Analog Product Family Hardware Installation Manual Servo Control

User Manual: Analog-Servo-Control-Installation-Manual A M C

Open the PDF directly: View PDF PDF.
Page Count: 72

Everythings possible.
www.a-m-c.com
Hardware
Installation Manual
Analog Drives
for Servo Systems
MNALHWIN-01
MNALHWIN-01 ii
Preface
ADVANCED Motion Controls constantly strives to improve all of its products. We review the information in
this document regularly and we welcome any suggestions for improvement. We reserve the right to modify
equipment and documentation without prior notice.
For the most recent software, the latest revisions of this manual, and copies of compliance and
declarations of conformity, visit the company’s website at www.a-m-c.com. Otherwise, contact the
company directly at:
ADVANCED Motion Controls 3805 Calle Tecate Camarillo, CA 93012-5068 USA
Agency Compliances
The company holds original documents for the following:
UL 508c, file number E140173
Electromagnetic Compatibility, EMC Directive - 2004/108/EC
EN61000-6-2:2001
EN61000-6-4:2001
EN61000-3-2:2000
EN61000-3-3:1995/A1:2001
Electrical Safety, Low Voltage Directive - 72/23/EEC
EN 60 204-1 (IEC 60 204-1)
Reduction of Hazardous Substances (RoHS), 2002/95/EC
Trademarks
ADVANCED Motion Controls™, the combined isosceles trapezoid/right triangle logo, DIGIFLEX®,
DIGIFLEX® Performance™ and DriveWare™ are either registered trademarks or trademarks of
ADVANCED Motion Controls in the United States and/or other countries. All other trademarks are the
property of their respective owners.
Related Documentation
Product datasheet specific for your drive, available for download at www.a-m-c.com.
/
iii MNALHWIN-01
Attention Symbols
The following symbols are used throughout this document to draw attention to important operating
information, special instructions, and cautionary warnings. The section below outlines the overall directive
of each symbol and what type of information the accompanying text is relaying.
Revision History
Document ID Revision # Date Changes
MNALHWIN-01 19/25//2009 Analog Product Family Hardware Installation Manual First Release
© 2009 ADVANCED Motion Controls. All rights reserved.
Note - Pertinent information that clarifies a process, operation, or ease-
of-use preparations regarding the product.
Notice - Required instruction necessary to ensure successful completion
of a task or procedure.
Caution - Instructs and directs you to avoid damaging equipment.
Warning - Instructs and directs you to avoid harming yourself.
Danger - Presents information you must heed to avoid serious injury or
death.
Note
MNALHWIN-01 iv
Contents
1 Safety 1
1.1 General Safety Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Products and System Requirements 4
2.1 Analog Drive Family Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Products Covered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Drive Datasheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Standard and Custom Models . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Analog PWM Servo Drive Basics and Theory . . . . . . . . . . . . . . . . . 6
2.2.1 Single Phase (Brushed) Servo Drives . . . . . . . . . . . . . . . . . . 7
2.2.2 Three Phase (Brushless) Servo Drives . . . . . . . . . . . . . . . . . . 7
2.3 Power Stage Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Command Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 ±10V Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 PWM and Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.3 Sinusoidal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Feedback Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.1 Feedback Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Incremental Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.3 Hall Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.4 Tachometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.1 Current (Torque) Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.2 Open Loop (PWM Duty Cycle) Mode . . . . . . . . . . . . . . . . 14
2.6.3 Hall Velocity Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.4 Encoder Velocity Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
MNALHWIN-01 v
/
2.6.5 Tachometer Velocity Mode . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.6 Voltage Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.7 IR Compensation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.8 Analog Position Loop Mode . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7.1 Analog Servo Drive Selection and Sizing . . . . . . . . . . . . . 17
Motor Current and Voltage . . . . . . . . . . . . . . . . . . . . . . . . 17
Motor Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7.2 Power Supply Selection and Sizing . . . . . . . . . . . . . . . . . . 20
Power Supply Current and Voltage . . . . . . . . . . . . . . . . . . 20
Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Regeneration and Shunt Regulators . . . . . . . . . . . . . . . . . 23
Voltage Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7.3 Environmental Specifications . . . . . . . . . . . . . . . . . . . . . . . 26
Shock/Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3 Integration in the Servo System 27
3.1 LVD Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 CE-EMC Wiring Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Analog Input Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
PWM Input Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
MOSFET Switching Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
IGBT Switching Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Fitting of AC Power Filters . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Ferrite Suppression Core Set-up . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Inductive Filter Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 Wire Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Motor Wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.3 Power Supply Wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
DC Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
AC Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.4 Feedback Wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Hall Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Incremental Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Tachometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
MNALHWIN-01 vi
/
3.4.5 Input Reference Wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
±10V Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Potentiometer Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
PWM and Direction Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Sinusoidal Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4 Operation 40
4.1 Initial Setup and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.1 Pin Function Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Current Monitor Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Current Reference Output . . . . . . . . . . . . . . . . . . . . . . . . . 41
Inhibit Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Continuous Current Limit Pin . . . . . . . . . . . . . . . . . . . . . . . . 41
Fault Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Low Voltage Power Supply Outputs . . . . . . . . . . . . . . . . . 42
Velocity Monitor Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2 Potentiometer Function Details . . . . . . . . . . . . . . . . . . . . . 43
Test Points for Potentiometers . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.3 Switch Function Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.4 Adjustable Acceleration and Deceleration Rate . . . . . . 44
4.1.5 Tachometer Input Gain Scaling . . . . . . . . . . . . . . . . . . . . . 45
4.1.6 Current Limiting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.7 Drive Set-up Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Single Phase (Brush Type) . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Three Phase (Brushless) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Three Phase (Brushless) Drive with Brushed Motor . . . . . . 48
Sinusoidal Drive (S-Series) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.8 Tuning Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Current Loop Proportional Gain Adjustment . . . . . . . . . . 50
Current Loop Integrator Adjustment . . . . . . . . . . . . . . . . . 51
Voltage or Velocity Loop Tuning . . . . . . . . . . . . . . . . . . . . 52
Analog Position Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
MNALHWIN-01 vii
/
A Through-hole Component Tuning 53
A.1 Through-Hole Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.1.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Tune the Current Loop Proportional Gain . . . . . . . . . . . . . 55
Tune the Current Loop Integral Gain . . . . . . . . . . . . . . . . . 55
Velocity Loop Integral Gain Tuning . . . . . . . . . . . . . . . . . . 56
B Troubleshooting 57
B.1 Fault Conditions and Symptoms . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Over-Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Over-Voltage Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Under-Voltage Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Short Circuit Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Invalid Hall Sensor State (Brushless Drives only) . . . . . . . . . 58
Inhibit Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
B.1.1 Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
B.1.2 Over-Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.1.3 Motor Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.1.4 Causes of Erratic Operation . . . . . . . . . . . . . . . . . . . . . . . . 60
B.2 Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
B.2.1 Product Label Description . . . . . . . . . . . . . . . . . . . . . . . . . 60
B.2.2 Drive Model Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B.2.3 Warranty Returns and Factory Help . . . . . . . . . . . . . . . . . 61
Index I
MNALHWIN-01 1
1 Safety
Thissectiondiscussescharacteristicsofyouranalogservodrivetoraiseyourawarenessofpotentialrisksand
hazards.Theseverityofconsequencesrangesfromfrustrationofperformance,throughdamagetoequipment,
injuryordeath.Theseconsequences,ofcourse,canbeavoidedbygooddesignandproperinstallationintoyour
mechanism.
1.1 General Safety Overview
You must install and operate motion control equipment so that you meet
all applicable safety requirements. Ensure that you identify the relevant
standards and comply with them. Failure to do so may result in damage
to equipment and personal injury.
Read this entire manual prior to attempting to install or operate the drive.
Become familiar with practices and procedures that allow you to
operate these drives safely and effectively. You are responsible for
determining the suitability of this product for the intended application.
The manufacturer is neither responsible nor liable for indirect or
consequential damages resulting from the inappropriate use of this
product.
High-performance motion control equipment can move rapidly with
very high forces. Unexpected motion may occur especially during
product commissioning. Keep clear of any operational machinery and
never touch them while they are working.
Inordertoinstallananalogdriveintoaservosystem,youmusthaveathoroughknowledge
andunderstandingofbasicelectronics,computersandmechanicsaswellassafetyprecautions
andpracticesrequiredwhendealingwiththepossibilityofhighvoltagesorheavy,strong
equipment.
Observeyourfacility’slock‐out/tag‐outproceduressothatworkcanproceedwithoutresidual
powerstoredinthesystemorunexpectedmovementsbythemachine.
Keep clear of all exposed power terminals (motor, DC Bus, shunt, DC
power, transformer) when power is applied to the equipment. Follow
these safety guidelines:
Always turn off the main power and allow sufficient time for
complete discharge before making any connections to the drive.
Do not rotate the motor shaft without power. The motor acts as a
generator and will charge up the power supply capacitors through
the drive. Excessive speeds may cause over-voltage breakdown in
the power output stage. Note that a drive having an internal power
converter that operates from the high voltage supply will become
operative.
Do not short the motor leads at high motor speeds. When the motor is
shorted, its own generated voltage may produce a current flow as
high as 10 times the drive current. The short itself may not damage
the drive but may damage the motor. If the connection arcs or
opens while the motor is spinning rapidly, this high voltage pulse flows
back into the drive (due to stored energy in the motor inductance)
and may damage the drive.
Do not make any connections to any internal circuitry. Only
connections to designated connectors are allowed.
Do not make any connections to the drive while power is applied.
MNALHWIN-01 2
Safety / General Safety Overview
Do not reverse the power supply leads!
Severe damage will result!
Use sufficient capacitance!
Pulse Width Modulation (PWM) drives require a capacitor on the high
voltage supply to store energy during the PWM switching process.
Insufficient power supply capacitance causes problems particularly with
high inductance motors. During braking much of the stored mechanical
energy is fed back into the power supply and charges its output
capacitor to a higher voltage. If the charge reaches the drive’s over-
voltage shutdown point, output current and braking will cease. At that
time energy stored in the motor inductance continues to flow through
diodes in the drive to further charge the power supply capacitance. The
voltage rise depends upon the power supply capacitance, motor
speed, and inductance.
MNALHWIN-01 3
Safety / General Safety Overview
Make sure minimum inductance requirements are met!
Pulse Width modulation (PWM) servo drives deliver a pulsed output that
requires a minimum amount of load inductance to ensure that the DC
motor current is properly filtered. The minimum inductance values for
different drive types are shown in the individual data sheet
specifications. If the drive is operated below its maximum rated voltage,
the minimum load inductance requirement may be reduced. Most
servo-motors have enough winding inductance. Some types of motors
(e.g. "basket-wound", "pancake", etc.) do not have a conventional iron
core rotor, so the winding inductance is usually less than 50 μH.
If the motor inductance value is less than the minimum required for the
selected drive, use an external filter card.
MNALHWIN-01 4
2 Products and System Requirements
Thischapterisintendedasaguideandgeneraloverviewinselecting,installing,andoperatingananalogservo
drive.Containedwithinareinstructionsonsystemintegration,wiring,drive‐setup,andstandardoperating
methods.
2.1 Analog Drive Family Overview
TheanalogdrivefamilycontainsdrivesthatcanpowerSinglePhase(Brushed)andThree
Phase(Brushless)motors.AnalogdrivesarepoweredoffeitherasingleDCorACpower
supply,andprovideavarietyofcontrolandfeedbackoptions.Thedrivesaccepteithera±10V
analogsignal,aPWMandDirectionsignal,ortwosinusoidalcommandsignalsasinput.A
digitalcontrollercanbeusedtocommandandinteractwithanalogservodrives,andanumber
ofinput/outputpinsareavailableforparameterobservationanddriveconfiguration.
FIGURE 2.1 Analog Product Family Part Numbering Structure
QDI: Quick Disconnect with
Inverted Inhibit
Brushed drive.
A
Peak Voltage
Peak Current
-
Additional Options
B or BX: Brushless drive.
Maximum peak current rating in Amps.
Peak voltage rating scaled 1:10 in Volts.
Power Supply
(blank): DC Power Supply
Motor Type
Revision
Assigned a letter (A through Z) by
manufacturer.
AC: AC Power Supply
FAC: AC Power Connecter
Located in the Front
I: Optical Isolation
Isolation Option
(blank):
+/- 10 V Analog
D: Direct PWM
Command Type
DC: Torque Mode PWM
S or SX: Commutated Sine Wave
(blank):
Hall Sensors or None
E: Encoder and/or Hall Sensors
Feedback Type
(blank):
ANP: Analog Position Loop
H: Available Hall Velocity Mode
INV: Inverted Inhibit
DD: Brushed PWM Command
Command Type
QD: Quick Disconnect
(blank): Non-PWM Command
2.1.1 Products Covered
Theproductscoveredinthismanualadheretothefollowingpartnumberingstructure.
However,additionalfeaturesand/oroptionsarereadilyavailableforOEM’swithsufficient
orderingvolume.FeelfreetocontactADVANCEDMotionControlsforfurtherinformation.
Drive Datasheet Eachanalogdrivehasaseparatedatasheetthatcontainsimportantinformation
onthemodesandproduct‐specificfeaturesavailablewiththatparticulardrive,includingthe
MNALHWIN-01 5
Products and System Requirements / Analog Drive Family Overview
functionalblockdiagramofthespecificdrive’soperation.Thedatasheetistobeusedin
conjunctionwiththismanualforsystemdesignandinstallation.
Standard and Custom Models Thedrivesinthetablesbelowarethestandardproductline
ofADVANCEDMotionControlsanalogservodrives.Notethatnotallpossiblepartnumber
combinationsfromtheproductfamilynumberingstructure(Figure2.1)areofferedas
standarddrives.PleasecontactADVANCEDMotionControlsSalesDepartmentforfurther
informationanddetailsoncustomdrivesolutions.
TABLE 2.1 Brushed ±10V Analog DC Drives
TABLE 2.2 Brushless ±10V Analog DC Drives
TABLE 2.3 Brushed ±10V Analog AC Drives
TABLE 2.4 Brushless ±10V Analog AC Drives
TABLE 2.5 Brushed PWM Input DC Drives
TABLE 2.6 Brushless PWM Input DC Drives
TABLE 2.7 Brushless PWM Input AC Drives
TABLE 2.8 Sinusoidal Input DC Drives
TABLE 2.9 Sinusoidal Input AC Supply Drives
Drive Number VDC
(Nominal)
Peak Current
(A)
Cont. Current
(A)
12A8 20-80 12 6
25A8 20-80 25 12.5
30A8 20-80 30 15
50A8 20-80 50 25
120A10 20-80 120 60
20A20 40-190 20 10
25A20I 40-190 25 12.5
50A20I 40-190 50 25
100A40 60-400 100 50
Drive Number VDC
(Nominal)
Peak Current
(A)
Cont. Current
(A)
B15A8 20-80 15 7.5
BE15A8 20-80 15 7.5
BE15A8-H 20-80 15 7.5
B30A8 20-80 30 15
BE30A8 20-80 30 15
BX30A8 20-80 30 15
B100A8 20-80 100 50
B25A20I 40-190 25 12.5
BE25A20I 40-190 25 12.5
BX25A20 60-200 25 12.5
B40A20 40-190 40 20
B40A20I 40-190 40 20
BE40A20I 40-190 40 20
B30A40 60-400 30 15
B40A40 60-400 40 20
B60A40 60-400 60 30
B100A40 60-400 100 50
Drive Number VAC
(Nominal)
Peak Current
(A)
Cont. Current
(A)
16A20AC 30-130 16 8
30A20AC 30-130 30 15
Drive Number VAC
(Nominal)
Peak Current
(A)
Cont. Current
(A)
B25A20AC 30-130 25 12.5
BE25A20AC 30-130 25 12.5
BX25A20AC 45-140 25 12.5
B30A40AC 45-270 30 15
B40A40AC 45-270 40 20
B60A40AC 45-270 60 30
B100A40AC 45-270 100 50
Drive Number VDC
(Nominal)
Peak Current
(A)
Cont. Current
(A)
30A8DD 20-80 30 15
50A8DD 20-80 50 25
25A20DD 40-190 25 12.5
50A20DD 40-190 50 25
Drive Number VDC
(Nominal)
Peak Current
(A)
Cont. Current
(A)
BD15A8 20-80 15 7.5
BD30A8 20-80 30 15
BDC30A8 20-80 30 15
BD25A20 40-190 25 12.5
BD25A20I 40-190 25 12.5
BDC40A20 60-190 40 20
Drive Number VAC
(Nominal)
Peak Current
(A)
Cont. Current
(A)
BD25A20AC 45-140 25 12.5
Drive Number VDC
(Nominal)
Peak Current
(A)
Cont. Current
(Arms)
S16A8 20-80 16 8
SX30A8 20-80 30 15
S60A8 20-80 60 30
S100A8 20-80 100 50
SX25A20 60-190 25 12.5
S30A40 60-400 30 15
S60A40 60-400 60 30
S100A40 60-400 100 50
Drive Number VAC
(Nominal)
Peak Current
(A)
Cont. Current
(Arms)
S30A40AC 45-265 30 15
S60A40AC 45-270 60 30
S100A40AC 45-270 100 50
FIGURE 2.3 PWM Current Control Circuit
Command
Current
Control
Switching
Logic
S1
D1
S2
D2
S3
D3
S4
D4
+
-
Motor
+HV
Rc
I
Current Feedback
FIGURE 2.2
Controller
Reference
Servo Drive Motor Feedback Load Feedback
Current
Typical Motion Control System
MNALHWIN-01 6
Products and System Requirements / Analog PWM Servo Drive Basics and Theory
2.2 Analog PWM Servo Drive Basics and Theory
Analogservodrivesareusedextensivelyinmotioncontrolsystemswhereprecisecontrolof
positionand/orvelocityisrequired.Thedrivetransmitsthelow‐energyreferencesignalsfrom
thecontrollerintohigh‐energysignals(motorvoltageandcurrent).Thereferencesignalscan
beeitheranalogordigital,witha±10VDCsignalbeingthemostcommon.Thesignalcan
representeitheramotortorqueorvelocitydemand.
Figure2.2showsthecomponentstypicallyusedinaservosystem(i.e.afeedbacksystemused
tocontrolposition,velocity,and/oracceleration).Thecontrollercontainsthealgorithmsto
closethedesiredservoloopsandalsohandlesmachineinterfacing(inputs/outputs,terminals,
etc.).Thedriverepresentstheelectronicpowerconverterthatdrivesthemotoraccordingto
thecontrollerreferencesignals.Themotor(whichcanbeofthebrushedorbrushlesstype,
rotary,orlinear)istheactualelectromagneticactuator,whichgeneratestheforcesrequiredto
movetheload.Feedbackelementsaremountedonthemotorand/orloadinordertoclosethe
servoloop.
Althoughthereexistmanywaysto"amplify"electricalsignals,pulsewidthmodulation(PWM)
isbyfarthemostefficientandcost‐effectiveapproach.AtthebasisofaPWMservodriveisa
currentcontrolcircuitthatcontrolstheoutputcurrentbyvaryingthedutycycleoftheoutput
powerstage(fixedfrequency,variabledutycycle).Figure2.3showsatypicalsetupforasingle
phaseload.
S1,S2,S3,andS4arepowerdevices(MOSFETorIGBT)thatcanbeswitchedonoroff.D1,D2,
D3,andD4arediodesthatguaranteecurrentcontinuity.Thebusvoltageisdepictedby+HV.
TheresistorRcisusedtomeasuretheactualoutputcurrent.Forelectricmotors,theloadis
typicallyinductiveduetothewindingsusedtogenerateelectromagneticfields.Thecurrentcan
beregulatedinbothdirectionsbyactivatingtheappropriateswitches.WhenswitchS1andS4
(orS2andS3)areactivated,currentwillflowinthepositive(ornegative)directionand
increase.WhenswitchS1isoffandswitchS4ison(orS2offandS3on)currentwillflowin
thepositive(ornegative)directionanddecrease(viaoneofthediodes).Theswitch"ON"time
isdeterminedbythedifferencebetweenthecurrentdemandandtheactualcurrent.The
FIGURE 2.4 Output Current and Duty Cycle Relationship
Current
ON time
Time
Pulse
width
MNALHWIN-01 7
Products and System Requirements / Analog PWM Servo Drive Basics and Theory
currentcontrolcircuitwillcomparebothsignalseverytimeinterval(typically50μsecorless)
andactivatetheswitchesaccordingly(thisisdonebytheswitchinglogiccircuit,whichalso
performsbasicprotectionfunctions).Figure2.4showstherelationshipbetweenthepulse
width(ONtime)andthecurrentpattern.Thecurrentrisetimewilldependonthebusvoltage
(+HV)andtheloadinductance.Therefore,certainminimumloadinductancerequirementsare
necessarydependingonthebusvoltage.
2.2.1 Single Phase (Brushed) Servo Drives
BrushtypeservodrivesaredesignedforusewithpermanentmagnetbrushedDCmotors
(PMDCmotors).ThedriveconstructionisbasicallyasshowninFigure2.3.PMDCmotorshave
asinglewinding(armature)ontherotor,andpermanentmagnetsonthestator(nofield
winding).Brushesandcommutatorsmaintaintheoptimumtorqueangle.Thetorque
generatedbyaPMDCmotorisproportionaltothecurrent,givingitexcellentdynamiccontrol
capabilitiesinmotioncontrolsystems.
Brusheddrivescanalsobeusedtocontrolcurrentinotherinductiveloadssuchasvoicecoil
actuators,magneticbearings,etc.
2.2.2 Three Phase (Brushless) Servo Drives
ThreePhase(brushless)servodrivesareusedwithbrushlessservomotors.Thesemotors
typicallyhaveathree‐phasewindingonthestatorandpermanentmagnetsontherotor.
Brushlessmotorsrequirecommutationfeedbackforproperoperation(thecommutatorsand
brushesperformthisfunctiononbrushtypemotors).Thisfeedbackconsistsofrotormagnetic
fieldorientationinformation,suppliedeitherbymagneticfieldsensors(HallEffectsensors)or
positionsensors(encoderorresolver).Brushlessmotorshavebetterpowerdensityratings
thanbrushedmotorsbecauseheatisgeneratedinthestator,resultinginashorterthermal
pathtotheoutsideenvironment.Figure2.5showsatypicalsystemconfiguration.
FIGURE 2.6 Controller-based Commutation
FIGURE 2.5 Brushless Servo System
Current
Control
Switching
Logic
S1 S2
S1 S2
+HV
Commutation Feedback
Commutation
Control
S3
S3
N
S
MNALHWIN-01 8
Products and System Requirements / Analog PWM Servo Drive Basics and Theory
Thecommutationfunctioncanalsobeimplementedinthemotioncontroller,asinthecaseof
ADVANCEDMotionControlssinusoidalcommandinputdrives.Thedrivemerelyamplifiesthe
controllersignals(2analogsinusoidalsignalsthatrepresent2ofthe3motorphasecurrents)
andcreatesthethirdmotorphasecurrent(thesumofthe3currentsmustbezero)andadjusts
thephaseangletoobtainmaximumtorque.Nopositionfeedbackneedstobewiredintothe
drive.Themotorcurrentamplitudeisproportionaltothereferencesignalamplitude,whilethe
referencesignalfrequencydependsonthemotorvelocityandthemotorpolecount.
MNALHWIN-01 9
Products and System Requirements / Power Stage Specifications
2.3 Power Stage Specifications
Thedrivedatasheetliststhespecificvaluesforthefollowingdrivepowerspecifications.Note
thatnotallspecificationsapplytoeverydrive.
TABLE 2.10 Power Stage Specifications
Specification Units Description
DC Supply Voltage Range VDC Specifies the acceptable DC supply voltage range that the drive will operate within.
DC Bus Over Voltage Limit VDC Specifies the maximum DC supply voltage allowable. If the DC bus rises above the over voltage
limit, the drive will automatically disable, and will not re-enable until the DC bus voltage falls below
the over voltage limit.
AC Supply Voltage Range VAC Specifies the acceptable AC supply voltage range that the drive will operate within.
AC Supply Frequency Hz Specifies the acceptable frequency of the AC supply line.
Maximum Peak Output Current APertains to the maximum peak current the drive can output according to hardware limitations. An
RMS rating can be obtained by dividing this value by
2
. With the exception of S-series drives,
the maximum peak output duration is inherently limited to occur for no longer than 2 seconds, at
which point the current output will foldback over a period of 10 seconds to the continuous current
limit in order to protect the motor in stalled condition. Current limiting is implemented in the drive by
reducing the output voltage.
Most drive models feature peak current limit adjustments. The maximum peak current is needed
for fast acceleration and deceleration. Consult the drive datasheet to see which options are
available. For more information on the current limit see “Current Limiting Procedure” on page 46.
Maximum Continuous Output
Current
APertains to the maximum continuous current the drive can output according to hardware
limitations. An RMS rating can be obtained by dividing this value by
2
.
Most drive models feature continuous current limit adjustments by the use of DIP switches or a
potentiometer. Some models also allow an external resistor to be connected between a
continuous current limiting pin and signal ground as an additional method of current limiting.
Consult the drive datasheet to see which options are available. For more information on setting the
current limit see “Current Limiting Procedure” on page 46.
Maximum Continuous Sine Wave
Current
Arms Pertains to the maximum continuous RMS current that S-series (sinusoidal) drives can output
indefinitely. If the continuous RMS current output of the drive exceeds this value, the drive output
will be disabled. The drive will re-enable once the RMS current has returned to a level below the
maximum continuous sine wave current.
Maximum Power Dissipation at
Continuous Current
WThe power dissipation of the drive, assuming approximately 5% power loss to heat dissipation.
Calculated by taking 5% of P=V•I at continuous current and peak bus voltage.
Internal Bus Capacitance μFThe capacitance value between the internal DC bus voltage and power ground.
Internal Shunt Resistance WThe resistance value of the internal shunt resistor.
Internal Shunt Resistor Power
Rating
WThe power rating of the internal shunt resistor.
Internal Shunt Resistor Turn-on
Voltage
VDC The turn-on voltage of the internal shunt resistor.
Minimum Load Inductance mH The minimum inductance needed at the output of the drive for proper operation. For a brushless
motor, this corresponds to the phase-to-phase inductance. If this minimum inductance is not met,
a filter card should be used to add additional inductance. Some motors may operate with slightly
less than the required inductance if the bus voltage is low enough. ADVANCED Motion Controls
provides various accessories including inductive filter cards for a wide range of drives. See
“Inductive Filter Cards” on page 29 for more information.
Shunt Fuse AThe current rating of the internal shunt resistor fuse.
Bus Fuse AThe current rating of the input AC line fuses.
Switching Frequency kHz The switching frequency of the drive output power stage.
MNALHWIN-01 10
Products and System Requirements / Command Inputs
2.4 Command Inputs
Theinputcommandsourceforanalogservodrivescanbeprovidedbyoneofthefollowing
options.Consultthedrivedatasheettoseewhichcommandsourceisavailableforaspecific
drive.
2.4.1 ±10V Analog
Adifferentialorsingle‐ended±10Vanalogreferencesignalcanbeusedtocommandthedrive
byadjustingthemotorcurrent,voltage,orspeed,dependingonthemodethedriveisoperating
in.Forinformationontheproperwiringofa±10Vanaloginput,see“InputReferenceWires”
onpage35.
2.4.2 PWM and Direction
PWMandDirectionInputisaspecializedtypeofcommandthatrequiresacompatible
controller.ThecontrollerneedstwohighspeedTTLdigitaloutputstocontrolthesedrives,one
forPWMandtheotherforDirection.ThePWMdutycyclecorrespondstothemagnitudeofthe
output.DirectcontrolofthePWMswitchingputsresponsetimesinthesub‐microsecond
range.Sincethesedrivesdon’ttakeanaloginputsforcommandtheneedforaD/Aconverter
fordrivecontroliseliminated.
APWMandDirectiondrivecanbeoperatedineitherDirectPWMorTorqueModePWM.
InDirectPWM(e.g."BD"drives)thePWMinputdirectlycontrolsthePWMoutput,giving
directcontroloftheswitchingfrequencyanddutycycle.
InTorqueModePWM(e.g."BDC"drives)thePWMinputgoesintoaPWM‐to‐Analog
converter.Theanalogsignalisthenusedasacommandintothecurrentloop,resultingina
CurrentModedrivecontrolledwithPWMandDirection.
2.4.3 Sinusoidal
The"S‐Series"ofanalogservodrivesusesinusoidalinputsignalsasthecommandinput.
SinusoidalInputisaspecializedtypeofcommandthatrequiresacompatiblecontrollerwith
specializedcommutationalgorithmsforproperoperation.Twosinusoidalcommandsignals
(120degreesoutofphase)fromthecontrollercontrolthecommutationandtorqueofthe
motor.Thecontrolleriseffectivelyclosingthecurrentloopbycontrollingthetorqueangle(see
Figure2.6).Allfeedbackgoestothecontroller,notthedrive,includingcommutationfeedback.
Thisallowsawidevarietyoffeedbackoptions,limitedonlybythecompatibilityofthe
controller.
MNALHWIN-01 11
Products and System Requirements / Feedback Specifications
2.5 Feedback Specifications
Thereareanumberofdifferentfeedbackoptionsavailableinthefamilyofanalogdrives.The
feedbackcomponentcanbeanydevicecapableofgeneratingavoltagesignalproportionalto
current,velocity,position,oranyparameterofinterest.Suchsignalscanbeprovideddirectly
byapotentiometerorindirectlybyotherfeedbackdevicessuchasHallSensorsorEncoders.
TheselatterdevicesmusthavetheirsignalsconvertedtoaDCvoltage,ataskperformedbythe
drivecircuitry.
Consultaspecificdrivedatasheettoseewhichfeedbackdevicesareavailableforthatdrive.
2.5.1 Feedback Polarity
Thefeedbackelementmustbeconnectedfornegativefeedback.Thiswillcauseadifference
betweenthecommandsignalandthefeedbacksignal,calledtheerrorsignal.Thedrive
comparesthefeedbacksignaltothecommandsignaltoproducetherequiredoutputtothe
loadbycontinuallyreducingtheerrorsignaltozero.Thisbecomesimportantwhenusingan
incrementalencoderorHallsensors,asconnectingthesefeedbackelementsforpositive
feedbackwillleadtoamotor"run‐away"condition.Inacasewherethefeedbacklinesare
connectedtothedrivewiththewrongpolarityineitherHallVelocityorEncoderVelocityMode,
thedrivewillattempttocorrectthe"errorsignal"byapplyingmorecommandtothemotor.
Withthewrongfeedbackpolarity,thiswillresultinapositivefeedbackrun‐awaycondition.To
correctthis,eitherchangetheorderthatthefeedbacklinesareconnectedtothedrive,or
consultthedrivedatasheetfortheappropriateswitchontheDIPswitchbankthatreverses
theinternalfeedbackvelocitypolarity.Seethedrivedatasheetand“SwitchFunctionDetails”on
page44formoreinformationonDIPswitchsettings.
2.5.2 Incremental Encoder
Analogservodrivesthatuseencoderfeedbackutilizetwosingle‐endedordifferential
incrementalencoderinputsforvelocitycontrol.Theencoderprovidesincrementalposition
feedbackthatcanbeextrapolatedintoveryprecisevelocityinformation.Theencodersignals
arereadas"pulses"thatthedriveusestoessentiallykeeptrackofthemotor’spositionand
directionofrotation.Basedonthespeedandorderinwhichthesepulsesarereceivedfromthe
twoencodersignals,thedrivecaninterpretthemotorvelocity.
Figure2.7representsdifferentialencoder"pulse"signals,showinghowdependingonwhich
signalisreadfirstandatwhatfrequencythe"pulses"arrive,thespeedanddirectionofthe
motorshaftcanbeextrapolated.Bykeepingtrackofthenumberofencoder"pulses"with
respecttoaknownmotor"home"position,servodrivesareabletoascertaintheactualmotor
location.
FIGURE 2.7 Encoder Feedback Signals
Encoder A+
Encoder B+
Encoder A+
Encoder B+
Example 1: Encoder-A precedes Encoder-B. The pulses
arrive at a certain frequency, providing speed and
directional information to the drive.
Example 2: Encoder-B precedes Encoder-A, meaning the
direction is opposite from Example 1. The signal frequency
is also higher, meaning the speed is greater than in
Example 1.
Encoder A-
Encoder B-
Encoder A-
Encoder B-
FIGURE 2.8 Hall Sensor Commutation and Motor Phase Current for 120-Degree Phasing
Electrical Degrees
Motor Phase
Current
060 120 180 240 300 360
Hall A
Hall B
Hall C
High (1)
Low (0)
High (1)
Low (0)
High (1)
Low (0)
Phase A
Phase B
Phase C
Hall Sensor
Commutation
Electrical Degrees
060 120 180 240 300 360
High
Low
High
Low
High
Low
MNALHWIN-01 12
Products and System Requirements / Feedback Specifications
2.5.3 Hall Sensors
ThreePhase(Brushless)drivesuseHallSensorsforcommutationfeedback,andinthespecial
caseofsomedrives,forvelocitycontrol.TheHallSensorsarebuiltintothemotortodetectthe
positionoftherotormagneticfield.Thesesensorsaremountedsuchthattheyeachgeneratea
squarewavewitheithera120‐degreeor60‐degreephasedifferenceoveroneelectricalcycle
ofthemotor.
MNALHWIN-01 13
Products and System Requirements / Feedback Specifications
Dependingonthemotorpolecount,theremaybemorethanoneelectricalcycleforevery
motorrevolution.Foreveryactualmechanicalmotorrevolution,thenumberofelectricalcycles
willbethenumberofmotorpolesdividedbytwo.Forexample:
a6‐polemotorcontains3electricalcyclespermotorrevolution
a4‐polemotorcontains2electricalcyclespermotorrevolution
a2‐polemotorcontains1electricalcyclepermotorrevolution
ThedrivepowerstwoofthethreemotorphaseswithDCcurrentduringeachspecificHall
Sensorstate:
Thetablebelowshowsthevalidcommutationstatesforboth120‐degreeand60‐degree
phasing.
TABLE 2.11 Commutation Sequence Table
60 Degree 120 Degree Motor
Hall 1 Hall 2 Hall 3 Hall 1 Hall 2 Hall 3 Phase A Phase B Phase C
Valid
1 0 0 1 0 0 HIGH -LOW
1 1 0 1 1 0 - HIGH LOW
1 1 1 0 1 0 LOW HIGH -
0 1 1 0 1 1 LOW -HIGH
0 0 1 0 0 1 - LOW HIGH
0 0 0 1 0 1 HIGH LOW -
Invalid 1 0 1 1 1 1 - - -
0 1 0 0 0 0 - - -
2.5.4 Tachometer
ADCTachometercanbeusedonsomedrivesforvelocitycontrol.Thetachometerprovidesan
analogDCvoltagefeedbacksignalthatisrelatedtotheactualmotorspeedanddirection.The
drivesubsequentlyadjuststheoutputcurrentbasedontheerrorbetweenthetachometer
feedbackandtheinputcommandvoltage.Themaximumrangeofthetachometerfeedback
signalis±60VDC.
Someapplicationsmayrequireanincreaseinthegainofthetachometerinputsignal.This
occurrencewillbemostcommonindesignswherethetachometerinputhasalowvoltageto
RPMscalingratio.Somedrivemodelsofferathrough‐holelocationlistedonthespecificdrive
datasheetwherearesistorcanbeaddedtoincreasethetachometergain.Usethedrive’sblock
diagramtodetermineanappropriateresistorvalue.
See“TachometerInputGainScaling”onpage45formoreinformation.
MNALHWIN-01 14
Products and System Requirements / Modes of Operation
2.6 Modes of Operation
Thefamilyofanalogdrivesoffersavarietyofdifferentcontrolmethods.Whilesomedrivesin
theseriesaredesignedtooperatesolelyinonemode,onotherdrivesitispossibletoselectthe
controlmethodbyDIPswitchsettings(see“PotentiometerFunctionDetails”onpage43for
moreinformation).Consultthedatasheetforthedriveinusetoseewhichmodesareavailable
foruse.
Thenameofthemodereferstowhichservoloopisbeingclosedinthedrive,nottheendresult
oftheapplication.Forinstance,adriveoperatinginCurrent(Torque)Modemaybeusedfora
positioningapplicationiftheexternalcontrollerisclosingthepositionloop.Oftentimes,mode
selectionwillbedependentontherequirementsandcapabilitiesofthecontrollerbeingused
withthedriveaswellastheend‐resultapplication.
2.6.1 Current (Torque) Mode
InCurrent(Torque)Mode,theinputcommandvoltagecontrolstheoutputcurrent.Thedrive
willadjusttheoutputdutycycletomaintainthecommandedoutputcurrent.Thismodeisused
tocontroltorqueforrotarymotors(forceforlinearmotors),butthemotorspeedisnot
controlled.Theoutputcurrentcanbemonitoredthroughananalogcurrentmonitoroutput
pin.Thevoltagevaluereadatthe“CurrentMonitorOutput”canbemultipliedbyascaling
factorfoundonthedrivedatasheettodeterminetheactualoutputcurrent.
2.6.2 Open Loop (PWM Duty Cycle) Mode
InOpenLoop(PWMDutyCycle)Mode,theinputcommandvoltagecontrolstheoutputPWM
dutycycleofthedrive,indirectlycontrollingtheoutputvoltage.Notethatanyfluctuationsof
theDCsupplyvoltagewillaffectthevoltageoutputtothemotor.
While in Current (Torque) Mode, the drive will maintain a commanded
torque output to the motor based on the input reference command.
Sudden changes in the motor load may cause the drive to be outputting
a high torque command with little load resistance, causing the motor to
spin rapidly. Therefore, Current (Torque) Mode is recommended for
applications using a digital position controller to maintain system stability.
This mode is recommended as a method of controlling the motor
velocity when precise velocity control is not critical to the application,
and when actual velocity feedback is unavailable.
Note
Note
MNALHWIN-01 15
Products and System Requirements / Modes of Operation
2.6.3 Hall Velocity Mode
InHallVelocityMode,theinputcommandvoltagecontrolsthemotorvelocity,withtheHall
Sensorfrequencyclosingthevelocityloop.Ananalogvelocitymonitoroutputallows
observationoftheactualmotorspeedthroughaHz/Vscalingfactorfoundonthedrive
datasheet.Thevoltagevaluereadatthevelocitymonitoroutputcanbeusedtodeterminethe
motorRPMthroughthescalingfactor.See“VelocityMonitorOutput”onpage42forthemotor
RPMequation.
2.6.4 Encoder Velocity Mode
InEncoderVelocityMode,theinputcommandcontrolsthemotorvelocity,withthefrequency
oftheencoderpulsesclosingthevelocityloop.Ananalogvelocitymonitoroutputallows
observationoftheactualmotorspeedthroughakHz/Vscalingfactorfoundonthedrive
datasheet.Thevoltagevaluereadatthevelocitymonitoroutputcanbeusedtodeterminethe
motorRPMthroughthescalingfactor.See“VelocityMonitorOutput”onpage42forthemotor
RPMequation.
2.6.5 Tachometer Velocity Mode
InTachometerVelocityMode,theinputcommandvoltagecontrolsthemotorvelocity.This
modeusesanexternalDCtachometertoclosethevelocityloop.ThedrivetranslatestheDC
voltagefromthetachometerintomotorspeedanddirectioninformation.
Due to the inherent low resolution of motor mounted Hall Sensors, Hall
Velocity Mode is not recommended for low-speed applications below
300 rpm for a 6-pole motor, 600 rpm for a 4-pole motor, or 900 rpm for a
2-pole motor. Hall Velocity Mode is better suited for velocity control
applications where the motor will be spinning at higher speeds.
The high resolution of motor mounted encoders allows for excellent
velocity control and smooth motion at all speeds. Encoder Velocity
Mode should be used for applications requiring precise and accurate
velocity control, and is especially useful in applications where low-speed
smoothness is the objective.
DC Tachometers have infinite resolution, allowing for extremely accurate
velocity control. However, they also may be susceptible to electrical
noise, most notably at low speeds.
Note
Note
Note
MNALHWIN-01 16
Products and System Requirements / Modes of Operation
2.6.6 Voltage Mode
InVoltageModetheinputreferencesignalcommandsaproportionalmotorvoltageregardless
ofpowersupplyvoltagevariations.Thismodeisrecommendedforvelocitycontrolwhen
velocityfeedbackisunavailableandloadvariancesaresmall.
2.6.7 IR Compensation Mode
IfthereisaloadtorquevariationwhileinVoltageMode,themotorcurrentwillalsovaryas
torqueisproportionaltomotorcurrent.Hence,themotorterminalvoltagewillbereducedby
thevoltagedropoverthemotorwindingresistance(IR),resultinginaspeedreduction.Thus,
motorspeed,whichisproportionaltomotorvoltage(terminalvoltageminusIRdrop)varies
withtheloadtorque.
FIGURE 2.9
Pot1
(>20k)
Analog Servo
Drive
Motor
Tach
Motor
Outputs
Tach-
Tach+
+Ref
-Ref
GND
+10V
-10V
Command
Return
Load
Analog Position Loop Mode Configuration
Inordertocompensatefortheinternalmotorvoltagedrop,avoltag ep ropo rtio nalto mo tor
currentcanbeaddedtotheoutputvoltage.Aninternalresistoradjuststheamountof
compensation,andanadditionalthrough‐holeresistorcanbeaddedtothelocationlistedon
thedrivedatasheet.UsecautionwhenadjustingtheIRcompensationlevel.Ifthefeedback
voltageishighenoughtocauseariseinmotorvoltagewithincreasedmotorcurrent,instability
occurs.Sucharesultisduetothefactthatincreasedvoltageincreasesmotorspeedandthus
loadcurrentwhich,inturn,increasesmotorvoltage.Ifagreatdealof moto rtorquec hange i s
anticipated,itmaybewisetoconsidertheadditionofaspeedsensortothemotor(e.g.
tachometer,encoder,etc.).
2.6.8 Analog Position Loop Mode
Inthismodethefeedbackdeviceisananalogpotentiometermechanicallytiedtothe
positionedobject,thusprovidingpositionfeedback.Thewiperofthepotentiometeris
connectedtooneofthedifferentialinputterminals(‐REF).Thecommandisananalogsignal,
whichisconnectedtotheotherdifferentialinputterminal(+REF).
Itisrecommendedtouseatachometertoclosethevelocityloop.Theinputreferencegaincan
beincreasedinthedrivehardwarefortheAnalogPositionLoopModebyorderingthe‐ANP
extension.ThefollowingfigureisatypicalwiringdiagramofAnalogPositionLoopMode.
MNALHWIN-01 17
Products and System Requirements / System Requirements
2.7 System Requirements
Tosuccessfullyincorporateananalogservodriveintoyoursystem,youmustbesureitwill
operateproperlybasedonelectrical,mechanical,andenvironmentalspecifications,follow
somesimplewiringguidelines,andperhapsmakeuseofsomeaccessoriesinanticipating
impactsonperformance.Beforeselectingananalogservodrive,ausershouldconsiderthe
requirementsoftheirsystem.Thisinvolvescalculatingtherequiredvoltage,current,torque,
andpowerrequirementsofthesystem,aswellasconsideringtheoperatingenvironmentand
anyotherequipmentthedrivewillbeinterfacingwith.
2.7.1 Analog Servo Drive Selection and Sizing
Analogservodriveshaveagivencurrentandvoltageratinguniquetoeachdrive.Basedonthe
necessaryapplicationrequirementsandtheinformationfromthedatasheetofthemotorbeing
used,adrivemaybeselectedthatwillbestsuitthemotorcapabilities.
FIGURE 2.10 Example Velocity, Torque, and Power Curves
Velocity
Torque
Power
RMS
Power is equal to Torque x Velocity. Motor
Voltage (Vm) and Motor Current (Im) should
be chosen where power is at a maximum.
Time
Time
Time
1 Cycle
Dwell Dwell
Adriveshouldbeselectedthatwillmeetthepeakandcontinuouscurrentrequirementsofthe
application,andoperatewithinthevoltagerequirementsofthesystem.
Motor Current and Voltage Motorvoltageandcurrentrequirementsaredeterminedbased
onthemaximumrequiredtorqueandvelocity.Theserequirementscanbederivedfromthe
applicationmoveprofiles(Figure2.10).
MNALHWIN-01 18
Products and System Requirements / System Requirements
ThemotorcurrentIMistherequiredmotorcurrentinampsDC,andisrelatedtothetorque
neededtomovetheloadbythefollowingequation:
Where:
KT‐motortorqueconstant
Themotorcurrentwillneedtobecalculatedforbothcontinuousandpeakoperation.Thepeak
torquewillbeduringtheaccelerationportionofthemoveprofile.
Thecontinuoustorqueistheaveragetorquerequiredbythesystemduringthemoveprofile,
includingdwelltimes.Bothpeaktorqueandcontinuous,orRMS(rootmeansquare)torque
needtobecalculated.RMStorquecanbecalculatedbyplottingtorqueversustimeforonemove
cycle.
HereTiisthetorqueandtiisthetimeduringsegmenti.Inthecaseofaverticalapplication
makesuretoincludethetorquerequiredtoovercomegravity.
Thesystemvoltagerequirementisbasedonthemotorpropertiesandhowfastandhardthe
motorisdriven.Thesystemvoltagerequirementisequaltothemotorvoltage,VM,requiredto
achievethemoveprofile.Ingeneral,themotorvoltageisproportionaltothemotorspeedand
themotorcurrentisproportionaltothemotorshafttorque.Linearmotorsexhibitthesame
behaviorexceptthatintheircaseforceisproportionaltocurrent.Theserelationshipsare
describedbythefollowingequations:
IM
Torque
KT
-------------------=
TRMS
Ti
2ti
i
ti
i
-----------------=
VmImRmE+=
EK
eSm
=
TK
tIm
=
forrotarymotors
FK
fIm
=
forlinearmotors
MNALHWIN-01 19
Products and System Requirements / System Requirements
Where:
Vm‐motorvoltage
Im‐motorcurrent(usethemaximumcurrentexpectedfortheapplication)
Rm‐motorline‐to‐lineresistance
E‐motorbackEMFvoltage
T ‐m otor to rque
F‐motorforce
Kt‐motortorqueconstant
Kf‐motorforceconstant
Ke‐voltageconstant
Sm‐motorspeed(usethemaximumspeedexpectedfortheapplication)
Themotormanufacturer’sdatasheetcontainKt(orKf)andKeconstants.Payspecialattention
totheunitsused(metricvs.English)andtheamplitudespecifications(peakto‐peakvs.RMS,
phase‐to‐phasevs.phase‐to‐neutral).
Themaximummotorterminalvoltageandcurrentcanbecalculatedfromtheaboveequations.
Forexample,amotorwithaKe=10V/Krpmandrequiredspeedof3000RPMwouldrequire
30Vtooperate.InthiscalculationtheIRterm(voltagedropacrossmotorwindingresistance)is
disregarded.MaximumcurrentismaximumtorquedividedbyKt.Forexample,amotorwithKt
=0.5Nm/Aandmaximumtorqueof5Nmwouldrequire10ampsofcurrent.Continuous
currentisRMStorquedividedbyKt.
Motor Inductance Themotorinductanceisvitaltotheoperationofanalogservodrives,asit
ensuresthattheDCmotorcurrentisproperlyfiltered.
Aminimummotorinductanceratingforeachspecificdrivecanbefoundinthedatasheet.Ifthe
driveisoperatedbelowthemaximumratedvoltage,theminimumloadinductance
requirementmaybereduced.
Intheaboveequationsthemotorinductanceisneglected.Inbrushlesssystemsthevoltagedrop
causedbythemotorinductancecanbesignificant.Thisisthecaseinhigh‐speedapplicationsif
motorswithhighinductanceandhighpolecountareused.Pleaseusethefollowingequationto
determinemotorterminalvoltage(mustbeinterpretedasavector).
Where:
L ‐phase‐to‐phasemotorinductance
ω‐maximummotorcurrentfrequency
A motor that does not meet the rated minimum inductance value of the
drive may damage the drive! If the motor inductance value is less than
the minimum required for the selected drive, use of an external filter card
is necessary. See “Inductive Filter Cards” on page 29 for more
information.
VmRmjωL+()ImE+=
MNALHWIN-01 20
Products and System Requirements / System Requirements
2.7.2 Power Supply Selection and Sizing
Thereareseveralfactorstoconsiderwhenselectingapowersupplyforananalogservodrive.
PowerRequirements
Isolation
Regeneration
VoltageRipple
PowerRequirementsreferstohowmuchvoltageandcurrentwillberequiredbythedrivein
thesystem.Isolationreferstowhetherthepowersupplyneedsanisolationtransformer.
Regenerationistheenergythepowersupplyneedstoabsorbduringdeceleration.Voltage
Rippleisthevoltagefluctuationinherentinunregulatedsupplies.
Power Supply Current and Voltage Thepowersupplycurrentratingisbasedonthe
maximumcurrentthatwillberequiredbythesystem.Ifthepowersupplypowersmorethan
onedrive,thenthecurrentrequirementsforeachdriveshouldbeaddedtogether.Duetothe
natureofservodrives,thecurrentintothedrivedoesnotalwaysequalthecurrentoutofthe
drive.However,thepowerinisequaltothepowerout.Usethefollowingequationtocalculate
thepowersupplyoutputcurrent,IPS,basedonthemotorvoltageandcurrentrequirements.
Where:
VPS ‐nominalpowersupplyvoltage
IM‐motorcurrent
VM‐motorvoltage
UsevaluesofVmandImatthepointofmaximumpowerinthemoveprofile,Figure2.10
(whenVMIM=max).Thiswillusuallybeattheendofahardaccelerationwhenboththetorque
andspeedofthemotorishigh.
ThepowersupplycurrentisapulsedDCcurrent(Figure2.11):whentheMOSFETswitchis
on,itequalsthemotorcurrent;whentheMOSFETisoffitiszero.Therefore,thepowersupply
currentisafunctionofthePWMdutycycleandthemotorcurrent(e.g.30%dutycycleand12
ampsmotorcurrentwillresultin4ampspowersupplycurrent).30%dutycyclealsomeans
thattheaveragemotorvoltageis30%oftheDCbusvoltage.Powersupplypoweris
approximatelyequaltodriveoutputpowerplus3to5%.
The only time the power supply current needs to be as high as the drive
output current is if the move profile requires maximum current at
maximum velocity. In many cases however, maximum current is only
required at start up and lower currents are required at higher speeds.
IPS
VMIM
VPS 0.98()
-----------------------------=
FIGURE 2.11 Unregulated DC Power Supply Current
Im
Id
Ip
Time
Time
Time
PWM
Switching
Time
Vp
Time
Vm
Time
Average
Ripple Current
MOSFET ON
MOSFET OFF
Average
Average
50usec
Vm = Motor Terminal Voltage
Im = Motor Current
Id = Diode Current
Ip = Power Supply Current
Vp = DC Power Supply Voltage
VAC = AC Supply Voltage (RMS)
The ripple current depends on the
motor inductance and the duty
cycle (MOSFET ON vs. OFF
time)
Motor
DIODE BRIDGE
AC Input
Voltage
Ip
Im
Vm
Id
Vp
SERVO DRIVE
Vp = VAC*1.41
Driveovervoltage
Externalshuntregulatorturn‐onvoltage(seeRegenerationandShuntRegulators”on
page23)
MNALHWIN-01 21
Products and System Requirements / System Requirements
Asystemwillneedacertainamountofvoltageandcurrenttooperateproperly.Ifthepower
supplyhastoolittlevoltage/currentthesystemwillnotperformadequately.Ifthepower
supplyhastoomuchvoltagethedrivemayshutdownduetoovervoltage,orthedrivemaybe
dam aged.
Toavoidnuisanceover‐orunder‐voltageerrorscausedbyfluctuationsinthepowersupply,
theidealsystempowersupplyvoltageshouldbeatleast10%abovetheentiresystemvoltage
requirement,andatleast10%belowthelowestvalueofthefollowing:
ThesepercentagesalsoaccountforthevariancesinKtandKe,andlossesinthesystem
externaltothedrive.Theselectedmargindependsonthesystemparametervariations.
Do not select a supply voltage that could cause a mechanical over-
speed in the event of a drive malfunction or a runaway condition.
Brushed Motors may have voltage limitations due to the mechanical
commutators. Consult the manufacturer’s data sheets.
FIGURE 2.12 Power Supply Selection
Drive Over Voltage Shutdown (88V)
0
20
40
60
80
100
VDC Acceptable Power Supply
Range (26 V-72V)
Shunt Regulator Turn-On Voltage (80V)
Drive Under Voltage Shutdown (9V)
System Power Supply Requirement (24V)
MNALHWIN-01 22
Products and System Requirements / System Requirements
Figure2.12providesonepossibleexampleofanappropriatesystempowersupplyvoltagefor
ananalogdriveusinganexternalshuntregulator.Theovervoltageandundervoltage
shutdownlevelsonADVANCEDMotionControlsdrivescanbefoundonthedrivedatasheet.The
shuntregulatorturn‐onvoltagewaschosenatanappropriateleveltoclampthepowersupply
voltagesoitwillnotexceedthedriveovervoltagelimitduringregeneration.Thesystempower
supplyrequirementisbasedonthemotorpropertiesandhowmuchvoltageisneededto
achievetheapplicationmoveprofile(see“MotorCurrentandVoltage”onpage17).Keepin
mindthatthecalculatedvalueforVmistheminimumvoltagerequiredtocompletemovesat
thedesiredspeedandtorque.Thereshouldbeatleast10%headroombetweenthecalculated
valueandtheactualpowersupplyvoltagetoallowformachinechangessuchasincreased
frictionduetowear,changeinload,increasedoperatingspeed,etc.
Isolation InsystemswhereanAClineisinvolved,isolationisrequiredbetweentheAClineandthe
signalpinsonthedrive.Thisappliestoallsystemsexceptthosethatuseabatteryasapower
supply.Therearetwooptionsforisolation:
1. Thedrivecanhavebuiltinelectricalisolation.
2. Thepowersupplycanprovideisolation(e.g.abatteryoranisolationtransformer).
Thesystemmusthaveatleastoneoftheseoptionstooperatesafely.
Drive with Isolation
SomeADVANCEDMotionControlsanalogdrivescomewithstandardelectricalisolation,while
otherscanbeorderedwithisolationasanoption(seeFigure2.1,“AnalogProductFamilyPart
NumberingStructure,).Todetermineifadrivehasisolationrefertothefunctionalblock
diagramonthedrivedatasheet.Theisolationwillbeindicatedbyadashedlinethroughthe
functionalblockdiagramseparatingpowergroundfromsignalground.
Driveswithan"I"afterthecurrentratinginthepartnumber(i.e.30A8I),drivesthatarerated
to400VDCanddrivesthattakeAClinevoltageforpowercomestandardwithisolation.Other
drivesthatdonotfallintothesecategoriescanbeorderedbyspecialrequesttoinclude
isolation.
Power Supply with Isolation
Anisolatedpowersupplyiseitherabatteryorapowersupplythatusesanisolation
transformertoisolatetheAClinevoltagefromthepowersupplyground.Thisallowsboththe
powergroundonanisolatedpowersupplyandthesignalgroundonanon‐isolateddrivetobe
safelypulledtoearthground.Alwaysuseanisolatedpowersupplyifthereisnoisolationinthe
drive.
FIGURE 2.13 Four Quadrant Operation - Regeneration occurs when Torque and Velocity polarity are opposite
IV
Regenerating
Counterclockwise
Current/Torque
Voltage/Velocity
III
Motoring
Counterclockwise
II
Regenerating
Clockwise
I
Motoring
Clockwise
Torque +
Torque -
Torque -
Torque +
Velocity +
Velocity +
Velocity -
Velocity -
No Regen
Regen
No Regen
Regen
I
II
III
IV
MNALHWIN-01 23
Products and System Requirements / System Requirements
Regeneration and Shunt Regulators Useofashuntregulatorisnecessaryinsystems
wheremotordecelerationoradownwardmotionofthemotorloadwillcausethesystem’s
mechanicalenergytoberegeneratedviathedrivebackontothepowersupply.
Thisregeneratedenergycanchargethepowersupplycapacitorstolevelsabovethatofthe
driveovervoltageshutdownlevel.Ifthepowersupplycapacitanceisunabletohandlethis
excessenergy,orifitisimpracticaltosupplyenoughcapacitance,thenanexternalshunt
regulatormustbeusedtodissipatetheregeneratedenergy.Shuntregulatorsareessentiallya
resistorplacedinparallelwiththeDCbus.Theshuntregulatorwill"turn‐on"atacertain
voltagelevel(setbelowthedriveover‐voltageshutdownlevel)anddischargetheregenerated
electricenergyintheformofheat.
Thevoltageriseonthepowersupplycapacitorswithoutashuntregulator,canbecalculated
accordingtoasimpleenergybalanceequation.Theamountofenergytransferredtothepower
supplycanbedeterminedthrough:
Where:
Ei‐initialenergy
Ef‐finalenergy
Theseenergytermscanbebrokendownintotheapproximatemechanicalandelectricalterms
‐capacitive,kinetic,andpotentialenergy.Theenergyequationsfortheseindividual
componentsareasfollows:
Where:
Ec‐energystoredinacapacitor(joules)
C‐capacitance
Vnom ‐nominalbusvoltageofthesystem
EiEf
=
Ec
1
2
---CVnom
2
=
Er
1
2
---Jω2
=
MNALHWIN-01 24
Products and System Requirements / System Requirements
Where:
Er‐kinetic(mechanical)energyoftheload(joules)
J ‐inertiaoftheload(kg‐m2)
ωangularvelocityoftheload(rads/s)
Epmgh=
Where:
Eppotentialmechanicalenergy(joules)
m ‐massoftheload(kg)
g ‐gravitationalacceleration(9.81m/s2)
h ‐verticalheightoftheload(meters)
Duringregenerationthekineticandpotentialenergywillbestoredinthepowersupply’s
capacitor.Todeterminethefinalpowersupplyvoltagefollowingaregenerativeevent,the
followingequationmaybeusedformostrequirements:
Whichsimplifiesto:
TheVfcalculatedmustbebelowthepowersupplycapacitancevoltageratingandthedriveover
voltagelimit.Ifthisisnotthecase,ashuntregulatorisnecessary.Ashuntregulatorissizedin
thesamewayasamotorordrive,i.e.continuousandRMSpowerdissipationmustbe
determined.Thepowerdissipationrequirementscanbedeterminedfromtheapplication
moveprofile(seeFigure2.10).
ADVANCEDMotionControlsoffersavarietyofshuntregulatorsforservodrives.When
choosingashuntregulator,selectonewithashuntvoltagethatisgreaterthantheDCbus
voltageoftheapplicationbutlessthantheovervoltageshutdownofthedrive.Verifytheneed
EcErEp
⋅⋅()
iEcErEp
⋅⋅()
f
=
1
2
---CVnom
21
2
---Jωi
2mghi
++ 1
2
---CVf
21
2
---Jωf
2mghf
++=
VfVnom
2J
C
----ωi
2ωf
2
()
2mg hihf
()
C
-------------------------------++=
MNALHWIN-01 25
Products and System Requirements / System Requirements
forashuntregulatorbyoperatingtheservodriveundertheworst‐casebrakingand
decelerationconditions.Ifthedriveshutsoffduetoovervoltage,ashuntregulatorisnecessary.
Continuous Regeneration
Inthespecialcasewhereanapplicationrequirescontinuousregeneration(morethanafew
seconds)thenashuntregulatormaynotbesufficienttodissipatetheregenerativeenergy.
PleasecontactADVANCEDMotionControlsforpossiblesolutionstosolvethiskindof
application.Someexamples:
Webtensioningdevice
Electricvehiclerollingdownalonghill
Spinningmasswithaverylargeinertia(grindingwheel,flywheel,centrifuge)
Heavyliftgantry
Voltage Ripple Forthemostpart,ADVANCEDMotionControlsanalogservodrivesare
unaffectedbyvoltageripplefromthepowersupply.Thecurrentloopisfastenoughto
compensatefor60Hzfluctuationsinthebusvoltage,andthecomponentsinthedriveare
robustenoughtowithstandallbutthemostextremecases.Peaktopeakvoltagerippleashigh
as25Visacceptable.
Therearesomeapplicationswherethevoltageripplecancauseunacceptableperformance.
Thiscanbecomeapparentwhereconstanttorqueorforceiscriticalorwhenthebusvoltageis
pulledlowduringhighspeedandhighcurrentapplications.Ifnecessary,thevoltageripple
fromthepowersupplycanbereduced,eitherbyswitchingfromsinglephaseACtothree
phaseAC,orbyincreasingthecapacitanceofthepowersupply.
Thevoltagerippleforasystemcanbeestimatedusingtheequation:
Where:
VR‐voltageripple
CPS ‐powersupplycapacitance
IPS ‐powersupplyoutputcurrent
Ff‐frequencyfactor(1/hertz)
Thepowersupplycapacitancecanbeestimatedbyrearrangingtheaboveequationtosolvefor
thecapacitanceas:
VR
IPS
CPS
----------Ff
=
CPS
IPS
VR
--------Ff
=
MNALHWIN-01 26
Products and System Requirements / System Requirements
Thefrequencyfactorcandeterminedfrom:
wherefistheAClinefrequencyinhertz.Notethatforhalfwaverectifiedpowersupplies,f=
f/2.
Thepowersupplyoutputcurrent,ifunknown,canbeestimatedbyusinginformationfromthe
outputsideoftheservodriveasgivenbelow:
Where:
IM‐currentthroughthemotor
VPS ‐nominalpowersupplyvoltage
VM‐motorvoltage(see“MotorCurrentandVoltage”onpage17)
2.7.3 Environmental Specifications
Toensureproperoperationofananalogservodrive,itisimportanttoevaluatetheoperating
environmentpriortoinstallingthedrive.
TABLE 2.12 Environmental Specifications
Environmental Specifications
Parameter Description
Baseplate Temperature Range 0 - 65 ºC
Humidity 90%, non-condensing
Mechanical Shock 15g, 11ms, Half-sine
Vibration 2 - 2000 Hz @ 2.5g
Altitude 0-3000m
Shock/Vibrations Whileanalogdrivesaredesignedtowithstandahighdegreeofmechanical
shockandvibration,toomuchphysicalabusecancauseerraticbehavior,orcausethedriveto
ceaseoperationentirely.Besurethedriveissecurelymountedinthesystemtoreducethe
shockandvibrationthedrivewillbeexposedto.Thebestwaytosecurethedriveagainst
mechanicalvibrationistousescrewstomountthedriveagainstitsbaseplate.Forinformation
onmountingoptionsandprocedures,see“Mounting”onpage39andthedimensional
drawingsandinformationonthedrivedatasheet.
Care should be taken to ensure the drive is securely mounted in a
location where no moving parts will come in contact with the drive.
Ff
0.42
f
----------=
IPS
VMIM
VPS 0.98()
-----------------------------=
MNALHWIN-01 27
3 Integration in the Servo System
Thischapterwillgivevariousdetailsonincorporatingananalogservodriveintoasystem,suchashowto
properlygroundthedrivealongwiththeentiresystem,andhowtoproperlyconnectmotorwires,power
supplywires,feedbackwires,andinputsintotheanalogservodrive.
3.1 LVD Requirements
TheservodrivescoveredintheLVDReferencereportwereinvestigatedascomponents
intendedtobeinstalledincompletesystemsthatmeettherequirementsoftheMachinery
Directive.Inorderfortheseunitstobeacceptableintheendusers’equipment,thefollowing
conditionsofacceptabilitymustbemet.
1. Europeanapprovedoverloadandcurrentprotectionmustbeprovidedforthemotorsas
specifiedinsection7.2and7.3ofEN60204.1.
2. Adisconnectswitchshallbeinstalledinthefinalsystemasspecifiedinsection5.3of
EN60204.1.
3. Alldrivesthatdonothaveagroundingterminalmustbeinstalledin,andconductively
connectedtoagroundedenduseenclosureinordertocomplywiththeaccessibility
requirementsofsection6,andtoestablishgroundingcontinuityforthesystemin
accordancewithsection8ofEN60204.1.
4. Adisconnectingdevicethatwillpreventtheunexpectedstart‐upofamachineshallbe
providedifthemachinecouldcauseinjurytopersons.Thisdeviceshallpreventthe
automaticrestartingofthemachineafteranyfailureconditionshutsthemachinedown.
5. Europeanapprovedovercurrentprotectivedevicesmustbeinstalledinlinebeforethe
servodrive,thesedevicesshallbeinstalledandratedinaccordancewiththeinstallation
instructions(theinstallationinstructionsshallspecifyanovercurrentratingvalueaslow
aspossible,buttakingintoconsiderationinrushcurrents,etc.).Servodrivesthat
incorporatetheirownprimaryfusesdonotneedtoincorporateoverprotectionintheend
users’equipment.
Theseitemsshouldbeincludedinyourdeclarationofincorporationaswellasthenameand
addressofyourcompany,descriptionoftheequipment,astatementthattheservodrivesmust
notbeputintoserviceuntilthemachineryintowhichtheyareincorporatedhasbeendeclared
inconformitywiththeprovisionsoftheMachineryDirective,andidentificationoftheperson
signing.
MNALHWIN-01 28
Integration in the Servo System / CE-EMC Wiring Requirements
3.2 CE-EMC Wiring Requirements
ThefollowingsectionscontaininstallationinstructionsnecessaryformeetingEMC
requirements.
General
1. Shieldedcablesmustbeusedforallinterconnectcablestothedriveandtheshieldofthe
cablemustbegroundedattheclosestgroundpointwiththeleastamountofresistance.
2. Thedrive’smetalenclosuremustbegroundedtotheclosestgroundpointwiththeleast
amountofresistance.
3. Thedrivemustbemountedinsuchamannerthattheconnectorsandexposedprinted
circuitboardarenotaccessibletobetouchedbypersonnelwhentheproductisin
operation.Ifthisisunavoidabletheremustbeclearinstructionsthatthedriveisnottobe
touchedduringoperation.Thisistoavoidpossiblemalfunctionduetoelectrostatic
dischargefrompersonnel.
Analog Input Drives
4. AFairRitemodel0443167251roundsuppressioncoremustbefittedtothelowlevel
signalinterconnectcablestopreventpickupfromexternalRFfields.
PWM Input Drives
5. AFairRitemodel0443167251roundsuppressioncoremustbefittedtothePWMinput
cabletoreduceelectromagneticemissions.
MOSFET Switching Drives
6. AFairRitemodel0443167251roundsuppressioncoremustbefittedattheloadcable
connectortoreduceelectromagneticemissions.
7. AnappropriatelyratedCoselTACseriesACpowerfilterincombinationwithaFairRite
model5977002701torroid(placedonthesupplyendofthefilter)mustbefittedtotheAC
supplytoanyMOSFETdrivesysteminordertoreduceconductedemissionsfedbackinto
thesupplynetwork.
IGBT Switching Drives
8. AnappropriatelyratedCoselTACseriesACpowerfilterincombinationwithaFairRite
model0443167251roundsuppressioncore(placedonthesupplyendofthefilter)must
befittedtotheACsupplytoanyIGBTdrivesysteminordertoreduceconductedemissions
fedbackintothesupplynetwork.
9. AFairRitemodel0443164151roundsuppressioncoreandmodel5977003801torroid
mustbefittedattheloadcableconnectortoreduceelectromagneticemissions.
Fitting of AC Power Filters
Itispossiblefornoisegeneratedbythemachineto"leak"ontothemainACpower,andthen
getdistributedtonearbyequipment.Ifthisequipmentissensitive,itmaybeadverselyaffected
bythenoise.ACpowerfilterscanfilterthisnoiseandkeepitfromgettingontheACpower
signal.TheabovementionedACpowerfiltersshouldbemountedflatagainsttheenclosureof
MNALHWIN-01 29
Integration in the Servo System / CE-EMC Wiring Requirements
theproductusingthetwomountinglugsprovidedonthefilter.Paintshouldberemovedfrom
theenclosurewherethefilterisfittedtoensuregoodmetaltometalcontact.Thefiltershould
bemountedasclosetothepointwheretheACpowerfilterenterstheenclosureaspossible.
Also,theACpowercableontheloadendofthefiltershouldberoutedasfarfromtheACpower
cableonthesupplyendofthefilterandallothercablesandcircuitrytominimizeRFcoupling.
3.2.1 Ferrite Suppression Core Set-up
IfPWMswitchingnoisecouplesontothefeedbacksignalsorontothesignalground,thena
ferritesuppressioncorecanbeusedtoattenuatethenoise.Takethemotorleadsandwrap
themaroundthesuppressioncoreasmanytimesasreasonablepossible,usually2‐5times.
Makesuretostripbackthecableshieldandonlywrapthemotorwires.Therewillbetwo
wiresforsinglephased(brushed)motorsand3wiresforthreephase(brushless)motors.
Wrapthemotorwirestogetherasagrouparoundthesuppressioncoreandleavethemotor
casegroundwireoutoftheloop.Thesuppressioncoreshouldbelocatedasneartothedrive
aspossible.TDKZCATseriessnap‐onfiltersarerecommendedforreducingradiated
emissionsonallI/Ocables.
3.2.2 Inductive Filter Cards
Inductivefiltercardsareaddedinserieswiththemotorandareusedtoincreasetheload
inductanceinordertomeettheminimumloadinductancerequirementofthedrive.Theyalso
servetocounteracttheeffectsoflinecapacitancefoundinlongcablerunsandinhighvoltage
systems.ThesefiltercardsalsohavetheaddedbenefitofreducingtheamountofPWMnoise
thatcouplesontothesignallines.
Visitwww.a‐m‐c.com/content/prods/descriptions/filter_cards.htmlforinformationon
purchasingADVANCEDMotionControlsinductivefiltercards.
FIGURE 3.1
Shield Ground Wire
Case Ground Wire
Shielded Feedback/Signal Cable
Shielded Power Cable
Motor
Single Point System
Ground (PE Ground)
Analog Servo Drive
Controller
Isolated DC
Power Supply
+VDC +VDC PE Ground
Signal Ground
Power Ground
Command
Signal
Command
Signal
Chassis Earth Ground
System Grounding
MNALHWIN-01 30
Integration in the Servo System / Grounding
3.3 Grounding
InmostservosystemsallthecasegroundsshouldbeconnectedtoasingleProtectiveEarth
(PE)groundpointina"star"configuration.GroundingthecasegroundsatacentralPEground
pointreducesthechanceforgroundloopsandhelpstominimizehighfrequencyvoltage
differentialsbetweencomponents.Allgroundwiresmustbeofaheavygaugeandbeasshort
aspossible.ThefollowingshouldbesecurelygroundedatthecentralPEgroundingpoint:
Motorchassis
Controllerchassis
Powersupplychassis
AnalogServoDrivechassis
Groundcableshieldwiresatthedrivesidetoachassisearthgroundpoint.
TheDCpowergroundandtheinputreferencecommandsignalgroundareoftentimesata
differentpotentialthanchassis/PEground.Thesignalgroundofthecontrollermustbe
connectedtothesignalgroundofthedrivetoavoidpickingupnoiseduetothe"floating"
differentialservodriveinput.InsystemsusinganisolatedDCpowersupply,signalground
and/orpowergroundcanbereferencedtochassisground.Firstdecideifthisisboth
appropriateandsafe.Ifthisisthecase,theycanbegroundedatthecentralgroundingpoint.
Grounding is important for safety. The grounding recommendations in
this manual may not be appropriate for all applications and system
machinery. It is the responsibility of the system designer to follow
applicable regulations and guidelines as they apply to the specific servo
system.
MNALHWIN-01 31
Integration in the Servo System / Wiring
3.4 Wiring
Servosystemwiringtypicallyinvolveswiringacontroller(digitaloranalog),aservodrive,a
powersupply,andamotor.Wiringtheseservosystemcomponentsisfairlyeasywhenafew
simplerulesareobserved.
AswithanyhighefficiencyPWMservodrive,thepossibilityofnoiseandinterferencecoupling
throughthecablingandwirescanbeharmfultooverallsystemperformance.Noiseinthe
formofinterferingsignalscanbecoupled:
Capacitively(electrostaticcoupling)ontosignalwiresinthecircuit(theeffectismore
seriousforhighimpedancepoints).
Magneticallytoclosedloopsinthesignalcircuit(independentofimpedancelevels).
Electromagneticallytosignalwiresactingassmallantennasforelectromagneticradiation.
Fromonepartofthecircuittootherpartsthroughvoltagedropsongroundlines.
ExperienceshowsthatthemainsourceofnoiseisthehighDV/DT(typicallyabout
1V/nanosecond)ofthedrive’soutputpowerstage.ThisPWMoutputcancouplebacktothe
signallinesthroughtheoutputandinputwires.Thebestmethodstoreducethiseffectareto
movesignalandmotorleadsapart,useaninductivefiltercard,addshielding,anduse
differentialinputsatthedrive.
Unfortunately,low‐frequencymagneticfieldsarenotsignificantlyreducedbymetalenclosures.
Typicalsourcesare50or60Hzpowertransformersandlowfrequencycurrentchangesinthe
motorleads.Avoidlargeloopareasinsignal,power‐supply,andmotorwires.Twistedpairsof
wiresarequiteeffectiveinreducingmagneticpick‐upbecausetheenclosedareaissmall,and
thesignalsinducedinsuccessivetwistcancel.
3.4.1 Wire Gauge
Asthewirediameterdecreases,theimpedanceincreases.Higherimpedancewirewill
broadcastmorenoisethanlowerimpedancewire.Therefore,whenselectingthewiregauge
forthemotorpowerwires,powersupplywires,andgroundwires,itisbettertoerrontheside
ofbeingtoothickratherthantoothin.Thisbecomesmorecriticalasthecablelength
increases.Thefollowingtableprovidesrecommendationsforselectingtheappropriatewire
sizeforaspecificcurrent.Thesevaluesshouldbeusedasreferenceonly.Consultany
applicablenationalorlocalelectricalcodesforspecificguidelines.
TABLE 3.1 Current and Wire Gauges
Current (A) Minimum Wire Size (AWG) mm2
10 #20 0.518
15 #18 0.823
20 #16 1.31
35 #14 2.08
45 #12 3.31
60 #10 5.26
80 #8 8.37
120 #6 13.3
150 #0 53.5
200 #00 67.4
FIGURE 3.2 Motor Power Output Wiring
ANALOG
SERVO DRIVE
Shield
MOT -
MOT +
Motor
Single Point
System Ground
(PE Ground)
Chassis Ground
BRUSHED
MOTOR
ANALOG
SERVO DRIVE
Shield
Motor C
Motor B
Motor A
Motor
Single Point
System Ground
(PE Ground)
Chassis Ground
BRUSHLESS
MOTOR
MNALHWIN-01 32
Integration in the Servo System / Wiring
3.4.2 Motor Wires
Themotorpowerwiressupplypowerfromthedrivetothemotor.Useofatwisted,shielded
pairforthemotorpowercablesisrecommendedtoreducetheamountofnoisecouplingto
sensitivecomponents.
Forabrushedmotororvoicecoil,twistthetwomotorwirestogetherasagroup.
Forabrushlessmotor,twistallthreemotorwirestogetherasagroup.
Groundthemotorpowercableshiel
datoneendonlytotheservodrivechassisground.The
motorpowerleadsshouldbebundledandshieldedintheirowncableandkeptseparatefrom
feedbacksignalwires.
ThediagramsbelowshowhowananalogservodriveconnectstoaBrushed(singlephase)and
Brushless(three‐phase)motors.Noticethatthemotorwiresareshielded,andthatthemotor
housingisgroundedtothesinglepointsystemground(PEGround).Thecableshieldshouldbe
groundedatthedrivesidetochassisground.
3.4.3 Power Supply Wires
ThePWMcurrentspikesgeneratedbythepoweroutput‐stagearesuppliedbytheinternal
powersupplycapacitors.Inordertokeepthecurrentrippleonthesecapacitorstoan
acceptablelevelitisnecessarytouseheavypowersupplyleadsandkeepthemasshortas
possible.Reducetheinductanceofthepowerleadsbytwistingthem.Groundthepowersupply
cableshieldatoneendonlytotheservodrivechassisground.
Whenmultipledrivesareinstalledinasingleapplication,precautionregardinggroundloops
mustbetaken.Whenevertherearetwoormorepossiblecurrentpathstoaground
connection,damagecanoccurornoisecanbeintroducedinthesystem.Thefollowingrules
applytoallmultipleaxisinstallations,regardlessofthenumberofpowersuppliesused(see
Figure3.3):
1. Runseparatepowersupplyleadstoeachdrivedirectlyfromthepowersupplyfilter
capacitor.
2. Never"daisy‐chain"anypowerorDCcommonconnections.Usea"star"‐connection
instead.
DO NOT use wire shield to carry motor current or power!
FIGURE 3.3 Multiple Power Supply Wiring
DC
Power
Supply
Analog
Servo
Drive
Analog
Servo
Drive
Analog
Servo
Drive
Power Supply
Capacitance
DC
Power
Supply
Analog
Servo
Drive
Analog
Servo
Drive
Analog
Servo
Drive
Power Supply
Capacitance
DC
Power
Supply
Analog
Servo
Drive
Analog
Servo
Drive
Analog
Servo
Drive
Wire pairs should be routed
together and twisted all the
way back to the power source
Power Supply
Capacitance
For AC input amplifiers, AC power
should be distributed from a
central AC source, not a capacitor
These wiring schemes are
commonly practiced but often
contribute to noise problems.
Each additional node in the
chain adds to the amount of
noise and unnecessarily loads
the connectors in each link.
FIGURE 3.4 DC Power Supply Wiring
ANALOG
SERVO DRIVE
DC Power Input
Isolated DC
Power
Supply
Shield
Single Point
System Ground
(PE Ground)
Power Ground
+HV
GND
Chassis Ground
FIGURE 3.5 Pluggable AC Line Connectors
StandardACconnector
underneathdrive
FACdrivemodel
featuresACconnector
ondriveface
MNALHWIN-01 33
Integration in the Servo System / Wiring
DC Power Supplies FordrivesusingaDCpowersupply,connectthetransformer‐isolatedDC
supplyhighvoltagetotheDCPowerInputterminal,andtheDCsupplygroundtothepower
groundterminal.
AC Power Supplies Drivesthatacceptonlysingle‐phaseAClinepowerincludeastandard3‐
prongpluggableACconnectorforattachmenttoanACsupplyontheundersideofthedrive
(standardACmodels),oronthefrontfaceofthedrive(FACmodels).
FIGURE 3.6 Single or Three Phase AC Line Connections
ANALOG
SERVO DRIVE
AC1
3-Phase AC
Power
Supply*
Shield
Chassis Ground
AC2
AC3
Single Point
System Ground
(PE Ground)
*For Single-phase AC Supply, connect AC lines to any two of AC1, AC2, and AC3. Do
not connect AC line neutral to ground!
FUSE
FUSE
FUSE
FIGURE 3.7 Feedback Wiring
Motor Feedback
Motor Power
Avoid running
feedback and power
wires together Motor Feedback
Motor Power
Separate power and
feedback wires
where possible
Motor
Analog
Servo
Drive
Motor
Analog
Servo
Drive
FIGURE 3.8 Hall Sensor Input Connections
ANALOG
SERVO DRIVE
Motor
Chassis Ground
Signal Ground
Shield HALL A +
HALL B +
HALL C +
+V HALL (Power for Hall Sensors)
MNALHWIN-01 34
Integration in the Servo System / Wiring
Drivesthataccepteithersingle‐phaseorthree‐phaseAClinepowerhavea5‐contactACinput
screwterminal.ConnectathreephaseACsupplytoAC1,AC2,andAC3.AsinglephaseAC
supplycanbeconnectedtoanytwoofthethree(AC1,AC2,AC3)ACterminals.
3.4.4 Feedback Wires
Useofatwisted,shieldedpairforthefeedbackwiresisrecommended.Groundtheshieldatone
endonlytotheservodrivechassisground.Routecablesand/orwirestominimizetheirlength
andexposuretonoisesources.Themotorpowerwiresareamajorsourceofnoise,andthe
motorfeedbackwiresaresusceptibletoreceivingnoise.Thisiswhyitisneveragoodideato
routethemotorpowerwireswiththemotorfeedbackwires,eveniftheyareshielded.
Althoughbothofthesecablesoriginateatthedriveandterminateatthemotor,trytofind
separatepathsthatmaintaindistancebetweenthetwo.Aruleofthumbfortheminimum
distancebetweenthesewiresis10cmforevery10mofcablelength.
Hall Sensors Brushlessdrivesacceptsingle‐endedHallSensorfeedbackforcommutationand
velocitycontrol.Mostdrivesalsoincludea+6V,30mAlowvoltagesupplyoutputthatcanbe
usedtopowertheHallSensors.Verifyonthemotordatasheetthatthevoltageandcurrent
ratingofthesupplyoutputwillworkwiththeHallSensorsbeforeconnecting.
FIGURE 3.9 Incremental Encoder Connections
MOTOR ENC A+
MOTOR ENC A-
MOTOR ENC B+
MOTOR ENC B-
Enc A
Motor
Shield
Chassis
Ground
Enc B
MOTOR ENC I+
MOTOR ENC I-
ANALOG SERVO
DRIVE
+
-
+
-
+
-
Signal Ground
+5V Encoder Supply Output
Incremental
Encoder
Enc I
FIGURE 3.10 Tachometer Input Connections
ANALOG
SERVO DRIVE
TACHOMETER INPUT
SIGNAL GROUND
Tachometer
(± 60 VDC) Tach-
Tach+
Motor
Chassis
Ground
MNALHWIN-01 35
Integration in the Servo System / Wiring
Incremental Encoder Somedrivemodelssupporteithersingle‐endedordifferential
incrementalencoderfeedback.Ifusingasingle‐endedencoderwithadrivethataccepts
differentialinputs,leavethenegativeterminalopen.Boththe"A"and"B"channelsofthe
encoderarerequiredforoperation.Drivesthatacceptdifferentialsignalsalsoacceptan
optional"index"channelthatcanbeusedforsynchronizationandhoming.Ifusingthe+5V,
150mA(or250mA)lowvoltagepowersupplyoutputfromthedrive,verifythatthesupply
outputvoltageandcurrentratingissufficientfortheencoderspecifications.
Tachometer FordrivesthatacceptaTachometerforvelocitycontrol,connectthenegative
tachometerinputtothetachometerinputonthedrive,andconnectthepositivetachometer
inputtosignalground.ThedrivemustbeinTachometerVelocitymodeinordertoproperlyuse
thetachometerinput.SeethedrivedatasheetforspecificDIPswitchsettings.Thetachometer
hasarangeof±60VDC.
3.4.5 Input Reference Wires
Useofatwisted,shieldedpairfortheinputreferencewiresisrecommended.Connectthe
referencesource"+"to"+REFIN",andthereferencesource"‐"(orcommon)to"‐REFIN".
Connecttheshieldtotheservodrivechassisground.Theservodrive’sreferenceinputcircuit
willattenuatethecommonmodevoltagebetweensignalsourceanddrivepowergrounds.
FIGURE 3.12
+/- 10V ANALOG
SOURCE
ANALOG
SERVO DRIVE
+REF
-REF +
-
Internal Offset
Reference Voltage
Vs+
-
Rsource +
-
Optimized Low Impedance Interface
FIGURE 3.11
+/- 10V ANALOG
SOURCE
ANALOG
SERVO DRIVE
+REF
-REF +
-
Internal Offset
Reference Voltage
Vs+
-
Rsource
+/- 10V ANALOG
SOURCE
ANALOG
SERVO DRIVE
+REF
-REF
Vs+
-
Rsource
Rin
Equivalent Input
Impedance
Analog Source and Drive Input
MNALHWIN-01 36
Integration in the Servo System / Wiring
Longsignalwires(10‐15feetandup)canalsobeasourceofnoisewhendrivenfromatypical
op‐ampoutput.Duetotheinductanceandcapacitanceofthewiretheop‐ampcanoscillate.Itis
alwaysrecommendedtosetafixedvoltageatthecontrollerandthencheckthesignalatthe
drivewithanoscilloscopetomakesurethatthesignalisnoisefree.
±10V Analog Input Whenusinga±10Vanalogsignalforaninputcommand,itisimportantto
considertheoutputimpedanceoftheanalogsourcewheninterfacingtoinputcircuitry.A
poorlydesigned±10Vanaloginputinterfacecanleadtoundesiredcommandsignal
attenuation.Figure3.11showsanexternalanalogsourceconnectedtoananaloginput.The
idealvoltagedeliveredtotheinputisVS.However,thevoltagedropacrossRsourcewillreduce
thesignalbeingdeliveredtothedriveinput.Thisvoltagedropisdependentonthevalueof
Rsourceandthedrive’sinputimpedance.
Thedrive’sanaloginputcanbesimplifiedtoasingleimpedance,Rin,asshowninFigure3.11.
IftheimpedanceofRsourceisofthesamemagnitudeorlargerthanRin,therewillbea
significantvoltagedropacrossRsource.ReducedvaluesofRsourcecausealowervoltagedrop
thatincreasessignalintegrity.Inordertoavoidavoltagedropofmorethan5%betweenthe
sourceandthedrive,itisrecommendedtouseanRsourcevalueoflessthanorequalto2kohm.
Ifthereisalargeoutputimpedancefromtheanalogsource,itisrecommendedtouseabuffer
circuitbetweentheanalogsourceoutputandthedriveinput.Aunitygainop‐ampcircuitas
showninFigure3.12willensurelowoutputimpedancewithminimalvoltagedrop.
In case of a single-ended reference signal, connect the command
signal to "+ REF IN" and connect the command return and "- REF IN" to
signal ground.
FIGURE 3.13 Potentiometer Input
ANALOG
SERVO DRIVE
+10V Max
Potentiometer
(~50kO)
-10V Max
+REF IN
+/- VDC
Power
Supply
+10V
-10V
GND
SIGNAL GROUND
-REF IN
Bi-directional Control
ANALOG
SERVO DRIVE
+10V Max
Potentiometer
(~50kO)
+REF IN
+VDC
Power
supply
+10V
GND
SIGNAL GROUND
-REF IN
Uni-directional Control
FIGURE 3.14 PWM and Direction Optocoupled Inputs, +5V supply input option
ANALOG
SERVO DRIVE
PWM+
PWM-
DIR+
DIR-
INHIBIT+
INHIBIT-
FAULT+
FAULT-
+5V Input
+5V
Input
+5V
Input
+5V
Input
+5V
+5V
GND
+5V
Supply
+5V
+5V
+5V
100k
100k
100k
100k
5k
5k
500
PWM Input Signal
Direction Input Signal
Fault Monitor Output
Ground to Inhibit / Open to Enable
MNALHWIN-01 37
Integration in the Servo System / Wiring
Potentiometer Input Analogservodrivesthataccept±10Vanaloginputcanbecommanded
withtheuseofanexternalpotentiometerandaDCsupplybyvaryingtheDCsupplyvoltage
acrossthepotentiometer.
PWM and Direction Inputs OndrivesthatacceptaPWMandDirectionsignalforacommand
input,theinputsareopticallyisolatedfromthepowerstageofthedrive.ThePWMand
Direction,Inhibit,andFaultI/Owillnotprovideanyfunctionalitytothedriveunlessthe
optocouplersareactivated.Dependingonthedrivemodel,therearetwomethodstoactivate
theoptocouplersandtherebyactivatethedrive.
Somedrivemodelsfeaturea+5Vinputpinthatisusedtodrivetheoptocouplerinputs.
This+5VsupplymustbegroundedatthenegativeInhibitterminal.Thepositiveterminals
forthePWM,Direction,andInhibitinputsareallinternallyconnectedtothe+5Vinput.
Therefore,theexternalPWMandDirectioninputsignalsshouldbeconnectedatthe
negativePWMandDirectionterminals.ThepositiveFaultoutputterminalcanalsobe
connectedtothe+5Vinputsupply,andwhenthedriveentersafaultstage,thenegative
Faultoutputterminalwillrisetothe+5Vsupplyindicatingafaultcondition.
FIGURE 3.15
ANALOG
SERVO DRIVE
PWM+
PWM-
DIR+
DIR-
INHIBIT+
INHIBIT-
FAULT+
FAULT-
Ground to Inhibit / Open to Enable
100k
100k
100k
100k
5k
PWM Input Signal
Direction Input Signal
Fault Monitor Output
5k
ANALOG
SERVO DRIVE
PWM+
PWM-
DIR+
DIR-
INHIBIT+
INHIBIT-
FAULT+
FAULT-
GND
100k
100k
100k
100k
5k
PWM Input Signal
Direction Input Signal
Fault Monitor Output
5k
+5V
+5V
+5V
+5V
GND
GND
GND
+5V to Inhibit / Open to Enable
PWM and Direction Optocoupled Inputs
FIGURE 3.16 Sinusoidal Command Inputs
+
-
+ REF-IN-A
- REF-IN-A
Analog Servo
Drive
40k
40k
+
-
+ REF-IN-B
- REF-IN-B
40k
40k
Differential
Sine Input A
Differential
Sine Input B
+
-
+ REF-IN-A
- REF-IN-A
Analog Servo
Drive
40k
40k
+
-
+ REF-IN-B
- REF-IN-B
40k
40k
Single-ended
Sine Input A
Single-ended
Sine Input B
MNALHWIN-01 38
Integration in the Servo System / Wiring
Ondrivesthatdonotcontainanadditional+5Vinputsupplypin,therearetwooptionsto
activatetheoptocouplers.ThepositiveterminalsofthePWM,Direction,Fault,andInhibit
I/Ocanbebroughttoanexternal+5Vsupply,orthenegativeterminalsofthePWM,
Direction,Fault,andInhibitI/Ocanbebroughttoground.
Sinusoidal Input TheS‐Seriesofanalogservodrivesaccepttwosinusoidalcommandsignalsthat
are120degreesoutofphase.Thesineinputsignalscanbeeitherdifferentialorsingle‐ended.
Ifusingasingle‐endedsignal,connecttheinputtothe+REFterminalofthereferenceinput
pins,andgroundthenegativeterminal.
FIGURE 3.17 Analog Servo Drives Mounting Options
ADVANCED
MOTION CONTROLS
ADVANCED
MOTION CONTROLS
ADVANCED
MOTION CONTROLS
MNALHWIN-01 39
Integration in the Servo System / Mounting
3.5 Mounting
ADVANCEDMotionControlsanalogservodrivesprovidemountingholelocationsonthe
baseplateallowingthedrivetobemountedeitherverticallyorhorizontally.Drivescanbe
mountedtoaheatsinkorotherplanesurface,orattachedtoalabraileitheronatestbenchor
aspartofalargersystem.Consultthedrivedatasheetforspecificmountingdimensionsand
mountingholelocations.
MNALHWIN-01 40
4 Operation
ThischapterwilldescribetheoperationandsetupofanADVANCEDMotionControlsanalogservodrive.
4.1 Initial Setup and Features
Tobeginoperationwithyouranalogservodrive,besuretoreadandunderstandtheprevious
chaptersinthismanualaswellasthedrivedatasheet.Besurethatallsystemspecifications
andrequirementshavebeenmet,andbecomefamiliarwiththecapabilitiesandfunctionsof
thedrive.Also,beawareofthe“Troubleshooting”sectionattheendofthismanualfor
solutionstobasicoperationissues.
Donotinstalltheservodriveintothesystemwithoutfirstdeterminingthatallchassispower
hasbeenremovedforatleast10seconds.Neverremoveadrivefromaninstallationwith
powerapplied.Carefullyfollowthegroundingandwiringinstructionsintheprevious
chapterstomakesureyoursystemissafelyandproperlysetup.
4.1.1 Pin Function Details
Thefamilyofanalogdrivesprovideanumberofvariousinputandoutputpinsforparameter
observationanddriveconfigurationoptions.Notalldriveswillhaveeachofthefollowingpin
functions.Consultthedrivedatasheettoseewhichinput/outputpinfunctionsareavailablefor
eachdrive.
Current Monitor Output Measuredrelativetosignalground,powerground,oraseparate
currentmonitorground,dependingonthedrivemodel.Consultthedrivedatasheetto
determinethecorrectgroundconnection.Thecurrentmonitorprovidesananalogvoltage
outputsignalthatisproportionaltotheactualdrivecurrentoutput.Thescalingfactorforeach
individualdrivecanbefoundonthedrivedatasheet.Thedrivemustbeconnectedtoaloadin
orderforthedrivetooutputactualcurrent.
Example Measurement
Thecurrentmonitorpinonadrivewithacurrentmonitorscalingfactorof4A/Vismeasured
tobe1.3V.Thiswouldmeanthedriveisoutputting:(4A/V)(1.3V)=5.2A.
MNALHWIN-01 41
Operation / Initial Setup and Features
Current Reference Output Measuredrelativetosignalground,thecurrentreference
providesananalogvoltageoutputsignalthatisproportionaltothecommandsignaltothe
internalcurrentloop.Thedrivedoesnotneedtobeconnectedtoaloadtoreadthecurrent
referenceoutput.Theinternalcommandcurrentmaydifferfromtheactualdriveoutput
currentduetocertainconditionssuchasasmallload,drivefaults,undersizedpowersupplies,
inhibiteddrive,etc.Thecommandtotheinternalcurrentloopcanbesolvedforbythe
followingequation:
Where:
Icommand ‐commandcurrenttotheinternalcurrentloop
Vcurrentref ‐measuredvoltageatcurrentreferencepin
Ipeak peakcurrentvalueofthedrive
Vmax ‐voltagecorrespondingtomaximuminternalcurrentcommand,value
foundondrivedatasheet;onmostdrivemodelsVmax=7.45V
Example Measurement
Thecurrentreferencepinonadrivewithapeakcurrentvalueof12AandVmaxof7.45Vis
measuredtobe2.63V.FollowingtheaboveequationtosolveforIcommand,thecommand
currenttotheinternalcurrentloopwouldbe4.24A.
Inhibit Input Thispinprovidesa+5VTTLinputthatallowsausertoenable/disablethedriveby
eitherconnectingthispintogroundorbyapplyinga+5VDCvoltageleveltothispin,
referencedtosignalground.Bydefault,thedrivewillbeenabledifthispinishigh,and
disabledifthispinislow.Thislogiccanbereversed,however,eitherthroughDIPswitch
settingorbyremovingaSMTjumperfromthePCB(consultthedrivedatasheettoseewhich
optionisavailable;notethatremovaloftheSMTjumpermustbedonebyapersonfamiliar
withSMTsoldering,andthatthedrivewarrantywillbevoidedifthedriveisdamaged).This
wi llre quirea llinh ibitl i nes tobebro ughtto grou ndtoen ablethedrive.Mostdrivescanalsobe
orderedwithinvertedinhibitlogicaswell(‐INVoption).Somedrivemodelsallowthedriveto
beconfiguredsotheinhibitinputdoesnottriggeradrivefaultstate.Typicallythisisachieved
byDIPswitchsetting.Consultthedrivedatasheettoseeifthisoptionisavailable.
Directional Inhibits
Somedrivesalsoincludedirectionalinhibitpinsthatdisablemotormotionineitherthe
positiveornegativedirection,typicallyusedforlimitswitches.Thesepinsdonotcauseadrive
faultcondition.Theywillfollowthesamelogic(eitherstandardorinverted)asthemain
inhibit/enableinput.
Continuous Current Limit Pin TheContinuousCurrentLimitpincanbeusedtoreducethe
factory‐presetmaximumcontinuouscurrentlimitwithoutaffectingthepeakcurrentlimitof
thedrivebyattachinganexternalresistorbetweenthispinandsignalground.Valuesfor
resistorsandthecorrespondingreductionincontinuouscurrentaregivenonthedrive
datasheet.ThiscontinuouscurrentreductioncomessecondarytoanyreductionsmadebyDIP
switchsettingsonthedriveandthecurrentlimitingpotentiometer.
Icommand Vcurrent ref
Ipeak
Vmax
-------------
=
MNALHWIN-01 42
Operation / Initial Setup and Features
Fault Output Thispinprovidesa+5VTTLoutputmeasuredrelativetosignalgroundthatwill
indicatewhenthedriveissubjecttooneofthefollowingfaultconditions:inhibit,invalidHall
State,outputshortcircuit,overvoltage,overtemperature,orpower‐upreset.Onmostdrive
modelsthispinwillread+5V(High)whenthedriveisinafaultstate,butsomedrivesallowthe
logictobereversed,sothata0V(Low)faultoutputindicatesafault.
Analogdrivesautomaticallyself‐resetoncealloftheabove‐mentionedfaultconditionsareno
longertrue.ForinstanceiftheDCpowersupplyrisesabovetheover‐voltageshutdownlevelof
thedrive,theFaultOutputwillindicateafault,andthedrivewillbedisabled.OncetheDC
powersupplylevelisreturnedtoavaluebelowthedriveovervoltageshutdownlevel,theFault
Outputwillreturntothenormalstate,andthedrivewillautomaticallybecomeenabled.
Low Voltage Power Supply Outputs Mostdrivesincludelowvoltagepowersupply
outputsmeantforcustomeruse.Consultthedrivedatasheettoseewhichlowvoltageoutputs
areincludedonaspecificdrive.
±10V(or±5V),3mAOutput‐Typicallyusedasanon‐board±10Vanaloginputsignalfor
testingpurposes.Thisoutputcanbeusedinconjunctionwithanexternalpotentiometerto
varytheinputsignalbetween±10V.
+6V,30mAOutput‐Availableonthreephase(brushless)driveonly.Thispinprovidesa
+6VDCoutputthatcanbeusedtopowerHallSensors.Consultthemotordatasheettofind
outwhichfeedbackwirefromthemotoristheHallSensorpowersupplywire.
+5V,150mA(or250mA)Output‐Canbeusedaspowerforanencoder.Consultthe
motororencoderdatasheettodeterminetheappropriateencodervoltageandcurrent
requirementsbeforeconnectingthissupply.
Velocity Monitor Output Thispinprovidesananalogvoltageoutputthatisproportionalto
theactualmotorspeed.Thescalingfactorforeachindividualdrivecanbefoundonthedrive
data sheet.
ForadriveinEncoderVelocityMode,substitutethevoltagevaluereadatthevelocity
monitorpin,Vmonitor
,intothebelowequationtodeterminethemotorRPM:
Motor Velocity [RPM] Vmonitor Scaling Factor 60⋅⋅
Number of encoder lines
----------------------------------------------------------------------=
ForadriveinHallVelocityMode,substitutethevoltagevaluereadatthevelocitymonitor
pin,Vmonitor
,intothebelowequationtodeterminethemotorRPM:
Motor Velocity [RPM] Vmonitor Scaling Factor 120⋅⋅
Number of motor poles
-------------------------------------------------------------------------=
Do not use this +6V supply to power an encoder. An encoder will require
a separate power supply. Consult the encoder datasheet or
specifications to determine the encoder voltage and current
requirements. Typical values are +5VDC at 150mA.
MNALHWIN-01 43
Operation / Initial Setup and Features
4.1.2 Potentiometer Function Details
Allpotentiometersvaryinresistancefrom0to50kohm,over12turns.Anadditionalfullturn
thatdoesnoteffectresistanceisprovidedoneitherend,foratotalof14turns.Whentheendof
potentiometertravelisreached,itwillclickonceforeachadditionalturn.Consultthedrive
datasheettoseewhichpotentiometersareincludedonaspecificdrive.
TABLE 4.1
Potentiometer Description
Loop Gain Adjustment This potentiometer must be set completely counter-clockwise in Current Mode. In Velocity or
Voltage Mode, this potentiometer adjusts the gain in the velocity forward position of the closed
loop. Turning this potentiometer clockwise increases the gain. Start from the full counter-clockwise
position, turn the potentiometer clockwise until the motor shaft oscillates, then back off one turn.
Current Limit This potentiometer adjusts the current limit of the drive. To adjust the current limit, first use any
available DIP switches or external current limiting resistors to set the maximum current limits and
ratios (consult drive datasheet to see which options are available). If further adjustment is
necessary, use the following equation to determine the number of clockwise turns from the full
counter-clockwise position necessary to set the desired current limit:
# of turns (from full CCW) Isystem
Imax
-----------------
⎝⎠
⎛⎞
12 1+=
Isystem = the desired current limit of the system (typically determined by motor current rating)
Imax = maximum current capability of the drive; this value is determined after any external current
limiting resistors have been used and/or any current scaling or current reduction DIP switches
have been set. If no DIP switches or external resistors have been used, then Imax is the default
maximum continuous current limit set by the drive hardware. See “Current Limiting Procedure” on
page 46 for an example of how to use this potentiometer.
Reference Gain This potentiometer adjusts the ratio between the input signal and the output variable (voltage,
current, or velocity). For a specific gain setting, turn this potentiometer fully counter-clockwise, and
adjust the command input to 1V. Then turn clockwise while monitoring motor velocity or drive
output voltage (depending on mode of operation) until the required output is obtained for the given
1V command. Turning this potentiometer counter-clockwise decreases the reference in gain, while
setting this potentiometer in the fully clockwise position makes the whole range of drive output
available. This potentiometer may be left in the fully clockwise position if a controller is used to
close the velocity or position loops.
Test/Offset This potentiometer acts as an internal command source for testing when the Test/Offset switch is
in the ON position. If the Test/Offset switch is in the OFF position, then this potentiometer can be
used to adjust a small amount of command offset in order to compensate for offsets that may be
present in the servo system. Turning this potentiometer clockwise adjusts the offset in a negative
direction relative to the +Ref input command.
Before offset adjustments are made, the reference inputs must be grounded or commanded to 0
volts.
Potentiometer Function Details
Test Points for Potentiometers Afterthepotentiometeradjustmentshavebeencompleted,
theresistancevaluescanbemeasuredforfutureadjustmentsorduplicationonotherservo
drivesofthesamepartnumber.Testpointsforpotentiometerwipersareprovidedandare
locatedatthefootofallfourpotentiometers.Resistancemeasurementsareonlytobeusedto
duplicatedrivesettings,sincesomepotentiometershaveotherresistorsinseriesorparallel.
Measuretheresistancebetweenthetestpointandtheouterlegofthepotentiometeror
betweenthetestpointandanappropriateground.Seetheblockdiagramonthedrive
datasheettodeterminewhichgroundshouldbeusedforeachpotentiometer.
Before taking potentiometer resistance measurements, make sure that
all potentiometers and DIP switches have been set to the desired
settings, and that all I/O and Feedback cables have been removed from
the drive, as these can affect resistance measurements.
MNALHWIN-01 44
Operation / Initial Setup and Features
4.1.3 Switch Function Details
Togetherwiththedescribedfunctionsbelowcertainswitchesmayalsobeusedinselectingthe
modeofoperation,whilesomemaybeusedstrictlyformodeselection.Switchimplementation
andfunctionalitywithinthedrivecircuitryisincludedontheblockdiagramofthedrive
datasheet.Consultthedrivedatasheettoseewhichswitchesareincludedonaspecificdrive.
TABLE 4.2
Switch Description
Current Scaling Changes the sensitivity of the current sense, thereby reducing the peak and continuous current
limits by a given amount.
Current Loop Proportional Gain
Adjustment
Adjusts the proportional gain of the current loop. For drive model S16A8, there are two Current
Loop Proportional Gain switches that must be set to the same setting.
Current Limit Ratio Sets the continuous-to-peak current limit ratio to a given percentage. The default setting for all
drives is a continuous-to-peak current limit ratio of 50% (i.e., 12 amp peak limit, 6 amp continuous
limit).
Current Loop Integral Gain Activates or deactivates the current loop integral gain. This switch is OFF by default. For drive
model S16A8, there are two Current Loop Integral Gain switches that must be set to the same
setting.
RMS Current Limit Setting Sets the RMS current limit setting on sinusoidal input drives, used to reduce the continuous
current limit to a percentage of the maximum continuous limit. Two RMS Current Limit Setting
switches are used to set the percentage. See the drive datasheet for specific switch configuration.
Peak Current Limit Sets the peak current to 50% or 100% of the maximum peak current limit on sinusoidal input
drives. Depending on the drive model, there are either two or three Peak Current Limit switches
that must all be set to the same setting.
Outer Loop Integration Activation Activates or deactivates the outer loop integration. For Current Mode, outer loop integration should
be deactivated, but should be activated for other modes.
Outer Loop Integral Gain Adjustment Increases or decreases the integral gain of the outer loop.
Duty Cycle Feedback Enables/disables the duty-cycle feedback. Duty-cycle feedback is only enabled when the drive is
configured for Open Loop Mode.
Hall Sensor Commutation Phasing Tells the drive the type of Hall sensor phasing the motor has. Switches between 120 and 60
degree phasing.
Test/Offset Switches the drive between Test mode and Offset mode. In Test mode, the command signal is
adjustable via the Test/Offset potentiometer. In Offset mode, the drive will accept commands via
the reference inputs, but a small amount of offset can be adjusted in order to compensate for
offsets that may be present in the servo system.
PWM and Direction Test Signal Activates or deactivates the PWM and Direction internal test signal, controlled by the PWM Test
Signal Adjustment potentiometer.
Velocity Feedback Polarity Changes the polarity of the internal feedback signal and the velocity monitor output signal.
Inversion of the feedback polarity may be required to prevent a motor run-away condition. See
“Motor Problems” on page 59 for more information.
IR Compensation Activates or deactivates IR feedback. IR feedback should be activated for IR Compensation Mode,
and deactivated for other modes.
Inhibit Logic Sets the logic of the inhibit pins to Active High or Active Low.
Input Range Selection Sets the voltage range of the sinusoidal command input pins. The input range can be set to ±5V or
±10V. Drives contain two Input Range Selection switches that must set to the same setting.
Switch Function Details
4.1.4 Adjustable Acceleration and Deceleration Rate
Onsomedrivemodels,theaccelerationanddecelerationratescanbesetindependentlyusing
through‐holeresistors.Thedrivedatasheetcontainsspecificresistorvaluesandthe
correspondingrampingtime.Theratesarebasedon±10voltstothereferenceinputs.The
"time"listedinthetableonthedrivedatasheetisthetimeittakestoreachthe10voltinput.
Therampingratesarelinearwithrespecttotime.Forexample,iftheinputwereonly5volts,
thetimetoramptothisvoltagewouldbehalfthetimetorampto10volts.Theselocationsare
silk‐screenedonthePCBforeasyidentification.TwoSMTjumpers(0ohmresistors)are
requiredtobesetappropriatelyinordertoenableadjustableacceleration/decelerationrate
control.Thedefaultsettingforbothjumpersistodisableadjustableratecontrol.Thespecific
configurationofthejumpersforadrivearegivenonthedrivedatasheet.
FIGURE 4.1 Tachometer Input Resistance
ANALOG
SERVO DRIVE
50k
Tachometer Input
10k
Optional
Through-Hole
Tach Gain
Resistor
MNALHWIN-01 45
Operation / Initial Setup and Features
4.1.5 Tachometer Input Gain Scaling
Standarddrivetachometerinputsaretypicallypre‐configuredsuchthatthestandard60kinput
resistancescalesthemaximumtachinputvoltageto60V.The60ktachometerinputresistance
isactuallypopulatedwitha50kresistorinserieswitha10kresistor.Mostdriveswitha
tachometerfeedbackinputwillalsohaveathrough‐holeresistorlocationinparallelwiththe
50kresistor.
Thisallowsuserstoreducetheeffectiveinputresistancetoavaluethatmorecloselymatches
theirmaximumapplicationfeedbackvoltageinordertoincreasethetachometerinputgain.An
appropriatetachometerinputresistancevalueshouldbeatleast1000timesthemaximum
tachometervoltagefeedbackvalue.Fromzerotoinfiniteresistance(openconnection),this
through‐holelocationcanscalethetachometer’smaximuminputvoltagerangefrom10Vto
60V.
Todeterminethemaximumfeedbackvoltagefortheapplication:
1. Determinetheabsolutemaximumspeedrequiredofthemotorfortheapplication(Sm,in
kRPM).
2. Lookupthetachometer’svoltagetospeedconstant(Kv,inV/kRPM).
3. Cal
culateforthetachometer’smaximumvoltageoutputintheapplication:
Vmax KvSm
=
Example
Anapplication’smaximummotorspeedis4.7kRPM,andthetachometerisratedfor7
V/kRPM.Usingtheaboveequation,themaximumvoltagefromthetachometerinput,Vmax,
willbe33V.Therefore,theequivalenttachometerinputresistancemustbeatleast33k.
Choosinganequivalentresistancevalueof35k,solvefortherequiredresistanceofthe
through‐holeresistor.
Assolvedforabove,theequivalent35kresistancecanbeacheivedbyaddinga50kthrough‐
holeresistorinparallelwiththeexisting50kresistoronthedrivetachometerinput.
Scaling the tachometer input gain is not a required procedure for all
applications. Most applications will work well even with low gains. The
effect of low gains is only a slower velocity loop response.
Tach Gain Through-Hole Resistor (in kohm) 50 Vmax
()500
60 Vmax
----------------------------------------- 50 35()500
60 35
------------------------------------50k===
MNALHWIN-01 46
Operation / Initial Setup and Features
4.1.6 Current Limiting Procedure
Beforeoperatingadrive,thecurrentoutputofthedrivemustbelimitedbasedonmotorand
systemcurrentlimitations.Dependingonthedrivemodel,ADVANCEDMotionControlsanalog
servodrivesfeatureanumberofdifferentcurrentlimitingmethods.However,theprocedure
forsettingthecurrentlimitwillessentiallybethesameforeachdrive.Consultthedrive
datasheettoseewhatcurrentlimitingoptionsareavailableonaspecificdrive.
Thecurrentlimitingstepsshouldbetakenwithnopowerappliedtothedrive.
1. Thefollowingtwooptionsmaybeusedseparatelyorinconjunctionwitheachotherto
reducethecurrentlimits.Keepinmindthatanycurrentreductionsenactedbytheuseof
anexternalresistorwillcomesecondarytoDIPswitchsettings.
Ifavailable,positionanycurrentscalingorcurrentlimitratioDIPswitchestothe
desiredposition(see“PotentiometerFunctionDetails”onpage43).
Ifavailable,useanexternalresistorconnectedtotheContinuousCurrentLimitingPin
basedonthevaluesgivenonthedrivedatasheet(see“ContinuousCurrentLimitPin”
onpage41).
2. Iffurthercurrentlimitingisnecessary,usetheCurrentLimitpotentiometerto"finetune"
thecurrentlimittoafinalvalue(see“PotentiometerFunctionDetails”onpage43).
Example
A30A8driveisgoingtobeusedwithanapplicationhavingacontinuouscurrentratingof2.5
amps,apeakcurrentrequirementof6amps,andapeakcurrentlimitof10amps.The30A8
hasaCurrentScalingandCurrentLimitRatioswitch,aCurrentLimitpotentiometer,andthe
optionofusinganexternalresistortoreducethecontinuouscurrentlimit.Thisexamplewill
onlyusetheDIPswitchesandpotentiometer.
1. Typicallyitisrecommendedtosetthecurrentlimitsofthedrivebelowthecontinuousand
peakcurrentratingsoftheapplication,allowingsomeheadroomforsafety.Inthiscase,
thedrivecontinuouscurrentlimitwillbechosenat2amps,andthepeakcurrentlimitat
9amps.
2. SettingtheCurrentScalingswitchtoOFFwillscalethepeakandcontinuouscurrentlimits
byhalf,yieldingapeaklimitof15amps,andacontinuouslimitof7.5amps.
3. SettingtheCurrentLimitRatioswitchtoONwillchangethecontinuous‐to‐peakcurrent
ratioto25%,yieldingapeaklimitof15amps,andacontinuouslimitof3.75amps.
4. Tofurtherreducethecurrentlimitstothedesiredvalues,theCurrentLimitpotentiometer
canbeused.Beginwiththecontinuouscurrentrequirement,usingtheequationto
determinethenumberofclockwiseturnsfortheCurrentLimitpotentiometer:
# of turns 2amps
3.75amps
------------------------ 12 1+=
Solvingforthenumberofturnsyieldsapproximately7.5turnsintheclockwisedirection
fromthefullycounter‐clockwiseposition.
5. Sincethecontinuous‐to‐peakratiowassetat25%inStep3,thenumberofturns
calculatedabovewillyieldapeakcurrentlimitofapproximately8amps,thereby
satisfyingboththecontinuousandpeakcurrentrequirementsoftheapplication.
MNALHWIN-01 47
Operation / Initial Setup and Features
4.1.7 Drive Set-up Instructions
Single Phase (Brush Type)
1. Itisrecommendedtoreducethedriveoutputcurrenttoavoidmotoroverheatingduring
thesetupprocedure.Makesurethecurrenthasbeensetappropriatelywithinthesystem
andmotorlimitsbasedontheprocedureoutlinedin“CurrentLimitingProcedure”on
page46.
2. Checkthepowerandconnectittothedrive.Donotconnectthemotorleadwires.
3. Makesurethedriveisinanenabledstateviaallinhibit/enableinputs.Seedrivedatasheet
fordetails.
4. CheckthatthestatusLEDindicatesnormaloperation(GREEN).
5. SetmodeaccordingtothedrivedatasheetforVoltageMode.
6. SettheTest/OffsetswitchtoTestmode.Measurethevoltageacrossthemotoroutputwith
aDCvoltmeter.SlowlyturntheTest/Offsetpotentiometer;thevoltageshouldvarybetween
±busvoltage.SettheoutputvoltagewiththeTest/Offsetpotentiometertoalowvalue.
7. Verifythattheloadcircuitmeetstheminimuminductancerequirementsandthatthe
powersupplyvoltagedoesnotexceedthedriveratedvoltageor150%ofthenominal
motorvoltage.
8. Turnthepoweroff.Connectthemotor.Turnthepowerbackon.Graduallyturnthe
Test/Offsetpotentiometertochangemotorspeedinbothdirections.SettheTest/Offset
switchtoOffset.
9. GroundbothreferenceinputsandthenusingtheTest/Offsetpotentiometer,setthemotor
forzerospeed.
10. Setthecontrolmodesuitablefortheapplication.
Three Phase (Brushless)
1. Itisrecommendedtoreducethedriveoutputcurrenttoavoidmotoroverheatingduring
thesetupprocedure.Makesurethecurrenthasbeensetappropriatelybasedonthe
procedureoutlinedin“CurrentLimitingProcedure”onpage46.
2. Accordingtothethemodeselectiontableonthedrivedatasheet,setthedriveforOpen
LoopMode,andsettheTest/OffsetswitchtoTest.
3. Checkthepowerandconnectittothedrive.Donotconnectthemotorleadwires.
4. Makesurethedriveisinanenabledstateviaallenableinputs.Seedrivedatasheetfor
details.
5. SettheHallSensorCommutationSwitchfortheappropriatephasing(typically120
degree).ConnecttheHallsensorinputs.ThedrivestatusLEDshouldbeGREEN.Manually
turnthemotorshaftonerevolution.TheLEDshouldremaingreen.IftheLEDturnsredor
changesbetweengreenandred:
checktheHallSensorCommutationSwitch
checkpowerfortheHallSensors
checkthevoltageleveloftheHallinputs(seeTable4.3)
for60degreephasinginterchangeHall1andHall2
(formoreinformationsee“InvalidHallSensorState(BrushlessDrivesonly)”onpage58)
MNALHWIN-01 48
Operation / Initial Setup and Features
TABLE 4.3 Commutation Sequence Table
60 Degree 120 Degree Motor
Hall 1 Hall 2 Hall 3 Hall 1 Hall 2 Hall 3 Phase A Phase B Phase C
Valid
1 0 0 1 0 0 HIGH -LOW
1 1 0 1 1 0 - HIGH LOW
1 1 1 0 1 0 LOW HIGH -
0 1 1 0 1 1 LOW -HIGH
0 0 1 0 0 1 - LOW HIGH
0 0 0 1 0 1 HIGH LOW -
Invalid 1 0 1 1 1 1 - - -
0 1 0 0 0 0 - - -
6. Removepower.Inall,therearesixdifferentwaystoconnectthethreemotorwirestothe
MotorA,MotorB,andMotorCpins.Allsixcombinationsmustbetestedtofindtheproper
combination.Thecorrectcombinationshouldyieldapproximatelyidenticalmotorspeed
inbothdirections.Ifthemotorrunsslowerinonedirection,orifthemotorshafthastobe
movedmanuallybyhandtostartthemotor,thecombinationisincorrect.Motorspeedcan
beverifiedbyusingthevelocitymonitororbymeasuringthefrequencyoftheHall
Sensors.
7. Tobegin,connectthethreemotorwiresinanyorder.
8. Applypowertothedrive,andslowlyturntheTest/Offsetpotentiometerinbothdirections.
Observethemotorspeedforbothdirections.Removepowerfromthedrive,andrewire
thethreemotorwiresforadifferentcombination.Testallsixdifferentcombinations
beforeproceeding.
9. Oncethepropercombinationhasbeenfound,settheTest/OffsetswitchtoOffset,ground
bothreferenceinputs,andthenadjusttheTest/Offsetpotentiometerforzerospeed.
10. Setthecontrolmodesuitablefortheapplication.
Three Phase (Brushless) Drive with Brushed Motor ThreePhase(Brushless)drives
arealsocompatiblewithSinglePhase(Brushed)motors.However,becausetherearenoHall
Sensorsonabrushedmotor,oneofthefollowingcourseofactionsmustbetakentoproperly
commutatethedrive:
SettheHallSensorCommutationPhasingDIPswitchfor60‐degreephasing.Leaveallthe
HallSensorinputsonthedriveopen.Theseinputsareinternallypulledhighto+5V,
creatinga"1‐1‐1"commutationstate(seeTable4.3above)whichisavalidstatein60‐
degreephasing.OnlyuseMotorAandMotorBoutputinthisconfiguration.
or:
TieoneoftheHallSensorinputsonthedrivetosignalground.SincetheHallSensorinputs
arebydefaultinternallybroughthighto+5V,thiswillputthedriveinacommutationstate
wheretwoHallinputsarehigh,andoneislow(asshowninTable4.3,havingallthreeHall
inputspulledhighisaninvalidcommutationstatein120‐degreephasing).Dependingon
whichHallSensorinputistiedtoground,consultTable4.3todeterminewhichtwomotor
outputwireswillbeconductingcurrentforthatspecificcommutati onsta te.
Sinusoidal Drive (S-Series)
1. Setthecurrentlimitto10%ofmotorcurrenttoavoidhighspeeds.Seethedrivedatasheet
forcurrentlimitingoptions.
2. Checkthepowerandconnectittothedrive.Donotconnectthemotorleadwires.
MNALHWIN-01 49
Operation / Initial Setup and Features
3. Makesurethedriveisinanenabledstateviaallenableinputs.Seedrivedatasheetfor
details.
4. SincethefeedbackandcommutationonS‐Seriesanalogservodrivesisfedbacktothe
externalmotioncontroller,thesetupprocedurewillbedependentonthetypeofcontroller
inuse.Consulttheinstructionsfortheexternalmotioncontrollertodeterminetheproper
setupmethod.
4.1.8 Tuning Procedure
ThestandardtuningvaluesusedinADVANCEDMotionControlsanalogservodrivesare
conservativeandworkwellinover90%ofapplications.Howeversomeapplicationsand
somemotorsrequiremorecompletecurrentlooptuningtoachievethedesiredperformance.
Thefollowingareindicationsthatadditionalcurrentlooptuningisnecessary:
Motorrapidlyoverheatsevenatlowcurrent
Driverapidlyoverheatsevenatlowcurrent
Vibrationsoundcomesfromthedriveormotor
Themotorhasahighinductance(+10mH)
Themotorhasalowinductance(nearminimumratingofthedrive)
Slowsystemresponsetimes
Excessivetorqueripple
Difficultytuningpositionorvelocityloops
Electricalnoiseproblems
Highpowersupplyvoltage(powersupplyissignificantlyhigherthanthemotorvoltage
ratingornearthedrive’suppervoltagelimit)
Lowpowersupplyvoltage(powersupplyvoltageisnearthedrive’slowervoltagelimit)
Theaboveindicatorsaresubjectiveandsuggestthatthecurrentloopmayneedtobetuned.
Thesecanalsobesignsofotherproblemsnotrelatedtocurrentlooptuning.
Theresistorsandcapacitorsshownunderthecurrentcontrolblockonthedatasheetblock
diagramdeterminethefrequencyresponseofthecurrentloop.Itisimportanttotunethe
currentloopappropriatelyforthemotorinductanceandresistance,aswellasthebusvoltage
toobtainoptimumperformance.BrushtypeandBrushlessdriveshaveasinglecurrentloop,
whileSinusoidal(S‐Series)driveshavethreecurrentloops.Allthreeloopsmustbetunedthe
sameorthedrivewillnotoperateproperly.Theloopgainandintegratorcapacitanceofthe
currentloopmustbothbeadjustedforthetuningtobecomplete.
SincemostADVANCEDMotionControlsservodrivesclosethecurrentloopinternally,poor
currentlooptuningcannotbecorrectedwithtuningfromanexternalcontroller.Onlyafterthe
Improper current loop tuning may result in permanent drive and/or
motor damage regardless of drive current limits.
MNALHWIN-01 50
Operation / Initial Setup and Features
currentlooptuningiscompletecanoptimalperformancebeachievedwiththevelocityand
positionloops.
Thegeneralcurrentlooptuningprocedurefollowsthesesteps:
1. Determineifadditionalcurrentlooptuningisnecessary.
2. Ifavailable,tunethedriveusingthecurrentloopDIPswitches.
3. IfthecurrentloopcannotbesatisfactorilytunedwiththeDIPswitches,thenthecurrent
loopcomponentsmustbechanged.
‐Tunethecurrentloopproportionalgain.
‐Tunethecurrentloopintegralgain.
4. Oncethecurrentloopistuned,thenthevelocityand/orpositionloopsmaybetunedas
wellifnecessary.
FIGURE 4.2 Brushed Drives
Analog Servo
Drive
Motor
Motor +
+Ref
Square
Wave Input
Motor -
Current
Probe or
Resistor
Since the two motor wires are in series, the current through the wires is the same.
The current probe can be attached to either wire with the same results. To keep the
motor from turning during the tuning process the motor shaft must be locked.
Current Loop Proportional Gain Adjustment TheCurrentLoopGainshouldbe
adjustedwiththemotoruncoupledfromtheload,andthemotorsecuredassuddenmotorshaft
movementmayoccur.Thefollowingpointsshouldbekeptinmindbeforebeginningthetuning
procedure:
Brushlessdrivesshouldbeconfiguredfor60degreephasinginordertogetoutput
current.ThecurrentcanbemeasuredthrougheithermotorphaseAorB.
ForSinusoidal(S‐Series)drives,connectthefunctiongeneratorto+REF‐IN‐Aand
signalground,andmeasurethecurrentthroughmotorphaseA.
1. UsetheDIPswitchesandCurrentLimitPotentiometertoselectCurrentMode,theinput
range(ifapplicable)andtosettheappropriatecurrentlimitforthemotor(notethatS‐
SeriesdrivesareautomaticallyinCurrentMode).
2. Connectonlythemotorpowerleadstothedrive.Nootherconnectionsshouldbemadeat
thispoint.
3. Usingafunctiongenerator,applya±0.5V,50‐100Hzsquarewavereferencesignaltothe
inputreferencepins.
4. Shortoutthecurrentloopintegratorcapacitor(s)usingtheappropriateDIPswitchesor
jumpers(seethespecificdrivedatasheetandblockdiagramfordetails).
5. Applypowertothedrive.Useabusvoltagethatisapproximatetothedesiredapplication
voltageorthecurrentloopcompensationwillnotbecorrect.
6. Thedriveshouldbeenabled(GREENLED).Observethemotorcurrentusingacurrent
probeorresistorinserieswiththemotor(<10%ofmotorresistance).Thisobservation
shouldbedoneforboththehighandlowcurrentloopgain(seedrivedatasheetfor
availablecurrentloopgainDIPswitchsettings).Differentdrivesneedtobesetup
differentlytoviewthecurrentloopresponseproperly,asshowninthefollowingfigures.
FIGURE 4.5 Current Loop Response
Time
Target Current
Signal
Output Current
Response
Current
FIGURE 4.4 S-Series Drives
Analog Servo
Drive
Motor
Motor A
Ref In A
Square
Wave Input
Motor B
Current
Probe or
Resistor
Motor C
The current out of the drive can be forced to go
through Motor A and Motor C by applying the square
wave command signal to Ref In A only. Attach the
current probe to either Motor A or Motor C.
The motor shaft does
not need to be locked
since the drive is not
commutating.
FIGURE 4.3 Brushless Drives
Analog Servo
Drive
Motor
Motor A
+Ref
Square
Wave Input
Motor B
Current
Probe or
Resistor
Motor C
The current out of the drive can be forced to go
through Motor A and Motor B by:
1) Disconnecting the Hall sensors from the drive
2) Setting the 60/120 degree phasing switch to 60 degrees
The motor shaft does
not need to be locked
since the drive will not
commutate without
the Hall Sensors.
MNALHWIN-01 51
Operation / Initial Setup and Features
7. Thedriveoutputshouldfollowtheinputcommand.Thebestresponsewillbeacritically
dampedoutputwaveform,similartowhatisshowninFigure4.5.
8. IfneithercurrentloopgainDIPswitchpositiongivesapropersquarewaveresponse,then
thecurrentloopgainresistorsmayneedtobechangedtooptimizetheresponse.See
“Through‐holeComponentTuning”onpage53formoreinformation.
9. Whentheproperresponsehasbeenachieved,removetheinputsignalfromthedrive,and
disconnectpower.
Current Loop Integrator Adjustment
1. EnabletheCurrentLoopIntegratorthroughDIPswitchorjumpersettings(seethedrive
datasheetforavailableoptions).
MNALHWIN-01 52
Operation / Initial Setup and Features
2. Usingafunctiongenerator,applya±0.5V,50‐100Hzsquarewavereferencesignal.
3. Applypowertothedrive.Useabusvoltagethatisapproximatetothedesiredapplication
voltageorthecurrentloopcompensationwillnotbecorrect.
4. Thedriveshouldbeenabled(GREENLED).Observethemotorcurrentusingacurrent
probeorresistorinserieswiththemotor(<10%ofmotorresistance).Ifavailable,useany
DIPswitchestoadjustthecurrentloopintegralgaincapacitance.Theoutputshouldsettle
toaflattopwithminimalcurrentfollowingerror(differencebetweencommanded
currentandactualcurrent).Therecanbesomeovershoot,butitshouldbelessthan10%.
Because the oscilloscope measurements are voltage representations of
current, the commanded and actual currents will most likely have
different current to voltage scalings and tolerances. Therefore, even with
perfect current loop tuning, the two amplitudes (scope traces) may not
line up as shown in Figure 4.5.
5. Ifthesquarewaveoutputovershootstoomuchorisover‐damped(sluggish),thecurrent
loopintegratorcapacitorwillneedtobechangedtooptimizetheresponse.See“Through‐
holeComponentTuning”onpage53formoreinformation.
Voltage or Velocity Loop Tuning Theseadjustmentsshouldinitiallybeperformedwith
themotoruncoupledfromthemechanicalload.
ConfigurethedriveforthedesiredoperationmodeusingtheDIPswitchsettings(seetheblock
diagramonthespecificdrivedatasheet).
VoltageLooporOpenLoop‐Compensatingthevoltagelooprequirestheleastamountof
effort.TurntheLoopGainpotentiometerclockwiseuntiloscillationoccurs,thenbackoff
oneturn.
IRFeedbackLoop‐Startwithaveryhigh(oropen)IRfeedbackresistorwithan
unloadedmotorshaft.Commandalowmotorspeed(about20‐200RPM).WithouttheIR
feedbackthemotorshaftcanbestalledeasily.DecreasingtheIRfeedbackresistorwill
makethemotorshaftmoredifficult tostop.Toomuc hIR fe edback,i.e.toolowaresistor
value,willcausemotorrun‐awaywhentorqueisappliedtothemotorshaft.
VelocityLoop(Encoder,Halls,orTachometer)‐Thevelocityloopresponseis
determinedbytheLoopGainpotentiometer.Alargerresistancevalue(clockwise)results
inafasterresponse.Thevelocityintegratorcapacitorcanbeusedtocompensatefora
largeloadinertia.Alargeloadinertiawillrequirealargercapacitorvalue.Eitherusingthe
DIPswitchestoaddinanextracapacitororinstallingathrough‐holecapacitormay
accomplishthis(see“Through‐holeComponentTuning”onpage53formore
information).Theneedforanextracapacitorcanbeverifiedbyshortingoutthevelocity
integratorcapacitorbyDIPswitchsetting.Ifthevelocityloopisstablewiththecapacitor
shortedout,andunstablewiththecapacitorinthecircuit,thenalargercapacitorvalueis
needed.
Analog Position Loop Useofanencoderortachometerisrecommendedtoobtaina
responsivepositionloop,sincethepositionloopisclosedaroundthevelocityloop.Firstthe
velocityloopmustbestabilized(orvoltageloopforundemandingapplications).Theposition
loopgainisdeterminedbythefixedgainoftheinputdifferentialamplifierofthedrive.For
bestresultstheservodrivecanbeorderedwithahigherdifferentialgain.
MNALHWIN-01 53
A Through-hole Component Tuning
Ingeneral,ADVANCEDMotionControlsanalogservodriveswillnotneedtobefurthertunedwiththrough‐hole
components.However,forapplicationsrequiringmoreprecisetuningthanwhatisofferedbytheDIPswitches
andpotentiometers,thedrivecanbemanuallymodifiedwiththrough‐holeresistorsandcapacitorsasdenoted
inTableA.1below.Onmostanalogdrives,thethrough‐holelocationsarenotpopulatedwhenthedriveis
shipped.S‐Seriesdriveshoweverareshippedwiththrough‐holecomponentsinpinreceptaclesforeasy
removal.
ItisrecommendedtocontactADVANCEDMotionControlstodiscussapplicationrequirementsandproperdrive
tuningpriortomakinganyadjustments.
Beforeattemptingtoaddthrough‐holecomponentstotheboard,see“TuningProcedure”onpage49.Some
generalrulestofollowwhenaddingthrough‐holecomponentsare:
Alargerresistorvaluewillincreasetheproportionalgain,andthereforecreateafaster
responsetime.
Usenon‐polarizedcapacitors.
Alargercapacitorvaluewillincreasetheintegrationtime,andthereforecreateaslower
responsetime.
A.1 Through-Hole Tuning
Propertuningusingthrough‐holecomponentswillrequirecarefulobservationoftheloop
responseonadigitaloscilloscopetofindtheoptimalthrough‐holecomponentvaluesforthe
specificapplication.
Thefollowingaresomehelpfulhintstomakethelooptuningprocesseasier:
UsepinreceptaclestoreducetheneedforsolderingSomedriveshavepinreceptacles
thatmakeiteasytochangethetuningresistorsandcapacitorswithouttheneedfor
soldering.Otherdrivesdonothavethesereceptacles,sosolderingisrequired.Toavoidthe
needtosoldereverytimeatuningvalueneedstobechangedapinreceptaclecanbe
solderedintothethethroughholelocationofthetuningcomponent.
Any damage done to the drive while performing these modifications will
void the product warranty.
MNALHWIN-01 54
Through-hole Component Tuning / Through-Hole Tuning
Useapotentiometertofindthecorrectcurrentlo o p gainvalueApotentiometercan
beusedtocontinuouslyadjustthegainresistancevalueduringthetuningprocess.Installa
potentiometerinplaceofthegainresistor.Adjustthepotentiometerwhileviewingthe
currentloopresponseonanoscilloscope.Whentheoptimalresponseisachievedturnoff
thedrive,removethepotentiometer,andmeasurethepotentiometerresistance.Usethe
closestresistorvalueavailable.(Note:Thismethodwillnotworkiftheoptimaltuning
valueisbeyondtherangeofthepotentiometer.Thismethodalsodoesnotworkforsine
drivessinceitisdifficulttokeepthetuningvaluesinthethreecurrentloopsthesame).
Progressivelydou b le theresistancevaluewhentuningthecurrentloopgainfor
fasterresultsIfthegainresistorneedstobeincreasedduringthetuningprocessthe
fastestresultsareachievedbydoublingtheresistancefromthelastvaluetried.Usethis
methoduntilovershootisobservedandthenfinetunefromthere.
Beawareofanycomponentsthatareinparallelwiththevaluesyouaretryingto
tuneOnsomedrives,theremaybeoneormoregainresistorsinparallelwiththe
through‐holeresistorlocation.TheequivalentresistancevalueoftheSMTresistorsonthe
boardandtheadditionalthrough‐holeresistorwillbelimitedbythesmallestresistance
valueofthegroupofresistorsinparallel.Consulttheblockdiagramonthedrivedatasheet
todeterminethespecificresistorvalues.Thesamesituationcanoccurwhentryingto
decreasetheintegratorcapacitorvalue,sincecapacitorsinparallelwillbeaddedtogether.
Safety
Always remove power when changing components on the drive.
Float the oscilloscope and function generator grounds to avoid large
ground currents.
Decouple the motor from the load to avoid being injured by sudden
motor movements.
TableA.1liststhedifferentthrough‐holecomponentsthatcanbeusedforlooptuning.Some
modelsrequiremorethanonecomponentthatmusthaveidenticalvalues.Consultthedrive
datasheettoseewhichoptionsareavailableforaspecificdrive.PleasecontactADVANCED
MotionControlsApplicationsEngineeringforassistanceindeterminingthePCBlocationofthe
through‐holecomponentoptionsforthedrivemodelinuse.
TABLE A.1 Through-Hole Tuning Component
Component Description
Velocity Loop Integrator Through-hole capacitor that can be added for more precise velocity loop tuning.
Current Loop Integrator Through-hole capacitor that can be added for more precise current loop tuning.
Current Loop Proportional Gain Through-hole resistor that can be added for more precise current loop tuning.
MNALHWIN-01 55
Through-hole Component Tuning / Through-Hole Tuning
A.1.1 Procedure
BeforechanginganycomponentsonthePCBboard,followthestepsin“TuningProcedure”on
page49todetermineifanyadditionaltuningisnecessary.Observethedriveoutputcurrent
responseonanoscilloscopeforallthedifferentDIPswitchgainsettings(ifavailableonthe
driveinuse).Iffurthertuningisnecessaryordesired,pleasecontactADVANCEDMotion
Controlsbeforeproceedingthroughthethroughfollowingsteps.
Tune the Current Loop Proportional Gain
1. Followthestepsoutlinedin“CurrentLoopProportionalGainAdjustment”onpage50up
throughStep8.
2. Observethedrivecurrentresponseonanoscilloscope.Smallsteptuningisdifferentthan
largesteptuning,soadjustthefunctiongeneratorsquarewaveamplitudesothedrive
outputsacurrentstepsimilartowhatwillbeexpectedintypicaloperation.
Ifthecurrentresponsedoesnotrisequicklyenoughtothestepinputcommand,orif
itneverreachestheinputcommand,theequivalentresistanceofthecurrentloop
proportionalgainresistorwillneedtobeincreased.Thiswillincreasethecurrent
loopproportionalgain,andachieveafaster,moreaggressiveresponse.
Ifthecurrentresponseovershootsthestepinputcommand,theequivalentresistance
ofthecurrentloopproportionalgainresistorwillneedtobedecreased.Thiswill
decreasethecurrentloopproportionalgain,andprovideaslower,morestable
response.
3. Findinganacceptableequivalentresistancemaytakeafewiterations.Asoutlinedinthe
previoussection,usingpinreceptaclesoranexternalpotentiometerwillmaketheprocess
easier.Remembertoremovepowerfromthedrivepriortoremovingoraddingany
componentstothePCBboard.Alsorememberthatitisnotjustthethrough‐holeresistor
valuethatisimportant,buttheequivalentresistanceofthethrough‐holeresistorandany
SMTresistorsthatmaybeinparallelwiththethrough‐holelocation.Usetheblock
diagramonthedrivedatasheettoassistindeterminingtheequivalentgainresistance.
4. Useanequivalentresistancevaluethatbringsthecurrentresponserighttothepointof
overshoot.Ifthereisalargeamountofovershoot,orifthereareoscillations,decreasethe
equivalentresistancevalueuntilthereislittleornoovershoot.Dependingonthe
applicationrequirements,alittleovershootisacceptable,butshouldneverexceed10%.
5. Whenanacceptableresistancevaluehasbeenfound,removepowerfromthedrive.
Tune the Current Loop Integral Gain
1. Aftertheproportionalgainresistancehasbeenadjustedtoanacceptablevalue,re‐enable
thecurrentloopintegratorcapacitor(eitherthroughDIPswitchorjumpersettings,
dependingonthedrivemodel).
Remember that for Sinusoidal Input (S-Series) drives, all three current
loops must have identical through-hole component values (i.e. the
through-hole resistor value for phase A must match the through-hole
resistor values for phases B and C, and the through-hole capacitor value
for phase A must match the through-hole capacitor values for phases B
and C.
MNALHWIN-01 56
Through-hole Component Tuning / Through-Hole Tuning
2. Usingthesamefunctiongeneratorinputcommandasintheprevioussection,apply
powertothedriveandobservethecurrentloopresponseonanoscilloscope.
3. Dependingonthedrivemodel,thecurrentloopintegratorcapacitorcanbechangedor
shortedoutofthecircuitbyDIPswitchsetting.Testbothsettingswhileobservingthe
currentloopresponse.
Ifthecurrentresponsesquarewaveoscillatesorovershoots,alargerequivalent
capacitancevalueisnecessary.
Ifthecurrentresponsesquarewavecornersaretoorounded,asmallerequivalent
capacitancevalueisnecessarytosharpenthecorners.
4. Asintheprevioussection,usingpinreceptaclesatthethrough‐holelocationswillgreatly
assistinfindinganacceptablecapacitancevalue.Alsokeepinmindthatthethrough‐hole
capacitorlocationmaybeinparallelwithSMTcapacitorsonthePCBboard.Usetheblock
diagramonthedrivedatasheettodeterminetheequivalentintegratorcapacitancevalue
(capacitorsinparalleladdtogether).
5. Althoughtheidealcurrentloopresponseafterintegralgaintuningwillbeacritically
dampedsquarewave,theapplicationrequirementswilldeterminewhatthedesired
responsewillbe(i.e.howmuchovershoot,steady‐stateerror,oscillation,isacceptable).
Velocity Loop Integral Gain Tuning Thevelocityloopproportionalgainisadjustedbythe
on‐boardLoopGainpotentiometer.ThevelocityloopintegralgaincanbeadjustedbyDIP
switchsettingssimilartothecurrentloopintegralgain(capacitancevaluecanbechanged,
capacitorcanbeshortedout,extracapacitorcanbeaddedinparallel).However,somedrive
modelsalsoincludeadditionalthrough‐holelocationswherethrough‐holecapacitorscanbe
addedtofurtheradjustthevelocityloopintegralgain.Asintuningthecurrentloopintegral
gain,uselargervalueequivalentcapacitorstocorrectforovershootoroscillation,andsmaller
valueequivalentcapacitorsforaquickerresponsetime.
MNALHWIN-01 57
B Troubleshooting
Thissectiondiscusseshowtoensureoptimumperformanceand,ifnecessary,getassistancefromthefactory.
B.1 Fault Conditions and Symptoms
Aninoperativedrivecanindicateanyofthefollowingfaultconditions:
over‐temperature
over‐voltage
under‐voltage
short‐circuits
invalidcommutation
inhibitinput
power‐onreset
Alloftheabovefaultconditionsareself‐resetbythedrive.Oncethefaultconditionisremoved
thedrivewillbecomeoperativeagainwithoutcyclingpower.Todeterminewhetherthedrive
isinafaultstate,measurethe“FaultOutput”pinwithadigitalmultimeterorvoltmeter.Ahigh
atthispin(oralow,dependingonthedrivemodelandconfiguration‐seedrivedatasheet)will
indicatethatthedriveissubjecttooneoftheabovefaultconditions,andthedrivewillbe
disableduntilthedriveisnolongerinafaultstate.Toremovethefaultcondition,followthe
instructionsinthesectionsbelowdescribingeachpossiblefaultstate.
Over-Temperature Verifythatthebaseplatetemperatureislessthanthemaximumallowable
baseplatetemperatureasdenotedonthedrivedatasheet,typically65ºC(149ºF)or75ºC
(167ºF).Thedriveremainsdisableduntilthetemperatureatthedrivebaseplatefallsbelow
thisthreshold.
Over-Voltage Shutdown
1. ChecktheDCpowersupplyvoltageforavalueabovethedriveover‐voltageshutdown
limit.IftheDCbusvoltageisabovethislimit,checktheACpowerlineconnectedtotheDC
powersupplyforpropervalue.
2. Checktheregenerativeenergyabsorbedduringdeceleration.Thisisdonebymonitoring
theDCbusvoltagewithavoltmeteroroscilloscope.IftheDCbusvoltageincreasesabove
thedriveover‐voltageshutdownlimitduringdecelerationorregeneration,ashunt
MNALHWIN-01 58
Troubleshooting / Fault Conditions and Symptoms
regulatormaybenecessary.See“RegenerationandShuntRegulators”onpage23formore
information.
Under-Voltage Shutdown Verifypowersupplyvoltagesforminimumconditionsper
specifications.Alsonotethatthedrivewillpullthepowersupplyvoltagedownifthepower
supplycannotprovidetherequiredcurrentforthedrive.Thiscouldoccurwhenhighcurrent
isdemandedandthepowersupplyispulledbelowtheminimumoperatingvoltagerequired
bythedrive.
Short Circuit Fault
1. Checkeachmotorleadforshortswithrespecttomotorhousingandpowerground.Ifthe
motorisshorteditwillnotrotatefreelywhennopowerisappliedwhileitisuncoupled
fromtheload.
2. Disconnectthemotorleadstoseeifthedrivewillenablewithoutthemotorconnected.If
thedriveenableswiththemotordisconnected,thereisapossibleshortcircuitinthe
motorwiring.
3. Measuremotorarmatureresistancebetweenmotorleadswiththedrivedisconnected.
Verifythesemeasurementsagainstthemotordatasheettodetermineifthereisashortor
opencircuitinthemotorwindings.
Invalid Hall Sensor State (Brushless Drives only) Seethe“CommutationSequence”
tablein“HallSensors”onpage12forvalidcommutationstates.Ifthedriveisdisabledcheck
thefollowing:
1. MakesurethattheHallSensorCommutationPhasingswitchisinthecorrectsettingper
motordatasheets.Whendrivingasinglephase(brushedtype)motorwithathreephase
(brushless)driveusethe60‐degreephasesetting(see“ThreePhase(Brushless)Drive
withBrushedMotor”onpage48formoreinformationonthisparticularconfiguration).
2. CheckthevoltagelevelsforalltheHallSensorinputs.Turnthemotorbyhandwhile
measuringtheHallSensorinputstoverifythatallthreeHallSensorsarechanging.The
voltageshouldreadapproximately+5Vfora"high(1)"Hallstate,andapproximately0V
fora"low(0)"Hallstate.
3. MakesureallHallSensorlinesareconnectedproperly.
Inhibit Input Checkinhibitinputforcorrectpolarity(thatis,pullto‐groundtoinhibitorpullto‐
groundtoenable).InhibitconfigurationdependseitherontheDIPswitchsettingsora0ohm
SMTresistormarkedontheboard.Also,keepinmindthatnoiseontheinhibitlinecouldbea
causeforafalseinhibitsignalbeinggiventothedrive.
Power-On Reset Alldriveshaveapower‐onresetfunctiontoensurethatallcircuitryonthe
boardisfunctionalpriortoenablingthedrive.Theboardwillonlybedisabledmomentarily,
andwillquicklyenableuponpowerup.
B.1.1 Overload
Verifythattheminimuminductancerequirementismet.Iftheinductanceistoolowitcould
appearlikeashortcircuittothedriveandthusitmightcausetheshortcircuitfaulttotrip.
FIGURE B.1 Peak Current Fold-Back
Continuous Current Limit
212
Peak Current Limit
t(s)
Drive Current
Output
Amps
0
Sustained maximum current demand, when switching between positive
and negative maximum current without allowing sufficient time for fold-
back, will result in drive damage. Drive RMS current should be below the
continuous current setting!
MNALHWIN-01 59
Troubleshooting / Fault Conditions and Symptoms
Excessiveheatingofthedriveandmotorisalsocharacteristicoftheminimuminductance
requirementnotbeingmet.Seedrivedatasheetforminimuminductancerequirements.
B.1.2 Over-Current
WiththeexceptionofS‐Series(sinusoidalcommandinput)andDirectPWMcommand(e.g.
"BD")drives,analogservodrivesincorporatea“fold‐back”circuitforprotectionagainstover‐
current.This“fold‐back”circuitusesanapproximate“I2t”algorithmtoprotectthedrive.Drives
canrunatpeakcurrentforamaximumof2seconds(eachdirection).Currentsbelowthispeak
currentbutabovethecontinuouscurrentcanbesustainedforalongertimeperiod,andthe
drivewillautomaticallyfoldbackatanapproximaterateof"I2t"tothecontinuouscurrentlimit
withinatimeframeoflessthan10seconds.Anover‐currentconditionwillnotcausethedrive
tobecomedisabled.
OnS‐Seriesdrives,iftheRMScurrentthroughanymotorphaserisesabovethemaximum
continuoussinewavecurrentvalue,theovercurrentfaultoutputpinwilltriggerafaultstate,
andthedrivewillbedisableduntiltheRMScurrentvaluehasreturnedtoavaluewithinthe
acceptableoperatingrange.
B.1.3 Motor Problems
Amotorrun‐awayconditioniswhenthemotorspinsrapidlywithnocontrolfromthe
commandinput.Themostlikelycauseofthiserrorcomesfromhavingthefeedbackelement
connectedforpositivefeedback.Thiscanbesolvedbychangingtheorderthatthefeedback
elementlinesareconnectedtothedrive,orchangingthefeedbackpolarityswitchontheDIP
switchbanktotheoppositesetting.SeethedrivedatasheetformoreinformationonDIP
switchsettings.
AnothercommonmotorissueforbrushlessmotorswithHallSensorcommutationiswhenthe
motorspinsfasterinonedirectionthanintheotherforthesamevelocitycommandinthe
oppositedirection.Thisistypicallycausedbyimpropercommutation,usuallybecausethe
motorpowerwiresareconnectedinthewrongorderwithrespecttotheHallSensorwiring.
Tryallsixcombinationsofconnectingthemotorpowerwirestothedrivetofindthecorrect
MNALHWIN-01 60
Troubleshooting / Technical Support
commutationorder.Thepropercombinationofmotorwireswillyieldsmoothmotionand
identicalspeedsinbothdirections.Impropercombinationswillcausejerkymotion,slow
movementinonedirection,and/oraudiblenoise.Asafinalverificationthatthecommutation
iscorrect,usetheVelocityMonitorOutputpintomeasuremotorspeedinbothdirections(see
“VelocityMonitorOutput”onpage42formoreinformation).Thiscanalsobecausedbyinvalid
Hallphasing.Checktoseeifthedriveissetfor120‐or60‐degreephasing,andverifythatthe
driveDIPswitchsettingcorrespondstotheHallphasingusedonthemotor.See“HallSensors”
onpage12formoreinformation.
B.1.4 Causes of Erratic Operation
Impropergrounding(i.e.drivesignalgroundisnotconnectedtosourcesignalground).
Noisycommandsignal.Checkforsystemgroundloops.
Mechanicalbacklash,dead‐band,slippage,etc.
Noisyinhibitinputline.
Excessivevoltagespikesonbus.
B.2 Technical Support
FIGURE B.2
2
1
4
3
Analog Product Label
Forhelpfromthemanufacturerregardingdriveset‐uporoperatingproblems,pleasegather
thefollowinginformation.
B.2.1 Product Label Description
Thefollowingisatypicalexampleofaproductlabelasitisfoundonthedrive:
1. EIADateCode:Thedatecodeisa4‐digitnumbersignifyingtheyearandweekthatthe
drivewasmanufactured.Thefirsttwodigitsdesignatetheyearandthesecondtwodigits
designatetheweek.Forexample,theabovepartwouldhavebeenbuiltduringthetwenty‐
secondweekof2009.
2. Serialnumber:Theserialnumberisa5‐digitnumberfollowedbya4‐digitnumber.
3. Versionnumber:Threedigitcodethatreferstoproductversion.Differentversionsreflect
minorcomponentvaluechanges.RsignifiesRoHScompliancy.
4. Partnumber:Refertothedrivedatasheetsfortypicalpartnumbers.Thelastletterrefers
totherevision(intheaboveexampleG).ThepartnumbercanbeproceededbyanX,
whichsignifiesaprototypeunit.Thepartnumbercanalsohaveasuffix(e.g.B30A40G‐
AMC),whichdesignatesaspecialversionofthestandarddrive(B30A40Gisthestandard
drive,AMCdesignatesthespecialversion).
MNALHWIN-01 61
Troubleshooting / Technical Support
B.2.2 Drive Model Information
DCbusvoltageandrange
Motortype(brushed,brushless,ACinduction)
Motorcharacteristics(inductance,torqueconstant,windingresistance,etc.)
PositionofallDIPswitches
Lengthandmake‐upofallwiringandcables
Ifbrushless,includeHallsensorinformation
Typeofcontroller
Fulldescriptionoffeedbackdevices
Descriptionofproblem:instability,run‐away,noise,over/undershoot,etc.
Completepartnumberandserialnumberoftheproduct.Originalpurchaseorderis
helpful,butnotnecessary
B.2.3 Warranty Returns and Factory Help
Sellerwarrantsthatallitemswillbedeliveredfreefromdefectsinmaterialandworkmanship
andinconformancewithcontractualrequirements.TheSellermakesnootherwarranties,
expressorimpliedandspecificallyNOWARRANTYOFMERCHANTABILITYORFITNESSFOR
APARTICULARPURPOSE.TheSeller'sexclusiveliabilityforbreachofwarrantyshallbe
limitedtorepairingorreplacingattheSeller'soptionitemsreturnedtoSeller'splantatBuyer's
expensewithinoneyearofthedateofdelivery.TheSeller'sliabilityonanyclaimofanykind,
includingnegligence,forlossordamagearisingoutof,connectedwithorresultingfromthis
order,orfromtheperformanceorbreachthereoforfromthemanufacture,sale,delivery,
resale,repairoruseofanyitemorservicescoveredbyorfurnishedunderthisordershallin
nocaseexceedthepriceallocabletotheitemorserviceorpartthereofwhichgivesrisetothe
claimandintheeventSellerfailstomanufactureordeliveritemsotherthanstandardproducts
thatappearinSeller'scatalog.Seller'sexclusiveliabilityandBuyer'sexclusiveremedyshallbe
releaseoftheBuyerfromtheobligationtopaythepurchaseprice.INNOEVENTSHALLTHE
SELLERBELIABLEFORSPECIALORCONSEQUENTIALDAMAGES.Buyerwilltakeall
appropriatemeasurestoadviseusersandoperatorsoftheproductsdeliveredhereunderofall
potentialdangerstopersonsorproperty,whichmaybeoccasionedbysuchuse.Buyerwill
indemnifyandholdSellerharmlessfromallclaimsofanykindforinjuriestopersonsand
propertyarisingfromuseoftheproductsdeliveredhereunder.Buyerwill,atitssolecost,carry
liabilityinsuranceadequatetoprotectBuyerandSelleragainstsuchclaims.
Allreturns(warrantyornon‐warranty)requirethatyoufirstobtainaReturnMaterial
Authorization(RMA)numberfromthefactory.RequestanRMAnumberby:
web www.a-m-c.com/download/form/form_rma.html
telephone (805) 389-1935
fax (805) 389-1165
e-mail amcsupport@a-m-c.com
MNALHWIN-01 I
Index
Symbols
±10VAnalogCommand.................10
±10VAnalogInputWiring ............ 36
A
ACPowerSupplies ........................33
ACSupplyFrequency ......................9
ACSupplyVoltageRange.................9
AdjustableAccel.andDecel. .......... 44
AgencyCompliances .......................ii
Altitude............................................26
AnalogPositionLoopMode........... 16
AnalogPositionLoopTuning........ 52
AttentionSymbols ...........................iii
B
BaseplateTemperatureRange ......26
Brushed±10VAnalogDCDrives ....5
BrushedACSupplyDrives .............. 5
BrushedPWMInputDCDrives ......5
BrushedServoDrives...................... 7
Brushless±10VAnalogDCDrives ..5
BrushlessACSupplyDrives ............5
BrushlessPWMInputDCDrives .... 5
BrushlessServoDrives.................... 7
BrushlessServoSystem...................8
BusFuse ........................................... 9
C
CapacitiveInterferenceCoupling .31
CE‐EMCWiringRequirements...... 28
CentralPointGrounding ...............30
CommandInputs............................10
CommutationSequenceTable.13, 48
CompanyWebsite ............................ii
ContinuousCurrentLimitPin.......41
ContinuousRegeneration..............25
ControllerChassis .......................... 30
Controller‐basedCommutation.......8
Current(Torque)Mode .................14
CurrentLimitPotentiometer.........43
CurrentLimiting ............................46
CurrentLoopGain .........................50
CurrentLoopIntegrator ................ 51
CurrentMonitorOutput ................40
CurrentReferenceOutput.............41
CustomModels .................................5
D
DaisyChains...................................32
DateCode........................................60
DCBusOverVoltageLimit ..............9
DCPowerSupplies ........................33
DCPowerSupplyWiring...............33
DCSupplyVoltageRange.................9
DIPSwitchSettings........................44
DriveCaseGrounding ...................30
DriveDatasheet................................4
DriveSet‐upInstructions.........47–49
DwellTime .....................................18
E
EIADateCode.................................60
ElectromagneticInterference ........31
EncoderVelocityMode ..................15
EnvironmentalSpecifications .......26
ErrorSignal.................................... 11
ExternalFilterCard........................19
F
FACDriveModels ...........................33
FaultConditions .......................57–59
FaultOutput....................................42
FeedbackPolarity ..........................11
FeedbackSpecifications ..........11–13
FeedbackWiring......................34–35
Foldback.........................................59
FrequencyFactor ...........................25
G
GroundLoops ..........................30, 32
Grounding ......................................30
H
HallSensors
Feedback ....................................12
Wiring.........................................34
HallVelocityMode..........................15
Humidity.........................................26
I
Impedance ......................................31
IncrementalEncoder
Feedback ....................................11
Wiring .........................................35
InhibitInput.............................41, 58
InputReferenceWiring...........35–38
InterferenceCoupling....................31
InternalBusCapacitance.................9
InternalShuntResistance................9
InternalShuntResistor
PowerRating ................................9
Turn‐onVoltage ...........................9
InvalidHallCommutation .............58
IRCompensationMode .................16
IRFeedbackLoopTuning .............52
IsolatedPowerSupply ...................22
Isolation ..........................................22
L
LinearMotorEquation...................18
Lock‐out/tag‐outProcedures..........1
LoopGainPotentiometer...............43
LowVoltagePowerOutputs...........42
LVDRequirements .........................27
M
MagneticInterferenceCoupling ...31
Max.ContinuousOutputCurrent....9
Max.PeakOutputCurrent...............9
Max.PowerDissipationatContinuous
Current .............................9
MechanicalShock ..........................26
MinimumLoadInductance .............9
ModelMask ......................................4
ModesofOperation..................14–16
AnalogPositionLoop .................16
Current(Torque) ........................14
EncoderVelocity.........................15
HallVelocity................................15
IRCompensation........................16
OpenLoop ..................................14
TachometerVelocity...................15
VoltageMode ..............................16
MotionControlSystem.....................6
Motor"Run‐Away" ......................... 11
MotorBack‐EMFVoltage ...............19
MotorChassis.................................30
MotorCurrent ..........................18, 20
/
II MNALHWIN-01
MotorCurrentFrequency ............. 19
MotorForce ....................................19
MotorInductance .......................3, 19
Overload .....................................58
MotorProblems .............................59
Moto rRes is tance ............................19
MotorRun‐Away ............................59
MotorTorqueConstant..................18
Moto rVoltage ........................... 18, 20
MotorWiring..................................32
MountingOptions ..........................39
MoveProfile ...................................17
MultiplePowerSupplyWiring......33
N
NegativeFeedback ......................... 11
Noise............................................... 31
NominalPowerSupplyVoltage .... 20
O
OpenLoopMode............................14
Over‐Current..................................59
Overload ......................................... 58
Over‐Temperature.......................... 57
Over‐VoltageShutdown .................57
P
PartNumber ..................................60
PartNumberingStructure...............4
PEGround ......................................30
PeakCurrentFold‐back .................59
PeakTorque ...................................18
PinFunctions ...........................40–42
PositiveFeedback .......................... 11
PotentiometerFunctions ...............43
PotentiometerTestPoints .............43
PowerGround................................30
PowerOutputs,LowVoltage..........42
PowerStageSpecifications..............9
PowerSupplyCapacitance..2, 25, 32
PowerSupplyChassis ...................30
PowerSupplyCurrent...................21
PowerSupplyOutputCurrent 20, 25
PowerSupplyWiring ....................32
Power‐onReset..............................58
ProductLabel .................................60
ProductsCovered .............................4
ProtectiveEarth .............................30
PWMandDirectionCommand .....10
PWMandDirectionInputWiring.37
PWMCurrentControlCircuit..........6
R
REFIN,‐..........................................35
REFIN,+.........................................35
ReferenceGainPotentiometer ......43
Regeneration ..................................23
Continuous .................................25
Returns ...........................................61
Revision ..........................................60
RevisionHistory............................. iii
RMSTorque....................................18
S
Safety ............................................1–3
ScalingFactor .................................15
SelectionandSizing .................17–26
Serialnumber ................................60
ServoDriveTheory......................6–8
Shielding ...................................30, 31
Shock/Vibration ............................26
ShortCircuitFault..........................58
ShuntFuse........................................9
ShuntRegulator........................21, 23
SignalGround ................................30
SinglePhaseServoDrives ...............7
Single‐PhaseACSupply.................34
SinusoidalCommand.....................10
SinusoidalInputACSupplyDrives .5
SinusoidalInputDCDrives .............5
SinusoidalInputWiring ................38
StandardDriveModels .....................5
SwitchFunctions............................44
SwitchingFrequency.......................9
SystemRequirements ..............17–26
SystemVoltageRequirement ........18
T
Tachometer
Feedback ....................................13
VelocityMode .............................15
Wiring .........................................35
TechnicalSupport..........................60
TestPoints(Pots) ...........................43
Test/OffsetPotentiometer.............43
ThreePhaseServoDrives ...............7
Three‐PhaseACSupply .................34
Through‐holeComponents............53
Torque.............................................18
Trademarks ..................................... ii
Troubleshooting .......................57–61
Tuning
Procedure .............................49–52
Through‐HoleComponents.53–56
TwistedPairWires.........................31
U
Under‐VoltageShutdown...............58
V
VelocityLoopTuning .....................52
VelocityMonitorOutput.................42
VelocityScalingFactor ...................42
Vibration.........................................26
VoltageDropInterference .............31
VoltageLoopTuning ......................52
VoltageMode ..................................16
VoltageRipple.................................25
W
WarningSymbols ........................... iii
WarrantyInfo.................................61
WarrantyReturns ..........................61
WireDiameter................................31
WireGauge .....................................31
Wiring .......................................31–38
Analog Drive Product Family
Hardware Installation Manual
MNALHWIN-01
3805 Calle Tecate Camarillo, CA 93012-5068
Tel: (805) 389-1935 Fax: (805) 389-1165 www.a-m-c.com

Navigation menu