Digital Signal Processing Solutions Manual
User Manual:
Open the PDF directly: View PDF .
Page Count: 431
Download | |
Open PDF In Browser | View PDF |
Chapter 1 1.1 (a) One dimensional, multichannel, discrete time, and digital. (b) Multi dimensional, single channel, continuous-time, analog. (c) One dimensional, single channel, continuous-time, analog. (d) One dimensional, single channel, continuous-time, analog. (e) One dimensional, multichannel, discrete-time, digital. 1.2 1 (a) f = 0.01π 2π = 200 ⇒ periodic with Np = 200. 30π 1 (b) f = 105 ( 2π ) = 17 ⇒ periodic with Np = 7. 3π (c) f = 2π = 32 ⇒ periodic with Np = 2. 3 (d) f = 2π ⇒ non-periodic. 1 31 (e) f = 62π 10 ( 2π ) = 10 ⇒ periodic with Np = 10. 1.3 (a) Periodic with period Tp = 2π 5 . 5 ⇒ non-periodic. (b) f = 2π 1 (c) f = 12π ⇒ non-periodic. n (d) cos( 8 ) is non-periodic; cos( πn 8 ) is periodic; Their product is non-periodic. (e) cos( πn ) is periodic with period Np =4 2 sin( πn ) is periodic with period N p =16 8 π cos( πn + ) is periodic with period Np =8 4 3 Therefore, x(n) is periodic with period Np =16. (16 is the least common multiple of 4,8,16). 1.4 (a) w = 2πk N implies that f = k N. Let α = GCD of (k, N ), i.e., k = k ′ α, N = N ′ α. Then, f= k′ , which implies that N′ N N′ = . α 3 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) N k GCD(k, N ) Np = 7 = 01234567 = 71111117 = 17777771 (c) N k GCD(k, N ) Np = 16 = 0 1 2 3 4 5 6 7 8 9 10 11 12 . . . 16 = 16 1 2 1 4 1 2 1 8 1 2 1 4 . . . 16 = 1 6 8 16 4 16 8 16 2 16 8 16 4 . . . 1 1.5 (a) Refer to fig 1.5-1 (b) 3 2 −−−> xa(t) 1 0 −1 −2 −3 0 5 10 15 −−−> t (ms) 20 25 30 Figure 1.5-1: x(n) = xa (nT ) = xa (n/Fs ) = f = = 3sin(πn/3) ⇒ 1 π ( ) 2π 3 1 , Np = 6 6 4 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 3 10 0 t (ms) 20 -3 Figure 1.5-2: (c)Refer nto fig 1.5-2 o x(n) = 0, √32 , √32 , 0, − √32 , − √32 , Np = 6. (d) Yes. 100π x(1) = 3 = 3sin( ) ⇒ Fs = 200 samples/sec. Fs 1.6 (a) x(n) = Acos(2πF0 n/Fs + θ) = Acos(2π(T /Tp )n + θ) But T /Tp = f ⇒ x(n) is periodic if f is rational. (b) If x(n) is periodic, then f=k/N where N is the period. Then, Tp k Td = ( T ) = k( )T = kTp . f T Thus, it takes k periods (kTp ) of the analog signal to make 1 period (Td ) of the discrete signal. (c) Td = kTp ⇒ N T = kTp ⇒ f = k/N = T /Tp ⇒ f is rational ⇒ x(n) is periodic. 1.7 (a) Fmax = 10kHz ⇒ Fs ≥ 2Fmax = 20kHz. (b) For Fs = 8kHz, Ffold = Fs /2 = 4kHz ⇒ 5kHz will alias to 3kHz. (c) F=9kHz will alias to 1kHz. 1.8 (a) Fmax = 100kHz, Fs ≥ 2Fmax = 200Hz. (b) Ffold = F2s = 125Hz. 5 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1.9 (a) Fmax = 360Hz, FN = 2Fmax = 720Hz. (b) Ffold = F2s = 300Hz. (c) x(n) = xa (nT ) = xa (n/Fs ) = sin(480πn/600) + 3sin(720πn/600) x(n) = sin(4πn/5) − 3sin(4πn/5) = −2sin(4πn/5). Therefore, w = 4π/5. (d) ya (t) = x(Fs t) = −2sin(480πt). 1.10 (a) Number of bits/sample Fs Ffold = log2 1024 = 10. [10, 000 bits/sec] = [10 bits/sample] = 1000 samples/sec. = 500Hz. (b) Fmax = FN = = 1800π 2π 900Hz 2Fmax = 1800Hz. (c) f1 = = (d) △ = xmax −x f2 = But f2 = = Hence, x(n) = min = m−1 5−(−5) 1023 = 600π 1 ( ) 2π Fs 0.3; 1800π 1 ( ) 2π Fs 0.9; 0.9 > 0.5 ⇒ f2 = 0.1. 3cos[(2π)(0.3)n] + 2cos[(2π)(0.1)n] 10 1023 . 1.11 x(n) = xa (nT ) 250πn 100πn + 2sin = 3cos 200 200 6 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. = T′ ya (t) 3cos πn − 2sin 3πn 4 2 1 = ⇒ ya (t) = x(t/T ′ ) 1000 3π1000t π1000t − 2sin = 3cos 2 4 = 3cos(500πt) − 2sin(750πt) 1.12 (a) For Fs = 300Hz, x(n) = = 3cos πn + 10sin(πn) − cos 6 πn πn − 3cos 3cos 6 3 πn 3 (b) xr (t) = 3cos(10000πt/6) − cos(10000πt/3) 1.13 (a) Range xmax − xmin = 12.7. range m = 1+ △ = 127 + 1 = 128 ⇒ log2 (128) = 7 bits. (b) m = 1 + 127 0.02 = = 636 ⇒ log2 (636) ⇒ 10 bit A/D. 1.14 R Ffold Resolution samples bits ) × (8 ) sec sample bits = 160 sec Fs = 10Hz. = 2 1volt = 28 − 1 = 0.004. = (20 1.15 (a) Refer to fig 1.15-1. With a sampling frequency of 5kHz, the maximum frequency that can be represented is 2.5kHz. Therefore, a frequency of 4.5kHz is aliased to 500Hz and the frequency of 3kHz is aliased to 2kHz. 7 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Fs = 5KHz, F0=500Hz Fs = 5KHz, F0=2000Hz 1 1 0.5 0.5 0 0 −0.5 −0.5 −1 0 50 −1 0 100 Fs = 5KHz, F0=3000Hz 1 0.5 0.5 0 0 −0.5 −0.5 50 100 Fs = 5KHz, F0=4500Hz 1 −1 0 50 −1 0 100 50 100 Figure 1.15-1: (b) Refer to fig 1.15-2. y(n) is a sinusoidal signal. By taking the even numbered samples, the sampling frequency is reduced to half i.e., 25kHz which is still greater than the nyquist rate. The frequency of the downsampled signal is 2kHz. 1.16 (a) for levels = 64, using truncation refer to fig 1.16-1. for levels = 128, using truncation refer to fig 1.16-2. for levels = 256, using truncation refer to fig 1.16-3. 8 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. F0 = 2KHz, Fs=50kHz 1 0.5 0 −0.5 −1 0 10 20 30 40 50 60 70 80 90 100 35 40 45 50 F0 = 2KHz, Fs=25kHz 1 0.5 0 −0.5 −1 0 5 10 15 20 25 30 Figure 1.15-2: levels = 64, using truncation, SQNR = 31.3341dB 1 0.5 −−> xq(n) −−> x(n) 0.5 0 −0.5 −1 0 1 0 −0.5 50 100 −−> n 150 200 50 100 −−> n 150 200 −1 0 50 100 −−> n 150 200 0 −−> e(n) −0.01 −0.02 −0.03 −0.04 0 Figure 1.16-1: 9 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. levels = 128, using truncation, SQNR = 37.359dB 1 0.5 −−> xq(n) −−> x(n) 0.5 1 0 −0.5 0 −0.5 −1 0 50 100 −−> n 150 200 50 100 −−> n 150 200 −1 0 50 100 −−> n 150 200 0 −−> e(n) −0.005 −0.01 −0.015 −0.02 0 Figure 1.16-2: levels = 256, using truncation, SQNR=43.7739dB 1 0.5 −−> xq(n) −−> x(n) 0.5 1 0 −0.5 0 −0.5 −1 0 50 100 −−> n 150 200 50 100 −−> n 150 200 −1 0 50 100 −−> n 150 200 −3 0 x 10 −−> e(n) −2 −4 −6 −8 0 Figure 1.16-3: 10 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) for levels = 64, using rounding refer to fig 1.16-4. for levels = 128, using rounding refer to fig 1.16-5. for levels = 256, using rounding refer to fig 1.16-6. levels = 64, using rounding, SQNR=32.754dB 1 1 0.5 −−> xq(n) −−> x(n) 0.5 0 −0.5 −1 0 0 −0.5 50 100 −−> n 150 200 50 100 −−> n 150 200 −1 0 50 100 −−> n 150 200 0.04 −−> e(n) 0.02 0 −0.02 −0.04 0 Figure 1.16-4: 11 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. levels = 128, using rounding, SQNR=39.2008dB 1 1 0.5 −−> xq(n) −−> x(n) 0.5 0 −0.5 −1 0 0 −0.5 50 100 −−> n 150 200 50 100 −−> n 150 200 −1 0 50 100 −−> n 150 200 50 100 −−> n 150 200 0.02 −−> e(n) 0.01 0 −0.01 −0.02 0 Figure 1.16-5: levels = 256, using rounding, SQNR=44.0353dB 1 0.5 −−> xq(n) −−> x(n) 0.5 0 −0.5 −1 0 1 0 −0.5 50 100 −−> n 150 200 50 100 −−> n 150 200 −1 0 0.01 −−> e(n) 0.005 0 −0.005 −0.01 0 Figure 1.16-6: 12 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (c) The sqnr with rounding is greater than with truncation. But the sqnr improves as the number of quantization levels are increased. (d) levels 64 128 256 theoretical sqnr 43.9000 49.9200 55.9400 sqnr with truncation 31.3341 37.359 43.7739 sqnr with rounding 32.754 39.2008 44.0353 The theoretical sqnr is given in the table above. It can be seen that theoretical sqnr is much higher than those obtained by simulations. The decrease in the sqnr is because of the truncation and rounding. 13 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 14 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Chapter 2 2.1 (a) . 1 2 x(n) = . . . 0, , , 1, 1, 1, 1, 0, . . . 3 3 ↑ Refer to fig 2.1-1. (b) After folding s(n) we have 1 1 1 1 0 1 2 3 2/3 1/3 -3 -2 -1 4 Figure 2.1-1: x(−n) = 2 1 . . . 0, 1, 1, 1, 1, , , 0, . . . . ↑ 3 3 After delaying the folded signal by 4 samples, we have 2 1 x(−n + 4) = . . . 0, 0, 1, 1, 1, 1, , , 0, . . . . 3 3 ↑ On the other hand, if we delay x(n) by 4 samples we have 1 2 x(n − 4) = . . . 0, 0, , , 1, 1, 1, 1, 0, . . . . 3 3 ↑ Now, if we fold x(n − 4) we have x(−n − 4) = 2 1 . . . 0, 1, 1, 1, 1, , , 0, 0, . . . 3 3 ↑ 15 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (c) x(−n + 4) = 2 1 . . . 0, 1, 1, 1, 1, , , 0, . . . 3 3 ↑ (d) To obtain x(−n + k), first we fold x(n). This yields x(−n). Then, we shift x(−n) by k samples to the right if k > 0, or k samples to the left if k < 0. (e) Yes. 2 1 x(n) = δ(n − 2) + δ(n + 1) + u(n) − u(n − 4) 3 3 2.2 1 1 x(n) = . . . 0, 1, 1, 1, 1, , , 0, . . . 2 2 ↑ (a) (b) 1 1 x(n − 2) = . . . 0, 0, 1, 1, 1, 1, , , 0, . . . 2 2 ↑ 1 1 x(4 − n) = . . . 0, , , 1, 1, 1, 1, 0, . . . 2 2 ↑ (see 2.1(d)) (c) 1 1 x(n + 2) = . . . 0, 1, 1, 1, 1, , , 0, . . . ↑ 2 2 (d) x(n)u(2 − n) = . . . 0, 1, 1, 1, 1, 0, 0, . . . ↑ (e) x(n − 1)δ(n − 3) = . . . 0, 0, 1, 0, . . . ↑ (f) x(n2 ) = {. . . 0, x(4), x(1), x(0), x(1), x(4), 0, . . .} 1 1 = . . . 0, , 1, 1, 1, , 0, . . . 2 2 ↑ (g) xe (n) x(−n) x(n) + x(−n) , 2 1 1 = . . . 0, , , 1, 1, 1, 1, 0, . . . 2 2 ↑ 1 1 1 1 1 1 = . . . 0, , , , 1, 1, 1, , , , 0, . . . 4 4 2 2 4 4 = 16 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (h) xo (n) x(n) − x(−n) 2 1 1 1 1 1 1 = . . . 0, − , − , − , 0, 0, 0, , , , 0, . . . 4 4 2 2 4 4 = 2.3 (a) (b) 0, 1, u(n) − u(n − 1) = δ(n) = 0, n X δ(k) = u(n) = k=−∞ ∞ X k=0 δ(n − k) = 0, 1, n<0 n=0 n>0 0, n < 0 1, n ≥ 0 n<0 n≥0 2.4 Let xe (n) = 1 [x(n) + x(−n)], 2 xo (n) = 1 [x(n) − x(−n)]. 2 Since xe (−n) = xe (n) and xo (−n) = −xo (n), it follows that x(n) = xe (n) + xo (n). The decomposition is unique. For x(n) = 2, 3, 4, 5, 6 , ↑ we have xe (n) = 4, 4, 4, 4, 4 ↑ and xo (n) = −2, −1, 0, 1, 2 . ↑ 17 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 2.5 First, we prove that ∞ X xe (n)xo (n) = 0 n=−∞ ∞ X xe (n)xo (n) ∞ X = xe (−m)xo (−m) m=−∞ ∞ X n=−∞ = − xe (m)xo (m) = − xe (n)xo (n) m=−∞ ∞ X n=−∞ ∞ X xe (n)xo (n) = n=−∞ = 0 Then, ∞ X 2 x (n) = n=−∞ = ∞ X n=−∞ ∞ X [xe (n) + xo (n)] x2e (n) + ∞ X 2 x2o (n) + = Ee + Eo 2xe (n)xo (n) n=−∞ n=−∞ n=−∞ ∞ X 2.6 (a) No, the system is time variant. Proof: If = x(n2 ) x(n) → y(n) 2 x(n − k) → y1 (n) (b) (1) x(n) = ↑ y(n) = x(n2 ) = y(n − 2) = = x(n2 + k 2 − 2nk) 6 = y(n − k) 0, 1, 1, 1, 1, 0, . . . (2) (3) = x[(n − k) ] . . . , 0, 1, 1, 1, 0, . . . ↑ . . . , 0, 0, 1, 1, 1, 0, . . . ↑ 18 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (4) x(n − 2) = . . . , 0, 0, 1, 1, 1, 1, 0, . . . ↑ (5) y2 (n) = T [x(n − 2)] = . . . , 0, 1, 0, 0, 0, 1, 0, . . . ↑ (6) y2 (n) 6= y(n − 2) ⇒ system is time variant. (c) (1) x(n) = 1, 1, 1, 1 ↑ (2) y(n) = 1, 0, 0, 0, 0, −1 ↑ (3) y(n − 2) = 0, 0, 1, 0, 0, 0, 0, −1 ↑ (4) x(n − 2) = (5) y2 (n) = 0, 0, 1, 1, 1, 1, 1 ↑ 0, 0, 1, 0, 0, 0, 0, −1 ↑ (6) y2 (n) = y(n − 2). The system is time invariant, but this example alone does not constitute a proof. (d) (1) y(n) = nx(n), x(n) = . . . , 0, 1, 1, 1, 1, 0, . . . ↑ (2) y(n) = (3) . . . , 0, 1, 2, 3, . . . ↑ y(n − 2) = . . . , 0, 0, 0, 1, 2, 3, . . . ↑ (4) x(n − 2) = . . . , 0, 0, 0, 1, 1, 1, 1, . . . ↑ 19 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (5) y2 (n) = T [x(n − 2)] = {. . . , 0, 0, 2, 3, 4, 5, . . .} (6) y2 (n) 6= y(n − 2) ⇒ the system is time variant. 2.7 (a) Static, nonlinear, time invariant, causal, stable. (b) Dynamic, linear, time invariant, noncausal and unstable. The latter is easily proved. For the bounded input x(k) = u(k), the output becomes y(n) = n+1 X u(k) = k=−∞ 0, n + 2, n < −1 n ≥ −1 since y(n) → ∞ as n → ∞, the system is unstable. (c) Static, linear, timevariant, causal, stable. (d) Dynamic, linear, time invariant, noncausal, stable. (e) Static, nonlinear, time invariant, causal, stable. (f) Static, nonlinear, time invariant, causal, stable. (g) Static, nonlinear, time invariant, causal, stable. (h) Static, linear, time invariant, causal, stable. (i) Dynamic, linear, time variant, noncausal, unstable. Note that the bounded input x(n) = u(n) produces an unbounded output. (j) Dynamic, linear, time variant, noncausal, stable. (k) Static, nonlinear, time invariant, causal, stable. (l) Dynamic, linear, time invariant, noncausal, stable. (m) Static, nonlinear, time invariant, causal, stable. (n) Static, linear, time invariant, causal, stable. 2.8 (a) True. If v1 (n) = T1 [x1 (n)] and v2 (n) = T1 [x2 (n)], then α1 x1 (n) + α2 x2 (n) yields α1 v1 (n) + α2 v2 (n) by the linearity property of T1 . Similarly, if y1 (n) = T2 [v1 (n)] and y2 (n) = T2 [v2 (n)], then β1 v1 (n) + β2 v2 (n) → y(n) = β1 y1 (n) + β2 y2 (n) by the linearity property of T2 . Since v1 (n) = T1 [x1 (n)] and 20 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. v2 (n) = T2 [x2 (n)], it follows that A1 x1 (n) + A2 x2 (n) yields the output A1 T [x1 (n)] + A2 T [x2 (n)], where T = T1 T2 . Hence T is linear. (b) True. For T1 , if x(n) → v(n) and x(n − k) → v(n − k), For T2 , if v(n) → y(n) andv(n − k) → y(n − k). Hence, For T1 T2 , if x(n) → y(n) and x(n − k) → y(n − k) Therefore, T = T1 T2 is time invariant. (c) True. T1 is causal ⇒ v(n) depends only on x(k) for k ≤ n. T2 is causal ⇒ y(n) depends only on v(k) for k ≤ n. Therefore, y(n) depends only on x(k) for k ≤ n. Hence, T is causal. (d) True. Combine (a) and (b). (e) True. This follows from h1 (n) ∗ h2 (n) = h2 (n) ∗ h1 (n) (f) False. For example, consider T1 : y(n) = nx(n) and T2 : y(n) = nx(n + 1). Then, T2 [T1 [δ(n)]] T1 [T2 [δ(n)]] = T2 (0) = 0. = T1 [δ(n + 1)] = −δ(n + 1) 6= 0. (g) False. For example, consider T1 : y(n) = x(n) + b and T2 : y(n) = x(n) − b, where b 6= 0. Then, T [x(n)] = T2 [T1 [x(n)]] = T2 [x(n) + b] = x(n). Hence T is linear. (h) True. T1 is stable ⇒ v(n) is bounded if x(n) is bounded. T2 is stable ⇒ y(n) is bounded if v(n) is bounded . 21 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Hence, y(n) is bounded if x(n) is bounded ⇒ T = T1 T2 is stable. (i) Inverse of (c). T1 and for T2 are noncausal ⇒ T is noncausal. Example: T1 : y(n) T2 : y(n) = x(n + 1) and = x(n − 2) ⇒ T : y(n) = x(n − 1), which is causal. Hence, the inverse of (c) is false. Inverse of (h): T1 and/or T2 is unstable, implies T is unstable. Example: T1 : y(n) = ex(n) , stable and T2 : y(n) = ln[x(n)], which is unstable. But T : y(n) = x(n), which is stable. Hence, the inverse of (h) is false. 2.9 (a) y(n) = n X k=−∞ y(n + N ) = n+N X k=−∞ = n X k=−∞ h(k)x(n − k), x(n) = 0, n < 0 h(k)x(n + N − k) = h(k)x(n − k) + = y(n) + n+N X k=n+1 n+N X n+N X k=−∞ k=n+1 h(k)x(n − k) h(k)x(n − k) h(k)x(n − k) For a BIBO system, limn→∞ |h(n)| = 0. Therefore, n+N X limn→∞ k=n+1 h(k)x(n − k) = 0 and limn→∞ y(n + N ) = y(N ). (b) Let x(n) = xo (n) + au(n), where a is a constant and xo (n) is a bounded signal with lim xo (n) = 0. n→∞ Then, y(n) = a ∞ X k=0 n X = a h(k)u(n − k) + ∞ X k=0 h(k)xo (n − k) h(k) + yo (n) k=0 clearly, P n x2o (n) < ∞ ⇒ P n yo2 (n) < ∞ (from (c) below) Hence, limn→∞ |yo (n)| = 0. 22 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. and, thus, limn→∞ y(n) = a (c) Pn k=0 y(n) h(k) = constant. = X k ∞ X 2 y (n) = h(k)x(n − k) " ∞ X X −∞ −∞ = k XX k But X n Therefore, h(k)h(l) X y 2 (n) ≤ Ex X X n l k Hence, h(k)x(n − k) x(n − k)x(n − l) ≤ n For a BIBO stable system, #2 X k X x(n − k)x(n − l) x2 (n) = Ex . n |h(k)| X l |h(l)|. |h(k)| < M. Ey ≤ M 2 Ex , so that Ey < 0 if Ex < 0. 2.10 The system is nonlinear. This is evident from observation of the pairs x3 (n) ↔ y3 (n) and x2 (n) ↔ y2 (n). If the system were linear, y2 (n) would be of the form y2 (n) = {3, 6, 3} because the system is time-invariant. However, this is not the case. 2.11 since x1 (n) + x2 (n) = δ(n) and the system is linear, the impulse response of the system is y1 (n) + y2 (n) = 0, 3, −1, 2, 1 . ↑ If the system were time invariant, the response to x3 (n) would be 3, 2, 1, 3, 1 . ↑ But this is not the case. 23 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 2.12 (a) Any weighted linear combination of the signals xi (n), i = 1, 2, . . . , N . (b) Any xi (n − k), where k is any integer and i = 1, 2, . . . , N . 2.13 A system is BIBO stable if and only if a bounded input produces a bounded output. X y(n) = h(k)x(n − k) k |y(n)| ≤ X k ≤ Mx |h(k)||x(n − k)| X k |h(k)| where |x(n − k)| ≤ Mx . Therefore, |y(n)| < ∞ for all n, if and only if X |h(k)| < ∞. k 2.14 (a) A system is causal ⇔ the output becomes nonzero after the input becomes non-zero. Hence, x(n) = 0 for n < no ⇒ y(n) = 0 for n < no . (b) n X y(n) = −∞ If h(k) = 0 for k < 0, then y(n) = n X 0 h(k)x(n − k), where x(n) = 0 for n < 0. h(k)x(n − k), and hence, y(n) = 0 for n < 0. On the other hand, if y(n) = 0 for n < 0, then n X −∞ h(k)x(n − k) ⇒ h(k) = 0, k < 0. 2.15 (a) For a = 1, N X an = N −M +1 an = aM + aM +1 + . . . + aN an = aM + aM +1 − aM +1 + . . . + aN − aN − aN +1 n=M for a 6= 1, (1 − a) N X n=M N X n=M = aM − aN +1 24 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) For M = 0, |a| < 1, and N → ∞, ∞ X an = n=0 1 , |a| < 1. 1−a 2.16 (a) y(n) = X k X y(n) = n h(k)x(n − k) XX h(k)x(n − k) = X X n = k k ! h(k) n X h(k) ∞ X n=−∞ k ! x(n − k) x(n) (b) (1) X n y(n) = h(n) ∗ x(n) = {1, 3, 7, 7, 7, 6, 4} X X y(n) = 35, h(k) = 5, x(k) = 7 k k (2) X n (3) y(n) = {1, 4, 2, −4, 1} X X y(n) = 4, h(k) = 2, x(k) = 2 k k 5 1 1 3 y(n) = 0, , − , , −2, 0, − , −2 2 2 2 2 X X X y(n) = −5, h(n) = 2.5, x(n) = −2 n n n (4) X n y(n) = {1, 2, 3, 4, 5} X X y(n) = 15, h(n) = 1, x(n) = 15 n n (5) X y(n) = {0, 0, 1, −1, 2, 2, 1, 3} X X y(n) = 8, h(n) = 4, x(n) = 2 X y(n) = {0, 0, 1, −1, 2, 2, 1, 3} X X y(n) = 8, h(n) = 2, x(n) = 4 n n n (6) n n n (7) y(n) = {0, 1, 4, −4, −5, −1, 3} 25 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. X n y(n) = −2, X n h(n) = −1, X x(n) = 2 n (8) X n y(n) = u(n) + u(n − 1) + 2u(n − 2) X X y(n) = ∞, h(n) = ∞, x(n) = 4 n n (9) y(n) = {1, −1, −5, 2, 3, −5, 1, 4} X X X y(n) = 0, h(n) = 0, x(n) = 4 n n n (10) X n y(n) = {1, 4, 4, 4, 10, 4, 4, 4, 1} X X y(n) = 36, h(n) = 6, x(n) = 6 n n (11) 1 1 y(n) = [2( )n − ( )n ]u(n) 2 4 X X X 8 4 y(n) = , h(n) = , x(n) = 2 3 3 n n n 2.17 (a) x(n) h(n) y(n) = 1, 1, 1, 1 ↑ = 6, 5, 4, 3, 2, 1 = ↑ n X k=0 x(k)h(n − k) y(0) y(1) = x(0)h(0) = 6, = x(0)h(1) + x(1)h(0) = 11 y(2) y(3) y(4) = x(0)h(2) + x(1)h(1) + x(2)h(0) = 15 = x(0)h(3) + x(1)h(2) + x(2)h(1) + x(3)h(0) = 18 = x(0)h(4) + x(1)h(3) + x(2)h(2) + x(3)h(1) + x(4)h(0) = 14 y(5) y(6) = x(0)h(5) + x(1)h(4) + x(2)h(3) + x(3)h(2) + x(4)h(1) + x(5)h(0) = 10 = x(1)h(5) + x(2)h(4) + x(3)h(2) = 6 y(7) y(8) = x(2)h(5) + x(3)h(4) = 3 = x(3)h(5) = 1 y(n) = y(n) 0, n ≥ 9 = 6, 11, 15, 18, 14, 10, 6, 3, 1 ↑ 26 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) By following the same procedure as in (a), we obtain y(n) = 6, 11, 15, 18, 14, 10, 6, 3, 1 ↑ (c) By following the same procedure as in (a), we obtain y(n) = 1, 2, 2, 2, 1 ↑ (d) By following the same procedure as in (a), we obtain y(n) = 1, 2, 2, 2, 1 ↑ 2.18 (a) x(n) h(n) 1 2 4 5 = 0, , , 1, , , 2 3 3 ↑ 3 3 = 1, 1, 1, 1, 1 ↑ y(n) = x(n) ∗ h(n) 20 11 10 1 , 1, 2, , 5, , 6, 5, , 2 = 3 ↑ 3 3 3 (b) x(n) h(n) y(n) y(n) 1 n[u(n) − u(n − 7)], 3 = u(n + 2) − u(n − 3) = = x(n) ∗ h(n) 1 = n[u(n) − u(n − 7)] ∗ [u(n + 2) − u(n − 3)] 3 1 n[u(n) ∗ u(n + 2) − u(n) ∗ u(n − 3) − u(n − 7) ∗ u(n + 2) + u(n − 7) ∗ u(n − 3)] = 3 1 10 20 = δ(n + 1) + δ(n) + 2δ(n − 1) + δ(n − 2) + 5δ(n − 3) + δ(n − 4) + 6δ(n − 5) 3 3 3 11 +5δ(n − 6) + 5δ(n − 6) + δ(n − 7) + δ(n − 8) 3 2.19 y(n) = 4 X k=0 x(n) h(n) h(k)x(n − k), α−3 , α−2 , α−1 , 1, α, . . . , α5 ↑ = 1, 1, 1, 1, 1 = ↑ 27 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 4 X y(n) = k=0 = x(n − k), −3 ≤ n ≤ 9 0, otherwise. Therefore, y(−3) y(−2) = α−3 , = x(−3) + x(−2) = α−3 + α−2 , y(−1) y(0) y(1) = α−3 + α−2 + α−1 , = α−3 + α−2 + α−1 + 1 = α−3 + α−2 + α−1 + 1 + α, y(2) y(3) = α−3 + α−2 + α−1 + 1 + α + α2 = α−1 + 1 + α + α2 + α3 , y(4) y(5) = α4 + α3 + α2 + α + 1 = α + α2 + α3 + α4 + α5 , y(6) y(7) = α2 + α3 + α4 + α5 = α3 + α4 + α5 , y(8) y(9) = α4 + α5 , = α5 2.20 (a) 131 x 122 = 15982 (b) {1↑ , 3, 1} ∗ {1↑ , 2, 2} = {1, 5, 9, 8, 2} (c) (1 + 3z + z 2 )(1 + 2z + 2z 2 ) = 1 + 5z + 9z 2 + 8z 3 + 2z 4 (d) 1.31 x 12.2 = 15.982. (e) These are different ways to perform convolution. 2.21 (a) y(n) = n X k=0 ak u(k)bn−k u(n − k) = bn y(n) = bn+1 −an+1 u(n), b−a n b (n + 1)u(n), n X (ab−1 )k k=0 a 6= b a=b (b) x(n) h(n) y(n) 1, 2, 1, 1 ↑ = 1, −1, 0, 0, 1, 1 ↑ = 1, 1, − 1, 0, 0, 3, 3, 2, 1 = ↑ 28 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (c) = 1, 1, 1, 1, 1, 0, −1 , ↑ = 1, 2, 3, 2, 1 ↑ = 1, 3, 6, 8, 9, 8, 5, 1, −2, −2, −1 x(n) h(n) y(n) ↑ (d) x(n) h′ (n) h(n) y(n) y ′ (n) 1, 1, 1, 1, 1 , ↑ = 0, 0, 1, 1, 1, 1, 1, 1 = ↑ ′ = h (n) + h′ (n − 9), = y ′ (n) + y ′ (n − 9), where = , 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1 0 ↑ 2.22 (a) yi (n) y1 (n) y2 (n) y3 (n) y4 (n) y5 (n) = x(n) ∗ hi (n) = x(n) + x(n − 1) = {1, 5, 6, 5, 8, 8, 6, 7, 9, 12, 12, 15, 9} , similarly = {1, 6, 11, 11, 13, 16, 14, 13, 15, 21, 25, 28, 24, 9} = {0.5, 2.5, 3, 2.5, 4, 4, 3, 3.5, 4.5, 6, 6, 7.5, 4.5} = {0.25, 1.5, 2.75, 2.75, 3.25, 4, 3.5, 3.25, 3.75, 5.25, 6.25, 7, 6, 2.25} = {0.25, 0.5, −1.25, 0.75, 0.25, −1, 0.5, 0.25, 0, 0.25, −0.75, 1, −3, −2.25} (b) y3 (n) = h3 (n) = y4 (n) = h4 (n) = 1 y1 (n), because 2 1 h1 (n) 2 1 y2 (n), because 4 1 h2 (n) 4 (c) y2 (n) and y4 (n) are smoother than y1 (n), but y4 (n) will appear even smoother because of the smaller scale factor. (d) System 4 results in a smoother output. The negative value of h5 (0) is responsible for the non-smooth characteristics of y5 (n) (e) 1 3 1 1 1 1 3 9 y6 (n) = , , −1, , 1, −1, 0, , , 1, − , , − 2 2 2 2 2 2 2 2 y2 (n) is smoother than y6 (n). 29 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 2.23 We can express the unit sample in terms of the unit step function as δ(n) = u(n) − u(n − 1). Then, h(n) = h(n) ∗ δ(n) = h(n) ∗ (u(n) − u(n − 1) = h(n) ∗ u(n) − h(n) ∗ u(n − 1) = s(n) − s(n − 1) Using this definition of h(n) y(n) = h(n) ∗ x(n) = (s(n) − s(n − 1)) ∗ x(n) = s(n) ∗ x(n) − s(n − 1) ∗ x(n) 2.24 If y1 (n) y2 (n) x(n) = ny1 (n − 1) + x1 (n) and = ny2 (n − 1) + x2 (n) then = ax1 (n) + bx2 (n) produces the output y(n) = ny(n − 1) + x(n), where y(n) = ay1 (n) + by2 (n). Hence, the system is linear. If the input is x(n − 1), we have y(n − 1) y(n − 1) = (n − 1)y(n − 2) + x(n − 1). But = ny(n − 2) + x(n − 1). Hence, the system is time variant. If x(n) = u(n), then |x(n)| ≤ 1. But for this bounded input, the output is y(0) = 1, y(1) = 1 + 1 = 2, y(2) = 2x2 + 1 = 5, . . . which is unbounded. Hence, the system is unstable. 2.25 (a) δ(n) δ(n − k) x(n) = γ(n) − aγ(n − 1) and, = γ(n − k) − aγ(n − k − 1). Then, ∞ X x(k)δ(n − k) = = k=−∞ ∞ X k=−∞ x(k)[γ(n − k) − aγ(n − k − 1)] 30 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(n) x(n) = = = ∞ X k=−∞ ∞ X k=−∞ ∞ X x(k)γ(n − k) − a ∞ X k=−∞ ∞ X x(k)γ(n − k) − a k=−∞ x(k)γ(n − k − 1) x(k − 1)γ(n − k) [x(k) − ax(k − 1)]γ(n − k) k=−∞ Thus, ck = x(k) − ax(k − 1) (b) y(n) = T [x(n)] ∞ X ck γ(n − k)] = T[ k=−∞ ∞ X = k=−∞ ∞ X = k=−∞ ck T [γ(n − k)] ck g(n − k) (c) h(n) = T [δ(n)] = T [γ(n) − aγ(n − 1)] = g(n) − ag(n − 1) 2.26 With x(n) = 0, we have 4 y(n − 1) + y(n − 1) 3 = 0 4 y(−1) = − y(−2) 3 4 y(0) = (− )2 y(−2) 3 4 3 y(1) = (− ) y(−2) 3 .. . 4 y(k) = (− )k+2 y(−2) ← zero-input response. 3 2.27 Consider the homogeneous equation: 5 1 y(n) − y(n − 1) + y(n − 2) = 0. 6 6 The characteristic equation is 1 1 1 5 λ2 − λ + = 0.λ = , . 6 6 2 3 31 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Hence, 1 1 yh (n) = c1 ( )n + c2 ( )n 2 3 The particular solution to x(n) = 2n u(n) is yp (n) = k(2n )u(n). Substitute this solution into the difference equation. Then, we obtain 5 1 k(2n )u(n) − k( )(2n−1 )u(n − 1) + k( )(2n−2 )u(n − 2) = 2n u(n) 6 6 For n = 2, 4k − 5k k 8 + =4⇒k= . 3 6 5 Therefore, the total solution is y(n) = yp (n) + yh (n) = 1 1 8 n (2 )u(n) + c1 ( )n u(n) + c2 ( )n u(n). 5 2 3 To determine c1 and c2 , assume that y(−2) = y(−1) = 0. Then, y(0) = 1 and y(1) = 5 17 y(0) + 2 = 6 6 Thus, 8 + c1 + c2 5 1 16 1 + c1 + c2 5 2 3 1 ⇒ c1 + c2 = − = 17 11 ⇒ 3c1 + 2c2 = − 6 5 and, therefore, c1 = −1, c2 = The total solution is y(n) = 3 5 = 2 . 5 1 2 1 8 n (2) − ( )n + ( )n u(n) 5 2 5 3 32 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 2.28 Fig. 2.28-1 shows the transient response, yzi (n), for y(−1) = 1 and the steady state response, yzs (n). 1 0.8 0.6 0.4 0.2 0 0 5 10 15 20 25 30 Normalized Transient Response 35 40 45 50 0 5 10 15 20 25 30 Steady State Response 35 40 45 50 10 8 6 4 2 0 Figure 2.28-1: 2.29 h(n) = h1 (n) ∗ h2 (n) ∞ X ak [u(k) − u(k − N )][u(n − k) − u(n − k − M )] = = k=−∞ ∞ X ak u(k)u(n − k) − k=−∞ ∞ X − = k=−∞ n X k=0 = 0 k ∞ X k=−∞ ak u(k)u(n − k − M ) ak u(k − N )u(n − k) + a − n−M X k=0 k a ! − n X k=N k ∞ X k=−∞ a − ak u(k − N )u(n − k − M ) n−M X k=N k a ! 33 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 2.30 y(n) − 3y(n − 1) − 4y(n − 2) = x(n) + 2x(n − 1) The characteristic equation is λ2 − 3λ − 4 = 0. Hence, λ = 4, −1 and yh (n) = c1 (n)4n + c2 (−1)n . Since 4 is a characteristic root and the excitation is x(n) = 4n u(n), we assume a particular solution of the form yp (n) = kn4n u(n). Then kn4n u(n) − 3k(n − 1)4n−1 u(n − 1) − 4k(n − 2)4n−2 u(n − 2) = 4n u(n) + 2(4)n−1 u(n − 1) . For n = 2, k(32 − 12) = 42 + 8 = 24 → k = 6 . 5 The total solution is y(n) = yp (n) + yh (n) 6 n n n = n4 + c1 4 + c2 (−1) u(n) 5 To solve for c1 and c2 , we assume that y(−1) = y(−2) = 0. Then, y(0) = 1 and y(1) = 3y(0) + 4 + 2 = 9 Hence, c1 + c2 = 1 and 24 + 4c1 − c2 = 9 5 4c1 − c2 = 21 5 Therefore, c1 = The total solution is 26 1 and c2 = − 25 25 1 6 n 26 n n n4 + 4 − (−1) u(n) y(n) = 5 25 25 34 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 2.31 From 2.30, the characteristic values are λ = 4, −1. Hence yh (n) = c1 4n + c2 (−1)n When x(n) = δ(N ), we find that y(0) = 1 and y(1) − 3y(0) = 2 or y(1) = 5. Hence, c1 + c2 = 1 and 4c1 − c2 = 5 This yields, c1 = 6 5 and c2 = − 51 . Therefore, h(n) = 6 n 1 4 − (−1)n u(n) 5 5 2.32 (a) L1 = N1 + M1 and L2 = N2 + M2 (b) Partial overlap from left: low N1 + M1 high N1 + M2 − 1 Full overlap: low N1 + M2 high N2 + M1 Partial overlap from right: low N2 + M1 + 1 high N2 + M2 (c) x(n) h(n) N1 N2 M1 M2 1, 1, 1, 1, 1, 1, 1 ↑ = 2, 2, 2, 2 = = −2, ↑ = 4, = −1, = 2, Partial overlap from left: n = −3 Full overlap: n = 0 Partial overlap from right:n = 4 n = −1 L1 = −3 n=3 n=6 L2 = 6 35 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 2.33 (a) y(n) − 0.6y(n − 1) + 0.08y(n − 2) = x(n). The characteristic equation is λ2 − 0.6λ + 0.08 = 0. λ = 0.2, 0.4 Hence, yh (n) = c1 1n 2n + c2 . 5 5 With x(n) = δ(n), the initial conditions are y(0) y(1) − 0.6y(0) Hence,c1 + c2 1 2 c1 + 5 5 Therefore h(n) = 1, = 0 ⇒ y(1) = 0.6. = 1 and = 0.6 ⇒ c1 = −1, c2 = 3. 2 1 = −( )n + 2( )n u(n) 5 5 The step response is s(n) = n X h(n − k), n ≥ 0 k=0 n X 2 1 2( )n−k − ( )n−k 5 5 k=0 n+1 n+1 2 1 1 1 ( ( = −1 − − 1 u(n) 0.12 5 0.16 5 = (b) y(n) − 0.7y(n − 1) + 0.1y(n − 2) = 2x(n) − x(n − 2). The characteristic equation is λ2 − 0.7λ + 0.1 = 0. λ = 12 , 51 Hence, yh (n) = c1 1n 1n + c2 . 2 5 With x(n) = δ(n), we have y(0) y(1) − 0.7y(0) Hence,c1 + c2 1 1 c1 + 2 5 2 ⇒ c1 + c2 5 These equations yield 4 10 , c2 = − . c1 = 3 3 h(n) = = 2, 0 ⇒ y(1) = 1.4. = 2 and = 1.4 = = 14 . 5 = 7 5 10 1 n 4 1 n ( ) − ( ) u(n) 3 2 3 5 36 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. The step response is s(n) = n X h(n − k), k=0 = n n 10 X 1 n−k 4 X 1 n−k − ( ) ( ) 3 2 3 5 k=0 = = k=0 n n k=0 k=0 10 1 n X k 4 1 n X k ( ) 2 − ( ) 5 3 2 3 5 10 1 n n+1 1 1n ( (2 − 1)u(n) − ( (5n+1 − 1)u(n) 3 2 3 5 2.34 h(n) y(n) x(0)h(0) 1 x(0) + x(1) 2 = = 1 1 1 1 1, , , , ↑ 2 4 8 16 1, 2, 2.5, 3, 3, 3, 2, 1, 0 ↑ = y(0) ⇒ x(0) = 1 3 = y(1) ⇒ x(1) = 2 By continuing this process, we obtain x(n) = 3 3 7 3 1, , , , , . . . 2 2 4 2 2.35 (a) h(n) = h1 (n) ∗ [h2 (n) − h3 (n) ∗ h4 (n)] (b) h3 (n) ∗ h4 (n) h2 (n) − h3 (n) ∗ h4 (n) h1 (n) Hence h(n) = = (n − 1)u(n − 2) 2u(n) − δ(n) 1 1 1 = δ(n) + δ(n − 1) + δ(n − 2) 2 4 2 1 1 1 δ(n) + δ(n − 1) + δ(n − 2) ∗ [2u(n) − δ(n)] = 2 4 2 1 5 5 = δ(n) + δ(n − 1) + 2δ(n − 2) + u(n − 3) 2 4 2 (c) x(n) y(n) = 1, 0, 0, 3, 0, −4 ↑ 1 5 25 13 = , , 2, , , 5, 2, 0, 0, . . . 2 4 ↑ 4 2 37 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 2.36 First, we determine s(n) s(n) = u(n) ∗ h(n) ∞ X u(k)h(n − k) = = = k=0 n X k=0 ∞ X h(n − k) an−k k=0 n+1 = a −1 ,n ≥ 0 a−1 For x(n) = u(n + 5) − u(n − 10), we have the response s(n + 5) − s(n − 10) = From figure P2.33, y(n) Hence, y(n) an−9 − 1 an+6 − 1 u(n + 5) − u(n − 10) a−1 a−1 = x(n) ∗ h(n) − x(n) ∗ h(n − 2) an+6 − 1 an−9 − 1 = u(n + 5) − u(n − 10) a−1 a−1 an−11 − 1 an+4 − 1 u(n + 3) + u(n − 12) − a−1 a−1 2.37 h(n) = s(n) = = [u(n) − u(n − M )] /M ∞ X u(k)h(n − k) k=−∞ n X k=0 h(n − k) = n+1 M , 1, ny(n) −−> x(n) 0.5 0 0.5 0 −0.5 −0.5 −1 −1 0 50 100 −−> n 150 −1.5 0 200 50 100 −−> n 150 200 15 −−> rxy(l) 10 5 0 −5 −20 0 −−> l 20 Figure 2.65-1: variance = 0.01 (c) variance = 0.1. Delay D = 20. Refer to fig 2.65-2. (d) Variance = 1. delay D = 20. Refer to fig 2.65-3. (e) x(n) = {−1, −1, −1, +1, +1, +1, +1, −1, +1, −1, +1, +1, −1, −1, +1}. Refer to fig 2.65-4. (f) Refer to fig 2.65-5. 52 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 1.5 1 −−> y(n) −−> x(n) 0.5 0 0.5 0 −0.5 −0.5 −1 −1 0 50 100 −−> n 150 −1.5 0 200 50 100 −−> n 150 200 20 −−> rxy(l) 15 10 5 0 −5 −20 0 20 Figure 2.65-2: variance = 0.1 1 3 2 −−> y(n) −−> x(n) 0.5 0 1 0 −1 −0.5 −2 −1 0 50 100 −−> n 150 −3 0 200 50 100 −−> n 150 200 15 −−> rxy(l) 10 5 0 −5 −20 0 −−> l 20 Figure 2.65-3: variance = 1 53 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 1 0.5 −−> y(n) −−> x(n) 0.5 0 −0.5 0 −0.5 −1 −1 0 50 100 −−> n 150 −1.5 0 200 50 100 −−> n 150 200 50 100 −−> n 150 200 20 −−> rxy(l) 15 10 5 0 −5 −10 −20 0 −−> n 20 Figure 2.65-4: 1 1.5 1 −−> y(n) −−> x(n) 0.5 0 0.5 0 −0.5 −0.5 −1 −1 0 50 100 −−> n 150 −1.5 0 200 20 −−> rxy(l) 15 10 5 0 −5 −10 −20 0 −−> n 20 Figure 2.65-5: 54 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 2.66 (a) Refer to fig 2.66-1. (b) Refer to fig 2.66-2. impulse response h(n) of the system 1 −−> h(n) 0.5 0 −0.5 0 5 10 15 20 25 −−> n 30 35 40 45 50 Figure 2.66-1: (c) Refer to fig 2.66-3. (d) The step responses in fig 2.66-2 and fig 2.66-3 are similar except for the steady state value after n=20. 55 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. zero−state step response s(n) 1.6 1.5 1.4 −−> s(n) 1.3 1.2 1.1 1 0.9 0.8 0.7 0 5 10 15 20 25 −−> n 30 35 40 45 50 35 40 45 50 Figure 2.66-2: step response 1.6 1.5 1.4 −−> s(n) 1.3 1.2 1.1 1 0.9 0.8 0.7 0 5 10 15 20 25 −−> n 30 Figure 2.66-3: 56 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 2.67 Refer to fig 2.67-1. 7 6 5 −−> h(n) 4 3 2 1 0 −1 −2 0 10 20 30 40 50 −−> n 60 70 80 90 100 Figure 2.67-1: 57 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 58 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Chapter 3 3.1 (a) X(z) = X x(n)z −n n = 3z 5 + 6 + z −1 − 4z −2 ROC: 0 < |z| < ∞ (b) X(z) = X x(n)z −n n ∞ X 1 ( )n z −n = 2 n=5 = = ∞ X 1 ( )n 2z n=5 ∞ X 1 ( z −1 )m+5 2 m=0 = ( = ( 1 z −1 5 ) 2 1 − 12 z −1 1 1 z −5 ROC: |z| > ) 32 1 − 21 z −1 2 3.2 (a) X(z) = = = X n ∞ X n=0 ∞ X n=0 But ∞ X n=0 z −n = x(n)z −n (1 + n)z −n z −n + ∞ X nz −n n=0 1 ROC: |z| > 1 1 − z −1 59 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. ∞ X nz −n = Therefore, X(z) = and z −1 ROC: |z| > 1 (1 − z −1 )2 n=0 z −1 1 − z −1 + (1 − z −1 )2 (1 − z −1 )2 1 (1 − z −1 )2 = (b) X(z) ∞ X = (an + a−n )z −n n=0 ∞ X = an z −n + an z −n = a−n z −n = Hence, X(z) = But 1 ROC: |z| > |a| 1 − az −1 n=0 and ∞ X a−n z −n n=0 n=0 ∞ X ∞ X 1 (1 − n=0 1 −1 2 ) az ROC: |z| > 1 1 + 1 − az −1 1 − a1 z −1 1 |a| 2 − (a + a1 )z −1 1 1 −1 ROC: |z| > max (|a|, |a| ) −1 (1 − az )(1 − a z ) = (c) X(z) = = ∞ X 1 (− )n z −n 2 n=0 1 1 , |z| > 2 1 + 21 z −1 (d) X(z) = = ∞ X n=0 ∞ X nan sinw0 nz −n nan n=0 = = ejw0 n − e−jw0 n −n z 2j 1 aejw0 z −1 ae−jw0 z −1 − 2j (1 − aejw0 z −1 )2 (1 − ae−jw0 z −1 )2 −1 az − (az −1 )3 sinw0 , |z| > a (1 − 2acosw0 z −1 + a2 z −2 )2 (e) X(z) = = ∞ X n=0 ∞ X n=0 nan cosw0 nz −n nan ejw0 n + e−jw0 n −n z 2 60 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. = = 1 aejw0 z −1 ae−jw0 z −1 + 2 (1 − aejw0 z −1 )2 (1 − ae−jw0 z −1 )2 −1 −1 3 az + (az ) sinw0 − 2a2 z −2 , |z| > a (1 − 2acosw0 z −1 + a2 z −2 )2 (f) X(z) = A ∞ X n=0 ∞ X rn cos(w0 n + φ)z −n ejw0 n ejφ + e−jw0 n e−jφ −n z r = A 2 n=0 A ejφ e−jφ = + 2 1 − rejw0 z −1 1 − re−jw0 z −1 cosφ − rcos(w0 − φ)z −1 , |z| > r = A 1 − 2rcosw0 z −1 + r2 z −2 n (g) But ∞ X ∞ X 1 2 1 X(z) = (n + n)( )n−1 z −n 2 3 n=1 1 n( )n−1 z −1 3 n=1 ∞ X 1 n2 ( )n−1 z −n 3 n=1 ( 31 )3z −1 z −1 = (1 − 31 z −1 )2 (1 − 13 z −1 )2 = z −1 + 31 z −2 (1 − 31 z −1 )3 z −1 + 31 z −2 1 z −1 + 2 (1 − 13 z −1 )2 (1 − 31 z −1 )3 = Therefore, X(z) = z −1 , (1 − 31 z −1 )3 = |z| > 1 3 (h) X(z) = = = ∞ ∞ X X 1 1 ( )n z −n ( )n z −n − 2 2 n=10 n=0 1 1 − 21 z −1 − ( 12 )10 z −10 1 − 21 z −1 1 − ( 21 z −1 )10 , 1 − 21 z −1 |z| > 1 2 The pole-zero patterns are as follows: (a) Double pole at z = 1 and a zero at z = 0. (b) Poles at z = a and z = a1 . Zeros at z = 0 and z = 12 (a + a1 ). (c) Pole at z = − 21 and zero at z = 0. (d) Double poles at z = aejw0 and z = ae−jw0 and zeros at z = 0, z = ±a. (e) Double poles at z = aejw0 and z = ae−jw0 and zeros are obtained by solving the quadratic acosw0 z 2 − 2a2 z + a3 cosw0 = 0. (f) Poles at z = rejw0 and z = ae−jw0 and zeros at z = 0, and z = rcos(w0 − φ)/cosφ. (g) Triple pole at z = 31 and zeros at z = 0 and z = 13 . Hence there is a pole-zero cancellation so 61 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. that in reality there is only a double pole at z = 13 and a zero at z = 0. (h) X(z) has a pole of order 9 at z = 0. For nine zeros which we find from the roots of 1 1 − ( z −1 )10 2 1 10 or, equivalently, ( ) − z 10 2 Hence, zn = 0 = 0 = 1 j2πn e 10 , n = 1, 2, . . . , k. 2 Note the pole-zero cancellation at z = 21 . 3.3 (a) X1 (z) = = = = The ROC is (b) 1 3 0 ∞ X X 1 1 ( )n z −n − 1 ( )n z −n + 3 2 n=−∞ n=0 1 + 1 − 31 z −1 1 (1 − 1 − 1, 1 − 12 z + 1 −1 3z 1− ∞ X 1 ( )n z n − 1 2 n=0 5 6 1 −1 )(1 3z − 12 z) < |z| < 2. X2 (z) = = = ∞ ∞ X X 1 ( )n z −n − 2n z −n 3 n=0 n=0 1 1− 1 −1 3z (1 − − 1 , 1 − 2z −1 − 53 z −1 1 −1 )(1 − 3z 2z −1 ) The ROC is |z| > 2. (c) X3 (z) = = = The ROC is (d) 1 3 ∞ X x1 (n + 4)z −n n=−∞ z 4 X1 (z) (1 − 5 4 6z 1 −1 )(1 3z − 12 z) < |z| < 2. X4 (z) = ∞ X x1 (−n)z −n n=−∞ 62 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. ∞ X = x1 (m)z m m=−∞ = X1 (z −1 ) 5 6 = The ROC is 1 2 (1 − 31 z)(1 − 12 z −1 ) < |z| < 3. 3.4 (a) X(z) = ∞ X n(−1)n z −n n=0 ∞ d X = −z (−1)n z −n dz n=0 1 d = −z dz 1 + z −1 z −1 , |z| > 1 = − (1 + z −1 )2 (b) X(z) = ∞ X n2 z −n n=0 ∞ d2 X −n z dz 2 n=0 2 1 2 d = z dz 2 1 − z −1 2z −1 z −1 + = − (1 − z −1 )2 (1 − z −1 )3 −1 −1 z (1 + z ) = , |z| > 1 (1 − z −1 )3 = z2 (c) X(z) = −1 X n=−∞ −nan z −n −1 d X a(n)z −n dz n=−∞ 1 d = −z dz 1 − az −1 az −1 = , |z| < |a| (1 − az −1 )2 = −z (d) X(z) = ∞ X π (−1)n cos( n)z −n 3 n=0 63 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. From formula (9) in table 3.3 with a = −1, 1 + z −1 cos π3 1 + 2z −1 cos π3 + z −2 X(z) = 1 + 21 z −1 , ROC: |z| > 1 1 + z −1 + z −2 = (e) X(z) ∞ X = (−1)n z −n n=0 1 , 1 + z −1 = |z| > 1 (f) x(n) = 1, 0, −1, 0, 1, −1 X(z) = ↑ 1 − z −2 + z −4 − z −5 , z 6= 0 3.5 Right-sided sequence :xr (n) = 0, n < n0 −1 X Xr (z) = xr (n)z −n + n=n0 ∞ X xr (n)z −n n=0 P−1 The term n=n0 xr (n)z −n converges for all z except z = ∞. P∞ The term n=0 xr (n)z −n converges for all |z| > r0 where some r0 . Hence Xr (z) converges for r0 < |z| < ∞ when n0 < 0 and |z| > r0 for n0 > 0 Left-sided sequence :xl (n) = 0, n > n0 0 X Xl (z) = xl (n)z −n + n=−∞ n0 X xl (n)z −n n=1 The first term converges for some |z| < rl . The second term converges for all z, except z = 0. Hence, Xl (z) converges for 0 < |z| < rl when n0 > 0, and for |z| < rl when n0 < 0. Finite-Duration Two-sided sequence :x(n) = X(z) = 0, n > n0 and n < n1 , where n0 > n1 n0 X x(n)z −n n=n1 = −1 X n=n1 x(n)z −n + n=n X0 x(n)z −n n=0 The first term converges everywhere except z = ∞. The second term converges everywhere except z = 0. Therefore, X(z) converges for 0 < |z| < ∞. 64 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 3.6 y(n) = n X x(k) k=−∞ ⇒ y(n) − y(n − 1) Hence,Y (z) − Y (z)z −1 Y (z) = x(n) = X(z) X(z) = 1 − z −1 3.7 x1 (n) = X1 (z) = = 1 1 + −1 1 − 13 z −1 1 − 12 z 5 6 1 −1 z )(1 3 (1 − − 12 z) ∞ X 1 ( )n z −n = 2 n=0 = Then,Y (z) Hence,y(n) n≥0 n<0 ∞ −1 X X 1 1 ( )n z −n + ( )−n z −n 3 2 n=−∞ n=0 = X2 (z) ( 31 )n , ( 21 )−n , 1 1− 1 −1 , 2z 1 < |z| < 2 2 10 −4 −2 3 3 + + 1 − 2z −1 1 − 13 z −1 1 − 12 z −1 1 n −2( 13 )n + 10 3 (2) , n ≥ 0 = 4 n n<0 3 (2) , = 3.8 (a) y(n) = = n X k=−∞ ∞ X k=−∞ Y (z) (b) u(n) ∗ u(n) x(k) x(k)u(n − k) = x(n) ∗ u(n) = X(z)U (z) X(z) = 1 − z −1 = ∞ X k=−∞ u(k)u(n − k) 65 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. n X = u(k) = (n + 1)u(n) k=−∞ Hence,x(n) = u(n) ∗ u(n) 1 , |z| > 1 = (1 − z −1 )2 andX(z) 3.9 y(n) = x(n)ejw0 n . From the scaling theorem, we have Y (z) = X(e−jw0 z). Thus, the poles and zeros are phase rotated by an angle w0 . 3.10 x(n) = X + (z) = From the final value theorem x(∞) = = = 1 [u(n) + (−1)n u(n)] 2 ( 1−z1 −1 + 1+z1 −1 ) 2 lim (z − 1)X + (z) z→1 lim (z + z→1 z(z − 1) ) z+1 1 2 3.11 (a) 1 + 2z 4 1 − 2z −1 + z −2 = 1 + 4z −1 + 7z −2 + 10z −3 + . . . = , 4, 7, 10, . . . , 3n + 1, . . . 1 X(z) = Therefore,x(n) ↑ (b) 2z + 5z 2 + 8z 3 + . . . = . . . , −(3n + 1), . . . , 11, 8, 5, 2, 0 X(z) = Therefore,x(n) ↑ 3.12 X(z) = 1 − z −1 )2 A B Cz −1 = + + (1 − 2z −1 ) (1 − z −1 ) (1 − z −1 )2 A = 4, B = −3, C = −1 Hence,x(n) = [4(2)n − 3 − n] u(n) (1 − 2z −1 )(1 66 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 3.13 (a) x1 (n) = X1 (z) = = = x( n2 ), 0, ∞ X n even n odd x1 (n)z −n n=−∞ ∞ X n x( )z −n 2 n=−∞ ∞ X x(k)z −2k k=−∞ 2 = X(z ) (b) x2 (n) = x(2n) ∞ X x2 (n)z −n X2 (z) = = = = = = n=−∞ ∞ X n=−∞ ∞ X x(2n)z −n k x(k)z − 2 k=−∞ ∞ X k=−∞ ∞ X 1 2 x(k) + (−1)k x(k) − k z 2 , k even 2 k x(k)z − 2 + k=−∞ ∞ 1 1 X x(k)(−z 2 )−k 2 k=−∞ √ 1 √ X( z + X(− z) 2 3.14 (a) X(z) = = A = Hence,x(n) = 1 − 3z −1 1 + 3z −1 + 2z −2 A B + (1 + z −1 ) (1 + 2z −1 ) 2, B = −1 [2(−1)n − (−2)n ] u(n) (b) X(z) = = 1 1 − z −1 + 21 z −2 A(1 − 12 z −1 ) + B( 21 z −1 ) 1 − z −1 + 21 z −2 67 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. A = Hence,X(z) = 1, B = 1 1− 1− + √1 (cos π )z −1 4 2 2 √12 (cos π4 )z −1 + ( √12 )2 z −2 √1 (sin π )z −1 4 2 1 π −1 √ 2 2 (cos 4 )z + ( √12 )2 z −2 1− π π 1 n 1 n = ( √ ) cos n + ( √ ) sin n u(n) 4 4 2 2 Hence,x(n) (c) X(z) x(n) z −7 z −6 + 1 − z −1 1 − z −1 = u(n − 6) + u(n − 7) = (d) 1 z −2 + 2 1 + z −2 1 + z −2 1 X(z) = 2 − 1 + z −2 π π x(n) = cos nu(n) + 2cos (n − 2)u(n − 2) 2 2 π x(n) = 2δ(n) − cos nu(n) 2 X(z) = (e) X(z) = 1 + 6z −1 + z −2 1 4 (1 − 2z −1 + 2z −2 )(1 − 21 z −1 ) A(1 − z −1 ) Bz −1 C + + −1 −2 −1 −2 1 − 2z + 2z 1 − 2z + 2z 1 − 21 z −1 23 17 3 ,C = A = − ,B = 10 20 5 π π 3 1 n 23 1 17 1 Hence,x(n) = − ( √ ) cos n + ( √ )n sin n + ( )n u(n) 5 2 4 10 2 4 20 2 = (f) X(z) x(n) 2 − 1.5z −1 1 − 1.5z −1 + 0.5z −2 1 1 = 1 −1 + 1 − z −1 1− z 2 1 = ( )n + 1 u(n) 2 = (g) X(z) = = 1 + 2z −1 + z −2 1 + 4z −1 + 4z −2 2z −1 + 3z −2 1− (1 + 2z −1 )(1 + 2z −1 ) 68 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. = x(n) 1− 2z −1 z −2 + 1 + 2z −1 (1 + 2z −1 )2 = δ(n) − 2(−2)n−1 u(n − 1) + (n − 1)(−2)n−1 u(n − 1) = δ(n) + (n − 3)(−2)n−1 u(n − 1) (h) X(z) = (z + 21 )(z + 14 ) 1 1 4 (z − 2 )(z − √ 1j π )(z − 4 2e = √ 1 π 2e−j 4 ) 1 (1 + 43 z −1 + 18 z −2 )z −1 4 (1 − 21 z −1 )(1 − z −1 + 12 z −2 ) A( 12 z −1 )z −1 A(1 − 21 z −1 )z −1 Cz −1 1 −2 + 1 −2 + −1 −1 1 − z + 2z 1 − z + 2z 1 − 12 z −1 1 7 3 A = − ,B = ,C = 2 8 4 1 1 n−1 7 1 n−1 3 1 n−1 π π 2 2 Hence,x(n) = − ( ) u(n − 1) cos (n − 1) + ( ) sin (n − 1) + ( ) 2 2 4 8 2 4 4 2 = (i) X(z) = = x(n) = X(z) = 1 − 41 z −1 1 + 21 z −1 1 z −1 4 1 + 21 z −1 1 + 21 z −1 1 1 1 (− )n u(n) + (− )n−1 u(n − 1) 2 4 2 1 − (j) = = x(n) = = 1 − az −1 z −1 − a 1 1 − az −1 − a 1 − a1 z −1 az −1 1 1 − − a 1 − a1 z −1 1 − a1 z −1 1 1 1 − ( )n u(n) + ( )n−1 u(n − 1) a a a 1 1 (− )n+1 u(n) + ( )n−1 u(n − 1) a a 3.15 5z −1 X(z) = If |z| > 2, x(n) 2z −1 )(3 (1 − − z −1 ) 1 1 = + −1 1 − 2z 1 − 31 z −1 1 = 2n − ( )n u(n) 3 69 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. If 1 < |z| < 2, x(n) 3 1 If |z| < , x(n) 3 1 = −( )n u(−n − 1) − 2n u(−n − 1) 3 1 n = ( ) u(−n − 1) − 2n u(−n − 1) 3 3.16 (a) x1 (n) 1 1 n−1 ( ) u(n − 1) 4 4 ( 14 )z −1 1 , |z| > 4 1 − 41 z −1 1 1 + ( )n u(n) 2 1 1 , |z| > 1 + 1 − z −1 1 − 21 z −1 X1 (z)X2 (z) 1 − 43 1 3 1 −1 + 1 − z −1 + 1 − 4z 1 − 12 z −1 1 n 4 1 n 1 − ( ) + + ( ) u(n) 3 4 3 2 = ⇒ X1 (z) = x2 (n) = ⇒ X2 (z) = Y (z) = = y(n) = (b) x1 (n) ⇒ X1 (z) x2 (n) ⇒ X2 (z) Y (z) y(n) = u(n) 1 = , 1 − z −1 1 = δ(n) + ( )n u(n) 2 1 = 1+ 1 − 21 z −1 = X1 (z)X2 (z) 1 3 − = −1 1−z 1 − 12 z −1 1 = 3 − ( )n u(n) 2 (c) x1 (n) = ⇒ X1 (z) = x2 (n) = ⇒ X2 (z) = Y (z) = = 1 ( )n u(n) 2 1 , 1 − 12 z −1 cosπnu(n) 1 + z −1 1 + 2z −1 + z −2 X1 (z)X2 (z) 1 + z −1 (1 − 12 z −1 )(1 + 2z −1 + z −2 ) 70 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. A(1 + z −1 ) B + 1 + 2z −1 + z −2 1 − 12 z −1 1 2 ,B = A = 3 3 2 1 1 n y(n) = cosπn + ( ) u(n) 3 3 2 = (d) x1 (n) = nu(n) z −1 , = (1 − z −1 )2 = 2n u(n − 1) 2z −1 = 1 − 2z −1 = X1 (z)X2 (z) 2z −2 = −1 (1 − z )2 (1 − 2z −1 ) −2z −1 2 −2 − + = −1 1−z (1 − z −1 )2 1 − 2z −1 = −2(n + 1) + 2n+1 u(n) ⇒ X1 (z) x2 (n) ⇒ X2 (z) Y (z) y(n) 3.17 = z X + (z) − x(0) = zX + (z) − zx(0) ∞ X x(n + 1)z −n + zx(0) Therefore, zX + (z) = z + [x(n + 1)] n=0 ∞ X (z − 1)X + (z) = − limz→1 X + (z)(z − 1) x(n)z −n + ∞ X x(n + 1)z −n + zx(0) n=0 n=0 = x(0) + ∞ X n=0 x(n + 1) − ∞ X x(n) n=0 = limm→∞ [x(0) + x(1) + x(2) + . . . + x(m) −x(0) − x(1)x(2) − . . . − x(m)] = limm→∞ x(m + 1) = x(∞) 3.18 (a) ∞ X n=−∞ x∗ (n)z −n ∞ X = n=−∞ = X ∗ (z ∗ ) x(n)(z ∗ )−n ∗ 71 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) 1 [z {x(n)} + z {x∗ (n)}] 2 x(n) + x∗ (n) = z 2 = z [Re {x(n)}] 1 [X(z) + X ∗ (z ∗ )] 2 = (c) x(n) − x∗ (n) 2j = z [Im {x(n)}] 1 [X(z) − X ∗ (z ∗ )] 2j = z (d) Xk (z) ∞ X = n=−∞,n/kinteger = ∞ X n x( )z −n k x(m)z −mk m=−∞ = X(z k ) (e) ∞ X ejw0 n x(n)z −n = ∞ X x(n)(e−jw0 z)−n n=−∞ −jw0 n=−∞ = X(ze ) 3.19 (a) X(z) = log(1 − 2z), |z| < Y (z) 1 2 dX(z) dz −1 1 , |z| < 2 1 − 21 z −1 1 ( )n , n < 0 2 1 y(n) n 1 1 n ( ) u(−n − 1) n 2 = −z = ⇒ y(n) = Then,x(n) = = (b) X(z) Y (z) 1 1 = log(1 − z −1 ), |z| > 2 2 dX(z) = −z dz 72 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. − 21 z −1 1 1 −1 , |z| > 2 1 − 2z 1 1 = − ( )n−1 u(n − 1) 2 2 1 = y(n) n 1 1 = − ( )n u(n − 1) n 2 = Hence,y(n) x(n) 3.20 (a) = rn sinw0 nu(n), 0 1, x(n) For 0.5 < |z| < 1, x(n) = [2 − (0.5)n ] u(n) = −(0.5)n u(n) − 2u(−n − 1) (b) X(z) 1 (1 − 0.5z −1 )2 0.5z −1 2z = (1 − 0.5z −1 )2 = For |z| > 0.5, x(n) = 2(n + 1)(0.5)n+1 u(n + 1) = (n + 1)(0.5)n u(n) For |z| < 0.5, x(n) = −2(n + 1)(0.5)n+1 u(−n − 2) = −(n + 1)(0.5)n u(−n − 1) 3.26 3 X(z) = 1 = 1 ROC: < |z| < 3, x(n) 3 −1 + z −2 − 10 3 z 27 − 83 8 + 1 − 3z −1 − 13 z −1 1 3 1 n 27 ( ) u(n) − 3n u(−n − 1) 8 3 8 = 3.27 X(z) = = ∞ X n=−∞ ∞ X x(n)z −n x1 (n)x∗2 (n)z −n n=−∞ ∞ X I 1 X1 (v)v n−1 dvx∗2 (n)z −n 2πj c n=−∞ # " ∞ I X 1 z −n −1 ∗ = v X1 (v)dv x2 (n)( ) 2πj c v n=−∞ #∗ " ∞ I X z ∗ −n 1 v −1 dv X1 (v) x2 (n)( ∗ ) = 2πj c v n=−∞ I 1 z∗ = X1 (v)X2∗ ( ∗ )v −1 dv 2πj c v = 3.28 Conjugation property: 75 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. ∞ X ∗ x (n)z −n = n=−∞ " ∞ X ∗ −n x(n)(z ) n=−∞ ∗ ∗ #∗ = X (z ) Parseval’s relation: ∞ X x1 (n)x∗2 (n) ∞ X I 1 X1 (v)v n−1 dvx∗2 (n) 2πj c n=−∞ " ∞ # I X 1 1 −n −1 ∗ = X1 (v) v dv x2 (n)( ) 2πj c v n=−∞ I 1 1 X1 (v)X2∗ ( ∗ )dv = 2πj c v = n=−∞ 3.29 x(n) = 1 2πj I c z n dz , z−a where the radius of the contour c is rc > |a|. For n < 0, let w = z1 . Then, 1 x(n) = 2πj where the radius of c′ is n < 0. 1 rc . Since 1 rc I c′ 1 −n−1 aw dw, w − a1 < |a|, there are no poles within c′ and, hence x(n) = 0 for 3.30 x(n) = x(N − 1 − n), since x(n) is even. Then X(z) = N −1 X x(n)z −n n=0 = x(0) + x(1)z −1 + . . . + x(N − 2)z −N +2 + x(N − 1)z −N +1 N 2 = z −(N −1)/2 −1 X n=0 i h x(n) z (N −1−2n)/2 + z −(N −1−2n)/2 N even If we substitute z −1 for z and multiply both sides by z −(N −1) we obtain z −(N −1) X(z −1 ) = X(z) Hence, X(z) and X(z −1 ) have identical roots. This means that if z1 is root (or a zero) of X(z) then z11 is also a root. Since x(n) is real, then z1∗ must also be a root and so must z1∗ 1 3.31 From the definition of the Fibonacci sequence, y(n) = y(n − 1) + y(n − 2), y(0) = 1. This is equivalent to a system described by the difference equation y(n) = y(n − 1) + y(n − 2) + x(n), 76 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. where x(n) = δ(n) and y(n) = 0, n < 0. The z-transform of this difference equation is Y (z) = z −1 Y (z) + z −2 Y (z) = X(z) Hence, for X(z) = 1, we have Y (z) = Y (z) = where A = Hence, y(n) = = 1 1− z −1 A − z −2 B + √ √ −1 1 − 5+1 1 − 1−2 5 z −1 2 z √ √ √ 5+1 5−1 1− 5 √ ,B = √ =− √ 2 5 2 5 2 5 √ √ √ √ 5+1 5+1 n 1− 5 1− 5 n √ ( √ ( ) u(n) − ) u(n) 2 2 2 5 2 5 " # √ √ 1 1 + 5 n+1 1 − 5 n+1 √ ( ) −( ) u(n) 2 2 5 3.32 (a) Y (z) 1 − 0.2z −1 Y (z) X(z) = X(z) 1 − 0.3z −1 − 0.02z −2 = = (1 − 0.1z −1 )(1 − 0.2z −1 ) 1 − 0.2z −1 1 − 0.1z −1 (b) Y (z) Y (z) X(z) = X(z) 1 − 0.1z −1 = 1 − 0.1z −1 Therefore, (a) and (b) are equivalent systems. 3.33 1 1 − az −1 = an u(n) X(z) = ⇒ x1 (n) or x2 (n) = −an u(−n − 1) Both x1 (n) and x2 (n) have the same autocorrelation sequence. Another sequence is obtained 1 from X(z −1 ) = 1−az X(z −1 ) = 1 1 − az = 1− Hence x3 (n) 1 1 − a1 z −1 1 = δ(n) − ( )n u(n) a We observe that x3 (n) has the same autocorrelation as x1 (n) and x2 (n) 77 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 3.34 H(z) −∞ X = 3n z −n + n=−1 ∞ X 2 ( )n z −n 5 n=0 1 −1 2 + , ROC: < |z| < 3 2 −1 −1 1 − 3z 5 1 − 5z 1 = 1 − z −1 = H(z)X(z) −1 − 13 5 z = , ROC: 1 < |z| < 2 −1 −1 (1 − z )(1 − 3z )(1 − 52 z −1 ) = X(z) Y (z) 13 6 = 1 − z −1 Therefore, y(n) − 3 2 1 − 3z −1 − 1− 2 3 2 −1 5z 3 n 13 2 2 n 3 u(−n − 1) + − ( ) u(n) 2 6 3 5 = 3.35 (a) h(n) = H(z) = x(n) = X(z) = Y (z) = = = Therefore, y(n) = 1 ( )n u(n) 3 1 1 − 31 z −1 1 πn ( )n cos u(n) 2 3 1 − 14 z −1 1 − 21 z −1 + 14 z −2 H(z)X(z) 1 − 41 z −1 (1 − 31 z −1 )(1 − 12 z −1 + 14 z −2 ) 1− " 1 7 1 −1 3z + 1 1 −1 6 7 (1 − 4 z − 21 z −1 + 14 z −2 √ √ 3 −1 3 3 4 z + 7 1 − 21 z −1 + 14 z −2 # √ 1 1 n 6 1 n πn 3 3 1 n πn u(n) ( ) + ( ) cos + ( ) sin 7 3 7 2 3 7 2 3 (b) h(n) = H(z) = x(n) = 1 ( )n u(n) 2 1 1 − 21 z −1 1 1 ( )n u(n) + ( )−n u(−n − 1) 3 2 78 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 X(z) = 1 −1 3z 1− Y (z) = H(z)X(z) 1 1 − 2z −1 − 35 z −1 (1 − 21 z −1 )(1 − 13 z −1 )(1 − 2z −1 ) = = 1 Therefore, y(n) − = 10 3 − 21 z −1 + −4 −2 3 + 1 − 2z −1 1 − 31 z −1 4 1 10 1 n ( ) − 2( )n u(n) + 2n u(−n − 1) 3 2 3 3 (c) y(n) = −0.1y(n − 1) + 0.2y(n − 2) + x(n) + x(n − 1) 1 + z −1 H(z) = 1 + 0.1z −1 − 0.2z −2 1 x(n) = ( )n u(n) 3 1 X(z) = 1 − 31 z −1 Y (z) = H(z)X(z) 1 + z −1 = 1 −1 (1 − 3 z )(1 + 0.1z −1 − 0.2z −2 ) = Therefore, y(n) −1 28 −8 3 3 + + 1 − 0.4z −1 1 + 0.5z −1 1 − 31 z −1 1 n 28 2 n 1 1 n = −8( ) + ( ) − ( ) u(n) 3 3 5 3 2 (d) y(n) = ⇒ Y (z) = X(z) = Hence, Y (z) = y(n) = = = = 1 1 x(n) − x(n − 1) 2 2 1 −1 (1 − z )X(z) 2 10 1 + z −2 (1 − z −1 )/2 10 1 + z −2 π(n − 1) πn u(n − 1) 5cos u(n) − 5cos 2 2 i h πn πn u(n − 1) + 5δ(n) 5cos − 5sin 2 2 10 πn π 5δ(n) + √ sin( + )u(n − 1) 2 4 2 10 πn π √ sin( + )u(n) 2 4 2 (e) y(n) = −y(n − 2) + 10x(n) 79 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Y (z) = X(z) = Y (z) = = Therefore, 10 X(z) 1 + z −2 10 1 + z −2 100 (1 + z −2 )2 50 50 −25jz −1 25jz −1 + + + 1 + jz −1 1 − jz −1 (1 + jz −1 )2 (1 − jz −1 )2 y(n) = {50 [j n + (−j)n ] − 25n [j n + (−j)n ]} u(n) = (50 − 25n)(j n + (−j)n )u(n) πn = (50 − 25n)2cos u(n) 2 h(n) = H(z) = x(n) = X(z) = Y (z) = (f) = = Therefore, y(n) = 2 ( )n u(n) 5 1 1 − 25 z −1 u(n) − u(n − 7) 1 − z −n 1 − z −1 H(z)X(z) 1 − z −n (1 − 52 z −1 )(1 − z −1 ) 5 3 1 − z −1 + 1 −2 3 − 52 z −1 − 5 3 1 − z −1 + 1 −2 3 z −7 − 25 z −1 1 2 2 1 5 − 2( )n u(n) − 5 − 2( )n−7 u(n − 7) 3 5 3 5 (g) 1 ( )n u(n) 2 1 H(z) = 1 − 21 z −1 x(n) = (−1)n , −∞ −1 < 1 and > 1 Refer to fig 3.41-1. =1/4 a2 a12 a2 real real complex a 1-a 2 =1 a +a 2=-1 1 -2 -1 1 2 a1 real -1 Figure 3.41-1: 3.42 H(z) = z −1 + 12 z −2 2 −2 z 1 − 35 z −1 + 25 86 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (a) h(n) 9 − 72 2 + 1 − 51 z −1 1 − 25 z −1 9 2 7 1 = − ( )n−1 + ( )n−1 u(n − 1) 2 5 2 5 H(z) = z −1 (b) Y (z) = H(z)X(z) 1 X(z) = 1 − z −1 y(n) 25 8 7 8 1 −1 5z −3 + 1 − z −1 1− 1 − 25 z −1 25 7 1 n 2 n = + ( ) − 3( ) u(n) 8 8 5 5 Y (z) = + (c) Determine the response caused by the initial conditions and add it to the response in (b). 3 2 y(n) − y(n − 1) + y(n − 2) 5 25 2 + 3 + Y (z)z −1 + 1 + Y (z)z −2 + z −1 + 2 Y + (z) − 5 25 = 0 = 0 Y + (z) = = y + (n) = 1 1 n 12 2 n ( ) − ( ) u(n) 25 5 25 5 = 25 33 1 n 87 2 n + ( ) − ( ) u(n) 8 200 5 25 5 Therefore, the total step response is y(n) 2 −1 − 11 25 z 25 (1 − 51 z −1 )(1 − 25 z −1 ) −12 1 25 25 + 1 − 51 z −1 1 − 25 z −1 3.43 [aY (z) + X(z)] z −2 = Y (z) z −2 Y (z) = X(z) 1 − az −2 Assume that a > 0. Then 1 1 √ −1 a √ H(z) = − + a (1 − az )(1 + az −1 ) 1 1 1 1 1 √ −1 + √ −1 = − + a 2a 1 − az 2a 1 + az √ 1 1 √ n h(n) = − δ(n) + ( a) + (− a)n u(n) a 2a 1 Step Response: X(z) = 1 − z −1 z −2 √ −1 √ Y (z) = −1 (1 − z )(1 − az )(1 + az −1 ) 87 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. = y(n) = 1 (a−1) 1 − z −1 + 1 1√ 2(a− a) √ −1 − az 1 1 √ + a − 1 2(a − a) + 1√ 2(a+ a) √ −1 + az 1 √ n ( a) + √ 1 √ (− a)n u(n) 2(a + a) 3.44 y(n) Y (z) = −a1 y(n − 1) + b0 x(n) + b1 x(n − 1) b0 + b1 z −1 = X(z) 1 + a1 z −1 (a) H(z) b0 + b1 z −1 ⇒ h(n) = b0 (−a1 )n u(n) + b1 (−a1 )n−1 u(n − 1) 1 + a1 z −1 (b1 − b0 a1 )z −1 ⇒ h(n) = b0 δ(n) + (b1 − b0 a1 )(−a1 )n−1 u(n − 1) = b0 + 1 + a1 z −1 = (b) 1 1 − z −1 b0 + b1 z −1 Y (z) = (1 − z −1 )(1 + a1 z −1 ) a1 b0 − b1 1 1 b0 + b1 + = 1 + a1 1 − z −1 1 + a1 1 + a1 z −1 b0 + b1 a1 b0 − b1 y(n) = + (−a1 )n u(n) 1 + a1 1 + a1 Step Response: X(z) = (c) Let us compute the zero-input response and add it to the response in (b). Hence, Y + (z) + a1 z −1 Y + (z) + A = 0 −a1 A Y + (z) = 1 + a1 z −1 ⇒ yzi (n) = −a1 A(−a1 )n u(n) The total response to a unit step is a1 b0 − b1 − a1 A(1 + a1 ) b0 + b 1 n + (−a1 ) u(n) y(n) = 1 + a1 1 + a1 (d) x(n) X(z) Y (z) Then, y(n) = cosw0 nu(n) 1 − z −1 cosw0 = 1 − 2z −1 cosw0 + z −2 (b0 + b1 z −1 )(1 − z −1 cosw0 ) = (1 + a1 z −1 )(1 − 2z −1 cosw0 + z −2 ) A B(1 − z −1 cosw0 ) C(z −1 cosw0 ) = + + −1 −1 −2 1 + a1 z 1 − 2z cosw0 + z 1 − 2z −1 cosw0 + z −2 n = [A(−a1 ) + Bcosw0 + Csinw0 ] u(n) 88 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. where A, B and C are determined from the equations A+B (2cosw0 )A + (a1 − cosw0 )B + (sinw0 )C A − (a1 − cosw0 )B + (sinw0 )C = b0 = b1 − b0 cosw0 = −b1 cosw0 3.45 y(n) = Y (z) = 1 y(n − 1) + 4x(n) + 3x(n − 1) 2 4 + 3z −1 X(z) 1 − 12 z −1 = ejw0 n u(n) 1 X(z) = 1 − ejw0 z −1 4 + 3z −1 Y (z) = 1 −1 (1 − 2 z )(1 − ejw0 z −1 ) B A + Y (z) = 1 − ejw0 z −1 1 − 12 z −1 5 where A = 1 − ejw0 2 x(n) B Then y(n) The steady state response is limn→∞ y(n) ≡ yss (n) 4ejw0 + 3 ejw0 − 12 1 n jw0 n u(n) = A( ) + Be 2 = = Bejw0 n 3.46 (a) H(z) H(z)|z=1 = 1 ⇒ C (z − rejΘ )(z − re−jΘ ) z(z + 0.8) 1 − 2rcosΘz −1 + r2 z −2 = C (1 + 0.8z 1 ) 1.8 = = 2.77 1 − 2rcosΘ + r2 = C (b) The poles are inside the unit circle,√so the system is stable. (c) y(n) = −0.8y(n − 1) + Cx(n) − 1.5 3Cx(n − 1) + 2.25Cx(n − 2). Refer to fig 3.46-1. 3.47 (a) X1 (z) = z 2 + z + 1 + z −1 + z −2 89 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(n) + c + y(n) z -1 -0.8 -1.5 3 + z -1 2.25 Figure 3.46-1: X2 (z) = 1 + z −1 + z −2 Y (z) = X1 (z)X2 (z) Hence, x1 (n) ∗ x2 (n) By one-sided transform: = z 2 + 2z + 3 + 3z −1 + 3z −2 + 2z −3 + z −4 = y(n) = 1, 2, 3, 3, 3, 2, 1 X1+ (z) = X2+ (z) = Y + (z) = ↑ 1 + z −1 + z −2 1 + z −1 + z −2 1 + 2z −1 + 3z −2 + 2z −3 + z −4 Hence, y(n) = {1, 2, 3, 2, 1} (b) Since both x1 (n) and x2 (n) are causal, the one-sided and two-sided transform yield identical results. Thus, Y (z) = X1 (z)X2 (z) 1 = 1 −1 (1 − 2 z )(1 − 13 z −1 ) 3 2 = 1 −1 − 1− z 1 − 13 z −1 2 1 1 Therefore, y(n) = 3( )n − 2( )n u(n) 2 3 (c) By convolution, y(n) = x1 (n) ∗ x2 (n) = 4, 11, 20, 30, 20, 11, 4 ↑ 90 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. By one-sided z-transform, X1+ (z) = 2 + 3z −1 + 4z −2 X2+ (z) = 2 + z −1 Y + (z) = X1+ (z)X2+ (z) = 4 + 8z −1 + 11z −2 + 4z −3 Therefore, y(n) = 4, 8, 11, 4 ↑ (d) Both x1 (n) and x2 (n) are causal. Hence, both types of transform yield the same result, i.e, X1 (z) X2 (z) Then, Y (z) 1 + z −1 + z −2 + z −3 + z −4 = = 1 + z −1 + z −2 = X1 (z)X2 (z) 1 + 2z −1 + 3z −2 + 3z −3 + 3z −4 + 2z −5 + z −6 = 1, 2, 3, 3, 3, 2, 1 = Therefore, y(n) ↑ 3.48 X + (z) = = ∞ X n=0 ∞ X x(n)z −n z −n n=0 = 1 , |z| > 1 1 − z −1 3.49 (a) Y + (z) + (a) 1 −2 + 1 −1 + z Y (z) + y(−1) − z Y (z) + z −1 y(−1) + y(−2) = 0 2 4 Hence, Y + (z) = = Therefore, y(n) (b) = 1 −1 − 4z 1 −1 z − 2 1 4 1 −2 4z 1+ 0.154 0.404 − 1 − 0.31z −1 1 + 0.81z −1 [0.154(0.31)n − 0.404(0.81)n ] u(n) Y + (z) − 1.5 z −1 Y + (z) + 1 + 0.5 z −2 Y + (z) + z −1 + 0 = 0 1.5 − 0.5z −1 1 − 1.5z −1 + 0.5z −2 2 0.5 = − 1 − z −1 1 − 0.5z −1 = [2 − 0.5(0.5)n ] u(n) = 2 − (0.5)n+1 u(n) Y + (z) = Therefore, y(n) 91 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (c) Y + (z) − 0.5 z −1 Y + (z) + 1 1 1 − 13 z −1 = 1.5 − 61 z −1 (1 − 31 z −1 )(1 − 0.5z −1 ) Y + (z) = 7 2 = 2 − 1− 1 − 13 z −1 7 1 = (0.5)n − 2( )n u(n) 2 3 Hence, y(n) 0.5z −1 (d) Y + (z) − 1 −2 + z Y (z) + 1 = 4 Y + (z) = 1 1 − z −1 5 1 −1 4 − 4z (1 − z −1 )(1 − 14 z −2 ) 4 3 = z −1 + −3 8 − 12 z −1 + 7 24 + 21 z −1 1− 1 1 7 1 n 4 3 1 n − ( ) + (− ) u(n) Hence, y(n) = 3 8 2 24 2 3.50 If h(n) is real, even and has a finite duration 2N + 1, then (with M = 2N + 1) H(z) since h(n) H(z) = h(0) + h(1)z −1 + h(2)z −2 + . . . + h(M − 1)z −(M −1)/2 = h(M − n − 1), then h i = z −(M −1)/2 (h(0) z (M −1)/2 + z −(M −1)/2 i h +h(1) z (M −3)/2 + z −(M −3)/2 + . . . + h(M − 1/2)) with M = 2N + 1, the expression becomes H(z) = z −N (h(0) z N + z −N i h +h(1) z N −1 + z −(N −1) i h +h(2) z N −2 + z −(N −2) + . . . + h(N )) ) ( N −1 N −1 X X −(N −n) −N N −n h(n)z = z h(n)z + h(N ) + n=0 n=0 = z −N h(N ) + P (z) + P (z −1 ) Now, suppose z1 is a root of H(z), i.e., H(z1 ) Then, h(N ) + P (z1 ) + P (z1−1 ) = z1−N h(N ) + P (z1 ) + P (z1−1 ) = 0 = 0. This implies that H( z11 ) = 0 since we again have h(N ) + P (z1−1 ) + P (z1 ) = 0. 92 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 3.51 (a) H(z) = (z + z−1 , + 3)(z − 2) ROC: 1 2 )(z 1 < |z| < 2 2 (b) The system can be causal if the ROC is |z| > 3, but it cannot be stable. (c) C B A H(z) = 1 −1 + 1 + 3z −1 + 1 − 2z −1 1 + 2z (1) The system can be causal; (2) The system can be anti-causal; (3) There are two other noncausal responses.The corresponding ROC for each of these possibilities are : ROC4 : 2 < |z| < 3; ROC1 : |z| > 3; ROC2 : |z| < 3; ROC3 : 21 < |z| < 2; 3.52 x(n) is causal. (a) X(z) = ∞ X x(n)z −n n=0 limz→∞ X(z) = x(0) (b)(i) X(z) = (z− 21 )4 ⇒ limz→∞ X(z) = ∞ ⇒ x(n) is not causal. (z− 13 )3 1 −2 2 (1− z ) = 1−21 z−1 ⇒ limz→∞ X(z) = 1 Hence X(z) can 3 (ii) X(z) sequence. (iii) X(z) = sequence. (z− 13 )2 (z− 12 )3 be associated wih a causal ⇒ limz→∞ X(z) = 0. Hence X(z) can be associated wih a causal 3.53 1 1−az −1 , |a| < 1. This system a−3 z 3 = 1−az−1 the system is stable The answer is no. For the given system h1 (n) = an u(n) ⇒ H1 (z) = n is causal and stable. However when h2 (n) = a u(n + 3) ⇒ H2 (z) but is not causal. 3.54 Initial value theorem for anticausal signals: If x(n) is anticausal, then x(0) = limz→0 X(z) P0 Proof: X(z) = n=−∞ x(n)z −n = x(0) + x(−1)z + x(−2)z 2 + . . . Then limz→0 X(z) = x(0) 3.55 1 s(n) = ( )n−2 u(n + 2) 3 (a) h(n) = s(n) − s(n − 1) 93 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 1 ( )n−2 u(n + 2) − ( )n−3 u(n + 1) 3 3 1 4 = 3 δ(n + 2) − 54δ(n + 1) − 18( )n u(n) 3 −18 2 H(z) = 81z − 54z + 1 − 31 z −1 = = 81z(z −1 ) 1 − 13 z −1 H(z) has zeros at z = 0, 1 and a pole at z = 31 . (b) h(n) = 81δ(n + 2) − 54δ(n + 1) − 18( 13 )n u(n) (c) The system is not causal, but it is stable since the pole is inside the unit circle. 3.56 (a) x(n) = = for n ≥ 0, x(n) = for n < 0, x(−1) = = x(−2) = = I z n−1 1 dz 2πj c 1 − 12 z −1 I zn 1 dz 2πj c z − 21 1 ( )n 2 I 1 1 dz 2πj c z(z − 21 ) 1 1 |z=0 + |z= 21 = 0 z z − 21 I 1 1 dz 2πj c z 2 (z − 12 ) 1 d 1 |z=0 + 2 |z= 21 = 0 dz z − 21 z By continuing this process, we find that x(n) = 0 for n < 0. (b) X(z) = x(n) = 1 1 , |z| < 2 1 − 21 z −1 I n 1 z 1 dz, where c is contour of radius less than 2πj c z − 21 2 For n ≥ 0, there are no poles enclosed in c and, hence, x(n) = 0. For n < 0, we have I 1 1 x(−1) = dz 2πj c z(z − 21 ) 1 |z=0 = −2 = z − 21 I 1 1 dz x(−2) = 2πj c z 2 (z − 21 ) d 1 |z=0 = −4 = dz z − 21 94 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Alternatively, we may change variables by letting w = z −1 . Then, I 1 1 w−n (− 2 )dw, x(n) = − −1 2πj c′ w − 21 w I 1 −1 = − dw 2πj c′ wn+1 (1 − 21 w) I 1 2w−n−1 = − dw 2πj c′ w − 2) = −(2)−n , n<0 (c) X(z) x(n) For n ≥ 0, x(n) For n = 0, x(n) z−a 1 , |z| > 1 − az |a| I 1 z −a 1 dz, c has a radius greater than z n−1 = 2πj c 1 − az |a| I 1 −1 z n−1 (z − a) = dz 2πj c a z − a1 −1 1 n−1 1 ( ) ( − a) = a a a 1 n+1 1 n−1 −( ) = ( ) a I a 1 −1 (z − a) = dz 2πj c a z(z − a1 ) 1 −1 −a a −a + 1 = a −1 a a −1 2 = (a + 1 − a2 ) a −1 = a = For n < 0, we let w = z −1 . Then x(n) I 1 1 −w−n−1 (w−1 − a) = (− 2 )dw, −1 2πj c′ 1 − aw w = 0, for n < 0 (d) X(z) = = x(n) = 1 − 14 z −1 1 , |z| > 2 1 − 61 z −1 − 16 z −2 7 3 10 10 + 1 − 21 z −1 1 + 13 z −1 I 3 n 1 1 10 z dz + 2πj c z − 21 2πj I 7 n 10 z 1 c z+ 3 dz where the radius of the contour c is greater than |z| = 12 . Then, for n ≥ 0 7 1 3 1 n ( ) + (− )n u(n) x(n) = 10 2 10 3 For n < 0, x(n) = 0 95 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 3.57 X(z) = = x(n) I 1 zn dz 2πj c z − a I 1 zn dz 2πj c z − a1 I 1 zn For n < 0, dz 2πj c z − a I 1 zn dz 2πj c z − a1 For n ≥ 0, = 1 − a2 1 , a < |z| < , 0 < a < 1 (1 − az)(1 − az −1 ) a −1 1 + −1 1 − az 1 − a1 z −1 I I n 1 z zn 1 dz dz − 2πj c z − a 2πj c z − a1 = an and = 0 = 0 and = −a−n 3.58 X(z) = x(n) = x(−18) = = = = = 1 2 )(z 1 z 20 , < |z| < 2 − 2)5 (z + 52 )2 (z + 3) 2 (z − I z n−1 z 20 1 dz 2πj c (z − 12 )(z − 2)5 (z + 25 )2 (z + 3) I z 1 dz 1 5 2πj c (z − 2 )(z − 2) (z + 25 )2 (z + 3) 1 2 1 − 2)5 ( 2 + 52 )2 ( 12 − 21 ( 23 )5 (3)2 ( 72 ) 5 ( 21 + 3) −2 (37 )(7) −32 15309 96 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Chapter 4 4.1 (a) Since xa (t) is periodic, it can be represented by the fourier series xa (t) = where ck = = = = = Then, Xa (F ) = ∞ X ck ej2πkt/τ k=−∞ Z τ 1 Asin(πt/τ )ej2πkt/τ dt τ 0 Z τh i A ejπt/τ − e−jπt/τ e−j2πkt/τ dt j2τ 0 τ A ejπ(1−2k)t/τ e−jπ(1+2k)t/τ − j2τ j π2 (1 − 2k) −j π (1 + 2k) 0 2 A 1 1 + π 1 − 2k 1 + 2k 2A π(1 − 4k 2 ) Z ∞ k xa (t)e−j2π(F − τ )t dt −∞ = = ∞ X k=−∞ ∞ X k=−∞ ck Z ∞ k e−j2π(F − τ )t dt −∞ ck δ(F − k ) τ Hence, the spectrum of xa (t) consists of spectral lines of frequencies τk , k = 0, ±1, ±2, . . . with amplitude |ck | and phases 6 ck . Rτ Rτ A2 (b) Px = τ1 0 x2a (t)dt = τ1 0 A2 sin2 ( πt τ )dt = 2 (c) The power spectral density spectrum is |ck |2 , k = 0, ±1, ±2, . . .. Refer to fig 4.1-1. (d) Parseval’s relation Px ∞ X k=−∞ |ck |2 Z 1 τ 2 x (t)dt τ 0 a = |ck |2 ∞ 1 4A2 X = 2 2 π (4k − 1)2 = k=−∞ 97 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. |c0|2 . |c -1 | 2 . |c1 | 2 . |c-2 | 2 . . 2 |c 2 | . . . . . . -2 -1 0 1 k 2 Figure 4.1-1: 4A2 2 2 1 + 2 + 2 + ... π2 3 15 = 2 2 = 1 + 2 + 2 + ... 3 15 ∞ X |ck |2 = Hence, 1.2337(Infinite series sum to π2 ) 8 4A2 (1.2337) π2 k=−∞ A2 2 = 4.2 (a) xa (t) Xa (F ) = Ae−at u(t), a>0 Z ∞ Ae−at e−j2πF t dt = 0 = = |Xa (F )| = A e−(a+j2πF )t −a − j2πF A a + j2πF A p 2 a + (2πF )2 ∞ 0 98 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 6 Xa (F ) = −tan−1 ( 2πF ) a Refer to fig 4.2-1 A = 2, a = 4 0.5 2 phase of Xa(F) |Xa(F)| 0.4 0.3 0.2 0.1 0 −10 −5 0 −−> F 5 1 0 −1 −2 −10 10 −5 0 −−> F 5 10 Figure 4.2-1: (b) Z Xa (F ) = = 6 Aeat e−j2πF t dt + 0 Z ∞ Ae−at e−j2πF t dt 0 A A + a − j2πF a + j2πF 2aA a2 + (2πF )2 2aA 2 a + (2πF )2 0 = |Xa (F )| ∞ = Xa (F ) = Refer to fig 4.2-2 4.3 (a) Refer to fig 4.3-1. x(t) = Xa (F ) = Z 0 (1 + −τ 1− 0, |t| τ , |t| ≤ τ otherwise t −j2πF t )e dt + τ Z τ 0 (1 − t −j2πF t )e dt τ Alternatively, we may find the fourier transform of 1 τ , −τ < t ≤ 0 y(t) = x′ (t) = 1 τ, 0 < t ≤ τ 99 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. A = 2, a = 6 0.7 0.6 0.5 |Xa(F)| 0.4 0.3 0.2 0.1 0 0 5 10 15 20 25 −−−> F Figure 4.2-2: x(t) −τ 0 |X(F)| τ t 0 1/τ 2/τ Figure 4.3-1: 100 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. F Then, Z Y (F ) = Z = and X(F ) = = 6 y(t)e−j2πF t dt −τ 0 1 −j2πF t e dt + τ −τ 2sin2 πF τ − jπF τ 1 Y (F ) j2πF 2 sinπF τ τ πF τ 2 sinπF τ τ πF τ 0 = |X(F )| τ = Xa (F ) = Z τ ( 0 −1 −j2πF t )e dt τ (b) ck = 1 Tp Z Tp /2 x(t)e−j2πkt/Tp dt −Tp /2 Z 0 = 1 Tp = τ sinπkτ /Tp Tp πkτ /Tp (1 + −τ (c) From (a) and (b), we have ck = t −j2πkt/Tp dt + )e τ 2 Z τ 0 (1 − t −j2πkt/Tp dt )e τ 1 k Tp Xa ( Tp ) 4.4 (a) x(n) = N = ck = Hence, c0 . . . , 1, 0, 1, 2, 3, 2, 1, 0, 1, . . . ↑ 6 5 1X x(n)e−j2πkn/6 6 n=0 i h −j2πk −j4πk −j10πk −j2πk = 3 + 2e 6 + e 3 + e 3 + 2e 6 1 πk 2πk = 3 + 4cos + 2cos 6 3 3 4 1 4 9 , c1 = , c2 = 0, c3 = , c4 = 0, c5 = = 6 6 6 6 (b) Pt = = 5 1X 2 |x(n)| 6 n=0 1 2 (3 + 22 + 12 + 02 + 12 + 22 ) 6 101 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. = Pf = 19 16 5 X n=0 |c(n)| 2 4 1 4 9 = ( )2 + ( )2 + 02 + ( )2 + 02 + ( )2 ) 16 6 6 6 19 = 16 = Pf 19 = 16 Thus, Pt 4.5 1 x(n) = 2 + 2cosπn/4 + cosπn/2 + cos3πn/4, ⇒ N = 8 2 (a) ck x(n) Hence, c0 7 1X x(n)e−jπkn/4 8 n=0 3√ 3√ 11 3√ 1 3√ ,2 + = 2, 1, 2 − 2, , 2 − 2, 1, 2 + 2 2 4 4 2 4 4 1 1 = 2, c1 = c7 = 1, c2 = c6 = , c3 = c5 = , c4 = 0 2 4 = (b) P = 7 X i=0 |c(i)| 2 = 4+1+1+ = 53 8 1 1 1 1 + + + 4 4 16 16 4.6 (a) x(n) = = ck = = = π(n − 2) 3 2π(n − 2) 4sin 6 5 1X x(n)e−2jπkn/6 6 n=0 4sin 5 4X 2π(n − 2) −2jπkn/6 e sin 6 n=0 6 i 1 h √ −e−j2πk/3 − e−jπk/3 + e−jπk/3 + e−j2πk/3 3 102 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. = Hence, c0 = and |c1 | = |c5 | = 6 c1 c5 6 6 c0 1 2πk πk −j2πk/3 √ (−j2) sin e + sin 6 3 3 0, c1 = −j2e−j2π/3 , c2 = c3 = c4 = 0, c5 = c∗1 2, |c0 | = |c2 | = |c3 | = |c4 | = 0 π 2π 5π = π+ − = 2 3 6 −5π = 6 = 6 c2 = 6 c3 = 6 c4 = 0 (b) x(n) ck 2πn 2πn + sin ⇒ N = 15 3 5 = c1k + c2k = cos 2πn where c1k is the DTFS coefficients of cos 2πn 3 and c2k is the DTFS coefficients of sin 5 . But cos −j2πn 1 j2πn 2πn = (e 3 + e 3 ) 3 2 Hence, c1k = Similarly, sin 1 2, 0, k = 5, 10 otherwise −j2πn 2πn 1 j2πn = (e 5 − e 5 ). 5 2j Hence, c2k = Therefore, 1 2j , −1 2j , k=3 k = 12 otherwise 0, ck = c1k + c2k 1 2j , 1 2, 1 2, −1 2j , 0, k=3 k=5 k = 10 k = 12 otherwise 2πn 1 16πn 1 4πn (c) x(n) = cos 2πn 3 sin 5 = 2 sin 15 − 2 sin 15 . Hence, N = 15. Following the same method as in (b) above, we find that −1 4j , k = 2, 7 1 , k = 8, 13 ck = 4j 0, otherwise (d) N = ck = = = 5 4 −j2πnk 1X x(n)e 5 5 n=0 i −j4πk −j6πk −j8πk 1 h −j2πk e 5 + 2e 5 − 2e 5 − e 5 5 2j 2πk 4πk −sin( ) − 2sin( ) 5 5 5 103 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Therefore, c0 c1 c2 c3 c4 = 0, 2π 4π 2j −sin( ) + 2sin( ) = 5 5 5 4π 2j 2π sin( ) − 2sin( ) = 5 5 5 = −c2 = −c1 (e) N = ck = = = Therefore, c0 = c1 = c2 = c3 = c4 = c5 = 6 5 −j2πnk 1X x(n)e 6 6 n=0 i −jπk −j2πk −j4πk −j5πk 1h 1 + 2e 3 − e 3 − e 3 + 2e 3 6 1 πk 2πk 1 + 4cos( ) − 2cos( ) 6 3 3 1 2 2 3 0 −5 6 0 2 3 (f) N = ck = = = (g) N = 1 (h) Therefore, c0 = c1 = c2 = c3 = c4 = = 2 5 4 −j2πnk 1X x(n)e 5 5 n=0 i −j2πk 1h 1+e 5 5 πk −jπk 2 cos( )e 5 5 5 2 5 π −jπ 2 cos( )e 5 5 5 2 2π −j2π cos( )e 5 5 5 3π −j3π 2 cos( )e 5 5 5 2 4π −j4π cos( )e 5 5 5 ck = x(0) = 1 or c0 = 1 N 104 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. ck = = ⇒ c0 = 1 1X x(n)e−jπnk 2 n=0 1 (1 − e−jπk ) 2 0, c1 = 1 4.7 (a) x(n) = 7 X ck e j2πnk 8 k=0 Note that if ck 7 X j2πpk j2πnk e 8 e 8 k=0 Since ck We have x(n) j2πpk = e 8 , then 7 X j2π(p+n)k 8 e = n=0 = = 8, p = −n 0, p 6= −n i i −j2πk −j6πk 1 h j2πk 1 h j6πk = e 8 +e 8 e 8 −e 8 + 2 2j = 4δ(n + 1) + 4δ(n − 1) − 4jδ(n + 3) + 4jδ(n − 3), −3 ≤ n ≤ 5 (b) c0 x(n) √ √ √ √ 3 3 3 3 , c2 = , c3 = 0, c4 = − , c5 = − , c6 = c7 = 0 = 0, c1 = 2 2 2 2 7 X j2πnk ck e 8 = k=0 (c) √ h i j2πn j4πn j5πn 3 jπn e 4 +e 4 −e 4 −e 4 = 2 √ h πn πn i jπ(3n−2) 3 sin e 4 = + sin 2 4 x(n) = 4 X ck e j2πnk 8 k=−3 = = 1 jπn 1 −jπn 1 j3πn 1 −j3πn + e 2 + e 2 + e 4 + e 4 2 2 4 4 πn πn 1 3πn 2 + 2cos + cos + cos 4 2 2 4 2+e jπn 4 +e −jπn 4 4.8 (a) If k N −1 X ej2πkn/N = = 0, ±N, ±2N, . . . N −1 X 1=N n=0 n=0 105 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. N −1 X If k 6= ej2πkn/N = 0, ±N, ±2N, . . . 1 − ej2πk 1 − ej2πk/N n=0 = 0 (b) Refer to fig 4.8-1. (c) k=2 k=1 s 1(2) k=3 s 2(4) s 2(1) s1(1) s (0) 1 s1(3) s1(4) s 1(5) s2(0) s (3) 2 s2(2) s (0) 3 s 3 (2) s (1) 3 s (3) 3 s (5) 3 s (4) 3 s (5) 2 k=4 k=5 s (5) 4 s (2) 4 s (1) 4 s (4) 4 s 5(5) s (4) 5 s (0) 4 s (3) 4 k=6 s (0) 5 s(3) 5 s (1) 5 s (2) 5 s (0) 6 . . . s6(5) Figure 4.8-1: N −1 X sk (n)s∗i (n) = N −1 X ej2πkn/N e−j2πin/N n=0 n=0 = N −1 X ej2π(k−i)n/N n=0 = N, k = i = 0, k = 6 i Therefore, the {sk (n)} are orthogonal. 4.9 (a) x(n) = u(n) − u(n − 6) 106 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. X(w) ∞ X = x(n)e−jwn n=−∞ 5 X = e−jwn n=0 1 − e−j6w 1 − e−jw = (b) x(n) = X(w) = = 2n u(−n) 0 X 2n e−jwn n=−∞ ∞ jw X ( e m=0 = (c) x(n) X(w) 2 )n 2 2 − ejw 1 ( )n u(n + 4) 4 ∞ X 1 ( )n e−jwn = 4 n=−4 = ∞ X 1 ( )m e−jwm )44 ej4w 4 m=0 = ( = 44 ej4w 1 − 14 e−jw (d) x(n) X(w) = αn sinw0 nu(n), |α| < 1 jw0 n ∞ X e − e−jw0 n −jwn e αn = 2j n=0 = = = (e) ∞ ∞ 1 X h −j(w−w0 ) in 1 X h −j(w+w0 ) in αe − αe 2j n=0 2j n=0 1 1 1 − 2j 1 − αe−j(w−w0 ) 1 − αe−j(w+w0 ) αsinw0 e−jw 1 − 2αcosw0 e−jw + α2 e−j2w x(n) Note that ∞ X n=−∞ |x(n)| π Suppose that w0 = , so that |sinw0 n| = 2 ∞ X n |α| = n=−∞ n = |α| sinw0 n, |α| < 1 ∞ X n |α| |sinw0 n| = n=−∞ 1. ∞ X n=−∞ |x(n)| → ∞. 107 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Therefore, the fourier transform does not exist. (f) x(n) = X(w) = 4 X 2 − ( 12 )n , |n| ≤ 4 0, otherwise x(n)e−jwn n=−4 = 4 X 1 n −jwn 2−( ) e 2 n=−4 j4w 2e 1 − e−jw 1 − −4ej4w + 4e−j4w − 3ej3w + e−j3w − 2ej2w + 2e−j2w − ejw + e−jw 2 2ej4w = + j [4sin4w + 3sin3w + 2sin2w + sinw] 1 − e−jw = (g) X(w) ∞ X = x(n)e−jwn n=−∞ j2w = −2e − ejw + ejw + 2e−j2w = −2j [2sin2w + sinw] (h) x(n) = X(w) = M X A(2M + 1 − |n|), 0, |n| ≤ M |n| > M x(n)e−jwn n=−M = A M X n=−M = (2M + 1 − |n|)e−jwn (2M + 1)A + A M X k=1 = (2M + 1)A + 2A (2M + 1 − k)(e−jwk + ejwk ) M X k=1 (2M + 1 − k)coswk 4.10 (a) x(n) = = x(0) = 1 2π Z π X(w)ejwn dw −π Z −w0 Z π 1 1 ejwn dw ejwn dw + 2π −π 2π w0 1 1 (π − w0 ) + (π − w0 ) 2π 2π 108 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. π − w0 π 1 jwn −w0 e |−π jn 1 −jw0 n (e − e−jπn ) jn 1 jwn π e |w0 jn 1 jπn (e − ejw0 n ) jn sinnw0 , n 6= 0 − nπ = For n 6= 0, Z −w0 ejwn dw = −π = Z π ejwn dw = w0 = Hence, x(n) = (b) X(w) x(n) = cos2 (w) 1 1 = ( ejw + e−jw )2 2 2 1 j2w = (e + 2 + e−j2w ) 4 Z π 1 X(w)ejwn dw = 2π −π 1 = [2πδ(n + 2) + 4πδ(n) + 2πδ(n − 2)] 8π 1 [δ(n + 2) + 2δ(n) + δ(n − 2)] = 4 (c) x(n) = 1 2π = 1 2π = Z X(w)ejwn dw −π Z 2 δw π π w0 + δw 2 ejwn dw w0 − δw 2 sin(nδw/2) nδw/2 ejnw0 (d) x(n) = = = ) (Z Z π Z 7π/8 Z 3π/8 π/8 1 jwn jwn jwn jwn e dw e dw + e dw + Re 2e dw + 2π 7π/8 6π/8 π/8 0 # "Z Z π Z 7π/8 Z 3π/8 π/8 1 2coswndw coswndw + coswndw + 2coswndw + π 0 7π/8 6π/8 π/8 7πn 6πn 3πn πn 1 sin + sin − sin − sin nπ 8 8 8 8 4.11 xe (n) = x(n) + x(−n) 2 109 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 1 , 0, 1, 2, 1, 0, 2 2 ↑ x(n) − x(−n) = 2 1 1 = , 0, −2, 0, 2, 0, 2 2 ↑ = xo (n) Then, XR (w) 3 X = xe (n)e−jwn n=−3 jXI (w) 3 X = xo (n)e−jwn n=−3 Now, Y (w) = XI (w) + XR (w)ej2w . Therefore, y(n) = F −1 {XI (w)} + F −1 XR (w)ej2w = −jxo (n) + xe (n + 2) 1 j j j 1 = , 0, 1 − , 2, 1 + , 0, − j2, 0, 2 2 2 ↑ 2 2 4.12 (a) x(n) = 1 2π "Z 9π/10 jwn e dw + Z −8π/10 jwn e dw + 2 −9π/10 8π/10 Z π jwn e dw + 2 9π/10 1 1 j9πn/10 (e − e−j9πn/10 − ej8πn/10 + e−j8πn/10 ) 2π jn 2 + (−ej9πn/10 + e−j9πn/10 + ejπn − e−jπn ) jn 1 = [sinπn − sin8πn/10 − sin9πn/10] nπ 1 [sin4πn/5 + sin9πn/10] = − nπ Z −9π/10 −π jwn e dw # = (b) x(n) = = = = 1 2π Z 0 −π Z 0 X(w)ejwn dw + 1 2π Z π X(w)ejwn dw 0 Z π w w jwn 1 + 1)ejwn dw + e dw π 2π −π 0 π w jwn π ejwn 0 1 e |−π + | 2π jnπ jn −π 1 πn sin e−jnπ/2 πn 2 1 2π ( (c) x(n) = = Z wc + w2 Z −wc + w2 1 1 jwn 2e dw + 2ejwn dw 2π wc − w2 2π −wc − w2 1 jwn wc + w2 1 ejwn −wc + w2 e |wc − w + |−wc − w 2 2 π jnπ jn 110 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. w w w w 2 ej(wc + 2 )n − ej(wc − 2 )n + e−j(wc − 2 )n − e−j(wc + 2 )n πn 2j h 2 w w i sin(wc + )n − sin(wc − )n πn 2 2 = = 4.13 x1 (n) = X1 (w) = 1, 0, 0≤n≤M otherwise M X e−jwn n=0 = x2 (n) = X2 (w) −1 X = 1 − e−jw(M +1) 1 − e−jw 1, 0, −M ≤ n ≤ −1 otherwise e−jwn n=−M = M X ejwn n=1 1 − ejwM jw e 1 − ejw = X1 (w) + X2 (w) = X(w) = = = = 1 + ejw − ejw − 1 − e−jw(M +1) − ejw(M +1) + ejwM + e−jwM 2 − e−jw − ejw 2coswM − 2cosw(M + 1) 2 − 2cosw 2sin(wM + w2 )cos w2 2sin2 w2 sin(M + 12 )w sin( w2 ) 4.14 P (a) X(0) = n x(n) = −1 (b) 6 X(w) = Rπ for all w Rπ π 1 (c) x(0) = 2π X(w)dw Hence, −π X(w)dw = 2πx(0) = −6π −π (d) ∞ X X x(n)e−jnπ = X(π) = (−1)n x(n) = −3 − 4 − 2 = −9 n=−∞ (e) Rπ −π |X(w)|2 dw = 2π P n n |x(n)|2 = (2π)(19) = 38π 111 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 4.15 (a) X(w) = X x(n)e−jwn n X(0) = X x(n) n dX(w) |w=0 dw = −j = −j n X nx(n)e−jwn |w=0 nx(n) n j dX(w) dw |w=0 Therefore, c = (b) See fig 4.15-1 X X(0) X(0) = 1 Therefore, c = 0 1 = 0. dX(w) dw w Figure 4.15-1: 4.16 x1 (n) ≡ F ↔ an u(n) 1 1 − ae−jw 112 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Now, suppose that xk (n) (n + k − 1)! n a u(n) n!(k − 1)! 1 (1 − ae−jw )k = F ↔ holds. Then xk+1 (n) (n + k)! n a u(n) n!k! n+k xk (n) k X X 1 nxk (n)e−jwn + xk (n)e−jwn k n n = = Xk+1 (w) = 1 dXk (w) j + Xk (w) k dw ae−jw 1 + −jw k+1 (1 − ae ) (1 − ae−jw )k = = 4.17 (a) X n X x∗ (n)e−jwn = ( x(n)e−j(−w)n )∗ = X ∗ (−w) n (b) X x∗ (−n)e−jwn = ∞ X x∗ (n)ejwn = X ∗ (w) n=−∞ n (c) X y(n)e−jwn X = n n Y (w) x(n)e−jwn − X n −jw = X(w) + X(w)e = (1 − e−jw )X(w) x(n − 1)e−jwn (d) y(n) = n X x(k) k=−∞ = y(n) − y(n − 1) = x(n) Hence, X(w) ⇒ Y (w) (e) Y (w) = (1 − e−jw )Y (w) X(w) = 1 − e−jw = X x(2n)e−jwn n = X w x(n)e−j 2 n n w = X( ) 2 113 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (f) Y (w) = X n = X n x( )e−jwn 2 x(n)e−j2wn n = X(2w) 4.18 (a) X1 (w) X = x(n)e−jwn n = ej2w + ejw + 1 + e−jw + e−j2w = 1 + 2cosw + 2cos2w (b) X2 (w) = X x2 (n)e−jwn X x3 (n)e−jwn n = ej4w + ej2w + 1 + e−j2w + e−j4w = 1 + 2cos2w + 2cos4w (c) X3 (w) = n j6w = e = + ej3w + 1 + e−j3w + e−j6w 1 + 2cos3w + 2cos6w (d) X2 (w) = X1 (2w) and X3 (w) = X1 (3w). Refer to fig 4.18-1 (e) If x( nk ), nk an integer xk (n) = 0, otherwise Then, Xk (w) = = X xk (n)e−jwn n, n k an integer X x(n)e−jkwn n = X(kw) 4.19 (a) x1 (n) = X1 (w) = 1 jπn/4 (e + e−jπn/4 )x(n) 2 π π i 1h X(w − ) + X(w + ) 2 4 4 114 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. X(w) 1 −π 0 X(w) 2 π −0.5π 0 0.5π π w X(w) 3 −π/3 0 π/3 w π Figure 4.18-1: (b) x2 (n) = X2 (w) = x3 (n) = X3 (w) = (c) (d) x4 (n) X4 (w) 1 jπn/2 (e + e−jπn/2 )x(n) 2j 1 h π i π X(w − ) + X(w + ) 2j 2 2 1 jπn/2 (e + e−jπn/2 )x(n) 2 1h π π i X(w − ) + X(w + ) 2 2 2 1 jπn (e + e−jπn )x(n) 2 1 [X(w − π) + X(w + π)] = 2 = X(w − π) = 4.20 cyk = N −1 1 X y(n)e−j2πkn/N N n=0 115 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. N −1 1 X N n=0 = 1 N = But ∞ N −1−lN X X x(m)e−jw(m+lN ) " ∞ X l=−∞ # x(n − lN ) e−j2πkn/N ∞ N −1−lN X X x(m)e−j2πk(m+lN )/N l=−∞ m=−lN = X(w) l=−∞ m=−lN Therefore, cyk 1 2πk X( ) N N = 4.21 Let xN (n) sinwc n , −N ≤n≤N πn x(n)w(n) sinwc n , −∞≤n≤∞ πn 1, −N ≤n≤N 0, otherwise = = where x(n) = w(n) = = Then sinwc n πn XN (w) ↔ F X(w) = = 1, 0, = X(w) ∗ W (w) Z π X(Θ)W (w − Θ)dΘ −π Z wc sin(2N + 1)(w − Θ)/2 dΘ sin(w − Θ)/2 −wc = = |w| ≤ wc otherwise 4.22 (a) X1 (w) X = x(2n + 1)e−jwn n X = x(k)e−jwk/2 ejw/2 k w = X( )ejw/2 2 ejw/2 = 1 − aejw/2 (b) X2 (w) = X x(n + 2)eπn/2 e−jwn n = − X x(k)e−jk(w+jπ/2) ej2w k 116 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. = −X(w + jπ j2w )e 2 (c) X3 (w) = X x(−2n)e−jwn n = − X x(k)e−jkw/2) k w = X(− ) 2 (d) X4 (w) = = = X1 2 n X 1 2 n (ej0.3πn + e−j0.3πn )x(n)e−jwn i h x(n) e−j(w−0.3π)n + e−j(w+0.3π)n 1 [X(w − 0.3π) + X(w + 0.3π)] 2 (e) X5 (w) = X(w) X(w)e−jw = X 2 (w)e−jw (f) X6 (w) = X(w)X(−w) 1 = −jw (1 − ae )(1 − aejw ) 1 = (1 − 2acosw + a2 ) 4.23 P P (a) Y1 (w) = n y1 (n)e−jwn = n,n even x(n)e−jwn The fourier transform Y1 (w) can easily be obtained by combining the results of (b) and (c). (b) y2 (n) = x(2n) X = y2 (n)e−jwn Y2 (w) n = X x(2n)e−jwn n = X x(m)e−jwm/2 m w = X( ) 2 Refer to fig 4.23-1. (c) y3 (n) = Y3 (w) = x(n/2), 0, X n even otherwise y3 (n)e−jwn n 117 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Y(w) 2 −π −π/2 π/2 0 π 3π/2 2π Figure 4.23-1: = X x(n/2)e−jwn even X = x(m)e−j2wm n m = X(2w) We now return to part(a). Note that y1 (n) may be expressed as y2 (n/2), n even y1 (n) = 0, n odd Hence, Y1 (w) = Y2 (2w). Refer to fig 4.23-2. Y(w) 3 −π −7π/8 −π/8 0 π/8 π/2 7π/8 π π/2 3π/4 π Y(w) 1 −π −3π/4 −π/2 −π/4 0 π/4 Figure 4.23-2: 118 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Chapter 5 5.1 (a) Because the range of n is (−∞, ∞), the fourier transforms of x(n) and y(n) do not exist. However, the relationship implied by the forms of x(n) and y(n) is y(n) = x3 (n). In this case, the system H1 is non-linear. (b) In this case, X(w) = Y (w) = Hence, H(w) = = ⇒ 1 , 1 − 12 e−jw 1 , 1 − 18 e−jw Y (w) X(w) 1 − 12 e−jw 1 − 18 e−jw System is LTI Note however that the system may also be nonlinear, e.g., y(n) = x3 (n). (c) and (d). Clearly, there is an LTI system that produces y(n) when excited by x(n), e.g. H(w) = 3, for all w, or H( π5 ) = 3. (e) If this system is LTI, the period of the output signal would be the same as the period of the input signal, i.e., N1 = N2 . Since this is not the case, the system is nonlinear. 5.2 (a) WR (w) = M X wR (n)e−jwn n=0 = M X e−jwn n=0 1 − e−j(M +1)w 1 − e−jw sin( M2+1 )w = e−jM w/2 sin w2 = 119 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) Let wT (n) = hR (n) ∗ hR (n − 1), hR (n) = 1, 0, 0≤n≤ M 2 −1 otherwise Hence, WT (w) 2 = HR (w)e−jw !2 sin M 4 w = e−jwM/2 sin w2 (c) Let c(n) Then, C(w) Wc (w) 2πn 1 (1 + cos ) 2 M 1 2π 1 2π = π δ(w) + δ(w − ) + δ(w + ) −π ≤w ≤π 2 M 2 M Z π 1 c(Θ)WR (w − Θ)dΘ = 2π −π 1 1 2π 1 2π = WR (w) + WR (w − ) + WR (w + ) 2 2 M 2 M = Refer to fig 5.2-1 |W(w)| T |W(w)| R −2π/Μ+1 0 w 2π/Μ+1 −4π/Μ |W(w)| c −2π/Μ −2π/Μ+1 2π/Μ+1 0 0 2π/Μ 4π/Μ w w Figure 5.2-1: 5.3 (a) h(n) = 1 ( )n u(n) 2 120 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. H(w) ∞ X 1 ( )n e−jwn 2 n=0 = ∞ X 1 ( e−jw )n 2 n=0 = 1 = |H(w)| 1− 1 1 1 (1 − 2 cosw)2 + ( 21 sinw)2 2 1 5 12 4 − cosw = = 6 1 −jw 2e = −tan−1 H(w) 1 ≡ Θ(w) 1 2 sinw − 21 cosw (b) (1) For the input x(n) = cos = X(w) = Y (w) = = y(n) = 3π n 10 −j3πn 1 j3πn (e 10 + e 10 ) 2 3π 3π π δ(w − ) + δ(w + ) , |w| ≤ π 10 10 H(w)X(w) 3π 3π 3π ) + δ(w + ) H( )π δ(w − 10 10 10 3π 3π 3πn + Θ( ) |H( )|cos 10 10 10 (2) x(n) First, determine xe (n) and xo (n) Then, XR (w) = . . . , 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, . . . ↑ x(n) + x(−n) 2 x(n) − x(−n) = X 2 = xe (n)e−jwn = n XI (w) = X xo (n)e−jwn n |H(w)| Θ(w) and Y (w) 2 XR (w) + XI2 (w) , XI (w) = tan−1 XR (w) = H(w)X(w) = 121 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 5.4 (a) y(n) Y (w) H(w) x(n) + x(n − 1) 2 1 = (1 + e−jw )X(w) 2 1 (1 + e−jw ) = 2 w = (cos )e−jw/2 2 = Refer to fig 5.4-1. (b) 1 −−> |H(w)| 0.8 0.6 0.4 0.2 0 −4 −3 −2 −1 0 −−> w 1 2 3 4 −3 −2 −1 0 −−> w 1 2 3 4 −−> theta(w) 2 1 0 −1 −2 −4 Figure 5.4-1: x(n) − x(n − 1) 2 1 = (1 − e−jw )X(w) 2 1 (1 − e−jw ) = 2 w = (sin )e−jw/2 ejπ/2 2 y(n) = Y (w) H(w) Refer to fig 5.4-2. (c) y(n) = x(n + 1) − x(n − 1) 2 122 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 −−> |H(w)| 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w −−> theta(w) 2 1.5 1 0.5 0 0 0.5 1 1.5 −−> w Figure 5.4-2: Y (w) H(w) 1 jw (e − e−jw )X(w) 2 1 jw = (e − e−jw ) 2 = (sinw)ejπ/2 = Refer to fig 5.4-3. (d) y(n) Y (w) H(w) x(n + 1) + x(n − 1) 2 1 jw (e + e−jw )X(w) = 2 1 jw = (e + e−jw ) 2 = cosw = Refer to fig 5.4-4 (e) y(n) Y (w) H(w) x(n) + x(n − 2) 2 1 = (1 + e−j2w )X(w) 2 1 (1 + e−j2w ) = 2 = (cosw)e−jw = Refer to fig 5.4-5. (f) 123 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 −−> |H(w)| 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w 3 −−> theta(w) 2.5 2 1.5 1 0.5 0 0.5 1 1.5 −−> w Figure 5.4-3: 1 −−> |H(w)| 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 −−> w −−> theta(w) 4 3 2 1 0 0 0.5 1 1.5 −−> w Figure 5.4-4: 124 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 −−> |H(w)| 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w −−> theta(w) 2 1 0 −1 −2 0 0.5 1 1.5 −−> w Figure 5.4-5: y(n) Y (w) H(w) x(n) − x(n − 2) 2 1 = (1 − e−j2w )X(w) 2 1 (1 − e−j2w ) = 2 = (sinw)e−jw+jπ/2 = Refer to fig 5.4-6 (g) x(n) + x(n − 1) + x(n − 2) 3 1 −jw (1 + e + e−j2w )X(w) Y (w) = 3 1 H(w) = (1 + e−jw + e−j2w ) 3 1 (1 + ejw + e−jw )e−jw = 3 1 (1 + 2cosw)e−jw = 3 1 |H(w)| = | (1 + 2cosw)| 3 −w, 1 + 2cosw > 0 6 H(w) = π − w, 1 + 2cosw < 0 y(n) = Refer to fig 5.4-7. (h) 125 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 −−> |H(w)| 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w −−> theta(w) 2 1 0 −1 −2 0 0.5 1 1.5 −−> w Figure 5.4-6: 1 −−> |H(w)| 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 −−> w 2 −−> theta(w) 1 0 −1 −2 −3 0 0.5 1 1.5 −−> w Figure 5.4-7: 126 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. y(n) Y (w) H(w) = x(n) − x(n − 8) = (1 − e−j8w )X(w) = (1 − e−j8w ) = 2(sin4w)ej(π/2−4w) Refer to fig 5.4-8. (i) 2 −−> |H(w)| 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w −−> theta(w) 2 1 0 −1 −2 0 0.5 1 1.5 −−> w Figure 5.4-8: y(n) = 2x(n − 1) − x(n − 2) Y (w) = (2e−jw − e−j2w )X(w) H(w) = (2e−jw − e−j2w ) = |H(w)| Θ(w) 2cosw − cos2w − j(2sinw − sin2w) 1 = (2cosw − cos2w)2 + (2sinw − sin2w)2 2 2sinw − sin2w = −tan−1 2cosw − cos2w Refer to fig 5.4-9. (j) y(n) = Y (w) = H(w) = = x(n) + x(n − 1) + x(n − 2) + x(n − 3) 4 1 −jw −j2w (1 + e +e + e−j3w )X(w) 4 1 −jw jw e (e + e−jw ) + e−j2w (ejw + e−jw ) 3 1 −jw (e + e−j2w )cosw 2 127 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 3 −−> |H(w)| 2.5 2 1.5 1 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w −−> theta(w) 2 1 0 −1 −2 0 0.5 1 1.5 −−> w Figure 5.4-9: = w (cosw)(cos )e−j3w/2 2 Refer to fig 5.4-10. (k) y(n) Y (w) H(w) x(n) + 3x(n − 1) + 3x(n − 2) + x(n − 3) 8 1 −jw −j2w = (1 + 3e + 3e + e−j3w )X(w) 8 1 (1 + e−jw )3 = 8 = (cosw/2)3 e−j3w/2 = Refer to fig 5.4-11. (l) y(n) Y (w) H(w) |H(w)| Θ(w) = x(n − 4) = e−j4w X(w) = e−j4w = 1 = −4w Refer to fig 5.4-12. (m) y(n) Y (w) = x(n + 4) = ej4w X(w) H(w) = ej4w 128 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 −−> |H(w)| 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w −−> theta(w) 2 1 0 −1 −2 0 0.5 1 1.5 −−> w Figure 5.4-10: 1 −−> |H(w)| 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 −−> w −−> theta(w) 2 1 0 −1 −2 0 0.5 1 1.5 −−> w Figure 5.4-11: 129 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 2 −−> |H(w)| 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w −−> theta(w) 2 1 0 −1 −2 0 0.5 1 1.5 −−> w Figure 5.4-12: |H(w)| Θ(w) = 1 = 4w Refer to fig 5.4-13. (n) y(n) Y (w) H(w) x(n) − 2x(n − 1) + x(n − 2) 4 1 −jw (1 − 2e + e−j2w )X(w) = 4 1 = (1 − e−jw )2 4 = (sin2 w/2)e−j(w−π) = Refer to fig 5.4-14. 5.5 (a) y(n) Y (w) H(w) = x(n) + x(n − 10) = (1 + e−j10w )X(w) = (2cos5w)e−j5w Refer to fig 5.5-1. (b) 130 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 2 −−> |H(w)| 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w −−> theta(w) 2 1 0 −1 −2 0 0.5 1 1.5 −−> w Figure 5.4-13: 1 −−> |H(w)| 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 −−> w −−> theta(w) 4 3 2 1 0 0 0.5 1 1.5 −−> w Figure 5.4-14: 131 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 2 −−> |H(w)| 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w −−> theta(w) 2 1 0 −1 −2 0 0.5 1 1.5 −−> w Figure 5.5-1: π ) 10 π H( ) 3 H( y(n) = 0 5π −j 5π )e 3 3 π π 5π 5π − ) = (6cos )sin( + 3 3 10 3 5π π 47π = (6cos )sin( − ) 3 3 30 = (2cos (c) H(0) = 2 4π H( ) = 2 10 y(n) = 20 + 10cos 2πn π + 5 2 5.6 h(n) H(w) π Steady State Response: H( ) 2 Therefore, yss (n) = δ(n) + 2δ(n − 2) + δ(n − 4) = 1 + 2e−j2w + e−j4w = (1 + e−j2w )2 = 4(cosw)2 e−j2w = 0 = 0, (n ≥ 4) 132 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Transient Response: ytr (n) πn 2 π(n−2) 2 π(n−4) 2 = 10e = 10δ(n) + j10δ(n − 1) + 10δ(n − 2) + j10δ(n − 3) u(n) + 20e u(n − 2) + 10e u(n − 4) 5.7 (a) y(n) Y (w) = x(n) + x(n − 4) = (1 + e−j4w )X(w) H(w) = (2cos2w)e−j2w Refer to fig 5.7-1. (b) 2 −−> |H(w)| 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w −−> theta(w) 2 1 0 −1 −2 0 0.5 1 1.5 −−> w Figure 5.7-1: π π π π = cos n + cos n + cos (n − 4) + cos (n − 4) 2 4 2 4 π π π But cos (n − 4) = cos ncos2π + sin nsin2π 2 2 2 π = cos n 2 π π π and cos (n − 4) = cos ncosπ − sin nsinπ 4 4 4 π = −cos n 4 π Therefore, y(n) = 2cos n 2 (c) Note that H( π2 ) = 2 and H( π4 ) = 0. Therefore, the filter does not pass the signal cos( π4 n). y(n) 133 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 5.8 y(n) = Y (w) = H(w) = = H(0) = Hence, yss (n) = ytr (n) = 1 [x(n) − x(n − 2)] 2 1 (1 − e−j2w )X(w) 2 1 (1 − e−j2w ) 2 π (sinw)ej( 2 −w) π 0, H( ) = 1 2 π 3cos( n + 60o ) 2 0 5.9 x(n) = Acos π4 n (a) y(n) = x(2n) = Acos π2 n ⇒ w = π2 (b) y(n) = x2 (n) = A2 cos2 π4 n = 21 A2 + 21 A2 cos π2 n. Hence, w = 0 and w = (c) π 2 y(n) = x(n)cosπn π = Acos ncosπn 4 A 5π A 3π = cos n + cos n 2 4 2 4 5π 3π and w = Hence, w = 4 4 5.10 (a) y(n) Y (w) H(w) 1 [x(n) + x(n − 1)] 2 1 = (1 + e−jw )X(w) 2 1 (1 + e−jw ) = 2 w w = cos( )e−j 2 2 = Refer to fig 5.10-1. (b) y(n) Y (w) |H(w)| Θ(w) 1 = − [x(n) − x(n − 1)] 2 1 = − (1 − e−jw )X(w) 2 w = sin 2 w π = ej( 2 − 2 ) 134 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 −−> |H(w)| 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w −−> theta(w) 0 −0.5 −1 −1.5 −2 0 0.5 1 1.5 −−> w Figure 5.10-1: Refer to fig 5.10-2. (c) 1 [x(n) + 3x(n − 1) + 3x(n − 2) + x(n − 3)] 8 1 (1 + e−jw )3 X(w) = 8 1 = (1 + e−jw )3 8 3w w = cos3 ( )e−j 2 2 y(n) = Y (w) H(w) Refer to fig 5.10-3. 135 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 −−> |H(w)| 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w −−> theta(w) 2 1.5 1 0.5 0 0 0.5 1 1.5 −−> w Figure 5.10-2: 1 −−> |H(w)| 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 −−> w −−> theta(w) 2 1 0 −1 −2 0 0.5 1 1.5 −−> w Figure 5.10-3: 136 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 5.11 y(n) Y (w) H(w) H(w) or w |H(w)| = x(n) + x(n − M ) = (1 + e−jwM )X(w) = (1 + e−jwM ) 1 wM = (k + )π, k = 0, 1, . . . = 0, at 2 2 = (2k + 1)π/M, k = 0, 1, . . . wM = |2cos | 2 5.12 y(n) = 0.9y(n − 1) + bx(n) (a) 0.9e−jw Y (w) + bX(w) Y (w) H(w) = X(w) b = 1 − 0.9e−jw |H(0)| = 1, ⇒ b = ±0.1 wM cos wM − 2 , 2 >0 Θ(w) = wM π − 2 , cos wM 2 <0 Y (w) 2 = b = 21 ⇒ w0 = 0.105 (b) |H(w0 )|2 = 21 ⇒ 1.81−1.8cosw 0 (c) The filter is lowpass. (d) For |H(w0 )|2 = 12 ⇒ w0 = 3.036. This filter is a highpass filter. 5.13 (a) Px = = N −1 1 X |x(n)|2 N n=0 N −1 X k=0 = c20 |ck |2 +2 N 2 −1 X k=1 Spurious power THD |ck |2 = Px − 2|ck0 |2 Px − 2|ck0 |2 = Px 2|ck0 |2 = 1− Px 137 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 (b) for f 0 = 96 , refer to fig 5.13-1 1 for f 0 = 32 , refer to fig 5.13-2 1 for f 0 = 256 , refer to fig 5.13-3 1 (c) for f 0 = 96 , refer to fig 5.13-4 1 , refer to fig 5.13-5 for f 0 = 32 1 for f 0 = 256 , refer to fig 5.13-6 The total harmonic distortion(THD) reduces as the number of terms in the Taylor approximation is increased. terms= 2 terms= 3 −10 50 terms= 5 100 0 −50 0 50 terms= 6 100 0 −20 −40 0 10 0 50 terms= 8 100 50 100 50 terms= 7 100 50 100 4 −−> x(n) 5 −−> x(n) −−> x(n) 20 −10 0 20 −−> x(n) 0 −20 0 terms= 4 50 −−> x(n) −−> x(n) 10 0 −5 0 50 100 2 0 −2 0 −−> x(n) 1 0 −1 −2 0 Figure 5.13-1: 138 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. terms= 2 terms= 3 −10 20 terms= 5 20 0 −20 0 40 20 terms= 6 0 −20 −40 0 40 10 0 20 terms= 8 40 20 40 20 terms= 7 40 20 40 2 −−> x(n) 2 −−> x(n) −−> x(n) 20 −10 0 20 −−> x(n) 0 −20 0 terms= 4 40 −−> x(n) −−> x(n) 10 0 −2 −4 0 20 1 0 −1 0 40 −−> x(n) 1 0 −1 −2 0 Figure 5.13-2: terms= 2 terms= 3 −10 100 200 terms= 5 300 −50 0 100 200 terms= 6 300 0 −20 −40 0 0 100 200 terms= 8 300 100 300 100 200 terms= 7 300 100 300 4 −−> x(n) 20 −20 0 0 5 −−> x(n) −−> x(n) 40 20 −−> x(n) 0 −20 0 terms= 4 50 −−> x(n) −−> x(n) 10 0 −5 −10 0 100 200 300 2 0 −2 0 200 −−> x(n) 1 0 −1 −2 0 200 Figure 5.13-3: 139 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 0 0 psd 0 −200 0 −200 0.5 1 terms=4 thd=0.5283 −400 0 −50 0.5 1 terms=5 thd=0.6054 −100 0 50 50 0 0 0 −50 −100 0 −50 0.5 1 terms=7 thd=0.06924 100 psd 0 −100 −200 0 psd 50 psd psd terms=3 thd=0.4379 50 −100 psd terms=2 thd=0.06186 200 psd psd orig cos thd=2.22e−16 100 0.5 1 terms=6 thd=0.6295 −50 −100 −100 0 0.5 1 0 terms=8 thd=0.002657 100 0.5 1 0 −100 0.5 1 −200 0 0.5 1 Figure 5.13-4: terms=2 thd=0.07905 0 0 0 −50 0.5 1 terms=4 thd=0.5312 −100 0 −50 0.5 1 terms=5 thd=0.5953 −100 0 50 50 0 0 0 −50 −100 0 −50 0.5 1 terms=7 thd=0.05309 50 psd 0 −50 −100 0 psd 50 psd psd −100 0 psd 50 −50 psd terms=3 thd=0.4439 50 psd psd orig cos thd=0 50 0.5 1 terms=6 thd=0.6509 −50 −100 −100 0 0.5 1 0 terms=8 thd=0.001794 50 0.5 1 0 −50 0.5 1 −100 0 0.5 1 Figure 5.13-5: 140 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. −100 −100 0.5 1 terms=4 thd=0.5271 −100 0.5 1 terms=5 thd=0.6077 −200 0 100 0 0 0 −200 0 psd 100 −100 −100 0.5 1 terms=7 thd=0.07458 100 0 psd psd −200 0 0 100 psd psd −200 0 0 terms=3 thd=0.4357 100 psd 0 psd psd orig cos thd=−6.661e−16 terms=2 thd=0.05647 100 100 −100 0.5 1 terms=6 thd=0.6238 −100 −200 −200 0 0.5 1 0 terms=8 thd=0.002976 100 0.5 1 0 −100 −200 0 0.5 1 −200 0 0.5 1 Figure 5.13-6: 5.14 (a) Refer to fig 5.14-1 1 (b) f0 = 50 1 1.5 1 −−> xq(n) −−> x(n) 0.5 0 0.5 0 −0.5 −0.5 −1 −1 0 100 200 −1.5 0 300 −−> n 100 200 300 −−> n Figure 5.14-1: (c) f0 = bits THD 4 9.4616e − 04 6 5.3431e − 05 8 3.5650e − 06 16 4.2848e − 11 bits THD 4 9.1993e − 04 6 5.5965e − 05 8 3.0308e − 06 16 4.5383e − 11 1 100 141 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (d) As the number of bits are increased, THD is reduced considerably. 5.15 (a) Refer to fig 5.15-1 (b) Refer to fig 5.15-2 f=0.25 f=0.2 1 1 0.5 0.5 0 0 −0.5 −0.5 −1 0 50 −1 0 100 f=0.1 −14 1 4 0.5 2 0 0 −0.5 −2 −1 0 50 50 x 10 −4 0 100 100 f=0.5 50 100 Figure 5.15-1: The response of the system to xi (n) can be seen from fig 5.15-3 5.16 (a) H(w) = ∞ X h(n)e−jwn n=−∞ = = = −1 X ∞ X 1 1 ( )−n e−jwn + ( )n e−jwn 3 3 n=−∞ n=0 1 1 jw 2e − 31 ejw + 4 5 − 3cosw 1 1 − 31 ejw 142 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 magnitude 0.8 0.6 0.4 0.2 0 0 0.05 0.1 0.15 0.2 0.25 freq(Hz) 0.3 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 freq(Hz) 0.3 0.35 0.4 0.45 0.5 phase 0 −0.5 −1 0 Figure 5.15-2: f=0.25 f=0.2 0.1 0.15 0.1 0.05 0.05 0 0 −0.05 −0.1 0 −0.05 50 −0.1 0 100 f=0.1 50 −15 0.3 2 0.2 x 10 100 f=0.5 0 0.1 −2 0 −4 −0.1 −0.2 0 50 −6 0 100 50 100 Figure 5.15-3: 143 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 6 |H(w)| = H(w) = 4 5 − 3cosw 0 (b) (1) 3πn = cos 8 3πn 3πn X(w) = π δ(w − ) + δ(w + ) , −π ≤ w ≤ π 8 8 Y (w) = H(w)X(w) 3πn 4π 3πn δ(w − = ) + δ(w + ) 8 8 5 − 3cos 3π 8 3πn Hence, the output is simply y(n) = Acos 8 3π = H( ) where A = H(w)|w= 3π 8 8 (2) x(n) = . . . , −1, 1, −1, 1, −1, 1, −1, 1, −1, . . . x(n) ↑ H(w)|w=π y(n) Y (w) = cosπn, −∞ < n < ∞ 4 1 4 = = = 5 − 3cosπ 8 2 1 = cosπn 2 π = [δ(w − π) + δ(w + π)] 2 5.17 (a) y(n) h(n) = x(n) − 2cosw0 x(n − 1) + x(n − 2) = δ(n) − 2cosw0 δ(n − 1) + δ(n − 2) (b) H(w) |H(w)| ⇒ |H(w)| = 1 − 2cosw0 e−jw + e−j2w = (1 − e−jw0 e−jw )(1 − ejw0 ejw ) w − w0 w + w0 sin = −4e−jw sin 2 2 = −2e−jw (cosw − cosw0 ) = 2|cosw − cosw0 | = 0 at w = ±w0 Refer to fig 5.17-1. (c) when w0 = π/2, H(w) at w = π/3, H(π/3) y(n) = 1 − ej2w 1 − ej2π/3 = 1ejπ/3 π = |H(π/3)|3cos( n + 30o − 60o ) 3 π o = 3cos( n − 30 ) 3 = 144 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. w0 = pi/3 3 −−> |H(w)| 2.5 2 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w −−> theta(w) 2 1 0 −1 −2 0 0.5 1 1.5 −−> w Figure 5.17-1: 5.18 (a) y(n) H(w) = x(n) − x(n − 4) = 1 − e−j4w = 2e−j2w ejπ/2 sin2w Refer to fig 5.18-1. (b) x(n) y(n) π π π = cos n + cos n, H( n) = 0 2 4 2 π π π 6 H( ) = 0 = 2cos n, H( ) = 2, 4 4 4 (c) The filter blocks the frequency at w = π 2. 5.19 y(n) H(w) 1 [x(n) − x(n − 2)] 2 1 = (1 − e−j2w ) 2 = e−jw ejπ/2 sinw = 145 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 2 −−> |H(w)| 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w −−> theta(w) 2 1 0 −1 −2 0 0.5 1 1.5 −−> w Figure 5.18-1: x(n) H(0) y(n) π 5 + 3sin( n + 60o ) + 4sin(πn + 45o ) 2 π H(π) = 0 = 0, H( ) = 1, 2 π = 3sin( n + 60o ) 2 = 5.20 (a) y(n) Y (w) = x(2n) ⇒ This is a linear, time-varying system ∞ X y(n)e−jwn = = n=−∞ ∞ X x(2n)e−jwn n=−∞ w = X( ) 2 = 1, = 0, |w| ≤ π 2 π ≤ |w| ≤ π 2 (b) y(n) = x2 (n) ⇒ This is a non-linear, time-invariant system 146 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Y (w) = 1 X(w) ∗ X(w) 2π Refer to fig 5.20-1. (c) Y(w) 1/4 0 −π/2 π/2 w Figure 5.20-1: y(n) Y (w) = (cosπn)x(n) ⇒ This is a time-varying system 1 [πδ(w − π) + πδ(w + π)] ∗ X(w) = 2π 1 [X(w − π) + X(w + π)] = 2 3π = 0, |w| ≤ 4 3π 1 , ≤ |w| ≤ π = 2 4 5.21 1 n π h(n) = ( ) cos nu(n) 4 4 (a) 1 − 14 cos π4 z −1 1 − 2( 14 )cos π4 z −1 + ( 41 )2 z −2 H(z) = = (b) Yes. Refer to fig 5.21-1 π (c) Poles at z = 41 e±j 4 , zeros at z = H(w) = (d) √ 1− 82 e−jw √ 1 −j2w e 1− 42 e−jw + 16 1− √ 2 −1 8 z 1 −2 2 −1 + 16 z 4 z 1− √ √ 2 8 . . Refer to fig 5.21-2. x(n) = X(z) = 1 ( )n u(n) 4 1 1 − 14 z −1 147 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(n) + y(n) + z -1 z -1 - 2 /8 2 /4 + z -1 -1/16 Figure 5.21-1: Y (z) = X(z)H(z) = y(n) = √ 1 2 −1 1 (1 − ) 2 2√ 8 z + 1 −1 1 2 −1 1 − 4z 1 − 4 z + 16 z −2 √ √ 1+ 2 2 −1 8 z √2 + 1 −2 2 −1 z 1 − 4 z + 16 √ 1 1 nh π i π ( ) 1 + cos n + (1 + 2)sin n u(n) 2 4 4 4 5.22 y(n) = x(n) − x(n − 10) (a) H(w) = 1 − e−j10w π |H(w)| Θ(w) = 2e−j5w ej 2 sin5w = 2|sin5w|, π = − 5w, for sin5w > 0 2 π = − 5w + π, for sin5w < 0 2 Refer to fig 5.22-1. (b) 148 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1.4 1.3 −−> |H(w)| 1.2 1.1 1 0.9 0.8 0 0.5 1 1.5 2 2.5 3 3.5 −−> w Figure 5.21-2: 2 −−> |H(w)| 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w −−> theta(w) 2 1 0 −1 −2 0 0.5 1 1.5 −−> w Figure 5.22-1: 149 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. π )| 10 π |H( )| 3 π )=0 10 π π π 3, Θ( ) = 6 H( ) = − = 3 3 6 √ π π π = 2cos n + 3 3sin( n − ) 10 3 15 2π = 0, H( ) = 0 5 = 0 |H( (1) = Hence, y(n) H(0) (2) Hence, y(n) 2, √ 6 H( 5.23 (a) h(n) = = = = Z 1 2π π X(w)ejwn dw −π "Z 1 2π 3π 8 jwn e − 3π 8 dw − Z π 8 −jwn e dw −π 8 # 1 3π π sin n − sin n πn 8 8 π π 2 sin ncos n πn 8 4 (b) Let h1 (n) = Then, H1 (w) = and 2, 0, 2sin π8 n nπ |w| ≤ π8 π 8 < |w| < π π h(n) = h1 (n)cos n 4 5.24 y(n) = Y (z) = H(z) = = 1 1 y(n − 1) + x(n) + x(n − 1) 2 2 1 1 −1 z Y (z) + X(z) + z −1 X(z) 2 2 Y (z) X(z) 1 + 21 z −1 1 − 21 z −1 (a) H(z) = h(n) = 2 −1 1 − 21 z −1 1 2( )n u(n) − δ(n) 2 150 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) H(w) = ∞ X h(n)e−jwn n=0 = 1− 2 1 −jw 2e 1 −jw 2e 1 −jw 2e −1 1+ 1− = H(z)|z=ejw = (c) π H( ) = 2 = π 1 + 12 e−j 2 π 1 − 12 e−j 2 1 − j 12 1 + j 12 −1 1 1e−j2tan 2 π π 1 = cos( n + − 2tan−1 ) 2 4 2 = Hence, y(n) 5.25 Refer to fig 5.25-1. 5.26 H(z) = H(w) = = = y(n) = for x(n) = y(0) = y(1) = y(2) = y(3) = y(4) = π π (1 − ej 4 z −1 )(1 − e−j 4 z −1 ) √ 1 − 2z −1 + z −2 √ 1 − 2e−jw + e−2jw √ 2 −jw 2e (cosw − ) 2 √ x(n) − 2x(n − 1) + x(n − 2) π sin u(n) 4 x(0) = 0 √ √ 2 x(1) − 2x(0) + x(−1) = 2 √ √ 2 √ x(2) − 2x(1) + x(0) = 1 − 2 +0=0 2 √ √ √ 2 √ 2 x(3) − 2x(2) + x(1) = − 2+ =0 2 2 0 151 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. |X(w)| for (b) 8 3 6 magnitude magnitude |X(w)| for (a) 4 2 1 4 2 0 0 1 2 3 0 0 4 1 |X(w)| for (c) 2 3 4 3 4 |X(w)| for (d) 1.5 12 magnitude magnitude 10 1 8 6 4 2 0.5 0 1 2 3 0 0 4 1 2 Figure 5.25-1: 5.27 −1 1−z (a) H(z) = k 1+0.9z −1 . Refer to fig 5.27-1. (b) H(w) |H(w)| Θ(w) 1 − e−jw 1 + 0.9e−jw 2|sin w2 | = k√ 1.81 + 1.8cosw 0.9sinw sinw + tan−1 = tan−1 1 − cosw 1 + 0.9cosw = k −jπ 1−e 2 (c) H(π) = k 1+0.9e −jπ = k 0.1 = 20k = 1 ⇒ k = 1 [x(n) − x(n − 1)] (d) y(n) = −0.9y(n − 1) + 20 (e) π H( ) = 6 y(n) = 1 20 π 0.014ejΘ( 6 ) π 0.028cos( n + 134.2o ) 6 5.28 −1 1+bz (a) H(z) = b0 1+az −1 . Refer to fig 5.28-1. (b) For a = 0.5, b = −0.6, −1 H(z) = b0 1−0.6z 1+0.5z −1 . Since the pole is inside the unit circle and the 152 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Figure 5.27-1: filter is causal, it is also stable. Refer to fig 5.28-2. (c) H(z) ⇒ |H(w)| 2 1 + 0.5z −1 1 − 0.5z −1 5 + cosw = b20 45 4 − cosw = b0 The maximum occurs at w = 0. Hence, 9 H(w)|w=0 = b20 41 4 9b20 = 1 1 = ± 3 = ⇒ b0 (d) Refer to fig 5.28-3. (e) Refer to fig 5.28-4. obviously, this is a highpass filter. By selecting b = −1, the frequency response of the highpass filter is improved. 5.29 |H(w)| 2 d 1 dw |H(w)|2 = = A [1 + r2 − 2rcos(w − Θ)] [1 + r2 − 2rcos(w + Θ)] 1 [2rsin(w − Θ)(1 + r2 − 2rcos(w + Θ)) A +2rsin(w + Θ)(1 + r2 − 2rcos(w − Θ))] 153 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Direct form I: x(n) b0 y(n) + + -1 z -1 z b b0 -a Direct form II : x(n) + + b0 y(n) -1 z -a b Figure 5.28-1: z-plane Figure 5.28-2: 154 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. |H(w)| 1 |H(w)| 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 w phase 0 phase −0.2 −0.4 −0.6 −0.8 −1 0 0.5 1 1.5 w Figure 5.28-3: -0.8 -b z-plane Figure 5.28-4: 155 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. = 0 (1 + r )(sin(w − Θ) + sin(w + Θ)) = 2r [sin(w − Θ)cos(w + Θ) + sin(w + Θ)cos(w − Θ)] 2 (1 + r2 )2sinwcosΘ Therefore, cosw wr = 2rsin2w = 4rsinwcosw 1 + r2 = cosΘ 2r 2 −1 1 + r = cos cosΘ 2r 5.30 y(n) = H(w) = = = |H(w)| = Θ(w) = 1 1 1 x(n) + x(n − 1) + x(n − 2) 4 2 4 1 1 −jw 1 −j2w + e + e 4 2 4 1 + e−jw 2 ) ( 2 w e−jw cos2 2 2w cos 2 6 H(w) = −w Refer to fig 5.30-1 5.31 (a) x(n) = X(z) = Hence, H(z) = = 1 ( )n u(n) + u(−n − 1) 4 −1 1 1 + , ROC: < |z| < 1 1 − z −1 4 1 − 14 z −1 Y (z) X(z) 1 − z −1 , ROC: |z| < 1 1 + z −1 (b) Y (z) = − 34 z −1 (1 − 41 z −1 )(1 + z −1 ) 3 − 53 5 1 −1 + 1 + z −1 1 − 4z 3 1 3 = − ( )n u(n) − (−1)n u(−n − 1) 5 4 5 = y(n) 156 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 −−> |H(w)| 0.8 0.6 0.4 0.2 0 −4 −3 −2 −1 0 −−> w 1 2 3 4 −3 −2 −1 0 −−> w 1 2 3 4 −−> theta(w) 4 2 0 −2 −4 −4 Figure 5.30-1: 5.32 y(n) H(w) = b0 x(n) + b1 x(n − 1) + b2 x(n − 2) = b0 + b1 e−jw + b2 e−j2w (a) 2π ) 3 H(0) For linear phase, b0 H( select b0 These conditions yield = b0 + b1 e−j 2π 3 + b2 e−j 4π 3 =0 = b0 + b1 + b2 = 1 = ±b2 . = b2 (otherwise b1 = 0). b 0 = b1 = b2 = Hence, H(w) = 1 3 1 −jw e (1 + 2cosw) 3 (b) H(w) = Θ(w) = 1 (1 + 2cosw) 3 −w, −w + π, for 1 + 2cosw > 0 for 1 + 2cosw < 0 157 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Refer to fig 5.32-1. 1 −−> |H(w)| 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w 2 −−> theta(w) 1 0 −1 −2 −3 0 0.5 1 1.5 −−> w Figure 5.32-1: 5.33 (a) y(n) = M X 1 x(n − k) 2M + 1 k=−M H(w) = = M X 1 e−jwk 2M + 1 k=−M # " M X 1 coswk 1+2 2M + 1 k=1 (b) y(n) = H(w) = M −1 X 1 1 1 x(n + M ) + x(n − M ) x(n − k) + 4M 2M 4M k=−M +1 # " M −1 X 1 1 coswk 1+2 cosM w + 2M 2M k=1 158 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. The filter in (b) provides somewhat better smoothing because of its sharper attenuation at the high frequencies. 5.34 H(z) = = H(w) = = = |H(w)| Θ(w) H(w) = = 1 + z + z2 + . . . + z8 1 − z9 1 − z −1 1 − e−j9w 1 − e−jw e−j9w/2 sin9w/2 e−jw/2 sinw/2 sin9w/2 e−j4w sinw/2 sin9w/2 | | sinw/2 −4w, when sin9w/2 > 0 = −4w + π, when sin9w/2 < 0 2πk = 0, at w = , k = 1, 2, . . . , 8 9 The corresponding analog frequencies are kFs 9 , k = 1, 2, 3, 4, or 19 kHz, 92 kHz, 93 kHz, 94 kHz. 5.35 Refer to fig 5.35-1. l 1/2 Figure 5.35-1: 159 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. H(w) (1 − ej3π/4 z −1 )(1 − e−j3π/4 z −1 ) (1 − 12 z −1 )2 = H(z)|z=ejw H(0) = G H(z) = G (1 − ej3π/4 )(1 − e−j3π/4 ) (1 − 12 )2 |H(w)| = 1⇒G l2 = 2+ √ l2 1 4 =1 2 1 √ = 0.073 4(2 + 2) G = 5.36 Hz (w) = = 1 − rejθ e−jw 1 − rcos(w − θ) + jrsin(w − θ) (a) |Hz (w)| 20log10 |Hz (w)| 1 = {[1 − rcos(w − θ)]2 + [rsin(w − θ)]2 } 2 = = 1 [1 + r2 − 2rcos(w − θ)] 2 10log10 [1 − 2rcos(w − θ) + r2 ] Hence proved. (b) Θz (w) imag. part real part rsin(w − θ) = tan−1 1 − rcos(w − θ) = tan−1 Hence proved. (c) τgz (w) = − = − = dΘz (w) dw 1 1+ r 2 sin2 (w−θ) [1−rcos(w−θ)]2 [1 − rcos(w − θ)]rcos(w − θ) − rsin(w − θ)(rsin(w − θ)) [1 − rcos(w − θ)]2 r2 − rcos(w − θ) 1 + r2 − 2rcos(w − θ) Hence proved. (d) Refer to fig 5.36-1. 5.37 Hp (w) = 1 , 1 − rejθ e−jw r<1 160 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. magnitude theta=0 phase theta=0 10 group delay theta=0 1 20 0 10 0 −10 0 −20 −5 0 5 magnitude theta=1.571 10 −1 −5 0 5 phase theta=1.571 1 0 −10 −5 0 5 group delay theta=1.571 20 10 0 −10 0 −20 −5 0 5 magnitude theta=3.142 10 −1 −5 0 5 phase theta=3.142 1 0 −10 −5 0 5 group delay theta=3.142 20 10 0 −10 −20 −5 0 0 5 −1 −5 0 5 −10 −5 0 5 Figure 5.36-1: 161 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (a) |Hp (w)| 1 = θ)]2 {[1 − rcos(w − 1 |Hz (w)| 1 20log10 ( ) |Hz (w)| −20log10 |Hz (w)| −|Hz (w)|dB = |Hp (w)|dB = = = 1 + [rsin(w − θ)]2 } 2 Hence proved. (b) 1 − rcos(w − θ) − jrsin(w − θ) [1 − rcos(w − θ)]2 + [rsin(w − θ)]2 rsin(w − θ) = −tan−1 1 − rcos(w − θ) = −Θz (w) Hp (w) = Θp (w) Hence proved. (c) τgp (w) dΘp (w) dw d(−Θz (w)) = − dw dΘz (w) = dw = −τgz (w) = − Hence proved. 5.38 Hz (w) = (1 − rejθ e−jw )(1 − re−jθ e−jw ) = (1 − re−j(w−θ) )(1 − re−j(w+θ) ) = A(w)B(w) (a) |Hz (w)| |Hz (w)|dB = |A(w)b(w)| = |A(w)||B(w)| = 20log10 |Hz (w)| = 10log10 [1 − 2rcos(w − θ) + r2 ] + 10log10 [1 − 2rcos(w + θ) + r2 ] (b) 6 Hz (w) = A(w) + 6 B(w) rsin(w + θ) rsin(w − θ) + tan−1 = tan−1 1 − rcos(w − θ) 1 − rcos(w + θ) 6 162 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (c) τgz (w) dΘz (w) dw z = τA (w) + τgB (w) = − r2 − rcos(w + θ) r2 − rcos(w − θ) + 2 1 + r − 2rcos(w − θ) 1 + r2 − 2rcos(w + θ) = (d) Hp (w) Therefore, |Hp (w)| |Hp (w)|dB on the same lines of prob4.62 Θp (w) τgp (w) 1 Hz (w) 1 = |Hz (w)| = −|Hz (w)|dB = = −Θz (w) and = −τgz (w) (e) Refer to fig 5.38-1. magnitude theta=0 phase theta=0 10 1.5 5 1 0 0.5 −5 0 −10 −0.5 −15 −1 group delay theta=0 200 150 100 50 −20 −5 0 5 −1.5 −5 magnitude theta=1.571 0 5 phase theta=1.571 10 1.5 5 1 0 0.5 −5 0 −10 −0.5 −15 −1 0 −5 0 5 group delay theta=1.571 200 150 100 50 −20 −5 0 5 −1.5 −5 0 5 0 −5 0 5 Figure 5.38-1: 163 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 5.39 (a) |H1 (w)| 2 = = 2 |H1 (w)| = 1 ⇒ cosw1 2 = (1 − a)2 (1 − acosw)2 + a2 sin2 w (1 − a)2 1 + a2 − 2acosw 4a − 1 − a2 2a (b) |H2 (w)| 2 = = 2 |H2 (w)| = 1 ⇒ cosw2 2 = 1 − a 2 (1 + cosw)2 + sin2 w ) 2 (1 − acosw)2 + a2 sin2 w (1 − a)2 2(1 + cosw) 2 1 + a2 − 2acosw 2a 1 + a2 ( By comparing the results of (a) and (b), we find that cosw2 > cosw1 and, hence w2 < w1 Therefore, the second filter has a smaller 3dB bandwidth. 5.40 h(n) = cos(w0 n + Θ) = cosw0 ncosΘ − sinw0 nsinΘ use the coupled-form oscillator shown in figure 5.38 and multiply the two outputs by cosΘ and sinΘ, respectively, and add the products, i.e., yc (n)cosΘ + ys (n)sinΘ = cos(w0 n + Θ) 5.41 (a) y(n) yR (n − 1) + jyI (n − 1) = ejw0 y(n − 1) + x(n) = (cosw0 + jsinw0 ) [yR (n − 1) + jyI (n − 1)] + x(n) = yR (n − 1)cosw0 − yI (n − 1)sinw0 + x(n) +j [yR (n − 1)sinw0 + yI (n − 1)cosw0 ] (b)Refer to fig 5.41-1. (c) Y (z) = ejw0 z −1 Y (z) + 1 1 = jw 1 − e 0 z −1 y(n) = ejnw0 u(n) Hence, yR (n) yI (n) = [cosw0 n + jsinw0 n] u(n) = cosw0 nu(n) = sinw0 nu(n) 164 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(n) + y (n) R + cos w 0 -sin w0 sin w0 z -1 z -1 yI (n) + cos w0 Figure 5.41-1: (d) n yR (n) yI (n) 0 1√ 1 23 0 12 2 1 2 √ 3 2 3 0 1 4 1 − √2 3 2 5√ − 23 1 2 6 7√ −1 − 23 0 − 21 8 1 −√ 2 − 23 9 0 1 5.42 (a) poles: p1,2 = re±jw0 zeros: z1,2 = e±jw0 (b) For w = w0 , H(w0 ) = 0 For w 6= w0 , the poles and zeros factors in H(w) cancel, so that H(w) = 1. Refer to fig 5.42-1. (c) 2 |H(w)| 2 where w0 d|H(w)| dw = G2 |1 − ejw0 e−jw | |1 − e−jw0 e−jw | 2 2 2 |1 − rejw0 e−jw | |1 − re−jw0 e−jw | 2(1 − rcos(w + w0 )) 2(1 − cos(w − w0 )) = G2 1 + r2 − 2rcos(w − w0 ) 1 + r2 − 2rcos(w + w0 ) π . Then = 3 2 |H(π)| 2 = 0⇒w=π = 4G2 ( 3 2 1 + r + r2 )2 = 1 165 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Figure 5.42-1: G = 1 (1 + r + r2 ) 3 (d) Refer to fig 5.42-2. (e) 2 |H(w)| 2 = G2 In the vicinity of w = w0 , we have 2 |1 − ejw0 e−jw | |1 − e−jw0 e−jw | 2 2 |1 − rejw0 e−jw | |1 − re−jw0 e−jw | 2 |H(w)| 2 ≈ G2 = cos(w − w0 ) = w1,2 = B3dB = w1 − w2 = = = = |1 − ejw0 e−jw | 2 |1 − rejw0 e−jw | 2(1 − cos(w − w0 )) 1 G2 = 1 + r2 − 2rcos(w − w0 ) 2 2 2 1 + r − 4G 2r − 4G2 1 + r2 − 4G2 ) w0 ± cos−1 ( 2r − 4G2 1 + r2 − 4G2 2cos−1 ( ) 2r − 4G2 r−1 2cos−1 (1 − ( √ )2 ) 2 s 1−r 2 2( √ )2 2 √ 2 1−r 166 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(n) + + 1+r+r2 3 y(n) z -1 + -2r cos w0 -2cos w0 + z -1 r2 Figure 5.42-2: 5.43 For the sampling frequency Fs = 500samples/sec., the rejected frequency should be w1 = 60 6 4 2π( 100 ) = 25 π. The filter should have unity gain at w2 = 2π( 200 500 ) = 5 π. Hence, 6 π) = 0 25 4 and H( π) = 1 5 6π 6π H(w) = G(1 − ej 25 e−jw )(1 − e−j 25 e−jw ) 6π = Ge−jw [2cosw − 2cos ] 25 4 4 6 H( π) = 2G|[cos( π) − cos( π)]| = 1 5 5 25 H( Hence, G = 1 2 6 cos 25 π − cos 45 π 5.44 From (5.4.22) we have, H(w) = b0 2 = b20 1 − e−j2w (1 − rej(w0 −w) )(1 − re−j(w0 −w) ) 2 |H(w0 )| |1 − e−j2w | =1 2 (1 − r) [(1 − rcos2w0 )2 + (rsin2w0 )2 ] 167 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Hence, b0 = p (1 − r)2 (1 − 2rcos2w0 + r2 ) 2|sinw0 | 5.45 From α β and cosα + cosβ cos(n + 1)w0 + cos(n − 1)w0 with y(n) y(n + 1) + y(n − 1) y(n) = (n + 1)w0 = (n − 1)w0 α+β α−β = 2cos cos , we obtain 2 2 = 2cosnw0 cosw0 = cosw0 n, it follows that = 2cosw0 y(n) or equivalently, = 2cosw0 y(n − 1) − y(n − 2) 5.46 sinα + sinβ when α sinnw0 + sin(n − 2)w0 If y(n) y(n) Initial conditions: y(−1) α−β α+β cos , we obtain 2 2 = nw0 and β = (n − 2)w0 , we obtain = 2sin(n − 1)w0 cosw0 = 2sin = Asinw0 n, then = 2cosw0 y(n − 1) − y(n − 2) = −Asinw0 , y(−2) = −Asin2w0 5.47 For h(n) H(z) Hence, y(n) For h(n) H(z) Hence, y(n) = Acosw0 nu(n) 1 − z −1 cosw0 = A 1 − 2cosw0 z −1 + z −2 = 2cosw0 y(n − 1) − y(n − 2) + Ax(n) − Acosw0 x(n − 1) = Asinnw0 u(n) z −1 sinw0 = A 1 − 2cosw0 z −1 + z −2 = 2cosw0 y(n − 1) + y(n − 2) + Ax(n) − Asinw0 x(n − 1) 5.48 Refer to fig 5.48-1. y1 (n) = Acosnw0 u(n), y2 (n) = Asinnw0 u(n) 168 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(n) + + z -1 + y (n) 1 -A cos w 0 2r cos w0 z -1 A sin w0 -1 y (n) 2 Figure 5.48-1: 5.49 (a) Replace z by z 8 . We need 8 zeros at the frequencies w = 0, ± π4 , ± π2 , ± 3π 4 , π Hence, H(z) Hence, y(n) π π 1 − z −8 1 − az −8 Y (z) = X(z) = ay(n − 8) + x(n) − x(n − 8) = 3π (b) Zeros at 1, e±j 4 , e±j 2 , e±j 4 , −1 1 1 π 1 π 1 3π Poles at a 8 , a 8 e±j 4 , a 8 e±j 2 , a 8 e±j 4 , −1. Refer to fig 5.49-1. (c) 2|cos4w| |H(w)| = √ 1 − 2acos8w + a2 asin8w −tan−1 1−acos8w , cos4w ≥ 0 6 H(w) = −1 asin8w π − tan 1−acos8w , cos4w < 0 Refer to fig 5.49-2. 5.50 1 = 0.071, which results in a We use Fs /L = 1cycle/day. We also choose nulls of multiples of 14 narrow passband of k±0.067. Thus, M + 1 = 14 or, equivalently M = 13 169 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. X -1 X X X Unit circle X X 1 X X Figure 5.49-1: magnitude of notch filter 10 −−> |H(f)| 8 6 4 2 0 0 0.05 0.1 0.15 0.2 0.25 −−> f 0.3 0.35 0.4 0.45 0.5 0.4 0.45 0.5 magnitude of a high pass filter 10 −−> |H(f)| 8 6 4 2 0 0 0.05 0.1 0.15 0.2 0.25 −−> f 0.3 0.35 Figure 5.49-2: 170 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 5.51 (a) H(w) = 2 = |H(w)| = = Hence, |H(w)| = 1 − a1 e−jw 1 − ae−jw (1 − a1 cosw)2 + ( a1 sinw)2 (1 − acosw)2 + (asinw)2 1 + a12 − a2 cosw 1 + a2 − 2acosw 1 for all w a2 1 a For the two-pole, two-zero system, H(w) = = Hence, |H(w)| 1− 2 cosw0 z −1 + 1 = (1 − 1r ejw0 e−jw )(1 − 1r e−jw0 e−jw ) (1 − re−jw0 e−jw )(1 − rejw0 e−jw ) 1 − 2r cosw0 e−jw + r12 e−j2w 1 − 2rcosw0 e−jw + r2 e−j2w 1 r2 z −2 r r2 (b) H(z) = 1−2rcosw −1 +r 2 z −2 0z Hence, we need two delays and four multiplies per output point. 5.52 (a) w0 = H(z) = = H(w) = |H(0)| = b0 = 6π 60 .2π = 200 50 6π 6π (1 − ej 50 z −1 )(1 − e−j 50 z −1 )b0 6π b0 (1 − 2cos z −1 + z −2 ) 50 6π −jw 2b0 e (cosw − cos ) 50 6π 2b0 (1 − cos ) = 1 25 1 2(1 − cos 6π 25 ) (b) 6π H(z) = b0 |H(0)| = b0 = 6π (1 − ej 25 z −1 )(1 − e−j 25 z −1 ) 6π 6π (1 − rej 25 z −1 )(1 − re−j 25 z −1 ) 2b0 (1 − cos 6π 25 ) =1 6π 1 − 2rcos 25 + r2 2 1 − 2rcos 6π 25 + r 6π 2(1 − cos 25 ) 171 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 5.53 h(n) Hence, Hr (w) π Hr ( ) 4 3π Hr ( ) 4 1.85h(0) + 0.765h(1) −0.765h(0) + 1.85h(1) h(1) = {h(0), h(1), h(2), h(3)} where h(0) = −h(3), h(1) = −h(2) 3w w = 2(h(0)sin + h(1)sin ) 2 2 3π π 1 = 2h(0)sin + 2h(1)sin ) = 8 8 2 9π 3π = 2h(0)sin + 2h(1)sin ) = 1 8 8 1 = 2 = 1 = 0.56, h(0) = 0.04 5.54 (a) H(z) = b0 H(w) = b0 |H(w)| = b0 −1 (1 − z −1 )(1 + z −1 )(1 − 2cos 3π + z −2 ) 4 z 4π −1 2π −1 −2 (1 − 1.6cos 9 z + 0.64z )(1 − 1.6cos 9 z + 0.64z −2 ) (2je−jw sinw)(2e−jw )(cosw − cos 3π 4 ) 2π −jw 4π −jw −j2w (1 − 1.6cos 9 e + 0.64e )(1 − 1.6cos 9 e + 0.64e−j2w ) |1 − −jw 1.6cos 2π 9 e 4|sinw||cosw − cos 3π 4 | −jw + 0.64e−j2w | + 0.64e−j2w ||1 − 1.6cos 4π 9 e 5π )| = 1 ⇒ b0 = 0.089 12 (b) H(z) as given above. (c) Refer to fig 5.54-1. The filter designed is not a good approximation of the desired response. |H( 5.55 Y (w) = e−jw X(w) + dX(w) dw (a) For x(n) dX(w) Hence, dw h(n) = δ(n), X(w) = 1. 0, and Y (w) = e−jw Z π 1 Y (w)ejwn dw = 2π −π Z π 1 = ejw(n−1) dw 2π −π 1 = ejw(n−1) |π−π 2πj(n − 1) sinπ(n − 1) = π(n − 1) = (b) y(n) = x(n − 1) − jnx(n). the system is unstable and time-variant. 172 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. −−> |H(f)| 1.5 1 0.5 0 0 0.05 0.1 0.15 0.2 0.25 −−> f 0.3 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 −−> f 0.3 0.35 0.4 0.45 0.5 4 −−> phase 2 0 −2 −4 0 Figure 5.54-1: 5.56 H(w) = ∞ X h(n)e−jwn n=−∞ = = G(w) 1, |w| ≤ wc 0, wc < |w|π ∞ X g(n)e−jwn = = = n=−∞ ∞ X n h( )e−jwn 2 n=−∞ ∞ X h(m)e−j2wm m=−∞ = H(2w) Hence, G(w) = 1, 0, |w| ≤ w2c and |w| ≥ π − wc wc 2 < |w| < π − 2 wc 2 173 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 5.57 y(n) = x(n) − x(n) ∗ h(n) = [δ(n) − h(n)] ∗ x(n) The overall system function is 1 − H(z) and the frequency response is 1 − H(w). Refer to fig 5.57-1. H(w) 1-H(w) 1 1 0 w w c 0 w 1-H(w) H(w) 1 1 0 π w c w c π w w 0 wc Figure 5.57-1: 5.58 (a) Since X(w) and Y (w) are periodic, it is observed that Y (w) = X(w − π). Therefore, y(n) = ejπn x(n) = (−1)n x(n) (b) x(n) = (−1)n y(n). 5.59 y(n) = 0.9y(n − 1) + 0.1x(n) (a) H(z) = π ) 2 = Hbp (w) = H(w − = 0.1 1 − 0.9z −1 0.1 π 1 − 0.9e−j(w− 2 ) 0.1 1 − j0.9e−jw 174 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. π (b) h(n) = 0.1(0.9ej 2 )n u(n) (c) Since the impulse response is complex, a real input signal produces a complex-valued output signal. For the output to be real, the bandpass filter should have a complex conjugate pole. 5.60 (a) Let g(n) Then, G(w) D dH(w) dw Therefore, But D = nh(n) dH(w) = j dw ∞ X 2 |g(n)| = = n=−∞ Z π = 1 2π 1 2 |G(w)| dw 2π −π Z π 1 = G(w)G∗ (w)dw 2π −π ∗ Z π dH(w) dH(w) 1 dw j (−j) = 2π −π dw dw dΘ(w) jΘ(w) dH(w) e = + j|H(w)| dw dw Z π −π ( dH(w) dw 2 + |H(w)| 2 dΘ(w) dw 2 ) dw (b) D consists of two terms, both of which are positive. For |H(w)| = 6 0, D is minimized by selecting Θ(w) = 0, in which case the second term becomes zero. 5.61 y(n) = ay(n − 1) + bx(n), 0 < a < 1 H(z) = (a) H(w) |H(0)| b b 1 − az −1 b 1 − ae−jw |b| =1 = 1−a = ±(1 − a) = (b) |H(w)| 2 = ⇒ 2b2 = cosw = 1 b2 = 1 + − 2acosw 2 1 + a2 − 2acosw 1 1 + a2 − 2(1 − a)2 2a a2 175 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 (4a − 1 − a2 ) 2a 4a − 1 − a2 = cos−1 ( ) 2a = w3 (c) w3 Let f (a) Then f ′ (a) (a − 1)2 ) 2a (a − 1)2 = 1− 2a a2 − 1 = − 2a2 1 − a2 = >0 2a2 = cos−1 (1 − Therefore f (a) is maximum at a = 1 and decreases monotonically as a → 0. Consequently, w3 increases as a → 0. (d) b w3 = ±(1 − a) 4a − 1 − a2 = cos−1 ( ) 2a The 3-dB bandwidth increases as a → 0. 5.62 y(n) = x(n) + αx(n − M ), α > 0 H(w) |H(w)| Θ(w) 1 + αe−jwM p 1 + 2αcoswM + α2 = −αsinwM = tan−1 1 + αcoswM = Refer to fig 5.62-1. 5.63 (a) Y (z) = H(z) = = = 1 X(z) + z −1 X(z) 2 Y (z) X(z) 1 (1 + z −1 ) 2 z+1 2z 176 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. M=10, alpha = 0.1 2 −−> |H(f)| 1.5 1 0.5 0 0 0.05 0.1 0.15 0.2 0.25 −−> f 0.3 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 −−> f 0.3 0.35 0.4 0.45 0.5 1 −−> phase 0.5 0 −0.5 −1 0 Figure 5.62-1: (b) Zero at z = −1 and a pole at z = 0. The system is stable. 1 −X(z) + z −1 X(z) 2 Y (z) H(z) = X(z) 1 (−1 + z −1 ) = 2 z−1 = − 2z Zero at z = 1 and a pole at z = 0. The system is stable. Y (z) = (c) Y (z) = = 1 (1 + z −1 )3 8 1 (1 + z)3 8 z3 Three zeros at z = −1 and three poles at z = 0. The system is stable. 5.64 Y (z) = X(z) + bz −2 X(z) + z −4 X(z) 177 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. H(z) = Y (z) X(z) For b = 1, H(w) = 1 + bz −2 + z −4 = 1 + ej2w + e−j4w |H(w)| = (1 + 2cosw)e−jw = |1 + 2cosw| 6 H(w) = −w, 1 + 2cosw ≥ 0 π − w, 1 + 2cosw < 0 Refer to fig 5.64-1. 3 −−> |H(w)| 2.5 2 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w 2 −−> phase 1 0 −1 −2 −3 0 0.5 1 1.5 −−> w Figure 5.64-1: b = −1, H(w) |H(w)| 6 H(w) = = 1 − e−jw + e−j2w = (2cosw − 1)e−jw = |2cosw − 1| −w, π − w, −1 + 2cosw ≥ 0 −1 + 2cosw < 0 Refer to fig 5.64-2. 178 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 3 −−> |H(w)| 2.5 2 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 2 2.5 3 3.5 −−> w 3 −−> phase 2 1 0 −1 −2 0 0.5 1 1.5 −−> w Figure 5.64-2: 5.65 y(n) = x(n) − 0.95x(n − 6) (a) Y (z) H(z) z6 z = X(z)(1 − 0.95z −6 ) = (1 − 0.95z −6 ) z 6 − 0.95 = z6 = 0.95 = 1 (0.95) 6 ej2πk/6 , k = 0, 1, . . . , 5 6th order pole at z = 0. Refer to fig 5.65-1. (b)Refer to fig 5.65-2. 1 z6 . r = (0.95) 6 . Refer to fig 5.65-3. (c) Hin (z) = z6 −0.95 (d)Refer to fig 5.65-4. 179 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. r=(0.95)1/6 r X Figure 5.65-1: 2 −−> |H(f)| 1.5 1 0.5 0 0 0.05 0.1 0.15 0.2 0.25 −−> f 0.3 0.35 0.4 0.45 0.5 Figure 5.65-2: 180 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. X X r=(0.95)1/6 r X X X X Figure 5.65-3: 20 −−> |H(f)| 15 10 5 0 0 0.05 0.1 0.15 0.2 0.25 −−> f 0.3 0.35 0.4 0.45 0.5 Figure 5.65-4: 181 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 5.66 (a) H(z) z −1 1 − z −1 − z −2 z −1 = = = If |z| h(n) √ √ 5−1 5+1 If ROC is < |z| < , then 2 2 h(n) If |z| h(n) From H(z), the difference equation is y(n) √ √ 1+ 5 −1 )(1 − 1−2 5 z −1 ) 2 z √1 − √15 5 √ √ + 1+ 5 −1 1 − 1−2 5 z −1 2 z (1 − 1− √ 1+ 5 > 1− is ROC, then 2 # " √ √ 1 1− 5 n 1 1+ 5 n √ ( ) −√ ( ) u(n) = 2 2 5 5 √ √ 1 1− 5 n 1 1+ 5 n = −√ ( ) u(n) − √ ( ) u(−n − 1) 2 2 5 5 √ 5−1 < 1− is ROC, then 2 # " √ √ 1 1− 5 n 1 1+ 5 n ) +√ ( ) u(−n − 1) = −√ ( 2 2 5 5 = y(n − 1) + y(n − 2) + x(n − 1) (b) H(z) The difference equation is y(n) H(z) = 1 1 − e−4a z −4 = e−4a y(n − 1) + x(n) = (1 − 1 4 e−a z −1 = If ROC is |z| h(n) If ROC is |z| h(n) e−a z −1 )(1 + − 1 π ej 2 e−a z −1 )(1 1 4 je−a z −1 + + e−a z −1 )(1 + je−a z −1 ) 1 4 e−a z −1 + 1− 1− 1+ 1+ > 1, then 1 [1 + (j)n + (−1)n + (−j)n ] e−an u(n) = 4 < 1, then 1 = − [1 + (j)n + (−1)n + (−j)n ] e−an u(−n − 1) 4 1 4 je−a z −1 5.67 Y (z) = = 1 − z −1 + 3z −2 − z −3 + 6z −4 (1 + z −1 + 2z −2 )(1 − 2z −1 + 3z −2 ) 182 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. X(z) = Therefore, H(z) = 1 + z −1 + 2z −2 Y (z) X(z) 1 − 2z −1 + 3z −2 = 1, −2, 3 = h(n) ↑ 5.68 y(n) = x(n) = H(z) = = X(z) = Y (z) = Rxx (z) = X(z)X(z −1 ) 1 = (1 − 14 z −1 )(1 − 14 z) = = Hence, rxx (n) = Rhh (z) = = = = Hence, rhh (n) = Rxy (z) = = = Hence, rxy (n) 1 y(n − 1) + x(n) 2 1 ( )n u(n) 4 Y (z) X(z) 1 1 − 12 z −1 1 1 − 14 z −1 1 1 −1 (1 − 4 z )(1 − 12 z −1 ) = −4z −1 (1 − 14 z −1 )(1 − 4z −1 ) 16 16 1 1 − 1 −1 15 1 − 4 z 15 1 − 4z −1 16 1 n 16 ( ) u(n) + (4)n u(−n − 1) 15 4 15 H(z)H(z −1 ) 1 (1 − 12 z −1 )(1 − 12 z) −2z −1 (1 − 12 z −1 )(1 − 2z −1 ) 4 4 1 1 − 1 −1 3 1 − 2z 3 1 − 2z −1 4 1 n 4 ( ) u(n) + (2)n u(−n − 1) 3 2 3 X(z)Y (z −1 ) 1 1 −1 (1 − 4 z )(1 − 14 z)(1 − 21 z) 1 1 1 16 128 16 + + − −1 −1 17 1 − 2z 15 1 − 4z 105 1 − 41 z −1 16 128 1 n 16 n (2) u(−n − 1) − (4)n u(−n − 1) + ( ) u(n) 17 15 105 4 183 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Ryy (z) = Y (z)Y (z −1 ) 1 (1 − 14 z −1 )(1 − 12 z −1 )(1 − 14 z)(1 − 21 z) 64 128 1 1 1 1 128 64 = − − + + 21 1 − 2z −1 105 1 − 4z −1 21 1 − 21 z −1 105 1 − 14 z −1 64 n 128 n 64 1 128 1 n = (2) u(−n − 1) − (4) u(−n − 1) + ( )n u(n) − ( ) u(n) 21 105 21 2 105 4 = Hence, ryy (n) 5.69 (a) h(n) = 10, 9, −7, −8, 0, 5, 3 ↑ The roots(zeros) are 0.8084 ± j0.3370, −0.3750 ± j0.6074, −1.0, −0.7667 All the roots of H(z) are inside the unit circle. Hence, the system is minimum phase. (b) h(n) = {5, 4, −3, −4, 0, 2, 1} H(z) = 5 + 4z −1 − 3z −2 − 4z −3 + 2z −5 + z −6 The roots(zeros) are 0.7753 ± j0.2963, −0.4219 ± j0.5503, −0.7534 ± j0.1900 All the roots of H(z) are inside the unit circle. Hence, the system is minimum phase. 5.70 The impulse response satisfies the difference equation N X = δ(n), a0 = 1 ak h(−k) = a0 h(0) = 1 a0 = n = 1, ⇒ a0 h(1) + a0 h(0) = a1 = k=0 n = 0, ⇒ ak h(n − k) N X k=0 1 h(0) 0 −a0 h(1) −h(1) = 2 h(0) h (0) .. . n = N, ⇒ a0 h(N ) + a1 h(N − 1) + . . . + aN h(0) ⇒ yields aN It is apparent that the coefficients {an } can be determined if we know the order N and the values h(0), h(1), . . . , h(N ). If we do not know the filter order N, we cannot determine the {an }. 5.71 h(n) = b0 δ(n) + b1 δ(n − D) + b2 δ(n − 2D) (a) If the input to the system is x(n), the output is y(n) = b0 x(n) + b1 x(n − D) + b2 x(n − 2D). Hence, the output consists of x(n), which is the input signal, and the delayed signals x(n − D) and x(n − 2D). The latter may be thought of as echoes of x(n). (b) H(w) = b0 + b1 e−jwD + b2 e−j2wD 184 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. |H(w)| Θ(w) = b0 + b1 coswD + b2 cos2wD − j(b1 sinwD + b2 sin2wD) q b0 2 + b1 2 + b2 2 + 2b1 (b0 + b2 )coswD + 2b0 b2 cos2wD = = −tan−1 b1 sinwD + b2 sin2wD b0 + b1 coswD + b2 cos2wD (c) If |b0 + b2 | << |b1 |, then the dominant term is b1 e−jwD and q |H(w)| = b0 2 + b1 2 + b2 2 + 2b1 (b0 + b2 )coswD k and |H(w)| has maxima and minima at w = ± D π, k = 0, 1, 2, . . . (d) The phase Θ(w) is approximately linear with a slope of −D. Refer to fig 5.71-1. 1.2 −−> |H(f)| 1.1 1 0.9 0.8 0 0.05 0.1 0.15 0.2 0.25 −−> f 0.3 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 −−> f 0.3 0.35 0.4 0.45 0.5 4 −−> phase 2 0 −2 −4 0 Figure 5.71-1: 5.72 H(z) = ∞ X B(z) 1 + bz 1 h(n)z −n = = A(z) 1 + az 1 n=0 (a) H(z) Hence, h(0) = 1 + (b − a)z −1 + (a2 − ab)z −2 + (a2 b − a3 )z −3 + (a4 − a3 b)z −5 + . . . = 1, 185 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. h(1) h(2) h(3) h(4) = b − a, = a2 − ab, = a2 b − a3 , = a4 − a3 b (b) y(n) + ay(n − 1) For x(n) h(n) + ah(n − 1) Multiply both sides by h(n) and sum. Then rhh (0) + arhh (1) rhh (1) + arhh (0) rhh (2) + arhh (1) rhh (3) + arhh (2) = x(n) + bx(n − 1) = δ(n), = δ(n) + bδ(n − 1) = h(0) + bh(1) = bh(0) = 0 = 0 By solving these equations recursively, we obtain rhh (0) rhh (1) rhh (2) rhh (3) b2 − 2ab + 1 1 − a2 (ab − 1)(a − b) = 1 − a2 (ab − 1)(a − b) = −a 1 − a2 (ab − 1)(a − b) = a2 1 − a2 = 5.73 x(n) is a real-valued, minimum-phase sequence. The sequence y(n) must satisfy the conditions, y(0) = x(0), |y(n)| = |x(n)|, and must be minimum phase. The solution that satisfies the condition is y(n) = (−1)n x(n). The proof that y(n) is minimum phase proceeds as follows: Y (z) = X y(n)z −n n = X (−1)n x(n)z −n n = X x(n)(−z −1 )n n = X(−z) This preserves the minimum phase property since a factor (1 − αz −1 ) → (1 + αz −1 ) 5.74 Consider the system with real and even impulse response h(n) = 14 , 1, 41 and frequency response √ H(w) = 1 + 12 cosw. Then H(z) = z −1 ( 41 z 2 + z + 41 ). The system has zeros at z = −2 ± 3. We observe that the system is stable, and its frequency response is real and even. However, the inverse system is unstable. Therefore, the stability of the inverse system is not guaranteed. 186 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 5.75 (a) g(n) f (n) Y (w) Then, Y (w) = h(n) ∗ x(n) ⇒ G(w) = H(w)X(w) = h(n) ∗ g(−n) ⇒ F (w) = H(w)G(−w) = F (−w) = H(−w)G(w) = H(−w)H(w)X(w) = H ∗ (w)H(w)X(w) 2 = |H(w)| X(w) 2 (b) But Ha (w) ≡ |H(w)| is a zero-phase system. G(w) = H(w)X(w) F (w) = H(w)X(−w) Y (w) = G(w) + F (−w) = H(w)X(w) + H(−w)X(w) = X(w)(H(w) + H ∗ (−w)) = 2X(w)Re(H(w)) But Hb (w) = 2Re {H(w)} is a zero-phase system. 5.76 (a) Correct. The zeros of the resulting system are the combination of the zeros of the two systems. Hence, the resulting system is minimum phase if the inividual system are minimum phase. (b) Incorrect. For example, consider the two minimum-phase systems. H1 (z) = and H2 (z) = Their sum is H1 (z) + H2 (z) = 1 − 21 z −1 1 − 31 z −1 −2(1 + 31 z −1 ) 1 − 31 z −1 −1 − 76 z −1 , which is not minimum phase. 1 − 13 z −1 5.77 (a) |H(w)| 2 = 5 4 10 9 − cosw − 23 cosw = H(z)H(z −1 )|z=e−jw 5 1 −1 ) 4 − 2 (z + z Hence, H(z)H(z −1 ) = 10 1 −1 ) 9 − 3 (z + z = 1 − 12 z −1 1 − 13 z −1 187 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) 2 = H(z)H(z −1 ) = H(z)H(z −1 ) = Hence, H(z) = or H(z) = |H(w)| 2(1 − a2 ) 1 + a2 − 2acosw 2(1 − a2 ) 1 + a2 − a(z + z −1 ) 2(1 + a)(1 − a) (1 − az −1 )(1 − az) p 2(1 − a2 ) 1 − az −1 p 2(1 − a2 ) 1 − az 5.78 H(z) = = (1 − 0.8ejπ/2 z −1 )(1 − 0.8e−jπ/2 z −1 )(1 − 1.5ejπ/4 z −1 )(1 − 1.5e−jπ/4 z −1 ) 3 (1 + 0.64z −2 )(1 − √ z −1 + 2.25z −2 ) 2 (a) There are four different FIR systems with real coefficients: H1 (z) = H2 (z) = H3 (z) = H4 (z) = 3 (1 + 0.64z −2 )(1 − √ z −1 + 2.25z −2 ) 2 3 −1 −2 (1 + 0.64z )(1 − √ z + 2.25z −2 ) 2 3 (1 + 0.64z −2 )(1 − √ z −1 + 2.25z −2 ) 2 3 −1 −2 (1 + 0.64z )(1 − √ z + 2.25z −2 ) 2 H(z) is the minimum-phase system. (b) H1 (z) = h1 (n) = H2 (z) = h2 (n) = H3 (z) = h3 (n) = H4 (z) = h4 (n) = 1.92 3 1 − √ z −1 + 2.89z −2 − √ z −3 + 1.44z −4 2 2 3 −1.92 1, − √ , 2.89, √ , 1.44 ↑ 2 2 3 1.92 0.64z 2 − √ z + 2.44 − √ z −1 + 2.25z −2 2 2 −1.92 3 0.64, √ , 2.44, − √ , 2.25 ↑ 2 2 3 1.92 2.25z 2 − √ z + 2.44 − √ z −1 + 0.64z −2 2 2 −3 1.92 √ √ 2.25, , 2.44, − , 0.64 2 ↑ 2 3 1.92 1.44z 4 − √ z 3 + 2.89z 2 − √ z + 1 2 2 −1.92 3 1.44, √ , 2.89, − √ , 1, 2 2 ↑ 188 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (c) E1 (n) E2 (n) E3 (n) E4 (n) = {1, 5.5, 13.85, 15.70, 17.77} = {0.64, 2.48, 8.44, 12.94, 18.0} = {2.25, 6.75, 12.70, 14.55, 14.96} = {1.44, 3.28, 11.64, 16.14, 17.14} Clearly, h3 (n) is minimum phase and h2 (n) is maximum phase. 5.79 H(z) = 1+ 1 PN k=1 ak z −k (a) The new system function is H ′ (z) = H(λ−1 z) H ′ (z) = 1 1+ PN k=1 ak λk z −k If pk is a pole of H(z), then λpk is a pole of H ′ (z). 1 Hence, λ < |pmax | is selected then |pk λ| < 1 for all k and, hence the system is stable. PN (b) y(n) = − k=1 ak λk y(n − k) = x(n) 5.80 (a) The impulse response is given in pr10fig 5.80-1. (b) Reverberator 1: refer to fig 5.80-2. 1.2 1 −−> magnitude 0.8 0.6 0.4 0.2 0 0 500 1000 1500 2000 2500 −−> n Figure 5.80-1: 189 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. impulse response for unit1 −−> magnitude 1 0.5 0 0 100 200 300 −−> n 400 500 600 500 600 impulse response for unit2 −−> magnitude 1.5 1 0.5 0 0 100 200 300 −−> n 400 Figure 5.80-2: Reverberator 2: refer to fig 5.80-2. (c) Unit 2 is a better reverberator. (d) For prime number of D1 , D2 , D3 , the reverberations of the signal in the different sections do not overlap which results in the impulse response of the unit being more dense. (e) Refer to fig 5.80-3. (f) Refer to fig 5.80-4 for the delays being prime numbers. 5.81 (a) Refer to fig 5.81-1. (b) Refer to fig 5.81-2. 190 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. phase response for unit1 3 −−> phase 2 1 0 −1 −2 −3 0 1 2 3 4 5 6 7 5 6 7 −−> w phase response for unit2 3 −−> phase 2 1 0 −1 −2 −3 0 1 2 3 4 −−> w Figure 5.80-3: 1.2 1 −−> magnitude 0.8 0.6 0.4 0.2 0 0 500 1000 1500 2000 2500 −−> n Figure 5.80-4: 191 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 30 −−> magnitude 20 10 0 −10 −20 0 0.5 1 1.5 2 −−> w(rad) 2.5 3 3.5 0.5 1 1.5 2 −−> w(rad) 2.5 3 3.5 0 −−> phase −0.5 −1 −1.5 −2 −2.5 0 Figure 5.81-1: −−> magnitude 100 50 0 −50 −100 0 0.5 1 1.5 −−> w(rad) 2 2.5 3 4 −−> phase 2 0 −2 −4 0 0.5 1 1.5 2 −−> w(rad) 2.5 3 3.5 Figure 5.81-2: 192 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 5.82 (a) B Fs z1 z2 z3 z4 H(z) = = 10kHz 20kHz 10k = = 0.5 20k 7.778k = 0.3889 = 20k 8.889k = = 0.4445 20k 6.667k = 0.3334 = 20k = (z − 0.5)(z − 0.3889)(z − 0.4445)(z − 0.3334) (b) Refer to fig 5.82-1. (c) It satisfies the objectives but this filter is not recommended in a practical application because −−> magnitude 0 −50 −100 −150 0 0.5 1 1.5 2 −−> w(rad) 2.5 3 3.5 0.5 1 1.5 2 −−> w(rad) 2.5 3 3.5 4 −−> phase 2 0 −2 −4 0 Figure 5.82-1: in a speech application linear phase for the filter is desired and this filter does not provide linear phase for all frequencies. 5.83 Refer to fig 5.83-1. Practical: 193 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. r = 0.99 r = 0.9 r = 0.6 wr = π6 wr = π6 wr = 0 π Bandwidth = 128 = 0.0245 5π Bandwidth = 32 = 0.49 Bandwidth = 1.1536 Theoretical: r = 0.99, r = 0.9, wr = wr = π 6 π 6 Bandwidth = 2(1 − r) = 0.02 Bandwidth = 2(1 − r) = 0.2 For r very close to 1, the theoretical and practical values match. −−> magnitude 40 30 .... r = 0.99 20 −−−− r = 0.9 __ r = 0.6 10 0 −10 −20 −4 −3 −2 −1 0 −−> w(rad) 1 2 3 4 3 4 4 −−> phase 2 0 .... r = 0.99 −−−− r = 0.9 __ r = 0.6 −2 −4 −4 −3 −2 −1 0 −−> w(rad) 1 2 Figure 5.83-1: 5.84 H(z) = H(z) = = Let B1 (z) B2 (z) A(z) = = (1 − 0.9ej0.4π z −1 )(1 − 0.9e−j0.4π z −1 )(1 − 1.5ej0.6π z −1 )(1 − 1.5e−j0.6π z −1 ) B(z) A(z) (z − 0.9ej0.4π )(z − 0.9e−j0.4π )(z − 1.5ej0.6π )(z − 1.5e−j0.6π ) z4 j0.4π −j0.4π (z − 0.9e )(z − 0.9e ) j0.6π −j0.6π (z − 1.5e )(z − 1.5e ) = z4 194 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. B1 (z) B2 (z) A(z) (z − 0.9ej0.4π )(z − 0.9e−j0.4π )(z −1 − 1.5ej0.6π )(z −1 − 1.5e−j0.6π ) z4 B2 (z) B2 (z −1 ) (z − 1.5ej0.6π )(z − 1.5e−j0.6π ) (z −1 − 1.5ej0.6π )(z −1 − 1.5e−j0.6π ) Hmin (z) = = Hap (z) = = Hap (z) has a flat magnitude response. To get a flat magnitude response for the system, connect a system which is the inverse of Hmin (z), i.e., Hc (z) = = 1 Hmin (z) z4 (z − 0.9ej0.4π )(z − 0.9e−j0.4π )(z −1 − 1.5ej0.6π )(z −1 − 1.5e−j0.6π ) (b) Refer to fig 5.84-1 and fig 5.84-2. pole−zero plots for Hc(z) 901.5 120 60 1 150 30 0.5 180 0 330 210 240 270 300 pole−zero plots for compensated system 901.5 60 120 1 30 150 0.5 180 0 210 330 240 270 300 Figure 5.84-1: 195 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. mag for Hc(z) mag of compensated system 10 2 −−> magnitude −−> magnitude 5 0 −5 −10 −15 −4 −2 0 −−> w(rad) 2 1 0 −1 −2 4 phase for Hc(z) −2 0 −−> w(rad) 2 phase of compensated system 4 1.5 1 −−> phase −−> phase 2 0 0.5 0 −0.5 −2 −1 −4 −4 −2 0 −−> w(rad) 2 −1.5 −4 4 −2 0 −−> w(rad) 2 4 Figure 5.84-2: 196 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Chapter 6 6.1 (a) Fourier transform of dxa (t)/dt is X̂a (F ) = j2πF Xa (F ), then Fs ≥ 2B (b) Fourier transform of x2a (t) is X̂a (F ) = Xa (F ) ∗ Xa (F ), then Fs ≥ 4B (c) Fourier transform of xa (2t) is X̂a (F ) = 2Xa (F/2), then Fs ≥ 4B (d) Fourier transform of xa (t) cos(6πBt) is X̂a (F ) = 21 Xa (F + 3B) + 21 Xa (F − 3B) resulting in FL = 2B and FH = 4B. Hence, Fs = 2B (d) Fourier transform of xa (t) cos(7πBt) is X̂a (F ) = 21 Xa (F + 3.5B) + 21 Xa (F − 3.5B) resulting in FL = 5B/2 and FH = 9B/2. Hence, kmax = ⌊ FBH ⌋ = 2 and Fs = 2FH /kmax = 9B/2 6.2 (a) Fs = 1/T ≥ 2B ⇒ A = T, Fc = B. (b) Xa (F ) = 0 for |F | ≥ 3B. Fs = 1/T ≥ 6B ⇒ A = T, Fc = 3B. (c) Xa (F ) = 0 for |F | ≥ 5B. Fs = 1/T ≥ 10B ⇒ A = T, Fc = 5B. 6.3 xa (t) = ∞ |k| X 1 ej2πkt/Tp 2 (6.1) k=−∞ Since filter cut-off frequency, Fc = 102.5, then terms with |n|/Tp > Fc will be filtered resulting 10 |k| X 1 ya (t) = ej2πkt/Tp 2 k=−10 10 |k| X 1 δ(F − k/Tp ) Ya (F ) = 2 k=−10 Sampling this signal with F s = 1/T = 1/0.005 = 200 = 20/Tp results in aliasing Y (F ) = = ∞ 1 X Xa (F − nF s) 3 n=−∞ ! 9 ∞ 9 |k| X 1 X 1 1 δ(F − k/Tp − nFs ) + δ(F − 10/Tp − nFs ) 3 n=−∞ 2 2 k=−9 197 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 6.4 (a) = nT e−nT ua (nT ) = nT an ua (nT ) x(n) = xa (nT ) where a = e−T . Define x1 (n) = an ua (n). The Fourier transform of x1 (n) is ∞ X X1 (F ) = an e−j2πF n n=0 1 1 − ae−j2πF = Using the differentiation in frequency domain property of the Fourier transform X(F ) = Tj = X1 (F ) dF T ae−j2πF 2 (1 − ae−j2πF ) T e(T +j2πF ) + e−(T +j2πF ) − 2 = (b) The Fourier transform of xa (t) is 1 (1 + j2πF )2 Xa (F ) = Fig. 6.4-1(a) shows the original signal xa (t) and its spectrum Xa (F ). Sampled signal x(n) and its spectrum X(F ) are shown for Fs = 3 Hz and Fs = 1 Hz in Fig. 6.4-1(b) and Fig. 6.4-1(c), respectively. (c) Fig. 6.4-2 illustrates the reconstructed sugnal x̂a (t) and its spectrum for Fs = 3 Hz and Fs = 1 Hz. x̂a (t) = ∞ X xa (nT ) n=−∞ sin (π(t − nT )/T ) π(t − nT )/T 6.5 The Fourier transfrom of y(t) = Rt −∞ x(τ )dτ is Y (w) = Then, H(w) = X(w) + πX(j0)δ(w) jw 1 jw + πδ(w), 0, 0≤n≤I otherwise 198 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 0.4 1 xa(t) Xa(F) 0.3 0.2 0.5 0.1 0 −5 0 5 0 −4 10 −2 t(sec) 0.4 0 F(Hz) 2 4 1 |Xa(F)| x(n)=xa(nT) 0.3 |X(F)| 0.2 0.5 0.1 0 −5 0 5 0 −4 10 −2 t(sec) 0.4 0 F(Hz) 2 4 1 |Xa(F)| x(n)=xa(nT) 0.3 |X(F)| 0.2 0.5 0.1 0 −5 0 5 0 −4 10 t(sec) −2 0 F(Hz) 2 4 Figure 6.4-1: 199 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 0.4 1 xa(t) Xa(F) 0.3 0.2 0.5 0.1 0 −5 0 5 0 −4 10 −2 t(sec) 0.6 0 F(Hz) 2 4 1 |Xa(F)| 0.4 |X(F)| 0.2 0.5 0 −0.2 −5 0 5 0 −4 10 −2 t(sec) 0 F(Hz) 2 4 1 |Xa(F)| 0.3 |X(F)| 0.2 0.5 0.1 0 −0.1 −5 0 5 0 −4 10 t(sec) −2 0 F(Hz) 2 4 Figure 6.4-2: 200 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 6.6 (a) B = F2 −F1 is the bandwidth of the signal. Based on arbitrary band positioning for first-order sampling, 2FH Fs,min = kmax where kmax = ⌊ F2 ⌋. B (b) x̂a (t) = ∞ X n=−∞ where ga (t) = xa (nT )ga (t − nT ) sin πBt cos 2πFc t πBt and Fc = (F1 + F2 )/2. 6.7 ga (t) = = Z ∞ Ga (F )ej2πF t dF −∞ FL −mB Z −(FL −B) Z 1 ej2πF t dF + 1 − γ m+1 −FL +mB Z FL −mB 1 ej2πF t dF + + 1 − γ −m FL = A+B+C +D A = = B = C = D = −FL Z 1 ej2πF t dF 1 − γm FL +B −FL +mB 1 ej2πF t dF 1 − γ −(m+1) 1 ej2π(FL −mB)t − e−j2π(FL +B)t m+1 j2πBt(1 − γ ) jπB∆(m+1) e j2π(FL −mB)t −j2π(FL +B)t e − e j2πBt(ejπB∆(m+1) − e−jπB∆(m+1) ) ejπB∆m −j2πFL t j2π(FL −mB)t e − e j2πBt(ejπB∆m − e−jπB∆m ) e−jπB∆m j2πFL t −j2π(FL −mB)t e − e j2πBt(ejπB∆m − e−jπB∆m ) e−jπB∆(m+1) −j2π(FL −mB)t j2π(FL +B)t e − e j2πBt(ejπB∆(m+1) − e−jπB∆(m+1) ) Combining A and D, and B and C, we obtain, A+D = 1 ej[2π(FL +B)t−πB∆(m+1)] + e−j[2π(FL +B)t−πB∆(m+1)] πBt sin(πB∆(m + 1)) −ej[2π(FL −mB)t+πB∆(m+1)] − e−j[2π(FL −mB)t+πB∆(m+1)] 201 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. cos [2π(FL + B)t − π(m + 1)B∆] − cos [2π(mB − FL )t − π(m + 1)B∆] 2πBt sin [π(m + 1)B∆] 1 ej[2π(FL −mB)t+πB∆m] + e−j[2π(FL −mB)t+πB∆m] = πBt sin(πB∆m)) −ej[2πFL t−πB∆m] − e−j[2πFL t−πB∆m] cos [2π(mB − FL )t − πmB∆] − cos [2πFL t − πmB∆] = 2πBt sin(πmB∆) = B+C We observe that a(t) = B + C and b(t) = A + D. Q.E.D. 6.8 1. gSH (n) = 2. GSH (w) 1, 0, ∞ X = 0≤n≤I otherwise gSH (n)e−jwn n=−∞ I X = e−jwn n=0 = e−jw(I−1)/2 sin [wI/2] sin(w/2) 3. The linear interpolator is defined as glin [n] = 1 − |n|/I, 0, |n| ≤ I otherwise Taking the Fourier transform, we obtain Glin (w) = 2 1 sin(wI/2) I sin(w/2) Fig. 6.8-1 shows magnitude and phase responses of the ideal interpolator (dashed-dotted line), the linear interpolator (dashed line), and the sample-and-hold interpolator (solid line). 6.9 (a) xa (t) Xa (F ) = e−j2πF0 t Z ∞ xa (t)e−j2πF t dt = 0 Z ∞ e−j2πF0 t e−j2πt dt = 0 Z ∞ e−j2π(F +F0 )t dt = 0 = Xa (F ) = e−j2π(F +F0 )t ∞ | −j2π(F + F0 ) 0 1 j2π(F + F0 ) 202 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 4 |G| 3 2 1 0 −4 −3 −2 −1 0 F 1 2 3 4 −3 −2 −1 0 F 1 2 3 4 3 angle(G) 2 1 0 −1 −2 −3 −4 Figure 6.8-1: (b) x(n) X(f ) j2πF0 n = e− Fs ∞ X x(n)e−j2πf n = = = n=−∞ ∞ X j2πF n − Fs0 −j2πf n e n=0 ∞ X e F0 e−j2π(F + Fs )n n=0 = 1 F −j2π(F + F0s ) 1−e (c) Refer to fig 6.9-1 (d) Refer to fig 6.9-2 (e) Aliasing occurs at Fs = 10Hz. 6.10 Since Fc + B 2 B = 50+10 20 = 3 is an integer, then Fs = 2B = 40Hz 203 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1200 1000 −−> |Xa(F)| 800 600 400 200 0 0 200 400 600 800 1000 1200 Figure 6.9-1: Fs= 10 Fs= 20 12 15 8 −−> |X(F)| −−> |X(F)| 10 6 4 10 5 2 0 0 5 10 0 0 15 10 Fs= 40 100 150 100 80 −−> |X(F)| 30 −−> |X(F)| 30 Fs= 100 40 20 10 0 0 20 60 40 20 20 40 0 0 60 50 Figure 6.9-2: 204 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 6.11 Fc B r B′ = = 100 12 Fc + B2 = ⌈ ⌉ B 106 ⌉ = ⌈ 12 = ⌈8.83⌉ = 8 = = = Fs = = Fc + B2 r 106 8 53 4 2B ′ 53 Hz 2 6.12 (a) x(n) x2 (n) ↔ ↔ X(w) X(w) ∗ X(w) The output y1 (t) is basically the square of the input signal ya (t). For the second system, X(w) * X(w) X(w) −3π −2π −π 0 π 2π 3π w −2π −π 0 0 2π w 2 spectrum of sampled xa (t), (i.e.), s(n) = x2 (nT) a spectrum of x 2 (t) a -2B π 2B -2B 0 2B Figure 6.12-3: x2a (t) ↔ X(w) ∗ X(w), the bandwidth is basically 2B. The spectrum of the sampled signal is 205 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. given in fig 6.12-3. (b) xa (t) x(n) y(n) y1 (t) sa (t) s(n) Hence, y2 (t) For Fs x(n) y(n) y1 (t) sa (t) s(n) = cos40πt 40πn = cos 50 4πn = cos 5 = x2 (n) 4πn = cos2 5 1 1 8πn = + cos 2 2 5 2πn 1 1 + cos = 2 2 5 1 1 = + cos20πt 2 2 = x2a (t) = cos2 40πt 1 1 = + cos80πt 2 2 80πn 1 1 + cos = 2 2 50 1 1 8πn = + cos 2 2 5 2πn 1 1 + cos = 2 2 5 1 1 = + cos20πt 2 2 = 30, 4πn = cos 3 2πn = cos 3 = x2 (n) 2πn = cos2 3 1 1 4πn = + cos 2 2 3 2πn 1 1 + cos = 2 2 3 1 1 + cos20πt = 2 2 = x2a (t) = cos2 40πt 1 1 = + cos80πt 2 2 80πn 1 1 + cos = 2 2 30 2πn 1 1 + cos = 2 2 3 206 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Hence, y2 (t) 1 1 + cos20πt 2 2 = 6.13 sa (t) = xa (t) + αxa (t − τ ), τ = xa (n) + αxa (n − ) T sa (n) Sa (w) Xa (w) If |α| < 1 τw T = 1 + αe−j = τ 1 where =L 1 − αz −2 T τ is an integer, then we may select T H(z) 6.14 ∞ X x2 (n) = n=−∞ X(w) = = ∞ X x2 (n) = n=−∞ = = Also, Ea = = 1 2π Z π −π |X(w)|2 dw ∞ 1 X w − 2πk Xa T T 1 T k=−∞ ∞ X k=−∞ 1 2π Z π −π Xa w T , |w| ≤ π 1 w |Xa ( )|2 dw T2 T Z Tπ 1 |Xa (λ)|2 T dλ 2πT 2 − Tπ Z Tπ 1 |Xa (λ)|2 dλ 2πT − Tπ Z ∞ x2a (t)dt −∞ Z ∞ |Xa (f )|2 df −∞ Therefore, ∞ X x2 (n) Fs 2 = Z = Ea T n=−∞ − F2s |Xa (f )|2 df 6.15 (a) H(F ) = Z ∞ h(t)e−j2πf t dt −∞ 207 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Z = |0 Substituting a = −j2πf T Z 2T Z 2T t −j2πf t t −j2πf t −j2πf t 2e dt − e dt + e dt T T {z } |T {z } |T {z } A A(F ) = = B 1 T C eaT 1 (aT − 1) − (−1) a2 a2 1 eaT eaT + − 2 a T a T a2 |{z} |{z} |{z} A2 A1 A3 2 a2T e − eaT B(F ) = a 2ea3T /2 = sin(πf T ) πf eaT 1 ea2T (a2T − 1) − (aT − 1) C(F ) = − T a2 a2 = − ea2T ea2T eaT eaT ea2T − + + − a } | {z a } |T{z a2} |{z} a T a2 |{z} | {z C1 C2 C3 A1(F ) + C1(F ) = − A2(F ) + C3(F ) = A3(F ) + C5(F ) C2(F ) + c4(F ) C4 C5 ea3T /2 sin(πf T ) πf ea3T /2 sin(πf T ) T aπf eaT /2 = − sin(πf T ) T aπf ea3T /2 = − sin(πf T ) πf Then, e−j2πf T H(F ) = T (b) sin(πf T ) πf 2 6.16 (a) d(n) E[d(n)] E[d (n)] ≡ σd2 2 where ρx (1) = x(n) − ax(n − 1) = E[x(n)] − aE[x(n − 1)] = 0 = E [x(n) − ax(n − 1)]2 = σx2 + a2 σx2 − 2aE[x(n)x(n − 1)] = σx2 + a2 σx2 − 2aγx (1) = σx2 (1 + a2 − 2aρx (1)) γx (1) = σx2 γx (1) ≡ γx (0) 208 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. T H(F) H (F) |H| ideal T/2 0 −6/T −5/T −4/T −3/T −2/T −1/T 0 F 1/T 2/T 3/T 4/T 5/T 6/T Figure 6.15-1: (b) d 2 σx (1 + a2 − 2aρx (1)) = 2a − 2ρx (1) = 0 da a = ρx (1) For this value of α we have σd2 = σx2 [1 + ρ2x (1) − 2ρ2x (1)] = σx2 [1 − ρ2x (1)] (c) σd2 < σx2 is always true if |ρx (1)| > 0. Note also that |ρx (1)| ≤ 1. (d) d(n) E[d (n)] 2 σd2 = x(n) − a1 x(n − 1) − a2 x(n − 2) = E [x(n) − a1 x(n − 1) − a2 x(n − 2)]2 = σx2 (1 + a21 + a22 + 2a1 (a2 − 1)ρx (1) − 2a2 ρx (2)) d 2 σ da1 d = 0 ⇒ a1 = d 2 σ da2 d ρx (1)[1 − ρx (2)] 1 − ρ2x (1) = 0 ⇒ a2 = Then, σd2 min = ρx (2) − ρ2x (1) 1 − ρ2x (1) 1 − 3ρ2x (1) − ρ2x (2) + 2ρ2x (1)ρx (2) + 2ρ4x (1) + ρ2x (1)ρ2x (2) − 2ρ4x (1)ρx (2) [1 − ρ2x (1)]2 6.17 x(t) = Acos2πF t 209 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. dx(t) dt = −A(2πF )sin2πF t = −2πAF sin2πF t △ dx(t) |max = 2πAF ≤ dt T Hence, △ ≥ 2πAF T 2πAF = Fs Refer to fig 6.17-1. Figure 6.17-1: 6.18 Let Pd denote the power spectral density of the quantization noise. Then (a) Pn = Z B Fs − FBs Pd df 2B Pd Fs = σe2 = SQNR σx2 σe2 σ 2 Fs = 10log10 x 2BPd = 10log10 210 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. = 10log10 σx2 Fs + 10log10 Fs 2BPd Thus, SQNR will increase by 3dB if Fs is doubled. (b) The most efficient way to double the sampling frequency is to use a sigma-delta modulator. 6.19 (a) Se (F ) |Hn (F )| σn2 = σe2 Fs πF | 2|sin Fs Z B |Hn (F )|2 Se (F )dF = = = 2 −B Z B 4sin2 ( 0 = = = πF σe2 ) dF Fs Fs Z 2πF 4σe2 B (1 − cos )dF Fs 0 Fs Fs 2πB 4σe2 [B − sin ] Fs 2π Fs 2πB 2σe2 2πB [ − sin ] π Fs Fs (b) 2πB Fs 2πB sin Fs For Therefore, σn2 << 1, ≈ = = 2πB 1 2πB 3 − ( ) Fs 6 Fs 2πB 1 2πB 3 2σe2 2πB [ − − ( ) ] π Fs Fs 6 Fs 1 2 2 2B 3 ) π σe ( 3 Fs 6.20 (a) {[X(z) − Dq (z)] 1 z −1 − Dq (z)} −1 1−z 1 − z −1 Dq (z) Therefore, Hs (z) and Hn (z) = Dq (z) − E(z) = z −1 X(z) + (1 − z −1 )2 E(z) = z −1 = (1 − z −1 )2 (b) |Hn (F )| = = πF ) Fs 2πF )) 2(1 − cos( Fs 4sin2 ( 211 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (c) σn2 = Z = |Hn (F )|2 −B Z B σe2 dF Fs πF 2 2 σe2 ) ] dF Fs Fs 0 Z 32π 4 σe2 B 4 F dF Fs5 0 1 4 2 2B 5 π σe ( ) 5 Fs ≈ 2 = B [4( 6.21 (a) x(n) xa (t) 2π n N = x(n)|n= Tt = cos 2πt NT Fs = cos2π( )t N Fs = N = cos Therefore, F0 (b) N analog sinusoids can be generated. There are N possible different starting phases. 6.22 (a) h(t) = = Z ∞ −∞ Z ∞ −∞ H(F )ej2πF t dF [c(F − Fc ) + c∗ (−F − Fc )]ej2πF t dF = c(t)ej2πFc t + c∗ (t)e−j2πFc t = 2Re[c(t)ej2πFc t ] (b) H(F ) = C(F − Fc ) + C ∗ (−F − Fc ) 1 X(F ) = [U (F − Fc ) + U ∗ (−F − Fc )] 2 Y (F ) = X(F )H(F ) 1 [C(F − Fc )U (F − Fc ) + U ∗ (−F − Fc )C ∗ (−F − Fc )] = 2 1 + [C(F − Fc )U ∗ (−F − Fc ) + U (F − Fc )C ∗ (−F − Fc )] 2 But C(F − Fc )U ∗ (−F − Fc ) = U (F − Fc )C ∗ (−F − Fc ) = 0 Z ∞ c(τ )u(t − τ )dτ ≡ v(t) F −1 [C(F )U (F )] = −∞ 212 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Hence, y(t) 1 1 v(t)ej2πFc t + v ∗ (t)e−j2πFc t 2 2 = Re[v(t)ej2πFc t ] = 6.23 (a) Refer to fig 6.23-1. (b) Refer to fig 6.23-2. First Order hold, N = 32 thd=0.1152 1 −−−> x(n) −−−> x(n) Zero Order hold: N = 32 thd = 0.1154 1 0.8 0.6 0.6 0.4 0 20 40 60 80 First Order hold, N = 64 thd=0.2329 1 −−−> x(n) −−−> x(n) 0.4 0 20 40 60 80 Zero Order hold: N = 64 thd = 0.2331 1 0.8 0.5 0.5 0 0 50 100 150 First Order hold, N = 128 thd=0.4683 1 −−−> x(n) −−−> x(n) 0 0 50 100 150 Zero Order hold: N = 128 thd = 0.4686 1 0.5 0 0 100 200 0.5 0 0 300 −−−> n 100 200 300 −−−> n Figure 6.23-1: (c) Refer to fig 6.23-3. The first order hold interpolator performs better than the zero order interpolator because the frequency response of the first order hold is more closer to the ideal interpolator than that of the zero order hold case. (d) Refer to fig 6.23-4. (e) Refer to fig 6.23-5. Higher order interpolators with more memory or cubic spline interpolators would be a better choice. 213 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. First Order hold, N = 32 thd=0.1153 1.5 −−−> x(n) −−−> x(n) Zero Order hold: N = 32 thd = 0.1154 1.5 1 0.5 1 0.5 1 0.5 100 200 1 0.5 0 0 50 100 150 First Order hold, N = 128 thd=0.4687 1.5 −−−> x(n) −−−> x(n) 0 0 50 100 150 Zero Order hold: N = 128 thd = 0.4689 1.5 0 0 0.5 0 0 20 40 60 80 First Order hold, N = 64 thd=0.2332 1.5 −−−> x(n) −−−> x(n) 0 0 20 40 60 80 Zero Order hold: N = 64 thd = 0.2333 1.5 1 1 0.5 0 0 300 −−−> n 100 200 300 −−−> n Figure 6.23-2: 214 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Zero Order Hold First Order Hold 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 10 20 30 40 0 50 Zero Order Hold, filter spectrum 2 1.5 1.5 1 1 0.5 0.5 −0.5 0 0.5 20 30 40 50 First Order Hold, filter spectrum 2 0 −1 10 0 −1 1 −0.5 0 0.5 1 Figure 6.23-3: Zero Order Hold, interpolated output 50 −−−−> |X(f)| 40 30 20 10 0 0 100 200 300 400 500 600 500 600 First Order Hold, Interpolated output 50 −−−−> |X(f)| 40 30 20 10 0 0 100 200 300 −−−−> n 400 Figure 6.23-4: 215 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Zero Order Hold, y(n) 0.2 0.15 0.15 −−−> y(n) −−−> xi(n) Zero Order Hold, xi(n) 0.2 0.1 0.05 0 0 0.1 0.05 10 20 30 0 0 40 0.2 0.15 0.15 0.1 0.05 0 0 20 30 40 First Order Hold, y(n) 0.2 −−−> y(n) −−−> xi(n) First Order Hold, xi(n) 10 0.1 0.05 10 20 30 0 0 40 10 20 30 40 Figure 6.23-5: 216 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 6.24 P∞ (a) xp (t) = n=−∞ xa (t − nTs ) is a periodic signal with period Ts . The fourier coefficients in a fourier series representation are ck = 1 Ts Z = 1 Ts Z = = = = = Ts 2 ∞ X − T2s n=−∞ −j2πkt Ts dt xa (t − nTs )e −j2πkt Ts dt ∞ Z Ts 2 −j2πkt 1 X xa (t − nTs )e Ts dt Ts n=−∞ − T2s ∞ Z nTs + Ts 2 −j2πk(t′ +nTs ) 1 X Ts xa (t′ )e dt′ Ts n=−∞ nTs − T2s Z ∞ −j2πkt′ 1 xa (t′ )e Ts dt′ Ts −∞ 1 k Xa ( ) Ts Ts 1 Xa (kδF ) Ts (b) Let w(t) = If Ts ≥ 2τ, xp (t)e − T2s Ts 2 1, − T2s ≤ t ≤ 0, otherwise Ts 2 xa (t) = xp (t)w(t) Xa (F ) = Xp (F ) ∗ W (F ) " ∞ # X sinπF Ts k Xa (F ) = ck δ(F − ) ∗ Ts Ts πF Ts k=−∞ ∞ X = Ts = ck sinπ(F − k=−∞ ∞ X π(F − Xa (kδF ) k=−∞ k Ts )Ts k Ts )Ts sinπ(F − π(F − k Ts )Ts k Ts )Ts , Ts = 1 δF (c) If T < 2τ , there will be aliasing in every period of xp (t). Hence, xa (t) 6= xp (t)w(t) and consequently, xa (t) cannot be recovered from xp (t). (F −kδF ) P∞ sinπ δF (d) From (b) Xa (F ) = k=−∞ Xa (kδF ) (F −kδF ) π δF 217 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 218 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Chapter 7 7.1 Since x(n) is real, the real part of the DFT is even, imaginary part odd. Thus, the remaining points are {0.125 + j0.0518, 0, 0.125 + j0.3018} 7.2 (a) x̃2 (l) = x2 (l), 0≤l ≤N −1 = x2 (l + N ), − (N − 1) ≤ l ≤ −1 3π = sin( l), 0≤l≤7 8 3π − 7 ≤ l ≤ −1 = sin( (l + 8)), 8 3π = sin( |l|), |l| ≤ 7 8 3 X x̃2 (n − m) = x̃2 (l) Therefore, x1 (n) 8 x2 (n) m=0 3π 3π 3π |n|) + sin( |n − 1|) + . . . + sin( |n − 3|) 8 8 8 = {1.25, 2.55, 2.55, 1.25, 0.25, −1.06, −1.06, 0.25} = sin( (b) x̃2 (n) Therefore, x1 (n) 8 x2 (n) 3π n), 0≤l≤7 8 3π − 7 ≤ l ≤ −1 = −cos( n), 8 3π = [2u(n) − 1] cos( n), |n| ≤ 7 8 3 m X 1 x̃2 (n − m) = 4 m=0 = cos( = {0.96, 0.62, −0.55, −1.06, −0.26, −0.86, 0.92, −0.15} (c) for (a) X1 (k) = 7 X π x1 (n)e−j 4 kn n=0 219 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. = {4, 1 − j2.4142, 0, 1 − j0.4142, 0, 1 + j0.4142, 0, 1 + j2.4142} similarly, X2 (k) DFT of x1 (n) 8 = {1.4966, 2.8478, −2.4142, −0.8478, −0.6682, −0.8478, −2.4142, 2.8478} = X1 (k)X2 (k) x2 (n) = {5.9864, 2.8478 − j6.8751, 0, −0.8478 + j0.3512, 0, −0.8478 − j0.3512, 0, 2.8478 + j6.8751} For sequences of part (b) X1 (k) = {1.3333, 1.1612 − j0.2493, 0.9412 − j0.2353, 0.8310 − j0.1248, 0.8, 0.8310 + j0.1248, 0.9412 + j0.2353, 1.1612 + j0.2493} = {1.0, 1.0 + j2.1796, 1.0 − j2.6131, 1.0 − j0.6488, 1.0, X2 (k) 1.0 + j0.6488, 1.0 + j2.6131, 1.0 − j2.1796} Consequently, DFT of x1 (n) 8 x2 (n) = X1 (k)X2 (k) = {1.3333, 1.7046 + j2.2815, 0.3263 − j2.6947, 0.75 − j0.664, 0.8, 0.75 + j0.664, 0.3263 + j2.6947, 1.7046 − j2.2815} 7.3 x̂(k) may be viewed as the product of X(k) with 1, 0 ≤ k ≤ kc , N − kc ≤ k ≤ N − 1 F (k) = 0, kc < k < N − kc F (k) represents an ideal lowpass filter removing frequency components from (kc + 1) 2π N to π. Hence x̂(n) is a lowpass version of x(n). 7.4 (a) x1 (n) = X1 (k) = also X2 (k) = So X3 (k) = = and x3 (n) = 2π 1 j 2π n e N + e−j N n 2 N [δ(k − 1) + δ(k + 1)] 2 N [δ(k − 1) − δ(k + 1)] 2j X1 (k)X2 (k) N2 [δ(k − 1) − δ(k + 1)] 4j 2π N sin( n) 2 N (b) R̃xy (k) ⇒ r̃xy (n) = X1 (k)X2∗ (k) N2 [δ(k − 1) − δ(k + 1)] = 4j 2π N = − sin( n) 2 N 220 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (c) R̃xx (k) ⇒ r̃xx (n) = X1 (k)X1∗ (k) N2 = [δ(k − 1) + δ(k + 1)] 4 2π N cos( n) = 2 N (d) R̃yy (k) ⇒ r̃yy (n) = X2 (k)X2∗ (k) N2 = [δ(k − 1) + δ(k + 1)] 4 2π N cos( n) = 2 N 7.5 (a) N −1 X x1 (n)x∗2 (n) = n=0 = = = N −1 2 2π 1 X j 2π n e N + e−j N n 4 n=0 N −1 4π 1 X j 4π n e N + e−j N n + 2 4 n=0 1 2N 4 N 2 (b) N −1 X x1 (n)x∗2 (n) = − n=0 = = (c) PN −1 n=0 N −1 2π 2π 2π 1 X j 2π n e N + e−j N n e−j N n − ej N n 4j n=0 N −1 4π 1 X j 4π n e N − e−j N n 4j n=0 0 x1 (n)x∗2 (n) = 1 + 1 = 2 7.6 w(n) = w(k) = 4π 2π 2π 4π 0.42 − 0.25 ej N −1 n + e−j N −1 n + 0.04 ej N −1 n + e−j N −1 n "N −1 # N −1 N −1 X X X 2π 2π 2π 2π 2π e−j N nk − 0.25 0.42 e−j N −1 n e−j N nk ej N −1 n e−j N nk + n=0 +0.04 "N −1 X n=0 n=0 n=0 2π j N4π −1 n −j N nk e e + N −1 X n=0 2π −j N4π −1 n −j N nk e e # 221 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. = 0.42N δ(k) " # N N 1 − ej2π[ N −1 −k] 1 − e−j2π[ N −1 +k] −0.25 + 1 1 k k 1 − ej2π[ N −1 − N ] 1 − e−j2π[ N −1 + N ] " # 2N 2N 1 − ej2π[ N −1 −k] 1 − e−j2π[ N −1 +k] +0.04 + 2 2 k k 1 − ej2π[ N −1 − N ] 1 − e−j2π[ N −1 + N ] = 0.42N δ(k) # " 1 k 2πk 2πN 1 − cos( N −1 ) − cos(2π( N −1 + N )) + cos( N ) −0.25 1 − cos(2π( N 1−1 + Nk )) " # 4πN 2 k 2πk 1 − cos( N −1 ) − cos(2π( N −1 + N )) + cos( N ) +0.04 1 − cos(2π( N 2−1 + Nk )) 7.7 Xc (k) = N −1 X n=0 = = similarly, Xs (k) = 2πkn 2πk0 n 2πk0 n 1 e− N x(n) ej N + e−j N 2 N −1 N −1 2π(k−k0 )n 2π(k+k0 )n 1 X 1 X N N + x(n)e−j x(n)e−j 2 n=0 2 n=0 1 1 X(k − k0 )modN + X(k + k0 )modN 2 2 1 1 X(k − k0 )modN − X(k + k0 )modN 2j 2j 7.8 y(n) = x1 (n) = 3 X m=0 4 x2 (n) x1 (m)mod4 x2 (n − m)mod4 = {17, 19, 22, 19} 7.9 X1 (k) X2 (k) ⇒ X3 (k) = {7, −2 − j, 1, −2 + j} = {11, 2 − j, 1, 2 + j} = X1 (k)X2 (k) = {17, 19, 22, 19} 222 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 7.10 x(n) x(n)x∗ (n) E 2πkn 1 j 2πkn e N + e−j N 2 4πkn 4πkn 1 2 + ej N + e−j N = 4 N −1 X x(n)x∗ (n) = = n=0 N −1 4πkn 4πkn 1 X 2 + ej N + e−j N 4 n=0 = 1 2N 4 N 2 = = 7.11 (a) x1 (n) X1 (k) = x(n − 5)mod8 = X(k)e−j 2π5k 8 = X(k)e−j 5πk 4 (b) x2 (n) X2 (k) = x(n − 2)mod8 = X(k)e−j 2π2k 8 = X(k)e−j πk 2 7.12 (a) s(k) = W2k X(k) = (−1)k X(k) 5 s(n) = 1X (−1)k X(k)WN−kn 6 N =6 k=0 5 = 1X −k(n−3) X(k)WN 6 k=0 s(n) = x(n − 3)mod6 = {3, 4, 0, 0, 1, 2} (b) y(n) = IDFT X(k) + X ∗ (k) 2 223 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 [IDFT {X(k)} + IDFT {X ∗ (k)}] 2 1 x(n) + x∗ (−n)modN = 2 x(1) + x(5) x(2) + x(4) x(4) + x(2) x(5) + x(1) = x(0), , , x(3), , 2 2 2 2 1 1 = 0, , 3, 3, 3, 2 2 = (c) v(n) = IDFT By similar means to (b) X(k) − X ∗ (k) 2j 1 1 = 0, − j, j, 0, −j, j 2 2 v(n) 7.13 (a) X1 (k) = N −1 X x(n)WNkn n=0 X3 (k) = 3N −1 X kn x(n)W3N n=0 = N −1 X kn x(n)W3N + n=0 = N −1 X = n=0 = kn x(n)W3N x(n)WN + N −1 X + 3N −1 X kn x(n)W3N n=2N n=N nk 3 nk 3 x(n)W3k WN + n=0 n=0 N −1 X 2N −1 X N −1 X nk x(n)W32k WN 3 n=0 nk x(n) 1 + W3k + W32k WN 3 (1 + W3k + W32k )X1 (k) (b) X1 (k) = 2 + W2k X3 (k) = 2 + W6k + 2W62k + W63k + 2W64k + W65k = (2 + W23 ) + W62k (2 + W23 ) + W64k (2 + W23 ) k (1 + W3k + W32k )X1 ( ) 3 k = k k 7.14 (a) y(n) = x1 (n) 5 x2 (n) = {4, 0, 1, 2, 3} 224 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) Let x3 (n) = {x0 , x1 , . . . , x4 }. Then, 0 4 3 1 0 4 2 1 0 3 2 1 4 3 2 2 3 4 0 1 1 2 3 4 0 Solving yields sequence x3 (n) = . x0 x1 x2 x3 x4 = 1 0 0 0 0 −0.18, 0.22, 0.02, 0.02, 0.02 ↑ 7.15 △ Define H1 (z) = H −1 (z) and corresponding time signal h1 (n). The use of 64-pt DFTs of y(n) and h1 (n) yields x(n) = y(n) 64 h1 (n) whereas x(n) requires linear convolution. However we can simply recognize that X(z) = Y (z)H1 (z) so x(n) with y(−1) = Y (z) − 0.5Y (z)z −1 = y(n) − 0.5y(n − 1), △ = 0 ≤ n ≤ 63 0 7.16 H(k) = N −1 X 2π h(n)e−j N kn n=0 2π 1 1 + ( )e−j 4k0 k0 k 4 π 1 = 1 − e−j 2 k 4 1 = H(k) 1 = 2π 1 − 41 e−j N k 2 1 −j π k 1 −j π k = 1+ + e 2 e 2 + ... 4 4 4 16 − 4j 4 16 + 4j , , , , repeat k0 times = 3 17 5 17 = G(k) g(n) = = N −1 2π 1 X G(k)ej N kn N n=0 4k 0 −4 X 2π 1 4 j 4k [ e 0 kn + 4k0 3 k=0,4,... 4k 0 −3 X k=1,5,... 16 − 4j 17 2π ej 4k0 kn 225 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 4k 0 −1 X 2π 2π 16 + 4j 4 j 4k ej 4k0 kn ] e 0 kn + 5 17 k=3,7,... k=2,6,... X X 4 j 2π 2n X 2π 1 4 16 − 4j n j 4k 0 + e e 4k0 + 4k0 3 17 5 X 2π 16 + 4j 3n j 4k 0 + e 17 + = where But X X g(0) △ = 4k 0 −2 X kX 0 −1 2π ej k0 ni i=0 = = = g(k0 ) = = g(2k0 ) = = g(3k0 ) = = and g(n) = Therefore, g(n) ∗ h(n) = 1, yielding 4 1 4 16 − 4j 16 + 4j + + + 4 3 17 5 17 256 255 4 16 − 4j 16 + 4j 1 4 − −j +j 4 3 17 5 17 64 255 1 4 4 16 − 4j 16 + 4j + − − 4 3 17 5 17 16 255 4 16 − 4j 16 + 4j 1 4 − +j −j 4 3 17 5 17 4 255 0 for other n in [0, 4k0 ) . 256 1 ,0 , 0, 0, . . . , 0 , . . . , 0 , . . . , 0 , . . . , − 255 255 ↑ ↑ ↑ ↑ k0 2k0 3k0 4k0 g(.) represents a close approximation to an inverse system, but not an exact one. 7.17 X(k) = 7 X x(n)e−j 2π 8 kn n=0 |X(k)| 6 X(k) = {6, −0.7071 − j1.7071, 1 − j, 0.7071 + j0.2929, 0, 0.7071 − j0.2929, 1 + j, −0.7071 + j1.7071} = {6, 1.8478, 1.4142, 0.7654, 0, 0.7654, 1.4142, 1.8478} π −π , 0.3927, 0, −0.3927, , 1.9635 = 0, −1.9635, 4 4 226 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 7.18 x(n) ∞ X = i=−∞ y(n) X = m X = δ(n − iN ) h(m)x(n − m) h(m) m X = i " X i # δ(n − m − iN ) h(n − iN ) Therefore, y(.) is a periodic sequence with period N. So Y (k) N −1 X = y(n)WNkn n=0 = H(w)|w= 2π N k Y (k) = H( 2πk ) N k = 0, 1, . . . , N − 1 7.19 Call the two real even sequences xe1 (.) and xe2 (.), and the odd ones xo1 (.) and xo2 (.) (a) Let xc (n) Then, Xc (k) = = = where Xe1 (k) = Xo1 (k) = Xe2 (k) = Xo2 (k) = [xe1 (n) + xo1 (n)] + j [xe2 (n) + xo2 (n)] DFT {xe1 (n)} + DFT {xo1 (n)} + jDFT {xe2 (n)} + jDFT {xo2 (n)} [Xe1 (k) + Xo1 (k)] + j [Xe2 (k) + Xo2 (k)] Re[Xc (k)] + Re[Xc (−k)] 2 Re[Xc (k)] − Re[Xc (−k)] 2 Im[Xc (k)] + Im[Xc (−k)] 2 Im[Xc (k)] − Im[Xc (−k)] 2 (b) si (0) −si (N − n) = xi (1) − xi (N − 1) = 0 = −xi (N − n + 1) + xi (N − n − 1) = xi (n + 1) − xi (n − 1) = si (n) (c) x(n) = [x1 (n) + s3 (n)] + j [x2 (n) + s4 (n)] The DFT of the four sequences can be computed using the results of part (a) For i = 3, 4, si (k) = N −1 X si (n)WNkn n=0 227 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. N −1 X = n=0 WN−k Xi (k) = = X4 (k) = − WNk Xi (k) 2π k)Xi (k) N s3 (k) 2jsin( 2π N k) s4 (k) 2jsin( 2π N k) = Therefore, X3 (k) [xi (n + 1) − xi (n − 1)] WNkn 2jsin( (d) X3 (0) and X4 (0), because sin( 2π N k) = 0. 7.20 X(k) = N −1 X x(n)WNkn n=0 N 2 N 2 = −1 X x(n)WNkn + n=0 N 2 = −1 X x(n + n=0 −1 N k(n+ N 2 ) )WN 2 X x(n) − x(n)W2k WNkn n=0 If k is even, W2k = 1, and X(k) = 0 (b) If k is odd, W2k = −1, Therefore, N 2 X(k) = −1 X 2x(n)WNkn n=0 N 2 = 2 −1 X nk x(n)W N 2 2 n=0 For k = 2l + 1, l = 0, . . . , N −1 2 N 2 X(2l + 1) = 2 −1 X ln WNn x(n)W N 2 n=0 = N − pt DFT of sequence 2x(n)WNn 2 7.21 (a) Fs ≡ FN = 2B = 6000 samples/sec (b) T = = 1 Fs 1 6000 228 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 LT ≤ 50 ⇒L ≥ = = (c) LT = 1 6000 1 50T 6000 50 120 samples × 120 = 0.02 seconds. 7.22 x(n) X(k) 1 j 2π n 1 −j 2π n e N + e N , 2 2 N −1 X 2π x(n)e−j N kn = = 0 ≤ n ≤ N, N = 10 n=0 = N −1 X n=0 = N −1 1 −j 2π (k−1)n X 1 −j 2π (k+1)n + e N e N 2 2 n=0 5δ(k − 1) + 5δ(k − 9), 0≤k≤9 7.23 (a) X(k) = (b) PN −1 n=0 2π δ(n)e−j N kn = 1, X(k) = 0≤k ≤N −1 N −1 X n=0 2π δ(n − n0 )e−j N kn 2π = e−j N kn0 , 0≤k ≤N −1 (c) X(k) = N −1 X 2π an e−j N kn n=0 = N −1 X 2π (ae−j N k )n n=0 = 1 − aN 2π 1 − ae−j N k (d) N 2 X(k) = −1 X 2π e−j N kn n=0 = = 2π N 2 1 − e−j N k 2π e−j N k 1− 1 − (−1)k 2π 1 − e−j N k 229 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (e) X(k) N −1 X = 2π 2π ej N nk0 e−j N kn n=0 N −1 X = 2π e−j N (k−k0 )n n=0 = N δ(k − k0 ) (f) x(n) = From (e) we obtain X(k) = 1 j 2π nk0 1 −j 2π nk0 + e N e N 2 2 N [δ(k − k0 ) + δ(k − N + k0 )] 2 (g) x(n) = Hence X(k) = 2π 1 j 2π nk0 1 − e−j N nk0 e N 2j 2j N [δ(k − k0 ) − δ(k − N + k0 )] 2j (h) X(k) N −1 X = 2π x(n)e−j N nk ( assume N odd ) n=0 2π 2π 2π 1 + e−j N 2k + e−j N 4k + . . . + e−j N (n−1)k = 2π 1 − (e−j N 2k ) = N +1 2 2π 1 − e−j N 2k 2π 1 − e−j N k = 4π 1 − e−j N k 1 = 2π 1 − e−j N k 7.24 (a) x(n) = N −1 2π 1 X X(k)ej N nk N k=0 ⇒ = N x(n) k=0 = 4 j 3π 2 = 8 j3π = 12 X(0) + X(1)e jπ X(0) + X(1)e j 3π 2 X(0) + X(1)e 1 1 1 j 1 −1 1 −j 2π X(k)ej N nk X(0) + X(1) + X(2) + X(3) jπ 2 N −1 X 1 1 −1 −j 1 −1 −1 j jπ + X(2)e j2π + X(2)e + X(3)e + X(3)e j 9π 2 j3π + X(2)e X(0) X(1) X(2) X(3) + X(3)e 4 8 = 12 4 = 4 X(0) X(1) ⇒ X(2) X(3) 7 −2 − j = 1 −2 + j 230 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) X(k) 3 X = x(n)e−j 2π 4 nk n=0 X(0) 3 X = x(n) n=0 = 7 3 X π x(n)e−j 2 n X(1) = X(2) = −2 − j 3 X x(n)e−jπn = n=0 n=0 = X(3) 1 3 X = x(n)e−j 3π 2 n n=0 = −2 + j 7.25 (a) X(w) ∞ X = x(n)e−jwn n=−∞ j2w = e + 2ejw + 3 + 2e−jw + e−j2w = 3 + 2cos(2w) + 4cos(4w) (b) V (k) = 5 X v(n)e−j 2π 6 nk n=0 = = 3 + 2e−j 2π 6 k + e−j 2π 6 2k + 0 + e−j 2π π 3 + 4cos( k) + 2cos( k) 3 3 2π 6 4k + e−j 2π 6 5k (c) V (k) = X(w)|w= 2πk = πk 6 3 This is apparent from the fact that v(n) is one period (0 ≤ n ≤ 7) of a periodic sequence obtained by repeating x(n). 7.26 Let x(n) = ∞ X δ(n + lN ) l=−∞ Hence, x(n) is periodic with period N, i.e. x(n) = 1, n = 0, ±N, ±2N, . . . 231 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. = Then X(k) = 0, otherwise N −1 X 2π x(n)e−j N nk = 1, 0≤k ≤N −1 n=0 and x(n) N −1 2π 1 X X(k)ej N nk N = k=0 Hence, ∞ X δ(n + lN ) 1 N = l=−∞ N −1 X 2π ej N nk k=0 7.27 (a) Y (k) = M −1 X kn y(n)WM n=0 = M −1 X X n=0 Now X(w) = X kn x(n + lM )WM l x(n)e−jwn , n 2π so X( k) M = X kn WM n = M −1 X X n=0 = l M −1 X X n=0 Therefore, Y (k) k(n+lM ) x(n + lM )WM kn x(n + lM )WM l = Y (k) = X(w)|w= 2π M k (b) Y (k) = X(w)|w= 2π N k 2 k Y ( ) = X(w)|w= 2π N k 2 = X(k), k = 2, 4, . . . , N − 2 (c) X1 (k) ⇒ x1 (n) Let y(n) = X(k + 1) 2π = x(n)e−j N n = x(n)WNn = x1 (n) + x1 (n + = Then X(k + 1) 0, = X1 (k) k = Y ( ), 2 N ), 2 0≤n≤N −1 elsewhere k = 0, 2, . . . , N − 2 232 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. where Y (k) is the N -pt DFT of y(n) 2 7.28 (a) Refer to fig 7.28-1. (b) X(w) 20 0.8 15 −−−> X(w) −−−> x(n) x(n) 1 0.6 0.4 0.2 10 5 0 0 0 10 20 −5 0 30 −−−> n 1 2 −−−> w ck xtilde(n) 3 4 0.6 1 −−−> xtilde(n) 0.4 0.2 0 −0.2 0 10 20 0.5 0 0 30 10 20 30 −−−> n Figure 7.28-1: ∞ X n=−∞ x(n)e−jwn = ∞ X a|n| e−jwn n=−∞ = a+ 1 X a−n e−jwn + = a+ an ejwn + L X an e−jwn 1 1 = a+2 an e−jwn 1 −L L X L X L X an cos(wn) n=1 = x(0) + 2 L X x(n)cos(wn) n=1 (c) Refer to fig 7.28-1. (d) Refer to fig 7.28-1. 233 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (e) Refer to fig 7.28-2. (f) N=15. Refer to fig 7.28-3. x(n) 1 0.9 0.8 0.7 −−−> x(n) 0.6 0.5 0.4 0.3 0.2 0.1 0 0 50 100 150 200 250 −−−> n Figure 7.28-2: 234 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. X(w) 20 0.8 15 −−−> X(w) −−−> x(n) x(n) 1 0.6 0.4 10 5 0.2 0 −20 0 −10 0 −−−> n 10 −5 0 20 1 1.4 1 1.2 0.5 0 −0.5 0 5 3 4 5 10 xtilde(n) 1.5 −−−> xtilde(n) −−−> ck ck 2 −−−> w 10 1 0.8 0.6 −10 15 −5 −−−> w 0 −−−> n Figure 7.28-3: 7.29 Refer to fig 7.29-1. The time domain aliasing is clearly evident when N=20. 7.30 Refer to fig 7.30-1. (e) xam (n) Xam (w) = x(n)cos(2πfc n) = N −1 X x(n)cos(2πfc n)e−j2πf n n=0 = Xam (w) = N −1 i h 1 X x(n) e−j2π(f −fc )n + e−j2π(f +fc )n 2 n=0 1 [X(w − wc ) + X(w + wc )] 2 7.31 2 1 (a) ck = { π2 , − π1 , 3π , − 2π . . .} (b) Refer to fig 7.31-1. The DFT of x(n) with N = 128 has a better resolution compared to one with N = 64. 235 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. X(w) x(n) 1.5 −−> x(n) −−> mag 10 5 0 0 2 4 6 X(w) with N=20 0 0 −−> mag −−> x(n) 2 4 6 X(w) with N=100 3000 10 20 x(n) with N=100 30 1 0.5 0 0 8 1.5 −−> x(n) 10 −−> mag 1000 2000 x(n) with N=20 1.5 5 5 0 0 0.5 8 10 0 0 1 2 4 −−> w 6 1 0.5 0 0 8 50 100 150 −−> n Figure 7.29-1: 7.32 (a) 1 P (jΩ) ∗ X(jΩ) 2π 1 ΩT0 −j ΩT0 2 = ∗ [2πδ(Ω − Ω0 )] T0 sin( )e 2π 2 sin x △ where sincx = x T0 (Ω − Ω0 ) −j T0 (Ω−Ω0 ) 2 e Y (jΩ) = T0 sinc 2 Y (jΩ) = (b) w0 P = 2πk for an integer k, or w0 = (c) Y (w) = 2k P π N −1 X ejw0 n e−jwn n=0 236 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(n) xc(n) 1 xc(n) x(n) 2 0 −2 0 100 xam(n) 200 −1 0 300 mag mag 0 300 100 200 Xam(w) with N=100 50 100 Xam(w) with N=180 150 20 0 0 300 30 60 20 40 10 0 0 100 200 Xam(w) with N=128 40 mag xam(n) 2 −2 0 0 20 50 100 0 0 150 100 200 300 Figure 7.30-1: sin N2 (w − w0 ) −j N −1 (w−w0 ) 2 e 0 sin w−w 2 = (d) Larger N ⇒ narrower main lobe of |Y (w)|. T0 in Y (jΩ) has the same effect. Y (k) |Y (k)| = Y (w)|w= 2π N k = sinπ(k − l) = |sinπ(k − l)| sin π(k−l) N e−j N −1 N π(k−l) |sin π(k−l) | N = N δ(k − l) (e) The frequency samples 2π N k fall on the zeros of Y (w). By increasing the sampling by a factor of two, for example, we will obtain a frequency sample between the nulls. 2π π Y (w)|w= 2N k= N k, k=0,1,...,2N −1 237 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(n) DFT of x(n) with N=64 1.5 20 1 15 0.5 0 10 −0.5 5 −1 −1.5 0 200 400 600 0 0 800 20 40 60 80 DFT of x(n) with N=128 60 50 40 30 20 10 0 0 50 100 150 Figure 7.31-1: 238 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Chapter 8 8.1 2π 2π 2π Since (ej N k )N = ej2πk = 1, ej N k satisfies the equation X N = 1. Hence ej N k is an N th root PN −1 j 2π kn j 2π ln of unity. Consider n=0 e N e N . If k 6= l, the terms in the sum represent the N equally spaced roots in the unit circle which clearly add to zero. However, if k = l, the sum becomes P N −1 n=0 1 = N . see fig 8.1-1 j4 π j2 π 12 e e 12 z-plane unit circle Roots for N=12 Figure 8.1-1: 8.2 q(l−1) 2π 2π 2π = e−j N q e−j N q(l−1) = e−j N ql = WNql (a) WNq WN q (b) Let ŴN = WNq +δ where ŴNq is the truncated value of WNq . Now ŴNql = (WNq +δ)l ≈ WNql +lδ. 239 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Generally, single precision means a 32-bit length or δ = 5x10−10 ; while 4 significant digits means δ = 5x10−5 . Thus the error in the final results would be 105 times larger. (c) Since the error grows as lδ, after N iterations we have an error of N δ. If hWNqli is reset to -j after every ql = N4 iterations, the error at the last step of the iteration is lδ = error reduced by approximately a factor 4q. N 4q δ. Thus, the 8.3 X(k) = N −1 X x(n)WNkn 0≤k ≤N −1 n=0 N 2 −1 X = x(n)WNkn + n=0 = N 2 x(n)WNkn + n=0 −1 X x(r + r=0 ′ ′ ′ ′ = ′ k n = WN , LetX (k ) x(n)WNkn n= N 2 N 2 −1 X N −1 X 0 ≤ k′ ≤ = X(2k + 1), N (r+ N )k )WN 2 2 N −1 2 N 2 Then, X (k ) Using the fact that WN2k n −1 X N (n+ N )(2k′ +1) (2k′ +1)n x(n)WN + x(n + )WN 2 2 n=0 ′ 2 WNN = 1 N 2 ′ ′ X (k ) −1 X N N k′ n n k′ n n 2 x(n)WN W N + x(n + )W N WN WN 2 2 2 n=0 = N 2 −1 X N k′ n x(n) − x(n + ) WNn W N 2 2 n=0 = 8.4 Create three subsequences of 8-pts each Y (k) = 21 X y(n)WNkn + = ki y(3i)W N + i=0 △ y(n)WNkn + 3 7 X ki y(3i + 1)W N WNk + 3 i=0 23 X y(n)WNkn n=2,5,... n=1,4,7,... n=0,3,6,... 7 X 22 X = Y1 (k) + WNk Y2 (k) + WN2k Y3 (k) 7 X i=0 ki y(3i + 2)W N WN2k 3 where Y1 , Y2 , Y3 represent the 8-pt DFTs of the subsequences. 8.5 X(z) = 1 + z −1 + . . . + z −6 240 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. X(k) = X(z)| = z=ej −j 2π 5 1+e 2π 5 + e−j 4π 5 2π x′ (n) x′ (n) + . . . + e−j 4π 12π 5 8π = 2 + 2e−j 5 + e−j 5 + . . . + e−j 5 = {2, 2, 1, 1, 1} X = x(n + 7m), n = 0, 1, . . . , 4 m Temporal aliasing occurs in first two points of x′ (n) because X(z) is not sampled at sufficiently small spacing on the unit circle. 8.6 (a) Zk = 0.8ej [ (b) π 2πk 8 +8 ] see fig 8.6-1 2π 8 z-plane z1 z2 z0 z3 z4 π 8 z7 z6 z5 circle of radius 0.8 Figure 8.6-1: X(k) = X(z)|z=zk 7 i−n h X π 2πk x(n) 0.8ej [ 8 + 8 ] = n=0 s(n) π = x(n) 0.8e−j 8 n 241 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 8.7 Let M = N , 2 L = 2. Then N 2 F (0, q) = −1 X mq x(0, m)W N 2 n=0 N 2 F (1, q) = −1 X mq x(1, m)W N n=0 2 which are the same as F1 (k) and F2 (k) in (8.1.26) G(0, q) G(1, q) = F (0, q) = F1 (k) = WNq F (1, q) = F2 (k)WNk X(0, q) = x(k) = G(0, q) + G(1, q)W20 = F1 (k) + F2 (k)WNk X1, q) = x(k) = G(0, q) + G(1, q)W21 = F1 (k) − F2 (k)WNk 8.8 1 W8 = √ (1 − j) 2 Refer to Fig.8.1.9. The first stage of butterflies produces (2, 2, 2, 2, 0, 0, 0, 0). The twiddle factor multiplications do not change this sequence. The nex stage produces (4, 4, 0, 0, 0, 0, 0, 0) which again remains unchanged by the twiddle factors. The last stage produces (8, 0, 0, 0, 0, 0, 0, 0). The bit reversal to permute the sequence into proper order unscrambles only zeros so the result remains (8, 0, 0, 0, 0, 0, 0, 0). 8.9 See Fig. 8.1.13. 8.10 Using (8.1.45), (8.1.46), and (8.1.47) the fig 8.10-1 is derived: 8.11 Using DIT following fig 8.1.6: 1st stage outputs 2nd stage outputs 1 1 1 1 , , ,..., 2 2 2 2 1 1 1 1 : 1, (1 + W82 ), 0, (1 − W82 ), 1, (1 + W82 ), 0, (1 − W82 ) 2 2 2 2 : 242 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(0) 0 x(4) 0 x(0) x(1) 0 x(8) x(2) 0 x(12) x(1) x(3) 0 x(4) 0 x(5) 0 x(9) 0 1 2 x(5) x(6) 3 x(13) 0 x(7) 0 x(2) 0 0 x(6) 2 x(8) x(9) 0 4 x(10) 0 x(14) x(3) x(7) x(11) x(10) 6 0 x(11) 0 0 0 3 6 0 x(12) x(13) x(14) 9 x(15) x(15) Figure 8.10-1: 3rd stage outputs : 1 1 2, (1 + W81 + W82 + W83 ), 0, (1 − W82 + W83 − W85 ), 0, 2 2 1 1 (1 − W81 + W82 − W83 ), 0, (1 − W82 − W83 + W85 2 2 Using DIF following fig 8.1.11: 1 1 1 1 1 1 1 1 1 2 1 3 , , , , , , W8 , W8 , W8 1st stage outputs : 2 2 2 2 2 2 2 2 2 1 1 1 1 2nd stage outputs : 1, 1, 0, 0, (1 + W82 ), 0, (W81 + W83 ), (1 − W82 ), (W83 − W85 ) 2 2 2 2 1 1 3rd stage outputs : 2, 0, 0, 0, (1 + W81 + W82 + W83 ), (1 − W81 + W82 − W83 ), 2 2 1 1 (1 − W82 + W83 − W85 ), (1 − W82 − W83 + W85 2 2 8.12 Let 1 1 1 1 △ 1 −j −1 j A= 1 −1 1 −1 1 j −1 −j T △ x1 = x(0) x(4) x(8) x(12) 243 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. △ x2 = △ x3 = △ x4 = x(1) x(5) x(9) x(13) x(2) x(6) x(10) x(14) x(3) x(7) x(11) x(15) F (0) 4 F (4) 0 F (8) = Ax1 = 0 F (12) 0 F (1) 0 F (5) 0 F (9) = Ax2 = 0 F (13) 0 T F (2) −4 F (6) 0 F (10) = Ax3 = 0 F (14) 0 0 F (3) 0 F (7) F (11) = Ax4 = 0 0 F (15) T T As every F (i) = 0 except F (0) = −F (2) = 4, x(0) x(7) x(8) = Ax4 x(12) 0 F (0) 8 F (1) = F (2) 0 8 F (3) which means that X(4) = X(12) = 8. X(k) = 0 for other K. 8.13 (a) ”gain” = W80 W80 (−1)W82 = −W82 = j (b) Given a certain output sample, there is one path from every input leading to it. This is true for every output. (c) X(3) = x(0) + W83 x(1) − W82 x(2) + W82 W83 x(3) − W80 x(4) − W80 W83 x(5) + W80 W82 x(6) + W80 W82 W83 x(7) 8.14 Flowgraph for DIF SRFFT algorithm for N=16 is given in fig 8.14-1. There are 20 real, non trivial multiplications. 244 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(0) X(0) x(1) X(8) -1 x(2) -1 x(3) w0 -1 -j -1 -j -1 x(10) -1 x(11) w2 -j w3 +j -1 x(13) x(14) w -1 -1 X(5) X(13) X(3) -1 X(11) 6 +j -1 -j +j -1 w9 x(15) X(9) -1 3 w +j -1 X(1) -1 0 w -j X(6) X(14) +j w1 -j -1 x(12) -1 w0 -1 x(9) -j w6 +j -1 x(8) w0 +j -1 X(10) -1 -j x(6) X(2) w2 x(5) x(7) X(12) +j -1 x(4) X(4) -j -j -1 +j +j X(7) X(15) Figure 8.14-1: 8.15 For the DIT FFT, we have N 2 N 2 −1 X X(k) = nk x(2n)W N + 2 n=0 −1 X (2n+1)k x(2n + 1)WN n=0 The first term can be obtained from an N2 -point DFT without any additional multiplications. Hence, we use a radix-2 FFT. For the second term, we use a radix-4 FFT. Thus, for N=8, the DFT is decomposed into a 4-point, radix-2 DFT and a 4-point radix-4 DFT. The latter is N 2 −1 X x(2n + (2n+1)k 1)WN N 4 N 4 = n=0 −1 X x(4n + k 1)WNk W N 4 n=0 −1 X + k x(4n + 3)WN3k W N 4 n=0 N The computation of X(k), X(k + N4 ), X(k + N2 ), X(k + 3N 4 ) for k = 0, 1, . . . , 4 − 1 are performed from the following: N 2 X(k) = −1 X n=0 N X(k + ) 4 N X(k + ) 2 N 4 nk x(2n)W N + 2 N 2 = −1 X n=0 = n=0 N 4 x(4n + n 2 2 −1 X + −1 X −1 X nk x(4n + 3)WN3k W N 4 n=0 N 4 nk x(4n + 1)(−j)W N + 4 n=0 N 4 x(2n)W N + 4 N 4 x(2n)W N (−1) + nk nk 1)WNk W N n=0 nk N 2 −1 X −1 X n=0 N 4 x(4n + nk 1)(−1)WNk W N n=0 4 + −1 X −1 X n=0 nk x(4n + 3)WN3k (j)W N 4 nk x(4n + 3)(−1)WN3k W N 4 245 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 3N X(k + ) = 4 N 4 N 2 −1 X nk n x(2n)W N (−1) + 2 n=0 −1 X N 4 x(4n + nk 1)(j)WNn W N 4 n=0 + −1 X nk x(4n + 3)(−j)WN3k W N n=0 The basic butterfly is given in fig 8.15-1 X(k) n WN from the use of x(2n) from x(2n+1) X(k+N/4) X -1 Note that this is a mirror image of DIF-SRFFT butterfly. X(k+N/2) -j from X X(k+3N/4) j -1 x(4n+3) W3k N X(0) x(0) x(4) X(1) -1 x(6) -1 This graph looks like the transpose of X(3) -1 W2 -1 W 1 an N-point DIF FFT. The twiddle factors come before the second stage. x(1) x(5) DIT/SRFFT X(2) -1 x(2) -1 X(4) -1 X(5) -1 X(6) -J x(3) J -J x(7) -1 -1 J W X(7) 3 Figure 8.15-1: 8.16 x = xR + jxI e xR xI Total = (a + jb)(c + jd) = (a − b)d 1 add , 1 mult = e + (c − d)a 2 adds 1 mult = e + (c + d)b 2 adds 1 mult 5 adds 3 mult 8.17 X(z) = N −1 X x(n)z −n n=0 246 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 4 Hence, X(zk ) = N −1 X 2π x(n)r−n e−j N kn n=0 2π where zk = re−j N k , k = 0, 1, . . . , N − 1 are the N sample points. It is clear that X(zk ), k = 0, 1, . . . , N − 1 is equivalent to the DFT (N-pt) of the sequence x(n)r−n , n ∈ [0, N − 1]. 8.18 ′ x (n) = = = = Therefore Lx′ (Ln) = LN −1 1 X ′ −kn X (k)WLN LN k=0 "k −1 # LN −1 0 X X 1 −kn −kn ′ ′ X (k)WLN X (k)WLN + LN k=LN −k0 +1 k=0 "k −1 # LN −1 0 X X 1 −kn −kn X(k)WLN + X(k + N − LN )WLN LN k=0 k=LN −k0 +1 "k −1 # N −1 0 X X 1 −(k−N +LN )n −kn X(k)WLN X(k)WLN + LN k=N −k0 −1 k=0 "k −1 # N −1 0 X 1 X X(k)WN−kn X(k)WN−kn + N k=N −k0 +1 k=0 = x(n) L = 1 is a trivial case with no zeros inserted and 1 1 1 1 1 x′ (n) = x(n) = , + j , 0, − j 2 2 2 2 2 8.19 X(k) = N −1 X x(n)WNkn n=0 Let F (t), t = 0, 1, . . . , N − 1 be the DFT of the sequence on k X(k). F (t) = N −1 X X(k)WNtk k=0 = N −1 X k=0 = N −1 X n=0 = N −1 X "N −1 X x(n)WNkn n=0 x(n) "N −1 X # WNtk k(n+t) WN k=0 # x(n)δ(n + t)mod N n=0 247 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. = N −1 X n=0 x(n)δ(N − 1 − n − t) t = 0, 1, . . . , N − 1 = {x(N − 1), x(N − 2), . . . , x(1), x(0)} 8.20 Y (k) = 2N −1 X y(n)WNkn n=0 2N −1 X = n=0,n = N −1 X even k = 0, 1, . . . , 2N − 1 kn y(n)W2N y(2m)WNkm m=0 = N −1 X x(m)WNkm m=0 = X(k), k ∈ [0, N − 1] = X(k − N ), k ∈ [N, 2N − 1] 8.21 (a) 1 2πn (1 − cos ), 0≤n≤N −1 2 N −1 2πn 1 1 j N2πn = − (e −1 + e−j N −1 ) 2 4 N −1 X w(n)z −n W (z) = w(n) = n=0 = N −1 X n=0 2πn 1 1 j N2πn − (e −1 + e−j N −1 ) z −n 2 4 2π 1 1 − (z −1 ej N −1 )N 1 1 − z −N − 2 1 − z −1 4 1 − z −1 ej N2π −1 = 2π − 1 1 − (z −1 e−j N −1 )N 4 1 − z −1 e−j N2π −1 (b) xw (n) ⇒ Xw (k) = w(n)x(n) = W (k)N X(k) 8.22 The standard DFT table stores N complex values WNk , k+ N WN 2 = −WNk , we need only store WNk k = 0, 1, . . . , N 2 k = 0, 1, . . . , N − 1. However, since k+ N 4 − 1. Also, WN = −jWNk which is 248 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. merely an interchange of real and imaginary parts of WNk and a sign reversal. Hence all essential quantities are easily obtained from WNk k = 0, 1, . . . , N4 − 1 8.23 The radix-2 FFT algorithm for computing a 2N-pt DFT requires 2N N log2 2N = N + N log2 N N complex multiplications. The algorithm in (8.2.12) requires 2[ 2 log2 N + N2 ] = N2 +log2 N complex multiplications. 8.24 since H(z) = 2π k) N −1 = H( △ PM k=0 bk z −k PN 1 + k=1 ak z −k PM kn k=0 bk WN +1 PN 1 + k=1 ak WNkn+1 = H(k), k = 0, . . . , N Compute N + 1-pt DFTs of sequences {b0 , b1 , . . . , bM , 0, 0, . . . , 0} and {1, a1 , . . . , aN } (assumes N > M ), say B(k) and A(k) k = 0, . . . , N H(k) = B(k) A(k) 8.25 Y (k) = 8 X y(n)W9nk n=0 = X n=0,3,6 = 2 X = y(n)W9nk + n=1,4,7 y(3m)W93km + 2 X X y(n)W9nk n=2,5,8 (3m+1)k y(3m + 1)W9 y(3m)W3km + 2 X y(3m + 1)W3mk W9k + 2 X (3m+2)k y(3m + 2)W9 2 X y(3m + 2)W3mk W92k m=0 m=0 m=0 + m=0 m=0 m=0 2 X X y(n)W9nk + Total number of complex multiplies is 28 and the operations can be performed in-place. see fig 8.25-1 8.26 X(k) = 8 X x(n)W9nk n=0 249 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(0) X(0) 1 W3 2 W3 2 W3 W 13 x(1) x(2) X(3) X(6) x(3) X(1) 1 W3 2 W3 x(4) 1 W9 W x(5) W1 3 X(4) 2 9 X(7) x(6) X(2) x(7) 2 W9 X(5) x(8) W1 9 X(8) Figure 8.25-1: = = x(3l) = 2 X = n=3 2 X = x(n)W9kn + n=0 2 X 2 X 2 X 2 X 2 X n=0 x(n)W3nl + x(n)W9nk n=6 2 X x(n + 6)W9nk W32k n=0 x(n + 3)W3nl + 2 X x(n + 6)W3nl n=0 n=0 x(n)W3nl W9n + 8 X x(n + 3)W9nk W3k + n=0 n=0 x(3l + 2) x(n)W9nk + 2 X n=0 = 5 X n=0 n=0 x(3l + 1) x(n)W9kn + 2 X x(n + 3)W3nl W9n W31 + 2 X x(n + 6)W3nl W9n W32 n=0 n=0 W9n x(n) + W31 x(n + 3) + W32 x(n + 6) W3nl W92n x(n) + W32 x(n + 3) + W31 x(n + 6) W3nl The number of required complex multiplications is 28. The operations can be performed in-place. see fig 8.26-1 8.27 (a)Refer to fig 8.27-1 (b)Refer to fig 8.27-2 250 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. X(0) x(0) 1 W 3 W32 x(1) x(2) x(3) x(4) W 1 W3 1 3 x(7) x(8) X(6) X(1) 2 W3 1 W3 W2 3 W 1 1 W3 2 W3 2 W3 W31 9 2 W9 x(5) x(6) X(3) 2 W3 W 13 X(4) X(7) X(2) 2 W9 2 W1 W3 3 1 W3 2 2 W3 W 3 1 W3 4 W9 W1 3 X(5) X(8) Figure 8.26-1: (c) DIF is preferable for computing all points. It is also better when only X(0), X(1), X(2), X(3) are to be calculated. The rule is to compare the number of nontrivial complex multiplies and choose the algorithm with the fewer. (d) If M << N and L << N , the percentage of savings is N 2 log2 N − M2L log2 N N 2 log2 N × 100% = (1 − ML N ) × 100% 251 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(0) X(0) 0 W16 X(8) -1 x(1) 0 W16 4 W16 -1 0 W16 -1 X(4) 0 W16 X(12) X(2) 0 W16 X(10) X(6) 0 W16 4 W16 -1 X(14) X(1) 0 W16 0 W16 -1 4 W16 -1 0 W16 -1 X(9) X(5) 0 W16 X(13) X(3) 0 W16 X(11) X(7) 0 W16 4 W16 -1 X(15) Figure 8.27-1: x(0) X(0) X(1) X(2) X(3) X(4) X(5) X(6) X(7) W0 16 x(1) W1 16 2 W 16 W3 16 W4 16 W5 16 W6 16 W7 16 -1 -1 X(8) X(9) -1 X(10) -1 X(11) -1 -1 X(12) X(13) -1 X(14) -1 X(15) Figure 8.27-2: 252 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 8.28 (a)Refer to fig 8.28-1. If data shuffling is not allowed, then X(0), . . . , X(3) should be computed x(0) x(1) x(2) -1 x(3) x(4) x(5) x(6) x(7) 0 W 16 -1 1 W 16 -1 W2 16 -1 W3 16 -1 W4 16 -1 W5 16 -1 W6 16 -1 W7 16 -1 x(8) x(9) x(10) x(11) x(12) x(13) x(14) x(15) -1 0 W 16 -1 2 W 16 -1 4 W 16 -1 W6 16 -1 0 W 16 4 W 16 -1 X(0) 0 W 16 X(8) 0 W 16 -1 0 W 16 0 W 16 -1 4 W 16 -1 0 W 16 -1 4 W 16 -1 0 W 16 -1 2 W 16 -1 4 W 16 -1 W6 16 -1 -1 -1 -1 X(4) X(12) X(2) X(10) X(6) 0 W 16 X(14) X(1) 0 W 16 X(9) 0 W 16 -1 X(5) X(13) X(3) 0 W 16 0 W 16 -1 4 W 16 -1 -1 0 W 16 -1 X(11) X(7) X(15) Figure 8.28-1: by one DSP. Similarly for X(4), . . . , X(7) and X(8), . . . , X(11) and X(12), . . . , X(15). From the flow diagram the output of every DSP requires all 16 inputs which must therefore be stored in each DSP. (b)Refer to fig 8.28-2 (c) The computations necessary for a general FFT are shown in the figure for part (a), Ng = N 2 log2 N . Parallel computation of the DFTs requires p−1 Np = = XN 1 N 1N log2 + 2M M 2 2i i=1 N 1 N log2 + N (1 − ) 2M M M Complex operations, as is seen in the figure for (b). Thus S = Ng Np = N 2 log2 N N N 2M log2 M + N (1 = 1 −M ) M log2 N log2 N − log2 M + 2(M − 1) 253 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) W 0 16 2 W 16 -1 4 W 16 -1 W6 16 -1 -1 0 W 16 0 W 16 -1 4 W 16 -1 -1 -1 X(2) X(10) X(6) 0 W 16 X(14) x(8) x(9) x(10) x(11) x(12) x(13) x(14) x(15) Figure 8.28-2: 8.29 Refer to fig 8.29-1 x(n) = = = = x(n) = x(n + 4) = N −1 1 X X(k)WN−kn N k=0 1 X 1 X X(k)W8−kn + X(k)W8−kn 8 8 k even k odd 3 3 1 X 1 X −mn + X(2m)W4 X(2m + 1)W4−mn W8−n 8 m=0 8 m=0 3 1 X X(2m) + X(2m + 1)W8−n W4−mn 8 m=0 " 3 # 3 X 1 X −n −mn −mn + W8 X(2m)W4 , X(2m + 1)W4 8 m=0 m=0 " 3 # 3 X 1 X −n −mn −mn − W8 X(2m)W4 , X(2m + 1)W4 8 m=0 m=0 0≤n≤3 0≤n≤3 This result can be obtained from the forward DIT FFT algorithm by conjugating each occurrence of WNi → WN−i and multiplying each output by 81 (or 12 can be multiplied into the outputs of each stage). 254 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1/8 x(0) X(0) -0 W 8 X(4) -1 X(2) -0 W 8 X(6) -1 1/8 x(1) -0 W 8 -2 W 8 -1 X(1) -0 W 8 X(5) -1 X(3) -0 W 8 X(7) -1 1/8 x(2) -1 -0 W 8 1/8 x(3) -0 W 8 -1 W 8 W -2 8 -1 -2 W 8 -1 W-3 8 -1 -1 1/8 x(4) 1/8 x(5) 1/8 -1 1/8 -1 x(6) x(7) Figure 8.29-1: 8.30 7 x(n) = 1X X(k)W8−kn 8 k=0 3 = = x(2l) = x(2l + 1) = 7 1X 1X X(k)W8−kn + X(k)W8−kn 8 8 k=0 k=4 " 3 # 3 X 1 X −kn −kn n X(k)W8 + (−1) X(k + 4)W8 8 k=0 k=0 " 3 # 3 X 1 X l = 0, 1, 2, 3 X(k + 4)W4−lk , X(k)W4−lk + 8 k=0 k=0 # " 3 3 X 1 X −k −lk −k −lk , l = 0, 1, 2, 3 X(k + 4)W4 W8 X(k)W4 W8 − 8 k=0 k=0 Similar to the DIT case (prob. 8.29) result can be obtained by conjugating each WNi and scaling by 18 . Refer to fig 8.30-1 255 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. X(0) 1/8 x(0) X(1) 1/8 X(2) -0 W 8 1/8 -1 X(3) 1/8 X(4) 1/8 X(5) 1/8 X(6) 1/8 X(7) 1/8 -1 -2 W 8 -1 -0 W 8 -1 -1 W 8 -1 W-2 8 -1 W-3 8 -1 -1 -0 W 8 x(4) x(2) -0 W 8 x(6) x(1) -0 W 8 -1 -1 -2 W 8 -1 -1 -0 W 8 x(5) x(3) -0 W 8 x(7) Figure 8.30-1: 8.31 x(n) IDFT(x∗ (n)) = x∗ (N − n) = = = N −1 1 X ∗ x (n)WN−kn N n=0 N −1 1 X x(N − n)WN−kn N n=0 1 1 X −k(N −m) x(m)WN N m=N = N −1 ′ 1 X x(N − m′ )WN−km N ′ m =0 Since the IDFT of a Hermitian symmetric sequence is real, we may conjugate all terms in the sum yielding ∗ IDFT(x (n)) = N −1 ′ 1 X ∗ x (N − m′ )WNkm N ′ m =0 = N −1 1 X x(n)WNkn N n=0 256 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. = 1 X(k) N In general, the IDFT of an N-length sequence can be obtained by reversing the flow of a forward FFT and introducing a scale factor N1 . Since the IDFT is apparently capable of producing the (scaled) DFT for a Hermitian symmetric sequence, the reversed flow FFT will produce the desired FFT. 8.32 X(k) N −1 X = x(m)WNkm m=0 N −1 X = x(m)WNkm WN−kN since WN−kN = 1 m=0 N −1 X = −k(N −m) x(m)WN m=0 This can be viewed as the convolution of the N-length sequence x(n) with the impusle response of a linear filter. △ = WNkn u(n), evaluated at time N ∞ X WNkn z −n Hk (z) = hk (n) n=0 = = yk (n) yk (N ) 1 1 − WNk z −1 Yu (z) X(z) = WNk yk (n − 1) + x(n), = X(k) yk (−1) = 0 8.33 (a) 11 frequency points must be calculated. Radix-2 FFT requires 1024 2 log2 1024 ≈ 5000 complex multiplies or 20,000 real multiplies. FFT of radix-4 requires 0.75 × 5000 = 3, 750 complex multiplies or 15,000 real multiplies. Choose Goertzel. (b) In this case, direct evaluation requires 106 complex multiplies, chirp-z 22 × 103 comples 3 multiplies, and FFT 1000 + 5000 2 × 13 = 33 × 10 complex multiplies. Choose chirp-z. 8.34 In the DIF case, the number of butterflies affecting a given output is the second, . . .. The total number is N 2 in the first stage, N 4 in 1 1 + 2 + . . . + 2ν−1 = 2−ν (1 − ( )ν ) = N − 1 2 257 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 2 δ Every butterfly requires 4 real multiplies, and the eror variance is 12 . Under the assumption that the errors are uncorrelated, the variance of the total output quantization error is σq2 = 4(N − 1) δ2 N δ2 = 12 3 8.35 (a) Re[Xn+1 (k)] since |Xn (k)| < since |Xl (k)| < 1 , 2 1 , 2 |Re[Xn (k)]| |Re[WNm Xn (l)]| so |Re[WNm Xn (l)]| Therefore |Re[Xn+1 (k)]| 1 ∗ 1 Xn+1 (k) + Xn+1 (k) 2 2 1 1 1 1 = Xn (k) + WNm Xn (l) + Xn∗ (k) − WN−m Xn∗ (l) 2 2 2 2 = Re[Xn (k)] + Re[WNm Xn (l)] 1 < 2 1 < 2 1 < 2 ≤ |Re[Xn (k)]| + |Re[WNm Xn (l)]| < 1 = The other inequalities are verified similarly. (b) Xn+1 (k) Therefore, |Xn+1 (k)| = Re[Xn (k)] + jIm[Xn (k)] 2π 2π [cos( m) − jsin( m)][Re[Xn (l)] + jIm[Xn (l)]] N N = Re[Xn (k)] + cos(.)Re[Xn (l)] + sin(.)Im[Xn (l)] +j {Im[Xn (k)] + cos(.)Im[Xn (l)] + sin(.)Re[Xn (l)]} = |Xn (k)| + |Xn (l)| + A △ where A = also |Xn+1 (l)|2 Therefore, if A ≥ 0, max[|Xn+1 (k)|, |Xn+1 (l)|] 2cos(.) {Re[Xn (k)]Re[Xn (l)] + Im[Xn (k)]Im[Xn (l)]} +2sin(.) {Re[Xn (k)]Im[Xn (l)] − Im[Xn (k)]Re[Xn (l)]} = |Xn (k)|2 + |Xn (l)|2 − A(∗) = |Xn+1 (k)| = |Xn (k)|2 + |Xn (l)|2 + A 1 2 > max[|Xn (k)|, |Xn (l)|] By similar means using (*), it can be shown that the same inequality holds if A < 0. Also, from the pair of equations fro computing the butterfly outputs, we have 2Xn (k) = Xn+1 (k) + Xn+1 (l) 2Xn (l) = WN−m Xn+1 (k) − WN−m Xn+1 (l) By a similar method to that employed above, it can be shown that 2max[|Xn (k)|, |Xn (l)|] ≥ max[|Xn+1 (k)|, |Xn+1 (l)|] 258 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) N=64 dc=8 8 15 6 magnitude magnitude (a) N=64 dc=16 20 10 5 0 0 4 2 20 40 60 0 0 80 800 15 600 10 5 0 0 40 60 80 (d) N=64 dc=7.664e−14 20 magnitude magnitude (c) N=128 dc=16 20 400 200 50 100 0 0 150 20 40 60 80 Figure 8.36-1: 8.36 Refer to fig 8.36-1. (d) (1) The frequency interval between successive samples for the plots in parts (a), (b), (c) and 1 1 1 1 (d) are 64 , 64 , 128 and 64 respectively. (2) The dc values computed theoretically and from the plots are given below: theoretical practical part a 16 16 part b 8 8 part c 16 16 part d 0 8.203e − 14 Both theoretical and practical dc values match except in the last case because of the finite word length effects the dc value is not a perfect zero. (3) Frequency interval = Nπ1 . (4) Resolution is better with N = 128. 8.37 (a) Refer to fig 8.37-1. (b) Refer to fig 8.37-1. (c) Refer to fig 8.37-1. (d) Refer to fig 8.37-1. (e) Refer to fig 8.37-2. 259 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. r=0.9, c=0.92, W(k) 25 5 20 4 magnitude magnitude r=0.9, Y(k) 6 3 2 15 10 5 1 0 0 50 100 0 0 150 50 r=0.5, Y(k) 100 150 r=0.5 , c=0.55, W(k) 1.4 6 1.2 magnitude magnitude 5 1 4 3 2 1 0.8 0 50 100 0 0 150 50 100 150 Figure 8.37-1: r = 0.5, Y(k) W(k) 32 12 4 x 10 10 magnitude magnitude 3 8 6 4 2 1 2 0 0 50 100 0 0 150 50 100 150 Figure 8.37-2: 260 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Chapter 9 9.1 (a) H(z) = 1 + 2z −1 + 3z −2 + 4z −3 + 3z −4 + 2z −5 + z −6 . Refer to fig 9.1-1 (b) H(z) = 1 + 2z −1 + 3z −2 + 3z −3 + 2z −4 + z −5 . Refer to fig 9.1-2 x(n) z-1 z-1 z-1 z-1 z-1 z-1 4 + 3 + 2 + y(n) Figure 9.1-1: 9.2 Refer to fig 9.2-1 A4 (z) = H(z) = B4 (z) = Hence, K4 1 + 2.88z −1 + 3.4048z −2 + 1.74z −3 + 0.4z −4 0.4 + 1.74z −1 + 3.4048z −2 + 2.88z −3 + z −4 = 0.4 A4 (z) − k4 B4 (z) A3 (z) = 1 − k42 = 1 + 2.6z −1 + 2.432z −2 + 0.7z −3 261 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(n) z-1 z-1 z-1 z-1 z-1 + 3 + 2 + y(n) Figure 9.1-2: B3 (z) Hence, K3 A2 (z) = 0.7 + 2.432z −1 + 2.6z −2 + z −3 = 0.7 A3 (z) − k3 B3 (z) = 1 − k32 = B2 (z) Then, K2 A1 (z) Therefore, K1 1 + 1.76z −1 + 1.2z −2 = 1.2 + 1.76z −1 + z −2 = 1.2 A2 (z) − k2 B2 (z) = 1 − k22 = = 1 + 0.8z −1 0.8 Since K2 > 1, the system is not minimum phase. 9.3 V (z) v(n) Y (z) H(z) h(n) 1 = X(z) + z −1 V (z) 2 1 = x(n) + v(n − 1) 2 = 2[3X(z) + V (z)] + 2z −1 V (z) Y (z) = X(z) 8 − z −1 = 1 − 0.5z −1 = 8(0.5)n u(n) − (0.5)n−1 u(n − 1) 262 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. z-1 x(n) z-1 1 z-1 2.88 z-1 1.74 3.4048 + + + 0.4 + y(n) (a) x(n) f1(n) + f 2(n) + z-1 + k2 k1 z-1 + z-1 + f (n) 3 + f 4 (n) = y(n) k 4 k3 + z-1 + (b) Figure 9.2-1: (a) Direct form. (b) Lattice form 9.4 H(z) = h(n) = 1 + 2z 1 3z 1 1 −1 + 1 + 3z 1 − 21 z −1 1 1 1 5δ(n) + 3(− )n−1 u(n − 1) + ( )n u(n) + 2( )n−1 u(n − 1) 3 2 2 5+ 9.5 H(z) = = 6 + 29 z 1 − 35 z −2 (1 + 31 z −1 )(1 − 12 z −1 ) 6 + 29 z 1 − 53 z −2 1 − 61 z 1 − 16 z −2 Refer to fig 9.5-1 9.6 1 1 + 1 − b1 z −1 1 − b2 z −1 1 − (b1 + b2 )z −1 H(z) = (1 − b1 z −1 )(1 − b2 z −1 ) c0 + c1 z −1 For the second system, H(z) = (1 − d1 z −1 )(1 − a2 z −1 ) clearly, c0 = 1 For the first system, H(z) = 263 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 6 x(n) y(n) + z-1 9/2 + 1/6 z-1 -5/3 + 1/6 Figure 9.5-1: c1 d1 a2 = −(b1 + b2 ) = b1 = b2 9.7 (a) y(n) H(z) = a1 y(n − 1) + a2 y(n − 2) + b0 x(n) + b1 x(n − 1) + b2 x(n − 2) b0 + b1 z −1 + b2 z −2 = 1 + a1 z −1 + a2 z −2 (b) 1 + 2z −1 + z −2 1 + 1.5z −1 + 0.9z −2 = −1, −1 = −0.75 ± j0.58 H(z) = Zeros at z Poles at z Since the poles are inside the unit circle, the system is stable. 1 + 2z −1 + z −2 1 + z −1 − 2z −2 = −1, −1 = 2, −1 H(z) = Zeros at z Poles at z 264 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. The system is unstable. (c) x(n) π = cos( n) 3 H(z) = H(w) = π H( ) 3 = 100e−j 3 Hence, y(n) = π π 100cos( n − ) 3 3 1 1+ − 0.99z −2 1 1 + e−jw − 0.99e−j2w z −1 π 9.8 y(n) = H(z) = 1 y(n − 2) + x(n) 4 1 1 − 14 z −2 (a) h(n) = H(z) = 1 1 n 1 ( ) + (− )n u(n) 2 2 2 1− 1 2 1 −1 2z + 1+ 1 2 1 −1 2z (b) x(n) = X(z) = X(z) = Y (z) = 1 n 1 n ( ) + (− ) u(n) 2 2 1 1 + 1 − 21 z −1 1 + 12 z −1 2 1 − 41 z −2 X(z)H(z) 1 −1 − 21 z −1 2z + 1 −1 1 −1 1 −1 2 1+ z 1 − 2z (1 − 2 z ) (1 + 21 z −1 )2 2 1 1 1 1 = ( )n + (− )n − n( )n + n(− )n u(n) 2 2 2 2 = y(n) 1 1 + + (c)Refer to fig 9.8-1 (d) H(w) = = 1 1− √ 1 −j2w 4e sin2w 4 6 − tan−1 4 − cos2w 17 − 8cos2w Refer to fig 9.8-2. 265 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Direct form 2 cascade form + x(n) y(n) x(n) + + y(n) D D 1/2 D -1/2 D 1/4 Parallel form 1/2 + + y(n) D 1/2 x(n) 1/2 + D -1/2 Figure 9.8-1: Magnitude of H(w) −−−> |H(w)| 1.4 1.2 1 0.8 0 0.5 1 1.5 2 2.5 3 3.5 2.5 3 3.5 −−−> w −−−> angle of H(w) Phase of H(w) 0.2 0 −0.2 0 0.5 1 1.5 2 −−−> w Figure 9.8-2: 266 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 9.9 (a) 1 + 31 z −1 1 − 43 z −1 + 18 z −2 H(z) = 1 + 13 z −1 (1 − 21 z −1 )(1 − 14 z −1 ) = = 1 10 3 − 21 z −1 + − 73 1 − 41 z −1 Refer to fig 9.9-1 (b) Direct form II: Direct form I: x(n) + + y(n) + x(n) + z-1 z-1 + 3/4 1/3 3/4 + z-1 1/3 z-1 -1/8 -1/8 Cascade: x(n) y(n) z-1 Parallel: + + + y(n) + z-1 1/2 z-1 1/3 z-1 x(n) 1/4 10/3 1/2 + y(n) 1/4 z-1 -7/3 + Figure 9.9-1: H(z) Refer to fig 9.9-2 (c) H(z) 0.7(1 − 0.36z −2 ) 1 + 0.1z −1 − 0.72z −2 0.7(1 − 0.6z −1 )(1 + 0.6z −1 ) = (1 + 0.9z −1 )(1 − 0.8z −1 ) 0.1853 0.1647 − = 0.35 − 1 + 0.9z −1 1 − 0.8z −1 = = 3(1 + 1.2z −1 + 0.2z −2 ) 1 + 0.1z −1 − 0.2z −2 267 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Direct form II: Direct form I: x(n) + + + y(n) x(n) + z-1 z-1 -0.1 + z-1 z-1 z-1 0.72 -0.36 0.72 -0.36 Parallel: Cascade: x(n) y(n) z-1 -0.1 + 0.7 + + + + 0.7 y(n) + z-1 -0.9 z-1 0.8 -0.6 -0.1853 z-1 0.8 x(n) 0.6 0.35 + y(n) -0.9 z-1 0.1647 + Figure 9.9-2: 3(1 + 0.2z −1 )(1 + z −1 ) (1 + 0.5z −1 )(1 − 0.4z −1 ) 7 1 = −3 + − 1 − 0.4z −1 1 + 0.5z −1 = Refer to fig 9.9-3 (d) H(z) = = = Refer to fig 9.9-4 (e) √ 2(1 − z −1 )(1 + 2z −1 + z −2 ) (1 + 0.5z −1 )(1 − 0.9z −1 + 0.8z −2 ) √ √ 2 + (2 2 − 2)z −1 + (2 − 2 2)z −2 − 2z −3 ) 1 − 0.4z −1 + 0.36z −2 + 0.405z −3 B + Cz −1 A + 1 + 0.5z −1 1 − 0.9z −1 + 0.8z −1 H(z) = = = 1 + z −1 1− − 41 z −2 1 −1 2z 1 + z −1 (1 − 0.81z −1 )(1 + 0.31z −1 ) −0.62 1.62 + 1 − 0.81z −1 1 + 0.31z −1 Refer to fig 9.9-5 1−z −1 +z −2 (f) H(z) = 1−z −1 +0.5z −2 ⇒ Complex valued poles and zeros.Refer to fig 9.9-6 All the above 268 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Direct form II: Direct form I: x(n) + 3 + + y(n) x(n) + z-1 z-1 + 1.2 z-1 y(n) z-1 -0.1 -0.1 + 1.2 + + z-1 z-1 0.2 0.2 0.2 0.2 Parallel: Cascade: x(n) 3 + + + + z-1 -0.5 3 y(n) 7 + z-1 0.2 0.4 z-1 x(n) 1 0.4 -3 + y(n) -0.5 z-1 -1 + Figure 9.9-3: systems are stable. 269 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Direct form II: Direct form I: x(n) + 3 + x(n) y(n) + 0.4 + y(n) z-1 z-1 z-1 3 + 2 -1 0.4 + + + 2 -1 z-1 1- 2 z-1 z-1 + + z-1 z-1 z-1 1- 2 -0.36 + -0.36 + -0.405 -1 -0.405 -1 Parallel: x(n) 2 A + Cascade: z-1 + + + + y(n) x(n) -0.5 -3 y(n) + -0.8 z-1 -0.5 z-1 -1 + z-1 0.9 1.414 + + 0.9 z-1 -0.81 C z-1 B + 1 + Figure 9.9-4: Direct form II: Direct form I: x(n) + + + y(n) x(n) + z-1 z-1 + z-1 1/2 1/2 + z-1 1 z-1 1/4 1/4 Cascade: x(n) y(n) Parallel: + + + y(n) 1.62 + z-1 0.81 z-1 1 z-1 0.81 x(n) -0.31 + y(n) -0.3 z-1 + -0.62 Figure 9.9-5: 270 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Direct form I: Direct form II, cascade, parallel: y(n) x(n) + y(n) x(n) + + + z-1 z-1 -1 + z-1 1 + 1 + + z-1 z-1 1 -1 z-1 -1/2 -0.5 1 Figure 9.9-6: 271 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 9.10 Refer to fig 9.10-1 x(n) + v(n) + w(n) r sin w0 z-1 w(n-1) + y(n) Figure 9.10-1: 1 1 − 2rcosw0 z −1 + r2 z −2 V (z) = X(z) − rsinw0 z −1 Y (z) H(z) = (1) (2) (3) W (z) = V (z) − rcosw0 z −1 W (z) Y (z) = rcosw0 z −1 Y (z) − rsinw0 z −1 W (z) By combining (1) and (2) we obtain (4) W (z) = rsinw0 z −1 1 X(z) − Y (z) −1 1 − rcosw0 z 1 − rcosw0 z −1 Use (4) to eliminate W (z) in (3). Thus, Y (z)[(1 − rcosw0 z −1 )2 + r2 sin2 w0 z −2 ] = X(z) Y (z)[1 − 2rcosw0 z −1 + (r2 cos2 w0 + r2 sin2 w0 )z −2 ] = X(z) 1 Y (z) = X(z) 1 − 2rcosw0 z −1 + r2 z −2 9.11 A0 (z) = B0 (z) = 1 A1 (z) = A0 (z) + k1 B0 (z)z −1 1 = 1 + z −1 2 272 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. A2 (z) 1 + z −1 2 = A1 (z) + k2 B1 (z) B2 (z) = 1 + 0.3z −1 + 0.6z −2 = 0.6 + 0.3z −1 + z −2 B1 (z) = A3 (z) = A2 (z) + k3 B2 (z) = 1 − 0.12z −1 + 0.39z −2 − 0.7z −3 = −0.7 + 0.39z −1 − 0.12z −2 + z −3 B3 (z) A4 (z) = A3 (z) + k4 B3 (z) 53 −1 1 = 1− z + 0.52z −2 − 0.74z −3 + z −4 150 3 1 53 −1 −2 −3 z + 0.52z − 0.74z + z −4 ) = C(1 − 150 3 Therefore, H(z) where C is a constant 9.12 Refer to fig 9.12-1 b 0k x (n) k + y (n) k z-1 w1k (n) b1k -a 1k + z-1 w2k(n) -a 2k b2k + x(n) = x1(n) H (z) 1 xN(n) H2(z) H (z) N y(n)=y (n) N Figure 9.12-1: b0k + b1k z −1 + b2k z −2 1 + a1k z −1 + a2k z −2 = b0k xk (n) + w1k (n − 1) Hk (z) = yk (n) 273 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. w1k (n) w2k (n) = b1k x(n) − a1k yk (n) + w2k (n − 1) = b2k x(n) − a2k yk (n) 9.13 YJM1 = G * XIN DO 20 J=1,K YJ=B(J,0) * XIN + W1(J) W1(J) = B(J,1)*XIN - A(J,1)*YJ + W2(J) W2(J) = B(J,2)*XIN - A(J,2)*YJ YJM1 = YJM1 + YJ 20 CONTINUE YOUT = YJM1 RETURN 9.14 YJM1 = XIN DO 20 J=1,K W = -A(J,1) * WOLD1 - A(J,2) * WOLD2 + YMJ1 YJ = W + B(J,1)*WOLD1 + B(J,2)*WOLD2 WOLD2 = WOLD1 WOLD1 = W YJM1 = YJ 20 CONTINUE YOUT = YJ RETURN 9.15 1 1 + 2z −1 + z −2 3 1 −1 + 2z + z −2 = 3 1 = 3 A2 (z) − k2 B2 (z) = 1 − k22 3 = 1 + z −1 2 3 = 2 H(z) = A2 (z) = B2 (z) k2 A1 (z) k1 9.16 (a) A2 (z) B2 (z) A1 (z) B1 (z) = 1 − 13 = 1 k1 − 13 1 z −1 = 1 + 12 z −1 1 −1 2 +z A1 (z) z −1 B1 (z) = 1 + 31 z −1 − 13 z −2 − 31 + 13 z −1 + z −2 k1 1 1 274 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. A3 (z) B3 (z) = 1 1 1 1 A2 (z) z −1 B2 (z) H1 (z) = A3 (z) = 1 + z −3 ⇒ π zeros at z = −1, e±j 3 (b) H2 (z) The zeros are z = A2 (z) − z −1 B2 (z) 2 2 = 1 + z −1 − z −2 − z −3 3 3 √ −5 ± j 11 = 1, 6 (c) If the magnitude of the last coefficient |kN | = 1, i.e., kN = ±1, all the zeros lie on the unit circle. (d) Refer to fig 9.16-1. We observe that the filters are linear phase filters with phase jumps at −−−> phase of H1(w) 2 1 0 −1 −2 0 0.05 0.1 0.15 0.2 0.25 0.3 −−−> freq(Hz) 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 0.3 −−−> freq(Hz) 0.35 0.4 0.45 0.5 −−−> phase of H2(w) 4 2 0 −2 −4 0 Figure 9.16-1: the zeros of H(z). 9.17 (a) Refer to fig 9.17-1 275 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(n) f1(n) + z-1 + + f (n) = y(n) 3 0.8 -0.34 0.65 z-1 f 2(n) + z-1 + g (n) 1 + g (n) 2 g (n) 3 Figure 9.17-1: x(n) f1 (n) g1 (n) f2 (n) g2 (n) h(n) = f3 (n) = δ(n) = δ(n) + 0.65δ(n − 1) = 0.65δ(n) + δ(n − 1) = f1 (n) − 0.34g1 (n − 1) = δ(n) + 0.429δ(n − 1) − 0.34δ(n − 2) = −0.34f1 (n) + g1 (n − 1) = −0.34δ(n) + 0.429δ(n − 1) + δ(n − 2) = f2 (n) + 0.8g2 (n − 1) = δ(n) + 0.157δ(n − 1) + 0.0032δ(n − 2) + 0.8δ(n − 3) (b) H(z) = 1 + 0.157z −1 + 0.0032z −2 + 0.8z −3 . Refer to fig 9.17-2 x(n) + y(n) z-1 0.157 + z-1 0.0032 + z-1 0.8 Figure 9.17-2: 276 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 9.18 (a) H(z) = C3 (z) A3 (z) A3 (z) = 1 + 0.9z −1 − 0.8z −2 + 0.5z −3 B3 (z) = 0.5 − 0.8z −1 + 0.9z −2 + z −3 k3 = 0.5 A3 (z) − k3 B3 (z) A2 (z) = 1 − k32 = 1 + 1.73z −1 − 1.67z −2 B2 (z) = −1.67 + 1.73z −1 + z −2 k2 = −1.67 A2 (z) − k2 B2 (z) A1 (z) = 1 − k22 = 1 + 1.62z −1 B1 (z) = 1.62 + z −1 k1 = 1.62 C3 (z) = 1 + 2z −1 + 3z −2 + 2z −3 D3 (z) = 2 + 3z −1 + 2z −2 + z −3 k3 = 2 C3 (z) − k3 D3 (z) C2 (z) = 1 − k32 4 1 = 1 + z −1 + z −2 3 3 1 4 −1 + z + z −2 D2 (z) = 3 3 1 k2 = 3 C2 (z) − k2 D2 (z) C1 (z) = 1 − k22 3 = 1 + z −1 4 3 + z −1 D1 (z) = 4 3 k1 = 4 C3 (z) = v0 + v1 D1 (z) + v2 D2 (z) + v3 D3 (z) = 1 + 2z −1 + 3z −2 + 2z −3 From the equations, we obtain v0 v1 v2 v3 107 48 13 = − 4 = −1 = − = 2 277 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. The equivalent lattice-ladder structure is: Refer to fig 9.18-1 (b) A3 (z) = 1 + 0.9z −1 − 0.8z −2 + 0.5z −3 , |k1 | > 1 and |k2 | > 1 ⇒ the system is unstable. x(n) + + 0.5 1.62 -1.67 z -1 + + z -1 + v3 = 2 v =-1 2 v = -13/4 1 + z -1 + v 0 =-107/48 + + y(n) Figure 9.18-1: 9.19 Refer to fig 9.19-1 [rsinΘX(z) + rcosΘY (z) − rsinΘC(z)] z −1 Y (z) = C(z) [−rcosΘX(z) + rsinΘY (z) + rcosΘC(z)] z −1 Y (z) = X(z) rsinΘz −1 = 1 − 2rcosΘz −1 + r2 z −2 = rn sin(Θn)u(n) = H(z) Hence, h(n) = rsinΘx(n − 1) + 2rcosΘy(n − 1) − r2 y(n − 2) and y(n) The system has a zero at z = 0 and poles at z = re±jΘ . 9.20 H(z) = = S(z) = 1 1 − 2rcosw0 z −1 + r2 z −2 0 0 rcosw0 − j rcos2w rcosw0 + j rcos2w 2sinw0 2sinw0 1+ + z − (rcosw0 + jrsinw0 ) z − (rcosw0 − jrsinw0 ) 0 rcosw0 − j rcos2w 2sinw0 z − (rcosw0 + jrsinw0 ) X(z) 278 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. r cos θ r sin θ y(n) z-1 + r sin θ x(n) -r sin θ c(n) z-1 + -r cos θ r cos θ Figure 9.19-1: s(n) = v1 (n) + jv2 (n) p ⇒ α1 = α1 + jα2 = rcosw0 ⇒ q1 = rcosw0 −rcosw0 = 2sinw0 = α1 v1 (n) − α2 v2 (n) + q1 x(n) = rcosw0 v1 (n) − rsinw0 v2 (n) + rcosw0 x(n) = α2 v1 (n) + α1 v2 (n) + q2 x(n) −rcosw0 = rsinw0 v1 (n) + rcosw0 v2 (n) + x(n) 2sinw0 α2 A q2 v1 (n + 1) v2 (n) = rsinw0 = q1 + jq2 or, equivalently, v(n + 1) = rcosw0 rsinw0 −rsinw0 rcosw0 v(n) + rcosw0 rcosw0 2sinw0 x(n) y(n) = s(n) + s∗ (n) + x(n) = 2v1 (n) + x(n) or, equivalently, y(n) = [2 0]v(n) + x(n) where v(n) = v1 (n) v2 (n) 279 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 9.21 (a) k1 = 0.6 1 + 0.6z −1 0.6 + z −1 A1 (z) = B1 (z) = A2 (z) = A1 (z) + k2 B1 (z)z −1 = 1 + 0.78z −1 + 0.3z −2 B2 (z) = 0.3 + 0.78z −1 + z −2 A3 (z) = A2 (z) + k3 B2 (z)z −1 = 1 + 0.93z −1 + 0.69z −2 + 0.5z −3 B3 (z) = 0.5 + 0.69z −1 + 0.93z −2 + z −3 H(z) = A4 (z) = A3 (z) + k4 B3 (z)z −1 1 + 1.38z −1 + 1.311z −2 + 1.337z −3 + 0.9z −4 = (b) Refer to fig 9.21-1 Direct form: z-1 x(n) z-1 1 z-1 z-1 1.311 1.38 + + + 0.9 1.337 y(n) Lattice form: x(n) + + - + z-1 + - 0.3 0.6 z-1 + - - 0.5 + z-1 y(n) 0.9 + z-1 + Figure 9.21-1: 9.22 (a) From (9.3.38) we have y(n) But, y(n) Hence, k2 and, k1 (1 + k2 ) k1 = −k1 (1 + k2 )y(n − 1) − k2 y(n − 2) + x(n) = 2rcosw0 y(n − 1) − r2 y(n − 2) + x(n) = r2 = −2rcosw0 2rcosw0 + − 1 + r2 280 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Refer to fig 9.22-1 (b) When r = 1, the system becomes an oscillator. x(n) + + - y(n) - k2 k1 z -1 + z -1 + Figure 9.22-1: 9.23 H(z) = = For the all-pole system 1 , we have A(z) k1 (1 + k2 ) k2 ⇒ k1 k2 For the all-zero system, C2 (z) A2 (z) B2 (z) k2 A1 (z) = 0.1 = −0.72 = 0.357 = 0.72 = 1 − 0.8z −1 + 0.15z −2 = = = A0 (z) 1 − 0.8z −1 + 0.15z −2 0.15 − 0.8z −1 + z −2 0.15 A2 (z) − k2 B2 (z) = 1 − k22 = B1 (z) k1 1 − 0.8z −1 + 0.15z −2 1 + 0.1z −1 − 0.72z −2 B(z) A(z) 1 − 0.696z −1 = −0.696 + z −1 = −0.696 = B0 (z) = 1 281 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. C2 (z) = 2 X vm Bm (z) m=0 The solution is: v2 v1 − 0.18v2 v0 − 0.696v1 + 0.15v2 ⇒ v0 v1 v2 = v0 + v1 B1 (z) + v2 B2 (z) = 1 − 0.8z −1 + 0.15z −2 = 0.15 = −0.8 = 1 = 1.5 = −0.68 = 0.15 Thus the lattice-ladder structure is: Refer to fig 9.23-1 x(n) + + - 0.15 + -0.696 z -1 z -1 + v = -0.68 1 v = 0.15 2 + v = 1.5 0 + y(n) Figure 9.23-1: 9.24 √ H(z) = 1− 22 z −1 +0.25z −2 1−0.8z −1 +0.64z −2 . Refer to fig 9.24-1 9.25 H(z) = H(z) = 1+z −1 √ 1 1−z −1 . 1−0.8 2z −1 +0.64z −2 −1 2.31 −1.31+2.96z √ + 1−0.8 1− 12 z −1 2z −1 +0.64z −2 Refer to fig 9.25-1 282 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Direct form II : x(n) Transposed form : + + x(n) y(n) y(n) + D + a b D + D d b c + a where a=0.8, b = - 2 /2, c = 0.25 and d = -0.64 D d c + Figure 9.24-1: 9.26 (a) For positive numbers, range is 01. 00 . . . 0} ×21001 | {z − 01. |11 {z . . . 1} ×20111 negitive numbers 10. 11 . . . 1} ×21001 | {z − 10. |00 {z . . . 0} ×20111 11 11 or 7.8125 × 10−3 − 2.5596875 × 102 11 11 −3 or − 7.8163 × 10 − −2.56 × 102 (b) For positive numbers, range is 01. 00 . . . 0} ×210000001 | {z − 01. 11 . . . 1} ×201111111 | {z 10. 11 . . . 1} ×210000001 | {z − 10. 00 . . . 0} ×201111111 | {z 23 −39 or 5.8774717 × 10 negitive numbers 23 −39 or − 5.8774724 × 10 23 − 3.4028234 × 1038 23 − −3.4028236 × 1038 283 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Parallel: x(n) 2.31 + Cascade: + + z-1 y(n) + 0.5 x(n) y(n) + -0.64 z-1 1/2 z-1 1 + z-1 0.8 2 + 2.96 0.8 2 z-1 z-1 -0.64 -1.31 + + Figure 9.25-1: 9.27 (a) Refer to fig 9.27-1 x(n) + y(n) + -a 2 -a 1 z-1 z -1 Figure 9.27-1: if a1 ≥ 0, HR (z) = poles zp1,2 = for stability (i)a21 − 4a2 p −a1 − a21 − 4a2 2 q ⇒ a21 − 4a2 ⇒ a1 ≤ 2 and a1 − a2 (1 + a1 z −1 + a2 z −2 )−1 p −a1 ± a21 − 4a2 2 ≥ 0 ≥ −1 ≤ 2 − a1 ≤ 1 284 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. −a1 − if a1 < 0, ⇒ p a21 − 4a2 2 q a21 − 4a2 ≤ 1 ≤ 2 + a1 ⇒ a1 ≥ −2 and a1 + a2 ≥ −1 p 4a2 − a21 a1 ) ≤ 1 (ii)(− )2 + ( 2 2 a2 ≤ 1 Refer to fig 9.27-2. The region of stability in the a1 − a2 plane is shaded in the figure. There are The stable area of (a , a ) 1 2 2 a2 1 -2 -1 1 2 a1 -1 Figure 9.27-2: nine integer pairs (a1 , a2 ) which satisfy the stability conditions. These are (with corresponding system functions): (0, −1) HR1 (z) = (1 − z −2 )−1 (0, 0) (0, 1) HR2 (z) = HR3 (z) = 1 (1 + z −2 )−1 (1, 0) (1, 1) (2, 1) HR4 (z) = HR5 (z) = HR6 (z) = (1 + z −1 )−1 (1 + z −1 + z −2 )−1 (1 + 2z −1 + z −2 )−1 (−1, 0) (−1, 1) HR7 (z) = HR8 (z) = (−2, 1) HR9 (z) = (1 − z −1 )−1 (1 − z −1 + z −2 )−1 (1 − 2z −1 + z −2 )−1 285 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) HR1 (z) = HR4 (z)HR7 (z) HR6 (z) = HR4 (z)HR4 (z) HR9 (z) = HR7 (z)HR7 (z) (c) Only the following cases can make h(n) FIR: (i) hR (n) = δ(n) N X Then H(z) = z −i i=0 y(n) N X = i=0 x(n − i) (ii) hR (n) ∗ hF (n) = δ(n) Then H(z) = 1 y(n) = x(n) (d) see above. 9.28 Refer to fig 9.28-1 Note that 4 multiplications and 3 additions are required to implement H1 (z). The advantage x(n) + + + z-1 z-1 b 0 b1 b2 z-1 b 3 Figure 9.28-1: Structure of H1 (z) of Horner’s method is in evaluating H1 (z) for a specific z0 . Thus, if H1 (z) = b0 + b0 b1 z −1 + b0 b1 b2 z −2 + b0 b1 b2 b3 z −3 = b0 + z −1 (b0 b1 + z −1 (b0 b1 b2 + z −1 b0 b1 b2 b3 )) 286 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. the 3 multiplications and 3 additions are required for the evaluation of 9.1 in the field of z. If the various powers of z are prestored, then Horner’s scheme has no advantage over the direct evaluation of 9.1. Refer to fig 9.28-2 This requires 4 multiplications and 3 additions. The linear-phase system is written as z-1 z-1 z-1 z-1 z-1 + b 3 + + b 0 b1 b2 z-1 Figure 9.28-2: Structure of H(z) = b0 z −3 + b0 b1 z −2 + b0 b1 b2 z −1 + b0 b1 b2 b3 H(z) = z 2 a3 + za2 + a1 + z −1 a0 + z −2 a1 + z −3 a2 + z −4 a3 By applying Horner’s scheme, we can rewrite this as H(z) = z 3 (a3 + z −1 (a2 + z −1 (a1 + z −1 (a0 + z −1 (a1 + z −1 (a2 + z −1 a3 )))))) Assuming that z −1 and z are given, a direct evaluation of H(z) at z = z0 requires 8 multiplications and 6 additions. Using Horner’s scheme based on 9.28, requires the same number of operations as direct evaluation of H(z). Hence, Horner’s scheme does not offer any savings in computation. 9.29 (a) When x1 and x2 are positive, the result is obvious. If x1 and x2 are negative, let x1 x2 x3 = −0 n1 n2 . . . nb = −0 n1 n2 . . . nb + 0 0 0 . . . 0 1 = −0 m1 m2 . . . mb = −1 m1 m2 . . . mb + 0 0 0 . . . 0 1 = x1 + x2 = −0 n1 0 . . . 0 + 0 m1 0 . . . 0 + c where c = 0 0 n2 . . . nb + 0 0 m2 . . . mb + 0 0 0 . . . 0 1 0 If the sign changes, there are two possibilities (i) n 1 = m1 = 0 287 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. ⇒ n1 = m1 = ⇒ |x1 | > ⇒ |x3 | (ii)(n1 = 1, m1 = 0, c = 0) 1 ⇒ (|0 n1 0 . . . 0)10 | > 2 > or or and |c10 | > ⇒ |x3 | > 1 1 1 , |x2 | > 2 2 1, overflow (n1 = 0, m1 = 1, c = 0) 1 (|0 m1 0 . . . 0)10 | > 2 1 2 1, overflow (b) x1 x2 x3 x1 + x2 x1 + x2 + x3 = 0100 = 0110 = −0 1 1 0 = 1 0 1 0 = 1 0 1 0, overflow = 0 1 0 0, correct result 9.30 (a) H(z) |H(ejw )|2 −a + z −1 1 − az −1 −a + e−jw 2 = | | 1 − ae−jw (−a + cosw)2 + (−sinw)2 = (1 − acosw)2 + (asinw)2 a2 − 2acosw + 1 = = 1 ∀w 1 − 2acosw + a2 = (b) Refer to fig 9.30-1 (c) If |â| = | − â|, where â means the quantized value of a, then the filter remains all-pass. x(n) -a + + y(n) z-1 a 1 Figure 9.30-1: (d) Refer to fig 9.30-2 (e) Yes, it is still all-pass. 288 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. z-1 x(n) + + y(n) z-1 a - + + Figure 9.30-2: 9.31 (a) y(n) = 2( 12 )n − ( 41 )n u(n) (b) Quantization table x 31 ≥x 32 29 ≥x 32 1 ≥x 32 > > > ... > ... x < Therefore x(n) = y(n) = y(n) = 1− 1 32 29 32 27 32 1 32 x=1 15 16 14 x= 16 x= x= 14 16 1 −1 + x = −1 32 4 1 1, , , 0, . . . , 0 ↑ 16 16 8 y(n − 1) + x(n) 16 12 7 3 1 1, , , , , 0, 0, . . . ↑ 16 16 16 16 (c) y(n) y(n) 3 7 15 31 63 , ,... = 1, , , , ↑ 4 16 64 256 1024 3 7 12 16 , 0, 0, . . . = 1, , , , ↑ 4 16 64 256 Errors occur when number becomes small. 289 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 9.32 y(n) = 0.999y(n − 1) + e(n) e(n) is white noise, uniformly distributed in the interval − 219 , 219 E y 2 (n) = 0.9992 E y 2 (n − 1) + E e2 (n) (1 − 0.9992 )E y 2 (n) = E e2 (n) Z △2 1 2 e de = △ −△ 2 = Therefore, E y 2 (n) = = △2 where △ = 2−8 12 1 1 1 2 ( 8) 12 2 1 − 0.9992 6.361x10−4 9.33 (a) poles zp1 = 0.695, (b) Truncation x(n) zp2 = 0.180 Refer to fig 9.33-1 + + y(n) D D 0.695 0.18 Figure 9.33-1: poles z p1 = 0.625, 0.695 → 0.180 → 5 = 0.625 8 1 = 0.125 8 z p2 = 0.125 (c) Rounding poles z p1 = 0.75, 0.695 → 0.180 → 6 = 0.75 8 1 = 0.125 8 z p2 = 0.125 290 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (d) |0.75 − 0.695| Rounding is better < |0.695 − 0.625| 1 |Ha (w)| = [(1.483 + 1.39cosw)(1.0324 + 0.36cosw)]− 2 = [(1.391 + 1.25cosw)(1.0156 + 0.25cosw)]− 2 |Hc (w)| = [(1.563 + 1.5cosw)(1.0156 + 0.25cosw)]− 2 |Hb (w)| 1 1 9.34 (a) H1 (z) = h1 (n) = H2 (z) = h2 (n) = H3 (z) = h3 (n) = 1 1 − z −1 2 1 1, − 2 1 (1 − z −1 )−1 4 1 ( )n u(n) 4 1 (1 + z −1 )−1 4 1 (− )n u(n) 4 Refer to fig 9.34-1 Cascade the three systems in six possible permutations to obtain six realiza- H1 (z) + H (z) 2 H (z) 3 + + z -1 -1/2 z -1 1/4 z -1 -1/4 Figure 9.34-1: tions. (b) Error sequence ei (n) is uniformly distributed over interval ( 12 2−b , 12 2−b ). So σe2i = any i (call it σe2 ) 2−2b 12 for 291 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. + + + z -1 z -1 z -1 -1/2 + + e (n) 1 + 1/4 -1/4 e (n) 2 e (n) 3 Figure 9.34-2: (c) consider cascade H1 - H2 - H3 Refer to fig 9.34-2 h4 (n) σq2 = h2 (n) ∗ h3 (n) 1 1 = 1, 0, , 0, ( )2 , 0, . . . 16 16 # " ∞ ∞ X X = σe2 2 h23 (n) h24 (n) + n=0 n=0 1 2 1 2 + 1 − ( 16 1 − ( 14 )2 ) = σe2 = 3.0745σe2 σq2 = 3.0745σe2 σq2 = 3.3882σe2 σq2 = 3.2588σe2 σq2 = 3.2627σe2 σq2 = 3.3216σe2 using similar methods: H1 − H2 − H3 H2 − H1 − H3 H2 − H3 − H1 H3 − H1 − H2 H3 − H2 − H1 9.35 y(n) = Q[0.1δ(n)] + Q[αy(n − 1)] (a) y(n) y(0) = Q[0.1δ(n)] + Q[0.5y(n − 1)] 1 = Q[0.1] = 8 292 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. y(1) = Q[ y(2) = y(3) = y(4) = 1 ]=0 16 0 no limit cycle (b) y(n) = Q[0.1δ(n)] + Q[0.75y(n − 1)] 1 = Q[0.1] = 8 1 3 = Q[ ] = 32 8 3 1 = Q[ ] = 32 8 1 = 8 y(0) y(1) y(2) y(3) = y(4) limit cycle occurs 9.36 (a) σx2 = rxx (0) = 3 ⇒ Ax = (b) √1 3 2−6 △2 12 △ = σe2 = 1 12 × 212 1 10log10 2 σe = so SNR = 10log10 (12 × 212 ) 46.91dB = = (c) left-justified. (d) σq2 = σe2 ∞ X n=0 2 Now σe1 X and h2 (n) n so σq2 and SNR 2 h (n) + 2 σe1 ∞ X h2 (n) n=0 1 1 2 ( ) 12 28 1 16 = = , 2 1 − 0.75 7 1 1 2 16 1 1 2 ( ) + ( 6) = 7 12 28 12 2 17 = 344, 064 1 = 10log10 2 σq = 43.06dB = 293 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 9.37 △ △ Define ρc = rcosθ, ρs = rsinθ for convenience, (a) −ρs y(n − 1) + e1 (n) + x(n) + ρc v(n − 1) + e2 (n) ρs v(n − 1) + e3 (n) + ρc y(n − 1) + e4 (n) = v(n) = y(n) (b) −ρs z −1 Y (z) + E1 (z) + X(z) + ρc z −1 V (z) + E2 (z) = V (z) ρs z −1 V (z) + E3 (z) + ρc z −1 Y (z) + E4 (z) = Y (z) ρs z −1 [X(z) + E1 (z) + E2 (z)] 1 − 2ρc z −1 + r2 z −2 1 − ρc z −1 [E3 (z) + E4 (z)] + 1 − 2ρc z −1 + r2 z −2 = H1 (z)X(z) + H1 (z)[E1 (z) + E2 (z)] +H2 (z)[E3 (z) + E4 (z)] Y (z) = when H1 (z) and H2 (z) are as defined in the problem statement h1 (n) h2 (n) 1 n−1 r sinθnu(n − 1) sinθ = rn sin(nθ)u(n − 1) = ρs = rn sin(nθ)u(n) 1 n 1 n−1 = r sin(n + 1)θu(n) + ρc r sin(θn)u(n − 1) sinθ sinθ n r [sin(n + 1)θ − cosθsin(nθ)]u(n − 1) = δ(n) + sinθ n = δ(n) + r cos(nθ)u(n − 1) = rn cos(nθ)u(n) (c) 2 2 2 2 σe2 = σe1 = σe2 = σe3 = σe4 = = = σq2 = △2 12 1 −b 2 (2 ) 12 2−2b 12 ∞ ∞ X X 2σe2 h21 (n) + 2σe2 h22 (n) = 2σe2 = 2σe2 n=0 ∞ X n=0 [r2n sin2 nθ + r2n cos2 nθ] n=0 = 1 1 − r2n −2b 2 1 6 1 − r2n 9.38 (a) h1 (n) 1 = ( )n u(n) 2 294 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. h2 (n) h(n) σq2 1 ( )n u(n) 4 1 1 = [2( )n − ( )n ]u(n) 2 4 ∞ ∞ X X 2 2 = 2σe1 h21 (n) + 2σe2 h22 (n) = n=0 = n=0 16 64 2 σ + σ2 35 e1 15 e2 (b) σq2 2 = σe1 X 2 h2 (n) + σe2 n = X h21 (n) n 64 2 4 σ + σ2 35 e1 3 e2 9.39 Refer to fig 9.39-1 x(n) 1 + y(n) + e (n) 1 + e + e -1 z a1 -1 z aM-2 M-2 (n) -1 z a M-1 M-1 (n) Figure 9.39-1: σe2i = σq2 = = 1 −2b 2 ∀i 12 (M − 1)σe2i (M − 1) −2b 2 12 295 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 9.40 H(z) B(z) A(z) π π (1 − 0.8ej 4 )(1 − 0.8e−j 4 ) = G1 (1 − 0.5z −1 )(1 + 13 z −1 ) (1 + 0.25z −1 )(1 − 58 z −1 ) G2 π π (1 − 0.8ej 3 )(1 − 0.8e−j 3 ) = H1 (z)H2 (z) = (a) z −1 At w = 0, z −1 H1 (w)|w=0 π π (1 − 0.8ej 4 )(1 − 0.8e−j 4 ) G1 (1 − 0.5)(1 + 13 ) G1 5 (1 + 0.25)(1 − 8 ) G2 π π (1 − 0.8ej 3 )(1 − 0.8e−j 3 ) G2 = e−jw = 1 = 1 = 1 = 1.1381 = 1 = 1.7920 (b) Refer to fig 9.40-1. (c) Refer to fig 9.40-2. Refer to fig 9.40-3. Refer to fig 9.40-4. 296 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Direct for m I: x(n) 1 + + y(n) G -1 z -1 z -3/8 + 1/6 + -1 z -1 z -5/32 1/6 Direct form II and cascade structure: x(n) + + y(n) G -1 z + -3/8 1/6 + -1 z -5/32 1/6 Figure 9.40-1: Direct form I, impulse response 1.5 −−−> mag 1 0.5 0 −0.5 −1 0 10 20 30 40 50 60 70 80 90 100 70 80 90 100 Direct form I, step response 1.6 −−−> mag 1.4 1.2 1 0.8 0 10 20 30 40 50 −−−> n 60 Figure 9.40-2: 297 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Direct form II, impulse response 1.5 −−−> mag 1 0.5 0 −0.5 0 10 20 30 40 50 60 70 80 90 100 70 80 90 100 70 80 90 100 70 80 90 100 Direct form II, step response 1.5 −−−> mag 1.4 1.3 1.2 1.1 1 0 10 20 30 40 50 −−−> n 60 Figure 9.40-3: Cascade form , impulse response 1.5 −−−> mag 1 0.5 0 −0.5 0 10 20 30 40 50 60 Cascade form, step response 1.5 −−−> mag 1.4 1.3 1.2 1.1 1 0 10 20 30 40 50 −−−> n 60 Figure 9.40-4: 298 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 9.41 (a) k1 −3 8 27 32 = 4 9 5 = − 32 = − k2 Refer to fig 9.41-1a. (b) x(n) f (n) 0 f1(n) + f 2 (n) = y(n) + k2 k1 z-1 z-1 + z-1 + (a) Forward x(n) f1(n) + - f (n) 2 f (n) 0 + y(n) k2 k1 g (n) 2 z-1 + z-1 + g (n) 0 Reverse (b) Figure 9.41-1: A(z) = = k2 1 (1 − 1− 1 = − 6 0.5z −1 )(1 + 31 z −1 ) 1 1 −1 6z − 61 z −2 299 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 6 1 = − 5 k1 (1 + k2 ) = − k1 Refer to fig 9.41-1b. (c) Refer to fig 9.41-2. (e) Refer to fig 9.41-3. x(n) + + - -1/6 + -1/5 z -1 z -1 + v =0.4336 1 v =-0.1563 2 v =0.7829 0 + + y(n) Figure 9.41-2: (f) Finite word length effects are visible in h(n) for part f. 9.42 Refer to fig 9.42-1. c = H1 (z) = H2 (z) = 15 16 1 1 9 10 − 21 z −1 83 80 + 31 z −1 300 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. IR for part a IR for part b 0.5 0.5 h(n) 1 h(n) 1 0 −0.5 0 0 50 −0.5 0 100 IR for part c 50 100 IR for part f 0.8 1 0.5 0.4 h(n) h(n) 0.6 0.2 0 0 −0.2 0 50 −−> n 100 −0.5 0 50 −−> n 100 Figure 9.41-3: 301 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Parallel form structure: c x(n) y(n) H (z) 1 H (z) 2 Parallel form structure using 2nd-order coupled-form state-space sections 1 1/2 x(n) A B + z + z -1 + y(n) -1 -1/3 Figure 9.42-1: 302 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Chapter 10 10.1 (a) To obtain the desired length of 25, a delay of Hd (w) hd (n) = 1e−j12w , = 0, = 1 2π = 12 is incorporated into Hd (w). Hence, 0 ≤ |w| ≤ π 6 otherwise Z π 6 −π 6 π sin 6 (n Hd (w)e−jwn dw − 12) π(n − 12) = hd (n)w(n) = Then, h(n) 25−1 2 where w(n) is a rectangular window of length N = 25. P24 (b)H(w) = n=0 h(n)e−jwn ⇒ plot |H(w)| and 6 H(w). Refer to fig 10.1-1. (c) Hamming window: w(n) = h(n) = hd (n)w(n) nπ ) 12 for 0 ≤ n ≤ 24 (0.54 − 0.46cos Refer to fig 10.1-2. 303 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. −−−> mag(dB) 50 0 −50 −100 −150 0 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 −−−> phase 4 2 0 −2 −4 0 Figure 10.1-1: −−−> mag(dB) 50 0 −50 −100 −150 0 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 −−−> phase 4 2 0 −2 −4 0 Figure 10.1-2: 304 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (d) Bartlett window: w(n) = 1− 2(n − 12) 24 0 ≤ n ≤ 24 Refer to fig 10.1-3. −−−> mag(dB) 0 −10 −20 −30 −40 −50 0 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 −−−> phase 4 2 0 −2 −4 0 Figure 10.1-3: 10.2 (a) Hd (w) hd (n) = 1e−j12w , = 0, = 1 2π |w| ≤ π π ≤ |w| ≤ 6Z 3 π , 6 π ≤ |w| ≤ π 3 π Hd (w)e−jwn dw −π = δ(n) − sin π3 (n − 12) sin π6 (n − 12) + π(n − 12) π(n − 12) (b) Rectangular window: w(n) = 1, = 0, otherwise 0 ≤ n ≤ 24 305 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Refer to fig 10.2-1. (c) Hamming window: 10 −−−> mag(dB) 0 −10 −20 −30 −40 −50 0 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 −−−> phase 4 2 0 −2 −4 0 Figure 10.2-1: w(n) = h(n) = hd (n)w(n) H(w) = (0.54 − 0.46cos 24 X nπ ) 12 h(n)e−jwn n=0 Refer to fig 10.2-2. (d) Bartlett window: w(n) = 1− (n − 12) , 12 0 ≤ n ≤ 24 Refer to fig 10.2-3. Note that the magnitude responses in (c) and (d) are poor because the transition region is wide. To obtain sharper cut-off, we must increase the length N of the filter. 306 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. −−−> mag(dB) 5 0 −5 −10 −15 −20 0 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 −−−> phase 4 2 0 −2 −4 0 Figure 10.2-2: −−−> mag(dB) 0 −5 −10 −15 0 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 −−−> phase 4 2 0 −2 −4 0 Figure 10.2-3: 307 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 10.3 (a) Hanning window: w(n) = 12 (1 − cos πn 0 ≤ n ≤ 24. Refer to fig 10.3-1. 12 ), πn (b) Blackman window: w(n) = 0.42 − 0.5cos πn 12 + 0.08cos 6 . Refer to fig 10.3-2. −−−> mag(dB) 50 0 −50 −100 −150 0 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 −−−> phase 4 2 0 −2 −4 0 Figure 10.3-1: 10.4 (a) Hanning window: Refer to fig 10.4-1. (b) Blackman window: Refer to fig 10.4-2. The results are still relatively poor for these window functions. 10.5 M = 4, Hr (0) = 1, M 2 Hr (w) = 2 −1 X n=0 = 2 h(n)cos[w( 1 π Hr ( ) = 2 2 M −1 − n)] 2 1 X 3 h(n)cos[w( − n)] 2 n=0 308 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. −−−> mag(dB) 0 −50 −100 −150 0 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 −−−> phase 4 2 0 −2 −4 0 Figure 10.3-2: At w = 0, Hr (0) = 1 = 2 1 X h(n)cos[0] n=0 2[h(0) + h(1)] At w = π 1 π , Hr ( ) = 2 2 2 −h(0) + h(1) Solving (1) and (2), we get = 1 = 2 (1) 1 X π 3 h(n)cos[ ( − n)] 2 2 n=0 = 0.354 h(0) h(1) = 0.073 and = 0.427 h(2) h(3) = h(1) = h(0) Hence, h(n) (2) = {0.073, 0.427, 0.427, 0.073} 309 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. −−−> mag(dB) 5 0 −5 −10 −15 0 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 −−−> phase 4 2 0 −2 −4 0 Figure 10.4-1: −−−> mag(dB) 5 0 −5 −10 −15 0 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 −−−> phase 4 2 0 −2 −4 0 Figure 10.4-2: 310 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 10.6 M = 15.Hr ( 2πk )= 15 1, 0, k = 0, 1, 2, 3 k = 4, 5, 6, 7 M −3 Hr (w) h(n) h(n) Hr (w) 2 X M −1 M −1 h(n)cosw( )+2 − n) = h( 2 2 n=0 = h(M − 1 − n) = h(14 − n) = h(7) + 2 6 X n=0 Solving the above eqn yields, h(n) h(n)cosw(7 − n) = {0.3189, 0.0341, −0.1079, −0.0365, 0.0667, 0.0412, −0.0498, 0.4667 0.4667, −0.0498, 0.0412, 0.0667, −0.0365, −0.1079, 0.0341, 0.3189} 10.7 1, 2πk 0.4, )= M = 15.Hr ( 15 0, k = 0, 1, 2, 3 k=4 k = 5, 6, 7 M −3 Hr (w) h(n) h(n) Hr (w) 2 X M −1 M −1 = h( )+2 − n) h(n)cosw( 2 2 n=0 = h(M − 1 − n) = h(14 − n) = h(7) + 2 6 X n=0 Solving the above eqn yields, h(n) h(n)cosw(7 − n) = {0.3133, −0.0181, −0.0914, 0.0122, 0.0400, −0.0019, −0.0141, 0.52, 0.52, −0.0141, −0.0019, 0.0400, 0.0122, −0.0914, −0.0181, 0.3133} 10.8 (a) ya (t) Hence, H(F ) dxa (t) dt d j2πF t [e ] = dt = j2πF ej2πF t = = j2πF 311 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) |H(F )| 6 = 2πF π H(F ) = , F >0 2 π F <0 = − , 2 Refer to fig 10.8-1. (c) B=pi/6 −−> magnitude 0.6 0.4 0.2 0 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 −−> Freq(Hz) 0.04 0.06 0.08 0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 −−> Freq(Hz) 0.04 0.06 0.08 0.1 2 −−> phase 1 0 −1 −2 −0.1 Figure 10.8-1: H(w) |H(w)| 6 H(w) = jw, |w| ≤ π = |w| π , w>0 = 2 π = − , w<0 2 Refer to fig 10.8-2. we note that the digital differentiator has a frequency response that resembles the response of the analog differentiator. (d) y(n) = x(n) − x(n − 1) H(z) = 1 − z −1 H(w) = 1 − e−jw 312 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. −−> magnitude 4 3 2 1 0 −4 −3 −2 −1 0 −−> w 1 2 3 4 −3 −2 −1 0 −−> w 1 2 3 4 2 −−> phase 1 0 −1 −2 −4 Figure 10.8-2: |H(w)| 6 H(w) w w = e−j 2 (2jsin ) 2 w = 2|sin | 2 π w = − 2 2 Refer to fig 10.8-3. w Note that for small w, sin w2 ≈ w2 and H(w) ≈ jwe−j 2 , which is a suitable approximation to the differentiator in (c). (e) The value H(w0 ) is obtained from (d) above. Then y(n) = A|H(w0 )|cos(w0 n + θ + π2 − w20 ) 10.9 Hd (w) hd (n) hd (n) = we−j10w , 0≤w≤π −j10w = −we , −π ≤w ≤0 Z π 1 = Hd (w)e−jwn dw 2π −π cosπ(n − 10) = , n 6= 10 (n − 10) = 0, n = 10 cosπ(n − 10) , 0 ≤ n ≤ 20, n 6= 10 = (n − 10) 313 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. −−> magnitude 2 1.5 1 0.5 0 −4 −3 −2 −1 0 −−> w 1 2 3 4 −3 −2 −1 0 −−> w 1 2 3 4 2 −−> phase 1 0 −1 −2 −4 Figure 10.8-3: = 0, n = 10 With a Hamming window, we obtain the following frequency response: Refer to fig 10.9-1. 10.10 H(s) has two zeros at z1 = −0.1 and z2 = ∞ and two poles p1,2 = −0.1 ± j3. The matched z-transform maps these into: z̃1 z̃2 = e−0.1T = e−0.01 = 0.99 = e−∞T = 0 p̃1 p̃2 = e(−0.1+j3)T = 0.99ej0.3 = 0.99e−j0.3 1 − rz −1 , w0 = 0.3 r = 0.99 = 1 − 2rcosw0 z −1 + r2 z −2 Hence, H(z) From the impulse invariance method we obtain 1 1 1 H(s) = + 2 s + 0.1 − j3 s + 0.1 + j3 1 1 1 H(z) = + 2 1 − e−0.1T ej3T z −1 1 − e−0.1T e−j3T z −1 1 − rcosw0 z −1 = 1 − 2rcosw0 z −1 + r2 z −2 314 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 3 −−−> mag(dB) 2.5 2 1.5 1 0.5 0 0 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 0.05 0.1 0.15 0.2 0.25 0.3 −−−> Freq(Hz) 0.35 0.4 0.45 0.5 −−−> phase 4 2 0 −2 −4 0 Figure 10.9-1: The poles are the same, but the zero is different. 10.11 Ha (s) = s = H(z) = = where α = (Ωu − Ωl )s − (Ωu − Ωl )s + Ωu Ωl 2 1 − z −1 T 1 + z −1 s2 (Ωu − Ωl ) 2 T (1 − z −1 )(1 + z −1 ) ( T2 )2 (1 − z −1 )2 + (Ωu − Ωl )( T2 )(1 − z −1 )(1 + z −1 ) + Ωu Ωl (1 + z −1 )2 2(α − β)(1 − z −2 ) [4 + 2(α − β) + αβ] − 2(4 − αβ)z −1 + [4 − 2(α − β) + αβ]z −2 Ωu T, β = Ωl T In order to compare the result with example 10.4.2, let wu wl Then, H(z) In our case, we have α = Ωu T β = Ωl T 3π 5 2π = Ωl T = 5 0.245(1 − z −2 ) = 1 + 0.509z −2 wu = 2.753 = 2tan 2 wl = 1.453 = 2tan 2 = Ωu T = ( example 8.3.2 ) 315 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. By substituting into the equation above, we obtain 2.599(1 − z −2 ) 10.599 + 5.401z −2 0.245(1 − z −2 ) 1 + 0.509z −2 H(z) = = 10.12 Let T = 2 (a) H(z) = (b) 1+z −1 1−z −1 ⇒ y(n) = y(n − 1) + x(n) + x(n − 1) Ha (Ω) = 1 |Ω| 6 H(Ω) = (c) w |H(w)| = |cot | 2 H(w) = 6 − π2 , π 2, Ω≥0 Ω<0 − π2 , 0 ≤ w ≤ π π −π < w < 0 2, (d) The digital integrator closely matches the magnitude characteristics of the analog integrator. The two phase characteristics are identical. (e) The integrator has a pole at w = 0. To avoid overflow problems, we would have E[x(n)] = 0, i.e., a signal with no dc component. 10.13 (a) H(z) = A = A H(z)|z=1 = ⇒A = (1 − (1 + z −1 )3 − 12 z −1 + 41 z −2 ) 1 −1 )(1 2z −1 (1 + z )(1 + 2z −1 + z −2 ) (1 − 21 z −1 )(1 − 12 z −1 + 41 z −2 ) 1 3 1 1 1 , b1 = 2, b2 = 1, a1 = 1, c1 = − , d1 = − , d2 = 64 2 2 4 (b) Refer to fig 10.13-1 10.14 (a) There are only zeros, thus H(z) is FIR. (b) Zeros: z1 z2 z3,4 z5,6 4 = − , 3 3 = − , 4 3 ±j π e 3 = 4 4 ±j π e 3 = 3 316 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(n) 3/64 + + y(n) z-1 + -1 3 + z-1 + 1/2 3 + z-1 -1/8 x(n) 3/64 1 + + + + z-1 z-1 -0.5 y(n) 1 -1/2 + 2 + z-1 1/4 1 Figure 10.13-1: z7 = Hence, z2 = z4 = z5 = z6 = z1 = and H(z) = 1 1 z1∗ z3∗ 1 z3∗ z5∗ 1 =1 z7 z −6 H(z −1 ) Therefore, H(w) is linear phase. (c) Refer to fig 10.14-1 10.15 From the design specifications we obtain ǫ = 0.509 δ = fp = fs = 99.995 4 1 = 24 6 1 6 = 24 4 317 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. + + y(n) z-1 x(n) + z-1 25/12 + z-1 + z-1 z-1 -4/3 - 3/4 = -25/12 + + z-1 z-1 2 o (4/3)2 + (3/4) + 4 cos 2 60 = 481/144 Figure 10.14-1: Assume t = 1. Then, Ωp = and Ωs wp 2 2tanπfp = 1.155 ws 2tan 2 2tanπfs = 2 δ = 196.5 ǫ Ωs = 1.732 Ωp logη = 9.613 ⇒ N = 10 logk cosh−1 η = 5.212 ⇒ N = 6 cosh−1 k 1 = 0.577 ⇒ α = 35.3o k 1 = 0.577 ⇒ β = 0.3o η k(sinα) k(cosβ) . = 3.78 ⇒ N = 4 k(cosα) k(sinβ) = 2tan = = η = k = Butterworth filter: Nmin ≥ Chebyshev filter: Nmin ≥ Elliptic filter: sinα = sinβ = Nmin ≥ 318 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 10.16 From the design specifications we have ǫ = δ = fp = fs = Ωp = Ωs = η = k = Butterworth filter: Nmin ≥ Chebyshev filter: Nmin ≥ Elliptic filter: Nmin ≥ 0.349 99.995 1.2 = 0.15 8 2 = 0.25 8 wp 2tan = 1.019 2 ws 2tan =2 2 δ = 286.5 ǫ Ωs = 1.963 Ωp logη = 8.393 ⇒ N = 9 logk cosh−1 η = 4.90 ⇒ N = 5 cosh−1 k q k( 1 − η12 ) k( k1 ) q . ⇒ N =4 k( η1 ) k( 1 − k12 ) 10.17 Passband ripple = 1dB ⇒ ǫ = 0.509 Stopband attenuation = 60dB ⇒ δ = 1000 wp ws = = Ωp = Ωs = η = k = Nmin ≥ 0.3π 0.35π wp = 1.019 2tan 2 ws = 1.226 2tan 2 δ = 1965.226 ǫ Ωs = 1.203 Ωp 8.277 cosh−1 η = = 13.2 ⇒ N = 14 −1 cosh k 0.627 Special software package, such as MATLAB or PC-DSP may be used to obtain the filter coefficients. Hand computation of these coefficients for N = 14 is very tedious. 319 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 10.18 Passband ripple = 0.5dB ⇒ ǫ = 0.349 Stopband attenuation = 50dB wp ws = = Ωp = Ωs = η = k = Nmin ≥ 0.24π 0.35π wp 2tan = 0.792 2 ws = 1.226 2tan 2 δ = 906.1 ǫ Ωs = 1.547 Ωp 7.502 cosh−1 η = = 7.48 ⇒ N = 8 −1 cosh k 1.003 Use a computer software package to determine the filter coefficients. 10.19 (a) MATLAB is used to design the FIR filter using the Remez algorithm. We find that a filter of length M = 37 meets the specifications. We note that in MATLAB, the frequency scale is normalized to 12 of the sampling frequency. Refer to fig 10.19-1. 20 15 (b)δ1 = 0.02, δ2 = 0.01, △f = 100 − 100 = 0.05 1.2 1 |H(w)| 0.8 0.6 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 −−> f 0.6 0.7 0.8 0.9 1 Figure 10.19-1: With equation (10.2.94) we obtain M̂ = √ −20log10 ( δ1 δ2 ) − 13 + 1 ≈ 34 14.6△f 320 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. With equation (10.2.95) we obtain D∞ (δ1 δ2 ) = 1.7371 f (δ1 δ2 ) = and M̂ = 11.166 D∞ (δ1 δ2 ) − f (δ1 δ2 )(△f )2 + 1 ≈ 36 △f Note (10.2.95) is a better approximation of M . (c) Refer to fig 10.19-2. Note that this filter does not satisfy the specifications. 1 0.9 0.8 0.7 |H(w)| 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 −−> f 0.6 0.7 0.8 0.9 1 Figure 10.19-2: M=37 FIR filter designed by window method with Hamming window (d)The elliptic filter satisfies the specifications. Refer to (e) FIR order 37 storage 19 No. of mult. 19 fig 10.19-3. IIR 5 16 16 10.20 (a) h(n) = 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, . . . ↑ 10 X h(n)z −n H(z) = H(w) = z −1 + 2z −2 + 3z −3 + 4z −4 + 5z −5 + 4z −6 + 3z −7 + 2z −8 + z −9 = e−j9w [2cos4w + 4cos3w + 6cos2w + 8cosw + 5] n=0 (b)|H(w)| = |2cos4w + 4cos3w + 6cos2w + 8cosw + 5|. Refer to fig 10.20-1. 321 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 0.9 0.8 0.7 |H(w)| 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.05 0.1 0.15 0.2 0.25 −−> f 0.3 0.35 0.4 0.45 0.5 Figure 10.19-3: 10.21 (a) dc gain: Ha (0) 3dB frequency: |Ha (jΩ)|2 or α2 α2 + Ω2c ⇒ Ωc For all Ω, only H(j∞) ha (τ ) ⇒ e−αt ⇒τ = 1 1 = 2 1 = 2 = α = 0 1 1 = ha (0) = e e = e−1 1 = α (b) h(n) H(z) H(w) H(0) 3dB frequency: |H(wc )|2 (1 − αT α coswc )2 + (e−αT sinwc )2 = ha (nT ) = e−αnT u(n) 1 = 1 − e−αT z −1 1 = 1 − e−αT e−jw = H(w)|w=0 1 = 1 − e−αT 1 = |H(0)|2 2 = 2(1 − e−αT )2 322 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 25 −−> magnitude 20 15 10 5 0 0 0.05 0.1 0.15 0.2 0.25 0.3 −−> Freq(Hz) 0.35 0.4 0.45 0.5 Figure 10.20-1: it oscillates between Hence, wc = Since |H(w)|2 = 1 1 and (1 − e−αT )2 (1 + e−αT )2 but never reaches zero h(τ ) ⇒τ τ is the smallest integer that is larger than αT ) 2 1 1 − 2e−αT cosw + e−2αT 2sin−1 (sinh = e−ατ T = e−1 1 ≥ αT 1 T (c) H(z) = = = DC Gain: H(z)|z=1 = At z = −1(w = π), H(z) = α 2 1−z −1 T 1+z −1 +α αT (1 + z −1 ) 2(1 − z −1 ) + αT (1 + z −1 ) αT (1 + z −1 ) 2 + αT + (αT − 2)z −1 1 0 1 since |Ha (jΩc )|2 = , we have Ωc = α 2 Ωc wc = 2tan−1 T 2 = 2tan−1 αT 2 2 − αT Let a = 2 + αT 323 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Then H(z) = h(n) = h(0) = h(n) h(0) = ⇒ (1 + a)an−1 = n = = 1−a (1 + a)z −1 1+ 2 1 − az −1 1−a δ(n) + (1 + a)an−1 u(n − 1) 2 1−a 2 1 e 1 e a ln 1+a −1 lna ln( 2−αT 4 )−1 2−αT ln( 2+αT ) 10.22 (a) hd (n) = = = T 2π T 2π Z π T π −T "Z Hd (w)ejwn dw − 0.4π T ejwn dw + π − 2T Z 0.5π T ejwn dw 0.4π T # πn 2πn T sin − sin nπ 2T 5T (b) Let hs (n) Then, h(n) (c) = hd (n)w(n), − 100 ≤ n ≤ 100(M = 101) = hs (n − 100) will be the impulse of the filter for 0 ≤ n ≤ 200 0, 0 ≤ w ≤ 0.4π T 0.5π −j100w , 0.4π e T ≤w ≤ T 0.5π 1.5π 0, Hd (w) = T N , it is not possible to determine the {ak } and the order p. 10.28 (1) The set of linear equations are: M −1 X k=0 h(k)rxx (k − l) where rxx (l) ryx (l) = ryx (l), = = ∞ X n=0 ∞ X n=0 E = l = 0, 1, . . . , M − 1 x(n)x(n − l) and y(n)x(n − l) ∞ X [y(n) − n=−∞ M −1 X k=0 h(k)x(n − k)]2 (2) Refer to fig 10.28-1. (3) Refer to fig 10.28-2. Total squared error 8.28 8.26 8.24 8.22 error 8.2 8.18 8.16 8.14 8.12 8.1 8.08 8 9 10 11 filter order 12 13 14 Figure 10.28-1: (4) v(n) = y(n) + 0.01w(n). Refer to fig 10.28-3. 328 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. fft of original h(n) M=11E=8.093 0.4 1 −−>|H(w)| −−>|H(w)| 0.3 0.5 0.2 0.1 0 0 1000 2000 0 0 3000 1000 0.5 0.4 0.4 0.3 0.2 0.1 0 0 3000 M=13E=8.101 0.5 −−>|H(w)| −−>|H(w)| M=12E=8.084 2000 0.3 0.2 0.1 1000 2000 0 0 3000 1000 2000 3000 Figure 10.28-2: 10.29 (a) Since δ(n − k) = 0 except for n = k, equation (1) reduces to h(n) = −a1 h(n − 1) − a2 h(n − 2) − . . . − aN h(n − N ) + bn , 0 ≤ n ≤ M (b) Since δ(n − k) = 0 except for n = k, equation (1) reduces to h(n) = −a1 h(n − 1) − a2 h(n − 2) − . . . − aN h(n − N ), 0n > M (c) We use the linear equation given in (b) to solve for the filter parameters {ak }. Then we use values for the {ak } in the linear equation fiven in (a) and solve for the parameters {bk }. 10.30 Hd (z) = 2 1 − 21 z −1 We can see that by setting M = 0 and N = 1 in PM −1 k=0 bk z H(z) = PN 1 + k=1 ak z −1 we can provide a perfect match to Hd (z) as given in H(z) = b0 . 1 + a1 z −1 329 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. fft of original h(n) M=8 E=8.42 M=9 E=8.305 −−>|H(w)| 1.5 0.4 0.5 1 0.2 0.5 0 0 1000 2000 3000 M=10 E=8.228 0.4 0 0 1000 2000 3000 M=11 E=8.228 0 0 1000 2000 3000 M=12 E=8.221 0.4 0.5 0.2 0 0 0.2 1000 2000 3000 M=13 E=8.238 0.5 0 0 0 0 1000 2000 3000 M=14 E=8.24 0 0 1000 2000 3000 0.5 1000 2000 3000 0 0 1000 2000 3000 Figure 10.28-3: With δ(n) as the input to H(z), we obtain the output h(n) = −a1 h(n − 1) + b0 δ(n). For n > M = 1, we have h(n) = −a1 h(n − 1) or, equivalently, hd (n) = −a1 hd (n − 1). Substituting for hd (n), we obtain a1 = − 21 . To solve for b0 , we use the equation given in 10.29(a) with h(n) = hd (n), 1 hd (n) = hd (n − 1) + b0 δ(n). 2 For n = 0 this equation yields b0 = 2. Thus H(z) = 2 1 − 12 z −1 . (b) Hd (z) = H(z) 330 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 10.31 (a) h(n) = − N X k=1 ak h(n − k) + M X k=0 bk δ(n − k) n≥0 (b) Based on (a) ĥd (n) = − ε1 = N X k=1 ∞ h X M +1 = ∞ X M +1 ak hd (n − k) n>M i2 hd (n) − ĥd (n) " hd (n) − N X k=1 #2 ak hd (n − k) By differentiating with respect to the parameters {ak }, we obtain the set of linear equations of the form N X ak rhh (k, l) = −rhh (l, 0) l = 1, 2, . . . , N k=1 where, rhh (k, l) = = ∞ X n=1 ∞ X n=0 hd (n − k)hd (n − l) hd (n)hd (n + k − l) = rhh (k − l) The solution of these linear equations yield to the filter parameters {ak }. (c) We can find the least-squares solution for {bk } from the minimization of ε2 = ∞ X n=0 " ĥd (n) − M X k=0 #2 bk v(n − k) Thus we obtain a set of linear equations for the parameters {bk }, in the form M X bk rvv (k, l) = rhv (l) l = 0, 1, . . . , M k=0 where rvv (k, l) rhv (k) = = ∞ X n=0 ∞ X n=0 v(n − k)v(n − l) h(n)v(n − k) 331 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 10.32 (a) y(n) = 1.5198y(n − 1) − 0.9778y(n − 2) + 0.2090y(n − 3) +0.0812x(n) + 0.0536x(n − 1) + 0.0536x(n − 2) + 0.0812x(n − 3) hd (n) can be found by substituting x(n) = δ(n). Fig 10.32-1 shows the hd (n). 0.3 0.25 0.2 d h (n) 0.15 0.1 0.05 0 −0.05 −0.1 0 5 10 15 20 25 n 30 35 40 45 50 Figure 10.32-1: (b) The poles and zeros obtained using Shanks’ method are listed in Table 10.32. The magnitude response for each case together with the desired response is shown in Fig. 10.32-2. The frequency response characteristics illustrate that Shanks’ method yields very good designs when the number of poles and zeros equals or exceeds the number of poles and zeros in the actual filter. Thus the inclusion of zeros in the approximation has a significant effect in the resulting design. Filter Order N=3 M=2 N=3 M=3 N=4 M=3 Poles 0.5348 0.6646 ± j0.4306 0.3881 0.5659 ± j0.4671 -0.00014 0.388 0.566 ± j0.4671 Zeros −0.2437 ± j0.5918 -1 0.1738 ± j0.9848 -1 0.1738 ± j0.9848 332 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 0 −10 Desired response N=3, M=3 N=4, M=3 −20 Magnitude (dB) −30 −40 N=3, M=2 −50 −60 −70 −80 −90 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Normalized Frequency (xπ rad/sample 0.8 0.9 1 Figure 10.32-2: 333 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 334 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Chapter 11 11.1 (a) Let the corresponding baseband spectrum be called Xb (Ω). Then 1 [Xb (Ω − 2000π) + Xb (Ω + 2000π)] 2 Xa (Ω) = With frequencies normalized to Fx , w′ = Ω Fx . The sequence x(n) has DTFT X(w′ ) = = ∞ X q=−∞ ∞ X Xa (w′ − 2πq) [Xa (w′ − 0.8π − 2πq) + Xb (w′ + 0.8π − 2πq)] q=−∞ modulation by cos(0.8π) causes shifts up and down by 0.8π (and scaling by |X(w’)| 1 2) of each Assumes peak of X (.) normalized to unity b 0.5 X (w’) shifted to 0.8π b period 2π −π −0.8π 0 0.8π π w’ β=0.16π Figure 11.1-1: component in the spectrum. Refer to fig 11.1-1. Ideal LPF preserves only the baseband spectrum (of each period). Refer to fig 11.1 335 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. |W(w’)| 1 H(w’) 0.5 −π period 2 π 0.5 −0.4π 0.1π 0.4π π w β Figure 11.1-2: ′ The downsampling produces the figure in fig 11.1, where w′′ = FΩy = ΩD Fx = 10w . Note that ′′ there is no aliasing in the spectrum |Y (w )| because the decimated sample rate, in terms of w′ , is 2π 10 > 0.04π. (b) The assumed spectral amplitude normalization in fig 11.1-1 implies that the analog FT (magnitude spectrum) of xa (t) is (refer to fig 11.1-4). The given sample rate is identical to Fy above, Fy = 250Hz. The DTFT of samples taken P at this rate is Ỹ (Ω) = T1y q Xa (Ω − qΩy ) where Ωy = 2πFy . On a scaled frequency axis P w′′ = ΩTy = FΩy , Ỹ (w′′ ) = T1y q Xa (w′′ − q2π). Consequently ỹ(n) = y(n). |V(w’)| period 2 π 0.08π π w’ π w’’ |Y(w’’)| = 0.1 |V(0.1w’’)| 0.1 period 2 π 0.8π Figure 11.1-3: 336 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. |Xa ( Ω) | Tx /2 Ωc 400π −Ωc Ω Figure 11.1-4: 11.2 (a) X(w) = 1 (1−ae−jw ) ′ (b) After decimation Y (w′ ) = 12 X( w2 ) = 1 2(1−ae− jw′ 2 ) (c) DTFT {x(2n)} = X x(2n)e−jw2n n = X ′ x(2n)e−jw n n = Y (w′ ) 11.3 (a)Refer to fig 11.3-1 (b) x(n) y(m) F x -1 z 1/2 Fy = Fx + Figure 11.3-1: 337 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Ω , Fx X Ω w′ = Fy 2 Let w′ = Y (w′′ ) X 1 n−1 ′′ n n + 1 −jw′′ n x( )e−jw n + [x( ) + x( )]e 2 2 2 2 n even n odd X ′′ 1X −jw′′ 2p [x(q) + x(q + 1)]e−jw (2q+1) = x(p)e + 2 q p = w′′ = ′′ ′′ 1 = X(2w′′ ) + e−jw [X(2w′′ ) + ej2w X(2w′′ )] 2 = X(2w′′ )[1 + cosw′′ ] X(w′ ) = ′′ X(2w ) = = Y (w′′ ) = 0 ≤ |w′ | ≤ 0.2π otherwise 1, 0, 1, 0, 1, 0, 0 ≤ |2w′′ | ≤ 0.2π otherwise 0 ≤ |w′′ | ≤ 0.1π otherwise 1 + cosw′′ , 0, 0 ≤ |w′′ | ≤ 0.1π otherwise (c) Refer to fig 11.3-2 X(.) 0 0 0.7π 0.35 π 0.9π π 0.45 π 1.1π 0.55 π 1.3π 0.65 π 2π π w’ w ’’ Figure 11.3-2: 11.4 1 + cosw′′ , 0.35π ≤ |w′′ | ≤ 0.45π ′′ or 0.55π ≤ |w′′ | ≤ 0.65π Y (w ) = 0, otherwise w′′ = ΩD (a) Let w′ = FΩx , Fx . Refer to fig 11.4-1 ′′ Let x (n) be the downsampled sequence. 338 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. |X(w ’)| 1 -w m ’ wm’ π w’ Dw’ m π w ’’ |X’’(w’’)| 1/D -Dw’ m Figure 11.4-1: x′′ (n) X ′′ (w′′ ) = x(nD) w′′ 1 X( ) = D D ′ As long as Dwm ≤ π, X(w′ ) [hence x(n)] can be recovered from X ′′ (w′′ )[x′′ (n) = x(Dn)] using interpolation by a factor D: X(w′ ) = DX ′′ (Dw′ ) 2π ′ ′ ′ The given sampling frequency is ws′ = 2π D . The condition Dwm ≤ π → 2wm ≤ D = ws (b) Let xa (t) be the ral analog signal from which samples x(n) were taken at rate Fx . There exists a signal, say x′a (t′ ), such that x′a (t′ ) = Xa ( Ttx ). x(n) may be considered to be the samples of x′ (t′ ) 1 . taken at rate fx = 1. Likewise x′′ (n) = x(nD) are samples of x′ (t′ ) taken at rate fx′′ = fDx = D ′ ′ ′′ From sampling theory, we know that x (t ) can be reconstructed from its samples x (n) as long 1 π as it is bandlimited to fm ≤ 2D , or wm ≤ D , which is the case here. The reconstruction formula is X x′ (t′ ) = x′′ (k)hr (t′ − kD) k where hr (t′ ) = π ′ t) sin( D π ′ (Dt ) Refer to fig 11.4-2 ′ Actually the bandwidth of the reconstruction filter may be made as small as wm , or as large 2π ′ as D − wm , so hr may be sin(wc′ t′ ) hr (t′ ) = (wc′ t′ ) ′ where wm ≤ wc′ ≤ 2π D ′ − wm . In particular x(n) = x′ (t′ = n) so x(n) = X k x(kD)hr (n − kD) 339 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. |X(w ’)| period 2 π/D Hr (w ’) w’ m 0 π/D 2 π/D - w ’ m 2 π/D w’ Figure 11.4-2: (c) Clearly if we define v(p) = x(p), 0, if p is an integer multiple of D other p then, we may write 11.4 as x(n) = X p v(p)hr (n − p) so x(n) is reconstructed as (see fig 11.4-3) x’’(n)=x(kn) D v(n) x(n) h r(n) Figure 11.4-3: 340 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 11.5 (a) Let w Xs (w) Ω 2Ω , w′′ = Fx Fx X −jwn = xs (n)e = n = X x(2m)e−jw2m m = = 2π 1X q) X(w − 2 q 2 1X X(w − πq) 2 q To recover x(n) from xs (n): see fig 11.5-1 (b) X (w) s period π 1/2 −π x (n) s −2π/3 v(n) 2 −π/3 π/3 2π/3 π w x(n) h (n) r where H (w) r 1 −π/2 π/2 w Figure 11.5-1: Recall w′ ′ Xd (w ) = = 2w X ′ xd (n)e−jw n n = = X xs (n)e−jw ′n 2 n even X ′n xs (n)e−jw 2 n 341 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. since xs (n) = 0 when n odd = Xs ( w′ ) 2 see fig 11.5-2 No information is lost since the decimated sample rate still exceeds twice the bandlimit of period 2 π 1/2 −π 2π/3 π w’ Figure 11.5-2: the original signal. 11.6 A filter of length 30 meets the specification. The cutoff frequency is wc = are given below: h(1) h(2) h(3) h(4) h(5) and the coefficients = h(30) = 0.006399 = h(29) = −0.01476 = h(28) = −0.001089 = h(27) = −0.002871 = h(26) = 0.01049 h(6) h(7) = h(25) = 0.02148 = h(24) = 0.01948 h(8) h(9) = h(23) = −0.0003107 = h(22) = −0.03005 h(10) h(11) h(12) π 5 = h(21) = −0.04988 = h(20) = −0.03737 = h(19) = 0.01848 h(13) h(14) = h(18) = 0.1075 = h(17) = 0.1995 h(15) = h(16) = 0.2579 342 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. pk (n) = h(n + k), k = 0, 1, . . . corresponding polyphase filter structure (see fig 11.6-1) p (n) 0 + p (n) 1 + y(n) x(n) p (n) 4 F x F = Fx /D y Figure 11.6-1: 11.7 A filter of length 30 meets the specification. The cutoff frequency is wc = are given below: h(1) = h(30) = 0.006026 h(2) h(3) h(4) = h(29) = −0.01282 = h(28) = −0.002858 = h(27) = 0.01366 h(5) h(6) = h(26) = −0.004669 = h(25) = −0.01970 h(7) h(8) h(9) h(10) h(11) h(12) h(13) h(14) h(15) pk (n) π 2 and the coefficients = h(24) = 0.01598 = h(23) = 0.02138 = h(22) = −0.03498 = h(21) = −0.01562 = h(20) = 0.06401 = h(19) = −0.007345 = h(18) = −0.1187 = h(17) = 0.09805 = h(16) = 0.4923 = h(2n + k), k = 0, 1; n = 0, 1, . . . , 14 343 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. corresponding polyphase filter structure (see fig 11.7-1) p (n) 0 x(n) y(n) p (n) 1 F x F = Fx /D y Figure 11.7-1: 11.8 The FIR filter that meets the specifications of this problem is exactly the same as that in Problem 11.6. Its bandwidth is π5 . Its coefficients are g(n, m) g(0, m) g(1, m) g(14, m) = h(nI + (mD)I ) mD = h(nI + mD − [ ]I) I 5m ]) = h(2n + 5m − 2[ 2 = {h(0), h(1)} = {h(2), h(3)} .. . = {h(28), h(29)} A polyphase filter would employ two subfilters, each of length 15 p0 (n) p1 (n) = {h(0), h(2), . . . , h(28)} = {h(1), h(3), . . . , h(29)} 11.9 (a) x(n) D = I = 2. Decimation first = {x0 , x1 , x2 , . . .} 344 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. z2 (n) y2 (n) Interpolation first z1 (n) y1 (n) so y2 (n) = {x0 , x2 , x4 , . . .} = {x0 , 0, x2 , 0, x4 , 0, . . .} = {x0 , 0, x1 , 0, x2 , 0, . . .} = {x0 , x1 , x2 , . . .} 6= y1 (n) (b) suppose D = dk and I = ik and d, i are relatively prime. x(n) Decimation first z2 (n) y2 (n) = {x0 , x1 , x2 , . . .} = {x0 , xdk , x2dk , . . .} x0 , 0, . . . , 0, xdk , 0, . . . , 0, x2dk , . . . = | {z } | {z } ik−1 Interpolation first z1 (n) y1 (n) ik−1 x0 , 0, . . . , 0, x1 , 0, . . . , 0, x2 , 0, . . . , 0, . . . = | {z } | {z } | {z } ik−1 ik−1 ik−1 x0 , 0, . . . , 0, xd , 0, . . . , 0, . . . = | {z } | {z } d−1 d−1 Thus y2 (n) = y1 (n) iff d = dk or k = 1 which means that D and I are relatively prime. 11.10 (a) Refer to fig 11.10-1 y1 (n) = = = h(n) ∗ w1 (n) h(n) ∗ x(nD) ∞ X h(k)x[(n − k)D] k=0 H(z D ) = . . . h(0)z 0 + h(1)z D + h(2)z 2D + . . . H(z D ) ↔ h̃(n) h0 , 0, . . . , 0, H1 , 0, . . . , 0, h(2), . . . | {z } | {z } = D−1 so w2 (n) = = = nD−1 X k=0 n X k=0 n X k=0 D−1 h̃(k)x(n − k) h̃(kD)x(n − kD) h(k)x(n − kD) 345 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. w1(n) x(n) H(z) D x(n) H(zD ) w2(n) D y (n) 1 y (n) 2 Figure 11.10-1: y2 (n) = = = w2 (nD) n X h(k)x(nD − kD) k=0 n X k=0 So y1 (n) = h(k)x[(n − k)D] y2 (n) (b) w1 (n) = ∞ X k=0 h(k)x(n − k) y1 (n) = w1 (p), n = pI(p an integer ) = 0, other n w2 (n) = x(p), n = pI = 0, other n Let h̃(n) be the IR corresponding to H(z I ) y2 (n) = = = ∞ X k=0 ∞ X k=0 ∞ X k=0 for n y2 (n) h̃(k)w2 (n − k) h̃(kI)w2 (n − kI) h(k)w2 (n − kI) = pI ∞ X h(k)w2 ((p − k)I) = k=0 346 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. ∞ X = h(k)x(p − k) k=0 = w1 (p)( see above ) for n 6= pI ∞ X h(k).0 = 0 y2 (n) = k=0 so we conclude y1 (n) = y2 (n) 11.11 (a) H(z) = X h(2n)z −2n + n = X X h(2n + 1)z −2n−1 n 2 −n h(2n)(z ) + z −1 n X h(2n + 1)(z 2 )−n n = H0 (z 2 ) + z −1 H1 (z 2 ) X Therefore H0 (z) = h(2n)z −n n H1 (z) = X h(2n + 1)z −n n (b) H(z) = X h(nD)z −nD + n + D−1 X k=0 Therefore Hk (z) = X h(nD + 1)z −nD−1 + . . . n X n = X h(nD + D − 1)z −nD−D+1 z −k X h(nD + k)(z D )−n n h(nD + k)z −n n (c) H(z) = = H0 (z) = 1 1 − az −1 ∞ X an z −n n=0 ∞ X a2n z −n n=0 = H1 (z) = 1 1 − a2 z −1 ∞ X a2n+1 z −n n=0 = a 1 − a2 z −1 347 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 11.12 The output of the upsampler is X(z 2 ). Thus, we have Y1 (z) X(z)H1 (z 1/2 ) + X(z)H1 (z 1/2 W 1/2 ) = 12 H1 (z 1/2 ) + H1 (z 1/2 W 1/2 ) X(z) = H2 (z)X(z) 1 2 = 11.13 (a) Refer to Fig. 11.13-1 for I/D = 5/3. DTFT[x(n)] 5Fx Fx Filter 5Fx Fx DTFT[y(m)] (1/2)min(Fx,Fy) Fy 2Fy 3Fy Figure 11.13-1: (b) Refer to Fig. 11.13-2 for I/D = 3/5. 11.14 (a) The desired implementation is given in Fig. 11.14-1 (b) The polyphase decomposition is given by Hk (z) = (1 + z −1 )5 = 1 + 5z −1 + 10z −2 + 10z −3 + 5z −4 + z −5 = 1 + 10z −2 + 5z −4 + (5 + 10z −2 + z −4 )z −1 = P0 (z) + P1 (z)z −1 348 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. DTFT[x(n)] 3Fx Fx Filter (1/2)min(Fx,Fy) 3Fx DTFT[y(m)] 5Fy Fy Figure 11.13-2: 11.15 (a) H(z) = N −1 X z −n Pn (z N ) n=0 where Pn (z) = ∞ X h(kN + n)z −k k=−∞ Let m = N − 1 − n. Then H(z) = N −1 X n=0 = N −1 X z −(N −1−m) PN −1−m (z N ) z −(N −1−m) Qm (z N ) n=0 (b) (1 + z −1 )5 2 2 (1 + z −1 )5 (1 + z −1 )5 2 Figure 11.14-1: 349 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(n) P0 (zN) + y(n) x(n) P0 (zN) z−1 + y(n) z−1 P1 (zN) + P1 (zN) + PN−2(zN ) + PN−2(zN ) + z−1 z−1 PN−1(zN ) PN−1(zN ) Figure 11.15-1: Type 1 Polyphase Decomposition x(n) Q 0 (zN ) z−1 Q 1 (zN ) + QN−2(zN ) + z−1 QN−1(zN ) + y(n) Figure 11.15-2: Type 2 Polyphase Decomposition 350 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 11.16 x(n) Q 0 (zN ) 3 z−1 Q 1 (zN ) + 3 z−1 Q2 (zN) + 3 y(n) Figure 11.16-1: 11.17 D1 = 25, D2 = 4 F0 = 10 kHz , = F1 = 100 Hz D2 F1 = F0 = 400 Hz D1 Passband 0 ≤ F ≤ 50 Transition band 50 < F ≤ 345 Stopband 345 < F ≤ 5000 F2 Passband 0 ≤ F ≤ 50 Transition band 50 < F ≤ 55 Stopband 55 < F ≤ 200 For filter 1, δ1 = △f = M̂1 = For filter 2, δ1 = △f = M̂2 = 0.1 = 0.05, δ2 = 10−3 2 345 − 50 = 2.95x10−2 10, 000 −10logδ1 δ2 − 13 + 1 = 71 14.6△f 0.05, δ2 = 10−3 55 − 50 = 7.5x10−3 400 −10logδ1 δ2 − 13 + 1 ≈ 275 14.6△f The coefficients of the two filters can be obtained using a number of DSP software packages. 351 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 11.18 To avoid aliasing Fsc ≤ Fx 2D . Thus D = I = 50. Single stage δ1 = △f = M̂1 = Two stages D1 = stage 1:F1 = 0.1, δ2 = 10−3 65 − 60 = 5x10−4 10, 000 −10logδ1 δ2 − 13 + 1 ≈ 3700 14.6△f 25, D2 = 2 10, 000 = 400 25 Passband 0 ≤ F ≤ 60 Transition band 60 < F ≤ 335 Stopband 335 < F ≤ 5000 δ1 = △f = stage 2:F2 0.1, δ2 = 2.75x10−2 400 = = 200 2 I1 = 2, I2 = 25 10−3 4 M̂1 = 84 Passband 0 ≤ F ≤ 60 Transition band 60 < F ≤ 65 Stopband 65 < F ≤ 100 δ1 = 0.1, △f = 0.1875 10−3 4 M̂2 = 13 δ2 = Use DSP software to obtain filter coefficients. 11.19 b+ (n) is nonzero for 0 ≤ n ≤ 2N − 2 with N even. Let c(n) = b+ [n − (N − 1)]. So c(n) is nonzero for −(N − 1) ≤ n ≤ N − 1. From (11.11.35) B+ (w) + (−1)N −1 B+ (w − π) = αe−jw(N −1) or B+ (z) + (−1)N −1 B+ (−z) = αz −(N −1) Therefore, C(z)z −(N −1) + (−1)N −1 C(−z)(−z)−(N −1) or C(z) + C(−z) c(n) + c(−n) when n 6= 0c(n) when n is odd c(n) when n is even but n 6= 0, c(n) (half-band filter) when n = 0, c(n) = αz −(N −1) = α = αδ(n) = −c(−n) = −c(−n) = 0 = α 2 352 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 11.20 one stage: M̂ = δ1 = △f = −10logδ1 δ2 − 13 + 1 ≈ 2536 14.6△f two stages: F0 I1 = = F1 = Passband 0 ≤ F ≤ 90 Transition band 90 < F ≤ 19, 900 M̂1 = Therefore △f = and δ11 = 0.01, δ2 = 10−3 100 − 90 = 10−3 10, 000 2 × 105 Hz 1, I2 = 2 F0 = 2 × 104 Hz I1 19, 900 − 90 = 0.09905 2 × 105 δ1 , δ12 = δ2 2 −10logδ1 δ2 − 13 + 1 ≈ 29 14.6△f F2 = F1 = 1 × 104 Hz I2 Passband 0 ≤ F ≤ 90 Transition band 90 < F ≤ 9, 900 M̂2 = Therefore △f = and δ21 = 9, 900 − 90 = 0.4905 2 × 104 δ1 , δ22 = δ2 2 −10logδ1 δ2 − 13 +1≈7 14.6△f 11.21 Suppose the output of the analysis section is xa0 (m) and xa1 (m). After interpolation by 2, they become y0 (m) and y1 (m). Thus xak ( m 2 ), m even k = 0, 1 yk (m) = 0, m odd The final output is z(m) when m is even, say m z(m) = z(2j) = y0 (m) ∗ 2h(m) + y1 (m) ∗ [−2(−1)m h(m)] = 2j, = 2y0 (m) ∗ h(m) − 2y1 (m) ∗ h(m) X X = 2 y0 (k)h(m − k) − 2 y1 (k)h(m − k) k = 2 X l k y0 (2l)h(2j − 2l) − 2 X l y1 (2l)h(2j − 2l) 353 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. = 2 X l = In the same manner, it can be shown that z(2j + 1) xa0 (l)h[2(j − l)] − 2 2[xa0 (j) − xa1 (j)] ∗ h(2j) = 2[xa0 (j) − xa1 (j)] ∗ p0 (j) = 2[xa0 (j) + xa1 (j)] ∗ p1 (j) X l xa1 (l)h[2(j − l)] 11.22 Refer to fig 11.22-1, where hi (n) is a lowpass filter with cutoff freq. I 1 h (n) 1 π Ii . After transposition (refer I L Interpolator 1 h(n) L Interpolator L Figure 11.22-1: I = I1 I2 . . . IL L-stage interpolator to fig 11.22-2). As D = I, let Di = IL+1−i , then D = D1 D2 . . . DL . Refer to fig 11.22-3 Obviously, this is equivalent to the transposed form above. 354 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. h(n) L I L h (n) 1 I 1 Figure 11.22-2: h (n) L D L h (n) 1 D1 Figure 11.22-3: L-stage decimator 355 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 11.23 Suppose that output is y(n). Then Ty = kI Tx . Fy = filter is h(n) of length M = kI (see fig 11.23-4) 1 Ty = I 1 k Tx = kI Fx . Assume that the lowpass coefficient storage x(n) F x input buffer g(n,0) n=0,1, ..., K-1 g(n,1) n=0,1, ..., K-1 g(n,I-1) n=0,1, ..., K-1 length K buffer 1 2 + length K K K-1 n=0 output buffer length I y(n) F = ( I/k) Fx y Figure 11.23-4: 11.24 (a) for any n = lI + j I−1 X k=0 pk (n − k) = I−1 X k=0 (0 ≤ j ≤ I − 1) pk (lI + j − k) = pj (lI) = pj (l) = h(j + lI) = h(n) Therefore, h(n) = I−1 X k=0 pk (n − k) 356 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) z-transform both sides H(z) = I−1 X z −k pk (z) k=0 (c) I−1 2πl(n−k) n−k 1 XX h(n)ej I z − I I n l=0 I−1 1 XX h(k + mI)ej2πlm z −m I m l=0 X = h(k + mI)z −m = m X = pk (m)z −m m = pk (z) 11.25 (a) Refer to fig 11.25-1. (b) spectrum of x(n) spectrum of y(n) 0.8 0.8 −−> magnitude −−> magnitude 1 0.6 0.4 0.2 0 0 2 4 −−> w 6 0.7 0.6 0.5 0.4 0 8 2 4 −−> w 6 8 Figure 11.25-1: Bandwidth cut off freq sampling freq of x(n) sampling freq for the desired band of frequencies Therefore, D π 3 π = 2 = 2π 2π = =π 2 2π =2 = 2 = (c) Refer to fig 11.25-2. (d) Refer to fig 11.25-3. 357 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. x(n) |X(w)| 40 1200 1000 −−> magnitude −−>x(n) 30 20 10 800 600 400 200 0 0 500 1000 −−−> n 0 0 1500 500 1000 Figure 11.25-2: spectrum of s(n) 1000 900 800 −−> magnitude 700 600 500 400 300 200 100 0 0 200 400 600 800 1000 1200 Figure 11.25-3: 358 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1500 11.26 x(n) Q 0 (zN ) I z−1 Q 1 (zN ) I + QN−2(zN ) I + z−1 QN−1(zN ) + I y(n) Figure 11.26-1: 11.27 H0 (z) = N −1 X z −n Pn (z N ) n=0 where Pn (z) = ∞ X h0 (kN + n)z −k , k=0 Then, 0≤k ≤N −1 k Hk (z) = H0 (ze−j2πk/N ) = H0 (zwN ) where wN = e−j2π/N . (a) Hk (z) = N −1 X −kl kN z −l wN Pl (z N wN ) l=0 = N −1 X −kl z −l wN Pl (z N ), l=0 k = 0, 1, . . . , N − 1 Therefore, Hk (z), 0 ≤ k ≤ N − 1 can be expressed in matrix form as P0 (z N ) −1 i z P1 (z N ) h −(N −1)k −2k −k Hk (z) = 1 wN . . . wN wN .. . z −1 P1 (z N ) 359 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) From part (a), we have 1 H0 (z) 1 H1 (z) = .. .. . . HN −1 (z) 1 1 −1 wN .. . 1 −2 wN .. . −(N −1) wN −2(N −1) wN P0 (z N ) z −1 P1 (z N ) = N W −1 .. . z −1 P1 (z N ) where W id the DFT matrix. (c) x(n) ··· ··· ··· 1 −(N −1) wN .. . −(N −1)(N −1) wN P0 (z N ) −1 z P1 (z N ) .. . z −1 P1 (z N ) y0 (n) P0 (zN) z−1 y1 (n) P1 (zN) N−point IDFT yN−2(n) PN−2(zN ) z−1 yN−1(n) PN−1(zN ) Figure 11.27-1: (d) y0 (n) P0 (zN) z−1 y1 (n) P1 (zN) + PN−2(zN ) + N−point DFT yN−2(n) z−1 yN−1(n) v(n) PN−1(zN ) + Figure 11.27-2: 360 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 11.28 H0 (z) = 1 + z −1 + 3z −2 + 4z −3 (a) Hk (z) = H0 (zw4k ), 1≤k≤3 −j2πk/4 = H0 (ze ) Then, H1 (z) = H2 (z) H3 (z) = = 1 + jz −1 − 3z −2 + j4z −3 1 − jz −1 + 3z −2 − 4z −3 1 − jz −1 − 3z −2 + j4z −3 Note that the impulse response hk (n) are complex-valued, in general. Consequently, |Hk (w)| is not symmetric with respect to w = 0. (b) Let us use the polyphase implementation of the uniform filter bank. We have Pl (z) = ∞ X h0 (l + 3n)z −n , l = 0, 1, 2, 3 n=0 This yields P0 (z) = 1, P1 (z) = 1, P2 (z) = 3, and P3 (z) = 4. By using the results in Problem 11.27, we have the equation for the synthesis filter bank as 1 1 H0 (z) H1 (z) = 1 j 1 −1 H2 (z) 1 −j H3 (z) 1 1 1 j = 1 −1 1 −j P0 (z 4 ) 1 1 4 −1 −1 −j z P1 (z ) 1 −1 z −2 P2 (z 4 ) z −3 P3 (z 4 ) −1 j 1 1 1 1 −1 z −1 −1 −j z = 4W −1 3z −2 1 −1 3z −2 4z −3 −1 j 4z −3 where W denotes the DFT matrix. Thus, we have the analysis filter bank given in fig 11.28-1. (c) The synthesis filter bank in fig. 11.28-2 11.29 H(z) = −3 + 19z −2 + 32z −3 + 19z −4 − 3z −6 (a) H(z −1 ) = −3 + 19z 2 + 32z 3 + 19z 4 − 3z 6 z −6 H(z −1 ) = −3z −6 + 19z −4 + 32z −3 + 19z −2 − 3 = H(z) Therefore, H(z −1 ) and H(z) hve roots that are symmetric, such that if zi is not a root, then 1/zi is also a root. This implies that H(z) has linera phase. 361 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 4 x(n) y0 (n) + P0 (z4 ) z−1 y1 (n) P1 (z 4) 4−point IDFT z−1 P2 (z 4) y2 (n) z−1 y3 (n) P3 (z 4 ) Figure 11.28-1: y0 (n) P0(z N) z−1 y1 (n) y2 (n) P1(z N) 4−point DFT + z−1 P2(z N) + z−1 v(n) y3 (n) P3(z N) + Figure 11.28-2: (b) We may express H(z) as: H(z) = z −3 −3z 3 + 19z 1 + 32 + 19z −1 − 3z −3 Thus, we have the coefficients: h(2n) = 32, 0, n=0 n 6= Therefore, H(z) is a half-band filter. 362 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (c) 70 60 |H(w)| 50 40 30 20 10 0 −4 −3 −2 −1 0 w 1 2 3 4 −3 −2 −1 0 w 1 2 3 4 10 angle(H(w)) 5 0 −5 −10 −4 Figure 11.29-1: 11.30 H0 (z) = 1 + z −1 (a) Pl (z) P0 (z) P1 (z) = = = ∞ X h0 (l + 2n)z −n n=0 ∞ X n=0 ∞ X h0 (2n)z −n = 1 h0 (l + 2n)z −n = 1 n=0 363 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) H1 (z) = P0 (z 2 ) − z −1 P1 (z 2 ) = 1 − z −1 x(n) 1 + 2 1 + 2 z−1 Figure 11.30-1: Anaylsis section (c) G0 (z) = P0 (z 2 ) + z −1 P1 (z 2 ) = 1 + z −1 G1 (z) = − P0 (z 2 ) − z −1 P1 (z) = − 1 + z −1 x(n) 2 + 1 + 1 2 z−1 z−1 2 −+ 1 −+ 1 2 + ^ x(n) Figure 11.30-2: QMF in a polyphase realization (d) For perfect reconstruction, Q(z) = 1 [H0 (z)G0 (z) + H1 (z)G1 (z)] = Cz −k 2 where C is a constant. We have Q(z) = 1 (1 + z −1 )2 − (1 − z −1 )2 = 2z −1 2 11.31 (a) 1 + z −1 + z −2 H0 (z) H(z) = H1 (z) = 1 − z −1 + z −2 = P (z 3 )a(z) 1 − z −2 H2 (z) 1 where a(z) = z −1 . Then z −2 P00 (z 3 ) 1 + z −1 + z −2 1 − z −1 + z −2 = P10 (z 3 ) P20 (z 3 ) 1 − z −2 1 P01 (z 3 ) P02 (z 3 ) P11 (z 3 ) P12 (z 3 ) z −1 z −2 P21 (z 3 ) P22 (z 3 ) 364 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 Clearly, P (z 3 ) = 1 1 1 1 −1 1 0 −1 (b) The synthesis filters are given as G(z) = z −3 Qt (z 3 )a(z −1 ) where Q(z) = Cz −k [P (z)] −1 . But [P (z)] −1 By selecting C = 4 and k = 1, we have 1 1 = 2 4 1 1 2 −2 0 1 −2 1 1 Q(z) = z 2 −2 1 1 Therefore, 2 0 −2 G0 (z) 1 1 2 G1 (z) = z −2 2 −2 0 G2 (z) 1 1 −2 1 + 2z −1 + z −2 1 − 2z −1 + z −2 = −2 + 2z −1 (c) x(n) 3 1 z −1 z −2 3 z−1 z−1 3 P(z) Q(z) 3 + z−1 z−1 3 3 + v(n) Figure 11.31-1: 365 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 366 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Chapter 12 12.1 (a) Γxx (z) = H(z) = 2 σw = and so x(n) 25 (1 − 1− z −1 + 1 −2 )(1 2z 1 + 12 z −2 − z −1 + 12 z −2 ) z −1 25 1 = x(n − 1) − x(n − 2) + w(n) 2 (b) The whitening filter is H −1 (z) = 1 − z −1 + 12 z −2 12.2 (a) Γxx (z) = 1 1 27 (1− 3 z 1 )(1− 3 z) 2 (1− 12 z 1 )(1− 12 z) For a stable filter, denominator (1 − 21 z 1 ) must be chose. However, either numerator factor (1 − 13 z 1 ) (1− 31 z) may be used. H(z) = 1 1 or (1− 21 z) (1 − z ) | {z2 } [min.pk.] (b) Must invert the min. pk. filter to obtain a stable whitening filter. H −1 (z) = (1 − 12 z 1 ) (1 − 31 z 1 ) 12.3 (a) 1 + 0.9z −1 1 − 1.6z −1 + 0.63z −2 1 − 1.6z −1 + 0.63z −2 whitening filter, H −1 (z) = 1 + 0.9z −1 zeros: z = 0.7 and 0.9 H(z) = pole: z = −0.9 367 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) 2 = σw H(w)H(−w) |1 + 0.9e−jw |2 2 = σw |1 − 1.6e−jw + 0.63e−2jw |2 Γxx (w) 12.4 A(z) = k3 = B3 (z) = k3 = B2 (z) = A1 (z) = = k1 = 1+ 13 −1 5 −2 1 −3 z + z + z 24 8 3 1 3 1 5 −1 13 −2 + z + z + z −3 3 8 24 1 2 1 3 −1 + z + z −2 2 8 A2 (z) − k2 B2 (z) 1 − k22 1 1 + z −1 4 1 4 12.5 1 1 + 2z −1 + z −2 3 1 −1 B2 (z) = + 2z + z −2 3 1 k2 = 3 A2 (z) − k2 B2 (z) A1 (z) = 1 − k22 3 = 1 + z −1 2 3 k1 = 2 A2 (z) = 12.6 (a) 1 1 + z −1 2 1 + z −1 B1 (z) = 2 A2 (z) = A1 (z) + k2 B1 (z)z −1 A1 (z) = 368 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 1 1 1 + z −1 − z −2 3 3 1 1 −1 B2 (z) = − + z + z −2 3 3 H(z) = A3 (z) = A2 (z) + k3 B2 (z)z −1 = 1 + z −3 = The zeros are at z π = −1, e±j 3 Refer to fig 12.6-1 1 Figure 12.6-1: (b) If k3 = −1, we have H(z) = A3 (z) = A2 (z) − B2 (z)z −1 2 2 = 1 + z −1 − z −2 − z −3 3 3 √ 11 5 The zeros are at z = −1, − ± j 6 6 (c) If |kp | = 1, the zeros of H(z) = Ap (z) are on the unit circle. Refer to fig 12.6-2. 369 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. unit circle Figure 12.6-2: 12.7 A1 (z) = B1 (z) = 1 + 0.6z −1 0.6 + z −1 A2 (z) = A1 (z) + k2 B1 (z)z −1 = 1 + 0.78z −1 + 0.3z −2 B2 (z) = 0.3 + 0.78z −1 + z −2 A3 (z) = A2 (z) + 0.52B2 (z)z −1 = 1 + 0.93z −1 + 0.69z −2 + 0.5z −3 B3 (z) = 0.5 + 0.69z −1 + 0.93z −2 + z −3 H3 (z) = A3 (z) + 0.9B3 (z)z −1 1 + 1.38z −1 + 1.311z −2 + 1.337z −3 + 0.9z −4 = 1, 1.38, 1.311, 1.337, 0.9, 0, . . . = h(n) ↑ 12.8 Let y(m) = x(2n − p − m). Then, the backward prediction of x(n − p) becomes the forward prediction of y(n). Hence, its linear prediction error filter is just the noise whitening filter of the corresponding anticausal AR(p) process. 12.9 x̂(n + m) = − p X k=1 ap (k)x(n − k) 370 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. e(n) = x(n + m) − x̂(n + m) p X = x(n + m) + ap (k)x(n − k) k=1 E[e(n)x∗ (n − l)] = 0, l = 1, 2, . . . , p p X ⇒ ap (k)γxx (k − l) = −γxx (l + m), l = 1, 2, . . . , p k=1 The minimum error is E{|e(n)|2 } = E[e(n)x∗ (n + m)] p X = γxx (0) + ap (k)γxx (m + k) k=1 Refer to fig 12.9-1. x(n+m) + e(n) - forward z -m-1 x(n+m) linear predictor Figure 12.9-1: 12.10 x̂(n − p − m) = − e(n) p−1 X k=0 bp (k)x(n − k) = x(n − p − m) − x̂(n − p − m) = x(n − p − m) + E[e(n)x∗ (n − l)] ⇒ p−1 X k=0 = 0, p−1 X k=0 bp (k)x(n − k) l = 0, 2, . . . , p − 1 bp (k)γxx (l − k) = −γxx (l − p − m), l = 0, 2, . . . , p − 1 371 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. The minimum error is E{|e(n)|2 } = E[e(n)x∗ (n − p − m)] = γxx (0) + p−1 X k=0 bp (k)γxx (p + m − k) Refer to fig 12.10-1. Backward linear predictor x(n) z x(n-p-m) -p-m x(n-p-m) + e(n) Figure 12.10-1: 12.11 The Levinson-Durbin algorithm for the forward filter coefficients is t am (m) ≡ km am (k) but bm (k) or am (k) Therefore, b∗m (0) ≡ km b∗m (m − k) ∗ Equivalently, bm (0) = km bm (k) = − γxx (m) + γ bm−1 am−1 f Em = am−1 (k) + km a∗m−1 (m − k), k = 1, 2, . . . , m − 1; m = 1, 2, . . . , p ∗ = am (m − k), k = 0, 2, . . . , m = b∗m (m − k) γxx (m) + γ tm−1 b∗m−1 = − b Em ∗ = bm−1 (m − 1 − k) + km bm−1 (k) = ∗ (m) + γ ∗m−1 btm−1 γxx b Em ∗ ∗ = bm−1 (k − 1) + km bm−1 (m − k) This is the Levinson-Durbin algorithm for the backward filter. 372 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 12.12 Let bm = Then, " Γm−1 γ bt m−1 ∗ γ bm−1 γxx (0) # bm = + bm−1 0 bm−1 0 dm−1 bm (m) + dm−1 bm (m) = cm−1 cm (m) Hence, ∗ Γm−1 bm−1 + Γm−1 dm−1 + bm (m)γ bm−1 = cm−1 b d + γ bt + bm (m)γxx (0) γ bt m−1 m−1 m−1 m−1 = cm (m) But Γm−1 bm−1 ⇒ Γm−1 dm−1 Hence, dm−1 ∗ b Also, Γ−1 m−1 γ m−1 ∗ Therefore, bm (m)γ bt + bm (m)γxx (0) ab m−1 m−1 solving for bm (m), we obtain bm (m) = cm−1 ∗ = −bm (m)γ bm−1 ∗ = abm−1 = cm (m) − γ bt b m−1 m−1 = = we also obtain the recursion bm (k) ∗ b = −bm (m)Γ−1 m−1 γ m−1 b cm (m) − γ bt m−1 m−1 ∗ ab γxx (0) + γ bt m−1 m−1 b cm (m) − γ bt m−1 m−1 f Em−1 = bm−1 (k) + bm (m)a∗m−1 (m − k), k = 1, 2, . . . , m − 1 12.13 Equations for the forward linear predictor: Γm am = cm where the elements of cm are γxx (l + m), l = 1, 2, . . . , p. The solution of am is am (m) = cm (m) − γ bt a m−1 m−1 = a cm (m) − γ bt m−1 m−1 am (k) where αm is the solution to Γm αm ∗ γxx (0) + γ bt ab m−1 m−1 f Em−1 ∗ = am−1 (k) + am (m)αm−1 (m − k), k = 1, 2, . . . , m − 1; = γm m = 1, 2, . . . , p The coefficients for the m-step backward predictor are bm = abm . 373 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 12.14 (a) x̂(n) But x(n) (b) = −a1 x(n − 1) − a2 x(n − 2) − a3 x(n − 3) 14 9 1 = x(n − 1) + x(n − 2) − x(n − 3) + w(n) 24 24 24 9 14 , a2 = − 24 , a3 = E{[x(n) − x̂(n)]2 } is minimized by selecting the coefficients as a1 = − 24 γxx (m) = − = − 3 X k=1 p X k=1 ak γxx (m − k), 1 24 m>0 2 ak γxx (m − k) + σw , m=0 Since we know the {ak } we can solve for γxx (m), m = 0, 1, 2, 3. Then we can obtain γxx (m) for m > 3, by the above recursion. Thus, γxx (0) γxx (1) = = 4.93 4.32 γxx (2) γxx (3) = = 4.2 3.85 γxx (4) γxx (5) = = 3.65 3.46 (c) A3 (z) = k3 = B3 (z) = A2 (z) = k2 B2 (z) A1 (z) 9 1 14 −1 z − z −2 + z −3 24 24 24 1 24 9 14 1 − z −1 − z −2 + z −3 24 24 24 A3 (z) − k3 B3 (z) 1 − k32 = 1 − 0.569z −1 − 0.351z −2 = −0.351 = −0.351 − 0.569z −1 + z −2 A2 (z) − k2 B2 (z) = 1 − k22 = k1 1− 1 − 0.877z −1 = −0.877 12.15 (a) Γxx (z) = 2 4σw (2 − z −1 )(2 − z) 9 (3 − z −1 )(3 − z) 2 = σw H(z)H(z −1 ) 374 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. The minimum-phase system function H(z) is H(z) = = 2 2 − z −1 3 3 − z −1 4 1 − 21 z −1 9 1 − 31 z −1 (b) The mixed-phase stable system has a system function H(z) = = 2 1 − 2z −1 3 3 − z −1 2 1 − 2z −1 9 1 − 31 z −1 12.16 (a) 1 − 2rcosΘz −1 + r2 z −2 A2 (z) = ⇒ k2 B2 (z) = r2 = r2 − 2rcosΘz −1 + z −2 A2 (z) − k2 B2 (z) = 1 − k22 2rcosΘ −1 z = 1− 1 + r2 2rcosΘ = − 1 + r2 A1 (z) Hence, k1 (b) As r → 1, k2 → 1 and k1 → −cosΘ 12.17 (a) a1 (1) = −1.25, a2 (2) = 1.25, a3 (3) = −1 Hence, A3 (z) = 1 − 1.25z −1 + 1.25z −2 − z −3 First, we determine the reflection coefficients. Clearly, k3 = −1, whcih implies that the roots of A3 (z) are on the unit circle. We may factor out one root. Thus, A3 (z) = = where α = 1 (1 − z −1 )(1 − z −1 + z −2 ) 4 (1 − z −1 )(1 − αz −1 )(1 − α∗ z −1 ) √ 1 + j 63 8 Hence, the roots of A3 (z) are z = 1, α, and α∗ . (b) The autocorrelation function satisfies the equations γxx (m) + 3 X k=1 a3 (k)γxx (m − k) = 2 σw , 0, m=0 1≤m≤3 375 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. γxx (0) γxx (1) γxx (2) γxx (3) γxx (1) γxx (0) γxx (1) γxx (2) 1 γxx (3) −1.25 γxx (2) γxx (1) 1.25 −1 γxx (0) γxx (2) γxx (1) γxx (0) γxx (1) 2 σw 0 = 0 0 f f = Em−1 (1 − |km |2 ) implies that E3f = 0. This (c) Note that since k3 = −1, the recursion Em 2 =0 implies that the 4x4 correlation matrix Γxx is singular. Since E3f = 0, then σw 12.18 γxx (0) γxx (1) γxx (2) γxx (3) Use the Levinson-Durbin algorithm a1 (1) = 1 = −0.5 = 0.625 = −0.6875 A1 (z) = ⇒ k1 = γxx (1) 1 = γxx (0) 2 1 1 + z −1 2 = − 1 2 3 4 γxx (2) + a1 (1)γxx (1) 1 a2 (2) = − =− E1 2 1 a2 (1) = a1 (1) + a2 (2)a1 (1) = 4 1 −1 1 −2 Therefore,A2 (z) = 1 + z − z 4 2 1 ⇒ k2 = − 2 9 E2 = (1 − a22 (2))E1 = 16 1 γxx (3) + a2 (1)γxx (2) + a2 (2)γxx (1) = a3 (3) = − E2 2 3 a3 (2) = a2 (2) + a3 (3)a2 (1) = − 8 a3 (1) = a2 (1) + a3 (3)a2 (2) = 0 3 1 Therefore,A3 (z) = 1 − z −2 + z −3 8 2 1 ⇒ k3 = 2 27 E3 = (1 − a23 (3))E2 = 64 E1 = (1 − a21 (1))γxx (0) = 376 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 12.19 (a) ∞ X Γxx (z) = γxx (m)z −m −∞ ∞ −1 X X 1 1 ( )m z −m ( )−m z −m + 4 4 −∞ 0 = = 1 = 1 4z − 41 z + 1 1 − 14 z −1 15 16 (1 − 41 z)(1 − 14 z −1 ) since Γxx (z) = σ 2 H(z)H(z −1 ), 0.968 H(z) = 1 − 41 z −1 is the minimum-phase solution. The difference equation is x(n) = 1 x(n − 1) + 0.968w(n) 4 where w(n) is a white noise sequence with zero mean and unit variance. (b) If we choose H(z) = = 1 1 − 41 z z −1 z −1 − 4z 1 − 4z −1 4x(n − 1) − 4 × 0.968w(n − 1) = − then, x(n) = 1 4 −1 12.20 γxx (0) γxx (1) = = 1 0 = −a2 = 0 γxx (1) a1 (1) = − =0 γxx (0) A1 (z) = 1 ⇒ k1 = 0 γxx (2) γxx (3) E1 a2 (2) a2 (1) (1 − a21 (1))γxx (0) = 1 γxx (2) + a1 (1)γxx (1) = − = a2 E1 = a1 (1) + a2 (2)a1 (1) = 0 = 377 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Therefore,A2 (z) ⇒ k2 = a2 E2 a3 (3) a3 (2) a3 (1) Therefore,A3 (z) = A2 (z) ⇒ k3 = 0 E 3 = E2 1 + a2 z −2 = (1 − a22 (2))E1 = 1 − a4 γxx (3) + a2 (1)γxx (2) + a2 (2)γxx (1) = − =0 E2 = a2 (2) + a3 (3)a2 (1) = a2 = a2 (1) + a3 (3)a2 (2) = 0 = = 1 + a2 z −2 = 1 − a4 12.21 Ap (z) = Ap−1 (z) + kp Bp−1 (z)z −1 where Bp−1 (z) is the reverse polynomial of Ap−1 (z). For |kp | < 1, we have all the roots inside the unit circle as previously shown. For |kp | = 1, Ap (z) is symmetric, which implies that all the roots are on the unit circle. For |kp | > 1, Ap (z) = As (z) + ǫBp−1 (z)z −1 , where As (z) is the symmetric polynomial with all the roots on the unit circle and Bp−1 (z) has all the roots outside the unit circle. Therefore, Ap (z) will have all its roots outside the unit circle. 12.22 1 ∗ km km 1 Vm = V m JV = 1 ∗ km t∗ m −km −1 = 1 ∗ km 1 ∗ km = (1 − |km |2 ) km 1 = 1 0 0 −1 km 1 1 0 0 −1 1 − |km |2 0 1 ∗ km km 1 0 −(1 − |km |2 ) = (1 − |km |2 )J 12.23 (a) E[fm (n)x(n − i)] = E[ m X k=0 = am (k)x(n − k)x(n − i)] 0, by the orthogonality property 378 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) E[gm (n)x(n − i)] = = m X k=0 m X k=0 = 0, a∗m (k)E[x(n − m + k)x(n − i)] a∗m (k)γxx (k − m + i) i = 0, 1, . . . , m − 1 (c) E[fm (n)x(n)] = E{fm (n)[fm (n) − = E{|fm (n)|2 } m X k=1 am (k)x(n − k)]} = Em E[gm (n)x(n − m)] = E{gm (n)[gm (n) − = E{|gm (n)|2 } = Em m−1 X k=0 bm (k)x(n − k)]} (d) E[fi (n)fj (n)] = E{fi (n)[x(n) + j X k=1 = E{fi (n)x(n)} aj (k)x(n − k)]} = Ei = Emax (i, j) where i > j has been assumed (e) E[fi (n)fj (n − t)] = E{fi (n)[x(n − t) + j X k=1 aj (k)x(n − t − k)]} when 0 ≤ t ≤ i − j, x(n − t − 1), x(n − t − 2), . . . , x(n − t − j) are just a subset of x(n − 1), x(n − 2), . . . , x(n − i) Hence, from the orthogonality principle, E[fi (n)fj (n − t)] = 0 Also, when −1 ≥ t ≥ i − j holds, via the same method we have E[fi (n)fj (n − t)] = 0 (f) E[gi (n)gj (n − t)] = E{gi (n)[x(n − t − j) + j−1 X k=0 bj (k)x(n − t − k)]} when 0 ≤ t ≤ i − j, {x(n − t), x(n − t − 1), . . . , x(n − t − j)} is a subset of {x(n), . . . , x(n − i + 1)} Hence, from the orthogonality principle, E[gi (n)gj (n − t)] = 0 379 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Also, when 0 ≥ t ≥ i − j + 1 we obtain the same result (g) for i = j, E{fi (n + i)fj (n + j)} = E{fi2 (n + i)} = Ei for i 6= j, suppose that i > j. Then E{fi (n + i)fj (n + j)} = E{fi (n + i)[x(n + j) + j X k=1 = 0 aj (k)x(n + j − k)]} (h) suppose i > j E{gi (n + i)gj (n + j)} = E{gi (n + i)[x(n) + j−1 X k=0 = E[gi (n + i)x(n)] = Ei bj (k)x(n + j − k)]} (i) for i ≥ j E{fi (n)gj (n)} = E{fi (n)[x(n − j) + = E{fi (n)[bj (0)x(n)]} = kj E[fi (n)x(n)] j−1 X k=0 bj (k)x(n − k)]} = kj Ei for i < j, E{fi (n)gj (n)} = E{gj (n)[x(n) + i X k=1 = 0 ai (k)x(n − k)]} (j) E{fi (n)gi (n − 1)} = E{fi (n)[x(n − 1 − j) + = E[fi (n)x(n − 1 − i)] = E{fi (n)[gi+1 (n) − i X k=0 i−1 X k=0 bi (k)x(n − 1 − k)]} bi+1 (k)x(n − k)]} = −E[fi (n)bi+1 (0)x(n)] = −ki+1 Ei (k) E{gi (n − 1)x(n)} = E{gi (n − 1)[fi+1 (n) − i+1 X k=1 ai+1 (k)x(n − k)]} = −E[gi (n − 1)ai+1 (i + 1)x(n − 1 − i)] = −ki+1 Ei E{fi (n + 1)x(n − i)} = E{fi (n + 1)[fi (n − i) − i X k=1 ai (k)x(n − i − k)]} 380 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (l) suppose i > j E{fi (n)gj (n − 1)} = E{fi (n)[x(n − 1 − j) + = 0 Now, let i ≤ j. then E{fi (n)gj (n − 1)} = E{gj (n − 1)[x(n) + = E{gj (n − 1)x(n)} = −kj+1 Ej i X k=1 j−1 X k=0 bj (k)x(n − 1 − k)]} ai (k)x(n − k)]} from (d) 12.24 (a) E[fm (n)x∗ (n − i)] = 0, 1≤i≤m (b) E[gm (n)x∗ (n − i)] = 0, 0≤i≤m−1 (c) E[fm (n)x∗ (n)] = E[gm (n)x∗ (n − m)] = Em (d) E[fi (n)fj∗ (n)] = Emax (i, j) (e) 1 ≤ t ≤ i − j, ∗ E[fi (n)fj (n − t)] = 0, for −1 ≥ t ≥ i − j, (f) E[gi (n)gj∗ (n − t)] = 0, for 0 ≤ t ≤ i − j, i>j 0 ≥ t ≥ i − j + 1, i < j (g) E[fi (n + i)fj∗ (n + j)] = (h) E[gi (n + i)gj∗ (n + j)] = Emax (i, j) (i) Ei , 0, i=j i 6= j = kj∗ Ei , 0, E[fi (n)gj∗ (n − 1)] = 0, i j i 0. In this version we need 5 extra multiplications for the calculation of fm−1 (n) |fm−1 (n)|2 , ãm−1 (n−1) , wE f (n−1) m−1 gm−1 (n) em (n) gm−1 (n)c̃mm (n), ãm−1 (n−1) , ãm (n) and we save m multiplications from the estimation of K̃m−1 (n). FAST RLS algorithm: Version B (a-posteriori version) fm−1 (n) gm−1 (n) am−1 (n) f˜m−1 (n, n) f Em−1 (n) K̃m (n) K̃m−1 (n) ãm (n) = x(n) + atm−1 (n − 1)Xm−1 (n − 1) = x(n − M + 1) + btm−1 (n − 1)Xm−1 (n) fm−1 (n) = am−1 (n − 1) − K̃m−1 (n − 1) ãm−1 (n − 1) fm−1 (n) = ãm−1 (n − 1) |fm−1 (n)|2 f = wEm−1 (n − 1) + ãm−1 (n − 1) ∗ fm−1 (n) 0 1 C̃m−1 (n) = + = f K̃m−1 (n − 1) c̃mm (n) wEm−1 (n − 1) am−1 (n − 1) = C̃m−1 (n) − bm−1 (n − 1)c̃mm (n) |fm−1 (n)|2 = ãm−1 (n − 1) + f wEm−1 (n − 1) ãm−1 (n) = ãm (n) − gm−1 (n)c̃mm (n) bm−1 (n) = bm−1 (n − 1) − K̃m−1 (n − 1) ˆ d(n) em (n) hm (n) gm−1 (n) ãm−1 (n) = htm (n − 1)Xm (n) ˆ = d(n) − d(n) = hm (n − 1) + K̃m (n)em (n) ãm (n) Initialization: f am−1 (−1) = bm−1 (−1) = 0, K̃m−1 (−1) = 0, hm−1 (−1) = 0, Em−1 (−1) = E > 0, ãm−1 (−1) = 1. In this version we need 3 extra multiplications for the calculation of fm−1 (n) gm−1 (n) em (n) ãm−1 (n−1) , ãm−1 (n−1) , ãm (n) and we save m multiplications from the estimation of K̃m−1 (n). 13.12 E =E g− M −1 X n=0 !2 h(n)x(n) 400 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. ∂E =0 ∂h(k) " =⇒ E 2 g− Thus, E[gx(k)] = E "M −1 X M −1 X ! h(n)x(n) x(k) = 0, n=0 # h(n)x(n)x(k) , n=0 E[gx(k)] E "M −1 X # h(n)x(n)x(k) n=0 # k = 0, · · · , M − 1. k = 0, · · · , M − 1. = E[g(gv(k) + w(k))] = E[g 2 ]v(k) + E[gw(k)] = Gv(k) (ifg, w(k)areuncorrelated) = M −1 X h(n)E[x(n)x(k)] n=0 = M −1 X h(n)E[(gv(n) + w(n))(gv(k) + w(k))] n=0 = M −1 X h(n)E[g 2 v(n)v(k) + gv(n)w(k) + gv(k)w(n) + w(n)w(k)] n=0 = G M −1 X 2 h(n)v(k)v(n) + σw h(k) n=0 Hence, Gv(k) = Gv(k) M −1 X 2 h(n)v(n) + σw h(k) n=0 or 2 (GvvT + σw I)h = Gv where v = [v(0), · · · , v(M − 1)]T , h = [h(0), · · · , h(M − 1)]T . 13.13 Let H(z) = M −1 X hk z −k and Hn = H(z = ej2πn/M ) = M −1 X hk e−j2πnk/M . k=0 k=0 The sequence {hk } is related to the sequence {Hn } by the inverse discrete Fourier transform hk = M −1 1 X Hn ej2πn/M , M n=0 k = 0, · · · , M − 1. When hk , given above is substituted in the expression for H(z) the double sum that results can be simplified to yield M −1 Hk 1 − z −M X . H(z) = j2πk/M M 1−e z −1 k=0 The filter structure is shown in Fig. 13.13-1. 1. Let yk (n) be the output at time t = nT of the filter with transfer function 1 − z −M 1 . M 1 − ej2πk/M z −1 401 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. y 1 0 −1 X 1−z H0 y 1 d(n) 1 1 − z e j2 π /M −1 −M 1−z X + ^ M H1 d(n) + + − y 1 1 − z e j2 π −1 e(n) M−1 (M−1)/M X HM−1 Figure 13.13-1: Then the response of the recursive filter at t = nT is ˆ = d(n) M −1 X Hk (n)yk (n). k=0 ˆ where {Hk (n)} are the filter coefficients at t = nT . If e(n) = d − d(n) then, an algorithm for adjusting the coefficients Hk (n) is given by Hk (n + 1) = Hk (n) + △e(n)yk (n)k = 0, · · · , M − 1. 2. The cascade of the comb filter with frequency response 1−z −M M Hk (f ) = Thus, |Hk (f )| = = with each of the single-pole filter forms a system 1 − ej2πf /M . M (1 − ej2π(k/M −f ) ) ej2πM f − e−j2πM f 1 e−j2πM f · M ej2π(k/M −f ) e−j2π(k/M −f ) − ej2π(k/M −f ) 1 1 2j sin(πM f ) sin(πM f ) = . M −2j sin(π(k/M − f )) M sin(π(k/M − f )) We observe that |Hk (f )| = 0 at the frequencies f = n/M , n 6= k and |Hk (f )| = 1 at f = k/M . Thus, the kth system has a resonant frequency at f = k/M , and it is zero at the resonant frequencies of all the other systems. This means that if the desired signal is d(n) = M −1 X Ak cos(ωk n), ωk = k=0 2πk , M the coefficient of each single-pole filter can be adjusted independently without any interaction from the other filters. 402 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 13.14 ∂J = 2h(n) − 40 ∂h(n) Thus, h(n + 1) = h(n) − △h(n) + 20△ = h(n)(1 − △) + 20△. 1. For an overdamped system, |1 − △| < 1 =⇒ 0 < △ < 2. 2. Fig. 13.14-1 contains a plot of J(n) vs. n. The step △ was set to 0.5 and the initial value of h was set to 0. In Fig. 13.14-2 we have plotted J(h(n)) vs. h(n). As it is observed from the figures the minimum value of J which is −372, is reached within 5 iterations of the algorithm. 50 0 −50 −100 J(n) −150 −200 −250 −300 −350 −400 0 5 10 15 20 25 n 30 35 40 45 50 Figure 13.14-1: 13.15 Normal Equations: M −1 X k=0 a(k)rvv (l − k) = ryv (l) l = 0, 1, · · · , M − 1 403 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 50 0 −50 J(h(n)) −100 −150 −200 −250 −300 −350 −400 0 2 4 6 8 10 h(n) 12 14 16 18 20 Figure 13.14-2: rvv (l − k) = rw3 w3 (l − k) + rv2 v2 (l − k) Power spectral density of v2 (n): 2 2 |H(f )|2 = σw Γv2 v2 (f ) = σw 1 0.75 σ2 = w . −j2πf 2 |1 − 0.5e | 0.75 1.25 − cos(2πf ) Thus, rv2 v2 (m) = 2 σw (0.5)|m| . 0.75 Hence, 2 rvv (l − k) = σw δ(l − k) + 2 σw (0.5)|l−k| . 0.75 Assuming that x(n), w1 (n), w2 (n), w3 (n) are mutually uncorrelated, it follows that " E[y(n)v(n − l)] = E[w2 v2 (n − l)] = E w2 ∞ X k=0 # h(k)w2 (n − l − k) , where h(k) = 0.5k . Thus, E[y(n)v(n − l)] = ∞ X k=0 h(k)E [w2 (n)w2 (n − l − k)] = ∞ X 2 2 h(k)σw δ(l + k) = σw δ(l). k=0 404 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. w3 (n) w2(n) v2(n) 1 1−0.5 z−1 v(n) + − A(z) + e(n) y(n)=x(n) + w1 (n) + w2(n) Figure 13.15-1: The normal equations take the form 2 σw + 2 σw 0.75 2 0.5σw 0.75 2 0.25σw 0.75 =⇒ 2 0.5σw 0.75 2 σw + 2 σw 2 0.5σw 0.75 2 0.5σw 0.75 a(0) = 2 0.25σw 0.75 0.75 2 σw 15 , 32 + 2 σw 0.75 a(1) = − 2 σw a(0) a(1) = 0 a(2) 0 4 , 32 a(2) = − 1 . 32 13.16 e(n) = x(n) − a1 x(n − 1) − a2 x(n − 2) E = E[e2 (n)] =⇒ ∂E = E[(x(n) − a1 x(n − 1) − a2 x(n − 2))x(n − 1)] = 0 ∂a1 ∂E = E[(x(n) − a1 x(n − 1) − a2 x(n − 2))x(n − 2)] = 0 ∂a2 =⇒ E[x(n)x(n − 1)] − a1 E[x(n − 1)x(n − 1)] − a2 E[x(n − 2)x(n − 1)] = 0 E[x(n)x(n − 2)] − a1 E[x(n − 1)x(n − 2)] − a2 E[x(n − 2)x(n − 2)] = 0 But, E[x(n)x(n − 1)] = E[x(n − 2)x(n − 1)] = a E[x(n − 1)x(n − 1)] = E[x(n − 2)x(n − 2)] = 1 E[x(n)x(n − 2)] = a2 Thus, we obtain the system 1 a a 1 a1 a2 = a a2 with solution a1 = a, a2 = 0. 405 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 13.17 The optimum linear predictor in Prob. 13.16 is a first order filter with transfer function A(z) = 1 − az −1 . Thus, the corresponding lattice has one stage with the forward and backward errors given by f (n) = f0 (n) + Kb0 (n − 1) b(n) = b0 (n − 1) + Kf0 (n) Since f0 (n) = b0 (n) = x(n), we obtain f (n) = x(n) + Kx(n − 1) b(n) = x(n − 1) + Kx(n). Comparing with the prediction error: e(n) = x(n) − ax(n − 1) we identify K as −a. f(n)=e(n) + −a x(n) −a z −1 g(n) + Figure 13.17-1: 13.18 1 X k=0 bk ryy (l − k) = rdy (l) = rxy (l), l = 0, 1 where y(n) is the input of the adaptive FIR filter B(z) 2 ryy (l − k) = rss (l − k) + rww (l − k) = rss (l − k) + σw δ(l − k) where s(n) is the output of the system C(z). If x(n) is white with variance σx2 then, rss (l − k) = σx2 σx2 (−0.9)|l−k| = (−0.9)|l−k| 2 1 − 0.9 1 − 0.19 rxy (l) = E[x(n)y ∗ (n − l)] = E[x(n)(s∗ (n − l) + w∗ (n − l))]. If x(n) and w(n) are uncorrelated then, rxy (l) = E[x(n)s∗ (n − l)] = σx2 δ(l). 406 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Thus, we obtain the system: 2 σx 0.19 2 + σw σ2 σ2 x − 0.19 (0.9) x − 0.19 (0.9) 2 σx 0.19 2 + σw 2 With σx2 and σw known, we can determine b0 , b1 . b0 b1 = σx2 0 . 13.19 (a) fm (n) gm (n) = fm−1 (n) − km gm−1 (n − 1) ∗ = gm−1 (n − 1) − km fm−1 (n) εLS m = n X l=0 dεLS m ∗ dkm n X l=0 = −2 n X l=0 h i 2 2 wn−l |fm (l)| + |gm (l)| ∗ ∗ wn−l gm−1 (l − 1)fm (l) + fm−1 (l)gm (l) = 0 ∗ ∗ wn−l gm−1 (l − 1) [fm−1 (l) − km gm−1 (l − 1)] + fm−1 (l) gm−1 (l − 1) − km fm−1 (l) Solving for kM , we obtain Pn ∗ wn−l fm−1 (l)gm−1 (l − 1) u (n) i= m h 2 2 vm (n) n−l |fm−1 (l)| + |gm−1 (l − 1)| l=0 w km (n) = P n (b) km (n) = 2 l=0 ∗ wum (n − 1) + 2fm−1 (n)gm−1 (n − 1) 2 wvm (n − 1) + |fm−1 (n)| + |gm−1 (n − 1)| fm−1 (n)gm−1 (n − 1) fm−1 (n)gm−1 (n − 1) Therefore, where 2 ∗ ∗ = fm−1 (n) gm (n) + km (n)fm−1 (n) ∗ = fm−1 (n)gm (n) + km (n) |fm−1 (n)| 2 = gm−1 (n) [fm (n) + km (n)gm−1 (n − 1)] = gm−1 (n − 1)fm (n) + km (n) |gm−1 (n − 1)| 2 i h 2 2 ∗ 2fm−1 (n)gm−1 (n − 1) = km (n) |fm−1 (n)| + |gm−1 (n)| + z(n) ∗ z(n) = fm−1 (n)gm (n) + fm (n)gm−1 (n − 1) Now, ∗ 2fm−1 (n)gm−1 (n − 1) i h 2 2 = z(n) + km (n) wvm (n) + |fm−1 (n)| + |gm−1 (n)| −km (n)wvm (n − 1) = z(n) + km (n)vm (n) − km (n)wvm (n − 1) 407 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Then, 2 n−1 X l=0 ∗ ∗ wn−l fm−1 (l)gm−1 (l − 1) + 2fm−1 (n)gm−1 (n − 1) = wum (n − 1) +z(n) + km (n)vm (n) −km (n)wvm (n − 1) But km (n) = um (n)/vm (n). Therefore, km (n)wm (n) = z(n) + wum (n − 1) + km (n)vm (n) − km wvm (n − 1) and, then km (n) km (n) wum (n − 1) z(n) + wvm (n − 1) wvm (n − 1) z(n) = km (n − 1) + wvm (n − 1) = 408 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Chapter 14 14.1 (a) " 1 limT0 →∞ E | 2T0 = = = = = Z T0 −j2πF t x(t)e −T0 2 dt| # " # Z T0 Z T0 1 ∗ j2πF τ −j2πF t limT0 →∞ E x (τ )e dτ x(t)e dt 2T0 −T0 −T0 Z T0 Z T0 1 E[x(t)x∗ (τ )]e−j2πF (t−τ ) dtdτ limT0 →∞ 2T0 −T0 −T0 Z T0 Z T0 1 limT0 →∞ γxx (t − τ )e−j2πF (t−τ ) dtdτ 2T0 −T0 −T0 Z t+T0 Z T0 1 limT0 →∞ γxx (α)e−j2πF (α) dtdα 2T0 t−T0 −T0 Z ∞ γxx (α)e−j2πF (α) dα −∞ = γxx (F ) (b) N X γxx (m) = γxx (m)e−j2πf m = N −1 1 X x(n + m)x∗ (n) N n=0 N X m=−N m=−N = N −1 X n=0 = = 1 N 1 N N −1 1 X x(n + m)x∗ (n)e−j2πf m N n=0 n+N X x(l)x∗ (n)e−j2πf (l−n) l=n−N −1 N −1 N X X x(l)x∗ (n)e−j2πf l ej2πf n n=0 l=0 N −1 1 X x(n)e−j2πf n |2 | N n=0 409 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 14.2 2 E[|γxx (m)| ] = = 1 N2 N −|m|−1 N −|m|−1 X n=0 X E[x∗ (n)x(n + m)x(n′ )x∗ (n′ + m)] n′ =0 1 XX {E[x∗ (n)x(n + m)]E[x(n′ )x∗ (n′ + m)] N2 n ′ n +E[x∗ (n)x(n′ )]E[x∗ (n′ + m)x(n + m)] = +E[x∗ (n)x∗ (n′ + m)]E[x(n′ )x(n + m)]} 1 XX 2 2 [γ (m) + γxx (n − n′ ) N 2 n ′ xx n Let p E[|γxx (m)|2 ] Therefore, var[γxx (m)] ∗ +γxx (n′ + m − n)γxx (n + m − n′ )] = n − n′ . Then 2 1 XX 2 N − |m| ∗ 2 + 2 [γ (p)γxx (p − m)γxx (p + m)] = γxx (m) N N n p xx 1 XX 2 ∗ = |E[γxx (m)]|2 + 2 [γ (p)γxx (p − m)γxx (p + m)] N n p xx = ≈ 1 XX 2 ∗ [γ (p)γxx (p − m)γxx (p + m)] N 2 n p xx ∞ 1 X 2 ∗ [γ (p)γxx (p − m)γxx (p + m)] N p=−∞ xx 14.3 (a) ∗ E[γxx (m)γxx (m′ )] 1 N −|m|−1 X = E x∗ (n)x(n + m) . N n=0 N −|m|−1 X 1 x(n′ )x∗ (n′ + m′ ) N ′ n =0 = = 1 XX E{x∗ (n)x(n + m)x(n′ )x∗ (n′ + m′ )} N2 n ′ n 1 XX {E[x∗ (n)x(n + m)]E[x(n′ )x∗ (n′ + m′ )] N2 n ′ n +E[x∗ (n)x(n′ )]E[x∗ (n′ + m′ )x(n + m)] +E[x∗ (n)x∗ (n′ + m′ )]E[x(n′ )x(n + m)]} σx4 X X [δ(m)δ(m′ ) + δ(n − n′ )δ(m − m′ ) = N2 n ′ n ′ +δ(n + m′ − n)δ(n + m − n′ )] Hence, E[pxx (f1 )pxx (f2 )] = N −1 X N −1 X ′ E[γxx (m)γxx (m′ )]e−j2πmf1 e−j2πm f2 m=−(N −1) m′ =−(N −1) 410 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. = σx4 X X X X [δ(m)δ(m′ ) + δ(n − n′ )δ(m − m′ ) N2 m ′ n ′ n m ′ +δ(n′ + m′ − n)δ(n + m − n′ )]e−j2πmf1 e−j2πm f2 ( 2 2 ) sinπ(f1 + f2 )N sinπ(f1 − f2 )N 4 = σx 1 + + N sinπ(f1 + f2 ) N sinπ(f1 − f2 ) (b) cov[pxx (f1 )pxx (f2 )] = E[pxx (f1 )pxx (f2 )] − E[pxx (f1 )]E[pxx (f2 )] = E[pxx (f1 )pxx (f2 )] − σx4 ( 2 2 ) sinπ(f1 − f2 )N sinπ(f1 + f2 )N 4 + = σx N sinπ(f1 + f2 ) N sinπ(f1 − f2 ) (c) var[pxx (f )] = cov[pxx (f1 )pxx (f2 )]|f1 =f2 =f " 2 # sin2πf N 4 = σx 1 + N sin2πf 14.4 Assume that x(n) is the output of a linear system excited by white noise input w(n), where σx2 = 1. Then pxx (f ) = Γxx (f )pww (f ). From prob. 12.3, (a), (b) and (c), we have E[pxx (f1 )pxx (f2 )] = = cov[pxx (f1 )pxx (f2 )] = = var[pxx (f )] = = Γxx (f1 )Γxx (f2 )E[pww (f1 )pww (f2 )] ( 2 2 ) sinπ(f1 + f2 )N sinπ(f1 − f2 )N Γxx (f1 )Γxx (f2 ) 1 + + N sinπ(f1 + f2 ) N sinπ(f1 − f2 ) Γxx (f1 )Γxx (f2 )cov[pww (f1 )pww (f2 )] ( 2 2 ) sinπ(f1 − f2 )N sinπ(f1 + f2 )N + Γxx (f1 )Γxx (f2 ) N sinπ(f1 + f2 ) N sinπ(f1 − f2 ) cov[pxx (f1 )pxx (f2 )]|f1 =f2 =f " 2 # sin2πf N f Γxx 1 + N sin2πf 14.5 Let yk (n) = x(n) ∗ hk (n) = N −1 X x(m)e j2πk(n−m) N m=0 = e j2πkn N N −1 X x(m)e −j2πkm N m=0 yk (n)|n=N = N −1 X x(m)e −j2πkm N m=0 = X(k) 411 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Note that this is just the Goertzel algorithm for computing the DFT. Then, |yk (n)|2 = |X(k)|2 = | N −1 X x(m)e −j2πkm N m=0 |2 14.6 From (14.2.18) we have W (f ) = = Z 1 2 W (f )df = − 12 = = by the definition of U in (14.2.12) M −1 1 X w(n)e−j2πf n |2 | M U n=0 M −1 M −1 ′ 1 X X w(n)w∗ (n′ )e−j2πf (n−n ) M U n=0 ′ n =0 Z 21 X X ′ 1 ∗ ′ e−j2πf (n−n ) df w(n)w (n ) 1 MU n ′ −2 n 1 XX w(n)w∗ (n′ )δ(n − n′ ) MU n ′ n " M −1 # 1 1 X 2 |w(n)| = 1 U M n=0 14.7 (a) (1) Divide x(n) into subsequences of length M 2 and overlapped by 50% to produce 4k subseM quences. Each subsequence is padded with 2 zeros. (2) Compute the M-point DFT of each frame or subsequence. (3) Compute the magnitude square of each DFT. (4) Average the 4k M-point DFT’s. (5) Perform the IDFT to obtain an estimate of the autocorrelation sequence. (b) X3 (k) = M −1 X x3 (m)e− j2πkm M x1 (m)e− j2πkm M m=0 M 2 = −1 X + m=0 = M −1 X m= M 2 − j2πkm M x1 (m)e −jπk +e x2 (m − M −1 X M − j2πkm )e M 2 x2 (m′ )e− j2πkm′ M m′ =0 m=0 X3 (k) M −1 X −jπk = X1 (k) + e X2 (k) (c) Instead of zero-padding, we can combine two subsequences to produce a single M-point subsequence and thus reduce the number of sequences form 4k to 2k. Then, we use the relation in (b) for the DFT. 412 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 14.8 0.9 = 90. (a) Obviously, △f = 0.01. From (12.2.52), M = △f (b) From (14.2.53), the quality factor is QB = 1.1N △f . This expression does not depend on M ; hence, there is no advantage to increasing the value of M beyond 90. 14.9 (a) From table 14.1, we have QB ⇒ △f Qw ⇒ △f QBT ⇒ △f = 1.11N △f QB = = 1.11N = 1.39N △f Qw = = 1.39N = 2.34N △f QBT = = 2.34N 1 111 1 139 1 234 (b) For the Bartlett estimate, QB = ⇒M = N M N = 100 QB For the Welch estimate with 50% overlap, Qw = ⇒M = 16N M 16N = 178 Qw For the Blackman-Tukey estimate, QBT = ⇒M = 1.5N M 1.5N = 150 QBT 14.10 (i) (a) Suppose PB (f ) is the periodogram based on the Bartlett method. Then, (i) PB (f ) = (0) Pxx (f ) = (1) Pxx (f ) = = (2) Pxx (f ) M −1 1 X xi (m)e−j2πf n |2 , | M n=0 i = 0, 1, . . . , k − 1 0 M −1 1−w X x1 (m)e−j2πf n |2 | M n=0 (1) (1 − w)PB (f ) (1) (1) = wPxx (f ) + (1 − w)PB (f ) 413 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (1) = (2) (1 − w)[wPB (f ) + PB (f )] X (k) = (1 − w) mwm−k PB (f ) (m) Pxx (f ) k=1 Therefore, (M ) E{Pxx (f )} = = = (M ) var{Pxx (f )} (1 − w) X (k) M wm−k E[PB (f )] k=1 2 Z 21 1 − wM 1 sinπ(f − α)M (1 − w) Γxx (α) dα 1 − w M − 12 sinπ(f − α) 2 Z 21 1 sinπ(f − α)M Γxx (α) (1 − wM ) dα M − 21 sinπ(f − α) (M ) (M ) = E{[Pxx (f )]2 } − [E{Pxx (f )}]2 X (k) = E{[(1 − w) M wm−k PB (f )]2 } (M ) var{Pxx (f )} k=1 −{E[(1 − w) = = = = 2 (1 − w) " X (k) M wm−k PB (f )]}2 k=1 X Mw 2(M −k) (k) E{PB (f )}2 k=1 (1 − w)2 X − (k) {E[PB (f )]}2 # (k) M w2(M −k) var[PB (f )] k=1 " 2 # 2M sin2πf M 1 − w Γ2 (f ) 1 + (1 − w)2 1 − w2 xx M sin2πf " 2 # sin2πf M 2w 1 − w 2 Γ (f ) 1 + (1 − w ) 1 + w xx M sin2πf (b) (M ) E{Pxx (f )} (w) = E{Pxx (f )} Z 21 Γxx (α)W (f − α)dα = − 12 where W (f ) = (M ) var[Pxx (f )] = = M −1 1 X w(n)e−j2πf n |2 | M U n=0 (1 − w)2 (1 − w M X (i) w2(M −k) var[P̃xx (f )] k=1 2M ) 1−w 1+w Γ2xx (f ) 14.11 (i) Let Rxx be defined as follows: (i) Rxx (i) rxx (0) (i) r 1 xx (−1) = M (i) rxx (1) (i) rxx (0) .. . ... ... (i) rxx (0) 414 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Then, (i) E ∗t (f )Rxx E(f ) = −1 M −1 M X X k=0 k′ =0 = ′ 1 (i) rxx (k − k ′ )e−j2π(k−k )f M M −1 1 X M X (i) rxx (m)e−j2πmf k=0 m=k−(M −1) = (M −1) X −(M −1) (M| m|) (i) rxx (m)e−j2πmf M (i) = Pxx (f ) (B) Therefore, Pxx (f ) = K 1 X ∗t (k) E (f )Rxx E(f ) K k=1 14.12 To prove the recursive relation in (12.3.19) we make use of the following relations: Êm = N −1 X [|fm (n)|2 + |gm (n − 1)|2 ] (1) n=m where fm (n) gm (n) and Êm−1 = fm−1 (n) + km gm−1 (n − 1) ∗ = k̂m fm−1 (n) + gm−1 (n − 1) N −1 X = n=m−1 (2) [|fm−1 (n)|2 + |gm−1 (n − 1)|2 ] = |fm−1 (m − 1)|2 + |gm−1 (m − 2)|2 + N −1 X n=m Also, N −1 X ∗ [fm−1 (n) + gm−1 (n − 1)] n=m [|fm−1 (n)|2 + |gm−1 (n − 1)|2 ] 1 = − k̂m Êm−1 2 We substitute for fm (n) and gm (n − 1) from (2) into (1), and we expand the expressions. Then, use the relations for Êm−1 and k̂m to reduce the result. 14.13 x(n) = E[x(n)] = since E[w(n)] To determine the autocorrelation, we have = h(0) = h(1) = 1 x(n − 1) + w(n) − w(n − 1) 2 1 E[x(n − 1)] + E[w(n)] − E[w(n − 1)] 2 0, it follows that E[x(n)] = 0 1 h(−1) + δ(0) − δ(−1) = −1 2 1 1 h(0) + δ(1) − δ(0) = − 2 2 415 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. p = q = 1, 1 a=− , 2 b0 = 1, b1 = −1 Hence, γxx (0) = γxx (1) = and γxx (0) = γxx (1) = γxx (m) = = γxx (m) = = 1 1 2 γxx (1) + σw (1 + ) 2 2 1 2 γxx (0) + σw (−1) 2 4 2 σ 3 w 1 2 − σw 3 −a1 γxx (m − 1) 1 1 2 − ( )m−1 σw , m>1 3 2 γxx (−m) 1 1 2 , m<0 − ( )−m+1 σw 3 2 14.14 x(n) E[x(n)] γxx (m) = w(n) − 2w(n − 1) + w(n − 2) = 0 since E[w(n)] = 0 q X 2 bk bk+m , 0≤m≤q = σw k=0 where q = 2, b0 = 1, b1 = −2, b2 = 1 Hence, γxx (0) 2 = σw 2 X 2 b2k = bσw k=0 γxx (1) 2 = σw 2 X k=0 γxx (2) = 2 σw γxx (m) = 0, 2 X 2 bk bk+1 = −4σw 2 bk bk+2 = σw k=0 γxx (−m) |m| ≥ 3, = γxx (m) 14.15 (a) Γxx (z) √ √ 1±j 3 1±j 3 The four zeros are , 2 2 The minimum-phase system is H(z) Hence, H(z) = = X γxx (m)z −m m −2 2z (z 4 − 2z 3 + 3z 2 − 2z + 1) = G(1 − z −1 + z −2 ), where G = √ = 2(1 − z −1 + z −2 ) √ 2 416 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) The solution is unique. 14.16 (a) Γxx (z) = ∞ X γxx (m)z −m m=−∞ 2 z (6 − 35z −1 + 62z −2 − 35z −3 + 6z −4 ) 62 1 1 z2 (1 − 3z −1 )(1 − 2z −1 )(1 − z −1 )(1 − z −1 ) = 62 2 3 1 1 The four zeros are z = 3, 2, , 3 2 6 1 1 The minimum phase system is H(z) = √ (1 − z −1 )(1 − z −1 ) 2 3 62 1 = √ (6 − 5z −1 + z −2 ) 62 = (b) The maximum phase system is H(z) = √162 (1 − 5z −1 + 6z −2 ) (c) There are two possible mixed-phase systems: H1 (z) = √162 (3 − 7z −1 + 2z −2 ) √1 (2 − 7z −1 + 3z −2 ) 62 H2 (z) = 14.17 (a) H(z) = Γhh (f ) = = = γxx (m) = ⇒ Γxx (f ) = = Γyy (f ) = = 1 + z −1 1 − 0.8z −1 H(z)H(z −1 )|z=ej2πf 1 + e−j2πf 1 + ej2πf 1 − 0.8e−j2πf 1 − 0.8ej2πf cos2 πf 4 1.64 − 1.6cos2πf 1 |m| ( ) 2 ∞ X 1 ( )|m| e−j2πf m 2 m=−∞ 0.75 1.25 − cos2πf Γxx (f )Γhh (f ) 3cos2 πf (1.64 − 1.6cos2πf )(1.25 − cos2πf ) (b) Γyy (f ) = 75 54 2 − 1.64 − 1.6cos2πf 1.25 − cos2πf 417 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. = γyy (m) 9 25 150 − 50 1.64 − 1.6cos2πf 1 150(0.8)|m| − 50( )|m| 2 = 3 4 1.25 − cos2πf 2 = γxx (0) = 150 − 50 = 100 (c) σw 14.18 proof is by contradiction. (a) Assume the |km | > 1. Since Em = (1 − |km |2 )Em−1 , this implies that either Em < 0 or 2 Em−1 < 0. Hence, σw < 0, and 2 σw 0 at Γxx a = at . ⇒ Γxx .. 0 is not positive definite. (b) From the Schur-Cohn test, Ap (z) is stable if |km | < 1. Hence, the roots of Ap (z) are inside the unit circle. 14.19 (a) γxx (0) γxx (−1) γxx (−2) γxx (1) γxx (0) γxx (−1) 2 γxx (2) σw 1 = 0 γxx (1) 0 0 γxx (0) −0.81 γxx (m) γxx (m) Hence, 2 σw The values of the parameters dm = 0.81γxx (m − 2), m≥3 = {2.91, 0, 2.36, 0, 1.91, 0, 1.55, 0, . . .} = q X bk bk+m are as follows: k=0 M A(2) : dm M A(4) : dm M A(8) : dm = {2.91, 0, 2, 36} = {2.91, 0, 2, 36, 0, 1.91} = {2.91, 0, 2, 36, 0, 1.91, 0, 1.55, 0} (b) The M A(2), M A(4) and M A(8) models have spectra that contain negative values. On the other hand, the spectrum of the AR process is shown below. Clearly, the MA models do not provide good approximations to the AR process. Refer to fig 14.19-1. 14.20 2 2 γxx (m) = 1.656σw , 0, 0.81σw , 0, . . . . For AR(2) process: 418 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. −−−> magnitude 6 5 4 3 2 1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 −−−> frequency(Hz) 0.35 0.4 0.45 0.5 Figure 14.19-1: The solution is 2 1.656σw 0 2 0.81σw 0 2 1.656σw 0 g a1 a2 2 2 gσw 1 0.81σw a1 = 0 0 2 0 a2 1.656σw = 1.12 = 0 = −0.489 For the AR(4) process, we obtain g = 1.07 and a = {1, 0, −0.643, 0, 0.314} For the AR(8) process, we obtain g = 1.024 and a = {1, 0, −0.75, 0, 0.536, 0, −0.345, 0, 0.169} Refer to fig 14.20-1. 14.21 (a) (1) H(w) Γxx (w) Γxx (w) 1 − e−jw 1 + 0.81e−jw 2 = |H(w)|2 σw 1 − e−jw 2 2 = | | σ 1 + 0.81e−jw w = (2) H(w) Γxx (w) = (1 − e−j2w ) 2 = |H(w)|2 σw 2 = 4σw sin2 w (3) H(w) = 1 1 − 0.81e−jw 419 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. MA(2) AR(2) 2.5 −−−> magnitude −−−> magnitude 2 1.5 1 0.5 0 0 0.2 0.4 −−−> frequency(Hz) 2 1.5 1 0.5 0 0.6 0.2 0.4 −−−> frequency(Hz) AR(4) AR(8) 2 −−−> magnitude −−−> magnitude 2 1.5 1 0.5 0 0.6 0.2 0.4 −−−> frequency(Hz) 1.5 1 0.5 0 0 0.6 0.2 0.4 −−−> frequency(Hz) 0.6 Figure 14.20-1: Γxx (w) (b) Refer to fig 14.21-1. (c) For (2), = 2 σw 1.6561 − 1.62cosw P3 2 σw k=0 bk bk+m , 0 ≤ m ≤ 2 γxx (m) = 0, m>2 ∗ m<0 γxx (−m), since b0 γxx (0) γxx (2) γxx (−2) γxx (m) = 1, b1 = 0 and b2 = −1, we have 2 = 2σw 2 = −σw 2 = −σw = 0, m 6= 0, ±2 For (3), the AR process has coefficients a0 = 1, a1 = 0 and a2 = 0.81. 2 1 0 0.81 σw γxx (0) 0 1.81 0 γxx (1) = 0 0 0.81 0 1 γxx (2) γxx (0) = 2 2.9σw 420 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (1) (2) 2 −−−> magnitude −−−> magnitude 8 6 4 2 0 0 0.2 0.4 −−−> frequency(Hz) 0.6 1.5 1 0.5 0 0 0.2 0.4 −−−> frequency(Hz) 0.6 (3) −−−> magnitude 6 5 4 3 2 1 0 0 0.2 0.4 −−−> frequency(Hz) 0.6 Figure 14.21-1: γxx (m) = γxx (m) = 0, m odd 2 2.9(0.9)|m| σw , m even 14.22 (a) For the Bartlett estimate, M = = (b)M = (c)for (a), QB = = for (b), QB = = 0.9 △f 0.9 = 90 0.01 0.9 = 45 0.02 N M 2400 = 26.67 90 N M 2400 = 53.33 45 421 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 14.23 2 Γxx (f ) = σw |ej2πf |ej2πf − 0.9|2 − j0.9|2 |ej2πf + j0.9|2 (a) z − 0.9 z −1 − 0.9 z 2 + 0.81 z −2 + 0.81 z − 0.9 z 2 + 0.81 z −1 (1 − 0.9z −1 ) 1 + 0.81z −2 2 = σw Γxx (z) Therefore, H(z) = = (b) The inverse system is 1 + 0.81z −2 1 = −1 H(z) z (1 − 0.9z −1 ) This is a stable system. 14.24 N −1 X X(k) = x(n)e −j2πnk N n=0 (a) E[X(k)] = X E[x(n)]e −j2πnk N =0 n E[|X(k)|2 ] = XX n = n = −j2πk(n−m) N m XX = σx2 E[x(n)x∗ (m)]e m N −1 X σx2 δ(n − m)e −j2πk(n−m) N 1 n=0 N σx2 (b) E{X(k)X ∗ (k − m)} = XX n = σx2 −j2πkn N e j2πn′ (k−n) N n′ XX n = = = E[x(n)x∗ (n′ )]e n′ δ(n − n′ )e −j2πmn′ N e −j2πk(n−n′ ) N j2πmn σx2 e N N σx2 , m 0, = pN otherwise p = 0, ±1, ±2, . . . 422 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 14.25 γvv (m) = E[v ∗ (n)v(n + m)] q X q X = b∗k bk′ E[w∗ (n − k)w(n + m − k ′ )] = = = Then, Γvv (f ) = k′ =0 k=0 q X q X 2 σw b∗k bk′ δ(m ′ k =0 k=0 q X 2 σw b∗k bk+m + k − k′ ) k=0 2 σ w dm q X 2 σw dm e−j2πf m m=−q 14.26 γxx (m) = E[x∗ (n)x(n + m)] = A2 E{cos(w1 n + φ)cos[w1 (n + m) + φ]} A2 E{cosw1 m + cos[w1 (2n + m) + 2φ]} = 2 A2 cosw1 n = 2 14.27 (a) x(n) y(n) ⇒ x(n) y(n) − v(n) Therefore, y(n) so that y(n) is an ARMA(2,2) process = 0.81x(n − 2) + w(n) = x(n) + v(n) = y(n) − v(n) = 0.81y(n − 2) − 0.81v(n − 2) + w(n) = 0.81y(n − 2) + v(n) − 0.81v(n − 2) + w(n) (b) x(n) y(n) ⇒ x(n) y(n) − v(n) y(n) + p X k=1 ak y(n − k) = − p X k=1 ak x(n − k) + w(n) = x(n) + v(n) = y(n) − v(n) p X = − ak [y(n − k) − v(n − k)] + w(n) k=1 = v(n) + p X k=1 ak v(n − k) + w(n) 423 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Hence, y(n) is an ARMA(p,p) process p X Note that X(z)[1 + ak z −k ] = W (z) k=1 H(z) = = 1 Pp 1 + k=1 ak z −k 1 Ap (z) 2 Γxx (z) = σw H(z)H(z −1 ) 2 and Γyy (z) = σw H(z)H(z −1 ) + σv2 2 σw = + σv2 Ap (z)Ap (z −1 ) 2 + σv2 Ap (z)Ap (z −1 ) σw = Ap (z)Ap (z −1 ) 14.28 (a) γxx (m) = E{[ K X Ak cos(wk n + φk ) + w(n)][ XX k = Ak Ak′ E{cos(wk n + φk )cos(wk′ (n + m) + φk′ )} + E[w(n)w(n + m)] k′ K X A2 k=1 Ak′ cos(wk′ (n + m) + φk′ ) + w(n + m)]} k′ =1 k=1 = K X 2 2 cos(wk n) + σw δ(m) (b) Γxx (w) = ∞ X γxx (m)e−jwm m=−∞ = K ∞ X A2 X k=1 = K X k=1 = 4 2 (ejwk + e−jwk )e−jwn + σw m=−∞ A2 2 [2πδ(w − wk − 2πm) + 2πδ(w + wk − 2πm)] + σw 4 K πX 2 2 Ak [δ(w − wk − 2πm) + 2πδ(w + wk − 2πm)] + σw 2 k=1 14.29 T T E = a∗ Γyy a + λ(1 − a∗ a) dE = 0 da ⇒ Γyy a − λa = 0 or Γyy a = λa 424 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Thus, a is an eigenvector corresponding to the eigenvalue λ. Substitute Γyy a = λa into E. Then, 2 E = λ. To minimize E, we select th smallest eigenvalue, namely, σw . 14.30 (a) γxx (0) γxx (1) γxx (2) By the Levinson-Durbin algorithm, a1 (1) 2 = P + σw = P cos2πf1 = P cos4πf = k1 E1 = = = a2 (2) = = a2 (1) = = (b) k2 = a2 (2) (c) γxx (1) γxx (0) P cos2πf1 − 2 P + σw a1 (1) (1 − k12 )γxx (0) 4 2 + σw P 2 sin2 2πf1 + 2P σw 2 P + σw γxx (2) + a1 (1)γxx (1) − E1 2 P σw cos4πf1 − P 2 sin2 2πf1 − 2 2 2 + σ4 P sin 2πf1 + 2P σw w a1 (1) + a2 (2)a1 (1) 2 P cos2πf1 P 2 sin2 2πf1 − P σw cos4πf1 − 1 + 2 2 + σ4 P + σw P 2 sin2 2πf1 + 2P σw w = − k1 = a1 (1) as given above. 2 If σw a2 (1) → = a2 (2) = = −2cos2πf1 1 k2 k1 = = 1 −cos2πf1 0, we have −(cos2πf1 )(1 + 1) 14.31 ε(h) = hH Γxx h + µ(1 − E H (f )h) + µ∗ (1 − hH E(f )) (a) To determine the optimum filter that minimizes σy2 subject to the constraint, we differentiate ε(h) with respect to hH (compute the complex gradient): ε(h) = Γxx h − µ∗ E(f ) = 0 hH Thus, −1 hopt = µ∗ Γxx E(f ) 425 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. . (b) To solve for the Langrange multipliers using the constraint, we have E H (f )hopt = µ∗ E H (f )Γ−1 xx E(f ) = 1 Thus, µ∗ = 1 E (f )Γ−1 xx E(f ) H By substituting for µ∗ in the result given in (a) we obtain the optimum filter as hopt = Γ−1 xx E(f ) H E (f )Γ−1 xx E(f ) 14.32 The periodogram spectral estimate is PXX (f ) = where X(f ) = 1 1 2 |X(f )| = X(f )X ∗ (f ) N N N −1 X x(n)e−j2πf n = E H (f )X(n) n=0 By substituting X(f ) into Pxx (f ), we obtain Pxx (f ) = 1 H E (f )X(n)X(n)H E(f ) N Then, E [Pxx (f )] = = 1 H E (f )E X(n)X(n)H E(f ) N 1 H E (f )Γxx E(f ) N 14.33 We use the Pisasenko decomposition method. First, we compute the eigqnvalues of the correlation matrix. g(λ) = = 3−λ 0 −2 0 3−λ 0 −2 0 3−λ 0 −2 3−λ (3 − λ)3 − 2(2)(3 − λ) = (3 − λ) (3 − λ)2 − 4 = 0 = (3 − λ) 3−λ 0 0 3−λ 3−λ 0 Thus, λ = 5, 3, 1 and the noise varinace is λmin = 1. The corresponding eigenvector is 1 0 1 2 0 −2 0 2 0 a1 = 0 ⇒ a2 = 1, a1 = 0 ⇒ 0 1 0 a2 −2 0 2 The frequency is found from the equation 1 + z −2 = 0 ⇒ z = ±j. Therefore, ejw = ±j yields w = ±π/2 and the power is P = 2. 426 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. 14.34 The eigenvalues are found from g(λ) = 2−λ −j −1 j 2−λ −j −1 j 2−λ and the normalized eigenvectors are √ −j/√ 3 v 1 = 1/√3 j/ 3 ⇒ λ1 = 1, λ2 = 1, λ3 = 4. p 2/3 √ v 3 = −j/√ 6 1/ 6 0√ v 2 = j/√2 1/ 2 By computing the denominator of (14.5.28), we find that the frequency is ω = π/2 or f = 1/4. We may also find the frequency by using the eigenvectors v 2 and v 3 to construct the two polynomials (Boot Music Method): V2 (z) V3 (z) 1 j √ z − √ z −2 2 2 r 1 1 2 = − √ z −1 + √ z −2 3 6 6 = Then, we form the polynomials V2 (z)V2∗ (1/z ∗ ) + V3 (z)V3∗ (1/z ∗ ) = 1 2 2 2 1 z + jz + 2 − jz −1 + z −2 3 3 3 3 It is easily verified that the polynomial has a double root at z = j or, equivalently, at ω = π/2. The other two roots are spurious roots that are neglected. Finally, the power of the exponential signal is P1 = 1. 14.35 1 PM U SIC (f ) = PM 2 k=p+1 The denominator can be expressed as M X sH (f )v k 2 = k=p+1 M X |sH (f )vk | sH (f )v k v H k s(f ) k=p+1 = sH (f ) M X k=p+1 s(f ) vk vH k 14.36 PM −1 (a) Vk (z) = n=0 vk (n+1)z −n and Vk (f ) = Vk (z) |z=ej2πf Then, the denominator in PM U SIC (f ) may be expressed as M X = sH (f )v k 2 = X M Vk (f )Vk∗ (f ) k=p+1 k=p+1 = X k=p+1 M Vk (z)Vk∗ (1/z ∗ ) |z=ej2πf 427 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. (b) For the roots of Q(z), we consruct (from Problem 14.34) Q(z) as Q(z) = V2 (z)V2∗ (1/z ∗ ) + V3 (z)V3∗ (1/z ∗ ) 1 2 2 2 1 = z + jz + 2 − jz −1 + z −2 3 3 3 3 Thus polynomial has a double root at z = j and two spurious roots. Therefore, the desired frequency is ω = π/2. 14.37 (a) γxy (n0 ) = N −1 X n=0 E[γxy (n0 )] = N −1 X n=0 = N −1 X n=1 = var[γxy (n0 )] y(n − n0 )[y(n − n0 ) + w(n)] E[y 2 (n − n0 )] E[A2 cos2 w0 (n − n0 )] M A2 2 2 = E[γxy (n0 )]( = XX n = 0≤n≤M −1 n′ 2 M A2 2 ) 2 E{y(n − n0 )[y(n − n0 ) + w(n)]y(n′ − n0 )[y(n′ − n0 ) + w(n′ )]} − ( M A2 2 ) 2 MA 2 σw 2 (b) SNR = {E[γxy (n0 )]}2 var[γxy (n0 )] 2 = = ( M2A )2 M A2 2 2 σw 2 MA 2 2σw (c) As M increases, the SNR increases. 14.38 Refer to fig 14.38-1. 14.39 Refer to fig 14.39-1. 428 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. autocor of w(n) periodogram Pxx(f) 3 80 2.8 60 2.6 2.4 40 2.2 20 2 1.8 −20 −10 0 10 0 0 20 200 400 600 avg periodogram Pxx(f) 80 60 40 20 0 0 200 400 600 Figure 14.38-1: theoretical psd with M = 100 Bartlett with M = 50 60 50 40 40 20 30 0 20 −20 10 −40 0 1 2 3 0 0 4 1 2 3 4 Blackman−Tukey psd with lag=25 120 100 80 60 40 20 0 1 2 3 4 Figure 14.39-1: 429 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1. Co rrections to Digital Signal Processing, 4 t h Edition by John G . Proakis and Dimitri s G . Manolakis 1. Page 18, two lines below equation (1.3.18) sk(n) should be sk(n) 2. Page 34, Figure 1.4.8 The quantized value of the signal between 2T and 3T should be 4 3. Page 66, line below equation (2.2.43) “is relaxed” should be “is non-relaxed” 4. Page 101, last term of equation (2.4.24) n n should be N 5. Page 147, last sentence above Section 3.1 Move this sentence to line above, just before the word “Finally, “ 6. Page 161, figure 5.2.1 The mapping is w = a-1z 7. Page 237, line 2 from the top of page “radian” should be “radial” 8. Page 321, Figure 5.2.3, magnitude plot Scale on the ordinate should be multiplied by 5 9. Page 387, line 8 below equation (6.1.15) X(Fs) should be X(F) 10. Page 390, Figure 6.1.3(b) X(F/Fs) should be X(F) 11. Page 391, Figure 6.1.5 upper right-hand part of the figure X(F/Xf) should be X(F) 12. Page 396, Figure 6.2.3, graph of Y(F) For F<0, the Fs on the abscissa should be -Fs 13. Page 424, two lines below equation (6.4.68) The word “envelop” should be “envelope” 14. Page 454, equation on line above Section 7.1.2 e-j2 kN should be e-j2 k/N 15.Page 463, line below equation (7.1.39) (7.1.38) should be (7.1.39) 16.Page 506, problem 7.23(e) The exponent should be j(2 /N) kon 17. Page 526, Figure 8.1.10 Delete the factor of 2 in the expression for B 18. Page 582, line 4 from the top B2(z) = 1/2+3/8 z-1+z-2 19. Page 646, Problem 9.22 In the denominator of H(z), the term r2 should be r2 20. Page 672, two lines below equation (10.2.35) G(k+x) should be ((k+ ) 21. Page 679, line above equation (10.2.52) and in equation (10.2.52) Add the term ˜ ˜ b (1) = 2b(1) -2 b(0); Then, in (10.2.52), k = 2,3,…,M/2 -2 22. Page 680, line above Case 4: The equation should be ˜ ˜ c(0) – ½ c(2) = c(1) 23. Page 725, Figure 10.3.14, graph on left The value of 1 is the peak value 24. Page 742, problem 10.2.3, lines 4 and 6 Add subscripts l and u on the expressions for H(s) should b Ha(s) 25. Page 809, equation (11.12.15) t Q(zM) should be Q (zM) 26. Page 811, in Solution of example 11.12.1 The matrix for G0(z), G1(z) and G2(z) should be transposed Thus, G0(z) = 1-z-1 + z-2, G1(z) = -1-z-1+3z-2, G2(z)=1+3z-1-5z-2 27. Page 818, problem 11.16 Change the statement of the problem to the following: Use the result in Problem 11.15 to determine the type II form of the I=3 interpolator in Figure 11.5.12(b) 28. Page 821, third line from bottom of page Should be f0 = 1/6 and f = 1/3 29. Page 958, problem 13.19 In the expression for the least squares error, f(m)n should be fm(l) and gm(n) should be gm(l) 30. Page 962, equations (14.1.6), (14.1.7) and (14.1.8) X(F/X(F)) should be X(F) 31. Page 964, in Solution of Example 14.1.1, line 2 Figure 10.2.2(a) should be Figure 10.2.2 32. Page 1038, problem 14.35 In the denominator of the equation, v kv k should be v kv kH
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.4 Linearized : No Has XFA : No Page Count : 431 Creator : PDFMerge! (http://www.pdfmerge.com) Producer : iText 5.0.5 (c) 1T3XT BVBA Modify Date : 2011:11:15 03:57:40-07:00 Create Date : 2011:11:15 03:57:40-07:00EXIF Metadata provided by EXIF.tools