CCNA Routing And Switching Study Guide
User Manual:
Open the PDF directly: View PDF .
Page Count: 1178
CCNA
®
Routing and Switching
Study Guide
CCNA
®
Routing and Switching
Study Guide
Todd Lammle
Senior Acquisitions Editor: Jeff Kellum
Development Editor: Pete Gaughan
Technical Editors: John Swartz and Dax Mickelson
Production Editor: Christine O’Connor
Copy Editor: Judy Flynn
Editorial Manager: Pete Gaughan
Production Manager: Tim Tate
Vice President and Executive Group Publisher: Richard Swadley
Associate Publisher, Sybex: Chris Webb
Media Project Manager I: Laura Moss-Hollister
Media Associate Producer: Marilyn Hummel
Media Quality Assurance: Doug Kuhn
Book Designers: Judy Flynn and Bill Gibson
Compositor: Craig Woods, Happenstance Type-O-Rama
Proofreader: Sarah Kaikini, Word One New York
Indexer: Robert Swanson
Project Coordinator, Cover: Katherine Crocker
Cover Designer: Ryan Sneed
Copyright © 2013 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published by John Wiley & Sons, Inc. Indianapolis, Indiana
Published simultaneously in Canada
ISBN: 978-1-118-74961-6
ISBN: 978-1-118-74973-9 (ebk.)
ISBN: 978-1-118-74970-8 (ebk.)
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of
the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/
go/permissions.
Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty
may be created or extended by sales or promotional materials. The advice and strategies contained herein
may not be suitable for every situation. This work is sold with the understanding that the publisher is not
engaged in rendering legal, accounting, or other professional services. If professional assistance is required,
the services of a competent professional person should be sought. Neither the publisher nor the author shall
be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work
as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may have changed or disappeared
between when this work was written and when it is read.
For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or
fax (317) 572-4002.
Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download this
material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.
Library of Congress Control Number: 2013948006
TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. CCNA is a registered trademark of Cisco Technology, Inc. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor
mentioned in this book.
10 9 8 7 6 5 4 3 2 1
Dear Reader,
Thank you for choosing CCNA Routing and Switching Study Guide. This book is part of a
family of premium-quality Sybex books, all of which are written by outstanding authors who
combine practical experience with a gift for teaching.
Sybex was founded in 1976. More than 30 years later, we’re still committed to producing consistently exceptional books. With each of our titles, we’re working hard to set a new standard
for the industry. From the paper we print on, to the authors we work with, our goal is to bring
you the best books available.
I hope you see all that reflected in these pages. I’d be very interested to hear your comments and
get your feedback on how we’re doing. Feel free to let me know what you think about this or any
other Sybex book by sending me an email at chris.webb@wiley.com. If you think you’ve found
a technical error in this book, please visit http://sybex.custhelp.com. Customer feedback is
critical to our efforts at Sybex.
Best regards,
Chris Webb
Associate Publisher,
Sybex
Acknowledgments
There are many people that work to put a book together, and as an author, I dedicated an
enormous amount of time to write this book, but it would have never been published without the dedicated, hard work of many other people.
Monica Worthy Lammle was crucial to the finished product this book became, going
over every word of every chapter with me to fine-tune the language and grammar. Without
Monica’s support in all areas of my life, I’d never have finished writing this book.
Next in line to thank is my new technical editor, John Swartz, who also coauthored
the CCNA Data Center study guides with me. His expertise in the Cisco technical field,
and his history of networking in general, is second to none. His detailed analysis of my
work helped make this my best CCNA study guide ever. Thank you, John, for working
hard under pressure, with tight deadlines, and for staying the course of delivering highquality work in a short time frame.
Jeff Kellum, my acquisitions editor, is instrumental to my success in the world of Cisco
certification. Jeff, I look forward to our continued progress together.
Christine O’Connor, my production editor, and Judy Flynn, my copyeditor, were my
rock and foundation for formatting an intense editing of every page in this book. This
amazing team gives me the confidence to help keep me moving during the difficult and very
long days, week after week. How Christine stays so organized with all my changes, as well
as making sure every figure is in the right place in the book is still a mystery to me! You’re
amazing, Christine! Thank you! Judy understands my writing style so well now, after doing
at least a dozen books with me, that she even sometimes finds a technical error that may
have slipped through as I was going through the material. Thank you Judy for doing such
a great job! I truly thank you both.
Troy McMillian really helped me on this book (on all books actually!) by working on
the review and bonus questions, flash cards, as well as a 3rd technical edit on the last stage
of editing. He did a high-quality job in a short time! Thanks, Troy! Jim Frey and Paul
Sutton really helped me put together this book’s amazing figures, and an all-around secondlook technical edit. Thank you both!
Also, thanks to Dax Mickelson and Dennis Frye for performing the technical proofread
of the book.
Finally, a big thanks to Craig Woods at Happenstance-Type-O-Rama and to the Sybex
media-development team.
About the Author
Todd Lammle is the authority on Cisco certification and internetworking and is Cisco certified in most Cisco certification categories. He is a world-renowned author, speaker, trainer,
and consultant. Todd has three decades of experience working with LANs, WANs, and large
enterprise licensed and unlicensed wireless networks, and lately he’s been implementing large
Cisco data centers worldwide. His years of real-world experience is evident in his writing; he
is not just an author but an experienced networking engineer with very practical experience
working on the largest networks in the world, at such companies as Xerox, Hughes Aircraft,
Texaco, AAA, Cisco, and Toshiba, among many others. Todd has published over 60 books,
including the very popular CCNA: Cisco Certified Network Associate Study Guide, CCNA
Wireless Study Guide, and CCNA Data Center Study Guide, all from Sybex. He runs an
international consulting and training company based in Colorado, Texas, and San Francisco.
You can reach Todd through his forum and blog at www.lammle.com.
Contents at a Glance
Introduction
xxvii
ICND1 (100-101) Exam Objectives
xxxviii
ICND2 (200-101) Exam Objectives
xliv
CCNA Composite (200-120) Exam Objectives
xlvii
Assessment Test
lviii
Part I
ICND1
1
Chapter 1
Internetworking
3
Chapter 2
Ethernet Networking and Data Encapsulation
41
Chapter 3
Introduction to TCP/IP
87
Chapter 4
Easy Subnetting
139
Chapter 5
VLSMs, Summarization, and Troubleshooting TCP/IP
181
Chapter 6
Cisco’s Internetworking Operating System (IOS)
213
Chapter 7
Managing a Cisco Internetwork
283
Chapter 8
IP Routing
331
Chapter 9
Open Shortest Path First (OSPF)
385
Chapter 10
Layer 2 Switching
425
Chapter 11
VLANs and InterVLAN Routing
459
Chapter 12
Security
501
Chapter 13
Network Address Translation (NAT)
541
Chapter 14
Internet Protocol Version 6 (IPv6)
569
Part II
ICND2
Chapter 15
Enhanced Switched Technologies
615
Chapter 16
Managing Cisco Devices
661
Chapter 17
IP Services
699
Chapter 18
Troubleshooting IP, IPv6, and VLANs
741
Chapter 19
Enhanced IGRP
783
Chapter 20
Multi-Area OSPF
847
Chapter 21
Wide Area Networks
897
613
Appendix A
Answers to Written Labs
967
Appendix B
Answers to Review Questions
987
Appendix C
Disabling and Configuring Network Services
1029
Appendix D
About the Additional Study Tools
1041
Index
1045
Contents
Introduction
xxvii
ICND1 (100-101) Exam Objectives
xxxviii
ICND2 (200-101) Exam Objectives
xliv
CCNA Composite (200-120) Exam Objectives
xlvii
Assessment Test
lviii
Part I
ICND1
1
Chapter 1
Internetworking
3
Chapter 2
Internetworking Basics
Internetworking Models
The Layered Approach
Advantages of Reference Models
The OSI Reference Model
The Application Layer
The Presentation Layer
The Session Layer
The Transport Layer
The Network Layer
The Data Link Layer
The Physical Layer
Summary
Exam Essentials
Written Labs
Written Lab 1.1: OSI Questions
Written Lab 1.2: Defining the OSI Layers and Devices
Written Lab 1.3: Identifying Collision and
Broadcast Domains
Review Questions
4
12
13
14
14
16
17
17
18
23
25
28
29
30
32
32
33
Ethernet Networking and Data Encapsulation
41
Ethernet Networks in Review
Collision Domain
Broadcast Domain
CSMA/CD
Half- and Full-Duplex Ethernet
Ethernet at the Data Link Layer
Ethernet at the Physical Layer
42
43
44
45
47
49
55
34
35
xii
Contents
Chapter 3
Chapter 4
Ethernet Cabling
Straight-through Cable
Crossover Cable
Rolled Cable
Fiber Optic
Data Encapsulation
The Cisco three-layer Hierarchical Model
The Core Layer
The Distribution Layer
The Access Layer
Summary
Exam Essentials
Written Labs
Written Lab 2.1: Binary/Decimal/Hexadecimal Conversion
Written Lab 2.2: CSMA/CD Operations
Written Lab 2.3: Cabling
Written Lab 2.4: Encapsulation
Review Questions
59
60
60
62
64
66
70
70
72
72
73
73
74
75
79
79
80
81
Introduction to TCP/IP
87
Introducing TCP/IP
A Brief History of TCP/IP
TCP/IP and the DoD Model
The Process/Application Layer Protocols
The Host-to-host Layer Protocols
The Internet Layer Protocols
IP Addressing
IP Terminology
The Hierarchical IP Addressing Scheme
Private IP Addresses (RFC 1918)
IPv4 Address Types
Layer 2 Broadcasts
Layer 3 Broadcasts
Unicast Address
Multicast Address
Summary
Exam Essentials
Written Labs
Written Lab 3.1: TCP/IP
Written Lab 3.2: Mapping Applications to the DoD Model
Review Questions
88
89
89
91
101
110
118
118
119
124
126
126
126
127
128
129
130
132
132
132
134
Easy Subnetting
139
Subnetting Basics
How to Create Subnets
Subnet Masks
140
142
142
Contents
Chapter 5
Chapter 6
xiii
Classless Inter-Domain Routing (CIDR)
IP Subnet-Zero
Subnetting Class C Addresses
Subnetting Class B Addresses
Subnetting Class A Addresses
Summary
Exam Essentials
Written Labs
Written Lab 4.1: Written Subnet Practice #1
Written Lab 4.2: Written Subnet Practice #2
Written Lab 4.3: Written Subnet Practice #3
Review Questions
144
146
146
158
167
170
170
171
171
172
173
174
VLSMs, Summarization, and
Troubleshooting TCP/IP
181
Variable Length Subnet Masks (VLSMs)
VLSM Design
Implementing VLSM Networks
Summarization
Troubleshooting IP Addressing
Determining IP Address Problems
Summary
Exam Essentials
Written Lab 5
Review Questions
182
184
184
193
196
198
203
204
205
206
Cisco’s Internetworking Operating System (IOS)
213
The IOS User Interface
Cisco IOS
Connecting to a Cisco IOS Device
Bringing Up a Switch
Command-line Interface (CLI)
Entering the CLI
Overview of Router Modes
CLI Prompts
Editing and Help Features
Administrative Configurations
Hostnames
Banners
Setting Passwords
Encrypting Your Passwords
Descriptions
Router and Switch Interfaces
Bringing Up an Interface
215
216
216
218
219
219
219
220
223
228
228
229
231
237
239
241
244
xiv
Contents
Viewing, Saving, and Erasing Configurations
Deleting the Configuration and Reloading the Device
Verifying Your Configuration
Summary
Exam Essentials
Written Lab 6
Hands-on Labs
Hands-on Lab 6.1: Erasing an Existing Configuration
Hands-on Lab 6.2: Exploring User, Privileged,
and Configuration Modes
Hands-on Lab 6.3: Using the Help and Editing Features
Hands-on Lab 6.4: Saving a Configuration
Hands-on Lab 6.5: Setting Passwords
Hands-on Lab 6.6: Setting the Hostname, Descriptions,
IP Address, and Clock Rate
Review Questions
Chapter 7
Managing a Cisco Internetwork
The Internal Components of a Cisco Router and Switch
The Router and Switch Boot Sequence
Backing Up and Restoring the Cisco Configuration
Backing Up the Cisco Configuration
Restoring the Cisco Configuration
Erasing the Configuration
Configuring DHCP
DHCP Relay
Verifying DHCP on Cisco IOS
Network Time Protocol (NTP)
Using Cisco Discovery Protocol (CDP)
Getting CDP Timers and Holdtime Information
Gathering Neighbor Information
Documenting a Network Topology Using CDP
Using Telnet
Telnetting into Multiple Devices Simultaneously
Checking Telnet Connections
Checking Telnet Users
Closing Telnet Sessions
Resolving Hostnames
Building a Host Table
Using DNS to Resolve Names
Checking Network Connectivity and Troubleshooting
Using the ping Command
Using the traceroute Command
250
252
253
264
265
268
268
269
269
270
271
272
274
277
283
284
285
286
286
288
289
290
291
292
293
295
295
296
300
303
305
306
306
306
307
307
309
311
312
312
Contents
Debugging
Using the show processes Command
Summary
Exam Essentials
Written Lab 7
Written Lab 7.1: IOS Management
Written Lab 7.2: Router Memory
Hands-on Labs
Hands-on Lab 7.1: Backing Up the Router Configuration
Hands-on Lab 7.2: Using the Cisco Discovery
Protocol (CDP)
Hands-on Lab 7.3: Using Telnet
Hands-on Lab 7.4: Resolving Hostnames
Review Questions
Chapter 8
Chapter 9
xv
314
316
317
317
319
319
319
320
320
321
322
323
325
IP Routing
331
Routing Basics
The IP Routing Process
The Cisco Router Internal Process
Testing Your IP Routing Understanding
Configuring IP Routing
Configuring IP Routing in Our Network
Static Routing
Default Routing
Dynamic Routing
Routing Protocol Basics
Routing Information Protocol (RIP)
Configuring RIP Routing
Holding Down RIP Propagations
Summary
Exam Essentials
Written Lab 8
Hands-on Labs
Hands-on Lab 8.1: Creating Static Routes
Hands-on Lab 8.2: Configuring RIP Routing
Review Questions
333
335
341
342
346
356
357
362
365
365
367
367
371
373
374
376
376
377
378
380
Open Shortest Path First (OSPF)
Open Shortest Path First (OSPF) Basics
OSPF Terminology
OSPF Operation
Configuring OSPF
Enabling OSPF
Configuring OSPF Areas
Configuring Our Network with OSPF
385
386
389
391
393
393
394
397
xvi
Contents
OSPF and Loopback Interfaces
Configuring Loopback Interfaces
Verifying OSPF Configuration
The show ip ospf Command
The show ip ospf database Command
The show ip ospf interface Command
The show ip ospf neighbor Command
The show ip protocols Command
Summary
Exam Essentials
Written Lab 9
Hands-on Labs
Hands-on Lab 9.1: Enabling the OSPF Process
Hands-on Lab 9.2: Configuring OSPF Interfaces
Hands-on Lab 9.3: Verifying OSPF Operation
Review Questions
Chapter 10
Chapter 11
402
403
405
406
407
408
409
411
411
412
413
413
414
415
416
417
Layer 2 Switching
425
Switching Services
Three Switch Functions at Layer 2
Port Security
Configuring Catalyst Switches
Catalyst Switch Configuration
Verifying Cisco Catalyst Switches
Summary
Exam Essentials
Written Lab 10
Hands-on Labs
Lab 10.1: Configuring Layer 2 Switches
Lab 10.2: Verifying Layer 2 Switches
Lab 10.3: Configuring Port Security
Review Questions
426
427
431
436
436
444
447
447
448
448
449
450
450
452
VLANs and InterVLAN Routing
459
VLAN Basics
Broadcast Control
Security
Flexibility and Scalability
Identifying VLANs
Frame Tagging
VLAN Identification Methods
Routing between VLANs
460
463
464
464
465
467
468
469
Contents
Configuring VLANs
Assigning Switch Ports to VLANs
Configuring Trunk Ports
Configuring Inter-VLAN Routing
Summary
Exam Essentials
Written Lab 11
Hands-on Labs
Hands-on Lab 11.1: Configuring and Verifying VLANs
Hands-on Lab 11.2: Configuring and Verifying
Trunk Links
Hands-on Lab 11.3: Configuring Router on a
Stick Routing
Hands-on Lab 11.4: Configuring IVR with a
Layer 3 Switch
Review Questions
Chapter 12
Chapter 13
Security
xvii
472
475
476
480
487
488
489
489
490
491
492
492
494
501
Perimeter, Firewall, and Internal Routers
Introduction to Access Lists
Mitigating Security Issues with ACLs
Standard Access Lists
Wildcard Masking
Standard Access List Example
Controlling VTY (Telnet/SSH) Access
Extended Access Lists
Extended Access List Example 1
Extended Access List Example 2
Extended Access List Example 3
Named ACLs
Remarks
Monitoring Access Lists
Summary
Exam Essentials
Written Lab 12
Hands-on Labs
Hands-on Lab 12.1: Standard IP Access Lists
Hands-on Lab 12.2: Extended IP Access Lists
Review Questions
502
503
506
507
508
510
514
515
519
521
522
523
525
526
528
529
530
530
531
532
535
Network Address Translation (NAT)
541
When Do We Use NAT?
Types of Network Address Translation
NAT Names
542
544
544
xviii
Contents
Chapter 14
How NAT Works
Static NAT Configuration
Dynamic NAT Configuration
PAT (Overloading) Configuration
Simple Verification of NAT
Testing and Troubleshooting NAT
Summary
Exam Essentials
Written Lab 13
Hands-on Labs
Lab 13.1: Preparing for NAT
Lab 13.2: Configuring Dynamic NAT
Lab 13.3: Configuring PAT
Review Questions
545
547
548
548
549
550
555
556
557
557
558
560
561
564
Internet Protocol Version 6 (IPv6)
569
Why Do We Need IPv6?
The Benefits and Uses of IPv6
IPv6 Addressing and Expressions
Shortened Expression
Address Types
Special Addresses
How IPv6 Works in an Internetwork
Manual Address Assignment
Stateless Autoconfiguration (eui-64)
DHCPv6 (Stateful)
IPv6 Header
ICMPv6
IPv6 Routing Protocols
Static Routing with IPv6
OSPFv3
Configuring IPv6 on Our Internetwork
Configuring Routing on Our Internetwork
Verifying OSPFv3
Summary
Exam Essentials
Written Labs
Written Lab 14.1
Written Lab 14.2
Hands-on Labs
Hands-on Lab 14.1: Manual and
Stateful Autoconfiguration
Hands-on Lab 14.2: Static and Default Routing
Hands-on Lab 14.3: OSPFv3
Review Questions
571
571
573
574
575
576
577
578
578
581
582
583
586
586
587
588
591
594
599
599
601
601
601
602
602
604
605
607
Contents
xix
Part II
ICND2
613
Chapter 15
Enhanced Switched Technologies
615
Spanning Tree Protocol (STP)
Spanning-tree Terms
Spanning-tree Operations
Types of Spanning-tree Protocols
Common Spanning Tree
Per-VLAN Spanning Tree+
Modifying and Verifying the Bridge ID
Spanning-tree Failure Consequences
PortFast and BPDU Guard
BPDU Guard
EtherChannel
Configuring and Verifying Port Channels
Summary
Exam Essentials
Written Lab 1
Hands-on Labs
Hands-on Lab 1.1: Verifying STP and Finding Your
Root Bridge
Hands-on Lab 1.2: Configuring and Verifying Your
Root Bridge
Hands-on Lab 1.3: Configuring PortFast and
BPDU Guard
Hands-on Lab 1.4: Configuring and
Verifying EtherChannel
Review Questions
616
617
621
623
624
625
631
636
638
640
642
643
646
647
648
648
Managing Cisco Devices
661
The Internal Components of a
Cisco Router
The Router Boot Sequence
Managing Configuration Register
Understanding the Configuration Register Bits
Checking the Current Configuration Register Value
Boot System Commands
Recovering Passwords
Backing Up and Restoring the Cisco IOS
Verifying Flash Memory
Backing Up the Cisco IOS
Restoring or Upgrading the Cisco Router IOS
Using the Cisco IOS File System (Cisco IFS)
662
663
664
665
666
667
669
671
673
674
675
677
Chapter 16
649
651
652
653
656
xx
Contents
Licensing
Right-To-Use Licenses (Evaluation Licenses)
Backing Up and Uninstalling the License
Summary
Exam Essentials
Written Labs
Written Lab 2.1: IOS Management
Written Lab 2.2: Router Memory
Hands-on Labs
Hands-on Lab 2.1: Backing Up Your Router IOS
Hands-on Lab 2.2: Upgrading or Restoring
Your Router IOS
Review Questions
Chapter 17
IP Services
Client Redundancy Issues
Introducing First Hop Redundancy Protocol (FHRP)
Hot Standby Router Protocol (HSRP)
Virtual MAC Address
HSRP Timers
Group Roles
Configuring and Verifying HSRP
Virtual Router Redundancy Protocol
Comparing VRRP and HSRP
VRRP Redundancy Characteristics
Gateway Load Balancing Protocol
GLBP Functions
GLBP Features
GLBP Per-host Traffic Balancing
Configuring GLBP
Syslog
Configuring and Verifying Syslog
SNMP
Management Information Base (MIB)
Configuring SNMP
NetFlow
NetFlow Overview and Flows
Configuring NetFlow
Summary
Exam Essentials
Written Lab 3
Review Questions
682
684
687
688
689
691
691
691
692
692
692
694
699
700
702
704
705
706
708
709
715
715
715
716
717
717
718
718
721
723
726
727
728
730
731
732
734
734
735
736
Contents
Chapter 18
Chapter 19
Troubleshooting IP, IPv6, and VLANs
741
Troubleshooting IP Network Connectivity
Troubleshooting IPv6 Network Connectivity
ICMPv6
Troubleshooting VLAN Connectivity
VLAN Troubleshooting
Trunk Troubleshooting
Summary
Exam Essentials
Written Lab 4
Review Questions
742
754
755
763
763
768
776
777
778
779
Enhanced IGRP
783
EIGRP Features and Operations
Neighbor Discovery
Reliable Transport Protocol (RTP)
Diffusing Update Algorithm (DUAL)
Route Discovery and Maintenance
Configuring EIGRP
VLSM Support and Summarization
Controlling EIGRP Traffic
Split Horizon
Verifying and Troubleshooting EIGRP
Troubleshooting Example with EIGRP
EIGRPv6
Summary
Exam Essentials
Written Lab 5
Hands-on Labs
Hands-on Lab 5.1: Configuring and Verifying EIGRP
Hands-on Lab 5.2: Configuring and Verifying EIGRPv6
Review Questions
Chapter 20
xxi
Multi-Area OSPF
OSPF Scalability
Categories of Multi-area Components
Adjacency Requirements
OSPF Router Roles
Link-state Advertisements
OSPF Hello Protocol
Neighbor States
Basic Multi-area Configuration
784
785
790
791
792
792
795
798
809
811
818
828
833
834
835
835
835
837
838
847
848
850
850
851
852
854
855
857
xxii
Contents
Verifying and Troubleshooting
Multi-area OSPF Networks
The show ip ospf Command
The show ip ospf interface Command
The show ip protocols Command
The show ip route Command
The show ip ospf database Command
Troubleshooting OSPF Scenario
OSPFv3
Verifying OSPFv3
Summary
Exam Essentials
Written Lab 6
Hands-on Labs
Hands-on Lab 6.1: Configuring and Verifying
OSPF Multi-Area
Hands-on Lab 6.2: Configuring and Verifying OSPFv3
Review Questions
Chapter 21
859
861
862
864
865
866
868
876
879
881
881
883
883
884
887
890
Wide Area Networks
897
Introduction to Wide Area Networks
Defining WAN Terms
WAN Connection Bandwidth
WAN Connection Types
WAN Support
Cable and DSL
Cable
Digital Subscriber Line (DSL)
Cabling the Serial Wide Area Network
Serial Transmission
Data Terminal Equipment and Data
Communication Equipment
High-Level Data-Link Control (HDLC) Protocol
Point-to-Point Protocol (PPP)
Link Control Protocol (LCP) Configuration Options
PPP Session Establishment
PPP Authentication Methods
Configuring PPP on Cisco Routers
Configuring PPP Authentication
Verifying and Troubleshooting Serial Links
Frame Relay
Introduction to Frame Relay Technology
Frame Relay Implementation and Monitoring
898
899
900
900
902
905
906
907
910
910
911
912
914
915
916
917
917
917
918
923
924
931
Contents
Virtual Private Networks
Benefits of VPNs
Introduction to Cisco IOS IPsec
IPsec Transforms
GRE Tunnels
Configuring GRE Tunnels
Verifying GRP Tunnels
Summary
Exam Essentials
Written Lab 7
Hands-on Labs
Hands-on Lab 7.1: Configuring PPP Encapsulation
and Authentication
Hands-on Lab 7.2: Configuring and Monitoring HDLC
Hands-on Lab 7.3: Configuring Frame Relay
and Subinterfaces
Hands-on Lab 7.4: Configuring a GRE Tunnel
Review Questions
Appendix A
Answers to Written Labs
Chapter 1: Internetworking
Written Lab 1.1: OSI Questions
Written Lab 1.2: Defining the OSI Layers and Devices
Written Lab 1.3: Identifying Collision and
Broadcast Domains
Chapter 2: Ethernet Networking and Data Encapsulation
Written Lab 2.1: Binary/Decimal/Hexadecimal Conversion
Written Lab 2.2: CSMA/CD Operations
Written Lab 2.3: Cabling
Written Lab 2.4: Encapsulation
Chapter 3: Introduction to TCP/IP
Written Lab 3.1: TCP/IP
Written Lab 3.2: Mapping Applications to the DoD Model
Chapter 4: Easy Subnetting
Written Lab 4.1: Written Subnet Practice #1
Written Lab 4.2: Written Subnet Practice #2
Written Lab 4.3: Written Subnet Practice #3
Chapter 5: VLSMs, Summarization and
Troubleshooting TCP/IP
Chapter 6: Cisco’s Internetworking Operating System (IOS)
Written Lab 6
Chapter 7: Managing a Cisco Internetwork
Written Lab 7.1: IOS Management
Written Lab 7.2: Router Memory
xxiii
942
943
944
945
946
947
949
951
951
953
953
953
955
956
958
961
967
968
968
969
970
970
970
973
973
974
974
974
974
975
975
976
977
977
978
978
978
978
979
xxiv
Contents
Chapter 8: IP Routing
Chapter 9: Open Shortest Path First (OSPF)
Chapter 10: Layer 2 Switching
Chapter 11: VLANs and InterVLAN Routing
Chapter 12: Security
Chapter 13: Network Address Translation (NAT)
Chapter 14: Internet Protocol Version 6 (IPv6)
Written Lab 14.1
Written Lab 14.2
Chapter 15: Enhanced Switch Technologies
Chapter 16: Managing Cisco Devices
Written Lab 16.1: IOS Management
Written Lab 16.2: Router Memory
Chapter 17: IP Services
Chapter 18: Troubleshooting IP, IPv6, and VLANs
Chapter 19: Enhanced IGRP
Chapter 20: Multi-Area OSPF
Chapter 21: Wide Area Networks
Appendix B
Answers to Review Questions
Chapter 1: Internetworking
Chapter 2: Ethernet Networking and Data Encapsulation
Chapter 3: Introduction to TCP/IP
Chapter 4: Easy Subnetting
Chapter 5: VLSMs, Summarization, and
Troubleshooting TCP/IP
Chapter 6: Cisco’s Internetworking Operating System (IOS)
Chapter 7: Managing a Cisco Internetwork
Chapter 8: IP Routing
Chapter 9: Open Shortest Path First (OSPF)
Chapter 10: Layer 2 Switching
Chapter 11: VLANs and InterVLAN Routing
Chapter 12: Security
Chapter 13: Network Address Translation (NAT)
Chapter 14: Internet Protocol Version 6 (IPv6)
Chapter 15: Enhanced Switch Technologies
Chapter 16: Managing Cisco Devices
Chapter 17: IP Services
Chapter 18: Troubleshooting IP, IPv6, and VLANs
Chapter 19: Enhanced IGRP
Chapter 20: Multi-Area OSPF
Chapter 21: Wide Area Networks
979
980
980
980
981
981
982
982
982
982
983
983
983
984
984
984
985
985
987
988
990
991
993
995
997
999
1001
1002
1004
1007
1008
1011
1012
1014
1016
1018
1021
1022
1024
1026
Contents
Appendix C
Disabling and Configuring Network Services
Blocking SNMP Packets
Disabling Echo
Turning off BootP and Auto-Config
Disabling the HTTP Interface
Disabling IP Source Routing
Disabling Proxy ARP
Disabling Redirect Messages
Disabling the Generation of ICMP Unreachable Messages
Disabling Multicast Route Caching
Disabling the Maintenance Operation Protocol (MOP)
Turning Off the X.25 PAD Service
Enabling the Nagle TCP Congestion Algorithm
Logging Every Event
Disabling Cisco Discovery Protocol
Disabling the Default Forwarded UDP Protocols
Cisco’s Auto Secure
Appendix D
About the Additional Study Tools
Additional Study Tools
Test Engine
Electronic Flashcards
Videos
Network Simulator
PDF of Glossary of Terms
Adobe Reader
Minimum System Requirements
Using the Study Tools
Troubleshooting
Customer Care
Index
xxv
1029
1030
1030
1031
1032
1032
1032
1032
1033
1033
1033
1034
1034
1034
1035
1035
1036
1041
1042
1042
1042
1042
1043
1043
1043
1043
1044
1044
1044
1045
Introduction
Welcome to the exciting world of Cisco certification! If you’ve picked up this book because
you want to improve yourself and your life with a better, more satisfying, and secure job,
you’ve done the right thing. Whether you’re striving to enter the thriving, dynamic IT sector
or seeking to enhance your skill set and advance your position within it, being Cisco certified
can seriously stack the odds in your favor to help you attain your goals!
Cisco certifications are powerful instruments of success that also markedly improve
your grasp of all things internetworking. As you progress through this book, you’ll gain a
complete understanding of networking that reaches far beyond Cisco devices. By the end of
this book, you’ll comprehensively know how disparate network topologies and technologies
work together to form the fully operational networks that are vital to today’s very way of
life in the developed world. The knowledge and expertise you’ll gain here is essential for and
relevant to every networking job and is why Cisco certifications are in such high demand—
even at companies with few Cisco devices!
Although it’s now common knowledge that Cisco rules routing and switching, the fact
that it also rocks the voice, data center, and service provider worlds is also well recognized.
And Cisco certifications reach way beyond the popular but less extensive certifications like
those offered by CompTIA and Microsoft to equip you with indispensable insight into today’s
vastly complex networking realm. Essentially, by deciding to become Cisco certified, you’re
proudly announcing that you want to become an unrivaled networking expert—a goal that
this book will get you well on your way to achieving. Congratulations in advance on the
beginning of your brilliant future!
For up-to-the-minute updates covering additions or modifications to the
Cisco certification exams, as well as additional study tools, review questions,
and bonus materials, be sure to visit the Todd Lammle websites and forum at
www.lammle.com, www.lammlesim.com, and www.lammle.com/forum.
Cisco’s Network Certifications
It used to be that to secure the holy grail of Cisco certifications—the CCIE—you passed only
one written test before being faced with a grueling, formidable hands-on lab. This intensely
daunting, all-or-nothing approach made it nearly impossible to succeed and predictably didn’t
work out too well for most people. Cisco responded to this issue by creating a series of new
certifications, which not only made it easier to eventually win the highly coveted CCIE prize, it
gave employers a way to accurately rate and measure the skill levels of prospective and current
employees. This exciting paradigm shift in Cisco’s certification path truly opened doors that
few were allowed through before!
xxviii
Introduction
Beginning in 1998, obtaining the Cisco Certified Network Associate (CCNA) certification
was the first milestone in the Cisco certification climb, as well as the official prerequisite to
each of the more advanced levels. But that changed in 2007, when Cisco announced the Cisco
Certified Entry Network Technician (CCENT) certification. And then in March 2013, Cisco
once again proclaimed updates to the CCENT and CCNA Routing and Switching (R/S) tests.
Now the Cisco certification process looks like Figure I.1.
F ig u re I .1
The Cisco certification path
Cisco 2013 Certification Path Announcements
Routing/Switching
Data Center
Voice
Security
Wireless
CCIE
CCIE
CCIE
CCIE
CCIE
CCNP
CCNP
CCNP
CCNP
CCNP
CCNA
CCNA
CCNA
CCNA
CCNA
CCENT
No Pre-req
CCENT
CCENT
CCENT
I have included only the most popular tracks in Figure I.1. In addition to the
ones in this image, there are also tracks for Design, Service Provider, Service
Provider Operations, and Video. Also note that the CCIE Voice certification
retirement will be announced shortly.
The Cisco R/S path is by far the most popular and could very well remain so, but soon
you’ll see the Data Center path become more and more of a focus as companies migrate to
data center technologies. The Voice track also actually does provide a good job opportunity.
Still, understanding the foundation of R/S before attempting any other certification track is
something I highly recommend.
Even so, and as the figure shows, you only need your CCENT certification to get underway for most of the tracks. Also, note that there are a few other certification tracks you
can go down that are not shown in the figure, although they’re not as popular as the ones
shown. You can find information on all Cisco certification tracks at: www.cisco.com.
Cisco Certified Entry Network Technician (CCENT)
Don’t be fooled by the oh-so-misleading name of this first certification because it absolutely
isn’t entry level! Okay—maybe entry level for Cisco’s certification path, but definitely not
for someone without experience trying to break into the highly lucrative yet challenging IT
Introduction
xxix
job market! For the uninitiated, the CompTIA A+ and Network+ certifications aren’t official
prerequisites, but know that Cisco does expect you to have that type and level of experience
before embarking on your Cisco certification journey.
All of this gets us to 2013, when the climb to Cisco supremacy just got much harder
again. The innocuous-sounding siren’s call of the CCENT can lure you to some serious
trouble if you’re not prepared, because it’s actually much harder than the old CCNA ever
was. This will rapidly become apparent once you start studying, but be encouraged! The
fact that the certification process is getting harder really works better for you in the long
run, because that which is harder to obtain only becomes that much more valuable when
you finally do, right? Yes, indeed!
Another important factor to keep in mind is that the Interconnection Cisco Network
Devices Part 1 (ICND1) exam, which is the required exam for the CCENT certification,
costs $150 per attempt and it’s anything but easy to pass! The good news is that Part 1 of
this book (Chapters 1-14) will guide you step-by-step in building a strong foundation in
routing and switching technologies. You really need to build on a strong technical foundation and stay away from exam cram type books, suspicious online material, and the like.
They can help somewhat, but understand that you’ll pass the Cisco certification exams only
if you have a strong foundation and that you’ll get that solid foundation only by reading as
much as you can, performing the written labs and review questions in this book, and practicing lots and lots of hands-on labs. Additional practice exam questions, videos, and labs
are offered on my website, and what seems like a million other sites offer additional material
that can help you study.
However, there is one way to skip the CCENT exam and still meet the prerequisite
before moving on to any other certification track, and that path is through the CCNA R/S
Composite exam. First, I’ll discuss the Interconnecting Cisco Network Devices Part 2
(ICND2) exam, and then I’ll tell you about the CCNA Composite exam, which will provide
you, when successful, with both the CCENT and the CCNA R/S certification.
Cisco Certified Network Associate Routing
and Switching (CCNA R/S)
Once you have achieved your CCENT certification, you can take the ICND2 (200-101) exam
in order to achieve your CCNA R/S certification, which is the most popular certification
Cisco has by far because it’s the most sought-after certification of all employers.
As with the CCENT, the ICND2 exam is also $150 per attempt—although thinking you
can just skim a book and pass any of these exams would probably be a really expensive mistake! The CCENT/CCNA exams are extremely hard and cover a lot of material, so you have
to really know your stuff. Taking a Cisco class or spending months with hands-on experience
is definitely a requirement to succeed when faced with this monster!
And once you have your CCNA, you don’t have to stop there—you can choose to continue
and achieve an even higher certification, called the Cisco Certified Network Professional
(CCNP). There are various ones, as shown in Figure I.1. The CCNP R/S is still the most
popular, with Voice certifications coming in at a close second. And I’ve got to tell you that
xxx
Introduction
the Data Center certification will be catching up fast. Also good to know is that anyone with
a CCNP R/S has all the skills and knowledge needed to attempt the notoriously dreaded but
coveted CCIE R/S lab. But just becoming a CCNA R/S can land you that job you’ve dreamed
about and that’s what this book is all about: helping you to get and keep a great job!
Still, why take two exams to get your CCNA if you don’t have to? Cisco still has the
CCNA Composite (200-120) exam that, if passed, will land you with your CCENT and
your CCNA R/S via only one test priced accordingly at $300. Some people like the one-test
approach, and some people like the two-test approach. Part 2 of this book (Chapters 15-21)
covers the ICND2 exam topics.
Why Become a CCENT and CCNA R/S?
Cisco, like Microsoft and other vendors that provide certification, has created the certification process to give administrators a set of skills and to equip prospective employers with a
way to measure those skills or match certain criteria. And as you probably know, becoming
a CCNA R/S is certainly the initial, key step on a successful journey toward a new, highly
rewarding, and sustainable networking career.
The CCNA program was created to provide a solid introduction not only to the Cisco
Internetwork Operating System (IOS) and Cisco hardware but also to internetworking in general, making it helpful to you in areas that are not exclusively Cisco’s. And regarding today’s
certification process, it’s not unrealistic that network managers—even those without Cisco
equipment—require Cisco certifications for their job applicants.
Rest assured that if you make it through the CCNA and are still interested in Cisco and
internetworking, you’re headed down a path to certain success!
What Skills Do You Need to Become a CCNA R/S?
This ICND1 exam (100-101) tests a candidate for the knowledge and skills required to successfully install, operate, and troubleshoot a small branch office network. The exam includes
questions on the operation of IP data networks, LAN switching technologies, IPv6, IP routing technologies, IP services network device security, and basic troubleshooting. The ICND2
exam (exam 200-101) tests a candidate for the knowledge and skills required to successfully
install, operate, and troubleshoot a small- to medium-size enterprise branch network. The
exam includes questions on LAN switching technologies, IP routing technologies, IP services
(FHRP, syslog, SNMP v2 and v3), troubleshooting, and WAN technologies.
How Do You Become a CCNA R/S
If you want to go straight for our CCNA R/S and take only one exam, all you have to do is
pass the CCNA Composite exam (200-120). Oh, but don’t you wish it were that easy? True,
it’s just one test, but it’s a whopper, and to pass it you must possess enough knowledge to
understand what the test writers are saying, and you need to know everything I mentioned
previously, in the sections on the ICND1 and ICND2 exams! Hey, it’s hard, but it can be done!
Introduction
xxxi
What does the CCNA Composite exam (200-120) cover? Pretty much the same topics
covered in the ICND1 and ICND2 exams. Candidates can prepare for this exam by taking
the Todd Lammle authorized Cisco boot camps. 200-120 tests a candidate's knowledge
and skills required to install, operate, and troubleshoot a small- to medium-size enterprise
branch network.
While you can take the Composite exam to get your CCNA, it’s good to know that Cisco
offers the two-step process I discussed earlier in this Introduction. And this book covers both
those exams too! It may be easier than taking that one ginormous exam for you, but don’t
think the two-test method is easy. It takes work! However, it can be done; you just need to
stick with your studies.
The two-test method involves passing the following:
uu
Exam 100-101: Interconnecting Cisco Networking Devices Part 1 (ICND1)
uu
Exam 200-101: Interconnecting Cisco Networking Devices Part 2 (ICND2)
I can’t stress this point enough: It’s critical that you have some hands-on experience with
Cisco routers. If you can get a hold of some basic routers and switches, you’re set, but if you
can’t, I’ve worked hard to provide hundreds of configuration examples throughout this book
to help network administrators, or people who want to become network administrators,
learn the skills they need to pass the CCENT and CCNA R/S exams. In addition, a simulator
called LammleSim IOS version is available for free with the purchase of this book. This small
simulator will run through all the hands-on labs found in this book—nice huh?
For Cisco certification hands-on training with CCSI Todd Lammle, please
see: www.lammle.com. Each student will get hands-on experience by configuring at least three routers and two switches—no sharing of equipment!
What Does This Book Cover?
This book covers everything you need to know to pass the ICND1 (100-101) and ICND2
(200-101) exams, as well as the CCNA Composite (200-120) exam. But regardless of which
path you choose, as I’ve said, taking plenty of time to study and practice with routers or a
router simulator is the real key to success.
You will learn the following information in this book:
Chapter 1: Internetworking Chapters 1-14 map to the ICND1 exam. In Chapter 1, you
will learn the basics of the Open Systems Interconnection (OSI) model the way Cisco wants
you to learn it. There are written labs and plenty of review questions to help you. Do not
even think of skipping the fundamental written labs in this chapter!
Chapter 2: Ethernet Networking and Data Encapsulation This chapter will provide
you with the Ethernet foundation you need in order to pass both the CCENT and CCNA
xxxii
Introduction
exams. Data encapsulation is discussed in detail in this chapter as well. And as with the
other chapters, this chapter includes written labs and review questions to help you.
Chapter 3: Introduction to TCP/IP This chapter provides you with the background necessary
for success on the exam, as well as in the real world with a thorough presentation of TCP/IP.
This in-depth chapter covers the very beginnings of the Internet Protocol stack and goes all
the way to IP addressing and understanding the difference between a network address and a
broadcast address before finally ending with network troubleshooting.
Chapter 4: Easy Subnetting You’ll actually be able to subnet a network in your head after
reading this chapter if you really want to! And you’ll find plenty of help in this chapter as
long as you don’t skip the written labs and review questions at the end.
Chapter 5: VLSMs, Summarization, and Troubleshooting TCP/IP Here, you’ll find out all
about variable length subnet masks (VLSMs) and how to design a network using VLSMs.
This chapter will finish with summarization techniques and configurations. As with Chapter
4, plenty of help is there for you if you don’t skip the written lab and review questions.
Chapter 6: Cisco’s Internetworking Operating System (IOS) This chapter introduces you to
the Cisco Internetworking Operating System (IOS) and command-line interface (CLI). In this
chapter you’ll learn how to turn on a router and configure the basics of the IOS, including
setting passwords, banners, and more. Hands-on labs will help you gain a firm grasp of the
concepts taught in the chapter. Before you go through the hands-on labs, be sure to complete
the written lab and review questions.
Chapter 7: Managing a Cisco Internetwork This chapter provides you with the management
skills needed to run a Cisco IOS network. Backing up and restoring the IOS, as well as router
configuration, are covered, as are the troubleshooting tools necessary to keep a network up
and running. As always, before tackling the hands-on labs in this chapter, complete the written labs and review questions.
Chapter 8: IP Routing This is a fun chapter because we will begin to build our network,
add IP addresses, and route data between routers. You will also learn about static, default,
and dynamic routing using RIP and RIPv2. Hands-on labs, a written lab, and the review
questions will help you fully nail down IP routing.
Chapter 9: Open Shortest Path First (OSPF) Chapter 9 dives into more complex dynamic
routing by covering OSPF routing. The written lab, hands-on labs, and review questions
will help you master this vital routing protocol.
Chapter 10: Layer 2 Switching This chapter sets you up with the solid background you
need on layer 2 switching, how switches perform address learning and make forwarding
and filtering decisions. In addition, switch port security with MAC addresses is covered in
detail. As always, go through the hands-on labs, written lab, and review questions to make
sure you’ve really got layer 2 switching down!
Chapter 11: VLANs and Inter-VLAN Routing Here I cover virtual VLANs and how
to use them in your internetwork. This chapter covers the nitty-gritty of VLANs and
the different concepts and protocols used with VLANs. I’ll also guide you through
Introduction
xxxiii
troubleshooting techniques in this all-important chapter. The hands-on labs, written lab,
and review questions are there to reinforce the VLAN material.
Chapter 12: Security This chapter covers security and access lists, which are created on
routers to filter the network. IP standard, extended, and named access lists are covered in
detail. Written and hands-on labs, along with review questions, will help you study for the
security and access-list portion of the Cisco exams.
Chapter 13: Network Address Translation (NAT) New information, commands, troubleshooting, and detailed hands-on labs will help you nail the NAT CCENT objectives.
Chapter 14: Internet Protocol Version 6 (IPv6) This is a fun chapter chock-full of some
great information. IPv6 is not the big, bad scary creature that most people think it is, and
it’s a really important objective on the latest exam, so study this chapter carefully—don’t
just skim it. And make sure you hit those hands-on labs hard!
Chapter 15: Enhanced Switched Technologies Chapter 15 is the first chapter of Part 2 of this
book, which maps to the ICND2 exam. This chapter will start off with STP protocols and
dive into the fundamentals, covering the modes, as well as the various flavors of STP. VLANs,
trunks, and troubleshooting are covered as well. EtherChannel technologies, configuration,
and verification are also covered. There are hands-on labs, a written lab, and plenty of review
questions to help you. Do not even think of skipping the fundamental written and hands-on
labs in this chapter!
Chapter 16: Managing Cisco Devices This chapter describes the boot process of Cisco
routers, the configuration register, and how to manage Cisco IOS files. The chapter finishes with a section on Cisco’s new licensing strategy for IOS. Hands-on and written labs,
along with review questions, will help you build a strong foundation for the objectives
covered in this chapter.
Chapter 17: IP Services This chapter mostly focuses on first hop redundancy protocols
(FHRPs), such as HSRP and GLBP. Also covered are syslog, SNMP, and NetFlow. There
are review questions and a written lab.
Chapter 18: Troubleshooting IP, IPv6, and VLANs I want to say this is the most important chapter in the book, but that’s hard to say. You can decide that yourself when you
take the exam! Be sure to go through all the troubleshooting steps for IP, IPv6, and
VLANs. The hands-on labs for this chapter will be included in the free bonus material
and dynamic labs that I’ll write and change as needed. Don’t skip the written lab and
review questions.
Chapter 19: Enhanced IGRP EIGRP was not covered in the ICND1 (CCENT) chapters,
so this is a full chapter on nothing but EIGRP and EIGRPv6. There are lots of examples,
including configuration, verification, and troubleshooting labs, with both IP and with IPv6.
Great hands-on labs are included, as well as a written lab and review questions.
Chapter 20: Multi-Area OSPF The ICND1 (CCENT) portion of this book had a large
chapter on OSPF, so before reading this chapter, be sure you have the CCENT objectives
down pat with a strong OSPF foundation. This chapter will take off where that ICND1
xxxiv
Introduction
chapter left off and add multi-area networks along with advanced configurations and then
finish with OSPv3. Hands-on labs, a written lab, and challenging review questions await
you at the end of the chapter.
Chapter 21: Wide Area Networks This is the longest, and last, chapter in the book. It
covers multiple protocols in depth, especially HDLC, PPP, and Frame Relay, along with a
discussion on many other technologies. Good troubleshooting examples are provided in the
PPP and Frame Relay configuration sections, and these cannot be skipped! Hands-on labs
meant to focus squarely on the objectives are included at the end of the chapter, as well as
a written lab and challenging review questions.
Appendix A: Answers to Written Labs
written labs.
This appendix contains the answers to the book’s
Appendix B: Answers to Chapter Review Questions
to the end-of-chapter review questions.
This appendix provides the answers
Appendix C: Disabling and Configuring Network Services Appendix C takes a look at
the basic services you should disable on your routers to make your network less of a target
for denial of service (DoS) attacks and break-in attempts.
Appendix D: About the Additional Study Tools This describes the technical requirements
for the digital study tools that come with this book. (Those tools are described further in
the following section.)
Be sure to check the announcements section of my forum to find out how
to download bonus material I created specifically for this book.
What’s Available Online?
I have worked hard to provide some really great tools to help you with your certification
process. All of the following tools, most of them available at www.sybex.com/go/ccnarssg,
should be loaded on your workstation when you’re studying for the test. As a fantastic bonus,
I was able to add to the download link a preview section from my CCNA video series! Please
understand that these are not the full versions, but they’re still a great value for you included
free with this book.
Test Preparation Software The test preparation software prepares you to pass the ICND1
and ICND2 exams and the CCNA R/S Composite exam. You’ll find all the review and
assessment questions from the book plus additional practice exam questions that appear
exclusively from the downloadable study tools.
Introduction
xxxv
Electronic Flashcards The companion study tools include over 200 flashcards specifically
written to hit you hard, so don’t get discouraged if you don’t ace your way through them at
first! They’re there to ensure that you’re really ready for the exam. And no worries—armed
with the review questions, practice exams, and flashcards, you’ll be more than prepared
when exam day comes!
LammleSim IOS Version At www.lammle.com or www.lammlesim.com, I have provided an
IOS simulator that can be used with all of the hands-on labs in this book. You can also
download this free simulator from www.sybex.com/go/ccnarssg.
Glossary A complete glossary of CCENT, ICND2, CCNA R/S and Cisco routing terms is
available at www.sybex.com/go/ccnarssg.
Todd Lammle Bonus Material and Labs Be sure to check the announcement section of my
forum at www.lammle.com/forum for directions on how to download all the latest bonus material created specifically to help you study for your ICND1, ICND2, and CCNA R/S exams.
Todd Lammle Videos I have created a full CCNA series of videos that can be purchased
in either DVD or downloadable format from www.lammle.com. As a bonus included with
this book, the first module of six of the DVDs can be downloaded from the book’s web
page, www.sybex.com/go/ccnarssg, as a preview. Although this isn’t the full version, the
videos included with this book are over two hours of foundational CCNA information.
This is a $198 value, so don’t skip these videos because they cover key topics for the exams.
CBT Nuggets Videos
In addition, CBT Nuggets has created dozens of free MicroNugget videos that help reinforce the chapter topics. Throughout the book, you will see QR codes and URLs that will
direct you to a dedicated website where you can view these videos created by CBT Nuggets author and expert trainer Jeremy Cioara. Just scan the QR code with your smart
phone or tablet, or type in the URL, to view the video.
How to Use This Book
If you want a solid foundation for the serious effort of preparing for the Interconnecting
Cisco Network Devices Part 1 and 2 exams, or the CCNA R/S Composite exam, then look
no further. I’ve spent hundreds of hours putting together this book with the sole intention
of helping you to pass the Cisco exams, as well as really learn how to correctly configure
Cisco routers and switches!
This book is loaded with valuable information, and you will get the most out of your
study time if you understand why the book is organized the way it is.
xxxvi
Introduction
So to maximize your benefit from this book, I recommend the following study method:
1. Take the assessment test that’s provided at the end of this introduction. (The answers
are at the end of the test.) It’s okay if you don’t know any of the answers; that’s why
you bought this book! Carefully read over the explanations for any questions you get
wrong and note the chapters in which the material relevant to them is covered. This
information should help you plan your study strategy.
2. Study each chapter carefully, making sure you fully understand the information and
the test objectives listed at the beginning of each one. Pay extra-close attention to any
chapter that includes material covered in questions you missed.
3. Complete the written labs at the end of each chapter. (Answers to these appear in
Appendix A.) Do not skip these written exercises because they directly relate to the
Cisco exams and what you must glean from the chapters in which they appear. Do
not just skim these labs! Make sure you completely understand the reason for each
correct answer.
4. Complete all hands-on labs in each chapter, referring to the text of the chapter so that
you understand the reason for each step you take. Try to get your hands on some real
equipment, but if you don’t have Cisco equipment available, try the LammleSim IOS
version, which you can use for the hands-on labs found only in this book. These labs
will equip you with everything you need for all your Cisco certification goals.
5. Answer all of the review questions related to each chapter. (The answers appear in
Appendix B.) Note the questions that confuse you, and study the topics they cover
again until the concepts are crystal clear. And again—do not just skim these questions!
Make sure you fully comprehend the reason for each correct answer. Remember that
these will not be the exact questions you will find on the exam, but they’re written to
help you understand the chapter material and ultimately pass the exam!
6. Try your hand at the practice questions that are exclusive to this book. The questions can
be found only at www.sybex.com/go/ccnarssg. And be sure to check out www.lammle.com
for the most up-to-date Cisco exam prep questions, videos, Todd Lammle boot camps,
and more.
7. Also on the download link is the first module from six videos from my complete
CCNA R/S video series.
Please understand that these are preview versions of the videos found
at www.lammle.com. The videos on the free download link are not the full
versions, but they’re still a great value loaded with information.
8. Test yourself using all the flashcards, which are also found on the download link.
These are brand-new and updated flashcards to help you prepare for the CCNA R/S
exam and a wonderful study tool!
Introduction
xxxvii
To learn every bit of the material covered in this book, you’ll have to apply yourself
regularly, and with discipline. Try to set aside the same time period every day to study, and
select a comfortable and quiet place to do so. I’m confident that if you work hard, you’ll be
surprised at how quickly you learn this material!
If you follow these steps and really study—doing hands-on labs every single day in
addition to using the review questions, the practice exams, the Todd Lammle video sections, and the electronic flashcards, as well as all the written labs—it would actually be
hard to fail the Cisco exams. But understand that studying for the Cisco exams is a lot
like getting in shape—if you do not go to the gym every day, it’s not going to happen!
Where Do You Take the Exams?
You may take the ICND1, ICND2, or CCNA R/S Composite or any Cisco exam at any of
the Pearson VUE authorized testing centers. For information, check www.vue.com or call
877-404-EXAM (3926).
To register for a Cisco exam, follow these steps:
1. Determine the number of the exam you want to take. (The ICND1 exam number is
100-101, ICND2 is 100-201, and CCNA R/S Composite is 200-120.)
2. Register with the nearest Pearson VUE testing center. At this point, you will be asked
to pay in advance for the exam. At the time of this writing, the ICND1 and ICND2
exams are $150, and the CCNA R/S Composite exam is $300. The exams must be
taken within one year of payment. You can schedule exams up to six weeks in advance
or as late as the day you want to take it—but if you fail a Cisco exam, you must wait
five days before you will be allowed to retake it. If something comes up and you need
to cancel or reschedule your exam appointment, contact Pearson VUE at least 24 hours
in advance.
3. When you schedule the exam, you’ll get instructions regarding all appointment and
cancellation procedures, the ID requirements, and information about the testing-center
location.
Tips for Taking Your Cisco Exams
The Cisco exams contain about 50-60 questions and must be completed in about 90 minutes
or less. This information can change per exam. You must get a score of about 85 percent to
pass this exam, but again, each exam can be different.
Many questions on the exam have answer choices that at first glance look identical—
especially the syntax questions! So remember to read through the choices carefully because
close just doesn’t cut it. If you get commands in the wrong order or forget one measly character, you’ll get the question wrong. So, to practice, do the hands-on exercises at the end of
this book’s chapters over and over again until they feel natural to you.
xxxviii
Introduction
Also, never forget that the right answer is the Cisco answer. In many cases, more than one
appropriate answer is presented, but the correct answer is the one that Cisco recommends.
On the exam, you will always be told to pick one, two, or three options, never “choose all
that apply.” The Cisco exam may include the following test formats:
uu
Multiple-choice single answer
uu
Multiple-choice multiple answer
uu
Drag-and-drop
uu
Router simulations
Cisco proctored exams will not show the steps to follow in completing a router interface
configuration, but they do allow partial command responses. For example, show run, sho
running, or sh running-config would be acceptable.
Here are some general tips for exam success:
uu
uu
uu
uu
Arrive early at the exam center so you can relax and review your study materials.
Read the questions carefully. Don’t jump to conclusions. Make sure you’re clear
about exactly what each question asks. “Read twice, answer once,” is what I always
tell my students.
When answering multiple-choice questions that you’re not sure about, use the process
of elimination to get rid of the obviously incorrect answers first. Doing this greatly
improves your odds if you need to make an educated guess.
You can no longer move forward and backward through the Cisco exams, so doublecheck your answer before clicking Next since you can’t change your mind.
After you complete an exam, you’ll get immediate, online notification of your pass
or fail status, a printed examination score report that indicates your pass or fail status,
and your exam results by section. (The test administrator will give you the printed score
report.) Test scores are automatically forwarded to Cisco within five working days after
you take the test, so you don’t need to send your score to them. If you pass the exam,
you’ll receive confirmation from Cisco, typically within two to four weeks, sometimes a
bit longer.
ICND1 (100-101) Exam Objectives
Exam objectives are subject to change at any time without prior notice and at Cisco’s sole
discretion. Please visit Cisco’s certification website (www.cisco.com/web/learning) for the
latest information on the ICND1 exam.
Operation of IP Data Networks
Recognize the purpose and functions of various network devices, such as
Routers, Switches, Bridges, and Hubs.
Chapter(s)
1, 2
Introduction
Operation of IP Data Networks
xxxix
Chapter(s)
Select the components required to meet a given network specification.
1, 2
Identify common applications and their impact on the network.
1, 3
Describe the purpose and basic operation of the protocols in the OSI and
TCP/IP models.
1, 3
Predict the data flow between two hosts across a network.
Identify the appropriate media, cables, ports, and connectors, to connect
Cisco network devices to other network devices and hosts in a LAN.
1, 2, 13
2
LAN Switching Technologies
Determine the technology and media access control method for Ethernet
networks.
Identify basic switching concepts and the operation of Cisco switches.
uu
Collision domains
uu
Broadcast domains
uu
Types of switching
uu
CAM table
Configure and verify initial switch-configuration including remote access
management.
uu
2
2, 10
6, 10
Cisco IOS commands to perform basic switch setup
Verify network status and switch-operation using basic utilities, such as
ping, Telnet, and SSH.
7, 10
Describe how VLANs create logically separate networks and the need for
routing between them.
11
uu
Explain network segmentation and basic traffic management concepts.
Configure and verify VLANs.
11
Configure and verify trunking on Cisco switches.
11
uu
DTP
uu
Auto negotiation
IP addressing (IPv4/IPv6)
Describe the operation and necessity of using private and public IP
addresses for IPv4 addressing.
3, 4
Identify the appropriate IPv6-addressing scheme to satisfy addressing
requirements in a LAN/WAN environment.
14
Introduction
xl
(continued)
Operation of IP Data Networks
Chapter(s)
Identify the appropriate IPv4-addressing scheme using VLSM and summarization to satisfy addressing requirements in a LAN/WAN environment.
5
Describe the technological requirements for running IPv6 in conjunction
with IPv4 such as dual stack.
14
Describe IPv6 addresses.
14
uu
Global unicast
uu
Multicast
uu
Link local
uu
Unique local
uu
eui-64
uu
Autoconfiguration
IP Routing Technologies
Describe basic routing concepts.
uu
CEF
uu
Packet forwarding
uu
Router lookup process
Configure and verify utilizing the CLI to set the basic router configuration.
uu
6, 7
Cisco IOS commands to perform basic router setup
Configure and verify the operation status of an Ethernet interface.
Verify router configuration and network connectivity.
uu
8
6
6, 7
Cisco IOS commands to review basic router information and network
connectivity
Configure and verify routing configuration for a static or default route
given specific routing requirements.
8
Differentiate methods of routing and routing protocols.
8
uu
Static vs dynamic
uu
Link state vs distance vector
uu
NExt-hop
uu
ip routing table
uu
Passive interfaces
Introduction
Operation of IP Data Networks
Configure and verify OSPF (single area)
uu
Benefit of single area
uu
Configure OSPFv2
uu
Configure OSPFv3
uu
Router ID
uu
Passive interface
Configure and verify interVLAN routing (router on a stick).
uu
Subinterfaces
uu
Upstream routing
uu
Encapsulation
Configure SVI interfaces.
xli
Chapter(s)
9, 14
11
11
IP Services
Configure and verify DHCP (IOS Router).
uu
Configuring router interfaces to use DHCP
uu
DHCP options
uu
Excluded addresses
uu
Lease time
Describe the types, features, and applications of ACLs.
uu
7
12
Standard
uu
Sequence numbers
uu
Editing
uu
Extended
uu
Named
uu
Numbered
uu
Log option
Configure and verify ACLs in a network environment.
uu
Named
uu
Numbered
uu
Log option
12
Introduction
xlii
(continued)
Operation of IP Data Networks
Identify the basic operation of NAT
uu
Purpose
uu
Pool
uu
Static
uu
1 to 1
uu
Overloading
uu
Source addressing
uu
One-way NAT
Chapter(s)
13
Configure and verify NAT for given network requirements.
13
Configure and verify NTP as a client.
7
Network Device Security
Configure and verify network device security features such as:
uu
Device password security
uu
Enable secret vs enable
uu
Transport
uu
Disable Telnet
uu
SSH
uu
VTYs
uu
Physical security
uu
Service password
uu
External authentication methods
Configure and verify switch port security features, such as:
uu
Sticky MAC
uu
MAC address limitation
uu
Static/dynamic
uu
Violation modes
uu
Err disable
uu
Shutdown
uu
Protect restrict
uu
Shutdown unused ports
uu
Err disable recovery
uu
Assign unused ports to an unused VLAN
uu
Setting native VLAN to other than VLAN 1
6
10
Introduction
Operation of IP Data Networks
xliii
Chapter(s)
Configure and verify ACLs to filter network traffic.
12
Configure and verify ACLs to limit Telnet and SSH access to the router.
12
Troubleshooting
Troubleshoot and correct common problems associated with IP addressing and host configurations.
5
Troubleshoot and resolve VLAN problems.
11
uu
Identify that VLANs are configured
uu
Port membership correct
uu
IP address configured
Troubleshoot and resolve trunking problems on Cisco switches.
uu
Correct trunk states
uu
Correct encapsulation configured
uu
Correct VLANS allowed
Troubleshoot and resolve ACL issues.
uu
Statistics
uu
Permitted networks
uu
11
12
Direction
uu
Interface
Troubleshoot and resolve Layer 1 problems.
uu
Framing
uu
CRC
uu
Runts
uu
Giants
uu
Dropped packets
uu
Late collision
uu
Input/Output errors
6
Introduction
xliv
ICND2 (200-101) Exam Objectives
Exam objectives are subject to change at any time without prior notice and at Cisco’s sole
discretion. Please visit Cisco’s certification website (www.cisco.com/web/learning) for the
latest information on the ICND2 exam.
LAN Switching Technologies
Identify enhanced switching technologies.
uu
RSTP
uu
PVSTP
uu
EtherChannels
Configure and verify PVSTP operation.
uu
Describe root bridge election
uu
Spanning-tree mode
Chapter(s)
15
15
IP Routing Technologies
Describe the boot process of Cisco IOS routers.
uu
POST
uu
Router bootup process
16
Configure and verify operation status of a serial interface.
21
Manage Cisco IOS Files.
16
uu
Boot preferences
uu
Cisco IOS image(s)
uu
Licensing
uu
Show license
uu
Change license
Differentiate methods of routing and routing protocols.
uu
Administrative distance
uu
Split horizon
uu
Metric
uu
Next-hop
19
Introduction
LAN Switching Technologies
Configure and verify OSPF (single area).
uu
Neighbor adjacencies
uu
OSPF states
uu
Discuss Multi-area
uu
Configure OSPFv2
uu
Configure OSPFv3
uu
Router ID
uu
LSA types
Configure and verify EIGRP (single AS)
uu
Feasible Distance / Feasible Successors / Administrative distance
uu
Feasibility condition
uu
Metric composition
uu
Router ID
uu
Auto-summary
uu
Path selection
uu
uu
xlv
Chapter(s)
20
19
Load balancing
uu
Equal
uu
Unequal
Passive interface
IP Services
Recognize high availability (FHRP).
uu
VRRP
uu
HSRP
uu
GLBP
Configure and verify Syslog.
uu
17
17
Utilize Syslog Output
Describe SNMPv2 & SNMPv3
17
Troubleshooting
Identify and correct common network problems.
18
Utilize NetFlow data.
17
Introduction
xlvi
(continued)
LAN Switching Technologies
Troubleshoot and resolve spanning-tree operation issues
uu
Root switch
uu
Priority
uu
Mode is correct
uu
Port states
Troubleshoot and resolve routing issues
uu
Routing is enabled
uu
Routing table is correct
uu
Correct path selection
Troubleshoot and resolve OSPF problems.
uu
Neighbor adjacencies
uu
Hello and dead timers
uu
OSPF area
uu
Interface MTU
uu
Network types
uu
Neighbor states
uu
OSPF topology database
Troubleshoot and resolve EIGRP problems.
uu
Neighbor adjacencies
uu
AS number
uu
Load balancing
uu
Split horizon
Troubleshoot and resolve interVLAN routing problems.
uu
Connectivity
uu
Encapsulation
uu
Subnet
uu
Native VLAN
uu
Port mode trunk status
Troubleshoot and resolve WAN implementation issues.
uu
Serial interfaces
uu
PPP
uu
Frame relay
Chapter(s)
15
18, 19, 20
20
19
15, 18
21
Introduction
LAN Switching Technologies
xlvii
Chapter(s)
Monitor NetFlow statistics.
17
Troubleshoot EtherChannel problems.
15
WAN Technologies
Identify different WAN Technologies.
uu
Metro Ethernet
uu
VSAT
uu
Cellular 3G/4G
uu
MPLS
uu
T1/E1
uu
ISDN
uu
DSL
uu
Frame relay
uu
Cable
uu
VPN
21
Configure and verify a basic WAN serial connection.
21
Configure and verify a PPP connection between Cisco routers.
21
Configure and verify frame relay on Cisco routers.
21
Implement and troubleshoot PPPoE.
21
CCNA Composite (200-120)
Exam Objectives
Operation of IP Data Networks
Chapter(s)
Recognize the purpose and functions of various network devices, such as
Routers, Switches, Bridges, and Hubs.
1, 2
Select the components required to meet a given network specification.
1, 2
Identify common applications and their impact on the network.
1, 3
Introduction
xlviii
(continued)
Operation of IP Data Networks
Describe the purpose and basic operation of the protocols in the OSI and
TCP/IP models.
Predict the data flow between two hosts across a network.
Identify the appropriate media, cables, ports, and connectors, to connect
Cisco network devices to other network devices and hosts in a LAN.
Chapter(s)
1, 3
1, 2, 8, 9, 13
2
LAN Switching Technologies
Determine the technology and media access control method for Ethernet
networks.
2, 10
Identify basic switching concepts and the operation of Cisco switches.
2, 10
uu
Collision domains
1, 2
uu
Broadcast domains
1, 2
uu
Types of switching
1, 2, 10, 11
uu
CAM table
Configure and verify initial switch configuration including remote access
management.
uu
6, 10
Cisco IOS commands to perform basic switch setup
Verify network status and switch operation using basic utilities, such as
ping, Telnet, and SSH.
Describe how VLANs create logically separate networks and the need for
routing between them.
uu
1, 2, 8, 10, 11
Explain network segmentation and basic traffic management concepts
6, 7, 10
11, 15
1, 6, 8, 10
Configure and verify VLANs.
11, 15
Configure and verify trunking on Cisco switches.
11, 15
uu
DTP
11, 15
uu
Auto negotiation
11, 15
IP addressing (IPv4/IPv6)
Describe the operation and necessity of using private and public
IP addresses for IPv4 addressing.
Identify the appropriate IPv6-addressing scheme to satisfy addressing
requirements in a LAN/WAN environment.
3, 4, 5
14
Introduction
Operation of IP Data Networks
xlix
Chapter(s)
Identify the appropriate IPv4-addressing scheme using VLSM and summarization to satisfy addressing requirements in a LAN/WAN environment.
5
Describe the technological requirements for running IPv6 in conjunction
with IPv4-such as dual stack.
14
Describe IPv6 addresses.
14
uu
Global unicast
14
uu
Multicast
14
uu
Link local
14
uu
Unique local
14
uu
eui 64
14
uu
Autoconfiguration
14
IP Routing Technologies
Describe basic routing concepts.
8
uu
CEF
8
uu
Packet forwarding
8
uu
Router lookup process
8
Configure and verify utilizing the CLI to set the basic router configuration.
uu
Cisco IOS commands to perform basic router setup
Configure and verify operation status of an Ethernet interface.
Verify router configuration and network connectivity.
uu
Cisco IOS commands to review basic router information and network
connectivity
6, 7
6
6
6, 7
6
Configure and verify routing configuration for a static or default route
given specific routing requirements.
8
Differentiate methods of routing and routing protocols.
8
uu
Static vs dynamic
8
uu
Link state vs distance vector
8
uu
Next-hop
8
Introduction
l
(continued)
Operation of IP Data Networks
Chapter(s)
uu
ip routing table
8
uu
Passive interfaces
8
Configure and verify OSPF (single area).
9, 14
uu
Benefit of single area
9
uu
Configure OSPFv2
9
uu
Configure OSPFv3
14, 18, 20
uu
Router ID
14, 18, 19, 20
uu
Passive interface
8, 9, 14, 19, 20
Configure and verify interVLAN routing (router on a stick).
11, 15
uu
Subinterfaces
11, 15
uu
Upstream routing
11, 15
uu
Encapsulation
11, 15
Configure SVI interfaces.
11, 15
IP Services
Configure and verify DHCP (IOS Router).
6, 7, 17
uu
Configuring router interfaces to use DHCP
6, 8, 17
uu
DHCP options
6, 8, 17
uu
Excluded addresses
6, 8, 17
uu
Lease time
16, 8, 17
Describe the types, features, and applications of ACLs.
uu
Standard
12
12
uu
Sequence numbers
12
uu
Editing
12
uu
Extended
12
uu
Named
12
uu
Numbered
12
uu
Log option
12
Introduction
Operation of IP Data Networks
Configure and verify ACLs in a network environment.
li
Chapter(s)
12
uu
Named
12
uu
Numbered
12
uu
Log option
12
Identify the basic operation of NAT.
13
uu
Purpose
13
uu
Pool
13
uu
Static
13
uu
1 to 1
13
uu
Overloading
13
uu
Source addressing
13
uu
One-way NAT
13
Configure and verify NAT for given network requirements.
13
Configure and verify NTP as a client.
7
Network Device Security
Configure and verify network device security features such as:
6
uu
Device password security
6
uu
Enable secret vs enable
6
uu
Transport
6
uu
Disable Telnet
6
uu
SSH
6
uu
VTYs
6
uu
Physical security
6
uu
Service password
6
uu
External authentication methods
6
Introduction
lii
(continued)
Operation of IP Data Networks
Configure and verify switch port security features such as.
Chapter(s)
10
uu
Sticky MAC
10
uu
MAC address limitation
10
uu
Static/dynamic
10
uu
Violation modes
10
uu
Err disable
10
uu
Shutdown
10
uu
Protect restrict
10
uu
Shutdown unused ports
10
uu
Err disable recovery
10
uu
Assign unused ports to an unused VLAN
10
uu
Setting native VLAN to other than VLAN 1
10
Configure and verify ACLs to filter network traffic.
12
Configure and verify ACLs to limit Telnet and SSH access to the router.
12
Troubleshooting
Troubleshoot and correct common problems associated with IP addressing and host configurations.
4, 5, 7, 18
Troubleshoot and resolve VLAN problems.
11, 15
uu
Identify that VLANs are configured
11, 15
uu
Port membership correct
11, 15
uu
IP address configured
11, 15
Troubleshoot and resolve trunking problems on Cisco switches.
11, 15
uu
Correct trunk states
11, 15
uu
Correct encapsulation configured
11, 15
uu
Correct VLANS allowed
11, 15
Troubleshoot and resolve ACL issues.
12, 15
uu
Statistics
12, 15
uu
Permitted networks
12, 15
Introduction
Operation of IP Data Networks
uu
Direction
uu
Interface
Troubleshoot and resolve Layer 1 problems.
liii
Chapter(s)
12, 15
12, 15
6, 18
uu
Framing
6, 18
uu
CRC
6, 18
uu
Runts
6, 18
uu
Giants
6, 18
uu
Dropped packets
6, 18
uu
Late collision
6, 18
uu
Input/Output errors
6, 18
LAN Switching Technologies
Identify enhanced switching technologies.
10, 11, 15
uu
RSTP
15
uu
PVSTP
15
uu
EtherChannels
15
Configure and verify PVSTP operation.
15
uu
Describe root bridge election
15
uu
Spanning-tree mode
15
IP Routing Technologies
8, 9
Describe the boot process of Cisco IOS routers.
7, 16
uu
POST
7, 16
uu
Router bootup process
16
uu
Configure and verify operation status of a serial interface
21
uu
Manage Cisco IOS Files
16
uu
Boot preferences
16
uu
Cisco IOS image(s)
16
Introduction
liv
(continued)
Operation of IP Data Networks
uu
Licensing
Chapter(s)
16
uu
Show license
16
uu
Change license
16
Differentiate methods of routing and routing protocols.
8
uu
Administrative distance
8
uu
Split horizon
8
uu
Metric
8
uu
Next-hop
8
Configure and verify OSPF (single area).
9
uu
Neighbor adjacencies
9
uu
OSPF states
9
uu
Discuss Multi-area
9
uu
Configure OSPFv2
9
uu
Configure OSPFv3
14, 18, 20
uu
Router ID
9, 14, 18, 20
uu
LSA types
20
Configure and verify EIGRP (single AS).
19
uu
Feasible Distance/Feasible Successors/Administrative distance
19
uu
Feasibility condition
19
uu
Metric composition
19
uu
Router ID
19
uu
Auto-summary
19
uu
Path selection
19
uu
Load balancing
19
uu
uu
Equal
19
uu
Unequal
19
Passive interface
8, 19
Introduction
Operation of IP Data Networks
lv
Chapter(s)
IP Services
Recognize high availability (FHRP).
17
uu
VRRP
17
uu
HSRP
17
uu
GLBP
17
Configure and verify Syslog.
17
Utilize Syslog Output
17
Describe SNMPv2 & SNMPv3.
17
uu
Troubleshooting
Identify and correct common network problems.
1, 2, 6, 7, 8
Utilize NetFlow data.
17
Troubleshoot and resolve spanning-tree operation issues
15
uu
Root switch
15
uu
Priority
15
uu
Mode is correct
15
uu
Port states
15
Troubleshoot and resolve routing issues.
8, 9, 18, 19, 20
uu
Routing is enabled
8, 9, 18, 19, 20
uu
Routing table is correct
8, 9, 18, 19, 20
uu
Correct path selection
8, 9, 18, 19, 20
Troubleshoot and resolve OSPF problems.
9, 18, 20
uu
Neighbor adjacencies
9, 18, 20
uu
Hello and dead timers
9, 18, 20
uu
OSPF area
9, 18, 20
uu
Interface MTU
9, 18, 20
uu
Network types
9, 18, 20
Introduction
lvi
(continued)
Operation of IP Data Networks
Chapter(s)
uu
Neighbor states
9, 18, 20
uu
OSPF topology database
9, 18, 20
Troubleshoot and resolve EIGRP problems.
19
uu
Neighbor adjacencies
19
uu
AS number
19
uu
Load balancing
19
uu
Split horizon
19
Troubleshoot and resolve interVLAN routing problems.
11, 15
uu
Connectivity
11, 15
uu
Encapsulation
11, 15
uu
Subnet
11, 15
uu
Native VLAN
11, 15
uu
Port mode trunk status
11, 15
Troubleshoot and resolve WAN implementation issues.
21
uu
Serial interfaces
21
uu
PPP
21
uu
Frame relay
21
Monitor NetFlow statistics.
17
Troubleshoot EtherChannel problems.
15
WAN Technologies
Identify different WAN Technologies.
21
uu
Metro Ethernet
21
uu
VSAT
21
uu
Cellular 3G/4G
21
uu
MPLS
21
uu
T1/E1
21
Introduction
Operation of IP Data Networks
lvii
Chapter(s)
uu
ISDN
21
uu
DSL
21
uu
Frame relay
21
uu
Cable
21
uu
VPN
21
Configure and verify a basic WAN serial connection.
21
Configure and verify a PPP connection between Cisco routers.
21
Configure and verify frame relay on Cisco routers.
21
Implement and troubleshoot PPPoE.
21
Assessment Test
1. What is the sys-id-ext field in a BPDU used for?
A. It is a 4-bit field inserted into an Ethernet frame to define trunking information
between switches.
B. It is a 12-bit field inserted into an Ethernet frame to define VLANs in an STP
instance.
C. It is a 4-bit field inserted into an non-Ethernet frame to define EtherChannel
options.
D. It is a 12-bit field inserted into an Ethernet frame to define STP root bridges.
2. You have four RSTP PVST+ links between switches and want to aggregate the band-
width. What solution will you use?
A. EtherChannel
B. PortFast
C. BPDU Channel
D. VLANs
E. EtherBundle
3. What configuration parameters must be configured the same between switches for
LACP to form a channel? (Choose three.)
A. Virtual MAC address
B. Port speeds
C. Duplex
D. PortFast enabled
E. Allowed VLAN information
4. You reload a router with a configuration register setting of 0x2101. What will the
router do when it reloads?
A. The router enters setup mode.
B. The router enters ROM monitor mode.
C. The router boots the mini-IOS in ROM.
D. The router expands the first IOS in flash memory into RAM.
Assessment Test
lix
5. Which of the following commands provides the product ID and serial number of a router?
A. show license
B. show license feature
C. show version
D. show license udi
6. Which command allows you to view the technology options and licenses that are sup-
ported on your router along with several status variables?
A. show license
B. show license feature
C. show license udi
D. show version
7. Which of the following will you use to collect details about network traffic patterns on
your network, including protocols used.
A. SNMPv3
B. Syslogv2
C. NetFlow 9
D. logging host ip_address
8. You want to send a console message to a syslog server, but you only want to send status
messages of 3 and lower. Which of the following commands will you use?
A. logging trap emergencies
B. logging trap errors
C. logging trap debugging
D. logging trap notifications
E. logging trap critical
F. logging trap warnings
G. logging trap alerts
9. When is the AVR router used in GLBP?
A. When HSRP preempts GLBP
B. When a client needs the virtual MAC
C. When it’s set to passive mode and load balancing
D. When it’s load-balancing between VLANs with VVRP
E. When there is a redundancy failure
lx
Assessment Test
10. You need to connect to a remote IPv6 server in your virtual server farm. You can con-
nect to the IPv4 servers, but not the critical IPv6 server you desperately need. Based on
the following output, what could your problem be?
C:\>ipconfig
Connection-specific DNS
IPv6 Address. . . . . .
Temporary IPv6 Address.
Link-local IPv6 Address
IPv4 Address. . . . . .
Subnet Mask . . . . . .
Default Gateway . . . .
Suffix
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
:
:
:
:
:
:
:
localdomain
2001:db8:3c4d:3:ac3b:2ef:1823:8938
2001:db8:3c4d:3:2f33:44dd:211:1c3d
fe80::ac3b:2ef:1823:8938%11
10.1.1.10
255.255.255.0
10.1.1.1
A. The global address is in the wrong subnet.
B. The IPv6 default gateway has not been configured or received from the router.
C. The link-local address has not been resolved so the host cannot communicate to
the router.
D. There are two IPv6 global addresses configured. One must be removed from the
configuration.
11. What command is used to view the IPv6-to-MAC-address resolution table on a
Cisco router?
A. show ip arp
B. show ipv6 arp
C. show ip neighbors
D. show ipv6 neighbors
E. show arp
12. An IPv6 ARP entry is listed as with a status of REACH. What can you conclude about
the IPv6-to-MAC-address mapping?
A. The interface has communicated with the neighbor address and the mapping is
current.
B. The interface has not communicated within the neighbor reachable time frame.
C. The ARP entry has timed out.
D. IPv6 can reach the neighbor address but the addresses has not yet been resolved.
Assessment Test
lxi
13. Serial0/1 goes down. How will EIGRP send packets to the 10.1.1.0 network?
Corp#show ip eigrp topology
[output cut]
P 10.1.1.0/24, 2 successors, FD is 2681842
via 10.1.2.2 (2681842/2169856), Serial0/0
via 10.1.3.1 (2973467/2579243), Serial0/2
via 10.1.3.3 (2681842/2169856), Serial0/1
A. EIGRP will put the 10.1.1.0 network into active mode.
B. EIGRP will drop all packets destined for 10.1.1.0.
C. EIGRP will just keep sending packets out s0/0.
E. EIGRP will use s0/2 as the successor and keep routing to 10.1.1.0.
14. What command produced the following output?
via FE80::201:C9FF:FED0:3301 (29110112/33316), Serial0/0/0
via FE80::209:7CFF:FE51:B401 (4470112/42216), Serial0/0/1
via FE80::209:7CFF:FE51:B401 (2170112/2816), Serial0/0/2
A. show ip protocols
B. show ipv6 protocols
C. show ip eigrp neighbors
D. show ipv6 eigrp neighbors
E. show ip eigrp topology
F. show ipv6 eigrp topology
15. You need to troubleshoot an adjacency between two EIGRP configured routers? What
should you look for? (Choose four.)
A. Verify the AS numbers.
B. Verify that you have the proper interfaces enabled for EIGRP.
C. Make sure there are no mismatched K-values.
D. Check your passive interface settings.
E. Make sure your remote routers are not connected to the Internet.
F. If authentication is configured, make sure all routers use different passwords.
lxii
Assessment Test
16. You have two OSPF directly configured routers that are not forming an adjacency.
What should you check? (Choose three.)
A. Process ID
B. Hello and dead timers
C. Link cost
D. Area
E. IP address/subnet mask
17. When do two adjacent routers-enter the 2WAY state?
A. After both routers have received Hello information
B. After they have exchanged topology databases
C. When they connect only to a DR or BDR
D. When they need to exchange RID information
18. Which type of LSAs are generated by ABRs and referred to summary link advertise-
ments (SLAs)?
A. Type 1
B. Type 2
C. Type 3
D. Type 4
E. Type 5
19. Which of the following is not provided by the AH portion of IPsec?
A. Integrity
B. Confidentiality
C. Authenticity
D. Anti-reply
20. Which statement about GRE is not true?
A. GRE is stateless and has no flow control.
B. GRE has security.
C. GRE has additional overhead for tunneled packets, at least 24 bytes.
D. GRE uses a protocol-type field in the GRE header so any layer 3 protocol can be
used through the tunnel.
Assessment Test
lxiii
21. How should a router that is being used in a frame relay network be configured to keep
split horizon issues from preventing routing updates?
A. Configure a single subinterface to establish multiple PVC connections to multiple
remote router interfaces.
B. Combine multiple frame relay circuits as a point-to-point line to support multicast
and broadcast traffic.
C. Configure many subinterfaces in the same subnet.
D. Configure a separate subinterface for each PVC with a unique DLCI and subnet
assigned to the subinterface.
22. IPv6 unicast routing is running on the Corp router. Which of the following addresses
would show up with the show ipv6 int brief command?
Corp#sh int f0/0
FastEthernet0/0 is up, line protocol is up
Hardware is AmdFE, address is 000d.bd3b.0d80 (bia 000d.bd3b.0d80)
[output cut]
A. FF02::3c3d:0d:bdff:fe3b:0d80
B. FE80::3c3d:2d:bdff:fe3b:0d80
C. FE80::3c3d:0d:bdff:fe3b:0d80
D. FE80::3c3d:2d:ffbd:3bfe:0d80
23. A host sends a type of NDP message providing the MAC address that was requested.
Which type of NDP was sent?
A. NA
B. RS
C. RA
D. NS
24. Each field in an IPv6 address is how many bits long?
A. 4
B. 16
C. 32
D. 128
lxiv
Assessment Test
25. To enable OSPFv3, which of the following would you use?
A. Router(config-if)#ipv6 ospf 10 area 0.0.0.0
B. Router(config-if)#ipv6 router rip 1
C. Router(config)#ipv6 router eigrp 10
D. Router(config-rtr)#no shutdown
E. Router(config-if)#ospf ipv6 10 area 0
26. What does the command routerA(config)#line cons 0 allow you to perform next?
A. Set the Telnet password.
B. Shut down the router.
C. Set your console password.
D. Disable console connections.
27. Which two statements describe the IP address 10.16.3.65/23? (Choose two.)
A. The subnet address is 10.16.3.0 255.255.254.0.
B. The lowest host address in the subnet is 10.16.2.1 255.255.254.0.
C. The last valid host address in the subnet is 10.16.2.254 255.255.254.0.
D. The broadcast address of the subnet is 10.16.3.255 255.255.254.0.
E. The network is not subnetted.
28. On which interface do you configure an IP address for a switch?
A. int fa0/0
B. int vty 0 15
C. int vlan 1
D. int s/0/0
29. Which of the following is the valid host range for the subnet on which the IP address
192.168.168.188 255.255.255.192 resides?
A. 192.168.168.129–190
B. 192.168.168.129–191
C. 192.168.168.128–190
D. 192.168.168.128–192
30. Which of the following is considered to be the inside host’s address after translation?
A. Inside local
B. Outside local
C. Inside global
D. Outside global
Assessment Test
lxv
31. Your inside locals are not being translated to the inside global addresses. Which of the fol-
lowing commands will show you if your inside globals are allowed to use the NAT pool?
ip nat pool Corp 198.18.41.129 198.18.41.134 netmask 255.255.255.248
ip nat inside source list 100 int pool Corp overload
A. debug ip nat
B. show access-list
C. show ip nat translation
D. show ip nat statistics
32. How many collision domains are created when you segment a network with a
12-port switch?
A. 1
B. 2
C. 5
D. 12
33. Which of the following commands will allow you to set your Telnet password on a
Cisco router?
A. line telnet 0 4
B. line aux 0 4
C. line vty 0 4
D. line con 0
34. Which router command allows you to view the entire contents of all access lists?
A. show all access-lists
B. show access-lists
C. show ip interface
D. show interface
35. What does a VLAN do?
A. Acts as the fastest port to all servers
B. Provides multiple collision domains on one switch port
C. Breaks up broadcast domains in a layer 2 switch internetwork
D. Provides multiple broadcast domains within a single collision domain
Assessment Test
lxvi
36. If you wanted to delete the configuration stored in NVRAM, choose the best answer
for the Cisco objectives.
A. erase startup
B. delete running
C. erase flash
D. erase running
37. Which protocol is used to send a destination network unknown message back to origi-
nating hosts?
A. TCP
B. ARP
C. ICMP
D. BootP
38. Which class of IP address provides 15 bits for subnetting?
A. A
B. B
C. C
D. D
39. There are three possible routes for a router to reach a destination network. The first
route is from OSPF with a metric of 782. The second route is from RIPv2 with a metric
of 4. The third is from EIGRP with a composite metric of 20514560. Which route will
be installed by the router in its routing table?
A. RIPv2
B. EIGRP
C. OSPF
D. All three
40. Which one of the following is true regarding VLANs?
A. Two VLANs are configured by default on all Cisco switches.
B. VLANs only work if you have a complete Cisco switched internetwork. No off-
brand switches are allowed.
C. You should not have more than 10 switches in the same VTP domain.
D. You need to have a trunk link configured between switches in order to send infor-
mation about more than one VLAN down the link.
Assessment Test
lxvii
41. Which two of the following commands will place network 10.2.3.0/24 into area 0?
(Choose two.)
A. router eigrp 10
B. router ospf 10
C. router rip
D. network 10.0.0.0
E. network 10.2.3.0 255.255.255.0 area 0
F. network 10.2.3.0 0.0.0.255 area0
G. network 10.2.3.0 0.0.0.255 area 0
42. How many broadcast domains are created when you segment a network with a
12-port switch?
A. 1
B. 2
C. 5
D. 12
43. If routers in a single area are configured with the same priority value, what value does
a router use for the OSPF router ID in the absence of a loopback interface?
A. The lowest IP address of any physical interface
B. The highest IP address of any physical interface
C. The lowest IP address of any logical interface
D. The highest IP address of any logical interface
44. What protocols are used to configure trunking on a switch? (Choose two.)
A. VLAN Trunking Protocol
B. VLAN
C. 802.1q
D. ISL
45. What is a stub network?
A. A network with more than one exit point
B. A network with more than one exit and entry point
C. A network with only one entry and no exit point
D. A network that has only one entry and exit point
Assessment Test
lxviii
46. Where is a hub specified in the OSI model?
A. Session layer
B. Physical layer
C. Data Link layer
D. Application layer
47. What are the two main types of access control lists (ACLs)? (Choose two.)
A. Standard
B. IEEE
C. Extended
D. Specialized
48. Which of the following is the best summarization of the following networks:
192.168.128.0 through 192.168.159.0?
A. 192.168.0.0/24
B. 192.168.128.0/16
C. 192.168.128.0/19
D. 192.168.128.0/20
49. What command is used to create a backup configuration?
A. copy running backup
B. copy running-config startup-config
C. config mem
D. wr net
50. 1000Base-T is which IEEE standard?
A. 802.3f
B. 802.3z
C. 802.3ab
D. 802.3ae
51. Which protocol does DHCP use at the Transport layer?
A. IP
B. TCP
C. UDP
D. ARP
Assessment Test
lxix
52. If your router is facilitating a CSU/DSU, which of the following commands do you
need to use to provide the router with a 64000 bps serial link?
A. RouterA(config)#bandwidth 64
B. RouterA(config-if)#bandwidth 64000
C. RouterA(config)#clockrate 64000
D. RouterA(config-if)#clock rate 64
E. RouterA(config-if)#clock rate 64000
53. Which command is used to determine if an access list is enabled on a particular interface?
A. show access-lists
B. show interface
C. show ip interface
D. show interface access-lists
54. Which of the following statements is true with regard to ISL and 802.1q?
A. 802.1q encapsulates the frame with control information; ISL inserts an ISL field
along with tag control information.
B. 802.1q is Cisco proprietary.
C. ISL encapsulates the frame with control information; 802.1q inserts an 802.1q
field along with tag control information.
D. ISL is a standard.
55. The protocol data unit (PDU) encapsulation is completed in which order?
A. Bits, frames, packets, segments, data
B. Data, bits, segments, frames, packets
C. Data, segments, packets, frames, bits
D. Packets, frames, bits, segments, data
56. Based on the configuration shown below, what statement is true?
S1(config)#ip routing
S1(config)#int vlan 10
S1(config-if)#ip address 192.168.10.1 255.255.255.0
S1(config-if)#int vlan 20
S1(config-if)#ip address 192.168.20.1 255.255.255.0
A. This is a multilayer switch.
B. The two VLANs are in the same subnet.
C. Encapsulation must be configured.
D. VLAN 10 is the management VLAN.
lxx
Answers to Assessment Test
Answers to Assessment Test
1. B. To allow for the PVST+ to operate, there’s a field inserted into the BPDU to accom-
modate the extended system ID so that PVST+ can have a root bridge configured on a
per-STP instance. The extended system ID (VLAN ID) is a 12-bit field, and we can even
see what this field is carrying via show spanning-tree command output. See Chapter 15
for more information.
2. A. Cisco’s EtherChannel can bundle up to eight ports between switches to provide resil-
iency and more bandwidth between switches. See Chapter 15 for more information.
3. B, C, E. All the ports on both sides of every link must be configured exactly the same
between switches or it will not work. Speed, duplex, and allowed VLANs must match.
See Chapter 15 for more information.
4. C. 2100 boots the router into ROM monitor mode, 2101 loads the mini-IOS from
ROM, and 2102 is the default and loads the IOS from flash. See Chapter 16 for more
information.
5. D. The show license udi command displays the unique device identifier (UDI) of
the router, which comprises the product ID (PID) and serial number of the router. See
Chapter 16 for more information.
6. B. The show license feature command allows you to view the technology package
licenses and feature licenses that are supported on your router along with several status
variables related to software activation and licensing, both licensed and unlicensed features. See Chapter 16 for more information.
7. C. NetFlow allows the collection of flows of traffic on the network, including address
and protocols in use. A recent version of NetFlow is version 9, referred to as Flexible
NetFlow. See Chapter 17 for more information.
8. B. There are eight different trap levels. If you choose, for example level 3, level 0
through level 3 messages will be displayed. See Chapter 17 for more information.
9. B. The active virtual router (AVR) responds with the virtual MAC addresses to the
clients. See Chapter 17 for more information.
10. B. There is no IPv6 default gateway listed in the output, which will be the link-local
address of the router interface, sent to the host as a router advertisement. Until this
host receives the router address, the host will communicate with IPv6 only on the local
subnet. See Chapter 18 for more information.
11. D. The command show ipv6 neighbors provides the ARP cache for on a router. See
Chapter 18 for more information.
Answers to Assessment Test
lxxi
12. A. If the state is STALE when the interface has not communicated within the neigh-
bor reachable time frame. The next time the neighbor communicates, the state will be
REACH. See Chapter 18 for more information.
13. C. There are two successor routes, so by default, EIGRP was load-balancing out s0/0 and
s0/1. When s0/1 goes down, EIGRP will just keep forwarding traffic out the second link
s0/0. s0/1 will be removed from the routing table. See Chapter 19 for more information.
14. F. There isn’t a lot to go on from with the output, but the only commands that provide
the FD and AD are show ip eigrp topology and show ipv6 eigrp topology. The
addresses in the output are link-local IPv6 addresses, so our answer is the latter. See
Chapter 19 for more information.
15. A, B, C, D. Cisco has documented steps, according to the objectives, that you must go
through when troubleshooting an adjacency. See Chapter 19 for more information.
16. B, D, E. In order for two OSPF routers to create an adjacency, the Hello and dead tim-
ers must match, and they must both be configured into the same area, as well as being
in the same subnet. See Chapter 20 for more information.
17. A. The process starts by sending out Hello packets. Every listening router will then
add the originating router to the neighbor database. The responding routers will reply
with all of their Hello information so that the originating router can add them to its
own neighbor table. At this point, we will have reached the 2WAY state—only certain
routers will advance beyond to this. See Chapter 20 for more information.
18. C. Referred to as summary link advertisements (SLAs), Type 3 LSAs are generated by
area border routers. These ABRs send Type 3 LSAs toward the area external to the one
where they were generated. See Chapter 20 for more information.
19. B. Authentication Header (AH) provides authentication of either all or part of the
IP packet through the addition of a header that is calculated based on the values in the
packet, but it doesn’t offer any encryption services. See Chapter 21 for more information.
20. B. Generic Routing Encapsulation (GRE) has no built-in security mechanisms. See
Chapter 21 for more information.
21. D. If you have a serial port configured with multiple DLCIs connected to multiple
remote sites, split horizon rules stop route updates received on an interface from being
sent out the same interface. By creating subinterfaces for each PVC, you can avoid the
split horizon issues when using Frame Relay. See Chapter 21 for more information.
22. B. This can be a hard question if you don’t remember to invert the 7th bit of the first
octet in the MAC address! Always look for the 7th bit when studying for the Cisco R/S,
and when using eui-64, invert it. The eui-64 autoconfiguration then inserts an FF:FE in
the middle of the 48-bit MAC address to create a unique IPv6 address. See Chapter 14
for more information.
lxxii
Answers to Assessment Test
23. A. The NDP neighbor advertisement (NA) contains the MAC address. A neighbor
solicitation (NS) was initially sent asking for the MAC address. See Chapter 14 for
more information.
24. B. Each field in an IPv6 address is 16 bits long. An IPv6 address is a total of 128 bits.
See Chapter 14 for more information.
25. A. To enable OSPFv3, you enable the protocol at the interface level, as with RIPng.
The command string is area-id. It’s important to understand that area 0 and area
0.0.0.0 both describe area 0. See Chapter 14 for more information.
26. C. The command line console 0 places you at a prompt where you can then set your
console user-mode password. See Chapter 6 for more information.
27. B, D. The mask 255.255.254.0 (/23) used with a Class A address means that there are
15 subnet bits and 9 host bits. The block size in the third octet is 2 (256–254). So this
makes the subnets in the interesting octet 0, 2, 4, 6, etc., all the way to 254. The host
10.16.3.65 is in the 2.0 subnet. The next subnet is 4.0, so the broadcast address for the
2.0 subnet is 3.255. The valid host addresses are 2.1 through 3.254. See Chapter 4 for
more information.
28. C. The IP address is configured under a logical interface, called a management domain
or VLAN 1, by default. See Chapter 10 for more information.
29. A. 256 – 192 = 64, so 64 is our block size. Just count in increments of 64 to find our
subnet: 64 + 64 = 128. 128 + 64 = 192. The subnet is 128, the broadcast address is
191, and the valid host range is the numbers in between, or 129–190. See Chapter 4
for more information.
30. C. An inside global address is considered to be the IP address of the host on the private
network after translation. See Chapter 13 for more information.
31. B. Once you create your pool, the command ip nat inside source must be used to
say which inside locals are allowed to use the pool. In this question, we need to see if
access list 100 is configured correctly, if at all, so show access-list is the best answer.
See Chapter 13 for more information.
32. D. Layer 2 switching creates individual collision domains per port. See Chapter 1 for
more information.
33. C. The command line vty 0 4 places you in a prompt that will allow you to set or
change your Telnet password. See Chapter 6 for more information.
34. B. To see the contents of all access lists, use the show access-lists command. See
Chapter 12 for more information.
35. C. VLANs break up broadcast domains at layer 2. See Chapter 11 for more information.
Answers to Assessment Test
lxxiii
36. A. The command erase startup-config deletes the configuration stored in NVRAM.
See Chapter 6 for more information.
37. C. ICMP is the protocol at the Network layer that is used to send messages back to an
originating router. See Chapter 3 for more information.
38. A. Class A addressing provides 22 bits for host subnetting. Class B provides 16 bits,
but only 14 are available for subnetting. Class C provides only 6 bits for subnetting.
See Chapter 3 for more information.
39. B. Only the EIGRP route will be placed in the routing table because EIGRP has the low-
est administrative distance (AD), and that is always used before metrics. See Chapter 8
for more information.
40. D. Switches send information about only one VLAN down a link unless it is configured
as a trunk link. See Chapter 11 for more information.
41. B, G. To enable OSPF, you must first start OSPF using a process ID. The number is
irrelevant; just choose a number from 1 to 65,535 and you’re good to go. After you
start the OSPF process, you must configure interfaces on which to activate OSPF using
the network command with wildcards and specification of an area. Option F is wrong
because there must be a space after the parameter area and before you list the area
number. See Chapter 9 for more information.
42. A. By default, switches break up collision domains on a per-port basis but are one
large broadcast domain. See Chapter 1 for more information.
43. B. At the moment of OSPF process startup, the highest IP address on any active inter-
face will be the router ID (RID) of the router. If you have a loopback interface configured (logical interface), then that will override the interface IP address and become the
RID of the router automatically. See Chapter 9 for more information.
44. C, D. VLAN Trunking Protocol (VTP) is not right because it has nothing to do with
trunking except that it sends VLAN information across a trunk link. 802.1q and ISL
encapsulations are used to configure trunking on a port. See Chapter 11 for more
information.
45. D. Stub networks have only one connection to an internetwork. Default routes should
be set on a stub network or network loops may occur; however, there are exceptions to
this rule. See Chapter 8 for more information.
46. B. Hubs regenerate electrical signals, which are specified at the Physical layer. See
Chapter 1 for more information.
47. A, C. Standard and extended access control lists (ACLs) are used to configure security
on a router. See Chapter 12 for more information.
lxxiv
Answers to Assessment Test
48. C. If you start at 192.168.128.0 and go through 192.168.159.0, you can see that this is
a block of 32 in the third octet. Since the network address is always the first one in the
range, the summary address is 192.168.128.0. What mask provides a block of 32 in the
third octet? The answer is 255.255.224.0, or /19. See Chapter 5 for more information.
49. B. The command to back up the configuration on a router is copy running-config
startup-config. See Chapter 7 for more information.
50. C. IEEE 802.3ab is the standard for 1 Gbps on twisted-pair. See Chapter 2 for more
information.
51. C. User Datagram Protocol is a connection network service at the Transport layer, and
DHCP uses this connectionless service. See Chapter 3 for more information.
52. E. The clock rate command is two words, and the speed of the line is in bits per
second (bps). See Chapter 6 for more information.
53. C. The show ip interface command will show you if any interfaces have an outbound
or inbound access list set. See Chapter 12 for more information.
54. C. Unlike ISL, which encapsulates the frame with control information, 802.1q inserts an
802.1q field along with tag control information. See Chapter 11 for more information.
55. C. The PDU encapsulation method defines how data is encoded as it goes through
each layer of the TCP/IP model. Data is segmented at the Transport later, packets created at the Network layer, frames at the Data Link layer, and finally, the Physical layer
encodes the 1s and 0s into a digital signal. See Chapter 2 for more information.
56. A. With a multilayer switch, enable IP routing and create one logical interface for each
VLAN using the interface vlan number command and you’re now doing inter-VLAN
routing on the backplane of the switch! See Chapter 11 for more information.
ICND1
Part
I
Chapter
1
Internetworking
The following ICND1 exam topics
are covered in this chapter:
11 Operation of IP Data Networks
■■
Recognize the purpose and functions of various network
devices such as Routers, Switches, Bridges and Hubs.
■■
Select the components required to meet a given network
specification.
■■
Identify common applications and their impact on the
network.
■■
Describe the purpose and basic operation of the protocols in
the OSI and TCP/IP models.
Welcome to the exciting world of internetworking. This first
chapter will serve as an internetworking review by focusing
on how to connect networks together using Cisco routers and
switches, and I’ve written it with the assumption that you have some simple basic networking knowledge. The emphasis of this review will be on the Cisco CCENT and/or CCNA
Routing and Switching (CCNA R/S) objectives you’ll need a solid grasp on in order to succeed in getting your certifications.
Let’s start by defining exactly what an internetwork is: You create an internetwork when
you connect two or more networks via a router and configure a logical network addressing
scheme with a protocol such as IP or IPv6.
We’ll also dissect the Open Systems Interconnection (OSI) model, and I’ll describe
each part of it to you in detail because you really need complete, reliable knowledge of it.
Understanding the OSI model is key for the solid foundation you’ll need to build upon with
the more advanced Cisco networking knowledge gained as you become increasingly skilled.
The OSI model has seven hierarchical layers that were developed to enable different
networks to communicate reliably between disparate systems. Since this book is centering
upon all things CCNA, it’s crucial for you to understand the OSI model as Cisco sees it, so
that’s how I’ll be presenting the seven layers to you.
After you finish reading this chapter, you’ll encounter review questions and written labs.
These are given to you to really lock the information from this chapter into your memory.
So don’t skip them!
To find up-to-the-minute updates for this chapter, please see
www.lammle.com/forum or the book’s web page at www.sybex.com.
Internetworking Basics
Before exploring internetworking models and the OSI model’s specifications, you need to
grasp the big picture and the answer to this burning question: Why is it so important to learn
Cisco internetworking anyway?
Networks and networking have grown exponentially over the past 20 years, and understandably so. They’ve had to evolve at light speed just to keep up with huge increases in
basic, mission-critical user needs, (e.g. simple sharing data and printers), as well as greater
burdens like multimedia remote presentations and conferencing. Unless everyone who needs
Internetworking Basics
5
to share network resources is located in the same office space—an increasingly uncommon
situation—the challenge is to connect relevant networks so all users can share the wealth of
whatever services and resources are required.
Figure 1.1 shows a basic local area network (LAN) that’s connected using a hub, which is
basically just an antiquated device that connects wires together. Keep in mind that a simple
network like this would be considered one collision domain and one broadcast domain. No
worries if you have no idea what I mean by that because coming up soon, I’m going to talk
about collision and broadcast domains enough to make you dream about them!
F ig u re 1 .1
A very basic network
Hub
Bob
HEY SALLY?
Sally
Okay, things really can’t get much simpler than this. And yes, though you can still find
this configuration in some home networks, even many of those as well as the smallest business networks are more complicated today. As we move through this book, I’ll just keep
building upon this tiny network a bit at a time until we arrive at some really nice, robust
and current network designs—the types that will help you get your certification and a job!
But as I said, we’ll get there one step at a time, so let’s get back to the network shown
in Figure 1.1 with this scenario: Bob wants to send Sally a file, and to complete that goal in
this kind of network, he’ll simply broadcast that he’s looking for her, which is basically just
shouting out over the network. Think of it like this, Bob walking out of his house and yelling down a street called Chaos Court in order to contact Sally. This might work if Bob and
Sally were the only ones living there, but not so much if it’s crammed with homes and all
the others living there are always hollering up and down the street to their neighbors just
like Bob. Nope, Chaos Court would absolutely live up to its name, with all those residents
going off whenever they felt like it—and believe it or not, our networks actually still work
this way to a degree! So, given a choice, would you stay in Chaos, or would you pull up
stakes and move on over to a nice new modern community called Broadway Lanes, which
offers plenty of amenities and room for your home plus future additions all on nice, wide
streets that can easily handle all present and future traffic? Good choice… so did Sally, who
now lives a much quieter life, getting letters (packets) from Bob instead of a headache!
The scenario I just described brings me to the basic point of what this book and the
Cisco certification objectives are really all about. My goal of showing you how to create
efficient networks and segment them correctly in order to minimize all the chaotic yelling
and screaming going on in them is a universal theme throughout my CCENT and CCNA
series books. It’s just inevitable that you’ll have to break up a large network into a bunch
6
Chapter 1
u
Internetworking
of smaller ones at some point to match a network’s equally inevitable growth, and as that
expansion occurs, user response time simultaneously dwindles to a frustrating crawl. But
if you master the vital technology and skills I have in store for you in this series, you’ll be
well equipped to rescue your network and its users by creating an efficient new network
neighborhood to give them key amenities like the bandwidth they need to meet their
evolving demands.
And this is no joke; most of us think of growth as good—and it can be—but as many
of us experience daily when commuting to work, school, etc., it can also mean your LAN’s
traffic congestion can reach critical mass and grind to a complete halt! Again, the solution to this problem begins with breaking up a massive network into a number of smaller
ones—something called network segmentation. This concept is a lot like planning a new
community or modernizing an existing one. More streets are added, complete with new
intersections and traffic signals, plus post offices with official maps documenting all those
street names and directions on how to get to each are built. You’ll need to effect new laws
to keep order to it all and provide a police station to protect this nice new neighborhood
as well. In a networking neighborhood environment, all of this is carried out using devices
like routers, switches, and bridges.
So let’s take a look at our new neighborhood now, because the word has gotten out; many
more hosts have moved into it, so it’s time to upgrade that new high-capacity infrastructure
that we promised to handle the increase in population. Figure 1.2 shows a network that’s
been segmented with a switch, making each network segment that connects to the switch its
own separate collision domain. Doing this results in a lot less yelling!
F ig u re 1 . 2
A switch can break up collision domains.
Hub
Switch
S1
Bob
HEY JOHN!
John
Sally
This is a great start, but I really want you to make note of the fact that this network is
still one, single broadcast domain, meaning that we’ve really only decreased our screaming and yelling, not eliminated it. For example, if there’s some sort of vital announcement
that everyone in our neighborhood needs to hear about, it will definitely still get loud!
You can see that the hub used in Figure 1.2 just extended the one collision domain from
the switch port. The result is that John received the data from Bob but, happily, Sally did
not. This is good because Bob intended to talk with John directly, and if he had needed to
send a broadcast instead, everyone, including Sally, would have received it, possibly causing unnecessary congestion.
Internetworking Basics
7
Here’s a list of some of the things that commonly cause LAN traffic congestion:
uu
Too many hosts in a collision or broadcast domain
uu
Broadcast storms
uu
Too much multicast traffic
uu
Low bandwidth
uu
Adding hubs for connectivity to the network
uu
A bunch of ARP broadcasts
Take another look at Figure 1.2 and make sure you see that I extended the main hub
from Figure 1.1 to a switch in Figure 1.2. I did that because hubs don’t segment a network;
they just connect network segments. Basically, it’s an inexpensive way to connect a couple
of PCs, and again, that’s great for home use and troubleshooting, but that’s about it!
As our planned community starts to grow, we’ll need to add more streets with traffic
control, and even some basic security. We’ll achieve this by adding routers because these convenient devices are used to connect networks and route packets of data from one network to
another. Cisco became the de facto standard for routers because of its unparalleled selection of
high-quality router products and fantastic service. So never forget that by default, routers are
basically employed to efficiently break up a broadcast domain—the set of all devices on a network segment, which are allowed to “hear” all broadcasts sent out on that specific segment.
Figure 1.3 depicts a router in our growing network, creating an internetwork and breaking up broadcast domains.
F ig u re 1 . 3
Routers create an internetwork.
S2
I LOVE SHOUTING!
. . . HEY EVERYONE!
R1
S2
Sure is nice and quiet here.
The network in Figure 1.3 is actually a pretty cool little network. Each host is connected
to its own collision domain because of the switch, and the router has created two broadcast
domains. So now our Sally is happily living in peace in a completely different neighborhood,
no longer subjected to Bob’s incessant shouting! If Bob wants to talk with Sally, he has to
send a packet with a destination address using her IP address—he cannot broadcast for her!
But there’s more… routers provide connections to wide area network (WAN) services as
well via a serial interface for WAN connections—specifically, a V.35 physical interface on a
Cisco router.
Chapter 1
8
u
Internetworking
Let me make sure you understand why breaking up a broadcast domain is so important.
When a host or server sends a network broadcast, every device on the network must read
and process that broadcast—unless you have a router. When the router’s interface receives
this broadcast, it can respond by basically saying, “Thanks, but no thanks,” and discard
the broadcast without forwarding it on to other networks. Even though routers are known
for breaking up broadcast domains by default, it’s important to remember that they break
up collision domains as well.
There are two advantages to using routers in your network:
uu
uu
They don’t forward broadcasts by default.
They can filter the network based on layer 3, Network layer, information such as an
IP address.
Here are four ways a router functions in your network:
uu
Packet switching
uu
Packet filtering
uu
Internetwork communication
uu
Path selection
I’ll tell you all about the various layers later in this chapter, but for now, it’s helpful to
think of routers as layer 3 switches. Unlike plain-vanilla layer 2 switches, which forward
or filter frames, routers (layer 3 switches) use logical addressing and provide an important
capacity called packet switching. Routers can also provide packet filtering via access lists,
and when routers connect two or more networks together and use logical addressing (IP or
IPv6), you then have an internetwork. Finally, routers use a routing table, which is essentially a map of the internetwork, to make best path selections for getting data to its proper
destination and properly forward packets to remote networks.
Conversely, we don’t use layer 2 switches to create internetworks because they don’t break
up broadcast domains by default. Instead, they’re employed to add functionality to a network
LAN. The main purpose of these switches is to make a LAN work better—to optimize its
performance—providing more bandwidth for the LAN’s users. Also, these switches don’t forward packets to other networks like routers do. Instead, they only “switch” frames from one
port to another within the switched network. And don’t worry, even though you’re probably
thinking, “Wait—what are frames and packets?” I promise to completely fill you in later in
this chapter. For now, think of a packet as a package containing data.
Okay, so by default, switches break up collision domains, but what are these things?
Collision domain is an Ethernet term used to describe a network scenario in which one
device sends a packet out on a network segment and every other device on that same segment is forced to pay attention no matter what. This isn’t very efficient because if a different device tries to transmit at the same time, a collision will occur, requiring both devices
to retransmit, one at a time—not good! This happens a lot in a hub environment, where
each host segment connects to a hub that represents only one collision domain and a single
broadcast domain. By contrast, each and every port on a switch represents its own collision
domain, allowing network traffic to flow much more smoothly.
Internetworking Basics
9
Switches create separate collision domains within a single broadcast
domain. Routers provide a separate broadcast domain for each interface.
Don’t let this ever confuse you!
The term bridging was introduced before routers and switches were implemented, so it’s
pretty common to hear people referring to switches as bridges. That’s because bridges and
switches basically do the same thing—break up collision domains on a LAN. Note to self
that you cannot buy a physical bridge these days, only LAN switches, which use bridging
technologies. This does mean that you’ll still hear Cisco and others refer to LAN switches
as multiport bridges now and then.
But does it mean that a switch is just a multiple-port bridge with more brainpower?
Well, pretty much, only there are still some key differences. Switches do provide a bridging
function, but they do that with greatly enhanced management ability and features. Plus,
most bridges had only 2 or 4 ports, which is severely limiting. Of course, it was possible to
get your hands on a bridge with up to 16 ports, but that’s nothing compared to the hundreds of ports available on some switches!
You would use a bridge in a network to reduce collisions within broadcast
domains and to increase the number of collision domains in your network.
Doing this provides more bandwidth for users. And never forget that using
hubs in your Ethernet network can contribute to congestion. As always,
plan your network design carefully!
Figure 1.4 shows how a network would look with all these internetwork devices in place.
Remember, a router doesn’t just break up broadcast domains for every LAN interface, it
breaks up collision domains too.
Looking at Figure 1.4, did you notice that the router has the center stage position and
connects each physical network together? I’m stuck with using this layout because of the
ancient bridges and hubs involved. I really hope you don’t run across a network like this,
but it’s still really important to understand the strategic ideas that this figure represents!
See that bridge up at the top of our internetwork shown in Figure 1.4? It’s there to connect
the hubs to a router. The bridge breaks up collision domains, but all the hosts connected to
both hubs are still crammed into the same broadcast domain. That bridge also created only
three collision domains, one for each port, which means that each device connected to a hub
is in the same collision domain as every other device connected to that same hub. This is
really lame and to be avoided if possible, but it’s still better than having one collision domain
for all hosts! So don’t do this at home; it’s a great museum piece and a wonderful example
of what not to do, but this inefficient design would be terrible for use in today’s networks! It
does show us how far we’ve come though, and again, the foundational concepts it illustrates
are really important for you to get.
10
Chapter 1
F ig u re 1 . 4
u
Internetworking
Internetworking devices
Hub
Bridge
Switch
Router
WAN Services
ISP
And I want you to notice something else: The three interconnected hubs at the bottom
of the figure also connect to the router. This setup creates one collision domain and one
broadcast domain and makes that bridged network, with its two collision domains, look
majorly better by contrast!
Don’t misunderstand… bridges/switches are used to segment networks,
but they will not isolate broadcast or multicast packets.
The best network connected to the router is the LAN switched network on the left.
Why? Because each port on that switch breaks up collision domains. But it’s not all good—
all devices are still in the same broadcast domain. Do you remember why this can be really
bad? Because all devices must listen to all broadcasts transmitted, that’s why! And if your
broadcast domains are too large, the users have less bandwidth and are required to process
more broadcasts. Network response time eventually will slow to a level that could cause
riots and strikes, so it’s important to keep your broadcast domains small in the vast majority of networks today.
Once there are only switches in our example network, things really change a lot! Figure 1.5
demonstrates a network you’ll typically stumble upon today.
Internetworking Basics
11
Here I’ve placed the LAN switches at the center of this network world, with the routers
connecting the logical networks. If I went ahead and implemented this design, I’ve created
something called virtual LANs, or VLANs, which are used when you logically break up
broadcast domains in a layer 2, switched network. It’s really important to understand that
even in a switched network environment, you still need a router to provide communication
between VLANs. Don’t forget that!
F ig u re 1 . 5
Switched networks creating an internetwork
Router
Router
Still, clearly the best network design is the one that’s perfectly configured to meet the
business requirements of the specific company or client it serves, and it’s usually one in
which LAN switches exist in harmony with routers strategically placed in the network. It’s
my hope that this book will help you understand the basics of routers and switches so you
can make solid, informed decisions on a case-by-case basis and be able to achieve that goal!
But I digress…
So let’s go back to Figure 1.4 now for a minute and really scrutinize it because I want
to ask you this question: How many collision domains and broadcast domains are really
there in this internetwork? I hope you answered nine collision domains and three broadcast domains! The broadcast domains are definitely the easiest to spot because only routers
break up broadcast domains by default, and since there are three interface connections,
that gives you three broadcast domains. But do you see the nine collision domains? Just in
case that’s a no, I’ll explain. The all-hub network at the bottom is one collision domain; the
bridge network on top equals three collision domains. Add in the switch network of five
collision domains—one for each switch port—and you get a total of nine!
While we’re at this, in Figure 1.5, each port on the switch is a separate collision domain,
and each VLAN would be a separate broadcast domain. So how many collision domains do
you see here? I’m counting 12—remember that connections between the switches are considered a collision domain! Since the figure doesn’t show any VLAN information, we can
assume the default of one broadcast domain is in place.
12
Chapter 1
u
Internetworking
Should I Replace My Existing 10/100 Mbps Switches?
Let’s say you’re a network administrator at a large company. The boss comes to you and
says that he got your requisition to buy a bunch of new switches but he’s really freaking
out about the price tag! Should you push it—do you really need to go this far?
If you can, absolutely! Make your case and go for it because the newest switches add
really huge capacity to a network that older 10/100 Mbps switches just can’t touch. And
yes, five-year-old switches are considered pretty Pleistocene these days. But in reality, most of us just don’t have an unlimited budget to buy all new gigabit switches and
10/100 Mbps switches can still create a nice network—if you design and implement that
network correctly! Still, plan and budget accordingly because you’ll have to replace
those 10/100 switches eventually.
Another good question: Do you really need 1 Gbps or better switch ports for all your users,
servers, and other devices? Yes, you absolutely need new higher-end switches! This is
because servers and hosts are no longer the bottlenecks of our internetworks, our routers
and switches are—especially legacy ones. We now need gigabit on the desktop and on every
router interface; 10 Gbps would be better, and go even higher if you can afford it.
So, go ahead. Put that requisition for all new switches. You’ll be a hero before long!
Okay, so now that you’ve gotten a pretty thorough introduction to internetworking and
the various devices that populate an internetwork, it’s time to head into exploring the internetworking models.
Internetworking Models
First a little history: When networks first came into being, computers could typically
communicate only with computers from the same manufacturer. For example, companies
ran either a complete DECnet solution or an IBM solution, never both together. In the
late 1970s, the Open Systems Interconnection (OSI) reference model was created by
the International Organization for Standardization (ISO) to break through this barrier.
The OSI model was meant to help vendors create interoperable network devices and
software in the form of protocols so that different vendor networks could work in peaceable accord with each other. Like world peace, it’ll probably never happen completely, but
it’s still a great goal!
Anyway the OSI model is the primary architectural model for networks. It describes how
data and network information are communicated from an application on one computer
Internetworking Models
13
through the network media to an application on another computer. The OSI reference model
breaks this approach into layers.
Coming up, I’ll explain the layered approach to you plus how we can use it to help us
troubleshoot our internetworks.
Goodness! ISO, OSI, and soon you’ll hear about IOS! Just remember that the
ISO created the OSI and that Cisco created the Internetworking Operating
System (IOS), which is what this book is all-so-about.
The Layered Approach
Understand that a reference model is a conceptual blueprint of how communications should
take place. It addresses all the processes required for effective communication and divides
them into logical groupings called layers. When a communication system is designed in this
manner, it’s known as a hierarchical or layered architecture.
Think of it like this: You and some friends want to start a company. One of the first
things you’ll do is sort out every task that must be done and decide who will do what. You
would move on to determine the order in which you would like everything to be done with
careful consideration of how all your specific operations relate to each other. You would
then organize everything into departments (e.g., sales, inventory, and shipping), with each
department dealing with its specific responsibilities and keeping its own staff busy enough
to focus on their own particular area of the enterprise.
In this scenario, departments are a metaphor for the layers in a communication system.
For things to run smoothly, the staff of each department has to trust in and rely heavily upon
those in the others to do their jobs well. During planning sessions, you would take notes,
recording the entire process to guide later discussions and clarify standards of operation,
thereby creating your business blueprint—your own reference model.
And once your business is launched, your department heads, each armed with the part of
the blueprint relevant to their own department, will develop practical ways to implement their
distinct tasks. These practical methods, or protocols, will then be compiled into a standard
operating procedures manual and followed closely because each procedure will have been
included for different reasons, delimiting their various degrees of importance and implementation. All of this will become vital if you form a partnership or acquire another company
because then it will be really important that the new company’s business model is compatible
with yours!
Models happen to be really important to software developers too. They often use a reference model to understand computer communication processes so they can determine which
functions should be accomplished on a given layer. This means that if someone is creating a
protocol for a certain layer, they only need to be concerned with their target layer’s function.
Software that maps to another layers’ protocols and is specifically designed to be deployed
there will handle additional functions. The technical term for this idea is binding. The communication processes that are related to each other are bound, or grouped together, at a
particular layer.
14
Chapter 1
u
Internetworking
Advantages of Reference Models
The OSI model is hierarchical, and there are many advantages that can be applied to any
layered model, but as I said, the OSI model’s primary purpose is to allow different vendors’
networks to interoperate.
Here’s a list of some of the more important benefits for using the OSI layered model:
uu
uu
uu
It divides the network communication process into smaller and simpler components,
facilitating component development, design, and troubleshooting.
It allows multiple-vendor development through the standardization of network
components.
It encourages industry standardization by clearly defining what functions occur at each
layer of the model.
uu
It allows various types of network hardware and software to communicate.
uu
It prevents changes in one layer from affecting other layers to expedite development.
The OSI Reference Model
One of best gifts the OSI specifications gives us is paving the way for the data transfer
between disparate hosts running different operating systems, like Unix hosts, Windows
machines, Macs, smartphones, and so on.
And remember, the OSI is a logical model, not a physical one. It’s essentially a set of guidelines that developers can use to create and implement applications to run on a network. It also
provides a framework for creating and implementing networking standards, devices, and internetworking schemes.
The OSI has seven different layers, divided into two groups. The top three layers define
how the applications within the end stations will communicate with each other as well as
with users. The bottom four layers define how data is transmitted end to end.
Figure 1.6 shows the three upper layers and their functions.
F ig u re 1 . 6
The upper layers
Application
• Provides a user interface
Presentation
• Presents data
• Handles processing such as encryption
Session
• Keeps different applications’ data separate
When looking at Figure 1.6, understand that users interact with the computer at
the Application layer and also that the upper layers are responsible for applications
The OSI Reference Model
15
communicating between hosts. None of the upper layers knows anything about networking or network addresses because that’s the responsibility of the four bottom layers.
In Figure 1.7, which shows the four lower layers and their functions, you can see that
it’s these four bottom layers that define how data is transferred through physical media like
wire, cable, fiber optics, switches, and routers. These bottom layers also determine how to
rebuild a data stream from a transmitting host to a destination host’s application.
F ig u re 1 . 7
The lower layers
Transport
• Provides reliable or unreliable delivery
• Performs error correction before retransmit
Network
• Provides logical addressing, which routers use for path determination
Data Link
• Combines packets into bytes and bytes into frames
• Provides access to media using MAC address
• Performs error detection not correction
Physical
• Moves bits between devices
• Specifies voltage, wire speed, and pinout of cables
The following network devices operate at all seven layers of the OSI model:
uu
Network management stations (NMSs)
uu
Web and application servers
uu
Gateways (not default gateways)
uu
Servers
uu
Network hosts
Basically, the ISO is pretty much the Emily Post of the network protocol world. Just as
Ms. Post wrote the book setting the standards—or protocols—for human social interaction, the ISO developed the OSI reference model as the precedent and guide for an open
network protocol set. Defining the etiquette of communication models, it remains the most
popular means of comparison for protocol suites today.
The OSI reference model has the following seven layers:
uu
Application layer (layer 7)
uu
Presentation layer (layer 6)
uu
Session layer (layer 5)
uu
Transport layer (layer 4)
uu
Network layer (layer 3)
uu
Data Link layer (layer 2)
uu
Physical layer (layer 1)
16
Chapter 1
u
Internetworking
Some people like to use a mnemonic to remember the seven layers, such as All People
Seem To Need Data Processing. Figure 1.8 shows a summary of the functions defined at
each layer of the OSI model.
F ig u re 1 . 8
OSI layer functions
Application
• File, print, message, database, and application services
Presentation
• Data encryption, compression, and translation services
Session
• Dialog control
Transport
• End-to-end connection
Network
• Routing
Data Link
• Framing
Physical
• Physical topology
I’ve separated the 7-layer model into three different functions: the upper layers, the middle
layers and the bottom layers. The upper layers communicate with the user interface and application, the middle layers do reliable communication and routing to a remote network, and the
bottom layers communicate to the local network.
With this in hand, you’re now ready to explore each layer’s function in detail!
The Application Layer
The Application layer of the OSI model marks the spot where users actually communicate to the computer and comes into play only when it’s clear that access to the network
will be needed soon. Take the case of Internet Explorer (IE). You could actually uninstall
every trace of networking components like TCP/IP, the NIC card, and so on and still use
IE to view a local HTML document. But things would get ugly if you tried to do things
like view a remote HTML document that must be retrieved because IE and other browsers
act on these types of requests by attempting to access the Application layer. So basically,
the Application layer is working as the interface between the actual application program
and the next layer down by providing ways for the application to send information down
through the protocol stack. This isn’t actually part of the layered structure, because
browsers don’t live in the Application layer, but they interface with it as well as the relevant protocols when asked to access remote resources.
Identifying and confirming the communication partner’s availability and verifying
the required resources to permit the specified type of communication to take place also
occurs at the Application layer. This is important because, like the lion’s share of browser
functions, computer applications sometimes need more than desktop resources. It’s more
typical than you would think for the communicating components of several network
The OSI Reference Model
17
applications to come together to carry out a requested function. Here are a few good
examples of these kinds of events:
uu
File transfers
uu
Email
uu
Enabling remote access
uu
Network management activities
uu
Client/server processes
uu
Information location
Many network applications provide services for communication over enterprise networks, but for present and future internetworking, the need is fast developing to reach
beyond the limits of current physical networking.
The Application layer works as the interface between actual application
programs. This means end-user programs like Microsoft Word don’t reside
at the Application layer, they interface with the Application layer protocols.
Later, in Chapter 3, “TCP/IP,” I’ll talk in detail about a few important programs
that actually reside at the Application layer, like Telnet, FTP and TFTP.
The Presentation Layer
The Presentation layer gets its name from its purpose: It presents data to the Application
layer and is responsible for data translation and code formatting. Think of it as the OSI
model’s translator, providing coding and conversion services. One very effective way of
ensuring a successful data transfer is to convert the data into a standard format before
transmission. Computers are configured to receive this generically formatted data and then
reformat it back into its native state to read it. An example of this type of translation service
occurs when translating old Extended Binary Coded Decimal Interchange Code (EBCDIC)
data to ASCII, the American Standard Code for Information Interchange (often pronounced
“askee”). So just remember that by providing translation services, the Presentation layer
ensures that data transferred from the Application layer of one system can be read by the
Application layer of another one.
With this in mind, it follows that the OSI would include protocols that define how
standard data should be formatted, so key functions like data compression, decompression, encryption, and decryption are also associated with this layer. Some Presentation
layer standards are involved in multimedia operations as well.
The Session Layer
The Session layer is responsible for setting up, managing, and dismantling sessions between
Presentation layer entities and keeping user data separate. Dialog control between devices
also occurs at this layer.
18
Chapter 1
u
Internetworking
Communication between hosts’ various applications at the Session layer, as from a
client to a server, is coordinated and organized via three different modes: simplex, halfduplex, and full-duplex. Simplex is simple one-way communication, kind of like saying
something and not getting a reply. Half-duplex is actual two-way communication, but it
can take place in only one direction at a time, preventing the interruption of the transmitting device. It’s like when pilots and ship captains communicate over their radios, or
even a walkie-talkie. But full-duplex is exactly like a real conversation where devices can
transmit and receive at the same time, much like two people arguing or interrupting each
other during a telephone conversation.
The Transport Layer
The Transport layer segments and reassembles data into a single data stream. Services
located at this layer take all the various data received from upper-layer applications, then
combine it into the same, concise data stream. These protocols provide end-to-end data
transport services and can establish a logical connection between the sending host and
destination host on an internetwork.
A pair of well-known protocols called TCP and UDP are integral to this layer, but no
worries if you’re not already familiar with them because I’ll bring you up to speed later, in
Chapter 3. For now, understand that although both work at the Transport layer, TCP known
as a reliable service but UDP is not. This distinction gives application developers more options
because they have a choice between the two protocols when they are designing products for
this layer.
The Transport layer is responsible for providing mechanisms for multiplexing upper-layer
applications, establishing sessions, and tearing down virtual circuits. It can also hide the
details of network-dependent information from the higher layers as well as provide transparent data transfer.
The term reliable networking can be used at the Transport layer. Reliable
networking requires that acknowledgments, sequencing, and flow control
will all be used.
The Transport layer can either be connectionless or connection-oriented, but because
Cisco really wants you to understand the connection-oriented function of the Transport
layer, I’m going to go into that in more detail here.
Connection-Oriented Communication
For reliable transport to occur, a device that wants to transmit must first establish a connection-oriented communication session with a remote device—its peer system—known as a call
setup or a three-way handshake. Once this process is complete, the data transfer occurs, and
when it’s finished, a call termination takes place to tear down the virtual circuit.
Figure 1.9 depicts a typical reliable session taking place between sending and receiving
systems. In it, you can see that both hosts’ application programs begin by notifying their
The OSI Reference Model
19
individual operating systems that a connection is about to be initiated. The two operating
systems communicate by sending messages over the network confirming that the transfer
is approved and that both sides are ready for it to take place. After all of this required synchronization takes place, a connection is fully established and the data transfer begins. And
by the way, it’s really helpful to understand that this virtual circuit setup is often referred to
as overhead!
F ig u re 1 . 9
Establishing a connection-oriented session
Sender
Receiver
SYN
SYN/ACK
ACK
Connection Established
Data transfer
(Send bytes of segments)
Okay, now while the information is being transferred between hosts, the two machines
periodically check in with each other, communicating through their protocol software to
ensure that all is going well and that the data is being received properly.
Here’s a summary of the steps in the connection-oriented session—that three-way
handshake—pictured in Figure 1.9:
uu
uu
uu
The first “connection agreement” segment is a request for synchronization (SYN).
The next segments acknowledge (ACK) the request and establish connection
parameters—the rules—between hosts. These segments request that the receiver’s
sequencing is synchronized here as well so that a bidirectional connection can
be formed.
The final segment is also an acknowledgment, which notifies the destination host that
the connection agreement has been accepted and that the actual connection has been
established. Data transfer can now begin.
Sounds pretty simple, but things don’t always flow so smoothly. Sometimes during a transfer, congestion can occur because a high-speed computer is generating data traffic a lot faster
than the network itself can process it! And a whole bunch of computers simultaneously sending datagrams through a single gateway or destination can also jam things up pretty badly. In
the latter case, a gateway or destination can become congested even though no single source
caused the problem. Either way, the problem is basically akin to a freeway bottleneck—too
much traffic for too small a capacity. It’s not usually one car that’s the problem; it’s just that
there are way too many cars on that freeway at once!
20
Chapter 1
u
Internetworking
But what actually happens when a machine receives a flood of datagrams too quickly for
it to process? It stores them in a memory section called a buffer. Sounds great; it’s just that
this buffering action can solve the problem only if the datagrams are part of a small burst. If
the datagram deluge continues, eventually exhausting the device’s memory, its flood capacity
will be exceeded and it will dump any and all additional datagrams it receives just like an
inundated overflowing bucket!
Flow Control
Since floods and losing data can both be tragic, we have a fail-safe solution in place known as
flow control. Its job is to ensure data integrity at the Transport layer by allowing applications
to request reliable data transport between systems. Flow control prevents a sending host on
one side of the connection from overflowing the buffers in the receiving host. Reliable data
transport employs a connection-oriented communications session between systems, and the
protocols involved ensure that the following will be achieved:
uu
The segments delivered are acknowledged back to the sender upon their reception.
uu
Any segments not acknowledged are retransmitted.
uu
Segments are sequenced back into their proper order upon arrival at their destination.
uu
A manageable data flow is maintained in order to avoid congestion, overloading, or
worse, data loss.
The purpose of flow control is to provide a way for the receiving device to
control the amount of data sent by the sender.
Because of the transport function, network flood control systems really work well.
Instead of dumping and losing data, the Transport layer can issue a “not ready” indicator
to the sender, or potential source of the flood. This mechanism works kind of like a stoplight, signaling the sending device to stop transmitting segment traffic to its overwhelmed
peer. After the peer receiver processes the segments already in its memory reservoir—its
buffer—it sends out a “ready” transport indicator. When the machine waiting to transmit
the rest of its datagrams receives this “go” indicator, it resumes its transmission. The process is pictured in Figure 1.10.
In a reliable, connection-oriented data transfer, datagrams are delivered to the receiving
host hopefully in the same sequence they’re transmitted. A failure will occur if any data
segments are lost, duplicated, or damaged along the way—a problem solved by having the
receiving host acknowledge that it has received each and every data segment.
A service is considered connection-oriented if it has the following characteristics:
uu
A virtual circuit, or “three-way handshake” is set up.
uu
It uses sequencing.
uu
It uses acknowledgments.
uu
It uses flow control.
The OSI Reference Model
F ig u re 1 .1 0
21
Transmitting segments with flow control
Sender
Receiver
Buffer full
Not ready –
STOP!
Segments
processed
GO!
The types of flow control are buffering, windowing, and congestion
avoidance.
Windowing
Ideally, data throughput happens quickly and efficiently. And as you can imagine, it would
be painfully slow if the transmitting machine had to actually wait for an acknowledgment
after sending each and every segment! The quantity of data segments, measured in bytes,
that the transmitting machine is allowed to send without receiving an acknowledgment is
called a window.
Windows are used to control the amount of outstanding, unacknowledged
data segments.
The size of the window controls how much information is transferred from one end to the
other before an acknowledgement is required. While some protocols quantify information
depending on the number of packets, TCP/IP measures it by counting the number of bytes.
As you can see in Figure 1.11, there are two window sizes—one set to 1 and one set to 3.
If you’ve configured a window size of 1, the sending machine will wait for an acknowledgment for each data segment it transmits before transmitting another one but will allow
three to be transmitted before receiving an acknowledgement if the window size is set to 3.
In this simplified example, both the sending and receiving machines are workstations.
Remember that in reality, the transmission isn’t based on simple numbers but in the amount
of bytes that can be sent!
22
Chapter 1
F ig u re 1 .11
u
Internetworking
Windowing
Sender
Send 1
Receiver
Window size of 1
Receive 1
ACK 1
Send 1
Receive 2
ACK 2
Send 1
Window size of 3
Send 2
Send 3
ACK 4
Send 4
If a receiving host fails to receive all the bytes that it should acknowledge, the host can improve the communication session by decreasing
the window size.
Visit ccna
.gg/ch1/b
for a
companion
MicroNugget
from CBT
Nuggets.
Acknowledgments
Reliable data delivery ensures the integrity of a stream of data sent from one machine to the
other through a fully functional data link. It guarantees that the data won’t be duplicated or
lost. This is achieved through something called positive acknowledgment with retransmission—a technique that requires a receiving machine to communicate with the transmitting
source by sending an acknowledgment message back to the sender when it receives data. The
sender documents each segment measured in bytes, then sends and waits for this acknowledgment before sending the next segment. Also important is that when it sends a segment, the
transmitting machine starts a timer and will retransmit if it expires before it gets an acknowledgment back from the receiving end. Figure 1.12 shows the process I just described.
In the figure, the sending machine transmits segments 1, 2, and 3. The receiving node
acknowledges that it has received them by requesting segment 4 (what it is expecting next).
When it receives the acknowledgment, the sender then transmits segments 4, 5, and 6. If
segment 5 doesn’t make it to the destination, the receiving node acknowledges that event
with a request for the segment to be re-sent. The sending machine will then resend the lost
segment and wait for an acknowledgment, which it must receive in order to move on to the
transmission of segment 7.
The Transport layer, working in tandem with the Session layer, also separates the data from
different applications, an activity known as session multiplexing, and it happens when a client
connects to a server with multiple browser sessions open. This is exactly what’s taking place
The OSI Reference Model
23
when you go someplace online like Amazon and click multiple links, opening them simultaneously to get information when comparison shopping. The client data from each browser
session must be separate when the server application receives it, which is pretty slick technologically speaking, and it’s the Transport layer to the rescue for that juggling act!
F ig u re 1 .1 2
Transport layer reliable delivery
Sender
1 2
3
4
Receiver
5
6
1
2
3
4
5
6
Send 1
Send 2
Send 3
ACK 4
Send 4
Send 5
Connection lost!
Send 6
ACK 5
Send 5
ACK 7
The Network Layer
The Network layer, or layer 3, manages device addressing, tracks the location of devices
on the network, and determines the best way to move data. This means that it’s up to the
Network layer to transport traffic between devices that aren’t locally attached. Routers,
which are layer 3 devices, are specified at this layer and provide the routing services within
an internetwork.
Here’s how that works: first, when a packet is received on a router interface, the destination IP address is checked. If the packet isn’t destined for that particular router, it will
look up the destination network address in the routing table. Once the router chooses an
exit interface, the packet will be sent to that interface to be framed and sent out on the
local network. If the router can’t find an entry for the packet’s destination network in
the routing table, the router drops the packet.
Data and route update packets are the two types of packets used at the Network layer:
Data packets These are used to transport user data through the internetwork. Protocols
used to support data traffic are called routed protocols, and IP and IPv6 are key examples.
I’ll cover IP addressing in Chapter 3, “TCP/IP,” and Chapter 4, “Easy Subnetting,” and I’ll
cover IPv6 in Chapter 14, “Internet Protocol Version 6 (IPV6)”.
Chapter 1
24
u
Internetworking
Route update packets These packets are used to update neighboring routers about the networks connected to all routers within the internetwork. Protocols that send route update packets are called routing protocols; the most critical ones for CCNA are RIP, RIPv2, EIGRP, and
OSPF. Route update packets are used to help build and maintain routing tables.
Figure 1.13 shows an example of a routing table. The routing table each router keeps
and refers to includes the following information:
F ig u re 1 .1 3
Routing table used in a router
1.0
3.0
1.1
3.1
1.3
2.1
2.2
3.3
E0
S0
S0
E0
1.2
3.2
NET
1
2
3
Routing table
INT
Metric
E0
0
S0
0
S0
1
NET
1
2
3
Routing table
INT
Metric
S0
1
S0
0
E0
0
Network addresses Protocol-specific network addresses. A router must maintain a routing
table for individual routing protocols because each routed protocol keeps track of a network with a different addressing scheme. For example, the routing tables for IP, IPv6, and
IPX are completely different, so the router keeps a table for each one. Think of it as a street
sign in each of the different languages spoken by the American, Spanish, and French people
living on a street; the street sign would read, Cat/Gato/Chat.
Interface The exit interface a packet will take when destined for a specific network.
Metric The distance to the remote network. Different routing protocols use different ways
of computing this distance. I’m going to cover routing protocols thoroughly in Chapter 8, “IP
Routing,” and Chapter 9, “Open Shortest Path First.” For now, know that some routing protocols like the Routing Information Protocol, or RIP, use hop count, which refers to the number of routers a packet passes through en route to a remote network. Others use bandwidth,
delay of the line, or even tick count (1⁄18 of a second) to determine the best path for data to get
to a given destination.
And as I mentioned earlier, routers break up broadcast domains, which means that by
default, broadcasts aren’t forwarded through a router. Do you remember why this is a good
thing? Routers also break up collision domains, but you can also do that using layer 2, Data
Link layer, switches. Because each interface in a router represents a separate network, it must
be assigned unique network identification numbers, and each host on the network connected
to that router must use the same network number. Figure 1.14 shows how a router works in
an internetwork.
The OSI Reference Model
25
F ig u re 1 .1 4 A router in an internetwork. Each router LAN interface is a broadcast
domain. Routers break up broadcast domains by default and provide WAN services.
FastEthernet0/0
FastEthernet0/1
Serial0
WAN services
Internet
Here are some router characteristics that you should never forget:
uu
uu
uu
uu
uu
uu
Routers, by default, will not forward any broadcast or multicast packets.
Routers use the logical address in a Network layer header to determine the next-hop
router to forward the packet to.
Routers can use access lists, created by an administrator, to control security based on
the types of packets allowed to enter or exit an interface.
Routers can provide layer 2 bridging functions if needed and can simultaneously route
through the same interface.
Layer 3 devices—in this case, routers—provide connections between virtual
LANs (VLANs).
Routers can provide quality of service (QoS) for specific types of network traffic.
The Data Link Layer
The Data Link layer provides for the physical transmission of data and handles error notification, network topology, and flow control. This means that the Data Link layer will ensure
that messages are delivered to the proper device on a LAN using hardware addresses and will
translate messages from the Network layer into bits for the Physical layer to transmit.
The Data Link layer formats the message, each called a data frame, and adds a customized
header containing the hardware destination and source address. This added information forms
a sort of capsule that surrounds the original message in much the same way that engines,
navigational devices, and other tools were attached to the lunar modules of the Apollo project.
These various pieces of equipment were useful only during certain stages of space flight and
were stripped off the module and discarded when their designated stage was completed. The
process of data traveling through networks is similar.
Figure 1.15 shows the Data Link layer with the Ethernet and IEEE specifications.
When you check it out, notice that the IEEE 802.2 standard is used in conjunction
with and adds functionality to the other IEEE standards. (You’ll read more about the
important IEEE 802 standards used with the Cisco objectives in Chapter 2 “Ethernet
Networking and Data Encapsulation.”)
It’s important for you to understand that routers, which work at the Network layer, don’t
care at all about where a particular host is located. They’re only concerned about where networks are located and the best way to reach them—including remote ones. Routers are totally
obsessive when it comes to networks, which in this case is a good thing! It’s the Data Link
layer that’s responsible for the actual unique identification of each device that resides on a
local network.
26
Chapter 1
F ig u re 1 .1 5
u
Internetworking
Data Link layer
Logical Link Control (LLC)
Media Access Control (MAC)
802.11
802.3
802.2
For a host to send packets to individual hosts on a local network as well as transmit
packets between routers, the Data Link layer uses hardware addressing. Each time a packet
is sent between routers, it’s framed with control information at the Data Link layer, but
that information is stripped off at the receiving router and only the original packet is left
completely intact. This framing of the packet continues for each hop until the packet is
finally delivered to the correct receiving host. It’s really important to understand that the
packet itself is never altered along the route; it’s only encapsulated with the type of control
information required for it to be properly passed on to the different media types.
The IEEE Ethernet Data Link layer has two sublayers:
Media Access Control (MAC) Defines how packets are placed on the media. Contention
media access is “first come/first served” access where everyone shares the same bandwidth—hence the name. Physical addressing is defined here as well as logical topologies.
What’s a logical topology? It’s the signal path through a physical topology. Line discipline,
error notification (but not correction), the ordered delivery of frames, and optional flow
control can also be used at this sublayer.
Logical Link Control (LLC) Responsible for identifying Network layer protocols and then
encapsulating them. An LLC header tells the Data Link layer what to do with a packet once
a frame is received. It works like this: a host receives a frame and looks in the LLC header
to find out where the packet is destined—for instance, the IP protocol at the Network layer.
The LLC can also provide flow control and sequencing of control bits.
The switches and bridges I talked about near the beginning of the chapter both work at
the Data Link layer and filter the network using hardware (MAC) addresses. I’ll talk about
these next.
As data is encoded with control information at each layer of the OSI model,
the data is named with something called a Protocol Data Unit (PDU). At the
Transport layer the PDU is called a Segment, Network layer is Packet, Data
Link is Frame, and Physical layer is Bits. This method of naming the data at
each layer is covered thoroughly in Chapter 2.
The OSI Reference Model
27
Switches and Bridges at the Data Link Layer
Layer 2 switching is considered hardware-based bridging because it uses specialized hardware called an application-specific integrated circuit (ASIC). ASICs can run up to high
gigabit speeds with very low latency rates.
Latency is the time measured from when a frame enters a port to when it
exits a port.
Bridges and switches read each frame as it passes through the network. The layer 2
device then puts the source hardware address in a filter table and keeps track of which port
the frame was received on. This information (logged in the bridge’s or switch’s filter table)
is what helps the machine determine the location of the specific sending device. Figure 1.16
shows a switch in an internetwork and how John is sending packets to the Internet and
Sally doesn’t hear his frames because she is in a different collision domain. The destination
frame goes directly to the default gateway router, and Sally doesn’t see John’s traffic, much
to her relief.
F ig u re 1 .1 6
A switch in an internetwork
1234
Mac Address—Table
F0/1: 00c0.1234.2211
F0/2: 00c0.1234.2212
F0/3: 00c0.1234.2213
F0/4: 00c0.1234.2214
The real estate business is all about location, location, location, and it’s the same way for
both layer 2 and layer 3 devices. Though both need to be able to negotiate the network, it’s
crucial to remember that they’re concerned with very different parts of it. Primarily, layer 3
machines (such as routers) need to locate specific networks, whereas layer 2 machines (switches
and bridges) need to eventually locate specific devices. So, networks are to routers as individual
devices are to switches and bridges. And routing tables that “map” the internetwork are for
routers, as filter tables that “map” individual devices are for switches and bridges.
After a filter table is built on the layer 2 device, it will forward frames only to the segment
where the destination hardware address is located. If the destination device is on the same segment as the frame, the layer 2 device will block the frame from going to any other segments.
If the destination is on a different segment, the frame can be transmitted only to that segment.
This is called transparent bridging.
28
Chapter 1
u
Internetworking
When a switch interface receives a frame with a destination hardware address that isn’t
found in the device’s filter table, it will forward the frame to all connected segments. If the
unknown device that was sent the “mystery frame” replies to this forwarding action, the
switch updates its filter table regarding that device’s location. But in the event the destination address of the transmitting frame is a broadcast address, the switch will forward all
broadcasts to every connected segment by default.
All devices that the broadcast is forwarded to are considered to be in the same broadcast
domain. This can be a problem because layer 2 devices propagate layer 2 broadcast storms
that can seriously choke performance, and the only way to stop a broadcast storm from
propagating through an internetwork is with a layer 3 device—a router!
The biggest benefit of using switches instead of hubs in your internetwork is that each
switch port is actually its own collision domain. Remember that a hub creates one large
collision domain, which is not a good thing! But even armed with a switch, you still don’t
get to just break up broadcast domains by default because neither switches nor bridges will
do that. They’ll simply forward all broadcasts instead.
Another benefit of LAN switching over hub-centered implementations is that each device
on every segment plugged into a switch can transmit simultaneously. Well, at least they can
as long as there’s only one host on each port and there isn’t a hub plugged into a switch port!
As you might have guessed, this is because hubs allow only one device per network segment
to communicate at a time.
The Physical Layer
Finally arriving at the bottom, we find that the Physical layer does two things: it sends bits
and receives bits. Bits come only in values of 1 or 0—a Morse code with numerical values.
The Physical layer communicates directly with the various types of actual communication
media. Different kinds of media represent these bit values in different ways. Some use audio
tones, while others employ state transitions—changes in voltage from high to low and low to
high. Specific protocols are needed for each type of media to describe the proper bit patterns
to be used, how data is encoded into media signals, and the various qualities of the physical
media’s attachment interface.
The Physical layer specifies the electrical, mechanical, procedural, and functional
requirements for activating, maintaining, and deactivating a physical link between end
systems. This layer is also where you identify the interface between the data terminal
equipment (DTE) and the data communication equipment (DCE). (Some old phonecompany employees still call DCE “data circuit-terminating equipment.”) The DCE is
usually located at the service provider, while the DTE is the attached device. The services
available to the DTE are most often accessed via a modem or channel service unit/data
service unit (CSU/DSU).
The Physical layer’s connectors and different physical topologies are defined by the OSI
as standards, allowing disparate systems to communicate. The Cisco exam objectives are
interested only in the IEEE Ethernet standards.
Summary
29
Hubs at the Physical Layer
A hub is really a multiple-port repeater. A repeater receives a digital signal, reamplifies or
regenerates that signal, then forwards the signal out the other port without looking at any
data. A hub does the same thing across all active ports: any digital signal received from a
segment on a hub port is regenerated or reamplified and transmitted out all other ports on
the hub. This means all devices plugged into a hub are in the same collision domain as well
as in the same broadcast domain. Figure 1.17 shows a hub in a network, and how when one
host transmits, all other hosts must stop and listen.
F ig u re 1 .17
A hub in a network
I love it when everyone has to listen to everything I say!
Hubs, like repeaters, don’t examine any of the traffic as it enters or before it’s transmitted out to the other parts of the physical media. And every device connected to the hub, or
hubs, must listen if a device transmits. A physical star network, where the hub is a central
device and cables extend in all directions out from it, is the type of topology a hub creates.
Visually, the design really does resemble a star, whereas Ethernet networks run a logical
bus topology, meaning that the signal has to run through the network from end to end.
Hubs and repeaters can be used to enlarge the area covered by a single
LAN segment, but I really do not recommend going with this configuration! LAN switches are affordable for almost every situation and will
make you much happier.
Summary
Whew! I know this seemed like the chapter that wouldn’t end, but it did—and you made it
through! You’re now armed with a ton of fundamental information; you’re ready to build
upon it and are well on your way to certification.
I started by discussing simple, basic networking and the differences between collision
and broadcast domains.
Visit ccna
.gg/ch1/a
for a
companion
MicroNugget
from CBT
Nuggets.
30
Chapter 1
u
Internetworking
I then discussed the OSI model—the seven-layer model used to help application developers
design applications that can run on any type of system or network. Each layer has its special
jobs and select responsibilities within the model to ensure that solid, effective communications
do, in fact, occur. I provided you with complete details of each layer and discussed how Cisco
views the specifications of the OSI model.
In addition, each layer in the OSI model specifies different types of devices, and I described
the different devices used at each layer.
Remember that hubs are Physical layer devices and repeat the digital signal to all segments
except the one from which it was received. Switches segment the network using hardware
addresses and break up collision domains. Routers break up broadcast domains as well as
collision domains and use logical addressing to send packets through an internetwork.
Exam Essentials
Identify the possible causes of LAN traffic congestion. Too many hosts in a broadcast
domain, broadcast storms, multicasting, and low bandwidth are all possible causes of LAN
traffic congestion.
Describe the difference between a collision domain and a broadcast domain. Collision
domain is an Ethernet term used to describe a network collection of devices in which one
particular device sends a packet on a network segment, forcing every other device on that
same segment to pay attention to it. With a broadcast domain, a set of all devices on a network hear all broadcasts sent on all segments.
Differentiate a MAC address and an IP address and describe how and when each address
type is used in a network. A MAC address is a hexadecimal number identifying the physical connection of a host. MAC addresses are said to operate on layer 2 of the OSI model.
IP addresses, which can be expressed in binary or decimal format, are logical identifiers
that are said to be on layer 3 of the OSI model. Hosts on the same physical segment locate
one another with MAC addresses, while IP addresses are used when they reside on different LAN segments or subnets.
Understand the difference between a hub, a bridge, a switch, and a router. A hub creates one
collision domain and one broadcast domain. A bridge breaks up collision domains but creates
one large broadcast domain. They use hardware addresses to filter the network. Switches are
really just multiple-port bridges with more intelligence; they break up collision domains but
creates one large broadcast domain by default. Bridges and switches use hardware addresses to
filter the network. Routers break up broadcast domains (and collision domains) and use logical
addressing to filter the network.
Identify the functions and advantages of routers. Routers perform packet switching, filtering, and path selection, and they facilitate internetwork communication. One advantage of
routers is that they reduce broadcast traffic.
Exam Essentials
31
Differentiate connection-oriented and connectionless network services and describe
how each is handled during network communications. Connection-oriented services use
acknowledgments and flow control to create a reliable session. More overhead is used than
in a connectionless network service. Connectionless services are used to send data with no
acknowledgments or flow control. This is considered unreliable.
Define the OSI layers, understand the function of each, and describe how devices and networking protocols can be mapped to each layer. You must remember the seven layers of
the OSI model and what function each layer provides. The Application, Presentation, and
Session layers are upper layers and are responsible for communicating from a user interface to an application. The Transport layer provides segmentation, sequencing, and virtual
circuits. The Network layer provides logical network addressing and routing through an
internetwork. The Data Link layer provides framing and placing of data on the network
medium. The Physical layer is responsible for taking 1s and 0s and encoding them into a
digital signal for transmission on the network segment.
32
Chapter 1
u
Internetworking
Written Labs
In this section, you’ll complete the following labs to make sure you’ve got the information
and concepts contained within them fully dialed in:
Lab 1.1: OSI Questions
Lab 1.2: Defining the OSI Layers and Devices
Lab 1.3: Identifying Collision and Broadcast Domains
The answers to these labs can be found in Appendix A, “Answers to Written Labs.”
Written Lab 1.1: OSI Questions
Answer the following questions about the OSI model:
1. Which layer chooses and determines the availability of communicating partners along
with the resources necessary to make the connection; coordinates partnering applications;
and forms a consensus on procedures for controlling data integrity and error recovery?
2. Which layer is responsible for converting data packets from the Data Link layer into
electrical signals?
3. At which layer is routing implemented, enabling connections and path selection
between two end systems?
4. Which layer defines how data is formatted, presented, encoded, and converted for use
on the network?
5. Which layer is responsible for creating, managing, and terminating sessions between
applications?
6. Which layer ensures the trustworthy transmission of data across a physical link and is
primarily concerned with physical addressing, line discipline, network topology, error
notification, ordered delivery of frames, and flow control?
7. Which layer is used for reliable communication between end nodes over the network
and provides mechanisms for establishing, maintaining, and terminating virtual circuits;
transport-fault detection and recovery; and controlling the flow of information?
8. Which layer provides logical addressing that routers will use for path determination?
9. Which layer specifies voltage, wire speed, and cable pinouts and moves bits
between devices?
10. Which layer combines bits into bytes and bytes into frames, uses MAC addressing, and
provides error detection?
11. Which layer is responsible for keeping the data from different applications separate on
the network?
Written Labs
33
12. Which layer is represented by frames?
13. Which layer is represented by segments?
14. Which layer is represented by packets?
15. Which layer is represented by bits?
16. Put the following in order of encapsulation:
Packets
Frames
Bits
Segments
17. Which layer segments and reassembles data into a data stream?
18. Which layer provides the physical transmission of the data and handles error notifica-
tion, network topology, and flow control?
19. Which layer manages logical device addressing, tracks the location of devices on the
internetwork, and determines the best way to move data?
20. What is the bit length and expression form of a MAC address?
Written Lab 1.2: Defining the OSI Layers and Devices
Fill in the blanks with the appropriate layer of the OSI or hub, switch, or router device.
Description
This device sends and receives information
about the Network layer.
This layer creates a virtual circuit before
transmitting between two end stations.
This device uses hardware addresses to filter a
network.
Ethernet is defined at these layers.
This layer supports flow control, sequencing,
and acknowledgments.
This device can measure the distance to a
remote network.
Logical addressing is used at this layer.
Hardware addresses are defined at this layer.
Device or OSI Layer
Chapter 1
34
Internetworking
u
Description
Device or OSI Layer
This device creates one big collision domain
and one large broadcast domain.
This device creates many smaller collision
domains, but the network is still one large
broadcast domain.
This device can never run full-duplex.
This device breaks up collision domains and
broadcast domains.
Written Lab 1.3: Identifying Collision and
Broadcast Domains
1. In the following exhibit, identify the number of collision domains and broadcast
domains in each specified device. Each device is represented by a letter:
A. Hub
B. Bridge
C. Switch
D. Router
A
B
Bridge
Hub
C
D
Switch
S1
Router
Review Questions
35
Review Questions
The following questions are designed to test your understanding of this
chapter’s material. For more information on how to get additional questions, please see this book’s introduction.
The answers to these questions can be found in Appendix B, “Answers to Chapter
Review Questions.”
1. Which of the following statements is/are true with regard to the device shown below?
(Choose all that apply.)
A. It includes one collision domain and one broadcast domain
B. It includes one collision domain and 10 broadcast domains
C. It includes 10 collision domains and one broadcast domain
D. It includes one collision domain and 10 broadcast domains
E. It includes 10 collision domains and 10 broadcast domains
2. With respect to the OSI model, which of the following are correct statements
about PDUs?
A. A segment contains IP addresses.
B. A packet contains IP addresses.
C. A segment contains MAC addresses.
D. A packet contains MAC addresses.
3. You are the Cisco administrator for your company. A new branch office is opening and
you are selecting the necessary hardware to support the network. There will be two
groups of computers, each organized by department. The Sales group computers will
be assigned IP addresses ranging from 192.168.1.2 to 192.168.1.50. The Accounting
group will be assigned IP addresses ranging from 10.0.0.2 to 10.0.0.50. What type of
device should you select to connect the two groups of computers so that data communication can occur?
A. Hub
B. Switch
C. Router
D. Bridge
36
Chapter 1
u
Internetworking
4. The most effective way to mitigate congestion on a LAN would be to__________________?
A. Upgrade the network cards
B. Change the cabling to CAT 6
C. Replace the hubs with switches
D. Upgrade the CPUs in the routers
5. In the work area below draw a line from the OSI model layer to its PDU.
Layer
Description
Transport
Bits
Data Link
Segment
Physical
Packet
Network
Frame
6. In the diagram below what procedure is shown?
Sender
Receiver
SYN
SYN/ACK
ACK
Connection Established
Data transfer
(Send bytes of segments)
A. flow control
B. windowing
C. TCP handshake
D. reliable delivery
Review Questions
37
7. You need to provide network connectivity to 150 client computers that will reside in
the same sub network, and each client computer must be allocated dedicated bandwidth. Which device should you use to accomplish the task?
A. Hub
B. Switch
C. Router
D. Bridge
8. In the work area below, drag the OSI model layer on the left to its description on the right.
left list:
right list:
Layer
Description
Transport
Framing
Physical
End-to-end connection
Data Link
Routing
Network
Conversion to bits
9. What feature of TCP is illustrated below?
Sender
1 2
3
4
Receiver
5
6
1
2
3
Send 1
Send 2
Send 3
ACK 2
Send 4
Send 5
Connection lost!
Send 6
ACK 5
Send 5
ACK 7
A. flow control
B. UDP handshake
C. TCP handshake
D. reliable delivery
4
5
6
Chapter 1
38
u
Internetworking
10. Which of the following is an example of a routed protocol?
A. EIGRP
B. IP
C. OSPF
D. BGP
11. Which of the following is NOT a function carried out on the Application layer of the
OSI model?
A. email
B. data translation and code formatting
C. file transfers
D. client/server processes
12. Which of the following layers of the OSI model was later subdivided into two layers?
A. Presentation
B. Transport
C. Data Link
D. Physical
13. What feature of TCP is illustrated below?
Sender
Receiver
Send 1
Send 2
Send 3
ACK 4
Send 4
A. flow control
B. windowing
C. TCP handshake
D. reliable delivery
Review Questions
39
14. An example of a device that operates on the physical layer is a ____________.
A. Hub
B. Switch
C. Router
D. Bridge
15. Which of the following is NOT a benefit of using a reference model?
A. divides the network communication process into smaller and simpler components
B. encourages industry standardization
C. enforces consistency across vendors
D. allows various types of network hardware and software to communicate
16. Which of the following statements is not true with regard to routers?
A. They forward broadcasts by default
B. They can filter the network based on Network layer information
C. They perform path selection
D. They perform packet switching
17. Switches break up _______________ domains and routers break up _____________
domains.
A. broadcast, broadcast
B. collision, collision
C. collision, broadcast
D. broadcast, collision
Chapter 1
40
u
Internetworking
18. How many collision domains are present in the diagram below?
Hub
Bridge
Switch
Router
A. eight
B. nine
C. ten
D. eleven
19. Which of the following layers of the OSI model is not involved in defining how the appli-
cations within the end stations will communicate with each other as well as with users?
A. Transport
B. Application
C. Presentation
D. Session
20. Which if the following is the ONLY device that operates at all layers of the OSI model?
A. Network host
B. Switch
C. Router
D. Bridge
Chapter
2
Ethernet Networking
and Data
Encapsulation
The following ICND1 exam topics
are covered in this chapter:
11 Operation of IP Data Networks
■■
Recognize the purpose and functions of various network
devices such as Routers, Switches, Bridges and Hubs.
■■
Select the components required to meet a given network
specification.
■■
Predict the data flow between two hosts across a network.
■■
Identify the appropriate media, cables, ports, and connectors
to connect Cisco network devices to other network devices
and hosts in a LAN
11 LAN Switching Technologies
■■
Determine the technology and media access control method
for Ethernet networks
■■
Identify basic switching concepts and the operation of
Cisco switches.
■■
Collision Domains
■■
Broadcast Domains
Before we begin exploring a set of key foundational topics like
the TCP/IP DoD model, IP addressing, subnetting, and routing
in the upcoming chapters, I really want you to grasp the big
picture of LANs conceptually. The role Ethernet plays in today’s networks as well as what
Media Access Control (MAC) addresses are and how they are used are two more critical
networking basics you’ll want a solid understanding of as well.
We’ll cover these important subjects and more in this chapter, beginning with Ethernet
basics and the way MAC addresses are used on an Ethernet LAN, and then we’ll focus in
on the actual protocols used with Ethernet at the Data Link layer. To round out this discussion, you’ll also learn about some very important Ethernet specifications.
You know by now that there are a whole bunch of different devices specified at the various layers of the OSI model and that it’s essential to be really familiar with the many types
of cables and connectors employed to hook them up to the network correctly. I’ll review the
types of cabling used with Cisco devices in this chapter, demonstrate how to connect to a
router or switch, plus show you how to connect a router or switch via a console connection.
I’ll also introduce you to a vital process of encoding data as it makes its way down the
OSI stack known as encapsulation.
I’m not nagging at all here—okay, maybe just a little, but promise that you’ll actually work
through the four written labs and 20 review questions I added to the end of this chapter just
for you. You’ll be so happy you did because they’re written strategically to make sure that all
the important material covered in this chapter gets locked in, vault-tight into your memory.
So don’t skip them!
To find up-to-the minute updates for this chapter, please see
www.lammle.com/forum or the book’s web page at www.sybex.com.
Ethernet Networks in Review
Ethernet is a contention-based media access method that allows all hosts on a network
to share the same link’s bandwidth. Some reasons it’s so popular are that Ethernet is
really pretty simple to implement and it makes troubleshooting fairly straightforward as
well. Ethernet is so readily scalable, meaning that it eases the process of integrating new
Ethernet Networks in Review
43
technologies into an existing network infrastructure, like upgrading from Fast Ethernet
to Gigabit Ethernet.
Ethernet uses both Data Link and Physical layer specifications, so you’ll be presented with
information relative to both layers, which you’ll need to effectively implement, troubleshoot,
and maintain an Ethernet network.
Collision Domain
In Chapter 1, “Internetworking,” you learned that the Ethernet term collision domain
refers to a network scenario wherein one device sends a frame out on a physical network
segment forcing every other device on the same segment to pay attention to it. This is bad
because if two devices on a single physical segment just happen to transmit simultaneously,
it will cause a collision and require these devices to retransmit. Think of a collision event as
a situation where each device’s digital signals totally interfere with one another on the wire.
Figure 2.1 shows an old, legacy network that’s a single collision domain where only one
host can transmit at a time.
F ig u re 2 .1
Legacy collision domain design
One broadcast domain
Hub
Hub
One collision domain
The hosts connected to each hub are in the same collision domain, so if one of them
transmits, all the others must take the time to listen for and read the digital signal. It is easy
to see how collisions can be a serious drag on network performance, so I’ll show you how
to strategically avoid them soon!
Okay—take another look at the network pictured in Figure 2.1. True, it has only one
collision domain, but worse, it’s also a single broadcast domain—what a mess! Let’s check
out an example, in Figure 2.2, of a typical network design still used today and see if it’s
any better.
44
Chapter 2
F ig u re 2 . 2
u
Ethernet Networking and Data Encapsulation
A typical network you’d see today
Each connection on a switch creates a separate collision domain.
S1
S2
One broadcast domain by default
Because each port off a switch is a single collision domain, we gain more bandwidth for
users, which is a great start. But switches don’t break up broadcast domains by default, so
this is still only one broadcast domain, which is not so good. This can work in a really small
network, but to expand it at all, we would need to break up the network into smaller broadcast domains or our users won’t get enough bandwidth! And you’re probably wondering
about that device in the lower-right corner, right? Well, that’s a wireless access point, which is
sometimes referred as an AP (which stands for access point). It’s a wireless device that allows
hosts to connect wirelessly using the IEEE 802.11 specification and I added it to the figure to
demonstrate how these devices can be used to extend a collision domain. But still, understand
that APs don’t actually segment the network, they only extend them, meaning our LAN just
got a lot bigger, with an unknown amount of hosts that are all still part of one measly broadcast domain! This clearly demonstrates why understanding exactly what a broadcast domain
is, is so important, and now is a great time to talk about them in detail.
Broadcast Domain
Let me start by giving you the formal definition: broadcast domain refers to a group of
devices on a specific network segment that hear all the broadcasts sent out on that specific
network segment.
But even though a broadcast domain is usually a boundary delimited by physical media
like switches and routers, it can also refer to a logical division of a network segment, where
all hosts can communicate via a Data Link layer, hardware address broadcast.
Figure 2.3 shows how a router would create a broadcast domain boundary.
Here you can see there are two router interfaces giving us two broadcast domains, and I
count 10 switch segments, meaning we’ve got 10 collision domains.
The design depicted in Figure 2.3 is still in use today, and routers will be around
for a long time, but in the latest, modern switched networks, it’s important to create
small broadcast domains. We achieve this by building virtual LANs (VLANs) within
Ethernet Networks in Review
45
our switched networks, which I’ll demonstrate shortly. Without employing VLANs in
today’s switched environments, there wouldn’t be much bandwidth available to individual
users. Switches break up collision domains with each port, which is awesome, but they’re
still only one broadcast domain by default! It’s also one more reason why it’s extremely
important to design our networks very carefully.
F ig u re 2 . 3
A router creates broadcast domain boundaries.
R1
S1
S2
Two broadcast domains. How many collision domains do you see?
And key to carefully planning your network design is never to allow broadcast domains
to grow too large and get out of control. Both collision and broadcast domains can easily be
controlled with routers and VLANs, so there’s just no excuse to allow user bandwidth to slow
to a painful crawl when there are plenty of tools in your arsenal to prevent the suffering!
An important reason for this book’s existence is to ensure that you really get the foundational basics of Cisco networks nailed down so you can affectively design, implement, configure, troubleshoot, and even dazzle colleagues and superiors with elegant designs that lavish
your users with all the bandwidth their hearts could possibly desire.
To make it to the top of that mountain, you need more than just the basic story, so let’s
move on to explore the collision detection mechanism used in half-duplex Ethernet.
CSMA/CD
Ethernet networking uses a protocol called Carrier Sense Multiple Access with Collision
Detection (CSMA/CD), which helps devices share the bandwidth evenly while preventing
two devices from transmitting simultaneously on the same network medium. CSMA/CD
was actually created to overcome the problem of the collisions that occur when packets
are transmitted from different nodes at the same time. And trust me—good collision management is crucial, because when a node transmits in a CSMA/CD network, all the other
nodes on the network receive and examine that transmission. Only switches and routers
can affectively prevent a transmission from propagating throughout the entire network!
So, how does the CSMA/CD protocol work? Let’s start by taking a look at Figure 2.4.
46
Chapter 2
F ig u re 2 . 4
u
Ethernet Networking and Data Encapsulation
CSMA/CD
A
B
C
D
A
B
C
D
A
B
C
D
C
D
Collision
A
B
Jam Jam Jam Jam Jam Jam Jam Jam
When a host wants to transmit over the network, it first checks for the presence of a
digital signal on the wire. If all is clear and no other host is transmitting, the host will then
proceed with its transmission.
But it doesn’t stop there. The transmitting host constantly monitors the wire to make
sure no other hosts begin transmitting. If the host detects another signal on the wire, it
sends out an extended jam signal that causes all nodes on the segment to stop sending
data—think busy signal.
The nodes respond to that jam signal by waiting a bit before attempting to transmit
again. Backoff algorithms determine when the colliding stations can retransmit. If collisions keep occurring after 15 tries, the nodes attempting to transmit will then time out.
Half-duplex can be pretty messy!
When a collision occurs on an Ethernet LAN, the following happens:
1. A jam signal informs all devices that a collision occurred.
2. The collision invokes a random backoff algorithm.
3. Each device on the Ethernet segment stops transmitting for a short time until its back-
off timer expires.
4. All hosts have equal priority to transmit after the timers have expired.
Ethernet Networks in Review
47
The ugly effects of having a CSMA/CD network sustain heavy collisions are delay, low
throughput, and congestion.
Backoff on an Ethernet network is the retransmission delay that’s enforced
when a collision occurs. When that happens, a host will resume transmission only after the forced time delay has expired. Keep in mind that after
the backoff has elapsed, all stations have equal priority to transmit data.
At this point, let’s take a minute to talk about Ethernet in detail at both the Data Link
layer (layer 2) and the Physical layer (layer 1).
Half- and Full-Duplex Ethernet
Half-duplex Ethernet is defined in the original IEEE 802.3 Ethernet specification, which
differs a bit from how Cisco describes things. Cisco says Ethernet uses only one wire pair
with a digital signal running in both directions on the wire. Even though the IEEE specifications discuss the half-duplex process somewhat differently, it’s not actually a full-blown
technical disagreement. Cisco is really just talking about a general sense of what’s happening with Ethernet.
Half-duplex also uses the CSMA/CD protocol I just discussed to help prevent collisions
and to permit retransmitting if one occurs. If a hub is attached to a switch, it must operate
in half-duplex mode because the end stations must be able to detect collisions. Figure 2.5
shows a network with four hosts connected to a hub.
F ig u re 2 . 5
Half-duplex example
Hub
Collision
The problem here is that we can only run half-duplex, and if two hosts communicate at
the same time there will be a collision. Also, half-duplex Ethernet is only about 30 to 40 percent efficient because a large 100Base-T network will usually only give you 30 to 40 Mbps,
at most, due to overhead.
But full-duplex Ethernet uses two pairs of wires at the same time instead of a single
wire pair like half-duplex. And full-duplex uses a point-to-point connection between the
transmitter of the transmitting device and the receiver of the receiving device. This means
that full-duplex data transfers happen a lot faster when compared to half-duplex transfers.
48
Chapter 2
u
Ethernet Networking and Data Encapsulation
Also, because the transmitted data is sent on a different set of wires than the received data,
collisions won’t happen. Figure 2.6 shows four hosts connected to a switch, plus a hub, and
definitely try not to use hubs if you can help it!
F ig u re 2 . 6
Full-duplex example
Switch
Half-duplex port
Hub
Collision
Theoretically all hosts connected to the switch in Figure 2.6 can communicate at the
same time because they can run full-duplex. Just keep in mind that the switch port connecting to the hub as well as the hosts connecting to that hub must run at half-duplex.
The reason you don’t need to worry about collisions is because now it’s like a freeway
with multiple lanes instead of the single-lane road provided by half-duplex. Full-duplex
Ethernet is supposed to offer 100-percent efficiency in both directions—for example, you
can get 20 Mbps with a 10 Mbps Ethernet running full-duplex, or 200 Mbps for Fast
Ethernet. But this rate is known as an aggregate rate, which translates as “you’re supposed
to get” 100 percent efficiency. No guarantees, in networking as in life!
You can use full-duplex Ethernet in at least the following six situations:
uu
With a connection from a switch to a host
uu
With a connection from a switch to a switch
uu
With a connection from a host to a host
uu
With a connection from a switch to a router
uu
With a connection from a router to a router
uu
With a connection from a router to a host
Full-duplex Ethernet requires a point-to-point connection when only two
nodes are present. You can run full-duplex with just about any device
except a hub.
Now this may be a little confusing because this begs the question that if it’s capable of
all that speed, why wouldn’t it actually deliver? Well, when a full-duplex Ethernet port is
powered on, it first connects to the remote end and then negotiates with the other end of the
Fast Ethernet link. This is called an auto-detect mechanism. This mechanism first decides on
the exchange capability, which means it checks to see if it can run at 10, 100, or even 1000
Mbps. It then checks to see if it can run full-duplex, and if it can’t, it will run half-duplex.
Ethernet Networks in Review
49
Remember that half-duplex Ethernet shares a collision domain and
provides a lower effective throughput than full-duplex Ethernet, which
typically has a private per-port collision domain plus a higher effective
throughput.
Last, remember these important points:
uu
There are no collisions in full-duplex mode.
uu
A dedicated switch port is required for each full-duplex node.
uu
uu
The host network card and the switch port must be capable of operating in fullduplex mode.
The default behavior of 10Base-T and 100Base-T hosts is 10 Mbps half-duplex if the
autodetect mechanism fails, so it is always good practice to set the speed and duplex of
each port on a switch if you can.
Now let’s take a look at how Ethernet works at the Data Link layer.
Ethernet at the Data Link Layer
Ethernet at the Data Link layer is responsible for Ethernet addressing, commonly referred to
as MAC or hardware addressing. Ethernet is also responsible for framing packets received
from the Network layer and preparing them for transmission on the local network through
the Ethernet contention-based media access method.
Ethernet Addressing
Here’s where we get into how Ethernet addressing works. It uses the Media Access
Control (MAC) address burned into each and every Ethernet network interface card
(NIC). The MAC, or hardware, address is a 48-bit (6-byte) address written in a hexadecimal format.
Figure 2.7 shows the 48-bit MAC addresses and how the bits are divided.
F ig u re 2 . 7
Ethernet addressing using MAC addresses
24 bits
47
46
I/G
G/L
24 bits
Organizationally Unique
Identifier (OUI)
(Assigned by IEEE)
Vendor assigned
Example: 0000.0c12.3456
The organizationally unique identifier (OUI) is assigned by the IEEE to an organization.
It’s composed of 24 bits, or 3 bytes, and it in turn assigns a globally administered address
also made up of 24 bits, or 3 bytes, that’s supposedly unique to each and every adapter an
50
Chapter 2
u
Ethernet Networking and Data Encapsulation
organization manufactures. Surprisingly, there’s no guarantee when it comes to that unique
claim! Okay, now look closely at the figure. The high-order bit is the Individual/Group (I/G)
bit. When it has a value of 0, we can assume that the address is the MAC address of a device
and that it may well appear in the source portion of the MAC header. When it’s a 1, we can
assume that the address represents either a broadcast or multicast address in Ethernet.
The next bit is the global/local bit, sometimes called the G/L bit or U/L bit, where U
means universal. When set to 0, this bit represents a globally administered address, as
assigned by the IEEE, but when it’s a 1, it represents a locally governed and administered
address. The low-order 24 bits of an Ethernet address represent a locally administered or
manufacturer-assigned code. This portion commonly starts with 24 0s for the first card
made and continues in order until there are 24 1s for the last (16,777,216th) card made.
You’ll find that many manufacturers use these same six hex digits as the last six characters
of their serial number on the same card.
Let’s stop for a minute and go over some addressing schemes important in the
Ethernet world.
Binary to Decimal and Hexadecimal Conversion
Before we get into working with the TCP/IP protocol and IP addressing, which we’ll do in
Chapter 3, “TCP/IP,” it’s really important for you to truly grasp the differences between
binary, decimal, and hexadecimal numbers and how to convert one format into the other.
We’ll start with binary numbering, which is really pretty simple. The digits used are
limited to either a 1 or a 0, and each digit is called a bit, which is short for binary digit.
Typically, you group either 4 or 8 bits together, with these being referred to as a nibble
and a byte, respectively.
The interesting thing about binary numbering is how the value is represented in a decimal
format—the typical decimal format being the base-10 number scheme that we’ve all used
since kindergarten. The binary numbers are placed in a value spot, starting at the right and
moving left, with each spot having double the value of the previous spot.
Table 2.1 shows the decimal values of each bit location in a nibble and a byte.
Remember, a nibble is 4 bits and a byte is 8 bits.
Table 2 .1 Binary values
Nibble Values
Byte Values
8421
128 64 32 16 8 4 2 1
What all this means is that if a one digit (1) is placed in a value spot, then the nibble or byte
takes on that decimal value and adds it to any other value spots that have a 1. If a zero (0) is
placed in a bit spot, you don’t count that value.
Let me clarify this a little. If we have a 1 placed in each spot of our nibble, we would then
add up 8 + 4 + 2 + 1 to give us a maximum value of 15. Another example for our nibble
values would be 1001, meaning that the 8 bit and the 1 bit are turned on, which equals a
Ethernet Networks in Review
51
decimal value of 9. If we have a nibble binary value of 0110, then our decimal value would be
6, because the 4 and 2 bits are turned on.
But the byte decimal values can add up to a number that’s significantly higher than 15.
This is how: If we counted every bit as a one (1), then the byte binary value would look like
the following example because, remember, 8 bits equal a byte:
11111111
We would then count up every bit spot because each is turned on. It would look like this,
which demonstrates the maximum value of a byte:
128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255
There are plenty of other decimal values that a binary number can equal. Let’s work
through a few examples:
10010110
Which bits are on? The 128, 16, 4, and 2 bits are on, so we’ll just add them up: 128 + 16
+ 4 + 2 = 150.
01101100
Which bits are on? The 64, 32, 8, and 4 bits are on, so we just need to add them up:
64 + 32 + 8 + 4 = 108.
11101000
Which bits are on? The 128, 64, 32, and 8 bits are on, so just add the values up: 128 +
64 + 32 + 8 = 232.
I highly recommend that you memorize Table 2.2 before braving the IP sections in
Chapter 3, “TCP/IP,” and Chapter 4, “Easy Subnetting”!
Table 2 . 2 Binary to decimal memorization chart
Binary Value
Decimal Value
10000000
128
11000000
192
11100000
224
11110000
240
11111000
248
11111100
252
11111110
254
11111111
255
52
Chapter 2
u
Ethernet Networking and Data Encapsulation
Hexadecimal addressing is completely different than binary or decimal—it’s converted
by reading nibbles, not bytes. By using a nibble, we can convert these bits to hex pretty
simply. First, understand that the hexadecimal addressing scheme uses only the characters
0 through 9. Because the numbers 10, 11, 12, and so on can’t be used (because they are
two-digit numbers), the letters A, B, C, D, E, and F are used instead to represent 10, 11,
12, 13, 14, and 15, respectively.
Hex is short for hexadecimal, which is a numbering system that uses the
first six letters of the alphabet, A through F, to extend beyond the available
10 characters in the decimal system. These values are not case sensitive.
Table 2.3 shows both the binary value and the decimal value for each hexadecimal digit.
Table 2 . 3 Hex to binary to decimal chart
Hexadecimal Value
Binary Value
Decimal Value
0
0000
0
1
0001
1
2
0010
2
3
0011
3
4
0100
4
5
0101
5
6
0110
6
7
0111
7
8
1000
8
9
1001
9
A
1010
10
B
1011
11
C
1100
12
D
1101
13
Ethernet Networks in Review
Hexadecimal Value
Binary Value
Decimal Value
E
1110
14
F
1111
15
53
Did you notice that the first 10 hexadecimal digits (0–9) are the same value as the decimal
values? If not, look again because this handy fact makes those values super easy to convert!
Okay, now suppose you have something like this: 0x6A. This is important because sometimes Cisco likes to put 0x in front of characters so you know that they are a hex value. It
doesn’t have any other special meaning. So what are the binary and decimal values? All you
have to remember is that each hex character is one nibble and that two hex characters joined
together make a byte. To figure out the binary value, put the hex characters into two nibbles
and then join them together into a byte. 6 = 0110; A, which is 10 in hex = 1010; so the complete byte would be 01101010.
To convert from binary to hex, just take the byte and break it into nibbles. Let me
clarify this.
Say you have the binary number 01010101. First, break it into nibbles—0101 and
0101—with the value of each nibble being 5 since the 1 and 4 bits are on. This makes the
hex answer 0x55. And in decimal format, the binary number is 01010101, which converts
to 64 + 16 + 4 + 1 = 85.
Here’s another binary number:
11001100
Your answer would be 1100 = 12 and 1100 = 12, so therefore, it’s converted to CC in hex.
The decimal conversion answer would be 128 + 64 + 8 + 4 = 204.
One more example, then we need to get working on the Physical layer. Suppose you had
the following binary number:
10110101
The hex answer would be 0xB5, since 1011 converts to B and 0101 converts to 5 in hex
value. The decimal equivalent is 128 + 32 + 16 + 4 + 1 = 181.
Make sure you check out Written Lab 2.1 for more practice with binary/
decimal/hex conversion!
Ethernet Frames
The Data Link layer is responsible for combining bits into bytes and bytes into frames. Frames
are used at the Data Link layer to encapsulate packets handed down from the Network layer
for transmission on a type of media access.
54
Chapter 2
u
Ethernet Networking and Data Encapsulation
The function of Ethernet stations is to pass data frames between each other using a
group of bits known as a MAC frame format. This provides error detection from a cyclic
redundancy check (CRC). But remember—this is error detection, not error correction. An
example of a typical Ethernet frame used today is shown in Figure 2.8.
F ig u re 2 . 8
Typical Ethernet frame format
Ethernet_II
Preamble
7 bytes
SFD
1 byte
Destination
6 bytes
Source
6 bytes
Type
2 bytes
Data and Pad
46 – 1500 bytes
FCS
4 bytes
Packet
Encapsulating a frame within a different type of frame is called tunneling.
Following are the details of the various fields in the typical Ethernet frame type:
Preamble An alternating 1,0 pattern provides a 5 MHz clock at the start of each packet,
which allows the receiving devices to lock the incoming bit stream.
Start Frame Delimiter (SFD)/Synch The preamble is seven octets and the SFD is one octet
(synch). The SFD is 10101011, where the last pair of 1s allows the receiver to come into the
alternating 1,0 pattern somewhere in the middle and still sync up to detect the beginning of
the data.
Destination Address (DA) This transmits a 48-bit value using the least significant bit
(LSB) first. The DA is used by receiving stations to determine whether an incoming packet
is addressed to a particular node. The destination address can be an individual address or a
broadcast or multicast MAC address. Remember that a broadcast is all 1s—all Fs in hex—
and is sent to all devices. A multicast is sent only to a similar subset of nodes on a network.
Source Address (SA) The SA is a 48-bit MAC address used to identify the transmitting
device, and it uses the least significant bit first. Broadcast and multicast address formats are
illegal within the SA field.
Length or Type 802.3 uses a Length field, but the Ethernet_II frame uses a Type field to
identify the Network layer protocol. The old, original 802.3 cannot identify the upper-layer
protocol and must be used with a proprietary LAN—IPX, for example.
Data This is a packet sent down to the Data Link layer from the Network layer. The size
can vary from 46 to 1,500 bytes.
Ethernet Networks in Review
55
Frame Check Sequence (FCS) FCS is a field at the end of the frame that’s used to store the
cyclic redundancy check (CRC) answer. The CRC is a mathematical algorithm that’s run
when each frame is built based on the data in the frame. When a receiving host receives the
frame and runs the CRC, the answer should be the same. If not, the frame is discarded,
assuming errors have occurred.
Let’s pause here for a minute and take a look at some frames caught on my trusty network analyzer. You can see that the frame below has only three fields: Destination, Source,
and Type, which is shown as Protocol Type on this particular analyzer:
Destination:
00:60:f5:00:1f:27
Source:
00:60:f5:00:1f:2c
Protocol Type: 08-00 IP
This is an Ethernet_II frame. Notice that the Type field is IP, or 08-00, mostly just
referred to as 0x800 in hexadecimal.
The next frame has the same fields, so it must be an Ethernet_II frame as well:
Destination:
ff:ff:ff:ff:ff:ff Ethernet Broadcast
Source:
02:07:01:22:de:a4
Protocol Type: 08-00 IP
Did you notice that this frame was a broadcast? You can tell because the destination
hardware address is all 1s in binary, or all Fs in hexadecimal.
Let’s take a look at one more Ethernet_II frame. I’ll talk about this next example again
when we use IPv6 in Chapter 14, “IPv6 Routing,” but you can see that the Ethernet frame is
the same Ethernet_II frame used with the IPv4 routed protocol. The Type field has 0x86dd
when the frame is carrying IPv6 data, and when we have IPv4 data, the frame uses 0x0800
in the protocol field:
Destination: IPv6-Neighbor-Discovery_00:01:00:03 (33:33:00:01:00:03)
Source: Aopen_3e:7f:dd (00:01:80:3e:7f:dd)
Type: IPv6 (0x86dd)
This is the beauty of the Ethernet_II frame. Because of the Type field, we can run any
Network layer routed protocol and the frame will carry the data because it can identify
the Network layer protocol!
Ethernet at the Physical Layer
Ethernet was first implemented by a group called DIX, which stands for Digital, Intel, and
Xerox. They created and implemented the first Ethernet LAN specification, which the IEEE
used to create the IEEE 802.3 committee. This was a 10 Mbps network that ran on coax
and then eventually twisted-pair and fiber physical media.
Visit ccna
.gg/ch2/a
for a
companion
MicroNugget
from CBT
Nuggets.
56
Chapter 2
u
Ethernet Networking and Data Encapsulation
The IEEE extended the 802.3 committee to three new committees known as 802.3u
(Fast Ethernet), 802.3ab (Gigabit Ethernet on category 5) and then finally one more,
802.3ae (10 Gbps over fiber and coax). There are more standards evolving almost daily,
such as the new 100 Gbps Ethernet (802.3ba)!
When designing your LAN, it’s really important to understand the different types of
Ethernet media available to you. Sure, it would be great to run Gigabit Ethernet to each
desktop and 10 Gbps between switches, but you would need to figure out how to justify the
cost of that network today! However, if you mix and match the different types of Ethernet
media methods currently available, you can come up with a cost-effective network solution
that works really great.
The EIA/TIA (Electronic Industries Alliance and the newer Telecommunications
Industry Association) is the standards body that creates the Physical layer specifications
for Ethernet. The EIA/TIA specifies that Ethernet use a registered jack (RJ) connector on
unshielded twisted-pair (UTP) cabling (RJ45). But the industry is moving toward simply
calling this an 8-pin modular connector.
Every Ethernet cable type that’s specified by the EIA/TIA has inherent attenuation, which is
defined as the loss of signal strength as it travels the length of a cable and is measured in decibels (dB). The cabling used in corporate and home markets is measured in categories. A higherquality cable will have a higher-rated category and lower attenuation. For example, category 5
is better than category 3 because category 5 cables have more wire twists per foot and therefore
less crosstalk. Crosstalk is the unwanted signal interference from adjacent pairs in the cable.
Here is a list of some of the most common IEEE Ethernet standards, starting with
10 Mbps Ethernet:
10Base-T (IEEE 802.3) 10 Mbps using category 3 unshielded twisted pair (UTP) wiring
for runs up to 100 meters. Unlike with the 10Base-2 and 10Base-5 networks, each device
must connect into a hub or switch, and you can have only one host per segment or wire.
It uses an RJ45 connector (8-pin modular connector) with a physical star topology and a
logical bus.
100Base-TX (IEEE 802.3u) 100Base-TX, most commonly known as Fast Ethernet, uses
EIA/TIA category 5, 5E, or 6 UTP two-pair wiring. One user per segment; up to 100 meters
long. It uses an RJ45 connector with a physical star topology and a logical bus.
100Base-FX (IEEE 802.3u) Uses fiber cabling 62.5/125-micron multimode fiber. Pointto-point topology; up to 412 meters long. It uses ST and SC connectors, which are mediainterface connectors.
1000Base-CX (IEEE 802.3z) Copper twisted-pair, called twinax, is a balanced coaxial
pair that can run only up to 25 meters and uses a special 9-pin connector known as the High
Speed Serial Data Connector (HSSDC). This is used in Cisco’s new Data Center technologies.
1000Base-T (IEEE 802.3ab)
up to 1 Gbps.
Category 5, four-pair UTP wiring up to 100 meters long and
Ethernet Networks in Review
57
1000Base-SX (IEEE 802.3z) The implementation of 1 Gigabit Ethernet running over
multimode fiber-optic cable instead of copper twisted-pair cable, using short wavelength
laser. Multimode fiber (MMF) using 62.5- and 50-micron core; uses an 850 nanometer
(nm) laser and can go up to 220 meters with 62.5-micron, 550 meters with 50-micron.
1000Base-LX (IEEE 802.3z) Single-mode fiber that uses a 9-micron core and 1300 nm
laser and can go from 3 kilometers up to 10 kilometers.
1000Base-ZX (Cisco standard) 1000BaseZX, or 1000Base-ZX, is a Cisco specified standard for Gigabit Ethernet communication. 1000BaseZX operates on ordinary single-mode
fiber-optic links with spans up to 43.5 miles (70 km).
10GBase-T (802.3.an) 10GBase-T is a standard proposed by the IEEE 802.3an committee
to provide 10 Gbps connections over conventional UTP cables, (category 5e, 6, or 7 cables).
10GBase-T allows the conventional RJ45 used for Ethernet LANs and can support signal
transmission at the full 100-meter distance specified for LAN wiring.
If you want to implement a network medium that is not susceptible to electromagnetic interference (EMI), fiber-optic cable provides a more secure,
long-distance cable that is not susceptible to EMI at high speeds.
Armed with the basics covered so far in this chapter, you’re equipped to go to the next
level and put Ethernet to work using various Ethernet cabling.
Interference or Host Distance Issue?
Quite a few years ago, I was consulting at a very large aerospace company in the Los
Angeles area. In the very busy warehouse, they had hundreds of hosts provide many
different services to the various departments working in that area.
However, a small group of hosts have been experiencing intermittent outages that no one
could explain since most hosts in the same area have no problems whatsoever. So I decided
to take a crack at this problem and see what I could find.
First, I traced the backbone connection from the main switch to multiple switches in
the warehouse area. Assuming that the hosts with the issues were connected to the
same switch, I traced each cable, and much to my surprise they were connected to
various switches! Now my interest really peaked because the simplest issue had been
eliminated right off the bat. It wasn’t a simple switch problem!
58
Chapter 2
u
Ethernet Networking and Data Encapsulation
I continued to trace each cable one-by-one, and this is what I found:
Backbone area
Warehouse area
Intermittent
PC
Working
PC
Working
PC
As I drew this network out, I noticed that they had many repeaters in place, which isn’t a
cause for immediate suspicion since bandwidth was not their biggest requirement here.
So I looked deeper still. At this point, I decided to measure the distance of one of the
intermittent hosts connecting to their hub/repeater.
This is what I measured. Can you see the problem?
Backbone area
75 meters
Warehouse area
115 meters
90 meters
Intermittent
PC
Working
PC
Working
PC
Ethernet Cabling
59
Having a hub or repeater in your network isn’t a problem, unless you need better bandwidth (which they didn’t in this case), but the distance was! It’s not always easy to tell
how far away a host is from their connection in an extremely large area, so these hosts
ended up having a connection past the 100-meter Ethernet specification which created
a problem for the hosts not cabled correctly. Understand that this didn’t stop the hosts
from completely working, but the workers felt the hosts stopped working when they
were at their most stressful point of the day. Sure, that makes sense, because whenever
my host stops working, that becomes my most stressful part of the day!
Ethernet Cabling
A discussion about Ethernet cabling is an important one, especially if you are planning on
taking the Cisco exams. You need to really understand the following three types of cables:
uu
Straight-through cable
uu
Crossover cable
uu
Rolled cable
We will look at each in the following sections, but first, let’s take a look at the most
common Ethernet cable used today, the category 5 Enhanced Unshielded Twisted Pair
(UTP), shown in Figure 2.9.
F ig u re 2 . 9
Category 5 Enhanced UTP cable
The category 5 Enhanced UTP cable can handle speeds up to a gigabit with a distance
of up to 100 meters. Typically we’d use this cable for 100 Mbps and category 6 for a gigabit,
but the category 5 Enhanced is rated for gigabit speeds and category 6 is rated for 10 Gbps!
60
Chapter 2
u
Ethernet Networking and Data Encapsulation
Straight-through Cable
The straight-through cable is used to connect the following devices:
uu
Host to switch or hub
uu
Router to switch or hub
Four wires are used in straight-through cable to connect Ethernet devices. It’s relatively
simple to create this type, and Figure 2.10 shows the four wires used in a straight-through
Ethernet cable.
F ig u re 2 .1 0
Straight-through Ethernet cable
1
2
3
4
5
6
7
8
Transmit on pins 1 & 2
Receive on pins 3 & 6
1
2
3
4
5
6
7
8
Receive on pins 1 & 2
Transmit on pins 3 & 6
Notice that only pins 1, 2, 3, and 6 are used. Just connect 1 to 1, 2 to 2, 3 to 3, and 6
to 6 and you’ll be up and networking in no time. However, remember that this would be a
10/100 Mbps Ethernet-only cable and wouldn’t work with gigabit, voice, or other LAN or
WAN technology.
Crossover Cable
The crossover cable can be used to connect the following devices:
uu
Switch to switch
uu
Hub to hub
uu
Host to host
uu
Hub to switch
uu
Router direct to host
uu
Router to router
The same four wires used in the straight-through cable are used in this cable—we just
connect different pins together. Figure 2.11 shows how the four wires are used in a crossover Ethernet cable.
Ethernet Cabling
F ig u re 2 .11
61
Crossover Ethernet cable
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Receive on pins 1 & 2
Transmit on pins 3 & 6
Notice that instead of connecting 1 to 1, 2 to 2, and so on, here we connect pins 1 to 3
and 2 to 6 on each side of the cable. Figure 2.12 shows some typical uses of straight-through
and crossover cables.
F ig u re 2 .1 2
Typical uses for straight-through and cross-over Ethernet cables
Crossover cable
Fa0/1
S1
Fa0/1
R1
Fa0/0
R1
Fa0/0
Straight-through cable
Fa0/1
S2
Fa0/1
Fa0/0
R2
R1
Fa0/0
S1
S1
The crossover examples in Figure 2.12 are switch port to switch port, router Ethernet port
to router Ethernet port, and PC Ethernet to router Ethernet port. For the straight-through
examples I used PC Ethernet to switch port and router Ethernet port to switch port.
It’s very possible to connect a straight-through cable between two switches,
and it will start working because of autodetect mechanisms called automdix. But be advised that the CCNA objectives do not typically consider
autodetect mechanisms valid between devices!
UTP Gigabit Wiring (1000Base-T)
In the previous examples of 10Base-T and 100Base-T UTP wiring, only two wire pairs were
used, but that is not good enough for Gigabit UTP transmission.
62
Chapter 2
u
Ethernet Networking and Data Encapsulation
1000Base-T UTP wiring (Figure 2.13) requires four wire pairs and uses more advanced
electronics so that each and every pair in the cable can transmit simultaneously. Even so,
gigabit wiring is almost identical to my earlier 10/100 example, except that we’ll use the
other two pairs in the cable.
F ig u re 2 .1 3
UTP Gigabit crossover Ethernet cable
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
For a straight-through cable it’s still 1 to 1, 2 to 2, and so on up to pin 8. And in creating the gigabit crossover cable, you’d still cross 1 to 3 and 2 to 6, but you would add 4 to 7
and 5 to 8—pretty straightforward!
Rolled Cable
Although rolled cable isn’t used to connect any Ethernet connections together, you can use
a rolled Ethernet cable to connect a host EIA-TIA 232 interface to a router console serial
communication (COM) port.
If you have a Cisco router or switch, you would use this cable to connect your PC, Mac,
or a device like an iPad to the Cisco hardware. Eight wires are used in this cable to connect
serial devices, although not all eight are used to send information, just as in Ethernet networking. Figure 2.14 shows the eight wires used in a rolled cable.
F ig u re 2 .1 4
Rolled Ethernet cable
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
RS-232 port
Console port
These are probably the easiest cables to make because you just cut the end off on one side
of a straight-through cable, turn it over, and put it back on—with a new connector, of course!
Ethernet Cabling
63
Okay, once you have the correct cable connected from your PC to the Cisco router or
switch console port, you can start your emulation program such as putty or SecureCRT
to create a console connection and configure the device. Set the configuration as shown in
Figure 2.15.
F ig u re 2 .1 5
Configuring your console emulation program
Notice that Bit Rate is set to 9600, Data Bits to 8, Parity to None, and Flow Control is
set to None. At this point, you can click Connect and press the Enter key and you should be
connected to your Cisco device console port.
Figure 2.16 shows a nice new 2960 switch with two console ports.
F ig u re 2 .1 6
A Cisco 2960 console connections
Console
Notice there are two console connections on this new switch—a typical original RJ45
connection, and the newer mini type-B USB console. Remember that the new USB port supersedes the RJ45 port if you just happen to plug into both at the same time, and the USB port
can have speeds up to 115,200 Kbps, which is awesome if you have to use Xmodem to update
an IOS. I’ve even seen some cables that work on iPhones and iPads and allow them to connect
to these mini USB ports!
64
Chapter 2
u
Ethernet Networking and Data Encapsulation
Now that you’ve seen the various RJ45 unshielded twisted-pair (UTP) cables, what type
of cable is used between the switches in Figure 2.17?
F ig u re 2 .17
RJ45 UTP cable question #1
Switch
Switch
?
A
B
In order for host A to ping host B, you need a crossover cable to connect the two switches
together. But what types of cables are used in the network shown in Figure 2.18?
F ig u re 2 .1 8
RJ45 UTP cable question #2
Router
Console
In Figure 2.18, there’s a whole menu of cables in use. For the connection between the
switches, we’d obviously use a crossover cable like we saw in Figure 2.13. The trouble is
that you must understand that we have a console connection that uses a rolled cable. Plus,
the connection from the router to the switch is a straight-through cable, as is true for the
hosts to the switches. Keep in mind that if we had a serial connection, which we don’t, we
would use a V.35 to connect us to a WAN.
Fiber Optic
Fiber-optic cabling has been around for a long time and has some solid standards. The cable
allows for very fast transmission of data, is made of glass (or even plastic!), is very thin, and
works as a waveguide to transmit light between two ends of the fiber. Fiber optics has been
used to go very long distances, as in intercontinental connections, but it is becoming more
and more popular in Ethernet LAN networks due to the fast speeds available and because,
unlike UTP, it’s immune to interference like cross-talk.
Ethernet Cabling
65
Some main components of this cable are the core and the cladding. The core will
hold the light and the cladding confines the light in the core. The tighter the cladding,
the smaller the core, and when the core is small, less light will be sent, but it can go
faster and farther!
In Figure 2.19 you can see that there is a 9-micron core, which is very small and can be
measured against a human hair, which is 50 microns.
F ig u re 2 .1 9
Typical fiber cable
250
Core
125
Cladding
9
Buffer
Dimensions are in um (10 –6 meters). Not to scale.
The cladding is 125 microns, which is actually a fiber standard that allows manufacturers
to make connectors for all fiber cables. The last piece of this cable is the buffer, which is there
to protect the delicate glass.
There are two major types of fiber optics: single-mode and multimode. Figure 2.20
shows the differences between multimode and single-mode fibers.
F ig u re 2 . 2 0
Multimode and single-mode fibers
Cladding
Core
Multi-mode fiber
Cladding
Core
Single-mode fiber
66
Chapter 2
u
Ethernet Networking and Data Encapsulation
Single-mode is more expensive, has a tighter cladding, and can go much farther distances
than multimode. The difference comes in the tightness of the cladding, which makes a smaller
core, meaning that only one mode of light will propagate down the fiber. Multimode is looser
and has a larger core so it allows multiple light particles to travel down the glass. These particles have to be put back together at the receiving end, so distance is less than that with singlemode fiber, which allows only very few light particles to travel down the fiber.
There are about 70 different connectors for fiber, and Cisco uses a few different types.
Looking back at Figure 2.16, the two bottom ports are referred to as Small Form-Factor
Pluggable, or SFPs.
Data Encapsulation
When a host transmits data across a network to another device, the data goes through a
process called encapsulation and is wrapped with protocol information at each layer of the
OSI model. Each layer communicates only with its peer layer on the receiving device.
To communicate and exchange information, each layer uses protocol data units (PDUs).
These hold the control information attached to the data at each layer of the model. They are
usually attached to the header in front of the data field but can also be at the trailer, or end,
of it.
Each PDU attaches to the data by encapsulating it at each layer of the OSI model, and
each has a specific name depending on the information provided in each header. This PDU
information is read-only by the peer layer on the receiving device. After its read, it’s stripped
off and the data is then handed to the next layer up.
Figure 2.21 shows the PDUs and how they attach control information to each layer.
This figure demonstrates how the upper-layer user data is converted for transmission on
the network. The data stream is then handed down to the Transport layer, which sets up a
virtual circuit to the receiving device by sending over a synch packet. Next, the data stream
is broken up into smaller pieces, and a Transport layer header is created and attached to the
header of the data field; now the piece of data is called a segment (a PDU). Each segment
can be sequenced so the data stream can be put back together on the receiving side exactly
as it was transmitted.
Each segment is then handed to the Network layer for network addressing and routing
through the internetwork. Logical addressing (for example, IP and IPv6) is used to get each
segment to the correct network. The Network layer protocol adds a control header to the
segment handed down from the Transport layer, and what we have now is called a packet
or datagram. Remember that the Transport and Network layers work together to rebuild
a data stream on a receiving host, but it’s not part of their work to place their PDUs on a
local network segment—which is the only way to get the information to a router or host.
It’s the Data Link layer that’s responsible for taking packets from the Network layer and
placing them on the network medium (cable or wireless). The Data Link layer encapsulates
each packet in a frame, and the frame’s header carries the hardware addresses of the source
and destination hosts. If the destination device is on a remote network, then the frame is
Data Encapsulation
67
sent to a router to be routed through an internetwork. Once it gets to the destination network, a new frame is used to get the packet to the destination host.
F ig u re 2 . 2 1
Data encapsulation
Application
Upper-layer data
Presentation
Session
TCP header
Upper-layer data
Transport
segment
IP header
Data
Network
packet
Data Link
frame
Physical
bits
MAC
LLC
Data
0101110101001000010
FCS
To put this frame on the network, it must first be put into a digital signal. Since a frame
is really a logical group of 1s and 0s, the physical layer is responsible for encoding these digits into a digital signal, which is read by devices on the same local network. The receiving
devices will synchronize on the digital signal and extract (decode) the 1s and 0s from the digital signal. At this point, the devices reconstruct the frames, run a CRC, and then check their
answer against the answer in the frame’s FCS field. If it matches, the packet is pulled from the
frame and what’s left of the frame is discarded. This process is called de-encapsulation. The
packet is handed to the Network layer, where the address is checked. If the address matches,
the segment is pulled from the packet and what’s left of the packet is discarded. The segment
is processed at the Transport layer, which rebuilds the data stream and acknowledges to the
transmitting station that it received each piece. It then happily hands the data stream to the
upper-layer application.
At a transmitting device, the data encapsulation method works like this:
1. User information is converted to data for transmission on the network.
2. Data is converted to segments, and a reliable connection is set up between the trans-
mitting and receiving hosts.
3. Segments are converted to packets or datagrams, and a logical address is placed in the
header so each packet can be routed through an internetwork.
4. Packets or datagrams are converted to frames for transmission on the local network.
Hardware (Ethernet) addresses are used to uniquely identify hosts on a local network segment.
5. Frames are converted to bits, and a digital encoding and clocking scheme is used.
68
Chapter 2
u
Ethernet Networking and Data Encapsulation
To explain this in more detail using the layer addressing, I’ll use Figure 2.22.
F ig u re 2 . 2 2
PDU and layer addressing
Segment
Source
port
Destination
port
...
Data
Packet
Source IP
Destination
IP
Protocol
...
Segment
Frame
Destination
MAC
Source
MAC
Ether-Field
Packet
FCS
Bits
1011011100011110000
Remember that a data stream is handed down from the upper layer to the Transport
layer. As technicians, we really don’t care who the data stream comes from because that’s
really a programmer’s problem. Our job is to rebuild the data stream reliably and hand it
to the upper layers on the receiving device.
Before we go further in our discussion of Figure 2.22, let’s discuss port numbers and
make sure you understand them. The Transport layer uses port numbers to define both the
virtual circuit and the upper-layer processes, as you can see from Figure 2.23.
F ig u re 2 . 2 3
Port numbers at the Transport layer
Source
port
Destination
port
SP
DP
1028
23
Used in part to define
the virtual circuit
...
...
Defines upper layer
process or application
Data Encapsulation
69
When using a connection-oriented protocol like TCP, the Transport layer takes the data
stream, makes segments out of it, and establishes a reliable session by creating a virtual circuit. It then sequences (numbers) each segment and uses acknowledgments and flow control. If
you’re using TCP, the virtual circuit is defined by the source and destination port number plus
the source and destination IP address and called a socket. Understand that the host just makes
this up, starting at port number 1024 because 0 through 1023 are reserved for well-known
port numbers. The destination port number defines the upper-layer process or application that
the data stream is handed to when the data stream is reliably rebuilt on the receiving host.
Now that you understand port numbers and how they are used at the Transport layer,
let’s go back to Figure 2.22. Once the Transport layer header information is added to the
piece of data, it becomes a segment that’s handed down to the Network layer along with
the destination IP address. As you know, the destination IP address was handed down from
the upper layers to the Transport layer with the data stream and was identified via name
resolution at the upper layers—probably with DNS.
The Network layer adds a header and adds the logical addressing such as IP addresses
to the front of each segment. Once the header is added to the segment, the PDU is called a
packet. The packet has a protocol field that describes where the segment came from (either
UDP or TCP) so it can hand the segment to the correct protocol at the Transport layer
when it reaches the receiving host.
The Network layer is responsible for finding the destination hardware address that dictates where the packet should be sent on the local network. It does this by using the Address
Resolution Protocol (ARP)—something I’ll talk about more in Chapter 3. IP at the Network
layer looks at the destination IP address and compares that address to its own source IP
address and subnet mask. If it turns out to be a local network request, the hardware address
of the local host is requested via an ARP request. If the packet is destined for a remote host,
IP will look for the IP address of the default gateway (router) instead.
The packet, along with the destination hardware address of either the local host or
default gateway, is then handed down to the Data Link layer. The Data Link layer will add
a header to the front of the packet and the piece of data then becomes a frame. It’s called a
frame because both a header and a trailer are added to the packet, which makes it look like
it’s within bookends—a frame—as shown in Figure 2.22. The frame uses an Ether-Type
field to describe which protocol the packet came from at the Network layer. Now a cyclic
redundancy check is run on the frame, and the answer to the CRC is placed in the Frame
Check Sequence field found in the trailer of the frame.
The frame is now ready to be handed down, one bit at a time, to the Physical layer,
which will use bit-timing rules to encode the data in a digital signal. Every device on the
network segment will receive the digital signal and synchronize with the clock and extract
the 1s and 0s from the digital signal to build a frame. After the frame is rebuilt, a CRC is
run to make sure the frame is in proper order. If everything turns out to be all good, the
hosts will check the destination MAC and IP addresses to see if the frame is for them.
If all this is making your eyes cross and your brain freeze, don’t freak. I’ll be going over
exactly how data is encapsulated and routed through an internetwork later, in Chapter 8,
“IP Routing.”
70
Chapter 2
u
Ethernet Networking and Data Encapsulation
The Cisco three-Layer
Hierarchical Model
Most of us were exposed to hierarchy early in life. Anyone with older siblings learned what
it was like to be at the bottom of the hierarchy. Regardless of where you first discovered the
concept of hierarchy, most of us experience it in many aspects of our lives. It’s hierarchy that
helps us understand where things belong, how things fit together, and what functions go
where. It brings order to otherwise complex models. If you want a pay raise, for instance,
hierarchy dictates that you ask your boss, not your subordinate, because that’s the person
whose role it is to grant or deny your request. So basically, understanding hierarchy helps us
discern where we should go to get what we need.
Hierarchy has many of the same benefits in network design that it does in other areas
of life. When used properly, it makes networks more predictable and helps us define which
areas should perform certain functions. Likewise, you can use tools such as access lists at
certain levels in hierarchical networks and avoid them at others.
Let’s face it: Large networks can be extremely complicated, with multiple protocols,
detailed configurations, and diverse technologies. Hierarchy helps us summarize a complex
collection of details into an understandable model, bringing order from the chaos. Then, as
specific configurations are needed, the model dictates the appropriate manner in which to
apply them.
The Cisco hierarchical model can help you design, implement, and maintain a scalable,
reliable, cost-effective hierarchical internetwork. Cisco defines three layers of hierarchy, as
shown in Figure 2.24, each with specific functions.
Each layer has specific responsibilities. Keep in mind that the three layers are logical and
are not necessarily physical devices. Consider the OSI model, another logical hierarchy. Its
seven layers describe functions but not necessarily protocols, right? Sometimes a protocol
maps to more than one layer of the OSI model, and sometimes multiple protocols communicate within a single layer. In the same way, when we build physical implementations of
hierarchical networks, we may have many devices in a single layer, or there may be a single
device performing functions at two layers. Just remember that the definition of the layers is
logical, not physical!
So let’s take a closer look at each of the layers now.
The Core Layer
The core layer is literally the core of the network. At the top of the hierarchy, the core layer
is responsible for transporting large amounts of traffic both reliably and quickly. The only
purpose of the network’s core layer is to switch traffic as fast as possible. The traffic transported across the core is common to a majority of users. But remember that user data is
processed at the distribution layer, which forwards the requests to the core if needed.
The Cisco three-Layer Hierarchical Model
F ig u re 2 . 2 4
71
The Cisco hierarchical model
Core
Backbone
Distribution
Access
Web server
Email server
PC1
PC2
If there’s a failure in the core, every single user can be affected! This is why fault tolerance at this layer is so important. The core is likely to see large volumes of traffic, so speed
and latency are driving concerns here. Given the function of the core, we can now consider
some design specifics. Let’s start with some things we don’t want to do:
uu
uu
uu
Never do anything to slow down traffic. This includes using access lists, routing
between virtual local area networks and implementing packet filtering.
Don’t support workgroup access here.
Avoid expanding the core (e.g., adding routers when the internetwork grows). If performance becomes an issue in the core, give preference to upgrades over expansion.
Here’s a list of things that we want to achieve as we design the core:
uu
uu
uu
Design the core for high reliability. Consider data-link technologies that facilitate
both speed and redundancy, like Gigabit Ethernet with redundant links or even
10 Gigabit Ethernet.
Design with speed in mind. The core should have very little latency.
Select routing protocols with lower convergence times. Fast and redundant data-link
connectivity is no help if your routing tables are shot!
Chapter 2
72
u
Ethernet Networking and Data Encapsulation
The Distribution Layer
The distribution layer is sometimes referred to as the workgroup layer and is the communication point between the access layer and the core. The primary functions of the distribution
layer are to provide routing, filtering, and WAN access and to determine how packets can
access the core, if needed. The distribution layer must determine the fastest way that network
service requests are handled—for example, how a file request is forwarded to a server. After
the distribution layer determines the best path, it forwards the request to the core layer if necessary. The core layer then quickly transports the request to the correct service.
The distribution layer is where we want to implement policies for the network because
we are allowed a lot of flexibility in defining network operation here. There are several
things that should generally be handled at the distribution layer:
uu
Routing
uu
Implementing tools (such as access lists), packet filtering, and queuing
uu
Implementing security and network policies, including address translation and firewalls
uu
Redistributing between routing protocols, including static routing
uu
Routing between VLANs and other workgroup support functions
uu
Defining broadcast and multicast domains
Key things to avoid at the distribution layer are those that are limited to functions that
exclusively belong to one of the other layers!
The Access Layer
The access layer controls user and workgroup access to internetwork resources. The access
layer is sometimes referred to as the desktop layer. The network resources most users need
will be available locally because the distribution layer handles any traffic for remote services.
The following are some of the functions to be included at the access layer:
uu
Continued (from distribution layer) use of access control and policies
uu
Creation of separate collision domains (segmentation)
uu
Workgroup connectivity into the distribution layer
Technologies like Gigabit or Fast Ethernet switching are frequently seen in the access layer.
I can’t stress this enough—just because there are three separate levels does not imply
three separate devices! There could be fewer or there could be more. After all, this is a
layered approach.
Visit ccna
.gg/ch2/b
for a
companion
MicroNugget
from CBT
Nuggets.
Exam Essentials
73
Summary
In this chapter, you learned the fundamentals of Ethernet networking, how hosts communicate
on a network. You discovered how CSMA/CD works in an Ethernet half-duplex network.
I also talked about the differences between half- and full-duplex modes, and we discussed
the collision detection mechanism called CSMA/CD.
I described the common Ethernet cable types used in today’s networks in this chapter as
well, and by the way, you’d be wise to study that section really well!
Important enough to not gloss over, this chapter provided an introduction to encapsulation.
Encapsulation is the process of encoding data as it goes down the OSI stack.
Last, I covered the Cisco three-layer hierarchical model. I described in detail the three
layers and how each is used to help design and implement a Cisco internetwork.
Exam Essentials
Describe the operation of Carrier Sense Multiple Access with Collision Detection
(CSMA/CD). CSMA/CD is a protocol that helps devices share the bandwidth evenly
without having two devices transmit at the same time on the network medium. Although
it does not eliminate collisions, it helps to greatly reduce them, which reduces retransmissions, resulting in a more efficient transmission of data for all devices.
Differentiate half-duplex and full-duplex communication and define the requirements to
utilize each method. Full-duplex Ethernet uses two pairs of wires at the same time instead
of one wire pair like half-duplex. Full-duplex allows for sending and receiving at the same
time, using different wires to eliminate collisions, while half-duplex can send or receive but
not at the same time and still can suffer collisions. To use full-duplex, the devices at both
ends of the cable must be capable of and configured to perform full-duplex.
Describe the sections of a MAC address and the information contained in each section.
The MAC, or hardware, address is a 48-bit (6-byte) address written in a hexadecimal format. The first 24 bits, or 3 bytes, are called the organizationally unique identifier (OUI),
which is assigned by the IEEE to the manufacturer of the NIC. The balance of the number
uniquely identifies the NIC.
Identify the binary and hexadecimal equivalent of a decimal number. Any number expressed
in one format can also be expressed in the other two. The ability to perform this conversion is
critical to understanding IP addressing and subnetting. Be sure to go through the written labs
covering binary to decimal to hexadecimal conversion.
Identify the fields in the Data Link portion of an Ethernet frame. The fields in the Data Link
portion of a frame include the preamble, Start Frame Delimiter, destination MAC address,
source MAC address, Length or Type, Data, and Frame Check Sequence.
74
Chapter 2
u
Ethernet Networking and Data Encapsulation
Identify the IEEE physical standards for Ethernet cabling. These standards describe the
capabilities and physical characteristics of various cable types and include but are not limited
to 10Base-2, 10Base-5, and 10Base-T.
Differentiate types of Ethernet cabling and identify their proper application. The three
types of cables that can be created from an Ethernet cable are straight-through (to connect
a PC’s or router’s Ethernet interface to a hub or switch), crossover (to connect hub to hub,
hub to switch, switch to switch, or PC to PC), and rolled (for a console connection from a
PC to a router or switch).
Describe the data encapsulation process and the role it plays in packet creation. Data
encapsulation is a process whereby information is added to the frame from each layer of
the OSI model. This is also called packet creation. Each layer communicates only with its
peer layer on the receiving device.
Understand how to connect a console cable from a PC to a router and switch. Take a
rolled cable and connect it from the COM port of the host to the console port of a router.
Start your emulations program such as putty or SecureCRT and set the bits per second to
9600 and flow control to None.
Identify the layers in the Cisco three-layer model and describe the ideal function of each layer.
The three layers in the Cisco hierarchical model are the core (responsible for transporting large
amounts of traffic both reliably and quickly), distribution (provides routing, filtering, and
WAN access), and access (workgroup connectivity into the distribution layer).
Written Labs
In this section, you’ll complete the following labs to make sure you’ve got the information
and concepts contained within them fully dialed in:
Lab 2.1: Binary/Decimal/Hexadecimal Conversion
Lab 2.2: CSMA/CD Operations
Lab 2.3: Cabling
Lab 2.4: Encapsulation
The answers to these labs can be found in Appendix A, “Answers to Written Labs.”
Written Labs
75
Written Lab 2.1: Binary/Decimal/Hexadecimal Conversion
1. Convert from decimal IP address to binary format.
Complete the following table to express 192.168.10.15 in binary format.
128
64
32
16
8
4
2
1
Binary
Complete the following table to express 172.16.20.55 in binary format.
128
64
32
16
8
4
2
1
Binary
76
Chapter 2
u
Ethernet Networking and Data Encapsulation
Complete the following table to express 10.11.12.99 in binary format.
128
64
32
16
8
4
2
1
Binary
2. Convert the following from binary format to decimal IP address.
Complete the following table to express 11001100.00110011.10101010.01010101 in
decimal IP address format.
128
64
32
16
8
4
2
1
Decimal
Written Labs
77
Complete the following table to express 11000110.11010011.00111001.11010001 in
decimal IP address format.
128
64
32
16
8
4
2
1
Decimal
Complete the following table to express 10000100.11010010.10111000.10100110 in
decimal IP address format.
128
64
32
16
8
4
2
1
Decimal
Chapter 2
78
u
Ethernet Networking and Data Encapsulation
3. Convert the following from binary format to hexadecimal.
Complete the following table to express 11011000.00011011.00111101.01110110 in
hexadecimal.
128
64
32
16
8
4
2
1
Hexadecimal
Complete the following table to express 11001010.11110101.10000011.11101011 in
hexadecimal.
128
64
32
16
8
4
2
1
Hexadecimal
Written Labs
79
Complete the following table to express 10000100.11010010.01000011.10110011 in
hexadecimal.
128
64
32
16
8
4
2
1
Hexadecimal
Written Lab 2.2: CSMA/CD Operations
Carrier Sense Multiple Access with Collision Detection (CSMA/CD) helps to minimize collisions in the network, thereby increasing data transmission efficiency. Place the following
steps of its operation in the order in which they occur.
uu
uu
All hosts have equal priority to transmit after the timers have expired.
Each device on the Ethernet segment stops transmitting for a short time until the timers expire.
uu
The collision invokes a random backoff algorithm.
uu
A jam signal informs all devices that a collision occurred.
Written Lab 2.3: Cabling
For each of the following situations, determine whether a straight-through, crossover, or
rolled cable would be used.
1. Host to host
2. Host to switch or hub
3. Router direct to host
4. Switch to switch
5. Router to switch or hub
80
Chapter 2
u
Ethernet Networking and Data Encapsulation
6. Hub to hub
7. Hub to switch
8. Host to a router console serial communication (COM) port
Written Lab 2.4: Encapsulation
Place the following steps of the encapsulation process in the proper order.
uu
uu
Packets or datagrams are converted to frames for transmission on the local network.
Hardware (Ethernet) addresses are used to uniquely identify hosts on a local network
segment.
Segments are converted to packets or datagrams, and a logical address is placed in the
header so each packet can be routed through an internetwork.
uu
User information is converted to data for transmission on the network.
uu
Frames are converted to bits, and a digital encoding and clocking scheme is used.
uu
Data is converted to segments, and a reliable connection is set up between the transmitting and receiving hosts.
Review Questions
81
Review Questions
The following questions are designed to test your understanding of this
chapter’s material. For more information on how to get additional questions, please see this book’s introduction.
The answers to these questions can be found in Appendix B, “Answers to Chapter
Review Questions.”
1. In the accompanying graphic, what is the name for the section of the MAC address
marked as unknown?
24 bits
47
46
I/G
G/L
24 bits
?????????????
Vendor assigned
Example: 0000.0c12.3456
A. IOS
B. OSI
C. ISO
D. OUI
2. _____________on an Ethernet network is the retransmission delay that’s enforced when
a collision occurs.
A. Backoff
B. Carrier sense
C. Forward delay
D. Jamming
82
Chapter 2
u
Ethernet Networking and Data Encapsulation
3. On which type of device could the situation shown in the diagram occur?
?
Collision
A. Hub
B. Switch
C. Router
D. Bridge
4. In the Ethernet II frame shown here, what is the function of the section labeled “FCS”?
Ethernet_II
Preamble
7 bytes
SFD
1 byte
Destination
6 bytes
Source
6 bytes
Type
2 bytes
Data and Pad
46 – 1500 bytes
A. Allows the receiving devices to lock the incoming bit stream.
B. Error detection
C. Identifies the upper-layer protocol
D. Identifies the transmitting device
5. The contention method used by Ethernet is called ____________.
A. Token passing
B. CSMA/CD
C. Polling
D. CSMA/CA
6. In which if the following situations can you not use full-duplex?
A. With a connection from a switch to a switch
B. With a connection from a router to a router
C. With a connection from a host to a host
D. With a connection from a host to a hub
FCS
4 bytes
Review Questions
83
7. Between which systems could you use a cable that uses the pinout pattern shown below?
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
A. With a connection from a switch to a switch
B. With a connection from a router to a router
C. With a connection from a host to a host
D. With a connection from a host to a switch
8. When the I/G bit in a MAC address is set to 1 the transmission is ____________.
(Choose all that apply.)
A. Unicast
B. Broadcast
C. Multicast
D. Anycast
9. What type of cable uses the pinout shown here?
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
A. Fiber optic
B. Crossover Gigabit Ethernet cable
C. Straight-through FastEthernet
D. Coaxial
10. When configuring a terminal emulation program which of the following is an
incorrect setting?
A. Bit rate: 9600
B. Parity: None
C. Flow control: None
D. Data bits: 1
84
Chapter 2
u
Ethernet Networking and Data Encapsulation
11. Which part of a MAC address indicates whether the address is a locally or globally
administered address?
A. FCS
B. I/G bit
C. OUI
D. U/L bit
12. What cable type uses the pinout arrangement shown below?
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
A. Fiber optic
B. Rolled
C. Straight through
D. Crossover
13. Which of the following is not one of the actions taken in the operation of CSMA/CD
when a collision occurs?
A. A jam signal informs all devices that a collision occurred.
B. The collision invokes a random backoff algorithm on the systems involved in
the collision.
C. Each device on the Ethernet segment stops transmitting for a short time until their
backoff timers expire.
D. All hosts have equal priority to transmit after the timers have expired.
14. Which of the following statements is false with regard to Ethernet?
A. There are very few collisions in full-duplex mode.
B. A dedicated switch port is required for each full-duplex node.
C. The host network card and the switch port must be capable of operating in full-
duplex mode to use full-duplex.
D. The default behavior of 10Base-T and 100Base-T hosts is 10 Mbps half-duplex if
the autodetect mechanism fails.
Review Questions
15. In the diagram below, identify the cable types required for connections A and B.
Switch
Switch
A
B
B
A. A crossover, B crossover
B. A crossover, B straight through
C. A straight through, B straight through
D. A straight through, B crossover
16. In the work area below match the cable type to the standard with which it goes.
1000Base-T
IEEE 802.3u
1000Base-SX
IEEE 802.3
10Base-T
IEEE 802.3ab
100Base-TX
IEEE 802.3z
17. The cable used to connect to the console port on a router or switch is called
a __________ cable.
A. Crossover
B. Rollover
C. Straight-through
D. Full-duplex
18. Which of the following items comprise a socket?
A. IP address and MAC address
B. IP address and port number
C. Port number and MAC address
D. MAC address and DLCI
85
Chapter 2
86
u
Ethernet Networking and Data Encapsulation
19. Which of the following hexadecimal numbers converts to 28 in decimal?
A. 1c
B. 12
C. 15
D. ab
20. What cable type is shown in the below graphic?
Core
Cladding
Buffer
A. Fiber optic
B. Rollover
C. Coaxial
D. Full-duplex
Chapter
3
Introduction to TCP/IP
The following ICND1 exam topics
are covered in this chapter:
11 Operation of IP Data Networks
■■
Identify common applications and their impact on the network
■■
Describe the purpose and basic operation of the protocols in
the OSI and TCP/IP models.
11 IP addressing (IPv4 / IPv6)
■■
Describe the operation and necessity of using private and
public IP addresses for IPv4 addressing
The Transmission Control Protocol/Internet Protocol
(TCP/IP) suite was designed and implemented by the
Department of Defense (DoD) to ensure and preserve data
integrity as well as maintain communications in the event of catastrophic war. So it
follows that if designed and implemented correctly, a TCP/IP network can be a secure,
dependable and resilient one. In this chapter, I’ll cover the protocols of TCP/IP, and
throughout this book, you’ll learn how to create a solid TCP/IP network with Cisco
routers and switches.
We’ll begin by exploring the DoD’s version of TCP/IP, then compare that version and its
protocols with the OSI reference model that we discussed earlier.
Once you understand the protocols and processes used at the various levels of the DoD
model, we’ll take the next logical step by delving into the world of IP addressing and the
different classes of IP addresses used in networks today.
Subnetting is so vital, it will be covered in its own Chapter 4,
“Easy Subnetting.”
Because having a good grasp of the various IPv4 address types is critical to understanding
IP addressing, subnetting and variable length subnet masks (VLSMs), we’ll explore these key
topics in detail, ending this chapter by discussing the various types of IPv4 addresses that
you’ll need to have down for the exam.
I’m not going to cover Internet Protocol version 6 in this chapter because we’ll get into
that later, in Chapter 14, “Internet Protocol Version 6 (IPv6).” And just so you know, you’ll
simply see Internet Protocol version 4 written as just IP, rarely as IPv4.
To find up-to-the minute updates for this chapter, please see
www.lammle.com/forum or the book’s web page at www.sybex.com.
Introducing TCP/IP
TCP/IP is at the very core of all things networking, so I really want to ensure that you have
a comprehensive and functional command of it. I’ll start by giving you the whole TCP/IP
backstory, including its inception, and then move on to describe the important technical
TCP/IP and the DoD Model
89
goals as defined by its original architects. And of course I’ll include how TCP/IP compares
to the theoretical OSI model.
A Brief History of TCP/IP
TCP first came on the scene way back in 1973, and in 1978, it was divided into two distinct protocols: TCP and IP. Later, in 1983, TCP/IP replaced the Network Control Protocol
(NCP) and was authorized as the official means of data transport for anything connecting to
ARPAnet, the Internet’s ancestor. The DoD’s Advanced Research Projects Agency (ARPA)
created this ancient network way back in 1957 in a cold war reaction to the Soviet’s launching of Sputnik. Also in 1983, ARPA was redubbed DARPA and divided into ARPAnet and
MILNET until both were finally dissolved in 1990.
It may be counterintuitive, but most of the development work on TCP/IP happened at
UC Berkeley in Northern California, where a group of scientists were simultaneously working on the Berkeley version of UNIX, which soon became known as the Berkeley Software
Distribution (BSD) series of UNIX versions. Of course, because TCP/IP worked so well, it
was packaged into subsequent releases of BSD Unix and offered to other universities and
institutions if they bought the distribution tape. So basically, BSD Unix bundled with TCP/
IP began as shareware in the world of academia. As a result, it became the foundation for
the tremendous success and unprecedented growth of today’s Internet as well as smaller,
private and corporate intranets.
As usual, what started as a small group of TCP/IP aficionados evolved, and as it did,
the US government created a program to test any new published standards and make
sure they passed certain criteria. This was to protect TCP/IP’s integrity and to ensure
that no developer changed anything too dramatically or added any proprietary features.
It’s this very quality—this open-systems approach to the TCP/IP family of protocols—
that sealed its popularity because this quality guarantees a solid connection between
myriad hardware and software platforms with no strings attached.
TCP/IP and the DoD Model
The DoD model is basically a condensed version of the OSI model that comprises four instead
of seven layers:
uu
Process/Application layer
uu
Host-to-Host layer/or Transport
uu
Internet layer
uu
Network Access layer/or Link
Figure 3.1 offers a comparison of the DoD model and the OSI reference model. As you can
see, the two are similar in concept, but each has a different number of layers with different
names. Cisco may at times use different names for the same layer, such as both “Network
Access” and “Link” used to describe the bottom layer.
90
Chapter 3
F ig u re 3 .1
u
Introduction to TCP/IP
The DoD and OSI models
DoD Model
OSI Model
Process/
Application
Application
Session
Presentation
Host-to-Host
Transport
Internet
Network
Network
Access
Data Link
Physical
When the different protocols in the IP stack are discussed, the layers of the
OSI and DoD models are interchangeable. In other words, be prepared for
the exam objectives to call the Host-to-Host layer the Transport layer!
A vast array of protocols join forces at the DoD model’s Process/Application layer.
These processes integrate the various activities and duties spanning the focus of the OSI’s
corresponding top three layers (Application, Presentation, and Session). We’ll focus on
a few of the most important applications found in the CCNA objectives. In short, the
Process/Application layer defines protocols for node-to-node application communication
and controls user-interface specifications.
The Host-to-Host layer parallels the functions of the OSI’s Transport layer, defining
protocols for setting up the level of transmission service for applications. It tackles issues
like creating reliable end-to-end communication and ensuring the error-free delivery of
data. It handles packet sequencing and maintains data integrity.
The Internet layer corresponds to the OSI’s Network layer, designating the protocols
relating to the logical transmission of packets over the entire network. It takes care of the
addressing of hosts by giving them an IP (Internet Protocol) address and handles the routing
of packets among multiple networks.
At the bottom of the DoD model, the Network Access layer implements the data exchange
between the host and the network. The equivalent of the Data Link and Physical layers of the
OSI model, the Network Access layer oversees hardware addressing and defines protocols for
the physical transmission of data. The reason TCP/IP became so popular is because there were
no set physical layer specifications, so it could run on any existing or future physical network!
The DoD and OSI models are alike in design and concept and have similar functions in
similar layers. Figure 3.2 shows the TCP/IP protocol suite and how its protocols relate to
the DoD model layers.
In the following sections, we will look at the different protocols in more detail, beginning
with those found at the Process/Application layer.
TCP/IP and the DoD Model
F ig u re 3 . 2
91
The TCP/IP protocol suite
DoD Model
Process/
Application
Telnet
TFTP
Host-to-Host
Internet
Network
Access
FTP
SMTP
LPD
NFS
TCP
ICMP
Ethernet
SNMP
X Window
UDP
ARP
IP
Fast
Ethernet
RARP
Gigabit
Ethernet
10 Gig
Ethernet
The Process/Application Layer Protocols
Coming up, I’ll describe the different applications and services typically used in IP networks,
and although there are many more protocols defined here, we’ll focus in on the protocols most
relevant to the CCNA objectives. Here’s a list of the protocols and applications we’ll cover in
this section:
uu
Telnet
uu
SSH
uu
FTP
uu
TFTP
uu
SNMP
uu
HTTP
uu
HTTPS
uu
NTP
uu
DNS
uu
DHCP/BootP
Telnet
Telnet was one of the first Internet standards, developed in 1969, and is the chameleon of
protocols—its specialty is terminal emulation. It allows a user on a remote client machine,
called the Telnet client, to access the resources of another machine, the Telnet server, in order
to access a command-line interface. Telnet achieves this by pulling a fast one on the Telnet
server and making the client machine appear as though it were a terminal directly attached to
the local network. This projection is actually a software image—a virtual terminal that can
interact with the chosen remote host. A drawback is that there are no encryption techniques
92
Chapter 3
u
Introduction to TCP/IP
available within the Telnet protocol, so everything must be sent in clear text, including passwords! Figure 3.3 shows an example of a Telnet client trying to connect to a Telnet server.
F ig u re 3 . 3
Telnet
>telnet 1.1.1.2
Can I have access to
your command line?
Okay! Configure me!
I’ll send everything in
clear text, including
passwords...
Good, because I can’t
do encryption!
These emulated terminals are of the text-mode type and can execute defined procedures
such as displaying menus that give users the opportunity to choose options and access the
applications on the duped server. Users begin a Telnet session by running the Telnet client
software and then logging into the Telnet server. Telnet uses an 8-bit, byte-oriented data
connection over TCP, which makes it very thorough. It’s still in use today because it is so
simple and easy to use, with very low overhead, but again, with everything sent in clear
text, it’s not recommended in production.
Secure Shell (SSH)
Secure Shell (SSH) protocol sets up a secure session that’s similar to Telnet over a standard
TCP/IP connection and is employed for doing things like logging into systems, running
programs on remote systems, and moving files from one system to another. And it does all
of this while maintaining an encrypted connection. Figure 3.4 shows a SSH client trying to
connect to a SSH server. The client must send the data encrypted!
You can think of it as the new-generation protocol that’s now used in place of the antiquated and very unused rsh and rlogin—even Telnet.
File Transfer Protocol (FTP)
File Transfer Protocol (FTP) actually lets us transfer files, and it can accomplish this between
any two machines using it. But FTP isn’t just a protocol; it’s also a program. Operating as a
protocol, FTP is used by applications. As a program, it’s employed by users to perform file
tasks by hand. FTP also allows for access to both directories and files and can accomplish
certain types of directory operations, such as relocating into different ones (Figure 3.5).
But accessing a host through FTP is only the first step. Users must then be subjected to
an authentication login that’s usually secured with passwords and usernames implemented
by system administrators to restrict access. You can get around this somewhat by adopting
the username anonymous, but you’ll be limited in what you’ll be able to access.
TCP/IP and the DoD Model
F ig u re 3 . 4
93
Secure Shell
>ssh admin@1.1.1.2
Can I have access to
your command line?
I accept only
encrypted data!
Here is my encrypted
username, password and
key: a@#$alskdjf2H!Vm34
Here is my response:
eSgkh2g42#$!@!#!$kjka12s
F ig u re 3 . 5
FTP
>ftp@1.1.1.2
I want to get a file!
Which one?
I don’t know, what do
you have available?
No problem! Here is my
directory of available files!
Even when employed by users manually as a program, FTP’s functions are limited to
listing and manipulating directories, typing file contents, and copying files between hosts.
It can’t execute remote files as programs.
Trivial File Transfer Protocol (TFTP)
Trivial File Transfer Protocol (TFTP) is the stripped-down, stock version of FTP, but it’s the
protocol of choice if you know exactly what you want and where to find it because it’s fast
and so easy to use!
But TFTP doesn’t offer the abundance of functions that FTP does because it has no
directory-browsing abilities, meaning that it can only send and receive files (Figure 3.6). Still,
it’s heavily used for managing file systems on Cisco devices, as I’ll show you in Chapter 7,
“Managing and Troubleshooting a Cisco Internetwork.”
94
Chapter 3
F ig u re 3 . 6
u
Introduction to TCP/IP
TFTP
tftp 10.1.1.2
I want to get a file!
I’m not smart enough to
know what that means!
What files do you
have?
I’m TFTP! I don’t
know!
Fine! Give me a specific file
from Flash memory. Here is
the name of the file...
I can do that!
This compact little protocol also skimps in the data department, sending much smaller
blocks of data than FTP. Also, there’s no authentication as with FTP, so it’s even more
insecure, and few sites support it because of the inherent security risks.
When Should You Use FTP?
Let’s say everyone at your San Francisco office needs a 50 GB file emailed to them right
away. What do you do? Many email servers would reject that email due to size limits (a lot
of ISPs don’t allow files larger than 5 MB or 10 MB to be emailed) and, even if there are no
size limits on the server, it would still take a while to send this huge file. FTP to the rescue!
If you need to give someone a large file or you need to get a large file from someone, FTP
is a nice choice. To use FTP, you would need to set up an FTP server on the Internet so
that the files can be shared.
Besides resolving size issues, FTP is faster than email. In addition, because it uses TCP
and is connection-oriented, if the session dies, FTP can sometimes start up where it left
off. Try that with your email client!
Simple Network Management Protocol (SNMP)
Simple Network Management Protocol (SNMP) collects and manipulates valuable network information, as you can see in Figure 3.7. It gathers data by polling the devices on
the network from a network management station (NMS) at fixed or random intervals,
TCP/IP and the DoD Model
95
requiring them to disclose certain information, or even asking for certain information
from the device. In addition, network devices can inform the NMS station about problems as they occur so the network administrator is alerted.
F ig u re 3 . 7
SNMP
NMS Station
MY FAN DIED! I’M BURNING
UP!! UGH!!
OKAY! I’ll sound
the alarm!
When all is well, SNMP receives something called a baseline—a report delimiting the
operational traits of a healthy network. This protocol can also stand as a watchdog over
the network, quickly notifying managers of any sudden turn of events. These network
watchdogs are called agents, and when aberrations occur, agents send an alert called a
trap to the management station.
SNMP Versions 1, 2, and 3
SNMP versions 1 and 2 are pretty much obsolete. This doesn’t mean you won’t see
them in a network now and then, but you’ll only come across v1 rarely, if ever. SNMPv2
provided improvements, especially in performance. But one of the best additions was
called GETBULK, which allowed a host to retrieve a large amount of data at once. Even
so, v2 never really caught on in the networking world and SNMPv3 is now the standard.
Unlike v1, which used only UDP, v3 uses both TCP and UDP and added even more security, message integrity, authentication, and encryption.
Hypertext Transfer Protocol (HTTP)
All those snappy websites comprising a mélange of graphics, text, links, ads and so on rely
on the Hypertext Transfer Protocol (HTTP) to make it all possible (Figure 3.8). It’s used
to manage communications between web browsers and web servers and opens the right
resource when you click a link, wherever that resource may actually reside.
In order for a browser to display a web page, it must find the exact server that has the
right web page, plus the exact details that identify the information requested. This information must be then be sent back to the browser. Nowadays, it’s highly doubtful that a web
server would have only one page to display!
96
Chapter 3
F ig u re 3 . 8
u
Introduction to TCP/IP
HTTP
http://www.Lammle.com
I want to get some awesome
Cisco training! I want URL
www.lammle.com!
Okay! Here is the web page for
www.lammle.com
Your browser can understand what you need when you enter a Uniform Resource
Locator (URL), which we usually refer to as a web address, e.g. http://www.lammle.com/
forum and http://www.lammle.com/blog.
So basically, each URL defines the protocol used to transfer data, the name of the server,
and the particular web page on that server.
Hypertext Transfer Protocol Secure (HTTPS)
Hypertext Transfer Protocol Secure (HTTPS) is also known as Secure Hypertext Transfer
Protocol. It uses Secure Sockets Layer (SSL). Sometimes you’ll see it referred to as SHTTP or
S-HTTP, which were slightly different protocols, but since Microsoft supported HTTPS, it
became the de facto standard for securing web communication. But no matter—as indicated,
it’s a secure version of HTTP that arms you with a whole bunch of security tools for keeping
transactions between a web browser and a server secure.
It’s what your browser needs to fill out forms, sign in, authenticate, and encrypt an
HTTP message when you do things online like make a reservation, access your bank, or
buy something.
Network Time Protocol (NTP)
Kudos to Professor David Mills of the University of Delaware for coming up with this handy
protocol that’s used to synchronize the clocks on our computers to one standard time source
(typically, an atomic clock). Network Time Protocol (NTP) works by synchronizing devices
to ensure that all computers on a given network agree on the time (Figure 3.9).
This may sound pretty simple, but it’s very important because so many of the transactions done today are time and date stamped. Think about databases—a server can get
messed up pretty badly and even crash if it’s out of sync with the machines connected to it
by even mere seconds! You can’t have a transaction entered by a machine at, say, 1:50 a.m.
when the server records that transaction as having occurred at 1:45 a.m. So basically, NTP
works to prevent a “back to the future sans DeLorean” scenario from bringing down the
network—very important indeed!
I’ll tell you a lot more about NTP in Chapter 7, including how to configure this protocol
in a Cisco environment.
TCP/IP and the DoD Model
F ig u re 3 . 9
97
NTP
NTP Server
What is the exact time?
I have some errors to report but
I need to record them with the
correct time and date!
I’m connected to an atomic
clock on the Internet – here is
the exact time and date!
Domain Name Service (DNS)
Domain Name Service (DNS) resolves hostnames—specifically, Internet names, such as www
.lammle.com. But you don’t have to actually use DNS. You just type in the IP address of any
device you want to communicate with and find the IP address of a URL by using the Ping
program. For example, >ping www.cisco.com will return the IP address resolved by DNS.
An IP address identifies hosts on a network and the Internet as well, but DNS was designed
to make our lives easier. Think about this: What would happen if you wanted to move your
web page to a different service provider? The IP address would change and no one would
know what the new one was. DNS allows you to use a domain name to specify an IP address.
You can change the IP address as often as you want and no one will know the difference.
To resolve a DNS address from a host, you’d typically type in the URL from your favorite browser, which would hand the data to the Application layer interface to be transmitted
on the network. The application would look up the DNS address and send a UDP request
to your DNS server to resolve the name (Figure 3.10).
F ig u re 3 .1 0
DNS
What is the address for
Lammle.com?
1
5
Ge
I don’t know. Let me check
with another server!
2
Lammle.com is 4
DNS Server
198.1.78.115
tm
e to
19
8.1
.78
.11
5A
SA
P!
I know the answer!
DNS Root Server
3
Lammle.com is:
198.1.78.115
98
Chapter 3
u
Introduction to TCP/IP
If your first DNS server doesn’t know the answer to the query, then the DNS server
forwards a TCP request to its root DNS server. Once the query is resolved, the answer
is transmitted back to the originating host, which means the host can now request the
information from the correct web server.
DNS is used to resolve a fully qualified domain name (FQDN)—for example, www.lammle
.com or todd.lammle.com. An FQDN is a hierarchy that can logically locate a system based on
its domain identifier.
If you want to resolve the name todd, you either must type in the FQDN of todd.lammle
.com or have a device such as a PC or router add the suffix for you. For example, on a Cisco
router, you can use the command ip domain-name lammle.com to append each request with
the lammle.com domain. If you don’t do that, you’ll have to type in the FQDN to get DNS
to resolve the name.
An important thing to remember about DNS is that if you can ping a device
with an IP address but cannot use its FQDN, then you might have some
type of DNS configuration failure.
Dynamic Host Configuration Protocol (DHCP)/Bootstrap
Protocol (BootP)
Dynamic Host Configuration Protocol (DHCP) assigns IP addresses to hosts. It allows for
easier administration and works well in small to very large network environments. Many
types of hardware can be used as a DHCP server, including a Cisco router.
DHCP differs from BootP in that BootP assigns an IP address to a host but the host’s
hardware address must be entered manually in a BootP table. You can think of DHCP as
a dynamic BootP. But remember that BootP is also used to send an operating system that
a host can boot from. DHCP can’t do that.
But there’s still a lot of information a DHCP server can provide to a host when the host
is requesting an IP address from the DHCP server. Here’s a list of the most common types
of information a DHCP server can provide:
uu
IP address
uu
Subnet mask
uu
Domain name
uu
Default gateway (routers)
uu
DNS server address
uu
WINS server address
A client that sends out a DHCP Discover message in order to receive an IP address sends
out a broadcast at both layer 2 and layer 3.
uu
The layer 2 broadcast is all Fs in hex, which looks like this: ff:ff:ff:ff:ff:ff.
uu
The layer 3 broadcast is 255.255.255.255, which means all networks and all hosts.
TCP/IP and the DoD Model
99
DHCP is connectionless, which means it uses User Datagram Protocol (UDP) at the
Transport layer, also known as the Host-to-Host layer, which we’ll talk about later.
Seeing is believing, so here’s an example of output from my analyzer showing the layer 2
and layer 3 broadcasts:
Ethernet II, Src: 0.0.0.0 (00:0b:db:99:d3:5e),Dst: Broadcast(ff:ff:ff:ff:ff:ff)
Internet Protocol, Src: 0.0.0.0 (0.0.0.0),Dst: 255.255.255.255(255.255.255.255)
The Data Link and Network layers are both sending out “all hands” broadcasts saying,
“Help—I don’t know my IP address!”
DHCP will be discussed in more detail, including configuration on a Cisco
router and switch, in Chapter 7 and Chapter 8, “IP Routing.”
Figure 3.11 shows the process of a client-server relationship using a DHCP connection.
F ig u re 3 .11
DHCP client four-step process
Help! I don’t have an address!
Client broadcast
DHCPDiscover
Server unicast
DHCPOffer
How about this address?
Client broadcast
DHCPRequest
Can’t I just use the
address I had before?
Server unicast
DHCPACK
Awesome! I’m somebody now!
Fine! Here it is.
100
Chapter 3
u
Introduction to TCP/IP
This is the four-step process a client takes to receive an IP address from a DHCP server:
1. The DHCP client broadcasts a DHCP Discover message looking for a DHCP server
(Port 67).
2. The DHCP server that received the DHCP Discover message sends a layer 2 unicast
DHCP Offer message back to the host.
3. The client then broadcasts to the server a DHCP Request message asking for the
offered IP address and possibly other information.
4. The server finalizes the exchange with a unicast DHCP Acknowledgment message.
DHCP Conflicts
A DHCP address conflict occurs when two hosts use the same IP address. This sounds bad,
and it is! We’ll never even have to discuss this problem once we get to the chapter on IPv6!
During IP address assignment, a DHCP server checks for conflicts using the Ping program
to test the availability of the address before it’s assigned from the pool. If no host replies, then
the DHCP server assumes that the IP address is not already allocated. This helps the server
know that it’s providing a good address, but what about the host? To provide extra protection
against that terrible IP conflict issue, the host can broadcast for its own address!
A host uses something called a gratuitous ARP to help avoid a possible duplicate address.
The DHCP client sends an ARP broadcast out on the local LAN or VLAN using its newly
assigned address to solve conflicts before they occur.
So, if an IP address conflict is detected, the address is removed from the DHCP pool
(scope), and it’s really important to remember that the address will not be assigned to a
host until the administrator resolves the conflict by hand!
Please see Chapter 8 to check out a DHCP configuration on a Cisco router
and also to find out what happens when a DHCP client is on one side of a
router but the DHCP server is on the other side on a different network!
Automatic Private IP Addressing (APIPA)
Okay, so what happens if you have a few hosts connected together with a switch or hub
and you don’t have a DHCP server? You can add IP information by hand, known as static
IP addressing, but later Windows operating systems provide a feature called Automatic
Private IP Addressing (APIPA). With APIPA, clients can automatically self-configure an
IP address and subnet mask—basic IP information that hosts use to communicate—when
a DHCP server isn’t available. The IP address range for APIPA is 169.254.0.1 through
169.254.255.254. The client also configures itself with a default Class B subnet mask of
255.255.0.0.
But when you’re in your corporate network working and you have a DHCP server running, and your host shows that it’s using this IP address range, it means that either your
DHCP client on the host is not working or the server is down or can’t be reached due to
TCP/IP and the DoD Model
101
some network issue. Believe me—I don’t know anyone who’s seen a host in this address
range and has been happy about it!
Now, let’s take a look at the Transport layer, or what the DoD calls the Host-to-Host
layer.
The Host-to-host Layer Protocols
The main purpose of the Host-to-Host layer is to shield the upper-layer applications from
the complexities of the network. This layer says to the upper layer, “Just give me your data
stream, with any instructions, and I’ll begin the process of getting your information ready
to send.”
Coming up, I’ll introduce you to the two protocols at this layer:
uu
Transmission Control Protocol (TCP)
uu
User Datagram Protocol (UDP)
In addition, we’ll look at some of the key host-to-host protocol concepts, as well as the
port numbers.
Remember, this is still considered layer 4, and Cisco really likes the way
layer 4 can use acknowledgments, sequencing, and flow control.
Transmission Control Protocol (TCP)
Transmission Control Protocol (TCP) takes large blocks of information from an application and breaks them into segments. It numbers and sequences each segment so that the
destination’s TCP stack can put the segments back into the order the application intended.
After these segments are sent on the transmitting host, TCP waits for an acknowledgment
of the receiving end’s TCP virtual circuit session, retransmitting any segments that aren’t
acknowledged.
Before a transmitting host starts to send segments down the model, the sender’s TCP
stack contacts the destination’s TCP stack to establish a connection. This creates a virtual
circuit, and this type of communication is known as connection-oriented. During this initial handshake, the two TCP layers also agree on the amount of information that’s going to
be sent before the recipient’s TCP sends back an acknowledgment. With everything agreed
upon in advance, the path is paved for reliable communication to take place.
TCP is a full-duplex, connection-oriented, reliable, and accurate protocol, but establishing all these terms and conditions, in addition to error checking, is no small task. TCP
is very complicated, and so not surprisingly, it’s costly in terms of network overhead. And
since today’s networks are much more reliable than those of yore, this added reliability is
often unnecessary. Most programmers use TCP because it removes a lot of programming
work, but for real-time video and VoIP, User Datagram Protocol (UDP) is often better
because using it results in less overhead.
102
Chapter 3
u
Introduction to TCP/IP
TCP Segment Format
Since the upper layers just send a data stream to the protocols in the Transport layers, I’ll use
Figure 3.12 to demonstrate how TCP segments a data stream and prepares it for the Internet
layer. When the Internet layer receives the data stream, it routes the segments as packets
through an internetwork. The segments are handed to the receiving host’s Host-to-Host layer
protocol, which rebuilds the data stream for the upper-layer applications or protocols.
F ig u re 3 .1 2
TCP segment format
16-bit source port
16-bit destination port
32-bit sequence number Host-to-Host
32-Bit Acknowledgment Number
Host-to-Host
4-bit
Reserved
Flags
header
length
16-bit TCP checksum
Options
Data
16-bit window size
16-bit urgent pointer
Figure 3.12 shows the TCP segment format and shows the different fields within the
TCP header. This isn’t important to memorize for the Cisco exam objectives, but you need
to understand it well because it’s really good foundational information.
The TCP header is 20 bytes long, or up to 24 bytes with options. You need to understand
what each field in the TCP segment is in order to build a strong educational foundation:
Source port This is the port number of the application on the host sending the data,
which I’ll talk about more thoroughly a little later in this chapter.
Destination port
tion host.
This is the port number of the application requested on the destina-
Sequence number A number used by TCP that puts the data back in the correct order or
retransmits missing or damaged data during a process called sequencing.
Acknowledgment number
The value is the TCP octet that is expected next.
Header length The number of 32-bit words in the TCP header, which indicates where the
data begins. The TCP header (even one including options) is an integral number of 32 bits
in length.
Reserved
Always set to zero.
Code bits/flags
Controls functions used to set up and terminate a session.
Window The window size the sender is willing to accept, in octets.
Checksum The cyclic redundancy check (CRC), used because TCP doesn’t trust the lower
layers and checks everything. The CRC checks the header and data fields.
TCP/IP and the DoD Model
103
Urgent A valid field only if the Urgent pointer in the code bits is set. If so, this value
indicates the offset from the current sequence number, in octets, where the segment of
non-urgent data begins.
Options May be 0, meaning that no options have to be present, or a multiple of 32 bits.
However, if any options are used that do not cause the option field to total a multiple of
32 bits, padding of 0s must be used to make sure the data begins on a 32-bit boundary.
These boundaries are known as words.
Data Handed down to the TCP protocol at the Transport layer, which includes the
upper-layer headers.
Let’s take a look at a TCP segment copied from a network analyzer:
TCP - Transport Control Protocol
Source Port:
5973
Destination Port: 23
Sequence Number: 1456389907
Ack Number:
1242056456
Offset:
5
Reserved:
%000000
Code:
%011000
Ack is valid
Push Request
Window:
61320
Checksum:
0x61a6
Urgent Pointer:
0
No TCP Options
TCP Data Area:
vL.5.+.5.+.5.+.5 76 4c 19 35 11 2b 19 35 11 2b 19 35 11
2b 19 35 +. 11 2b 19
Frame Check Sequence: 0x0d00000f
Did you notice that everything I talked about earlier is in the segment? As you can see
from the number of fields in the header, TCP creates a lot of overhead. Again, this is why
application developers may opt for efficiency over reliability to save overhead and go with
UDP instead. It’s also defined at the Transport layer as an alternative to TCP.
User Datagram Protocol (UDP)
User Datagram Protocol (UDP) is basically the scaled-down economy model of TCP,
which is why UDP is sometimes referred to as a thin protocol. Like a thin person on a
park bench, a thin protocol doesn’t take up a lot of room—or in this case, require much
bandwidth on a network.
Chapter 3
104
u
Introduction to TCP/IP
UDP doesn’t offer all the bells and whistles of TCP either, but it does do a fabulous job
of transporting information that doesn’t require reliable delivery, using far less network
resources. (UDP is covered thoroughly in Request for Comments 768.)
So clearly, there are times that it’s wise for developers to opt for UDP rather than TCP,
one of them being when reliability is already taken care of at the Process/Application layer.
Network File System (NFS) handles its own reliability issues, making the use of TCP both
impractical and redundant. But ultimately, it’s up to the application developer to opt for
using UDP or TCP, not the user who wants to transfer data faster!
UDP does not sequence the segments and does not care about the order in which the segments arrive at the destination. UDP just sends the segments off and forgets about them.
It doesn’t follow through, check up on them, or even allow for an acknowledgment of safe
arrival—complete abandonment. Because of this, it’s referred to as an unreliable protocol. This
does not mean that UDP is ineffective, only that it doesn’t deal with reliability issues at all.
Furthermore, UDP doesn’t create a virtual circuit, nor does it contact the destination
before delivering information to it. Because of this, it’s also considered a connectionless
protocol. Since UDP assumes that the application will use its own reliability method, it
doesn’t use any itself. This presents an application developer with a choice when running
the Internet Protocol stack: TCP for reliability or UDP for faster transfers.
It’s important to know how this process works because if the segments arrive out of
order, which is commonplace in IP networks, they’ll simply be passed up to the next layer
in whatever order they were received. This can result in some seriously garbled data! On the
other hand, TCP sequences the segments so they get put back together in exactly the right
order, which is something UDP just can’t do.
UDP Segment Format
Figure 3.13 clearly illustrates UDP’s markedly lean overhead as compared to TCP’s hungry
requirements. Look at the figure carefully—can you see that UDP doesn’t use windowing
or provide for acknowledgments in the UDP header?
F ig u re 3 .1 3
UDP segment
Bit 0
Bit 15 Bit 16
Bit 31
16-bit destination port
16-bit checksum
8 bytes
16-bit source port
16-bit length
Data
It’s important for you to understand what each field in the UDP segment is:
Source port
Port number of the application on the host sending the data
Destination port
Port number of the application requested on the destination host
Length Length of UDP header and UDP data
Checksum
Data
Checksum of both the UDP header and UDP data fields
Upper-layer data
TCP/IP and the DoD Model
105
UDP, like TCP, doesn’t trust the lower layers and runs its own CRC. Remember that
the Frame Check Sequence (FCS) is the field that houses the CRC, which is why you can
see the FCS information.
The following shows a UDP segment caught on a network analyzer:
UDP - User Datagram Protocol
Source Port:
1085
Destination Port: 5136
Length:
41
Checksum:
0x7a3c
UDP Data Area:
..Z......00 01 5a 96 00 01 00 00 00 00 00 11 0000 00
...C..2._C._C 2e 03 00 43 02 1e 32 0a 00 0a 00 80 43 00 80
Frame Check Sequence: 0x00000000
Notice that low overhead! Try to find the sequence number, ack number, and window
size in the UDP segment. You can’t because they just aren’t there!
Key Concepts of Host-to-Host Protocols
Since you’ve now seen both a connection-oriented (TCP) and connectionless (UDP) protocol
in action, it’s a good time to summarize the two here. Table 3.1 highlights some of the key
concepts about these two protocols for you to memorize.
Table 3 .1 Key features of TCP and UDP
TCP
UDP
Sequenced
Unsequenced
Reliable
Unreliable
Connection-oriented
Connectionless
Virtual circuit
Low overhead
Acknowledgments
No acknowledgment
Windowing flow control
No windowing or flow control of any type
And if all this isn’t quite clear yet, a telephone analogy will really help you understand
how TCP works. Most of us know that before you speak to someone on a phone, you must
first establish a connection with that other person no matter where they are. This is akin to
establishing a virtual circuit with the TCP protocol. If you were giving someone important
106
Chapter 3
u
Introduction to TCP/IP
information during your conversation, you might say things like, “You know? or “Did you
get that?” Saying things like this is a lot like a TCP acknowledgment—it’s designed to get
you verification. From time to time, especially on mobile phones, people ask, “Are you still
there?” People end their conversations with a “Goodbye” of some kind, putting closure on
the phone call, which you can think of as tearing down the virtual circuit that was created
for your communication session. TCP performs these types of functions.
Conversely, using UDP is more like sending a postcard. To do that, you don’t need to contact the other party first, you simply write your message, address the postcard, and send it
off. This is analogous to UDP’s connectionless orientation. Since the message on the postcard
is probably not a matter of life or death, you don’t need an acknowledgment of its receipt.
Similarly, UDP does not involve acknowledgments.
Let’s take a look at another figure, one that includes TCP, UDP, and the applications
associated to each protocol: Figure 3.14 (discussed in the next section).
F ig u re 3 .1 4
Port numbers for TCP and UDP
Application
layer
Port numbers
Transport
layer
FTP
Telnet
POP3
DNS
TFTP
BootPS
21
23
110
53
69
67
TCP
UDP
Port Numbers
TCP and UDP must use port numbers to communicate with the upper layers because
these are what keep track of different conversations crossing the network simultaneously.
Originating-source port numbers are dynamically assigned by the source host and will
equal some number starting at 1024. Port number 1023 and below are defined in RFC
3232 (or just see www.iana.org), which discusses what we call well-known port numbers.
Virtual circuits that don’t use an application with a well-known port number are assigned
port numbers randomly from a specific range instead. These port numbers identify the source
and destination application or process in the TCP segment.
The Requests for Comments (RFCs) form a series of notes about the
Internet (originally the ARPAnet) began in 1969. These notes discuss
many aspects of computer communication, focusing on networking protocols, procedures, programs, and concepts; but they also include meeting notes, opinions, and sometimes even humor. You can find the RFCs
by visiting www.iana.org.
TCP/IP and the DoD Model
107
Figure 3.14 illustrates how both TCP and UDP use port numbers. I’ll cover the different
port numbers that can be used next:
uu
uu
Numbers below 1024 are considered well-known port numbers and are defined in
RFC 3232.
Numbers 1024 and above are used by the upper layers to set up sessions with other
hosts and by TCP and UDP to use as source and destination addresses in the segment.
TCP Session: Source Port
Let’s take a minute to check out analyzer output showing a TCP session I captured with my
analyzer software session now:
TCP - Transport Control Protocol
Source Port:
5973
Destination Port: 23
Sequence Number: 1456389907
Ack Number:
1242056456
Offset:
5
Reserved:
%000000
Code:
%011000
Ack is valid
Push Request
Window:
61320
Checksum:
0x61a6
Urgent Pointer:
0
No TCP Options
TCP Data Area:
vL.5.+.5.+.5.+.5 76 4c 19 35 11 2b 19 35 11 2b 19 35 11
2b 19 35 +. 11 2b 19
Frame Check Sequence: 0x0d00000f
Notice that the source host makes up the source port, which in this case is 5973. The
destination port is 23, which is used to tell the receiving host the purpose of the intended
connection (Telnet).
By looking at this session, you can see that the source host makes up the source port
by using numbers from 1024 to 65535. But why does the source make up a port number?
To differentiate between sessions with different hosts because how would a server know
where information is coming from if it didn’t have a different number from a sending
host? TCP and the upper layers don’t use hardware and logical addresses to understand
the sending host’s address as the Data Link and Network layer protocols do. Instead,
they use port numbers.
108
Chapter 3
u
Introduction to TCP/IP
TCP Session: Destination Port
You’ll sometimes look at an analyzer and see that only the source port is above 1024 and
the destination port is a well-known port, as shown in the following trace:
TCP - Transport Control Protocol
Source Port:
1144
Destination Port: 80 World Wide Web HTTP
Sequence Number: 9356570
Ack Number:
0
Offset:
7
Reserved:
%000000
Code:
%000010
Synch Sequence
Window:
8192
Checksum:
0x57E7
Urgent Pointer:
0
TCP Options:
Option Type: 2 Maximum Segment Size
Length:
4
MSS:
536
Option Type: 1 No Operation
Option Type: 1 No Operation
Option Type: 4
Length:
2
Opt Value:
No More HTTP Data
Frame Check Sequence: 0x43697363
And sure enough, the source port is over 1024, but the destination port is 80, indicating
an HTTP service. The server, or receiving host, will change the destination port if it needs to.
In the preceding trace, a “SYN” packet is sent to the destination device. This Synch (as
shown in the output) sequence is what’s used to inform the remote destination device that it
wants to create a session.
TCP Session: Syn Packet Acknowledgment
The next trace shows an acknowledgment to the syn packet:
TCP - Transport Control Protocol
Source Port:
80 World Wide Web HTTP
Destination Port: 1144
Sequence Number: 2873580788
Ack Number:
9356571
Offset:
6
TCP/IP and the DoD Model
109
Reserved:
%000000
Code:
%010010
Ack is valid
Synch Sequence
Window:
8576
Checksum:
0x5F85
Urgent Pointer:
0
TCP Options:
Option Type: 2 Maximum Segment Size
Length:
4
MSS:
1460
No More HTTP Data
Frame Check Sequence: 0x6E203132
Notice the Ack is valid, which means that the source port was accepted and the device
agreed to create a virtual circuit with the originating host.
And here again, you can see that the response from the server shows that the source is
80 and the destination is the 1144 sent from the originating host—all’s well!
Table 3.2 gives you a list of the typical applications used in the TCP/IP suite by showing
their well-known port numbers, and the Transport layer protocols used by each application
or process. It’s really key to memorize this table.
Table 3 . 2 Key protocols that use TCP and UDP
TCP
UDP
Telnet 23
SNMP 161
SMTP 25
TFTP 69
HTTP 80
DNS 53
FTP 20, 21
BooTPS/DHCP 67
DNS 53
HTTPS 443
SSH 22
POP3 110
NTP 123
IMAP4 143
110
Chapter 3
u
Introduction to TCP/IP
Notice that DNS uses both TCP and UDP. Whether it opts for one or the other depends
on what it’s trying to do. Even though it’s not the only application that can use both protocols, it’s certainly one that you should make sure to remember in your studies.
What makes TCP reliable is sequencing, acknowledgments, and flow control (windowing). UDP does not have reliability.
Okay—I want to discuss one more item before we move down to the Internet layer—
session multiplexing. Session multiplexing is used by both TCP and UDP and basically
allows a single computer, with a single IP address, to have multiple sessions occurring
simultaneously. Say you go to www.lammle.com and are browsing and then you click a
link to another page. Doing this opens another session to your host. Now you go to www
.lammle.com/forum from another window and that site opens a window as well. Now
you have three sessions open using one IP address because the Session layer is sorting the
separate request based on the Transport layer port number. This is the job of the Session
layer: to keep application layer data separate!
The Internet Layer Protocols
In the DoD model, there are two main reasons for the Internet layer’s existence: routing
and providing a single network interface to the upper layers.
None of the other upper- or lower-layer protocols have any functions relating to routing—
that complex and important task belongs entirely to the Internet layer. The Internet layer’s
second duty is to provide a single network interface to the upper-layer protocols. Without
this layer, application programmers would need to write “hooks” into every one of their
applications for each different Network Access protocol. This would not only be a pain in the
neck, but it would lead to different versions of each application—one for Ethernet, another
one for wireless, and so on. To prevent this, IP provides one single network interface for the
upper-layer protocols. With that mission accomplished, it’s then the job of IP and the various
Network Access protocols to get along and work together.
All network roads don’t lead to Rome—they lead to IP. And all the other protocols at this
layer, as well as all those at the upper layers, use it. Never forget that. All paths through the
DoD model go through IP. Here’s a list of the important protocols at the Internet layer that
I’ll cover individually in detail coming up:
uu
Internet Protocol (IP)
uu
Internet Control Message Protocol (ICMP)
uu
Address Resolution Protocol (ARP)
Internet Protocol (IP)
Internet Protocol (IP) essentially is the Internet layer. The other protocols found here merely
exist to support it. IP holds the big picture and could be said to “see all,” because it’s aware
of all the interconnected networks. It can do this because all the machines on the network
TCP/IP and the DoD Model
111
have a software, or logical, address called an IP address, which we’ll explore more thoroughly later in this chapter.
For now, understand that IP looks at each packet’s address. Then, using a routing table, it
decides where a packet is to be sent next, choosing the best path to send it upon. The protocols
of the Network Access layer at the bottom of the DoD model don’t possess IP’s enlightened
scope of the entire network; they deal only with physical links (local networks).
Identifying devices on networks requires answering these two questions: Which network
is it on? And what is its ID on that network? The first answer is the software address, or
logical address. You can think of this as the part of the address that specifies the correct
street. The second answer is the hardware address, which goes a step further to specify the
correct mailbox. All hosts on a network have a logical ID called an IP address. This is the
software, or logical, address and contains valuable encoded information, greatly simplifying the complex task of routing. (IP is discussed in RFC 791.)
IP receives segments from the Host-to-Host layer and fragments them into datagrams
(packets) if necessary. IP then reassembles datagrams back into segments on the receiving
side. Each datagram is assigned the IP address of the sender and that of the recipient. Each
router or switch (layer 3 device) that receives a datagram makes routing decisions based on
the packet’s destination IP address.
Figure 3.15 shows an IP header. This will give you a picture of what the IP protocol has
to go through every time user data that is destined for a remote network is sent from the
upper layers.
F ig u re 3 .1 5
IP header
Bit 0
Bit 15 Bit 16
Version Header
Priority and
(4)
length (4) Type of Service (8)
Bit 31
Total length (16)
20 bytes
Identification (16)
Flags (3)
Fragmented offset (13)
Time to live (8)
Protocol (8)
Header checksum (16)
Source IP address (32)
Destination IP address (32)
Options (0 or 32 if any)
Data (varies if any)
The following fields make up the IP header:
Version IP version number.
Header length
Header length (HLEN) in 32-bit words.
Priority and Type of Service Type of Service tells how the datagram should be handled.
The first 3 bits are the priority bits, now called the differentiated services bits.
Total length
Length of the packet, including header and data.
Identification Unique IP-packet value used to differentiate fragmented packets from different datagrams.
Chapter 3
112
u
Introduction to TCP/IP
Flags Specifies whether fragmentation should occur.
Fragment offset Provides fragmentation and reassembly if the packet is too large to put in
a frame. It also allows different maximum transmission units (MTUs) on the Internet.
Time To Live The time to live (TTL) is set into a packet when it is originally generated.
If it doesn’t get to where it’s supposed to go before the TTL expires, boom—it’s gone. This
stops IP packets from continuously circling the network looking for a home.
Protocol Port of upper-layer protocol; for example, TCP is port 6 or UDP is port 17. Also
supports Network layer protocols, like ARP and ICMP, and can referred to as the Type
field in some analyzers. We’ll talk about this field more in a minute.
Header checksum
Cyclic redundancy check (CRC) on header only.
Source IP address
32-bit IP address of sending station.
Destination IP address
Options
Data
32-bit IP address of the station this packet is destined for.
Used for network testing, debugging, security, and more.
After the IP option field, will be the upper-layer data.
Here’s a snapshot of an IP packet caught on a network analyzer. Notice that all the
header information discussed previously appears here:
IP Header - Internet Protocol Datagram
Version:
4
Header Length:
5
Precedence:
0
Type of Service:
%000
Unused:
%00
Total Length:
187
Identifier:
22486
Fragmentation Flags: %010 Do Not Fragment
Fragment Offset:
0
Time To Live:
60
IP Type:
0x06 TCP
Header Checksum:
0xd031
Source IP Address:
10.7.1.30
Dest. IP Address:
10.7.1.10
No Internet Datagram Options
The Type field is typically a Protocol field, but this analyzer sees it as an IP Type field.
This is important. If the header didn’t carry the protocol information for the next layer,
IP wouldn’t know what to do with the data carried in the packet. The preceding example
clearly tells IP to hand the segment to TCP.
Figure 3.16 demonstrates how the Network layer sees the protocols at the Transport
layer when it needs to hand a packet up to the upper-layer protocols.
TCP/IP and the DoD Model
F ig u re 3 .1 6
113
The Protocol field in an IP header
Transport
layer
Network
layer
TCP
UDP
6
17
Port numbers
IP
In this example, the Protocol field tells IP to send the data to either TCP port 6 or
UDP port 17. But it will be UDP or TCP only if the data is part of a data stream headed
for an upper-layer service or application. It could just as easily be destined for Internet
Control Message Protocol (ICMP), Address Resolution Protocol (ARP), or some other
type of Network layer protocol.
Table 3.3 is a list of some other popular protocols that can be specified in the Protocol field.
Table 3 . 3 Possible protocols found in the Protocol field of an IP header
Protocol
Protocol Number
ICMP
1
IP in IP (tunneling)
4
TCP
6
UDP
17
EIGRP
88
OSPF
89
IPv6
41
GRE
47
Layer 2 tunnel (L2TP)
115
You can find a complete list of Protocol field numbers at www.iana.org/
assignments/protocol-numbers.
114
Chapter 3
u
Introduction to TCP/IP
Internet Control Message Protocol (ICMP)
Internet Control Message Protocol (ICMP) works at the Network layer and is used by
IP for many different services. ICMP is basically a management protocol and messaging
service provider for IP. Its messages are carried as IP datagrams. RFC 1256 is an annex to
ICMP, which gives hosts extended capability in discovering routes to gateways.
ICMP packets have the following characteristics:
uu
They can provide hosts with information about network problems.
uu
They are encapsulated within IP datagrams.
The following are some common events and messages that ICMP relates to:
Destination unreachable If a router can’t send an IP datagram any further, it uses ICMP
to send a message back to the sender, advising it of the situation. For example, take a look
at Figure 3.17, which shows that interface E0 of the Lab_B router is down.
F ig u re 3 .17
remote router.
ICMP error message is sent to the sending host from the
Lab_A
Lab_B
e0
e0
ICMP packet
Host A
Host B
When Host A sends a packet destined for Host B, the Lab_B router will send an ICMP destination unreachable message back to the sending device, which is Host A in this example.
Buffer full/source quench If a router’s memory buffer for receiving incoming datagrams is
full, it will use ICMP to send out this message alert until the congestion abates.
Hops/time exceeded Each IP datagram is allotted a certain number of routers, called
hops, to pass through. If it reaches its limit of hops before arriving at its destination, the
last router to receive that datagram deletes it. The executioner router then uses ICMP to
send an obituary message, informing the sending machine of the demise of its datagram.
Ping Packet Internet Groper (Ping) uses ICMP echo request and reply messages to check
the physical and logical connectivity of machines on an internetwork.
Traceroute Using ICMP time-outs, Traceroute is used to discover the path a packet takes
as it traverses an internetwork.
TCP/IP and the DoD Model
Both Ping and Traceroute are usually just called Trace. Microsoft Windows uses tracert to allow you to verify address configurations in your
internetwork.
The following data is from a network analyzer catching an ICMP echo request:
Flags:
0x00
Status:
0x00
Packet Length: 78
Timestamp:
14:04:25.967000 12/20/03
Ethernet Header
Destination: 00:a0:24:6e:0f:a8
Source:
00:80:c7:a8:f0:3d
Ether-Type: 08-00 IP
IP Header - Internet Protocol Datagram
Version:
4
Header Length:
5
Precedence:
0
Type of Service:
%000
Unused:
%00
Total Length:
60
Identifier:
56325
Fragmentation Flags: %000
Fragment Offset:
0
Time To Live:
32
IP Type:
0x01 ICMP
Header Checksum:
0x2df0
Source IP Address:
100.100.100.2
Dest. IP Address:
100.100.100.1
No Internet Datagram Options
ICMP - Internet Control Messages Protocol
ICMP Type:
8 Echo Request
Code:
0
Checksum:
0x395c
Identifier:
0x0300
Sequence Number: 4352
ICMP Data Area:
abcdefghijklmnop 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
qrstuvwabcdefghi 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
Frame Check Sequence: 0x00000000
115
116
Chapter 3
u
Introduction to TCP/IP
Notice anything unusual? Did you catch the fact that even though ICMP works at the
Internet (Network) layer, it still uses IP to do the Ping request? The Type field in the IP
header is 0x01, which specifies that the data we’re carrying is owned by the ICMP protocol.
Remember, just as all roads lead to Rome, all segments or data must go through IP!
The Ping program uses the alphabet in the data portion of the packet as a
payload, typically around 100 bytes by default, unless, of course, you are
pinging from a Windows device, which thinks the alphabet stops at the letter W (and doesn’t include X, Y, or Z) and then starts at A again. Go figure!
If you remember reading about the Data Link layer and the different frame types in
Chapter 2, “Ethernet Technologies and Data Encapsulation,” you should be able to look at
the preceding trace and tell what type of Ethernet frame this is. The only fields are destination hardware address, source hardware address, and Ether-Type. The only frame that uses
an Ether-Type field exclusively is an Ethernet_II frame.
We’ll move on soon, but before we get into the ARP protocol, let’s take another look
at ICMP in action. Figure 3.18 shows an internetwork—it has a router, so it’s an internetwork, right?
F ig u re 3 .1 8
ICMP in action
I’m trying to
telnet to
10.1.1.5—
can you
forward this
request?
10.1.1.0 network?
No, never heard of it!
Discard! Create ICMP packet!
10.1.5.2/24
10.1.5.3/24
10.1.5.4/24
Server 1
10.1.2.2/24
10.1.4.2/24
10.1.5.5/24
Server1 (10.1.2.2) telnets to 10.1.1.5 from a DOS prompt. What do you think Server1
will receive as a response? Server1 will send the Telnet data to the default gateway, which is
the router, and the router will drop the packet because there isn’t a network 10.1.1.0 in the
routing table. Because of this, Server1 will receive an ICMP destination unreachable back
from the router.
TCP/IP and the DoD Model
117
Address Resolution Protocol (ARP)
Address Resolution Protocol (ARP) finds the hardware address of a host from a known IP
address. Here’s how it works: When IP has a datagram to send, it must inform a Network
Access protocol, such as Ethernet or wireless, of the destination’s hardware address on the
local network. Remember that it has already been informed by upper-layer protocols of
the destination’s IP address. If IP doesn’t find the destination host’s hardware address in
the ARP cache, it uses ARP to find this information.
As IP’s detective, ARP interrogates the local network by sending out a broadcast asking the machine with the specified IP address to reply with its hardware address. So basically, ARP translates the software (IP) address into a hardware address—for example, the
destination machine’s Ethernet adapter address—and from it, deduces its whereabouts
on the LAN by broadcasting for this address. Figure 3.19 shows how an ARP broadcast
looks to a local network.
F ig u re 3 .1 9
Local ARP broadcast
I need the Ethernet
address of 10.1.1.2.
I heard that broadcast.
The message is for me.
Here is my Ethernet address.
10.1.1.1
10.1.1.2
IP: 10.1.1.2 = ???
IP: 10.1.1.2
Ethernet: 45:AC:24:E3:60:A5
ARP resolves IP addresses to Ethernet (MAC) addresses.
The following trace shows an ARP broadcast—notice that the destination hardware
address is unknown and is all Fs in hex (all 1s in binary)—and is a hardware address
broadcast:
Flags:
Status:
Packet Length:
Timestamp:
0x00
0x00
64
09:17:29.574000 12/06/03
118
Chapter 3
u
Introduction to TCP/IP
Ethernet Header
Destination:
FF:FF:FF:FF:FF:FF Ethernet Broadcast
Source:
00:A0:24:48:60:A5
Protocol Type: 0x0806 IP ARP
ARP - Address Resolution Protocol
Hardware:
1 Ethernet (10Mb)
Protocol:
0x0800 IP
Hardware Address Length: 6
Protocol Address Length: 4
Operation:
1 ARP Request
Sender Hardware Address: 00:A0:24:48:60:A5
Sender Internet Address: 172.16.10.3
Target Hardware Address: 00:00:00:00:00:00 (ignored)
Target Internet Address: 172.16.10.10
Extra bytes (Padding):
................ 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A
0A 0A 0A 0A 0A
Frame Check Sequence: 0x00000000
Visit ccna
.gg/ch3/a
for a
companion
MicroNugget
from CBT
Nuggets.
IP Addressing
One of the most important topics in any discussion of TCP/IP is IP addressing. An IP address
is a numeric identifier assigned to each machine on an IP network. It designates the specific
location of a device on the network.
An IP address is a software address, not a hardware address—the latter is hard-coded on
a network interface card (NIC) and used for finding hosts on a local network. IP addressing
was designed to allow hosts on one network to communicate with a host on a different network regardless of the type of LANs the hosts are participating in.
Before we get into the more complicated aspects of IP addressing, you need to understand
some of the basics. First I’m going to explain some of the fundamentals of IP addressing and
its terminology. Then you’ll learn about the hierarchical IP addressing scheme and private
IP addresses.
IP Terminology
Throughout this chapter you’re being introduced to several important terms that are vital
to understanding the Internet Protocol. Here are a few to get you started:
Bit
A bit is one digit, either a 1 or a 0.
Byte A byte is 7 or 8 bits, depending on whether parity is used. For the rest of this chapter,
always assume a byte is 8 bits.
IP Addressing
119
Octet An octet, made up of 8 bits, is just an ordinary 8-bit binary number. In this chapter,
the terms byte and octet are completely interchangeable.
Network address This is the designation used in routing to send packets to a remote
network—for example, 10.0.0.0, 172.16.0.0, and 192.168.10.0.
Broadcast address The address used by applications and hosts to send information to all
nodes on a network is called the broadcast address. Examples of layer 3 broadcasts include
255.255.255.255, which is any network, all nodes; 172.16.255.255, which is all subnets and
hosts on network 172.16.0.0; and 10.255.255.255, which broadcasts to all subnets and hosts
on network 10.0.0.0.
The Hierarchical IP Addressing Scheme
An IP address consists of 32 bits of information. These bits are divided into four sections,
referred to as octets or bytes, with each containing 1 byte (8 bits). You can depict an IP
address using one of three methods:
uu
Dotted-decimal, as in 172.16.30.56
uu
Binary, as in 10101100.00010000.00011110.00111000
uu
Hexadecimal, as in AC.10.1E.38
All these examples represent the same IP address. Pertaining to IP addressing, hexadecimal isn’t used as often as dotted-decimal or binary, but you still might find an IP address
stored in hexadecimal in some programs.
The 32-bit IP address is a structured or hierarchical address, as opposed to a flat or
nonhierarchical address. Although either type of addressing scheme could have been used,
hierarchical addressing was chosen for a good reason. The advantage of this scheme is that
it can handle a large number of addresses, namely 4.3 billion (a 32-bit address space with
two possible values for each position—either 0 or 1—gives you 232 , or 4,294,967,296).
The disadvantage of the flat addressing scheme, and the reason it’s not used for IP addressing, relates to routing. If every address were unique, all routers on the Internet would need
to store the address of each and every machine on the Internet. This would make efficient
routing impossible, even if only a fraction of the possible addresses were used!
The solution to this problem is to use a two- or three-level hierarchical addressing
scheme that is structured by network and host or by network, subnet, and host.
This two- or three-level scheme can also be compared to a telephone number. The first
section, the area code, designates a very large area. The second section, the prefix, narrows
the scope to a local calling area. The final segment, the customer number, zooms in on the
specific connection. IP addresses use the same type of layered structure. Rather than all
32 bits being treated as a unique identifier, as in flat addressing, a part of the address is designated as the network address and the other part is designated as either the subnet
and host or just the node address.
Next, we’ll cover IP network addressing and the different classes of address we can use
to address our networks.
120
Chapter 3
u
Introduction to TCP/IP
Network Addressing
The network address (which can also be called the network number) uniquely identifies
each network. Every machine on the same network shares that network address as part of
its IP address. For example, in the IP address 172.16.30.56, 172.16 is the network address.
The node address is assigned to, and uniquely identifies, each machine on a network. This
part of the address must be unique because it identifies a particular machine—an individual—
as opposed to a network, which is a group. This number can also be referred to as a host
address. In the sample IP address 172.16.30.56, the 30.56 specifies the node address.
The designers of the Internet decided to create classes of networks based on network size.
For the small number of networks possessing a very large number of nodes, they created the
rank Class A network. At the other extreme is the Class C network, which is reserved for
the numerous networks with a small number of nodes. The class distinction for networks
between very large and very small is predictably called the Class B network.
Subdividing an IP address into a network and node address is determined by the class
designation of one’s network. Figure 3.20 summarizes the three classes of networks used
to address hosts—a subject I’ll explain in much greater detail throughout this chapter.
F ig u re 3 . 2 0
Summary of the three classes of networks
8 bits
8 bits
8 bits
8 bits
Class A:
Network
Host
Host
Host
Class B:
Network
Network
Host
Host
Class C:
Network
Network
Network
Host
Class D:
Multicast
Class E:
Research
To ensure efficient routing, Internet designers defined a mandate for the leading-bits
section of the address for each different network class. For example, since a router knows
that a Class A network address always starts with a 0, the router might be able to speed
a packet on its way after reading only the first bit of its address. This is where the address
schemes define the difference between a Class A, a Class B, and a Class C address. Coming
up, I’ll discuss the differences between these three classes, followed by a discussion of the
Class D and Class E addresses. Classes A, B, and C are the only ranges that are used to
address hosts in our networks.
Network Address Range: Class A
The designers of the IP address scheme decided that the first bit of the first byte in a Class A
network address must always be off, or 0. This means a Class A address must be between 0
and 127 in the first byte, inclusive.
IP Addressing
121
Consider the following network address:
0xxxxxxx
If we turn the other 7 bits all off and then turn them all on, we’ll find the Class A range
of network addresses:
00000000 = 0
01111111 = 127
So, a Class A network is defined in the first octet between 0 and 127, and it can’t
be less or more. Understand that 0 and 127 are not valid in a Class A network because
they’re reserved addresses, which I’ll explain soon.
Network Address Range: Class B
In a Class B network, the RFCs state that the first bit of the first byte must always be turned
on but the second bit must always be turned off. If you turn the other 6 bits all off and then
all on, you will find the range for a Class B network:
10000000 = 128
10111111 = 191
As you can see, a Class B network is defined when the first byte is configured from
128 to 191.
Network Address Range: Class C
For Class C networks, the RFCs define the first 2 bits of the first octet as always turned on,
but the third bit can never be on. Following the same process as the previous classes, convert
from binary to decimal to find the range. Here’s the range for a Class C network:
11000000 = 192
11011111 = 223
So, if you see an IP address that starts at 192 and goes to 223, you’ll know it is a Class C
IP address.
Network Address Ranges: Classes D and E
The addresses between 224 to 255 are reserved for Class D and E networks. Class D (224–
239) is used for multicast addresses and Class E (240–255) for scientific purposes, but I’m not
going into these types of addresses because they are beyond the scope of knowledge you need
to gain from this book.
Network Addresses: Special Purpose
Some IP addresses are reserved for special purposes, so network administrators can’t ever
assign these addresses to nodes. Table 3.4 lists the members of this exclusive little club and
the reasons why they’re included in it.
122
Chapter 3
u
Introduction to TCP/IP
Table 3 . 4 Reserved IP addresses
Address
Function
Network address of all 0s
Interpreted to mean “this network or segment.”
Network address of all 1s
Interpreted to mean “all networks.”
Network 127.0.0.1
Reserved for loopback tests. Designates the local
node and allows that node to send a test packet to
itself without generating network traffic.
Node address of all 0s
Interpreted to mean “network address” or any
host on a specified network.
Node address of all 1s
Interpreted to mean “all nodes” on the specified
network; for example, 128.2.255.255 means “all
nodes” on network 128.2 (Class B address).
Entire IP address set to all 0s
Used by Cisco routers to designate the default
route. Could also mean “any network.”
Entire IP address set to all 1s (same as
255.255.255.255)
Broadcast to all nodes on the current network;
sometimes called an “all 1s broadcast” or local
broadcast.
Class A Addresses
In a Class A network address, the first byte is assigned to the network address and the three
remaining bytes are used for the node addresses. The Class A format is as follows:
network.node.node.node
For example, in the IP address 49.22.102.70, the 49 is the network address and 22.102.70
is the node address. Every machine on this particular network would have the distinctive network address of 49.
Class A network addresses are 1 byte long, with the first bit of that byte reserved and the
7 remaining bits available for manipulation (addressing). As a result, the maximum number
of Class A networks that can be created is 128. Why? Because each of the 7 bit positions
can be either a 0 or a 1, thus 27, or 128.
To complicate matters further, the network address of all 0s (0000 0000) is reserved to
designate the default route (see Table 3.4 in the previous section). Additionally, the address
127, which is reserved for diagnostics, can’t be used either, which means that you can really
only use the numbers 1 to 126 to designate Class A network addresses. This means the
actual number of usable Class A network addresses is 128 minus 2, or 126.
IP Addressing
123
The IP address 127.0.0.1 is used to test the IP stack on an individual node
and cannot be used as a valid host address. However, the loopback address
creates a shortcut method for TCP/IP applications and services that run on
the same device to communicate with each other.
Each Class A address has 3 bytes (24-bit positions) for the node address of a machine.
This means there are 224 —or 16,777,216—unique combinations and, therefore, precisely
that many possible unique node addresses for each Class A network. Because node addresses
with the two patterns of all 0s and all 1s are reserved, the actual maximum usable number
of nodes for a Class A network is 224 minus 2, which equals 16,777,214. Either way, that’s a
huge number of hosts on a single network segment!
Class A Valid Host IDs
Here’s an example of how to figure out the valid host IDs in a Class A network address:
uu
All host bits off is the network address: 10.0.0.0.
uu
All host bits on is the broadcast address: 10.255.255.255.
The valid hosts are the numbers in between the network address and the broadcast
address: 10.0.0.1 through 10.255.255.254. Notice that 0s and 255s can be valid host IDs.
All you need to remember when trying to find valid host addresses is that the host bits can’t
all be turned off or on at the same time.
Class B Addresses
In a Class B network address, the first 2 bytes are assigned to the network address and the
remaining 2 bytes are used for node addresses. The format is as follows:
network.network.node.node
For example, in the IP address 172.16.30.56, the network address is 172.16 and the
node address is 30.56.
With a network address being 2 bytes (8 bits each), you get 216 unique combinations.
But the Internet designers decided that all Class B network addresses should start with the
binary digit 1, then 0. This leaves 14 bit positions to manipulate, therefore 16,384, or 214
unique Class B network addresses.
A Class B address uses 2 bytes for node addresses. This is 216 minus the two reserved
patterns of all 0s and all 1s for a total of 65,534 possible node addresses for each Class B
network.
Class B Valid Host IDs
Here’s an example of how to find the valid hosts in a Class B network:
uu
All host bits turned off is the network address: 172.16.0.0.
uu
All host bits turned on is the broadcast address: 172.16.255.255.
124
Chapter 3
u
Introduction to TCP/IP
The valid hosts would be the numbers in between the network address and the broadcast
address: 172.16.0.1 through 172.16.255.254.
Class C Addresses
The first 3 bytes of a Class C network address are dedicated to the network portion of the
address, with only 1 measly byte remaining for the node address. Here’s the format:
network.network.network.node
Using the example IP address 192.168.100.102, the network address is 192.168.100 and
the node address is 102.
In a Class C network address, the first three bit positions are always the binary 110. The
calculation is as follows: 3 bytes, or 24 bits, minus 3 reserved positions leaves 21 positions.
Hence, there are 221, or 2,097,152, possible Class C networks.
Each unique Class C network has 1 byte to use for node addresses. This leads to 28, or
256, minus the two reserved patterns of all 0s and all 1s, for a total of 254 node addresses
for each Class C network.
Class C Valid Host IDs
Here’s an example of how to find a valid host ID in a Class C network:
uu
All host bits turned off is the network ID: 192.168.100.0.
uu
All host bits turned on is the broadcast address: 192.168.100.255.
The valid hosts would be the numbers in between the network address and the broadcast
address: 192.168.100.1 through 192.168.100.254.
Private IP Addresses (RFC 1918)
The people who created the IP addressing scheme also created private IP addresses. These
addresses can be used on a private network, but they’re not routable through the Internet.
This is designed for the purpose of creating a measure of well-needed security, but it also
conveniently saves valuable IP address space.
If every host on every network was required to have real routable IP addresses, we would
have run out of IP addresses to hand out years ago. But by using private IP addresses, ISPs,
corporations, and home users only need a relatively tiny group of bona fide IP addresses to
connect their networks to the Internet. This is economical because they can use private IP
addresses on their inside networks and get along just fine.
To accomplish this task, the ISP and the corporation—the end user, no matter who
they are—need to use something called Network Address Translation (NAT), which basically takes a private IP address and converts it for use on the Internet. (NAT is covered
in Chapter 13, “Network Address Translation.”) Many people can use the same real IP
IP Addressing
125
address to transmit out onto the Internet. Doing things this way saves megatons of address
space—good for us all!
The reserved private addresses are listed in Table 3.5.
Table 3 . 5 Reserved IP address space
Address Class
Reserved Address Space
Class A
10.0.0.0 through 10.255.255.255
Class B
172.16.0.0 through 172.31.255.255
Class C
192.168.0.0 through 192.168.255.255
You must know your private address space to become Cisco certified!
So, What Private IP Address Should I Use?
That’s a really great question: Should you use Class A, Class B, or even Class C private
addressing when setting up your network? Let’s take Acme Corporation in SF as an
example. This company is moving into a new building and needs a whole new network. It
has 14 departments, with about 70 users in each. You could probably squeeze one or two
Class C addresses to use, or maybe you could use a Class B, or even a Class A just for fun.
The rule of thumb in the consulting world is, when you’re setting up a corporate network—
regardless of how small it is—you should use a Class A network address because it gives
you the most flexibility and growth options. For example, if you used the 10.0.0.0 network
address with a /24 mask, then you’d have 65,536 networks, each with 254 hosts. Lots of
room for growth with that network!
But if you’re setting up a home network, you’d opt for a Class C address because it is the
easiest for people to understand and configure. Using the default Class C mask gives you
one network with 254 hosts—plenty for a home network.
With the Acme Corporation, a nice 10.1.x.0 with a /24 mask (the x is the subnet for each
department) makes this easy to design, install, and troubleshoot.
126
Chapter 3
u
Introduction to TCP/IP
IPv4 Address Types
Most people use the term broadcast as a generic term, and most of the time, we understand
what they mean—but not always! For example, you might say, “The host broadcasted through
a router to a DHCP server,” but, well, it’s pretty unlikely that this would ever really happen.
What you probably mean—using the correct technical jargon—is, “The DHCP client broadcasted for an IP address and a router then forwarded this as a unicast packet to the DHCP
server.” Oh, and remember that with IPv4, broadcasts are pretty important, but with IPv6,
there aren’t any broadcasts sent at all—now there’s something to look forward to reading
about in Chapter 14!
Okay, I’ve referred to IP addresses throughout the preceding chapters and now all
throughout this chapter, and even showed you some examples. But I really haven’t gone
into the different terms and uses associated with them yet, and it’s about time I did. So
here are the address types that I’d like to define for you:
Loopback (localhost) Used to test the IP stack on the local computer. Can be any address
from 127.0.0.1 through 127.255.255.254.
Layer 2 broadcasts
Broadcasts (layer 3)
These are sent to all nodes on a LAN.
These are sent to all nodes on the network.
Unicast This is an address for a single interface, and these are used to send packets to a
single destination host.
Multicast These are packets sent from a single source and transmitted to many devices on
different networks. Referred to as “one-to-many.”
Layer 2 Broadcasts
First, understand that layer 2 broadcasts are also known as hardware broadcasts—they
only go out on a LAN, but they don’t go past the LAN boundary (router).
The typical hardware address is 6 bytes (48 bits) and looks something like
45:AC:24:E3:60:A5. The broadcast would be all 1s in binary, which would be
all Fs in hexadecimal, as in ff:ff:ff:ff:ff:ff and shown in Figure 3.21.
Every network interface card (NIC) will receive and read the frame, including the router,
since this was a layer 2 broadcast, but the router would never, ever forward this!
Layer 3 Broadcasts
Then there are the plain old broadcast addresses at layer 3. Broadcast messages are meant
to reach all hosts on a broadcast domain. These are the network broadcasts that have all
host bits on.
Here’s an example that you’re already familiar with: The network address of 172.16.0.0
255.255.0.0 would have a broadcast address of 172.16.255.255—all host bits on. Broadcasts
IPv4 Address Types
127
can also be “any network and all hosts,” as indicated by 255.255.255.255, and shown in
Figure 3.22.
F ig u re 3 . 2 1
Local layer 2 broadcasts
I need to send this
to everyone on my
local network!
I heard that local
LAN broadcast.
I need to read this!
Ethernet: FF:FF:FF:FF:FF:FF
F ig u re 3 . 2 2
Layer 3 broadcasts
I need to send this to
everyone on my local network,
as well as to every
network I can get to!
I heard that allnetworks broadcast.
I need to read this!
Ethernet: FF:FF:FF:FF:FF:FF
IP: 255.255.255.255
In Figure 3.22, all hosts on the LAN will get this broadcast on their NIC, including the
router, but by default the router would never forward this packet.
Unicast Address
A unicast is defined as a single IP address that’s assigned to a network interface card and is
the destination IP address in a packet—in other words, it’s used for directing packets to a
specific host.
128
Chapter 3
u
Introduction to TCP/IP
In Figure 3.23 both the MAC address and the destination IP address are for a single NIC
on the network. All hosts on the broadcast domain would receive this frame and accept it.
Only the destination NIC of 10.1.1.2 would accept the packet; the other NICs would discard
the packet.
F ig u re 3 . 2 3
Unicast address
I need to send a packet to
a host on a remote network!
This needs to go to
my router!
I see the frame, but
this is not my MAC!
Discard!
I see that frame. It’s
for me! Now I need
to read the packet!
Ethernet: 00.00.0c.12.34.56
IP: 10.1.1.2
Multicast Address
Multicast is a different beast entirely. At first glance, it appears to be a hybrid of unicast
and broadcast communication, but that isn’t quite the case. Multicast does allow pointto-multipoint communication, which is similar to broadcasts, but it happens in a different
manner. The crux of multicast is that it enables multiple recipients to receive messages
without flooding the messages to all hosts on a broadcast domain. However, this is not the
default behavior—it’s what we can do with multicasting if it’s configured correctly!
Multicast works by sending messages or data to IP multicast group addresses. Unlike with
broadcasts, which aren’t forwarded, routers then forward copies of the packet out to every
interface that has hosts subscribed to that group address. This is where multicast differs from
broadcast messages—with multicast communication, copies of packets, in theory, are sent
only to subscribed hosts. For example, when I say in theory, I mean that the hosts will receive
a multicast packet destined for 224.0.0.10. This is an EIGRP packet, and only a router running the EIGRP protocol will read these. All hosts on the broadcast LAN, and Ethernet is a
broadcast multi-access LAN technology, will pick up the frame, read the destination address,
then immediately discard the frame unless they’re in the multicast group. This saves PC
processing, not LAN bandwidth. Be warned though—multicasting can cause some serious
LAN congestion if it’s not implemented carefully! Figure 3.24 shows a Cisco router sending
an EIGRP multicast packet on the local LAN and only the other Cisco router will accept and
read this packet.
Summary
F ig u re 3 . 2 4
129
EIGRP multicast example
We see that
multicast frame, but
this is not for us!
I have EIGRP data!
I run EIGRP! This is
for me!
224.0.0.10
There are several different groups that users or applications can subscribe to. The
range of multicast addresses starts with 224.0.0.0 and goes through 239.255.255.255.
As you can see, this range of addresses falls within IP Class D address space based on
classful IP assignment.
Summary
If you made it this far and understood everything the first time through, you should be
extremely proud of yourself! We really covered a lot of ground in this chapter, but understand that the information in it is critical to being able to navigate well through the rest of
this book.
If you didn’t get a complete understanding the first time around, don’t stress. It really
wouldn’t hurt you to read this chapter more than once. There is still a lot of ground to cover,
so make sure you’ve got this material all nailed down. That way, you’ll be ready for more,
and just so you know, there’s a lot more! What we’re doing up to this point is building a
solid foundation to build upon as you advance.
With that in mind, after you learned about the DoD model, the layers, and associated protocols, you learned about the oh-so-important topic of IP addressing. I discussed
in detail the difference between each address class, how to find a network address and
broadcast address, and what denotes a valid host address range. I can’t stress enough how
important it is for you to have this critical information unshakably understood before
moving on to Chapter 4!
Since you’ve already come this far, there’s no reason to stop now and waste all those
brainwaves and new neural connections. So don’t stop—go through the written lab and
review questions at the end of this chapter and make sure you understand each answer’s
explanation. The best is yet to come!
Visit ccna
.gg/ch3/b
for a
companion
MicroNugget
from CBT
Nuggets.
130
Chapter 3
u
Introduction to TCP/IP
Exam Essentials
Differentiate the DoD and the OSI network models. The DoD model is a condensed version of the OSI model, composed of four layers instead of seven, but is nonetheless like the
OSI model in that it can be used to describe packet creation and devices and protocols can
be mapped to its layers.
Identify Process/Application layer protocols. Telnet is a terminal emulation program that
allows you to log into a remote host and run programs. File Transfer Protocol (FTP) is a connection-oriented service that allows you to transfer files. Trivial FTP (TFTP) is a connectionless file transfer program. Simple Mail Transfer Protocol (SMTP) is a sendmail program.
Identify Host-to-Host layer protocols. Transmission Control Protocol (TCP) is a connectionoriented protocol that provides reliable network service by using acknowledgments and flow
control. User Datagram Protocol (UDP) is a connectionless protocol that provides low overhead and is considered unreliable.
Identify Internet layer protocols. Internet Protocol (IP) is a connectionless protocol
that provides network address and routing through an internetwork. Address Resolution
Protocol (ARP) finds a hardware address from a known IP address. Reverse ARP (RARP)
finds an IP address from a known hardware address. Internet Control Message Protocol
(ICMP) provides diagnostics and destination unreachable messages.
Describe the functions of DNS and DHCP in the network. Dynamic Host Configuration
Protocol (DHCP) provides network configuration information (including IP addresses) to
hosts, eliminating the need to perform the configurations manually. Domain Name Service
(DNS) resolves hostnames—both Internet names such as www.lammle.com and device names
such as Workstation 2—to IP addresses, eliminating the need to know the IP address of a
device for connection purposes.
Identify what is contained in the TCP header of a connection-oriented transmission. The
fields in the TCP header include the source port, destination port, sequence number, acknowledgment number, header length, a field reserved for future use, code bits, window size, checksum, urgent pointer, options field, and finally, the data field.
Identify what is contained in the UDP header of a connectionless transmission. The fields
in the UDP header include only the source port, destination port, length, checksum, and
data. The smaller number of fields as compared to the TCP header comes at the expense
of providing none of the more advanced functions of the TCP frame.
Identify what is contained in the IP header. The fields of an IP header include version,
header length, priority or type of service, total length, identification, flags, fragment offset,
time to live, protocol, header checksum, source IP address, destination IP address, options,
and finally, data.
Compare and contrast UDP and TCP characteristics and features. TCP is connectionoriented, acknowledged, and sequenced and has flow and error control, while UDP is connectionless, unacknowledged, and not sequenced and provides no error or flow control.
Exam Essentials
131
Understand the role of port numbers. Port numbers are used to identify the protocol or
service that is to be used in the transmission.
Identify the role of ICMP. Internet Control Message Protocol (ICMP) works at the Network
layer and is used by IP for many different services. ICMP is a management protocol and messaging service provider for IP.
Define the Class A IP address range. The IP range for a Class A network is 1–126. This
provides 8 bits of network addressing and 24 bits of host addressing by default.
Define the Class B IP address range. The IP range for a Class B network is 128–191.
Class B addressing provides 16 bits of network addressing and 16 bits of host addressing
by default.
Define the Class C IP address range. The IP range for a Class C network is 192 through
223. Class C addressing provides 24 bits of network addressing and 8 bits of host addressing
by default.
Identify the private IP ranges. The Class A private address range is 10.0.0.0 through
10.255.255.255. The Class B private address range is 172.16.0.0 through 172.31.255.255.
The Class C private address range is 192.168.0.0 through 192.168.255.255.
Understand the difference between a broadcast, unicast, and multicast address. A broadcast is to all devices in a subnet, a unicast is to one device, and a multicast is to some but
not all devices.
Chapter 3
132
u
Introduction to TCP/IP
Written Labs
In this section, you’ll complete the following labs to make sure you’ve got the information
and concepts contained within them fully dialed in:
Lab 3.1: TCP/IP
Lab 3.2: Mapping Applications to the DoD Model
The answers to these labs can be found in Appendix A, “Answers to Written Labs.”
Written Lab 3.1: TCP/IP
Answer the following questions about TCP/IP:
1. What is the Class C address range in decimal and in binary?
2. What layer of the DoD model is equivalent to the Transport layer of the OSI model?
3. What is the valid range of a Class A network address?
4. What is the 127.0.0.1 address used for?
5. How do you find the network address from a listed IP address?
6. How do you find the broadcast address from a listed IP address?
7. What is the Class A private IP address space?
8. What is the Class B private IP address space?
9. What is the Class C private IP address space?
10. What are all the available characters that you can use in hexadecimal addressing?
Written Lab 3.2: Mapping Applications to the DoD Model
The four layers of the DoD model are Process/Application, Host-to-Host, Internet, and
Network Access. Identify the layer of the DoD model on which each of these protocols
operates.
1. Internet Protocol (IP)
2. Telnet
3. FTP
4. SNMP
5. DNS
6. Address Resolution Protocol (ARP)
7. DHCP/BootP
8. Transmission Control Protocol (TCP)
Written Labs
9. X Window
10. User Datagram Protocol (UDP)
11. NFS
12. Internet Control Message Protocol (ICMP)
13. Reverse Address Resolution Protocol (RARP)
14. Proxy ARP
15. TFTP
16. SMTP
17. LPD
133
Chapter 3
134
u
Introduction to TCP/IP
Review Questions
The following questions are designed to test your understanding of this
chapter’s material. For more information on how to get additional questions, please see this book’s introduction.
The answers to these questions can be found in Appendix B, “Answers to Chapter
Review Questions.”
1. What must happen if a DHCP IP conflict occurs?
A. Proxy ARP will fix the issue.
B. The client uses a gratuitous ARP to fix the issue.
C. The administrator must fix the conflict by hand at the DHCP server.
D. The DHCP server will reassign new IP addresses to both computers.
2. Which of the following Application layer protocols sets up a secure session that’s simi-
lar to Telnet?
A. FTP
B. SSH
C. DNS
D. DHCP
3. Which of the following mechanisms is used by the client to avoid a duplicate IP address
during the DHCP process?
A. ping
B. traceroute
C. gratuitous arp
D. pathping
4. What protocol is used to find the hardware address of a local device?
A. RARP
B. ARP
C. IP
D. ICMP
E. BootP
Review Questions
5. Which of the following are layers in the TCP/IP model? (Choose three.)
A. Application
B. Session
C. Transport
D. Internet
E. Data Link
F. Physical
6. Which class of IP address provides a maximum of only 254 host addresses per
network ID?
A. Class A
B. Class B
C. Class C
D. Class D
E. Class E
7. Which of the following describe the DHCP Discover message? (Choose two.)
A. It uses FF:FF:FF:FF:FF:FF as a layer 2 broadcast.
B. It uses UDP as the Transport layer protocol.
C. It uses TCP as the Transport layer protocol.
D. It does not use a layer 2 destination address.
8. Which layer 4 protocol is used for a Telnet connection?
A. IP
B. TCP
C. TCP/IP
D. UDP
E. ICMP
9. Private IP addressing was specified in RFC __________.
10. Which of the following services use TCP? (Choose three.)
A. DHCP
B. SMTP
C. SNMP
D. FTP
E. HTTP
F. TFTP
135
Chapter 3
136
u
Introduction to TCP/IP
11. Which Class of IP addresses uses the pattern shown below?
Network
Network
Network
Host
A. Class A
B. Class B
C. Class C
D. Class D
12. Which of the following is an example of a multicast address?
A. 10.6.9.1
B. 192.168.10.6
C. 224.0.0.10
D. 172.16.9.5
13. The following illustration shows a data structure header. What protocol is this
header from?
16-Bit Source Port
16-Bit Destination Port
32-Bit Sequence NumberHost-to-Host
32-Bit Acknowledgement Number
Host-to-Host
4-Bit
Reserved
Flags
Header
Length
16-bit TCP Checksum
Options
Data
16-Bit Window Size
16-bit Urgent Pointer
A. IP
B. ICMP
C. TCP
D. UDP
E. ARP
F. RARP
14. If you use either Telnet or FTP, what layer are you using to generate the data?
A. Application
B. Presentation
C. Session
D. Transport
Review Questions
137
15. The DoD model (also called the TCP/IP stack) has four layers. Which layer of the DoD
model is equivalent to the Network layer of the OSI model?
A. Application
B. Host-to-Host
C. Internet
D. Network Access
16. Which two of the following are private IP addresses?
A. 12.0.0.1
B. 168.172.19.39
C. 172.20.14.36
D. 172.33.194.30
E. 192.168.24.43
17. What layer in the TCP/IP stack is equivalent to the Transport layer of the OSI model?
A. Application
B. Host-to-Host
C. Internet
D. Network Access
18. Which statements are true regarding ICMP packets? (Choose two).
A. ICMP guarantees datagram delivery.
B. ICMP can provide hosts with information about network problems.
C. ICMP is encapsulated within IP datagrams.
D. ICMP is encapsulated within UDP datagrams.
19. What is the address range of a Class B network address in binary?
A. 01xxxxxx
B. 0xxxxxxx
C. 10xxxxxx
D. 110xxxxx
Chapter 3
138
u
Introduction to TCP/IP
20. Drag the steps in the DHCP process and place them in the correct order on the right.
left list:
right list:
DHCPOffer
Drop Target A
DHCPDiscover
Drop Target B
DHCPAck
Drop Target C
DHCPRequest
Drop Target D
Chapter
4
Easy Subnetting
The following ICND1 exam topics
are covered in this chapter:
11 IP addressing (IPv4 / IPv6)
■■
Describe the operation and necessity of using private and
public IP addresses for IPv4 addressing
We’ll pick up right where we left off in the last chapter and continue to explore the world of IP addressing. I’ll open this chapter
by telling you how to subnet an IP network—an indispensably
crucial skill that’s central to mastering networking in general! Forewarned is forearmed, so
prepare yourself because being able to subnet quickly and accurately is pretty challenging and
you’ll need time to practice what you’ve learned to really nail it. So be patient and don’t give
up on this key aspect of networking until your skills are seriously sharp. I’m not kidding—
this chapter is so important you should really just graft it into your brain!
So be ready because we’re going to hit the ground running and thoroughly cover IP
subnetting from the very start. And though I know this will sound weird to you, you’ll be
much better off if you just try to forget everything you’ve learned about subnetting before
reading this chapter—especially if you’ve been to an official Cisco or Microsoft class! I
think these forms of special torture often do more harm than good and sometimes even
scare people away from networking completely. Those that survive and persevere usually
at least question the sanity of continuing to study in this field. If this is you, relax, breathe,
and know that you’ll find that the way I tackle the issue of subnetting is relatively painless
because I’m going to show you a whole new, much easier method to conquer this monster!
After working through this chapter, and I can’t say this enough, after working through
the extra study material at the end as well, you’ll be able to tame the IP addressing/subnetting
beast—just don’t give up! I promise that you’ll be really glad you didn’t. It’s one of those things
that once you get it down, you’ll wonder why you used to think it was so hard!
To find up-to-the minute updates for this chapter, please see
www.lammle.com/forum or the book’s web page at www.sybex.com.
Subnetting Basics
In Chapter 3, “TCP/IP,” you learned how to define and find the valid host ranges used in a
Class A, Class B, and Class C network address by turning the host bits all off and then all
on. This is very good, but here’s the catch: you were defining only one network, as shown
in Figure 4.1.
Subnetting Basics
F ig u re 4 .1
.2
141
One network
.3
.4
.5
.........
.130
.130
.131
.132
192.168.10.0/24
One large broadcast domain!
By now you know that having one large network is not a good thing because the first
three chapters you just read were veritably peppered with me incessantly telling you that!
But how would you fix the out of control problem that Figure 4.1 illustrates? Wouldn’t it
be nice to be able to break up that one, huge network address and create four manageable
networks from it? You betcha it would, but to make that happen, you would need to apply
the infamous trick of subnetting because it’s the best way to break up a giant network into
a bunch of smaller ones. Take a look at Figure 4.2 and see how this might look.
F ig u re 4 . 2
Multiple networks connected together
192.168.10.0
192.168.10.32
192.168.10.64
192.168.10.96
What are those 192.168.10.x addresses shown in the figure? Well that is what this chapter
will explain! How to make one network into many networks!
Let’s take off from where we left in Chapter 3 and start working in the host section
(host bits) of a network address, where we can borrow bits to create subnets.
Chapter 4
142
u
Easy Subnetting
How to Create Subnets
Creating subnetworks is essentially the act of taking bits from the host portion of the address
and reserving them to define the subnet address instead. Clearly this will result in fewer bits
being available for defining your hosts, which is something you’ll always want to keep in mind.
Later in this chapter, I’ll guide you through the entire process of creating subnets starting
with Class C addresses. As always in networking, before you actually implement anything,
including subnetting, you must first determine your current requirements and make sure to
plan for future conditions as well.
In this first section, we’ll be discussing classful routing, which refers to
the fact that all hosts (nodes) in the network are using the exact same subnet mask. Later, when we move on to cover variable length subnet masks
(VLSMs), I’ll tell you all about classless routing, which is an environment
wherein each network segment can use a different subnet mask.
Okay—to create a subnet, we’ll start by fulfilling these three steps:
1. Determine the number of required network IDs:
uu
One for each LAN subnet
uu
One for each wide area network connection
2. Determine the number of required host IDs per subnet:
uu
One for each TCP/IP host
uu
One for each router interface
3. Based on the above requirements, create the following:
uu
A unique subnet mask for your entire network
uu
A unique subnet ID for each physical segment
uu
A range of host IDs for each subnet
Subnet Masks
For the subnet address scheme to work, every machine on the network must know which
part of the host address will be used as the subnet address. This condition is met by assigning a subnet mask to each machine. A subnet mask is a 32-bit value that allows the device
that’s receiving IP packets to distinguish the network ID portion of the IP address from the
host ID portion of the IP address. This 32-bit subnet mask is composed of 1s and 0s, where
the 1s represent the positions that refer to the network subnet addresses.
Not all networks need subnets, and if not, it really means that they’re using the default
subnet mask, which is basically the same as saying that a network doesn’t have a subnet
address. Table 4.1 shows the default subnet masks for Classes A, B, and C.
Subnetting Basics
143
Table 4 .1 Default subnet mask
Class
Format
Default Subnet Mask
A
network.node.node.node
255.0.0.0
B
network.network.node.node
255.255.0.0
C
network.network.network.node
255.255.255.0
Although you can use any mask in any way on an interface, typically it’s not usually
good to mess with the default masks. In other words, you don’t want to make a Class B
subnet mask read 255.0.0.0, and some hosts won’t even let you type it in. But these days,
most devices will. For a Class A network, you wouldn’t change the first byte in a subnet
mask because it should read 255.0.0.0 at a minimum. Similarly, you wouldn’t assign
255.255.255.255 because this is all 1s, which is a broadcast address. A Class B address
starts with 255.255.0.0, and a Class C starts with 255.255.255.0, and for the CCNA
especially, there is no reason to change the defaults!
Understanding the Powers of 2
Powers of 2 are important to understand and memorize for use with IP subnetting. Reviewing powers of 2, remember that when you see a number noted with an exponent, it means
you should multiply the number by itself as many times as the upper number specifies. For
example, 23 is 2 x 2 x 2, which equals 8. Here’s a list of powers of 2 to commit to memory:
21 = 2
28 = 256
22 = 4
29 = 512
23 = 8
210 = 1,024
24 = 16
211 = 2,048
25 = 32
212 = 4,096
6
2 = 64
213 = 8,192
27 = 128
214 = 16,384
Memorizing these powers of 2 is a good idea, but it’s not absolutely necessary. Just
remember that since you’re working with powers of 2, each successive power of 2 is
double the previous one.
144
Chapter 4
u
Easy Subnetting
It works like this—all you have to do to remember the value of 29 is to first know that 28 = 256.
Why? Because when you double 2 to the eighth power (256), you get 29 (or 512). To determine the value of 210, simply start at 28 = 256, and then double it twice.
You can go the other way as well. If you needed to know what 26 is, for example, you just
cut 256 in half two times: once to reach 27 and then one more time to reach 26.
Classless Inter-Domain Routing (CIDR)
Another term you need to familiarize yourself with is Classless Inter-Domain Routing
(CIDR). It’s basically the method that Internet service providers (ISPs) use to allocate a
number of addresses to a company, a home—their customers. They provide addresses in a
certain block size, something I’ll talk about in greater detail soon.
When you receive a block of addresses from an ISP, what you get will look something
like this: 192.168.10.32/28. This is telling you what your subnet mask is. The slash notation (/) means how many bits are turned on (1s). Obviously, the maximum could only be
/32 because a byte is 8 bits and there are 4 bytes in an IP address: (4 n 8 = 32). But keep in
mind that regardless of the class of address, the largest subnet mask available relevant to
the Cisco exam objectives can only be a /30 because you’ve got to keep at least 2 bits for
host bits.
Take, for example, a Class A default subnet mask, which is 255.0.0.0. This tells us that
the first byte of the subnet mask is all ones (1s), or 11111111. When referring to a slash
notation, you need to count all the 1-bits to figure out your mask. The 255.0.0.0 is considered a /8 because it has 8 bits that are 1s—that is, 8 bits that are turned on.
A Class B default mask would be 255.255.0.0, which is a /16 because 16 bits are ones
(1s): 11111111.11111111.00000000.00000000.
Table 4.2 has a listing of every available subnet mask and its equivalent CIDR slash
notation.
Table 4 . 2 CIDR values
Subnet Mask
CIDR Value
255.0.0.0
/8
255.128.0.0
/9
255.192.0.0
/10
255.224.0.0
/11
Subnetting Basics
Subnet Mask
CIDR Value
255.240.0.0
/12
255.248.0.0
/13
255.252.0.0
/14
255.254.0.0
/15
255.255.0.0
/16
255.255.128.0
/17
255.255.192.0
/18
255.255.224.0
/19
255.255.240.0
/20
255.255.248.0
/21
255.255.252.0
/22
255.255.254.0
/23
255.255.255.0
/24
255.255.255.128
/25
255.255.255.192
/26
255.255.255.224
/27
255.255.255.240
/28
255.255.255.248
/29
255.255.255.252
/30
145
The /8 through /15 can only be used with Class A network addresses. /16 through /23 can
be used by Class A and B network addresses. /24 through /30 can be used by Class A, B, and
C network addresses. This is a big reason why most companies use Class A network addresses.
Since they can use all subnet masks, they get the maximum flexibility in network design.
146
Chapter 4
u
Easy Subnetting
No, you cannot configure a Cisco router using this slash format. But
wouldn’t that be nice? Nevertheless, it’s really important for you to know
subnet masks in the slash notation (CIDR).
IP Subnet-Zero
Even though IP subnet-zero is not a new command, Cisco courseware and Cisco exam
objectives didn’t used to cover it. Know that Cisco certainly covers it now! This command
allows you to use the first and last subnet in your network design. For instance, the Class
C mask of 255.255.255.192 provides subnets 64 and 128, another facet of subnetting that
we’ll discuss more thoroughly later in this chapter. But with the ip subnet-zero command,
you now get to use subnets 0, 64, 128, and 192. It may not seem like a lot, but this provides
two more subnets for every subnet mask we use.
Even though we don’t discuss the command-line interface (CLI) until Chapter 6, “Cisco’s
Internetworking Operating System (IOS),” it’s important for you to be at least a little familiar
with this command at this point:
Router#sh running-config
Building configuration...
Current configuration : 827 bytes
!
hostname Pod1R1
!
ip subnet-zero
!
This router output shows that the command ip subnet-zero is enabled on the router.
Cisco has turned this command on by default starting with Cisco IOS version 12.x and
now we’re running 15.x code.
When taking your Cisco exams, make sure you read very carefully to see if Cisco is asking you not to use ip subnet-zero. There are actually instances where this may happen.
Subnetting Class C Addresses
There are many different ways to subnet a network. The right way is the way that works best
for you. In a Class C address, only 8 bits are available for defining the hosts. Remember that
subnet bits start at the left and move to the right, without skipping bits. This means that the
only Class C subnet masks can be the following:
Binary
Decimal CIDR
--------------------------------------------------------00000000 = 255.255.255.0
/24
Subnetting Basics
10000000
11000000
11100000
11110000
11111000
11111100
=
=
=
=
=
=
255.255.255.128
255.255.255.192
255.255.255.224
255.255.255.240
255.255.255.248
255.255.255.252
147
/25
/26
/27
/28
/29
/30
We can’t use a /31 or /32 because, as I’ve said, we must have at least 2 host bits for
assigning IP addresses to hosts. But this is only mostly true. Certainly we can never use
a /32 because that would mean zero host bits available, yet Cisco has various forms of
the IOS, as well as the new Cisco Nexus switches operating system, that support the /31
mask. The /31 is above the scope of the CCENT and CCNA objectives, so we won’t be
covering it in this book.
Coming up, I’m going to teach you that significantly less painful method of subnetting I
promised you at the beginning of this chapter, which makes it ever so much easier to subnet
larger numbers in a flash. Excited—good! Because I’m not kidding when I tell you that you
absolutely need to be able to subnet quickly and accurately to succeed in the networking
real world and on the exam too!
Subnetting a Class C Address—The Fast Way!
When you’ve chosen a possible subnet mask for your network and need to determine the
number of subnets, valid hosts, and the broadcast addresses of a subnet that mask will
provide, all you need to do is answer five simple questions:
uu
How many subnets does the chosen subnet mask produce?
uu
How many valid hosts per subnet are available?
uu
What are the valid subnets?
uu
What’s the broadcast address of each subnet?
uu
What are the valid hosts in each subnet?
This is where you’ll be really glad you followed my advice and took the time to memorize
your powers of 2. If you didn’t, now would be a good time… Just refer back to the sidebar,
“Understanding the Powers of 2,” earlier if you need to brush up. Here’s how you arrive at
the answers to those five big questions:
uu
uu
uu
How many subnets? 2x = number of subnets. x is the number of masked bits, or the 1s.
For example, in 11000000, the number of 1s gives us 22 subnets. So in this example,
there are 4 subnets.
How many hosts per subnet? 2y – 2 = number of hosts per subnet. y is the number of
unmasked bits, or the 0s. For example, in 11000000, the number of 0s gives us 26 – 2
hosts, or 62 hosts per subnet. You need to subtract 2 for the subnet address and the
broadcast address, which are not valid hosts.
What are the valid subnets? 256 – subnet mask = block size, or increment number. An
example would be the 255.255.255.192 mask, where the interesting octet is the fourth
148
Chapter 4
u
Easy Subnetting
octet (interesting because that is where our subnet numbers are). Just use this math:
256 – 192 = 64. The block size of a 192 mask is always 64. Start counting at zero in
blocks of 64 until you reach the subnet mask value and these are your subnets in the
fourth octet: 0, 64, 128, 192. Easy, huh?
uu
uu
What’s the broadcast address for each subnet? Now here’s the really easy part. Since we
counted our subnets in the last section as 0, 64, 128, and 192, the broadcast address is
always the number right before the next subnet. For example, the 0 subnet has a broadcast address of 63 because the next subnet is 64. The 64 subnet has a broadcast address
of 127 because the next subnet is 128, and so on. Remember, the broadcast address of
the last subnet is always 255.
What are the valid hosts? Valid hosts are the numbers between the subnets, omitting
the all-0s and all-1s. For example, if 64 is the subnet number and 127 is the broadcast
address, then 65–126 is the valid host range. Your valid range is always the group of
numbers between the subnet address and the broadcast address.
If you’re still confused, don’t worry because it really isn’t as hard as it seems to be at first—
just hang in there! To help lift any mental fog, try a few of the practice examples next.
Subnetting Practice Examples: Class C Addresses
Here’s your opportunity to practice subnetting Class C addresses using the method I just
described. This is so cool. We’re going to start with the first Class C subnet mask and work
through every subnet that we can, using a Class C address. When we’re done, I’ll show you
how easy this is with Class A and B networks too!
Practice Example #1C: 255.255.255.128 (/25)
Since 128 is 10000000 in binary, there is only 1 bit for subnetting and 7 bits for hosts. We’re
going to subnet the Class C network address 192.168.10.0.
192.168.10.0 = Network address
255.255.255.128 = Subnet mask
Now, let’s answer our big five:
uu
uu
uu
uu
How many subnets? Since 128 is 1 bit on (10000000), the answer would be 21 = 2.
How many hosts per subnet? We have 7 host bits off (10000000), so the equation would
be 27 – 2 = 126 hosts. Once you figure out the block size of a mask, the amount of hosts
is always the block size minus 2. No need to do extra math if you don’t need to!
What are the valid subnets? 256 – 128 = 128. Remember, we’ll start at zero and count in
our block size, so our subnets are 0, 128. By just counting your subnets when counting
in your block size, you really don’t need to do steps 1 and 2. We can see we have two subnets, and in the step before this one, just remember that the amount of hosts is always the
block size minus 2, and in this example, that gives us 2 subnets, each with 126 hosts.
What’s the broadcast address for each subnet? The number right before the value of
the next subnet is all host bits turned on and equals the broadcast address. For the zero
subnet, the next subnet is 128, so the broadcast of the 0 subnet is 127.
Subnetting Basics
uu
149
What are the valid hosts? These are the numbers between the subnet and broadcast
address. The easiest way to find the hosts is to write out the subnet address and the
broadcast address, which makes valid hosts completely obvious. The following table
shows the 0 and 128 subnets, the valid host ranges of each, and the broadcast address
of both subnets:
Subnet
0
128
First host
1
129
Last host
126
254
Broadcast
127
255
Okay, looking at a Class C /25, it’s pretty clear that there are two subnets. But so what—
why is this significant? Well actually, it’s not because that’s not the right question. What you
really want to know is what you would do with this information!
I know this isn’t exactly everyone’s favorite pastime, but what we’re about to do is really
important, so bear with me; we’re going to talk about subnetting—period. The key to understanding subnetting is to understand the very reason you need to do it, and I’m going to demonstrate this by going through the process of building a physical network.
Okay—because we added that router shown in Figure 4.3, in order for the hosts on our
internetwork to communicate, they must now have a logical network addressing scheme.
We could use IPv6, but IPv4 is still the most popular for now. It’s also what we’re studying
at the moment, so that’s what we’re going with.
F ig u re 4 . 3
Implementing a Class C /25 logical network
.2
.3
.4
192.168.10.0
.130
.1
.129
.131
.132
192.168.10.128
Router#show ip route
[output cut]
C 192.168.10.0 is directly connected to Ethernet 0
C 192.168.10.128 is directly connected to Ethernet 1
Looking at Figure 4.3, you can see that there are two physical networks, so we’re going to
implement a logical addressing scheme that allows for two logical networks. As always, it’s
a really good idea to look ahead and consider likely short- and long-term growth scenarios,
but for this example in this book, a /25 gets it done.
150
Chapter 4
u
Easy Subnetting
Figure 4.3 shows us that both subnets have been assigned to a router interface, which creates our broadcast domains and assigns our subnets. Use the command show ip route to see
the routing table on a router. Notice that instead of one large broadcast domain, there are now
two smaller broadcast domains, providing for up to 126 hosts in each. The C in the router output translates to “directly connected network,” and we can see we have two of those with two
broadcast domains and that we created and implemented them. So congratulations—you did
it! You have successfully subnetted a network and applied it to a network design. Nice! Let’s
do it again.
Practice Example #2C: 255.255.255.192 (/26)
This time, we’re going to subnet the network address 192.168.10.0 using the subnet mask
255.255.255.192.
192.168.10.0 = Network address
255.255.255.192 = Subnet mask
Now, let’s answer the big five:
uu
uu
uu
uu
uu
How many subnets? Since 192 is 2 bits on (11000000), the answer would be
22 = 4 subnets.
How many hosts per subnet? We have 6 host bits off (11000000), giving us 26 – 2 = 62
hosts. The amount of hosts is always the block-size minus 2.
What are the valid subnets? 256 – 192 = 64. Remember, to start at zero and count in
our block size. This means our subnets are 0, 64, 128, and 192. We can see we have a
block size of 64, so we have 4 subnets, each with 62 hosts.
What’s the broadcast address for each subnet? The number right before the value of
the next subnet is all host bits turned on and equals the broadcast address. For the zero
subnet, the next subnet is 64, so the broadcast address for the zero subnet is 63.
What are the valid hosts? These are the numbers between the subnet and broadcast
address. As I said, the easiest way to find the hosts is to write out the subnet address
and the broadcast address, which clearly delimits our valid hosts. The following table
shows the 0, 64, 128, and 192 subnets, the valid host ranges of each, and the broadcast
address of each subnet:
The subnets (do this first)
0
64
128
192
Our first host (perform host
addressing last)
1
65
129
193
Our last host
62
126
190
254
The broadcast address
(do this second)
63
127
191
255
Subnetting Basics
151
Okay, again, before getting into the next example, you can see that we can now subnet
a /26 as long as we can count in increments of 64. And what are you going to do with
this fascinating information? Implement it! We’ll use Figure 4.4 to practice a /26 network
implementation.
F ig u re 4 . 4
Implementing a class C /26 (with three networks)
.66
.67
.68
192.168.10.64
.2
.130
.65
.1
.129
.3
.131
.132
192.168.10.128
.4
.5
192.168.10.0
Router#show ip route
[output cut]
C 192.168.10.0 is directly connected to Ethernet 0
C 192.168.10.64 is directly connected to Ethernet 1
C 192.168.10.128 is directly connected to Ethernet 2
The /26 mask provides four subnetworks, and we need a subnet for each router interface.
With this mask, in this example, we actually have room with a spare subnet to add to another
router interface in the future. Always plan for growth if possible!
Practice Example #3C: 255.255.255.224 (/27)
This time, we’ll subnet the network address 192.168.10.0 and subnet mask
255.255.255.224.
192.168.10.0 = Network address
255.255.255.224 = Subnet mask
uu
How many subnets? 224 is 11100000, so our equation would be 23 = 8.
uu
How many hosts? 25 – 2 = 30.
uu
uu
uu
What are the valid subnets? 256 – 224 = 32. We just start at zero and count to the subnet mask value in blocks (increments) of 32: 0, 32, 64, 96, 128, 160, 192, and 224.
What’s the broadcast address for each subnet (always the number right before the
next subnet)?
What are the valid hosts (the numbers between the subnet number and the broadcast
address)?
152
Chapter 4
u
Easy Subnetting
To answer the last two questions, first just write out the subnets, then write out the broadcast addresses—the number right before the next subnet. Last, fill in the host addresses. The
following table gives you all the subnets for the 255.255.255.224 Class C subnet mask:
The subnet address
0
32
64
96
128
160
192
224
The first valid host
1
33
65
97
129
161
193
225
The last valid host
30
62
94
126
158
190
222
254
The broadcast address
31
63
95
127
159
191
223
255
In practice example #3C, we’re using a 255.255.255.224 (/27) network, which provides
eight subnets as shown above. We can take these subnets and implement them as shown in
Figure 4.5 using any of the subnets available.
F ig u re 4 . 5
Implementing a Class C /27 logical network
.129
192.168.10.128
.98
.161
192.168.10.160
192.168.10.96
.97
192.168.10.32
.33
.1 .65
192.168.10.64
192.168.10.0
Router#show ip route
[output cut]
C 192.168.10.0 is directly connected to Ethernet 0
C 192.168.10.32 is directly connected to Ethernet 1
C 192.168.10.64 is directly connected to Ethernet 2
C 192.168.10.96 is directly connected to Serial 0
Noticed I used six of the eight subnets available for my network design. The lightning
bolt symbol in the figure represents a wide area network (WAN) such as a T1 or other serial
connection through an ISP or telco. In other words, something you don’t own, but it’s still
a subnet just like any LAN connection on a router. As usual, I used the first valid host in
each subnet as the router’s interface address. This is just a rule of thumb; you can use any
address in the valid host range as long as you remember what address you configured so
you can set the default gateways on your hosts to the router address.
Subnetting Basics
153
Practice Example #4C: 255.255.255.240 (/28)
Let’s practice another one:
192.168.10.0 = Network address
255.255.255.240 = Subnet mask
uu
Subnets? 240 is 11110000 in binary. 24 = 16.
uu
Hosts? 4 host bits, or 24 – 2 = 14.
uu
Valid subnets? 256 – 240 = 16. Start at 0: 0 + 16 = 16. 16 + 16 = 32. 32 + 16 = 48. 48
+ 16 = 64. 64 + 16 = 80. 80 + 16 = 96. 96 + 16 = 112. 112 + 16 = 128. 128 + 16 = 144.
144 + 16 = 160. 160 + 16 = 176. 176 + 16 = 192. 192 + 16 = 208. 208 + 16 = 224. 224
+ 16 = 240.
uu
Broadcast address for each subnet?
uu
Valid hosts?
To answer the last two questions, check out the following table. It gives you the subnets,
valid hosts, and broadcast addresses for each subnet. First, find the address of each subnet using
the block size (increment). Second, find the broadcast address of each subnet increment, which
is always the number right before the next valid subnet, and then just fill in the host addresses.
The following table shows the available subnets, hosts, and broadcast addresses provided from
a Class C 255.255.255.240 mask.
Subnet
0
16
32
48
64
80
96
112 128 144 160 176 192 208 224 240
First host
1
17
33
49
65
81
97
113 129 145 161 177 193 209 225 241
Last host
14
30
46
62
78
94
110 126 142 158 174 190 206 222 238 254
Broadcast
15
31
47
63
79
95
111 127 143 159 175 191 207 223 239 255
Cisco has figured out that most people cannot count in 16s and therefore
have a hard time finding valid subnets, hosts, and broadcast addresses
with the Class C 255.255.255.240 mask. You’d be wise to study this mask.
Practice Example #5C: 255.255.255.248 (/29)
Let’s keep practicing:
192.168.10.0 = Network address
255.255.255.248 = Subnet mask
uu
Subnets? 248 in binary = 11111000. 25 = 32.
uu
Hosts? 23 – 2 = 6.
uu
Valid subnets? 256 – 248 = 0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120,
128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, and 248.
Chapter 4
154
u
Easy Subnetting
uu
Broadcast address for each subnet?
uu
Valid hosts?
Take a look at the following table. It shows some of the subnets (first four and last four
only), valid hosts, and broadcast addresses for the Class C 255.255.255.248 mask:
Subnet
0
8
16
24
…
224
232
240
248
First host
1
9
17
25
…
225
233
241
249
Last host
6
14
22
30
…
230
238
246
254
Broadcast
7
15
23
31
…
231
239
247
255
If you try to configure a router interface with the address 192.168.10.6
255.255.255.248 and receive this error:
Bad mask /29 for address 192.168.10.6
It means that ip subnet-zero is not enabled. You must be able to subnet
to see that the address used in this example is in the zero subnet!
Practice Example #6C: 255.255.255.252 (/30)
Okay—just one more:
192.168.10.0 = Network address
255.255.255.252 = Subnet mask
uu
Subnets? 64.
uu
Hosts? 2.
uu
Valid subnets? 0, 4, 8, 12, etc., all the way to 252.
uu
Broadcast address for each subnet? (always the number right before the next subnet)
uu
Valid hosts? (the numbers between the subnet number and the broadcast address)
The following table shows you the subnet, valid host, and broadcast address of the first
four and last four subnets in the 255.255.255.252 Class C subnet:
Subnet
0
4
8
12
…
240
244
248
252
First host
1
5
9
13
…
241
245
249
253
Last host
2
6
10
14
…
242
246
250
254
Broadcast
3
7
11
15
…
243
247
251
255
Subnetting Basics
155
Should We Really Use This Mask That Provides Only Two Hosts?
You are the network administrator for Acme Corporation in San Francisco, with dozens
of WAN links connecting to your corporate office. Right now your network is a classful
network, which means that the same subnet mask is on each host and router interface.
You’ve read about classless routing, where you can have different sized masks, but don’t
know what to use on your point-to-point WAN links. Is the 255.255.255.252 (/30) a helpful
mask in this situation?
Yes, this is a very helpful mask in wide area networks!
If you were to use the 255.255.255.0 mask in this situation, then each network would have
254 hosts. But you use only 2 addresses with a WAN link, which is a waste of 252 hosts per
subnet! If you use the 255.255.255.252 mask, then each subnet has only 2 hosts, and you
don’t want to waste precious addresses. This is a really important subject, one that we’ll
address in a lot more detail in the section on VLSM network design in the next chapter!
Subnetting in Your Head: Class C Addresses
It really is possible to subnet in your head? Yes, and it’s not all that hard either—take the
following example:
192.168.10.50 = Node address
255.255.255.224 = Subnet mask
First, determine the subnet and broadcast address of the network in which the above
IP address resides. You can do this by answering question 3 of the big 5 questions: 256 –
224 = 32. 0, 32, 64, and so on. The address of 33 falls between the two subnets of 32 and
64 and must be part of the 192.168.10.32 subnet. The next subnet is 64, so the broadcast
address of the 32 subnet is 63. Don’t forget that the broadcast address of a subnet is always
the number right before the next subnet. The valid host range equals the numbers between
the subnet and broadcast address, or 33–62. This is too easy!
Okay, let’s try another one. We’ll subnet another Class C address:
192.168.10.50 = Node address
255.255.255.240 = Subnet mask
What is the subnet and broadcast address of the network of which the above IP address
is a member? 256 – 240 = 16. Now just count by our increments of 16 until we pass the
host address: 0, 16, 32, 48, 64. Bingo—the host address is between the 48 and 64 subnets.
The subnet is 192.168.10.48, and the broadcast address is 63 because the next subnet is
64. The valid host range equals the numbers between the subnet number and the broadcast
address, or 49–62.
Chapter 4
156
u
Easy Subnetting
Let’s do a couple more to make sure you have this down.
You have a node address of 192.168.10.174 with a mask of 255.255.255.240. What is
the valid host range?
The mask is 240, so we’d do a 256 – 240 = 16. This is our block size. Just keep adding
16 until we pass the host address of 174, starting at zero, of course: 0, 16, 32, 48, 64, 80,
96, 112, 128, 144, 160, 176. The host address of 174 is between 160 and 176, so the subnet
is 160. The broadcast address is 175; the valid host range is 161–174. That was a tough one!
One more—just for fun. This one is the easiest of all Class C subnetting:
192.168.10.17 = Node address
255.255.255.252 = Subnet mask
What is the subnet and broadcast address of the subnet in which the above IP address
resides? 256 – 252 = 0 (always start at zero unless told otherwise). 0, 4, 8, 12, 16, 20,
etc. You’ve got it! The host address is between the 16 and 20 subnets. The subnet is
192.168.10.16, and the broadcast address is 19. The valid host range is 17–18.
Now that you’re all over Class C subnetting, let’s move on to Class B subnetting. But
before we do, let’s go through a quick review.
What Do We Know?
Okay—here’s where you can really apply what you’ve learned so far and begin committing
it all to memory. This is a very cool section that I’ve been using in my classes for years. It
will really help you nail down subnetting for good!
When you see a subnet mask or slash notation (CIDR), you should know the following:
/25
/26
/27
What do we know about a /25?
uu
128 mask
uu
1 bit on and 7 bits off (10000000)
uu
Block size of 128
uu
Subnets 0 and 128
uu
2 subnets, each with 126 hosts
What do we know about a /26?
uu
192 mask
uu
2 bits on and 6 bits off (11000000)
uu
Block size of 64
uu
Subnet 0, 64, 128, 192
uu
4 subnets, each with 62 hosts
What do we know about a /27?
uu
224 mask
uu
3 bits on and 5 bits off (11100000)
Subnetting Basics
uu
Block size of 32
uu
Subnets 0, 32, 64, 96, 128, 160, 192, 224
uu
8 subnets, each with 30 hosts
157
/28 What do we know about a /28?
/29
/30
uu
240 mask
uu
4 bits on and 4 bits off
uu
Block size of 16
uu
Subnets 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240
uu
16 subnets, each with 14 hosts
What do we know about a /29?
uu
248 mask
uu
5 bits on and 3 bits off
uu
Block size of 8
uu
Subnets 0, 8, 16, 24, 32, 40, 48, etc.
uu
32 subnets, each with 6 hosts
What do we know about a /30?
uu
252 mask
uu
6 bits on and 2 bits off
uu
Block size of 4
uu
Subnets 0, 4, 8, 12, 16, 20, 24, etc.
uu
64 subnets, each with 2 hosts
The below table 4.3 puts all of the above information into one compact little table. You
should practice writing this table out on scratch paper, and if you can do it, write it down
before you start your exam!
Table 4 . 3 What do you know?
CIDR Notation
Mask
Bits
Block Size
Subnets
Hosts
/25
128
1 bit on and
7 bits off
128
0 and 128
2 subnets, each
with 126 hosts
/26
192
2 bits on and 64
6 bits off
0, 64, 128, 192
4 subnets, each
with 62 hosts
/27
224
3 bits on and 32
5 bits off
0, 32, 64, 96, 128,
160, 192, 224
8 subnets, each
with 30 hosts
158
Chapter 4
u
Easy Subnetting
Table 4 . 3 What do you know? (continued)
CIDR Notation
Mask
Bits
Block Size
Subnets
Hosts
/28
240
4 bits on and 16
4 bits off
16 subnets, each
0, 16, 32, 48, 64,
with 14 hosts
80, 96, 112, 128,
144, 160, 176, 192,
208, 224, 240
/29
248
5 bits on and 8
3 bits off
0, 8, 16, 24, 32, 40, 32 subnets, each
48, etc.
with 6 hosts
/30
252
6 bits on and 4
2 bits off
0, 4, 8, 12, 16, 20,
24, etc.
64 subnets, each
with 2 hosts
Regardless of whether you have a Class A, Class B, or Class C address, the /30 mask will
provide you with only two hosts, ever. As suggested by Cisco, this mask is suited almost
exclusively for use on point-to-point links.
If you can memorize this “What Do We Know?” section, you’ll be much better off in
your day-to-day job and in your studies. Try saying it out loud, which helps you memorize
things—yes, your significant other and/or coworkers will think you’ve lost it, but they
probably already do if you’re in the networking field anyway. And if you’re not yet in the
networking field but are studying all this to break into it, get used to it!
It’s also helpful to write these on some type of flashcards and have people test your skill.
You’d be amazed at how fast you can get subnetting down if you memorize block sizes as
well as this “What Do We Know?” section.
Subnetting Class B Addresses
Visit ccna
.gg/ch4/a
for a
companion
MicroNugget
from CBT
Nuggets.
Before we dive into this, let’s look at all the possible Class B subnet masks first. Notice that
we have a lot more possible subnet masks than we do with a Class C network address:
255.255.0.0
255.255.128.0
255.255.192.0
255.255.224.0
255.255.240.0
255.255.248.0
255.255.252.0
255.255.254.0
(/16)
(/17)
(/18)
(/19)
(/20)
(/21)
(/22)
(/23)
255.255.255.0
255.255.255.128
255.255.255.192
255.255.255.224
255.255.255.240
255.255.255.248
255.255.255.252
(/24)
(/25)
(/26)
(/27)
(/28)
(/29)
(/30)
We know the Class B network address has 16 bits available for host addressing. This
means we can use up to 14 bits for subnetting because we need to leave at least 2 bits for
host addressing. Using a /16 means you are not subnetting with Class B, but it is a mask
you can use!
Subnetting Basics
159
By the way, do you notice anything interesting about that list of subnet
values—a pattern, maybe? Ah ha! That’s exactly why I had you memorize
the binary-to-decimal numbers earlier in Chapter 2. Since subnet mask bits
start on the left and move to the right and bits can’t be skipped, the numbers are always the same regardless of the class of address. If you haven’t
already, memorize this pattern!
The process of subnetting a Class B network is pretty much the same as it is for a Class C,
except that you have more host bits and you start in the third octet.
Use the same subnet numbers for the third octet with Class B that you used for the
fourth octet with Class C, but add a zero to the network portion and a 255 to the broadcast section in the fourth octet. The following table shows you an example host range of
two subnets used in a Class B 240 (/20) subnet mask:
Subnet address
16.0
32.0
Broadcast address
31.255
47.255
Just add the valid hosts between the numbers and you’re set!
The preceding example is true only until you get up to /24. After that, it’s
numerically exactly like Class C.
Subnetting Practice Examples: Class B Addresses
The following sections will give you an opportunity to practice subnetting Class B addresses.
Again, I have to mention that this is the same as subnetting with Class C, except we start in
the third octet—with the exact same numbers!
Practice Example #1B: 255.255.128.0 (/17)
172.16.0.0 = Network address
255.255.128.0 = Subnet mask
uu
Subnets? 21 = 2 (same amount as Class C).
uu
Hosts? 215 – 2 = 32,766 (7 bits in the third octet, and 8 in the fourth).
uu
Valid subnets? 256 – 128 = 128. 0, 128. Remember that subnetting is performed in the
third octet, so the subnet numbers are really 0.0 and 128.0, as shown in the next table.
These are the exact numbers we used with Class C; we use them in the third octet and
add a 0 in the fourth octet for the network address.
uu
Broadcast address for each subnet?
uu
Valid hosts?
Chapter 4
160
u
Easy Subnetting
The following table shows the two subnets available, the valid host range, and the
broadcast address of each:
Subnet
0.0
128.0
First host
0.1
128.1
Last host
127.254
255.254
Broadcast
127.255
255.255
Okay, notice that we just added the fourth octet’s lowest and highest values and came
up with the answers. And again, it’s done exactly the same way as for a Class C subnet. We
just used the same numbers in the third octet and added 0 and 255 in the fourth octet—
pretty simple, huh? I really can’t say this enough: it’s just not that hard. The numbers never
change; we just use them in different octets!
Question: Using the above subnet mask, do you think 172.16.10.0 is a valid host
address? What about 172.16.10.255? Can 0 and 255 in the fourth octet ever be a valid
host address? The answer is absolutely, yes, those are valid hosts! Any number between
the subnet number and the broadcast address is always a valid host.
Practice Example #2B: 255.255.192.0 (/18)
172.16.0.0 = Network address
255.255.192.0 = Subnet mask
uu
Subnets? 22 = 4.
uu
Hosts? 214 – 2 = 16,382 (6 bits in the third octet, and 8 in the fourth).
uu
Valid subnets? 256 – 192 = 64. 0, 64, 128, 192. Remember that the subnetting is performed in the third octet, so the subnet numbers are really 0.0, 64.0, 128.0, and 192.0,
as shown in the next table.
uu
Broadcast address for each subnet?
uu
Valid hosts?
The following table shows the four subnets available, the valid host range, and the
broadcast address of each:
Subnet
0.0
64.0
128.0
192.0
First host
0.1
64.1
128.1
192.1
Last host
63.254
127.254
191.254
255.254
Broadcast
63.255
127.255
191.255
255.255
Subnetting Basics
161
Again, it’s pretty much the same as it is for a Class C subnet—we just added 0 and 255
in the fourth octet for each subnet in the third octet.
Practice Example #3B: 255.255.240.0 (/20)
172.16.0.0 = Network address
255.255.240.0 = Subnet mask
uu
Subnets? 24 = 16.
uu
Hosts? 212 – 2 = 4094.
uu
Valid subnets? 256 – 240 = 0, 16, 32, 48, etc., up to 240. Notice that these are the
same numbers as a Class C 240 mask—we just put them in the third octet and add a
0 and 255 in the fourth octet.
uu
Broadcast address for each subnet?
uu
Valid hosts?
The following table shows the first four subnets, valid hosts, and broadcast addresses in
a Class B 255.255.240.0 mask:
Subnet
0.0
16.0
32.0
48.0
First host
0.1
16.1
32.1
48.1
Last host
15.254
31.254
47.254
63.254
Broadcast
15.255
31.255
47.255
63.255
Practice Example #4B: 255.255.248.0 (/21)
172.16.0.0 = Network address
255.255.248.0 = Subnet mask
uu
Subnets? 25 = 32.
uu
Hosts? 211 – 2 = 2046.
uu
Valid subnets? 256 – 248 = 0, 8, 16, 24, 32, etc., up to 248.
uu
Broadcast address for each subnet?
uu
Valid hosts?
Chapter 4
162
u
Easy Subnetting
The following table shows the first five subnets, valid hosts, and broadcast addresses in a
Class B 255.255.248.0 mask:
Subnet
0.0
8.0
16.0
24.0
32.0
First host
0.1
8.1
16.1
24.1
32.1
Last host
7.254
15.254
23.254
31.254
39.254
Broadcast
7.255
15.255
23.255
31.255
39.255
Practice Example #5B: 255.255.252.0 (/22)
172.16.0.0 = Network address
255.255.252.0 = Subnet mask
uu
Subnets? 26 = 64.
uu
Hosts? 210 – 2 = 1022.
uu
Valid subnets? 256 – 252 = 0, 4, 8, 12, 16, etc., up to 252.
uu
Broadcast address for each subnet?
uu
Valid hosts?
The following table shows the first five subnets, valid hosts, and broadcast addresses in a
Class B 255.255.252.0 mask:
Subnet
0.0
4.0
8.0
12.0
16.0
First host
0.1
4.1
8.1
12.1
16.1
Last host
3.254
7.254
11.254
15.254
19.254
Broadcast
3.255
7.255
11.255
15.255
19.255
Practice Example #6B: 255.255.254.0 (/23)
172.16.0.0 = Network address
255.255.254.0 = Subnet mask
uu
Subnets? 27 = 128.
uu
Hosts? 29 – 2 = 510.
uu
Valid subnets? 256 – 254 = 0, 2, 4, 6, 8, etc., up to 254.
Subnetting Basics
uu
Broadcast address for each subnet?
uu
Valid hosts?
163
The following table shows the first five subnets, valid hosts, and broadcast addresses in a
Class B 255.255.254.0 mask:
Subnet
0.0
2.0
4.0
6.0
8.0
First host
0.1
2.1
4.1
6.1
8.1
Last host
1.254
3.254
5.254
7.254
9.254
Broadcast
1.255
3.255
5.255
7.255
9.255
Practice Example #7B: 255.255.255.0 (/24)
Contrary to popular belief, 255.255.255.0 used with a Class B network address is not called
a Class B network with a Class C subnet mask. It’s amazing how many people see this mask
used in a Class B network and think it’s a Class C subnet mask. This is a Class B subnet
mask with 8 bits of subnetting—it’s logically different from a Class C mask. Subnetting this
address is fairly simple:
172.16.0.0 = Network address
255.255.255.0 = Subnet mask
uu
Subnets? 28 = 256.
uu
Hosts? 28 – 2 = 254.
uu
Valid subnets? 256 – 255 = 1. 0, 1, 2, 3, etc., all the way to 255.
uu
Broadcast address for each subnet?
uu
Valid hosts?
The following table shows the first four and last two subnets, the valid hosts, and the
broadcast addresses in a Class B 255.255.255.0 mask:
Subnet
0.0
1.0
2.0
3.0
...
254.0
255.0
First host
0.1
1.1
2.1
3.1
...
254.1
255.1
Last host
0.254
1.254
2.254
3.254
...
254.254
255.254
Broadcast
0.255
1.255
2.255
3.255
...
254.255
255.255
Chapter 4
164
u
Easy Subnetting
Practice Example #8B: 255.255.255.128 (/25)
This is actually one of the hardest subnet masks you can play with. And worse, it actually is
a really good subnet to use in production because it creates over 500 subnets with 126 hosts
for each subnet—a nice mixture. So, don’t skip over it!
172.16.0.0 = Network address
255.255.255.128 = Subnet mask
uu
Subnets? 29 = 512.
uu
Hosts? 27 – 2 = 126.
uu
Valid subnets? Okay, now for the tricky part. 256 – 255 = 1. 0, 1, 2, 3, etc., for the
third octet. But you can’t forget the one subnet bit used in the fourth octet. Remember
when I showed you how to figure one subnet bit with a Class C mask? You figure this
the same way. You actually get two subnets for each third octet value, hence the 512
subnets. For example, if the third octet is showing subnet 3, the two subnets would
actually be 3.0 and 3.128.
uu
Broadcast address for each subnet? The numbers right before the next subnet.
uu
Valid hosts? The numbers between the subnet numbers and the broadcast address.
The following graphic shows how you can create subnets, valid hosts, and broadcast
addresses using the Class B 255.255.255.128 subnet mask. The first eight subnets are
shown, followed by the last two subnets:
Subnet
0.0
0.128
1.0
1.128
2.0
2.128
3.0
3.128
...
255.0
255.128
First host
0.1
0.129
1.1
1.129
2.1
2.129
3.1
3.129
...
255.1
255.129
Last host
0.126
0.254
1.126
1.254
2.126
2.254
3.126
3.254
...
255.126
255.254
Broadcast
0.127
0.255
1.127
1.255
2.127
2.255
3.127
3.255
...
255.127
255.255
Practice Example #9B: 255.255.255.192 (/26)
Now, this is where Class B subnetting gets easy. Since the third octet has a 255 in the
mask section, whatever number is listed in the third octet is a subnet number. And now
that we have a subnet number in the fourth octet, we can subnet this octet just as we did
with Class C subnetting. Let’s try it out:
172.16.0.0 = Network address
255.255.255.192 = Subnet mask
uu
Subnets? 210 = 1024.
uu
Hosts? 26 – 2 = 62.
uu
Valid subnets? 256 – 192 = 64. The subnets are shown in the following table. Do these
numbers look familiar?
Subnetting Basics
uu
Broadcast address for each subnet?
uu
Valid hosts?
165
The following table shows the first eight subnet ranges, valid hosts, and broadcast
addresses:
Subnet
0.0
0.64
0.128
0.192
1.0
1.64
1.128
1.192
First host
0.1
0.65
0.129
0.193
1.1
1.65
1.129
1.193
Last host
0.62
0.126
0.190
0.254
1.62
1.126
1.190
1.254
Broadcast
0.63
0.127
0.191
0.255
1.63
1.127
1.191
1.255
Notice that for each subnet value in the third octet, you get subnets 0, 64, 128, and 192
in the fourth octet.
Practice Example #10B: 255.255.255.224 (/27)
This one is done the same way as the preceding subnet mask, except that we just have more
subnets and fewer hosts per subnet available.
172.16.0.0 = Network address
255.255.255.224 = Subnet mask
uu
Subnets? 211 = 2048.
uu
Hosts? 25 – 2 = 30.
uu
Valid subnets? 256 – 224 = 32. 0, 32, 64, 96, 128, 160, 192, 224.
uu
Broadcast address for each subnet?
uu
Valid hosts?
The following table shows the first eight subnets:
Subnet
0.0
0.32
0.64
0.96
0.128
0.160
0.192
0.224
First host
0.1
0.33
0.65
0.97
0.129
0.161
0.193
0.225
Last host
0.30
0.62
0.94
0.126
0.158
0.190
0.222
0.254
Broadcast
0.31
0.63
0.95
0.127
0.159
0.191
0.223
0.255
Chapter 4
166
u
Easy Subnetting
This next table shows the last eight subnets:
Subnet
255.0
255.32
255.64
255.96
255.128 255.160 255.192 255.224
First host
255.1
255.33
255.65
255.97
255.129 255.161 255.193 255.225
Last host
255.30
255.62
255.94
255.126 255.158 255.190 255.222 255.254
Broadcast
255.31
255.63
255.95
255.127 255.159 255.191 255.223 255.255
Subnetting in Your Head: Class B Addresses
Are you nuts? Subnet Class B addresses in our heads? It’s actually easier than writing it out—
I’m not kidding! Let me show you how:
Question: What is the subnet and broadcast address of the subnet in which
172.16.10.33 /27 resides?
Answer: The interesting octet is the fourth one. 256 – 224 = 32. 32 + 32 = 64. You’ve
got it: 33 is between 32 and 64. But remember that the third octet is considered part
of the subnet, so the answer would be the 10.32 subnet. The broadcast is 10.63, since
10.64 is the next subnet. That was a pretty easy one.
Question: What subnet and broadcast address is the IP address 172.16.66.10
255.255.192.0 (/18) a member of?
Answer: The interesting octet here is the third octet instead of the fourth one.
256 – 192 = 64. 0, 64, 128. The subnet is 172.16.64.0. The broadcast must be
172.16.127.255 since 128.0 is the next subnet.
Question: What subnet and broadcast address is the IP address 172.16.50.10
255.255.224.0 (/19) a member of?
Answer: 256 – 224 = 0, 32, 64 (remember, we always start counting at 0). The subnet
is 172.16.32.0, and the broadcast must be 172.16.63.255 since 64.0 is the next subnet.
Question: What subnet and broadcast address is the IP address 172.16.46.255
255.255.240.0 (/20) a member of?
Answer: 256 – 240 = 16. The third octet is important here: 0, 16, 32, 48. This subnet
address must be in the 172.16.32.0 subnet, and the broadcast must be 172.16.47.255
since 48.0 is the next subnet. So, yes, 172.16.46.255 is a valid host.
Question: What subnet and broadcast address is the IP address 172.16.45.14
255.255.255.252 (/30) a member of?
Answer: Where is our interesting octet? 256 – 252 = 0, 4, 8, 12, 16—the fourth. The
subnet is 172.16.45.12, with a broadcast of 172.16.45.15 because the next subnet is
172.16.45.16.
Question: What is the subnet and broadcast address of the host 172.16.88.255/20?
Subnetting Basics
167
Answer: What is a /20 written out in dotted decimal? If you can’t answer this, you
can’t answer this question, can you? A /20 is 255.255.240.0, gives us a block size of
16 in the third octet, and since no subnet bits are on in the fourth octet, the answer is
always 0 and 255 in the fourth octet: 0, 16, 32, 48, 64, 80, 96. Because 88 is between
80 and 96, the subnet is 80.0 and the broadcast address is 95.255.
Question: A router receives a packet on an interface with a destination address of
172.16.46.191/26. What will the router do with this packet?
Answer: Discard it. Do you know why? 172.16.46.191/26 is a 255.255.255.192 mask,
which gives us a block size of 64. Our subnets are then 0, 64, 128 and 192. 191 is the
broadcast address of the 128 subnet, and by default, a router will discard any broadcast packets.
Subnetting Class A Addresses
You don’t go about Class A subnetting any differently than Classes B and C, but there are
24 bits to play with instead of the 16 in a Class B address and the 8 in a Class C address.
Let’s start by listing all the Class A masks:
255.0.0.0
(/8)
255.128.0.0 (/9)
255.192.0.0 (/10)
255.224.0.0 (/11)
255.240.0.0 (/12)
255.248.0.0 (/13)
255.252.0.0 (/14)
255.254.0.0 (/15)
255.255.0.0 (/16)
255.255.128.0 (/17)
255.255.192.0 (/18)
255.255.224.0 (/19)
255.255.240.0 (/20)
255.255.248.0 (/21)
255.255.252.0 (/22)
255.255.254.0 (/23)
255.255.255.0 (/24)
255.255.255.128 (/25)
255.255.255.192 (/26)
255.255.255.224 (/27)
255.255.255.240 (/28)
255.255.255.248 (/29)
255.255.255.252 (/30)
That’s it. You must leave at least 2 bits for defining hosts. I hope you can see the pattern
by now. Remember, we’re going to do this the same way as a Class B or C subnet. It’s just
that, again, we simply have more host bits and we just use the same subnet numbers we used
with Class B and C, but we start using these numbers in the second octet. However, the reason class A addresses are so popular to implement is because they give the most flexibility.
You can subnet in the 2nd, 3rd or 4th octet. I’ll show you this in the next examples.
Subnetting Practice Examples: Class A Addresses
When you look at an IP address and a subnet mask, you must be able to distinguish the
bits used for subnets from the bits used for determining hosts. This is imperative. If you’re
still struggling with this concept, please reread the section, “IP Addressing” in Chapter 3.
It shows you how to determine the difference between the subnet and host bits and should
help clear things up.
Chapter 4
168
u
Easy Subnetting
Practice Example #1A: 255.255.0.0 (/16)
Class A addresses use a default mask of 255.0.0.0, which leaves 22 bits for subnetting
because you must leave 2 bits for host addressing. The 255.255.0.0 mask with a Class A
address is using 8 subnet bits:
uu
Subnets? 28 = 256.
uu
Hosts? 216 – 2 = 65,534.
uu
Valid subnets? What is the interesting octet? 256 – 255 = 1. 0, 1, 2, 3, etc. (all in the
second octet). The subnets would be 10.0.0.0, 10.1.0.0, 10.2.0.0, 10.3.0.0, etc., up to
10.255.0.0.
uu
Broadcast address for each subnet?
uu
Valid hosts?
The following table shows the first two and the last two subnets, the valid host range
and the broadcast addresses for the private Class A 10.0.0.0 network:
Subnet
10.0.0.0
10.1.0.0
…
10.254.0.0
10.255.0.0
First host
10.0.0.1
10.1.0.1
…
10.254.0.1
10.255.0.1
Last host
10.0.255.254
10.1.255.254
…
10.254.255.254 10.255.255.254
Broadcast
10.0.255.255
10.1.255.255
…
10.254.255.255 10.255.255.255
Practice Example #2A: 255.255.240.0 (/20)
255.255.240.0 gives us 12 bits of subnetting and leaves us 12 bits for host addressing.
uu
Subnets? 212 = 4096.
uu
Hosts? 212 – 2 = 4094.
uu
Valid subnets? What is your interesting octet? 256 – 240 = 16. The subnets in the second octet are a block size of 1 and the subnets in the third octet are 0, 16, 32, etc.
uu
Broadcast address for each subnet?
uu
Valid hosts?
The following table shows some examples of the host ranges—the first three subnets and
the last subnet:
Subnet
10.0.0.0
10.0.16.0
10.0.32.0
…
10.255.240.0
First host
10.0.0.1
10.0.16.1
10.0.32.1
…
10.255.240.1
Last host
10.0.15.254
10.0.31.254
10.0.47.254
…
10.255.255.254
Subnetting Basics
Subnet
10.0.0.0
10.0.16.0
10.0.32.0
…
10.255.240.0
Broadcast
10.0.15.255
10.0.31.255
10.0.47.255
…
10.255.255.255
169
Practice Example #3A: 255.255.255.192 (/26)
Let’s do one more example using the second, third, and fourth octets for subnetting:
uu
Subnets? 218 = 262,144.
uu
Hosts? 26 – 2 = 62.
uu
Valid subnets? In the second and third octet, the block size is 1, and in the fourth
octet, the block size is 64.
uu
Broadcast address for each subnet?
uu
Valid hosts?
The following table shows the first four subnets and their valid hosts and broadcast
addresses in the Class A 255.255.255.192 mask:
Subnet
10.0.0.0
10.0.0.64
10.0.0.128
10.0.0.192
First host
10.0.0.1
10.0.0.65
10.0.0.129
10.0.0.193
Last host
10.0.0.62
10.0.0.126
10.0.0.190
10.0.0.254
Broadcast
10.0.0.63
10.0.0.127
10.0.0.191
10.0.0.255
This table shows the last four subnets and their valid hosts and broadcast addresses:
Subnet
10.255.255.0
10.255.255.64
10.255.255.128
10.255.255.192
First host
10.255.255.1
10.255.255.65
10.255.255.129
10.255.255.193
Last host
10.255.255.62
10.255.255.126
10.255.255.190
10.255.255.254
Broadcast
10.255.255.63
10.255.255.127
10.255.255.191
10.255.255.255
Subnetting in Your Head: Class A Addresses
Again, I know this sounds hard, but as with Class C and Class B, the numbers are the same;
we just start in the second octet. What makes this easy? You only need to worry about the
octet that has the largest block size, which is typically called the interesting octet, and one
that is something other than 0 or 255, such as, for example, 255.255.240.0 (/20) with a Class
170
Chapter 4
u
Easy Subnetting
A network. The second octet has a block size of 1, so any number listed in that octet is a subnet. The third octet is a 240 mask, which means we have a block size of 16 in the third octet.
If your host ID is 10.20.80.30, what is your subnet, broadcast address, and valid host range?
The subnet in the second octet is 20 with a block size of 1, but the third octet is in block
sizes of 16, so we’ll just count them out: 0, 16, 32, 48, 64, 80, 96… voilà! By the way, you
can count by 16s by now, right? Good! This makes our subnet 10.20.80.0, with a broadcast
of 10.20.95.255 because the next subnet is 10.20.96.0. The valid host range is 10.20.80.1
through 10.20.95.254. And yes, no lie! You really can do this in your head if you just get
your block sizes nailed!
Okay, let’s practice on one more, just for fun!
Host IP: 10.1.3.65/23
First, you can’t answer this question if you don’t know what a /23 is. It’s 255.255.254.0.
The interesting octet here is the third one: 256 – 254 = 2. Our subnets in the third octet are
0, 2, 4, 6, etc. The host in this question is in subnet 2.0, and the next subnet is 4.0, so that
makes the broadcast address 3.255. And any address between 10.1.2.1 and 10.1.3.254 is
considered a valid host.
Visit ccna
.gg/ch4/b
for a
companion
MicroNugget
from CBT
Nuggets.
Summary
Did you read Chapters 3 and 4 and understand everything on the first pass? If so, that is
fantastic—congratulations! However, you probably really did get lost a couple of times. No
worries because as I told you, that’s what usually happens. Don’t waste time feeling bad if
you have to read each chapter more than once, or even 10 times, before you’re truly good to
go. If you do have to read the chapters more than once, you’ll be seriously better off in the
long run even if you were pretty comfortable the first time through!
This chapter provided you with an important understanding of IP subnetting—the painless
way! And when you’ve got the key material presented in this chapter really nailed down, you
should be able to subnet IP addresses in your head.
This chapter is extremely essential to your Cisco certification process, so if you just
skimmed it, please go back, read it thoroughly, and don’t forget to do all the written labs too!
Exam Essentials
Identify the advantages of subnetting. Benefits of subnetting a physical network include
reduced network traffic, optimized network performance, simplified management, and
facilitated spanning of large geographical distances.
Describe the effect of the ip subnet-zero command.
the first and last subnet in your network design.
This command allows you to use
Written Labs
171
Identify the steps to subnet a classful network. Understand how IP addressing and subnetting work. First, determine your block size by using the 256-subnet mask math. Then count
your subnets and determine the broadcast address of each subnet—it is always the number
right before the next subnet. Your valid hosts are the numbers between the subnet address
and the broadcast address.
Determine possible block sizes. This is an important part of understanding IP addressing and subnetting. The valid block sizes are always 2, 4, 8, 16, 32, 64, 128, etc. You can
determine your block size by using the 256-subnet mask math.
Describe the role of a subnet mask in IP addressing. A subnet mask is a 32-bit value that
allows the recipient of IP packets to distinguish the network ID portion of the IP address
from the host ID portion of the IP address.
Understand and apply the 2x – 2 formula. Use this formula to determine the proper subnet mask for a particular size network given the application of that subnet mask to a particular classful network.
Explain the impact of Classless Inter-Domain Routing (CIDR). CIDR allows the creation
of networks of a size other than those allowed with the classful subnetting by allowing
more than the three classful subnet masks.
Written Labs
In this section, you’ll complete the following labs to make sure you’ve got the information
and concepts contained within them fully dialed in:
Lab 4.1: Written Subnet Practice #1
Lab 4.2: Written Subnet Practice #2
Lab 4.3: Written Subnet Practice #3
The answers to these labs can be found in Appendix A, “Answers to Written Labs.”
Written Lab 4.1: Written Subnet Practice #1
Write the subnet, broadcast address, and a valid host range for question 1 through question
6. Then answer the remaining questions.
1. 192.168.100.25/30
2. 192.168.100.37/28
3. 192.168.100.66/27
4. 192.168.100.17/29
5. 192.168.100.99/26
172
Chapter 4
u
Easy Subnetting
6. 192.168.100.99/25
7. You have a Class B network and need 29 subnets. What is your mask?
8. What is the broadcast address of 192.168.192.10/29?
9. How many hosts are available with a Class C /29 mask?
10. What is the subnet for host ID 10.16.3.65/23?
Written Lab 4.2: Written Subnet Practice #2
Given a Class B network and the net bits identified (CIDR), complete the following table to
identify the subnet mask and the number of host addresses possible for each mask.
Classful Address
/16
/17
/18
/19
/20
/21
/22
/23
/24
/25
/26
/27
/28
/29
/30
Subnet Mask
Number of Hosts per Subnet (2x – 2)
Written Labs
173
Written Lab 4.3: Written Subnet Practice #3
Complete the following based on the decimal IP address.
Decimal IP Address
10.25.66.154/23
172.31.254.12/24
192.168.20.123/28
63.24.89.21/18
128.1.1.254/20
208.100.54.209/30
Number of Subnet Number of
Address Class and Host Bits
Subnets (2x )
Number of
Hosts (2x – 2)
Chapter 4
174
u
Easy Subnetting
Review Questions
The following questions are designed to test your understanding of this
chapter’s material. For more information on how to get additional questions,
please see this book’s introduction.
The answers to these questions can be found in Appendix B, “Answers to Chapter
Review Questions.”
1. What is the maximum number of IP addresses that can be assigned to hosts on a local
subnet that uses the 255.255.255.224 subnet mask?
A. 14
B. 15
C. 16
D. 30
E. 31
F. 62
2. You have a network that needs 29 subnets while maximizing the number of host addresses
available on each subnet. How many bits must you borrow from the host field to provide
the correct subnet mask?
A. 2
B. 3
C. 4
D. 5
E. 6
F. 7
3. What is the subnetwork address for a host with the IP address 200.10.5.68/28?
A. 200.10.5.56
B. 200.10.5.32
C. 200.10.5.64
D. 200.10.5.0
Review Questions
175
4. The network address of 172.16.0.0/19 provides how many subnets and hosts?
A. 7 subnets, 30 hosts each
B. 7 subnets, 2,046 hosts each
C. 7 subnets, 8,190 hosts each
D. 8 subnets, 30 hosts each
E. 8 subnets, 2,046 hosts each
F. 8 subnets, 8,190 hosts each
5. Which two statements describe the IP address 10.16.3.65/23? (Choose two.)
A. The subnet address is 10.16.3.0 255.255.254.0.
B. The lowest host address in the subnet is 10.16.2.1 255.255.254.0.
C. The last valid host address in the subnet is 10.16.2.254 255.255.254.0.
D. The broadcast address of the subnet is 10.16.3.255 255.255.254.0.
E. The network is not subnetted.
6. If a host on a network has the address 172.16.45.14/30, what is the subnetwork this
host belongs to?
A. 172.16.45.0
B. 172.16.45.4
C. 172.16.45.8
D. 172.16.45.12
E. 172.16.45.16
7. Which mask should you use on point-to-point WAN links in order to reduce the waste
of IP addresses?
A. /27
B. /28
C. /29
D. /30
E. /31
8. What is the subnetwork number of a host with an IP address of 172.16.66.0/21?
A. 172.16.36.0
B. 172.16.48.0
C. 172.16.64.0
D. 172.16.0.0
Chapter 4
176
u
Easy Subnetting
9. You have an interface on a router with the IP address of 192.168.192.10/29. Including
the router interface, how many hosts can have IP addresses on the LAN attached to the
router interface?
A. 6
B. 8
C. 30
D. 62
E. 126
10. You need to configure a server that is on the subnet 192.168.19.24/29. The router has
the first available host address. Which of the following should you assign to the server?
A. 192.168.19.0 255.255.255.0
B. 192.168.19.33 255.255.255.240
C. 192.168.19.26 255.255.255.248
D. 192.168.19.31 255.255.255.248
E. 192.168.19.34 255.255.255.240
11. You have an interface on a router with the IP address of 192.168.192.10/29. What is
the broadcast address the hosts will use on this LAN?
A. 192.168.192.15
B. 192.168.192.31
C. 192.168.192.63
D. 192.168.192.127
E. 192.168.192.255
12. You need to subnet a network that has 5 subnets, each with at least 16 hosts. Which
classful subnet mask would you use?
A. 255.255.255.192
B. 255.255.255.224
C. 255.255.255.240
D. 255.255.255.248
Review Questions
177
13. You configure a router interface with the IP address 192.168.10.62 255.255.255.192
and receive the following error:
Bad mask /26 for address 192.168.10.62
Why did you receive this error?
A. You typed this mask on a WAN link and that is not allowed.
B. This is not a valid host and subnet mask combination.
C. ip subnet-zero is not enabled on the router.
D. The router does not support IP.
14. If an Ethernet port on a router were assigned an IP address of 172.16.112.1/25, what
would be the valid subnet address of this interface?
A. 172.16.112.0
B. 172.16.0.0
C. 172.16.96.0
D. 172.16.255.0
E. 172.16.128.0
15. Using the following illustration, what would be the IP address of E0 if you were using
the eighth subnet? The network ID is 192.168.10.0/28 and you need to use the last
available IP address in the range. The zero subnet should not be considered valid for
this question.
S0
E0
192.168.10.0/28
A. 192.168.10.142
B. 192.168.10.66
C. 192.168.100.254
D. 192.168.10.143
E. 192.168.10.126
178
Chapter 4
u
Easy Subnetting
16. Using the illustration from the previous question, what would be the IP address of S0
if you were using the first subnet? The network ID is 192.168.10.0/28 and you need to
use the last available IP address in the range. Again, the zero subnet should not be considered valid for this question.
A. 192.168.10.24
B. 192.168.10.62
C. 192.168.10.30
D. 192.168.10.127
17. Which configuration command must be in effect to allow the use of 8 subnets if the
Class C subnet mask is 255.255.255.224?
A. Router(config)#ip classless
B. Router(config)#ip version 6
C. Router(config)#no ip classful
D. Router(config)#ip unnumbered
E. Router(config)#ip subnet-zero
F. Router(config)#ip all-nets
18. You have a network with a subnet of 172.16.17.0/22. Which is the valid host address?
A. 172.16.17.1 255.255.255.252
B. 172.16.0.1 255.255.240.0
C. 172.16.20.1 255.255.254.0
D. 172.16.16.1 255.255.255.240
E. 172.16.18.255 255.255.252.0
F. 172.16.0.1 255.255.255.0
19. Your router has the following IP address on Ethernet0: 172.16.2.1/23. Which of the fol-
lowing can be valid host IDs on the LAN interface attached to the router? (Choose two.)
A. 172.16.0.5
B. 172.16.1.100
C. 172.16.1.198
D. 172.16.2.255
E. 172.16.3.0
F. 172.16.3.255
Review Questions
20. To test the IP stack on your local host, which IP address would you ping?
A. 172.0.0.1
B. 1.0.0.127
C. 127.0.0.1
D. 127.255.255.255
E. 255.255.255.255
179
Chapter
5
VLSMs,
Summarization,
and Troubleshooting
TCP/IP
The following ICND1 exam topics
are covered in this chapter:
11 IP addressing (IPv4 / IPv6)
■■
Identify the appropriate IPv4 addressing scheme using VLSM
and summarization to satisfy addressing requirements in a
LAN/WAN environment.
11 Troubleshooting
■■
Troubleshoot and correct common problems associated with
IP addressing and host configurations.
Now that IP addressing and subnetting have been thoroughly
covered in the last two chapters, you’re now fully prepared and
ready to learn all about variable length subnet masks (VLSMs).
I’ll also show you how to design and implement a network using VLSM in this chapter. After
ensuring you’ve mastered VLSM design and implementation, I’ll demonstrate how to summarize classful boundaries.
We’ll wrap up the chapter by going over IP address troubleshooting, focusing on the steps
Cisco recommends to follow when troubleshooting an IP network.
So get psyched because this chapter will give you powerful tools to hone your knowledge
of IP addressing and networking and seriously refine the important skills you’ve gained so
far. So stay with me—I guarantee that your hard work will pay off! Ready? Let’s go!
To find up-to-the minute updates for this chapter, please see
www.lammle.com/forum or the book’s web page at www.sybex.com.
Variable Length Subnet Masks (VLSMs)
Teaching you a simple way to create many networks from a large single network using subnet
masks of different lengths in various kinds of network designs is what my primary focus will
be in this chapter. Doing this is called VLSM networking, and it brings up another important
subject I mentioned in Chapter 4, “Easy Subnetting,” classful and classless networking.
Older routing protocols like Routing Information Protocol version 1 (RIPv1) do not have
a field for subnet information, so the subnet information gets dropped. This means that if a
router running RIP has a subnet mask of a certain value, it assumes that all interfaces within
the classful address space have the same subnet mask. This is called classful routing, and RIP
is considered a classful routing protocol. We’ll cover RIP and the difference between classful
and classless networks later on in Chapter 8, “IP Routing,” but for now, just remember that
if you try to mix and match subnet mask lengths in a network that’s running an old routing
protocol, such as RIP, it just won’t work!
However, classless routing protocols do support the advertisement of subnet information,
which means you can use VLSM with routing protocols such as RIPv2, Enhanced Interior
Gateway Protocol (EIGRP), and Open Shortest Path First (OSPF). The benefit of this type of
network is that it saves a bunch of IP address space.
Variable Length Subnet Masks (VLSMs)
183
As the name suggests, VLSMs can use subnet masks with different lengths for different
router interfaces. Check out Figure 5.1 to see an example of why classful network designs
are inefficient.
F ig u re 5 .1
Typical classful network
(10 hosts)
.66
.67
(6 hosts)
.34
.35
2 hosts
192.168.10.48/28
.49
.50
.33
192.168.10.32/28
.1
192.168.10.0/28
.2
.3
(25 hosts)
.17
.65
192.168.10.64/28
192.168.10.16/28
.18
.19
(12 hosts)
Looking at Figure 5.1, you can see that there are two routers, each with two LANs and
connected together with a WAN serial link. In a typical classful network design that’s running
RIP, you could subnet a network like this:
192.168.10.0 = Network
255.255.255.240 (/28) = Mask
Our subnets would be—you know this part, right?— 0, 16, 32, 48, 64, 80, etc., which
allows us to assign 16 subnets to our internetwork. But how many hosts would be available on each network? Well, as you know by now, each subnet provides only 14 hosts, so
each LAN has only 14 valid hosts available (don’t forget that the router interface needs an
address too and is included in the amount of needed valid hosts). This means that one LAN
doesn’t even have enough addresses needed for all the hosts, and this network as it is shown
would not work as addressed in the figure! Since the point-to-point WAN link also has
14 valid hosts, it would be great to be able to nick a few valid hosts from that WAN link
to give to our LANs!
All hosts and router interfaces have the same subnet mask—again, known as classful
routing—and if we want this network to be efficient, we would definitely need to add different masks to each router interface.
But that’s not our only problem—the link between the two routers will never use more
than two valid hosts! This wastes valuable IP address space, and it’s the big reason you
need to learn about VLSM network design.
184
Chapter 5
u
VLSMs, Summarization, and Troubleshooting TCP/IP
VLSM Design
Let’s take Figure 5.1 and use a classless design instead, which will become the new network
shown in Figure 5.2. In the previous example, we wasted address space—one LAN didn’t
have enough addresses because every router interface and host used the same subnet mask.
Not so good. A better solution would be to provide for only the needed number of hosts on
each router interface, and we’re going to use VLSMs to achieve that goal.
F ig u re 5 . 2
Classless network design
(10 hosts)
.50
.51
(6 hosts)
.66
.67
2 hosts
192.168.10.72/30
.73
.74
.65
192.168.10.64/29
.1
.33
192.168.10.0/27
.2
.3
(25 hosts)
.49
192.168.10.48/28
192.168.10.32/28
.34
.35
(12 hosts)
Now remember that we can use different size masks on each router interface. If we use
a /30 on our WAN links and a /27, /28, and /29 on our LANs, we’ll get 2 hosts per WAN
interface and 30, 14, and 6 hosts per LAN interface—nice! This makes a huge difference—
not only can we get just the right amount of hosts on each LAN, we still have room to add
more WANs and LANs using this same network!
To implement a VLSM design on your network, you need to have a routing
protocol that sends subnet mask information with the route updates. The
protocols that do that are RIPv2, EIGRP, and OSPF. Remember, RIPv1 will not
work in classless networks, so it’s considered a classful routing protocol.
Implementing VLSM Networks
To create VLSMs quickly and efficiently, you need to understand how block sizes and charts
work together to create the VLSM masks. Table 5.1 shows you the block sizes used when
Variable Length Subnet Masks (VLSMs)
185
creating VLSMs with Class C networks. For example, if you need 25 hosts, then you’ll need
a block size of 32. If you need 11 hosts, you’ll use a block size of 16. Need 40 hosts? Then
you’ll need a block of 64. You cannot just make up block sizes—they’ve got to be the block
sizes shown in Table 5.1. So memorize the block sizes in this table—it’s easy. They’re the
same numbers we used with subnetting!
Table 5 .1 Block sizes
Prefix
Mask
Hosts
Block Size
/25
128
126
128
/26
192
62
64
/27
224
30
32
/28
240
14
16
/29
248
6
8
/30
252
2
4
The next step is to create a VLSM table. Figure 5.3 shows you the table used in creating a VLSM network. The reason we use this table is so we don’t accidentally overlap
networks.
You’ll find the sheet shown in Figure 5.3 very valuable because it lists every block size
you can use for a network address. Notice that the block sizes start at 4 and advance all
the way up to a block size of 128. If you have two networks with block sizes of 128, you
can have only 2 networks. With a block size of 64, you can have only 4, and so on, all the
way to 64 networks using a block size of 4. Of course, this is assuming you’re using the ip
subnet-zero command in your network design.
So now all you need to do is fill in the chart in the lower-left corner, then add the subnets to the worksheet and you’re good to go!
Based on what you’ve learned so far about block sizes and the VLSM table, let’s create a
VLSM network using a Class C network address 192.168.10.0 for the network in Figure 5.4,
then fill out the VLSM table, as shown in Figure 5.5.
In Figure 5.4, we have four WAN links and four LANs connected together, so we need
to create a VLSM network that will save address space. Looks like we have two block sizes
of 32, a block size of 16, and a block size of 8, and our WANs each have a block size of 4.
Take a look and see how I filled out our VLSM chart in Figure 5.5.
There are two important things to note here, the first is that we still have plenty of room
for growth with this VLSM network design. The second point is that we could never achieve
this goal with one subnet mask using classful routing.
Chapter 5
186
F ig u re 5 . 3
u
VLSMs, Summarization, and Troubleshooting TCP/IP
The VLSM table
Subnets Hosts
Block
Subnet
Mask
/25
128
2
126
128
/26
192
4
62
64
/27
224
8
30
32
/28
240
16
14
16
/29
248
32
6
8
/30
252
64
2
4
Network
Hosts
A
B
C
D
E
F
G
H
I
J
K
L
Block
Subnet
Mask
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96
100
104
108
112
116
120
124
128
132
136
140
144
148
152
156
160
164
168
172
176
180
184
188
192
196
200
204
208
212
216
220
224
228
232
236
240
244
248
252
256
Variable Length Subnet Masks (VLSMs)
F ig u re 5 . 4
187
VLSM network example 1
192.168.10.32/27
Fa0/0
Lab D
2 hosts
Network F
2h
Net osts
wor
kE
192.168.10.96/30
192.168.10.100/30
Fa0/0
2h
Net osts
wor
kG
30 hosts
Network B
192.168.10.64/27
20 hosts
Network C
Lab E
192.168.10.104/30
192.168.10.108/30
6 hosts
Network D
Lab A
Fa0/0
192.168.10.8/29
2 hosts
Network H
Lab B
Fa0/0
14 hosts
Network A
192.168.10.16/28
Let’s do another one. Figure 5.6 shows a network with 11 networks, two block sizes of
64, one of 32, five of 16, and three of 4.
First, create your VLSM table and use your block size chart to fill in the table with the
subnets you need. Figure 5.7 shows a possible solution.
Notice that I filled in this entire chart and only have room for one more block size of 4.
You can only gain that amount of address space savings with a VLSM network!
Keep in mind that it doesn’t matter where you start your block sizes as long as you
always begin counting from zero. For example, if you had a block size of 16, you must
start at 0 and incrementally progress from there—0, 16, 32, 48, and so on. You can’t
start with a block size of 16 or some value like 40, and you can’t progress using anything but increments of 16.
Here’s another example. If you had block sizes of 32, start at zero like this: 0, 32, 64, 96, etc.
Again, you don’t get to start wherever you want; you must always start counting from zero. In
the example in Figure 5.7, I started at 64 and 128, with my two block sizes of 64. I didn’t have
much choice because my options are 0, 64, 128, and 192. However, I added the block size of
32, 16, 8, and 4 elsewhere, but they were always in the correct increments required of the specific block size. Remember that if you always start with the largest blocks first, then make your
way to the smaller blocks sizes, you will automatically fall on an increment boundary. It also
guarantees that you are using your address space in the most effective way.
Okay—you have three locations you need to address, and the IP network you have
received is 192.168.55.0 to use as the addressing for the entire network. You’ll use
ip subnet-zero and RIPv2 as the routing protocol because RIPv2 supports VLSM networks but RIPv1 does not. Figure 5.8 shows the network diagram and the IP address of
the RouterA S0/0 interface.
Chapter 5
188
F ig u re 5 . 5
u
VLSMs, Summarization, and Troubleshooting TCP/IP
VLSM table example 1
Subnets Hosts
Block
Subnet
Mask
/25
128
2
126
128
/26
192
4
62
64
/27
224
8
30
32
/28
240
16
14
16
/29
248
32
6
8
/30
252
64
2
4
Network
Hosts
Block
Subnet
Mask
A
12
16
/28
240
B
20
32
/27
224
C
25
32
/27
224
D
4
8
/29
248
E
2
4
/30
252
F
2
4
/30
252
G
2
4
/30
252
H
2
4
/30
252
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96
100
104
108
112
116
120
124
128
132
136
140
144
148
152
156
160
164
168
172
176
180
184
188
192
196
200
204
208
212
216
220
224
228
232
236
240
244
248
252
256
D — 192.168.10.8/29
A — 192.168.10.16/28
B — 192.168.10.32/27
C — 192.168.10.64/27
E — 192.168.10.96/30
F — 192.168.10.100/30
G — 192.168.10.104/30
H — 192.168.10.108/30
Variable Length Subnet Masks (VLSMs)
F ig u re 5 . 6
VLSM network example 2
Net=B Net=C
10 hosts 12 hosts
A: /27
B: /28
D: /30
Fa0/1
Fa0/0
Fa0/2
Core
F: /30
G: /28
Net=D
2 hosts
Net=G
12 hosts
H: /26
I: /28
J: /26
K: /28
Fa0/0
SF
Fa0/1
Net=H Net=I
60 hosts 14 hosts
Fa0/0
NY
Fa0/0
Bldg1
Fa0/1
Fa0/3
t=F
Ne osts
2h
E: /30
Net=A
30 hosts
N
2 h et=
os E
ts
C: /28
189
Fa0/1
Net=J Net=K
60 hosts 8 hosts
From the list of IP addresses on the right of the figure, which IP address do you think
will be placed in each router’s FastEthernet 0/0 interface and serial 0/1 of RouterB?
To answer this, look for clues in Figure 5.8. The first is that interface S0/0 on RouterA
has IP address 192.168.55.2/30 assigned, which makes for an easy answer because A /30 is
255.255.255.252, which gives you a block size of 4. Your subnets are 0, 4, 8, etc. Since the
known host has an IP address of 2, the only other valid host in the zero subnet is 1, so the
third answer down is the right one for the S0/1 interface of RouterB.
The next clues are the listed number of hosts for each of the LANs. RouterA needs 7
hosts—a block size of 16 (/28). RouterB needs 90 hosts—a block size of 128 (/25). And
RouterC needs 23 hosts—a block size of 32 (/27).
Figure 5.9 illustrates this solution.
This is actually pretty simple because once you’ve figured out the block size needed for
each LAN, all you need to get to the right solution is to identify proper clues and, of course,
know your block sizes well!
One last example of VLSM design before we move on to summarization. Figure 5.10
shows three routers, all running RIPv2. Which Class C addressing scheme would you use
to maintain the needs of this network while saving as much address space as possible?
This is actually a pretty clean network design that’s just waiting for you to fill out the
chart. There are block sizes of 64, 32, and 16 and two block sizes of 4. Coming up with the
right solution should be a slam dunk! Take a look at my answer in Figure 5.11.
My solution began at subnet 0, and I used the block size of 64. Clearly, I didn’t have
to go with a block size of 64 because I could’ve chosen a block size of 4 instead. But I
didn’t because I usually like to start with the largest block size and move to the smallest. With that done, I added the block sizes of 32 and 16 as well as the two block sizes
of 4. This solution is optimal because it still leaves lots of room to add subnets to this
network!
Chapter 5
190
F ig u re 5 . 7
u
VLSMs, Summarization, and Troubleshooting TCP/IP
VLSM table example 2
Subnets Hosts
Block
Subnet
Mask
/25
128
2
126
128
/26
192
4
62
64
/27
224
8
30
32
/28
240
16
14
16
/29
248
32
6
8
/30
252
64
2
4
Network
Hosts
A
B
C
D
E
F
G
H
I
J
K
Block
Subnet
Mask
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96
100
104
108
112
116
120
124
128
132
136
140
144
148
152
156
160
164
168
172
176
180
184
188
192
196
200
204
208
212
216
220
224
228
232
236
240
244
248
252
256
B — 192.168.10.0/28
C — 192.168.10.16/28
A — 192.168.10.32/27
H — 192.168.10.64/26
J — 192.168.10.128/26
I — 192.168.10.192/28
G — 192.168.10.208/28
K — 192.168.10.224/28
D — 192.168.10.244/30
E — 192.168.10.248/30
F — 192.168.10.252/30
Variable Length Subnet Masks (VLSMs)
F ig u re 5 . 8
VLSM design example 1
192.168.55.2/30
RouterA
S0/0:
RouterB
S0/0
Fa0/0
Fa0/0
Fa0/0
90 hosts
7 hosts
F ig u re 5 . 9
23 hosts
Solution to VLSM design example 1
192.168.55.2/30
RouterA
RouterC
192.168.55.57/27
192.168.55.29/28
192.168.55.1/30
192.168.55.132/25
192.168.55.3/30
192.168.55.127/26
S0/0: 192.168.55.1/30
RouterB
S0/0
RouterC
Fa0/0
Fa0/0
192.168.55.29/28
Fa0/0
192.168.55.132/25
90 hosts
7 hosts
F ig u re 5 .1 0
192.168.55.57/27
192.168.55.29/28
192.168.55.1/30
192.168.55.132/25
192.168.55.3/30
192.168.55.127/26
192.168.55.57/27
23 hosts
VLSM design example 2
4: Serial 1
60 hosts
Net 1
5: Serial 2
30 hosts
Net 2
12 hosts
Net 3
191
192
Chapter 5
F ig u re 5 .11
u
VLSMs, Summarization, and Troubleshooting TCP/IP
Solution to VLSM design example 2
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96
100
104
108
112
116
120
124
128
1: 192.168.10.0/26
2: 192.168.10.64/27
3: 192.168.10.96/28
4: 192.168.10.112/30
5: 192.168.10.116/30
–chart cut in interest of brevity–
Why Bother with VLSM Design?
You have just been hired by a new company and need to add on to their existing network.
There are no restrictions to prevent you from starting over with a completely new IP address
scheme. Should you use a VLSM classless network or opt for a classful network?
Let’s say you happen to have plenty of address space because you’re using the Class A
10.0.0.0 private network address, so you really can’t imagine that you’d ever run out of
IP addresses. So why would you want to bother with the VLSM design process in this
environment?
Good question! Here’s your answer…
By creating contiguous blocks of addresses to specific areas of your network, you can
then easily summarize the network and keep route updates with a routing protocol to a
minimum. Why would anyone want to advertise hundreds of networks between buildings
when you can just send one summary route between buildings and achieve the same
result? This approach will optimize the network’s performance dramatically!
Summarization
193
To make sure this is clear, let me take a second to explain summary routes. Summarization, also called supernetting, provides route updates in the most efficient way possible
by advertising many routes in one advertisement instead of individually. This saves a
ton of bandwidth and minimizes router processing. As always, you need to use blocks of
addresses to configure your summary routes and watch your network’s performance hum
along efficiently! And remember, block sizes are used in all sorts of networks anyway.
Still, it’s important to understand that summarization works only if you design your network properly. If you carelessly hand out IP subnets to any location on the network, you’ll
quickly notice that you no longer have any summary boundaries. And you won’t get very
far creating summary routes without those, so watch your step!
Summarization
Summarization, also called route aggregation, allows routing protocols to advertise many
networks as one address. The purpose of this is to reduce the size of routing tables on routers
to save memory, which also shortens the amount of time IP requires to parse the routing table
when determining the best path to a remote network.
Figure 5.12 shows how a summary address would be used in an internetwork.
F ig u re 5 .1 2
Summary address used in an internetwork
10.0.0.0/16
10.1.0.0/16
10.2.0.0/16
10.255.0.0/16
10.0.0.0/8
Summarization is pretty straightforward because all you really need to have down is a
solid understanding of the block sizes we’ve been using for subnetting and VLSM design.
For example, if you wanted to summarize the following networks into one network advertisement, you just have to find the block size first, which will make it easy to find your answer:
192.168.16.0 through network 192.168.31.0
Okay—so what’s the block size? Well, there are exactly 16 Class C networks, which fit
neatly into a block size of 16.
Now that we’ve determined the block size, we just need to find the network address and
mask used to summarize these networks into one advertisement. The network address used
to advertise the summary address is always the first network address in the block—in this
example, 192.168.16.0. To figure out a summary mask, we just need to figure out which
mask will get us a block size of 16. If you came up with 240, you got it right! 240 would be
placed in the third octet, which is exactly the octet where we’re summarizing, so the mask
would be 255.255.240.0.
194
Chapter 5
u
VLSMs, Summarization, and Troubleshooting TCP/IP
Here’s another example:
Networks 172.16.32.0 through 172.16.50.0
This isn’t as clean as the previous example because there are two possible answers. Here’s
why: Since you’re starting at network 32, your options for block sizes are 4, 8, 16, 32, 64,
etc., and block sizes of 16 and 32 could work as this summary address. Let’s explore your
two options:
uu
uu
If you went with a block size of 16, then the network address would be 172.16.32.0
with a mask of 255.255.240.0 (240 provides a block of 16). The problem is that this
only summarizes from 32 to 47, which means that networks 48 through 50 would be
advertised as single networks. Even so, this could still be a good solution depending
on your network design.
If you decided to go with a block size of 32 instead, then your summary address would
still be 172.16.32.0, but the mask would be 255.255.224.0 (224 provides a block of 32).
The possible problem with this answer is that it will summarize networks 32 through 63
and we only have networks 32 to 50. No worries if you’re planning on adding networks
51 to 63 later into the same network, but you could have serious problems in your internetwork if somehow networks 51 to 63 were to show up and be advertised from somewhere else in your network! So even though this option does allow for growth, it’s a lot
safer to go with option #1.
Let’s take a look at another example: Your summary address is 192.168.144.0/20, so
what’s the range of host addresses that would be forwarded according to this summary?
The /20 provides a summary address of 192.168.144.0 and mask of 255.255.240.0.
The third octet has a block size of 16, and starting at summary address 144, the next
block of 16 is 160, so your network summary range is 144 to 159 in the third octet. This
is why it comes in handy to be able to count in 16s!
A router with this summary address in the routing table will forward any packet having
destination IP addresses of 192.168.144.1 through 192.168.159.254.
Only two more summarization examples, then we’ll move on to troubleshooting.
In summarization example 4, Figure 5.13, the Ethernet networks connected to router R1
are being summarized to R2 as 192.168.144.0/20. Which range of IP addresses will R2 forward to R1 according to this summary?
F ig u re 5 .1 3 Summarization example 4. The Ethernet networks connected to
router R1 are being summarized to R2 as 192.168.144.0/20. Which IP addresses will R2
forward to R1 according to this summary?
R1
R2
192.168.144.0/20
Summarization
195
No worries—solving this is easier than it looks initially. The question actually has the
summary address listed in it: 192.168.144.0/20. You already know that /20 is 255.255.240.0,
which means you’ve got a block size of 16 in the third octet. Starting at 144, which is also
right there in the question, makes the next block size of 16 equal 160. You can’t go above
159 in the third octet, so the IP addresses that will be forwarded are 192.168.144.1 through
192.168.159.254.
Okay, last one. In Figure 5.14, there are five networks connected to router R1. What’s
the best summary address to R2?
Summarization example 5
172.1.6.0/24 1
72
.1
.5
.0
/2
4
F ig u re 5 .1 4
172.1.4.0/25
R1
R2
24
0/
7.
1.
2.
17
What is the best summary to R2?
172.1.4.128/25
I’ll be honest with you—this is a much harder question than the one in Figure 5.13, so
you’re going to have to look carefully to see the answer. A good approach here would be to
write down all the networks and see if you can find anything in common with all of them:
uu
172.1.4.128/25
uu
172.1.7.0/24
uu
172.1.6.0/24
uu
172.1.5.0/24
uu
172.1.4.0/25
Do you see an octet that looks interesting to you? I do. It’s the third octet. 4, 5, 6, 7, and
yes, it’s a block size of 4. So you can summarize 172.1.4.0 using a mask of 255.255.252.0,
meaning you would use a block size of 4 in the third octet. The IP addresses forwarded
with this summary would be 172.1.4.1 through 172.1.7.254.
To summarize the summarization section, if you’ve nailed down your block sizes, then
finding and applying summary addresses and masks is a relatively straightforward task. But
you’re going to get bogged down pretty quickly if you don’t know what a /20 is or if you
can’t count by 16s!
Visit ccna
.gg/ch5/a
for a
companion
MicroNugget
from CBT
Nuggets.
196
Chapter 5
u
VLSMs, Summarization, and Troubleshooting TCP/IP
Troubleshooting IP Addressing
Because running into trouble now and then in networking is a given, being able to troubleshoot IP addressing is clearly a vital skill. I’m not being negative here—just realistic. The
positive side to this is that if you’re the one equipped with the tools to diagnose and clear up
the inevitable trouble, you get to be the hero when you save the day! Even better? You can
usually fix an IP network regardless of whether you’re on site or at home!
So this is where I’m going to show you the “Cisco way” of troubleshooting IP addressing.
Let’s use Figure 5.15 as an example of your basic IP trouble—poor Sally can’t log in to the
Windows server. Do you deal with this by calling the Microsoft team to tell them their server
is a pile of junk and causing all your problems? Though tempting, a better approach is to first
double-check and verify your network instead.
F ig u re 5 .1 5
Basic IP troubleshooting
E0
172.16.10.1
Sally
172.16.10.2
Server
172.16.20.2
Okay, let’s get started by going through the troubleshooting steps that Cisco recommends.
They’re pretty simple, but important nonetheless. Pretend you’re at a customer host and they’re
complaining that they can’t communicate to a server that just happens to be on a remote network. Here are the four troubleshooting steps Cisco recommends:
1. Open a Command window and ping 127.0.0.1. This is the diagnostic, or loopback,
address, and if you get a successful ping, your IP stack is considered initialized. If it
fails, then you have an IP stack failure and need to reinstall TCP/IP on the host.
C:\>ping 127.0.0.1
Pinging 127.0.0.1 with 32 bytes of data:
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Ping statistics for 127.0.0.1:
Troubleshooting IP Addressing
197
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
2. From the Command window, ping the IP address of the local host (we’ll assume cor-
rect configuration here, but always check the IP configuration too!). If that’s successful,
your network interface card (NIC) is functioning. If it fails, there is a problem with the
NIC. Success here doesn’t just mean that a cable is plugged into the NIC, only that the
IP protocol stack on the host can communicate to the NIC via the LAN driver.
C:\>ping 172.16.10.2
Pinging 172.16.10.2 with 32 bytes of data:
Reply from 172.16.10.2: bytes=32 time<1ms TTL=128
Reply from 172.16.10.2: bytes=32 time<1ms TTL=128
Reply from 172.16.10.2: bytes=32 time<1ms TTL=128
Reply from 172.16.10.2: bytes=32 time<1ms TTL=128
Ping statistics for 172.16.10.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
3. From the CMD window, ping the default gateway (router). If the ping works, it means
that the NIC is plugged into the network and can communicate on the local network.
If it fails, you have a local physical network problem that could be anywhere from the
NIC to the router.
C:\>ping 172.16.10.1
Pinging 172.16.10.1 with 32 bytes of data:
Reply from 172.16.10.1: bytes=32 time<1ms TTL=128
Reply from 172.16.10.1: bytes=32 time<1ms TTL=128
Reply from 172.16.10.1: bytes=32 time<1ms TTL=128
Reply from 172.16.10.1: bytes=32 time<1ms TTL=128
Ping statistics for 172.16.10.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
4. If steps 1 through 3 were successful, try to ping the remote server. If that works, then
you know that you have IP communication between the local host and the remote
server. You also know that the remote physical network is working.
C:\>ping 172.16.20.2
Pinging 172.16.20.2 with 32 bytes of data:
Chapter 5
198
u
VLSMs, Summarization, and Troubleshooting TCP/IP
Reply from 172.16.20.2: bytes=32 time<1ms TTL=128
Reply from 172.16.20.2: bytes=32 time<1ms TTL=128
Reply from 172.16.20.2: bytes=32 time<1ms TTL=128
Reply from 172.16.20.2: bytes=32 time<1ms TTL=128
Ping statistics for 172.16.20.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
If the user still can’t communicate with the server after steps 1 through 4 have been
completed successfully, you probably have some type of name resolution problem and need
to check your Domain Name System (DNS) settings. But if the ping to the remote server
fails, then you know you have some type of remote physical network problem and need to
go to the server and work through steps 1 through 3 until you find the snag.
Before we move on to determining IP address problems and how to fix them, I just want
to mention some basic commands that you can use to help troubleshoot your network from
both a PC and a Cisco router. Keep in mind that though these commands may do the same
thing, they’re implemented differently.
ping Uses ICMP echo request and replies to test if a node IP stack is initialized and alive
on the network.
Displays the list of routers on a path to a network destination by using TTL
time-outs and ICMP error messages. This command will not work from a command prompt.
traceroute
tracert Same function as traceroute, but it’s a Microsoft Windows command and will
not work on a Cisco router.
arp -a
Displays IP-to-MAC-address mappings on a Windows PC.
show ip arp Same function as arp -a, but displays the ARP table on a Cisco router. Like
the commands traceroute and tracert, arp -a and show ip arp are not interchangeable
through DOS and Cisco.
ipconfig /all
Used only from a Windows command prompt; shows you the PC network
configuration.
Once you’ve gone through all these steps and, if necessary, used the appropriate commands, what do you do when you find a problem? How do you go about fixing an IP address
configuration error? Time to cover the next step—determining and fixing the issue at hand!
Determining IP Address Problems
It’s common for a host, router, or other network device to be configured with the wrong
IP address, subnet mask, or default gateway. Because this happens way too often, you
must know how to find and fix IP address configuration errors.
A good way to start is to draw out the network and IP addressing scheme. If that’s
already been done, consider yourself lucky because though sensible, it’s rarely done. Even
Troubleshooting IP Addressing
199
if it is, it’s usually outdated or inaccurate anyway. So either way, it’s a good idea to bite the
bullet and start from scratch.
I’ll show you how a great way to draw out your network using the Cisco
Discovery Protocol (CDP) soon, in Chapter 7, “Managing and Troubleshooting a Cisco Internetwork.”
Once you have your network accurately drawn out, including the IP addressing scheme,
you need to verify each host’s IP address, mask, and default gateway address to establish
the problem. Of course, this is assuming that you don’t have a physical layer problem, or if
you did, that you’ve already fixed it.
Let’s check out the example illustrated in Figure 5.16. A user in the sales department
calls and tells you that she can’t get to ServerA in the marketing department. You ask her
if she can get to ServerB in the marketing department, but she doesn’t know because she
doesn’t have rights to log on to that server. What do you do?
First, guide your user through the four troubleshooting steps you learned in the preceding section. Okay—let’s say steps 1 through 3 work but step 4 fails. By looking at the
figure, can you determine the problem? Look for clues in the network drawing. First, the
WAN link between the Lab_A router and the Lab_B router shows the mask as a /27. You
should already know that this mask is 255.255.255.224 and determine that all networks
are using this mask. The network address is 192.168.1.0. What are our valid subnets and
hosts? 256 – 224 = 32, so this makes our subnets 0, 32, 64, 96, 128, etc. So, by looking at
the figure, you can see that subnet 32 is being used by the sales department. The WAN link
is using subnet 96, and the marketing department is using subnet 64.
F ig u re 5 .1 6
IP address problem 1
Sales
192.168.1.33
Default gateway:
192.168.1.62
Marketing
ServerA
ServerB
192.168.1.66
192.168.1.65
Default gateway: Default gateway:
192.168.1.95
192.168.1.95
Fa0/0 192.168.1.95
Fa0/0 192.168.1.62
Lab A S0/0
192.168.1.97/27
S0/0
DCE
192.168.1.100/27
Lab B
200
Chapter 5
u
VLSMs, Summarization, and Troubleshooting TCP/IP
Now you’ve got to establish what the valid host ranges are for each subnet. From what
you learned at the beginning of this chapter, you should now be able to easily determine the
subnet address, broadcast addresses, and valid host ranges. The valid hosts for the Sales LAN
are 33 through 62, and the broadcast address is 63 because the next subnet is 64, right? For
the Marketing LAN, the valid hosts are 65 through 94 (broadcast 95), and for the WAN link,
97 through 126 (broadcast 127). By closely examining the figure, you can determine that the
default gateway on the Lab_B router is incorrect. That address is the broadcast address for
subnet 64, so there’s no way it could be a valid host!
If you tried to configure that address on the Lab_B router interface, you’d
receive a “bad mask error.” Cisco routers don’t let you type in subnet and
broadcast addresses as valid hosts!
Did you get all that? Let’s try another one to make sure. Figure 5.17 shows a network
problem. A user in the Sales LAN can’t get to ServerB. You have the user run through the
four basic troubleshooting steps and find that the host can communicate to the local network but not to the remote network. Find and define the IP addressing problem.
If you went through the same steps used to solve the last problem, you can see that first,
the WAN link again provides the subnet mask to use— /29, or 255.255.255.248. Assuming
classful addressing, you need to determine what the valid subnets, broadcast addresses, and
valid host ranges are to solve this problem.
F ig u re 5 .17
IP address problem 2
Sales
192.168.1.25
Default gateway:
192.168.1.30
Marketing
ServerA
ServerB
192.168.1.86
192.168.1.87
Default gateway: Default gateway:
192.168.1.81
192.168.1.81
Fa0/0 192.168.1.81
Fa0/0 192.168.1.30
Lab A S0/0
192.168.1.41/29
S0/0
DCE
192.168.1.46/29
Lab B
Troubleshooting IP Addressing
201
The 248 mask is a block size of 8 (256 – 248 = 8, as discussed in Chapter 4), so the subnets both start and increment in multiples of 8. By looking at the figure, you see that the Sales
LAN is in the 24 subnet, the WAN is in the 40 subnet, and the Marketing LAN is in the
80 subnet. Can you see the problem yet? The valid host range for the Sales LAN is 25–30,
and the configuration appears correct. The valid host range for the WAN link is 41–46, and
this also appears correct. The valid host range for the 80 subnet is 81–86, with a broadcast
address of 87 because the next subnet is 88. ServerB has been configured with the broadcast
address of the subnet.
Okay, now that you can figure out misconfigured IP addresses on hosts, what do you
do if a host doesn’t have an IP address and you need to assign one? What you need to do
is scrutinize the other hosts on the LAN and figure out the network, mask, and default
gateway. Let’s take a look at a couple of examples of how to find and apply valid IP
addresses to hosts.
You need to assign a server and router IP addresses on a LAN. The subnet assigned on
that segment is 192.168.20.24/29. The router needs to be assigned the first usable address
and the server needs the last valid host ID. What is the IP address, mask, and default gateway assigned to the server?
To answer this, you must know that a /29 is a 255.255.255.248 mask, which provides
a block size of 8. The subnet is known as 24, the next subnet in a block of 8 is 32, so the
broadcast address of the 24 subnet is 31 and the valid host range is 25–30.
Server IP address: 192.168.20.30
Server mask: 255.255.255.248
Default gateway: 192.168.20.25 (router’s IP address)
Take a look at Figure 5.18 and solve this problem.
F ig u re 5 .1 8
Find the valid host #1
Router A
E0: 192.168.10.33/27
Look at the router’s IP address on Ethernet0. What IP address, subnet mask, and valid
host range could be assigned to the host?
The IP address of the router’s Ethernet0 is 192.168.10.33/27. As you already know, a
/27 is a 224 mask with a block size of 32. The router’s interface is in the 32 subnet. The
next subnet is 64, so that makes the broadcast address of the 32 subnet 63 and the valid
host range 33–62.
202
Chapter 5
u
VLSMs, Summarization, and Troubleshooting TCP/IP
Host IP address: 192.168.10.34–62 (any address in the range except for 33, which is
assigned to the router)
Mask: 255.255.255.224
Default gateway: 192.168.10.33
Figure 5.19 shows two routers with Ethernet configurations already assigned. What are
the host addresses and subnet masks of HostA and HostB?
F ig u re 5 .1 9
Find the valid host #2
Router A
Router B
E0: 192.168.10.65/26
HostA
E0: 192.168.10.33/28
HostB
RouterA has an IP address of 192.168.10.65/26 and RouterB has an IP address
of 192.168.10.33/28. What are the host configurations? RouterA Ethernet0 is in the
192.168.10.64 subnet and RouterB Ethernet0 is in the 192.168.10.32 network.
Host A IP address: 192.168.10.66–126
Host A mask: 255.255.255.192
Host A default gateway: 192.168.10.65
Host B IP address: 192.168.10.34–46
Host B mask: 255.255.255.240
Host B default gateway: 192.168.10.33
Just a couple more examples before you can put this chapter behind you—hang in there!
Figure 5.20 shows two routers. You need to configure the S0/0 interface on RouterA.
The network assigned to the serial link is 172.16.17.0/22. What IP address can be assigned?
F ig u re 5 . 2 0
Find the valid host address #3
172.16.17.0/22
RouterA
S0/0
S0/0
RouterB
Summary
203
First, know that a /22 CIDR is 255.255.252.0, which makes a block size of 4 in the
third octet. Since 17 is listed, the available range is 16.1 through 19.254, so in this example,
the IP address S0/0 could be 172.16.18.255 since that’s within the range.
Okay, last one! You need to find a classful network add that has one Class C network
ID and you need to provide one usable subnet per city while allowing enough usable host
addresses for each city specified in Figure 5.21. What is your mask?
F ig u re 5 . 2 1
Find the valid subnet mask.
Corporate
7 Users
L.A.
15 Users
S.F.
13 Users
N.Y.
7 Users
Wy.
16 Users
Actually, this is probably the easiest thing you’ve done all day! I count 5 subnets
needed, and the Wyoming office needs 16 users—always look for the network that needs
the most hosts! What block size is needed for the Wyoming office? Your answer is 32.
You can’t use a block size of 16 because you always have to subtract 2. What mask provides you with a block size of 32? 224 is your answer because this provides 8 subnets,
each with 30 hosts.
You’re done—the diva has sung and the chicken has safely crossed the road…whew!
Time to take a break, but skip the shot and the beer if that’s what you had in mind
because you need to have your head straight to go through the written lab and review
questions next!
Summary
Again, if you got to this point without getting lost along the way a few times, you’re awesome,
but if you did get lost, don’t stress because most people do! Just be patient with yourself and go
back over the material that tripped you up until it’s all crystal clear. You’ll get there!
This chapter provided you with keys to understanding the oh-so-very-important topic of
variable length subnet masks. You should also know how to design and implement simple
VLSM networks and be clear on summarization as well.
And make sure you understand and memorize Cisco’s troubleshooting methods. You
must remember the four steps that Cisco recommends to take when trying to narrow down
exactly where a network and/or IP addressing problem is and then know how to proceed
systematically to fix it. In addition, you should be able to find valid IP addresses and subnet
masks by looking at a network diagram.
Visit ccna
.gg/ch5/b
for a
companion
MicroNugget
from CBT
Nuggets.
204
Chapter 5
u
VLSMs, Summarization, and Troubleshooting TCP/IP
Exam Essentials
Describe the benefits of variable length subnet masks (VLSMs). VLSMs enable the creation
of subnets of specific sizes and allow the division of a classless network into smaller networks
that do not need to be equal in size. This makes use of the address space more efficient because
many times IP addresses are wasted with classful subnetting.
Understand the relationship between the subnet mask value and the resulting block size and
the allowable IP addresses in each resulting subnet. The relationship between the classful
network being subdivided and the subnet mask used determines the number of possible hosts
or the block size. It also determines where each subnet begins and ends and which IP addresses
cannot be assigned to a host within each subnet.
Describe the process of summarization or route aggregation and its relationship to
subnetting. Summarization is the combining of subnets derived from a classful network
for the purpose of advertising a single route to neighboring routers instead of multiple
routes, reducing the size of routing tables and speeding the route process.
Calculate the summary mask that will advertise a single network representing all subnets.
The network address used to advertise the summary address is always the first network
address in the block of subnets. The mask is the subnet mask value that yields the same
block size.
Remember the four diagnostic steps. The four simple steps that Cisco recommends for
troubleshooting are ping the loopback address, ping the NIC, ping the default gateway, and
ping the remote device.
Identify and mitigate an IP addressing problem. Once you go through the four troubleshooting steps that Cisco recommends, you must be able to determine the IP addressing
problem by drawing out the network and finding the valid and invalid hosts addressed in
your network.
Understand the troubleshooting tools that you can use from your host and a Cisco router.
The ping 127.0.0.1 command tests your local IP stack, and tracert is a Windows command to track the path a packet takes through an internetwork to a destination. Cisco routers
use the command traceroute, or just trace for short. Don’t confuse the Windows and Cisco
commands. Although they produce the same output, they don’t work from the same prompts.
The command ipconfig /all will display your PC network configuration from a DOS
prompt, and arp -a (again from a DOS prompt) will display IP-to-MAC-address mapping
on a Windows PC.
Written Lab 5
Written Lab 5
The answers to this lab can be found in Appendix A, “Answers to Written Labs.”
For each of the following sets of networks, determine the summary address and the
mask to be used that will summarize the subnets.
1. 192.168.1.0/24 through 192.168.12.0/24
2. 172.144.0.0 through 172.159.0.0
3. 192.168.32.0 through 192.168.63.0
4. 192.168.96.0 through 192.168.111.0
5. 66.66.0.0 through 66.66.15.0
6. 192.168.1.0 through 192.168.120.0
7. 172.16.1.0 through 172.16.7.0
8. 192.168.128.0 through 192.168.190.0
9. 53.60.96.0 through 53.60.127.0
10. 172.16.10.0 through 172.16.63.0
205
Chapter 5
206
u
VLSMs, Summarization, and Troubleshooting TCP/IP
Review Questions
The following questions are designed to test your understanding of this
chapter’s material. For more information on how to get additional questions,
please see this book’s introduction.
The answers to these questions can be found in Appendix B, “Answers to Chapter
Review Questions.”
1. On a VLSM network, which mask should you use on point-to-point WAN links in
order to reduce the waste of IP addresses?
A. /27
B. /28
C. /29
D. /30
E. /31
2. In the network shown in the diagram, how many computers could be in subnet B?
Network B
.50
.51
Network A
.66
.67
Network C
192.168.10.72/30
.73
.74
.65
192.168.10.64/29
192.168.10.0/27
.2
.3
Network D
A. 6
B. 12
C. 14
D. 30
.1
.33
.49
192.168.10.48/28
192.168.10.32/28
.34
.35
Network E
Review Questions
3. In the diagram below, in order to have as efficient IP addressing as possible, which
network should use a /29 mask?
30 hosts
Network B
Fa0/0
Fa0/0
Lab D
Lab A
Fa0/0
6 hosts
Network D
2 hosts
Network H
Lab E
2h
Net osts
wor
kG
2h
Net osts
wor
kE
2 hosts
Network F
20 hosts
Network C
Lab B
Fa0/0
14 hosts
Network A
A. A
B. B
C. C
D. D
4. To use VLSM, what capability must the routing protocols in use possess?
A. Support for multicast
B. Multiprotocol support
C. Transmission of subnet mask information
D. Support for unequal load balancing
5. What summary address would cover all the networks shown and advertise a single,
efficient route to Router B that won’t advertise more networks than needed?
172.16.1.0/24
172.16.10.0/24
172.16.5.0/24
172.16.15.0/24
172.16.7.0/24
172.16.11.0/24
172.16.6.0/24
A. 172.16.0.0/24
B. 172.16.1.0/24
C. 172.16.0.0/24
D. 172.16.0.0/20
E. 172.16.16.0/28
F. 172.16.0.0/27
?
Router B
207
208
Chapter 5
u
VLSMs, Summarization, and Troubleshooting TCP/IP
6. In the diagram below what is the most likely reason the station cannot ping outside of
its network?
RouterA
E0: 192.168.10.33/27
IP 192.168.10.28/27
Default gateway 192.168.10.33/27
A. The IP address is incorrect on E0 of the router.
B. The default gateway address is incorrect on the station.
C. The IP address on the station is incorrect.
D. The router is malfunctioning.
7. If Host A is configured with an incorrect default gateway and all other computers and the
router are known to be configured correctly, which of the following statements is TRUE?
A. Host A cannot communicate with the router.
B. Host A can communicate with other hosts in the same subnet.
C. Host A can communicate with hosts in other subnets.
D. Host A can communicate with no other systems.
8. Which of the following troubleshooting steps, if completed successfully, also confirms
the other steps will succeed as well?
A. ping a remote computer
B. ping the loopback address
C. ping the NIC
D. ping the default gateway
9. When a ping to the local host IP address fails, what can you assume?
A. The IP address of the local host is incorrect.
B. The IP address of the remote host is incorrect.
C. The NIC is not functional.
D. The IP stack has failed to initialize.
Review Questions
10. When a ping to the local host IP address succeeds but a ping to the default gateway
IP address fails, what can you rule out? (Choose all that apply.)
A. The IP address of the local host is incorrect.
B. The IP address of the gateway is incorrect.
C. The NIC is not functional.
D. The IP stack has failed to initialize.
11. Which of the networks in the diagram could use a /29 mask?
Corporate
7 Users
L.A.
15 Users
S.F.
13 Users
N.Y.
7 Users
Wy.
16 Users
A. Corporate
B. LA
C. SF
D. NY
E. none
12. What network service is the most likely problem if you can ping a computer by IP
address but not by name?
A. DNS
B. DHCP
C. ARP
D. ICMP
13. When you issue the ping command, what protocol are you using?
A. DNS
B. DHCP
C. ARP
D. ICMP
209
Chapter 5
210
u
VLSMs, Summarization, and Troubleshooting TCP/IP
14. Which of the following commands displays the networks traversed on a path to a
network destination?
A. ping
B. traceroute
C. pingroute
D. pathroute
15. What command generated the output shown below?
Reply
Reply
Reply
Reply
from
from
from
from
172.16.10.2:
172.16.10.2:
172.16.10.2:
172.16.10.2:
bytes=32
bytes=32
bytes=32
bytes=32
time<1ms
time<1ms
time<1ms
time<1ms
TTL=128
TTL=128
TTL=128
TTL=128
A. traceroute
B. show ip route
C. ping
D. pathping
16. In the work area, match the command to its function on the right.
traceroute
Displays the ARP table on a Cisco router
arp -a
Displays the list of routers on a path to a network destination
show ip arp
Shows you the PC network configuration
ipconfig /all
Displays IP-to-MAC-address mappings on a Windows PC
17. Which of the following network addresses correctly summarizes the three networks
shown below efficiently?
10.0.0.0/16
10.1.0.0/16
10.2.0.0/16
A. 10.0.0.0/15
B. 10.1.0.0/8
C. 10.0.0.0/14
D. 10.0.0.8/16
Review Questions
18. What command displays the ARP table on a Cisco router?
A. show ip arp
B. traceroute
C. arp -a
D. tracert
19. What switch must be added to the ipconfig command on a PC to verify DNS
configuration?
A. /dns
B. -dns
C. /all
D. showall
20. Which of the following is the best summarization of the following networks:
192.168.128.0 through 192.168.159.0
A. 192.168.0.0/24
B. 192.168.128.0/16
C. 192.168.128.0/19
D. 192.168.128.0/20
211
Chapter
6
Cisco’s
Internetworking
Operating
System (IOS)
The following ICND1 exam topics
are covered in this chapter:
11 LAN Switching Technologies
■■
Configure and verify initial switch configuration including
remote access management.
■■
Cisco IOS commands to perform basic switch setup
11 IP Routing Technologies
■■
Configure and verify utilizing the CLI to set basic Router configuration
■■
Cisco IOS commands to perform basic router setup
■■
Configure and verify operation status of an ethernet interface
■■
Verify router configuration and network connectivity
■■
Cisco IOS commands to review basic router information
and network connectivity
11 Network Device Security
■■
Configure and verify network device security features such as
■■
Device password security
■■
Enable secret vs enable
■■
Transport
■■
Disable telnet
■■
SSH
■■
VTYs
■■
Physical security
■■
Service password
■■
Describe external authentication methods
11 Troubleshooting
■■
Troubleshoot and resolve Layer 1 problems
■■
Framing
■■
CRC
■■
Runts
■■
Giants
■■
Dropped packets
■■
Late collision
■■
Input / Output errors
It’s time to introduce you to the Cisco Internetwork
Operating System (IOS). The IOS is what runs Cisco
routers as well as Cisco’s switches, and it’s also what
we use to configure these devices.
So that’s what you’re going to learn about in this chapter. I’m going to show you how to
configure a Cisco IOS device using the Cisco IOS command-line interface (CLI). Once proficient with this interface, you’ll be able to configure hostnames, banners, passwords, and
more as well as troubleshoot skillfully using the Cisco IOS.
We’ll also begin the journey to mastering the basics of router and switch configurations
plus command verifications in this chapter.
I’ll start with a basic IOS switch to begin building the network we’ll use throughout
this book for configuration examples. Don’t forget—I’ll be using both switches and routers
throughout this chapter, and we configure these devices pretty much the same way. Things
diverge when we get to the interfaces where the differences between the two become key, so
pay attention closely when we get to that point!
Just as it was with preceding chapters, the fundamentals presented in this chapter are
important building blocks to have solidly in place before moving on to the more advanced
material coming up in the next ones.
To find up-to-the minute updates for this chapter, please see
www.lammle.com/forum or the book’s web page at www.sybex.com.
The IOS User Interface
The Cisco Internetwork Operating System (IOS) is the kernel of Cisco routers as well as
all current Catalyst switches. In case you didn’t know, a kernel is the elemental, indispensable part of an operating system that allocates resources and manages tasks like low-level
hardware interfaces and security.
Coming up, I’ll show you the Cisco IOS and how to configure a Cisco switch using the
command-line interface (CLI). The configurations you’ll see in this chapter are exactly
the same as they are on a Cisco router.
216
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
Cisco IOS
The Cisco IOS is a proprietary kernel that provides routing, switching, internetworking,
and telecommunications features. The first IOS was written by William Yeager in 1986 and
enabled networked applications. It runs on most Cisco routers as well as a growing number
of Cisco Catalyst switches, like the Catalyst 2960 and 3560 series switches used in this
book. And it’s an essential for the Cisco exam objectives!
Here’s a short list of some important things that the Cisco router IOS software is
responsible for:
uu
Carrying network protocols and functions
uu
Connecting high-speed traffic between devices
uu
Adding security to control access and stop unauthorized network use
uu
Providing scalability for ease of network growth and redundancy
uu
Supplying network reliability for connecting to network resources
You can access the Cisco IOS through the console port of a router or switch, from a
modem into the auxiliary (or aux) port on a router, or even through Telnet and Secure
Shell (SSH). Access to the IOS command line is called an EXEC session.
Connecting to a Cisco IOS Device
We connect to a Cisco device to configure it, verify its configuration, and check statistics, and although there are different approaches to this, the first place you would usually connect to is the console port. The console port is usually an RJ-45, 8-pin modular
connection located at the back of the device, and there may or may not be a password
set on it by default.
Look back into Chapter 2, “Ethernet Networking and Data Encapsulation,”
to review how to configure a PC and enable it to connect to a router
console port.
You can also connect to a Cisco router through an auxiliary port, which is really the
same thing as a console port, so it follows that you can use it as one. The main difference
with an auxiliary port is that it also allows you to configure modem commands so that a
modem can be connected to the router. This is a cool feature because it lets you dial up a
remote router and attach to the auxiliary port if the router is down and you need to configure it remotely, out-of-band. One of the differences between Cisco routers and switches is
that switches do not have an auxiliary port.
The third way to connect to a Cisco device is in-band, through the program Telnet or
Secure Shell (SSH). In-band means configuring the device via the network, the opposite of
out-of-band. We covered Telnet and SSH back in Chapter 3, and in this chapter, I’ll show
you how to configure access to both of these protocols on a Cisco device.
The IOS User Interface
217
Figure 6.1 shows an illustration of a Cisco 2960 switch. Really focus in on all the different kinds of interfaces and connections! On the right side is the 10/100/1000 uplink. You
can use either the UTP port or the fiber port, but not both at the same time.
F ig u re 6 .1
A Cisco 2960 switch
The 3560 switch I’ll be using in this book looks a lot like the 2960, but it can perform
layer 3 switching, unlike the 2960, which is limited to only layer 2 functions.
I also want to take a moment and tell you about the 2800 series router because that’s
the router series I’ll be using in this book. This router is known as an Integrated Services
Router (ISR) and Cisco has updated this to the 2900 series but I still have plenty of 2800
series routers in my production networks. Figure 6.2 shows a new 1900 series router. The
new ISR series of routers are nice; they get their name because many services, like security,
are built into it. It’s a modular device, much faster and a lot sleeker than the older 2600
series routers, and it’s elegantly designed to support a broad new range of interface options.
The new ISR series router can offer multiple serial interfaces, which can be used for connecting a T1 using a serial V.35 WAN connection. And multiple Fast Ethernet or Gigabit
Ethernet ports can be used on the router, depending on the model. This router also has one
console via an RJ-45 connector and another through the USB port. There is also an auxiliary connection to allow a console connection via a remote modem.
F ig u re 6 . 2
A new Cisco 1900 router
You need to keep in mind that for the most part, you get some serious bang for your
buck with the 2800/2900—unless you start adding a bunch of interfaces to it. You’ve got
to pony up for each one of those little beauties, so this can really start to add up and fast!
A couple of other series of routers that will set you back a lot less than the 2800 series
are the 1800/1900s, so look into these routers if you want a less-expensive alternative to
the 2800/2900 but still want to run the same IOS.
So even though I’m going to be using mostly 2800 series routers and 2960/3560 switches
throughout this book to demonstrate examples of IOS configurations, I want to point out
that the particular router model you use to practice for the Cisco exam isn’t really important.
The switch types are, though—you definitely need 2950 or 2960 switches, as well as a 3560
switch if you want to measure up to the exam objectives!
218
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
You can find more information about all Cisco routers at www.cisco.com/
en/US/products/hw/routers/index.html.
Bringing Up a Switch
When you first bring up a Cisco IOS device, it will run a power-on self-test—a POST. Upon
passing that, the machine will look for and then load the Cisco IOS from flash memory if an
IOS file is present, then expand it into RAM. As you probably know, flash memory is electronically erasable programmable read-only memory—an EEPROM. The next step is for the
IOS to locate and load a valid configuration known as the startup-config that will be stored
in nonvolatile RAM (NVRAM).
Once the IOS is loaded and up and running, the startup-config will be copied from
NVRAM into RAM and from then on referred to as the running-config.
But if a valid startup-config isn’t found in NVRAM, your switch will enter setup mode,
giving you a step-by-step dialog to help configure some basic parameters on it.
You can also enter setup mode at any time from the command line by typing the command
setup from privileged mode, which I’ll get to in a minute. Setup mode only covers some basic
commands and generally isn’t really all that helpful. Here’s an example:
Would you like to enter the initial configuration dialog? [yes/no]: y
At any point you may enter a question mark ‘?’ for help.
Use ctrl-c to abort configuration dialog at any prompt.
Default settings are in square brackets ‘[]’.
Basic management setup configures only enough connectivity
for management of the system, extended setup will ask you
to configure each interface on the system
Would you like to enter basic management setup? [yes/no]: y
Configuring global parameters:
Enter host name [Switch]: Ctrl+C
Configuration aborted, no changes made.
You can exit setup mode at any time by pressing Ctrl+C.
Command-line Interface (CLI)
219
I highly recommend going through setup mode once, then never again because you
should always use the CLI instead!
Command-line Interface (CLI)
I sometimes refer to the CLI as “cash line interface” because the ability to create advanced
configurations on Cisco routers and switches using the CLI will earn you some decent cash!
Entering the CLI
After the interface status messages appear and you press Enter, the Switch> prompt will
pop up. This is called user exec mode, or user mode for short, and although it’s mostly used
to view statistics, it is also a stepping stone along the way to logging in to privileged exec
mode, called privileged mode for short.
You can view and change the configuration of a Cisco router only while in privileged
mode, and you enter it via the enable command like this:
Switch>enable
Switch#
The Switch# prompt signals you’re in privileged mode where you can both view and
change the switch configuration. You can go back from privileged mode into user mode by
using the disable command:
Switch#disable
Switch>
You can type logout from either mode to exit the console:
Switch>logout
Switch con0 is now available
Press RETURN to get started.
Next, I’ll show how to perform some basic administrative configurations.
Overview of Router Modes
To configure from a CLI, you can make global changes to the router by typing configure
terminal or just config t. This will get you into global configuration mode where you can
make changes to the running-config. Commands run from global configuration mode are
predictably referred to as global commands, and they are typically set only once and affect
the entire router.
220
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
Type config from the privileged-mode prompt and then press Enter to opt for the default
of terminal like this:
Switch#config
Configuring from terminal, memory, or network [terminal]? [press enter]
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#
At this point, you make changes that affect the router as a whole (globally), hence the
term global configuration mode. For instance, to change the running-config—the current
configuration running in dynamic RAM (DRAM)—use the configure terminal command,
as I just demonstrated.
CLI Prompts
Let’s explore the different prompts you’ll encounter when configuring a switch or router now,
because knowing them well will really help you orient yourself and recognize exactly where
you are at any given time while in configuration mode. I’m going to demonstrate some of the
prompts used on a Cisco switch and cover the various terms used along the way. Make sure
you’re very familiar with them, and always check your prompts before making any changes to
a router’s configuration!
We’re not going to venture into every last obscure command prompt you could potentially
come across in the configuration mode world because that would get us deep into territory
that’s beyond the scope of this book. Instead, I’m going to focus on the prompts you absolutely
must know to pass the exam plus the very handy and seriously vital ones you’ll need and use
the most in real-life networking—the cream of the crop.
Don’t freak! It’s not important that you understand exactly what each of
these command prompts accomplishes just yet because I’m going to completely fill you in on all of them really soon. For now, relax and focus on just
becoming familiar with the different prompts available and all will be well!
Interfaces
To make changes to an interface, you use the interface command from global configuration mode:
Switch(config)#interface ?
Async
Async interface
BVI
Bridge-Group Virtual Interface
CTunnel
CTunnel interface
Dialer
Dialer interface
Command-line Interface (CLI)
221
FastEthernet
FastEthernet IEEE 802.3
Filter
Filter interface
Filtergroup
Filter Group interface
GigabitEthernet
GigabitEthernet IEEE 802.3z
Group-Async
Async Group interface
Lex
Lex interface
Loopback
Loopback interface
Null
Null interface
Port-channel
Ethernet Channel of interfaces
Portgroup
Portgroup interface
Pos-channel
POS Channel of interfaces
Tunnel
Tunnel interface
Vif
PGM Multicast Host interface
Virtual-Template
Virtual Template interface
Virtual-TokenRing Virtual TokenRing
Vlan
Catalyst Vlans
fcpa
Fiber Channel
range
interface range command
Switch(config)#interface fastEthernet 0/1
Switch(config-if)#)
Did you notice that the prompt changed to Switch(config-if)#? This tells you that you’re
in interface configuration mode. And wouldn’t it be nice if the prompt also gave you an indication of what interface you were configuring? Well, at least for now we’ll have to live without
the prompt information, because it doesn’t. But it should already be clear to you that you really
need to pay attention when configuring an IOS device!
Line Commands
To configure user-mode passwords, use the line command. The prompt then becomes
Switch(config-line)#:
Switch(config)#line ?
<0-16>
First Line number
console Primary terminal line
vty
Virtual terminal
Switch(config)#line console 0
Switch(config-line)#
The line console 0 command is a global command, and sometimes you’ll also hear
people refer to global commands as major commands. In this example, any command
typed from the (config-line) prompt is known as a subcommand.
222
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
Access List Configurations
To configure a standard named access list, you’ll need to get to the prompt
Switch(config-std-nacl)#:
Switch#config t
Switch(config)#ip access-list standard Todd
Switch(config-std-nacl)#
What you see here is a typical basic standard ACL prompt. There are various ways to configure access lists, and the prompts are only slightly different from this particular example.
Routing Protocol Configurations
I need to point out that we don’t use routing or router protocols on 2960 switches, but we
can and will use them on my 3560 switches. Here is an example of configuring routing on
a layer 3 switch:
Switch(config)#router rip
IP routing not enabled
Switch(config)#ip routing
Switch(config)#router rip
Switch(config-router)#
Did you notice that the prompt changed to Switch(config-router)#? To make sure you
achieve the objectives specific to the Cisco exam and this book, I’ll configure RIPv2, OSPF,
RIPng, and OSPFv3. And don’t worry—I’ll explain all of these in detail soon, in Chapter 8,
“IP Routing,” and Chapter 14, “Internet Protocol Version 6 (IPv6)”!
Defining Router Terms
Table 6.1 defines some of the terms I’ve used so far.
Table 6 .1 Router terms
Mode
Definition
User exec mode
Limited to basic monitoring commands
Privileged exec mode
Provides access to all other router commands
Global configuration mode
Commands that affect the entire system
Specific configuration modes
Commands that affect interfaces/processes only
Setup mode
Interactive configuration dialog
Command-line Interface (CLI)
223
Editing and Help Features
The Cisco advanced editing features can also help you configure your router. If you type in
a question mark (?) at any prompt, you’ll be given a list of all the commands available from
that prompt:
Switch#?
Exec commands:
access-enable
Create a temporary Access-List entry
access-template Create a temporary Access-List entry
archive
manage archive files
cd
Change current directory
clear
Reset functions
clock
Manage the system clock
cns
CNS agents
configure
Enter configuration mode
connect
Open a terminal connection
copy
Copy from one file to another
debug
Debugging functions (see also 'undebug')
delete
Delete a file
diagnostic
Diagnostic commands
dir
List files on a filesystem
disable
Turn off privileged commands
disconnect
Disconnect an existing network connection
dot1x
IEEE 802.1X Exec Commands
enable
Turn on privileged commands
eou
EAPoUDP
erase
Erase a filesystem
exit
Exit from the EXEC
--More-- ?
Press RETURN for another line, SPACE for another page, anything else to quit
And if this is not enough information for you, you can press the spacebar to get another
whole page of information, or you can press Enter to go one command at a time. You can
also press Q, or any other key for that matter, to quit and return to the prompt. Notice that
I typed a question mark (?) at the more prompt and it told me what my options were from
that prompt.
Here’s a shortcut: To find commands that start with a certain letter, use the letter and
the question mark with no space between them, like this:
Switch#c?
cd
clear
clock
cns
configure
224
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
connect copy
Switch#c
Okay, see that? By typing c?, I got a response listing all the commands that start with c.
Also notice that the Switch#c prompt reappears after the list of commands is displayed. This
can be really helpful when you happen to be working with long commands but you’re short
on patience and still need the next possible one. It would get old fast if you actually had to
retype the entire command every time you used a question mark!
So with that, let’s find the next command in a string by typing the first command and
then a question mark:
Switch#clock ?
set Set the time and date
Switch#clock set ?
hh:mm:ss Current Time
Switch#clock set 2:34 ?
% Unrecognized command
Switch#clock set 2:34:01 ?
<1-31> Day of the month
MONTH
Month of the year
Switch#clock set 2:34:01 21 july ?
<1993-2035> Year
Switch#clock set 2:34:01 21 august 2013
Switch#
00:19:45: %SYS-6-CLOCKUPDATE: System clock has been updated from 00:19:45 UTC Mon
Mar 1 1993 to 02:34:01 UTC Wed Aug 21 2013, configured from console by console.
I entered the clock ? command and got a list of the next possible parameters plus what
they do. Make note of the fact that you can just keep typing a command, a space, and then
a question mark until (carriage return) is your only option left.
And if you’re typing commands and receive
Switch#clock set 11:15:11
% Incomplete command.
no worries—that’s only telling you that the command string simply isn’t complete quite yet.
All you need to do is to press the up arrow key to redisplay the last command entered and
then continue with the command by using your question mark.
Command-line Interface (CLI)
225
But if you get the error
Switch(config)#access-list 100 permit host 1.1.1.1 host 2.2.2.2
^
% Invalid input detected at '^' marker.
all is not well because it means you actually have entered a command incorrectly. See that
little caret—the ^? It’s a very helpful tool that marks the exact point where you blew it and
made a mess.
Here’s another example of when you’ll see that caret:
Switch#sh fastethernet 0/0
^
% Invalid input detected at ‘^’ marker.
This command looks right, but be careful! The problem is that the full command is show
interface fastethernet 0/0.
Now if you receive the error
Switch#sh cl
% Ambiguous command:
"sh cl"
you’re being told that there are multiple commands that begin with the string you entered
and it’s not unique. Use the question mark to find the exact command you need:
Switch#sh cl?
class-map clock
cluster
Case in point: There are three commands that start with show cl.
Table 6.2 lists the enhanced editing commands available on a Cisco router.
Table 6 . 2 Enhanced editing commands
Command
Meaning
Ctrl+A
Moves your cursor to the beginning of the line
Ctrl+E
Moves your cursor to the end of the line
Esc+B
Moves back one word
Ctrl+B
Moves back one character
Ctrl+F
Moves forward one character
Esc+F
Moves forward one word
Chapter 6
226
u
Cisco’s Internetworking Operating System (IOS)
table 6 . 2 Enhanced editing commands (continued)
Command
Meaning
Ctrl+D
Deletes a single character
Backspace
Deletes a single character
Ctrl+R
Redisplays a line
Ctrl+U
Erases a line
Ctrl+W
Erases a word
Ctrl+Z
Ends configuration mode and returns to EXEC
Tab
Finishes typing a command for you
Another really cool editing feature you need to know about is the automatic scrolling
of long lines. In the following example, the command I typed reached the right margin and
automatically moved 11 spaces to the left. How do I know this? Because the dollar sign [$]
is telling me that the line has been scrolled to the left:
Switch#config t
Switch(config)#$ 100 permit ip host 192.168.10.1 192.168.10.0 0.0.0.255
You can review the router-command history with the commands shown in Table 6.3.
Table 6 . 3 Router-command history
Command
Meaning
Ctrl+P or up arrow
Shows last command entered
Ctrl+N or down arrow
Shows previous commands entered
show history
Shows last 20 commands entered by default
show terminal
Shows terminal configurations and history buffer size
terminal history size
Changes buffer size (max 256)
Command-line Interface (CLI)
227
The following example demonstrates the show history command as well as how to change
the history’s size. It also shows how to verify the history with the show terminal command.
First, use the show history command, which will allow you to see the last 20 commands
that were entered on the router (even though my particular router reveals only 10 commands
because that’s all I’ve entered since rebooting it). Check it out:
Switch#sh history
sh fastethernet 0/0
sh ru
sh cl
config t
sh history
sh flash
sh running-config
sh startup-config
sh ver
sh history
Okay—now, we’ll use the show terminal command to verify the terminal history size:
Switch#sh terminal
Line 0, Location: "", Type: ""
Length: 24 lines, Width: 80 columns
Baud rate (TX/RX) is 9600/9600, no parity, 2 stopbits, 8 databits
Status: PSI Enabled, Ready, Active, Ctrl-c Enabled, Automore On
0x40000
Capabilities: none
Modem state: Ready
[output cut]
Modem type is unknown.
Session limit is not set.
Time since activation: 00:17:22
Editing is enabled.
History is enabled, history size is 10.
DNS resolution in show commands is enabled
Full user help is disabled
Allowed input transports are none.
Allowed output transports are telnet.
Preferred transport is telnet.
No output characters are padded
No special data dispatching characters
Chapter 6
228
u
Cisco’s Internetworking Operating System (IOS)
When Should I Use the Cisco Editing Features?
You’ll find yourself using a couple of editing features quite often and some not so much,
if at all. Understand that Cisco didn’t make these up; these are just old Unix commands!
Even so, Ctrl+A is still a really helpful way to negate a command.
For example, if you were to put in a long command and then decide you didn’t want to
use that command in your configuration after all, or if it didn’t work, then you could just
press your up arrow key to show the last command entered, press Ctrl+A, type no and
then a space, press Enter—and poof! The command is negated. This doesn’t work on
every command, but it works on a lot of them and saves some serious time!
Administrative Configurations
Even though the following sections aren’t critical to making a router or switch work on a
network, they’re still really important. I’m going to guide you through configuring specific
commands that are particularly helpful when administering your network.
You can configure the following administrative functions on a router and switch:
uu
Hostnames
uu
Banners
uu
Passwords
uu
Interface descriptions
Remember, none of these will make your routers or switches work better or faster, but
trust me, your life will be a whole lot better if you just take the time to set these configurations on each of your network devices. This is because doing so makes troubleshooting and
maintaining your network a great deal easier—seriously! In this next section, I’ll be demonstrating commands on a Cisco switch, but understand that these commands are used in
the exact same way on a Cisco router.
Hostnames
We use the hostname command to set the identity of the router. This is only locally significant, meaning it doesn’t affect how the router performs name lookups or how the device
actually works on the internetwork. But the hostname is still important because it’s often
used for authentication in many wide area networks (WANs). Here’s an example:
Switch#config t
Switch(config)#hostname Todd
Administrative Configurations
229
Todd(config)#hostname Chicago
Chicago(config)#hostname Todd
Todd(config)#
I know it’s pretty tempting to configure the hostname after your own name, but it’s usually
a much better idea to name the router something that relates to its physical location. A name
that maps to where the device lives will make finding it a whole lot easier, which among other
things, confirms that you’re actually configuring the correct device. Even though it seems like
I’m completely ditching my own advice by naming mine Todd, I’m not, because this particular device really does live in “Todd’s” office. Its name perfectly maps to where it is, so it won’t
be confused with those in the other networks I work with!
Banners
A very good reason for having a banner is to give any and all who dare attempt to telnet or
sneak into your internetwork a little security notice. And they’re very cool because you can
create and customize them so that they’ll greet anyone who shows up on the router with
exactly the information you want them to have!
Here are the three types of banners you need to be sure you’re familiar with:
uu
Exec process creation banner
uu
Login banner
uu
Message of the day banner
And you can see them all illustrated in the following code:
Todd(config)#banner ?
LINE
c banner-text c, where 'c' is a delimiting character
exec
Set EXEC process creation banner
incoming
Set incoming terminal line banner
login
Set login banner
motd
Set Message of the Day banner
prompt-timeout Set Message for login authentication timeout
slip-ppp
Set Message for SLIP/PPP
Message of the day (MOTD) banners are the most widely used banners because they
give a message to anyone connecting to the router via Telnet or an auxiliary port or even
through a console port as seen here:
Todd(config)#banner motd ?
LINE c banner-text c, where ‘c’ is a delimiting character
Todd(config)#banner motd #
Enter TEXT message. End with the character ‘#’.
$ Acme.com network, then you must disconnect immediately.
230
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
#
Todd(config)#^Z (Press the control key + z keys to return to privileged mode)
Todd#exit
Router con0 is now available
Press RETURN to get started.
If you are not authorized to be in Acme.com network, then you
must disconnect immediately.
Todd#
This MOTD banner essentially tells anyone connecting to the router to get lost if they’re
not on the guest list. The part to focus upon here is the delimiting character, which is what
informs the router the message is done. Clearly, you can use any character you want for it
except for the delimiting character in the message itself. Once the message is complete, press
Enter, then the delimiting character, and then press Enter again. Everything will still work if
you don’t follow this routine unless you have more than one banner. If that’s the case, make
sure you do follow it or your banners will all be combined into one message and put on a
single line!
You can set a banner on one line like this:
Todd(config)#banner motd x Unauthorized access prohibited! x
Let’s take a minute to go into more detail about the other two types of banners I mentioned:
Exec banner You can configure a line-activation (exec) banner to be displayed when EXEC
processes such as a line activation or an incoming connection to a VTY line have been created.
Simply initiating a user exec session through a console port will activate the exec banner.
Login banner You can configure a login banner for display on all connected terminals. It
will show up after the MOTD banner but before the login prompts. This login banner can’t
be disabled on a per-line basis, so to globally disable it you’ve got to delete it with the no
banner login command.
Here’s what a login banner output looks like:
!
banner login ^C
----------------------------------------------------------------Cisco Router and Security Device Manager (SDM) is installed on this device.
This feature requires the one-time use of the username “cisco”
with the password “cisco”. The default username and password
have a privilege level of 15.
Please change these publicly known initial credentials using
Administrative Configurations
231
SDM or the IOS CLI.
Here are the Cisco IOS commands.
username privilege 15 secret 0
no username cisco
Replace and with the username and
password you want to use.
For more information about SDM please follow the instructions
in the QUICK START GUIDE for your router or go to http://www.cisco.com/go/sdm
----------------------------------------------------------------^C
!
The above login banner should look pretty familiar to anyone who’s ever logged into an
ISR router because it’s the banner Cisco has in the default configuration for its ISR routers.
Remember that the login banner is displayed before the login prompts and
after the MOTD banner.
Setting Passwords
There are five passwords you’ll need to secure your Cisco routers: console, auxiliary, telnet
(VTY), enable password, and enable secret. The enable secret and enable password are the
ones used to set the password for securing privileged mode. Once the enable commands
are set, users will be prompted for a password. The other three are used to configure a
password when user mode is accessed through the console port, through the auxiliary
port, or via Telnet.
Let’s take a look at each of these now.
Enable Passwords
You set the enable passwords from global configuration mode like this:
Todd(config)#enable ?
last-resort Define enable action if no TACACS servers
respond
password
Assign the privileged level password
secret
Assign the privileged level secret
use-tacacs Use TACACS to check enable passwords
Chapter 6
232
u
Cisco’s Internetworking Operating System (IOS)
The following list describes the enable password parameters:
last-resort This allows you to still enter the router if you set up authentication through
a TACACS server and it’s not available. It won’t be used if the TACACS server is working.
password This sets the enable password on older, pre-10.3 systems, and isn’t ever used if
an enable secret is set.
secret
The newer, encrypted password that overrides the enable password if it has been set.
This tells the router to authenticate through a TACACS server. It comes in
really handy when you have lots of routers because changing the password on a multitude
of them can be insanely tedious. It’s much easier to simply go through the TACACS server
and change the password only once!
use-tacacs
Here’s an example that shows how to set the enable passwords:
Todd(config)#enable secret todd
Todd(config)#enable password todd
The enable password you have chosen is the same as your
enable secret. This is not recommended. Re-enter the
enable password.
If you try to set the enable secret and enable passwords the same, the router will give you
a polite warning to change the second password. Make a note to yourself that if there aren’t
any old legacy routers involved, you don’t even bother to use the enable password!
User-mode passwords are assigned via the line command like this:
Todd(config)#line ?
<0-16>
First Line number
console Primary terminal line
vty
Virtual terminal
And these two lines are especially important for the exam objectives:
console
Sets a console user-mode password.
Sets a Telnet password on the router. If this password isn’t set, then by default, Telnet
can’t be used.
vty
To configure user-mode passwords, choose the line you want and configure it using the
login command to make the switch prompt for authentication. Let’s focus in on the con-
figuration of individual lines now.
Console Password
We set the console password with the line console 0 command, but look at what happened when I tried to type line console ? from the (config-line)# prompt—I received
an error! Here’s the example:
Todd(config-line)#line console ?
% Unrecognized command
Administrative Configurations
233
Todd(config-line)#exit
Todd(config)#line console ?
<0-0> First Line number
Todd(config-line)#password console
Todd(config-line)#login
You can still type line console 0 and that will be accepted, but the help screens just
don’t work from that prompt. Type exit to go back one level, and you’ll find that your help
screens now work. This is a “feature.” Really.
Because there’s only one console port, I can only choose line console 0. You can set all your
line passwords to the same password, but doing this isn’t exactly a brilliant security move!
And it’s also important to remember to apply the login command or the console port
won’t prompt for authentication. The way Cisco has this process set up means you can’t set
the login command before a password is set on a line because if you set it but don’t then
set a password, that line won’t be usable. You’ll actually get prompted for a password that
doesn’t exist, so Cisco’s method isn’t just a hassle; it makes sense and is a feature after all!
Definitely remember that although Cisco has this “password feature” on its
routers starting with IOS 12.2 and above, it’s not in included in older IOSs.
Okay, there are a few other important commands you need to know regarding the console port.
For one, the exec-timeout 0 0 command sets the time-out for the console EXEC session
to zero, ensuring that it never times out. The default time-out is 10 minutes.
If you’re feeling mischievous, try this on people at work: Set the
exec-timeout command to 0 1. This will make the console time out in
1 second, and to fix it, you have to continually press the down arrow key
while changing the time-out time with your free hand!
Logging synchronous is such a cool command that it should be a default, but it’s not.
It’s great because it’s the antidote for those annoying console messages that disrupt the
input you’re trying to type. The messages will still pop up, but at least you get returned to
your router prompt without your input being interrupted! This makes your input messages
oh-so-much easier to read!
Here’s an example of how to configure both commands:
Todd(config-line)#line con 0
Todd(config-line)#exec-timeout ?
<0-35791> Timeout in minutes
Todd(config-line)#exec-timeout 0 ?
<0-2147483> Timeout in seconds
234
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
Todd(config-line)#exec-timeout 0 0
Todd(config-line)#logging synchronous
You can set the console to go from never timing out (0 0) to timing out
in 35,791 minutes and 2,147,483 seconds. Remember that the default is
10 minutes.
Telnet Password
To set the user-mode password for Telnet access into the router or switch, use the line vty
command. IOS switches typically have 16 lines, but routers running the Enterprise edition
have considerably more. The best way to find out how many lines you have is to use that
handy question mark like this:
Todd(config-line)#line vty 0 ?
% Unrecognized command
Todd(config-line)#exit
Todd(config)#line vty 0 ?
<1-15> Last Line number
Todd(config)#line vty 0 15
Todd(config-line)#password telnet
Todd(config-line)#login
This output clearly shows that you cannot get help from your (config-line)# prompt.
You must go back to global config mode in order to use the question mark (?).
So what will happen if you try to telnet into a device that doesn’t have a VTY password
set? You’ll receive an error saying the connection has been refused because the password isn’t
set. So, if you telnet into a switch and receive a message like this one that I got from Switch B
Todd#telnet SwitchB
Trying SwitchB (10.0.0.1)…Open
Password required, but none set
[Connection to SwitchB closed by foreign host]
Todd#
it means the switch doesn’t have the VTY password set. But you can still get around this
and tell the switch to allow Telnet connections without a password by using the no login
command:
SwitchB(config-line)#line vty 0 15
SwitchB(config-line)#no login
Administrative Configurations
235
I definitely do not recommend using the no login command to allow Telnet
connections without a password, unless you’re in a testing or classroom
environment. In a production network, always set your VTY password!
After your IOS devices are configured with an IP address, you can use the Telnet program to configure and check your routers instead of having to use a console cable. You can
use the Telnet program by typing telnet from any command prompt (DOS or Cisco). I’ll
cover all things Telnet more thoroughly in Chapter 7, “Managing a Cisco Internetwork.”
Auxiliary Password
To configure the auxiliary password on a router, go into global configuration mode and type
line aux ?. And by the way, you won’t find these ports on a switch. This output shows that
you only get a choice of 0–0, which is because there’s only one port:
Todd#config t
Todd(config)#line aux ?
<0-0> First Line number
Todd(config)#line aux 0
Todd(config-line)#login
% Login disabled on line 1, until ‘password’ is set
Todd(config-line)#password aux
Todd(config-line)#login
Setting Up Secure Shell (SSH)
I strongly recommend using Secure Shell (SSH) instead of Telnet because it creates a more
secure session. The Telnet application uses an unencrypted data stream, but SSH uses encryption keys to send data so your username and password aren’t sent in the clear, vulnerable to
anyone lurking around!
Here are the steps for setting up SSH:
1. Set your hostname:
Router(config)#hostname Todd
2. Set the domain name—both the hostname and domain name are required for the
encryption keys to be generated:
Todd(config)#ip domain-name Lammle.com
3. Set the username to allow SSH client access:
Todd(config)#username Todd password Lammle
236
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
4. Generate the encryption keys for securing the session:
Todd(config)#crypto key generate rsa
The name for the keys will be: Todd.Lammle.com
Choose the size of the key modulus in the range of 360 to
4096 for your General Purpose Keys. Choosing a key modulus
Greater than 512 may take a few minutes.
How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 6 seconds)
Todd(config)#
1d14h: %SSH-5-ENABLED: SSH 1.99 has been enabled*June 24
19:25:30.035: %SSH-5-ENABLED: SSH 1.99 has been enabled
5. Enable SSH version 2 on the router—not mandatory, but strongly suggested:
Todd(config)#ip ssh version 2
6. Connect to the VTY lines of the switch:
Todd(config)#line vty 0 15
7. Configure your access protocols:
Todd(config-line)#transport input ?
all
All protocols
none
No protocols
ssh
TCP/IP SSH protocol
telnet TCP/IP Telnet protocol
Beware of this next line, and make sure you never use it in production because it’s a
horrendous security risk:
Todd(config-line)#transport input all
I recommend using the next line to secure your VTY lines with SSH:
Todd(config-line)#transport input ssh ?
telnet TCP/IP Telnet protocol
Administrative Configurations
237
I actually do use Telnet once in a while when a situation arises that specifically calls
for it. It just doesn’t happen very often. But if you want to go with Telnet, here’s how
you do that:
Todd(config-line)#transport input ssh telnet
Know that if you don’t use the keyword telnet at the end of the command string,
then only SSH will work on the device. You can go with either, just so long as you
understand that SSH is way more secure than Telnet.
Encrypting Your Passwords
Because only the enable secret password is encrypted by default, you’ll need to manually
configure the user-mode and enable passwords for encryption.
Notice that you can see all the passwords except the enable secret when performing a
show running-config on a switch:
Todd#sh running-config
Building configuration...
Current configuration : 1020 bytes
!
! Last configuration change at 00:03:11 UTC Mon Mar 1 1993
!
version 15.0
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname Todd
!
enable secret 4 ykw.3/tgsOuy9.6qmgG/EeYOYgBvfX4v.S8UNA9Rddg
enable password todd
!
[output cut]
!
line con 0
password console
login
line vty 0 4
238
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
password telnet
login
line vty 5 15
password telnet
login
!
end
To manually encrypt your passwords, use the service password-encryption command.
Here’s how:
Todd#config t
Todd(config)#service password-encryption
Todd(config)#exit
Todd#show run
Building configuration...
!
!
enable secret 4 ykw.3/tgsOuy9.6qmgG/EeYOYgBvfX4v.S8UNA9Rddg
enable password 7 1506040800
!
[output cut]
!
!
line con 0
password 7 050809013243420C
login
line vty 0 4
password 7 06120A2D424B1D
login
line vty 5 15
password 7 06120A2D424B1D
login
!
end
Todd#config t
Todd(config)#no service password-encryption
Todd(config)#^Z
Todd#
Administrative Configurations
239
Nicely done—the passwords will now be encrypted. All you need to do is encrypt the
passwords, perform a show run, then turn off the command if you want. This output clearly
shows us that the enable password and the line passwords are all encrypted.
Before we move on to find out how to set descriptions on your interfaces, I want to stress
some points about password encryption. As I said, if you set your passwords and then turn
on the service password-encryption command, you have to perform a show runningconfig before you turn off the encryption service or your passwords won’t be encrypted.
You don’t have to turn off the encryption service at all—you’d only do that if your switch
is running low on processes. And if you turn on the service before you set your passwords,
then you don’t even have to view them to have them encrypted.
Descriptions
Setting descriptions on an interface is another administratively helpful thing, and like the
hostname, it’s also only locally significant. One case where the description command comes
in really handy is when you want to keep track of circuit numbers on a switch or a router’s
serial WAN port.
Here’s an example on my switch:
Todd#config t
Todd(config)#int fa0/1
Todd(config-if)#description Sales VLAN Trunk Link
Todd(config-if)#^Z
Todd#
And on a router serial WAN:
Router#config t
Router(config)#int s0/0/0
Router(config-if)#description WAN to Miami
Router(config-if)#^Z
You can view an interface’s description with either the show running-config command
or the show interface—even with the show interface description command:
Todd#sh run
Building configuration...
Current configuration : 855 bytes
!
interface FastEthernet0/1
description Sales VLAN Trunk Link
!
[output cut]
Visit ccna
.gg/ch6/a
for a
companion
MicroNugget
from CBT
Nuggets.
240
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
Todd#sh int f0/1
FastEthernet0/1 is up, line protocol is up (connected)
Hardware is Fast Ethernet, address is ecc8.8202.8282 (bia ecc8.8202.8282)
Description: Sales VLAN Trunk Link
MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
[output cut]
Todd#sh int description
Interface
Vl1
Fa0/1
Fa0/2
Status
up
up
up
Protocol Description
up
up
Sales VLAN Trunk Link
up
description: A Helpful Command
Bob, a senior network admin at Acme Corporation in San Francisco, has over 50 WAN
links to branches throughout the United States and Canada. Whenever an interface goes
down, Bob wastes lots of time trying to figure out the circuit number and the phone number of the provider of his ailing WAN link.
This kind of scenario shows just how helpful the interface description command can be.
It would save Bob a lot of work because he could use it on his most important switch LAN
links to find out exactly where every interface is connected. Bob’s life would also be made
a lot easier by adding circuit numbers to each and every WAN interface on his routers,
along with the phone number of the responsible provider.
So if Bob had just taken time in advance to preventively add this information to his interfaces, he would have saved himself an ocean of stress and a ton of precious time when
his WAN links inevitably go down!
Doing the do Command
In every previous example so far, we’ve had to run all show from privileged mode. But
I’ve got great news—beginning with IOS version 12.3, Cisco has finally added a command to the IOS that allows you to view the configuration and statistics from within
configuration mode!
Router and Switch Interfaces
241
In fact, with any IOS, you’d get the following error if you tried to view the configuration
from global config:
Todd(config)#sh run
^
% Invalid input detected at ‘^’ marker.
Compare that to the output I get from entering that same command on my router that’s
running the 15.0 IOS using the “do” syntax:
Todd(config)#do show run
Building configuration...
Current configuration : 759 bytes
!
version 15.0
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname Todd
!
boot-start-marker
boot-end-marker
!
[output cut]
So now you can pretty much run any command from any configuration prompt—nice,
huh? Looking back through all those examples for encrypting our passwords, you can see
that the do command would definitely have gotten the party started sooner, making this
innovation one to celebrate for sure!
Router and Switch Interfaces
Interface configuration is arguably the most important router configuration because
without interfaces, a router is a pretty useless object. Furthermore, interface configurations must be totally precise to enable communication with other devices. Network layer
addresses, media type, bandwidth, and other administrator commands are all used to
configure an interface.
242
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
On a layer 2 switch, interface configurations typically involve a lot less work than router
interface configuration. Check out the output from the powerful verification command
show ip interface brief, which reveals all the interfaces on my 3560 switch:
Todd#sh ip interface brief
Interface
IP-Address
Vlan1
192.168.255.8
FastEthernet0/1
unassigned
FastEthernet0/2
unassigned
FastEthernet0/3
unassigned
FastEthernet0/4
unassigned
FastEthernet0/5
unassigned
FastEthernet0/6
unassigned
FastEthernet0/7
unassigned
FastEthernet0/8
unassigned
GigabitEthernet0/1
unassigned
OK?
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
Method
DHCP
unset
unset
unset
unset
unset
unset
unset
unset
unset
Status
up
up
up
down
down
up
up
down
down
down
Protocol
up
up
up
down
down
up
up
down
down
down
The above output shows the default routed port found on all Cisco switches (VLAN 1),
plus nine switch FastEthernet interface ports, with one port being a Gigabit Ethernet port
used for uplinks to other switches.
Different routers use different methods to choose the interfaces used on them. For
instance, the following command shows one of my 2800 ISR Cisco routers with two
FastEthernet interfaces along with two serial WAN interfaces:
Router>sh ip int brief
Interface
IP-Address
FastEthernet0/0 192.168.255.11
FastEthernet0/1 unassigned
Serial0/0/0
unassigned
Serial0/1/0
unassigned
Router>
OK?
YES
YES
YES
YES
Method
DHCP
unset
unset
unset
Status
Protocol
up
up
administratively down down
administratively down down
administratively down down
Previously, we always used the interface type number sequence to configure an interface, but the newer routers come with an actual physical slot and include a port number on
the module plugged into it. So on a modular router, the configuration would be interface
type slot/port, as demonstrated here:
Todd#config t
Todd(config)#interface GigabitEthernet 0/1
Todd(config-if)#
You can see that we are now at the Gigabit Ethernet slot 0, port 1 prompt, and from here
we can make configuration changes to the interface. Make note of the fact that you can’t just
type int gigabitethernet 0. No shortcuts on the slot/port—you’ve got to type the slot/
port variables in the command: type slot/port or, for example, int gigabitethernet 0/1
(or just int g0/1).
Router and Switch Interfaces
243
Once in interface configuration mode, we can configure various options. Keep in mind
that speed and duplex are the two factors to be concerned with for the LAN:
Todd#config t
Todd(config)#interface GigabitEthernet 0/1
Todd(config-if)#speed 1000
Todd(config-if)#duplex full
So what’s happened here? Well basically, this has shut off the auto-detect mechanism on
the port, forcing it to only run gigabit speeds at full duplex. For the ISR series router, it’s basically the same, but you get even more options! The LAN interfaces are the same, but the rest
of the modules are different—they use three numbers instead of two. The three numbers used
here can represent slot/subslot/port, but this depends on the card used in the ISR router.
For the objectives you just need to remember this: The first 0 is the router itself. You then
choose the slot and then the port. Here’s an example of a serial interface on my 2811:
Todd(config)#interface serial ?
<0-2> Serial interface number
Todd(config)#interface serial 0/0/?
<0-1> Serial interface number
Todd(config)#interface serial 0/0/0
Todd(config-if)#
This might look a little dicey to you, but I promise it’s really not that hard! It helps to
remember that you should always view the output of the show ip interface brief command
or a show running-config output first so you know the exact interfaces you have to deal with.
Here’s one of my 2811’s output that has even more serial interfaces installed:
Todd(config-if)#do show run
Building configuration...
[output cut]
!
interface FastEthernet0/0
no ip address
shutdown
duplex auto
speed auto
!
interface FastEthernet0/1
no ip address
shutdown
duplex auto
speed auto
!
interface Serial0/0/0
244
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
no ip address
shutdown
no fair-queue
!
interface Serial0/0/1
no ip address
shutdown
!
interface Serial0/1/0
no ip address
shutdown
!
interface Serial0/2/0
no ip address
shutdown
clock rate 2000000
!
[output cut]
For the sake of brevity, I didn’t include my complete running-config, but I’ve displayed all
you really need. You can see the two built-in FastEthernet interfaces, the two serial interfaces
in slot 0 (0/0/0 and 0/0/1), the serial interface in slot 1 (0/1/0), and the serial interface in slot
2 (0/2/0). And once you see the interfaces like this, it makes it a lot easier to understand how
the modules are inserted into the router.
Just understand that if you type interface e0 on an old 2500 series router, interface
fastethernet 0/0 on a modular router (such as the 2800 series router), or interface
serial 0/1/0 on a ISR router, all you’re actually doing is choosing an interface to configure. Essentially, they’re all configured the same way after that.
Let’s delve deeper into our router interface discussion by exploring how to bring up the
interface and set an IP address on it next.
Bringing Up an Interface
You can disable an interface with the interface command shutdown and enable it with the
no shutdown command. Just to remind you, all switch ports are enabled by default and all
router ports are disabled by default, so we’re going to talk more about router ports than
switch ports in the next few sections.
If an interface is shut down, it’ll display as administratively down when you use the show
interfaces command (sh int for short):
Router#sh int f0/0
FastEthernet0/1 is administratively down, line protocol is down
[output cut]
Router and Switch Interfaces
245
Another way to check an interface’s status is via the show running-config command.
You can bring up the router interface with the no shutdown command (no shut for short):
Router(config)#int f0/0
Router(config-if)#no shutdown
*August 21 13:45:08.455: %LINK-3-UPDOWN: Interface FastEthernet0/0,
changed state to up
Router(config-if)#do show int f0/0
FastEthernet0/0 is up, line protocol is up
[output cut]
Configuring an IP Address on an Interface
Even though you don’t have to use IP on your routers, it’s usually what everyone uses. To
configure IP addresses on an interface, use the ip address command from interface configuration mode and remember that you do not set an IP address on a layer 2 switch port!
Todd(config)#int f0/1
Todd(config-if)#ip address 172.16.10.2 255.255.255.0
Also, don’t forget to enable the interface with the no shutdown command. Remember to
look at the command show interface int output to see if the interface is administratively
shut down or not. Show ip int brief and show running-config will also give you this
information.
The ip address address mask command starts the IP processing on the
router interface. Again, you do not configure an IP address on a layer 2
switch interface!
Okay—now if you want to add a second subnet address to an interface, you have
to use the secondary parameter. If you type another IP address and press Enter, it will
replace the existing primary IP address and mask. This is definitely one of the Cisco
IOS’s coolest features!
So let’s try it. To add a secondary IP address, just use the secondary parameter:
Todd(config-if)#ip address 172.16.20.2 255.255.255.0 ?
secondary Make this IP address a secondary address
Todd(config-if)#ip address 172.16.20.2 255.255.255.0 secondary
Todd(config-if)#^Z
Todd(config-if)#do sh run
Building configuration...
[output cut]
246
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
interface FastEthernet0/1
ip address 172.16.20.2 255.255.255.0 secondary
ip address 172.16.10.2 255.255.255.0
duplex auto
speed auto
!
But I’ve got to stop here to tell you that I really wouldn’t recommend having multiple
IP addresses on an interface because it’s really inefficient. I showed you how anyway just in
case you someday find yourself dealing with an MIS manager who’s in love with really bad
network design and makes you administer it! And who knows? Maybe someone will ask
you about it someday and you’ll get to seem really smart because you know this.
Using the Pipe
No, not that pipe. I mean the output modifier. Although, I’ve got to say that some of the
router configurations I’ve seen in my career make me wonder! Anyway, this pipe ( | ) allows
us to wade through all the configurations or other long outputs and get straight to our
goods fast. Here’s an example:
Router#sh run | ?
append
Append redirected output to URL (URLs supporting append
operation only)
begin
Begin with the line that matches
exclude
Exclude lines that match
include
Include lines that match
redirect Redirect output to URL
section
Filter a section of output
tee
Copy output to URL
Router#sh run | begin interface
interface FastEthernet0/0
description Sales VLAN
ip address 10.10.10.1 255.255.255.248
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 172.16.20.2 255.255.255.0 secondary
ip address 172.16.10.2 255.255.255.0
duplex auto
speed auto
!
Router and Switch Interfaces
247
interface Serial0/0/0
description Wan to SF circuit number 6fdda 12345678
no ip address
!
So basically, the pipe symbol—the output modifier—is what you need to help you get
where you want to go light years faster than mucking around in a router’s entire configuration. I use it a lot when scrutinizing a large routing table to find out whether a certain route
is in the routing table. Here’s an example:
Todd#sh ip route | include 192.168.3.32
R
192.168.3.32 [120/2] via 10.10.10.8, 00:00:25, FastEthernet0/0
Todd#
First, you need to know that this routing table had over 100 entries, so without my
trusty pipe, I’d probably still be looking through that output! It’s a powerfully efficient tool
that saves you major time and effort by quickly finding a line in a configuration—or as the
preceding example shows, a single route within a huge routing table.
Give yourself a little time to play around with the pipe command to get the hang of it and
you’ll be naturally high on your newfound ability to quickly parse through router output!
Serial Interface Commands
But wait! Before you just jump in and configure a serial interface, you need some key information, like knowing the interface will usually be attached to a CSU/DSU type of device
that provides clocking for the line to the router. Check out Figure 6.3 for an example.
F ig u re 6 . 3 A typical WAN connection. Clocking is typically provided by a DCE
network to routers. In nonproduction environments, a DCE network is not always present.
DTE
DTE
DCE
CSU/DSU
CSU/DSU
Here you can see that the serial interface is used to connect to a DCE network via a
CSU/DSU that provides the clocking to the router interface. But if you have a back-to-back
248
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
configuration, such as one that’s used in a lab environment like the one in Figure 6.4, one
end—the data communication equipment (DCE) end of the cable—must provide clocking!
F ig u re 6 . 4
Providing clocking on a nonproduction network
Set clock rate if needed
Todd# config t
Todd(config)# interface serial 0
Todd(config-if)#clock rate 1000000
DCE
DTE
DCE side determined by the cable.
Add clocking to DCE side only.
>show controllers int will show the cable connection type
By default, Cisco router serial interfaces are all data terminal equipment (DTE) devices,
which means that you must configure an interface to provide clocking if you need it to act like
a DCE device. Again, you would not provide clocking on a production T1 connection because
you would have a CSU/DSU connected to your serial interface, as shown in Figure 6.3.
You configure a DCE serial interface with the clock rate command:
Router#config t
Enter configuration commands, one per line.
Router(config)#int s0/0/0
Router(config-if)#clock rate ?
Speed (bits per second)
1200
2400
4800
9600
14400
19200
28800
32000
38400
48000
56000
57600
64000
72000
115200
End with CNTL/Z.
Router and Switch Interfaces
249
125000
128000
148000
192000
250000
256000
384000
500000
512000
768000
800000
1000000
2000000
4000000
5300000
8000000
<300-8000000>
Choose clockrate from list above
Router(config-if)#clock rate 1000000
The clock rate command is set in bits per second. Besides looking at the cable end to
check for a label of DCE or DTE, you can see if a router’s serial interface has a DCE cable
connected with the show controllers int command:
Router#sh controllers s0/0/0
Interface Serial0/0/0
Hardware is GT96K
DTE V.35idb at 0x4342FCB0, driver data structure at 0x434373D4
Here is an example of an output depicting a DCE connection:
Router#sh controllers s0/2/0
Interface Serial0/2/0
Hardware is GT96K
DCE V.35, clock rate 1000000
The next command you need to get acquainted with is the bandwidth command. Every
Cisco router ships with a default serial link bandwidth of T1 (1.544 Mbps). But this has
nothing to do with how data is transferred over a link. The bandwidth of a serial link is
used by routing protocols like EIGRP and OSPF to calculate the best cost path to a remote
network. So if you’re using RIP routing, the bandwidth setting of a serial link is irrelevant
since RIP uses only hop count to determine this.
250
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
You may be rereading this part and thinking, “Huh? What? Routing protocols? Metrics?” But don’t freak! I’m going over all of that soon in Chapter 8,
“IP Routing.”
Here’s an example of using the bandwidth command:
Router#config t
Router(config)#int s0/0/0
Router(config-if)#bandwidth ?
<1-10000000> Bandwidth in kilobits
inherit
Specify that bandwidth is inherited
receive
Specify receive-side bandwidth
Router(config-if)#bandwidth 1000
Did you notice that, unlike the clock rate command, the bandwidth command is configured in kilobits per second?
After going through all these configuration examples regarding the clock
rate command, understand that the new ISR routers automatically detect
DCE connections and set clock rate to 2000000. But know that you still
need to understand the clock rate command for the Cisco objectives,
even though the new routers set it for you automatically!
Viewing, Saving, and Erasing
Configurations
If you run through setup mode, you’ll be asked if you want to use the configuration you just
created. If you say yes, the configuration running in DRAM that’s known as the runningconfig will be copied into NVRAM, and the file will be named startup-config. Hopefully,
you’ll be smart and always use the CLI, not setup mode!
You can manually save the file from DRAM, which is usually just called RAM, to
NVRAM by using the copy running-config startup-config command. You can use
the shortcut copy run start as well:
Todd#copy running-config startup-config
Destination filename [startup-config]? [press enter]
Building configuration...
[OK]
Viewing, Saving, and Erasing Configurations
251
Todd#
Building configuration...
When you see a question with an answer in [], it means that if you just press Enter, you’re
choosing the default answer.
Also, when the command asks for the destination filename, the default answer is startupconfig. The reason it asks is because you can copy the configuration to pretty much anywhere
you want. Take a look at the output from my switch:
Todd#copy running-config ?
flash:
ftp:
http:
https:
null:
nvram:
rcp:
running-config
scp:
startup-config
syslog:
system:
tftp:
tmpsys:
vb:
Copy to flash: file system
Copy to ftp: file system
Copy to http: file system
Copy to https: file system
Copy to null: file system
Copy to nvram: file system
Copy to rcp: file system
Update (merge with) current system configuration
Copy to scp: file system
Copy to startup configuration
Copy to syslog: file system
Copy to system: file system
Copy to tftp: file system
Copy to tmpsys: file system
Copy to vb: file system
To reassure you, we’ll get deeper into how and where to copy files in Chapter 7.
For now, you can view the files by typing show running-config or show startupconfig from privileged mode. The sh run command, which is a shortcut for show
running-config, tells us that we’re viewing the current configuration:
Todd#sh run
Building configuration...
Current configuration : 855 bytes
!
! Last configuration change at 23:20:06 UTC Mon Mar 1 1993
!
version 15.0
[output cut]
252
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
The sh start command—one of the shortcuts for the show startup-config command—
shows us the configuration that will be used the next time the router is reloaded. It also tells
us how much NVRAM is being used to store the startup-config file. Here’s an example:
Todd#sh start
Using 855 out of 524288 bytes
!
! Last configuration change at 23:20:06 UTC Mon Mar 1 1993
!
version 15.0
[output cut]
But beware—if you try and view the configuration and see
Todd#sh start
startup-config is not present
you have not saved your running-config to NVRAM, or you’ve deleted the backup configuration! Let me talk about just how you would do that now.
Deleting the Configuration and Reloading the Device
You can delete the startup-config file by using the erase startup-config command:
Todd#erase start
% Incomplete command.
First, notice that you can no longer use the shortcut commands for erasing the backup
configuration. This started in IOS 12.4 with the ISR routers.
Todd#erase startup-config
Erasing the nvram filesystem will remove all configuration files! Continue?
[confirm]
[OK]
Erase of nvram: complete
Todd#
*Mar 5 01:59:45.206: %SYS-7-NV_BLOCK_INIT: Initialized the geometry of nvram
Todd#reload
Proceed with reload? [confirm]
Now if you reload or power the router down after using the erase startup-config command, you’ll be offered setup mode because there’s no configuration saved in NVRAM. You
can press Ctrl+C to exit setup mode at any time, but the reload command can only be used
from privileged mode.
Viewing, Saving, and Erasing Configurations
253
At this point, you shouldn’t use setup mode to configure your router. So just say no to
setup mode, because it’s there to help people who don’t know how to use the cash line
interface (CLI), and this no longer applies to you. Be strong—you can do it!
Verifying Your Configuration
Obviously, show running-config would be the best way to verify your configuration and
show startup-config would be the best way to verify the configuration that’ll be used the
next time the router is reloaded—right?
Well, once you take a look at the running-config, if all appears well, you can verify
your configuration with utilities like Ping and Telnet. Ping is a program that uses ICMP
echo requests and replies, which we covered in Chapter 3, “TCP/IP.” For review, Ping
sends a packet to a remote host, and if that host responds, you know that it’s alive. But
you don’t know if it’s alive and also well; just because you can ping a Microsoft server
does not mean you can log in! Even so, Ping is an awesome starting point for troubleshooting an internetwork.
Did you know that you can ping with different protocols? You can, and you can test this
by typing ping ? at either the router user-mode or privileged-mode prompt:
Todd#ping ?
WORD Ping destination address or hostname
clns CLNS echo
ip
IP echo
ipv6 IPv6 echo
tag
Tag encapsulated IP echo
If you want to find a neighbor’s Network layer address, either you go straight to the
router or switch itself or you can type show cdp entry * protocol to get the Network
layer addresses you need for pinging.
You can also use an extended ping to change the default variables, as shown here:
Todd#ping
Protocol [ip]:
Target IP address: 10.1.1.1
Repeat count [5]:
% A decimal number between 1 and 2147483647.
Repeat count [5]: 5000
Datagram size [100]:
% A decimal number between 36 and 18024.
Datagram size [100]: 1500
Timeout in seconds [2]:
254
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
Extended commands [n]: y
Source address or interface: FastEthernet 0/1
Source address or interface: Vlan 1
Type of service [0]:
Set DF bit in IP header? [no]:
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 5000, 1500-byte ICMP Echos to 10.1.1.1, timeout is 2 seconds:
Packet sent with a source address of 10.10.10.1
Notice that by using the question mark, I was able to determine that extended ping
allows you to set the repeat count higher than the default of 5 and the datagram size larger.
This raises the MTU and allows for a more accurate testing of throughput. The source
interface is one last important piece of information I’ll pull out of the output. You can
choose which interface the ping is sourced from, which is really helpful in certain diagnostic situations. Using my switch to display the extended ping capabilities, I had to use my
only routed port, which is named VLAN 1, by default.
Cisco Discovery Protocol (CDP) is covered in Chapter 7.
Traceroute uses ICMP with IP time to live (TTL) time-outs to track the path a given
packet takes through an internetwork. This is in contrast to Ping, which just finds the host
and responds. Traceroute can also be used with multiple protocols. Check out this output:
Todd#traceroute ?
WORD
Trace route to destination address or hostname
aaa
Define trace options for AAA events/actions/errors
appletalk AppleTalk Trace
clns
ISO CLNS Trace
ip
IP Trace
ipv6
IPv6 Trace
ipx
IPX Trace
mac
Trace Layer2 path between 2 endpoints
oldvines
Vines Trace (Cisco)
vines
Vines Trace (Banyan)
Viewing, Saving, and Erasing Configurations
255
Telnet, FTP, and HTTP are really the best tools because they use IP at the Network layer
and TCP at the Transport layer to create a session with a remote host. If you can telnet, ftp,
or http into a device, you know that your IP connectivity just has to be solid!
Todd#telnet ?
WORD IP address or hostname of a remote system
From the switch or router prompt, you just type a hostname or IP address and it will
assume you want to telnet—you don’t need to type the actual command, telnet.
Coming up, I’ll show you how to verify the interface statistics.
Verifying with the show interface Command
Another way to verify your configuration is by typing show interface commands, the first
of which is the show interface ? command. Doing this will reveal all the available interfaces to verify and configure.
The show interfaces command, with an s, displays the configurable
parameters and statistics of all interfaces on a router.
This command comes in really handy when you’re verifying and troubleshooting router
and network issues.
The following output is from my freshly erased and rebooted 2811 router:
Router#sh int ?
Async
BVI
CDMA-Ix
CTunnel
Dialer
FastEthernet
Loopback
MFR
Multilink
Null
Port-channel
Serial
Tunnel
Vif
Virtual-PPP
Virtual-Template
Virtual-TokenRing
Async interface
Bridge-Group Virtual Interface
CDMA Ix interface
CTunnel interface
Dialer interface
FastEthernet IEEE 802.3
Loopback interface
Multilink Frame Relay bundle interface
Multilink-group interface
Null interface
Ethernet Channel of interfaces
Serial
Tunnel interface
PGM Multicast Host interface
Virtual PPP interface
Virtual Template interface
Virtual TokenRing
256
Chapter 6
accounting
counters
crb
dampening
description
etherchannel
irb
mac-accounting
mpls-exp
precedence
pruning
rate-limit
stats
status
summary
switching
switchport
trunk
|
u
Cisco’s Internetworking Operating System (IOS)
Show interface accounting
Show interface counters
Show interface routing/bridging info
Show interface dampening info
Show interface description
Show interface etherchannel information
Show interface routing/bridging info
Show interface MAC accounting info
Show interface MPLS experimental accounting info
Show interface precedence accounting info
Show interface trunk VTP pruning information
Show interface rate-limit info
Show interface packets & octets, in & out, by switching path
Show interface line status
Show interface summary
Show interface switching
Show interface switchport information
Show interface trunk information
Output modifiers
The only “real” physical interfaces are FastEthernet, Serial, and Async—the rest are all
logical interfaces or commands you can use to verify with.
The next command is show interface fastethernet 0/0. It reveals the hardware address,
logical address, and encapsulation method as well as statistics on collisions, as seen here:
Router#sh int f0/0
FastEthernet0/0 is up, line protocol is up
Hardware is MV96340 Ethernet, address is 001a.2f55.c9e8 (bia 001a.2f55.c9e8)
Internet address is 192.168.1.33/27
MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
Auto-duplex, Auto Speed, 100BaseTX/FX
ARP type: ARPA, ARP Timeout 04:00:00
Last input never, output 00:02:07, output hang never
Last clearing of “show interface” counters never
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo
Output queue: 0/40 (size/max)
Viewing, Saving, and Erasing Configurations
257
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
0 packets input, 0 bytes
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
0 watchdog
0 input packets with dribble condition detected
16 packets output, 960 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 babbles, 0 late collision, 0 deferred
0 lost carrier, 0 no carrier
0 output buffer failures, 0 output buffers swapped out
Router#
You probably guessed that we’re going to go over the important statistics from this output,
but first, just for fun, I’ve got to ask you, which subnet is FastEthernet 0/0 a member of and
what’s the broadcast address and valid host range?
I’m serious—you really have to be able to nail these things NASCAR-fast! Just in case you
didn’t, the address is 192.168.1.33/27. And I’ve gotta be honest—if you don’t know what a
/27 is at this point, you’ll need a miracle to pass the exam! That or you need to actually read
this book. (As a quick reminder, a /27 is 255.255.255.224.) The fourth octet is a block size of
32. The subnets are 0, 32, 64, etc.; the FastEthernet interface is in the 32 subnet; the broadcast address is 63; and the valid hosts are 33–62. All good now?
If you struggled with any of this, please save yourself from certain doom
and get yourself back into Chapter 4, “Easy Subnetting,” now! Read and
reread it until you’ve got it dialed in!
Okay—back to the output. The preceding interface is working and looks to be in good
shape. The show interfaces command will show you if you’re receiving errors on the interface, and it will also show you the maximum transmission unit (MTU). MTU is the maximum
packet size allowed to transmit on that interface, bandwidth (BW) is for use with routing protocols, and 255/255 means that reliability is perfect! The load is 1/255, meaning no load.
Continuing through the output, can you figure out the bandwidth of the interface? Well,
other than the easy giveaway of the interface being called a “FastEthernet” interface, we
can see that the bandwidth is 100000 Kbit, which is 100,000,000. Kbit means to add three
zeros, which is 100 Mbits per second, or FastEthernet. Gigabit would be 1000000 Kbits
per second.
Be sure you don’t miss the output errors and collisions, which show 0 in my output. If
these numbers are increasing, then you have some sort of Physical or Data Link layer issue.
Check your duplex! If you have one side as half-duplex and one at full-duplex, your interface
will work, albeit really slow and those numbers will be increasing fast!
258
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
The most important statistic of the show interface command is the output of the line and
Data Link protocol status. If the output reveals that FastEthernet 0/0 is up and the line protocol is up, then the interface is up and running:
Router#sh int fa0/0
FastEthernet0/0 is up, line protocol is up
The first parameter refers to the Physical layer, and it’s up when it receives carrier detect.
The second parameter refers to the Data Link layer, and it looks for keepalives from the
connecting end. Keepalives are important because they’re used between devices to make
sure connectivity hasn’t been dropped.
Here’s an example of where your problem will often be found—on serial interfaces:
Router#sh int s0/0/0
Serial0/0 is up, line protocol is down
If you see that the line is up but the protocol is down, as displayed here, you’re experiencing a clocking (keepalive) or framing problem—possibly an encapsulation mismatch. Check
the keepalives on both ends to make sure they match. Make sure that the clock rate is set, if
needed, and that the encapsulation type is equal on both ends. The preceding output tells us
that there’s a Data Link layer problem.
If you discover that both the line interface and the protocol are down, it’s a cable or
interface problem. The following output would indicate a Physical layer problem:
Router#sh int s0/0/0
Serial0/0 is down, line protocol is down
As you’ll see next, if one end is administratively shut down, the remote end would
present as down and down:
Router#sh int s0/0/0
Serial0/0 is administratively down, line protocol is down
To enable the interface, use the command no shutdown from interface configuration mode.
The next show interface serial 0/0/0 command demonstrates the serial line and
the maximum transmission unit (MTU)—1,500 bytes by default. It also shows the default
bandwidth (BW) on all Cisco serial links, which is 1.544 Kbps. This is used to determine
the bandwidth of the line for routing protocols like EIGRP and OSPF. Another important
configuration to notice is the keepalive, which is 10 seconds by default. Each router sends
a keepalive message to its neighbor every 10 seconds, and if both routers aren’t configured
for the same keepalive time, it won’t work! Check out this output:
Router#sh int s0/0/0
Serial0/0 is up, line protocol is up
Hardware is HD64570
MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec,
reliability 255/255, txload 1/255, rxload 1/255
Viewing, Saving, and Erasing Configurations
Encapsulation HDLC, loopback not set, keepalive set
(10 sec)
Last input never, output never, output hang never
Last clearing of “show interface” counters never
Queueing strategy: fifo
Output queue 0/40, 0 drops; input queue 0/75, 0 drops
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
0 packets input, 0 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored,
0 abort
0 packets output, 0 bytes, 0 underruns
0 output errors, 0 collisions, 16 interface resets
0 output buffer failures, 0 output buffers swapped out
0 carrier transitions
DCD=down DSR=down DTR=down RTS=down CTS=down
You can clear the counters on the interface by typing the command clear counters:
Router#clear counters ?
Async
Async interface
BVI
Bridge-Group Virtual Interface
CTunnel
CTunnel interface
Dialer
Dialer interface
FastEthernet
FastEthernet IEEE 802.3
Group-Async
Async Group interface
Line
Terminal line
Loopback
Loopback interface
MFR
Multilink Frame Relay bundle interface
Multilink
Multilink-group interface
Null
Null interface
Serial
Serial
Tunnel
Tunnel interface
Vif
PGM Multicast Host interface
Virtual-Template
Virtual Template interface
Virtual-TokenRing Virtual TokenRing
Router#clear counters s0/0/0
Clear “show interface” counters on this interface
[confirm][enter]
259
260
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
Router#
00:17:35: %CLEAR-5-COUNTERS: Clear counter on interface
Serial0/0/0 by console
Router#
Troubleshooting with the show interfaces command
Let’s take a look at the output of the show interfaces command one more time before
I move on. There are some important statistics in this output that are important for the
Cisco objectives.
275496 packets input, 35226811 bytes, 0 no buffer
Received 69748 broadcasts (58822 multicasts)
0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
0 watchdog, 58822 multicast, 0 pause input
0 input packets with dribble condition detected
2392529 packets output, 337933522 bytes, 0 underruns
0 output errors, 0 collisions, 1 interface resets
0 babbles, 0 late collision, 0 deferred
0 lost carrier, 0 no carrier, 0 PAUSE output
0 output buffer failures, 0 output buffers swapped out
Finding where to start when troubleshooting an interface can be the difficult part, but
certainly we’ll look for the number of input errors and CRCs right away. Typically we’d
see those statistics increase with a duplex error, but it could be another Physical layer issue
such as the cable might be receiving excessive interference or the network interface cards
might have a failure. Typically you can tell if it is interference when the CRC and input
errors output grow but the collision counters do not.
Let’s take a look at some of the output:
No buffer This isn’t a number you want to see incrementing. This means you don’t have
any buffer room left for incoming packets. Any packets received once the buffers are full are
discarded. You can see how many packets are dropped with the ignored output.
Ignored If the packet buffers are full, packets will be dropped. You see this increment along
with the no buffer output. Typically if the no buffer and ignored outputs are incrementing,
you have some sort of broadcast storm on your LAN. This can be caused by a bad NIC or
even a bad network design.
Runts Frames that did not meet the minimum frame size requirement of 64 bytes. Typically
caused by collisions.
Giants Frames received that are larger than 1518 bytes
Viewing, Saving, and Erasing Configurations
261
Input Errors This is the total of many counters: runts, giants, no buffer, CRC, frame,
overrun, and ignored counts.
CRC At the end of each frame is a Frame Check Sequence (FCS) field that holds the answer
to a cyclic redundancy check (CRC). If the receiving host’s answer to the CRC does not match
the sending host’s answer, then a CRC error will occur.
Frame This output increments when frames received are of an illegal format, or not
complete, which is typically incremented when a collision occurs.
Packets Output
Total number of packets (frames) forwarded out to the interface.
Output Errors Total number of packets (frames) that the switch port tried to transmit but
for which some problem occurred.
Collisions When transmitting a frame in half-duplex, the NIC listens on the receiving
pair of the cable for another signal. If a signal is transmitted from another host, a collision
has occurred. This output should not increment if you are running full-duplex.
Late Collisions If all Ethernet specifications are followed during the cable install, all
collisions should occur by the 64th byte of the frame. If a collision occurs after 64 bytes,
the late collisions counter increments. This counter will increment on a duplex mismatched interface, or if cable length exceeds specifications.
Verifying with the show ip interface Command
The show ip interface command will provide you with information regarding the layer 3
configurations of a router’s interfaces:
Router#sh ip interface
FastEthernet0/0 is up, line protocol is up
Internet address is 1.1.1.1/24
Broadcast address is 255.255.255.255
Address determined by setup command
MTU is 1500 bytes
Helper address is not set
Directed broadcast forwarding is disabled
Outgoing access list is not set
Inbound access list is not set
Proxy ARP is enabled
Security level is default
Split horizon is enabled
[output cut]
The status of the interface, the IP address and mask, information on whether an access
list is set on the interface, and basic IP information are all included in this output.
262
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
Using the show ip interface brief Command
The show ip interface brief command is probably one of the best commands that you
can ever use on a Cisco router. This command provides a quick overview of the router’s
interfaces, including the logical address and status:
Router#sh ip int brief
Interface
IP-Address
FastEthernet0/0
unassigned
FastEthernet0/1
unassigned
Serial0/0/0
unassigned
Serial0/0/1
unassigned
Serial0/1/0
unassigned
Serial0/2/0
unassigned
OK? Method Status Protocol
YES unset up
up
YES unset up
up
YES unset up
down
YES unset administratively down down
YES unset administratively down down
YES unset administratively down down
Remember, administratively down means that you need to type no shutdown in order to
enable the interface. Notice that Serial0/0/0 is up/down, which means that the Physical layer
is good and carrier detect is sensed but no keepalives are being received from the remote
end. In a nonproduction network, like the one I am working with, this tells us the clock rate
hasn’t been set.
Verifying with the show protocols Command
The show protocols command is also a really helpful command that you’d use in order to
quickly see the status of layers 1 and 2 of each interface as well as the IP addresses used.
Here’s a look at one of my production routers:
Router#sh protocols
Global values:
Internet Protocol routing is enabled
Ethernet0/0 is administratively down, line protocol is down
Serial0/0 is up, line protocol is up
Internet address is 100.30.31.5/24
Serial0/1 is administratively down, line protocol is down
Serial0/2 is up, line protocol is up
Internet address is 100.50.31.2/24
Loopback0 is up, line protocol is up
Internet address is 100.20.31.1/24
The show ip interface brief and show protocols command provides the layer 1 and layer 2
statistics of an interface as well as the IP addresses. The next command, show controllers, only
provides layer 1 information. Let’s take a look.
Viewing, Saving, and Erasing Configurations
263
Using the show controllers Command
The show controllers command displays information about the physical interface itself.
It’ll also give you the type of serial cable plugged into a serial port. Usually, this will only
be a DTE cable that plugs into a type of data service unit (DSU).
Router#sh controllers serial 0/0
HD unit 0, idb = 0x1229E4, driver structure at 0x127E70
buffer size 1524 HD unit 0, V.35 DTE cable
Router#sh controllers serial 0/1
HD unit 1, idb = 0x12C174, driver structure at 0x131600
buffer size 1524 HD unit 1, V.35 DCE cable
Notice that serial 0/0 has a DTE cable, whereas the serial 0/1 connection has a DCE
cable. Serial 0/1 would have to provide clocking with the clock rate command. Serial 0/0
would get its clocking from the DSU.
Let’s look at this command again. In Figure 6.5, see the DTE/DCE cable between the
two routers? Know that you will not see this in production networks!
F ig u re 6 . 5 Where do you configure clocking? Use the show controllers
command on each router’s serial interface to find out.
R1
R2
DTE
DCE
Router R1 has a DTE connection, which is typically the default for all Cisco routers.
Routers R1 and R2 can’t communicate. Check out the output of the show controllers
s0/0 command here:
R1#sh controllers serial 0/0
HD unit 0, idb = 0x1229E4, driver structure at 0x127E70
buffer size 1524 HD unit 0, V.35 DCE cable
The show controllers s0/0 command reveals that the interface is a V.35 DCE cable.
This means that R1 needs to provide clocking of the line to router R2. Basically, the interface has the wrong label on the cable on the R1 router’s serial interface. But if you add
clocking on the R1 router’s serial interface, the network should come right up.
Let’s check out another issue in Figure 6.6 that you can solve by using the show
controllers command. Again, routers R1 and R2 can’t communicate.
264
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
F ig u re 6 . 6 By looking at R1, the show controllers command reveals that R1 and
R2 can’t communicate.
R1
R2
S0/0
S0/0
Here’s the output of R1’s show controllers s0/0 command and show ip
interface s0/0:
R1#sh controllers s0/0
HD unit 0, idb = 0x1229E4, driver structure at 0x127E70
buffer size 1524 HD unit 0,
DTE V.35 clocks stopped
cpb = 0xE2, eda = 0x4140, cda = 0x4000
R1#sh ip interface s0/0
Serial0/0 is up, line protocol is down
Internet address is 192.168.10.2/24
Broadcast address is 255.255.255.255
If you use the show controllers command and the show ip interface command, you’ll
see that router R1 isn’t receiving the clocking of the line. This network is a nonproduction
network, so no CSU/DSU is connected to provide clocking for it. This means the DCE end of
the cable will be providing the clock rate—in this case, the R2 router. The show ip interface
indicates that the interface is up but the protocol is down, which means that no keepalives are
being received from the far end. In this example, the likely culprit is the result of bad cable, or
simply the lack of clocking.
Visit ccna
.gg/ch6/b
for a
companion
MicroNugget
from CBT
Nuggets.
Summary
This was a fun chapter! I showed you a lot about the Cisco IOS, and I really hope you gained
a lot of insight into the Cisco router world. I started off by explaining the Cisco Internetwork
Operating System (IOS) and how you can use the IOS to run and configure Cisco routers. You
learned how to bring a router up and what setup mode does. Oh, and by the way, since you
can now basically configure Cisco routers, you should never use setup mode, right?
After I discussed how to connect to a router with a console and LAN connection, I
covered the Cisco help features and how to use the CLI to find commands and command
parameters. In addition, I discussed some basic show commands to help you verify your
configurations.
Administrative functions on a router help you administer your network and verify
that you are configuring the correct device. Setting router passwords is one of the most
Exam Essentials
265
important configurations you can perform on your routers. I showed you the five passwords
you must set, plus I introduced you to the hostname, interface description, and banners as
tools to help you administer your router.
Well, that concludes your introduction to the Cisco IOS. And, as usual, it’s super-important
for you to have the basics that we went over in this chapter down rock-solid before you move
on to the following chapters!
Exam Essentials
Describe the responsibilities of the IOS. The Cisco router IOS software is responsible
for network protocols and providing supporting functions, connecting high-speed traffic
between devices, adding security to control access and preventing unauthorized network
use, providing scalability for ease of network growth and redundancy, and supplying network reliability for connecting to network resources.
List the options available to connect to a Cisco device for management purposes. The
three options available are the console port, auxiliary port, and in-band communication,
such as Telnet, SSH and HTTP. Don’t forget, a Telnet connection is not possible until an IP
address has been configured and a Telnet password has been configured.
Understand the boot sequence of a router. When you first bring up a Cisco router, it will
run a power-on self-test (POST), and if that passes, it will look for and load the Cisco IOS
from flash memory, if a file is present. The IOS then proceeds to load and looks for a valid
configuration in NVRAM called the startup-config. If no file is present in NVRAM, the
router will go into setup mode.
Describe the use of setup mode. Setup mode is automatically started if a router boots and
no startup-config is in NVRAM. You can also bring up setup mode by typing setup from
privileged mode. Setup provides a minimum amount of configuration in an easy format for
someone who does not understand how to configure a Cisco router from the command line.
Differentiate user, privileged, and global configuration modes, both visually and from a command capabilities perspective. User mode, indicated by the routername> prompt, provides
a command-line interface with very few available commands by default. User mode does not
allow the configuration to be viewed or changed. Privileged mode, indicated by the routername#
prompt, allows a user to both view and change the configuration of a router. You can enter privileged mode by typing the command enable and entering the enable password or enable secret
password, if set. Global configuration mode, indicated by the routername(config)# prompt,
allows configuration changes to be made that apply to the entire router (as opposed to a configuration change that might affect only one interface, for example).
Recognize additional prompts available in other modes and describe their use. Additional
modes are reached via the global configuration prompt, routername(config)#, and
their prompts include interface, router(config-if)#, for making interface settings; line
266
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
configuration mode, router(config-line)#, used to set passwords and make other settings
to various connection methods; and routing protocol modes for various routing protocols,
router(config-router)#, used to enable and configure routing protocols.
Access and utilize editing and help features. Make use of typing a question mark at the end
of commands for help in using the commands. Additionally, understand how to filter command help with the same question mark and letters. Use the command history to retrieve
commands previously utilized without retyping. Understand the meaning of the caret when
an incorrect command is rejected. Finally, identify useful hot key combinations.
Identify the information provided by the show version command. The show version
command will provide basic configuration for the system hardware as well as the software
version, the names and sources of configuration files, the configuration register setting,
and the boot images.
Set the hostname of a router.
as follows:
The command sequence to set the hostname of a router is
enable
config t
hostname Todd
Differentiate the enable password and enable secret password. Both of these passwords
are used to gain access into privileged mode. However, the enable secret password is newer
and is always encrypted by default. Also, if you set the enable password and then set the
enable secret, only the enable secret will be used.
Describe the configuration and use of banners. Banners provide information to users
accessing the device and can be displayed at various login prompts. They are configured
with the banner command and a keyword describing the specific type of banner.
Set the enable secret on a router. To set the enable secret, you use the global config command enable secret. Do not use enable secret password password or you will set your
password to password password. Here is an example:
enable
config t
enable secret todd
Set the console password on a router.
sequence:
enable
config t
line console 0
password todd
login
To set the console password, use the following
Exam Essentials
267
Set the Telnet password on a router. To set the Telnet password, the sequence is as follows:
enable
config t
line vty 0 4
password todd
login
Describe the advantages of using Secure Shell and list its requirements. Secure Shell (SSH)
uses encrypted keys to send data so that usernames and passwords are not sent in the clear.
It requires that a hostname and domain name be configured and that encryption keys be
generated.
Describe the process of preparing an interface for use. To use an interface, you must
configure it with an IP address and subnet mask in the same subnet of the hosts that will
be connecting to the switch that is connected to that interface. It also must be enabled
with the no shutdown command. A serial interface that is connected back to back with
another router serial interface must also be configured with a clock rate on the DCE end
of the serial cable.
Understand how to troubleshoot a serial link problem. If you type show interface serial
0/0 and see down, line protocol is down, this will be considered a Physical layer problem. If
you see it as up, line protocol is down, then you have a Data Link layer problem.
Understand how to verify your router with the show interfaces command. If you type
show interfaces, you can view the statistics for the interfaces on the router, verify whether
the interfaces are shut down, and see the IP address of each interface.
Describe how to view, edit, delete, and save a configuration. The show running-config
command is used to view the current configuration being used by the router. The show
startup-config command displays the last configuration that was saved and is the one that
will be used at next startup. The copy running-config startup-config command is used
to save changes made to the running configuration in NVRAM. The erase startup-config
command deletes the saved configuration and will result in the invocation of the setup menu
when the router is rebooted because there will be no configuration present.
Chapter 6
268
u
Cisco’s Internetworking Operating System (IOS)
Written Lab 6
The answers to this lab can be found in Appendix A, “Answers to Written Labs.”
Write out the command or commands for the following questions:
1. What command is used to set a serial interface to provide clocking to another router at
1000 Kb?
2. If you telnet into a switch and get the response connection refused, password not
set, what commands would you execute on the destination device to stop receiving this
message and not be prompted for a password?
3. If you type show int fastethernet 0/1 and notice the port is administratively down,
what commands would you execute to enable the interface?
4. If you wanted to delete the configuration stored in NVRAM, what command(s) would
you type?
5. If you wanted to set the user-mode password to todd for the console port, what
command(s) would you type?
6. If you wanted to set the enable secret password to cisco, what command(s) would you
type?
7. If you wanted to determine if serial interface 0/2 on your router should provide clock-
ing, what command would you use?
8. What command would you use to see the terminal history size?
9. You want to reinitialize the switch and totally replace the running-config with the cur-
rent startup-config. What command will you use?
10. How would you set the name of a switch to Sales?
Hands-on Labs
In this section, you will perform commands on a Cisco switch (or you can use a router) that
will help you understand what you learned in this chapter.
You’ll need at least one Cisco device—two would be better, three would be outstanding.
The hands-on labs in this section are included for use with real Cisco routers, but all of these
labs work with the LammleSim IOS Version or Cisco Packet Tracer router simulator. Last, for
the Cisco exam it doesn’t matter what model of switch or router you use with these labs, as
long as you’re running IOS 12.2 or newer. Yes, I know the objectives are 15 code, but that is
not important for any of these labs.
Hands-on Labs
269
It is assumed that the device you’re going to use has no current configuration present. If
necessary, erase any existing configuration with Hands-on Lab 6.1; otherwise, proceed to
Hands-on Lab 6.2:
Lab 6.1: Erasing an Existing Configuration
Lab 6.2: Exploring User, Privileged, and Configuration Modes
Lab 6.3: Using the Help and Editing Features
Lab 6.4: Saving a Configuration
Lab 6.5: Setting Passwords
Lab 6.6: Setting the Hostname, Descriptions, IP Address, and Clock Rate
Hands-on Lab 6.1: Erasing an Existing Configuration
The following lab may require the knowledge of a username and password to enter privileged mode. If the router has a configuration with an unknown username and password for
privileged mode, this procedure will not be possible. It is possible to erase a configuration
without a privileged mode password, but the exact steps depend on the model and will not
be covered until Chapter 7.
1. Start the switch up and when prompted, press Enter.
2. At the Switch> prompt, type enable.
3. If prompted, enter the username and press Enter. Then enter the correct password and
press Enter.
4. At the privileged mode prompt, type erase startup-config.
5. At the privileged mode prompt, type reload, and when prompted to save the configuration, type n for no.
Hands-on Lab 6.2: Exploring User, Privileged, and
Configuration Modes
In the following lab, you’ll explore user, privileged, and configuration modes:
1. Plug the switch in, or turn the router on. If you just erased the configuration as in
Hands-on Lab 6.1, when prompted to continue with the configuration dialog, enter n
for no and press Enter. When prompted, press Enter to connect to your router. This
will put you into user mode.
2. At the Switch> prompt, type a question mark (?).
3. Notice the –more– at the bottom of the screen.
4. Press the Enter key to view the commands line by line. Press the spacebar to view the
commands a full screen at a time. You can type q at any time to quit.
Chapter 6
270
u
Cisco’s Internetworking Operating System (IOS)
5. Type enable or en and press Enter. This will put you into privileged mode where you
can change and view the router configuration.
6. At the Switch# prompt, type a question mark (?). Notice how many options are avail-
able to you in privileged mode.
7. Type q to quit.
8. Type config and press Enter.
9. When prompted for a method, press Enter to configure your router using your terminal
(which is the default).
10. At the Switch(config)# prompt, type a question mark (?), then q to quit, or press the
spacebar to view the commands.
11. Type interface f0/1 or int f0/1 (or even int gig0/1) and press Enter. This will
allow you to configure interface FastEthernet 0/1 or Gigabit 0/1.
12. At the Switch(config-if)# prompt, type a question mark (?).
13. If using a router, type int s0/0, interface s0/0 or even interface s0/0/0 and press
Enter. This will allow you to configure interface serial 0/0. Notice that you can go
from interface to interface easily.
14. Type encapsulation ?.
15. Type exit. Notice how this brings you back one level.
16. Press Ctrl+Z. Notice how this brings you out of configuration mode and places you
back into privileged mode.
17. Type disable. This will put you into user mode.
18. Type exit, which will log you out of the router or switch.
Hands-on Lab 6.3: Using the Help and Editing Features
This lab will provide hands-on experience with Cisco’s help and editing features.
1. Log into your device and go to privileged mode by typing en or enable.
2. Type a question mark (?).
3. Type cl? and then press Enter. Notice that you can see all the commands that start
with cl.
4. Type clock ? and press Enter.
Notice the difference between steps 3 and 4. Step 3 has you type letters
with no space and a question mark, which will give you all the commands
that start with cl. Step 4 has you type a command, space, and question
mark. By doing this, you will see the next available parameter.
Hands-on Labs
271
5. Set the clock by typing clock ? and, following the help screens, setting the time and
date. The following steps walk you through setting the date and time:
6. Type clock ?.
7. Type clock set ?.
8. Type clock set 10:30:30 ?.
9. Type clock set 10:30:30 14 May ?.
10. Type clock set 10:30:30 14 May 2011.
11. Press Enter.
12. Type show clock to see the time and date.
13. From privileged mode, type show access-list 10. Don’t press Enter.
14. Press Ctrl+A. This takes you to the beginning of the line.
15. Press Ctrl+E. This should take you back to the end of the line.
16. The Ctrl+A takes your cursor back to the beginning of the line, and then the Ctrl+F
moves your cursor forward one character.
17. Press Ctrl+B, which will move you back one character.
18. Press Enter, then press Ctrl+P. This will repeat the last command.
19. Press the up arrow key on your keyboard. This will also repeat the last command.
20. Type sh history. This shows you the last 10 commands entered.
21. Type terminal history size ?. This changes the history entry size. The ? is the num-
ber of allowed lines.
22. Type show terminal to gather terminal statistics and history size.
23. Type terminal no editing. This turns off advanced editing. Repeat steps 14 through
18 to see that the shortcut editing keys have no effect until you type terminal editing.
24. Type terminal editing and press Enter to re-enable advanced editing.
25. Type sh run, then press your Tab key. This will finish typing the command for you.
26. Type sh start, then press your Tab key. This will finish typing the command for you.
Hands-on Lab 6.4: Saving a Configuration
In this lab, you will get hands-on experience saving a configuration:
1. Log into your device and go into privileged mode by typing en or enable, then
press Enter.
2. To see the configuration stored in NVRAM, type sh start and press Tab and Enter,
or type show startup-config and press Enter. However, if no configuration has been
saved, you will get an error message.
Chapter 6
272
u
Cisco’s Internetworking Operating System (IOS)
3. To save a configuration to NVRAM, which is known as startup-config, you can do
one of the following:
uu
Type copy run start and press Enter.
uu
Type copy running, press Tab, type start, press Tab, and press Enter.
uu
Type copy running-config startup-config and press Enter.
4. Type sh start, press Tab, then press Enter.
5. Type sh run, press Tab, then press Enter.
6. Type erase startup-config, press Tab, then press Enter.
7. Type sh start, press Tab, then press Enter. The router will either tell you that
NVRAM is not present or display some other type of message, depending on the IOS
and hardware.
8. Type reload, then press Enter. Acknowledge the reload by pressing Enter. Wait for the
device to reload.
9. Say no to entering setup mode, or just press Ctrl+C.
Hands-on Lab 6.5: Setting Passwords
This hands-on lab will have you set your passwords.
1. Log into the router and go into privileged mode by typing en or enable.
2. Type config t and press Enter.
3. Type enable ?.
4. Set your enable secret password by typing enable secret password (the third word
should be your own personalized password) and pressing Enter. Do not add the parameter password after the parameter secret (this would make your password the word
password). An example would be enable secret todd.
5. Now let’s see what happens when you log all the way out of the router and then log
in. Log out by pressing Ctrl+Z, and then type exit and press Enter. Go to privileged
mode. Before you are allowed to enter privileged mode, you will be asked for a password. If you successfully enter the secret password, you can proceed.
6. Remove the secret password. Go to privileged mode, type config t, and press Enter.
Type no enable secret and press Enter. Log out and then log back in again; now you
should not be asked for a password.
7. One more password used to enter privileged mode is called the enable password. It is
an older, less secure password and is not used if an enable secret password is set. Here
is an example of how to set it:
config t
enable password todd1
Hands-on Labs
273
8. Notice that the enable secret and enable passwords are different. They should never be
set the same. Actually, you should never use the enable password, only enable secret.
9. Type config t to be at the right level to set your console and auxiliary passwords, then
type line ?.
10. Notice that the parameters for the line commands are auxiliary, vty, and console.
You will set all three if you’re on a router; if you’re on a switch, only the console and
VTY lines are available.
11. To set the Telnet or VTY password, type line vty 0 4 and then press Enter. The 0 4
is the range of the five available virtual lines used to connect with Telnet. If you have
an enterprise IOS, the number of lines may vary. Use the question mark to determine
the last line number available on your router.
12. The next command is used to set the authentication on or off. Type login and press
Enter to prompt for a user-mode password when telnetting into the device. You will
not be able to telnet into a Cisco device if the password is not set.
You can use the no login command to disable the user-mode password
prompt when using Telnet. Do not do this in production!
13. One more command you need to set for your VTY password is password. Type password
password to set the password. (password is your password.)
14. Here is an example of how to set the VTY password:
config t
line vty 0 4
password todd
login
15. Set your auxiliary password by first typing line auxiliary 0 or line aux 0 (if you
are using a router).
16. Type login.
17. Type password password.
18. Set your console password by first typing line console 0 or line con 0.
19. Type login.
20. Type password password. Here is an example of the last two command sequences:
config t
line con 0
password todd1
login
line aux 0
274
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
password todd
login
21. You can add the Exec-timeout 0 0 command to the console 0 line. This will stop the
console from timing out and logging you out. The command sequence will now look
like this:
config t
line con 0
password todd2
login
exec-timeout 0 0
22. Set the console prompt to not overwrite the command you’re typing with console
messages by using the command logging synchronous.
config t
line con 0
logging synchronous
Hands-on Lab 6.6: Setting the Hostname, Descriptions,
IP Address, and Clock Rate
This lab will have you set your administrative functions on each device.
1. Log into the switch or router and go into privileged mode by typing en or enable. If
required, enter a username and password.
2. Set your hostname by using the hostname command. Notice that it is one word. Here
is an example of setting your hostname on your router, but the switch uses the exact
same command:
Router#config t
Router(config)#hostname RouterA
RouterA(config)#
Notice that the hostname of the router changed in the prompt as soon as you
pressed Enter.
3. Set a banner that the network administrators will see by using the banner command,
as shown in the following steps.
4. Type config t, then banner ?.
5. Notice that you can set at least four different banners. For this lab we are only inter-
ested in the login and message of the day (MOTD) banners.
Hands-on Labs
275
6. Set your MOTD banner, which will be displayed when a console, auxiliary, or Telnet
connection is made to the router, by typing this:
config t
banner motd #
This is an motd banner
#
7. The preceding example used a # sign as a delimiting character. This tells the router when
the message is done. You cannot use the delimiting character in the message itself.
8. You can remove the MOTD banner by typing the following command:
config t
no banner motd
9. Set the login banner by typing this:
config t
banner login #
This is a login banner
#
10. The login banner will display immediately after the MOTD but before the user-mode
password prompt. Remember that you set your user-mode passwords by setting the
console, auxiliary, and VTY line passwords.
11. You can remove the login banner by typing this:
config t
no banner login
12. You can add an IP address to an interface with the ip address command if you are using
a router. You need to get into interface configuration mode first; here is an example of
how you do that:
config t
int f0/1
ip address 1.1.1.1 255.255.0.0
no shutdown
Notice that the IP address (1.1.1.1) and subnet mask (255.255.0.0) are configured on
one line. The no shutdown (or no shut for short) command is used to enable the interface. All interfaces are shut down by default on a router. If you are on a layer 2 switch,
you can set an IP address only on the VLAN 1 interface.
276
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
13. You can add identification to an interface by using the description command. This is
useful for adding information about the connection. Here is an example:
config t
int f0/1
ip address 2.2.2.1 255.255.0.0
no shut
description LAN link to Finance
14. You can add the bandwidth of a serial link as well as the clock rate when simulating a
DCE WAN link on a router. Here is an example:
config t
int s0/0
bandwidth 1000
clock rate 1000000
Review Questions
Review Questions
The following questions are designed to test your understanding of this
chapter’s material. For more information on how to get additional questions, please see this book’s introduction.
The answers to these questions can be found in Appendix B, “Answers to Chapter
Review Questions.”
1. You type show interfaces fa0/1 and get this output:
275496 packets input, 35226811 bytes, 0 no buffer
Received 69748 broadcasts (58822 multicasts)
0 runts, 0 giants, 0 throttles
111395 input errors, 511987 CRC, 0 frame, 0 overrun, 0 ignored
0 watchdog, 58822 multicast, 0 pause input
0 input packets with dribble condition detected
2392529 packets output, 337933522 bytes, 0 underruns
0 output errors, 0 collisions, 1 interface resets
0 babbles, 0 late collision, 0 deferred
0 lost carrier, 0 no carrier, 0 PAUSE output
0 output buffer failures, 0 output buffers swapped out
What could the problem possibly be with this interface?
A. Speed mismatch on directly connected interfaces
B. Collisions causing CRC errors
C. Frames received are too large
D. Interference on the Ethernet cable
2. The output of the show running-config command comes from ___________.
A. NVRAM
B. Flash
C. RAM
D. Firmware
277
278
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
3. Which two of the following commands are required when configuring SSH on your
router? (Choose two.)
A. enable secret password
B. exec-timeout 0 0
C. ip domain-name name
D. username name password password
E. ip ssh version 2
4. Which command will show you whether a DTE or a DCE cable is plugged into serial
0/0 on your router’s WAN port?
A. sh int s0/0
B. sh int serial 0/0
C. show controllers s 0/0
D. show serial 0/0 controllers
5. In the work area, drag the router term to its definition on the right.
Mode
Definition
User EXEC mode
Commands that affect the entire system
Privileged EXEC mode
Commands that affect interfaces/processes only
Global configuration mode
Interactive configuration dialog
Specific configuration modes
Provides access to all other router commands
Setup mode
Limited to basic monitoring commands
6. Using the given output, what type of interface is f0/0?
[output cut]
Hardware is MV96340 Ethernet, address is 001a.2f55.c9e8 (bia 001a.2f55.c9e8)
Internet address is 192.168.1.33/27
MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec,
reliability 255/255, txload 1/255, rxload 1/255
A. 10 MB
B. 100 MB
C. 1000 MB
D. 1000 MB
Review Questions
7. Which of the following commands will configure all the default VTY ports on a
switch?
A. Switch#line vty 0 4
B. Switch(config)#line vty 0 4
C. Switch(config-if)#line console 0
D. Switch(config)#line vty all
8. Which of the following commands sets the privileged mode password to Cisco and
encrypts the password?
A. enable secret password Cisco
B. enable secret cisco
C. enable secret Cisco
D. enable password Cisco
9. If you wanted administrators to see a message when logging into the switch, which
command would you use?
A. message banner motd
B. banner message motd
C. banner motd
D. message motd
10. Which of the following prompts indicates that the switch is currently in privileged
mode?
A. Switch(config)#
B. Switch>
C. Switch#
D. Switch(config-if)
11. What command do you type to save the configuration stored in RAM to NVRAM?
A. Switch(config)#copy current to starting
B. Switch#copy starting to running
C. Switch(config)#copy running-config startup-config
D. Switch#copy run start
279
280
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
12. You try to telnet into SF from router Corp and receive this message:
Corp#telnet SF
Trying SF (10.0.0.1)…Open
Password required, but none set
[Connection to SF closed by foreign host]
Corp#
Which of the following sequences will address this problem correctly?
A. Corp(config)#line console 0
Corp (config-line)#password password
Corp (config-line)#login
B. SF (config)#line console 0
SF(config-line)#enable secret password
SF(config-line)#login
C. Corp(config)#line vty 0 4
Corp (config-line)#password password
Corp (config-line)#login
D. SF (config)#line vty 0 4
SF(config-line)#password password
SF(config-line)#login
13. Which command will delete the contents of NVRAM on a switch?
A. delete NVRAM
B. delete startup-config
C. erase flash
D. erase startup-config
E. erase start
14. What is the problem with an interface if you type show interface g0/1 and receive
the following message?
Gigabit 0/1 is administratively down, line protocol is down
A. The keepalives are different times.
B. The administrator has the interface shut down.
C. The administrator is pinging from the interface.
D. No cable is attached.
Review Questions
281
15. Which of the following commands displays the configurable parameters and statistics
of all interfaces on a switch?
A. show running-config
B. show startup-config
C. show interfaces
D. show versions
16. If you delete the contents of NVRAM and reboot the switch, what mode will you be in?
A. Privileged mode
B. Global mode
C. Setup mode
D. NVRAM loaded mode
17. You type the following command into the switch and receive the following output:
Switch#show fastethernet 0/1
^
% Invalid input detected at ‘^’ marker.
Why was this error message displayed?
A. You need to be in privileged mode.
B. You cannot have a space between fastethernet and 0/1.
C. The switch does not have a Fastethernet 0/1 interface.
D. Part of the command is missing.
18. You type Switch#sh r and receive a % ambiguous command error. Why did you receive
this message?
A. The command requires additional options or parameters.
B. There is more than one show command that starts with the letter r.
C. There is no show command that starts with r.
D. The command is being executed from the wrong mode.
19. Which of the following commands will display the current IP addressing and the
layer 1 and 2 status of an interface? (Choose two.)
A. show version
B. show interfaces
C. show controllers
D. show ip interface
E. show running-config
282
Chapter 6
u
Cisco’s Internetworking Operating System (IOS)
20. At which layer of the OSI model would you assume the problem is if you type show
interface serial 1 and receive the following message?
Serial1 is down, line protocol is down
A. Physical layer
B. Data Link layer
C. Network layer
D. None; it is a router problem.
Chapter
7
Managing a Cisco
Internetwork
The following ICND1 exam topics
are covered in this chapter:
11 LAN Switching Technologies
■■
Verify network status and switch operation using basic
utilities such as ping, telnet, and ssh
11 IP Routing Technologies
■■
Configure and verify utilizing the CLI to set basic Router
configuration
■■
■■
Cisco IOS commands to perform basic router setup
Verify router configuration and network connectivity
■■
Cisco IOS commands to review basic router information
and network connectivity
11 IP Services
■■
■■
Configure and verify DHCP (IOS Router)
■■
configuring router interfaces to use DHCP
■■
DHCP options
■■
excluded addresses
■■
lease time
Configure and verify NTP as a client
Here in Chapter 7, I’m going to show you how to manage Cisco
routers and switches on an internetwork. You’ll find out how to
manage Cisco devices by using the copy command with a TFTP
host and how to configure DHCP and NTP, plus you’ll get a survey of the Cisco Discovery
Protocol (CDP). I’ll also show you how to resolve hostnames.
I’ll wrap up the chapter by guiding you through some important Cisco IOS troubleshooting
techniques to ensure that you’re well equipped with these key skills.
To find up-to-the minute updates for this chapter, please see
www.lammle.com/forum or the book’s web page at www.sybex.com.
The Internal Components of a
Cisco Router and Switch
Unless you happen to be really savvy about the inner and outer workings of all your car’s
systems and its machinery and how all of that technology works together, you’ll take it to
someone who does know how to keep it maintained, figure out what’s wrong when it stops
running, and get it up and running again. It’s the same deal with Cisco networking devices—
you need to know all about their major components, pieces, and parts as well as what they all
do and why and how they all work together to make a network work. The more solid your
knowledge, the more expert you are about these things and the better equipped you’ll be to
configure and troubleshoot a Cisco internetwork. Toward that goal, study Table 7.1 for an
introductory description of a Cisco router’s major components.
Table 7.1 Cisco router components
Component
Description
Bootstrap
Stored in the microcode of the ROM, the bootstrap is
used to bring a router up during initialization. It boots the
router up and then loads the IOS.
The Internal Components of a Cisco Router and Switch
285
Component
Description
POST (power-on self-test)
Also stored in the microcode of the ROM, the POST is
used to check the basic functionality of the router hardware and determines which interfaces are present.
ROM monitor
Again, stored in the microcode of the ROM, the ROM
monitor is used for manufacturing, testing, and troubleshooting, as well as running a mini-IOS when the IOS in
flash fails to load.
Mini-IOS
Called the RXBOOT or bootloader by Cisco, the mini-IOS is
a small IOS in ROM that can be used to bring up an interface and load a Cisco IOS into flash memory. The mini-IOS
can also perform a few other maintenance operations.
RAM (random access memory) Used to hold packet buffers, ARP cache, routing tables, and
also the software and data structures that allow the router
to function. Running-config is stored in RAM, and most
routers expand the IOS from flash into RAM upon boot.
ROM (read-only memory)
Used to start and maintain the router. Holds the POST and
the bootstrap program as well as the mini-IOS.
Flash memory
Stores the Cisco IOS by default. Flash memory is not
erased when the router is reloaded. It is EEPROM (electronically erasable programmable read-only memory)
created by Intel.
NVRAM (nonvolatile RAM)
Used to hold the router and switch configuration.
NVRAM is not erased when the router or switch is
reloaded. Does not store an IOS. The configuration
register is stored in NVRAM.
Configuration register
Used to control how the router boots up. This value can
be found as the last line of the show version command
output and by default is set to 0x2102, which tells the
router to load the IOS from flash memory as well as to
load the configuration from NVRAM.
The Router and Switch Boot Sequence
When a Cisco device boots up, it performs a series of steps, called the boot sequence, to test the
hardware and load the necessary software. The boot sequence comprises the following steps:
1. The IOS device performs a POST, which tests the hardware to verify that all components
of the device are present and operational. The post takes stock of the different interfaces
on the switch or router, and it’s stored in and runs from read-only memory (ROM).
286
Chapter 7
u
Managing a Cisco Internetwork
2. The bootstrap in ROM then locates and loads the Cisco IOS software by executing
programs responsible for finding where each IOS program is located. Once they are
found, it then loads the proper files. By default, the IOS software is loaded from flash
memory in all Cisco devices.
The default order of an IOS loading from a Cisco device begins with flash,
then TFTP server, and finally, ROM.
3. The IOS software then looks for a valid configuration file stored in NVRAM. This
file is called startup-config and will be present only if an administrator has copied the
running-config file into NVRAM.
4. If a startup-config file is found in NVRAM, the router or switch will copy it, place it in
RAM, and name the file the running-config. The device will use this file to run, and the
router/switch should now be operational. If no startup-config file is found in NVRAM,
the router/switch reacts by broadcasting out any interface that detects carrier detect (CD)
to locate a TFTP host in its search for a configuration. When that fails, which it typically
does, the device will begin the setup mode configuration process. Most people don’t even
realize the device has attempted this process!
Backing Up and Restoring the
Cisco Configuration
Any changes that you make to the configuration are stored in the running-config file. And
if you don’t enter a copy run start command after you make a change to running-config,
that change will totally disappear if the device reboots or gets powered down. As always,
backups are good, so you’ll want to make another backup of the configuration information
just in case the router or switch completely dies on you. Even if your machine is healthy and
happy, it’s good to have a backup for reference and documentation reasons!
Next, I’ll cover how to copy the configuration of a router to a TFTP server as well as
how to restore that configuration.
Backing Up the Cisco Configuration
To copy the configuration from an IOS device to a TFTP server, you can use either the
copy running-config tftp or the copy startup-config tftp command. Either one
will back up the router configuration that’s currently running in DRAM or one that’s
stored in NVRAM.
Backing Up and Restoring the Cisco Configuration
287
Verifying the Current Configuration
To verify the configuration in DRAM, use the show running-config command (sh run for
short) like this:
Router#show running-config
Building configuration...
Current configuration : 855 bytes
!
version 15.0
The current configuration information indicates that the router is running version 15.0
of the IOS.
Verifying the Stored Configuration
Next, you should check the configuration stored in NVRAM. To see this, use the show
startup-config command (sh start for short) like this:
Router#sh start
Using 855 out of 524288 bytes
!
! Last configuration change at 04:49:14 UTC Fri Mar 5 1993
!
version 15.0
The first line shows you how much room your backup configuration is taking up. Here,
we can see that NVRAM is about 524 KB and that only 855 bytes of it are being used. But
memory is easier to reveal via the show version command when you’re using an ISR router.
If you’re not sure that the files are the same and the running-config file is what you want to
go with, then use the copy running-config startup-config command. This will help you
ensure that both files are in fact the same. I’ll guide you through this in the next section.
Copying the Current Configuration to NVRAM
By copying running-config to NVRAM as a backup, as shown in the following output,
you ensure that your running-config will always be reloaded if the router gets rebooted.
Starting in the 12.0 IOS, you’ll be prompted for the filename you want to use:
Router#copy running-config startup-config
Destination filename [startup-config]?[enter]
Building configuration...
[OK]
288
Chapter 7
u
Managing a Cisco Internetwork
The reason the filename prompt appears is that there are now so many options you can
use when using the copy command—check it out:
Router#copy running-config ?
flash:
Copy to flash: file system
ftp:
Copy to ftp: file system
http:
Copy to http: file system
https:
Copy to https: file system
null:
Copy to null: file system
nvram:
Copy to nvram: file system
rcp:
Copy to rcp: file system
running-config Update (merge with) current system configuration
scp:
Copy to scp: file system
startup-config Copy to startup configuration
syslog:
Copy to syslog: file system
system:
Copy to system: file system
tftp:
Copy to tftp: file system
tmpsys:
Copy to tmpsys: file system
We’ll go over the copy command in more detail in the Sybex ICND2 Study Guide.
Copying the Configuration to a TFTP Server
Once the file is copied to NVRAM, you can make a second backup to a TFTP server by
using the copy running-config tftp command, or copy run tftp for short. I’m going to
set the hostname to Todd before I run this command:
Todd#copy running-config tftp
Address or name of remote host []? 10.10.10.254
Destination filename [todd-confg]?
!!
776 bytes copied in 0.800 secs (970 bytes/sec)
If you have a hostname already configured, the command will automatically use the
hostname plus the extension -confg as the name of the file.
Restoring the Cisco Configuration
What do you do if you’ve changed your running-config file and want to restore the configuration to the version in the startup-config file? The easiest way to get this done is to use the
copy startup-config running-config command, or copy start run for short, but this
will work only if you copied running-config into NVRAM before you made any changes!
Of course, a reload of the device will work too!
If you did copy the configuration to a TFTP server as a second backup, you can restore the
configuration using the copy tftp running-config command (copy tftp run for short), or
Backing Up and Restoring the Cisco Configuration
289
the copy tftp startup-config command (copy tftp start for short), as shown in the output below. Just so you know, the old command we used to use for this is config net:
Todd#copy tftp running-config
Address or name of remote host []?10.10.10.254
Source filename []?todd-confg
Destination filename[running-config]?[enter]
Accessing tftp://10.10.10.254/todd-confg...
Loading todd-confg from 10.10.10.254 (via FastEthernet0/0):
!!
[OK - 776 bytes]
776 bytes copied in 9.212 secs (84 bytes/sec)
Todd#
*Mar 7 17:53:34.071: %SYS-5-CONFIG_I: Configured from
tftp://10.10.10.254/todd-confg by console
Okay, here we can see that the configuration file is an ASCII text file, meaning that
before you copy the configuration stored on a TFTP server back to a router, you can make
changes to the file with any text editor.
Remember that when you copy or merge a configuration from a TFTP
server to a freshly erased and rebooted router’s RAM, the interfaces are
shut down by default and you must manually enable each interface with
the no shutdown command.
Erasing the Configuration
To delete the startup-config file on a Cisco router or switch, use the command erase
startup-config, like this:
Todd#erase startup-config
Erasing the nvram filesystem will remove all configuration files!
Continue? [confirm][enter]
[OK]
Erase of nvram: complete
*Mar 7 17:56:20.407: %SYS-7-NV_BLOCK_INIT: Initialized the geometry of nvram
Todd#reload
System configuration has been modified. Save? [yes/no]:n
Proceed with reload? [confirm][enter]
*Mar 7 17:56:31.059: %SYS-5-RELOAD: Reload requested by console.
Reload Reason: Reload Command.
290
Chapter 7
u
Managing a Cisco Internetwork
This command deletes the contents of NVRAM on the switch and router. If you type
reload while in privileged mode and say no to saving changes, the switch or router will
reload and come up into setup mode.
Visit ccna
.gg/ch7/b
for a
companion
MicroNugget
from CBT
Nuggets.
Configuring DHCP
We went over DHCP in Chapter 3, “Introduction to TCP/IP”, where I described how it
works and what happens when there’s a conflict. At this point, you’re ready to learn how
to configure DHCP on Cisco’s IOS as well as how to configure a DHCP forwarder for
when your hosts don’t live on the same LAN as the DHCP server. Do you remember the
four-way handshake hosts used to get an address from a server? If not, now would be a
really great time to head back to Chapter 3 and thoroughly review that before moving
on with this!
To configure a DHCP server for your hosts, you need the following information at
minimum:
Network and mask for each LAN Network ID, also called a scope. All addresses in a
subnet can be leased to hosts by default.
Reserved/excluded addresses Reserved addresses for printers, servers, routers, etc.
These addresses will not be handed out to hosts. I usually reserve the first address of
each subnet for the router, but you don’t have to do this.
Default router This is the router’s address for each LAN.
DNS address A list of DNS server addresses provided to hosts so they can resolve names.
Here are your configuration steps:
1. Exclude the addresses you want to reserve. The reason you do this step first is
because as soon as you set a network ID, the DHCP service will start responding
to client requests.
2. Create your pool for each LAN using a unique name.
3. Choose the network ID and subnet mask for the DHCP pool that the server will use to
provide addresses to hosts.
4. Add the address used for the default gateway of the subnet.
5. Provide the DNS server address(es).
6. If you don’t want to use the default lease time of 24 hours, you need to set the lease
time in days, hours, and minutes.
I’ll configure the switch in Figure 7.1 to be the DHCP server for the Sales Wireless LAN.
Configuring DHCP
F ig u re 7.1
291
DHCP Configuration example on a switch
Int f0/0
DHCP server
192.168.10.1
S1
Sales wireless area
Understand that this configuration could just have easily been placed on the router in
Figure 7.1. Here’s how we’ll configure DHCP using the 192.168.10.0/24 network ID:
Switch(config)#ip dhcp excluded-address 192.168.10.1 192.168.10.10
Switch(config)#ip dhcp pool Sales_Wireless
Switch(dhcp-config)#network 192.168.10.0 255.255.255.0
Switch(dhcp-config)#default-router 192.168.10.1
Switch(dhcp-config)#dns-server 4.4.4.4
Switch(dhcp-config)#lease 3 12 15
First, you can see that I reserved 10 addresses in the range for the router, servers, and
printers, etc. I then created the pool named Sales_Wireless, added the default gateway and
DNS server, and set the lease to 3 days, 12 hours, and 15 minutes (which isn’t really significant because I just set it that way for demonstration purposes). Pretty straightforward,
right? The switch will now respond to DHCP client requests. But what happens if we need
to provide an IP address from a DHCP server to a host that’s not in our broadcast domain,
or if we want to receive a DHCP address for a client from a remote server?
DHCP Relay
If you need to provide addresses from a DHCP server to hosts that aren’t on the same
LAN as the DHCP server, you can configure your router interface to relay or forward
the DHCP client requests, as shown in Figure 7.2. If we don’t provide this service, our
router would receive the DHCP client broadcast, promptly discard it, and the remote
host would never receive an address—unless we added a DHCP server on every broadcast domain! Let’s take a look at how we would typically configure DHCP service in
today’s networks.
So we know that because the hosts off the router don’t have access to a DHCP server,
the router will simply drop their client request broadcast messages by default. To solve
292
Chapter 7
u
Managing a Cisco Internetwork
this problem, we can configure the F0/0 interface of the router to accept the DHCP client
requests and forward them to the DHCP server like this:
Router#config t
Router(config)#interface fa0/0
Router(config-if)#ip helper-address 10.10.10.254
F ig u re 7. 2
Configuring a DHCP relay
I hear the port 67 request on int Fa0/0!
I’ll forward this broadcast as a unicast to
10.10.10.254 ASAP!
Admin
Int Fa0/0
192.168.10.1
Sales
DHCP server
10.10.10.254
DHCP client broadcast request
Now I know that was a pretty simple example, and there are definitely other ways to
configure the relay, but rest assured that I’ve covered the objectives for you. Also, I want
you to know that ip helper-address forwards more than just DHCP client requests, so be
sure to research this command before you implement it! Now that I’ve demonstrated how
to create the DHCP service, let’s take a minute to verify DHCP before moving on to NTP.
Verifying DHCP on Cisco IOS
There are some really useful verification commands to use on a Cisco IOS device for monitoring and verifying a DHCP service. You’ll get to see the output for these commands when
I build the network in Chapter 8, “IP Routing,” and add DHCP to the two remote LANs. I
just want you to begin getting familiar with them, so here’s a list of four very important ones
and what they do:
show ip dhcp binding
Lists state information about each IP address currently leased to
a client.
Lists the configured range of IP addresses, plus statistics for the number of currently leased addresses and the high watermark for leases from
each pool.
show ip dhcp pool [poolname]
Network Time Protocol (NTP)
show ip dhcp server statistics
293
Lists DHCP server statistics—a lot of them!
If someone statically configures an IP address on a LAN and the
DHCP server hands out that same address, you’ll end up with a duplicate address. This isn’t
good, which is why this command is so helpful!
show ip dhcp conflict
Again, no worries because we’ll cover these vital commands thoroughly in the next chapter.
Network Time Protocol (NTP)
Network Time Protocol provides pretty much what it describes: time to all your network
devices. To be more precise, NTP synchronizes clocks of computer systems over packetswitched, variable-latency data networks.
Typically you’ll have an NTP server that connects through the Internet to an atomic clock.
This time can then be synchronized through the network to keep all routers, switches, servers,
etc. receiving the same time information.
Correct network time within the network is important:
uu
uu
uu
Correct time allows the tracking of events in the network in the correct order.
Clock synchronization is critical for the correct interpretation of events within the
syslog data.
Clock synchronization is critical for digital certificates.
Making sure all your devices have the correct time is especially helpful for your routers and
switches for looking at logs regarding security issues or other maintenance issues. Routers and
switches issue log messages when different events take place—for example, when an interface
goes down and then back up. As you already know, all messages generated by the IOS go only
to the console port by default. However, as shown in Figure 7.3, those console messages can be
directed to a syslog server.
F ig u re 7. 3
Sending console messages to a syslog server
Syslog server
SF
172.16.10.1
Console messages
A syslog server saves copies of console messages and can time-stamp them so you can
view them at a later time. This is actually rather easy to do. Here would be your configuration on the SF router:
SF(config)#logging host 172.16.10.1
SF(config)#service timestamps log datetime msec
Visit ccna
.gg/ch7/a
for a
companion
MicroNugget
from CBT
Nuggets.
294
Chapter 7
u
Managing a Cisco Internetwork
Now all the console messages will be stored in one location that you can view at your
convenience. However, even though I had the messages time-stamped in Figure 7.3 with the
command service timestamps log datetime msec, this doesn’t mean that we’ll know the
exact time if using default clock sources. To make sure all devices are synchronized with
the same time information, we’ll configure our devices to receive the accurate time information from a centralized server, as shown in Figure 7.4:
SF(config)#ntp server 172.16.10.1 version 4
F ig u re 7. 4
Synchronizing time information
NTP server
10.1.1.2
Corp
172.16.10.1
SF
NTP Client
Here is the exact time and date!
Just use that one simple command on all your devices and each network device on
your network will then have the same exact time and date information. You can then rest
assured that your time stamps are accurate. You can also make your router or switch be an
NTP server with the ntp master command.
To verify our VTP client is receiving clocking information, we use the following
commands:
SF#sh ntp ?
associations
status
NTP associations
NTP status status
VTP domain status
SF#sh ntp status
Clock is unsynchronized, stratum 16, no reference clock
nominal freq is 119.2092 Hz, actual freq is 119.2092 Hz, precision is 2**18
reference time is 00000000.00000000 (00:00:00.000 UTC Mon Jan 1 1900)
clock offset is 0.0000 msec, root delay is 0.00 msec
S1#sh ntp associations
address
ref clock
st when poll reach delay offset
disp
~172.16.10.1
0.0.0.0
16
64
0
0.0
0.00 16000.
* master (synced), # master (unsynced), + selected, - candidate, ~ configured
Using Cisco Discovery Protocol (CDP)
295
You can see in the example that the NTP client in SF is not synchronized with the server
by using the show ntp status command. The stratum value is a number from 1 to 15, and a
lower stratum value indicates a higher NTP priority; 16 means there is no clocking received.
There are many other configurations of an NTP client that are available, such as
authentication of NTP so a router or switch isn’t fooled into changing the time of an
attack, for example.
Using Cisco Discovery Protocol (CDP)
Cisco Discovery Protocol (CDP) is a proprietary protocol designed by Cisco to help administrators collect information about locally attached devices. Armed with CDP, you can gather
hardware and protocol information about neighbor devices, which is crucial information to
have when troubleshooting and documenting the network.
Let’s start by exploring the CDP timer and CDP commands we’ll need to verify our
network.
Getting CDP Timers and Holdtime Information
The show cdp command (sh cdp for short) gives you information about two CDP global
parameters that can be configured on Cisco devices:
uu
uu
CDP timer delimits how often CDP packets are transmitted out all active interfaces.
CDP holdtime delimits the amount of time that the device will hold packets received
from neighbor devices.
Both Cisco routers and switches use the same parameters. Check out Figure 7.5 to see
how CDP works within a switched network that I set up for my switching labs in this book.
F ig u re 7. 5
Cisco Discovery Protocol
SW–1
10.100.128.10
F0/15
F0/17
F0/16 F0/18
F0/1
SW–3
10.100.128.8
F0/2
F0/5
F0/5
F0/6
F0/6
The output on my 3560 SW-3 looks like this:
SW-3#sh cdp
Global CDP information:
F0/2
F0/1
SW–2
10.100.128.9
296
Chapter 7
u
Managing a Cisco Internetwork
Sending CDP packets every 60 seconds
Sending a holdtime value of 180 seconds
Sending CDPv2 advertisements is enabled
This output tells us that the default transmits every 60 seconds and will hold packets from
a neighbor in the CDP table for 180 seconds. I can use the global commands cdp holdtime
and cdp timer to configure the CDP holdtime and timer on a router if necessary like this:
SW-3(config)#cdp ?
advertise-v2 CDP sends version-2 advertisements
holdtime
Specify the holdtime (in sec) to be sent in packets
run
Enable CDP
timer
Specify the rate at which CDP packets are sent (in sec)
tlv
Enable exchange of specific tlv information
SW-3(config)#cdp holdtime ?
<10-255> Length of time
(in sec) that receiver must keep this packet
SW-3(config)#cdp timer ?
<5-254> Rate at which CDP packets are sent (in
sec)
You can turn off CDP completely with the no cdp run command from global configuration
mode of a router and enable it with the cdp run command:
SW-3(config)#no cdp run
SW-3(config)#cdp run
To turn CDP off or on for an interface, use the no cdp enable and cdp enable commands.
Gathering Neighbor Information
The show cdp neighbor command (sh cdp nei for short) delivers information about directly
connected devices. It’s important to remember that CDP packets aren’t passed through a Cisco
switch and that you only see what’s directly attached. So this means that if your router is connected to a switch, you won’t see any of the Cisco devices connected to that switch!
The following output shows the show cdp neighbor command I used on my SW-3:
SW-3#sh cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone,
D - Remote, C - CVTA, M - Two-port Mac Relay Device ID
Local Intrfce
Holdtme
Capability Platform Port ID
SW-1
Fas 0/1
170
S I
WS-C3560- Fas 0/15
Using Cisco Discovery Protocol (CDP)
SW-1
SW-2
SW-2
Fas 0/2
Fas 0/5
Fas 0/6
170
162
162
S I
S I
S I
297
WS-C3560- Fas 0/16
WS-C3560- Fas 0/5
WS-C3560- Fas 0/6
Okay—we can see that I’m directly connected with a console cable to the SW-3 switch and
also that SW-3 is directly connected to two other switches. However, do we really need the
figure to draw out our network? We don’t! CDP allows me to see who my directly connected
neighbors are and gather information about them. From the SW-3 switch, we can see that
there are two connections to SW-1 and two connections to SW-2. SW-3 connects to SW-1 with
ports Fas 0/1 and Fas 0/2, and we have connections to SW-2 with local interfaces Fas 0/5 and
Fas 0/6. Both the SW-1 and SW-2 switches are 3650 switches, and SW-1 is using ports Fas
0/15 and Fas 0/16 to connect to SW-3. SW-2 is using ports Fas 0/5 and Fas 0/6.
To sum this up, the device ID shows the configured hostname of the connected device,
that the local interface is our interface, and the port ID is the remote devices’ directly connected interface. Remember that all you get to view are directly connected devices!
Table 7.2 summarizes the information displayed by the show cdp neighbor command
for each device.
Table 7. 2 Output of the show cdp neighbors command
Field
Description
Device ID
The hostname of the device directly connected.
Local Interface
The port or interface on which you are receiving the CDP packet.
Holdtime
The remaining amount of time the router will hold the information
before discarding it if no more CDP packets are received.
Capability
The capability of the neighbor—the router, switch, or repeater. The
capability codes are listed at the top of the command output.
Platform
The type of Cisco device directly connected. In the previous output, the SW-3 shows it’s directly connected to two 3560 switches.
Port ID
The neighbor device’s port or interface on which the CDP packets
are multicast.
It’s imperative that you can look at the output of a show cdp neighbors
command and decipher the information gained about the neighbor device’s
capability, whether it’s a router or switch, the model number (platform), your
port connecting to that device (local interface), and the port of the neighbor
connecting to you (port ID).
298
Chapter 7
u
Managing a Cisco Internetwork
Another command that will deliver the goods on neighbor information is the show
cdp neighbors detail command (show cdp nei de for short). This command can be
run on both routers and switches, and it displays detailed information about each device
connected to the device you’re running the command on. Check out the router output in
Listing 7.1.
Listing 7.1: Showing CDP Neighbors
SW-3#sh cdp neighbors detail
------------------------Device ID: SW-1
Entry address(es):
IP address: 10.100.128.10
Platform: cisco WS-C3560-24TS, Capabilities: Switch IGMP
Interface: FastEthernet0/1, Port ID (outgoing port): FastEthernet0/15
Holdtime : 137 sec
Version :
Cisco IOS Software, C3560 Software (C3560-IPSERVICESK9-M), Version 12.2(55)SE7,
RELEASE SOFTWARE (fc1)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2013 by Cisco Systems, Inc.
Compiled Mon 28-Jan-13 10:10 by prod_rel_team
advertisement version: 2
Protocol Hello: OUI=0x00000C, Protocol ID=0x0112; payload len=27, value=00000000
FFFFFFFF010221FF000000000000001C575EC880FF0000
VTP Management Domain: 'NULL'
Native VLAN: 1
Duplex: full
Power Available TLV:
Power request id: 0, Power management id: 1, Power available: 0, Power
management level: -1
Management address(es):
IP address: 10.100.128.10
-------------------------
Using Cisco Discovery Protocol (CDP)
299
[ouput cut]
------------------------Device ID: SW-2
Entry address(es):
IP address: 10.100.128.9
Platform: cisco WS-C3560-8PC, Capabilities: Switch IGMP
Interface: FastEthernet0/5, Port ID (outgoing port): FastEthernet0/5
Holdtime : 129 sec
Version :
Cisco IOS Software, C3560 Software (C3560-IPBASE-M), Version 12.2(35)SE5, RELEASE
SOFTWARE (fc1)
Copyright (c) 1986-2007 by Cisco Systems, Inc.
Compiled Thu 19-Jul-07 18:15 by nachen
advertisement version: 2
Protocol Hello: OUI=0x00000C, Protocol ID=0x0112; payload len=27, value=00000000
FFFFFFFF010221FF000000000000B41489D91880FF0000
VTP Management Domain: 'NULL'
Native VLAN: 1
Duplex: full
Power Available TLV:
Power request id: 0, Power management id: 1, Power available: 0, Power
management level: -1
Management address(es):
IP address: 10.100.128.9
[output cut]
So what’s revealed here? First, we’ve been given the hostname and IP address of all
directly connected devices. And in addition to the same information displayed by the show
cdp neighbor command (see Table 7.2), the show cdp neighbor detail command tells us
about the IOS version and IP address of the neighbor device—that’s quite a bit!
The show cdp entry * command displays the same information as the show cdp
neighbors detail command. There isn’t any difference between these commands.
300
Chapter 7
u
Managing a Cisco Internetwork
CDP Can Save Lives!
Karen has just been hired as a senior network consultant at a large hospital in Dallas,
Texas, so she’s expected to be able to take care of any problem that rears its ugly head.
As if that weren’t enough pressure, she also has to worry about the horrid possibility that
people won’t receive correct health care solutions—even the correct medications—if the
network goes down. Talk about a potential life-or-death situation!
But Karen is confident and begins her job optimistically. Of course, it’s not long before the
network reveals that it has a few problems. Unfazed, she asks one of the junior administrators for a network map so she can troubleshoot the network. This person tells her that the
old senior administrator, who she replaced, had them with him and now no one can find
them. The sky begins to darken!
Doctors are calling every couple of minutes because they can’t get the necessary information they need to take care of their patients. What should she do?
It’s CDP to the rescue! And it’s a gift that this hospital happens to be running Cisco routers
and switches exclusively, because CDP is enabled by default on all Cisco devices. Karen
is also in luck because the disgruntled former administrator didn’t turn off CDP on any
devices before he left!
So all Karen has to do now is to use the show cdp neighbor detail command to find
all the information she needs about each device to help draw out the hospital network,
bringing it back up to speed so the personnel who rely upon it can get on to the important
business of saving lives!
The only snag for you nailing this in your own network is if you don’t know the passwords
of all those devices. Your only hope then is to somehow find out the access passwords or
to perform password recovery on them.
So, use CDP—you never know when you may end up saving someone’s life.
By the way, this is a true story!
Documenting a Network Topology Using CDP
With that moving real-life scenario in mind, I’m now going to show you how to document a
sample network by using CDP. You’ll learn to determine the appropriate router types, interface types, and IP addresses of various interfaces using only CDP commands and the show
running-config command. And you can only console into the Lab_A router to document
Using Cisco Discovery Protocol (CDP)
301
the network. You’ll have to assign any remote routers the next IP address in each range.
We’ll use a different figure for this example—Figure 7.6— to help us to complete the necessary documentation.
F ig u re 7. 6
Documenting a network topology using CDP
IP address
IP address
Router
Int
Router
S0/0
Fa0/0
.1
Fa0/1
Int
.1
Int
.1
.1
S0/1
Int
Router
Router
IP address
IP address
In this output, you can see that you have a router with four interfaces: two Fast Ethernet
and two serial. First, determine the IP addresses of each interface by using the show runningconfig command like this:
Lab_A#sh running-config
Building configuration...
Current configuration : 960 bytes
!
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Lab_A
!
ip subnet-zero
!
!
interface FastEthernet0/0
ip address 192.168.21.1 255.255.255.0
duplex auto
!
302
Chapter 7
u
Managing a Cisco Internetwork
interface FastEthernet0/1
ip address 192.168.18.1 255.255.255.0
duplex auto
!
interface Serial0/0
ip address 192.168.23.1 255.255.255.0
!
interface Serial0/1
ip address 192.168.28.1 255.255.255.0
!
ip classless
!
line con 0
line aux 0
line vty 0 4
!
end
With this step completed, you can now write down the IP addresses of the Lab_A router’s
four interfaces. Next, you must determine the type of device on the other end of each of these
interfaces. It’s easy—just use the show cdp neighbors command:
Lab_A#sh cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater
Device ID
Local Intrfce
Holdtme
Capability Platform Port ID
Lab_B
Fas 0/0
178
R
2501
E0
Lab_C
Fas 0/1
137
R
2621
Fa0/0
Lab_D
Ser 0/0
178
R
2514
S1
Lab_E
Ser 0/1
137
R
2620
S0/1
Wow—looks like we’re connected to some old routers! But it’s not our job to judge. Our
mission is to draw out our network, so it’s good that we’ve got some nice information to meet
the challenge with now. By using both the show running-config and show cdp neighbors
commands, we know about all the IP addresses of the Lab_A router, the types of routers connected to each of the Lab_A router’s links, and all the interfaces of the remote routers.
Now that we’re equipped with all the information gathered via show running-config
and show cdp neighbors, we can accurately create the topology in Figure 7.7.
If we needed to, we could’ve also used the show cdp neighbors detail command to
view the neighbor’s IP addresses. But since we know the IP addresses of each link on the
Lab_A router, we already know what the next available IP address is going to be.
Using Telnet
F ig u re 7. 7
303
Network topology documented
192.168.21.2/24
192.168.23.2/24
2501
E0
2514
S1
S0/0
Fa0/0
.1
.1
Fa0/1 Lab A .1
.1
S0/1
Fa0/0
S0/1
2621
192.168.18.2/24
2620
192.168.28.2/24
Link Layer Discovery Protocol (LLDP)
Before moving on from CDP, I want to tell you about a nonproprietary discovery protocol
that provides pretty much the same information as CDP but works in multi-vendor networks.
The IEEE created a new standardized discovery protocol called 802.1AB for Station
and Media Access Control Connectivity Discovery. We’ll just call it Link Layer Discovery
Protocol (LLDP).
LLDP defines basic discovery capabilities, but it was also enhanced to specifically
address the voice application, and this version is called LLDP-MED (Media Endpoint
Discovery). It’s good to remember that LLDP and LLDP-MED are not compatible.
You can find out more about these protocols at these two locations:
www.cisco.com/en/US/docs/ios/cether/configuration/guide/ce_lldp-med.html
www.cisco.com/en/US/technologies/tk652/tk701/technologies_white_
paper0900aecd804cd46d.html
But it’s probably easier to go to www.cisco.com and search on LLDP than type in the
URLs above.
Using Telnet
As part of the TCP/IP protocol suite, Telnet is a virtual terminal protocol that allows you
to make connections to remote devices, gather information, and run programs.
After your routers and switches are configured, you can use the Telnet program to
reconfigure and/or check up on them without using a console cable. You run the Telnet program by typing telnet from any command prompt (Windows or Cisco), but you need to
have VTY passwords set on the IOS devices for this to work.
304
Chapter 7
u
Managing a Cisco Internetwork
Remember, you can’t use CDP to gather information about routers and switches that
aren’t directly connected to your device. But you can use the Telnet application to connect to
your neighbor devices and then run CDP on those remote devices to get information on them.
You can issue the telnet command from any router or switch prompt. Below, I’m trying
to telnet from switch 1 to switch 3:
SW-1#telnet 10.100.128.8
Trying 10.100.128.8 ... Open
Password required, but none set
[Connection to 10.100.128.8 closed by foreign host]
Oops—clearly, I didn’t set my passwords—how embarrassing! Remember that the VTY
ports are default configured as login, meaning that we have to either set the VTY passwords
or use the no login command. If you need to review the process of setting passwords, take a
quick look back in Chapter 6, “Cisco’s Internetworking Operating System (IOS).”
If you can’t telnet into a device, it could be that the password on the remote
device hasn’t been set. It’s also quite possible that an access control list is
filtering the Telnet session.
On a Cisco device, you don’t need to use the telnet command; you can just type in an
IP address from a command prompt and the router will assume that you want to telnet to
the device. Here’s how that looks using just the IP address:
SW-1#10.100.128.8
Trying 10.100.128.8... Open
Password required, but none set
[Connection to 10.100.128.8 closed by foreign host]
SW-1#
Now would be a great time to set those VTY passwords on the SW-3 that I want to telnet
into. Here’s what I did on the switch named SW-3:
SW-3(config)#line vty 0 15
SW-3(config-line)#login
SW-3(config-line)#password telnet
SW-3(config-line)#login
SW-3(config-line)#^Z
Using Telnet
305
Now let’s try this again. This time, I’m connecting to SW-3 from the SW-1 console:
SW-1#10.100.128.8
Trying 10.100.128.8 ... Open
User Access Verification
Password:
SW-3>
Remember that the VTY password is the user-mode password, not the enable-mode
password. Watch what happens when I try to go into privileged mode after telnetting into
the switch:
SW-3>en
% No password set
SW-3>
It’s totally slamming the door in my face, which happens to be a really nice security feature! After all, you don’t want just anyone telnetting into your device and typing the enable
command to get into privileged mode now, do you? You’ve got to set your enable-mode password or enable secret password to use Telnet to configure remote devices.
When you telnet into a remote device, you won’t see console messages by
default. For example, you will not see debugging output. To allow console
messages to be sent to your Telnet session, use the terminal monitor
command.
Using the next group of examples, I’ll show you how to telnet into multiple devices
simultaneously as well as how to use hostnames instead of IP addresses.
Telnetting into Multiple Devices Simultaneously
If you telnet to a router or switch, you can end the connection by typing exit at any time.
But what if you want to keep your connection to a remote device going while still coming
back to your original router console? To do that, you can press the Ctrl+Shift+6 key combination, release it, and then press X.
Here’s an example of connecting to multiple devices from my SW-1 console:
SW-1#10.100.128.8
Trying 10.100.128.8... Open
306
Chapter 7
u
Managing a Cisco Internetwork
User Access Verification
Password:
SW-3>Ctrl+Shift+6
SW-1#
Here you can see that I telnetted to SW-1 and then typed the password to enter user mode.
Next, I pressed Ctrl+Shift+6, then X, but you won’t see any of that because it doesn’t show on
the screen output. Notice that my command prompt now has me back at the SW-1 switch.
Now let’s run through some verification commands.
Checking Telnet Connections
If you want to view the connections from your router or switch to a remote device, just
use the show sessions command. In this case, I’ve telnetted into both the SW-3 and SW-2
switches from SW1:
SW-1#sh sessions
Conn Host
1 10.100.128.9
* 2 10.100.128.8
SW-1#
Address
10.100.128.9
10.100.128.8
Byte
0
0
Idle Conn Name
10.100.128.9
10.100.128.8
See that asterisk (*) next to connection 2? It means that session 2 was the last session
I connected to. You can return to your last session by pressing Enter twice. You can also
return to any session by typing the number of the connection and then Enter.
Checking Telnet Users
You can reveal all active consoles and VTY ports in use on your router with the show users
command:
SW-1#sh users
Line
* 0 con 0
User
Host(s)
10.100.128.9
10.100.128.8
Idle
00:00:01
00:01:06
Location
In the command’s output, con represents the local console, and we can see that the console session is connected to two remote IP addresses—in other words, two devices.
Closing Telnet Sessions
You can end Telnet sessions a few different ways. Typing exit or disconnect are probably
the two quickest and easiest.
Resolving Hostnames
307
To end a session from a remote device, use the exit command:
SW-3>exit
[Connection to 10.100.128.8 closed by foreign host]
SW-1#
To end a session from a local device, use the disconnect command:
SW-1#sh session
Conn Host
Address
Byte Idle Conn Name
*2 10.100.128.9
10.100.128.9
0
10.100.128.9
SW-1#disconnect ?
<2-2> The number of an active network connection
qdm
Disconnect QDM web-based clients
ssh
Disconnect an active SSH connection
SW-1#disconnect 2
Closing connection to 10.100.128.9 [confirm][enter]
In this example, I used session number 2 because that was the connection I wanted to
conclude. As demonstrated, you can use the show sessions command to see the connection number.
Resolving Hostnames
If you want to use a hostname instead of an IP address to connect to a remote device, the
device that you’re using to make the connection must be able to translate the hostname to
an IP address.
There are two ways to resolve hostnames to IP addresses. The first is by building a host
table on each router, and the second is to build a Domain Name System (DNS) server. The
latter method is similar to creating a dynamic host table assuming that you’re dealing with
dynamic DNS.
Building a Host Table
An important factor to remember is that although a host table provides name resolution, it
does that only on the specific router that it was built upon. The command you use to build
a host table on a router looks this:
ip host host_name [tcp_port_number] ip_address
The default is TCP port number 23, but you can create a session using Telnet with a
different TCP port number if you want. You can also assign up to eight IP addresses to
a hostname.
Chapter 7
308
u
Managing a Cisco Internetwork
Here’s how I configured a host table on the SW-1 switch with two entries to resolve the
names for the SW-2 and SW-3:
SW-1#config t
SW-1(config)#ip host SW-2 ?
<0-65535>
Default telnet port number
A.B.C.D
Host IP address
additional Append addresses
SW-1(config)#ip host SW-2 10.100.128.9
SW-1(config)#ip host SW-3 10.100.128.8
Notice that I can just keep adding IP addresses to reference a unique host, one after
another. To view our newly built host table, I’ll just use the show hosts command:
SW-1(config)#do sho hosts
Default domain is not set
Name/address lookup uses domain service
Name servers are 255.255.255.255
Codes: u - unknown, e - expired, * - OK, ? - revalidate
t - temporary, p - permanent
Host
SW-3
SW-2
Port
None
None
Flags
Age Type
(perm, OK) 0
IP
(perm, OK) 0
IP
Address(es)
10.100.128.8
10.100.128.9
In this output, you can see the two hostnames plus their associated IP addresses. The
perm in the Flags column means that the entry has been manually configured. If it read
temp, it would be an entry that was resolved by DNS.
The show hosts command provides information on temporary DNS entries
and permanent name-to-address mappings created using the ip host
command.
To verify that the host table resolves names, try typing the hostnames at a router
prompt. Remember that if you don’t specify the command, the router will assume you
want to telnet.
In the following example, I’ll use the hostnames to telnet into the remote devices and
press Ctrl+Shift+6 and then X to return to the main console of the SW-1 router:
SW-1#sw-3
Trying SW-3 (10.100.128.8)... Open
Resolving Hostnames
309
User Access Verification
Password:
SW-3> Ctrl+Shift+6
SW-1#
It worked—I successfully used entries in the host table to create a session to the SW-3
device by using the name to telnet into it. And just so you know, names in the host table
are not case-sensitive.
Notice that the entries in the following show sessions output now display the hostnames
and IP addresses instead of just the IP addresses:
SW-1#sh sessions
Conn Host
1 SW-3
* 2 SW-2
SW-1#
Address
10.100.128.8
10.100.128.9
Byte
0
0
Idle Conn Name
1
SW-3
1
SW-2
If you want to remove a hostname from the table, all you need to do is use the no ip host
command like this:
SW-1(config)#no ip host SW-3
The drawback to going with this host table method is that you must create a host table
on each router in order to be able to resolve names. So clearly, if you have a whole bunch of
routers and want to resolve names, using DNS is a much better option!
Using DNS to Resolve Names
If you have a lot of devices, you don’t want to create a host table in each one of them unless
you’ve also got a lot of time to waste. Since most of us don’t, I highly recommend using a
DNS server to resolve hostnames instead!
Anytime a Cisco device receives a command it doesn’t understand, it will try to resolve it
through DNS by default. Watch what happens when I type the special command todd at a
Cisco router prompt:
SW-1#todd
Translating "todd"...domain server (255.255.255.255)
% Unknown command or computer name, or unable to find
computer address
SW-1#
Because it doesn’t know my name or the command I’m trying to type, it tries to resolve
this through DNS. This is really annoying for two reasons: first, because it doesn’t know
my name , and second, because I need to hang out and wait for the name lookup to
310
Chapter 7
u
Managing a Cisco Internetwork
time out. You can get around this and prevent a time-consuming DNS lookup by using the
no ip domain-lookup command on your router from global configuration mode.
So if you have a DNS server on your network, you’ll need to add a few commands to
make DNS name resolution work well for you:
uu
uu
uu
The first command is ip domain-lookup, which is turned on by default. It needs to be
entered only if you previously turned it off with the no ip domain-lookup command. The
command can be used without the hyphen as well with the syntax ip domain lookup.
The second command is ip name-server. This sets the IP address of the DNS server.
You can enter the IP addresses of up to six servers.
The last command is ip domain-name. Although this command is optional, you really
set it because it appends the domain name to the hostname you type in. Since DNS
uses a fully qualified domain name (FQDN) system, you must have a second-level DNS
name, in the form domain.com.
Here’s an example of using these three commands:
SW-1#config t
SW-1(config)#ip domain-lookup
SW-1(config)#ip name-server ?
A.B.C.D Domain server IP address (maximum of 6)
SW-1(config)#ip name-server 4.4.4.4
SW-1(config)#ip domain-name lammle.com
SW-1(config)#^Z
After the DNS configurations have been set, you can test the DNS server by using a hostname to ping or telnet into a device like this:
SW-1#ping SW-3
Translating "SW-3"...domain server (4.4.4.4) [OK]
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.100.128.8, timeout is
2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max
= 28/31/32 ms
Notice that the router uses the DNS server to resolve the name.
After a name is resolved using DNS, use the show hosts command to verify that the
device cached this information in the host table. If I hadn’t used the ip domain-name
lammle.com command, I would have needed to type in ping sw-3.lammle.com, which is
kind of a hassle.
Checking Network Connectivity and Troubleshooting
311
Should You Use a Host Table or a DNS Server?
Karen has finally finished mapping her network via CDP and the hospital’s staff is now
much happier. But Karen is still having a difficult time administering the network because
she has to look at the network drawing to find an IP address every time she needs to telnet to a remote router.
Karen was thinking about putting host tables on each router, but with literally hundreds
of routers, this is a daunting task and not the best solution. What should she do?
Most networks have a DNS server now anyway, so adding a hundred or so hostnames
into it would be much easier—certainly better than adding these hostnames to each
and every router! She can just add the three commands on each router and voilà—she’s
resolving names!
Using a DNS server makes it easy to update any old entries too. Remember, for even one
little change, her alternative would be to go to each and every router to manually update
its table if she’s using static host tables.
Keep in mind that this has nothing to do with name resolution on the network and nothing
to do with what a host on the network is trying to accomplish. You only use this method
when you’re trying to resolve names from the router console.
Checking Network Connectivity
and Troubleshooting
You can use the ping and traceroute commands to test connectivity to remote devices,
and both of them can be used with many protocols, not just IP. But don’t forget that the
show ip route command is a great troubleshooting command for verifying your routing
table and the show interfaces command will reveal the status of each interface to you.
I’m not going to get into the show interfaces commands here because we’ve already been
over that in Chapter 6. But I am going to go over both the debug command and the show
processes command that come in very handy when you need to troubleshoot a router.
312
Chapter 7
u
Managing a Cisco Internetwork
Using the ping Command
So far, you’ve seen lots of examples of pinging devices to test IP connectivity and name
resolution using the DNS server. To see all the different protocols that you can use with
the Ping program, type ping ?:
SW-1#ping ?
WORD Ping destination address or hostname
clns CLNS echo
ip
IP echo
ipv6 IPv6 echo
tag
Tag encapsulated IP echo
The ping output displays the minimum, average, and maximum times it takes for a ping
packet to find a specified system and return. Here’s an example:
SW-1#ping SW-3
Translating "SW-3"...domain server (4.4.4.4) [OK]
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.100.128.8, timeout is
2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max
= 28/31/32 ms
This output tells us that the DNS server was used to resolve the name, and the device
was pinged in a minimum of 28 ms (milliseconds), an average of 31 ms, and up to 32 ms.
This network has some latency!
The ping command can be used in user and privileged mode but not configuration mode!
Using the traceroute Command
Traceroute—the traceroute command, or trace for short—shows the path a packet takes
to get to a remote device. It uses time to live (TTL), time-outs, and ICMP error messages to
outline the path a packet takes through an internetwork to arrive at a remote host.
The trace command, which you can deploy from either user mode or privileged mode,
allows you to figure out which router in the path to an unreachable network host should be
examined more closely as the probable cause of your network’s failure.
Checking Network Connectivity and Troubleshooting
313
To see the protocols that you can use with the traceroute command, type traceroute ?:
SW-1#traceroute ?
WORD
Trace route to destination address or hostname
appletalk AppleTalk Trace
clns
ISO CLNS Trace
ip
IP Trace
ipv6
IPv6 Trace
ipx
IPX Trace
mac
Trace Layer2 path between 2 endpoints
oldvines
Vines Trace (Cisco)
vines
Vines Trace (Banyan)
The traceroute command shows the hop or hops that a packet traverses on its way to a
remote device.
Do not get confused! You can’t use the tracert command; that’s a Windows command. For a router, use the traceroute command!
Here’s an example of using tracert on a Windows prompt—notice that the command is
tracert, not traceroute:
C:\>tracert www.whitehouse.gov
Tracing route to a1289.g.akamai.net [69.8.201.107]
over a maximum of 30 hops:
1
2
3
4
5
6
7
*
53
53
54
54
54
54
ms
ms
ms
ms
ms
ms
*
61
55
53
53
53
54
ms
ms
ms
ms
ms
ms
*
53
54
54
54
53
53
ms
ms
ms
ms
ms
ms
Request timed out.
hlrn-dsl-gw15-207.hlrn.qwest.net [207.225.112.207]
hlrn-agw1.inet.qwest.net [71.217.188.113]
hlr-core-01.inet.qwest.net [205.171.253.97]
apa-cntr-01.inet.qwest.net [205.171.253.26]
63.150.160.34
www.whitehouse.gov [69.8.201.107]
Trace complete.
Okay, let’s move on now and talk about how to troubleshoot your network using the
debug command.
314
Chapter 7
u
Managing a Cisco Internetwork
Debugging
Debug is a useful troubleshooting command that’s available from the privileged exec mode
of Cisco IOS. It’s used to display information about various router operations and the related
traffic generated or received by the router, plus any error messages.
Even though it’s a helpful, informative tool, there are a few important facts that you need
to know about it. Debug is regarded as a very high-overhead task because it can consume
a huge amount of resources and the router is forced to process-switch the packets being
debugged. So you don’t just use debug as a monitoring tool—it’s meant to be used for a short
period of time and only as a troubleshooting tool. It’s highly useful for discovering some truly
significant facts about both working and faulty software and/or hardware components, but
remember to limit its use as the beneficial troubleshooting tool it’s designed to be.
Because debugging output takes priority over other network traffic, and because the
debug all command generates more output than any other debug command, it can severely
diminish the router’s performance—even render it unusable! Because of this, it’s nearly
always best to use more specific debug commands.
As you can see from the following output, you can’t enable debugging from user mode,
only privileged mode:
SW-1>debug ?
% Unrecognized command
SW-1>en
SW-1#debug ?
aaa
access-expression
adjacency
aim
all
archive
arp
authentication
auto
beep
bgp
bing
call-admission
cca
cdp
cef
cfgdiff
cisp
clns
AAA Authentication, Authorization and Accounting
Boolean access expression
adjacency
Attachment Information Manager
Enable all debugging
debug archive commands
IP ARP and HP Probe transactions
Auth Manager debugging
Debug Automation
BEEP debugging
BGP information
Bing(d) debugging
Call admission control
CCA activity
CDP information
CEF address family independent operations
debug cfgdiff commands
CISP debugging
CLNS information
Checking Network Connectivity and Troubleshooting
cluster
cmdhd
cns
condition
configuration
[output cut]
315
Cluster information
Command Handler
CNS agents
Condition
Debug Configuration behavior
If you’ve got the freedom to pretty much take out a router or switch and you really want
to have some fun with debugging, use the debug all command:
Sw-1#debug all
This may severely impact network performance. Continue? (yes/[no]):yes
All possible debugging has been turned on
At this point my switch overloaded and crashed and I had to reboot it. Try this on your
switch at work and see if you get the same results. Just kidding!
To disable debugging on a router, just use the command no in front of the debug command:
SW-1#no debug all
I typically just use the undebug all command since it is so easy when using the shortcut:
SW-1#un all
Remember that instead of using the debug all command, it’s usually a much better idea
to use specific commands—and only for short periods of time. Here’s an example:
S1#debug ip icmp
ICMP packet debugging is on
S1#ping 192.168.10.17
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.10.17, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms
S1#
1w4d: ICMP: echo reply sent, src 192.168.10.17, dst 192.168.10.17
1w4d: ICMP: echo reply rcvd, src 192.168.10.17, dst 192.168.10.17
1w4d: ICMP: echo reply sent, src 192.168.10.17, dst 192.168.10.17
1w4d: ICMP: echo reply rcvd, src 192.168.10.17, dst 192.168.10.17
1w4d: ICMP: echo reply sent, src 192.168.10.17, dst 192.168.10.17
1w4d: ICMP: echo reply rcvd, src 192.168.10.17, dst 192.168.10.17
316
1w4d: ICMP:
1w4d: ICMP:
1w4d: ICMP:
1w4d: ICMP:
SW-1#un all
Chapter 7
echo
echo
echo
echo
u
reply
reply
reply
reply
Managing a Cisco Internetwork
sent,
rcvd,
sent,
rcvd,
src
src
src
src
192.168.10.17,
192.168.10.17,
192.168.10.17,
192.168.10.17,
dst
dst
dst
dst
192.168.10.17
192.168.10.17
192.168.10.17
192.168.10.17
I’m sure you can see that the debug command is one powerful command. And because
of this, I’m also sure you realize that before you use any of the debugging commands, you
should make sure you check the CPU utilization capacity of your router. This is important
because in most cases, you don’t want to negatively impact the device’s ability to process
the packets on your internetwork. You can determine a specific router’s CPU utilization
information by using the show processes command.
Remember, when you telnet into a remote device, you will not see console
messages by default! For example, you will not see debugging output. To
allow console messages to be sent to your Telnet session, use the terminal
monitor command.
Using the show processes Command
As I’ve said, you’ve really got to be careful when using the debug command on your devices.
If your router’s CPU utilization is consistently at 50 percent or more, it’s probably not a good
idea to type in the debug all command unless you want to see what a router looks like when
it crashes!
So what other approaches can you use? Well, the show processes (or show processes
cpu) is a good tool for determining a given router’s CPU utilization. Plus, it’ll give you a
list of active processes along with their corresponding process ID, priority, scheduler test
(status), CPU time used, number of times invoked, and so on. Lots of great stuff! Plus, this
command is super handy when you want to evaluate your router’s performance and CPU
utilization and are otherwise tempted to reach for the debug command!
Okay—what do you see in the following output? The first line shows the CPU utilization
output for the last 5 seconds, 1 minute, and 5 minutes. The output provides 5%/0% in front
of the CPU utilization for the last 5 seconds: The first number equals the total utilization,
and the second one indicates the utilization due to interrupt routines. Take a look:
SW-1#sh processes
CPU utilization for five seconds: 5%/0%; one minute: 7%; five minutes: 8%
PID QTy
PC Runtime(ms)
Invoked
uSecs
Stacks
TTY Process
1 Cwe 29EBC58
0
22
0 5236/6000
0 Chunk Manager
2 Csp 1B9CF10
241
206881
1 2516/3000
0 Load Meter
3 Hwe 1F108D0
0
1
0 8768/9000
0 Connection Mgr
4 Lst 29FA5C4 9437909
454026
20787 5540/6000
0 Check heaps
Exam Essentials
5
6
7
8
9
10
11
12
13
cut]
Cwe
Mst
Hwe
Mwe
Mwe
Lwe
Lwe
Mwe
Mwe
2A02468
1E98F04
13EB1B4
13BCD84
1C591B4
1DA1504
1E76ACC
1E6F980
1F56F24
0
0
3686
0
4346
0
0
0
0
2
2
101399
1
53691
1
1
2
1
0 5476/6000
0 5488/6000
36 5740/6000
0 23668/24000
80 4896/6000
0 5760/6000
0 5764/6000
0 5476/6000
0 11732/12000
0
0
0
0
0
0
0
0
0
317
Pool Manager
Timers
Net Input
Crash writer
ARP Input
CEF MIB API
AAA_SERVER_DEADT
AAA high-capacit
Policy Manager [output
So basically, the output from the show processes command reveals that our router is
happily able to process debugging commands without being overloaded—nice!
Summary
In this chapter, you learned how Cisco routers are configured and how to manage those
configurations.
We covered the internal components of a router, including ROM, RAM, NVRAM,
and flash.
Next, you found out how to back up and restore the configuration of a Cisco router
and switch.
You also learned how to use CDP and Telnet to gather information about remote devices.
Finally, you discovered how to resolve hostnames and use the ping and trace commands to
test network connectivity as well as how to use the debug and show processes commands—
well done!
Exam Essentials
Define the Cisco Router components. Describe the functions of the bootstrap, POST, ROM
monitor, mini-IOS, RAM, ROM, flash memory, NVRAM, and the configuration register.
Identify the steps in the router boot sequence. The steps in the boot sequence are POST,
loading the IOS, and copying the startup configuration from NVRAM to RAM.
Save the configuration of a router or switch. There are a couple of ways to do this, but the
most common, as well as the most tested, method is copy running-config startup-config.
Erase the configuration of a router or switch.
startup-config and reload the router.
Type the privileged-mode command erase
Describe the value of CDP. Cisco Discovery Protocol can be used to help you document as
well as troubleshoot your network.
318
Chapter 7
u
Managing a Cisco Internetwork
List the information provided by the output of the show cdp neighbors command. The
show cdp neighbors command provides the following information: device ID, local interface, holdtime, capability, platform, and port ID (remote interface).
Understand how to establish a Telnet session with multiple routers simultaneously. If
you telnet to a router or switch, you can end the connection by typing exit at any time.
However, if you want to keep your connection to a remote device but still come back to
your original router console, you can press the Ctrl+Shift+6 key combination, release it,
and then press X.
Identify current Telnet sessions. The command show sessions will provide you with information about all the currently active sessions your router has with other routers.
Build a static host table on a router. By using the global configuration command ip host
host_name ip_address, you can build a static host table on your router. You can apply
multiple IP addresses against the same host entry.
Verify the host table on a router. You can verify the host table with the show hosts
command.
Describe the function of the ping command. Packet Internet Groper (ping) uses ICMP
echo requests and ICMP echo replies to verify an active IP address on a network.
Ping a valid host ID from the correct prompt. You can ping an IP address from a router’s
user mode or privileged mode but not from configuration mode, unless you use the do
command. You must ping a valid address, such as 1.1.1.1.
Written Lab 7
319
Written Lab 7
In this section, you’ll complete the following labs to make sure you’ve got the information
and concepts contained within them fully dialed in:
Lab 7.1: IOS Management
Lab 7.2: Router Memory
The answers to these labs can be found in Appendix A, “Answers to Written Labs.”
Written Lab 7.1: IOS Management
Write the answers to the following questions:
1. What is the command to copy the startup-config file to DRAM?
2. What command can you use to see the neighbor router’s IP address from your router
prompt?
3. What command can you use to see the hostname, local interface, platform, and remote
port of a neighbor router?
4. What keystrokes can you use to telnet into multiple devices simultaneously?
5. What command will show you your active Telnet connections to neighbor and
remote devices?
6. What command can you use to merge a backup configuration with the configuration
in RAM?
7. What protocol can be used on a network to synchronize clock and date information?
8. What command is used by a router to forward a DHCP client request to a remote
DHCP server?
9. What command enables your switch or router to receive clock and date information
and synchronize with the NTP server?
10. Which NTP verification command will show the reference master for the client?
Written Lab 7.2: Router Memory
Identify the location in a router where each of the following files is stored by default.
1. Cisco IOS
2. Bootstrap
3. Startup configuration
4. POST routine
5. Running configuration
320
Chapter 7
u
Managing a Cisco Internetwork
6. ARP cache
7. Mini IOS
8. ROM Monitor
9. Routing tables
10. Packet buffers
Hands-on Labs
To complete the labs in this section, you need at least one router or switch (three would be
best) and at least one PC running as a TFTP server. TFTP server software must be installed
and running on the PC. For this lab, it is also assumed that your PC and the Cisco devices are
connected together with a switch and that all interfaces (PC NIC and router interfaces) are
in the same subnet. You can alternately connect the PC directly to the router or connect the
routers directly to one another (use a crossover cable in that case). Remember that the labs
listed here were created for use with real routers but can easily be used with LammleSim IOS
Version or Cisco’s Packet Tracer program. Last, although it doesn’t matter if you are using a
switch or router in these labs, I’m just going to use my routers, but feel free to use your switch
to go through these labs!
Here is a list of the labs in this chapter:
Lab 7.1: Backing Up the Router Configuration
Lab 7.2: Using the Cisco Discovery Protocol (CDP)
Lab 7.3: Using Telnet
Lab 7.4: Resolving Hostnames
Hands-on Lab 7.1: Backing Up the Router Configuration
In this lab, you’ll back up the router configuration:
1. Log into your router and go into privileged mode by typing en or enable.
2. Ping the TFTP server to make sure you have IP connectivity.
3. From RouterB, type copy run tftp.
4. When prompted, type the IP address of the TFTP server (for example, 172.16.30.2)
and press Enter.
5. By default, the router will prompt you for a filename. The hostname of the router is followed by the suffix -confg (yes, I spelled that correctly). You can use any name you want.
Name of configuration file to write [RouterB-confg]?
Hands-on Labs
321
Press Enter to accept the default name.
Write file RouterB-confg on host 172.16.30.2? [confirm]
Press Enter to confirm.
Hands-on Lab 7.2: Using the Cisco Discovery
Protocol (CDP)
CDP is an important objective for the Cisco exams. Please go through this lab and use CDP
as much as possible during your studies.
1. Log into your router and go into privileged mode by typing en or enable.
2. From the router, type sh cdp and press Enter. You should see that CDP packets are
being sent out to all active interfaces every 60 seconds and the holdtime is 180 seconds
(these are the defaults).
3. To change the CDP update frequency to 90 seconds, type cdp timer 90 in global
configuration mode.
Router#config t
Enter configuration commands, one per line. End with
CNTL/Z.
Router(config)#cdp timer ?
<5-900> Rate at which CDP packets are sent (in sec)
Router(config)#cdp timer 90
4. Verify that your CDP timer frequency has changed by using the command show cdp in
privileged mode.
Router#sh cdp
Global CDP information:
Sending CDP packets every 90 seconds
Sending a holdtime value of 180 seconds
5. Now use CDP to gather information about neighbor routers. You can get the list of
available commands by typing sh cdp ?.
Router#sh cdp ?
entry
Information for specific neighbor entry
interface CDP interface status and configuration
neighbors CDP neighbor entries
322
Chapter 7
traffic
u
Managing a Cisco Internetwork
CDP statistics
6. Type sh cdp int to see the interface information plus the default encapsulation used
by the interface. It also shows the CDP timer information.
7. Type sh cdp entry * to see complete CDP information received from all devices.
8. Type show cdp neighbors to gather information about all connected neighbors. (You
should know the specific information output by this command.)
9. Type show cdp neighbors detail. Notice that it produces the same output as show
cdp entry *.
Hands-on Lab 7.3: Using Telnet
Secure Shell was covered in Chapter 6, which is what you should use for remote access
into a Cisco device. However, the Cisco objectives cover telnet configuration, so let’s do
a lab on telnet!
1. Log into your router and go into privileged mode by typing en or enable.
2. From RouterA, telnet into your remote router (RouterB) by typing telnet ip_address
from the command prompt. Type exit to disconnect.
3. Now type in RouterB’s IP address from RouterA’s command prompt. Notice that the
router automatically tries to telnet to the IP address you specified. You can use the telnet
command or just type in the IP address.
4. From RouterB, press Ctrl+Shift+6 and then X to return to RouterA’s command prompt.
Now telnet into your third router, RouterC. Press Ctrl+Shift+6 and then X to return to
RouterA.
5. From RouterA, type show sessions. Notice your two sessions. You can press the
number displayed to the left of the session and press Enter twice to return to that session. The asterisk shows the default session. You can press Enter twice to return to
that session.
6. Go to the session for your RouterB. Type show users. This shows the console connection and the remote connection. You can use the disconnect command to clear the
session or just type exit from the prompt to close your session with RouterB.
7. Go to RouterC’s console port by typing show sessions on the first router and using
the connection number to return to RouterC. Type show user and notice the connec-
tion to your first router, RouterA.
8. Type clear line line_number to disconnect the Telnet session.
Hands-on Labs
323
Hands-on Lab 7.4: Resolving Hostnames
It’s best to use a DNS server for name resolution, but you can also create a local hosts table
to resolve names. Let’s take a look.
1. Log into your router and go into privileged mode by typing en or enable.
2. From RouterA, type todd and press Enter at the command prompt. Notice the error
you receive and the delay. The router is trying to resolve the hostname to an IP address
by looking for a DNS server. You can turn this feature off by using the no ip domainlookup command from global configuration mode.
3. To build a host table, you use the ip host command. From RouterA, add a host table
entry for RouterB and RouterC by entering the following commands:
ip host routerb ip_address
ip host routerc ip_address
Here is an example:
ip host routerb 172.16.20.2
ip host routerc 172.16.40.2
4. Test your host table by typing ping routerb from the privileged mode prompt (not the
config prompt).
RouterA#ping routerb
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.20.2, timeout
is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip
min/avg/max = 4/4/4 ms
5. Test your host table by typing ping routerc.
RouterA#ping routerc
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.40.2, timeout
is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip
min/avg/max = 4/6/8 ms
Chapter 7
324
u
Managing a Cisco Internetwork
6. Telnet to RouterB and keep your session to RouterB open to RouterA by pressing
Ctrl+Shift+6, then X.
7. Telnet to RouterC by typing routerc at the command prompt.
8. Return to RouterA and keep the session to RouterC open by pressing Ctrl+Shift+6,
then X.
9. View the host table by typing show hosts and pressing Enter.
Default domain is not set
Name/address lookup uses domain service
Name servers are 255.255.255.255
Host
Flags
Age Type
routerb
(perm, OK) 0
IP
routerc
(perm, OK) 0
IP
Address(es)
172.16.20.2
172.16.40.2
Review Questions
325
Review Questions
The following questions are designed to test your understanding of this
chapter’s material. For more information on how to get additional questions,
please see this book’s introduction.
The answers to these questions can be found in Appendix B, “Answers to Chapter
Review Questions.”
1. Which of the following is a standards-based protocol that works much like CDP?
A. DHCP
B. LLDP
C. DDNS
D. SSTP
2. Which command can be used to determine a router’s capacity to generate debug output?
A. show version
B. show controllers
C. show processes cpu
D. show memory
3. You are troubleshooting a connectivity problem in your corporate network and want to
isolate the problem. You suspect that a router on the route to an unreachable network
is at fault. What IOS user exec command should you issue?
A. Router>ping
B. Router>trace
C. Router>show ip route
D. Router>show interface
E. Router>show cdp neighbors
4. You copy a configuration from a network host to a router’s RAM. The configuration
looks correct, yet it is not working at all. What could the problem be?
A. You copied the wrong configuration into RAM.
B. You copied the configuration into flash memory instead.
C. The copy did not override the shutdown command in running-config.
D. The IOS became corrupted after the copy command was initiated.
326
Chapter 7
u
Managing a Cisco Internetwork
5. In the following command, what does the IP address 10.10.10.254 refer to?
Router#config t
Router(config)#interface fa0/0
Router(config-if)#ip helper-address 10.10.10.254
A. IP address of the ingress interface on the router
B. IP address of the egress interface on the router
C. IP address of the next hop on the path to the DHCP server
D. IP address of the DHCP server
6. The corporate office sends you a new router to connect, but upon connecting the con-
sole cable, you see that there is already a configuration on the router. What should be
done before a new configuration is entered in the router?
A. RAM should be erased and the router restarted.
B. Flash should be erased and the router restarted.
C. NVRAM should be erased and the router restarted.
D. The new configuration should be entered and saved.
7. What command can you use to determine the IP address of a directly connected neighbor?
A. show cdp
B. show cdp neighbors
C. show cdp neighbors detail
D. show neighbor detail
8. According to the output, what interface does SW-2 use to connect to SW-3?
SW-3#sh cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route BridgeS Switch, H - Host, I - IGMP, r - Repeater, P - Phone, D - Remote, C - CVTA, M
- Two-port Mac Relay Device ID
Local Intrfce
Holdtme
Capability Platform Port ID
SW-1
Fas 0/1
170
S I
WS-C3560- Fas 0/15
SW-1
Fas 0/2
170
S I
WS-C3560- Fas 0/16
SW-2
Fas 0/5
162
S I
WS-C3560- Fas 0/2
A. Fas 0/1
B. Fas 0/16
C. Fas 0/2
D. Fas 0/5
Review Questions
327
9. What command can you use to determine the IP address of a directly connected neighbor?
A. show cdp
B. show cdp neighbors
C. show cdp neighbors detail
D. show neighbor detail
10. You save the configuration on a router with the copy running-config startup-config
command and reboot the router. The router, however, comes up with a blank configuration. What can the problem be?
A. You didn’t boot the router with the correct command.
B. NVRAM is corrupted.
C. The configuration register setting is incorrect.
D. The newly upgraded IOS is not compatible with the hardware of the router.
E. The configuration you saved is not compatible with the hardware.
11. If you want to have more than one Telnet session open at the same time, what key-
stroke combination would you use?
A. Tab+spacebar
B. Ctrl+X, then 6
C. Ctrl+Shift+X, then 6
D. Ctrl+Shift+6, then X
12. You are unsuccessful in telnetting into a remote device from your switch, but you could
telnet to the router earlier. However, you can still ping the remote device. What could the
problem be? (Choose two.)
A. IP addresses are incorrect.
B. Access control list is filtering Telnet.
C. There is a defective serial cable.
D. The VTY password is missing.
13. What information is displayed by the show hosts command? (Choose two.)
A. Temporary DNS entries
B. The names of the routers created using the hostname command
C. The IP addresses of workstations allowed to access the router
D. Permanent name-to-address mappings created using the ip host command
E. The length of time a host has been connected to the router via Telnet
328
Chapter 7
u
Managing a Cisco Internetwork
14. Which three commands can be used to check LAN connectivity problems on a switch?
(Choose three.)
A. show interfaces
B. show ip route
C. tracert
D. ping
E. dns lookups
15. You telnet to a router and make your necessary changes; now you want to end the
Telnet session. What command do you type in?
A. close
B. disable
C. disconnect
D. exit
16. You telnet into a remote device and type debug ip icmp, but no output from the debug
command is seen. What could the problem be?
A. You must type the show ip icmp command first.
B. IP addressing on the network is incorrect.
C. You must use the terminal monitor command.
D. Debug output is sent only to the console.
17. You need to view console messages on a device to which you have connected through
telnet. The command you need to execute to see these is ___________.
18. You need to gather the IP address of a remote switch that is located in Hawaii. What
can you do to find the address?
A. Fly to Hawaii, console into the switch, then relax and have a drink with an
umbrella in it.
B. Issue the show ip route command on the router connected to the switch.
C. Issue the show cdp neighbor command on the router connected to the switch.
D. Issue the show ip arp command on the router connected to the switch.
E. Issue the show cdp neighbors detail command on the router connected to
the switch.
Review Questions
19. You need to configure all your routers and switches so they synchronize their clocks
from one time source. What command will you type for each device?
A. clock synchronization ip_address
B. ntp master ip_address
C. sync ntp ip_address
D. ntp server ip_address version number
20. What two commands can you use to verify your NTP client?
A. show ntp server
B. show ntp status
C. show vtp status
D. show ntp associations
E. show clock source
329
Chapter
8
IP Routing
The following ICND1 exam topics
are covered in this chapter:
11 IP Routing Technologies
■■
■■
Describe basic routing concepts
■■
CEF
■■
Packet forwarding
■■
Router lookup process
Configure and verify routing configuration for a static or
default route given specific routing requirements
■■
Differentiate methods of routing and routing protocols
■■
Static vs. Dynamic
■■
Link State vs. Distance Vector
■■
next hop
■■
ip routing table
■■
Passive interfaces
It’s time now to turn our focus toward the core topic of the
ubiquitous IP routing process. It’s integral to networking
because it pertains to all routers and configurations that use
it, which is easily the lion’s share. IP routing is basically the process of moving packets
from one network to another network using routers. And by routers I mean Cisco routers,
of course! However, the terms router and layer 3 device are interchangeable, and throughout this chapter when I use the term router, I am referring to any layer 3 device.
Before jumping into this chapter, I want to make sure you understand the difference
between a routing protocol and a routed protocol. Routers use routing protocols to dynamically find all networks within the greater internetwork and to ensure that all routers have
the same routing table. Routing protocols are also employed to determine the best path a
packet should take through an internetwork to get to its destination most efficiently. RIP,
RIPv2, EIGRP, and OSPF are great examples of the most common routing protocols.
Once all routers know about all networks, a routed protocol can be used to send user data
(packets) through the established enterprise. Routed protocols are assigned to an interface
and determine the method of packet delivery. Examples of routed protocols are IP and IPv6.
I’m going to discuss the RIP routing protocol in this chapter even though I know that it
isn’t included in any objective. We’ll cover it anyway because it will help you gain a solid
understanding of the routing process before we get into a study on the much more complex
OSPF protocol in the next chapter. We’ll also discuss RIP because you just never know when
Cisco will toss in exam questions that include topics they haven’t bothered to list as a bona
fide objective either! So even though I want you to be prepared just in case, I’ll promise to
keep the RIP section reasonably short.
I’m pretty confident I don’t have to underscore how crucial it is for you have this chapter’s
material down to a near instinctive level. IP routing is innately what Cisco routers do, and they
do it very well, so having a firm grasp of the fundamentals and basics of this topic are vital if
you want to excel during the exam and in a real-world networking environment as well!
In this chapter, I’m going to show you how to configure and verify IP routing with Cisco
routers and guide you through these five key subjects:
uu
Routing basics
uu
The IP routing process
uu
Static routing
uu
Default routing
uu
Dynamic routing
Routing Basics
333
We’ll get into more the advanced aspects of dynamic routing next in Chapter 9, “Open
Shortest Path First (OSPF).” But first, I want to nail down the basics of how packets actually
move through an internetwork, so let’s get started!
To find up-to-the-minute updates for this chapter, please see
www.lammle.com/forum or the book’s web page at www.sybex.com.
Routing Basics
Once you create an internetwork by connecting your WANs and LANs to a router, you’ll
need to configure logical network addresses, like IP addresses, to all hosts on that internetwork for them to communicate successfully throughout it.
The term routing refers to taking a packet from one device and sending it through the
network to another device on a different network. Routers don’t really care about hosts—
they only care about networks and the best path to each one of them. The logical network
address of the destination host is key to get packets through a routed network. It’s the hardware address of the host that’s used to deliver the packet from a router and ensure it arrives
at the correct destination host.
Routing is irrelevant if your network has no routers because their job is to route traffic
to all the networks in your internetwork, but this is rarely the case! So here’s an important
list of the minimum factors a router must know to be able to affectively route packets:
uu
Destination address
uu
Neighbor routers from which it can learn about remote networks
uu
Possible routes to all remote networks
uu
The best route to each remote network
uu
How to maintain and verify routing information
The router learns about remote networks from neighboring routers or from an administrator. The router then builds a routing table, which is basically a map of the internetwork,
and it describes how to find remote networks. If a network is directly connected, then the
router already knows how to get to it.
But if a network isn’t directly connected to the router, the router must use one of two
ways to learn how to get to the remote network. The static routing method requires someone to hand-type all network locations into the routing table, which can be a pretty daunting task when used on all but the smallest of networks!
Conversely, when dynamic routing is used, a protocol on one router communicates with the
same protocol running on neighboring routers. The routers then update each other about all
the networks they know about and place this information into the routing table. If a change
occurs in the network, the dynamic routing protocols automatically inform all routers about
the event. If static routing is used, the administrator is responsible for updating all changes by
334
Chapter 8
u
IP Routing
hand onto all routers. Most people usually use a combination of dynamic and static routing to
administer a large network.
Before we jump into the IP routing process, let’s take a look at a very simple example that
demonstrates how a router uses the routing table to route packets out of an interface. We’ll
be going into a more detailed study of the process soon, but I want to show you something
called the “longest match rule” first. With it, IP will scan a routing table to find the longest
match as compared to the destination address of a packet. Let’s take a look at Figure 8.1 to
get a picture of this process.
F ig u re 8 .1
A simple routing example
Fa0/3
10.0.0.1/8
Fa0/0
Lab A
Fa0/1
10.10.10.1/24
Fa0/2
10.10.0.1/16
Figure 8.1 shows a simple network. Lab_A has four interfaces. Can you see which
interface will be used to forward an IP datagram to a host with a destination IP address
of 10.10.10.30?
By using the command show ip route on a router, we can see the routing table (map of
the internetwork) that Lab_A has used to make its forwarding decisions:
Lab_A#sh ip route
Codes: L - local, C - connected, S - static,
[output cut]
10.0.0.0/8 is variably subnetted, 6 subnets, 4 masks
C
10.0.0.0/8 is directly connected, FastEthernet0/3
L
10.0.0.1/32 is directly connected, FastEthernet0/3
C
10.10.0.0/16 is directly connected, FastEthernet0/2
L
10.10.0.1/32 is directly connected, FastEthernet0/2
C
10.10.10.0/24 is directly connected, FastEthernet0/1
L
10.10.10.1/32 is directly connected, FastEthernet0/1
S*
0.0.0.0/0 is directly connected, FastEthernet0/0
The IP Routing Process
335
The C in the routing table output means that the networks listed are “directly connected,” and until we add a routing protocol like RIPv2, OSPF, etc. to the routers in our
internetwork, or enter static routes, only directly connected networks will show up in
our routing table. But wait—what about that L in the routing table—that’s new, isn’t it?
Yes it is, because in the new Cisco IOS 15 code, Cisco defines a different route, called
a local route. Each has a /32 prefix defining a route just for the one address. So in this
example, the router has relied upon these routes that list their own local IP addresses to
more efficiently forward packets to the router itself.
So let’s get back to the original question: By looking at the figure and the output of the
routing table, can you determine what IP will do with a received packet that has a destination IP address of 10.10.10.30? The answer is that the router will packet-switch the packet
to interface FastEthernet 0/1, which will frame the packet and then send it out on the network segment. Based upon the longest match rule, IP would look for 10.10.10.30, and if
that isn’t found in the table, then IP would search for 10.10.10.0, then 10.10.0.0, and so on
until a route is discovered.
Here’s another example: Based on the output of the next routing table, which interface
will a packet with a destination address of 10.10.10.14 be forwarded from?
Lab_A#sh ip route
[output cut]
Gateway of last resort is not set
C
10.10.10.16/28 is directly connected, FastEthernet0/0
L
10.10.10.17/32 is directly connected, FastEthernet0/0
C
10.10.10.8/29 is directly connected, FastEthernet0/1
L
10.10.10.9/32 is directly connected, FastEthernet0/1
C
10.10.10.4/30 is directly connected, FastEthernet0/2
L
10.10.10.5/32 is directly connected, FastEthernet0/2
C
10.10.10.0/30 is directly connected, Serial 0/0
L
10.10.10.1/32 is directly connected, Serial0/0
To figure this out, look closely at the output until you see that the network is subnetted
and each interface has a different mask. And I have to tell you—you just can’t answer this
question if you can’t subnet! 10.10.10.14 would be a host in the 10.10.10.8/29 subnet that’s
connected to the FastEthernet0/1 interface. Don’t freak if you’re struggling and don’t get
this! Instead, just go back and reread Chapter 4, “Easy Subnetting,” until it becomes clear
to you.
The IP Routing Process
The IP routing process is fairly simple and doesn’t change, regardless of the size of your
network. For a good example of this fact, I’ll use Figure 8.2 to describe step-by-step what
happens when Host_A wants to communicate with Host_B on a different network.
336
Chapter 8
F ig u re 8 . 2
u
IP Routing
IP routing example using two hosts and one router
Host A
E0
E1
Host B
172.16.10.1 Lab A 172.16.20.1
172.16.10.2
172.16.20.2
In Figure 8.2 a user on Host_A pinged Host_B’s IP address. Routing doesn’t get any
simpler than this, but it still involves a lot of steps, so let’s work through them now:
1. Internet Control Message Protocol (ICMP) creates an echo request payload, which is
simply the alphabet in the data field.
2. ICMP hands that payload to Internet Protocol (IP), which then creates a packet. At a
minimum, this packet contains an IP source address, an IP destination address, and a
Protocol field with 01h. Don’t forget that Cisco likes to use 0x in front of hex characters, so this could also look like 0x01. This tells the receiving host to whom it should
hand the payload when the destination is reached—in this example, ICMP.
3. Once the packet is created, IP determines whether the destination IP address is on the
local network or a remote one.
4. Since IP has determined that this is a remote request, the packet must be sent to the
default gateway so it can be routed to the remote network. The Registry in Windows is
parsed to find the configured default gateway.
5. The default gateway of Host_A is configured to 172.16.10.1. For this packet to be sent
to the default gateway, the hardware address of the router’s interface Ethernet 0, which
is configured with the IP address of 172.16.10.1, must be known. Why? So the packet
can be handed down to the Data Link layer, framed, and sent to the router’s interface
that’s connected to the 172.16.10.0 network. Because hosts communicate only via
hardware addresses on the local LAN, it’s important to recognize that for Host_A to
communicate to Host_B, it has to send packets to the Media Access Control (MAC)
address of the default gateway on the local network.
MAC addresses are always local on the LAN and never go through and
past a router.
6. Next, the Address Resolution Protocol (ARP) cache of the host is checked to see if the
IP address of the default gateway has already been resolved to a hardware address.
If it has, the packet is then free to be handed to the Data Link layer for framing.
Remember that the hardware destination address is also handed down with that
packet. To view the ARP cache on your host, use the following command:
C:\>arp -a
Interface: 172.16.10.2 --- 0x3
The IP Routing Process
Internet Address
172.16.10.1
Physical Address
00-15-05-06-31-b0
337
Type
dynamic
If the hardware address isn’t already in the ARP cache of the host, an ARP broadcast
will be sent out onto the local network to search for the 172.16.10.1 hardware address.
The router then responds to the request and provides the hardware address of Ethernet
0, and the host caches this address.
7. Once the packet and destination hardware address are handed to the Data Link layer,
the LAN driver is used to provide media access via the type of LAN being used, which
is Ethernet in this case. A frame is then generated, encapsulating the packet with control
information. Within that frame are the hardware destination and source addresses plus,
in this case, an Ether-Type field, which identifies the specific Network layer protocol
that handed the packet to the Data Link layer. In this instance, it’s IP. At the end of the
frame is something called a Frame Check Sequence (FCS) field that houses the result
of the cyclic redundancy check (CRC). The frame would look something like what I’ve
detailed in Figure 8.3. It contains Host_A’s hardware (MAC) address and the destination hardware address of the default gateway. It does not include the remote host’s MAC
address—remember that!
F ig u re 8 . 3
Frame used from Host_A to the Lab_A router when Host_B is pinged
Destination MAC
(router’s E0 MAC address)
Source MAC
(Host A MAC address)
Ether-Type
field
Packet
FCS
CRC
8. Once the frame is completed, it’s handed down to the Physical layer to be put on the
physical medium (in this example, twisted-pair wire) one bit at a time.
9. Every device in the collision domain receives these bits and builds the frame. They
each run a CRC and check the answer in the FCS field. If the answers don’t match,
the frame is discarded.
uu
uu
If the CRC matches, then the hardware destination address is checked to see if it
matches (which, in this example, is the router’s interface Ethernet 0).
If it’s a match, then the Ether-Type field is checked to find the protocol used at the
Network layer.
10. The packet is pulled from the frame, and what is left of the frame is discarded. The
packet is handed to the protocol listed in the Ether-Type field—it’s given to IP.
11. IP receives the packet and checks the IP destination address. Since the packet’s desti-
nation address doesn’t match any of the addresses configured on the receiving router
itself, the router will look up the destination IP network address in its routing table.
12. The routing table must have an entry for the network 172.16.20.0 or the packet will
be discarded immediately and an ICMP message will be sent back to the originating
device with a destination network unreachable message.
Chapter 8
338
u
IP Routing
13. If the router does find an entry for the destination network in its table, the packet
is switched to the exit interface—in this example, interface Ethernet 1. The output
below displays the Lab_A router’s routing table. The C means “directly connected.”
No routing protocols are needed in this network since all networks (all two of them)
are directly connected.
Lab_A>sh ip route
C
172.16.10.0 is
L
172.16.10.1/32
C
172.16.20.0 is
L
172.16.20.1/32
directly connected,
is directly connected,
directly connected,
is directly connected,
Ethernet0
Ethernet0
Ethernet1
Ethernet1
14. The router packet-switches the packet to the Ethernet 1 buffer.
15. The Ethernet 1 buffer needs to know the hardware address of the destination host and
first checks the ARP cache.
uu
If the hardware address of Host_B has already been resolved and is in the router’s
ARP cache, then the packet and the hardware address will be handed down to the
Data Link layer to be framed. Let’s take a look at the ARP cache on the Lab_A
router by using the show ip arp command:
Lab_A#sh ip arp
Protocol Address
Age(min) Hardware Addr
Internet 172.16.20.1
00d0.58ad.05f4
Internet 172.16.20.2
3
0030.9492.a5dd
Internet 172.16.10.1
00d0.58ad.06aa
Internet 172.16.10.2 12
0030.9492.a4ac
Type
ARPA
ARPA
ARPA
ARPA
Interface
Ethernet1
Ethernet1
Ethernet0
Ethernet0
The dash (-) signifies that this is the physical interface on the router. This output shows us that the router knows the 172.16.10.2 (Host_A) and 172.16.20.2
(Host_B) hardware addresses. Cisco routers will keep an entry in the ARP table
for 4 hours.
uu
Now if the hardware address hasn’t already been resolved, the router will send
an ARP request out E1 looking for the 172.16.20.2 hardware address. Host_B
responds with its hardware address, and the packet and destination hardware
addresses are then both sent to the Data Link layer for framing.
16. The Data Link layer creates a frame with the destination and source hardware addresses,
Ether-Type field, and FCS field at the end. The frame is then handed to the Physical layer
to be sent out on the physical medium one bit at a time.
17. Host_B receives the frame and immediately runs a CRC. If the result matches the
information in the FCS field, the hardware destination address will be then checked
The IP Routing Process
339
next. If the host finds a match, the Ether-Type field is then checked to determine the
protocol that the packet should be handed to at the Network layer—IP in this example.
18. At the Network layer, IP receives the packet and runs a CRC on the IP header. If that
passes, IP then checks the destination address. Since a match has finally been made, the
Protocol field is checked to find out to whom the payload should be given.
19. The payload is handed to ICMP, which understands that this is an echo request. ICMP
responds to this by immediately discarding the packet and generating a new payload as
an echo reply.
20. A packet is then created including the source and destination addresses, Protocol field,
and payload. The destination device is now Host_A.
21. IP then checks to see whether the destination IP address is a device on the local LAN
or on a remote network. Since the destination device is on a remote network, the
packet needs to be sent to the default gateway.
22. The default gateway IP address is found in the Registry of the Windows device, and the
ARP cache is checked to see if the hardware address has already been resolved from an
IP address.
23. Once the hardware address of the default gateway is found, the packet and destination
hardware addresses are handed down to the Data Link layer for framing.
24. The Data Link layer frames the packet of information and includes the following in
the header:
uu
The destination and source hardware addresses
uu
The Ether-Type field with 0x0800 (IP) in it
uu
The FCS field with the CRC result in tow
25. The frame is now handed down to the Physical layer to be sent out over the network
medium one bit at a time.
26. The router’s Ethernet 1 interface receives the bits and builds a frame. The CRC is run,
and the FCS field is checked to make sure the answers match.
27. Once the CRC is found to be okay, the hardware destination address is checked. Since
the router’s interface is a match, the packet is pulled from the frame and the Ether-Type
field is checked to determine which protocol the packet should be delivered to at the
Network layer.
28. The protocol is determined to be IP, so it gets the packet. IP runs a CRC check on the
IP header first and then checks the destination IP address.
IP does not run a complete CRC as the Data Link layer does—it only checks
the header for errors.
340
Chapter 8
u
IP Routing
Since the IP destination address doesn’t match any of the router’s interfaces, the routing
table is checked to see whether it has a route to 172.16.10.0. If it doesn’t have a route
over to the destination network, the packet will be discarded immediately. I want to
take a minute to point out that this is exactly where the source of confusion begins for
a lot of administrators because when a ping fails, most people think the packet never
reached the destination host. But as we see here, that’s not always the case. All it takes
for this to happen is for even just one of the remote routers to lack a route back to the
originating host’s network and—poof!—the packet is dropped on the return trip, not
on its way to the host!
Just a quick note to mention that when (and if) the packet is lost on the
way back to the originating host, you will typically see a request timed-out
message because it is an unknown error. If the error occurs because of a
known issue, such as if a route is not in the routing table on the way to the
destination device, you will see a destination unreachable message. This
should help you determine if the problem occurred on the way to the destination or on the way back.
29. In this case, the router happens to know how to get to network 172.16.10.0—the exit
interface is Ethernet 0—so the packet is switched to interface Ethernet 0.
30. The router then checks the ARP cache to determine whether the hardware address for
172.16.10.2 has already been resolved.
31. Since the hardware address to 172.16.10.2 is already cached from the originating trip
to Host_B, the hardware address and packet are then handed to the Data Link layer.
32. The Data Link layer builds a frame with the destination hardware address and source
hardware address and then puts IP in the Ether-Type field. A CRC is run on the frame
and the result is placed in the FCS field.
33. The frame is then handed to the Physical layer to be sent out onto the local network
one bit at a time.
34. The destination host receives the frame, runs a CRC, checks the destination hardware
address, then looks into the Ether-Type field to find out to whom to hand the packet.
35. IP is the designated receiver, and after the packet is handed to IP at the Network layer,
it checks the Protocol field for further direction. IP finds instructions to give the payload to ICMP, and ICMP determines the packet to be an ICMP echo reply.
36. ICMP acknowledges that it has received the reply by sending an exclamation point (!)
to the user interface. ICMP then attempts to send four more echo requests to the destination host.
You’ve just experienced Todd’s 36 easy steps to understanding IP routing. The key point
here is that if you had a much larger network, the process would be the same. It’s just that
the larger the internetwork, the more hops the packet goes through before it finds the destination host.
The IP Routing Process
341
It’s super-important to remember that when Host_A sends a packet to Host_B, the destination hardware address used is the default gateway’s Ethernet interface. Why? Because
frames can’t be placed on remote networks—only local networks. So packets destined for
remote networks must go through the default gateway.
Let’s take a look at Host_A’s ARP cache now:
C:\ >arp -a
Interface: 172.16.10.2 --- 0x3
Internet Address
Physical Address
172.16.10.1
00-15-05-06-31-b0
172.16.20.1
00-15-05-06-31-b0
Type
dynamic
dynamic
Did you notice that the hardware (MAC) address that Host_A uses to get to Host_B is
the Lab_A E0 interface? Hardware addresses are always local, and they never pass through
a router’s interface. Understanding this process is as important as air to you, so carve this
into your memory!
The Cisco Router Internal Process
One more thing before we get to testing your understanding of my 36 steps of IP routing. I
think it’s important to explain how a router forwards packets internally. For IP to look up a
destination address in a routing table on a router, processing in the router must take place,
and if there are tens of thousands of routes in that table, the amount of CPU time would be
enormous. It results in a potentially overwhelming amount of overhead—think about a router
at your ISP that has to calculate millions of packets per second and even subnet to find the
correct exit interface! Even with the little network I’m using in this book, lots of processing
would need to be done if there were actual hosts connected and sending data.
Cisco uses three types of packet-forwarding techniques.
Process Switching This is actually how many people see routers to this day, because it’s
true that routers actually did perform this type of bare-bones packet switching back in
1990 when Cisco released their very first router. But those days when traffic demands were
unimaginably light are long gone—not in today’s networks! This process is now extremely
complex and involves looking up every destination in the routing table and finding the exit
interface for every packet. This is pretty much how I just explained the process in my 36
steps. But even though what I wrote was absolutely true in concept, the internal process
requires much more than packet-switching technology today because of the millions of
packets per second that must now be processed. So Cisco came up with some other technologies to help with the “big process problem.”
Fast Switching This solution was created to make the slow performance of process switching faster and more efficient. Fast-switching uses a cache to store the most recently used
destinations so that lookups are not required for every packet. By caching the exit interface of the destination device, as well as the layer 2 header, performance was dramatically
improved, but as our networks evolved with the need for even more speed, Cisco created
yet another technology!
342
Chapter 8
u
IP Routing
Cisco Express Forwarding (CEF) This is Cisco’s newer creation, and it’s the default packetforwarding method used on all the latest Cisco routers. CEF makes many different cache
tables to help improve performance and is change triggered, not packet triggered. Translated,
this means that when the network topology changes, the cache changes along with it.
Testing Your IP Routing Understanding
Since understanding IP routing is super-important, it’s time for that little test I talked about
earlier on how well you’ve got the IP routing process down so far. I’m going to do that by
having you look at a couple of figures and answer some very basic IP routing questions
based upon them.
Figure 8.4 shows a LAN connected to RouterA that’s connected via a WAN link to
RouterB. RouterB has a LAN connected with an HTTP server attached.
F ig u re 8 . 4
IP routing example 1
IP
RouterA
RouterB
S0/0
MAC
Fa0/0
S0/0
Fa0/0
HostA
TCP Dest Port 80
HTTP Server
The critical information you want to obtain by looking at this figure is exactly how IP
routing will occur in this example. Let’s determine the characteristics of a frame as it leaves
HostA. Okay—we’ll cheat a bit. I’ll give you the answer, but then you should go back over
the figure and see if you can answer example 2 without looking at my three-step answer!
1. The destination address of a frame from HostA would be the MAC address of
Router A’s Fa0/0 interface.
2. The destination address of a packet would be the IP address of the HTTP server’s
network interface card (NIC).
3. The destination port number in the segment header would be 80.
That was a pretty simple, straightforward scenario. One thing to remember is that when
multiple hosts are communicating to a server using HTTP, they must all use a different
source port number. The source and destination IP addresses and port numbers are how
the server keeps the data separated at the Transport layer.
The IP Routing Process
343
Okay—let’s complicate matters by adding another device into the network and then see if
you can find the answers. Figure 8.5 shows a network with only one router but two switches.
F ig u re 8 . 5
IP routing example 2
RouterA
Fa0/1
Fa0/0
HTTPS Server
HostA
The key thing to understand about the IP routing process in this scenario is what happens when HostA sends data to the HTTPS server? Here’s your answer:
1. The destination address of a frame from HostA would be the MAC address of
RouterA’s Fa0/0 interface.
2. The destination address of a packet is the IP address of the HTTPS server’s network
interface card (NIC).
3. The destination port number in the segment header will have a value of 443.
Did you notice that the switches weren’t used as either a default gateway or any other destination? That’s because switches have nothing to do with routing. I wonder how many of
you chose the switch as the default gateway (destination) MAC address for HostA? If you did,
don’t feel bad—just take another look to see where you went wrong and why. It’s very important to remember that the destination MAC address will always be the router’s interface—if
your packets are destined for outside the LAN, as they were in these last two examples!
Before moving on into some of the more advanced aspects of IP routing, let’s look at
another issue. Take a look at the output of this router’s routing table:
Corp#sh ip route
[output cut]
R
192.168.215.0 [120/2] via 192.168.20.2, 00:00:23, Serial0/0
R
192.168.115.0 [120/1] via 192.168.20.2, 00:00:23, Serial0/0
R
192.168.30.0 [120/1] via 192.168.20.2, 00:00:23, Serial0/0
C
192.168.20.0 is directly connected, Serial0/0
L
192.168.20.1/32 is directly connected, Serial0/0
C
192.168.214.0 is directly connected, FastEthernet0/0
L
192.168.214.1/32 is directly connected, FastEthernet0/0
344
Chapter 8
u
IP Routing
What do we see here? If I were to tell you that the corporate router received an IP packet
with a source IP address of 192.168.214.20 and a destination address of 192.168.22.3,
what do you think the Corp router will do with this packet?
If you said, “The packet came in on the FastEthernet 0/0 interface, but because the
routing table doesn’t show a route to network 192.168.22.0 (or a default route), the router
will discard the packet and send an ICMP destination unreachable message back out to
interface FastEthernet 0/0,” you’re a genius! The reason that’s the correct answer is because
that’s the source LAN where the packet originated from.
Now, let’s check out the next figure and talk about the frames and packets in detail.
We’re not really going over anything new here; I’m just making sure you totally, completely,
thoroughly, fully understand basic IP routing! It is the crux of this book, and the topic the
exam objectives are geared toward. It’s all about IP routing, which means you need to be
all over this stuff! We’ll use Figure 8.6 for the next few scenarios.
F ig u re 8 . 6
Basic IP routing using MAC and IP addresses
Lab A
Fa0/0
Sales
Server
1
S0/0
S0/0
2
3
Lab B
Fa0/0
4
Referring to Figure 8.6, here’s a list of all the answers to questions you need inscribed in
your brain:
1. In order to begin communicating with the Sales server, Host 4 sends out an ARP
request. How will the devices exhibited in the topology respond to this request?
2. Host 4 has received an ARP reply. Host 4 will now build a packet, then place this
packet in the frame. What information will be placed in the header of the packet that
leaves Host 4 if Host 4 is going to communicate to the Sales server?
3. The Lab_A router has received the packet and will send it out Fa0/0 onto the LAN
toward the server. What will the frame have in the header as the source and destination
addresses?
4. Host 4 is displaying two web documents from the Sales server in two browser windows
at the same time. How did the data find its way to the correct browser windows?
The following should probably be written in a teensy font and put upside down in another
part of the book so it would be really hard for you to cheat and peek, but since I’m not that
The IP Routing Process
345
mean and you really need to have this down, here are your answers in the same order that the
scenarios were just presented:
1. In order to begin communicating with the server, Host 4 sends out an ARP request.
How will the devices exhibited in the topology respond to this request? Since MAC
addresses must stay on the local network, the Lab_B router will respond with the
MAC address of the Fa0/0 interface and Host 4 will send all frames to the MAC
address of the Lab_B Fa0/0 interface when sending packets to the Sales server.
2. Host 4 has received an ARP reply. Host 4 will now build a packet, then place this
packet in the frame. What information will be placed in the header of the packet that
leaves Host 4 if Host 4 is going to communicate to the Sales server? Since we’re now
talking about packets, not frames, the source address will be the IP address of Host 4
and the destination address will be the IP address of the Sales server.
3. Finally, the Lab_A router has received the packet and will send it out Fa0/0 onto the
LAN toward the server. What will the frame have in the header as the source and destination addresses? The source MAC address will be the Lab_A router’s Fa0/0 interface,
and the destination MAC address will be the Sales server’s MAC address because all
MAC addresses must be local on the LAN.
4. Host 4 is displaying two web documents from the Sales server in two different
browser windows at the same time. How did the data find its way to the correct
browser windows? TCP port numbers are used to direct the data to the correct
application window.
Okay—great! But we’re not quite done yet. I’ve got a few more questions for you before
you actually get to configure routing in a real network. Ready? Figure 8.7 shows a basic
network, and Host 4 needs to get email. Which address will be placed in the destination
address field of the frame when it leaves Host 4?
F ig u re 8 . 7
Testing basic routing knowledge
IP is end to end
Lab A
Fa0/0
S0/0
S0/0
Lab B
Fa0/0
ARP request/reply
Frames are local only
ARP request/reply
Frames are local only
1
Email
server
2
3
4
346
Chapter 8
u
IP Routing
The answer is that Host 4 will use the destination MAC address of the Fa0/0 interface
on the Lab_B router—you knew that, right? Look at Figure 8.7 again: What if Host 4
needs to communicate with Host 1—not the server, but with Host 1. Which OSI layer 3
source address will be found in the packet header when it reaches Host 1?
Hopefully you’ve got this: At layer 3, the source IP address will be Host 4 and the destination address in the packet will be the IP address of Host 1. Of course, the destination
MAC address from Host 4 will always be the Fa0/0 address of the Lab_B router, right?
And since we have more than one router, we’ll need a routing protocol that communicates
between both of them so that traffic can be forwarded in the right direction to reach the
network that Host 1 is connected to.
Okay—one more scenario and you’re on your way to being an IP routing machine! Again,
using Figure 8.7, Host 4 is transferring a file to the email server connected to the Lab_A router.
What would be the layer 2 destination address leaving Host 4? Yes, I’ve asked this question
more than once. But not this one: What will be the source MAC address when the frame is
received at the email server?
Hopefully, you answered that the layer 2 destination address leaving Host 4 is the MAC
address of the Fa0/0 interface on the Lab_B router and that the source layer 2 address that
the email server will receive is the Fa0/0 interface of the Lab_A router.
If you did, you’re ready to discover how IP routing is handled in a larger network
environment!
Configuring IP Routing
It’s time to get serious and configure a real network. Figure 8.8 shows three routers: Corp,
SF, and LA. Remember that, by default, these routers only know about networks that are
directly connected to them. I’ll continue to use this figure and network throughout the rest
of the chapters in this book. As I progress through this book, I’ll add more routers and
switches as needed.
As you might guess, I’ve got quite a nice collection of routers for us to play with. But you
don’t need a closet full of devices to perform most, if not all, of the commands we’ll use in
this book. You can get by nicely with pretty much any router or even with a good router
simulator.
Getting back to business, the Corp router has two serial interfaces, which will provide
a WAN connection to the SF and LA router and two Fast Ethernet interfaces as well. The
two remote routers have two serial interfaces and two Fast Ethernet interfaces.
The first step for this project is to correctly configure each router with an IP address on
each interface. The following list shows the IP address scheme I’m going to use to configure
the network. After we go over how the network is configured, I’ll cover how to configure
IP routing. Pay attention to the subnet masks—they’re important! The LANs all use a /24
mask, but the WANs are using a /30.
Configuring IP Routing
F ig u re 8 . 8
347
Configuring IP routing
192.168.10.1/24
Fa0/0
SF
172.16.10.2/30 S0/0/0
172.16.10.1/30
Fa0/0 192.168.20.1/24
LA
S0/0/1 172.16.10.6/30
S0/0
S0/1 172.16.10.5/30
Corp
Fa0/0 10.10.10.1/24
Corp
uu
Serial 0/0: 172.16.10.1/30
uu
Serial 0/1: 172.16.10.5/30
uu
Fa0/0: 10.10.10.1/24
SF
uu
S0/0/0: 172.16.10.2/30
uu
Fa0/0: 192.168.10.1/24
LA
uu
S0/0/0: 172.16.10.6/30
uu
Fa0/0: 192.168.20.1/24
The router configuration is really a pretty straightforward process since you just need
to add IP addresses to your interfaces and then perform a no shutdown on those same
interfaces. It gets a tad more complex later on, but for right now, let’s configure the IP
addresses in the network.
Corp Configuration
We need to configure three interfaces to configure the Corp router. And configuring the
hostnames of each router will make identification much easier. While we’re at it, let’s set
the interface descriptions, banner, and router passwords too because it’s a really good idea
to make a habit of configuring these commands on every router!
348
Chapter 8
u
IP Routing
To get started, I performed an erase startup-config on the router and reloaded, so
we’ll start in setup mode. I chose no when prompted to enter setup mode, which will get us
straight to the username prompt of the console. I’m going to configure all my routers this
same way.
Here’s how what I just did looks:
--- System Configuration Dialog ---
Would you like to enter the initial configuration dialog? [yes/no]: n
Press RETURN to get started!
Router>en
Router#config t
Router(config)#hostname Corp
Corp(config)#enable secret GlobalNet
Corp(config)#no ip domain-lookup
Corp(config)#int f0/0
Corp(config-if)#desc Connection to LAN BackBone
Corp(config-if)#ip address 10.10.10.1 255.255.255.0
Corp(config-if)#no shut
Corp(config-if)#int s0/0
Corp(config-if)#desc WAN connection to SF
Corp(config-if)#ip address 172.16.10.1 255.255.255.252
Corp(config-if)#no shut
Corp(config-if)#int s0/1
Corp(config-if)#desc WAN connection to LA
Corp(config-if)#ip address 172.16.10.5 255.255.255.252
Corp(config-if)#no shut
Corp(config-if)#line con 0
Corp(config-line)#password console
Corp(config-line)#login
Corp(config-line)#loggin sync
Corp(config-line)#exit
Corp(config)#line vty 0 ?
<1-181> Last Line number
Corp(config)#line vty 0 181
Corp(config-line)#password telnet
Corp(config-line)#login
Corp(config-line)#exit
Configuring IP Routing
349
Corp(config)#banner motd # This is my Corp Router #
Corp(config)#^Z
Corp#copy run start
Destination filename [startup-config]?
Building configuration...
[OK]
Corp# [OK]
Let’s talk about the configuration of the Corp router. First, I set the hostname and
enable secret, but what is that no ip domain-lookup command? That command stops the
router from trying to resolve hostnames, which is an annoying feature unless you’ve configured a host table or DNS. Next, I configured the three interfaces with descriptions and
IP addresses and enabled them with the no shutdown command. The console and VTY
passwords came next, but what is that logging sync command under the console line?
The logging synchronous command stops console messages from writing over what you
are typing in, meaning it’s a sanity-saving command that you’ll come to love! Last, I set
my banner and then saved my configs.
If you’re having a hard time understanding this configuration process, refer
back to Chapter 6, “Cisco’s Internetworking Operating System (IOS).”
To view the IP routing tables created on a Cisco router, use the command show ip route.
Here’s the command’s output:
Corp#sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
+ - replicated route, % - next hop override
Gateway of last resort is not set
10.0.0.0/24 is subnetted, 1 subnets
10.10.10.0 is directly connected, FastEthernet0/0
10.10.10.1/32 is directly connected, FastEthernet0/0
C
L
Corp#
It’s important to remember that only configured, directly connected networks are going
to show up in the routing table. So why is it that only the FastEthernet 0/0 interface shows
350
Chapter 8
u
IP Routing
up in the table? No worries—that’s just because you won’t see the serial interfaces come up
until the other side of the links are operational. As soon as we configure our SF and NY
routers, those interfaces should pop right up!
But did you notice the C on the left side of the output of the routing table? When you see
that there, it means that the network is directly connected. The codes for each type of connection are listed at the top of the show ip route command, along with their descriptions.
For brevity, the codes at the top of the output will be cut in the rest of
this chapter.
SF Configuration
Now we’re ready to configure the next router—SF. To make that happen correctly, keep in
mind that we have two interfaces to deal with: serial 0/0/0 and FastEthernet 0/0. So let’s make
sure we don’t forget to add the hostname, passwords, interface descriptions, and banners to
the router configuration. As I did with the Corp router, I erased the configuration and reloaded
since this router had already been configured before.
Here’s the configuration I used:
R1#erase start
% Incomplete command.
R1#erase startup-config
Erasing the nvram filesystem will remove all configuration files!
Continue? [confirm][enter]
[OK]
Erase of nvram: complete
R1#reload
Proceed with reload? [confirm][enter]
[output cut]
%Error opening tftp://255.255.255.255/network-confg (Timed out)
%Error opening tftp://255.255.255.255/cisconet.cfg (Timed out)
--- System Configuration Dialog ---
Would you like to enter the initial configuration dialog? [yes/no]: n
Before we move on, let’s talk about this output for a second. First, notice that beginning
with IOS 12.4, ISR routers will no longer take the command erase start. The router has
only one command after erase that starts with s, as shown here:
Router#erase s?
startup-config
Configuring IP Routing
351
I know, you’d think that the IOS would continue to accept the command, but nope—
sorry! The second thing I want to point out is that the output tells us the router is looking
for a TFTP host to see if it can download a configuration. When that fails, it goes straight
into setup mode. This gives you a great picture of the Cisco router default boot sequence we
talked about in Chapter 7, “Managing and Troubleshooting a Cisco Internetwork.”
Okay, let’s get back to configuring our router:
Press RETURN to get started!
Router#config t
Router(config)#hostname SF
SF(config)#enable secret GlobalNet
SF(config)#no ip domain-lookup
SF(config)#int s0/0/0
SF(config-if)#desc WAN Connection to Corp
SF(config-if)#ip address 172.16.10.2 255.255.255.252
SF(config-if)#no shut
SF(config-if)#clock rate 1000000
SF(config-if)#int f0/0
SF(config-if)#desc SF LAN
SF(config-if)#ip address 192.168.10.1 255.255.255.0
SF(config-if)#no shut
SF(config-if)#line con 0
SF(config-line)#password console
SF(config-line)#login
SF(config-line)#logging sync
SF(config-line)#exit
SF(config)#line vty 0 ?
<1-1180> Last Line number
SF(config)#line vty 0 1180
SF(config-line)#password telnet
SF(config-line)#login
SF(config-line)#banner motd #This is the SF Branch router#
SF(config)#exit
SF#copy run start
Destination filename [startup-config]?
Building configuration...
[OK]
Let’s take a look at our configuration of the interfaces with the following two commands:
SF#sh run | begin int
interface FastEthernet0/0
352
Chapter 8
u
IP Routing
description SF LAN
ip address 192.168.10.1 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
no ip address
shutdown
duplex auto
speed auto
!
interface Serial0/0/0
description WAN Connection to Corp
ip address 172.16.10.2 255.255.255.252
clock rate 1000000
!
SF#sh ip int brief
Interface
FastEthernet0/0
FastEthernet0/1
Serial0/0/0
Serial0/0/1
SF#
IP-Address
192.168.10.1
unassigned
172.16.10.2
unassigned
OK?
YES
YES
YES
YES
Method
manual
unset
manual
unset
Status
Protocol
up
up
administratively down down
up
up
administratively down down
Now that both ends of the serial link are configured, the link comes up. Remember,
the up/up status for the interfaces are Physical/Data Link layer status indicators that don’t
reflect the layer 3 status! I ask students in my classes, “If the link shows up/up, can you
ping the directly connected network?” And they say, “Yes!” The correct answer is, “I don’t
know,” because we can’t see the layer 3 status with this command. We only see layers 1 and
2 and verify that the IP addresses don’t have a typo. This is really important to understand!
The show ip route command for the SF router reveals the following:
SF#sh ip route
C
192.168.10.0/24 is directly connected, FastEthernet0/0
L
192.168.10.1/32 is directly connected, FastEthernet0/0
172.16.0.0/30 is subnetted, 1 subnets
C
172.16.10.0 is directly connected, Serial0/0/0
L
172.16.10.2/32 is directly connected, Serial0/0/0
Configuring IP Routing
353
Notice that router SF knows how to get to networks 172.16.10.0/30 and 192.168.10.0/24;
we can now ping to the Corp router from SF:
SF#ping 172.16.10.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.10.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/3/4 ms
Okay—now let’s head back to the Corp router and check out the routing table:
Corp>sh ip route
172.16.0.0/30 is subnetted, 1 subnets
C
172.16.10.0 is directly connected, Serial0/0
L
172.16.10.1/32 is directly connected, Serial0/0
10.0.0.0/24 is subnetted, 1 subnets
C
10.10.10.0 is directly connected, FastEthernet0/0
L
10.10.10.1/32 is directly connected, FastEthernet0/0
On the SF router’s serial interface 0/0/0 is a DCE connection, which means a clock rate
needs to be set on the interface. Remember that you don’t need to use the clock rate command in production. While true, it’s still imperative that you know how/when you can use it
and that you understand it really well when studying for your CCNA exam!
We can see our clocking with the show controllers command:
SF#sh controllers s0/0/0
Interface Serial0/0/0
Hardware is GT96K
DCE V.35, clock rate 1000000
Corp>sh controllers s0/0
Interface Serial0/0
Hardware is PowerQUICC MPC860
DTE V.35 TX and RX clocks detected.
Since the SF router has a DCE cable connection, I needed to add clock rate to this interface because DTE receives clock. Keep in mind that the new ISR routers will autodetect this
and set the clock rate to 2000000. And you still need to make sure you’re able to find an
interface that is DCE and set clocking to meet the objectives.
Since the serial links are showing up, we can now see both networks in the Corp routing
table. And once we configure LA, we’ll see one more network in the routing table of the Corp
router. The Corp router can’t see the 192.168.10.0 network because we don’t have any routing configured yet—routers see only directly connected networks by default.
Chapter 8
354
u
IP Routing
LA Configuration
To configure LA, we’re going to do pretty much the same thing we did with the other two
routers. There are two interfaces to deal with, serial 0/0/1 and FastEthernet 0/0, and again,
we’ll be sure to add the hostname, passwords, interface descriptions, and a banner to the
router configuration:
Router(config)#hostname LA
LA(config)#enable secret GlobalNet
LA(config)#no ip domain-lookup
LA(config)#int s0/0/1
LA(config-if)#ip address 172.16.10.6 255.255.255.252
LA(config-if)#no shut
LA(config-if)#clock rate 1000000
LA(config-if)#description WAN To Corporate
LA(config-if)#int f0/0
LA(config-if)#ip address 192.168.20.1 255.255.255.0
LA(config-if)#no shut
LA(config-if)#description LA LAN
LA(config-if)#line con 0
LA(config-line)#password console
LA(config-line)#login
LA(config-line)#loggin sync
LA(config-line)#exit
LA(config)#line vty 0 ?
<1-1180> Last Line number
LA(config)#line vty 0 1180
LA(config-line)#password telnet
LA(config-line)#login
LA(config-line)#exit
LA(config)#banner motd #This is my LA Router#
LA(config)#exit
LA#copy run start
Destination filename [startup-config]?
Building configuration...
[OK]
Nice—everything was pretty straightforward. The output below, which I gained via the
show ip route command, displays the directly connected networks of 192.168.20.0 and
172.16.10.0:
LA#sh ip route
172.16.0.0/30 is subnetted, 1 subnets
Configuring IP Routing
C
L
C
L
355
172.16.10.4 is directly connected, Serial0/0/1
172.16.10.6/32 is directly connected, Serial0/0/1
192.168.20.0/24 is directly connected, FastEthernet0/0
192.168.20.1/32 is directly connected, FastEthernet0/0
Okay, so now that we’ve configured all three routers with IP addresses and administrative functions, we can move on to deal with routing. But I want to do one more thing on
the SF and LA routers—since this is a very small network, let’s build a DHCP server on the
Corp router for each LAN.
Configuring DHCP on Our Corp Router
While it’s true that I could approach this task by going to each remote router and creating
a pool, why bother with all that when I can easily create two pools on the Corp router and
have the remote routers forward requests to the Corp router? Of course, you remember how
to do this from Chapter 7!
Let’s give it a shot:
Corp#config t
Corp(config)#ip dhcp excluded-address 192.168.10.1
Corp(config)#ip dhcp excluded-address 192.168.20.1
Corp(config)#ip dhcp pool SF_LAN
Corp(dhcp-config)#network 192.168.10.0 255.255.255.0
Corp(dhcp-config)#default-router 192.168.10.1
Corp(dhcp-config)#dns-server 4.4.4.4
Corp(dhcp-config)#exit
Corp(config)#ip dhcp pool LA_LAN
Corp(dhcp-config)#network 192.168.20.0 255.255.255.0
Corp(dhcp-config)#default-router 192.168.20.1
Corp(dhcp-config)#dns-server 4.4.4.4
Corp(dhcp-config)#exit
Corp(config)#exit
Corp#copy run start
Destination filename [startup-config]?
Building configuration...
Creating DHCP pools on a router is actually a simple process, and you would go about
the configuration the same way on any router you wish to add a DHCP pool to. To designate
a router as a DHCP server, you just create the pool name, add the network/subnet and the
default gateway, and then exclude any addresses that you don’t want handed out. You definitely want to make sure you’ve excluded the default gateway address, and you’d usually add
a DNS server as well. I always add any exclusions first, and remember that you can conveniently exclude a range of addresses on a single line. Soon, I’ll demonstrate those verification
commands I promised I’d show you back in Chapter 7, but first, we need to figure out why
the Corp router still can’t get to the remote networks by default!
356
Chapter 8
u
IP Routing
Now I’m pretty sure I configured DHCP correctly, but I just have this nagging feeling
I forgot something important. What could that be? Well, the hosts are remote across a
router, so what would I need to do that would allow them to get an address from a DHCP
server? If you concluded that I’ve got to configure the SF and LA F0/0 interfaces to forward
the DHCP client requests to the server, you got it!
Here’s how we’d go about doing that:
LA#config t
LA(config)#int f0/0
LA(config-if)#ip helper-address 172.16.10.5
SF#config t
SF(config)#int f0/0
SF(config-if)#ip helper-address 172.16.10.1
I’m pretty sure I did this correctly, but we won’t know until I have some type of routing
configured and working. So let’s get to that next!
Configuring IP Routing in Our Network
So is our network really good to go? After all, I’ve configured it with IP addressing, administrative functions, and even clocking that will automatically occur with the ISR routers.
But how will our routers send packets to remote networks when they get their destination
information by looking into their tables that only include directions about directly connected
networks? And you know routers promptly discard packets they receive with addresses for
networks that aren’t listed in their routing table!
So we’re not exactly ready to rock after all. But we will be soon because there are several
ways to configure the routing tables to include all the networks in our little internetwork
so that packets will be properly forwarded. As usual, one size fits all rarely fits at all, and
what’s best for one network isn’t necessarily what’s best for another. That’s why understanding the different types of routing will be really helpful when choosing the best solution for
your specific environment and business requirements.
These are the three routing methods I’m going to cover with you:
uu
Static routing
uu
Default routing
uu
Dynamic routing
We’re going to start with the first way and implement static routing on our network,
because if you can implement static routing and make it work, you’ve demonstrated that
you definitely have a solid understanding of the internetwork. So let’s get started.
Configuring IP Routing in Our Network
357
Static Routing
Static routing is the process that ensues when you manually add routes in each router’s routing table. Predictably, there are pros and cons to static routing, but that’s true for all routing
approaches.
Here are the pros:
uu
uu
uu
There is no overhead on the router CPU, which means you could probably make do
with a cheaper router than you would need for dynamic routing.
There is no bandwidth usage between routers, saving you money on WAN links as well
as minimizing overhead on the router since you’re not using a routing protocol.
It adds security because you, the administrator, can be very exclusive and choose to
allow routing access to certain networks only.
And here are the cons:
uu
uu
uu
Whoever the administrator is must have a vault-tight knowledge of the internetwork
and how each router is connected in order to configure routes correctly. If you don’t
have a good, accurate map of your internetwork, things will get very messy quickly!
If you add a network to the internetwork, you have to tediously add a route to it on all
routers by hand, which only gets increasingly insane as the network grows.
Due to the last point, it’s just not feasible to use it in most large networks because
maintaining it would be a full-time job in itself.
But that list of cons doesn’t mean you get to skip learning all about it mainly because of
that first disadvantage I listed—the fact that you must have such a solid understanding of a
network to configure it properly and that your administrative knowledge has to practically
verge on the supernatural! So let’s dive in and develop those skills. Starting at the beginning,
here’s the command syntax you use to add a static route to a routing table from global config:
ip route [destination_network] [mask] [next-hop_address or
exitinterface] [administrative_distance] [permanent]
This list describes each command in the string:
ip route
The command used to create the static route.
destination_network
mask
The network you’re placing in the routing table.
The subnet mask being used on the network.
This is the IP address of the next-hop router that will receive packets
and forward them to the remote network, which must signify a router interface that’s on
a directly connected network. You must be able to successfully ping the router interface
before you can add the route. Important note to self is that if you type in the wrong nexthop address or the interface to the correct router is down, the static route will show up in
the router’s configuration but not in the routing table.
next-hop_address
Chapter 8
358
u
IP Routing
Used in place of the next-hop address if you want, and shows up as a
directly connected route.
exitinterface
By default, static routes have an administrative distance of 1
or 0 if you use an exit interface instead of a next-hop address. You can change the default
value by adding an administrative weight at the end of the command. I’ll talk a lot more
about this later in the chapter when we get to the section on dynamic routing.
administrative_distance
permanent If the interface is shut down or the router can’t communicate to the next-hop
router, the route will automatically be discarded from the routing table by default. Choosing
the permanent option keeps the entry in the routing table no matter what happens.
Before I guide you through configuring static routes, let’s take a look at a sample static
route to see what we can find out about it:
Router(config)#ip route 172.16.3.0 255.255.255.0 192.168.2.4
uu
The ip route command tells us simply that it’s a static route.
uu
172.16.3.0 is the remote network we want to send packets to.
uu
255.255.255.0 is the mask of the remote network.
uu
192.168.2.4 is the next hop, or router, that packets will be sent to.
But what if the static route looked like this instead?
Router(config)#ip route 172.16.3.0 255.255.255.0 192.168.2.4 150
That 150 at the end changes the default administrative distance (AD) of 1 to 150. As
said, I’ll talk much more about AD when we get into dynamic routing, but for now, just
remember that the AD is the trustworthiness of a route, where 0 is best and 255 is worst.
One more example, then we’ll start configuring:
Router(config)#ip route 172.16.3.0 255.255.255.0 s0/0/0
Instead of using a next-hop address, we can use an exit interface that will make the route
show up as a directly connected network. Functionally, the next hop and exit interface work
exactly the same.
To help you understand how static routes work, I’ll demonstrate the configuration on
the internetwork shown previously in Figure 8.8. Here it is again in Figure 8.9 to save
you the trouble of having to go back and forth to view the same figure.
Corp
Each routing table automatically includes directly connected networks. To be able to route
to all indirectly connected networks within the internetwork, the routing table must include
information that describes where these other networks are located and how to get to them.
The Corp router is connected to three networks. For the Corp router to be able to route
to all networks, the following networks have to be configured into its routing table:
uu
192.168.10.0
uu
192.168.20.0
Configuring IP Routing in Our Network
F ig u re 8 . 9
359
Our internetwork
192.168.10.1/24
Fa0/0
SF
172.16.10.2/30 S0/0/0
172.16.10.1/30
Fa0/0 192.168.20.1/24
LA
S0/0/1 172.16.10.6/30
S0/0
S0/1 172.16.10.5/30
Corp
Fa0/0 10.10.10.1/24
The following router output shows the static routes on the Corp router and the routing
table after the configuration. For the Corp router to find the remote networks, I had to place
an entry into the routing table describing the remote network, the remote mask, and where
to send the packets. I am going to add a 150 at the end of each line to raise the administrative distance. You’ll see why soon when we get to dynamic routing. Here’s the output:
Corp#config t
Corp(config)#ip route 192.168.10.0 255.255.255.0 172.16.10.2 150
Corp(config)#ip route 192.168.20.0 255.255.255.0 s0/1 150
Corp(config)#do show run | begin ip route
ip route 192.168.10.0 255.255.255.0 172.16.10.2 150
ip route 192.168.20.0 255.255.255.0 Serial0/1 150
I needed to use different paths for networks 192.168.10.0 and 192.168.20.0, so I used a
next-hop address for the SF router and an exit interface for the LA router. After the router
has been configured, you can just type show ip route to see the static routes:
Corp(config)#do show ip route
S
192.168.10.0/24 [150/0] via 172.16.10.2
172.16.0.0/30 is subnetted, 2 subnets
C
172.16.10.4 is directly connected, Serial0/1
L
172.16.10.5/32 is directly connected, Serial0/1
C
172.16.10.0 is directly connected, Serial0/0
L
172.16.10.1/32 is directly connected, Serial0/0
S
192.168.20.0/24 is directly connected, Serial0/1
360
C
L
Chapter 8
u
IP Routing
10.0.0.0/24 is subnetted, 1 subnets
10.10.10.0 is directly connected, FastEthernet0/0
10.10.10.1/32 is directly connected, FastEthernet0/0
The Corp router is configured to route and know all routes to all networks. But can you
see a difference in the routing table for the routes to SF and LA? That’s right! The next-hop
configuration showed up as via, and the route configured with an exit interface configuration shows up as static but also as directly connected! This demonstrates how they are
functionally the same but will display differently in the routing table.
Understand that if the routes don’t appear in the routing table, it’s because the router
can’t communicate with the next-hop address you’ve configured. But you can still use the
permanent parameter to keep the route in the routing table even if the next-hop device can’t
be contacted.
The S in the first routing table entry means that the route is a static entry. The [150/0]
stands for the administrative distance and metric to the remote network, respectively.
Okay—we’re good. The Corp router now has all the information it needs to communicate with the other remote networks. Still, keep in mind that if the SF and LA routers aren’t
configured with all the same information, the packets will be discarded. We can fix this by
configuring static routes.
Don’t stress about the 150 at the end of the static route configuration at all,
because I promise to get to it really soon in this chapter, not a later one!
You really don’t need to worry about it at this point.
SF
The SF router is directly connected to networks 172.16.10.0/30 and 192.168.10.0/24, which
means I’ve got to configure the following static routes on the SF router:
uu
10.10.10.0/24
uu
192.168.20.0/24
uu
172.16.10.4/30
The configuration for the SF router is revealed in the output below. Remember that we’ll
never create a static route to any network we’re directly connected to as well as the fact
that we must use the next hop of 172.16.10.1 since that’s our only router connection. Let’s
check out the commands:
SF(config)#ip route 10.10.10.0 255.255.255.0 172.16.10.1 150
SF(config)#ip route 172.16.10.4 255.255.255.252 172.16.10.1 150
SF(config)#ip route 192.168.20.0 255.255.255.0 172.16.10.1 150
SF(config)#do show run | begin ip route
ip route 10.10.10.0 255.255.255.0 172.16.10.1 150
ip route 172.16.10.4 255.255.255.252 172.16.10.1 150
ip route 192.168.20.0 255.255.255.0 172.16.10.1 150
Configuring IP Routing in Our Network
361
By looking at the routing table, you can see that the SF router now understands how to
find each network:
SF(config)#do show ip route
C
192.168.10.0/24 is directly connected, FastEthernet0/0
L
192.168.10.1/32 is directly connected, FastEthernet0/0
172.16.0.0/30 is subnetted, 3 subnets
S
172.16.10.4 [150/0] via 172.16.10.1
C
172.16.10.0 is directly connected, Serial0/0/0
L
172.16.10.2/32 is directly connected, Serial0/0
S
192.168.20.0/24 [150/0] via 172.16.10.1
10.0.0.0/24 is subnetted, 1 subnets
S
10.10.10.0 [150/0] via 172.16.10.1
And we now can rest assured that the SF router has a complete routing table as well. As
soon as the LA router has all the networks in its routing table, SF will be able to communicate with all remote networks!
LA
The LA router is directly connected to 192.168.20.0/24 and 172.16.10.4/30, so these are
the routes that must be added:
uu
10.10.10.0/24
uu
172.16.10.0/30
uu
192.168.10.0/24
And here’s the LA router’s configuration:
LA#config t
LA(config)#ip route 10.10.10.0 255.255.255.0 172.16.10.5 150
LA(config)#ip route 172.16.10.0 255.255.255.252 172.16.10.5 150
LA(config)#ip route 192.168.10.0 255.255.255.0 172.16.10.5 150
LA(config)#do show run | begin ip route
ip route 10.10.10.0 255.255.255.0 172.16.10.5 150
ip route 172.16.10.0 255.255.255.252 172.16.10.5 150
ip route 192.168.10.0 255.255.255.0 172.16.10.5 150
This output displays the routing table on the LA router:
LA(config)#do sho ip route
S
192.168.10.0/24 [150/0] via 172.16.10.5
172.16.0.0/30 is subnetted, 3 subnets
C
172.16.10.4 is directly connected, Serial0/0/1
L
172.16.10.6/32 is directly connected, Serial0/0/1
362
S
C
L
S
Chapter 8
u
IP Routing
172.16.10.0 [150/0] via 172.16.10.5
192.168.20.0/24 is directly connected, FastEthernet0/0
192.168.20.1/32 is directly connected, FastEthernet0/0
10.0.0.0/24 is subnetted, 1 subnets
10.10.10.0 [150/0] via 172.16.10.5
LA now shows all five networks in the internetwork, so it too can now communicate
with all routers and networks. But before we test our little network, as well as our DHCP
server, let’s cover one more topic.
Default Routing
The SF and LA routers that I’ve connected to the Corp router are considered stub routers.
A stub indicates that the networks in this design have only one way out to reach all other
networks, which means that instead of creating multiple static routes, we can just use a
single default route. This default route is used by IP to forward any packet with a destination not found in the routing table, which is why it is also called a gateway of last resort.
Here’s the configuration I could have done on the LA router instead of typing in the static
routes due to its stub status:
LA#config t
LA(config)#no ip route 10.10.10.0 255.255.255.0 172.16.10.5 150
LA(config)#no ip route 172.16.10.0 255.255.255.252 172.16.10.5 150
LA(config)#no ip route 192.168.10.0 255.255.255.0 172.16.10.5 150
LA(config)#ip route 0.0.0.0 0.0.0.0 172.16.10.5
LA(config)#do sho ip route
[output cut]
Gateway of last resort is 172.16.10.5 to network 0.0.0.0
172.16.0.0/30 is subnetted, 1 subnets
C
172.16.10.4 is directly connected, Serial0/0/1
L
172.16.10.6/32 is directly connected, Serial0/0/1
C
192.168.20.0/24 is directly connected, FastEthernet0/0
L
192.168.20.0/32 is directly connected, FastEthernet0/0
S*
0.0.0.0/0 [1/0] via 172.16.10.5
Okay—I’ve removed all the initial static routes I had configured and adding a default route
is a lot easier than typing a bunch of static routes! Can you see the default route listed last in
the routing table? The S* shows that as a candidate for the default route. And I really want
you to notice that the gateway of last resort is now set too. Everything the router receives with
a destination not found in the routing table will be forwarded to 172.16.10.5. You need to be
careful where you place default routes because you can easily create a network loop!
So we’re there—we’ve configured all our routing tables! All the routers have the correct
routing table, so all routers and hosts should be able to communicate without a hitch—for
now. But if you add even one more network or another router to the internetwork, you’ll
Configuring IP Routing in Our Network
363
have to update each and every router’s routing tables by hand—ugh! Not really a problem
at all if you’ve got a small network like we do, but it would be a time-consuming monster if
you’re dealing with a large internetwork!
Verifying Your Configuration
We’re still not done yet—once all the routers’ routing tables are configured, they must be
verified. The best way to do this, besides using the show ip route command, is via Ping.
I’ll start by pinging from the Corp router to the SF router.
Here’s the output I got:
Corp#ping 192.168.10.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.10.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms
Corp#
Here you can see that I pinged from the Corp router to the remote interface of the SF
router. Now let’s ping the remote network on the LA router, and after that, we’ll test our
DHCP server and see if that is working too!
Corp#ping 192.168.20.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.20.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
Corp#
And why not test my configuration of the DHCP server on the Corp router while we’re
at it? I’m going to go to each host on the SF and LA routers and make them DHCP clients.
By the way, I’m using an old router to represent “hosts,” which just happens to work great
for studying purposes. Here’s how I did that:
SF_PC(config)#int e0
SF_PC(config-if)#ip address dhcp
SF_PC(config-if)#no shut
Interface Ethernet0 assigned DHCP address 192.168.10.8, mask 255.255.255.0
LA_PC(config)#int e0
LA_PC(config-if)#ip addr dhcp
LA_PC(config-if)#no shut
Interface Ethernet0 assigned DHCP address 192.168.20.4, mask 255.255.255.0
364
Chapter 8
u
IP Routing
Nice! Don’t you love it when things just work the first time? Sadly, this just isn’t exactly
a realistic expectation in the networking world, so we must be able to troubleshoot and
verify our networks. Let’s verify our DHCP server with a few of the commands you learned
back in Chapter 7:
Corp#sh ip dhcp binding
Bindings from all pools not associated with
IP address
Client-ID/
Hardware address/
User name
192.168.10.8
0063.6973.636f.2d30.
3035.302e.3062.6330.
2e30.3063.632d.4574.
30
192.168.20.4
0063.6973.636f.2d30.
3030.322e.3137.3632.
2e64.3032.372d.4574.
30
VRF:
Lease expiration
Type
Sept 16 2013 10:34 AM
Automatic
Sept 16 2013 10:46 AM
Automatic
We can see from above that our little DHCP server is working! Let’s try another couple
of commands:
Corp#sh ip dhcp pool SF_LAN
Pool SF_LAN :
Utilization mark (high/low)
: 100 / 0
Subnet size (first/next)
: 0 / 0
Total addresses
: 254
Leased addresses
: 3
Pending event
: none
1 subnet is currently in the pool :
Current index
IP address range
192.168.10.9
192.168.10.1
- 192.168.10.254
Corp#sh ip dhcp conflict
IP address
Detection method
Detection time
Leased addresses
3
VRF
The last command would tell us if we had two hosts with the same IP address, so it’s
good news because there are no conflicts reported! Two detection methods are used to confirm this:
uu
uu
Ping from the DHCP server to make sure no other host responds before handing out
an address.
A gratuitous ARP from a host that receives a DHCP address from the server.
Dynamic Routing
365
The DHCP client will send an ARP request with its new IP address looking to see if anyone responds, and if so, it will report the conflict to the server.
Okay, since we can communicate from end to end and to each host without a problem
while receiving DHCP addresses from our server, I’d say our static and default route configurations have been a success—cheers!
Dynamic Routing
Dynamic routing is when protocols are used to find networks and update routing tables
on routers. This is whole lot easier than using static or default routing, but it will cost you
in terms of router CPU processing and bandwidth on network links. A routing protocol
defines the set of rules used by a router when it communicates routing information between
neighboring routers.
The routing protocol I’m going to talk about in this chapter is Routing Information
Protocol (RIP) versions 1 and 2.
Two types of routing protocols are used in internetworks: interior gateway protocols
(IGPs) and exterior gateway protocols (EGPs). IGPs are used to exchange routing information with routers in the same autonomous system (AS). An AS is either a single network or
a collection of networks under a common administrative domain, which basically means
that all routers sharing the same routing-table information are in the same AS. EGPs are
used to communicate between ASs. An example of an EGP is Border Gateway Protocol
(BGP), which we’re not going to bother with because it’s beyond the scope of this book.
Since routing protocols are so essential to dynamic routing, I’m going to give you the
basic information you need to know about them next. Later on in this chapter, we’ll focus
on configuration.
Routing Protocol Basics
There are some important things you should know about routing protocols before we get
deeper into them. Being familiar with administrative distances, the three different kinds of
routing protocols, and routing loops are three of the most important.
Administrative Distances
The administrative distance (AD) is used to rate the trustworthiness of routing information
received on a router from a neighbor router. An administrative distance is an integer from
0 to 255, where 0 is the most trusted and 255 means no traffic will be passed via this route.
If a router receives two updates listing the same remote network, the first thing the
router checks is the AD. If one of the advertised routes has a lower AD than the other,
then the route with the lowest AD will be chosen and placed in the routing table.
If both advertised routes to the same network have the same AD, then routing protocol
metrics like hop count and/or the bandwidth of the lines will be used to find the best path
to the remote network. The advertised route with the lowest metric will be placed in the
Visit ccna
.gg/ch8/a
for a
companion
MicroNugget
from CBT
Nuggets.
366
Chapter 8
u
IP Routing
routing table, but if both advertised routes have the same AD as well as the same metrics,
then the routing protocol will load-balance to the remote network, meaning the protocol
will send data down each link.
Table 8.1 shows the default administrative distances that a Cisco router uses to decide
which route to take to a remote network.
Table 8 .1 Default administrative distances
Route Source
Default AD
Connected interface
0
Static route
1
EIGRP
90
OSPF
110
RIP
120
External EIGRP
170
Unknown
255 (This route will never be used.)
If a network is directly connected, the router will always use the interface connected
to the network. If you configure a static route, the router will then believe that route over
any other ones it learns about. You can change the administrative distance of static routes,
but by default, they have an AD of 1. In our previous static route configuration, the AD of
each route is set at 150. This AD allows us to configure routing protocols without having to
remove the static routes because it’s nice to have them there for backup in case the routing
protocol experiences some kind of failure.
If you have a static route, an RIP-advertised route, and an EIGRP-advertised route listing the same network, which route will the router go with? That’s right—by default, the
router will always use the static route unless you change its AD—which we did!
Routing Protocols
There are three classes of routing protocols:
Distance vector The distance-vector protocols in use today find the best path to a remote
network by judging distance. In RIP routing, each instance where a packet goes through
a router is called a hop, and the route with the least number of hops to the network will
be chosen as the best one. The vector indicates the direction to the remote network. RIP
is a distance-vector routing protocol and periodically sends out the entire routing table to
directly connected neighbors.
Routing Information Protocol (RIP)
367
Link state In link-state protocols, also called shortest-path-first protocols, the routers
each create three separate tables. One of these tables keeps track of directly attached neighbors, one determines the topology of the entire internetwork, and one is used as the routing
table. Link-state routers know more about the internetwork than any distance-vector routing protocol ever could. OSPF is an IP routing protocol that’s completely link-state. Linkstate protocols send updates containing the state of their own links to all other directly
connected routers on the network. This is then propagated to their neighbors.
Hybrid Hybrid protocols use aspects of both distance-vector and link-state protocols,
and EIGRP is a great example—even though Cisco typically just calls EIGRP an advanced
distance-vector routing protocol!
There’s no set of rules to follow that dictate exactly how to broadly configure routing
protocols for every situation. It’s a task that really must be undertaken on a case-by-case
basis, with an eye on specific requirements of each one. If you understand how the different
routing protocols work, you can make good, solid decisions that will solidly meet the individual needs of any business!
Routing Information Protocol (RIP)
Routing Information Protocol (RIP) is a true distance-vector routing protocol. RIP sends the
complete routing table out of all active interfaces every 30 seconds. It relies on hop count to
determine the best way to a remote network, but it has a maximum allowable hop count of
15 by default, so a destination of 16 would be considered unreachable. RIP works okay in
very small networks, but it’s super inefficient on large networks with slow WAN links or on
networks with a large number of routers installed and completely useless on networks that
have links with variable bandwidths!
RIP version 1 uses only classful routing, which means that all devices in the network must
use the same subnet mask. This is because RIP version 1 doesn’t send updates with subnet
mask information in tow. RIP version 2 provides something called prefix routing and does
send subnet mask information with its route updates. This is called classless routing. You’ll
rarely see RIPv1 used in today’s networks, and it’s not considered in any CCENT and CCNA
objective. Even RIPv2 doesn’t get much attention in the objectives. So why am I even telling
you about them? Because it helps me explain routing protocols a little better before we get
into the much more advanced, and very much focused upon, OSPF protocol.
So, with that let’s configure our current network with RIPv2, before we move onto
OSPF in the next chapter.
Configuring RIP Routing
To configure RIP routing, just turn on the protocol with the router rip command and tell the
RIP routing protocol the networks to advertise. Remember that with static routing, we always
configured remote networks and never typed a route to our directly connected networks? Well,
368
Chapter 8
u
IP Routing
dynamic routing is carried out the complete opposite way. You would never type a remote network under your routing protocol—only enter your directly connected networks! Let’s configure our three-router internetwork, revisited in Figure 8.9, with RIP routing.
Corp
RIP has an administrative distance of 120. Static routes have an administrative distance of
1 by default, and since we currently have static routes configured, the routing tables won’t
be populated with RIP information. We’re still good though because I added the 150 to the
end of each static route!
You can add the RIP routing protocol by using the router rip command and the network
command. The network command tells the routing protocol which classful network to advertise. By doing this, you’re activating the RIP routing process on the interfaces whose addressing falls within the specified classful networks configured with the network command under
the RIP routing process.
Look at the Corp router configuration to see how easy this is. Oh wait—first, I want to
verify my directly connected networks so I know what to configure RIP with:
Corp#sh ip int brief
Interface
IP-Address
OK? Method
FastEthernet0/0 10.10.10.1
YES manual
Serial0/0
172.16.10.1
YES manual
FastEthernet0/1 unassigned
YES unset
Serial0/1
172.16.10.5
YES manual
Corp#config t
Corp(config)#router rip
Corp(config-router)#network 10.0.0.0
Corp(config-router)#network 172.16.0.0
Corp(config-router)#version 2
Corp(config-router)#no auto-summary
Status
Protocol
up
up
up
up
administratively down down
up
up
That’s it—really! Typically just two or three commands and you’re done, which sure
makes your job a lot easier than dealing with static routes, doesn’t it? Be sure to keep in
mind the extra router CPU process and bandwidth that you’re consuming.
Anyway, so what exactly did I do here? I enabled the RIP routing protocol, added my
directly connected networks, made sure I was only running RIPv2, which is a classless
routing protocol, and then I disabled auto-summary. We typically don’t want our routing
protocols summarizing for us because it’s better to do that manually and both RIP and
EIGRP auto-summarize by default. So a general rule of thumb is to disable auto-summary,
which allows them to advertise subnets.
Notice I didn’t type in subnets, only the classful network address, which is betrayed by
the fact that all subnet bits and host bits are off! That’s because with dynamic routing, it’s
not my job and it’s up to the routing protocol to find the subnets and populate the routing
tables. And since we have no router buddies running RIP, we won’t see any RIP routes in
the routing table yet.
Routing Information Protocol (RIP)
369
Remember that RIP uses the classful address when configuring the network address. To clarify this, refer to the example in our network with an
address of 172.16.0.0/24 using subnets 172.16.10.0 and 172.16.20.0. You
would only type in the classful network address of 172.16.0.0 and let RIP
find the subnets and place them in the routing table. This doesn’t mean
you are running a classful routing protocol; this is just the way that both
RIP and EIGRP are configured.
SF
Okay, let’s configure our SF router now, which is connected to two networks. We need to
configure both directly connected classful networks, not subnets:
SF#sh ip int brief
Interface
IP-Address
OK? Method Status
Protocol
FastEthernet0/0
192.168.10.1
YES manual up
up
FastEthernet0/1
unassigned
YES unset administratively down down
Serial0/0/0
172.16.10.2
YES manual up
up
Serial0/0/1
unassigned
YES unset administratively down down
SF#config
SF(config)#router rip
SF(config-router)#network 192.168.10.0
SF(config-router)#network 172.16.0.0
SF(config-router)#version 2
SF(config-router)#no auto-summary
SF(config-router)#do show ip route
C
192.168.10.0/24 is directly connected, FastEthernet0/0
L
192.168.10.1/32 is directly connected, FastEthernet0/0
172.16.0.0/30 is subnetted, 3 subnets
R
172.16.10.4 [120/1] via 172.16.10.1, 00:00:08, Serial0/0/0
C
172.16.10.0 is directly connected, Serial0/0/0
L
172.16.10.2/32 is directly connected, Serial0/0
S
192.168.20.0/24 [150/0] via 172.16.10.1
10.0.0.0/24 is subnetted, 1 subnets
R
10.10.10.0 [120/1] via 172.16.10.1, 00:00:08, Serial0/0/0
That was pretty straightforward. Let’s talk about this routing table. Since we have one
RIP buddy out there whom we are exchanging routing tables with, we can see the RIP networks coming from the Corp router. All the other routes still show up as static and local.
RIP also found both connections through the Corp router to networks 10.10.10.0 and
172.16.10.4. But we’re not done yet!
370
Chapter 8
u
IP Routing
LA
Let’s configure our LA router with RIP, only I’m going to remove the default route first,
even though I don’t have to. You’ll see why soon:
LA#config t
LA(config)#no ip route 0.0.0.0 0.0.0.0
LA(config)#router rip
LA(config-router)#network 192.168.20.0
LA(config-router)#network 172.16.0.0
LA(config-router)#no auto
LA(config-router)#vers 2
LA(config-router)#do show ip route
R
192.168.10.0/24 [120/2] via 172.16.10.5, 00:00:10, Serial0/0/1
172.16.0.0/30 is subnetted, 3 subnets
C
172.16.10.4 is directly connected, Serial0/0/1
L
172.16.10.6/32 is directly connected, Serial0/0/1
R
172.16.10.0 [120/1] via 172.16.10.5, 00:00:10, Serial0/0/1
C
192.168.20.0/24 is directly connected, FastEthernet0/0
L
192.168.20.1/32 is directly connected, FastEthernet0/0
10.0.0.0/24 is subnetted, 1 subnets
R
10.10.10.0 [120/1] via 172.16.10.5, 00:00:10, Serial0/0/1
The routing table is sprouting new Rs as we add RIP buddies! We can still see that all
routes are in the routing table.
This output shows us basically the same routing table and the same entries that it had
when we were using static routes—except for those Rs. An R indicates that the networks
were added dynamically using the RIP routing protocol. The [120/1] is the administrative
distance of the route (120) along with the metric, which for RIP is the number of hops to
that remote network (1). From the Corp router, all networks are one hop away.
So, while yes, it’s true that RIP has worked in our little internetwork, it’s just not a great
solution for most enterprises. Its maximum hop count of only 15 is a highly limiting factor.
And it performs full routing-table updates every 30 seconds, which would bring a larger
internetwork to a painful crawl in no time!
There’s still one more thing I want to show you about RIP routing tables and the parameters used to advertise remote networks. Using a different router on a different network as an
example for a second, look into the output below. Can you spot where the following routing
table shows [120/15] in the 10.1.3.0 network metric? This means that the administrative distance is 120, the default for RIP, but the hop count is 15. Remember that each time a router
sends out an update to a neighbor router, the hop count goes up by one incrementally for each
route! Here’s that output now:
Router#sh ip route
10.0.0.0/24 is subnetted, 12 subnets
Routing Information Protocol (RIP)
C
L
C
L
R
R
R
R
R
R
R
R
C
L
R
371
10.1.11.0 is directly connected, FastEthernet0/1
10.1.11.1/32 is directly connected, FastEthernet0/1
10.1.10.0 is directly connected, FastEthernet0/0
10.1.10.1/32 is directly connected, FastEthernet/0/0
10.1.9.0 [120/2] via 10.1.5.1, 00:00:15, Serial0/0/1
10.1.8.0 [120/2] via 10.1.5.1, 00:00:15, Serial0/0/1
10.1.12.0 [120/1] via 10.1.11.2, 00:00:00, FastEthernet0/1
10.1.3.0 [120/15] via 10.1.5.1, 00:00:15, Serial0/0/1
10.1.2.0 [120/1] via 10.1.5.1, 00:00:15, Serial0/0/1
10.1.1.0 [120/1] via 10.1.5.1, 00:00:15, Serial0/0/1
10.1.7.0 [120/2] via 10.1.5.1, 00:00:15, Serial0/0/1
10.1.6.0 [120/2] via 10.1.5.1, 00:00:15, Serial0/0/1
10.1.5.0 is directly connected, Serial0/0/1
10.1.5.1/32 is directly connected, Serial0/0/1
10.1.4.0 [120/1] via 10.1.5.1, 00:00:15, Serial0/0/1
So this [120/15] is really bad. We’re basically doomed because the next router that
receives the table from this router will just discard the route to network 10.1.3.0 since the
hop count would rise to 16, which is invalid!
If a router receives a routing update that contains a higher-cost path to a
network that’s already in its routing table, the update will be ignored.
Holding Down RIP Propagations
You probably don’t want your RIP network advertised everywhere on your LAN and
WAN. There’s enough stress in networking already and not a whole lot to be gained by
advertising your RIP network to the Internet!
There are a few different ways to stop unwanted RIP updates from propagating across
your LANs and WANs, and the easiest one is through the passive-interface command.
This command prevents RIP update broadcasts from being sent out of a specified interface
but still allows that same interface to receive RIP updates.
Here’s an example of how to configure a passive-interface on the Corp routers Fa0/1
interface, which we will pretend is connected to a LAN that we don’t want RIP on:
Corp#config t
Corp(config)#router rip
Corp(config-router)#passive-interface FastEthernet 0/1
This command will stop RIP updates from being propagated out of FastEthernet
interface 0/0, but this can still receive RIP updates.
372
Chapter 8
u
IP Routing
Should We Really Use RIP in an Internetwork?
You have been hired as a consultant to install a couple of Cisco routers into a growing network. They have a couple of old Unix routers that they want to keep in the network. These
routers do not support any routing protocol except RIP. I guess this means you just have to
run RIP on the entire network. If you were balding before, your head now shines like chrome.
No need for hairs abandoning ship though—you can run RIP on a router connecting that
old network, but you certainly don’t need to run RIP throughout the whole internetwork!
You can do what is called redistribution, which is basically translating from one type of
routing protocol to another. This means that you can support those old routers using RIP
but use something much better like Enhanced IGRP on the rest of your network.
This will prevent RIP routes from being sent all over the internetwork gobbling up all that
precious bandwidth!
Advertising a Default Route Using RIP
Okay, now I’m going to guide you through how to advertise a way out of your autonomous
system to other routers, and you’ll see this is completed the same way with OSPF. Imagine
that our Corp router’s Fa0/0 interface is connected to some type of Metro-Ethernet as a
connection to the Internet. This is a pretty common configuration today that uses a LAN
interface to connect to the ISP instead of a serial interface.
If we do add an Internet connection to Corp, all routers in our AS (SF and LA) must
know where to send packets destined for networks on the Internet or they’ll just drop the
packets when they get a remote request. One solution to this little hitch would be to place a
default route on every router and funnel the information to Corp, which in turn would have
a default route to the ISP. Most people do this type of configuration in small- to mediumsize networks because it actually works pretty well!
But since I’m running RIPv2 on all routers, I’ll just add a default route on the Corp
router to our ISP, as I would normally. I’ll then add another command to advertise my network to the other routers in the AS as the default route to show them where to send packets
destined for the Internet.
Here’s my new Corp configuration:
Corp(config)#ip route 0.0.0.0 0.0.0.0 fa0/0
Corp(config)#router rip
Corp(config-router)#default-information originate
Summary
373
Now, let’s take a look at the last entry found in the Corp routing table:
S*
0.0.0.0/0 is directly connected, FastEthernet0/0
Let’s see if the LA router can see this same entry:
LA#sh ip route
Gateway of last resort is 172.16.10.5 to network 0.0.0.0
R
C
L
R
C
L
R
R
R
R*
192.168.10.0/24 [120/2] via 172.16.10.5, 00:00:04, Serial0/0/1
172.16.0.0/30 is subnetted, 2 subnets
172.16.10.4 is directly connected, Serial0/0/1
172.16.10.5/32 is directly connected, Serial0/0/1
172.16.10.0 [120/1] via 172.16.10.5, 00:00:04, Serial0/0/1
192.168.20.0/24 is directly connected, FastEthernet0/0
192.168.20.1/32 is directly connected, FastEthernet0/0
10.0.0.0/24 is subnetted, 1 subnets
10.10.10.0 [120/1] via 172.16.10.5, 00:00:04, Serial0/0/1
192.168.218.0/24 [120/3] via 172.16.10.5, 00:00:04, Serial0/0/1
192.168.118.0/24 [120/2] via 172.16.10.5, 00:00:05, Serial0/0/1
0.0.0.0/0 [120/1] via 172.16.10.5, 00:00:05, Serial0/0/1R2#
Can you see that last entry? It screams that it’s an RIP injected route, but it’s also a
default route so our default-information originate command is working! Last, notice
that the gateway of last resort is now set as well.
If all of what you’ve learned is clear and understood, congratulations—you’re ready to
move on to the next chapter right after you go through the written and hands-on labs, and
while you’re at it, don’t forget the review questions!
Summary
This chapter covered IP routing in detail. Again, it’s extremely important to fully understand the basics we covered in this chapter because everything that’s done on a Cisco router
will typically have some kind of IP routing configured and running.
You learned how IP routing uses frames to transport packets between routers and to
the destination host. From there, we configured static routing on our routers and discussed the administrative distance used by IP to determine the best route to a destination
network. You found out that if you have a stub network, you can configure default routing, which sets the gateway of last resort on a router.
We then discussed dynamic routing, specifically RIP and how it works on an internetwork, which is not very well!
Visit ccna
.gg/ch8/b
for a
companion
MicroNugget
from CBT
Nuggets.
374
Chapter 8
u
IP Routing
Exam Essentials
Describe the basic IP routing process. You need to remember that the frame changes at each
hop but that the packet is never changed or manipulated in any way until it reaches the destination device (the TTL field in the IP header is decremented for each hop, but that’s it!).
List the information required by a router to successfully route packets. To be able to route
packets, a router must know, at a minimum, the destination address, the location of neighboring routers through which it can reach remote networks, possible routes to all remote
networks, the best route to each remote network, and how to maintain and verify routing
information.
Describe how MAC addresses are used during the routing process. A MAC (hardware)
address will only be used on a local LAN. It will never pass a router’s interface. A frame
uses MAC (hardware) addresses to send a packet on a LAN. The frame will take the packet
to either a host on the LAN or a router’s interface (if the packet is destined for a remote network). As packets move from one router to another, the MAC addresses used will change,
but normally the original source and destination IP addresses within the packet will not.
View and interpret the routing table of a router. Use the show ip route command to
view the routing table. Each route will be listed along with the source of the routing information. A C to the left of the route will indicate directly connected routes, and other letters
next to the route can also indicate a particular routing protocol that provided the information, such as, for example, R for RIP.
Differentiate the three types of routing. The three types of routing are static (in which
routes are manually configured at the CLI), dynamic (in which the routers share routing
information via a routing protocol), and default routing (in which a special route is configured for all traffic without a more specific destination network found in the table).
Compare and contrast static and dynamic routing. Static routing creates no routing
update traffic and creates less overhead on the router and network links, but it must be configured manually and does not have the ability to react to link outages. Dynamic routing
creates routing update traffic and uses more overhead on the router and network links.
Configure static routes at the CLI. The command syntax to add a route is
ip route [destination_network] [mask] [next-hop_address or exitinterface]
[administrative_distance] [permanent].
Create a default route. To add a default route, use the command syntax ip route 0.0.0.0
0.0.0.0 ip-address or exit interface type and number.
Understand administrative distance and its role in the selection of the best route.
Administrative distance (AD) is used to rate the trustworthiness of routing information
received on a router from a neighbor router. Administrative distance is an integer from
0 to 255, where 0 is the most trusted and 255 means no traffic will be passed via this
route. All routing protocols are assigned a default AD, but it can be changed at the CLI.
Exam Essentials
375
Differentiate distance-vector, link-state and hybrid routing protocols. Distance-vector routing protocols make routing decisions based on hop count (think RIP), while link-state routing
protocols are able to consider multiple factors such as bandwidth available and building a
topology table. Hybrid routing protocols exhibit characteristics of both types.
Configure RIP routing. To configure RIP routing, first you must be in global configuration
mode and then you type the command router rip. Then you add all directly connected networks, making sure to use the classful address and the version 2 command and to disable
auto-summarization.
376
Chapter 8
u
IP Routing
Written Lab 8
The answers to this lab can be found in Appendix A, “Answers to Written Labs.”
Write the answers to the following questions:
1. At the appropriate command prompt, create a static route to network 172.16.10.0/24
with a next-hop gateway of 172.16.20.1 and an administrative distance of 150.
2. When a PC sends a packet to another PC in a remote network, what destination
addresses will be in the frame that it sends to its default gateway?
3. At the appropriate command prompt, create a default route to 172.16.40.1.
4. On which type of network is a default route most beneficial?
5. At the appropriate command prompt, display the routing table on your router.
6. When creating a static or default route, you don’t have to use the next-hop IP address;
you can use the ___________________.
7. True/False: To reach a remote host, you must know the MAC address of the remote host.
8. True/False: To reach a remote host, you must know the IP address of the remote host.
9. At the appropriate command prompt(s), prevent a router from propagating RIP infor-
mation out serial 1.
10. True/False: RIPv2 is considered classless.
Hands-on Labs
In the following hands-on labs, you will configure a network with three routers. These
exercises assume all the same setup requirements as the labs found in earlier chapters.
This chapter includes the following labs:
Lab 8.1: Creating Static Routes
Lab 8.2: Configuring RIP Routing
The internetwork shown in the following graphic will be used to configure all routers.
S0/0
DCE
Lab A
Fa0/0
S0/0
Lab B S0/1
S0/0
DCE
Lab C
Fa0/0
Hands-on Labs
377
Table 8.2 shows our IP addresses for each router (each interface uses a /24 mask).
Table 8 . 2 Our IP addresses
Router
Interface
IP Address
Lab_A
Fa0/0
172.16.10.1
Lab_A
S0/0
172.16.20.1
Lab_B
S0/0
172.16.20.2
Lab_B
S0/1
172.16.30.1
Lab_C
S0/0
172.16.30.2
Lab_C
Fa0/0
172.16.40.1
These labs were written without using the LAN interface on the Lab_B router. You can
choose to add that LAN into the labs if necessary. Also, if you have enough LAN interfaces,
then you don’t need to add the serial interfaces into this lab. Using all LAN interfaces is fine.
Hands-on Lab 8.1: Creating Static Routes
In this lab, you will create a static route in all three routers so that the routers see all networks. Verify with the Ping program when complete.
1. The Lab_A router is connected to two networks, 172.16.10.0 and 172.16.20.0. You
need to add routes to networks 172.16.30.0 and 172.16.40.0. Use the following commands to add the static routes:
Lab_A#config t
Lab_A(config)#ip route 172.16.30.0 255.255.255.0
172.16.20.2
Lab_A(config)#ip route 172.16.40.0 255.255.255.0
172.16.20.2
2. Save the current configuration for the Lab_A router by going to privileged mode, typing
copy run start, and pressing Enter.
378
Chapter 8
u
IP Routing
3. On the Lab_B router, you have direct connections to networks 172.16.20.0 and
172.16.30.0. You need to add routes to networks 172.16.10.0 and 172.16.40.0. Use
the following commands to add the static routes:
Lab_B#config t
Lab_B(config)#ip route 172.16.10.0 255.255.255.0
172.16.20.1
Lab_B(config)#ip route 172.16.40.0 255.255.255.0
172.16.30.2
4. Save the current configuration for router Lab_B by going to the enabled mode, typing
copy run start, and pressing Enter.
5. On router Lab_C, create a static route to networks 172.16.10.0 and 172.16.20.0,
which are not directly connected. Create static routes so that router Lab_C can see all
networks, using the commands shown here:
Lab_C#config t
Lab_C(config)#ip route 172.16.10.0 255.255.255.0
172.16.30.1
Lab_C(config)#ip route 172.16.20.0 255.255.255.0
172.16.30.1
6. Save the current configuration for router Lab_C by going to the enable mode, typing
copy run start, and pressing Enter.
7. Check your routing tables to make sure all four networks show up by executing the
show ip route command.
8. Now ping from each router to your hosts and from each router to each router. If it is
set up correctly, it will work.
Hands-on Lab 8.2: Configuring RIP Routing
In this lab, we will use the dynamic routing protocol RIP instead of static routing.
1. Remove any static routes or default routes configured on your routers by using the no
ip route command. For example, here is how you would remove the static routes on
the Lab_A router:
Lab_A#config t
Lab_A(config)#no ip route 172.16.30.0 255.255.255.0
172.16.20.2
Lab_A(config)#no ip route 172.16.40.0 255.255.255.0
172.16.20.2
Do the same thing for routers Lab_B and Lab_C. Verify that only your directly connected networks are in the routing tables.
Hands-on Labs
379
2. After your static and default routes are clear, go into configuration mode on router
Lab_A by typing config t.
3. Tell your router to use RIP routing by typing router rip and pressing Enter, as
shown here:
config t
router rip
4. Add the network number for the networks you want to advertise. Since router Lab_A
has two interfaces that are in two different networks, you must enter a network statement using the network ID of the network in which each interface resides. Alternately,
you could use a summarization of these networks and use a single statement, minimizing the size of the routing table. Since the two networks are 172.16.10.0/24 and
172.16.20.0/24, the network summarization 172.16.0.0 would include both subnets.
Do this by typing network 172.16.0.0 and pressing Enter.
5. Press Ctrl+Z to get out of configuration mode.
6. The interfaces on Lab_B and Lab_C are in the 172.16.20.0/24 and 172.16.30.0/24
networks; therefore, the same summarized network statement will work there as well.
Type the same commands, as shown here:
Config t
Router rip
network 172.16.0.0
7. Verify that RIP is running at each router by typing the following commands at
each router:
show ip protocols
(Should indicate to you that RIP is present on the router.)
show ip route
(Should have routes present with an R to the left of them.)
show running-config or show run
(Should indicate that RIP is present and the networks are being advertised.)
8. Save your configurations by typing copy run start or copy running-config startupconfig and pressing Enter at each router.
9. Verify the network by pinging all remote networks and hosts.
Chapter 8
380
u
IP Routing
Review Questions
The following questions are designed to test your understanding of this
chapter’s material. For more information on how to get additional questions, please see this book’s introduction.
The answers to these questions can be found in Appendix B, “Answers to Chapter
Review Questions.”
1. What command was used to generate the following output?
Codes: L - local, C - connected, S - static,
[output cut]
10.0.0.0/8 is variably subnetted, 6 subnets, 4 masks
C
10.0.0.0/8 is directly connected, FastEthernet0/3
L
10.0.0.1/32 is directly connected, FastEthernet0/3
C
10.10.0.0/16 is directly connected, FastEthernet0/2
L
10.10.0.1/32 is directly connected, FastEthernet0/2
C
10.10.10.0/24 is directly connected, FastEthernet0/1
L
10.10.10.1/32 is directly connected, FastEthernet0/1
S*
0.0.0.0/0 is directly connected, FastEthernet0/0
2. You are viewing the routing table and you see an entry 10.1.1.1/32. What legend code
would you expect to see next to this route?
A. C
B. L
C. S
D. D
3. Which of the following statements are true regarding the command ip route
172.16.4.0 255.255.255.0 192.168.4.2? (Choose two.)
A. The command is used to establish a static route.
B. The default administrative distance is used.
C. The command is used to configure the default route.
D. The subnet mask for the source address is 255.255.255.0.
E. The command is used to establish a stub network.
Review Questions
381
4. What destination addresses will be used by HostA to send data to the HTTPS server as
shown in the following network? (Choose two.)
RouterA
Fa0/1
Fa0/0
HTTPS Server
HostA
A. The IP address of the switch
B. The MAC address of the remote switch
C. The IP address of the HTTPS server
D. The MAC address of the HTTPS server
E. The IP address of RouterA’s Fa0/0 interface
F. The MAC address of RouterA’s Fa0/0 interface
5. Using the output shown, what protocol was used to learn the MAC address for
172.16.10.1?
Interface: 172.16.10.2 --- 0x3
Internet Address
Physical Address
172.16.10.1
00-15-05-06-31-b0
Type
dynamic
A. ICMP
B. ARP
C. TCP
D. UDP
6. Which of the following is called an advanced distance-vector routing protocol?
A. OSPF
B. EIGRP
C. BGP
D. RIP
Chapter 8
382
u
IP Routing
7. When a packet is routed across a network, the ______________ in the packet changes at
every hop while the ____ does not.
A. MAC address, IP address
B. IP address, MAC address
C. Port number, IP address
D. IP address, port number
8. Which statement is true regarding classless routing protocols? (Choose two.)
A. The use of discontiguous networks is not allowed.
B. The use of variable length subnet masks is permitted.
C. RIPv1 is a classless routing protocol.
D. IGRP supports classless routing within the same autonomous system.
E. RIPv2 supports classless routing.
9. Which two of the following are true regarding the distance-vector and link-state rout-
ing protocols? (Choose two.)
A. Link state sends its complete routing table out of all active interfaces at periodic
time intervals.
B. Distance vector sends its complete routing table out of all active interfaces at peri-
odic time intervals.
C. Link state sends updates containing the state of its own links to all routers in the
internetwork.
D. Distance vector sends updates containing the state of its own links to all routers in
the internetwork.
10. When a router looks up the destination in the routing table for every single packet it is
called _____________ .
A. dynamic switching
B. fast switching
C. process switching
D. Cisco Express Forwarding
11. What type(s) of route is the following? Choose all that apply.
S*
0.0.0.0/0 [1/0] via 172.16.10.5
A. Default
B. Subnetted
C. Static
D. Local
Review Questions
383
12. A network administrator views the output from the show ip route command. A net-
work that is advertised by both RIP and EIGRP appears in the routing table flagged as
an EIGRP route. Why is the RIP route to this network not used in the routing table?
A. EIGRP has a faster update timer.
B. EIGRP has a lower administrative distance.
C. RIP has a higher metric value for that route.
D. The EIGRP route has fewer hops.
E. The RIP path has a routing loop.
13. Which of the following is NOT an advantage of static routing?
A. Less overhead on the router CPU
B. No bandwidth usage between routers
C. Adds security
D. Recovers automatically from lost routes
14. What metric does RIPv2 use to find the best path to a remote network?
A. Hop count
B. MTU
C. Cumulative interface delay
D. Load
E. Path bandwidth value
15. The Corporate router receives an IP packet with a source IP address of 192.168.214.20
and a destination address of 192.168.22.3. Looking at the output from the Corp
router, what will the router do with this packet?
Corp#sh ip route
[output cut]
R
192.168.215.0 [120/2] via 192.168.20.2, 00:00:23, Serial0/0
R
192.168.115.0 [120/1] via 192.168.20.2, 00:00:23, Serial0/0
R
192.168.30.0 [120/1] via 192.168.20.2, 00:00:23, Serial0/0
C
192.168.20.0 is directly connected, Serial0/0
C
192.168.214.0 is directly connected, FastEthernet0/0
A. The packet will be discarded.
B. The packet will be routed out of the S0/0 interface.
C. The router will broadcast looking for the destination.
D. The packet will be routed out of the Fa0/0 interface.
Chapter 8
384
u
IP Routing
16. If your routing table has a static, an RIP, and an EIGRP route to the same network,
which route will be used to route packets by default?
A. Any available route
B. RIP route
C. Static route
D. EIGRP route
E. They will all load-balance.
17. Which of the following is an EGP?
A. RIPv2
B. EIGRP
C. BGP
D. RIP
18. Which of the following is an advantage of static routing?
A. Less overhead on the router CPU
B. No bandwidth usage between routers
C. Adds security
D. Recovers automatically from lost routes
19. What command produced the following output?
Interface
FastEthernet0/0
FastEthernet0/1
Serial0/0/0
Serial0/0/1
IP-Address
192.168.10.1
unassigned
172.16.10.2
unassigned
OK?
YES
YES
YES
YES
Method
manual
unset
manual
unset
Status
Protocol
up
up
administratively down down
up
up
administratively down down
A. show ip route
B. show interfaces
C. show ip interface brief
D. show ip arp
20. In the following command what does the 150 at the end of the command mean?
Router(config)#ip route 172.16.3.0 255.255.255.0 192.168.2.4 150
A. Metric
B. Administrative distance
C. Hop count
D. Cost
Chapter
9
Open Shortest Path
First (OSPF)
The following ICND1 exam topics
are covered in this chapter:
11 IP Routing Technologies
■■
Configure and verify OSPF (single area)
■■
Benefit of single area
■■
Configure OSPF v2
■■
Router ID
■■
Passive interface
Open Shortest Path First (OSPF) is by far the most popular
and important routing protocol in use today—so important,
I’m devoting this entire chapter to it! Sticking with the same
approach we’ve adhered to throughout this book, we’ll begin with the basics by completely
familiarizing you with key OSPF terminology. Once we’ve covered that thoroughly, I’ll guide
you through OSPF’s internal operation and then move on to tell you all about OSPF’s many
advantages over RIP.
This chapter is going to be more than chock full of vitally important information and it’s
also going to be really exciting because together, we’ll explore some seriously critical factors
and issues innate to implementing OSPF! I’ll walk you through exactly how to implement
single-area OSPF in a variety of networking environments and then demonstrate some great
techniques you’ll need to verify that everything is configured correctly and running smoothly.
To find up-to-the-minute updates for this chapter, please see
www.lammle.com/forum or the book’s web page at www.sybex.com.
Open Shortest Path First (OSPF) Basics
Open Shortest Path First is an open standard routing protocol that’s been implemented by
a wide variety of network vendors, including Cisco. And it’s that open standard characteristic that’s the key to OSPF’s flexibility and popularity.
Most people opt for OSPF, which works by using the Dijkstra algorithm to initially
construct a shortest path tree and follows that by populating the routing table with the
resulting best paths. EIGRP’s convergence time may be blindingly fast, but OSPF isn’t that
far behind, and its quick convergence is another reason it’s a favorite. Another two great
advantages OSPF offers are that it supports multiple, equal-cost routes to the same destination, and like EIGRP, it also supports both IP and IPv6 routed protocols.
Here’s a list that summarizes some of OSPF’s best features:
uu
Allows for the creation of areas and autonomous systems
uu
Minimizes routing update traffic
Open Shortest Path First (OSPF) Basics
uu
Is highly flexible, versatile, and scalable
uu
Supports VLSM/CIDR
uu
Offers an unlimited hop count
uu
Is open standard and supports multi-vendor deployment
Because OSPF is the first link-state routing protocol that most people run into, it’s a
good idea to size it up against more traditional distance-vector protocols like RIPv2 and
RIPv1. Table 9.1 presents a nice comparison of all three of these common protocols.
Table 9 .1 OSPF and RIP comparison
Characteristic
OSPF
RIPv2
RIPv1
Type of protocol
Link state
Distance vector
Distance vector
Classless support
Yes
Yes
No
VLSM support
Yes
Yes
No
Auto-summarization
No
Yes
Yes
Manual summarization
Yes
Yes
No
Noncontiguous support
Yes
Yes
No
Route propagation
Multicast on change
Periodic multicast
Periodic broadcast
Path metric
Bandwidth
Hops
Hops
Hop count limit
None
15
15
Convergence
Fast
Slow
Slow
Peer authentication
Yes
Yes
No
Hierarchical network
requirement
Yes (using areas)
No (flat only)
No (flat only)
Updates
Event triggered
Periodic
Periodic
Route computation
Dijkstra
Bellman-Ford
Bellman-Ford
387
388
Chapter 9
u
Open Shortest Path First (OSPF)
I want you know that OSPF has many features beyond the few I’ve listed in Table 9.1 and
all of them combine to produce a fast, scalable, robust protocol that’s also flexible enough to
be actively deployed in a vast array of production networks!
One of OSPF’s most useful traits is that its design is intended to be hierarchical in use,
meaning that it allows us to subdivide the larger internetwork into smaller internetworks
called areas. It’s a really powerful feature that I recommend using, and I promise to show
you how to do that later in the chapter.
Here are three of the biggest reasons to implement OSPF in a way that makes full use of
its intentional, hierarchical design:
uu
To decrease routing overhead
uu
To speed up convergence
uu
To confine network instability to single areas of the network
Because free lunches are invariably hard to come by, all this wonderful functionality
predictably comes at a price and doesn’t exactly make configuring OSPF any easier. But
no worries—we’ll crush it!
Let’s start by checking out Figure 9.1, which shows a very typical, yet simple OSPF design.
I really want to point out the fact that some routers connect to the backbone—called area 0—
the backbone area. OSPF absolutely must have an area 0, and all other areas should connect
to it except for those connected via virtual links, which are beyond the scope of this book. A
router that connects other areas to the backbone area within an AS is called an area border
router (ABR), and even these must have at least one of their interfaces connected to area 0.
F ig u re 9 .1 OSPF design example. An OSPF hierarchical design minimizes
routing table entries and keeps the impact of any topology changes contained within a
specific area.
Backbone Area
External
routing
domain
ASBR
C
F
Area 1
D
G
Area 2
E
H
Area 3
Autonomous System
OSPF runs great inside an autonomous system, but it can also connect multiple autonomous
systems together. The router that connects these ASs is called an autonomous system boundary router (ASBR). Ideally, your aim is to create other areas of networks to help keep route
Open Shortest Path First (OSPF) Basics
389
updates to a minimum, especially in larger networks. Doing this also keeps problems from
propagating throughout the network, affectively isolating them to a single area.
But let’s pause here to cover some key OSPF terms that are really essential for you to nail
down before we move on any further.
OSPF Terminology
Imagine being given a map and compass with no prior concept of east, west, north or south—
not even what rivers, mountains, lakes, or deserts are. I’m guessing that without any ability to
orient yourself in a basic way, your cool, new tools wouldn’t help you get anywhere but completely lost, right? This is exactly why we’re going to begin exploring OSPF by getting you solidly acquainted with a fairly long list of terms before setting out from base camp into the great
unknown! Here are those vital terms to commit to memory now:
Link A link is a network or router interface assigned to any given network. When an interface is added to the OSPF process, it’s considered to be a link. This link, or interface, will
have up or down state information associated with it as well as one or more IP addresses.
Router ID The router ID (RID) is an IP address used to identify the router. Cisco chooses
the router ID by using the highest IP address of all configured loopback interfaces. If no
loopback interfaces are configured with addresses, OSPF will choose the highest IP address
out of all active physical interfaces. To OSPF, this is basically the “name” of each router.
Neighbor Neighbors are two or more routers that have an interface on a common network, such as two routers connected on a point-to-point serial link. OSPF neighbors must
have a number of common configuration options to be able to successfully establish a
neighbor relationship, and all of these options must be configured exactly the same way:
uu
Area ID
uu
Stub area flag
uu
Authentication password (if using one)
uu
Hello and Dead intervals
Adjacency An adjacency is a relationship between two OSPF routers that permits the
direct exchange of route updates. Unlike EIGRP, which directly shares routes with all of its
neighbors, OSPF is really picky about sharing routing information and will directly share
routes only with neighbors that have also established adjacencies. And not all neighbors will
become adjacent—this depends upon both the type of network and the configuration of the
routers. In multi-access networks, routers form adjacencies with designated and backup designated routers. In point-to-point and point-to-multipoint networks, routers form adjacencies with the router on the opposite side of the connection.
Designated router A designated router (DR) is elected whenever OSPF routers are connected to the same broadcast network to minimize the number of adjacencies formed and to
publicize received routing information to and from the remaining routers on the broadcast
network or link. Elections are won based upon a router’s priority level, with the one having
390
Chapter 9
u
Open Shortest Path First (OSPF)
the highest priority becoming the winner. If there’s a tie, the router ID will be used to break
it. All routers on the shared network will establish adjacencies with the DR and the BDR,
which ensures that all routers’ topology tables are synchronized.
Backup designated router A backup designated router (BDR) is a hot standby for the
DR on broadcast, or multi-access, links. The BDR receives all routing updates from OSPF
adjacent routers but does not disperse LSA updates.
Hello protocol The OSPF Hello protocol provides dynamic neighbor discovery and maintains neighbor relationships. Hello packets and Link State Advertisements (LSAs) build and
maintain the topological database. Hello packets are addressed to multicast address 224.0.0.5.
Neighborship database The neighborship database is a list of all OSPF routers for which
Hello packets have been seen. A variety of details, including the router ID and state, are
maintained on each router in the neighborship database.
Topological database The topological database contains information from all of the Link
State Advertisement packets that have been received for an area. The router uses the information from the topology database as input into the Dijkstra algorithm that computes the
shortest path to every network.
LSA packets are used to update and maintain the topological database.
Link State Advertisement A Link State Advertisement (LSA) is an OSPF data packet containing link-state and routing information that’s shared among OSPF routers. There are different types of LSA packets, and I’ll cover these in the ICND2 book. An OSPF router will
exchange LSA packets only with routers to which it has established adjacencies.
OSPF areas An OSPF area is a grouping of contiguous networks and routers. All routers in
the same area share a common area ID. Because a router can be a member of more than one
area at a time, the area ID is associated with specific interfaces on the router. This would allow
some interfaces to belong to area 1 while the remaining interfaces can belong to area 0. All of
the routers within the same area have the same topology table. When configuring OSPF with
multiple areas, you’ve got to remember that there must be an area 0 and that this is typically
considered the backbone area. Areas also play a role in establishing a hierarchical network
organization—something that really enhances the scalability of OSPF!
Broadcast (multi-access) Broadcast (multi-access) networks such as Ethernet allow multiple devices to connect to or access the same network, enabling a broadcast ability in which
a single packet is delivered to all nodes on the network. In OSPF, a DR and BDR must be
elected for each broadcast multi-access network.
Nonbroadcast multi-access Nonbroadcast multi-access (NBMA) networks are networks
such as Frame Relay, X.25, and Asynchronous Transfer Mode (ATM). These types of
networks allow for multi-access without broadcast ability like Ethernet. NBMA networks
require special OSPF configuration to function properly.
Open Shortest Path First (OSPF) Basics
391
Point-to-point Point-to-point refers to a type of network topology made up of a direct
connection between two routers that provides a single communication path. The point-topoint connection can be physical—for example, a serial cable that directly connects two
routers—or logical, where two routers thousands of miles apart are connected by a circuit
in a Frame Relay network. Either way, point-to-point configurations eliminate the need for
DRs or BDRs.
Point-to-multipoint Point-to-multipoint refers to a type of network topology made up
of a series of connections between a single interface on one router and multiple destination
routers. All interfaces on all routers share the point-to-multipoint connection and belong
to the same network. Point-to-multipoint networks can be further classified according to
whether they support broadcasts or not. This is important because it defines the kind of
OSPF configurations you can deploy.
All of these terms play a critical role when you’re trying to understand how OSPF actually
works, so again, make sure you’re familiar with each of them. Having these terms down will
enable you to confidently place them in their proper context as we progress on our journey
through the rest of this chapter!
OSPF Operation
Fully equipped with your newly acquired knowledge of the terms and technologies we
just covered, it’s now time to delve into how OSPF discovers, propagates, and ultimately
chooses routes. Once you know how OSPF achieves these tasks, you’ll understand how
OSPF operates internally really well.
OSPF operation is basically divided into these three categories:
uu
Neighbor and adjacency initialization
uu
LSA flooding
uu
SPF tree calculation
The beginning neighbor/adjacency formation stage is a very big part of OSPF operation.
When OSPF is initialized on a router, the router allocates memory for it, as well as for the
maintenance of both neighbor and topology tables. Once the router determines which interfaces have been configured for OSPF, it will then check to see if they’re active and begin
sending Hello packets.
F ig u re 9 . 2
The Hello protocol
Hello?
224.0.0.5
The Hello protocol is used to discover neighbors, establish adjacencies, and maintain
relationships with other OSPF routers. Hello packets are periodically sent out of each
enabled OSPF interface and in environments that support multicast.
392
Chapter 9
u
Open Shortest Path First (OSPF)
The address used for this is 224.0.0.5, and the frequency with which Hello packets are sent
out depends upon the network type and topology. Broadcast and point-to-point networks send
Hellos every 10 seconds, whereas non-broadcast and point-to-multipoint networks send them
every 30 seconds.
LSA Flooding
LSA flooding is the method OSPF uses to share routing information. Via LSU packets, LSA
information containing link-state data is shared with all OSPF routers within an area. The
network topology is created from the LSA updates, and flooding is used so that all OSPF
routers have the same topology map to make SPF calculations with.
Efficient flooding is achieved through the use of a reserved multicast address: 224.0.0.5
(AllSPFRouters). LSA updates, which indicate that something in the topology has changed,
are handled a bit differently. The network type determines the multicast address used for
sending updates. Table 9.2 contains the multicast addresses associated with LSA flooding.
Point-to-multipoint networks use the adjacent router’s unicast IP address.
Table 9 . 2 LSA update multicast addresses
Network Type
Multicast Address
Description
Point-to-point
224.0.0.5
AllSPFRouters
Broadcast
224.0.0.6
AllDRouters
Point-to-multipoint
NA
NA
Once the LSA updates have been flooded throughout the network, each recipient must
acknowledge that the flooded update has been received. It’s also important for recipients to
validate the LSA update.
SPF Tree Calculation
Within an area, each router calculates the best/shortest path to every network in that same
area. This calculation is based upon the information collected in the topology database and
an algorithm called shortest path first (SPF). Picture each router in an area constructing
a tree—much like a family tree—where the router is the root and all other networks are
arranged along the branches and leaves. This is the shortest path tree used by the router to
insert OSPF routes into the routing table.
It’s important to understand that this tree contains only networks that exist in the same
area as the router itself does. If a router has interfaces in multiple areas, then separate trees
will be constructed for each area. One of the key criteria considered during the route selection process of the SPF algorithm is the metric or cost of each potential path to a network.
But this SPF calculation doesn’t apply to routes from other areas.
Configuring OSPF
393
OSPF Metrics
OSPF uses a metric referred to as cost. A cost is associated with every outgoing interface
included in an SPF tree. The cost of the entire path is the sum of the costs of the outgoing
interfaces along the path. Because cost is an arbitrary value as defined in RFC 2338, Cisco
had to implement its own method of calculating the cost for each OSPF-enabled interface.
Cisco uses a simple equation of 108/bandwidth, where bandwidth is the configured bandwidth for the interface. Using this rule, a 100 Mbps Fast Ethernet interface would have a
default OSPF cost of 1 and a 1,000 Mbps Ethernet interface would have a cost of 1.
Important to note is that this value can be overridden with the ip ospf cost command.
The cost is manipulated by changing the value to a number within the range of 1 to 65,535.
Because the cost is assigned to each link, the value must be changed on the specific interface
you want to change the cost on.
Cisco bases link cost on bandwidth. Other vendors may use other metrics
to calculate a given link’s cost. When connecting links between routers
from different vendors, you’ll probably have to adjust the cost to match
another vendor’s router because both routers must assign the same cost
to the link for OSPF to work properly.
Configuring OSPF
Configuring basic OSPF isn’t as simple as configuring RIP and EIGRP, and it can get really
complex once the many options that are allowed within OSPF are factored in. But that’s
okay because you really only need to focus on basic, single-area OSPF configuration at this
point. Coming up, I’ll show you how to configure single-area OSPF.
The two factors that are foundational to OSPF configuration are enabling OSPF and
configuring OSPF areas.
Enabling OSPF
The easiest and also least scalable way to configure OSPF is to just use a single area. Doing
this requires a minimum of two commands.
The first command used to activate the OSPF routing process is as follows:
Router(config)#router ospf ?
<1-65535> Process ID
A value in the range from 1 to 65,535 identifies the OSPF process ID. It’s a unique number
on this router that groups a series of OSPF configuration commands under a specific running
process. Different OSPF routers don’t have to use the same process ID to communicate. It’s a
Visit ccna
.gg/ch9/a
for a
companion
MicroNugget
from CBT
Nuggets.
394
Chapter 9
u
Open Shortest Path First (OSPF)
purely local value that doesn’t mean a lot, but you still need to remember that it cannot start
at 0; it has to start at a minimum of 1.
You can have more than one OSPF process running simultaneously on the same router
if you want, but this isn’t the same as running multi-area OSPF. The second process will
maintain an entirely separate copy of its topology table and manage its communications
independently of the first one and you use it when you want OSPF to connect multiple ASs
together. Also, because the Cisco exam objectives only cover single-area OSPF with each
router running a single OSPF process, that’s what we’ll focus on in this book.
The OSPF process ID is needed to identify a unique instance of an OSPF
database and is locally significant.
Configuring OSPF Areas
After identifying the OSPF process, you need to identify the interfaces that you want to
activate OSPF communications on as well as the area in which each resides. This will
also configure the networks you’re going to advertise to others. OSPF uses wildcards in
the configuration, which are also used in the access list configurations that we’ll cover
in Chapter 12, “Security.”
Here’s an example of a basic OSPF configuration for you, showing our second minimum command needed, the network command:
Router#config t
Router(config)#router ospf 1
Router(config-router)#network 10.0.0.0 0.255.255.255 area ?
<0-4294967295> OSPF area ID as a decimal value
A.B.C.D
OSPF area ID in IP address format
Router(config-router)#network 10.0.0.0 0.255.255.255 area 0
The areas can be any number from 0 to 4.2 billion. Don’t get these numbers
confused with the process ID, which ranges from 1 to 65,535.
Remember, the OSPF process ID number is irrelevant. It can be the same on every router
on the network, or it can be different—doesn’t matter. It’s locally significant and just enables
the OSPF routing on the router.
The arguments of the network command are the network number (10.0.0.0) and the wildcard mask (0.255.255.255). The combination of these two numbers identifies the interfaces
that OSPF will operate on and will also be included in its OSPF LSA advertisements. Based
on my sample configuration, OSPF will use this command to find any interface on the router
configured in the 10.0.0.0 network and will place any interface it finds into area 0. Notice
Configuring OSPF
395
that you can create about 4.2 billion areas! In reality, a router wouldn’t let you create that
many, but you can certainly name them using the numbers up to 4.2 billion. You can also
label an area using an IP address format.
Let me stop here a minute to give you a quick explanation of wildcards: A 0 octet in the
wildcard mask indicates that the corresponding octet in the network must match exactly.
On the other hand, a 255 indicates that you don’t care what the corresponding octet is in
the network number. A network and wildcard mask combination of 1.1.1.1 0.0.0.0 would
match an interface configured exactly with 1.1.1.1 only, and nothing else. This is really useful if you want to activate OSPF on a specific interface in a very clear and simple way. If
you insist on matching a range of networks, the network and wildcard mask combination
of 1.1.0.0 0.0.255.255 would match any interface in the range of 1.1.0.0 to 1.1.255.255.
Because of this, it’s simpler and safer to stick to using wildcard masks of 0.0.0.0 and identify each OSPF interface individually. Once configured, they’ll function exactly the same—
one way is really isn’t better than the other.
The final argument is the area number. It indicates the area to which the interfaces
identified in the network and wildcard mask portion belong. Remember that OSPF routers
will become neighbors only if their interfaces share a network that’s configured to belong
to the same area number. The format of the area number is either a decimal value from the
range 1 to 4,294,967,295 or a value represented in standard dotted-decimal notation. For
example, area 0.0.0.0 is a legitimate area and is identical to area 0.
Wildcard Example
Before getting down to configuring our network, let’s take a quick peek at a more complex
OSPF network configuration to find out what our OSPF network statements would be if we
were using subnets and wildcards.
In this scenario, you have a router with these four subnets connected to four different
interfaces:
uu
192.168.10.64/28
uu
192.168.10.80/28
uu
192.168.10.96/28
uu
192.168.10.8/30
All interfaces need to be in area 0, so it seems to me the easiest configuration would look
like this:
Test#config t
Test(config)#router ospf 1
Test(config-router)#network 192.168.10.0 0.0.0.255 area 0
Okay—I’ll admit that preceding example is actually pretty simple, but easy isn’t always
best—especially when dealing with OSPF! So even though this is an easy-button way to configure OSPF, it doesn’t make good use of its capabilities and what fun is that? Worse yet, the
objectives aren’t very likely to present something this simple for you! So let’s create a separate
396
Chapter 9
u
Open Shortest Path First (OSPF)
network statement for each interface using the subnet numbers and wildcards. Doing that
would look something like this:
Test#config t
Test(config)#router ospf 1
Test(config-router)#network
Test(config-router)#network
Test(config-router)#network
Test(config-router)#network
192.168.10.64 0.0.0.15 area 0
192.168.10.80 0.0.0.15 area 0
192.168.10.96 0.0.0.15 area 0
192.168.10.8 0.0.0.3 area 0
Wow, now that’s a different looking config! Truthfully, OSPF would work exactly the
same way as it would with the easy configuration I showed you first—but unlike the easy
configuration, this one covers the objectives!
And although this looks a bit complicated, trust me, it really isn’t. All you need for clarity is
to fully understand your block sizes! Just remember that when configuring wildcards, they’re
always one less than the block size. A /28 is a block size of 16, so we would add our network
statement using the subnet number and then add a wildcard of 15 in the interesting octet. For
the /30, which is a block size of 4, we would go with a wildcard of 3. Once you practice this a
few times, it gets really easy. And do practice because we’ll deal with them again when we get
to access lists later on!
Let’s use Figure 9.3 as an example and configure that network with OSPF using wildcards to make sure you have a solid grip on this. The figure shows a three-router network
with the IP addresses of each interface.
F ig u re 9 . 3
Sample OSPF wildcard configuration
10.255.255.81/30
10.255.255.82/30 10.255.255.9/30
G0/0
G0/1
G0/0
Lab A
Lab B
Fa0/0
Fa0/0
192.168.10.65/29
192.168.10.49/29
10.255.255.10/30
G0/0
Lab C
Fa0/0
192.168.10.17/29
The very first thing you need to be able to do is to look at each interface and determine the subnet that the addresses are in. Hold on, I know what you’re thinking: “Why
don’t I just use the exact IP addresses of the interface with the 0.0.0.0 wildcard?” Well,
you can, but we’re paying attention to Cisco exam objectives here, not just what’s easiest, remember?
Configuring OSPF
397
The IP addresses for each interface are shown in the figure. The Lab_A router has two
directly connected subnets: 192.168.10.64/29 and 10.255.255.80/30. Here’s the OSPF configuration using wildcards:
Lab_A#config t
Lab_A(config)#router ospf 1
Lab_A(config-router)#network 192.168.10.64 0.0.0.7 area 0
Lab_A(config-router)#network 10.255.255.80 0.0.0.3 area 0
The Lab_A router is using a /29, or 255.255.255.248, mask on the Fa0/0 interface. This is
a block size of 8, which is a wildcard of 7. The G0/0 interface is a mask of 255.255.255.252—
block size of 4, with a wildcard of 3. Notice that I typed in the network number, not the
interface number. You can’t configure OSPF this way if you can’t look at the IP address and
slash notation and then figure out the subnet, mask, and wildcard, can you? So don’t take your
exam until you can do this.
Here are other two configurations to help you practice:
Lab_B#config t
Lab_B(config)#router ospf 1
Lab_B(config-router)#network 192.168.10.48 0.0.0.7 area 0
Lab_B(config-router)#network 10.255.255.80 0.0.0.3 area 0
Lab_B(config-router)#network 10.255.255.8 0.0.0.3 area 0
Lab_C#config t
Lab_C(config)#router ospf 1
Lab_C(config-router)#network 192.168.10.16 0.0.0.7 area 0
Lab_C(config-router)#network 10.255.255.8 0.0.0.3 area 0
As I mentioned with the Lab_A configuration, you’ve got to be able to determine the subnet, mask, and wildcard just by looking at the IP address and mask of an interface. If you
can’t do that, you won’t be able to configure OSPF using wildcards as I just demonstrated.
So go over this until you’re really comfortable with it!
Configuring Our Network with OSPF
Okay—now we get to have some fun! Let’s configure our internetwork with OSPF using
just area 0. OSPF has an administrative distance of 110, but let’s remove RIP while we’re
at it because I don’t want you to get in the habit of having RIP running on your network.
There’s a bunch of different ways to configure OSPF, and as I said, the simplest
and easiest is to use the wildcard mask 0.0.0.0. But I want to demonstrate that we can
398
Chapter 9
u
Open Shortest Path First (OSPF)
configure each router differently with OSPF and still come up with the exact same result.
This is one reason why OSPF is more fun and challenging than other routing protocols—
it gives us all a lot more ways to screw things up, which automatically provides a troubleshooting opportunity! We’ll use our network as shown in Figure 9.4 to configure OSPF
and by the way, notice I added a new router!
F ig u re 9 . 4
Our new network layout
192.168.10.1/24
Fa0/0
SF
172.16.10.2/30 S0/0/0
172.16.10.1/30
Fa0/0 192.168.20.1/24
LA
S0/0/1 172.16.10.6/30
S0/0
S0/1 172.16.10.5/30
Corp
Fa0/0 10.10.10.1/24
Boulder
Fa0/0 10.10.10.2/24
Corp
Here’s the Corp router’s configuration:
Corp#sh ip int brief
Interface
IP-Address
OK? Method Status
Protocol
FastEthernet0/0 10.10.10.1
YES manual up
up
Serial0/0
172.16.10.1
YES manual up
up
FastEthernet0/1 unassigned
YES unset administratively down down
Serial0/1
172.16.10.5
YES manual up
up
Corp#config t
Corp(config)#no router rip
Corp(config)#router ospf 132
Corp(config-router)#network 10.10.10.1 0.0.0.0 area 0
Corp(config-router)#network 172.16.10.1 0.0.0.0 area 0
Corp(config-router)#network 172.16.10.5 0.0.0.0 area 0
Configuring OSPF
399
Alright—it looks like we have a few things to talk about here. First, I removed RIP and
then added OSPF. Why did I use OSPF 132? It really doesn’t matter—the number is irrelevant. I guess it just felt good to use 132. But notice that I started with the show ip int brief
command, just like when I was configuring RIP. I did this because it’s always important to
verify exactly what you are directly connected to. Doing this really helps prevent typos!
The network commands are pretty straightforward. I typed in the IP address of each interface and used the wildcard mask of 0.0.0.0, which means that the IP address must precisely
match each octet. This is actually one of those times where easier is better, so just do this:
Corp(config)#router ospf 132
Corp(config-router)#network 172.16.10.0 0.0.0.255 area 0
Nice—there’s only one line instead of two for the 172.16.10.0 network! I really want
you to understand that OSPF will work the same here no matter which way you configure
the network statement. Now, let’s move on to SF. To simplify things, we’re going to use our
same sample configuration.
SF
The SF router has two directly connected networks. I’ll use the IP addresses on each interface to configure this router.
SF#sh ip int brief
Interface
IP-Address
OK? Method Status
Protocol
FastEthernet0/0 192.168.10.1
YES manual up
up
FastEthernet0/1 unassigned
YES unset administratively down down
Serial0/0/0
172.16.10.2
YES manual up
up
Serial0/0/1
unassigned
YES unset administratively down down
SF#config t
SF(config)#no router rip
SF(config)#router ospf 300
SF(config-router)#network 192.168.10.1 0.0.0.0 area 0
SF(config-router)#network 172.16.10.2 0.0.0.0 area 0
*Apr 30 00:25:43.810: %OSPF-5-ADJCHG: Process 300, Nbr 172.16.10.5 on Serial0/0/0
from LOADING to FULL, Loading Done
Here, all I did was to first disable RIP, turn on OSPF routing process 300, and then I
added my two directly connected networks. Now let’s move on to LA!
LA
We’re going to give some attention to the LA router that’s directly connected to two networks:
LA#sh ip int brief
Interface
IP-Address
OK? Method Status
Protocol
400
Chapter 9
u
Open Shortest Path First (OSPF)
FastEthernet0/0 192.168.20.1
YES manual up
up
FastEthernet0/1 unassigned
YES unset administratively down down
Serial0/0/0
unassigned
YES unset administratively down down
Serial0/0/1
172.16.10.6
YES manual up
up
LA#config t
LA(config)#router ospf 100
LA(config-router)#network 192.168.20.0 0.0.0.255 area 0
LA(config-router)#network 172.16.0.0 0.0.255.255 area 0
*Apr 30 00:56:37.090: %OSPF-5-ADJCHG: Process 100, Nbr 172.16.10.5 on Serial0/0/1
from LOADING to FULL, Loading Done
Remember that when you’re configuring dynamic routing, using the show ip int brief
command first will make it all so much easier!
And don’t forget, I can use any process ID I want, as long as it’s a value from 1 to 65,535,
because it doesn’t matter if all routers use the same process ID. Also, notice that I used different wildcards in this example. Doing this works really well too.
Okay, I want you to think about something for a second before we move onto more
advanced OSPF topics: What if the Fa0/1 interface of the LA router was connected to a
link that we didn’t want, or need to have on in order to have OSPF working, as shown in
Figure 9.5?
F ig u re 9 . 5
Adding a non-OSPF network to LA router
OSPF network
Fa0/0
LA
Fa0/1
Non-OSPF network
You’ve seen this before because I demonstrated this already back in Chapter 8, in the
RIP section. We can use the same command that we did under that routing process here as
well! Take a look:
LA(config)#router ospf 100
LA(config-router)#passive-interface fastEthernet 0/1
Even though this is pretty simple, you’ve really got to be careful before you configure
this command on your router! I added this command as an example on interface Fa0/1,
which happens to be an interface we’re not using in this network because I want OSPF to
work on my other router’s interfaces.
Configuring OSPF
401
Now it’s time to configure our Corp router to advertise a default route to the SF and LA
routers because doing so will make our lives a lot easier. Instead of having to configure all
our routers with a default route, we’ll only configure one router and then advertise that this
router is the one that holds the default route—elegant!
In Figure 9.4, keep in mind that, for now, the corporate router is connected to the Internet
off of Fa0/0. We’ll create a default route toward this imaginary Internet and then tell the
other routers that this is the route they’ll use to get to the Internet. Here is the configuration:
Corp#config t
Corp(config)#ip route 0.0.0.0 0.0.0.0 Fa0/0
Corp(config)#router ospf 1
Corp(config-router)#default-information originate
Now, let’s check and see if our other routers have received this default route from the
Corp router:
SF#show ip route
[output cut]
E1 - OSPF external type 1, E2 - OSPF external type 2
[output cut]
O*E2 0.0.0.0/0 [110/1] via 172.16.10.1, 00:01:54, Serial0/0/0
SF#
Sure enough—the last line in the SF router shows that it received the advertisement from
the Corp router regarding the fact that the corporate router is the one holding the default
route out of the AS.
But hold on a second! I need to configure our new router into my lab to create the example
network we’ll use from here on. Here’s the configuration of the new router that I connected to
the same network that the Corp router is connected to via the Fa0/0 interface:
Router#config t
Router(config)#hostname Boulder
Boulder(config)#int f0/0
Boulder(config-if)#ip address 10.10.10.2 255.255.255.0
Boulder(config-if)#no shut
*Apr 6 18:01:38.007: %LINEPROTO-5-UPDOWN: Line protocol on Interface
FastEthernet0/0, changed state to up
Boulder(config-if)#router ospf 2
Boulder(config-router)#network 10.0.0.0 0.255.255.255 area 0
*Apr 6 18:03:27.267: %OSPF-5-ADJCHG: Process 2, Nbr 223.255.255.254 on
FastEthernet0/0 from LOADING to FULL, Loading Done
402
Chapter 9
u
Open Shortest Path First (OSPF)
This is all good, but I need to make sure that you don’t follow my example to a tee
because here, I just quickly brought a router up without setting my passwords first. I can
get away with this only because I am in a nonproduction network, so don’t do this in the
real world where security is key!
Anyway, now that I have my new router nicely connected with a basic configuration,
we’re going to move on to cover loopback interfaces, how to set the router ID (RID) used
with OSPF, and finally, how to verify OSPF.
OSPF and Loopback Interfaces
It’s really vital to configure loopback interfaces when using OSPF. In fact, Cisco suggests
using them whenever you configure OSPF on a router for stability purposes.
Loopback interfaces are logical interfaces, which means they’re virtual, software-only
interfaces, not actual, physical router interfaces. A big reason we use loopback interfaces
with OSPF configurations is because they ensure that an interface is always active and
available for OSPF processes.
Loopback interfaces also come in very handy for diagnostic purposes as well as for OSPF
configuration. Understand that if you don’t configure a loopback interface on a router, the
highest active IP address on a router will become that router’s RID during bootup! Figure 9.6
illustrates how routers know each other by their router ID.
F ig u re 9 . 6
OSPF router ID (RID)
I need your RID so I can
place you properly in my
neighbor table!
The RID is not only used to advertise routes, it’s also used to elect the designated router
(DR) and the backup designated router (BDR). These designated routers create adjacencies
when a new router comes up and exchanges LSAs to build topological databases.
By default, OSPF uses the highest IP address on any active interface at the
moment OSPF starts up to determine the RID of the router. But this behavior can be overridden via a logical interface. Remember—the highest IP
address of any logical interface will always become a router’s RID!
OSPF and Loopback Interfaces
403
Now it’s time to show you how to configure these logical loopback interfaces and how to
verify them, as well as verify RIDs.
Configuring Loopback Interfaces
Configuring loopback interfaces rocks mostly because it’s the easiest part of OSPF configuration, and we all need a break about now—right? So hang on—we’re in the home stretch!
First, let’s see what the RID is on the Corp router with the show ip ospf command:
Corp#sh ip ospf
Routing Process "ospf 1" with ID 172.16.10.5
[output cut]
Okay—we can see that the RID is 172.16.10.5—the Serial0/0 interface of the router. So
let’s configure a loopback interface using a completely different IP addressing scheme:
Corp(config)#int loopback 0
*Mar 22 01:23:14.206: %LINEPROTO-5-UPDOWN: Line protocol on Interface
Loopback0, changed state to up
Corp(config-if)#ip address 172.31.1.1 255.255.255.255
The IP scheme really doesn’t matter here, but each one being in a separate subnet does!
By using the /32 mask, we can use any IP address we want as long as the addresses are
never the same on any two routers.
Let’s configure the other routers now:
SF#config t
SF(config)#int loopback 0
*Mar 22 01:25:11.206: %LINEPROTO-5-UPDOWN: Line protocol on Interface
Loopback0, changed state to up
SF(config-if)#ip address 172.31.1.2 255.255.255.255
Here’s the configuration of the loopback interface on LA:
LA#config t
LA(config)#int loopback 0
*Mar 22 02:21:59.686: %LINEPROTO-5-UPDOWN: Line protocol on Interface
Loopback0, changed state to up
LA(config-if)#ip address 172.31.1.3 255.255.255.255
I’m pretty sure you’re wondering what the IP address mask of 255.255.255.255 (/32)
means and why we don’t just use 255.255.255.0 instead. While it’s true that either mask
works, the /32 mask is called a host mask and works fine for loopback interfaces. It also
404
Chapter 9
u
Open Shortest Path First (OSPF)
allows us to save subnets. Notice how I was able to use 172.31.1.1, .2, .3, and .4? If I didn’t
use the /32, I’d have to use a separate subnet for each and every router—not good!
One important question to answer before we move on is did we actually change the
RIDs of our router by setting the loopback interfaces? Let’s find out by taking a look at
the Corp’s RID:
Corp#sh ip ospf
Routing Process "ospf 1" with ID 172.16.10.5
Okay—what happened here? You would think that because we set logical interfaces, the
IP addresses under them would automatically become the RID of the router, right? Well, sort
of, but only if you do one of two things: either reboot the router or delete OSPF and re-create
the database on your router. Neither is all that great an option, so try to remember to create
your logical interfaces before you start OSPF routing. That way, the loopback interface would
always become your RID straight away!
With all this in mind, I’m going with rebooting the Corp router because it’s the easier of
the two options I have right now.
Now let’s look and see what our RID is:
Corp#sh ip ospf
Routing Process "ospf 1" with ID 172.31.1.1
Okay, that did the trick! The Corp router now has a new RID, so I guess I’ll just go
ahead and reboot all my routers to get their RIDs reset to our logical addresses. But should
I really do that?
Maybe not because there is one other way. What do you think about adding a new RID
for the router right under the router ospf process-id command instead? Sounds good, so
I’d say let’s give that a shot! Here’s an example of doing that on the Corp router:
Corp#config t
Corp(config)#router ospf 1
Corp(config-router)#router-id 223.255.255.254
Reload or use "clear ip ospf process" command, for this to take effect
Corp(config-router)#do clear ip ospf process
Reset ALL OSPF processes? [no]: yes
*Jan 16 14:20:36.906: %OSPF-5-ADJCHG: Process 1, Nbr 192.168.20.1
on Serial0/1 from FULL to DOWN, Neighbor Down: Interface down
or detached
*Jan 16 14:20:36.906: %OSPF-5-ADJCHG: Process 1, Nbr 192.168.10.1
on Serial0/0 from FULL to DOWN, Neighbor Down: Interface down
or detached
*Jan 16 14:20:36.982: %OSPF-5-ADJCHG: Process 1, Nbr 192.168.20.1
Verifying OSPF Configuration
405
on Serial0/1 from LOADING to FULL, Loading Done
*Jan 16 14:20:36.982: %OSPF-5-ADJCHG: Process 1, Nbr 192.168.10.1
on Serial0/0 from LOADING to FULL, Loading Done
Corp(config-router)#do sh ip ospf
Routing Process "ospf 1" with ID 223.255.255.254
Now look at that—it worked! We changed the RID without reloading the router! But
wait—remember, we set a logical loopback interface earlier. Does that mean the loopback
interface will win over the router-id command? Well, we can see our answer… A loopback interface will not override the router-id command, and we don’t have to reboot the
router to make it take effect as the RID!
So this process follows this hierarchy:
1. Highest active interface by default.
2. Highest logical interface overrides a physical interface.
3. The router-id overrides the interface and loopback interface.
The only thing left now is to decide whether you want to advertise the loopback interfaces under OSPF. There are pros and cons to using an address that won’t be advertised
versus using an address that will be. Using an unadvertised address saves on real IP address
space, but the address won’t appear in the OSPF table, which means you can’t ping it.
So basically, what you’re faced with here is a choice that equals a trade-off between the
ease of debugging the network and conservation of address space—what to do? A really
tight strategy is to use a private IP address scheme as I did. Do this and all will be well!
Now that we’ve configured all the routers with OSPF, what’s next? Miller time? Nope—
not yet. It’s that verification thing again. We still have to make sure that OSPF is really working, and that’s exactly what we’re going to do next.
Verifying OSPF Configuration
There are several ways to verify proper OSPF configuration and operation, so next, I’m going
to demonstrate the various OSPF show commands you need to know in order to achieve this.
We’re going to start by taking a quick look at the routing table of the Corp router.
First, let’s issue a show ip route command on the Corp router:
O
C
C
L
192.168.10.0/24 [110/65] via 172.16.10.2, 1d17h, Serial0/0
172.131.0.0/32 is subnetted, 1 subnets
172.131.0.0/32 is subnetted, 1 subnets
172.131.1.1 is directly connected, Loopback0
172.16.0.0/30 is subnetted, 4 subnets
172.16.10.4 is directly connected, Serial0/1
172.16.10.5/32 is directly connected, Serial0/1
406
C
L
O
C
L
Chapter 9
u
Open Shortest Path First (OSPF)
172.16.10.0 is directly connected, Serial0/0
172.16.10.1/32 is directly connected, Serial0/0
192.168.20.0/24 [110/65] via 172.16.10.6, 1d17h, Serial0/1
10.0.0.0/24 is subnetted, 2 subnets
10.10.10.0 is directly connected, FastEthernet0/0
10.10.10.1/32 is directly connected, FastEthernet0/0
The Corp router shows only two dynamic routes for the internetwork, with the O representing OSPF internal routes. The Cs are clearly our directly connected networks, and our
two remote networks are showing up too—nice! Notice the 110/65, which is our administrative distance/metric.
Now that’s a really sweet-looking OSPF routing table! It’s important to make it easier to
troubleshoot and fix an OSPF network, which is why I always use the show ip int brief
command when configuring my routing protocols. It’s very easy to make little mistakes
with OSPF, so keep your eyes on the details!
It’s time to show you all the OSPF verification commands that you need in your toolbox
for now.
The show ip ospf Command
The show ip ospf command is what you’ll need to display OSPF information for one or all
OSPF processes running on the router. Information contained therein includes the router
ID, area information, SPF statistics, and LSA timer information. Let’s check out the output
from the Corp router:
Corp#sh ip ospf
Routing Process "ospf 1" with ID 223.255.255.254
Start time: 00:08:41.724, Time elapsed: 2d16h
Supports only single TOS(TOS0) routes
Supports opaque LSA
Supports Link-local Signaling (LLS)
Supports area transit capability
Router is not originating router-LSAs with maximum metric
Initial SPF schedule delay 5000 msecs
Minimum hold time between two consecutive SPFs 10000 msecs
Maximum wait time between two consecutive SPFs 10000 msecs
Incremental-SPF disabled
Minimum LSA interval 5 secs
Minimum LSA arrival 1000 msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x000000
Verifying OSPF Configuration
407
Number of opaque AS LSA 0. Checksum Sum 0x000000
Number of DCbitless external and opaque AS LSA 0
Number of DoNotAge external and opaque AS LSA 0
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Number of areas transit capable is 0
External flood list length 0
IETF NSF helper support enabled
Cisco NSF helper support enabled
Area BACKBONE(0)
Number of interfaces in this area is 3
Area has no authentication
SPF algorithm last executed 00:11:08.760 ago
SPF algorithm executed 5 times
Area ranges are
Number of LSA 6. Checksum Sum 0x03B054
Number of opaque link LSA 0. Checksum Sum 0x000000
Number of DCbitless LSA 0
Number of indication LSA 0
Number of DoNotAge LSA 0
Flood list length 0
Notice the router ID (RID) of 223.255.255.254, which is the highest IP address configured on the router. Hopefully, you also noticed that I set the RID of the corporate router to
the highest available IP address available with IPv4.
The show ip ospf database Command
Using the show ip ospf database command will give you information about the number
of routers in the internetwork (AS) plus the neighboring router’s ID—the topology database
I mentioned earlier. Unlike the show ip eigrp topology command, this command reveals
the OSPF routers, but not each and every link in the AS like EIGRP does.
The output is broken down by area. Here’s a sample output, again from Corp:
Corp#sh ip ospf database
OSPF Router with ID (223.255.255.254) (Process ID 1)
Router Link States (Area 0)
Link ID
10.10.10.2
ADV Router
10.10.10.2
Age
966
Seq#
Checksum Link count
0x80000001 0x007162 1
408
Chapter 9
172.31.1.4
192.168.10.1
192.168.20.1
223.255.255.254
u
Open Shortest Path First (OSPF)
172.31.1.4
192.168.10.1
192.168.20.1
223.255.255.254
885
886
1133
925
0x80000002
0x8000007A
0x8000007A
0x8000004D
0x00D27E
0x00BC95
0x00E348
0x000B90
1
3
3
5
Net Link States (Area 0)
Link ID
10.10.10.1
ADV Router
Age
223.255.255.254 884
Seq#
Checksum
0x80000002 0x008CFE
You can see all the routers and the RID of each router—the highest IP address on each
of them. For example, the Link ID and ADV Router of my new Boulder router shows up
twice: once with the directly connected IP address (10.10.10.2) and as the RID that I set
under the OSPF process (172.31.1.4).
The router output shows the link ID—remember that an interface is also a link—and the
RID of the router on that link under the ADV router, or advertising router.
The show ip ospf interface Command
The show ip ospf interface command reveals all interface-related OSPF information.
Data is displayed about OSPF information for all OSPF-enabled interfaces or for specified
interfaces. I’ll highlight some of the more important factors for you. Check it out:
Corp#sh ip ospf int f0/0
FastEthernet0/0 is up, line protocol is up
Internet Address 10.10.10.1/24, Area 0
Process ID 1, Router ID 223.255.255.254, Network Type BROADCAST, Cost: 1
Transmit Delay is 1 sec, State DR, Priority 1
Designated Router (ID) 223.255.255.254, Interface address 10.10.10.1
Backup Designated router (ID) 172.31.1.4, Interface address 10.10.10.2
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
oob-resync timeout 40
Hello due in 00:00:08
Supports Link-local Signaling (LLS)
Cisco NSF helper support enabled
IETF NSF helper support enabled
Index 3/3, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 1
Verifying OSPF Configuration
409
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
Adjacent with neighbor 172.31.1. Suppress hello for 0 neighbor(s)
Okay—so this command has given us the following information:
uu
Interface IP address
uu
Area assignment
uu
Process ID
uu
Router ID
uu
Network type
uu
Cost
uu
Priority
uu
DR/BDR election information (if applicable)
uu
Hello and Dead timer intervals
uu
Adjacent neighbor information
The reason I used the show ip ospf interface f0/0 command is because I knew that
there would be a designated router elected on the FastEthernet broadcast multi-access network between our Corp and Boulder routers. The information that I highlighted is all very
important, so make sure you’ve noted it! A good question to ask you here is what are the
Hello and Dead timers set to by default?
Type in the show ip ospf interface command and receive this response:
Corp#sh ip ospf int f0/0
%OSPF: OSPF not enabled on FastEthernet0/0
This error occurs when OSPF is enabled on the router, but not the interface. When this
happens, you need to check your network statements because it means that the interface
you’re trying to verify is not in your OSPF process!
The show ip ospf neighbor Command
The show ip ospf neighbor command is super-useful because it summarizes the pertinent
OSPF information regarding neighbors and the adjacency state. If a DR or BDR exists, that
information will also be displayed. Here’s a sample:
Corp#sh ip ospf neighbor
Neighbor ID
172.31.1.4
192.168.20.1
192.168.10.1
Pri
1
0
0
State
FULL/BDR
FULL/ FULL/ -
Dead Time
00:00:34
00:00:31
00:00:32
Address
10.10.10.2
172.16.10.6
172.16.10.2
Interface
FastEthernet0/0
Serial0/1
Serial0/0
410
Chapter 9
u
Open Shortest Path First (OSPF)
An Admin Connects Two Disparate Routers Together with OSPF and the
Link Between them Never Comes Up
Quite a few years ago, an admin called me in a panic because he couldn’t get OSPF working between two routers, one of which was an older router that they needed to use while
they were waiting for their new router to be shipped to them.
OSPF can be used in a multi-vendor network so he was confused as to why this wasn’t
working. He turned on RIP and it worked so he was super confused with why OSPF was
not creating adjacencies. I had him use the show ip ospf interface command to look at
the link between the two routers and sure enough, the hello and dead timers didn’t match.
I had him configure the mismatched parameters so they would match, but it still wouldn’t
create an adjacency. Looking more closely at the show ip ospf interface command, I
noticed the cost did not match! Cisco calculated the bandwidth differently than the other
vendor. Once I had him configure both as the same value, the link came up! Always remember, just because OSPF can be used in a multi-vendor network, does not mean it will work
out of the box!
This is a critical command to understand because it’s extremely useful in production
networks. Let’s take a look at the Boulder router output:
Boulder>sh ip ospf neighbor
Neighbor ID
Pri
223.255.255.254
1
State
FULL/DR
Dead Time
00:00:31
Address
10.10.10.1
Interface
FastEthernet0/0
Okay—here we can see that since there’s an Ethernet link (broadcast multi-access) on
the link between the Boulder and the Corp router, there’s going to be an election to determine who will be the designated router (DR) and who will be the backup designated router
(BDR). We can see that the Corp became the designated router, and it won because it had
the highest IP address on the network—the highest RID.
Now the reason that the Corp connections to SF and LA don’t have a DR or BDR listed
in the output is that by default, elections don’t happen on point-to-point links and they
show FULL/ - . But we can still determine that the Corp router is fully adjacent to all three
routers from its output.
Summary
411
The show ip protocols Command
The show ip protocols command is also highly useful, whether you’re running OSPF,
EIGRP, RIP, BGP, IS-IS, or any other routing protocol that can be configured on your router.
It provides an excellent overview of the actual operation of all currently running protocols!
Check out the output from the Corp router:
Corp#sh ip protocols
Routing Protocol is "ospf 1"
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Router ID 223.255.255.254
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Maximum path: 4
Routing for Networks:
10.10.10.1 0.0.0.0 area 0
172.16.10.1 0.0.0.0 area 0
172.16.10.5 0.0.0.0 area 0
Reference bandwidth unit is 100 mbps
Routing Information Sources:
Gateway
Distance
Last Update
192.168.10.1
110
00:21:53
192.168.20.1
110
00:21:53
Distance: (default is 110) Distance: (default is 110)
From looking at this output, you can determine the OSPF process ID, OSPF router ID,
type of OSPF area, networks and areas configured for OSPF, and the OSPF router IDs of
neighbors—that’s a lot. It’s super-efficient!
Summary
This chapter gave you a great deal of information about OSPF. It’s really difficult to include
everything about OSPF because so much of it falls outside the scope of this chapter and book,
but I’ve given you a few tips here and there, so you’re good to go—as long as you make sure
you’ve got what I presented to you dialed in, that is!
I talked about a lot of OSPF topics, including terminology, operations, and configuration
as well as verification and monitoring.
Visit ccna
.gg/ch9/b
for a
companion
MicroNugget
from CBT
Nuggets.
412
Chapter 9
u
Open Shortest Path First (OSPF)
Each of these topics encompasses quite a bit of information—the terminology section
just scratched the surface of OSPF. But you’ve got the goods you really need for your
studies. Finally, I gave you a tight survey of commands highly useful for observing the
operation of OSPF so you can verify that things are moving along as they should. So eat
it all up, and you’re set!
Exam Essentials
Compare OSPF and RIPv1. OSPF is a link-state protocol that supports VLSM and classless
routing; RIPv1 is a distance-vector protocol that does not support VLSM and supports only
classful routing.
Know how OSPF routers become neighbors and/or adjacent.
neighbors when each router sees the other’s Hello packets.
OSPF routers become
Be able to configure single-area OSPF. A minimal single-area configuration involves only
two commands: router ospf process-id and network x.x.x.x y.y.y.y area Z.
Be able to verify the operation of OSPF. There are many show commands that provide useful details on OSPF, and it is useful to be completely familiar with the output of each: show
ip ospf, show ip ospf database, show ip ospf interface, show ip ospf neighbor, and
show ip protocols.
Hands-on Labs
413
Written Lab 9
The answers to this lab can be found in Appendix A, “Answers to Written Labs.”
1. Write the command that will enable the OSPF process 101 on a router.
2. Write the command that will display details of all OSPF routing processes enabled on
a router.
3. Write the command that will display interface-specific OSPF information.
4. Write the command that will display all OSPF neighbors.
5. Write the command that will display all different OSPF route types that are currently
known by the router.
Hands-on Labs
In this section, you will use the following network and add OSPF routing.
S0/0
DCE
Lab A
Fa0/0
S0/0
Lab B
S0/1
S0/0
DCE
Lab C
Fa0/0
The first lab (Lab 9.1) requires you to configure three routers for OSPF and then view
the configuration. Note that the labs in this chapter were written to be used with real
equipment—but they can be used with any router simulator. You can replace the WAN
links with Ethernet links if you want to.
The labs in this chapter are as follows:
Lab 9.1: Enabling the OSPF Process
Lab 9.2: Configuring OSPF Interfaces
Lab 9.3: Verifying OSPF Operation
Table 9.5 shows our IP addresses for each router (each interface uses a /24 mask).
Chapter 9
414
u
Open Shortest Path First (OSPF)
Table 9 . 5 Our IP addresses
Router
Interface
IP address
Lab_A
Fa0/0
172.16.10.1
Lab_A
S0/0
172.16.20.1
Lab_B
S0/2
172.16.20.2
Lab_B
S0/1
172.16.30.1
Lab_C
S0/0
172.16.30.2
Lab_C
Fa0/0
172.16.40.1
Hands-on Lab 9.1: Enabling the OSPF Process
This is the first mandatory step in OSPF configuration.
1. Enable OSPF process 100 on Lab_A:
Lab_A#conf t
Enter configuration commands, one per line.
End with CNTL/Z.
Lab_A (config)#router ospf 100
Lab_A (config-router)#^Z
2. Enable OSPF process 101 on Lab_B:
Lab_B#conf t
Enter configuration commands, one per line.
End with CNTL/Z.
Lab_B (config)#router ospf 101
Lab_B (config-router)#^Z
3. Enable OSPF process 102 on Lab_C:
Lab_C#conf t
Enter configuration commands, one per line.
End with CNTL/Z.
Lab_C (config)#router ospf 102
Lab_C (config-router)#^Z
Hands-on Labs
415
Hands-on Lab 9.2: Configuring OSPF Interfaces
The second mandatory step in OSPF is adding your network statements.
1. Configure the LAN and the network between Lab_A and Lab_B. Assign it to area 0.
Lab_A#conf t
Enter configuration commands, one per line.
End with CNTL/Z.
Lab_A (config)#router ospf 100
Lab_A (config-router)#network 172.16.10.1 0.0.0.0 area 0
Lab_A (config-router)#network 172.16.20.1 0.0.0.0 area 0
Lab_A (config-router)#^Z
Lab_A #
2. Configure the networks on the Lab_B router. Assign them to area 0.
Lab_B#conf t
Enter configuration commands, one per line.
End with CNTL/Z.
Lab_B(config)#router ospf 101
Lab_B(config-router)#network 172.16.20.2 0.0.0.0 area 0
Lab_B(config-router)#network 172.16.30.1 0.0.0.0 area 0
Lab_B(config-router)#^Z
Lab_B #
3. Configure the networks on the Lab_C router. Assign them to area 0.
Lab_C#conf t
Enter configuration commands, one per line.
End with CNTL/Z.
Lab_C(config)#router ospf 102
Lab_C(config-router)#network 172.16.30.2 0.0.0.0 area 0
Lab_C(config-router)#network 172.16.40.1 0.0.0.0 area 0
Lab_C(config-router)#^Z
Lab_C#
416
Chapter 9
u
Open Shortest Path First (OSPF)
Hands-on Lab 9.3: Verifying OSPF Operation
You need to be able to verify what you configure.
1. Execute a show ip ospf neighbors command from the Lab_A router and view
the results.
Lab_A#sho ip ospf neig
2. Execute a show ip route command to verify that all other routers are learning
all routes.
Lab_A#sho ip route
3. Execute a show ip protocols command to verify OSPF information.
Lab_A#sho ip protocols
4. Execute a show ip OSPF command to verify your RID.
Lab_A#sho ip ospf
5. Execute a show ip ospf interface f0/0 command to verify your timers.
Lab_A#sho ip ospf int f0/0
Review Questions
417
Review Questions
The following questions are designed to test your understanding of this
chapter’s material. For more information on how to get additional questions, please see this book’s introduction.
The answers to these questions can be found in Appendix B, “Answers to Chapter
Review Questions.”
1. There are three possible routes for a router to reach a destination network. The first
route is from OSPF with a metric of 782. The second route is from RIPv2 with a metric
of 4. The third is from EIGRP with a composite metric of 20514560. Which route will
be installed by the router in its routing table?
A. RIPv2
B. EIGRP
C. OSPF
D. All three
2. In the accompanying diagram, which of the routers must be ABRs? (Choose all
that apply.)
Backbone Area
C
F
Area 1
A. C
B. D
C. E
D. F
E. G
F. H
D
G
Area 2
E
H
Area 3
418
Chapter 9
u
Open Shortest Path First (OSPF)
3. Which of the following describe the process identifier that is used to run OSPF on a
router? (Choose two.)
A. It is locally significant.
B. It is globally significant.
C. It is needed to identify a unique instance of an OSPF database.
D. It is an optional parameter required only if multiple OSPF processes are running
on the router.
E. All routes in the same OSPF area must have the same process ID if they are to
exchange routing information.
4. All of the following must match for two OSPF routers to become neighbors except which?
A. Area ID
B. Router ID
C. Stub area flag
D. Authentication password if using one
5. In the diagram, by default what will be the router ID of Lab_B?
10.255.255.81/30
10.255.255.82/30 10.255.255.9/30
G0/0
G0/1
G0/1
Lab A
Lab B
Fa0/0
Fa0/0
192.168.10.65/29
192.168.10.49/29
A. 10.255.255.82
B. 10.255.255.9
C. 192.168.10.49
D. 10.255.255.81
10.255.255.10/30
G0/0
Lab C
Fa0/0
192.168.10.17/29
Review Questions
419
6. You get a call from a network administrator who tells you that he typed the following
into his router:
Router(config)#router ospf 1
Router(config-router)#network 10.0.0.0 255.0.0.0 area 0
He tells you he still can’t see any routes in the routing table. What configuration error
did the administrator make?
A. The wildcard mask is incorrect.
B. The OSPF area is wrong.
C. The OSPF process ID is incorrect.
D. The AS configuration is wrong.
7. Which of the following statements is true with regard to the output shown?
Corp#sh ip ospf neighbor
Neighbor ID
Pri
State
172.31.1.4
1
FULL/BDR
192.168.20.1
0
FULL/ 192.168.10.1
0
FULL/ -
Dead Time
00:00:34
00:00:31
00:00:32
Address
10.10.10.2
172.16.10.6
172.16.10.2
A. There is no DR on the link to 192.168.20.1.
B. The Corp router is the BDR on the link to 172.31.1.4.
C. The Corp router is the DR on the link to 192.168.20.1.
D. The link to 192.168.10.1 is Active.
8. What is the administrative distance of OSPF?
A. 90
B. 100
C. 120
D. 110
9. In OSPF, Hellos are sent to what IP address?
A. 224.0.0.5
B. 224.0.0.9
C. 224.0.0.10
D. 224.0.0.1
Interface
FastEthernet0/0
Serial0/1
Serial0/0
Chapter 9
420
u
Open Shortest Path First (OSPF)
10. What command generated the following output?
172.31.1.4
192.168.20.1
192.168.10.1
1
0
0
FULL/BDR
FULL/ FULL/ -
00:00:34
00:00:31
00:00:32
10.10.10.2
172.16.10.6
172.16.10.2
FastEthernet0/0
Serial0/1
Serial0/0
A. show ip ospf neighbor
B. show ip ospf database
C. show ip route
D. show ip ospf interface
11. Updates addressed to 224.0.0.6 are destined for which type of OSPF router?
A. DR
B. ASBR
C. ABR
D. All OSPF routers
12. For some reason, you cannot establish an adjacency relationship on a common Ethernet
link between two routers. Looking at this output, what is the cause of the problem?
RouterA#
Ethernet0/0 is up, line protocol is up
Internet Address 172.16.1.2/16, Area 0
Process ID 2, Router ID 172.126.1.2, Network Type BROADCAST, Cost: 10
Transmit Delay is 1 sec, State DR, Priority 1
Designated Router (ID) 172.16.1.2, interface address 172.16.1.1
No backup designated router on this network
Timer intervals configured, Hello 5, Dead 20, Wait 20, Retransmit 5
RouterB#
Ethernet0/0 is up, line protocol is up
Internet Address 172.16.1.1/16, Area 0
Process ID 2, Router ID 172.126.1.1, Network Type BROADCAST, Cost: 10
Transmit Delay is 1 sec, State DR, Priority 1
Designated Router (ID) 172.16.1.1, interface address 172.16.1.2
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Review Questions
A. The OSPF area is not configured properly.
B. The priority on RouterA should be set higher.
C. The cost on RouterA should be set higher.
D. The Hello and Dead timers are not configured properly.
E. A backup designated router needs to be added to the network.
F. The OSPF process ID numbers must match.
13. In the work area match each OSPF term (by line) to its definition.
Designated router
contains only the best routes
Topological database
elected on broadcast networks
Hello protocol
contains all routes learned
Routing table
provides dynamic neighbor discovery
14. Type the command that will disable OSPF on the Fa0/1 interface under the routing
process. Write only the command and not the prompt.
15. Which two of the following commands will place network 10.2.3.0/24 into area 0?
(Choose two.)
A. router eigrp 10
B. router ospf 10
C. router rip
D. network 10.0.0.0
E. network 10.2.3.0 255.255.255.0 area 0
F. network 10.2.3.0 0.0.0.255 area0
G. network 10.2.3.0 0.0.0.255 area 0
421
422
Chapter 9
u
Open Shortest Path First (OSPF)
16. Given the following output, which statement or statements can be determined to be
true? (Choose all that apply.)
RouterA2# show ip ospf neighbor
Neighbor ID Pri State Dead Time Address Interface
192.168.23.2 1 FULL/BDR 00:00:29 10.24.4.2 FastEthernet1/0
192.168.45.2 2 FULL/BDR 00:00:24 10.1.0.5 FastEthernet0/0
192.168.85.1 1 FULL/- 00:00:33 10.6.4.10 Serial0/1
192.168.90.3 1 FULL/DR 00:00:32 10.5.5.2 FastEthernet0/1
192.168.67.3 1 FULL/DR 00:00:20 10.4.9.20 FastEthernet0/2
192.168.90.1 1 FULL/BDR 00:00:23 10.5.5.4 FastEthernet0/1
<
Source Exif Data:
File Type : PDF
File Type Extension : pdf
MIME Type : application/pdf
PDF Version : 1.6
Linearized : No
Author : Lammle, Todd
Create Date : 2013:09:10 08:30:59-07:00
EBX PUBLISHER : Wiley
Modify Date : 2013:11:08 21:10:11+10:00
Has XFA : No
XMP Toolkit : Adobe XMP Core 5.2-c001 63.139439, 2010/09/27-13:37:26
Instance ID : uuid:8ef45d1d-74d3-7449-b03e-bda327cbabcd
Document ID : xmp.did:8AB6325CE12268118083948771CEF91E
Original Document ID : adobe:docid:indd:bd4dc6d0-7b43-11dd-ba3b-9b42f61f5cde
Rendition Class : proof:pdf
Derived From Instance ID : xmp.iid:89B6325CE12268118083948771CEF91E
Derived From Document ID : xmp.did:E8E620740720681180839880F5BB6374
Derived From Original Document ID: adobe:docid:indd:bd4dc6d0-7b43-11dd-ba3b-9b42f61f5cde
Derived From Rendition Class : default
History Action : saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved, saved
History Instance ID : xmp.iid:F952CF15332068118C14F9E2B0BF1AC0, xmp.iid:FA52CF15332068118C14F9E2B0BF1AC0, xmp.iid:B030443E332068118C14F9E2B0BF1AC0, xmp.iid:B5D4A57E332068118C14F9E2B0BF1AC0, xmp.iid:A163E846272068118A6DECA5AB46F0A9, xmp.iid:7CBF3634462068118A6DECA5AB46F0A9, xmp.iid:575566B8112068118A6DFA1E5FD23838, xmp.iid:8B5C2AE8132068118A6DFA1E5FD23838, xmp.iid:AD5B3874072068118A6DEB8F2742A550, xmp.iid:746B2F760A2068118A6DEB8F2742A550, xmp.iid:9E7F9568132068118A6DEB8F2742A550, xmp.iid:AD357A60172068118A6DEB8F2742A550, xmp.iid:05C46ECA212068118A6DEB8F2742A550, xmp.iid:AF603174072068118C14E7D39CE0EC9F, xmp.iid:56B4CE07092068118C14E7D39CE0EC9F, xmp.iid:5CE873BC0A2068118C14E7D39CE0EC9F, xmp.iid:DFE4F2660C2068118C14E7D39CE0EC9F, xmp.iid:9BFB45D60C2068118C14E7D39CE0EC9F, xmp.iid:9CFB45D60C2068118C14E7D39CE0EC9F, xmp.iid:CB2BE172112068118C14E7D39CE0EC9F, xmp.iid:5F770AD1122068118C14E7D39CE0EC9F, xmp.iid:A870D6D3132068118C14E7D39CE0EC9F, xmp.iid:D7815B9D142068118C14E7D39CE0EC9F, xmp.iid:992251A5152068118C14E7D39CE0EC9F, xmp.iid:5880185F162068118C14E7D39CE0EC9F, xmp.iid:83D458FB172068118C14E7D39CE0EC9F, xmp.iid:347B905F182068118C14E7D39CE0EC9F, xmp.iid:E2C7C66C182068118C14E7D39CE0EC9F, xmp.iid:E3C7C66C182068118C14E7D39CE0EC9F, xmp.iid:A02B90A11A2068118C14E7D39CE0EC9F, xmp.iid:E948921C1C2068118C14E7D39CE0EC9F, xmp.iid:7D38B932262068118C14E7D39CE0EC9F, xmp.iid:3E0C6386282068118C14E7D39CE0EC9F, xmp.iid:C5BC31452A2068118C14E7D39CE0EC9F, xmp.iid:7EE4E42A2C2068118C14E7D39CE0EC9F, xmp.iid:5DBD767D2E2068118C14E7D39CE0EC9F, xmp.iid:BC67C5952F2068118C14E7D39CE0EC9F, xmp.iid:A5F7F5DA2F2068118C14E7D39CE0EC9F, xmp.iid:17E4A5A9312068118C14E7D39CE0EC9F, xmp.iid:26ED7C02332068118C14E7D39CE0EC9F, xmp.iid:69D72FD3342068118C14E7D39CE0EC9F, xmp.iid:0407D65F352068118C14E7D39CE0EC9F, xmp.iid:78661007372068118C14E7D39CE0EC9F, xmp.iid:79661007372068118C14E7D39CE0EC9F, xmp.iid:E8A64264372068118C14E7D39CE0EC9F, xmp.iid:B58770D1372068118C14E7D39CE0EC9F, xmp.iid:E946E9E9372068118C14E7D39CE0EC9F, xmp.iid:EA46E9E9372068118C14E7D39CE0EC9F, xmp.iid:EB46E9E9372068118C14E7D39CE0EC9F, xmp.iid:EC46E9E9372068118C14E7D39CE0EC9F, xmp.iid:ED46E9E9372068118C14E7D39CE0EC9F, xmp.iid:22296F7B392068118C14E7D39CE0EC9F, xmp.iid:23296F7B392068118C14E7D39CE0EC9F, xmp.iid:519D77A4442068118C14E7D39CE0EC9F, xmp.iid:7433E21D462068118C14E7D39CE0EC9F, xmp.iid:DDDF5669462068118C14E7D39CE0EC9F, xmp.iid:223A548E462068118C14E7D39CE0EC9F, xmp.iid:A011A9E0462068118C14E7D39CE0EC9F, xmp.iid:F951CF23472068118C14E7D39CE0EC9F, xmp.iid:40259D6A482068118C14E7D39CE0EC9F, xmp.iid:5693D091482068118C14E7D39CE0EC9F, xmp.iid:E73AF0D2482068118C14E7D39CE0EC9F, xmp.iid:7CA5D3BF492068118C14E7D39CE0EC9F, xmp.iid:0940410F4A2068118C14E7D39CE0EC9F, xmp.iid:71B0893F4B2068118C14E7D39CE0EC9F, xmp.iid:86F2FDF24C2068118C14E7D39CE0EC9F, xmp.iid:CD366A034D2068118C14E7D39CE0EC9F, xmp.iid:74ED6D88502068118C14E7D39CE0EC9F, xmp.iid:30C1570E532068118C14E7D39CE0EC9F, xmp.iid:D789531E532068118C14E7D39CE0EC9F, xmp.iid:D889531E532068118C14E7D39CE0EC9F, xmp.iid:77C6B1FE542068118C14E7D39CE0EC9F, xmp.iid:78C6B1FE542068118C14E7D39CE0EC9F, xmp.iid:58F8C52D572068118C14E7D39CE0EC9F, xmp.iid:7DA4F36D572068118C14E7D39CE0EC9F, xmp.iid:7EA4F36D572068118C14E7D39CE0EC9F, xmp.iid:A132111F582068118C14E7D39CE0EC9F, xmp.iid:5986D1FE582068118C14E7D39CE0EC9F, xmp.iid:4AB63C475A2068118C14E7D39CE0EC9F, xmp.iid:65FF4A6E5A2068118C14E7D39CE0EC9F, xmp.iid:7EE26D6C5E2068118C14E7D39CE0EC9F, xmp.iid:1442D5755E2068118C14E7D39CE0EC9F, xmp.iid:1542D5755E2068118C14E7D39CE0EC9F, xmp.iid:360438E75E2068118C14E7D39CE0EC9F, xmp.iid:8BC549F95E2068118C14E7D39CE0EC9F, xmp.iid:8969E6DD602068118C14E7D39CE0EC9F, xmp.iid:DACC4CEE602068118C14E7D39CE0EC9F, xmp.iid:DBCC4CEE602068118C14E7D39CE0EC9F, xmp.iid:74612472622068118C14E7D39CE0EC9F, xmp.iid:663F5C3E632068118C14E7D39CE0EC9F, xmp.iid:2D65E6E6642068118C14E7D39CE0EC9F, xmp.iid:82087E6D652068118C14E7D39CE0EC9F, xmp.iid:6DC76FC0652068118C14E7D39CE0EC9F, xmp.iid:4F84BBCC662068118C14E7D39CE0EC9F, xmp.iid:9C7061A9672068118C14E7D39CE0EC9F, xmp.iid:A325ECFE692068118C14E7D39CE0EC9F, xmp.iid:FC212F126C2068118C14E7D39CE0EC9F, xmp.iid:4C0723636C2068118C14E7D39CE0EC9F, xmp.iid:D3533A1B6D2068118C14E7D39CE0EC9F, xmp.iid:E4130D756D2068118C14E7D39CE0EC9F, xmp.iid:181A19B26E2068118C14E7D39CE0EC9F, xmp.iid:7548FF5F702068118C14E7D39CE0EC9F, xmp.iid:BAA06B10732068118C14E7D39CE0EC9F, xmp.iid:5F46006B732068118C14E7D39CE0EC9F, xmp.iid:DF69D719742068118C14E7D39CE0EC9F, xmp.iid:96AF4142782068118C14E7D39CE0EC9F, xmp.iid:FD841774072068118083A3D61D3F9D71, xmp.iid:FE841774072068118083A3D61D3F9D71, xmp.iid:FF841774072068118083A3D61D3F9D71, xmp.iid:00851774072068118083A3D61D3F9D71, xmp.iid:01BE9928082068118083A3D61D3F9D71, xmp.iid:B52185980B2068118C14CDB065335319, xmp.iid:680028A3072068118A6DCEFC283D5208, xmp.iid:B9517A4B2A206811BB1DE282DA971654, xmp.iid:8BF81A740720681188C6AC137AC84FCF, xmp.iid:8CF81A740720681188C6AC137AC84FCF, xmp.iid:8DF81A740720681188C6AC137AC84FCF, xmp.iid:9939FB1A0820681188C6AC137AC84FCF, xmp.iid:15C5C7250820681188C6AC137AC84FCF, xmp.iid:16C5C7250820681188C6AC137AC84FCF, xmp.iid:297A5F4D4A2068118083CC7C3AD41658, xmp.iid:2A7A5F4D4A2068118083CC7C3AD41658, xmp.iid:F943BB714A2068118083CC7C3AD41658, xmp.iid:FA43BB714A2068118083CC7C3AD41658, xmp.iid:FB43BB714A2068118083CC7C3AD41658, xmp.iid:FC43BB714A2068118083CC7C3AD41658, xmp.iid:866CC0F24A2068118083CC7C3AD41658, xmp.iid:876CC0F24A2068118083CC7C3AD41658, xmp.iid:F089F8F14D2068118083CC7C3AD41658, xmp.iid:9806F96F572068118083CC7C3AD41658, xmp.iid:3986A449582068118083CC7C3AD41658, xmp.iid:3A86A449582068118083CC7C3AD41658, xmp.iid:EAD1F1EA582068118083CC7C3AD41658, xmp.iid:EBD1F1EA582068118083CC7C3AD41658, xmp.iid:57D6596A592068118083CC7C3AD41658, xmp.iid:58D6596A592068118083CC7C3AD41658, xmp.iid:9D68A374072068118083BC8AB8EF8923, xmp.iid:9E68A374072068118083BC8AB8EF8923, xmp.iid:AB30F1D70F2068118C14F01C6B7D5086, xmp.iid:AC30F1D70F2068118C14F01C6B7D5086, xmp.iid:442C642D142068118C14F01C6B7D5086, xmp.iid:452C642D142068118C14F01C6B7D5086, xmp.iid:65C40E91142068118C14F01C6B7D5086, xmp.iid:66C40E91142068118C14F01C6B7D5086, xmp.iid:25AFB406122068118083D50A9DEB671B, xmp.iid:26AFB406122068118083D50A9DEB671B, xmp.iid:37B270C9232068118083F033A1EC1AEA, xmp.iid:38B270C9232068118083F033A1EC1AEA, xmp.iid:39B270C9232068118083F033A1EC1AEA, xmp.iid:57DAFADD232068118083F033A1EC1AEA, xmp.iid:90D37C172E2068118083F033A1EC1AEA, xmp.iid:522B9F172E2068118083F033A1EC1AEA, xmp.iid:5234CF30222068118083E9F8CBC9DA0C, xmp.iid:BEA8EE30222068118083E9F8CBC9DA0C, xmp.iid:BF9ED85D222068118083E9F8CBC9DA0C, xmp.iid:C09ED85D222068118083E9F8CBC9DA0C, xmp.iid:61889072082068118A6DC374A9C38064, xmp.iid:C013FF8B082068118A6DC374A9C38064, xmp.iid:1D7D5C81392068118083EEA232932778, xmp.iid:9430A9C7392068118083EEA232932778, xmp.iid:163A7FF3172068118C1496FAD5615F76, xmp.iid:EF7B1274072068118A6DABA7E36CF357, xmp.iid:F07B1274072068118A6DABA7E36CF357, xmp.iid:F17B1274072068118A6DABA7E36CF357, xmp.iid:572A2E5E0F2068118A6DABA7E36CF357, xmp.iid:582A2E5E0F2068118A6DABA7E36CF357, xmp.iid:BF4673EF122068118A6DABA7E36CF357, xmp.iid:018011740720681180839880F5BB6374, xmp.iid:E8E620740720681180839880F5BB6374, xmp.iid:D5E53374072068118A6DB658FAD15AA5, xmp.iid:D6E53374072068118A6DB658FAD15AA5, xmp.iid:3BD5B79D112068118083C2A40C0EBFA2, xmp.iid:3CD5B79D112068118083C2A40C0EBFA2, xmp.iid:1B62A8F7132068118083C2A40C0EBFA2, xmp.iid:DF5F28740720681180839CFAF2AE349E, xmp.iid:E05F28740720681180839CFAF2AE349E, xmp.iid:42F31ED7D42268118083948771CEF91E, xmp.iid:7EDA23D7D42268118083948771CEF91E, xmp.iid:E8E231A2DC2268118083948771CEF91E, xmp.iid:E9E231A2DC2268118083948771CEF91E, xmp.iid:89B6325CE12268118083948771CEF91E, xmp.iid:8AB6325CE12268118083948771CEF91E, xmp.iid:303D0B5CE22268118083948771CEF91E, xmp.iid:313D0B5CE22268118083948771CEF91E, xmp.iid:2A5979E508206811822A9285AF48B2A3, xmp.iid:2B5979E508206811822A9285AF48B2A3, xmp.iid:4D17E166182068118083DF507D1CE68C, xmp.iid:4E17E166182068118083DF507D1CE68C, xmp.iid:2B0D2A7407206811822ADB76EE2C32B1, xmp.iid:2C0D2A7407206811822ADB76EE2C32B1, xmp.iid:3FB324D707206811822ADB76EE2C32B1, xmp.iid:40B324D707206811822ADB76EE2C32B1, xmp.iid:A5482974072068118083F65EF366E8BA, xmp.iid:A6482974072068118083F65EF366E8BA, xmp.iid:2E787C8A072068118083F65EF366E8BA, xmp.iid:F6605590072068118083F65EF366E8BA, xmp.iid:D903B89C072068118083F65EF366E8BA, xmp.iid:03698EAD072068118083F65EF366E8BA, xmp.iid:F9E4B6B1072068118083F65EF366E8BA, xmp.iid:FAE4B6B1072068118083F65EF366E8BA, xmp.iid:263B70E2072068118083F65EF366E8BA, xmp.iid:FCB81A37082068118083F65EF366E8BA, xmp.iid:6464C242082068118083F65EF366E8BA, xmp.iid:3B24F85B082068118083F65EF366E8BA, xmp.iid:9B821065082068118083F65EF366E8BA, xmp.iid:07AF176E082068118083F65EF366E8BA, xmp.iid:078FEC84082068118083F65EF366E8BA, xmp.iid:59DB84A1082068118083F65EF366E8BA, xmp.iid:6402B1B5082068118083F65EF366E8BA, xmp.iid:825A99BE082068118083F65EF366E8BA, xmp.iid:7843D08B0A2068118083F65EF366E8BA, xmp.iid:C0B902940A2068118083F65EF366E8BA, xmp.iid:5E5490990A2068118083F65EF366E8BA, xmp.iid:24CB3AAB0A2068118083F65EF366E8BA, xmp.iid:2DC119AE0A2068118083F65EF366E8BA, xmp.iid:3FAAD3BF0A2068118083F65EF366E8BA, xmp.iid:7DAF1ECB0A2068118083F65EF366E8BA, xmp.iid:E74980E50A2068118083F65EF366E8BA, xmp.iid:43C0AEEC0A2068118083F65EF366E8BA, xmp.iid:521506F90A2068118083F65EF366E8BA, xmp.iid:B48C12070B2068118083F65EF366E8BA, xmp.iid:089D18090B2068118083F65EF366E8BA, xmp.iid:AAAFEE0D0B2068118083F65EF366E8BA, xmp.iid:B489B42F0B2068118083F65EF366E8BA, xmp.iid:FEF7CA3B0B2068118083F65EF366E8BA, xmp.iid:AD15F6470B2068118083F65EF366E8BA, xmp.iid:BBF1CF4F0B2068118083F65EF366E8BA, xmp.iid:C11AB7640B2068118083F65EF366E8BA, xmp.iid:394F176A0B2068118083F65EF366E8BA, xmp.iid:C7A5146D0B2068118083F65EF366E8BA, xmp.iid:18A549730B2068118083F65EF366E8BA, xmp.iid:D02424780B2068118083F65EF366E8BA, xmp.iid:1C84A0800B2068118083F65EF366E8BA, xmp.iid:C8558C830B2068118083F65EF366E8BA, xmp.iid:B87563A40B2068118083F65EF366E8BA, xmp.iid:9E0DB8AC0B2068118083F65EF366E8BA, xmp.iid:FF4B40BB0B2068118083F65EF366E8BA, xmp.iid:65745AC50B2068118083F65EF366E8BA, xmp.iid:CFDC71CA0B2068118083F65EF366E8BA, xmp.iid:A78F05D70B2068118083F65EF366E8BA, xmp.iid:A93707E30B2068118083F65EF366E8BA, xmp.iid:70C3A3E80B2068118083F65EF366E8BA, xmp.iid:C2A112030C2068118083F65EF366E8BA, xmp.iid:050FF40B0C2068118083F65EF366E8BA, xmp.iid:959564140C2068118083F65EF366E8BA, xmp.iid:759A17520C2068118083F65EF366E8BA, xmp.iid:810187540C2068118083F65EF366E8BA, xmp.iid:13334D640C2068118083F65EF366E8BA, xmp.iid:74164E730C2068118083F65EF366E8BA, xmp.iid:9017FB7E0C2068118083F65EF366E8BA, xmp.iid:2A9E909E0C2068118083F65EF366E8BA, xmp.iid:FAF0B3B50C2068118083F65EF366E8BA, xmp.iid:7EC23DC00C2068118083F65EF366E8BA, xmp.iid:024D3FCC0C2068118083F65EF366E8BA, xmp.iid:034D3FCC0C2068118083F65EF366E8BA, xmp.iid:577D2574072068118083EF6141AA572E, xmp.iid:8DE699A2072068118083EF6141AA572E, xmp.iid:3DD492A5072068118083EF6141AA572E, xmp.iid:F96723CD072068118083EF6141AA572E, xmp.iid:E2D369EF072068118083EF6141AA572E, xmp.iid:6D0F237407206811822AA371AB9C8C33, xmp.iid:A904F7A807206811822AA371AB9C8C33, xmp.iid:07B2E8B807206811822AA371AB9C8C33, xmp.iid:E99DA6C607206811822AA371AB9C8C33, xmp.iid:BBD5CE0F08206811822AA371AB9C8C33, xmp.iid:78E0AA1A08206811822AA371AB9C8C33, xmp.iid:FEFCD63A08206811822AA371AB9C8C33, xmp.iid:BECA803D08206811822AA371AB9C8C33, xmp.iid:1205406608206811822AA371AB9C8C33, xmp.iid:64497AF208206811822AA371AB9C8C33, xmp.iid:A6A651FC08206811822AA371AB9C8C33, xmp.iid:10068B93092068118C14BF67314FBF00, xmp.iid:8C39B7A6092068118C14BF67314FBF00, xmp.iid:36445CCD092068118C14BF67314FBF00, xmp.iid:8598A9D6092068118C14BF67314FBF00, xmp.iid:C51AAFDA092068118C14BF67314FBF00, xmp.iid:47CCF9E1092068118C14BF67314FBF00, xmp.iid:0DA8DEEA092068118C14BF67314FBF00, xmp.iid:EB19EEF2092068118C14BF67314FBF00, xmp.iid:1E2CA80B0A2068118C14BF67314FBF00, xmp.iid:72D780220A2068118C14BF67314FBF00, xmp.iid:B493B1280A2068118C14BF67314FBF00, xmp.iid:1A77AB420A2068118C14BF67314FBF00, xmp.iid:D84590600A2068118C14BF67314FBF00, xmp.iid:760EEF700A2068118C14BF67314FBF00, xmp.iid:0507587A0A2068118C14BF67314FBF00, xmp.iid:C921A17D0A2068118C14BF67314FBF00, xmp.iid:5388ABDA0A2068118C14BF67314FBF00, xmp.iid:F9DF85DD0A2068118C14BF67314FBF00, xmp.iid:2DEB12EC0A2068118C14BF67314FBF00, xmp.iid:A625C61A0B2068118C14BF67314FBF00, xmp.iid:E00EFA4D0B2068118C14BF67314FBF00, xmp.iid:3013FE610B2068118C14BF67314FBF00, xmp.iid:A28AB6770B2068118C14BF67314FBF00, xmp.iid:BC8B10880B2068118C14BF67314FBF00, xmp.iid:7AF101990B2068118C14BF67314FBF00, xmp.iid:BDEFB6A10B2068118C14BF67314FBF00, xmp.iid:BEEFB6A10B2068118C14BF67314FBF00, xmp.iid:82F8B8EE0B2068118C14BF67314FBF00, xmp.iid:B44AB3FA0B2068118C14BF67314FBF00, xmp.iid:806F93220C2068118C14BF67314FBF00, xmp.iid:888CBC310C2068118C14BF67314FBF00, xmp.iid:7CEA4FE1072068118083ED429B5232DD, xmp.iid:31A64E49082068118083B7E99F9AE7C2, xmp.iid:70DDC0690C2068118083A6A474E0EBE4, xmp.iid:71DDC0690C2068118083A6A474E0EBE4, xmp.iid:1F07F523092068118083A4D050DAF234, xmp.iid:9C516784092068118083A4D050DAF234, xmp.iid:2F7D888A092068118083A4D050DAF234, xmp.iid:50348CD5092068118083A4D050DAF234, xmp.iid:030ED7ED092068118083A4D050DAF234, xmp.iid:064F00F3092068118083A4D050DAF234, xmp.iid:61101F200A2068118083A4D050DAF234, xmp.iid:1610A16F0A2068118083A4D050DAF234, xmp.iid:AD8CFC860A2068118083A4D050DAF234, xmp.iid:FB0528871E2068118083851B24A1ACD1, xmp.iid:DADE78B91E2068118083851B24A1ACD1, xmp.iid:03C62CCC1E2068118083851B24A1ACD1, xmp.iid:777688E3102068118083AF259099E0E9, xmp.iid:C059B628112068118083AF259099E0E9, xmp.iid:8C7EDB04162068118C14E3C9B8EFB168, xmp.iid:39D73026162068118C14E3C9B8EFB168, xmp.iid:A611EB5E162068118C14E3C9B8EFB168, xmp.iid:D5AAA88C172068118C14E3C9B8EFB168, xmp.iid:748E20740720681180839EEBB70CA43B, xmp.iid:FC6AFB6D092068118083D0063BA01174, xmp.iid:469D7A230A20681180839B498442867F, xmp.iid:74BE273A31206811822AFF3A23C3C3A3, xmp.iid:763F2E74072068118083FB5D4AD28D5D, xmp.iid:8A16D7AF072068118083FB5D4AD28D5D, xmp.iid:F88E95B2072068118083FB5D4AD28D5D, xmp.iid:BC8987532B2068118083FB5D4AD28D5D, xmp.iid:52DD72802B2068118083FB5D4AD28D5D, xmp.iid:29842F8D2B2068118083FB5D4AD28D5D
History When : 2011:06:21 16:36:33-07:00, 2011:06:21 16:36:33-07:00, 2011:06:21 16:37:41-07:00, 2011:06:21 16:39:29-07:00, 2011:06:22 14:03:23-07:00, 2011:06:22 17:44:47-07:00, 2011:06:23 14:11:09-07:00, 2011:06:23 14:26:48-07:00, 2011:06:24 14:19:25-07:00, 2011:06:24 14:40:57-07:00, 2011:06:24 15:44:59-07:00, 2011:06:24 16:13:24-07:00, 2011:06:24 17:27:56-07:00, 2011:06:25 12:16:14-07:00, 2011:06:25 12:27:31-07:00, 2011:06:25 12:39:43-07:00, 2011:06:25 12:51:39-07:00, 2011:06:25 12:54:46-07:00, 2011:06:25 13:26:52-07:00, 2011:06:25 13:27:46-07:00, 2011:06:25 13:37:34-07:00, 2011:06:25 13:44:48-07:00, 2011:06:25 13:50:26-07:00, 2011:06:25 13:57:49-07:00, 2011:06:25 14:03:01-07:00, 2011:06:25 14:14:32-07:00, 2011:06:25 14:17:21-07:00, 2011:06:25 14:17:43-07:00, 2011:06:25 14:28:49-07:00, 2011:06:25 14:33:30-07:00, 2011:06:25 14:44:06-07:00, 2011:06:25 15:56:18-07:00, 2011:06:25 16:12:58-07:00, 2011:06:25 16:25:27-07:00, 2011:06:25 16:39:02-07:00, 2011:06:25 16:55:40-07:00, 2011:06:25 17:03:30-07:00, 2011:06:25 17:05:26-07:00, 2011:06:25 17:18:22-07:00, 2011:06:25 17:28:01-07:00, 2011:06:25 17:41:01-07:00, 2011:06:25 17:44:57-07:00, 2011:06:25 17:56:47-07:00, 2011:06:25 17:58:11-07:00, 2011:06:25 17:59:23-07:00, 2011:06:25 18:02:26-07:00, 2011:06:25 18:03:07-07:00, 2011:06:25 18:07:46-07:00, 2011:06:25 18:10:02-07:00, 2011:06:25 18:10:27-07:00, 2011:06:25 18:14:06-07:00, 2011:06:25 18:14:21-07:00, 2011:06:25 18:17:47-07:00, 2011:06:25 19:34:14-07:00, 2011:06:25 19:44:48-07:00, 2011:06:25 19:46:54-07:00, 2011:06:25 19:47:56-07:00, 2011:06:25 19:50:14-07:00, 2011:06:25 19:52:07-07:00, 2011:06:25 20:01:15-07:00, 2011:06:25 20:02:21-07:00, 2011:06:25 20:04:10-07:00, 2011:06:25 20:10:48-07:00, 2011:06:25 20:13:01-07:00, 2011:06:25 20:21:32-07:00, 2011:06:25 20:33:42-07:00, 2011:06:25 20:34:10-07:00, 2011:06:25 20:59:21-07:00, 2011:06:25 21:17:25-07:00, 2011:06:25 21:17:52-07:00, 2011:06:25 21:30:22-07:00, 2011:06:25 21:31:18-07:00, 2011:06:25 21:43:04-07:00, 2011:06:25 21:46:56-07:00, 2011:06:25 21:48:43-07:00, 2011:06:25 21:49:19-07:00, 2011:06:25 21:53:41-07:00, 2011:06:25 21:59:56-07:00, 2011:06:25 22:09:07-07:00, 2011:06:25 22:10:13-07:00, 2011:06:25 22:38:47-07:00, 2011:06:25 22:39:03-07:00, 2011:06:25 22:41:33-07:00, 2011:06:25 22:42:13-07:00, 2011:06:25 22:42:44-07:00, 2011:06:25 22:56:17-07:00, 2011:06:25 22:56:44-07:00, 2011:06:25 23:02:27-07:00, 2011:06:25 23:07:35-07:00, 2011:06:25 23:13:18-07:00, 2011:06:25 23:25:10-07:00, 2011:06:25 23:28:56-07:00, 2011:06:25 23:31:15-07:00, 2011:06:25 23:38:45-07:00, 2011:06:25 23:44:55-07:00, 2011:06:26 00:01:38-07:00, 2011:06:26 00:16:29-07:00, 2011:06:26 00:18:45-07:00, 2011:06:26 00:23:54-07:00, 2011:06:26 00:26:25-07:00, 2011:06:26 00:35:16-07:00, 2011:06:26 00:47:18-07:00, 2011:06:26 01:06:33-07:00, 2011:06:26 01:09:05-07:00, 2011:06:26 01:13:58-07:00, 2011:06:26 01:43:44-07:00, 2011:06:26 01:53:11-07:00, 2011:06:26 01:56:16-07:00, 2011:06:26 01:56:43-07:00, 2011:06:26 01:56:43-07:00, 2011:06:26 01:58:14-07:00, 2011:07:20 00:17:23-07:00, 2011:11:30 12:55:33-08:00, 2011:12:19 15:41:25-08:00, 2012:07:09 01:56:50-07:00, 2012:07:09 01:56:50-07:00, 2012:07:09 02:01:30-07:00, 2012:07:09 02:01:30-07:00, 2012:07:09 02:01:49-07:00, 2012:07:09 02:01:49-07:00, 2012:07:11 17:20:04-07:00, 2012:07:11 17:20:04-07:00, 2012:07:11 17:21:05-07:00, 2012:07:11 17:21:05-07:00, 2012:07:11 17:22-07:00, 2012:07:11 17:22-07:00, 2012:07:11 17:24:42-07:00, 2012:07:11 17:24:42-07:00, 2012:07:11 18:54:06-07:00, 2012:07:11 18:54:06-07:00, 2012:07:11 19:00:11-07:00, 2012:07:11 19:00:11-07:00, 2012:07:11 19:04:42-07:00, 2012:07:11 19:04:42-07:00, 2012:07:11 19:08:16-07:00, 2012:07:11 19:08:16-07:00, 2012:07:25 09:15:58-07:00, 2012:07:25 09:15:59-07:00, 2012:09:07 13:24:18-07:00, 2012:09:07 13:24:19-07:00, 2012:09:07 13:55:20-07:00, 2012:09:07 13:55:20-07:00, 2012:09:07 13:58:07-07:00, 2012:09:07 13:58:07-07:00, 2012:10:01 14:01:23-07:00, 2012:10:01 14:01:23-07:00, 2012:10:03 15:23:40-07:00, 2012:10:03 15:23:40-07:00, 2012:10:03 15:24:14-07:00, 2012:10:03 15:24:14-07:00, 2012:10:03 16:37:26-07:00, 2012:10:03 16:37:26-07:00, 2012:10:05 15:22:07-07:00, 2012:10:05 15:22:07-07:00, 2012:10:05 15:23:22-07:00, 2012:10:05 15:23:22-07:00, 2012:10:09 17:05:26-07:00, 2012:10:09 17:06:09-07:00, 2013:01:22 18:09:06-08:00, 2013:01:22 18:09:07-08:00, 2013:01:29 14:50:42-08:00, 2013:03:08 18:47:12-08:00, 2013:03:08 18:47:12-08:00, 2013:03:08 19:43:51-08:00, 2013:03:08 19:43:51-08:00, 2013:03:08 20:09:23-08:00, 2013:03:08 20:09:24-08:00, 2013:03:09 12:52:31-08:00, 2013:03:09 12:52:31-08:00, 2013:03:09 23:58:11-08:00, 2013:03:09 23:58:11-08:00, 2013:04:05 09:25:55-07:00, 2013:04:05 09:25:55-07:00, 2013:04:05 09:42:45-07:00, 2013:05:01 14:05:25-07:00, 2013:05:01 14:05:25-07:00, 2013:05:13 09:13:16-07:00, 2013:05:13 09:13:16-07:00, 2013:05:13 10:09:02-07:00, 2013:05:13 10:09:03-07:00, 2013:05:13 10:44:24-07:00, 2013:05:13 10:44:24-07:00, 2013:05:13 10:50:02-07:00, 2013:05:13 10:50:02-07:00, 2013:05:14 10:26:06-07:00, 2013:05:14 10:26:06-07:00, 2013:05:20 06:37:41-07:00, 2013:05:20 06:37:41-07:00, 2013:05:22 12:05:05-07:00, 2013:05:22 12:05:05-07:00, 2013:05:22 12:07:51-07:00, 2013:05:22 12:07:51-07:00, 2013:05:22 12:40:12-07:00, 2013:05:22 12:40:12-07:00, 2013:05:22 12:40:50-07:00, 2013:05:22 12:40:59-07:00, 2013:05:22 12:41:20-07:00, 2013:05:22 12:41:48-07:00, 2013:05:22 12:41:55-07:00, 2013:05:22 12:41:59-07:00, 2013:05:22 12:43:17-07:00, 2013:05:22 12:45:39-07:00, 2013:05:22 12:45:59-07:00, 2013:05:22 12:46:41-07:00, 2013:05:22 12:46:56-07:00, 2013:05:22 12:47:11-07:00, 2013:05:22 12:47:50-07:00, 2013:05:22 12:48:38-07:00, 2013:05:22 12:49:12-07:00, 2013:05:22 12:49:26-07:00, 2013:05:22 13:02:20-07:00, 2013:05:22 13:02:34-07:00, 2013:05:22 13:02:43-07:00, 2013:05:22 13:03:13-07:00, 2013:05:22 13:03:18-07:00, 2013:05:22 13:03:48-07:00, 2013:05:22 13:04:06-07:00, 2013:05:22 13:04:51-07:00, 2013:05:22 13:05:03-07:00, 2013:05:22 13:05:24-07:00, 2013:05:22 13:05:47-07:00, 2013:05:22 13:05:50-07:00, 2013:05:22 13:05:59-07:00, 2013:05:22 13:06:55-07:00, 2013:05:22 13:07:16-07:00, 2013:05:22 13:07:36-07:00, 2013:05:22 13:07:49-07:00, 2013:05:22 13:08:24-07:00, 2013:05:22 13:08:33-07:00, 2013:05:22 13:08:38-07:00, 2013:05:22 13:08:49-07:00, 2013:05:22 13:08:57-07:00, 2013:05:22 13:09:11-07:00, 2013:05:22 13:09:16-07:00, 2013:05:22 13:10:11-07:00, 2013:05:22 13:10:25-07:00, 2013:05:22 13:10:49-07:00, 2013:05:22 13:11:06-07:00, 2013:05:22 13:11:15-07:00, 2013:05:22 13:11:36-07:00, 2013:05:22 13:11:56-07:00, 2013:05:22 13:12:06-07:00, 2013:05:22 13:12:50-07:00, 2013:05:22 13:13:05-07:00, 2013:05:22 13:13:19-07:00, 2013:05:22 13:15:02-07:00, 2013:05:22 13:15:07-07:00, 2013:05:22 13:15:33-07:00, 2013:05:22 13:15:58-07:00, 2013:05:22 13:16:18-07:00, 2013:05:22 13:17:11-07:00, 2013:05:22 13:17:50-07:00, 2013:05:22 13:18:07-07:00, 2013:05:22 13:18:27-07:00, 2013:05:22 13:19:04-07:00, 2013:05:23 07:00:50-07:00, 2013:05:23 07:02:08-07:00, 2013:05:23 07:02:13-07:00, 2013:05:23 07:03:20-07:00, 2013:05:23 07:04:17-07:00, 2013:06:07 08:17:47-07:00, 2013:06:07 08:19:15-07:00, 2013:06:07 08:19:42-07:00, 2013:06:07 08:20:05-07:00, 2013:06:07 08:22:08-07:00, 2013:06:07 08:22:26-07:00, 2013:06:07 08:23:20-07:00, 2013:06:07 08:23:25-07:00, 2013:06:07 08:24:33-07:00, 2013:06:07 08:28:28-07:00, 2013:06:07 08:28:45-07:00, 2013:06:09 08:36:51-07:00, 2013:06:09 08:37:23-07:00, 2013:06:09 08:38:28-07:00, 2013:06:09 08:38:44-07:00, 2013:06:09 08:38:50-07:00, 2013:06:09 08:39:03-07:00, 2013:06:09 08:39:18-07:00, 2013:06:09 08:39:31-07:00, 2013:06:09 08:40:13-07:00, 2013:06:09 08:40:51-07:00, 2013:06:09 08:41:01-07:00, 2013:06:09 08:41:45-07:00, 2013:06:09 08:42:35-07:00, 2013:06:09 08:43:03-07:00, 2013:06:09 08:43:18-07:00, 2013:06:09 08:43:24-07:00, 2013:06:09 08:46-07:00, 2013:06:09 08:46:05-07:00, 2013:06:09 08:46:29-07:00, 2013:06:09 08:47:48-07:00, 2013:06:09 08:49:13-07:00, 2013:06:09 08:49:47-07:00, 2013:06:09 08:50:23-07:00, 2013:06:09 08:50:51-07:00, 2013:06:09 08:51:19-07:00, 2013:06:09 08:51:34-07:00, 2013:06:09 08:52:47-07:00, 2013:06:09 08:53:43-07:00, 2013:06:09 08:54:03-07:00, 2013:06:09 08:55:10-07:00, 2013:06:09 08:55:36-07:00, 2013:06:10 21:08:34-07:00, 2013:06:18 06:23:43-07:00, 2013:06:24 22:01:48-07:00, 2013:06:24 22:01:48-07:00, 2013:06:28 06:10:34-07:00, 2013:06:28 06:13:16-07:00, 2013:06:28 06:13:26-07:00, 2013:06:28 06:15:32-07:00, 2013:06:28 06:16:13-07:00, 2013:06:28 06:16:21-07:00, 2013:06:28 06:17:37-07:00, 2013:06:28 06:19:50-07:00, 2013:06:28 06:20:30-07:00, 2013:07:10 10:07:57-07:00, 2013:07:10 10:09:22-07:00, 2013:07:10 10:09:53-07:00, 2013:07:12 17:10:26-07:00, 2013:07:12 17:12:22-07:00, 2013:08:08 10:57:37-07:00, 2013:08:08 10:58:33-07:00, 2013:08:08 11:00:08-07:00, 2013:08:08 11:08:34-07:00, 2013:08:09 07:39:28-07:00, 2013:08:09 07:57:35-07:00, 2013:08:26 11:21:57-07:00, 2013:08:28 13:28:53-07:00, 2013:09:04 07:52:52-07:00, 2013:09:04 07:54:32-07:00, 2013:09:04 07:54:36-07:00, 2013:09:04 12:09:39-07:00, 2013:09:04 12:10:54-07:00, 2013:09:04 12:11:16-07:00
History Software Agent : Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.0, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5, Adobe InDesign 7.5
History Changed : /;/metadata, /metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /metadata, /, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /metadata, /metadata, /;/metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /metadata, /metadata, /;/metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /metadata, /metadata, /;/metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /;/metadata, /metadata, /;/metadata, /;/metadata, /;/metadata, /metadata, /metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /metadata, /metadata, /, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata, /;/metadata
Metadata Date : 2013:10:17 11:11:15-07:00
Creator Tool : Adobe InDesign CS5.5 (7.5)
Page Image Page Number : 1, 2
Page Image Format : JPEG, JPEG
Page Image Width : 256, 256
Page Image Height : 256, 256
Page Image : (Binary data 8415 bytes, use -b option to extract), (Binary data 3572 bytes, use -b option to extract)
Doc Change Count : 11597
Format : application/pdf
Title : CCNA Routing and Switching Study Guide
Creator : Todd Lammle
Producer : Adobe PDF Library 9.9
Trapped : False
Page Layout : SinglePage
Page Mode : UseOutlines
Page Count : 1178
EXIF Metadata provided by EXIF.tools