

Data Sheet

ADL5801
–10

12

–15
–20

LO TO RF LEAKAGE (dBm)

OUTPUT P1DB (dBm)

10
+85°C
+25°C
–40°C

8

6

4

+85°C
+25°C
–40°C

–25
–30
–35
–40
–45
–50

2

2100

2200

2300

2400

2600

2500

2700

IF FREQUENCY (MHz)

–60
2070

08079-072

2000

2170

2270

2370

2470

2570

2670

2770

08079-075

–55
0
1900

2870

LO FREQUENCY (MHz)

Figure 76. Output P1dB vs. IF Frequency

Figure 79. LO to RF Leakage vs. LO Frequency
–65

25

RF TO IF OUTPUT ISOLATION (dBc)

–66

NOISE FIGURE (dB)

20

15

10

NF
NF
NF

5

VSET = 3.6V, –40°C
VSET = 3.6V, +25°C
VSET = 3.6V, +85°C

NF
NF
NF

VSET = 2.0V, –40°C
VSET = 2.0V, +25°C
VSET = 2.0V, +85°C

+85°C
+25°C
–40°C

–67
–68
–69
–70
–71
–72
–73

2150

2200

2250

2300

IF FREQUENCY (MHz)

–75
110

–15

1

–20

0

–25

–1

GAIN (dB)

+85°C
+25°C
–40°C

–40

–6

–55

–7

2370

2470

2570

2670

2770

LO FREQUENCY (MHz)

2870

230

250

270

290

–40°C
+25°C
+85°C

–4

–50

2270

210

–3

–5

2170

190

–2

–45

08079-074

LO TO IF LEAKAGE (dBm)

2

–60
2070

170

Figure 80. RF to IF Output Isolation vs. RF Frequency

–10

–35

150

RF FREQUENCY (MHz)

Figure 77. Noise Figure vs. IF Frequency, FLO = 1950 MHz

–30

130

–8
1900

2000

2100

2200

2300

2400

2500

2600

IF FREQUENCY (MHz)

Figure 81. Power Conversion Gain vs. IF Frequency

Figure 78. LO to IF Leakage vs. LO Frequency

Rev. E | Page 21 of 40

2700

08079-061

2100

08079-073

2050

08079-076

–74
0
2000

ADL5801

Data Sheet

5

40

80

4

35

78

0
15

–1

OUTPUT IP3 (dBm)

20

OUTPUT IP3 –40°C
OUTPUT IP3 +25°C
OUTPUT IP3 +85°C

GAIN –40°C
GAIN +25°C
GAIN +85°C

–3
–4
–10

–8

–6

–4

0

–2

2

4

6

8

74

72

5

68

0

66
110

10

LO POWER (dBm)

150

170

190

210

230

250

270

290

270

290

Figure 85. Output IP2 vs. RF Frequency
20

0

18

–40°C
+25°C
+85°C

16

OUTPUT P1dB (dBm)

–0.4

GAIN (dB)

130

RF FREQUENCY (MHz)

Figure 82. Power Conversion Gain and Output IP3 vs. LO Power

–0.2

–40°C
+25°C
+85°C

76

70

10

–2

08079-063

GAIN (dB)

25

1

OUTPUT IP2 (dBm)

30

2

08079-068

3

–0.6

–0.8

–1.0

+85°C
+25°C
–40°C

14
12
10
8
6
4

–1.2

4.90

4.95

5.00

5.05

5.10

5.15

5.20

5.25

SUPPLY (V)

Figure 83. Power Conversion Gain vs. Supply

20

15

10

5

2000

2100

2200

2300

2400

2500

IF FREQUENCY (MHz)

2600

2700

08079-066

OUTPUT IP3 (dBm)

–40°C
+25°C
+85°C

25

0
1900

130

150

170

190

210

230

250

RF FREQUENCY (MHz)

Figure 86. Output P1dB vs. RF Frequency

35

30

0
110

Figure 84. Output IP3 vs. IF Frequency

Rev. E | Page 22 of 40

08079-071

4.85

4.80

08079-064

–1.4
4.75

2

Data Sheet

ADL5801

SPUR PERFORMANCE
All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board (see the Evaluation Board section). Mixer
spurious products are measured in decibels relative to the carrier (dBc) from the IF output power level. Data was measured for frequencies
less than 6 GHz only. The typical noise floor of the measurement system is −100 dBm.

900 MHz Downconvert Performance
VS = 5 V, VSET = 3.8 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 900 MHz, fLO = 703 MHz, Z0 = 50 Ω.
0

N

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

−48.8
−35.9
−68.8
−47.5
−95.6
−85.7

1
−33.1
0.0
−74.9
−64.8
−80.7
−74.7
−96.4
≤−100

2
−23.3
−51.5
−67.5
−94.3
−78.0
−89.8
−83.1
≤−100
≤−100

3
−45.8
−19.0
−66.1
−65.9
−78.4
−70.7
−98.5
−95.9
≤−100
≤−100

4
−23.6
−65.1
−73.5
−86.3
−95.1
−84.8
−83.3
≤−100
−99.0
≤−100

5
−45.9
−29.6
−80.5
−70.2
−73.5
−90.7
−96.7
−97.2
−99.8
≤−100
≤−100

6
−30.7
−78.0
−65.0
−76.3
−89.4
−86.7
≤−100
−83.1
−86.0
−90.9
≤−100
≤−100

M
7
−55.4
−50.3
−89.8
−70.6
−87.3
−86.4
−89.4
−84.1
≤−100
−88.4
≤−100
≤−100
≤−100

8
−41.5
−74.4
−71.3
−74.5
≤−100
−83.1
−99.6
≤−100
≤−100
−83.5
−97.9
−92.6
≤−100

9
−57.7
−88.5
−81.4
−92.7
−73.7
−96.1
≤−100
≤−100
−87.6
−95.5
−87.4
≤−100
≤−100

10

11

12

13

14

−86.8
≤−100
−99.5
−78.7
−96.1
−99.7
≤−100
≤−100
−99.0
−88.2
≤−100
≤−100
≤−100

−98.8
−99.6
−99.4
−80.7
−95.4
−87.9
≤−100
≤−100
≤−100
−92.3
≤−100
−95.1
≤−100
≤−100

≤−100
≤−100
−91.1
−95.5
−88.8
≤−100
≤−100
≤−100
−99.3
≤−100
−96.5
≤−100
≤−100

≤−100
≤−100
≤−100
−85.7
≤−100
≤−100
≤−100
≤−100
≤−100
−90.4
≤−100
≤−100

≤−100
≤−100
≤−100
≤−100
≤−100
≤−100
≤−100
≤−100
≤−100
≤−100
≤−100

13

14

1900 MHz Downconvert Performance
VS = 5 V, VSET = 3.8 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 1900 MHz, fLO = 1703 MHz, Z0 = 50 Ω.
M
0

N

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

−40.4
−38.4
≤−100

1
−31.4
0.0
−66.0
−66.2
≤−100

2
−17.1
−53.6
−52.9
−73.2
−89.4

3
−51.4
−38.5
−68.1
−72.6
−86.4
−83.7

4
−71.0
−64.2
−79.9
−94.6
−66.2
≤−100

5

−86.8
−65.2
−87.4
−79.3
−86.4
≤−100

6

−92.8
−81.5
−89.0
≤−100
−92.4
≤−100

7

≤−100
−75.2
−99.0
−92.7
≤−100
≤−100

Rev. E | Page 23 of 40

8

9

≤−100
−87.7
≤−100
−97.5
≤−100
≤−100

≤−100
≤−100
−98.4
≤−100
≤−100
−97.2
≤−100

10

≤−100
≤−100
−95.4
≤−100
−95.6
≤−100
≤−100

11

12

≤−100
≤−100
≤−100
≤−100
≤−100
≤−100
≤−100

≤−100
≤−100
≤−100
≤−100
≤−100
≤−100

≤−100
≤−100
≤−100
≤−100
≤−100
≤−100

≤−100
≤−100
≤−100
≤−100
≤−100
≤−100

ADL5801

Data Sheet

2600 MHz Downconvert Performance
VS = 5 V, VSET = 3.8 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 2600 MHz, fLO = 2350 MHz, Z0 = 50 Ω.
M
0

N

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

−40.3
−71.7

1
−31.5
0.0
−73.6
−83.9

2
−30.3
−55.8
−50.6
−66.5
−94.7

3

4

−33.8
−70.4
−59.8
−77.6
−91.4

−64.8
−71.3
−92.6
−71.1

5

−84.7
−83.8
−89.7
−83.1

6

−90.6
−98.2
−90.3
<100

7

8

−96.3
−92.9
−91.4
<100

<100
−97.3
<100
−96.6
<100

9

<100
<100
<100
−97.9
<100

10

<100
−91.8
<100
−93.5
<100

11

<100
−98.5
<100
<100
<100

12

<100
−98.8
<100
<100
<100

13

14

<100
<100
<100
<100
<100

<100
<100
<100
<100

15

<100
<100
<100
<100

3800 MHz Downconvert Performance
VS = 5 V, VSET = 3.8 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 3800 MHz, fLO = 3500 MHz, Z0 = 50 Ω.
M
0

N

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

−33.7

1
−27.3
0.0
−78.5

2
−54.9
−47.1
−63.6

3

−66.4
−57.8
−89.6

4

−81.4
−77.2
<100

5

6

−72.2
−88.0
<100

−99.2
−80.4
−90.0
<100

7

8

<100
−90.4
−79.1
<100

<100
<100
−85.2

Rev. E | Page 24 of 40

9

<100
<100
<100

10

<100
<100
<100

11

<100
−95.9
<100

12

<100
<100
<100

13

<100
<100
<100

14

<100
<100
<100

15

<100
<100
<100

Data Sheet

ADL5801

5800 MHz Downconvert Performance
VS = 5 V, VSET = 3.8 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 5800 MHz, fLO = 5600 MHz, Z0 = 50 Ω.
0

N

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

−43.9

1
−44.9
0.0

2

3

−68.9
−44.0

−78.0
−47.0

4

−93.3
−60.6

5

−87.8
−62.7

6

M
8

7

−85.7
−70.2

−97.8
−79.5

9

−85.3
−71.2

10

<100
<100

<100
<100

11

12

<100
<100

<100
<100

13

14

<100
−100.3

15

<100
−95.6

−96.0
<100

806 MHz Upconvert Performance
VS = 5 V, VSET = 3.8 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 140 MHz, fLO = 946 MHz, Z0 = 50 Ω.
0

N

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

−66.0
−67.8
−99.2
−77.1
−88.7
−86.1
−90.2
−73.8
−91.1
−66.2
−87.7
−69.5
−85.2
−65.2
−91.3

1
−35.2
0.0
−66.0
−66.2
−97.2
<100
<100
<100
<100
−96.3
<100
−93.6
−89.1
−95.7
−85.9
−93.5

2
−22.9
−67.7
−62.9
−92.2
−85.1
−88.5
−92.7
<100
−94.8
<100
<100
<100
<100
<100
<100
<100

3
−42.8
−14.0
−65.3
−69.2
−97.8
−92.9
−95.8
−84.6
−96.4
−91.5
<100
−95.9
<100
<100
−93.1
−96.6

4
−28.4
−70.0
−61.1
−84.9
−82.0
−96.4
−87.5
<100
−93.4
−100.3
−88.3
<100
−93.8
−97.7
−94.5
v98.7

5
−59.1
−37.1
−84.1
−84.3
<100
−93.6
−99.5
−88.0
−99.6
−93.3
−100.0
<100
<100
−90.5
<100
−93.5

M
6
−40.1
−74.3
−81.2
<100
<100
<100
<100
<100
<100
<100
<100
<100
<100
−96.0
<100
−99.6

Rev. E | Page 25 of 40

7

8

<100
<100
<100
<100
<100
<100
<100
<100
<100
<100
<100

<100
<100
<100
<100

9

10

11

12

13

14

15

ADL5801

Data Sheet

2210 MHz Upconvert Performance
VS = 5 V, VSET = 4.0 V, TA = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 140 MHz, fLO = 2350 MHz, Z0 = 50 Ω.
M
0

N

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

−81.3
−66.0
<100
−74.4
<100
−90.9
−96.4
−75.8
−92.9
−66.5
−83.7
−64.8
−81.2
−64.5
−85.3

1
−21.0
0.0
−58.8
−56.7
−86.3
−75.3
−81.4
−71.2
−89.7
−86.2
<100
−98.4
<100
<100
<100
<100

2
−12.8
−70.1
−51.5
−78.2
−76.5
−88.0
−91.5
−85.9
−86.3
−92.2
−97.5
−97.9
−93.1
<100
−91.0
<100

3

4

5

6

7

<100
<100
<100
<100
<100
<100
<100
−95.4

Rev. E | Page 26 of 40

8

9

10

11

12

13

14

15

Data Sheet

ADL5801

CIRCUIT DESCRIPTION
LO AMPLIFIER AND SPLITTER

The ADL5801 includes a double-balanced active mixer with a
50 Ω input impedance and 250 Ω output impedance. In addition,
the ADL5801 integrates a local oscillator (LO) amplifier and
an RF power detector that can be used to optimize the mixer
dynamic range. The RF and LO are differential, providing maximum usable bandwidth at the input and output ports. The LO
also operates with a 50 Ω input impedance and can, optionally,
be operated differentially or single ended. The input, output, and
LO ports can be operated over an exceptionally wide frequency
range. The ADL5801 can be configured as a downconvert mixer
or as an upconvert mixer.

The LO input is conditioned by a series of amplifiers to provide
a well controlled and limited LO swing to the mixer core, resulting
in excellent input IP3. The LO input is amplified using a broadband
low noise amplifier (LNA) and is then followed by LO limiting
amplifiers. The LNA input impedance is nominally 50 Ω. The
LO circuit exhibits low additive noise, resulting in an excellent
mixer noise figure and output noise under RF blocking. For
optimal performance, the LO inputs should be driven differentially
but at lower frequencies; single-ended drive is acceptable.

The ADL5801 can be divided into the following sections: the
LO amplifier and splitter, the RF voltage-to-current (V-to-I)
converter, the mixer core, the output loads, the RF detector, and
the bias circuit. A simplified block diagram of the device is shown
in Figure 87. The LO block generates a pair of differential LO
signals to drive two mixer cores. The RF input power is converted
into RF currents by the V-to-I converter that then feed into the
two-mixer core. The internal differential load of the mixer
provides a wideband 250 Ω output impedance from the mixer.
Reference currents to each section are generated by the bias
circuit, which can be enabled or disabled using the ENBL pin. A
detailed description of each section of the ADL5801 follows.

The differential RF input signal is applied to a V-to-I converter
that converts the differential input voltage to output currents.
The V-to-I converter provides a 50 Ω input impedance. The V-to-I
section bias current can be adjusted up or down using the VSET
pin. Adjusting the current up improves IP3 and P1dB input but
degrades the SSB noise figure. Adjusting the current down improves
the SSB noise figure but degrades IP3 and P1dB input. Conversion
gain remains nearly constant over a wide range of VSET pin
settings, allowing the part to be adjusted dynamically without
affecting conversion gain.

VPLO GND NC IFON IFOP GND
24

23

22

21

20

1

18 VPRF

GND

2

17 GND

LOIP 3

16 RFIP

ADL5801

MIXER OUTPUT LOAD
The mixer load uses a pair of 125 Ω resistors connected to the
positive supply. This provides a 250 Ω differential output resistance. The mixer output should be pulled to the positive supply
externally using a pair of RF chokes or using an output transformer
with the center tap connected to the positive supply. It is possible
to exclude these components when the mixer core current is
low, but both P1dB input and IP3 input are then reduced.

V2I
LOIN 4

15 RFIN

GND

5

14 GND

GND

6

13 VPDT

7

8

9

DET

10

11

12

VPLO GND ENBL VSET DETO GND

Figure 87. Block Diagram

08079-127

BIAS

MIXER CORE
The ADL5801 has a double-balanced mixer that uses high performance SiGe NPN transistors. This mixer is based on the
Gilbert cell design of four cross-connected transistors.

19

GND

RF VOLTAGE-TO-CURRENT (V-TO-I) CONVERTER

The mixer load output can operate from direct current (dc) up
to approximately 600 MHz into a 200 Ω load. For upconversion
applications, the mixer load can be matched using off-chip matching
components. Transmit operation up to 3 GHz is possible. See
the Applications Information section for matching circuit details.

Rev. E | Page 27 of 40

ADL5801

Data Sheet

RF DETECTOR

5.0

An RF power detector is buffered from the V-to-I converter
section. This detector has a power response range from
approximately −25 dBm up to 0 dBm and provides a current
output. The output current is designed to be connected to the
VSET pin to boost the mixer core current when large RF signals
are present at the mixer input. An external capacitor can be
used to adjust the response time of this function. If not used,
the DETO pin can be left open or connected to ground.

4.0
3.0

+85°C
+25°C
–40°C

GAIN (dB)

2.0
1.0
0
–1.0
–2.0
–3.0

The detector was characterized under the conditions specified
in the Downconverter Mode with a Broadband Balun section.
Pin 11 (DETO) was connected to Pin 10 (VSET), and the voltage
on these pins was plotted vs. the RF input power level over
temperature and a number of devices.

–5.0
–35

–30

–25

–20

–15

–10

–5

0

5

0

5

RF INPUT (dBm)

08079-090

–4.0

Figure 90. Power Conversion Gain vs. RF Input

4.0

160
140

3.6

SUPPLY CURRENT (mA)

3.4
3.2
+85°C
+25°C
–40°C

3.0
2.8
2.6
2.4

–25

–20

–15

–10

–5

0

5

08079-087

–30

RF INPUT (dBm)

35
+85°C
+25°C
–40°C

20
15
10
5
0

–30

–25

–20

–15

–10

–5

RF INPUT (dBm)

Figure 89. Input IP3 vs. RF Input

0

5

08079-088

INPUT IP3 (dBm)

60
40

–30

–25

–20

–15

–10

–5

RF INPUT (dBm)

BIAS CIRCUIT

40

–5
–35

80

Figure 91. Supply Current vs. RF Input

The input IP3, gain and supply current were also recorded
under these conditions. The result can be seen in Figure 89
through Figure 91.

25

100

0
–35

Figure 88. Detector Output Voltage vs. RF Input

30

+85°C
+25°C
–40°C

20

2.2
2.0
–35

120

08079-089

DETECTOR OUTPUT VOLTAGE (V)

3.8

A band gap reference circuit generates the reference currents used
by mixers. The bias circuit and the internal detector can be enabled
and disabled using the ENBL pin. Pulling the ENBL pin high
shuts off the bias circuit and the internal detector. However, the
ENBL pin does not alter the current in the LO section and,
therefore, does not provide a true power-down feature. When
the ENBL pin is pulled high, the device can be operated by applying
an external voltage to the VSET pin or by connecting a resistor
from the VSET pin to the positive supply. Internally, the VSET
pin features a series resistance and diode to ground; therefore, a
simple voltage divider driving the pin is not sufficient. Table 4
lists some typical values for this resistor and the resulting VSET
value and supply current when the ENBL pin is set high. Use
Table 4 to select the appropriate value of R10 (see Figure 110) to
achieve the desired mixer bias level. In this mode of operation,
the VSET pin must not be left floating, and placeholders R7 and
R9 must remain open.

Rev. E | Page 28 of 40

Data Sheet

ADL5801

Table 4. Suggested Values of R10 (When ENBL Pin is High)

Table 5. Suggested Values of R10 (When ENBL Pin is Low)

R10 (Ω)
226
488
562
568
659
665
694
760
768
1000
1100
1150
1200
1300
1400
1500
1600
1700
1800
1900
2000
2300
5900

R10 (Ω)
226
562
568
659
665
694
760
768
1000
1100
1150
1200
1300
1400
1500
1600
1700
1800
1900
2000
2300
5900
Open

IPOS is the mixer supply current.

1

VSET (V)
4.5
4.01
4
3.9
3.89
3.85
3.8
3.79
3.6
3.53
3.5
3.47
3.4
3.35
3.3
3.26
3.21
3.17
3.14
3.1
3
2.5
2.03

IPOS (mA)1
160
146
145
142
142
142
139
139
133
131
130
129
127
126
124
122
121
120
119
118
114
98
82

IPOS is the mixer supply current.

If the ENBL pin is pulled low, the bias circuit and internal detector
of the device are enabled. In this mode, the device can be operated
by applying an external voltage to the VSET pin or by connecting
a resistor from the VSET pin to the positive supply. Table 5 lists
some typical values for this resistor and the resulting VSET
value and supply current when the ENBL pin is set low. Use
Table 5 to select the appropriate value of R10 (see Figure 110) to
achieve the desired mixer bias level. In this mode of operation,
R7 and R9 must remain open.
Optionally, the VSET pin can be connected to the DETO pin to
provide dynamic mixer bias control using the internal detector.
Figure 92 is a comparison of the input IP3 performance vs. RF
input power levels at 2 GHz, when the ENBL pin is pulled high
and low. Pulling ENBL high results in improved linearity across
input power levels, while pulling ENBL low results in enhanced
IP3 performance at higher power levels. The device also exhibits
improved spur performance when the ENBL pin is pulled high.
Figure 95 is a comparison of the 4LO-5RF and 6LO-7RF spurs
vs. RF input power levels at 900 MHz with ENBL high and low.

Rev. E | Page 29 of 40

35

ENBL LOW
30
25

ENBL HIGH
20

fRF = 2000MHz
fLO = 1797MHz
fIF = 203MHz

15
10
5
0
–30

08079-192

IPOS (mA)
140
126
123
123
120
120
119
116
116
109
107
106
105
102
100
99
97
95
94
92
91
87
68

INPUT IP3 (dBm)

1

VSET (V)
4.14
4.00
3.90
3.89
3.78
3.77
3.74
3.67
3.66
3.44
3.36
3.33
3.29
3.22
3.16
3.10
3.05
3.00
2.95
2.91
2.87
2.76
2.18

1

–25

–20

–15

–10

–5

0

RF INPUT LEVEL (dBm)

Figure 92. Input IP3 vs. RF Input Level at 2 GHz, VSET = 3.8 V,
with ENBL High and Low

ADL5801

Data Sheet

Figure 93 is a plot of the input IP3 vs. RF input power levels for
varying VSET levels at 2 GHz, when the ENBL pin is pulled
high. The device exhibits the best linearity at a VSET level of
4.0 V in this mode of operation. As mentioned previously, the
VSET level can be set using an external voltage or by placing a
resistor from the VSET pin to the positive supply. Figure 94 is a
plot of the input IP3 vs. RF input power levels for a VSET level
of 4.0 V, when the ENBL is pulled high for varying temperature
and frequency conditions. The device is well behaved across
varying frequency levels and exhibits excellent temperature
sensitivity.

35

INPUT IP3 (dBm)

30

25

20

08079-193

0

–5

–10

–15

–20

–25

RF INPUT LEVEL (dBm)

Figure 93. Input IP3 vs. RF Input Level at 2 GHz for
Varying VSET levels, ENBL High

08079-194

0

–5

–10

–15

20
0
–20
–40
–60

ADL5801 IF, ENBL LOW
ADL5801 4LO-5RF SPUR, ENBL
ADL5801 6LO-7RF SPUR, ENBL
ADL5801 IF TONE, ENBL HIGH
ADL5801 4LO-5RF SPUR, ENBL
ADL5801 6LO-7RF SPUR, ENBL

LOW
LOW
HIGH
HIGH

fRF = 900MHz
fLO = 1077MHz
fIF = 177MHz

–80
–100
–120
–140
–20

08079-195

SPUR LEVEL, RELATIVE TO THE CARRIER (dBc)

Figure 94. Input IP3 vs. RF Input Level for Across Varying Frequency and
Temperature Conditions, VSET = 4.0 V, ENBL High

20

15

+85°C AT 1.0GHz
+85°C AT 1.5GHz
+85°C AT 2.0GHz
+85°C AT 2.5GHz

RF INPUT LEVEL (dBm)

fRF = 2000MHz
fLO = 1797MHz
fIF = 203MHz

25

–30

INPUT IP3 (dBm)

30

= 3.40V
= 3.60V
= 3.80V
= 4.05V
= 4.20V
= 4.40V
= 4.65V

+25°C AT 1.0GHz
+25°C AT 1.5GHz
+25°C AT 2.0GHz
+25°C AT 2.5GHz

–20

15

VSET
VSET
VSET
VSET
VSET
VSET
VSET

–30

35

–25

–40°C AT 1.0GHz
–40°C AT 1.5GHz
–40°C AT 2.0GHz
–40°C AT 2.5GHz

–15

–10

–5

0

5

RF INPUT POWER LEVEL (dBm)

Figure 95. 4LO-5RF and 6LO-7RF Spurs vs. RF Input Level at 900 MHz,
with ENBL High and Low

Rev. E | Page 30 of 40

Data Sheet

ADL5801

APPLICATIONS INFORMATION
BASIC CONNECTIONS

RF AND LO PORTS

The ADL5801 is designed to translate between radio frequencies
(RF) and intermediate frequencies (IF). For both upconversion
and downconversion applications, RFIP (Pin 16) and RFIN
(Pin 15) must be configured as the input interfaces. IFOP
(Pin 20) and IFON (Pin 21) must be configured as the output
interfaces. Individual bypass capacitors are needed in close
proximity to each supply pin (Pin 7, Pin 13, Pin 18, and Pin 24),
the VSET control pin (Pin 10), and the DETO detector output pin
(Pin 11). When the on-chip detector is chosen to form a closed
loop, automatically controlling the VSET pin, R7 can be
populated with a 0 Ω resistor. Alternatively, simply use a jumper
between the VSET and DETO test points for evaluation. Figure 96
illustrates the basic connections for ADL5801 operation.

The RF and LO input ports are designed for a differential input
impedance of approximately 50 Ω. Figure 97 and Figure 98
illustrate the RF and LO interfaces, respectively. It is recommended
that each of the RF and LO differential ports be driven through a
balun for optimum performance. It is also necessary to ac couple
both RF and LO ports. Using proper value capacitors may help
improve the input return loss over desired frequencies. Table 6
and Table 9 list the recommended components for various RF
and LO frequency bands in upconvert and downconvert modes.
The characterization data is available in the Typical Performance
Characteristics section.

IFON

IFOP
T1
T5
T8

R11
C50

VPOS

C20

R2

R3

R50
C2

L1

VPOS

L2

L3

C19

C13
24

23

VPLO GND

22

21

20

19

C10

IFON IFOP GND

NC

1

GND

2

GND

GND 17

3

LOIP

RFIP 16

VPRF

VPOS

18

C8

C4

LOIN

R8

L4

RFIP

ADL5801
LOIP

T2
R16 T4
T7

4

LOIN

R4

RFIN 15
C9

C5
5

GND

GND 14

6

GND

VPDT 13

VPLO GND ENBL VSET DETO GND
7

8

9

10

11

C6

C18

C1

R7

C17

VSET

R9

C12

Figure 96. Basic Connections Schematic

Rev. E | Page 31 of 40

RFIN

VPOS

C7
DETO

T3
T6
T9 R12

R10

12

ENBL

VPOS

L5

08079-128

C3

R14

R13

ADL5801

Data Sheet
shunting impedance of the choke inductors used to couple dc
current into the mixer core should be large enough at the IF
frequency of operation not to load down the output current
before it reaches the intended load. Additionally, the dc current
handling capability of the selected choke inductors must be at
least 45 mA.

GND 17
C8
RFIP

ADL5801
T3
08079-129

C9
GND 14

The self-resonant frequency of the selected choke inductors
must be higher than the intended IF frequency. A variety of
suitable choke inductors is commercially available from
manufacturers such as Coilcraft® and Murata. An impedance
transforming network may be required to transform the final
load impedance to 200 Ω at the IF outputs.

Figure 97. RF Interface

1

GND

2

GND

3

LOIP

4

LOIN

5

GND

Table 8 lists suggested components for the IF port in the
upconvert and downconvert modes.

C4

ADL5801
T2

IFOP
T1
T5
T8

C5

6

VPOS

GND

08079-130

LOIP

C50

R3

R2
L3

Figure 98. LO Interface

C13

Table 6. Suggested Components for the RF and LO Interfaces
in Downconvert Mode
RF and LO
Frequency
10 MHz
900 MHz
1900 MHz
2500 MHz
3500 MHz
5500 MHz
10 MHz to
6000 MHz

23

22

GND

NC

21

20

19

IFON IFOP GND

ADL5801

T2, T3
Mini-Circuits TC1-1-13M+
Mini-Circuits TC1-1-13M+
Mini-Circuits TC1-1-13M+
Mini-Circuits TC1-1-43M+
3600BL14M050
5400BL14B050
Mini-Circuits TCM1-63AX+

C8, C9
1 nF
5.6 pF
5.6 pF
2 pF
1.5 pF
3 pF
1 nF

C4, C5
1 nF
100 pF
100 pF
8 pF
1.5 pF
3 pF
1 nF

Figure 99. Biasing the IF Port Open-Collector Outputs
Using a Center-Tapped Impedance Transformer
ZL
IMPEDANCE
TRANSFORMING
NETWORK

C3

T1
T5
T8

C2

VPOS

Table 7. Suggested Components for the RF Interface in
Upconvert Mode
RF Frequency
153 MHz

08079-131

RFIN 15

T3
TC1-1-13M+

C20

VPOS
L1

L2

L3

C19

C13

C8, C9
470 pF

23

22

GND

NC

IF PORT

21

20

ADL5801

The IF port features an open-collector, differential output interface.
It is necessary to bias the open collector outputs using one of
the schemes presented in Figure 99 and Figure 100.
Figure 99 shows the use of center-tapped impedance transformers.
The turns ratio of the transformer should be selected to provide
the desired impedance transformation. In the case of a 50 Ω
load impedance, a 4:1 impedance ratio transformer should be
used to transform the 50 Ω load into a 200 Ω differential load at
the IF output pins.

19

IFON IFOP GND

08079-132

RFIP 16

Figure 100. Biasing the IF Port Open-Collector Outputs
Using Pull-Up Choke Inductors

Table 8. Suggested Components for the IF Port in Upconvert
and Downconvert Modes
IF Frequency
0 MHz to 500 MHz
900 MHz
2140 MHz

Figure 100 shows a differential IF interface where pull-up choke
inductors are used to bias the open-collector outputs. The

Rev. E | Page 32 of 40

Mode of
Operation
Downconvert
Upconvert
Upconvert

T1
TC4-1W+
TC4-14+
1850BL15B200

L3
Open
27 nH
3.3 nH

Data Sheet

ADL5801
ZL

DOWNCONVERTING TO LOW FREQUENCIES

IMPEDANCE
TRANSFORMING
NETWORK

VPOS

T1
T5
T8

10µF

10µF

50Ω

50Ω

VPOS
C19
0.1µF

C20
0.1µF

23

22

GND

NC

21

20

19

IFON IFOP GND

ADL5801

08079-136

For downconversion to lower frequencies, the device should be
biased at the output with a resistor. The common-mode voltage
at the IF output of the device should be 3.75 V to ensure optimal
performance. Figure 101 provides a sample setup to downconvert
a 900 MHz input signal down to 100 kHz. In the setup depicted
in Figure 101, the output of the device is biased with 50 Ω resistors.
In this mode of operation, the device exhibits 2.0 dB of conversion
gain when a signal at 500 MHz was downcoverted to a 100 kHz,
10 kHz or 1 kHz.

Figure 101. Resistive Bias Network to Downconvert Signals to Low
Frequencies

Rev. E | Page 33 of 40

ADL5801

Data Sheet

BROADBAND OPERATION
The ADL5801 can support input frequencies from 10 MHz to 6 GHz. The device can be operated with a broadband balun such as the
MiniCircuits TCM1-63AX+ for applications that need wideband frequency coverage. Figure 102 illustrates a sample setup configuration
with the MiniCircuits TCM1-63AX+ balun populated on the RF and LO ports. This single setup solution provides the option to utilize
the complete input frequency range of the device.
IFOP

IFON

Mini-Circuits
TC4-1W+

C50
0.1µF

VPOS
R50
0Ω
C20
100pF

C2
0.1µF
C3
100pF
24

23

VPLO GND

LOIN

Mini-Circuits C4
TCM1-63AX+ 1nF

22

NC

21

20

19

IFON IFOP GND

C10
0.1µF

1 GND

VPRF 18

2 GND

GND 17

3 LOIP

RFIP 16

VPOS

C8
1nF

R8
Mini-Circuits 0Ω
TCM1-63AX+

RFIP

ADL5801
4 LOIN

LOIP
R16
0Ω

RFIN 15

RFIN
C9
1nF

C5
1nF
5 GND

GND 14

6 GND

VPDT 13

VPOS
C11
0.1µF

VPLO GND ENBL VSET DETO GND
7

8

9

10

11

12

R10
VPOS
C7
100pF

C18
C17
0.1µF 100pF

ENBL

VSET
DETO
C1
0.1µF

R9
C12
100pF

Figure 102. Sample Setup Configuration with the MiniCircuits TCM1-63AX+ Broadband Balun

Rev. E | Page 34 of 40

08079-137

C6
0.1µF

Data Sheet

ADL5801

Figure 103 to Figure 105 demonstrate the performance of the
mixer with the MiniCircuits TCM1-63AX+ populated on the
RF and LO ports.

0

INPUT RETURN LOSS (dB)

–5

70

CONVERSION GAIN (dB)
IIP3 (dBm)
IIP2 (dBm)

50
40
30

fIF = 153MHz, fLO: 163MHz TO 6153MHz (HIGH SIDE LO)

–25
–30

–40

PRF = –10dBm, PLO = 0dBm
IIP3: 1MHz TONE SPACING BETWEEN CHANNELS
IIP2: 15MHz TONE SPACING BETWEEN CHANNELS

10

0
08079-138

0
–10

0

1000

2000

3000

4000

5000

6000

RF FREQUENCY (MHz)

Figure 103. Gain, IIP3, IIP2 vs. RF Frequency

16
14
12
10
8

fIF = 153MHz, fLO: 163MHz TO 6153MHz (HIGH SIDE LO)

6

PRF = –10dBm, PLO = 0dBm
IIP3: 1MHz TONE SPACING BETWEEN CHANNELS
IIP2: 15MHz TONE SPACING BETWEEN CHANNELS
08079-139

4
2

0

1000

2000

3000

4000

5000

2000
3000
4000
RF FREQUENCY (MHz)

5000

6000

The device maintains an Input IP3 of 20 dBm or better and
conversion gain of −2 dB or better across the 10 MHz to 6 GHz
frequency band.

VSET = 2.0V
VSET = 3.6V

18

1000

Figure 105. Input Return Loss vs. RF Frequency

20

NOISE FIGURE (dB)

–20

–35

20

0

–15

08079-140

GAIN, IIP3, IIP2 (dB, dBm)

60

–10

6000

RF FREQUENCY (MHz)

Figure 104. Noise Figure vs. RF Frequency

Rev. E | Page 35 of 40

ADL5801

Data Sheet

SINGLE-ENDED DRIVE OF RF AND LO INPUTS
The RF and LO ports of the active mixer can be driven single-ended without baluns for single-ended operation. In this configuration, the
unused RF and LO ports should be ac grounded using a 1 nF capacitor. Figure 106 depicts setup configuration suggested to operate the
device in the single-ended mode.
IFOP

IFON

Mini-Circuits
TC4-1W+

C50
0.1µF

VPOS
R50
0Ω
C2
0.1µF

C20
100pF

C3
100pF
24

23

VPLO GND

R14
0Ω

22

NC

21

20

19

IFON IFOP GND

C10
0.1µF

1 GND

VPRF 18

2 GND

GND 17

3 LOIP

RFIP 16

VPOS

C8
1nF

C4
1nF

LOIN

RFIP

ADL5801
4 LOIN

LOIP

RFIN 15

RFIN
C9
1nF

C5
1nF
5 GND

GND 14

6 GND

VPDT 13

VPOS
C11
0.1µF

VPLO GND ENBL VSET DETO GND
7

8

9

10

11

R1
0Ω

12

R10
VPOS
C7
100pF

C18
C17
0.1µF 100pF

ENBL

VSET
DETO
C1
0.1µF

R9
C12
100pF

Figure 106. Single-Ended Configuration to Operate the ADL5801

Rev. E | Page 36 of 40

08079-141

C6
0.1µF

Data Sheet

ADL5801

Figure 107 to Figure 109 demonstrate the performance of the
mixer in the single ended mode.

0
–5

70

50
40
30
20

–20
–25

fIF = 153MHz
fLO: 163MHz TO 6153MHz (HIGH SIDE LO)

–30

PRF = –10dBm, PLO = 0dBm
IIP3: 1MHz TONE SPACING BETWEEN CHANNELS
IIP2: 15MHz TONE SPACING BETWEEN CHANNELS

PRF = –10dBm, PLO = 0dBm
IIP3: 1MHz TONE SPACING BETWEEN CHANNELS
IIP2: 15MHz TONE SPACING BETWEEN CHANNELS

–35

0

08079-142

0
–10

0

1000

2000

3000

4000

5000

RF FREQUENCY (MHz)

20

VSET = 2.0V
VSET = 3.6V
15

10

fIF = 153MHz, fLO: 163MHz TO 6153MHz (HIGH SIDE LO)
PRF = –10dBm, PLO = 0dBm
IIP3: 1MHz TONE SPACING BETWEEN CHANNELS
IIP2: 15MHz TONE SPACING BETWEEN CHANNELS
08079-143

5

0

1000

2000

3000

4000

5000

1000

2000
3000
4000
RF FREQUENCY (MHz)

5000

Figure 109. Input Return Loss vs. RF Frequency

6000

Figure 107. Gain, IIP3, IIP2 vs. RF Frequency

NOISE FIGURE (dB)

–15

fIF = 153MHz, fLO: 163MHz TO 6153MHz (HIGH SIDE LO)

10

0

–10

6000

RF FREQUENCY (MHz)

Figure 108. Noise Figure vs. RF Frequency

Rev. E | Page 37 of 40

08079-144

GAIN, IIP3, IIP2 (dB, dBm)

INPUT RETURN LOSS (dB)

CONVERSION GAIN (dB)
IIP3 (dBm)
IIP2 (dBm)

60

6000

ADL5801

Data Sheet

EVALUATION BOARD
An evaluation board is available for the ADL5801. The standard evaluation board is fabricated using Rogers® RO3003 material. Each RF,
LO, and IF port is configured for single-ended signaling via a balun transformer. The schematic for the evaluation board is shown in
Figure 110. Table 9 describes the various configuration options for the evaluation board. Layout for the board is shown in Figure 111 and
Figure 112.
IFOP
T1
T5
T8

R11

R3

R50
C20

R2

L1

L2

L3

VPOS
C19

C13

C3
24

23

VPLO GND

R14

R13

C50

VPOS

C2

IFON

22

21

NC

20

19

C10

IFON IFOP GND

1

GND

VPRF 18

2

GND

GND 17

3

LOIP

RFIP 16

VPOS

LOIN

R8

L4

C8

C4

RFIP

ADL5801
R16

T2
T4
T7

4

LOIN

RFIN 15

5

GND

GND 14

6

GND

VPDT 13

8

9

10

11

VPOS

12

R10
C18

VPOS
C6

C7

RFIN

C11

VPLO GND ENBL VSET DETO GND
7

T3
T6
T9 R12

L5

C9

C5

C17

VSET

ENBL
R9
DETO
C1

R7
C12

Figure 110. Evaluation Board Schematic

Rev. E | Page 38 of 40

08079-133

LOIP

Data Sheet

ADL5801

Table 9. Evaluation Board Configuration

C8, C9, L4, L5, R4, R8,
R12, T3, T6, T9, RFIN,
RFIP
C13, C19, C20, C50, L1,
L2, L3, R2, R3, R11, R13,
R50, T1, T5, T8, IFON,
IFOP

C4, C5, R14, R16, T2, T4,
T7, LOIN, LOIP

C1, C12, R7, DETO

LO interface. (Use LOIN for operation).
C4 and C5 provide ac coupling for the local oscillator input. T2 is a 1:1
balun that allows single-ended interfacing to the differential 50 Ω local
oscillator input. T4 and T7 provide options when high frequency baluns
are used and require smaller balun footprints.
DETO interface. C1 and C12 provide decoupling for the DETO pin. R7
provides access to the VSET pin when automatic input IP3 control is
needed.
VSET bias control. C17 and C18 provide decoupling for the VSET pin. R9
and R10 form an optional resistor divider network between VPOS and
GND, allowing for a fixed bias setting. Supply 3.8 V at the VSET pin when
the DETO pin is not connected for automatic input IP3 control.

Default Conditions
C2, C6, C10, C11 = 0.1 µF (size 0402)
C3, C7 = 100 pF (size 0402)
C8, C9 = 1 nF (size 0402)
L4, L5 = 0 Ω (size 0402)
R12 = open (size 0402)
R4, R8 = 0 Ω (size 0402)
T3 = TCM1-63AX+ (Mini-Circuits)
C13 = open (size 0402)
C19, C20 = 100 pF (size 0402)
C50 = 0.1 µF (size 0402)
L1, L2 = open (size 0805)
L3 = open (size 0402)
R2, R3, R13, R50 = 0 Ω (size 0402)
R11 = open (size 0402)
T1 = TC4-1W+ (Mini-Circuits)
C4, C5 = 1 nF (size 0402)
R14 = open (size 0402)
R16 = 0 Ω (size 0402)
T2 = TCM1-63AX+
C1 = 0.1 µF (size 0603)
C12 = 100 pF (size 0402)
R7 = open (size 0402)
C17 = 100 pF (size 0402)
C18 = 0.1 µF (size 0603)
R9, R10 = open (size 0402)

08079-134

C17, C18, R9, R10, VSET

Function
Power supply decoupling. Nominal supply decoupling consists of a
0.1 µF capacitor to ground in parallel with 100 pF capacitors to ground,
positioned as close to the device as possible. Series resistors are provided
for enhanced supply decoupling using optional ferrite chip inductors.
RF input interfaces. (Use RFIN for operation).
Input channels are ac-coupled through C8 and C9. R8 and R12 provide
options when additional matching is needed. T3 is a 1:1 balun used to
interface to the 50 Ω differential inputs. T6 and T9 provide options when
high frequency baluns are used and require smaller balun footprints.
IF output interfaces. The 200 Ω open collector IF output interfaces are
biased through the center tap of a 4:1 impedance transformer at T1. C50
provides local bypassing with R50 available for additional supply
bypassing. L1 and L2 provide options when pull-up choke inductors are
used to bias the open-collector outputs. C13, L3, R2, and R3 are provided
for IF filtering and matching options. T5 and T8 provide options when high
frequency baluns are used and require smaller balun footprints.

08079-135

Components
C2, C3, C6, C7, C10, C11

Figure 111. Evaluation Board Top Layer

Figure 112. Evaluation Board Bottom Layer

Rev. E | Page 39 of 40

ADL5801
OUTLINE DIMENSIONS
4.10
4.00 SQ
3.90

0.60 MAX
2.50 REF
0.60 MAX
18

3.75 BSC
SQ

1

0.50
BSC

2.65
2.50 SQ
2.35

EXPOSED
PAD

6

13

TOP VIEW

1.00
0.85
0.80

12° MAX

0.80 MAX
0.65 TYP

0.30
0.23
0.18

SEATING
PLANE

0.50
0.40
0.30

0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 REF

7

12

BOTTOM VIEW

0.25 MIN

FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.

COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8

04-11-2012-A

PIN 1
INDICATOR

PIN 1
INDICATOR

24

19

Figure 113. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
4 mm × 4 mm Body, Very Thin Quad (CP-24-3)
Dimensions shown in millimeters

ORDERING GUIDE
Model 1
ADL5801ACPZ-R7
ADL5801-EVALZ
1

Temperature Range
−40°C to +85°C

Package Description
24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
Evaluation Board

Z = RoHS Compliant Part.

©2010–2014 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D08079-0-4/14(E)

Rev. E | Page 40 of 40

Package
Option
CP-24-3

Ordering
Quantity
1,500 per Reel
1



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : No
Page Count                      : 41
Page Mode                       : UseOutlines
Page Layout                     : OneColumn
Modify Date                     : 2014:04:14 17:58:56-04:00
Create Date                     : 2014:04:14 16:25:53-04:00
ADI Prelim                      : Data Sheet
ADI Pub Year                    : 2010–2014
ADI Pubcode                     : D08079-0-4/14(E)
ADI Rev                         : E
ADI Template                    : 3.5
ADI Title                       : ADL5801
Author                          : Analog Devices, Inc.
Category                        : Data Sheet
Creator                         : Acrobat PDFMaker 11 for Word
Keywords                        : "ADL5801, mixer"
Producer                        : Adobe PDF Library 11.0
Source Modified                 : D:20140411184025
Subject                         : High-IP3, 10 MHz to 6 GHz, Active Mixer
Title                           : ADL5801 (Rev. E)
EXIF Metadata provided by EXIF.tools

Navigation menu