ES7243 User Guide ä¿®æfl¹ NewLisax

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 19

DownloadES7243 User Guide ä¿®æfl¹-newLisax
Open PDF In BrowserView PDF
ES7243

ES7243 User Guide

ES7243 User Guide

(Rev.1.00)

Rev.1.00

1
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide

OVERVIEW
ES7243 is a high performance stereo audio ADC, and it supports LRCK frequency range from 8 kHz to 192 kHz. It has two
differential inputs, AINLP-AINLN and AINRP-AINRN, followed by a stereo microphone amplifier with programmable gain. Also, it
has TDM mode to cascade multiple ES7243 devices. Its TDM cascading mode makes it easy to connect with DSP.
ES7243 is easy to use, utilizing the differential inputs and the internal PGA to interface with microphone and boost the
microphone signal level. One ES7243 can interface with two microphones. It also can be interfaced with line input if the
internal PGA gain is +1dB.
ES7243 supports standard audio clocks (256Fs, 384Fs, 512Fs, etc), USB clocks (12/24 MHz), and some common non standard
audio clocks (25 MHz, 26 MHz, etc). According to the serial audio data sampling frequency (Fs), the device can work in three
speed modes: single speed mode, double speed mode and Quad Speed mode. In single speed mode, Fs normally range from 8
kHz to 48 kHz, and in double speed mode, Fs normally ranges from 64 kHz to 96 kHz. In quad speed mode, Fs normally range
from 96 kHz to 192 kHz.
ES7243 can work either in master clock mode or slave clock mode. In slave mode, LRCK and SCLK are supplied externally, and
LRCK and SCLK must be synchronously derived from the system clock with specific rates. In master mode, LRCK and SCLK are
derived internally from device master clock.
ES7243 is very suitable for music and voice application, such as Microphone Array, Conference system, Sound bar, Audio
Interface, DVR, NVR, etc. Its input circuit and TDM mode makes it ideal for microphone array application.

FEATURES
1.
2.
3.
4.
5.
6.

Supports I2S, Left Justified and DSP-A/B digital format, supports Master or Slave mode.
Supports 256 or 384 LRCK ratio. Also, it supports non standard LRCK ratio without obvious performance degraded.
Has one stereo differential line input or microphone input, followed by a stereo PGA with gain range from +1dB to +27dB.
Has I2C controls port to read/write internal register.
Has TDM mode to cascade multiple ES7243 for microphone array application or conference system.
Has standby capability to save power consumption.

ADC PERFORMANCE
1.
2.
3.
4.

-88dB THD+N
103dB SNR @ +1dB PGA gain, 92dB SNR @ +27dB PGA gain
24-bit, 8 to 200 kHz sampling frequency
Stereo differential line inputs or microphone inputs

PACKAGE OUTLINE
1.

ES7241 QFN-20, 3mm × 3mm

Rev.1.00

2
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide
1
2
3

4

5
6

BLOCK DIAGRAM................................................................................................................................................................................................................................................ 4
RECOMMENDED OPERATING CONDITION ......................................................................................................................................................................................................... 4
APPLICATION CIRCUIT AND PCB LAYOUT GUIDE ............................................................................................................................................................................................... 4
3.1
ES7243 APPLICATION CIRCUIT ........................................................................................................................................................................................................... 4
3.2
PCB LAYOUT GUIDE ............................................................................................................................................................................................................................ 5
3.2.1
THE POWER SUPPLY, GROUNDING DECOUPLING AND FILTERS ................................................................................................................................................. 5
3.2.2
THE THERMAL PAD OF ES7243 ................................................................................................................................................................................................... 5
3.3
MICROPHONE CIRCUIT ...................................................................................................................................................................................................................... 6
3.4
LINE INPUT ......................................................................................................................................................................................................................................... 6
3.5
THE CIRCUIT SCHEMATIC FOR I2S ...................................................................................................................................................................................................... 6
3.6
THE CIRCUIT SCHEMATIC OF I2C ........................................................................................................................................................................................................ 7
3.7
TDMIN PIN ......................................................................................................................................................................................................................................... 7
ES7243 APPLICATION ......................................................................................................................................................................................................................................... 7
4.1
REGISTER MAP ................................................................................................................................................................................................................................... 8
4.2
I2C CONTROL PORT ............................................................................................................................................................................................................................ 8
4.3
SOFTWARE MODE .............................................................................................................................................................................................................................. 9
4.4
MASTER OR SLAVE MODE .................................................................................................................................................................................................................. 9
4.5
SPEED MODE...................................................................................................................................................................................................................................... 9
4.6
INTERNAL CLOCK DIAGRAM ............................................................................................................................................................................................................... 9
4.7
SERIAL DIGITAL AUDIO FORMAT ...................................................................................................................................................................................................... 11
4.8
TDM MODE ...................................................................................................................................................................................................................................... 12
4.8.1
APPLICATION CIRCUIT OF TDM MODE ..................................................................................................................................................................................... 12
4.8.2
DIAGRAM AND TIMING OF TDM CASCADING MODE .............................................................................................................................................................. 13
4.8.3
PHASE DIFFERENCE BETWEEN MULTIPLE ADCs ....................................................................................................................................................................... 14
4.9
ANALOG INPUT ................................................................................................................................................................................................................................ 15
4.10
POWER CONTROL ............................................................................................................................................................................................................................ 16
4.11
SOFT RESET ...................................................................................................................................................................................................................................... 16
4.12
MUTE AND AUTO MUTE .................................................................................................................................................................................................................. 17
EFFECT OF ANTI-ALIASING FILTER .................................................................................................................................................................................................................... 17
REGISTER CONFIGURATION FOR ES7243 ......................................................................................................................................................................................................... 18
6.1
THE SEQUENCE FOR STARTUP-SLAVE MODE................................................................................................................................................................................... 18
6.2
THE SEQUENCE FOR STARTUP- MASTER MODE .............................................................................................................................................................................. 18
6.3
THE SEQUENCE FOR CASCADING MODE (SLAVE MODE) ................................................................................................................................................................. 18
6.4
THE SEQUENCE FOR STANDBY MODE ............................................................................................................................................................................................. 18

Rev.1.00

3
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide

1 BLOCK DIAGRAM

ES7243 Block Diagram
SIGNAL PATH
ES7243 has stereo differential inputs, AINLP-AINLN and AINRP-AINRN, followed by a stereo PGA with gain range from +1dB to
+27dB. Then, the internal high performance multi-bit delta-sigma audio ADC does analog to digital converting. At last digital
signal should be outputted on ASDOUT pin.
The maximum input level of these line inputs is 1Vrms.

2 RECOMMENDED OPERATING CONDITION
The following Table shows the recommended operating condition of ES7243.

3 APPLICATION CIRCUIT AND PCB LAYOUT GUIDE
This section provides some guideline about circuit schematic and PCB layout.

3.1 ES7243 APPLICATION CIRCUIT
Below circuit schematic shows the details about microphone interface, I2C, ground and power supply.

AU_GND
VCC_MICA

1
1

R542
10K
R543
10K

Rev.1.00

2
2

R544
10K

1

AU_GND

AU_GND

1

J408

2
10V

C555
1uF

2

AU_GND
C552 1
1uF

C554
1uF

1

C549
1uF

AU_GND

2 C551
1uF

R537
2k

1

220R

2

MICBIAS2k

1

2

2

AU_GND

R536
R535

2

2

C548
1uF

1

1

1

1

1
2
2 C550
1uF

1

19
18
17
8

C547
1uF

2

2

2

C557
20pF

20
7
6
3

C546
100nF

2

2 R545 22R
2 R546 22R
C556
20pF

4

VCC_MICA
VCC_MICA

2

2
1
AU_GND

C553
1uF

2

P
N
J409
MICROPHONE
P
N
MICROPHONE

AU_GND

1

1
1

1

1

I2C_SCL
I2C_SDA

2 AU_GND
2
2
2

1

I2S0_MCLK
I2S0_LRCK_TX
I2S0_SCLK
I2S0_SDI2

1
R538 22R
1
R539 22R
1
R540 22R
R541 22R

1
5

U504
ES7243
QFN20_3R00X3R00X0R85_T
12
VDDP
VDDA
VDDD
21
PAD 13
GNDD
GNDA
16 1
AINRP 15
MCLK
AINRN
LRCK
9
1
SCLK
AINLP 10
SDOUT
AINLN
14
CCLK
REFP 11
CDATA
REFQ
AD0
2
AD1
TDMIN
I2C Chip ID = 0x20
2

C545
100nF

2

1

VCC_MICA

I2C_AD0
I2C_AD1

R547
1 10K
1
R548
10K

AU_GND
2
2

AU_GND

SY S_GND

AU_GND

4
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide

3.2 PCB LAYOUT GUIDE
As with any high-resolution audio converter, designing with ES7243 requires careful attention to PCB layout if its potential
performance is to be realized.

3.2.1 THE POWER SUPPLY, GROUNDING DECOUPLING AND FILTERS
The power supply of ES7243 must be isolate from system power supply. A LDO specified for ES7243 is recommended in order
to get the best audio performance. Usually, GNDD and GNDA must be connect to the same analog ground plane, and then
join into system ground at a single point nearby the power supply. It is important to prevent high frequency noise or high
current noise from going into audio ground plane. Below diagram illustrates ES7243 power supply and grounding.
VSYS

LDO
AUD_GND

SYS_GND

AUD_GND

C1
0.1uF
AUD_GND

C2
0.1uF
AUD_GND

DVDD
PVDD

VIO

AVDD

PVDD
C5

J1

AINLx

CPU

ES724X
I2C

1uF
AINRx

LINE IN JACK
1uF

I2S

DGND

2
3

C6

I2C

I2S

1

AUD_GND
AGND

REFP

SYS_GND

REFQ

C3
1uF

C4
1uF

AUD_GND AUD_GND
AUD_GND

AUD_GND

There need some decoupling and filter capacitors on VDDD, VDDA, REFP and REFQ pins. These decoupling and filter
capacitors must be as near to ES7243 package as possible, with the low value ceramic capacitor being the nearest. All signals,
especially clocks, should be kept away from REFP and REFQ in order to avoid unwanted coupling to ADC modulators. The
filter capacitors on REFP and REFQ pins, especially 0.1uF capacitor, must be positioned to minimize the electronic path from
these reference pins to GND.

3.2.2 THE THERMAL PAD OF ES7243
There is a thermal pad on the bottom of ES7243 package. The following drawing shows this thermal pad.

In practical system, the thermal pad must be connected to ground plane by via.The following picture illustrates how the
thermal pad is connected to ground plane.
Rev.1.00

5
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide

3.3

MICROPHONE CIRCUIT

ES7243 has two differential inputs, AINLP-AINLN and AINRP-AINRN, which can be used as microphone interface. Usually,
AINLP and AINLN is a differential route. AINRP and AINRN is another differential route. It is important note here that the
analog input capacitors, such as C550, C551, C552 and C553, must be near to the microphone.

1

2

2

AU_GND

AU_GND

J408

2
C553
1uF

P

2

N
J409
MICROPHONE
P

1
AU_GND

2

N
MICROPHONE

AU_GND

1

R544
10K

1

2
10V

C555
1uF

2

AU_GND
C552 1
1uF

C554
1uF

2

AU_GND

2 C551
1uF

1

AU_GND

R537
2k

C549
1uF
2

2 C550
1uF

220R
2

C548
1uF

2

C547
1uF

R536
MICBIAS2k

1

2
1

R535

1

1

1

1
C546
100nF

2

19
18
17
8

VCC_MICA

1

20
7
6
3

VCC_MICA

1

4

U504
ES7243
QFN20_3R00X3R00X0R85_T
12
VDDP
VDDA
VDDD
21
PAD 13
GNDD
GNDA
16 1
AINRP 15
MCLK
AINRN
LRCK
9
1
SCLK
AINLP 10
SDOUT
AINLN
14
CCLK
REFP 11
CDATA
REFQ
AD0
2
AD1
TDMIN
I2C Chip ID = 0x20

2

1
5

AU_GND

ES7243 doesn’t have microphone bias voltage, so an external microphone bias circuit is used to supply for microphones.
Usually, an R-C filter, for example 220Ω and 1uF, is used to generate microphone bias voltage from ES7243 power supply.
Below picture shows how to generate MICBIAS voltage from ES7243 power supply.
VCC_MICA
R535

1

2

1

1

MICBIAS
C549
1uF

2

220R
2

C548
1uF

AU_GND

AU_GND

3.4 LINE INPUT
If the internal PGA gain is 1dB, the differential inputs of ES7243 can also be used as line inputs. Following circuit schematic
illustrates the line input of ES7243. It is important note here that the analog input capacitors, such as C563, C565, C564 and
C566, must be near to the line input jack.

J410
1

1

2 C565
1uF

1

1

2

2

BNC

AU_GND

10V
AU_GND

J411
2 C564
1uF

1
2

1

C567
1uF
2

AU_GND

AU_GND

2

BNC

C566
1uF

AU_GND

1

R558
10K

1
C568
1uF

2

2

19
18
17
8

C560
1uF

1

20
7
6
3

C559
100nF

1

4

2 C563
1uF

VCC_MICA

2

1
5

U505
ES7243
QFN20_3R00X3R00X0R85_T
12
VDDP
VDDA
VDDD
21
PAD 13
GNDD
GNDA
16
AINRP 15
MCLK
AINRN
LRCK
9
SCLK
AINLP 10
SDOUT
AINLN
14
CCLK
REFP 11
CDATA
REFQ
AD0
2
AD1
TDMIN
I2C Chip ID = 0x20

1

AU_GND

3.5 THE CIRCUIT SCHEMATIC FOR I2S
If the length of I2S clock is larger than 10cm, please use 30pF capacitors between I2S clock route and ground. For example,
Rev.1.00

6
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide

3.6 THE CIRCUIT SCHEMATIC OF I2C
ES7243 has I2C control port to read / write internal register. Below schematic shows the circuit of I2C port. The R-C low pass
filter is generally recommended for I2C bus to avoid high frequency noise. The I2C route must be shielded by ground.
Pin17 (AD0) and Pin8 (AD1) are used to select the I2C chip address of ES7243. Following Table shows the definition of I2C
chip address.
ES7243 I2C Chip Address

The Level of AD[1:0] pin

0x20 (8bit) / 0x10 (7bit)
0x22 (8bit) / 0x11(7bit)
0x24 (8bit) / 0x12 (7bit)
0x26(8bit) / 0x13(7bit)

AD1 =1, AD0 = 1
AD1 = 1, AD0 = 0
AD1 =0, AD0 = 1
AD1 = 0, AD0 = 0
1
5
4
20
7
6
3

2 R556 22R
2 R557 22R
C569
20pF

C570
20pF

2

2

1

1
1

1

I2C_SCL
I2C_SDA

19
18
17
8

U505
ES7243
QFN20_3R00X3R00X0R85_T
12
VDDP
VDDA
VDDD
21
PAD 13
GNDD
GNDA
16
AINRP 15
MCLK
AINRN
LRCK
9
SCLK
AINLP 10
SDOUT
AINLN
14
CCLK
REFP 11
CDATA
REFQ
AD0
2
AD1
TDMIN
I2C Chip ID = 0x20

AU_GND
VCC_MICA
1
1

R559
10K
R561
10K

2
2

I2C_AD0
I2C_AD1

R560
1 10K
1

2
2

R562
10K
AU_GND

3.7 TDMIN PIN
ES7243 has TDM mode to cascade multiple ES7243 devices. The TDMIN pin of ES7243 device must be pulled down to GND by
10kΩ resister whether TDM mode enabled or not.

4 ES7243 APPLICATION
ES7243 operates in software mode, and it communicates with host device by I2C port. In ES7243, some internal registers are
used for power control, PGA gain control, serial digital audio format selection, master or slave mode selection, TDM mode
enable/disable and LRCK ratio selection, etc.
Multiple ES7243 can be cascaded for microphone array application. This TDM cascading mode is very useful in speech
recognition, speech localization and conference system. It is important note here that the TDMIN pin must be pulled down to
GND by 10KΩ resister even if TDM mode is disabled.
Rev.1.00

7
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide

4.1 REGISTER MAP
Register Addr

B7

B6

B5

/////////////////

B4

B3

B2

B1

B0

default

MS_MODE

WORK_MODE

0x00

Reg.00

0x00

Reg.01

0x01

Reg.02

0x02

Reg.03

0x03

Reg.04

0x04

Reg.05

0x05

Reg.06

0x06

Reg.07

0x07

Reg.08

0x08

/////////////////

Reg.09

0x09

ANA_PDN

Reg.10

0x0A

CHIPINI_CON

0xC0

Reg.11

0x0B

POWERUP_CON

0xC0

Reg.12

0x0C

Reg.13

0x0D

Reg.14

0x0E

MCLK_DIV

/
TDM_ENA

SP_BCLKINV

ADC_HPF_DIS

SPEED_MODE

SP_LRP

SP_WL

0x00

SP_PROTOCAL

0x10

LRCKDIV
/////////////////

/////////////////

/

/

/////////////////

/////////////////

/

/

/////////////////

/////////////////

/

/

SP_TRI

MCLK_DIS
VMIDSEL

//////////////////

//////////////////

AUTOMUTE_DETED

ADC_MUTE_SIZE

ADC_SDP_MUTE

SEQ_DIS

RST_DIG

RST_ADCDIG

PDN_ADCVREFGEN

MODTOP_RST

PDN_MODL

VMIDLOW

/////////////////

/

/

ADC_NOISETHD

ADC_LP_VCMMOD

PDN_MODR

PDN_PGAL

GAIN_SW[1:0]
ADC_LP_PGA

ADCBIAS_SWH

ADC_LP_INT1

SRATIO_DIV

ADC_CSM

ADC_AUTOMUTE

ADC_OSR

0x13
0x00

FORCE_CSM

INPUT_SEL2
ADC_LP_VRP

0x02

CLK_ADC_DIV

GAIN_SW[4:2]

/////////////////

0x04

BCLKDIV

PDN_PGAR

0x3F

INPUT_SEL

0x11

ADC_LP_FLASH

0x80

0x12
0xA0
0x40

CHIP_ID

4.2 I2C CONTROL PORT
ES7243 supports standard I2C interface with maximum 400kbps rate. External host device can completely configure this
device through writing to internal registers. The transfer rate of I2C can be up to 400kbps.
The following drawing illustrates the timing of I2C.

ES7243 has two chip address pins, AD1 and AD0, to set I2C chip address. The following table shows the chip address
definition,
State of AD[1:0] pins
Rev.1.00

Chip Address

8
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide
00

0x13(7bit) / 0x26 (8bit)

01

0x12(7bit) / 0x24 (8bit)

10

0x11(7bit) / 0x22 (8bit)

11

0x10(7bit) / 0x20 (8bit)

4.3 SOFTWARE MODE
ES7243 operates in software mode. WORK_MODE (bit0 of register 0x00) must be set to 1 to enable software mode.
WORK_MODE = 0

ES7243 In Hardware Mode

WORK_MODE = 1

ES7243 In Software Mode

4.4 MASTER OR SLAVE MODE
ES7243 can operate in master mode or slave mode. In slave mode, LRCK and SCLK are supplied externally, and LRCK and SCLK
must be synchronously derived from the system clock with specific rates. In master mode, LRCK and SCLK are derived
internally from device master clock. In slave mode, ES7243 detects MCLK/LRCK ratio automatically. In master mode, ES7243
generates LRCK and SCLK from MCLK according to the setting of LRCKDIV and BCLKDIV.
MS_MODE (Bit1 of register 0x00) is used to select master or slave mode.
MS_MODE = 0

ES7243 In Slave Mode

MS _MODE = 1

ES7243 In Master Mode

4.5 SPEED MODE
ES7243 supports three speed modes: single speed mode, double speed mode and quad speed mode. In single speed mode,
LRCK frequency normally ranges from 8kHz to 48kHz; In double speed mode, LRCK frequency normally ranges from 64kHz to
96kHz; In quad speed mode, LRCK frequency normally ranges from 96kHz to 192kHz.
In slave mode, ES7243 detects speed mode automatically. In master mode, Bit[3:2] of register 0x00 is used to select proper
speed mode.

4.6 INTERNAL CLOCK DIAGRAM
The following diagram illustrates internal clock diagram in master mode. It is important note here that ES7243 can detect
LRCK ratio automatically in slave mode
MCLK

MCLK_DIV
Reg0x00.bit[6:5]

Internal MCLK

LRCKDIV

MS_MODE =1
Reg0x00.bit1

Reg0x02

MS_MODE =1

BCLK DIV
Reg0x03.bit[5:0]

CLK_ADC_DIV
Reg0x04.bit[3:0]
Rev.1.00

LRCK

SCLK

Reg0x00.bit1

Internal ADC clock

9
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide
Following is the register definition for internal clock management.
B7
Reg0x00

B6

//////////////////

B5
MCLK_DIV

B4

B3

ADC_HPF_DIS

Reg0x02

B2
SPEED_MODE

B1

B0

default

MS_MODE

WORK_MODE

0x00

LRCKDIV

Reg0x03

//////////////////

//////////////////

Reg0x04

//////////////////

//////////////////

Reg0x0D

0x10
BCLKDIV

//////////////////

ADC_CSM

//////////////////

0x04
CLK_ADC_DIV

0x02

ADC_OSR

0xA0

1. MCLK_DIV DEFINITION
MCLK_DIV = 00

Internal MCLK = MCLK /1

MCLK_DIV = 01

Internal MCLK = MCLK /2

MCLK_DIV = 10

Internal MCLK = MCLK /3

MCLK_DIV = 11

Internal MCLK = MCLK /4

2. LRCKDIV DEFINITION

3. BCLKDIV DEFINITION
Rev.1.00

10
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide

4.7 SERIAL DIGITAL AUDIO FORMAT
ES7243 supports I2S, Left Justified, DSP-A and DSP-B serial digital audio format with resolution from 16bits to 32bits. Only
DSP-A or DSP-B format is supported in TDM cascading mode.
The following is the register definition of serial digital audio format,
Reg0x01

B7

B6

B5

TDM_ENA

SP_BCLKINV

SP_LRP

B4

B3

B2

SP_WL

B1

B0

default

SP_PROTOCAL

LRC polarity
For I2S/Left Justify:
0 – L/R normal
1.

Enable TDMIN for
Cascading mode

0.

Disable TDMIN

SP_BCLKINV = 0, normal mode,
SP_BCLKINV=1, BCLK Inverted

polarity
1 – L/R invert

The data format of serial data
port
000 – 24-bit
001 – 20-bit

polarity

010 – 18-bit

For DSP mode case:

011 – 16-bit

0 – Mode A,

100 – 32-bit

The protocol of serial
data port
00 – I2S

0x00

01 – LJ
10 – not allowed
11 – DSP

1 – Mode B,

The following diagram illustrates the timing of serial digital audio format.

Rev.1.00

11
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide

4.8 TDM MODE
ES7243 supports TDM mode to cascade multiple ES7243 devices. In TDM mode, up to 4 ES7243 devices can be cascaded, and
up to 8 channels ADC data will be presented in one LRCK cycle. No Phase difference exists between these ADC data.
Its TDM mode makes it ideal for microphone array application. Two critical issues must be considered in microphone array
application. One is the number of microphone. Another is the phase difference between ADC data .Usually more than one
microphone will be used to form a microphone array. Ideally, all ADCs in microphone array do analog-to-digital conversion at
the same time, so that there isn’t phase difference between ADC data.
If this microphone array consists of two microphones, there only needs one ES7243 device. If the array is made by more than
two microphones, there should need two or more ES7243 devices, and these ES7243 devices should be cascaded.
In TDM mode, the serial digital audio format must be DSP-A or DSP-B. CPU will get incorrect data if I2S or Left justified format
is used in TDM mode.
TDM_ENA (Bit7 of Register 0x01) is used to enable or disable TDM mode.
TDM_ENA = 0

TDM Mode Disable

TDM_ENA = 1

TDM Mode Enable

It is important note here that the TDMIN pin of ES7243 must be pulled down to ground by 10kΩ even if TDM mode is
disabled.

4.8.1 APPLICATION CIRCUIT OF TDM MODE
Below schematic shows four ES7243 devices cascaded in TDM mode.

Rev.1.00

12
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide

2

20
7
6
3
15% R0402
15% R0402

1

C621
20pF
X5R
50V
C0402

2

1

22R 2
22R 2
2
2
R596
10K
5%
R0402

2

R604
R605
R595 1
10K 1
5%
R0402

I2C1_SCL
I2C1_SDA

19
18
17
8
C622
20pF
X5R
50V
C0402

1

2

2
1

1

2

C614
1uF
X5R
10V
C0603

N
J413
MICROPHONE
P
N

1

2

2

C583
1uF
X5R
10V
C0603

1

C588
1uF
X5R
C0402

2

2

2
1

1

1

C594
1uF
X5R
10V
C0603

R582
2k
R0402
5%
R583
2k
R0402
5%

2
C595 1
1uF
X5R 10V
C0402
2
C600 1
1uF
X5R
C0402 10V

1
2

J416
MICROPHONE
P
NJ417
P
N
MICROPHONE

R591
2k
R0402
5%
R592
2k
R0402
5%
2

C605
1uF
X5R
10V
C0603

1
2

2

2
R599
220R
5%
R0402

R576
2k
R0402
5% J414
1
P
2
N
J415
MICROPHONE
1
P
2
N
MICROPHONE

1

1
C604
1uF
X5R
10V
C0603

2
R580
220R
5%
R0402

2

1
1
2

C613
1uF
X5R
10V
C0603

J412

P

R575
2k
R0402
5%

1

1

2
R574
220R
5%
R0402

1

1
2
2

1

2

2

C608
1uF
X5R
10V
C0603

1

2

2

1
2

1

1uF
2 X5R
C0402 10V
1uF
2 X5R
C0402 10V

C603
1uF
X5R
10V
C0603

VCC_MICA

1
2

C590
10V
1uF
2
X5R 1
C0402
10V

VCC_MICA

R565
2k
R0402
5%

MICROPHONE

C592
1uF
X5R
10V
C0603

SDO4

2
10V

C579
1uF
X5R
C0402
10V

2

C602
1uF
X5R
10V
C0603

1

2

1
2

C581
1uF
X5R
10V
C0603

2

1

1
2

2

1
2

C607
100nF
X5R 10V
C0402

2
R563
220R
5%
R0402

R564
2k
R0402
C575 5%
1uF
X5R
10V
C0603

1

4

R0402
U509
ES7243
QFN20_3R00X3R00X0R85_T5%
12
VDDP
VDDA
VDDD
21
PAD 13
GNDD
GNDA
C609
16 1
AINRP 15
MCLK
AINRN
C611
LRCK
9
1
SCLK
AINLP 10
SDOUT
AINLN
14
CCLK
REFP 11
CDATA
REFQ
AD0
2
1
AD1
TDMIN
R597
I2C Chip ID = 0x26
10K
R0402
5%

C591
1uF
X5R
10V
C0603

2R598
22R
R0402
5%

1

1

1
5

SDO4

R590
10K
1

2

VCC_MICA
C606
100nF
X5R
10V
C0402

C580
1uF
X5R
10V
C0603

1

C620
20pF
X5R
50V
C0402

1

19
18
17
8

1

1

C619
20pF
X5R
50V
C0402

2

2
2
R589
10K
5%
R0402

15% R0402
15% R0402

1

R588 1
10K 1
5%
R0402

22R 2
22R 2

2

VCC_MICA

R602
R603

1uF
2 X5R
C0402 10V
1uF
2 X5R
C0402 10V

2

20
7
6
3

1

1
2

4

C597
100nF
X5R 10V
C0402

2

1
5

C596
100nF
X5R
10V
C0402

U508
ES7243
QFN20_3R00X3R00X0R85_T
12
VDDP
VDDA
VDDD
21
PAD 13
GNDD
GNDA
C599
16 1
AINRP 15
MCLK
AINRN
C601
LRCK
9
1
SCLK
AINLP 10
SDOUT
AINLN
14
CCLK
REFP 11
CDATA
REFQ
AD0
2
AD1
TDMIN
I2C Chip ID = 0x24

1C574
1uF
X5R
10V
C0603

2R584 SDO3
VCC_MICA
22R
1C593
R0402
5%
1uF
VCC_MICA
X5R
C598
10V
1uF
C0603
X5R
10V
C0603

1

VCC_MICA

SDO3

1

2

C618
20pF
X5R
50V
C0402

2

1

C617
20pF
X5R
50V
C0402

19
18
17
8

1

15% R0402
15% R0402

1

22R 2
22R 2

R600
R601
2 R0402
2 R0402

2

VCC_MICA R578
10K 5% 1
R579 1
10K 5%

2

SDO2

VCC_MICA

C578
1uF
X5R
C0402

2

20
7
6
3

1

4

2

1
5

VCC_MICA
C573
1uF
X5R
10V
C0603

2 SDO2
VCC_MICA
R573
22R
1C582
5%
R0402
1uF
VCC_MICA
X5R
C585
C586
10V
100nF
1uF
C0603
X5R
X5R
10V
10V
C0402 C0603

U507
ES7243
QFN20_3R00X3R00X0R85_T
12
VDDP
VDDA
VDDD
21
PAD 13
GNDD
GNDA
C587 1uF
16 1
2 X5R
AINRP 15
C0402 10V
MCLK
AINRN
C589 1uF
LRCK
9
1
2X5R
SCLK
AINLP 10
10V C0402
SDOUT
AINLN
14
CCLK
REFP 11
CDATA
REFQ
AD0
2
AD1
TDMIN
I2C Chip ID = 0x22
R581
10K
R0402 1
5%

1

VCC_MICA
C584
100nF
X5R
10V
C0402

2

C616
20pF
X5R
50V
C0402

2

C615
20pF
X5R
50V
C0402

19
18
17
8

1

15% R0402
15% R0402

2

22R 2
22R 2

1

R570
R586
10K 5% R0402R587
2
2
R571
10K
R0402
5%

1

20
7
6
3

R0402
R0402
R0402
R0402

2

2
2
2
2
2

1

1
1

1
1
1
1

2

VCC_MICA

5%
5%
5%
5%

4

1

22R
22R
22R
22R

1

R566
R567
R568
R569

2

I2S0_MCLK
I2S0_LRCK_TX
I2S0_SCLK
I2S0_SDO

1
5

C571
100nF
X5R
10V
C0402

1

180R-100M
L0603
1.5A
25%

U506
ES7243
QFN20_3R00X3R00X0R85_T
12
C572
VDDP
VDDA
100nF
VDDD
21
X5R
PAD 13
10V
GNDD
GNDA
C576 1uF
C0402
16 1
2 X5R
AINRP 15
C0402 10V
MCLK
AINRN
C577 1uF
LRCK
9
1
2X5R
SCLK
AINLP 10
10V C0402
SDOUT
AINLN
14
CCLK
REFP 11
CDATA
REFQ
AD0
2
AD1
TDMIN
I2C Chip ID = 0x20
R572
10K
R0402 1
5%
2

VCC_MICA

2

2

1

VCC_MICA

FB402
1

2

VDD_ADC

2
C610 1
1uF
X5R 10V
C0402
2
C612 1
1uF
X5R
C0402 10V

1
2
1
2

J418
MICROPHONE
P
NJ419
P
N
MICROPHONE

4.8.2 DIAGRAM AND TIMING OF TDM CASCADING MODE
Below diagram illustrates the TDM cascading mode of ES7243.
CPU / SOC
I2C/PCM CLK
I2S/PCM DATA IN

ASDOUT TDMIN

ES7243
1#

ASDOUT TDMIN

ASDOUT TDMIN

ASDOUT TDMIN

ES7243
2#

ES7243
3#

ES7243
4#

GND

I2C Bus

MIC1

MIC2

MIC3

MIC4

MIC5

MIC6

MIC7

MIC8

The following drawing shows the timing of TDM cascading mode.
Rev.1.00

13
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide

LRCK

SCLK

4# SDOUT
L4R4

3# SDOUT
L3R3

L4R4

2# SDOUT
L2R2

L3R3

L4R4

1# SDOUT
L1R1

L2R2

L3R3

L4R4

4.8.3 PHASE DIFFERENCE BETWEEN MULTIPLE ADCs
In TDM mode, there isn’t phase difference existing between the data of multiple ES7243 devices. Please use audio software,
for example Cooledit, to analysis the phase difference of multiple ADC data. Following picture shows the analysis result of
Cooledit. It shows that no phase difference exists between 8 channels TDM cascading data.

Rev.1.00

14
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide

4.9 ANALOG INPUT
Below diagram shows the analog input path of ES7243.
AINLP
AINLN

4:1
D2SEL

PGAL

Reg0x08
Bit[0]

Left ADC

Reg0x08
Bit[6:4]

Bit[2:1]

AINRP
AINRN

D2SER
4:1

Right ADC

PGAR

In ES7243, there is a stereo differential analog input, AINLP-AINLN and AINRP-AINRN, followed by a stereo PGA with gain
range from +1dB to +27dB. INPUT_SEL (bit0 of register 0x08) is used to enable or disable these differential inputs. If
INPUT_SEL = 1’b, the differential inputs is enabled. In register 0x08, Bit[6:4] and Bit[2:1] are used to set the PGA gain. Below
table shows the definition of PGA gain.

Rev.1.00

Bit6

Bit5

Bit4

Bit2

Bit1

Gain (dB)

0
0
0
0
0
1
0
1

0
0
1
1
0
0
0
0

1
1
0
0
0
0
0
0

0
0
0
0
1
0
1
0

0
1
0
1
0
0
1
1

+1
+3.5
+18
+20.5
+22.5
+24.5
+25
+27

15
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide

4.10 POWER CONTROL
In ES7243, some registers are used for power control. The following shows the power control register definition.

4.11 SOFT RESET
In ES7243, some internal registers can be used for soft reset. If the reset bit is set to 1, the device will be in standby mode
Rev.1.00

16
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide
and has minimum power consumption.
The following table shows the soft reset register definition.

4.12 MUTE AND AUTO MUTE
ES7243 has mute control which can mute ADC output. When mute control is set to 1, ADC always outputs all 0 or 1.
Also, ES7243 has auto mute feature. If auto mute is enabled, ES7243 detect the input level automatically. ADC will be mute if
the input level is lower than the threshold within a long duration. User can decide the threshold level and duration time.

5 EFFECT OF ANTI-ALIASING FILTER
Usually, the bandwidth of audio ADC is lower than FS/2, where FS is sample rate. The signal whose spectrum is higher than
Rev.1.00

17
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide
FS/2 is not interested by ADC. So there need a low-pass filter to restrict the bandwidth of a signal to approximately or
completely satisfy the sampling theorem over the band of interest. This low-pass filter is also named by anti-aliasing filter.
ES7243 has a proper anti-aliasing filter, so that the signal bandwidth is restricted to completely satisfy the sampling theorem.
The out band voice doesn’t have influence on the output spectrum of ADC. So ES7243 is ideal for microphone array
application. Below picture shows the output spectrum of ES7243, where LRCK is 16kHz and the signal range from 20Hz to
20kHz.

Please verify the effect of anti-aliasing filter before using it in microphone array.

6 REGISTER CONFIGURATION FOR ES7243
The Register configuration includes ADC start up, ADC Standby and ADC Cascading mode, etc.

6.1 THE SEQUENCE FOR STARTUP-SLAVE MODE
WriteReg(0x00, 0x01);
WriteReg(0x06, 0x00);
WriteReg(0x05, 0x1B);
WriteReg(0x01, 0x0C);
WriteReg(0x08, 0x43);
WriteReg(0x05, 0x13);

//slave mode, software mode
//Mute ADC
//i2s -16bit
//enable AIN, PGA GAIN = 27DB
//un Mute ADC

6.2 THE SEQUENCE FOR STARTUP- MASTER MODE
WriteReg(0x00, 0x03);
WriteReg(0x05, 0x1B);
WriteReg(0x06 0x10);
WriteReg(0x01, 0x0C);
WriteReg(0x02, 0x10);
WriteReg(0x03, 0x04);
WriteReg(0x04, 0x02);
WriteReg(0x0D, 0Xa0);
WriteReg(0x08, 0x43);
WriteReg(0x06 0x00);
WriteReg(0x05, 0x13);

//master mode, software mode, single speed mode, mclk div = 1
//Mute ADC
//RESET ADC
//i2s -16bit
//MCLK / LRCK = 256
//MCLK / BCLK = 4
//CLK_ADC_DIV=2
//CSM in normal mode, OSR = 32
//enable AIN, PGA GAIN = 27DB
//UN RESET ADC
//un Mute ADC

6.3 THE SEQUENCE FOR CASCADING MODE (SLAVE MODE)
WriteReg(0x00, 0x01);
WriteReg(0x06, 0x00);
WriteReg(0x05, 0x1B);
WriteReg(0x01, 0x8F);
WriteReg(0x08, 0x43);
WriteReg(0x05, 0x13);

//slave mode, software mode
//Mute ADC
//DSP-A, TDM ENABLE
//enable AIN, PGA GAIN = 27DB
//un Mute ADC

6.4 THE SEQUENCE FOR STANDBY MODE
WriteReg(0x06, 0x05);
WriteReg(0x05, 0x1B);
Rev.1.00

18
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018

ES7243

ES7243 User Guide
WriteReg(0x06, 0x5C);
WriteReg(0x07, 0x3F);
WriteReg(0x08 0x4B);
WriteReg(0x09 0x9F);

Rev.1.00

19
Latest datasheet: www.everest-semi.com or info@everest-semi.com

September 2018



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.7
Linearized                      : No
Warning                         : Info object (164 0 obj) not found at 1972088
EXIF Metadata provided by EXIF.tools

Navigation menu