VLT AutomationDrive FC 300 FC300Manual

User Manual: FC300Manual

Open the PDF directly: View PDF PDF.
Page Count: 110

DownloadVLT AutomationDrive FC 300 FC300Manual
Open PDF In BrowserView PDF
VLT®AutomationDrive FC 300 Operating
Instructions

Contents

Contents
1 How to Read these Operating Instructions

3

Approvals

4

Symbols

4

Abbreviations

5

2 Safety Instructions and General Warning

7

High Voltage

7

Safe Stop of FC 300

9

IT Mains

14

3 How to Install

15

Mechanical Installation

18

Electrical Installation

20

Power and Control Wiring for Unscreened Cables

21

Connection to Mains and Earthing

22

Motor Connection

26

Fuses

29

Electrical Installation, Control Terminals

33

Connection Examples

34

Electrical Installation, Control Cables

36

Switches S201, S202, and S801

38

Final Set-Up and Test

39

Additional Connections

41

Mechanical Brake Control

41

Motor Thermal Protection

42

How to Connect a PC to the Frequency Converter

42

The FC 300 PC Software

42

4 How to Programme

43

The Graphical and Numerical LCP

43

How to Programme on the Graphical LCP

43

How to Programme on the Numerical Local Control Panel

43

Quick Setup

45

Basic Setup Parameters

49

Parameter Lists

70

5 General Specifications

93

6 Troubleshooting

99

Warnings/Alarm Messages

Index

99
108

MG.33.AG.02 - VLT® is a registered Danfoss trademark

1

1 How to Read these Operating Instructions

VLT®AutomationDrive FC 300 Operating
Instructions

1

2

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

1 How to Read these Operating Instructions

1 How to Read these Operating Instructions

1
VLT AutomationDrive
Operating Instructions
Software version: 6.0x
These Operating Instructions can be used for all VLT AutomationDrive frequency converters with software version 6.0x.
The software version number can be seen from par. 15-43 Software Version.

1.1.1 How to Read these Operating Instructions
VLT AutomationDrive is designed to provide high shaft performance on electrical motors. Please read this manual carefully for proper use. Incorrect
handling of the frequency converter may cause improper operation of the frequency converter or related equipment, shorten lifetime or cause other
troubles.

These Operating Instructions will help you get started, install, program, and troubleshoot your VLT AutomationDrive.
The VLT AutomationDrive comes in twoshaft performance levels. FC 301 ranges from scalar (U/f) to VVC+ and handles asynchronous motors only. FC
302 is a high performance frequency converter for asynchronous as well as permanent motors and handles various kinds of motor control principles such
as scalar (U/f), VVC+ and Flux vector motor control.
These Operating Instructions cover both FC 301 and FC 302. Where information covers both series, we refer to VLT AutomationDrive. Otherwise, we
refer specifically to either FC 301 or FC 302.

Chapter 1, How to Read these Operating Instructions, introduces the manual and informs you about the approvals, symbols, and abbreviations
used in this literature.

Chapter 2, Safety Instructions and General Warnings, entails instructions on how to handle the FC 300 correctly.

Chapter 3, How to Install, guides you through mechanical and technical installation.

Chapter 4, How to Programme, shows you how to operate and programme the FC 300 via the LCP.

Chapter 5, General Specifications, contains technical data about FC 300.

Chapter 6, Troubleshooting, assists you in solving problems that may occur when using FC 300.

Available Literature for FC 300
-

The VLT AutomationDrive Operating Instructions provide the necessary information for getting the drive up and running.

-

The VLT AutomationDrive Design Guide entails all technical information about the drive design and applications including encoder, resolver and
relay options.

-

The VLT AutomationDrive Programming Guide provides information on how to programme and contain all parameters of the frequency converter.

-

The VLT AutomationDrive Profibus Operating Instructions provide the information required for controlling, monitoring and programming the
drive via a Profibus fieldbus.

-

The VLT AutomationDrive DeviceNet Operating Instructions provide the information required for controlling, monitoring and programming the
drive via a DeviceNet fieldbus.

-

The VLT AutomationDrive MCT 10 Operating Instructions provide information for installation and use of the software on a PC.

-

The VLT AutomationDrive IP21 / Type 1 Instruction provides information for installing the IP21 / Type 1 option.

-

The VLT AutomationDrive 24 V DC Backup Instruction provides information for installing the 24 V DC Backup option.

Danfoss technical literature is also available online at www.danfoss.com/drives.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

3

1 How to Read these Operating Instructions

VLT®AutomationDrive FC 300 Operating
Instructions

1.1.2 Approvals

1

1.1.3 Symbols
Symbols used in this Operating Instructions.

NB!
Indicates something to be noted by the reader.

Indicates a general warning.

Indicates a high-voltage warning.

∗

4

Indicates default setting

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

1 How to Read these Operating Instructions

1.1.4 Abbreviations
Alternating current

AC

American wire gauge

AWG

Ampere/AMP

A

Automatic Motor Adaptation

AMA

Current limit

ILIM

Degrees Celsius

°C

Direct current

DC

Drive Dependent

D-TYPE

Electro Magnetic Compatibility

EMC

Electronic Thermal Relay

ETR

Frequency Converter

FC

Gram

g

Hertz

Hz

Kilohertz

kHz

Local Control Panel

LCP

Meter

m

Millihenry Inductance

mH

Milliampere

mA

Millisecond

ms

Minute

min

Motion Control Tool

MCT

Nanofarad

nF

Newton Meters

Nm

Nominal motor current

IM,N

Nominal motor frequency

fM,N

Nominal motor power

PM,N

Nominal motor voltage

UM,N

Parameter

par.

Protective Extra Low Voltage

PELV

Printed Circuit Board

PCB

Rated Inverter Output Current

IINV

Revolutions Per Minute

RPM

Regenerative terminals

Regen

Second

s

Synchronous Motor Speed

ns

Torque limit

TLIM

Volts

V

The maximum output current

IVLT,MAX

The rated output current supplied by the frequency converter

IVLT,N

1

1.1.5 Disposal Instruction
Equipment containing electrical components may not be disposed of together with domestic
waste.
It must be separately collected with electrical and electronic waste according to local and currently
valid legislation.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

5

2 Safety Instructions and General Warning

VLT®AutomationDrive FC 300 Operating
Instructions

2

6

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

2 Safety Instructions and General Warning

2 Safety Instructions and General Warning
The DC link capacitors remain charged after power has been disconnected. To avoid electrical shock hazard, disconnect the frequency
converter from mains before carrying out maintenance. When using a PM-motor, make sure it is disconnected. Before doing service
on the frequency converter wait at least the amount of time indicated below:

Voltage

Power

200 - 240 V

0.25 - 3.7 kW

4 minutes

5.5 - 37 kW

15 minutes

0.37 - 7.5 kW

4 minutes

380 - 480/500 V

2

Waiting Time

11 - 75 kW

15 minutes

525 - 600 V

0.75 - 7.5 kW

4 minutes

11 - 75 kW

15 minutes

525 - 690 V

11 - 75 kW

15 minutes

2.1.1 High Voltage
The voltage of the frequency converter is dangerous whenever the frequency converter is connected to mains. Incorrect installation
or operation of the motor or frequency converter may cause damage to the equipment, serious personal injury or death. The instructions
in this manual must consequently be observed, as well as applicable local and national rules and safety regulations.

Installation in high altitudes
380 - 500 V: At altitudes above 3 km, please contact Danfoss regarding PELV.
525 - 690 V: At altitudes above 2 km, please contact Danfoss regarding PELV.

2.1.2 Safety Precautions
The voltage of the frequency converter is dangerous whenever connected to mains. Incorrect installation of the motor, frequency
converter or fieldbus may cause death, serious personal injury or damage to the equipment. Consequently, the instructions in this
manual, as well as national and local rules and safety regulations, must be complied with.

Safety Regulations
1.

The mains supply to the frequency converter must be disconnected whenever repair work is to be carried out. Check that the mains supply has
been disconnected and that the necessary time has elapsed before removing motor and mains supply plugs.

2.

The [OFF] button on the control panel of the frequency converterr does not disconnect the mains supply and consequently it must not be used
as a safety switch.

3.

The equipment must be properly earthed, the user must be protected against supply voltage and the motor must be protected against overload
in accordance with applicable national and local regulations.

4.

The earth leakage current exceeds 3.5 mA.

5.

Protection against motor overload is not included in the factory setting. If this function is desired, set par. 1-90 Motor Thermal Protection to
data value ETR trip 1 [4] or data value ETR warning 1 [3].

6.

Do not remove the plugs for the motor and mains supply while the frequency converter is connected to mains. Check that the mains supply has
been disconnected and that the necessary time has elapsed before removing motor and mains plugs.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

7

2 Safety Instructions and General Warning
7.

VLT®AutomationDrive FC 300 Operating
Instructions

Please note that the frequency converter has more voltage sources than L1, L2 and L3, when load sharing (linking of DC intermediate circuit)
or external 24 V DC are installed. Check that all voltage sources have been disconnected and that the necessary time has elapsed before
commencing repair work.

Warning against unintended start

2

1.

The motor can be brought to a stop by means of digital commands, bus commands, references or a local stop, while the frequency converter
is connected to mains. If personal safety considerations (e.g. risk of personal injury caused by contact with moving machine parts following an
unintentional start) make it necessary to ensure that no unintended start occurs, these stop functions are not sufficient. In such cases the mains
supply must be disconnected or the Safe Stop function must be activated.

2.

The motor may start while setting the parameters. If this means that personal safety may be compromised (e.g. personal injury caused by
contact with moving machine parts), motor starting must be prevented, for instance by use of the Safe Stop function or secure disconnection
of the motor connection.

3.

A motor that has been stopped with the mains supply connected, may start if faults occur in the electronics of the frequency converter, through
temporary overload or if a fault in the power supply grid or motor connection is remedied. If unintended start must be prevented for personal
safety reasons (e.g. risk of injury caused by contact with moving machine parts), the normal stop functions of the frequency converter are not
sufficient. In such cases the mains supply must be disconnected or the Safe Stop function must be activated.

NB!
When using the Safe Stop function, always follow the instructions in the Safe Stop section of the VLT AutomationDrive Design Guide.

4.

Control signals from, or internally within, the frequency converter may in rare cases be activated in error, be delayed or fail to occur entirely.
When used in situations where safety is critical, e.g. when controlling the electromagnetic brake function of a hoist application, these control
signals must not be relied on exclusively.
Touching the electrical parts may be fatal - even after the equipment has been disconnected from mains.
Also make sure that other voltage inputs have been disconnected, such as external 24 V DC, load sharing (linkage of DC intermediate
circuit), as well as the motor connection for kinetic back up.
Systems where frequency converters are installed must, if necessary, be equipped with additional monitoring and protective devices
according to the valid safety regulations, e.g law on mechanical tools, regulations for the prevention of accidents etc. Modifications on
the frequency converters by means of the operating software are allowed.

NB!
Hazardous situations shall be identified by the machine builder/ integrator who is responsible for taking necessary preventive means
into consideration. Additional monitoring and protective devices may be included, always according to valid national safety regulations,
e.g. law on mechanical tools, regulations for the prevention of accidents.

NB!
Crane, Lifts and Hoists:
The controlling of external brakes must always have a redundant system. The frequency converter can in no circumstances be the
primary safety circuit. Comply with relevant standards, e.g.
Hoists and cranes: IEC 60204-32
Lifts: EN 81

Protection Mode
Once a hardware limit on motor current or dc-link voltage is exceeded the frequency converter will enter “Protection mode”. “Protection mode” means a
change of the PWM modulation strategy and a low switching frequency to minimize losses. This continues 10 sec after the last fault and increases the
reliability and the robustness of the frequency converter while re-establishing full control of the motor.
In hoist applications “Protection mode” is not usable because the frequency converter will usually not be able to leave this mode again and therefore it
will extend the time before activating the brake – which is not recommendable.
The “Protection mode” can be disabled by setting par. 14-26 Trip Delay at Inverter Fault to zero which means that the frequency converter will trip
immediately if one of the hardware limits is exceeded.

8

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

2 Safety Instructions and General Warning

NB!
It is recommended to disable protection mode in hoisting applications (par. 14-26 Trip Delay at Inverter Fault = 0)

2
2.1.3 General Warning
Warning:
Touching the electrical parts may be fatal - even after the equipment has been disconnected from mains.
Also make sure that other voltage inputs have been disconnected, such as load-sharing (linkage of DC intermediate circuit), as well as
the motor connection for kinetic back-up.
Using VLT AutomationDrive: wait at least 15 minutes.
Shorter time is allowed only if indicated on the nameplate for the specific unit.

Leakage Current
The earth leakage current from the frequency converter exceeds 3.5 mA. To ensure that the earth cable has a good mechanical
connection to the earth connection (terminal 95), the cable cross section must be at least 10 mm2 or 2 times rated earth wires terminated separately.
Residual Current Device
This product can cause a D.C. current in the protective conductor. Where a residual current device (RCD) is used for extra protection,
only an RCD of Type B (time delayed) shall be used on the supply side of this product. See also RCD Application Note MN.90.GX.02.
Protective earthing of the VLT AutomationDrive and the use of RCD's must always follow national and local regulations.

NB!
For vertical lifting or hoisting applications it is strongly recommended to ensure that the load can be stopped in case of an emergency
or a malfunction of a single part such as a contactor, etc.
If the frequency converter is in alarm mode or in an over voltage situation, the mechanical brake cuts in.

2.1.4 Before Commencing Repair Work
1.

Disconnect the frequency converter from mains

2.

Disconnect DC bus terminals 88 and 89 from load share applications

3.

Wait for discharge of the DC-link. See period of time on the warning label

4.

Remove motor cable

2.1.5 Safe Stop of FC 300
The FC 302, and also the FC 301 in A1 enclosure, can perform the safety function Safe Torque Off (As defined by IEC 61800-5-2) or Stop Category 0 (as
defined in EN 60204-1).

FC 301 A1 enclosure: When Safe Stop is included in the drive, position 18 of Type Code must be either T or U. If position 18 is B or X, Safe Stop Terminal
37 is not included!
Example:
Type Code for FC 301 A1 with Safe Stop: FC-301PK75T4Z20H4TGCXXXSXXXXA0BXCXXXXD0

MG.33.AG.02 - VLT® is a registered Danfoss trademark

9

2 Safety Instructions and General Warning

VLT®AutomationDrive FC 300 Operating
Instructions

It is designed and approved suitable for the requirements of :

2

-

Safety Cat. 3 (EN 954-1) / PL “d” (ISO 13849-1)

-

Performance Level "d" in ISO EN 13849-1

-

SIL 2 Capability in IEC 61508 and EN 61800-5-2

-

SILCL 2 in EN 61062

This functionality is called Safe Stop. Prior to integration and use of Safe Stop in an installation, a thorough risk analysis on the installation must be carried
out in order to determine whether the Safe Stop functionality and safety levels are appropriate and sufficient.

After installation of Safe Stop, a commissioning test as specified in section Safe Stop Commissioning Test of the Design Guide must
be performed. A passed commissioning test is mandatory for fulfilment of Safety Cat. 3 (EN 954-1) / PL “d” (ISO 13849-1)

The following values are associated to the different types of safety levels:
Performance Level "d":
-

MTTFD (Mean Time To Dangerous Failure): 24816 years

-

DC (Diagnstic Coverage): 99,99%

-

Category 3

SIL 2 Capability, SILCL 2:
-

PFH (Probability of Dangerous failure per Hour) = 7e-10FIT = 7e-19/h

-

SFF (Safe Failure Fraction) > 99%

-

HFT (Hardware Fault Tolerance) = 0 (1oo1D architecture)

In order to install and use the Safe Stop function in accordance with the requirements of Safety Cat. 3 (EN 954-1) / PL “d” (ISO 13849-1), the related
information and instructions of the VLT AutomationDrive Design Guide MG.33.BX.YY must be followed! The information and instructions of the Operating
Instructions are not sufficient for a correct and safe use of the Safe Stop functionality!

Abbreviations related to Functional Safety
Abbreviation

Reference

Description

Cat.

EN 954-1

Safety category, levels 1-4

HFT

IEC 61508

Hardware Fault Tolerance: HFT = n means, that n+1 faults could cause a loss of the safety function

MTTFd

EN ISO 13849-1

Mean Time To dangerous Failure: (The total number of life units) / (the number of dangerous,

PFHd

IEC 61508

Probability of Dangerous Failures per Hour. This value shall be considered if the safety device is

FIT

Failure In Time: 1E-9 hours

undetected failures), during particular measurement interval under stated conditions
operated in high demand (more often than once per year) or continuous mode of operation, where
the frequency of demands for operation made on a safety-related system is greater than one per
year or greater than twice the proof-test frequency.
PL

EN ISO 13849-1

Performance Level: Corresponds SIL, Levels a-e

SFF

IEC 61508

Safe Failure Fraction [%] ; Percentage part of safe failures and dangerous detected failures of a

SIL

IEC 61508

Safety Integrity Level

STO

EN 61800-5-2

Safe Torque Off

safety function or a subsystem related to all failures.

10

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

2 Safety Instructions and General Warning

2

MG.33.AG.02 - VLT® is a registered Danfoss trademark

11

2 Safety Instructions and General Warning

VLT®AutomationDrive FC 300 Operating
Instructions

2

12

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

2 Safety Instructions and General Warning

2.1.6 Safe Stop Installation - FC 302 only (and FC 301 in Frame Size A1)
To carry out an installation of a Category 0 Stop (EN60204) in
conformance with Safety Cat. 3 (EN 954-1) / PL “d” (ISO
13849-1), follow these instructions:
1.

2

The bridge (jumper) between Terminal 37 and 24 V DC must be
removed. Cutting or breaking the jumper is not sufficient. Remove it entirely to avoid short-circuiting. See jumper on illustration.

2.

Connect terminal 37 to 24 V DC by a short-circuit protected cable. The 24 V DC voltage supply must be interruptible by a Cat.
3 (EN 954-1) / PL “d” (ISO 13849-1) circuit interrupt device. If
the interrupt device and the frequency converter are placed in

3.

the same installation panel, you can use a regular cable instead

Illustration 2.1: Bridge jumper between terminal 37 and 24

of a protected one.

VDC

The Safe Stop function only fulfills Cat. 3 (EN 954-1) / PL “d”
(ISO 13849-1) if particular protection against, or avoidance of,
conductive contamination is provided. Such a protection is achieved by using FC 302 with protection class IP54 or higher. If
FC 302 with lower protection (or FC 301 A1, which is only delivered with an IP21 enclosure) are used, then an operating environment corresponding to the inside of an IP54 encapsulation
must be ensured. An obvious solution, if there is a risk of conductive contamination in the operating environment, would be
to mount the devices in a cabinet that provides IP54 protection.

The illustration below shows a Stopping Category 0 (EN 60204-1) with Safety Cat. 3 (EN 954-1) / PL “d” (ISO 13849-1). The circuit interrupt is caused
by an opening door contact. The illustration also shows how to connect a non-safety related hardware coast.

Illustration 2.2: Illustration of the essential aspects of an installation to achieve a Stopping Category 0 (EN 60204-1) with Safety Cat. 3 (EN
954-1) / PL “d” (ISO 13849-1).

MG.33.AG.02 - VLT® is a registered Danfoss trademark

13

2 Safety Instructions and General Warning

VLT®AutomationDrive FC 300 Operating
Instructions

2.1.7 IT Mains
Par. 14-50 RFI Filter can be used to disconnect the internal RFI capacitors from the RFI filter to ground in the 380 - 500 V frequency converters. If this
is done it will reduce the RFI performance to A2 level. For the 525 - 690 V frequency converters, par. 14-50 RFI Filter has no function. The RFI switch

2

cannot be opened.

14

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install

3 How to Install
3.1.1 About How to Install
This chapter covers mechanical and electrical installations to and from power terminals and control card terminals.
Electrical installation of options is described in the relevant Operating Instructions and Design Guide.

3
Read the safety instructions before installing the unit.

Illustration 3.1: Diagram showing basic installation including
mains, motor, start/stop key, and potentiometer for speed
adjustment.

3.1.2 Checklist
When unpacking the frequency converter, ensure that the unit is undamaged and complete.

For power ratings, please see Mechanical Dimensions table on the next page
A selection of screwdrivers (phillips or cross-thread screwdriver and torx), a side-cutter, drill and knife is also recommended to have handy for unpacking
and mounting the frequency converter. The packaging for these enclosures contains, as shown: Accessories bag(s), documentation and the unit. Depending on options fitted there may be one or two bags and one or more booklets.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

15

A2

IP20/21

IP20

16

IP55/66

A4

IP55/66

A5

IP21/55/66

B1

IP21/55/66

B2

IP20

B3

IP20

B4

IP21/55/66

C1

MG.33.AG.02 - VLT® is a registered Danfoss trademark
All measurements in mm.
* A5 in IP55/66 only

Accessory bags containing necessary brackets, screws and connectors are included with the drives upon delivery.

IP20/21

A3

IP21/55/66

C2

IP20

C4

Top and bottom mounting holes (B4, C3 and C4
only)

IP20

C3

3

A1

3 How to Install
VLT®AutomationDrive FC 300 Operating
Instructions

Max weight

Height
Height of back plate
Height with de-coupling plate
for Fieldbus cables
Distance between mounting
holes
Width
Width of back plate
Width of back plate with one
C option
Width of back plate with two
C options
Distance between mounting
holes
Depth
Depth without option A/B
With option A/B
Screw holes

70 mm

60 mm

207 mm
222 mm

6.0 mm
ø8 mm

ø5 mm

5 mm
2.7 kg

b

C
C

c
d

e

f

8.0 mm
ø11 mm

207 mm
222 mm

70 mm

150 mm

130 mm

90 mm

350 mm

375 mm

21
Type 1

21
Type 1

-

205 mm 207 mm
220 mm 222 mm

110 mm 110 mm

190 mm 190 mm

170 mm 170 mm

130 mm 130 mm

257 mm 350 mm

374 mm

268 mm 375 mm

20
Chassis

0.75-7.5

5.5-7.5

3-3.7

A3

8.0 mm 8.0 mm
ø11 mm ø11 mm
ø5.5
ø5.5 mm ø5.5 mm
ø5.5 mm
mm
9 mm
9 mm
9 mm
9 mm
4.9 kg
5.3 kg
6.6 kg
7.0 kg

8.0 mm
ø11 mm

205 mm
220 mm

150 mm

90 mm

B

75 mm

B

257 mm

130 mm

190 mm

a

374 mm

268 mm

B

200 mm

316 mm

A

20
Chassis

0.37-4.0

20
Chassis

0.25-2.2

0.37-1.5

A2

0.25–1.5

A1

A

Rated Pow- 200-240 V
er
380-480/500
[kW]
V
525-600 V
525-690 V
IP
NEMA

Frame Size

6 mm
9.7 kg

ø6.5 mm

8.25 mm
ø12 mm

175 mm
175 mm

171 mm

200 mm

401 mm

-

390 mm

55/66
Type 12

0.37-4

0.25-2.2

A4

9 mm
13.5/14.2 kg

ø6.5 mm

8.25 mm
ø12 mm

195 mm
195 mm

215 mm

242 mm

242 mm

242 mm

402 mm

-

420 mm

55/66
Type 12

0.75-7.5

0.37-7.5

0.25-3.7

A5

9 mm
23 kg

ø9 mm

12 mm
ø19 mm

260 mm
260 mm

210 mm

242 mm

242 mm

242 mm

454 mm

-

480 mm

21/ 55/66
Type 1/Type
12

11-15

11-15

5.5-7.5

B1

9 mm
27 kg

ø9 mm

12 mm
ø19 mm

260 mm
260 mm

210 mm

242 mm

242 mm

242 mm

624 mm

-

650 mm

18.5-22
11-22
21/55/66
Type 1/
Type 12

18.5-22

11

B2

7.9 mm
12 kg

6.8 mm

8 mm
12 mm

249 mm
262 mm

140 mm

225 mm

205 mm

165 mm

380 mm

420 mm

399 mm

20
Chassis

11-15

11-15

5.5-7.5

B3

15 mm
23.5 kg

8.5 mm

242 mm
242 mm

200 mm

230 mm

230 mm

230 mm

495 mm

595 mm

520 mm

20
Chassis

18.5-30

18.5-30

11-15

B4

9.8 mm
45 kg

ø9 mm

12.5 mm
ø19 mm

310 mm
310 mm

272 mm

308 mm

308 mm

308 mm

648 mm

680 mm

21/55/66
Type 1/
Type 12

30-45

30-45

15-22

C1

9.8 mm
65 kg

ø9 mm

12.5 mm
ø19 mm

335 mm
335 mm

334 mm

370 mm

370 mm

370 mm

739 mm

770 mm

55-90
30-75
21/55/66
Type 1/
Type 12

55-75

30-37

C2

55-75
55-90
20
Chassis
660 mm
800 mm
631 mm
370 mm
370 mm
370 mm
330 mm
333 mm
333 mm

8.5 mm
17 mm
50 kg

37-45
20
Chassis
550 mm
630 mm
521 mm
308 mm
308 mm
308 mm
270 mm
333 mm
333 mm

8.5 mm
17 mm
35 kg

30-37

18.5-22
37-45

C4

C3

VLT®AutomationDrive FC 300 Operating
Instructions
3 How to Install

MG.33.AG.02 - VLT® is a registered Danfoss trademark

3

17

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install

3.1 Mechanical Installation
3.2.1 Mechanical Mounting
All Frame Sizes allow side-by-side installation except when a IP21/IP4X/ TYPE 1 Enclosure Kit is used (see the Options and Accessories section of the
Design Guide).

3

If the IP 21 Enclosure kit is used on frame size A1, A2 or A3, there must be a clearance between the drives of min. 50 mm.

For optimal cooling conditions allow a free air passage above and below the frequency converter. See table below.

Air passage for different frame sizes
Frame
size:

A1*

A2

A3

A4

A5

B1

B2

B3

B4

C1

C2

C3

C4

a
(mm):

100

100

100

100

100

100

200

100

200

200

225

200

225

b
(mm):

100

100

100

100

100

100

200

100

200

200

225

200

225

* FC 301 only
1.

Drill holes in accordance with the measurements given.

2.

You must provide screws suitable for the surface on which you want to mount the frequency converter. Retighten all four screws.

Table 3.1: Mounting frame sizes A4, A5, B1, B2, C1 andC2 on a non-solid back wall, the drive must be provided with a back plate A due to insufficient
cooling air over the heat sink.

IP20
A1
*
A2
*
A3
*
A4/A5
B1
B2
B3
*
B4
2
C1
C2
C3
2
C4
2
* = No screws to tighten
- = Does not exist
Frame

18

Tightening torque for covers (Nm)
IP21
IP55
*
*
2
*
2,2
*
2,2
*
2,2
*
2,2
-

IP66
2
2,2
2,2
2,2
2,2
-

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install

3.2.2 Panel Through Mounting
A Panel Through Mount Kit is available for frequency converter series VLT HVAC FC 102, VLT Aqua Drive and VLT AutomationDrive.

In order to increase heatsink cooling and reduce panel depth, the frequency converter may be mounted in a through panel. Furthermore the in-built fan
can then be removed.

3

The kit is available for enclosures A5 through C2.

NB!
This kit cannot be used with cast front covers. IP21 plastic cover must be used instead.

Information on ordering numbers is found in the Design Guide, section Ordering Numbers.
More detailed information is available in the Panel Through Mount Kit instruction, MI.33.HX.YY, where yy=language code.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

19

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install

3.2 Electrical Installation
NB!
Cables General
All cabling must comply with national and local regulations on cable cross-sections and ambient temperature. Copper (75°C) conductors
are recommended.

3

Aluminium Conductors
Terminals can accept aluminium conductors but the conductor surface has to be clean and the oxidation must be removed and sealed by neutral acidfree Vaseline grease before the conductor is connected.
Furthermore the terminal screw must be retightened after two days due to softness of the aluminium. It is crucial to keep the connection a gas tight
joint, otherwise the aluminium surface will oxidize again.

Tightening-up Torque
Frame size 200 - 240 V
A1
0.25-1.5 kW
A2
0.25-2.2 kW
A3
3-3.7 kW
A4
0.25-2-2 kW
A5
3-3.7 kW
B1
5.5-7.5 kW
B2

11 kW

B3

5.5-7.5 kW

B4

11-15 kW

C1

15-22 kW

C2

30-37 kW

380 - 500 V 525 - 690 V Cable for:
0.37-1.5 kW
0.37-4 kW
5.5-7.5 kW
Mains, Brake
0.37-4 kW
5.5-7.5 kW
11-15 kW
Mains, Brake
Relay
Earth
18.5-22 kW
11-22 kW Mains, Brake
Motor cables
Relay
Earth
11-15 kW
Mains, Brake
Relay
Earth
18.5-30 kW
Mains, Brake
Relay
Earth
30-45 kW
Mains, Brake
Motor cables
Relay
Earth
55-75 kW

30-75 kW

C3

18.5-22 kW

30-37 kW

-

C4

37-45 kW

55-75 kW

-

Tightening up torque
0.5-0.6 Nm
resistor, load sharing, Motor cables

resistor, load sharing, Motor cables
resistor, load sharing cables

resistor, load sharing, Motor cables
resistor, load sharing, Motor cables
resistor, load sharing cables

Mains, motor cables
Load Sharing, brake cables
Relay
Earth
Mains, Brake resistor, load sharing, Motor cables
Relay
Earth
Mains, motor cables
Load Sharing, brake cables
Relay
Earth

20

MG.33.AG.02 - VLT® is a registered Danfoss trademark

1.8 Nm
0.5-0.6 Nm
2-3 Nm
4.5 Nm
4.5 Nm
0.5-0.6 Nm
2-3 Nm
1.8 Nm
0.5-0.6 Nm
2-3 Nm
4.5 Nm
0.5-0.6 Nm
2-3 Nm
10 Nm
10 Nm
0.5-0.6 Nm
2-3 Nm
14 Nm (up to 95 mm2)
24 Nm (over 95 mm2)
14 Nm
0.5-0.6 Nm
2-3 Nm
10 Nm
0.5-0.6 Nm
2-3 Nm
14 Nm (up to 95 mm2)
24 Nm (over 95 mm2)
14 Nm
0.5-0.6 Nm
2-3 Nm

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install

3.3.1 Power and Control Wiring for Unscreened Cables
Induced Voltage!
Run motor cables from multiple drives separately. Induced voltage from output motor cables run together can charge equipment
capacitors even with the equipment turned off and locked out. Failure to run output cables separately could result in death or serious
injury.

Run drive input power, motor wiring, and control wiring in three separate metallic conduits or trays for high frequency noise isolation.

3

Failure to isolate power, motor, and control wiring could result in less than optimum controller and associated equipment performance.

Because the power wiring carries high frequency electrical pulses, it is important that input power and motor power are run in separate conduit. If the
incoming power wiring is run in the same conduit as the motor wiring, these pulses can couple electrical noise back onto the building power grid. Control
wiring should always be isolated from the high voltage power wiring.
When screened/armoured cable is not used, at least three separate conduits must be connected to the panel option (see figure below).

•

Power wiring into the enclosure

•

Power wiring from the enclosure to the motor

•

Control wiring

Illustration 3.2: Power and control wiring connection

MG.33.AG.02 - VLT® is a registered Danfoss trademark

21

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install
3.3.2 Removal of Knockouts for Extra Cables

3

1.

Remove cable entry from the frequency converter (Avoiding foreign parts falling into the frequency converter when removing knockouts)

2.

Cable entry has to be supported around the knockout you intend to remove.

3.

The knockout can now be removed with a strong mandrel and a hammer.

4.

Remove burrs from the hole.

5.

Mount Cable entry on frequency converter.

3.3.3 Connection to Mains and Earthing

NB!
The plug connector for power is plugable on frequency converters up to 7.5 kW.

1.

Fit the two screws in the de-coupling plate, slide it into place and tighten the screws.

2.

Make sure the frequency converter is properly earthed. Connect to earth connection (terminal 95). Use screw from the accessory bag.

3.

Place plug connector 91(L1), 92(L2), 93(L3) from the accessory bag onto the terminals labelled MAINS at the bottom of the frequency converter.

4.

Attach mains wires to the mains plug connector.

5.

Support the cable with the supporting enclosed brackets.

NB!
Check that mains voltage corresponds to the mains voltage of the name plate.

IT Mains
Do not connect 400 V frequency converters with RFI-filters to mains supplies with a voltage between phase and earth of more than
440 V.

The earth connection cable cross section must be at least 10 mm2 or 2 x rated mains wires terminated separately according to EN
50178.

The mains connection is fitted to the mains switch if this is included.

22

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install

Mains connection for frame sizes A1, A2 and A3:

3

MG.33.AG.02 - VLT® is a registered Danfoss trademark

23

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install
Mains connector frame size A4/A5 (IP 55/66)

3

When disconnector is used (frame size A4/A5) the PE must be mounted on the left side of the drive.

Illustration 3.3: Mains connection frame sizes B1 and B2 (IP
21/NEMA Type 1 and IP 55/66/ NEMA Type 12).

Illustration 3.4: Mains connection size B3 (IP20).

24

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install

3

Illustration 3.5: Mains connection size B4 (IP20).

Illustration 3.6: Mains connection size C1 and C2 (IP 21/
NEMA Type 1 and IP 55/66/ NEMA Type 12).

Illustration 3.7: Mains connection size C3 (IP20).
Illustration 3.8: Mains connection size C4 (IP20).

Usually the power cables for mains are unscreened cables.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

25

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install
3.3.4 Motor Connection
NB!

To comply with EMC emission specifications, screened/armoured cables are recommended. If an unscreened/unarmoured cable is
used, see section Power and Control Wiring for Unscreened Cables.. For more information, see EMC Test Results in the Design Guide.

3

See section General Specifications for correct dimensioning of motor cable cross-section and length.

Screening of cables: Avoid installation with twisted screen ends (pigtails). They spoil the screening effect at higher frequencies. If it is necessary to
break the screen to install a motor isolator or motor contactor, the screen must be continued at the lowest possible HF impedance.
Connect the motor cable screen to both the decoupling plate of the frequency converter and to the metal housing of the motor.
Make the screen connections with the largest possible surface area (cable clamp). This is done by using the supplied installation devices in the frequency
converter.
If it is necessary to split the screen to install a motor isolator or motor relay, the screen must be continued with the lowest possible HF impedance.

Cable-length and cross-section: The frequency converter has been tested with a given length of cable and a given cross-section of that cable. If the
cross-section is increased, the cable capacitance - and thus the leakage current - may increase, and the cable length must be reduced correspondingly.
Keep the motor cable as short as possible to reduce the noise level and leakage currents.

Switching frequency: When frequency converters are used together with Sine-wave filters to reduce the acoustic noise from a motor, the switching
frequency must be set according to the Sine-wave filter instruction in par. 14-01 Switching Frequency.

1.

Fasten decoupling plate to the bottom of the frequency converter with screws and washers from the accessory bag.

2.

Attach motor cable to terminals 96 (U), 97 (V), 98 (W).

3.

Connect to earth connection (terminal 99) on decoupling plate with screws from the accessory bag.

4.

Insert plug connectors 96 (U), 97 (V), 98 (W) (up to 7.5 kW) and motor cable to terminals labelled MOTOR.

5.

Fasten screened cable to decoupling plate with screws and washers from the accessory bag.

All types of three-phase asynchronous standard motors can be connected to the frequency converter. Normally, small motors are star-connected (230/400
V, Y). Large motors are normally delta-connected (400/690 V, Δ). Refer to the motor name plate for correct connection mode and voltage.

Illustration 3.10: Motor connection for size A4/A5 (IP 55/66/
NEMA Type 12)
Illustration 3.9: Motor connection for A1, A2 and A3

26

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install

3
Illustration 3.11: Motor connection for size B1 and B2 (IP
21/ NEMA Type 1, IP 55/ NEMA Type 12 and IP66/ NEMA
Type 4X)

Illustration 3.12: Motor connection for size B3.

Illustration 3.13: Motor connection for frame size B4 .

MG.33.AG.02 - VLT® is a registered Danfoss trademark

27

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install

3
Illustration 3.14: Motor connection frame size C1 and C2 (IP
21/ NEMA Type 1 and IP 55/66/ NEMA Type 12)

Illustration 3.15: Motor connection for frame size C3 and C4.

Illustration 3.16: Cable entry holes for frame size B1. The

Illustration 3.18: Cable entry holes for frame size C1. The

suggested use of the holes are purely recommendations and

suggested use of the holes are purely recommendations and

other solutions are possible.

other solutions are possible.

Illustration 3.17: Cable entry holes for frame size B2. The

Illustration 3.19: Cable entry holes for frame size C2. The

suggested use of the holes are purely recommendations and

suggested use of the holes are purely recommendations and

other solutions are possible.

other solutions are possible.

Unused cable entry holes can be sealed with rubber grommets (for IP 21). More information and ordering numbers can be found in the Design Guide.

28

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

Term. no.

1)Protected

96
U

97
V

98
W

U1
W2
U1

V1
U2
V1

W1
V2
W1

99
PE1)
PE1)
PE1)

3 How to Install

Motor voltage 0-100% of mains voltage.
3 wires out of motor
Delta-connected
6 wires out of motor
Star-connected U2, V2, W2
U2, V2 and W2 to be interconnected separately.

Earth Connection
NB!
In motors without phase insulation paper or other in-

3

sulation reinforcement suitable for operation with voltage supply (such as a frequency converter), fit a Sinewave filter on the output of the frequency converter.

3.3.5 Fuses
Branch circuit protection:
In order to protect the installation against electrical and fire hazard, all branch circuits in an installation, switch gear, machines etc., must be short-circuited
and overcurrent protected according to national/international regulations.

Short-circuit protection:
The frequency converter must be protected against short-circuit to avoid electrical or fire hazard. Danfoss recommends using the fuses mentioned below
to protect service personnel and equipment in case of an internal failure in the drive. The frequency converter provides full short-circuit protection in case
of a short-circuit on the motor output.

Overcurrent protection:
Provide overload protection to avoid fire hazard due to overheating of the cables in the installation. The frequency converter is equipped with an internal
overcurrent protection that can be used for upstream overload protection (UL-applications excluded). See par. 4-18 Current Limit. Moreover, fuses or
circuit breakers can be used to provide the overcurrent protection in the installation. Overcurrent protection must always be carried out according to
national regulations.

Fuses must be designed for protection in a circuit capable of supplying a maximum of 100,000 Arms (symmetrical), 500 V maximum.

Non UL compliance

If UL/cUL is not to be complied with, we recommend using the following fuses, which will ensure compliance with EN50178:
In case of malfunction, not following the recommendation may result in unnecessary damage to the frequency converter.

FC Type
K25-K75
1K1-2K2
3K0-3K7
5K5-7K5
11K
15K-18K5
22K
30K
37K

Max. fuse size1)
10A
20A
32A
63A
80A
125A
160A
200A
250A

Min. rated Voltage
200-240 V
200-240 V
200-240 V
200-240 V
200-240 V
200-240 V
200-240 V
200-240 V
200-240 V

Type
type gG
type gG
type gG
type gG
type gG
type gG
type aR
type aR
type aR

1) Max. fuses - refer to national/international regulations to select an appropriate fuse size.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

29

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install

FC Type
K37-1K5
2K2-4K0
5K5-7K5
11K-18K
22K
30K
37K
45K
55K-75K

3

Min. rated Voltage
380-500 V
380-500 V
380-500 V
380-500 V
380-500 V
380-500 V
380-500 V
380-500 V
380-500 V

Max. fuse size1)
10A
20A
32A
63A
80A
100A
125A
160A
250A

Type
type gG
type gG
type gG
type gG
type gG
type gG
type gG
type aR
type aR

UL Compliance
200-240 V
FC Type
kW
K25-K37
K55-1K1
1K5
2K2
3K0
3K7
5K5
7K5
11K
15K-18K5

Bussmann
Type RK1
KTN-R05
KTN-R10
KTN-R15
KTN-R20
KTN-R25
KTN-R30
KTN-R50
KTN-R60
KTN-R80
KTN-R125

FC Type
kW
K25-K37
K55-1K1
1K5
2K2
3K0
3K7
5K5
7K5
11K
15K-18K5

FC Type
kW
22K
30K
37K

Bussmann
Type J
JKS-05
JKS-10
JKS-15
JKS-20
JKS-25
JKS-30
KS-50
JKS-60
JKS-80
JKS-150

Bussmann
Type T
JJN-06
JJN-10
JJN-15
JJN-20
JJN-25
JJN-30
JJN-50
JJN-60
JJN-80
JJN-125

SIBA

Littel fuse

Type RK1
5017906-005
5017906-010
5017906-016
5017906-020
5017906-025
5012406-032
5014006-050
5014006-063
5014006-080
2028220-125

Type RK1
KLN-R05
KLN-R10
KLN-R15
KLN-R20
KLN-R25
KLN-R30
KLN-R50
KLN-R60
KLN-R80
KLN-R125

Bussmann
Type CC
FNQ-R-5
FNQ-R-10
FNQ-R-15
FNQ-R-20
FNQ-R-25
FNQ-R-30
-

Bussmann
Type CC
KTK-R-5
KTK-R-10
KTK-R-15
KTK-R-20
KTK-R-25
KTK-R-30
-

FerrazShawmut
Type CC
ATM-R05
ATM-R10
ATM-R15
ATM-R20
ATM-R25
ATM-R30
-

Bussmann

SIBA

Littel fuse

Type JFHR2
FWX-150
FWX-200
FWX-250

Type RK1
2028220-150
2028220-200
2028220-250

JFHR2
L25S-150
L25S-200
L25S-250

Bussmann
Type CC
LP-CC-5
LP-CC-10
LP-CC-15
LP-CC-20
LP-CC-25
LP-CC-30
-

FerrazShawmut
Type RK1
A2K-05R
A2K-10R
A2K-15R
A2K-20R
A2K-25R
A2K-30R
A2K-50R
A2K-60R
A2K-80R
A2K-125R

FerrazShawmut
JFHR2
A25X-150
A25X-200
A25X-250

KTS-fuses from Bussmann may substitute KTN for 240 V frequency converters.
FWH-fuses from Bussmann may substitute FWX for 240 V frequency converters.
KLSR fuses from LITTEL FUSE may substitute KLNR fuses for 240 V frequency converters.
L50S fuses from LITTEL FUSE may substitute L50S fuses for 240 V frequency converters.
A6KR fuses from FERRAZ SHAWMUT may substitute A2KR for 240 V frequency converters.
A50X fuses from FERRAZ SHAWMUT may substitute A25X for 240 V frequency converters.
380-500 V
FC Type
kW
K37-1K1
1K5-2K2
3K0
4K0
5K5
7K5
11K
15K
18K
22K
30K
37K
45K

30

Bussmann
Type RK1
KTS-R6
KTS-R10
KTS-R15
KTS-R20
KTS-R25
KTS-R30
KTS-R40
KTS-R50
KTS-R60
KTS-R80
KTS-R100
KTS-R125
KTS-R150

Bussmann
Type J
JKS-6
JKS-10
JKS-15
JKS-20
JKS-25
JKS-30
JKS-40
JKS-50
JKS-60
JKS-80
JKS-100
JKS-150
JKS-150

Bussmann
Type T
JJS-6
JJS-10
JJS-15
JJS-20
JJS-25
JJS-30
JJS-40
JJS-50
JJS-60
JJS-80
JJS-100
JJS-150
JJS-150

Bussmann
Type CC
FNQ-R-6
FNQ-R-10
FNQ-R-15
FNQ-R-20
FNQ-R-25
FNQ-R-30
-

Bussmann
Type CC
KTK-R-6
KTK-R-10
KTK-R-15
KTK-R-20
KTK-R-25
KTK-R-30
-

MG.33.AG.02 - VLT® is a registered Danfoss trademark

Bussmann
Type CC
LP-CC-6
LP-CC-10
LP-CC-15
LP-CC-20
LP-CC-25
LP-CC-30
-

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install

FC Type

SIBA

Littel fuse

kW
K37-1K1
1K5-2K2
3K0
4K0
5K5
7K5
11K
15K
18K
22K
30K
37K
45K

Type RK1
5017906-006
5017906-010
5017906-016
5017906-020
5017906-025
5012406-032
5014006-040
5014006-050
5014006-063
2028220-100
2028220-125
2028220-125
2028220-160

Type RK1
KLS-R6
KLS-R10
KLS-R15
KLS-R20
KLS-R25
KLS-R30
KLS-R40
KLS-R50
KLS-R60
KLS-R80
KLS-R100
KLS-R125
KLS-R150

FC Type
kW
55K
75K

Bussmann
JFHR2
FWH-200
FWH-250

FC Type
kW
55K
75K

Bussmann
Type H
-

SIBA

Littel fuse

Type RK1
2028220-200
2028220-250

JFHR2
L50S-225
L50S-250

FerrazShawmut
Type CC
ATM-R6
ATM-R10
ATM-R15
ATM-R20
ATM-R25
ATM-R30
-

FerrazShawmut
Type RK1
A6K-6R
A6K-10R
A6K-15R
A6K-20R
A6K-25R
A6K-30R
A6K-40R
A6K-50R
A6K-60R
A6K-80R
A6K-100R
A6K-125R
A6K-150R

Bussmann
Type T
-

Bussmann
JFHR2
-

FerrazShawmut
JFHR2
-

FerrazShawmut
JFHR2
A50-P225
A50-P250

3

Ferraz-Shawmut A50QS fuses may be substituted for A50P fuses.
170M fuses shown from Bussmann use the -/80 visual indicator. –TN/80 Type T, -/110 or TN/110 Type T indicator fuses of the same size and
amperage may be substituted.
550 - 600V
FC Type
kW
K75-1K5
2K2-4K0
5K5-7K5

Bussmann
Type RK1
KTS-R-5
KTS-R10
KTS-R20

Bussmann
Type J
JKS-5
JKS-10
JKS-20

Bussmann
Type T
JJS-6
JJS-10
JJS-20

Bussmann
Type CC
FNQ-R-5
FNQ-R-10
FNQ-R-20

FC Type

SIBA

Littel fuse

kW
K75-1K5
2K2-4K0
5K5-7K5

Type RK1
5017906-005
5017906-010
5017906-020

Type RK1
KLSR005
KLSR010
KLSR020

FC Type

Bussmann

SIBA

kW
P37K
P45K
P55K
P75K

JFHR2
170M3013
170M3014
170M3015
170M3015

Type RK1
2061032.125
2061032.160
2061032.200
2061032.200

Bussmann
Type CC
KTK-R-5
KTK-R-10
KTK-R-20

Bussmann
Type CC
LP-CC-5
LP-CC-10
LP-CC-20

FerrazShawmut
Type RK1
A6K-5R
A6K-10R
A6K-20R

FerrazShawmut
Type RK1
6.6URD30D08A0125
6.6URD30D08A0160
6.6URD30D08A0200
6.6URD30D08A0200

170M fuses shown from Bussmann use the -/80 visual indicator. –TN/80 Type T, -/110 or TN/110 Type T indicator fuses of the same size and
amperage may be substituted.
170M fuses from Bussmann when provided in the 525-600/690 V FC 302 P37K-P75K, FC 102 P75K, or P45K-P90K drives are 170M3015.
170M fuses from Bussmann when provided in the 525-600/690V FC 302 P90K-P132, FC 102 P90K-P132, or P110-P160 drives are 170M3018.
170M fuses from Bussmann when provided in the 525-600/690V FC 302 P160-P315, FC 102 P160-P315, or P200-P400 drives are 170M5011.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

31

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install
3.3.6 Access to Control Terminals
All terminals to the control cables are located underneath the terminal cover
on the front of the frequency converter. Remove the terminal cover with a
screwdriver.

3
Illustration 3.20: Access to control terminals for A2, A3, B3, B4, C3
and C4 enclosures
Remove front-cover to access control terminals. When replacing the frontcover, please ensure proper fastening by applying a torque of 2 Nm.

Illustration 3.21: Access to control terminals for A4, A5, B1, B2, C1
and C2 enclosures

32

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install

3.3.7 Electrical Installation, Control Terminals
To mount the cable to the terminal:
1.

Strip insulation of 9-10 mm

2.

Insert a screwdriver1) in the square hole.

3.

Insert the cable in the adjacent circular hole.

4.

Remove the screw driver. The cable is now mounted to the terminal.

3

To remove the cable from the terminal:

1)

1.

Insert a screwdriver1) in the square hole.

2.

Pull out the cable.

Max. 0.4 x 2.5 mm

1.
2.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

3.

33

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install

3.3 Connection Examples
3.4.1 Start/Stop
Terminal 18 = par. 5-10 Terminal 18 Digital Input [8] Start
Terminal 27 = par. 5-12 Terminal 27 Digital Input [0] No operation (De-

3

fault coast inverse)
Terminal 37 = Safe stop (where available!)

3.4.2 Pulse Start/Stop
Terminal 18 = par. 5-10 Terminal 18 Digital InputLatched start, [9]
Terminal 27= par. 5-12 Terminal 27 Digital InputStop inverse, [6]
Terminal 37 = Safe stop (where available!)

34

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install

3.4.3 Speed Up/Down
Terminals 29/32 = Speed up/down:
Terminal 18 = par. 5-10 Terminal 18 Digital Input Start [9] (default)
Terminal 27 = par. 5-12 Terminal 27 Digital Input Freeze reference [19]
Terminal 29 = par. 5-13 Terminal 29 Digital Input Speed up [21]
Terminal 32 = par. 5-14 Terminal 32 Digital Input Speed down

3

[22]
NOTE: Terminal 29 only in FC x02 (x=series type).

3.4.4 Potentiometer Reference
Voltage reference via a potentiometer:
Reference Source 1 = [1] Analog input 53 (default)
Terminal 53, Low Voltage = 0 Volt
Terminal 53, High Voltage = 10 Volt
Terminal 53, Low Ref./Feedback = 0 RPM
Terminal 53, High Ref./Feedback = 1500 RPM
Switch S201 = OFF (U)

MG.33.AG.02 - VLT® is a registered Danfoss trademark

35

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install
3.5.1 Electrical Installation, Control Cables

3

Illustration 3.22: Diagram showing all electrical terminals without options.
A = analog, D = digital
Terminal 37 is used for Safe Stop. For instructions on Safe Stop installation please refer to the section Safe Stop Installation of the Design
Guide.
* Terminal 37 is not included in FC 301 (Except FC 301 A1, which includes Safe Stop).
Relay 2 and Terminal 29, have no function in FC 301.

Very long control cables and analogue signals may in rare cases and depending on installation result in 50/60 Hz earth loops due to noise from mains
supply cables.

If this occurs, it may be necessary to break the screen or insert a 100 nF capacitor between screen and chassis.

The digital and analogue inputs and outputs must be connected separately to the common inputs (terminal 20, 55, 39) of the frequency converter to
avoid ground currents from both groups to affect other groups. For example, switching on the digital input may disturb the analog input signal.

36

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install

Input polarity of control terminals

3

NB!
To comply with EMC emission specifications, screened/armoured cables are recommended. If an unscreened/unarmoured cable is
used, see section Power and Control Wiring for Unscreened Cables.. For more information, see EMC Test Results in the Design Guide.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

37

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install
3.5.2 Switches S201, S202, and S801

Switches S201 (A53) and S202 (A54) are used to select a current (0-20 mA) or a voltage (-10 to 10 V) configuration of the analog input terminals 53 and
54 respectively.

Switch S801 (BUS TER.) can be used to enable termination on the RS-485 port (terminals 68 and 69).

3

See drawing Diagram showing all electrical terminals in section Electrical Installation.

Default setting:
S201 (A53) = OFF (voltage input)
S202 (A54) = OFF (voltage input)
S801 (Bus termination) = OFF
NB!
When changing the function of S201, S202 or S801 be careful not to use force for the switch over. It is recommended to remove the
LCP fixture (cradle) when operating the switches. The switches must not be operated with power on the frequency converter.

38

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install

3.4 Final Set-Up and Test
To test the set-up and ensure that the frequency converter is running, follow these steps.

Step 1. Locate the motor name plate
NB!
The motor is either star- (Y) or delta- connected (Δ). This information is located on the motor name plate data.

Step 2. Enter the motor name plate data in this parameter list.
To access this list first press the [QUICK MENU] key then select “Q2 Quick

1.
2.
3.
4.
5.

Setup”.

Par. 1-20
Par. 1-21
Par. 1-22
Par. 1-23
Par. 1-24
Par. 1-25

3

Motor Power [kW]
Motor Power [HP]
Motor Voltage
Motor Frequency
Motor Current
Motor Nominal Speed

Step 3. Activate the Automatic Motor Adaptation (AMA)
Performing an AMA will ensure optimum performance. The AMA measures the values from the motor model equivalent diagram.
1.

Connect terminal 37 to terminal 12 (if terminal 37 is available).

2.

Connect terminal 27 to terminal 12 or set par. 5-12 Terminal 27 Digital Input to 'No function'.

3.

Activate the AMA par. 1-29 Automatic Motor Adaptation (AMA).

4.

Choose between complete or reduced AMA. If a Sine-wave filter is mounted, run only the reduced AMA, or remove the Sine-wave filter during
the AMA procedure.

5.

Press the [OK] key. The display shows “Press [Hand on] to start”.

6.

Press the [Hand on] key. A progress bar indicates if the AMA is in progress.

Stop the AMA during operation
1.

Press the [OFF] key - the frequency converter enters into alarm mode and the display shows that the AMA was terminated by the user.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

39

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install
Successful AMA
1.

The display shows “Press [OK] to finish AMA”.

2.

Press the [OK] key to exit the AMA state.

Unsuccessful AMA
1.
2.

The frequency converter enters into alarm mode. A description of the alarm can be found in the Warnings and Alarms chapter.
"Report Value” in the [Alarm Log] shows the last measuring sequence carried out by the AMA, before the frequency converter entered alarm
mode. This number along with the description of the alarm will assist you in troubleshooting. If you contact Danfoss for service, make sure to

3

mention number and alarm description.
NB!
Unsuccessful AMA is often caused by incorrectly registered motor name plate data or a too big difference between the motor power
size and the frequency converter power size.

Step 4. Set speed limit and ramp times
Par. 3-02 Minimum Reference
Par. 3-03 Maximum Reference
Table 3.2: Set up the desired limits for speed and ramp time.

Par. 4-11 Motor Speed Low Limit [RPM] or par. 4-12 Motor Speed
Low Limit [Hz]
Par. 4-13 Motor Speed High Limit [RPM] or par. 4-14 Motor Speed
High Limit [Hz]

Par. 3-41 Ramp 1 Ramp up Time
Par. 3-42 Ramp 1 Ramp Down Time

40

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install

3.5 Additional Connections
3.7.1 Mechanical Brake Control
In hoisting/lowering applications, it is necessary to be able to control an electro-mechanical brake:
•
•

Control the brake using any relay output or digital output (terminal 27 or 29).
Keep the output closed (voltage-free) as long as the frequency converter is unable to ‘support’ the motor, for example due to the load being
too heavy.

•

Select Mechanical brake control [32] in par. 5-4* for applications with an electro-mechanical brake.

•

The brake is released when the motor current exceeds the preset value in par. 2-20 Release Brake Current.

•

3

The brake is engaged when the output frequency is less than the frequency set in par. 2-21 Activate Brake Speed [RPM]or par. 2-22 Activate

Brake Speed [Hz], and only if the frequency converter carries out a stop command.
If the frequency converter is in alarm mode or in an over-voltage situation, the mechanical brake immediately cuts in.

3.7.2 Parallel Connection of Motors
The frequency converter can control several parallel-connected motors.
The total current consumption of the motors must not exceed the rated
output current IM,N for the frequency converter.

NB!
Installations with cables connected in a common joint
as in the illustration below, is only recommended for
short cable lengths.

NB!
When motors are connected in parallel, par. 1-29 Au-

tomatic Motor Adaptation (AMA) cannot be used.

NB!
The electronic thermal relay (ETR) of the frequency
converter cannot be used as motor protection for the
individual motor in systems with parallel-connected
motors. Provide further motor protection by e.g. thermistors in each motor or individual thermal relays (circuit breakers are not suitable as protection).

Problems may arise at start and at low RPM values if motor sizes are widely different because small motors' relatively high ohmic resistance in the stator
calls for a higher voltage at start and at low RPM values.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

41

VLT®AutomationDrive FC 300 Operating
Instructions

3 How to Install
3.7.3 Motor Thermal Protection

The electronic thermal relay in the frequency converter has received UL-approval for single motor protection, when par. 1-90 Motor Thermal Protectionis
set for ETR Trip and par. 1-24 Motor Current is set to the rated motor current (see motor name plate).
For thermal motor protection it is also possible to use the MCB 112 PTC Thermistor Card option. This card provides ATEX certificate to protect motors in
explosion hazardous areas, Zone 1/21 and Zone 2/22. Please refer to the Design Guide for further information.

3

3.7.4 How to Connect a PC to the Frequency Converter
To control the frequency converter from a PC, install the MCT 10 Set-up
Software.
The PC is connected via a standard (host/device) USB cable, or via the
RS485 interface as shown in the section Bus Connection in the Programming Guide.

NB!
The USB connection is galvanically isolated from the
supply voltage (PELV) and other high-voltage terminals. The USB connection is connected to protection
earth on the frequency converter. Use only isolated

Illustration 3.23: USB connection.

laptop as PC connection to the USB connector on the
frequency converter.

3.7.5 The FC 300 PC Software
Data storage in PC via MCT 10 Set-Up Software:

Data transfer from PC to drive via MCT 10 Set-Up Software:

1.

Connect a PC to the unit via USB com port

1.

Connect a PC to the unit via USB com port

2.

Open MCT 10 Set-up Software

2.

Open MCT 10 Set-up software

3.

Select in the “network” section the USB port

3.

Choose “Open”– stored files will be shown

4.

Choose “Copy”

4.

Open the appropriate file

5.

Select the “project” section

5.

Choose “Write to drive”

6.

Choose “Paste”

7.

Choose “Save as”

All parameters are now stored.

42

All parameters are now transferred to the drive.

A separate manual for MCT 10 Set-up Software is available.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4 How to Programme
4.1 The Graphical and Numerical LCP
The easiest programming of the frequency converter is performed by the Graphical LCP (LCP 102). It is necessary to consult the frequency converter
Design Guide, when using the Numeric Local Control Panel (LCP 101).

4.1.1 How to Programme on the Graphical LCP
The following instructions are valid for the graphical LCP (LCP 102):

4

The control panel is divided into four functional groups:
1.

Graphical display with Status lines.

2.

Menu keys and indicator lights - changing parameters and
switching between display functions.

3.

Navigation keys and indicator lights (LEDs).

4.

Operation keys and indicator lights (LEDs).

All data is displayed in a graphical LCP display, which can show up to five
items of operating data while displaying [Status].

Display lines:
a.

Status line: Status messages displaying icons and graphic.

b.

Line 1-2: Operator data lines displaying data defined or chosen
by the user. By pressing the [Status] key, up to one extra line
can be added.

c.

Status line: Status messages displaying text.

4.1.2 How to Programme on the Numerical Local Control Panel
The following instructions are valid for the numerical LCP (LCP 101):

The control panel is divided into four functional groups:
1.

Numerical display.

2.

Menu keys and indicator lights - changing parameters and
switching between display functions.

3.

Navigation keys and indicator lights (LEDs).

4.

Operation keys and indicator lights (LEDs).

MG.33.AG.02 - VLT® is a registered Danfoss trademark

43

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
4.1.3 Initial Commissioning

The easiest way of carrying out the initial commissioning is by using the Quick Menu button and follow the quick set-up procedure using LCP 102 (read
table from left to right). The example applies to open loop applications:

Press
Q2 Quick Menu

4

Par. 0-01 Language

Set language

Par. 1-20 Motor Power [kW]

Set Motor nameplate power

Par. 1-22 Motor Voltage

Set Nameplate voltage

Par. 1-23 Motor Frequency

Set Nameplate frequency

Par. 1-24 Motor Current

Set Nameplate current

Par. 1-25 Motor Nominal Speed

Set Nameplate speed in RPM

Par. 5-12 Terminal 27 Digital Input

If terminal default is Coast inverse it is possible to change this
setting to No function. No connection to terminal 27 is then
needed for running AMA

Par. 1-29 Automatic Motor Adaptation

(AMA)

Set desired AMA function. Enable complete AMA is recommended

Par. 3-02 Minimum Reference

Set the minimum speed of the motor shaft

Par. 3-03 Maximum Reference

Set the maximum speed of the motor shaft

Par. 3-41 Ramp 1 Ramp up Time

Set the ramping up time with reference to synchronous motor
speed, ns

Par. 3-42 Ramp 1 Ramp Down Time

Set the ramping downdecel time with reference to synchronous
motor speed, ns

Par. 3-13 Reference Site

Set the site from where the reference must work

44

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4.2 Quick Setup
0-01 Language
Option:

Function:
Defines the language to be used in the display. The frequency converter can be delivered with 4
different language packages. English and German are included in all packages. English cannot be
erased or manipulated.

[0] *

English

Part of Language packages 1 - 4

[1]

Deutsch

Part of Language packages 1 - 4

[2]

Francais

Part of Language package 1

[3]

Dansk

Part of Language package 1

[4]

Spanish

Part of Language package 1

[5]

Italiano

Part of Language package 1

Svenska

Part of Language package 1

[7]

Nederlands

Part of Language package 1

[10]

Chinese

Part of Language package 2

Suomi

Part of Language package 1

English US

Part of Language package 4

Greek

Part of Language package 4

Bras.port

Part of Language package 4

Slovenian

Part of Language package 3

Korean

Part of Language package 2

Japanese

Part of Language package 2

Turkish

Part of Language package 4

Trad.Chinese

Part of Language package 2

Bulgarian

Part of Language package 3

Srpski

Part of Language package 3

Romanian

Part of Language package 3

Magyar

Part of Language package 3

Czech

Part of Language package 3

Polski

Part of Language package 4

Russian

Part of Language package 3

Thai

Part of Language package 2

Bahasa Indonesia

Part of Language package 2

[22]

[99]

4

Unknown

MG.33.AG.02 - VLT® is a registered Danfoss trademark

45

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
1-20 Motor Power [kW]
Range:
Application

Function:
[Application dependant]

dependent*

Enter the nominal motor power in kW according to the motor nameplate data. The default value
corresponds to the nominal rated output of the unit.
This parameter cannot be adjusted while the motor is running. This parameter is visible in LCP if
par. 0-03 Regional Settings is International [0].

NB!
Four sizes down, one size up from nominal unit rating.

4
1-22 Motor Voltage
Range:
Application

Function:
[Application dependant]

dependent*

Enter the nominal motor voltage according to the motor nameplate data. The default value corresponds to the nominal rated output of the unit.
This parameter cannot be adjusted while the motor is running.

1-23 Motor Frequency
Range:
Application

Function:
[20 - 1000 Hz]

dependent*

Min - Max motor frequency: 20 - 1000 Hz.
Select the motor frequency value from the motor nameplate data. If a value different from 50 Hz
or 60 Hz is selected, it is necessary to adapt the load independent settings in par. 1-50 Motor

Magnetisation at Zero Speed to par. 1-53 Model Shift Frequency. For 87 Hz operation with 230/400
V motors, set the nameplate data for 230 V/50 Hz. Adapt par. 4-13 Motor Speed High Limit

[RPM] and par. 3-03 Maximum Reference to the 87 Hz application.

1-24 Motor Current
Range:
Application

Function:
[Application dependant]

dependent*

Enter the nominal motor current value from the motor nameplate data. This data is used for calculating motor torque, motor thermal protection etc.

NB!
This parameter cannot be adjusted while the motor is running.

1-25 Motor Nominal Speed
Range:
Application

Function:
[100 - 60000 RPM]

dependent*

Enter the nominal motor speed value from the motor nameplate data. This data is used for calculating automatic motor compensations.

NB!
This parameter cannot be adjusted while the motor is running.

46

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

5-12 Terminal 27 Digital Input
Option:

Function:
Select the function from the available digital input range.
No operation
Reset
Coast inverse
Coast and reset inverse
Quick stop inverse
DC-brake inverse
Stop inverse
Start
Latched start
Reversing
Start reversing
Enable start forward
Enable start reverse
Jog
Preset ref bit 0
Preset ref bit 1
Preset ref bit 2
Freeze reference
Freeze output
Speed up
Speed down
Set-up select bit 0
Set-up select bit 1
Catch up
Slow down
Pulse input
Ramp bit 0
Ramp bit 1
Mains failure inverse
DigiPot Increase
DigiPot Decrease
DigiPot Clear
Reset Counter A
Reset Counter B

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[28]
[29]
[32]
[34]
[35]
[36]
[55]
[56]
[57]
[62]
[65]

4

1-29 Automatic Motor Adaptation (AMA)
Option:

Function:
The AMA function optimizes dynamic motor performance by automatically optimizing the advanced
motor parameters (par. 1-30 to par. 1-35) at motor standstill.
Activate the AMA function by pressing [Hand on] after selecting [1] or [2]. See also the section

Automatic Motor Adaptation. After a normal sequence, the display will read: "Press [OK] to finish
AMA". After pressing the [OK] key the frequency converter is ready for operation.
This parameter cannot be adjusted while the motor is running.
[0] *

OFF

[1]

Enable complete AMA

Performs AMA of the stator resistance RS, the rotor resistance Rr, the stator leakage reactance X1,
the rotor leakage reactance X2 and the main reactance Xh.
FC 301: The complete AMA does not include Xh measurement for FC 301. Instead, the Xh value is
determined from the motor database. Par. 1-35 may be adjusted to obtain optimal start performance.

[2]

Enable reduced AMA

Performs a reduced AMA of the stator resistance Rs in the system only. Select this option if an LC
filter is used between the drive and the motor.

Note:
•

For the best adaptation of the frequency converter, run AMA on a cold motor.

•

AMA cannot be performed while the motor is running.

•

AMA cannot be performed on permanent magnet motors.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

47

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

NB!
It is important to set motor par. 1-2* correctly, since these form part of the AMA algorithm. An AMA must be performed to achieve
optimum dynamic motor performance. It may take up to 10 min, depending on the power rating of the motor.

NB!
Avoid generating external torque during AMA.

4

NB!
If one of the settings in par. 1-2* is changed, par. 1-30 to par. 1-39, the advanced motor parameters, will return to default setting.

3-02 Minimum Reference
Range:
Application

Function:
[Application dependant]

dependent*

Enter the Minimum Reference. The Minimum Reference is the lowest value obtainable by summing
all references.
Minimum Reference is active only when par. 3-00 Reference Range is set to Min.- Max. [0].
The Minimum Reference unit matches:
•

The choice of configuration in par. 1-00 Configuration Mode Configuration Mode: for Speed

closed loop [1], RPM; for Torque [2], Nm.
•

The unit selected in par. 3-01 Reference/Feedback Unit.

3-03 Maximum Reference
Range:
Application

Function:
[Application dependant]

dependent*

Enter the Maximum Reference. The Maximum Reference is the highest value obtainable by summing
all references.
The Maximum Reference unit matches:
•

The choice of configuration in par. 1-00 Configuration Mode: for Speed closed loop [1],
RPM; for Torque [2], Nm.

•

The unit selected in par. 3-00 Reference Range.

3-41 Ramp 1 Ramp up Time
Range:
Application

Function:
[Application dependant]

dependent*

Enter the ramp-up time, i.e. the acceleration time from 0 RPM to the synchronous motor speed nS.
Choose a ramp-up time such that the output current does not exceed the current limit in
par. 4-18 Current Limit during ramping. The value 0.00 corresponds to 0.01 sec. in speed mode.
See ramp-down time in par. 3-42 Ramp 1 Ramp Down Time.

Par . 3 − 41 =

tacc s x ns RPM
ref RPM

3-42 Ramp 1 Ramp Down Time
Range:
Application
dependent*

Function:
[Application dependant]

Enter the ramp-down time, i.e. the deceleration time from the synchronous motor speed ns to 0
RPM. Choose a ramp-down time such that no over-voltage arises in the inverter due to regenerative
operation of the motor, and such that the generated current does not exceed the current limit set
in par. 4-18 Current Limit. The value 0.00 corresponds to 0.01 s in speed mode. See ramp-up time
in par. 3-41 Ramp 1 Ramp up Time.

Par . 3 − 42 =

48

tdec s x ns RPM
ref RPM

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4.3 Basic Setup Parameters
0-02 Motor Speed Unit
Option:

Function:
This parameter cannot be adjusted while the motor is running.
The display showing depends on settings in par. 0-02 Motor Speed Unit and par. 0-03 Regional

Settings. The default setting of par. 0-02 Motor Speed Unit and par. 0-03 Regional Settings depends
on which region of the world the frequency converter is supplied to, but can be re-programmed as
required.
NB!
Changing the Motor Speed Unit will reset certain parameters to their initial value.

4

It is recommended to select the motor speed unit first, before modifying other
parameters.

[0]

RPM

Selects display of motor speed variables and parameters (i.e. references, feedbacks and limits) in
terms of motor speed (RPM).

[1] *

Hz

Selects display of motor speed variables and parameters (i.e. references, feedbacks and limits) in
terms of output frequency to the motor (Hz).

0-50 LCP Copy
Option:

Function:

[0] *

No copy

[1]

All to LCP

Copies all parameters in all set-ups from the frequency converter memory to the LCP memory.

[2]

All from LCP

Copies all parameters in all set-ups from the LCP memory to the frequency converter memory.

[3]

Size indep. from LCP

Copy only the parameters that are independent of the motor size. The latter selection can be used
to programme several frequency converters with the same function without disturbing motor data.

[4]

File from MCO to LCP

[5]

File from LCP to MCO

[6]

Data from DYN to LCP

[7]

Data from LCP to DYN

[8]

LCP Compare

This parameter cannot be adjusted while the motor is running.

1-03 Torque Characteristics
Option:

Function:
Select the torque characteristic required.
VT and AEO are both energy saving operations.

[0] *

Constant torque

Motor shaft output provides constant torque under variable speed control.

[1]

Variable torque

Motor shaft output provides variable torque under variable speed control. Set the variable torque
level in par. 14-40 VT Level.

[2]

Auto Energy Optim.

Automatically optimises energy consumption by minimising magnetisation and frequency via
par. 14-41 AEO Minimum Magnetisation and par. 14-42 Minimum AEO Frequency.

[5]

Constant Power

The function provide a constant power in field weakening area. Follows the formula:

Pconstant =

Torque x RPM
9550

This selection maybe unavailable depending on drive configuration.
This parameter cannot be adjusted while the motor is running.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

49

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
1-04 Overload Mode
Option:

Function:

[0] *

High torque

Allows up to 160% over torque.

[1]

Normal torque

For oversized motor - allows up to 110% over torque.

This parameter cannot be adjusted while the motor is running.

1-90 Motor Thermal Protection
Option:

Function:
The frequency converter determines the motor temperature for motor protection in three different

4

ways:
•

Via a thermistor sensor connected to one of the analog or digital inputs (par. 1-93 Ther-

mistor Source). See section PTC Thermistor Connection.
•

Via a KTY sensor connected to an analog input (par. 1-96 KTY Thermistor Resource). See
section KTY Sensor Connection.

•

Via calculation (ETR = Electronic Terminal Relay) of the thermal load, based on the actual
load and time. The calculated thermal load is compared with the rated motor current
IM,N and the rated motor frequency fM,N. The calculations estimate the need for a lower
load at lower speed due to less cooling from the fan incorporated in the motor.

[0] *

No protection

Continuously overloaded motor, when no warning or trip of the frequency converter is required.

[1]

Thermistor warning

Activates a warning when the connected thermistor or KTY-sensor in the motor reacts in the event
of motor over-temperature.

[2]

Thermistor trip

Stops (trips) frequency converter when connected thermistor or KTY sensor in the motor reacts in
the event of motor over-temperature.
The thermistor cut-out value must be > 3 kΩ.
Integrate a thermistor (PTC sensor) in the motor for winding protection.

[3]

ETR warning 1

[4]

ETR trip 1

[5]

ETR warning 2

[6]

ETR trip 2

[7]

ETR warning 3

[8]

ETR trip 3

[9]

ETR warning 4

[10]

ETR trip 4

Please see detailed description below

Select ETR Warning 1-4, to activate a warning on the display when the motor is overloaded.
Select ETR Trip 1-4 to trip the frequency converter when the motor is overloaded.
Programme a warning signal via one of the digital outputs. The signal appears in the event of a warning and if the frequency converter trips (thermal
warning).
ETR (Electronic Terminal Relay) functions 1-4 will calculate the load when the set-up where they were selected is active. For example ETR starts calculating
when set-up 3 is selected. For the North American market: The ETR functions provide class 20 motor overload protection in accordance with NEC.

50

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4
1-93 Thermistor Source
Option:

Function:
Select the input to which the thermistor (PTC sensor) should be connected. An analog input option
[1] or [2] cannot be selected if the analog input is already in use as a reference source (selected in
par. 3-15 Reference 1 Source, par. 3-16 Reference 2 Source or par. 3-17 Reference 3 Source).
When using MCB 112, choice [0] None must always be selected.

[0] *

None

[1]

Analog input 53

[2]

Analog input 54

[3]

Digital input 18

[4]

Digital input 19

[5]

Digital input 32

[6]

Digital input 33

NB!
This parameter cannot be adjusted while the motor is running.

NB!
Digital input should be set to [0] PNP - Active at 24V in par. 5-00.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

51

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
2-10 Brake Function
Option:

Function:

[0] *

Off

No brake resistor is installed.

[1]

Resistor brake

A brake resistor is incorporated in the system, for dissipation of surplus brake energy as heat. Connecting a brake resistor allows a higher DC link voltage during braking (generating operation). The
Resistor brake function is only active in frequency converters with an integral dynamic brake.

[2]

AC brake

Is selected to improve braking without using a brake resistor. This parameter controls an overmagnetization of the motor when running with a generatoric load. This function can improve the OVCfunction. Increasing the electrical losses in the motor allows the OVC function to increase the braking
torque without exceeding the over voltage limit. Please note that AC brake is not as effective as

4

dynamic breaking with resistor.
AC brake is for VVC+ and flux mode in both open and closed loop.

2-11 Brake Resistor (ohm)
Range:
Application

Function:
[Application dependant]

Set the brake resistor value in Ohms. This value is used for monitoring the power to the brake
resistor in par. 2-13 Brake Power Monitoring. This parameter is only active in frequency converters

dependent*

with an integral dynamic brake.
Use this parameter for values without decimals. For a selection with two decimals, use
par. 30-81 Brake Resistor (ohm).

2-12 Brake Power Limit (kW)
Range:
Application

Function:
[Application dependant]

Set the monitoring limit of the brake power transmitted to the resistor.

dependent*

The monitoring limit is a product of the maximum duty cycle (120 sec.) and the maximum power
of the brake resistor at that duty cycle. See the formula below.

For 200 - 240 V units:
For 380 - 480 V units
For 380 - 500 V units
For 575 - 600 V units

3902 × dutytime
[W]
R × 120
2
778 × dutytime
[W]
Presistor =
R × 120
2
810 × dutytime
Presistor =
[W]
R × 120
9432 × dutytime
Presistor =
[W]
R × 120

Presistor =

This parameter is only active in frequency converters with an integral dynamic brake.

2-13 Brake Power Monitoring
Option:

Function:
This parameter is only active in frequency converters with an integral dynamic brake.
This parameter enables monitoring of the power to the brake resistor. The power is calculated on
the basis of the resistance (par. 2-11 Brake Resistor (ohm)), the DC link voltage, and the resistor
duty time.

[0] *

Off

No brake power monitoring required.

[1]

Warning

Activates a warning on the display when the power transmitted over 120 s exceeds 100% of the
monitoring limit (par. 2-12 Brake Power Limit (kW) ).
The warning disappears when the transmitted power falls below 80% of the monitoring limit.

[2]

Trip

Trips frequency converter and displays an alarm when the calculated power exceeds 100% of the
monitoring limit.

[3]

Warning and trip

Activates both of the above, including warning, trip and alarm.

If power monitoring is set to Off [0] or Warning [1], the brake function remains active, even if the monitoring limit is exceeded. This may lead to thermal
overload of the resistor. It is also possible to generate a warning via a relay/digital outputs. The measuring accuracy of the power monitoring depends
on the accuracy of the resistance of the resistor (better than ± 20%).

52

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

2-15 Brake Check
Option:

Function:
Select type of test and monitoring function to check the connection to the brake resistor, or whether
a brake resistor is present, and then display a warning or an alarm in the event of a fault.
NB!
The brake resistor disconnection function is tested during power-up. However the
brake IGBT test is performed when there is no braking. A warning or trip disconnects the brake function.

The testing sequence is as follows:
1.

The DC link ripple amplitude is measured for 300 ms without braking.

2.

The DC link ripple amplitude is measured for 300 ms with the brake turned on.

3.

4

If the DC link ripple amplitude while braking is lower than the DC link ripple amplitude
before braking + 1 %: Brake check has failed by returning a warning or alarm.

4.

If the DC link ripple amplitude while braking is higher than the DC link ripple amplitude
before braking + 1 %: Brake check is OK.

[0] *

Off

Monitors brake resistor and brake IGBT for a short-circuit during operation. If a short-circuit occurs,
warning 25 appears.

[1]

Warning

Monitors brake resistor and brake IGBT for a short-circuit, and runs a test for brake resistor disconnection during power-up.

[2]

Trip

Monitors for a short-circuit or disconnection of the brake resistor, or a short-circuit of the brake
IGBT. If a fault occurs, the frequency converter cuts out while displaying an alarm (trip locked).

[3]

Stop and trip

Monitors for a short-circuit or disconnection of the brake resistor, or a short-circuit of the brake
IGBT. If a fault occurs, the frequency converter ramps down to coast and then trips. A trip lock
alarm is displayed (e.g. warning 25, 27 or 28).

[4]

AC brake

Monitors for a short-circuit or disconnection of the brake resistor, or a short-circuit of the brake
IGBT. If a fault occurs, the frequency converter performs a controlled ramp-down. This option is
available for FC 302 only.

[5]

Trip Lock

NB!
Remove a warning arising in connection with Off [0] or Warning [1] by cycling the mains supply. The fault must be corrected first. For

Off [0] or Warning [1], the frequency converter keeps running even if a fault is located.

This parameter is only active in frequency converters with an integral dynamic brake.

4.3.1 2-2* Mechanical Brake
Parameters for controlling operation of an electro-magnetic (mechanical) brake, typically required in hoisting applications.
To control a mechanical brake, a relay output (relay 01 or relay 02) or a programmed digital output (terminal 27 or 29) is required. Normally this output
must be closed during periods when the frequency converter is unable to ‘hold’ the motor, e.g. due to an excessive load. Select Mechanical Brake

Control [32] for applications with an electro-magnetic brake in par. 5-40 Function Relay, par. 5-30 Terminal 27 Digital Output, or par. 5-31 Terminal 29
Digital Output. When selecting Mechanical brake control [32], the mechanical brake is closed from start up until the output current is above the level
selected in par. 2-20 Release Brake Current. During stop, the mechanical brake activates when the speed falls below the level specified in par. 2-21 Activate

Brake Speed [RPM]. If the frequency converter enters an alarm condition or an over-current or over-voltage situation, the mechanical brake immediately
cuts in. This is also the case during safe stop.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

53

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

NB!
Protection mode and trip delay features (par. 14-25 Trip Delay at Torque Limit and par. 14-26 Trip Delay at Inverter Fault) may delay
the activation of the mechanical brake in an alarm condition. These features must be disabled in hoisting applications.

4

2-20 Release Brake Current
Range:
Application

Function:
[Application dependant]

dependent*

Set the motor current for release of the mechanical brake, when a start condition is present. The
default value is the maximum current the inverter can provide for the particular power size. The
upper limit is specified in par. 16-37 Inv. Max. Current.
NB!
When Mechanical brake control output is selected but no mechanical brake is
connected, the function will not work by default setting due to too low motor
current.

2-21 Activate Brake Speed [RPM]
Range:
Application

Function:
[0 - 30000 RPM]

Set the motor speed for activation of the mechanical brake, when a stop condition is present. The
upper speed limit is specified in par. 4-53 Warning Speed High.

dependent*

2-22 Activate Brake Speed [Hz]
Range:
Application

Function:
[Application dependant]

Set the motor frequency for activation of the mechanical brake, when a stop condition is present.

dependent*

2-23 Activate Brake Delay
Range:
0.0 s*

Function:
[0.0 - 5.0 s]

Enter the brake delay time of the coast after ramp-down time. The shaft is held at zero speed with
full holding torque. Ensure that the mechanical brake has locked the load before the motor enters
coast mode. See Mechanical Brake Control section in the Design Guide.

54

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

2-24 Stop Delay
Range:
0.0 s*

Function:
[0.0 - 5.0 s]

Set the time interval from the moment when the motor is stopped until the brake closes. This parameter is a part of the stopping function.

2-25 Brake Release Time
Range:
0.20 s*

Function:
[0.00 - 5.00 s]

This value defines the time it takes for the mechanical brake to open. This parameter must act as
a time-out when brake feedback is activated.

2-26 Torque Ref
Range:
0.00 %*

Function:
[Application dependant]

4

The value defines the torque applied against the closed mechanical brake, before release

2-27 Torque Ramp Time
Range:
0.2 s*

Function:
[0.0 - 5.0 s]

The value defines the duration of the torque ramp in clockwise direction.

2-28 Gain Boost Factor
Range:
1.00*

Function:
[1.00 - 4.00 ]

Only active in flux closed loop. The function ensures a smooth transition from torque control mode
to speed control mode when the motor takes over the load from the brake.

Illustration 4.1: Brake release sequence for hoist mechanical brake control
I) Activate brake delay: The frequency converter starts again from the mechanical brake engaged position.
II) Stop delay: When the time between successive starts is shorter than the setting in par. 2-24 Stop Delay, the frequency converter starts
without applying the mechanical brake (e.g. reversing).

MG.33.AG.02 - VLT® is a registered Danfoss trademark

55

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
3-10 Preset Reference
Array [8]
Range: 0-7

Range:

Function:

0.00 %*

[-100.00 - 100.00 %]

Enter up to eight different preset references (0-7) in this parameter, using array programming. The
preset reference is stated as a percentage of the value RefMAX (par. 3-03 Maximum Reference) If a
RefMIN different from 0 (par. 3-02 Minimum Reference) is programmed, the preset reference is
calculated as a percentage of the full reference range, i.e. on the basis of the difference between
RefMAX and RefMIN. Afterwards, the value is added to RefMIN. When using preset references, select
Preset ref. bit 0 / 1 / 2 [16], [17] or [18] for the corresponding digital inputs in parameter group

4

5-1*.

Preset ref. bit

2

1

Preset ref. 0

0

0

0
0

Preset ref. 1

0

0

1

Preset ref. 2

0

1

0

Preset ref. 3

0

1

1

Preset ref. 4

1

0

0

Preset ref. 5

1

0

1

Preset ref. 6

1

1

0

Preset ref. 7

1

1

1

3-11 Jog Speed [Hz]
Range:
Application

Function:
[Application dependant]

dependent*

The jog speed is a fixed output speed at which the frequency converter is running when the jog
function is activated.
See also par. 3-80 Jog Ramp Time.

3-15 Reference Resource 1
Option:

Function:
Select the reference input to be used for the first reference signal. par. 3-15 Reference Resource

1, par. 3-16 Reference Resource 2 and par. 3-17 Reference Resource 3 define up to three different
reference signals. The sum of these reference signals defines the actual reference.
[0]

No function

[1] *

Analog input 53

[2]

Analog input 54

[7]

Frequency input 29

[8]

Frequency input 33

[11]

Local bus reference

[20]

Digital pot.meter

56

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions
[21]

Analog input X30-11

(General Purpose I/O Option Module)

[22]

Analog input X30-12

(General Purpose I/O Option Module)

[29]

Analog Input X48/2

4 How to Programme

3-16 Reference Resource 2
Option:

Function:
Select the reference input to be used for the second reference signal. par. 3-15 Reference Resource

1, par. 3-16 Reference Resource 2 and par. 3-17 Reference Resource 3 define up to three different
reference signals. The sum of these reference signals defines the actual reference.
[0]

No function

[1]

Analog input 53

[2]

Analog input 54

[7]

Frequency input 29

[8]

Frequency input 33

[11]

Local bus reference

[20] *

Digital pot.meter

[21]

Analog input X30-11

[22]

Analog input X30-12

[29]

Analog Input X48/2

4

3-17 Reference Resource 3
Option:

Function:
Select the reference input to be used for the third reference signal. par. 3-15 Reference Resource

1, par. 3-16 Reference Resource 2 and par. 3-17 Reference Resource 3 define up to three different
reference signals. The sum of these reference signals defines the actual reference.
[0]

No function

[1]

Analog input 53

[2]

Analog input 54

[7]

Frequency input 29

[8]

Frequency input 33

[11] *

Local bus reference

[20]

Digital pot.meter

[21]

Analog input X30-11

[22]

Analog input X30-12

[29]

Analog Input X48/2

MG.33.AG.02 - VLT® is a registered Danfoss trademark

57

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
5-00 Digital I/O Mode
Option:

Function:
Digital inputs and programmed digital outputs are pre-programmable for operation either in PNP or
NPN systems.

[0] *

PNP

[1]

NPN

Action on positive directional pulses (↕). PNP systems are pulled down to GND.
Action on negative directional pulses (↕). NPN systems are pulled up to + 24 V, internally in the
frequency converter.

NB!

4

Once this parameter has been changed, it must be activated by performing a power cycle.

This parameter cannot be adjusted while the motor is running.

5-01 Terminal 27 Mode
Option:

Function:

[0] *

Input

Defines terminal 27 as a digital input.

[1]

Output

Defines terminal 27 as a digital output.

Please note that this parameter cannot be adjusted while the motor is running.

5-02 Terminal 29 Mode
Option:

Function:

[0] *

Input

Defines terminal 29 as a digital input.

[1]

Output

Defines terminal 29 as a digital output.

This parameter is available for FC 302 only.
This parameter cannot be adjusted while the motor is running.

58

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4.3.2 5-1* Digital Inputs
Parameters for configuring the input functions for the input terminals.
The digital inputs are used for selecting various functions in the frequency converter. All digital inputs can be set to the following functions:
Digital input function
No operation
Reset
Coast inverse
Coast and reset inverse
Quick stop inverse
DC-brake inverse
Stop inverse
Start
Latched start
Reversing
Start reversing
Enable start forward
Enable start reverse
Jog
Preset reference on
Preset ref bit 0
Preset ref bit 1
Preset ref bit 2
Freeze reference
Freeze output
Speed up
Speed down
Set-up select bit 0
Set-up select bit 1
Precise stop inverse
Precises start, stop
Catch up
Slow down
Counter input
Pulse input Edge Trigged
Pulse input Time Based
Ramp bit 0
Ramp bit 1
Mains failure inverse
Latched precise start
Latched precise stop inverse
DigiPot Increase
DigiPot Decrease
DigiPot Clear
Digipot Hoist
Counter A (up)
Counter A (down)
Reset Counter A
Counter B (up)
Counter B (down)
Reset Counter B
Mech. Brake Feedb.
Mech. Brake Feedb. Inv.
PID Error Inv.
PID Reset I-part
PID enable
PTC Card 1

Select
[0]
[1]
[2]
[3]
[4]
[5]
[6]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[34]
[35]
[36]
[40]
[41]
[55]
[56]
[57]
[58]
[60]
[61]
[62]
[63]
[64]
[65]
[70]
[71]
[72]
[73]
[74]
[80]

Terminal
All *term 32, 33
All
All *term 27
All
All
All
All
All *term 18
All
All *term 19
All
All
All
All *term 29
All
All
All
All
All
All
All
All
All
All
18, 19
18, 19
All
All
29, 33
29, 33
29, 33
All
All
All
18, 19
18, 19
All
All
All
All
29, 33
29, 33
All
29, 33
29, 33
All
All
All
All
All
All
All

4

FC 300 standard terminals are 18, 19, 27, 29, 32 and 33. MCB 101 terminals are X30/2, X30/3 and X30/4.
Terminal 29 functions as an output only in FC 302.
Functions dedicated to only one digital input are stated in the associated parameter.

All digital inputs can be programmed to these functions:

[0]

No operation

No reaction to signals transmitted to the terminal.

[1]

Reset

Resets frequency converter after a TRIP/ALARM. Not all alarms can be reset.

[2]

Coast inverse

(Default Digital input 27): Coasting stop, inverted input (NC). The frequency converter leaves the
motor in free mode. Logic ‘0’ => coasting stop.

[3]

Coast and reset inverse

Reset and coasting stop Inverted input (NC). Leaves motor in free mode and resets frequency converter. Logic ‘0’ => coasting stop and reset.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

59

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
[4]

Quick stop inverse

Inverted input (NC). Generates a stop in accordance with quick-stop ramp time set in par. 3-81 Quick

Stop Ramp Time. When motor stops, the shaft is in free mode. Logic ‘0’ => Quick-stop.
[5]

DC-brake inverse

Inverted input for DC braking (NC). Stops motor by energizing it with a DC current for a certain time
period. See par. 2-01 DC Brake Current to par. 2-03 DC Brake Cut In Speed [RPM]. The function is
only active when the value in par. 2-02 DC Braking Time is different from 0. Logic ’0’ => DC braking.

[6]

Stop inverse

Stop Inverted function. Generates a stop function when the selected terminal goes from logical level
‘1’ to ‘0’. The stop is performed according to the selected ramp time (par. 3-42 Ramp 1 Ramp Down

Time, par. 3-52 Ramp 2 Ramp down Time, par. 3-62 Ramp 3 Ramp down Time, par. 3-72 Ramp 4
Ramp Down Time).
NB!

4

When the frequency converter is at the torque limit and has received a stop
command, it may not stop by itself. To ensure that the frequency converter stops,
configure a digital output to Torque limit & stop [27] and connect this digital
output to a digital input that is configured as coast.
[8]

Start

(Default Digital input 18): Select start for a start/stop command. Logic ‘1’ = start, logic ‘0’ = stop.

[9]

Latched start

The motor starts, if a pulse is applied for min. 2 ms. The motor stops when Stop inverse is activated.

[10]

Reversing

(Default Digital input 19). Change the direction of motor shaft rotation. Select Logic ‘1’ to reverse.
The reversing signal only changes the direction of rotation. It does not activate the start function.
Select both directions in par. 4-10 Motor Speed Direction. The function is not active in process closed
loop.

[11]

Start reversing

Used for start/stop and for reversing on the same wire. Signals on start are not allowed at the same

[12]

Enable start forward

Disengages the counterclockwise movement and allows for the clockwise direction.

[13]

Enable start reverse

Disengages the clockwise movement and allows for the counterclockwise direction.

time.

[14]

Jog

(Default Digital input 29): Use to activate jog speed. See par. 3-11 Jog Speed [Hz].

[15]

Preset reference on

Shifts between external reference and preset reference. It is assumed that External/preset [1] has
been selected in par. 3-04 Reference Function. Logic '0' = external reference active; logic '1' = one
of the eight preset references is active.

[16]

Preset ref bit 0

Preset ref. bit 0,1, and 2 enables a choice between one of the eight preset references according to
the table below.

[17]

Preset ref bit 1

Same as Preset ref bit 0 [16].

[18]

Preset ref bit 2

Same as Preset ref bit 0 [16].

Preset ref. bit

2

1

Preset ref. 0

0

0

0
0

Preset ref. 1

0

0

1

Preset ref. 2

0

1

0

Preset ref. 3

0

1

1

Preset ref. 4

1

0

0

Preset ref. 5

1

0

1

Preset ref. 6

1

1

0

Preset ref. 7

1

1

1

[19]

Freeze ref

Freezes the actual reference, which is now the point of enable/condition for Speed up and Speed
down to be used. If Speed up/down is used, the speed change always follows ramp 2
(par. 3-51 Ramp 2 Ramp up Time and par. 3-52 Ramp 2 Ramp down Time) in the range 0 par. 3-03 Maximum Reference.

[20]

Freeze output

Freezes the actual motor frequency (Hz), which is now the point of enable/condition for Speed up
and Speed down to be used. If Speed up/down is used, the speed change always follows ramp 2
(par. 3-51 Ramp 2 Ramp up Time and par. 3-52 Ramp 2 Ramp down Time) in the range 0 par. 1-23 Motor Frequency.

60

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
NB!
When Freeze output is active, the frequency converter cannot be stopped via a
low ‘start [8]’ signal. Stop the frequency converter via a terminal programmed
for Coasting inverse [2] or Coast and reset, inverse.

[21]

Speed up

Select Speed up and Speed down if digital control of the up/down speed is desired (motor potentiometer). Activate this function by selecting either Freeze reference or Freeze output. When Speed
up/ down is activated for less than 400 msec. the resulting reference will be increased/ decreased
by 0.1 %. If Speed up/ down is activated for more than 400 msec. the resulting reference will follow
the setting in ramping up/ down parameter 3-x1/ 3-x2.

Shut down

Catch up

Unchanged speed

0

0

Reduced by %-value

1

0

Increased by %-value

0

1

Reduced by %-value

1

1

[22]

Speed down

Same as Speed up [21].

[23]

Set-up select bit 0

Select Set-up select bit 0 or Select Set-up select bit 1 to select one of the four set-ups. Set

4

par. 0-10 Active Set-up to Multi Set-up.
[24]

Set-up select bit 1

(Default Digital input 32): Same as Set-up select bit 0 [23].

[26]

Precise stop inv.

Prolongs stop signal to give a precise stop independent of speed.
Sends an inverted stop signal when the precise stop function is activated in par. 1-83 Precise Stop

Function.
Precise stop inverse function is available for terminals 18 or 19.
[27]

Precise start, stop

Use when Precise ramp stop [0] is selected in par 1-83.

[28]

Catch up

Increases reference value by percentage (relative) set in par. 3-12 Catch up/slow Down Value.

[29]

Slow down

Reduces reference value by percentage (relative) set in par. 3-12 Catch up/slow Down Value.

[30]

Counter input

Precise stop function in par. 1-83 Precise Stop Function acts as Counter stop or speed compensated
counter stop with or without reset. The counter value must be set in par. 1-84 Precise Stop Counter

Value.
[31]

Pulse edge triggered

Edge triggered pulse input counts number of pulse flanks per sample time. This gives a higher
resolution at high frequencies, but is not as precise at lower frequencies. Use this pulse principle
for encoders with very low resolution (e.g. 30 ppr).

[32]

Pulse time based

Time based pulse input measures the duration between flanks. This gives a higher resolution at
lower frequencies, but is not as precise at higher frequencies. This principle has a cut-off frequency
which makes it unsuited for encoders with very low resolutions (e.g. 30 ppr) at low speeds.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

61

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

a: very low encoder resolution

b: standard encoder resolution

4
[34]

Ramp bit 0

Enables a choice between one of the 4 ramps available, according to the table below.

[35]

Ramp bit 1

Same as Ramp bit 0.

Preset ramp bit

1

0

Ramp 1

0

0

Ramp 2

0

1

Ramp 3

1

0

Ramp 4

1

1

[36]

Mains failure inverse

Activates par. 14-10 Mains Failure. Mains failure inverse is active in the Logic .0. situation.

[41]

Latched Precise Stop inverse

Sends a latched stop signal when the precise stop function is activated in par. 1-83 Precise Stop

[55]

DigiPot Increase

INCREASE signal to the Digital Potentiometer function described in par. group 3-9*

[56]

DigiPot Decrease

DECREASE signal to the Digital Potentiometer function described in par. group 3-9*

Function. The Latched Precise stop inverse function is available for terminals 18 or 19.

[57]

DigiPot Clear

Clears the Digital Potentiometer reference described in par. group 3-9*

[60]

Counter A

(Terminal 29 or 33 only) Input for increment counting in the SLC counter.

[61]

Counter A

(Terminal 29 or 33 only) Input for decrement counting in the SLC counter.

[62]

Reset Counter A

Input for reset of counter A.

[63]

Counter B

(Terminal 29 or 33 only) Input for increment counting in the SLC counter.

[64]

Counter B

(Terminal 29 or 33 only) Input for decrement counting in the SLC counter.

[65]

Reset Counter B

Input for reset of counter B.

[70]

Mech. Brake Feedback

Brake feedback for hoisting applications: Set par 1-01 to [3] flux w/ motor feedback; set par 1-72
to [6] Hoist mech brake Ref.

[71]

Mech. Brake Feedback inv.

Inverted brake feedback for hoisting applications

[72]

PID error inverse

When enabled, it inverts the resulting error from the process PID controller. Available only if "Configuration Mode" is set to "Surface Winder", "Extended PID Speed OL" or "Extended PID Speed CL".

[73]

PID reset I-part

When enabled, resets the I-part of the Process PID controller. Equivalent to par. 7-40. Available
only if "Configuration Mode" is set to "Surface Winder", "Extended PID Speed OL" or "Extended PID
Speed CL".

[74]

PID enable

When enabled, enables the extended process PID controller. Equivalent to par. 7-50. Available only
if "Configuration Mode" is set "Extended PID Speed OL" or "Extended PID Speed CL".

[80]

PTC Card 1

All Digital Inputs can be set to PTC Card 1 [80]. However, only one Digital Input must be set to this
choice.

62

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4.3.3 5-3* Digital Outputs
Parameters for configuring the output functions for the output terminals. The 2 solid-state digital outputs are common for terminals 27 and 29. Set the
I/O function for terminal 27 in par. 5-01 Terminal 27 Mode, and set the I/O function for terminal 29 in par. 5-02 Terminal 29 Mode. These parameters
cannot be adjusted while the motor is running.

[0]

No operation

Default for all digital outputs and relay outputs

[1]

Control ready

The control card is ready. E.g.: Feedback from a drive where the control is supplied by an external
24 V (MCB107) and the main power to drive is not detected.

[2]

Drive ready

The frequency converter is ready for operation and applies a supply signal on the control board.

[3]

Drive ready / remote control

The frequency converter is ready for operation and is in Auto On mode.

[4]

Enable / no warning

Ready for operation. No start or stop command is been given (start/disable). No warnings are active.

[5]

VLT running

Motor is running and shaft torque present.

[6]

Running / no warning

4

Output speed is higher than the speed set in par. 1-81 Min Speed for Function at Stop [RPM]. The
motor is running and there are no warnings.

[7]

Run in range / no warning

Motor is running within the programmed current and speed ranges set in par. 4-50 Warning Current

Low to par. 4-53 Warning Speed High. There are no warnings.
[8]

Run on reference / no warning

Motor runs at reference speed. No warnings.

[9]

Alarm

An alarm activates the output. There are no warnings.

[10]

Alarm or warning

An alarm or a warning activates the output.

[11]

At torque limit

The torque limit set in par. 4-16 Torque Limit Motor Mode or par. 4-17 has been exceeded.

[12]

Out of current range

The motor current is outside the range set in par. 4-18 Current Limit.

[13]

Below current, low

Motor current is lower than set in par. 4-50 Warning Current Low.

[14]

Above current, high

Motor current is higher than set in par. 4-51 Warning Current High.

[15]

Out of range

Output frequency is outside the frequency range set in par. 4-52 Warning Speed Low and
par. 4-53 Warning Speed High.

[16]

Below speed, low

Output speed is lower than the setting in par. 4-52 Warning Speed Low.

[17]

Above speed, high

Output speed is higher than the setting in par. 4-53 Warning Speed High.

[18]

Out of feedback range

Feedback is outside the range set in par. 4-56 Warning Feedback Low and par. 4-57 Warning Feed-

back High.
[19]

Below feedback low

Feedback is below the limit set in par. 4-56 Warning Feedback Low.

[20]

Above feedback high

Feedback is above the limit set in par. 4-57 Warning Feedback High.

[21]

Thermal warning

The thermal warning turns on when the temperature exceeds the limit in the motor, the frequency
converter, the brake resistor, or the thermistor.

[22]

Ready, no thermal warning

Frequency converter is ready for operation and there is no over-temperature warning.

[23]

Remote, ready, no thermal warning

Frequency converter is ready for operation and is in Auto On mode. There is no over-temperature

[24]

Ready, no over-/ under voltage

warning.
Frequency converter is ready for operation and the mains voltage is within the specified voltage
range (see General Specifications section in the Designn Guide).
[25]

Reverse

Reversing. Logic ‘1’ when CW rotation of the motor. Logic ‘0’ when CCW rotation of the motor. If
the motor is not rotating the output will follow the reference.

[26]

Bus OK

[27]

Torque limit and stop

Active communication (no time-out) via the serial communication port.
Use in performing a coasting stop and in torque limit condition. If the frequency converter has
received a stop signal and is at the torque limit, the signal is Logic ‘0’.

[28]

Brake, no brake warning

Brake is active and there are no warnings.

[29]

Brake ready, no fault

Brake is ready for operation and there are no faults.

[30]

Brake fault (IGBT)

Output is Logic ‘1’ when the brake IGBT is short-circuited. Use this function to protect the frequency
converter if there is a fault on the brake modules. Use the output/relay to cut out the main voltage
from the frequency converter.

[31]

Relay 123

Relay is activated when Control Word [0] is selected in parameter group 8-**.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

63

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
[32]

Mechanical brake control

Enables control of an external mechanical brake, see description in the section Control of Mechanical

Brake, and par. group 2-2*
[33]

Safe stop activated (FC 302 only)

Indicates that the safe stop on terminal 37 has been activated.

[40]

Out of ref range

Active when the actual speed is outside settings in par 4-52 to 4-55.

[41]

Below reference low

Active when actual speed is below speed reference setting.

[42]

Above reference high

Active when actual speed is above speed reference setting

[43]

Extended PID Limit

[45]

Bus Ctrl

Controls output via bus. The state of the output is set in par. 5-90 Digital & Relay Bus Control. The
output state is retained in the event of bus time-out.

4

[46]

Bus Ctrl On at timeout

Controls output via bus. The state of the output is set in par. 5-90 Digital & Relay Bus Control. In
the event of bus time-out the output state is set high (On).

[47]

Bus Ctrl Off at timeout

Controls output via bus. The state of the output is set in par. 5-90 Digital & Relay Bus Control. In
the event of bus time-out the output state is set low (Off).

[51]

MCO controlled

[55]

Pulse output

[60]

Comparator 0

Active when a MCO 302 or MCO 305 is connected. The output is controlled from option.

See par. group 13-1*. If Comparator 0 is evaluated as TRUE, the output will go high. Otherwise, it
will be low.

[61]

Comparator 1

See par. group 13-1*. If Comparator 1 is evaluated as TRUE, the output will go high. Otherwise, it

[62]

Comparator 2

See par. group 13-1*. If Comparator 2 is evaluated as TRUE, the output will go high. Otherwise, it

will be low.

will be low.
[63]

Comparator 3

See par. group 13-1*. If Comparator 3 is evaluated as TRUE, the output will go high. Otherwise, it
will be low.

[64]

Comparator 4

See par. group 13-1*. If Comparator 4 is evaluated as TRUE, the output will go high. Otherwise, it
will be low.

[65]

Comparator 5

[70]

Logic Rule 0

See par. group 13-1*. If Comparator 5 is evaluated as TRUE, the output will go high. Otherwise, it
will be low.
See par. group 13-4*. If Logic Rule 0 is evaluated as TRUE, the output will go high. Otherwise, it
will be low.

[71]

Logic Rule 1

See par. group 13-4*. If Logic Rule 1 is evaluated as TRUE, the output will go high. Otherwise, it
will be low.

[72]

Logic Rule 2

See par. group 13-4*. If Logic Rule 2 is evaluated as TRUE, the output will go high. Otherwise, it
will be low.

[73]

Logic Rule 3

See par. group 13-4*. If Logic Rule 3 is evaluated as TRUE, the output will go high. Otherwise, it
will be low.

[74]

Logic Rule 4

See par. group 13-4*. If Logic Rule 4 is evaluated as TRUE, the output will go high. Otherwise, it
will be low.

[75]

Logic Rule 5

See par. group 13-4*. If Logic Rule 5 is evaluated as TRUE, the output will go high. Otherwise, it
will be low.

[80]

SL Digital Output A

See par. 13-52 SL Controller Action. The output will go high whenever the Smart Logic Action [38]

Set dig. out. A high is executed. The output will go low whenever the Smart Logic Action [32] Set
dig. out. A low is executed.
[81]

SL Digital Output B

See par. 13-52 SL Controller Action. The input will go high whenever the Smart Logic Action [39]

Set dig. out. A high is executed. The input will go low whenever the Smart Logic Action [33] Set
dig. out. A low is executed.
[82]

SL Digital Output C

See par. 13-52 SL Controller Action. The input will go high whenever the Smart Logic Action [40]

Set dig. out. A high is executed. The input will go low whenever the Smart Logic Action [34] Set
dig. out. A low is executed.
[83]

SL Digital Output D

See par. 13-52 SL Controller Action. The input will go high whenever the Smart Logic Action [41]

Set dig. out. A high is executed. The input will go low whenever the Smart Logic Action [35] Set
dig. out. A low is executed.

64

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions
[84]

SL Digital Output E

4 How to Programme

See par. 13-52 SL Controller Action. The input will go high whenever the Smart Logic Action [42]

Set dig. out. A high is executed. The input will go low whenever the Smart Logic Action [36] Set
dig. out. A low is executed.
[85]

SL Digital Output F

See par. 13-52 SL Controller Action. The input will go high whenever the Smart Logic Action [43]

Set dig. out. A high is executed. The input will go low whenever the Smart Logic Action [37] Set
dig. out. A low is executed.
[120]

Local reference active

Output is high when par. 3-13 Reference Site = [2] Local or when par. 3-13 Reference Site = [0]

Linked to hand auto at the same time as the LCP is in Hand on mode.
Reference site set in par. 3-13

Local reference

Remote reference

active [120]

active [121]

Reference site: Local par. 3-13 [2]

1

0

Reference site: Remote par. 3-13 [1]

0

1

Hand

1

0

Hand -> off

1

0

Auto -> off

0

0

Auto

0

1

4

Reference site: Linked to Hand/ Auto

[121]

Remote reference active

Output is high when par. 3-13 Reference Site = Remote [1] or Linked to hand/auto [0] while the
LCP is in [Auto on] mode. See above.

[122]

No alarm

Output is high when no alarm is present.

[123]

Start command active

Output is high when there is an active Start command (i.e. via digital input bus connection or [Hand
on] or [Auto on]), and no Stop or Start command is active.

[124]

Running reverse

Output is high when the frequency converter is running counter clockwise (the logical product of

[125]

Drive in hand mode

Output is high when the frequency converter is in Hand on mode (as indicated by the LED light

the status bits ‘running’ AND ‘reverse’).

above [Hand on]).
[126]

Drive in auto mode

Output is high when the frequency converter is in Hand on mode (as indicated by the LED light
above [Auto on]).

5-40 Function Relay
Array [9]
(Relay 1 [0], Relay 2 [1], Relay 3 [2] (MCB 113), Relay 4 [3] (MCB 113), Relay 5 [4] (MCB 113), Relay 6 [5] (MCB 113), Relay 7 [6] (MCB 105), Relay
8 [7] (MCB 105), Relay 9 [8] (MCB 105))

Option:

Function:

[0] *

No operation

All digital and relay outputs are default set to “No Operation”.

[1]

Control ready

The control card is ready. E.g.: Feedback from a drive where the control is supplied by an external
24 V (MCB107) and the main power to drive is not detected.

[2]

Drive ready

Drive is ready to operate. Mains and control supplies are OK.

[3]

Drive rdy/rem ctrl

The frequency converter is ready for operation and is in Auto On mode

[4]

Enable / no warning

Ready for operation. No start or stop commands have been applied (start/disable). No warnings are
active.

[5]

Running

Motor is running, and shaft torque present.

[6]

Running / no warning

Output speed is higher than the speed set in par. 1-81 Min Speed for Function at Stop [RPM]. The
motor is running and no warnings.

[7]

Run in range/no warn

Motor is running within the programmed current and speed ranges set in par. 4-50 Warning Current

Low and par. 4-53 Warning Speed High. No warnings.
[8]

Run on ref/no warn

Motor runs at reference speed. No warnings.

[9]

Alarm

An alarm activates the output. No warnings

MG.33.AG.02 - VLT® is a registered Danfoss trademark

65

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
[10]

Alarm or warning

An alarm or a warning activates the output.

[11]

At torque limit

The torque limit set in par. 4-16 Torque Limit Motor Mode or par. 4-17 Torque Limit Generator

Mode has been exceeded.
[12]

Out of current range

The motor current is outside the range set in par. 4-18 Current Limit.

[13]

Below current, low

Motor current is lower than set in par. 4-50 Warning Current Low.

[14]

Above current, high

Motor current is higher than set in par. 4-51 Warning Current High.

[15]

Out of speed range

Output speed/frequency is outside the frequency range set in par. 4-52 Warning Speed Low and
par. 4-53 Warning Speed High.

4

[16]

Below speed, low

Output speed is lower than the setting in par. 4-52 Warning Speed Low

[17]

Above speed, high

Output speed is higher than the setting in par. 4-53 Warning Speed High.

[18]

Out of feedb. range

Feedback is outside the range set in par. 4-56 Warning Feedback Low and par. 4-57 Warning Feed-

back High.
[19]

Below feedback, low

Feedback is below the limit set in par. 4-56 Warning Feedback Low.

[20]

Above feedback, high

Feedback is above the limit set in par. 4-57 Warning Feedback High.

[21]

Thermal warning

Thermal warning turns on when the temperature exceeds the limit either in motor, frequency converter, brake resistor, or connected thermistor.

[22]

Ready,no thermal W

[23]

Remote,ready,no TW

Frequency converter is ready for operation and there is no over-temperature warning.
Frequency converter is ready for operation and is in Auto On mode. There is no over-temperature
warning.

[24]

Ready, Voltage OK

Frequency converter is ready for operation and the mains voltage is within the specified voltage
range (see General Specifications section in Design Guide).

[25]

Reverse

Logic ‘1’ when CW rotation of the motor. Logic ‘0’ when CCW rotation of the motor. If the motor is
not rotating the output will follow the reference.

[26]

Bus OK

[27]

Torque limit & stop

Active communication (no time-out) via the serial communication port.
Use in performing a coasted stop and frequency converter in torque limit condition. If the frequency
converter has received a stop signal and is in torque limit, the signal is Logic ‘0’.

[28]

Brake, no brake war

Brake is active and there are no warnings.

[29]

Brake ready, no fault

Brake is ready for operation and there are no faults.

[30]

Brake fault (IGBT)

Output is Logic ‘1’ when the brake IGBT is short-circuited. Use this function to protect the frequency
converter if there is a fault on the brake module. Use the digital output/relay to cut out the main
voltage from the frequency converter.

[31]

Relay 123

Digital output/relay is activated when Control Word [0] is selected in parameter group 8-**.

[32]

Mech brake ctrl

Selection of mechanical brake control. When selected parameters in parameter group 2.2x are active. The output must be reinforced to carry the current for the coil in the brake. Usually solved by
connecting an external relay to the selected digital output.

[33]

Safe stop active

[36]

Control word bit 11

(FC 302 only) Indicates that the safe stop on terminal 37 has been activated.
Activate relay 1 by control word from fieldbus. No other functional impact in the frequency converter.
Typical application: controlling auxiliary device from fieldbus. The function is valid when FC profile
[0] in par 8-10 is selected.

[37]

Control word bit 12

Activate relay 2 FC 302 only) by control word from fieldbus. No other functional impact in the frequency converter. Typical application: controlling auxiliary device from fieldbus. The function is valid
when FC profile [0] in par 8-10 is selected.

[38]

Motor feedback error

Failure in the speed feedback loop from motor running in closed loop. The output can eventually be
used to prepare switching the drive in open loop in emergency case.

66

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions
[39]

Tracking error

4 How to Programme

When the difference between calculated speed and actual speed in par 4-35 is larger than selected
the digital output/relay is active.

[40]

Out of ref range

Active when the actual speed is outside settings in par 4-52 to 4-55.

[41]

Below reference, low

Active when actual speed is below speed reference setting.

[42]

Above ref, high

Active when actual speed is above speed reference setting.

[43]

Extended PID Limit

[45]

Bus ctrl.

Controls digital output/relay via bus. The state of the output is set in par. 5-90 ‘Digital & Relay Bus
Control’. The output state is retained in the event of bus time-out.

[46]

Bus ctrl, 1 if timeout

Controls output via bus. The state of the output is set in par. 5-90 Digital & Relay Bus Control. In
the event of bus time-out the output state is set high (On).

[47]

Bus ctrl, 0 if timeout

4

Controls output via bus. The state of the output is set in par. 5-90 Digital & Relay Bus Control. In
the event of bus time-out the output state is set low (Off).

[51]

MCO controlled

[60]

Comparator 0

Active when a MCO 302 or MCO 305 is connected. The output is controlled from option.
See par. group 13-1* (Smart Logic Control). If Comparator 0 in SLC is TRUE, the output will go high.
Otherwise, it will be low.

[61]

Comparator 1

See par. group 13-1* (Smart Logic Control). If Comparator 1 in SLC is TRUE, the output will go high.
Otherwise, it will be low.

[62]

Comparator 2

See par. group 13-1* (Smart Logic Control). If Comparator 2 in SLC is TRUE, the output will go high.
Otherwise, it will be low.

[63]

Comparator 3

See par. group 13-1* (Smart Logic Control). If Comparator 3 in SLC is TRUE, the output will go high.
Otherwise, it will be low.

[64]

Comparator 4

See par. group 13-1* (Smart Logic Control). If Comparator 4 in SLC is TRUE, the output will go high.
Otherwise, it will be low.

[65]

Comparator 5

See par. group 13-1* (Smart Logic Control). If Comparator 5 in SLC is TRUE, the output will go high.
Otherwise, it will be low.

[70]

Logic rule 0

See par. group 13-4*(Smart Logic Control). If Logic Rule 0 in SLC is TRUE, the output will go high.
Otherwise, it will be low.

[71]

Logic rule 1

See par. group 13-4*(Smart Logic Control). If Logic Rule 1 in SLC is TRUE, the output will go high.
Otherwise, it will be low.

[72]

Logic rule 2

See par. group 13-4*(Smart Logic Control). If Logic Rule 2 in SLC is TRUE, the output will go high.
Otherwise, it will be low.

[73]

Logic rule 3

See par. group 13-4*(Smart Logic Control). If Logic Rule 3 in SLC is TRUE, the output will go high.
Otherwise, it will be low.

[74]

Logic rule 4

See par. group 13-4*(Smart Logic Control). If Logic Rule 4 in SLC is TRUE, the output will go high.
Otherwise, it will be low.

[75]

Logic rule 5

See par. group 13-4*(Smart Logic Control). If Logic Rule 5 in SLC is TRUE, the output will go high.
Otherwise, it will be low.

[80]

SL digital output A

See par. 13-52 ‘Smart Logic Control Action’. Output A is low on Smart Logic Action [32]. Output A
is high on Smart Logic Action [38].

[81]

SL digital output B

See par. 13-52 ‘Smart Logic Control Action’. Output B is low on Smart Logic Action [33]. Output B
is high on Smart Logic Action [39].

[82]

SL digital output C

See par. 13-52 ‘Smart Logic Control Action’. Output C is low on Smart Logic Action [34]. Output C
is high on Smart Logic Action [40].

[83]

SL digital output D

See par. 13-52 ‘Smart Logic Control Action’. Output D is low on Smart Logic Action [35]. Output D
is high on Smart Logic Action [41]

MG.33.AG.02 - VLT® is a registered Danfoss trademark

67

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
[84]

SL digital output E

See par. 13-52 ‘Smart Logic Control Action’. Output E is low on Smart Logic Action [36]. Output E
is high on Smart Logic Action [42].

[85]

SL digital output F

See par. 13-52 ‘Smart Logic Control Action’. Output F is low on Smart Logic Action [37]. Output F
is high on Smart Logic Action [43].

[120]

Local ref active

Output is high when par. 3-13 Reference Site = [2] Local or when par. 3-13 Reference Site = [0]
Linked to hand auto at the same time as the LCP is in Hand on mode.
Reference site set in par. 3-13

4

Local reference

Remote reference

active [120]

active [121]

Reference site: Local par. 3-13 [2]

1

0

Reference site: Remote par. 3-13 [1]

0

1

Hand

1

0

Hand -> off

1

0

Auto -> off

0

0

Auto

0

1

Reference site: Linked to Hand/ Auto

[121]

Remote ref active

Output is high when par. 3-13 Reference Site = Remote [1] or Linked to hand/auto [0] while the
LCP is in [Auto on] mode. See above.

[122]

No alarm

Output is high when no alarm is present.

[123]

Start command activ

Output is high when the Start command high (i.e. via digital input, bus connection or [Hand on] or
[Auto on]), and a Stop has been last command.

[124]

Running reverse

Output is high when the frequency converter is running counter clockwise (the logical product of
the status bits ‘running’ AND ‘reverse’).

[125]

Drive in hand mode

Output is high when the frequency converter is in Hand on mode (as indicated by the LED light
above [Hand on]).

[126]

Drive in auto mode

Output is high when the frequency converter is in ‘Auto’ mode (as indicated by LED on above [Auto
On]).

14-22 Operation Mode
Option:

Function:
Use this parameter to specify normal operation; to perform tests; or to initialise all parameters
except par. 15-03 Power Up's, par. 15-04 Over Temp's and par. 15-05 Over Volt's. This function is
active only when the power is cycled to the frequency converter.
Select Normal operation [0] for normal operation of the frequency converter with the motor in the
selected application.
Select Control card test [1] to test the analog and digital inputs and outputs and the +10 V control
voltage. The test requires a test connector with internal connections. Use the following procedure
for the control card test:
1.

Select Control card test [1].

2.

Disconnect the mains supply and wait for the light in the display to go out.

3.

Set switches S201 (A53) and S202 (A54) = ‘ON’ / I.

4.

Insert the test plug (see below).

5.

Connect to mains supply.

6.

Carry out various tests.

7.

The results are displayed on the LCP and the frequency converter moves into an infinite
loop.

8.

Par. 14-22 Operation Mode is automatically set to Normal operation. Carry out a power
cycle to start up in Normal operation after a control card test.

If the test is OK:

68

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

LCP read-out: Control Card OK.
Disconnect the mains supply and remove the test plug. The green LED on the Control Card will light
up.
If the test fails:
LCP read-out: Control Card I/O failure.
Replace the frequency converter or Control card. The red LED on the Control Card is turned on. Test
plugs (connect the following terminals to each other): 18 - 27 - 32; 19 - 29 - 33; 42 - 53 - 54

4

Select Initialization [2] to reset all parameter values to default settings, except for par. 15-03 Power

Up's, par. 15-04 Over Temp's, and par. 15-05 Over Volt's. The frequency converter will reset during
the next power-up.
Par. 14-22 Operation Mode will also revert to the default setting Normal operation [0].
[0] *

Normal operation

[1]

Control card test

[2]

Initialisation

[3]

Boot mode

14-50 RFI Filter
Option:
[0]

Function:
Off

Select Off [0] only if the frequency converter is fed by an isolated mains source (IT mains).
In this mode, the internal RFI filter capacitors between chassis and the mains RFI filter circuit are
cut-out to reduce the ground capacity currents.

[1] *

On

Select On [1] to ensure that the frequency converter complies with EMC standards.

15-43 Software Version
Range:
0 N/A*

Function:
[0 - 0 N/A]

View the combined SW version (or ‘package version’) consisting of power SW and control SW.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

69

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4.4 Parameter Lists
Changes during operation
”TRUE” means that the parameter can be changed while the frequency converter is in operation and “FALSE” means that the it must be stopped before
a change can be made.

4-Set-up
'All set-up': the parameters can be set individually in each of the four set-ups, i.e. one single parameter can have four different data values.
’1 set-up’: data value will be the same in all set-ups.

4

Conversion index
This number refers to a conversion figure used when writing or reading to and from the frequency converter.

Conv. index
Conv. factor

Data type
2
3
4
5
6
7
9
33
35
54

100
1

67
1/60

6
5
1000000 100000

4
10000

3
1000

2
100

1
10

0
1

-1
0.1

-2
0.01

-3
-4
-5
-6
0.001 0.0001 0.00001 0.000001

Description
Integer 8
Integer 16
Integer 32
Unsigned 8
Unsigned 16
Unsigned 32
Visible String
Normalized value 2 bytes
Bit sequence of 16 boolean variables
Time difference w/o date

See the frequency converter Design Guide for further information about data types 33, 35 and 54.

70

MG.33.AG.02 - VLT® is a registered Danfoss trademark

Type
Int8
Int16
Int32
Uint8
Uint16
Uint32
VisStr
N2
V2
TimD

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

Parameters for the frequency converter are grouped into various parameter groups for easy selection of the correct parameters for optimized operation
of the frequency converter.

0-** Operation and Display parameters for basic frequency converter settings

1-** Load and Motor parameters, includes all load and motor related parameters

2-** Brake parameters

3-** References and ramping parameters, includes DigiPot function

4-** Limits Warnings, setting of limits and warning parameters

4

5-** Digital inputs and outputs, includes relay controls

6-** Analog inputs and outputs

7-** Controls, setting parameters for speed and process controls

8-** Communication and option parameters, setting of FC RS485 and FC USB port parameters.

9-** Profibus parameters

10-** DeviceNet and CAN Fieldbus parameters

13-** Smart Logic Control parameters

14-** Special function parameters

15-** Drive information parameters

16-** Read out parameters

17-** Encoder Option parameters

32-** MCO 305 Basic parameters

33-** MCO 305 Advanced parameters

34-** MCO Data Readout parameters

MG.33.AG.02 - VLT® is a registered Danfoss trademark

71

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
4.4.1 0-** Operation/Display

4

Par.
Parameter description
No. #
0-0* Basic Settings
0-01
Language
0-02
Motor Speed Unit
0-03
Regional Settings
Operating State at Power-up
(Hand)
0-04
0-09
Performance Monitor
0-1* Set-up Operations
0-10
Active Set-up
0-11
Edit Set-up
0-12
This Set-up Linked to
0-13
Readout: Linked Set-ups
0-14
Readout: Edit Set-ups / Channel
0-2* LCP Display
0-20
Display Line 1.1 Small
0-21
Display Line 1.2 Small
0-22
Display Line 1.3 Small
0-23
Display Line 2 Large
0-24
Display Line 3 Large
0-25
My Personal Menu
0-3* LCP Custom Readout
0-30
Unit for User-defined Readout
0-31
Min Value of User-defined Readout

Default value

4-set-up

[0] English
[0] RPM
[0] International

Change during
operation

Conversion index

Type

1 set-up
2 set-ups
2 set-ups

TRUE
FALSE
FALSE

-

Uint8
Uint8
Uint8

[1] Forced stop, ref=old
0.0 %

All set-ups
All set-ups

TRUE
TRUE

-1

Uint8
Uint16

[1] Set-up 1
[1] Set-up 1
[0] Not linked
0 N/A
0 N/A

1 set-up
All set-ups
All set-ups
All set-ups
All set-ups

TRUE
TRUE
FALSE
FALSE
TRUE

0
0

Uint8
Uint8
Uint8
Uint16
Int32

1617
1614
1610
1613
1602
SR

All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
1 set-up

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0

Uint16
Uint16
Uint16
Uint16
Uint16
Uint16

All set-ups
All set-ups

TRUE
TRUE

-2

Uint8
Int32

All set-ups
1 set-up
1 set-up
1 set-up

TRUE
TRUE
TRUE
TRUE

-2
0
0
0

Int32
VisStr[25]
VisStr[25]
VisStr[25]

All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

-

Uint8
Uint8
Uint8
Uint8
Uint8
Uint8

All set-ups
All set-ups

FALSE
FALSE

-

Uint8
Uint8

1 set-up
1 set-up
1 set-up

TRUE
TRUE
TRUE

0
0

Int16
Uint8
Int16

1 set-up
All set-ups

TRUE
TRUE

0

Uint8
Uint16

[0] None
0.00 CustomReadoutUnit
100.00 CustomReadoutU0-32
Max Value of User-defined Readout
nit
0-37
Display Text 1
0 N/A
0-38
Display Text 2
0 N/A
0-39
Display Text 3
0 N/A
0-4* LCP Keypad
0-40
[Hand on] Key on LCP
null
0-41
[Off] Key on LCP
null
0-42
[Auto on] Key on LCP
null
0-43
[Reset] Key on LCP
null
0-44
[Off/Reset] Key on LCP
null
0-45
[Drive Bypass] Key on LCP
null
0-5* Copy/Save
0-50
LCP Copy
[0] No copy
0-51
Set-up Copy
[0] No copy
0-6* Password
0-60
Main Menu Password
100 N/A
0-61
Access to Main Menu w/o Password
[0] Full access
0-65
Quick Menu Password
200 N/A
Access to Quick Menu w/o Password
0-66
[0] Full access
0-67
Bus Password Access
0 N/A

72

FC 302
only

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4.4.2 1-** Load/Motor
Par.
Parameter description
No. #
1-0* General Settings
1-00 Configuration Mode
1-01 Motor Control Principle
1-02 Flux Motor Feedback Source
1-03 Torque Characteristics
1-04 Overload Mode
1-05 Local Mode Configuration
1-06 Clockwise Direction
1-1* Motor Selection
1-10 Motor Construction
1-2* Motor Data
1-20 Motor Power [kW]
1-21 Motor Power [HP]
1-22 Motor Voltage
1-23 Motor Frequency
1-24 Motor Current
1-25 Motor Nominal Speed
1-26 Motor Cont. Rated Torque
1-29 Automatic Motor Adaptation (AMA)
1-3* Adv. Motor Data
1-30 Stator Resistance (Rs)
1-31 Rotor Resistance (Rr)
1-33 Stator Leakage Reactance (X1)
1-34 Rotor Leakage Reactance (X2)
1-35 Main Reactance (Xh)
1-36 Iron Loss Resistance (Rfe)
1-37 d-axis Inductance (Ld)
1-39 Motor Poles
1-40 Back EMF at 1000 RPM
1-41 Motor Angle Offset
1-5* Load Indep. Setting
1-50 Motor Magnetisation at Zero Speed
1-51 Min Speed Normal Magnetising [RPM]
1-52 Min Speed Normal Magnetising [Hz]
1-53 Model Shift Frequency
1-54 Voltage reduction in fieldweakening
1-55 U/f Characteristic - U
1-56 U/f Characteristic - F
1-58 Flystart Test Pulses Current
1-59 Flystart Test Pulses Frequency
1-6* Load Depen. Setting
1-60 Low Speed Load Compensation
1-61 High Speed Load Compensation
1-62 Slip Compensation
1-63 Slip Compensation Time Constant
1-64 Resonance Dampening
1-65 Resonance Dampening Time Constant
1-66 Min. Current at Low Speed
1-67 Load Type
1-68 Minimum Inertia
1-69 Maximum Inertia
1-7* Start Adjustments
1-71 Start Delay
1-72 Start Function
1-73 Flying Start
1-74 Start Speed [RPM]
1-75 Start Speed [Hz]
1-76 Start Current
1-8* Stop Adjustments
1-80 Function at Stop
1-81 Min Speed for Function at Stop [RPM]
1-82 Min Speed for Function at Stop [Hz]
1-83 Precise Stop Function
1-84 Precise Stop Counter Value
1-85 Precise Stop Speed Compensation Delay
1-9* Motor Temperature
1-90 Motor Thermal Protection
1-91 Motor External Fan
1-93 Thermistor Resource
1-95 KTY Sensor Type
1-96 KTY Thermistor Resource
1-97 KTY Threshold level

Default value

null
null
[1] 24V encoder
[0] Constant torque
[0] High torque
[2] As mode par 1-00
[0] Normal

4-set-up

Type

-

Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8

All set-ups

FALSE

-

Uint8

SR
SR
SR
SR
SR
SR
SR
[0] Off

All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

-2
-2
0
0
-2
67
-1
-

Uint32
Uint32
Uint16
Uint16
Uint32
Uint16
Uint32
Uint8

SR
SR
SR
SR
SR
SR
SR
SR
SR
0 N/A

All
All
All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

-4
-4
-4
-4
-4
-3
-4
0
0
0

Uint32
Uint32
Uint32
Uint32
Uint32
Uint32
Int32
Uint8
Uint16
Int16

100 %
SR
SR
SR
0V
SR
SR
30 %
200 %

All
All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
FALSE
FALSE
TRUE
TRUE
FALSE
FALSE

0
67
-1
-1
0
-1
-1
0
0

Uint16
Uint16
Uint16
Uint16
Uint8
Uint16
Uint16
Uint16
Uint16

100 %
100 %
SR
SR
100 %
5 ms
100 %
[0] Passive load
SR
SR

All
All
All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE

0
0
0
-2
0
-3
0
-4
-4

Int16
Int16
Int16
Uint16
Uint16
Uint8
Uint8
Uint8
Uint32
Uint32

0.0 s
[2] Coast/delay time
[0] Disabled
SR
SR
0.00 A

All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
FALSE
TRUE
TRUE
TRUE

-1
67
-1
-2

Uint8
Uint8
Uint8
Uint16
Uint16
Uint32

[0] Coast
SR
SR
[0] Precise ramp stop
100000 N/A
10 ms

All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
FALSE
TRUE
TRUE

67
-1
0
-3

Uint8
Uint16
Uint16
Uint8
Uint32
Uint8

All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
1 set-up

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

100

Uint8
Uint16
Uint8
Uint8
Uint8
Int16

[0] No protection
[0] No
[0] None
[0] KTY Sensor 1
[0] None
80 °C

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

Change dur- Convering opera- sion index
tion
TRUE
FALSE
FALSE
TRUE
FALSE
TRUE
FALSE

[0] Asynchron

All
All
All
All
All
All
All

FC 302
only

MG.33.AG.02 - VLT® is a registered Danfoss trademark

x

x
x

x

x
x
x
x

x
x
x

4

73

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
4.4.3 2-** Brakes
Par.
Parameter description
No. #

4

2-0* DC-Brake
2-00 DC Hold Current
2-01 DC Brake Current
2-02 DC Braking Time
2-03 DC Brake Cut In Speed [RPM]
2-04 DC Brake Cut In Speed [Hz]
2-05 Maximum Reference
2-1* Brake Energy Funct.
2-10 Brake Function
2-11 Brake Resistor (ohm)
2-12 Brake Power Limit (kW)
2-13 Brake Power Monitoring
2-15 Brake Check
2-16 AC brake Max. Current
2-17 Over-voltage Control
2-18 Brake Check Condition
2-19 Over-voltage Gain
2-2* Mechanical Brake
2-20 Release Brake Current
2-21 Activate Brake Speed [RPM]
2-22 Activate Brake Speed [Hz]
2-23 Activate Brake Delay
2-24 Stop Delay
2-25 Brake Release Time
2-26 Torque Ref
2-27 Torque Ramp Time
2-28 Gain Boost Factor

74

Default value

4-set-up

FC 302
only

Change dur- Convering opera- sion index
tion

Type

50 %
50 %
10.0 s
SR
SR
MaxReference (P303)

All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
-1
67
-1
-3

Uint8
Uint16
Uint16
Uint16
Uint16
Int32

null
SR
SR
[0] Off
[0] Off
100.0 %
[0] Disabled
[0] At Power Up
100 %

All
All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
-1
0

Uint8
Uint16
Uint32
Uint8
Uint8
Uint32
Uint8
Uint8
Uint16

ImaxVLT (P1637)
SR
SR
0.0 s
0.0 s
0.20 s
0.00 %
0.2 s
1.00 N/A

All
All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

-2
67
-1
-1
-1
-2
-2
-1
-2

Uint32
Uint16
Uint16
Uint8
Uint8
Uint16
Int16
Uint8
Uint16

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4.4.4 3-** Reference/Ramps
Par.
Parameter description
No. #
3-0* Reference Limits
3-00 Reference Range
3-01 Reference/Feedback Unit
3-02 Minimum Reference
3-03 Maximum Reference
3-04 Reference Function
3-1* References
3-10 Preset Reference
3-11 Jog Speed [Hz]
3-12 Catch up/slow Down Value
3-13 Reference Site
3-14 Preset Relative Reference
3-15 Reference Resource 1
3-16 Reference Resource 2
3-17 Reference Resource 3
3-18 Relative Scaling Reference Resource
3-19 Jog Speed [RPM]
3-4* Ramp 1
3-40 Ramp 1 Type
3-41 Ramp 1 Ramp up Time
3-42 Ramp 1 Ramp Down Time
3-45 Ramp 1 S-ramp Ratio at Accel. Start
3-46 Ramp 1 S-ramp Ratio at Accel. End
3-47 Ramp 1 S-ramp Ratio at Decel. Start
3-48 Ramp 1 S-ramp Ratio at Decel. End
3-5* Ramp 2
3-50 Ramp 2 Type
3-51 Ramp 2 Ramp up Time
3-52 Ramp 2 Ramp down Time
3-55 Ramp 2 S-ramp Ratio at Accel. Start
3-56 Ramp 2 S-ramp Ratio at Accel. End
3-57 Ramp 2 S-ramp Ratio at Decel. Start
3-58 Ramp 2 S-ramp Ratio at Decel. End
3-6* Ramp 3
3-60 Ramp 3 Type
3-61 Ramp 3 Ramp up Time
3-62 Ramp 3 Ramp down Time
3-65 Ramp 3 S-ramp Ratio at Accel. Start
3-66 Ramp 3 S-ramp Ratio at Accel. End
3-67 Ramp 3 S-ramp Ratio at Decel. Start
3-68 Ramp 3 S-ramp Ratio at Decel. End
3-7* Ramp 4
3-70 Ramp 4 Type
3-71 Ramp 4 Ramp up Time
3-72 Ramp 4 Ramp Down Time
3-75 Ramp 4 S-ramp Ratio at Accel. Start
3-76 Ramp 4 S-ramp Ratio at Accel. End
3-77 Ramp 4 S-ramp Ratio at Decel. Start
3-78 Ramp 4 S-ramp Ratio at Decel. End
3-8* Other Ramps
3-80 Jog Ramp Time
3-81 Quick Stop Ramp Time
3-82 Quick Stop Ramp Type
3-83 Quick Stop S-ramp Ratio at Decel. Start
3-84 Quick Stop S-ramp Ratio at Decel. End
3-9* Digital Pot.Meter
3-90 Step Size
3-91 Ramp Time
3-92 Power Restore
3-93 Maximum Limit
3-94 Minimum Limit
3-95 Ramp Delay

Default value

4-set-up

FC 302
only

Change dur- Convering opera- sion index
tion

Type

null
null
SR
SR
[0] Sum

All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE

-3
-3
-

Uint8
Uint8
Int32
Int32
Uint8

0.00 %
SR
0.00 %
[0] Linked to Hand / Auto
0.00 %
null
null
null
[0] No function
SR

All
All
All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

-2
-1
-2
-2
67

Int16
Uint16
Int16
Uint8
Int32
Uint8
Uint8
Uint8
Uint8
Uint16

[0] Linear
SR
SR
50 %
50 %
50 %
50 %

All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

-2
-2
0
0
0
0

Uint8
Uint32
Uint32
Uint8
Uint8
Uint8
Uint8

[0] Linear
SR
SR
50 %
50 %
50 %
50 %

All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

-2
-2
0
0
0
0

Uint8
Uint32
Uint32
Uint8
Uint8
Uint8
Uint8

[0] Linear
SR
SR
50 %
50 %
50 %
50 %

All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

-2
-2
0
0
0
0

Uint8
Uint32
Uint32
Uint8
Uint8
Uint8
Uint8

[0] Linear
SR
SR
50 %
50 %
50 %
50 %

All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

-2
-2
0
0
0
0

Uint8
Uint32
Uint32
Uint8
Uint8
Uint8
Uint8

SR
SR
[0] Linear
50 %
50 %

All set-ups
2 set-ups
All set-ups
All set-ups
All set-ups

TRUE
TRUE
TRUE
TRUE
TRUE

-2
-2
0
0

Uint32
Uint32
Uint8
Uint8
Uint8

All
All
All
All
All
All

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

-2
-2
0
0
-3

Uint16
Uint32
Uint8
Int16
Int16
TimD

0.10 %
1.00 s
[0] Off
100 %
-100 %
SR

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

MG.33.AG.02 - VLT® is a registered Danfoss trademark

4

75

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
4.4.5 4-** Limits / Warnings
Par.
Parameter description
No. #

4

4-1* Motor Limits
4-10 Motor Speed Direction
4-11 Motor Speed Low Limit [RPM]
4-12 Motor Speed Low Limit [Hz]
4-13 Motor Speed High Limit [RPM]
4-14 Motor Speed High Limit [Hz]
4-16 Torque Limit Motor Mode
4-17 Torque Limit Generator Mode
4-18 Current Limit
4-19 Max Output Frequency
4-2* Limit Factors
4-20 Torque Limit Factor Source
4-21 Speed Limit Factor Source
4-3* Motor Speed Mon.
4-30 Motor Feedback Loss Function
4-31 Motor Feedback Speed Error
4-32 Motor Feedback Loss Timeout
4-34 Tracking Error Function
4-35 Tracking Error
4-36 Tracking Error Timeout
4-37 Tracking Error Ramping
4-38 Tracking Error Ramping Timeout
4-39 Tracking Error After Ramping Timeout
4-5* Adj. Warnings
4-50 Warning Current Low
4-51 Warning Current High
4-52 Warning Speed Low
4-53
4-54
4-55

Warning Speed High
Warning Reference Low
Warning Reference High

4-56

Warning Feedback Low

4-57 Warning Feedback High
4-58 Missing Motor Phase Function
4-6* Speed Bypass
4-60 Bypass Speed From [RPM]
4-61 Bypass Speed From [Hz]
4-62 Bypass Speed To [RPM]
4-63 Bypass Speed To [Hz]

76

Default value

null
SR
SR
SR
SR
SR
100.0 %
SR
132.0 Hz
[0] No function
[0] No function
[2] Trip
300 RPM
0.05 s
null
10 RPM
1.00 s
100 RPM
1.00 s
5.00 s
0.00 A
ImaxVLT (P1637)
0 RPM
outputSpeedHighLimit
(P413)
-999999.999 N/A
999999.999 N/A
-999999.999 ReferenceFeedbackUnit
999999.999 ReferenceFeedbackUnit
null
SR
SR
SR
SR

4-set-up

All
All
All
All
All
All
All
All
All

FC 302
only

Change dur- Convering opera- sion index
tion

Type

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE

67
-1
67
-1
-1
-1
-1
-1

Uint8
Uint16
Uint16
Uint16
Uint16
Uint16
Uint16
Uint32
Uint16

All set-ups
All set-ups

TRUE
TRUE

-

Uint8
Uint8

All
All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

67
-2
67
-2
67
-2
-2

Uint8
Uint16
Uint16
Uint8
Uint16
Uint16
Uint16
Uint16
Uint16

All set-ups
All set-ups
All set-ups

TRUE
TRUE
TRUE

-2
-2
67

Uint32
Uint32
Uint16

All set-ups
All set-ups
All set-ups

TRUE
TRUE
TRUE

67
-3
-3

Uint16
Int32
Int32

All set-ups

TRUE

-3

Int32

All set-ups
All set-ups

TRUE
TRUE

-3
-

Int32
Uint8

All
All
All
All

TRUE
TRUE
TRUE
TRUE

67
-1
67
-1

Uint16
Uint16
Uint16
Uint16

set-ups
set-ups
set-ups
set-ups

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4.4.6 5-** Digital In/Out
Par.
Parameter description
No. #
5-0* Digital I/O mode
5-00 Digital I/O Mode
5-01 Terminal 27 Mode
5-02 Terminal 29 Mode
5-1* Digital Inputs
5-10 Terminal 18 Digital Input
5-11 Terminal 19 Digital Input
5-12 Terminal 27 Digital Input
5-13 Terminal 29 Digital Input
5-14 Terminal 32 Digital Input
5-15 Terminal 33 Digital Input
5-16 Terminal X30/2 Digital Input
5-17 Terminal X30/3 Digital Input
5-18 Terminal X30/4 Digital Input
5-19 Terminal 37 Safe Stop
5-20 Terminal X46/1 Digital Input
5-21 Terminal X46/3 Digital Input
5-22 Terminal X46/5 Digital Input
5-23 Terminal X46/7 Digital Input
5-24 Terminal X46/9 Digital Input
5-25 Terminal X46/11 Digital Input
5-26 Terminal X46/13 Digital Input
5-3* Digital Outputs
5-30 Terminal 27 Digital Output
5-31 Terminal 29 Digital Output
5-32 Term X30/6 Digi Out (MCB 101)
5-33 Term X30/7 Digi Out (MCB 101)
5-4* Relays
5-40 Function Relay
5-41 On Delay, Relay
5-42 Off Delay, Relay
5-5* Pulse Input
5-50 Term. 29 Low Frequency
5-51 Term. 29 High Frequency
5-52
5-53
5-54
5-55
5-56

Term. 29 Low Ref./Feedb. Value
Term. 29 High Ref./Feedb. Value
Pulse Filter Time Constant #29
Term. 33 Low Frequency
Term. 33 High Frequency

5-57 Term. 33 Low Ref./Feedb. Value
5-58 Term. 33 High Ref./Feedb. Value
5-59 Pulse Filter Time Constant #33
5-6* Pulse Output
5-60 Terminal 27 Pulse Output Variable
5-62 Pulse Output Max Freq #27
5-63 Terminal 29 Pulse Output Variable
5-65 Pulse Output Max Freq #29
5-66 Terminal X30/6 Pulse Output Variable
5-68 Pulse Output Max Freq #X30/6
5-7* 24V Encoder Input
5-70 Term 32/33 Pulses per Revolution
5-71 Term 32/33 Encoder Direction
5-9* Bus Controlled
5-90 Digital & Relay Bus Control
5-93 Pulse Out #27 Bus Control
5-94 Pulse Out #27 Timeout Preset
5-95 Pulse Out #29 Bus Control
5-96 Pulse Out #29 Timeout Preset
5-97 Pulse Out #X30/6 Bus Control
5-98 Pulse Out #X30/6 Timeout Preset

Default value

4-set-up

[0] PNP
[0] Input
[0] Input

All set-ups
All set-ups
All set-ups

null
null
null
null
null
null
null
null
null
[1] Safe Stop Alarm
[0] No operation
[0] No operation
[0] No operation
[0] No operation
[0] No operation
[0] No operation
[0] No operation

All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
1 set-up
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups

null
null
null
null

All
All
All
All

FC 302
only

set-ups
set-ups
set-ups
set-ups

x

x

x

Change dur- Convering opera- sion index
tion

Type

FALSE
TRUE
TRUE

-

Uint8
Uint8
Uint8

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

-

Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8

TRUE
TRUE
TRUE
TRUE

-

Uint8
Uint8
Uint8
Uint8

TRUE
TRUE
TRUE

-2
-2

Uint8
Uint16
Uint16

null
0.01 s
0.01 s

All set-ups
All set-ups
All set-ups

100 Hz
100 Hz
0.000 ReferenceFeedbackUnit
SR
100 ms
100 Hz
100 Hz
0.000 ReferenceFeedbackUnit
SR
100 ms

All set-ups
All set-ups

x
x

TRUE
TRUE

0
0

Uint32
Uint32

All
All
All
All
All

x
x
x

TRUE
TRUE
FALSE
TRUE
TRUE

-3
-3
-3
0
0

Int32
Int32
Uint16
Uint32
Uint32

All set-ups
All set-ups
All set-ups

TRUE
TRUE
FALSE

-3
-3
-3

Int32
Int32
Uint16

All
All
All
All
All
All

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
0

Uint8
Uint32
Uint8
Uint32
Uint8
Uint32

null
SR
null
SR
null
SR

set-ups
set-ups
set-ups
set-ups
set-ups

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

x
x

1024 N/A
[0] Clockwise

All set-ups
All set-ups

FALSE
FALSE

0
-

Uint16
Uint8

0 N/A
0.00 %
0.00 %
0.00 %
0.00 %
0.00 %
0.00 %

All set-ups
All set-ups
1 set-up
All set-ups
1 set-up
All set-ups
1 set-up

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
-2
-2
-2
-2
-2
-2

Uint32
N2
Uint16
N2
Uint16
N2
Uint16

MG.33.AG.02 - VLT® is a registered Danfoss trademark

x
x

4

77

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
4.4.7 6-** Analog In/Out
Par.
Parameter description
No. #

4

6-0* Analog I/O Mode
6-00 Live Zero Timeout Time
6-01 Live Zero Timeout Function
6-1* Analog Input 1
6-10 Terminal 53 Low Voltage
6-11 Terminal 53 High Voltage
6-12 Terminal 53 Low Current
6-13 Terminal 53 High Current
6-14 Terminal 53 Low Ref./Feedb. Value
6-15 Terminal 53 High Ref./Feedb. Value
6-16 Terminal 53 Filter Time Constant
6-2* Analog Input 2
6-20 Terminal 54 Low Voltage
6-21 Terminal 54 High Voltage
6-22 Terminal 54 Low Current
6-23 Terminal 54 High Current
6-24 Terminal 54 Low Ref./Feedb. Value
6-25 Terminal 54 High Ref./Feedb. Value
6-26 Terminal 54 Filter Time Constant
6-3* Analog Input 3
6-30 Terminal X30/11 Low Voltage
6-31 Terminal X30/11 High Voltage
6-34 Term. X30/11 Low Ref./Feedb. Value
6-35 Term. X30/11 High Ref./Feedb. Value
6-36 Term. X30/11 Filter Time Constant
6-4* Analog Input 4
6-40 Terminal X30/12 Low Voltage
6-41 Terminal X30/12 High Voltage
6-44 Term. X30/12 Low Ref./Feedb. Value
6-45 Term. X30/12 High Ref./Feedb. Value
6-46 Term. X30/12 Filter Time Constant
6-5* Analog Output 1
6-50 Terminal 42 Output
6-51 Terminal 42 Output Min Scale
6-52 Terminal 42 Output Max Scale
6-53 Terminal 42 Output Bus Control
6-54 Terminal 42 Output Timeout Preset
6-55 Analog Output Filter
6-6* Analog Output 2
6-60 Terminal X30/8 Output
6-61 Terminal X30/8 Min. Scale
6-62 Terminal X30/8 Max. Scale
6-63 Terminal X30/8 Bus Control
6-64 Terminal X30/8 Output Timeout Preset
6-7* Analog Output 3
6-70 Terminal X45/1 Output
6-71 Terminal X45/1 Min. Scale
6-72 Terminal X45/1 Max. Scale
6-73 Terminal X45/1 Bus Control
6-74 Terminal X45/1 Output Timeout Preset
6-8* Analog Output 4
6-80 Terminal X45/3 Output
6-81 Terminal X45/3 Min. Scale
6-82 Terminal X45/3 Max. Scale
6-83 Terminal X45/3 Bus Control
6-84 Terminal X45/3 Output Timeout Preset

78

Default value

4-set-up

FC 302
only

10 s
[0] Off

All set-ups
All set-ups

TRUE
TRUE

0
-

Uint8
Uint8

0.07 V
10.00 V
0.14 mA
20.00 mA
0 ReferenceFeedbackUnit
SR
0.001 s

All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

-2
-2
-5
-5
-3
-3
-3

Int16
Int16
Int16
Int16
Int32
Int32
Uint16

0.07 V
10.00 V
0.14 mA
20.00 mA
0 ReferenceFeedbackUnit
SR
0.001 s

All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

-2
-2
-5
-5
-3
-3
-3

Int16
Int16
Int16
Int16
Int32
Int32
Uint16

0.07 V
10.00 V
0 ReferenceFeedbackUnit
SR
0.001 s

All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE

-2
-2
-3
-3
-3

Int16
Int16
Int32
Int32
Uint16

0.07 V
10.00 V
0 ReferenceFeedbackUnit
SR
0.001 s

All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE

-2
-2
-3
-3
-3

Int16
Int16
Int32
Int32
Uint16

null
0.00 %
100.00 %
0.00 %
0.00 %
[0] Off

All set-ups
All set-ups
All set-ups
All set-ups
1 set-up
1 set-up

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

-2
-2
-2
-2
-

Uint8
Int16
Int16
N2
Uint16
Uint8

null
0.00 %
100.00 %
0.00 %
0.00 %

All set-ups
All set-ups
All set-ups
All set-ups
1 set-up

TRUE
TRUE
TRUE
TRUE
TRUE

-2
-2
-2
-2

Uint8
Int16
Int16
N2
Uint16

null
0.00 %
100.00 %
0.00 %
0.00 %

All set-ups
All set-ups
All set-ups
All set-ups
1 set-up

TRUE
TRUE
TRUE
TRUE
TRUE

-2
-2
-2
-2

Uint8
Int16
Int16
N2
Uint16

null
0.00 %
100.00 %
0.00 %
0.00 %

All set-ups
All set-ups
All set-ups
All set-ups
1 set-up

TRUE
TRUE
TRUE
TRUE
TRUE

-2
-2
-2
-2

Uint8
Int16
Int16
N2
Uint16

MG.33.AG.02 - VLT® is a registered Danfoss trademark

Change dur- Convering opera- sion index
tion

Type

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4.4.8 7-** Controllers
Par.
Parameter description
No. #
7-0* Speed PID Ctrl.
7-00 Speed PID Feedback Source
7-02 Speed PID Proportional Gain
7-03 Speed PID Integral Time
7-04 Speed PID Differentiation Time
7-05 Speed PID Diff. Gain Limit
7-06 Speed PID Lowpass Filter Time
7-07 Speed PID Feedback Gear Ratio
7-08 Speed PID Feed Forward Factor
7-1* Torque PI Ctrl.
7-12 Torque PI Proportional Gain
7-13 Torque PI Integration Time
7-2* Process Ctrl. Feedb
7-20 Process CL Feedback 1 Resource
7-22 Process CL Feedback 2 Resource
7-3* Process PID Ctrl.
7-30 Process PID Normal/ Inverse Control
7-31 Process PID Anti Windup
7-32 Process PID Start Speed
7-33 Process PID Proportional Gain
7-34 Process PID Integral Time
7-35 Process PID Differentiation Time
7-36 Process PID Diff. Gain Limit
7-38 Process PID Feed Forward Factor
7-39 On Reference Bandwidth
7-4* Adv. Process PID I
7-40 Process PID I-part Reset
7-41 Process PID Output Neg. Clamp
7-42 Process PID Output Pos. Clamp
7-43 Process PID Gain Scale at Min. Ref.
7-44 Process PID Gain Scale at Max. Ref.
7-45 Process PID Feed Fwd Resource
7-46 Process PID Feed Fwd Normal/ Inv. Ctrl.
7-49 Process PID Output Normal/ Inv. Ctrl.
7-5* Adv. Process PID II
7-50 Process PID Extended PID
7-51 Process PID Feed Fwd Gain
7-52 Process PID Feed Fwd Ramp up
7-53 Process PID Feed Fwd Ramp down
7-56 Process PID Ref. Filter Time
7-57 Process PID Fb. Filter Time

Default value

null
SR
SR
SR
5.0 N/A
SR
1.0000 N/A
0%

4-set-up

All
All
All
All
All
All
All
All

FC 302
only

Change dur- Convering opera- sion index
tion

Type

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE

-3
-4
-4
-1
-4
-4
0

Uint8
Uint16
Uint32
Uint16
Uint16
Uint16
Uint32
Uint16

100 %
0.020 s

All set-ups
All set-ups

TRUE
TRUE

0
-3

Uint16
Uint16

[0] No function
[0] No function

All set-ups
All set-ups

TRUE
TRUE

-

Uint8
Uint8

[0] Normal
[1] On
0 RPM
0.01 N/A
10000.00 s
0.00 s
5.0 N/A
0%
5%

All
All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

67
-2
-2
-2
-1
0
0

Uint8
Uint8
Uint16
Uint16
Uint32
Uint16
Uint16
Uint16
Uint8

[0] No
-100 %
100 %
100 %
100 %
[0] No function
[0] Normal
[0] Normal

All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
0
0
-

Uint8
Int16
Int16
Int16
Int16
Uint8
Uint8
Uint8

[1] Enabled
1.00 N/A
0.01 s
0.01 s
0.001 s
0.001 s

All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

-2
-2
-2
-3
-3

Uint8
Uint16
Uint32
Uint32
Uint16
Uint16

MG.33.AG.02 - VLT® is a registered Danfoss trademark

4

79

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
4.4.9 8-** Comm. and Options
Par.
Parameter description
No. #

4

8-0* General Settings
8-01 Control Site
8-02 Control Word Source
8-03 Control Word Timeout Time
8-04 Control Word Timeout Function
8-05 End-of-Timeout Function
8-06 Reset Control Word Timeout
8-07 Diagnosis Trigger
8-08 Readout Filtering
8-1* Ctrl. Word Settings
8-10 Control Word Profile
8-13 Configurable Status Word STW
8-14 Configurable Control Word CTW
8-3* FC Port Settings
8-30 Protocol
8-31 Address
8-32 FC Port Baud Rate
8-33 Parity / Stop Bits
8-34 Estimated cycle time
8-35 Minimum Response Delay
8-36 Max Response Delay
8-37 Max Inter-Char Delay
8-4* FC MC protocol set
8-40 Telegram selection
8-41 Parameters for signals
8-42 PCD write configuration
8-43 PCD read configuration
8-5* Digital/Bus
8-50 Coasting Select
8-51 Quick Stop Select
8-52 DC Brake Select
8-53 Start Select
8-54 Reversing Select
8-55 Set-up Select
8-56 Preset Reference Select
8-57 Profidrive OFF2 Select
8-58 Profidrive OFF3 Select
8-8* FC Port Diagnostics
8-80 Bus Message Count
8-81 Bus Error Count
8-82 Slave Messages Rcvd
8-83 Slave Error Count
8-9* Bus Jog
8-90 Bus Jog 1 Speed
8-91 Bus Jog 2 Speed

80

Default value

4-set-up

[0] Digital and ctrl.word
null
1.0 s
null
[1] Resume set-up
[0] Do not reset
[0] Disable
null

All set-ups
All set-ups
1 set-up
1 set-up
1 set-up
All set-ups
2 set-ups
All set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

-1
-

Uint8
Uint8
Uint32
Uint8
Uint8
Uint8
Uint8
Uint8

[0] FC profile
null
[1] Profile default

All set-ups
All set-ups
All set-ups

TRUE
TRUE
TRUE

-

Uint8
Uint8
Uint8

[0] FC
1 N/A
null
[0] Even Parity, 1 Stop Bit
0 ms
10 ms
SR
SR

1 set-up
1 set-up
1 set-up
1 set-up
2 set-ups
All set-ups
1 set-up
1 set-up

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
-3
-3
-3
-5

Uint8
Uint8
Uint8
Uint8
Uint32
Uint16
Uint16
Uint16

[1] Standard telegram 1
0
SR
SR

2 set-ups
All set-ups
All set-ups
All set-ups

TRUE
FALSE
TRUE
TRUE

-

Uint8
Uint16
Uint16
Uint16

All
All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

-

Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8

All
All
All
All

set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE

0
0
0
0

Uint32
Uint32
Uint32
Uint32

All set-ups
All set-ups

TRUE
TRUE

67
67

Uint16
Uint16

[3] Logic
[3] Logic
[3] Logic
[3] Logic
[3] Logic
[3] Logic
[3] Logic
[3] Logic
[3] Logic
0
0
0
0

OR
OR
OR
OR
OR
OR
OR
OR
OR

N/A
N/A
N/A
N/A

100 RPM
200 RPM

FC 302
only

MG.33.AG.02 - VLT® is a registered Danfoss trademark

Change dur- Convering opera- sion index
tion

Type

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4.4.10 9-** Profibus
Par.
Parameter description
No. #
9-00
9-07
9-15
9-16
9-18
9-22
9-23
9-27
9-28
9-44
9-45
9-47
9-52
9-53
9-63
9-64

Setpoint
Actual Value
PCD Write Configuration
PCD Read Configuration
Node Address
Telegram Selection
Parameters for Signals
Parameter Edit
Process Control
Fault Message Counter
Fault Code
Fault Number
Fault Situation Counter
Profibus Warning Word
Actual Baud Rate
Device Identification

9-65
9-67
9-68
9-71
9-72
9-75
9-80
9-81
9-82
9-83
9-84
9-90
9-91
9-92
9-93
9-94
9-99

Profile Number
Control Word 1
Status Word 1
Profibus Save Data Values
ProfibusDriveReset
DO Identification
Defined Parameters (1)
Defined Parameters (2)
Defined Parameters (3)
Defined Parameters (4)
Defined Parameters (5)
Changed Parameters (1)
Changed Parameters (2)
Changed Parameters (3)
Changed parameters (4)
Changed parameters (5)
Profibus Revision Counter

Default value

4-set-up

FC 302
only

Change dur- Convering opera- sion index
tion
TRUE
0
FALSE
0
TRUE
TRUE
TRUE
0
TRUE
TRUE
FALSE
FALSE
TRUE
0
TRUE
0
TRUE
0
TRUE
0
TRUE
0
TRUE
TRUE
0

0 N/A
0 N/A
SR
SR
126 N/A
[100] None
0
[1] Enabled
[1] Enable cyclic master
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
[255] No baudrate found
0 N/A

All set-ups
All set-ups
2 set-ups
2 set-ups
1 set-up
1 set-up
All set-ups
2 set-ups
2 set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups

0 N/A
0 N/A
0 N/A
[0] Off
[0] No action
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A

All set-ups
All set-ups
All set-ups
All set-ups
1 set-up
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups

Default value

4-set-up

null
null
SR
0 N/A
0 N/A
0 N/A

2 set-ups
2 set-ups
2 set-ups
All set-ups
All set-ups
All set-ups

FALSE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
0
0

Uint8
Uint8
Uint8
Uint8
Uint8
Uint8

null
SR
SR
0 N/A
[0] Off
[0] Off

All set-ups
All set-ups
All set-ups
All set-ups
2 set-ups
2 set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
-

Uint8
Uint16
Uint16
Uint16
Uint8
Uint8

0
0
0
0

All
All
All
All

set-ups
set-ups
set-ups
set-ups

FALSE
FALSE
FALSE
FALSE

0
0
0
0

Uint16
Uint16
Uint16
Uint16

0 N/A
[0] Off
SR
[0] Off
SR
0 N/A

2 set-ups
All set-ups
All set-ups
1 set-up
1 set-up
All set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
0
0

Uint8
Uint8
Uint16
Uint8
Uint16
Uint32

SR
SR

2 set-ups
2 set-ups

TRUE
TRUE

-

Uint16
Uint16

TRUE
TRUE
TRUE
TRUE
FALSE
TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Type
Uint16
Uint16
Uint16
Uint16
Uint8
Uint8
Uint16
Uint16
Uint8
Uint16
Uint16
Uint16
Uint16
V2
Uint8
Uint16
OctStr[
2]
V2
V2
Uint8
Uint8
Uint16
Uint16
Uint16
Uint16
Uint16
Uint16
Uint16
Uint16
Uint16
Uint16
Uint16
Uint16

4

4.4.11 10-** CAN Fieldbus
Par.
Parameter description
No. #
10-0* Common Settings
10-00 CAN Protocol
10-01 Baud Rate Select
10-02 MAC ID
10-05 Readout Transmit Error Counter
10-06 Readout Receive Error Counter
10-07 Readout Bus Off Counter
10-1* DeviceNet
10-10 Process Data Type Selection
10-11 Process Data Config Write
10-12 Process Data Config Read
10-13 Warning Parameter
10-14 Net Reference
10-15 Net Control
10-2* COS Filters
10-20 COS Filter 1
10-21 COS Filter 2
10-22 COS Filter 3
10-23 COS Filter 4
10-3* Parameter Access
10-30 Array Index
10-31 Store Data Values
10-32 Devicenet Revision
10-33 Store Always
10-34 DeviceNet Product Code
10-39 Devicenet F Parameters
10-5* CANopen
10-50 Process Data Config Write.
10-51 Process Data Config Read.

N/A
N/A
N/A
N/A

FC 302
only

MG.33.AG.02 - VLT® is a registered Danfoss trademark

Change dur- Convering opera- sion index
tion

Type

81

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4.4.12 12-** Ethernet

4

Par.
Parameter description
Default value
No. #
12-0* IP Settings
12-00 IP Address Assignment
null
12-01 IP Address
0 N/A
12-02 Subnet Mask
0 N/A
12-03 Default Gateway
0 N/A
12-04 DHCP Server
0 N/A
12-05 Lease Expires
SR
12-06 Name Servers
0 N/A
12-07 Domain Name
0 N/A
12-08 Host Name
0 N/A
12-09 Physical Address
0 N/A
12-1* Ethernet Link Parameters
12-10 Link Status
[0] No Link
12-11 Link Duration
SR
12-12 Auto Negotiation
[1] On
12-13 Link Speed
[0] None
12-14 Link Duplex
[1] Full Duplex
12-2* Process Data
12-20 Control Instance
SR
12-21 Process Data Config Write
SR
12-22 Process Data Config Read
SR
12-28 Store Data Values
[0] Off
12-29 Store Always
[0] Off
12-3* EtherNet/IP
12-30 Warning Parameter
0 N/A
12-31 Net Reference
[0] Off
12-32 Net Control
[0] Off
12-33 CIP Revision
SR
12-34 CIP Product Code
SR
12-35 EDS Parameter
0 N/A
12-37 COS Inhibit Timer
0 N/A
12-38 COS Filter
0 N/A
12-4* Modbus TCP
12-40 Status Parameter
0 N/A
12-41 Slave Message Count
0 N/A
Slave Exception Message
12-42 Count
0 N/A
12-8* Other Ethernet Services
12-80 FTP Server
[0] Disabled
12-81 HTTP Server
[0] Disabled
12-82 SMTP Service
[0] Disabled
Transparent Socket Channel
12-89 Port
SR
12-9* Advanced Ethernet Services
12-90 Cable Diagnostic
[0] Disabled
12-91 MDI-X
[1] Enabled
12-92 IGMP Snooping
[1] Enabled
12-93 Cable Error Length
0 N/A
12-94 Broadcast Storm Protection
-1 %
12-95 Broadcast Storm Filter
[0] Broadcast only
12-96 Port Mirroring
[0] Disable
12-98 Interface Counters
4000 N/A
12-99 Media Counters
0 N/A

82

4-set-up

FC 302
only

Change during
operation

Conversion index

Type

2 set-ups
1 set-up
1 set-up
1 set-up
2 set-ups
All set-ups
1 set-up
1 set-up
1 set-up
1 set-up

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
0
0
0
0
0
0
0

Uint8
OctStr[4]
OctStr[4]
OctStr[4]
OctStr[4]
TimD
OctStr[4]
VisStr[48]
VisStr[48]
VisStr[17]

1 set-up
All set-ups
2 set-ups
2 set-ups
2 set-ups

TRUE
TRUE
TRUE
TRUE
TRUE

0
-

Uint8
TimD
Uint8
Uint8
Uint8

1 set-up
All set-ups
All set-ups
All set-ups
1 set-up

TRUE
TRUE
TRUE
TRUE
TRUE

0
-

Uint8
Uint16
Uint16
Uint8
Uint8

All set-ups
2 set-ups
2 set-ups
All set-ups
1 set-up
All set-ups
All set-ups
All set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
0
0
0
0

Uint16
Uint8
Uint8
Uint16
Uint16
Uint32
Uint16
Uint16

All set-ups
All set-ups

TRUE
TRUE

0
0

Uint16
Uint32

All set-ups

TRUE

0

Uint32

2 set-ups
2 set-ups
2 set-ups

TRUE
TRUE
TRUE

-

Uint8
Uint8
Uint8

2 set-ups

TRUE

0

Uint16

2 set-ups
2 set-ups
2 set-ups
1 set-up
2 set-ups
2 set-ups
2 set-ups
All set-ups
All set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
0
0

Uint8
Uint8
Uint8
Uint16
Int8
Uint8
Uint8
Uint16
Uint16

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4.4.13 13-** Smart Logic
Par.
Parameter description
No. #
13-0* SLC Settings
13-00 SL Controller Mode
13-01 Start Event
13-02 Stop Event
13-03 Reset SLC
13-1* Comparators
13-10 Comparator Operand
13-11 Comparator Operator
13-12 Comparator Value
13-2* Timers
13-20 SL Controller Timer
13-4* Logic Rules
13-40 Logic Rule Boolean 1
13-41 Logic Rule Operator 1
13-42 Logic Rule Boolean 2
13-43 Logic Rule Operator 2
13-44 Logic Rule Boolean 3
13-5* States
13-51 SL Controller Event
13-52 SL Controller Action

Default value

4-set-up

FC 302
only

null
null
null
[0] Do not reset SLC

2 set-ups
2 set-ups
2 set-ups
All set-ups

TRUE
TRUE
TRUE
TRUE

-

Uint8
Uint8
Uint8
Uint8

null
null
SR

2 set-ups
2 set-ups
2 set-ups

TRUE
TRUE
TRUE

-3

Uint8
Uint8
Int32

SR

1 set-up

TRUE

-3

TimD

null
null
null
null
null

2
2
2
2
2

set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE

-

Uint8
Uint8
Uint8
Uint8
Uint8

null
null

2 set-ups
2 set-ups

TRUE
TRUE

-

Uint8
Uint8

MG.33.AG.02 - VLT® is a registered Danfoss trademark

Change dur- Convering opera- sion index
tion

Type

4

83

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
4.4.14 14-** Special Functions
Par.
Parameter description
No. #

4

14-0* Inverter Switching
14-00 Switching Pattern
14-01 Switching Frequency
14-03 Overmodulation
14-04 PWM Random
14-06 Dead Time Compensation
14-1* Mains On/Off
14-10 Mains Failure
14-11 Mains Voltage at Mains Fault
14-12 Function at Mains Imbalance
14-13 Mains Failure Step Factor
14-14 Kin. Backup Time Out
14-2* Trip Reset
14-20 Reset Mode
14-21 Automatic Restart Time
14-22 Operation Mode
14-23 Typecode Setting
14-24 Trip Delay at Current Limit
14-25 Trip Delay at Torque Limit
14-26 Trip Delay at Inverter Fault
14-28 Production Settings
14-29 Service Code
14-3* Current Limit Ctrl.
14-30 Current Lim Ctrl, Proportional Gain
14-31 Current Lim Ctrl, Integration Time
14-32 Current Lim Ctrl, Filter Time
14-35 Stall Protection
14-4* Energy Optimising
14-40 VT Level
14-41 AEO Minimum Magnetisation
14-42 Minimum AEO Frequency
14-43 Motor Cosphi
14-5* Environment
14-50 RFI Filter
14-51 DC Link Compensation
14-52 Fan Control
14-53 Fan Monitor
14-55 Output Filter
14-56 Capacitance Output Filter
14-57 Inductance Output Filter
14-59 Actual Number of Inverter Units
14-7* Compatibility
14-72 Legacy Alarm Word
14-73 Legacy Warning Word
14-74 Leg. Ext. Status Word
14-8* Options
14-80 Option Supplied by External 24VDC
14-9* Fault Settings
14-90 Fault Level

84

Default value

4-set-up

FC 302
only

Change dur- Convering opera- sion index
tion

Type

null
null
[1] On
[0] Off
[1] On

All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
FALSE
TRUE
TRUE

-

Uint8
Uint8
Uint8
Uint8
Uint8

[0] No function
SR
[0] Trip
1.0 N/A
60 s

All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups

FALSE
TRUE
TRUE
TRUE
TRUE

0
-1
0

Uint8
Uint16
Uint8
Uint8
Uint8

All set-ups
All set-ups
All set-ups
2 set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups

TRUE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
0
0
0

Uint8
Uint16
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Int32

100 %
0.020 s
1.0 ms
[1] Enabled

All
All
All
All

set-ups
set-ups
set-ups
set-ups

FALSE
FALSE
TRUE
FALSE

0
-3
-4
-

Uint16
Uint16
Uint16
Uint8

66 %
SR
10 Hz
SR

All
All
All
All

set-ups
set-ups
set-ups
set-ups

FALSE
TRUE
TRUE
TRUE

0
0
0
-2

Uint8
Uint8
Uint8
Uint16

FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE

-7
-6
0

Uint8
Uint8
Uint8
Uint8
Uint8
Uint16
Uint16
Uint8

[0] Manual reset
10 s
[0] Normal operation
null
60 s
60 s
SR
[0] No action
0 N/A

[1] On
[1] On
[0] Auto
[1] Warning
[0] No Filter
2.0 uF
7.000 mH
SR

1 set-up
1 set-up
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
1 set-up

x

0 N/A
0 N/A
0 N/A

All set-ups
All set-ups
All set-ups

FALSE
FALSE
FALSE

0
0
0

Uint32
Uint32
Uint32

[1] Yes

2 set-ups

FALSE

-

Uint8

null

1 set-up

TRUE

-

Uint8

x

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4.4.15 15-** Drive Information
Par.
Parameter description
No. #
15-0* Operating Data
15-00 Operating Hours
15-01 Running Hours
15-02 kWh Counter
15-03 Power Up's
15-04 Over Temp's
15-05 Over Volt's
15-06 Reset kWh Counter
15-07 Reset Running Hours Counter
15-1* Data Log Settings
15-10 Logging Source
15-11 Logging Interval
15-12 Trigger Event
15-13 Logging Mode
15-14 Samples Before Trigger
15-2* Historic Log
15-20 Historic Log: Event
15-21 Historic Log: Value
15-22 Historic Log: Time
15-3* Fault Log
15-30 Fault Log: Error Code
15-31 Fault Log: Value
15-32 Fault Log: Time
15-4* Drive Identification
15-40 FC Type
15-41 Power Section
15-42 Voltage
15-43 Software Version
15-44 Ordered Typecode String
15-45 Actual Typecode String
15-46 Frequency Converter Ordering No
15-47 Power Card Ordering No
15-48 LCP Id No
15-49 SW ID Control Card
15-50 SW ID Power Card
15-51 Frequency Converter Serial Number
15-53 Power Card Serial Number
15-59 CSIV Filename
15-6* Option Ident
15-60 Option Mounted
15-61 Option SW Version
15-62 Option Ordering No
15-63 Option Serial No
15-70 Option in Slot A
15-71 Slot A Option SW Version
15-72 Option in Slot B
15-73 Slot B Option SW Version
15-74 Option in Slot C0
15-75 Slot C0 Option SW Version
15-76 Option in Slot C1
15-77 Slot C1 Option SW Version
15-9* Parameter Info
15-92 Defined Parameters
15-93 Modified Parameters
15-98 Drive Identification
15-99 Parameter Metadata

Default value

Change during operation

Conversion index

Type

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
TRUE

74
74
75
0
0
0
-

Uint32
Uint32
Uint32
Uint32
Uint16
Uint16
Uint8
Uint8

0
SR
[0] False
[0] Log always
50 N/A

2 set-ups
2 set-ups
1 set-up
2 set-ups
2 set-ups

TRUE
TRUE
TRUE
TRUE
TRUE

-3
0

Uint16
TimD
Uint8
Uint8
Uint8

0 N/A
0 N/A
0 ms

All set-ups
All set-ups
All set-ups

FALSE
FALSE
FALSE

0
0
-3

Uint8
Uint32
Uint32

0 N/A
0 N/A
0s

All set-ups
All set-ups
All set-ups

FALSE
FALSE
FALSE

0
0
0

Uint8
Int16
Uint32

0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
SR

All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
All set-ups
1 set-up

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

0
0
0
0
0
0
0
0
0
0
0
0
0
0

VisStr[6]
VisStr[20]
VisStr[20]
VisStr[5]
VisStr[40]
VisStr[40]
VisStr[8]
VisStr[8]
VisStr[20]
VisStr[20]
VisStr[20]
VisStr[10]
VisStr[19]
VisStr[16]

0
0
0
0
0
0
0
0
0
0
0
0

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

All
All
All
All
All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

0
0
0
0
0
0
0
0
0
0
0
0

VisStr[30]
VisStr[20]
VisStr[8]
VisStr[18]
VisStr[30]
VisStr[20]
VisStr[30]
VisStr[20]
VisStr[30]
VisStr[20]
VisStr[30]
VisStr[20]

0
0
0
0

N/A
N/A
N/A
N/A

All
All
All
All

set-ups
set-ups
set-ups
set-ups

FALSE
FALSE
FALSE
FALSE

0
0
0
0

Uint16
Uint16
VisStr[40]
Uint16

0h
0h
0 kWh
0 N/A
0 N/A
0 N/A
[0] Do not reset
[0] Do not reset

4-set-up
All
All
All
All
All
All
All
All

FC 302
only

MG.33.AG.02 - VLT® is a registered Danfoss trademark

4

85

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
4.4.16 16-** Data Readouts
Par.
Parameter description
No. #
16-0* General Status
16-00 Control Word

4

16-01 Reference [Unit]
16-02 Reference %
16-03 Status Word
16-05 Main Actual Value [%]
16-09 Custom Readout
16-1* Motor Status
16-10 Power [kW]
16-11 Power [hp]
16-12 Motor Voltage
16-13 Frequency
16-14 Motor Current
16-15 Frequency [%]
16-16 Torque [Nm]
16-17 Speed [RPM]
16-18 Motor Thermal
16-19 KTY sensor temperature
16-20 Motor Angle
16-21 Torque [%] High Res.
16-22 Torque [%]
16-25 Torque [Nm] High
16-3* Drive Status
16-30 DC Link Voltage
16-32 Brake Energy /s
16-33 Brake Energy /2 min
16-34 Heatsink Temp.
16-35 Inverter Thermal
16-36 Inv. Nom. Current
16-37 Inv. Max. Current
16-38 SL Controller State
16-39 Control Card Temp.
16-40 Logging Buffer Full
16-41 LCP Bottom Statusline
16-49 Current Fault Source
16-5* Ref. & Feedb.
16-50 External Reference
16-51 Pulse Reference
16-52 Feedback [Unit]
16-53 Digi Pot Reference
16-6* Inputs & Outputs
16-60 Digital Input
16-61 Terminal 53 Switch Setting
16-62 Analog Input 53
16-63 Terminal 54 Switch Setting
16-64 Analog Input 54
16-65 Analog Output 42 [mA]
16-66 Digital Output [bin]
16-67 Freq. Input #29 [Hz]
16-68 Freq. Input #33 [Hz]
16-69 Pulse Output #27 [Hz]
16-70 Pulse Output #29 [Hz]
16-71 Relay Output [bin]
16-72 Counter A
16-73 Counter B
16-74 Prec. Stop Counter
16-75 Analog In X30/11
16-76 Analog In X30/12
16-77 Analog Out X30/8 [mA]
16-78 Analog Out X45/1 [mA]
16-79 Analog Out X45/3 [mA]
16-8* Fieldbus & FC Port
16-80 Fieldbus CTW 1
16-82 Fieldbus REF 1
16-84 Comm. Option STW
16-85 FC Port CTW 1
16-86 FC Port REF 1
16-9* Diagnosis Readouts
16-90 Alarm Word
16-91 Alarm Word 2
16-92 Warning Word
16-93 Warning Word 2
16-94 Ext. Status Word

86

Default value

4-set-up

FC 302
only

Change dur- Convering opera- sion index
tion

Type

0 N/A
0.000 ReferenceFeedbackUnit
0.0 %
0 N/A
0.00 %
0.00 CustomReadoutUnit

All set-ups

FALSE

0

V2

All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups

FALSE
FALSE
FALSE
FALSE
FALSE

-3
-1
0
-2
-2

Int32
Int16
V2
N2
Int32

0.00 kW
0.00 hp
0.0 V
0.0 Hz
0.00 A
0.00 %
0.0 Nm
0 RPM
0%
0 °C
0 N/A
0.0 %
0%
0.0 Nm

All
All
All
All
All
All
All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
FALSE
FALSE
FALSE

-2
-2
-1
-1
-2
-2
-1
67
0
100
0
-1
0
-1

Int32
Int32
Uint16
Uint16
Int32
N2
Int16
Int32
Uint8
Int16
Uint16
Int16
Int16
Int32

0V
0.000 kW
0.000 kW
0 °C
0%
SR
SR
0 N/A
0 °C
[0] No

All
All
All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE

0
0
0
100
0
-2
-2
0
100
-

TRUE
TRUE

0
0

Uint16
Uint32
Uint32
Uint8
Uint8
Uint32
Uint32
Uint8
Uint8
Uint8
VisStr[
50]
Uint8

0 N/A
0 N/A

All set-ups
All set-ups

0.0 N/A
0.0 N/A
0.000 ReferenceFeedbackUnit
0.00 N/A

All set-ups
All set-ups

FALSE
FALSE

-1
-1

Int16
Int16

All set-ups
All set-ups

FALSE
FALSE

-3
-2

Int32
Int16

All
All
All
All
All
All
All
All
All
All
All
All
All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
FALSE

0
-3
-3
-3
0
0
0
0
0
0
0
0
0
-3
-3
-3
-3
-3

Uint16
Uint8
Int32
Uint8
Int32
Int16
Int16
Int32
Int32
Int32
Int32
Int16
Int32
Int32
Uint32
Int32
Int32
Int16
Int16
Int16

0 N/A
[0] Current
0.000 N/A
[0] Current
0.000 N/A
0.000 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0.000 N/A
0.000 N/A
0.000 N/A
0.000 N/A
0.000 N/A

x

x
x

0
0
0
0
0

N/A
N/A
N/A
N/A
N/A

All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups

FALSE
FALSE
FALSE
FALSE
FALSE

0
0
0
0
0

V2
N2
V2
V2
N2

0
0
0
0
0

N/A
N/A
N/A
N/A
N/A

All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups

FALSE
FALSE
FALSE
FALSE
FALSE

0
0
0
0
0

Uint32
Uint32
Uint32
Uint32
Uint32

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4.4.17 17-** Motor Feedb.Option
Par.
Parameter description
No. #
17-1* Inc. Enc. Interface
17-10 Signal Type
17-11 Resolution (PPR)
17-2* Abs. Enc. Interface
17-20 Protocol Selection
17-21 Resolution (Positions/Rev)
17-24 SSI Data Length
17-25 Clock Rate
17-26 SSI Data Format
17-34 HIPERFACE Baudrate
17-5* Resolver Interface
17-50 Poles
17-51 Input Voltage
17-52 Input Frequency
17-53 Transformation Ratio
17-56 Encoder Sim. Resolution
17-59 Resolver Interface
17-6* Monitoring and App.
17-60 Feedback Direction
17-61 Feedback Signal Monitoring

Type

4-set-up

[1] RS422 (5V TTL)
1024 N/A

All set-ups
All set-ups

FALSE
FALSE

0

Uint8
Uint16

All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

0
0
3
-

Uint8
Uint32
Uint8
Uint16
Uint8
Uint8

2 N/A
7.0 V
10.0 kHz
0.5 N/A
[0] Disabled
[0] Disabled

1 set-up
1 set-up
1 set-up
1 set-up
1 set-up
All set-ups

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

0
-1
2
-1
-

Uint8
Uint8
Uint8
Uint8
Uint8
Uint8

[0] Clockwise
[1] Warning

All set-ups
All set-ups

FALSE
TRUE

-

Uint8
Uint8

Default value

4-set-up

[0] None
SR
13 N/A
SR
[0] Gray code
[4] 9600

FC 302
only

Change dur- Convering opera- sion index
tion

Default value

4

4.4.18 18-** Data Readouts 2
Par.
Parameter description
No. #
18-3* Analog Readouts
18-36 Analog Input X48/2 [mA]
18-37 Temp. Input X48/4
18-38 Temp. Input X48/7
18-39 Temp. Input X48/10
18-6* Inputs & Outputs 2
18-60 Digital Input 2
18-90 PID Readouts
18-90 Process PID Error
18-91 Process PID Output
18-92 Process PID Clamped Output
18-93 Process PID Gain Scaled Output

0.000 N/A
0 N/A
0 N/A
0 N/A

Change dur- Convering opera- sion index
tion

Type

set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE

-3
0
0
0

Int32
Int16
Int16
Int16

0 N/A

All set-ups

FALSE

0

Uint16

0.0
0.0
0.0
0.0

All
All
All
All

FALSE
FALSE
FALSE
FALSE

-1
-1
-1
-1

Int16
Int16
Int16
Int16

%
%
%
%

All
All
All
All

FC 302
only

set-ups
set-ups
set-ups
set-ups

MG.33.AG.02 - VLT® is a registered Danfoss trademark

87

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
4.4.19 30-** Special Features
Par.
Parameter description
No. #

4

30-0* Wobbler
30-00 Wobble Mode
30-01 Wobble Delta Frequency [Hz]
30-02 Wobble Delta Frequency [%]
30-03 Wobble Delta Freq. Scaling Resource
30-04 Wobble Jump Frequency [Hz]
30-05 Wobble Jump Frequency [%]
30-06 Wobble Jump Time
30-07 Wobble Sequence Time
30-08 Wobble Up/ Down Time
30-09 Wobble Random Function
30-10 Wobble Ratio
30-11 Wobble Random Ratio Max.
30-12 Wobble Random Ratio Min.
30-19 Wobble Delta Freq. Scaled
30-2* Adv. Start Adjust
30-20 High Starting Torque Time [s]
30-21 High Starting Torque Current [%]
30-22 Locked Rotor Protection
30-23 Locked Rotor Detection Time [s]
30-8* Compatibility (I)
30-80 d-axis Inductance (Ld)
30-81 Brake Resistor (ohm)
30-83 Speed PID Proportional Gain
30-84 Process PID Proportional Gain

88

Default value

4-set-up

[0] Abs. Freq., Abs. Time
5.0 Hz
25 %
[0] No function
0.0 Hz
0%
SR
10.0 s
5.0 s
[0] Off
1.0 N/A
10.0 N/A
0.1 N/A
0.0 Hz

All
All
All
All
All
All
All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

0.00 s
100.0 %
[0] Off
0.10 s

All
All
All
All

set-ups
set-ups
set-ups
set-ups

All set-ups
1 set-up
All set-ups
All set-ups

SR
SR
SR
0.100 N/A

FC 302
only

Change dur- Convering opera- sion index
tion

Type

FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE

-1
0
-1
0
-3
-1
-1
-1
-1
-1
-1

Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint16
Uint16
Uint16
Uint8
Uint8
Uint8
Uint8
Uint16

x
x
x
x

TRUE
TRUE
TRUE
TRUE

-2
-1
-2

Uint8
Uint32
Uint8
Uint8

x

FALSE
TRUE
TRUE
TRUE

-6
-2
-4
-3

Int32
Uint32
Uint32
Uint16

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4.4.20 32-** MCO Basic Settings
Par.
Parameter description
No. #
32-0* Encoder 2
32-00 Incremental Signal Type
32-01 Incremental Resolution
32-02 Absolute Protocol
32-03 Absolute Resolution
32-05 Absolute Encoder Data Length
32-06 Absolute Encoder Clock Frequency
32-07 Absolute Encoder Clock Generation
32-08 Absolute Encoder Cable Length
32-09 Encoder Monitoring
32-10 Rotational Direction
32-11 User Unit Denominator
32-12 User Unit Numerator
32-3* Encoder 1
32-30 Incremental Signal Type
32-31 Incremental Resolution
32-32 Absolute Protocol
32-33 Absolute Resolution
32-35 Absolute Encoder Data Length
32-36 Absolute Encoder Clock Frequency
32-37 Absolute Encoder Clock Generation
32-38 Absolute Encoder Cable Length
32-39 Encoder Monitoring
32-40 Encoder Termination
32-5* Feedback Source
32-50 Source Slave
32-51 MCO 302 Last Will
32-6* PID Controller
32-60 Proportional factor
32-61 Derivative factor
32-62 Integral factor
32-63 Limit Value for Integral Sum
32-64 PID Bandwidth
32-65 Velocity Feed-Forward
32-66 Acceleration Feed-Forward
32-67 Max. Tolerated Position Error
32-68 Reverse Behavior for Slave
32-69 Sampling Time for PID Control
32-70 Scan Time for Profile Generator
32-71 Size of the Control Window (Activation)
32-72 Size of the Control Window (Deactiv.)
32-8* Velocity & Accel.
32-80 Maximum Velocity (Encoder)
32-81 Shortest Ramp
32-82 Ramp Type
32-83 Velocity Resolution
32-84 Default Velocity
32-85 Default Acceleration
32-9* Development
32-90 Debug Source

Default value

4-set-up

[1] RS422 (5V TTL)
1024 N/A
[0] None
8192 N/A
25 N/A
262.000 kHz
[1] On
0m
[0] Off
[1] No action
1 N/A
1 N/A

2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
0
0
0
0
0

Uint8
Uint32
Uint8
Uint32
Uint8
Uint32
Uint8
Uint16
Uint8
Uint8
Uint32
Uint32

[1] RS422 (5V TTL)
1024 N/A
[0] None
8192 N/A
25 N/A
262.000 kHz
[1] On
0m
[0] Off
[1] On

2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
0
0
0
-

Uint8
Uint32
Uint8
Uint32
Uint8
Uint32
Uint8
Uint16
Uint8
Uint8

[2] Encoder 2
[1] Trip

2 set-ups
2 set-ups

TRUE
TRUE

-

Uint8
Uint8

30 N/A
0 N/A
0 N/A
1000 N/A
1000 N/A
0 N/A
0 N/A
20000 N/A
[0] Reversing allowed
1 ms
1 ms
0 N/A
0 N/A

2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
0
0
0
0
0
0
-3
-3
0
0

Uint32
Uint32
Uint32
Uint16
Uint16
Uint32
Uint32
Uint32
Uint8
Uint16
Uint8
Uint32
Uint32

2
2
2
2
2
2

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

67
-3
0
0
0

Uint32
Uint32
Uint8
Uint32
Uint32
Uint32

2 set-ups

TRUE

-

Uint8

1500 RPM
1.000 s
[0] Linear
100 N/A
50 N/A
50 N/A
[0] Controlcard

FC 302
only

MG.33.AG.02 - VLT® is a registered Danfoss trademark

Change dur- Convering opera- sion index
tion

Type

4

89

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
4.4.21 33-** MCO Adv. Settings
Par.
Parameter description
No. #

4

33-0* Home Motion
33-00 Force HOME
33-01 Zero Point Offset from Home Pos.
33-02 Ramp for Home Motion
33-03 Velocity of Home Motion
33-04 Behaviour during HomeMotion
33-1* Synchronization
33-10 Synchronization Factor Master (M:S)
33-11 Synchronization Factor Slave (M:S)
33-12 Position Offset for Synchronization
33-13 Accuracy Window for Position Sync.
33-14 Relative Slave Velocity Limit
33-15 Marker Number for Master
33-16 Marker Number for Slave
33-17 Master Marker Distance
33-18 Slave Marker Distance
33-19 Master Marker Type
33-20 Slave Marker Type
33-21 Master Marker Tolerance Window
33-22 Slave Marker Tolerance Window
33-23 Start Behaviour for Marker Sync
33-24 Marker Number for Fault
33-25 Marker Number for Ready
33-26 Velocity Filter
33-27 Offset Filter Time
33-28 Marker Filter Configuration
33-29 Filter Time for Marker Filter
33-30 Maximum Marker Correction
33-31 Synchronisation Type
33-4* Limit Handling
33-40 Behaviour atEnd Limit Switch
33-41 Negative Software End Limit
33-42 Positive Software End Limit
33-43 Negative Software End Limit Active
33-44 Positive Software End Limit Active
33-45 Time in Target Window
33-46 Target Window LimitValue
33-47 Size of Target Window
33-5* I/O Configuration
33-50 Terminal X57/1 Digital Input
33-51 Terminal X57/2 Digital Input
33-52 Terminal X57/3 Digital Input
33-53 Terminal X57/4 Digital Input
33-54 Terminal X57/5 Digital Input
33-55 Terminal X57/6 Digital Input
33-56 Terminal X57/7 Digital Input
33-57 Terminal X57/8 Digital Input
33-58 Terminal X57/9 Digital Input
33-59 Terminal X57/10 Digital Input
33-60 Terminal X59/1 and X59/2 Mode
33-61 Terminal X59/1 Digital Input
33-62 Terminal X59/2 Digital Input
33-63 Terminal X59/1 Digital Output
33-64 Terminal X59/2 Digital Output
33-65 Terminal X59/3 Digital Output
33-66 Terminal X59/4 Digital Output
33-67 Terminal X59/5 Digital Output
33-68 Terminal X59/6 Digital Output
33-69 Terminal X59/7 Digital Output
33-70 Terminal X59/8 Digital Output
33-8* Global Parameters
33-80 Activated Program Number
33-81 Power-up State
33-82 Drive Status Monitoring
33-83 Behaviour afterError
33-84 Behaviour afterEsc.
33-85 MCO Supplied by External 24VDC
33-86 Terminal at alarm
33-87 Terminal state at alarm
33-88 Status word at alarm

90

Default value

4-set-up

FC 302
only

Change dur- Convering opera- sion index
tion

Type

[0] Home not forced
0 N/A
10 N/A
10 N/A
[0] Revers and index

2
2
2
2
2

set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE

0
0
0
-

Uint8
Int32
Uint32
Int32
Uint8

1 N/A
1 N/A
0 N/A
1000 N/A
0%
1 N/A
1 N/A
4096 N/A
4096 N/A
[0] Encoder Z positive
[0] Encoder Z positive
0 N/A
0 N/A
[0] Start Function 1
10 N/A
1 N/A
0 us
0 ms
[0] Marker filter 1
0 ms
0 N/A
[0] Standard

2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
0
0
0
0
0
0
0
0
0
0
0
-6
-3
-3
0
-

Int32
Int32
Int32
Int32
Uint8
Uint16
Uint16
Uint32
Uint32
Uint8
Uint8
Uint32
Uint32
Uint16
Uint16
Uint16
Int32
Uint32
Uint8
Int32
Uint32
Uint8

[0] Call error handler
-500000 N/A
500000 N/A
[0] Inactive
[0] Inactive
0 ms
1 N/A
0 N/A

2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
-3
0
0

Uint8
Int32
Int32
Uint8
Uint8
Uint8
Uint16
Uint16

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

-

Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8

2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups
2 set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0

Int8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint16

[0] No function
[0] No function
[0] No function
[0] No function
[0] No function
[0] No function
[0] No function
[0] No function
[0] No function
[0] No function
[1] Output
[0] No function
[0] No function
[0] No function
[0] No function
[0] No function
[0] No function
[0] No function
[0] No function
[0] No function
[0] No function
-1 N/A
[1] Motor on
[1] On
[0] Coast
[0] Controlled stop
[0] No
[0] Relay 1
[0] Do nothing
0 N/A

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme

4.4.22 34-** MCO Data Readouts
Par.
Parameter description
No. #
34-0* PCD Write Par.
34-01 PCD 1 Write to MCO
34-02 PCD 2 Write to MCO
34-03 PCD 3 Write to MCO
34-04 PCD 4 Write to MCO
34-05 PCD 5 Write to MCO
34-06 PCD 6 Write to MCO
34-07 PCD 7 Write to MCO
34-08 PCD 8 Write to MCO
34-09 PCD 9 Write to MCO
34-10 PCD 10 Write to MCO
34-2* PCD Read Par.
34-21 PCD 1 Read from MCO
34-22 PCD 2 Read from MCO
34-23 PCD 3 Read from MCO
34-24 PCD 4 Read from MCO
34-25 PCD 5 Read from MCO
34-26 PCD 6 Read from MCO
34-27 PCD 7 Read from MCO
34-28 PCD 8 Read from MCO
34-29 PCD 9 Read from MCO
34-30 PCD 10 Read from MCO
34-4* Inputs & Outputs
34-40 Digital Inputs
34-41 Digital Outputs
34-5* Process Data
34-50 Actual Position
34-51 Commanded Position
34-52 Actual Master Position
34-53 Slave Index Position
34-54 Master Index Position
34-55 Curve Position
34-56 Track Error
34-57 Synchronizing Error
34-58 Actual Velocity
34-59 Actual Master Velocity
34-60 Synchronizing Status
34-61 Axis Status
34-62 Program Status
34-64 MCO 302 Status
34-65 MCO 302 Control
34-7* Diagnosis readouts
34-70 MCO Alarm Word 1
34-71 MCO Alarm Word 2

Default value

4-set-up

FC 302
only

Change dur- Convering opera- sion index
tion

Type

0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A
0 N/A

All
All
All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
0
0
0
0
0
0
0
0

Uint16
Uint16
Uint16
Uint16
Uint16
Uint16
Uint16
Uint16
Uint16
Uint16

0
0
0
0
0
0
0
0
0
0

All
All
All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
0
0
0
0
0
0
0
0

Uint16
Uint16
Uint16
Uint16
Uint16
Uint16
Uint16
Uint16
Uint16
Uint16

0 N/A
0 N/A

All set-ups
All set-ups

TRUE
TRUE

0
0

Uint16
Uint16

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

All
All
All
All
All
All
All
All
All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Int32
Int32
Int32
Int32
Int32
Int32
Int32
Int32
Int32
Int32
Int32
Int32
Int32
Uint16
Uint16

All set-ups
All set-ups

FALSE
FALSE

0
0

Uint32
Uint32

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

0 N/A
0 N/A

MG.33.AG.02 - VLT® is a registered Danfoss trademark

4

91

VLT®AutomationDrive FC 300 Operating
Instructions

4 How to Programme
4.4.23 35-** Sensor Input Option
Par.
Parameter description
No. #

4

35-0* Temp. Input Mode
35-00 Term. X48/4 Temp. Unit
35-01 Term. X48/4 Input Type
35-02 Term. X48/7 Temp. Unit
35-03 Term. X48/7 Input Type
35-04 Term. X48/10 Temp. Unit
35-05 Term. X48/10 Input Type
35-06 Temperature Sensor Alarm Function
35-1* Temp. Input X48/4
35-14 Term. X48/4 Filter Time Constant
35-15 Term. X48/4 Temp. Monitor
35-16 Term. X48/4 Low Temp. Limit
35-17 Term. X48/4 High Temp. Limit
35-2* Temp. Input X48/7
35-24 Term. X48/7 Filter Time Constant
35-25 Term. X48/7 Temp. Monitor
35-26 Term. X48/7 Low Temp. Limit
35-27 Term. X48/7 High Temp. Limit
35-3* Temp. Input X48/10
35-34 Term. X48/10 Filter Time Constant
35-35 Term. X48/10 Temp. Monitor
35-36 Term. X48/10 Low Temp. Limit
35-37 Term. X48/10 High Temp. Limit
35-4* Analog Input X48/2
35-42 Term. X48/2 Low Current
35-43 Term. X48/2 High Current
35-44 Term. X48/2 Low Ref./Feedb. Value
35-45 Term. X48/2 High Ref./Feedb. Value
35-46 Term. X48/2 Filter Time Constant

92

Default value

4-set-up

FC 302
only

Change dur- Convering opera- sion index
tion

Type

[60] °C
[0] Not Connected
[60] °C
[0] Not Connected
[60] °C
[0] Not Connected
[5] Stop and trip

All
All
All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

-

Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8

0.001 s
[0] Disabled
ExpressionLimit
ExpressionLimit

All
All
All
All

set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE

-3
0
0

Uint16
Uint8
Int16
Int16

0.001 s
[0] Disabled
ExpressionLimit
ExpressionLimit

All
All
All
All

set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE

-3
0
0

Uint16
Uint8
Int16
Int16

0.001 s
[0] Disabled
ExpressionLimit
ExpressionLimit

All
All
All
All

set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE

-3
0
0

Uint16
Uint8
Int16
Int16

4.00 mA
20.00 mA
0.000 N/A
100.000 N/A
0.001 s

All
All
All
All
All

set-ups
set-ups
set-ups
set-ups
set-ups

TRUE
TRUE
TRUE
TRUE
TRUE

-5
-5
-3
-3
-3

Int16
Int16
Int32
Int32
Uint16

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

5 General Specifications

5 General Specifications
Mains supply (L1, L2, L3):
Supply voltage

200-240 V ±10%

Supply voltage

FC 301: 380-480 V / FC 302: 380-500 V ±10%

Supply voltage

FC 302: 525-690 V ±10%

FC 302: 525-600 V ±10%

Mains voltage low / mains drop-out:
During low mains voltage or a mains drop-out, the FC continues until the intermediate circuit voltage drops below the minimum stop level, which
corresponds typically to 15% below the frequency converter's lowest rated supply voltage. Power-up and full torque cannot be expected at mains voltage
lower than 10% below the frequency converter's lowest rated supply voltage.
50/60 Hz ±5%

Supply frequency
Max. imbalance temporary between mains phases

3.0 % of rated supply voltage
≥ 0.9 nominal at rated load

True Power Factor (λ)
Displacement Power Factor (cos ϕ)

5

near unity (> 0.98)

Switching on input supply L1, L2, L3 (power-ups) ≤ 7.5 kW
Switching on input supply L1, L2, L3 (power-ups) 11-75 kW
Switching on input supply L1, L2, L3 (power-ups) ≥ 90 kW
Environment according to EN60664-1

maximum 2 times/min.
maximum 1 time/min.
maximum 1 time/2 min.
overvoltage category III/pollution degree 2

The unit is suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical Amperes, 240/500/600/ 690 V maximum.
Motor output (U, V, W):
Output voltage

0 - 100% of supply voltage

Output frequency (0.25-75 kW)

FC 301: 0.2 - 1000 Hz / FC 302: 0 - 1000 Hz

Output frequency (90-1000 kW)

0 - 800* Hz

Output frequency in Flux Mode (FC 302 only)

0 - 300 Hz

Switching on output

Unlimited

Ramp times

0.01 - 3600 sec.

* Voltage and power dependent
Torque characteristics:
maximum 160% for 60 sec.*

Starting torque (Constant torque)

maximum 180% up to 0.5 sec.*

Starting torque
Overload torque (Constant torque)

maximum 160% for 60 sec.*

Starting torque (Variable torque)

maximum 110% for 60 sec.*

Overload torque (Variable torque)

maximum 110% for 60 sec.

*Percentage relates to the nominal torque.
Digital inputs:
FC 301: 4 (5)1) / FC 302: 4 (6)1)

Programmable digital inputs

18, 19, 271), 291), 32, 33,

Terminal number
Logic

PNP or NPN

Voltage level

0 - 24 V DC

Voltage level, logic'0' PNP

< 5 V DC

Voltage level, logic'1' PNP

> 10 V DC

Voltage level, logic '0' NPN2)

> 19 V DC

Voltage level, logic '1' NPN2)

< 14 V DC

Maximum voltage on input

28 V DC

Pulse frequency range

0 - 110 kHz

(Duty cycle) Min. pulse width

4.5 ms

Input resistance, Ri

approx. 4 kΩ

Safe stop Terminal 373, 5) (Terminal 37 is fixed PNP logic):
Voltage level

0 - 24 V DC

Voltage level, logic'0' PNP

< 4 V DC

Voltage level, logic'1' PNP

>20 V DC

Nominal input current at 24 V

50 mA rms

MG.33.AG.02 - VLT® is a registered Danfoss trademark

93

VLT®AutomationDrive FC 300 Operating
Instructions

5 General Specifications
Nominal input current at 20 V

60 mA rms

Input capacitance

400 nF

All digital inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
1) Terminals 27 and 29 can also be programmed as output.
2) Except safe stop input Terminal 37.
3) Terminal 37 is only available in FC 302 and FC 301 A1 with Safe Stop. It can only be used as safe stop input. Terminal 37 is suitable for category 3
installations according to EN 954-1 (safe stop according to category 0 EN 60204-1) as required by the EU Machinery Directive 98/37/EC. Terminal 37
and the Safe Stop function are designed in conformance with EN 60204-1, EN 50178, EN 61800-2, EN 61800-3, and EN 954-1. For correct and safe use
of the Safe Stop function follow the related information and instructions in the Design Guide.
4) FC 302 only.
5) When using a contactor with a DC coil inside in combination with Safe Stop, it is important to make a return way for the current from the coil when
turning it off. This can be done by using a freewheel diode (or, alternatively, a 30 or 50 V MOV for quicker response time) across the coil. Typical

5

contactors can be bought with this diode.
Analog inputs:
Number of analog inputs

2

Terminal number

53, 54

Modes

Voltage or current

Mode select

Switch S201 and switch S202

Voltage mode
Voltage level

Switch S201/switch S202 = OFF (U)
FC 301: 0 to + 10/ FC 302: -10 to +10 V (scaleable)

Input resistance, Ri

approx. 10 kΩ

Max. voltage

± 20 V

Current mode

Switch S201/switch S202 = ON (I)

Current level

0/4 to 20 mA (scaleable)

Input resistance, Ri

approx. 200 Ω

Max. current

30 mA

Resolution for analog inputs

10 bit (+ sign)

Accuracy of analog inputs

Max. error 0.5% of full scale

Bandwidth

FC 301: 20 Hz/ FC 302: 100 Hz

The analog inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

Pulse/encoder inputs:
Programmable pulse/encoder inputs

2/1
291), 332) / 323), 333)

Terminal number pulse/encoder
Max. frequency at terminal 29, 32, 33

110 kHz (Push-pull driven)

Max. frequency at terminal 29, 32, 33

5 kHz (open collector)

Min. frequency at terminal 29, 32, 33

4 Hz

Voltage level

see section on Digital input

Maximum voltage on input

28 V DC

Input resistance, Ri

approx. 4 kΩ

Pulse input accuracy (0.1 - 1 kHz)

Max. error: 0.1% of full scale

Encoder input accuracy (1 - 110 kHz)

Max. error: 0.05 % of full scale

The pulse and encoder inputs (terminals 29, 32, 33) are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

94

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

5 General Specifications

1) FC 302 only
2) Pulse inputs are 29 and 33
3) Encoder inputs: 32 = A, and 33 = B
Digital output:
Programmable digital/pulse outputs

2
1)

Terminal number

27, 29

Voltage level at digital/frequency output

0 - 24 V

Max. output current (sink or source)

40 mA

Max. load at frequency output

1 kΩ

Max. capacitive load at frequency output

10 nF

Minimum output frequency at frequency output

0 Hz

Maximum output frequency at frequency output

32 kHz

Accuracy of frequency output

Max. error: 0.1 % of full scale

Resolution of frequency outputs

12 bit

1) Terminal 27 and 29 can also be programmed as input.

5

The digital output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
Analog output:
Number of programmable analog outputs

1

Terminal number

42

Current range at analog output

0/4 - 20 mA

Max. load GND - analog output

500 Ω

Accuracy on analog output

Max. error: 0.5 % of full scale

Resolution on analog output

12 bit

The analogue output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
Control card, 24 V DC output:
Terminal number

12, 13

Output voltage

24 V +1, -3 V

Max. load

FC 301: 130 mA/ FC 302: 200 mA

The 24 V DC supply is galvanically isolated from the supply voltage (PELV), but has the same potential as the analog and digital inputs and outputs.
Control card, 10 V DC output:
Terminal number

50

Output voltage

10.5 V ±0.5 V

Max. load

15 mA

The 10 V DC supply is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
Control card, RS 485 serial communication:
Terminal number

68 (P,TX+, RX+), 69 (N,TX-, RX-)

Terminal number 61

Common for terminals 68 and 69

The RS 485 serial communication circuit is functionally separated from other central circuits and galvanically isolated from the supply voltage (PELV).
Control card, USB serial communication:
USB standard

1.1 (Full speed)

USB plug

USB type B “device” plug

Connection to PC is carried out via a standard host/device USB cable.
The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
The USB ground connection is not galvanically isolated from protection earth. Use only an isolated laptop as PC connection to the USB connector on
the frequency converter.
Relay outputs:
Programmable relay outputs

FC 301all kW: 1 / FC 302 all kW: 2

Relay 01 Terminal number

1-3 (break), 1-2 (make)

Max. terminal load (AC-1)1) on 1-3 (NC), 1-2 (NO) (Resistive load)
Max. terminal load (AC-15)1) (Inductive load @ cosφ 0.4)
Max. terminal load (DC-1)1) on 1-2 (NO), 1-3 (NC) (Resistive load)
Max. terminal load (DC-13)1) (Inductive load)

240 V AC, 2 A
240 V AC, 0.2 A
60 V DC, 1A
24 V DC, 0.1A

Relay 02 (FC 302 only) Terminal number

4-6 (break), 4-5 (make)

MG.33.AG.02 - VLT® is a registered Danfoss trademark

95

VLT®AutomationDrive FC 300 Operating
Instructions

5 General Specifications
Max. terminal load (AC-1)1) on 4-5 (NO) (Resistive load)2)3) Overvoltage cat. II

400 V AC, 2 A

Max. terminal load (AC-15)1) on 4-5 (NO) (Inductive load @ cosφ 0.4)

240 V AC, 0.2 A

Max. terminal load (DC-1)1) on 4-5 (NO) (Resistive load)

80 V DC, 2 A

Max. terminal load (DC-13)1) on 4-5 (NO) (Inductive load)

24 V DC, 0.1A

Max. terminal load (AC-1)1) on 4-6 (NC) (Resistive load)

240 V AC, 2 A

Max. terminal load (AC-15)1) on 4-6 (NC) (Inductive load @ cosφ 0.4)

240 V AC, 0.2A

Max. terminal load (DC-1)1) on 4-6 (NC) (Resistive load)

50 V DC, 2 A

Max. terminal load (DC-13)1) on 4-6 (NC) (Inductive load)

24 V DC, 0.1 A

Min. terminal load on 1-3 (NC), 1-2 (NO), 4-6 (NC), 4-5 (NO)

24 V DC 10 mA, 24 V AC 20 mA

Environment according to EN 60664-1

overvoltage category III/pollution degree 2

1) IEC 60947 part 4 and 5
The relay contacts are galvanically isolated from the rest of the circuit by reinforced isolation (PELV).
2) Overvoltage Category II

5

3) UL applications 300 V AC 2A
Cable lengths and cross sections for control cables*:
Max. motor cable length, screened

FC 301: 50 m / FC 301 (A1): 25 m/ FC 302: 150 m

Max. motor cable length, unscreened

FC 301: 75 m / FC 301 (A1): 50 m/ FC 302: 300 m
1.5 mm2/16 AWG

Maximum cross section to control terminals, flexible/ rigid wire without cable end sleeves

1 mm2/18 AWG

Maximum cross section to control terminals, flexible wire with cable end sleeves

0.5 mm2/20 AWG

Maximum cross section to control terminals, flexible wire with cable end sleeves with collar

0.25 mm2/ 24 AWG

Minimum cross section to control terminals

* Power cables, see tables in section “Electrical Data” of the Design Guide
For more information, see section Electrical Data in the VLT AutomationDrive Design Guide, MG.33.BX.YY.
Control card performance:
Scan interval

FC 301: 5 ms / FC 302: 1 ms

Control characteristics:
Resolution of output frequency at 0 - 1000 Hz

+/- 0.003 Hz

Repeat accuracy of Precise start/stop (terminals 18, 19)

≤± 0.1 msec
≤ 2 ms

System response time (terminals 18, 19, 27, 29, 32, 33)
Speed control range (open loop)

1:100 of synchronous speed

Speed control range (closed loop)

1:1000 of synchronous speed

Speed accuracy (open loop)

30 - 4000 rpm: error ±8 rpm

Speed accuracy (closed loop), depending on resolution of feedback device

0 - 6000 rpm: error ±0.15 rpm

All control characteristics are based on a 4-pole asynchronous motor
Surroundings:
IP 201)/ Type 1, IP 212)/ Type 1, IP 55/ Type 12, IP 66

Enclosure
Vibration test

1.0 g

Max. relative humidity

5% - 93%(IEC 721-3-3; Class 3K3 (non-condensing) during operation

Aggressive environment (IEC 60068-2-43) H2S test

class Kd

Ambient temperature3)

Max. 50 °C (24-hour average maximum 45 °C)

1) Only for ≤ 3.7 kW (200 - 240 V), ≤ 7.5 kW (400 - 480/ 500 V)
2) As enclosure kit for ≤ 3.7 kW (200 - 240 V), ≤ 7.5 kW (400 - 480/ 500 V)
3) Derating for high ambient temperature, see special conditions in the Design Guide
Minimum ambient temperature during full-scale operation

0 °C

Minimum ambient temperature at reduced performance

- 10 °C

Temperature during storage/transport

-25 - +65/70 °C

Maximum altitude above sea level without derating

1000 m

Derating for high altitude, see special conditions in the Design Guide
EMC standards, Emission

EN 61800-3, EN 61000-6-3/4, EN 55011
EN 61800-3, EN 61000-6-1/2,

EMC standards, Immunity

EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6

See section on special conditions in the Design Guide.

96

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

5 General Specifications

Protection and Features:
•
•

Electronic thermal motor protection against overload.
Temperature monitoring of the heatsink ensures that the frequency converter trips if the temperature reaches a predefined level. An overload
temperature cannot be reset until the temperature of the heatsink is below the values stated in the tables on the following pages (Guideline these temperatures may vary for different power sizes, frame sizes, enclosure ratings etc.).

•

The frequency converter is protected against short-circuits on motor terminals U, V, W.

•

If a mains phase is missing, the frequency converter trips or issues a warning (depending on the load).

•

Monitoring of the intermediate circuit voltage ensures that the frequency converter trips if the intermediate circuit voltage is too low or too high.

•

The frequency converter constantly checks for critical levels of internal temperature, load current, high voltage on the intermediate circuit and
low motor speeds. As a response to a critical level, the frequency converter can adjust the switching frequency and/ or change the switching
pattern in order to ensure the performance of the drive.

5

MG.33.AG.02 - VLT® is a registered Danfoss trademark

97

6 Troubleshooting

VLT®AutomationDrive FC 300 Operating
Instructions

6

98

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

6 Troubleshooting

6 Troubleshooting
6.1.1 Warnings/Alarm Messages
A warning or an alarm is signalled by the relevant LED on the front of the frequency converter and indicated by a code on the display.

A warning remains active until its cause is no longer present. Under certain circumstances operation of the motor may still be continued. Warning messages
may be critical, but are not necessarily so.

In the event of an alarm, the frequency converter will have tripped. Alarms must be reset to restart operation once their cause has been rectified.
This may be done in three ways:
1.

By using the [RESET] control button on the LCP.

2.

Via a digital input with the “Reset” function.

3.

Via serial communication/optional fieldbus.

6
NB!
After a manual reset using the [RESET] button on the LCP, the [AUTO ON] button must be pressed to restart the motor.

If an alarm cannot be reset, the reason may be that its cause has not been rectified, or the alarm is trip-locked (see also table on following page).

Alarms that are trip-locked offer additional protection, meaning that the mains supply must be switched off before the alarm can be reset. After being
switched back on, the frequency converter is no longer blocked and may be reset as described above once the cause has been rectified.
Alarms that are not trip-locked can also be reset using the automatic reset function in par. 14-20 Reset Mode (Warning: automatic wake-up is possible!)

If a warning and alarm is marked against a code in the table on the following page, this means that either a warning occurs before an alarm, or else that
you can specify whether it is a warning or an alarm that is to be displayed for a given fault.
This is possible, for instance, in par. 1-90 Motor Thermal Protection. After an alarm or trip, the motor carries on coasting, and the alarm and warning
flash. Once the problem has been rectified, only the alarm continues flashing until the frequency converter is reset.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

99

VLT®AutomationDrive FC 300 Operating
Instructions

6 Troubleshooting

6

No.

Description

Warning

Alarm/Trip

1
2

10 Volts low
Live zero error

X
(X)

(X)

3

No motor

(X)

4

Mains phase loss

(X)

(X)

5
6
7
8
9
10

DC link voltage high
DC link voltage low
DC over-voltage
DC under voltage
Inverter overloaded
Motor ETR over temperature

X
X
X
X
X
(X)

X
X
X
(X)

Par. 1-90 Motor Thermal

11

Motor thermistor over temperature

(X)

(X)

Par. 1-90 Motor Thermal

12
13
14
15
16
17

Torque limit
Over Current
Earth Fault
Hardware mismatch
Short Circuit
Control word time-out

X
X
X
(X)

X
X
X
X
X
(X)

22
23
24
25
26

Hoist Mech. Brake
Internal Fan Fault
External Fan Fault
Brake resistor short-circuited
Brake resistor power limit

(X)
X
X
X
(X)

(X)

27
28
29
30

Brake chopper short-circuited
Brake check
Heatsink temp
Motor phase U missing

X
(X)
X
(X)

X
(X)
X
(X)

X
(X)

Par. 4-58 Missing Motor

31

Motor phase V missing

(X)

(X)

(X)

Par. 4-58 Missing Motor

32

Motor phase W missing

(X)

(X)

(X)

Par. 4-58 Missing Motor

33
34
36
37
38
39
40

Inrush Fault
Fieldbus communication fault
Mains failure
Phase imbalance
Internal Fault
Heatsink sensor
Overload of Digital Output Terminal 27

X

(X)

X
X
X
X
X
X

41

Overload of Digital Output Terminal 29

(X)

42

Overload of Digital Output On X30/6

(X)

42

Overload of Digital Output On X30/7

(X)

45
46
47
48
49
50
51
52
53

Earth Fault 2
Pwr. card supply
24 V supply low
1.8 V supply low
Speed limit
AMA calibration failed
AMA check Unom and Inom
AMA low Inom
AMA motor too big

X
X
X
X

X
X
X
X

X
X

X
X
X

Alarm/Trip Lock

Par. 6-01 Live Zero Time-

out Function

Par. 1-80 Function at
(X)

Stop

Par. 14-12 Function at

Mains Imbalance

Protection

Protection

X
X
X
X

Par. 8-04 Control Word

Timeout Function

(X)

Parameter group 2-2*
Par. 14-53 Fan Monitor
Par. 2-13 Brake Power

Monitoring

X
X

X
X
X
X

Table 6.1: Alarm/Warning code list

100

Parameter
Reference

MG.33.AG.02 - VLT® is a registered Danfoss trademark

Par. 2-15 Brake Check

Phase Function
Phase Function

Phase Function

Par. 5-00 Digital I/O
Mode, par. 5-01 Terminal
27 Mode
Par. 5-00 Digital I/O
Mode, par. 5-02 Terminal
29 Mode
Par. 5-32 Term X30/6
Digi Out (MCB 101)
Par. 5-33 Term X30/7
Digi Out (MCB 101)

VLT®AutomationDrive FC 300 Operating
Instructions

6 Troubleshooting

No.

Description

Warning

54
55
56
57
58
59
60
61

AMA motor too small
AMA parameter out of range
AMA interrupted by user
AMA time-out
AMA internal fault
Current limit
External Interlock
Feedback Error

62

Output Frequency at Maximum Limit

63

Mechanical Brake Low

64

Voltage Limit

X

65
66
67
68

Control Board Over-temperature
Heat sink Temperature Low
Option Configuration has Changed
Safe Stop

X
X

69
70
71

Pwr. Card Temp
Illegal FC configuration
PTC 1 Safe Stop

72

Dangerous Failure

73

Safe Stop Auto Restart

(X)

76
77

Power Unit Setup
Reduced power mode

X
X

78

Tracking Error

79
80
81
82
85
90

Illegal PS config
Drive Initialized to Default Value
CSIV corrupt
CSIV parameter error
Profibus/Profisafe Error
Feedback Monitor

91
100-199
243
244
245
246
247
248
250

Analogue input 54 wrong settings
See Operating Instructions for MCO 305
Brake IGBT
Heatsink temp
Heatsink sensor
Pwr.card supply
Pwr.card temp
Illegal PS config
New spare part

251

New Type Code

X
X
X
(X)

Alarm/Trip

Alarm/Trip Lock

X
X
X
X
X
X
(X)

Par. 4-30 Motor Feed-

(X)

Par. 2-20 Release Brake

back Loss Function

X

(X)

X

Current

X

X
(X)1)
X

X

Par. 5-19 Terminal 37
X
X

X1)

Safe Stop

Par. 5-19 Terminal 37

Safe Stop

X1)

Par. 5-19 Terminal 37

6

Safe Stop

Par. 5-19 Terminal 37

(X)

Safe Stop

Par. 14-59 Actual Num-

(X)

(X)

(X)

X
X
X
X
X
(X)

ber of Inverter Units

Par. 4-34 Tracking Error
X

X
X
X
X
X
X
X

Function

Par. 17-61 Feedback
X

X
X

Parameter
Reference

X
X
X
X
X
X
X

Signal Monitoring
S202

Par. 14-23 Typecode

Setting

Table 6.2: Alarm/Warning code list
(X) Dependent on parameter
1) Can not be Auto reset via par. 14-20 Reset Mode
A trip is the action when an alarm has appeared. The trip will coast the motor and can be reset by pressing the reset button or make a reset by a digital
input (par. group 5-1* [1]). The origin event that caused an alarm cannot damage the frequency converter or cause dangerous conditions. A trip lock is
an action when an alarm occurs, which may cause damage to frequency converter or connected parts. A Trip Lock situation can only be reset by a power
cycling.

LED indication
Warning
Alarm
Trip locked

yellow
flashing red
yellow and red

MG.33.AG.02 - VLT® is a registered Danfoss trademark

101

VLT®AutomationDrive FC 300 Operating
Instructions

6 Troubleshooting

Alarm Word Extended Status Word
Bit
Hex
Dec

6

0

00000001

1

1

00000002

2

2

00000004

4

3

00000008

8

4

00000010

16

5
6
7

00000020
00000040
00000080

32
64
128

8

00000100

256

9

00000200

512

10
11
12
13
14
15
16
17
18

00000400
00000800
00001000
00002000
00004000
00008000
00010000
00020000
00040000

1024
2048
4096
8192
16384
32768
65536
131072
262144

19
20
21
22

00080000
00100000
00200000
00400000

524288
1048576
2097152
4194304

23

00800000

8388608

24
25

01000000
02000000

16777216
33554432

26

04000000

67108864

27
28

08000000
10000000

134217728
268435456

29

20000000

536870912

30

40000000

1073741824

31

80000000

2147483648

Alarm Word

Alarm Word 2

Brake Check (A28) ServiceTrip, Read/
Write
Heatsink temp.
ServiceTrip, (re(A29)
served)
Earth Fault (A14)
ServiceTrip, Typecode/Sparepart
Ctrl.Card Temp
ServiceTrip, (re(A65)
served)
Ctrl. Word TO (A17) ServiceTrip, (reserved)
Over Current (A13) reserved
Torque Limit (A12) reserved
Motor Th Over
reserved
(A11)
Motor ETR Over
reserved
(A10)
Inverter Overld.
reserved
(A9)
DC under Volt (A8) reserved
DC over Volt (A7) reserved
Short Circuit (A16) reserved
Inrush Fault (A33) reserved
Mains ph. Loss (A4) reserved
AMA Not OK
reserved
Live Zero Error (A2) reserved
Internal Fault (A38) KTY error
Brake Overload
Fans error
(A26)
U phase Loss (A30) ECB error
V phase Loss (A31) reserved
W phase Loss (A32) reserved
Fieldbus Fault
reserved
(A34)
24 V Supply Low
reserved
(A47)
Mains Failure (A36) reserved
1.8V Supply Low
reserved
(A48)
Brake Resistor
reserved
(A25)
Brake IGBT (A27) reserved
reserved
Option Change
(A67)
Drive InitialFeedback Fault
ized(A80)
(A61, A90)
Safe Stop (A68)
PTC 1 Safe Stop
(A71)
Mech. brake low
Dangerous Failure
(A63)
(A72)

Warning Word
Brake Check (W28)

Warning
Word 2
reserved

Extended
Status Word
Ramping

Heatsink temp. (W29)

reserved

AMA Running

Earth Fault (W14)

reserved

Start CW/CCW

Ctrl.Card Temp (W65)

reserved

Slow Down

Ctrl. Word TO (W17)

Catch Up

Over Current (W13)
Torque Limit (W12)
Motor Th Over (W11)

reserved
reserved
reserved

Feedback High
Feedback Low
Output Current High

Motor ETR Over (W10)

reserved

Output Current Low

Inverter Overld (W9)

reserved

Output Freq High

DC under Volt (W8)
DC over Volt (W7)
DC Voltage Low (W6)
DC Voltage High (W5)
Mains ph. Loss (W4)
No Motor (W3)
Live Zero Error (W2)
10V Low (W1)
Brake Overload (W26)

KTY Warn
Fans Warn

Output Freq Low
Brake Check OK
Braking Max
Braking
Out of Speed Range
OVC Active
AC Brake
Password Timelock
Password Protection

Brake Resistor (W25)
Brake IGBT (W27)
Speed Limit (W49)
Fieldbus Fault (W34)

ECB Warn
reserved
reserved
reserved

Unused

24V Supply Low (W47)

reserved

Unused

Mains Failure (W36)
Current Limit (W59)

reserved
reserved

Unused
Unused

Low Temp (W66)

reserved

Unused

Voltage Limit (W64)
Encoder loss (W90)

reserved
reserved

Unused
Unused

Feedback Fault (W61,
W90)
Safe Stop (W68)
Extended Status Word

reserved

Unused
PTC 1 Safe Unused
Stop (W71)
Unused

Table 6.3: Description of Alarm Word, Warning Word and Extended Status Word
The alarm words, warning words and extended status words can be read out via serial bus or optional fieldbus for diagnose. See also par. 16-94 Ext.

Status Word.
Check the supply voltage and supply currents to the frequency converter.

WARNING 1, 10 Volts low:
The 10 V voltage from terminal 50 on the control card is below 10 V.
Remove some of the load from terminal 50, as the 10 V supply is overloaded. Max. 15 mA or minimum 590 Ω.

WARNING 5, DC link voltage high:
The intermediate circuit voltage (DC) is higher than the overvoltage limit
of the control system. The frequency converter is still active.

WARNING/ALARM 2, Live zero error:

WARNING 6, DC link voltage low

The signal on terminal 53 or 54 is less than 50% of the value set in

The intermediate circuit voltage (DC) is below the undervoltage limit of

par. 6-10 Terminal 53 Low Voltage, par. 6-12 Terminal 53 Low Current,
par. 6-20 Terminal 54 Low Voltage, or par. 6-22 Terminal 54 Low Cur-

rent respectively.

the control system. The frequency converter is still active.
WARNING/ALARM 7, DC over voltage:
If the intermediate circuit voltage exceeds the limit, the frequency con-

WARNING/ALARM 3, No motor:

verter trips after a time.

No motor has been connected to the output of the frequency converter.
WARNING/ALARM 4, Mains phase loss:

Possible corrections:
Connect a brake resistor

A phase is missing on the supply side, or the mains voltage imbalance is
too high.
This message also appears in case of a fault in the input rectifier on the

Extend the ramp time
Activate functions in par. 2-10 Brake Function

frequency converter.

102

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions
Increase par. 14-26 Trip Delay at Inverter Fault

6 Troubleshooting
ALARM 14, Earth fault:
There is a discharge from the output phases to earth, either in the cable

Alarm/warning limits:
3 x 200 - 240 3 x 380 - 500 V 3 x 525 - 600 V
V
[VDC]
[VDC]
[VDC]
Undervoltage
185
373
532
Voltage warning
205
410
585
low
Voltage warning
390/405
810/840
943/965
high (w/o brake
- w/brake)
Overvoltage
410
855
975
The voltages stated are the intermediate circuit voltage of the frequency converter with a tolerance of ± 5 %. The corresponding
mains voltage is the intermediate circuit voltage (DC-link) divided
by 1.35

between the frequency converter and the motor or in the motor itself.
Turn off the frequency converter and remove the earth fault.
ALARM 15, Incomplete hardware:
A fitted option is not handled by the present control board (hardware or
software).
ALARM 16, Short-circuit
There is short-circuiting in the motor or on the motor terminals.
Turn off the frequency converter and remove the short-circuit.
WARNING/ALARM 17, Control word timeout:
There is no communication to the frequency converter.
The warning will only be active when par. 8-04 Control Word Timeout

Function is NOT set to OFF.

WARNING/ALARM 8, DC under voltage:
If the intermediate circuit voltage (DC) drops below the “voltage warning
low” limit (see table above), the frequency converter checks if 24 V backup supply is connected.
If no 24 V backup supply is connected, the frequency converter trips after

If par. 8-04 Control Word Timeout Function is set to Stop and Trip, a
warning appears and the frequency converter ramps down until it trips,
while giving an alarm.
Par. 8-03 Control Word Timeout Time could possibly be increased.

a given time depending on the unit.

WARNING/ALARM 22, Hoist Mechanical Brake:

To check whether the supply voltage matches the frequency converter,

Report value will show what kind it is. 0 = The torque ref. was not reached

see General Specifications.

before timeout. 1 = There was no brake feedback before timeout.

WARNING/ALARM 9, Inverter overloaded:

WARNING 23, Internal fan fault:

The frequency converter is about to cut out because of an overload (too

The fan warning function is an extra protection function that checks if the

high current for too long). The counter for electronic, thermal inverter

fan is running / mounted. The fan warning can be disabled in

protection gives a warning at 98% and trips at 100%, while giving an

par. 14-53 Fan Monitor (set to [0] Disabled).

alarm. You cannot reset the frequency converter until the counter is be-

WARNING 24, External fan fault:

low 90%.

The fan warning function is an extra protection function that checks if the

The fault is that the frequency converter is overloaded by more than

fan is running / mounted. The fan warning can be disabled in

100% for too long.

par. 14-53 Fan Monitor (set to [0] Disabled).

WARNING/ALARM 10, Motor ETR over temperature:

WARNING 25, Brake resistor short-circuited:

According to the electronic thermal protection (ETR), the motor is too hot.

The brake resistor is monitored during operation. If it short-circuits, the

You can choose if you want the frequency converter to give a warning or

brake function is disconnected and the warning appears. The frequency

an alarm when the counter reaches 100% in par. 1-90 Motor Thermal

converter still works, but without the brake function. Turn off the fre-

Protection. The fault is that the motor is overloaded by more than 100%

quency converter and replace the brake resistor (see par. 2-15 Brake

for too long. Check that the motor par. 1-24 Motor Current is set correctly.

Check).

WARNING/ALARM 11, Motor thermistor over temp:

WARNING/ALARM 26, Brake resistor power limit:

The thermistor or the thermistor connection is disconnected. You can

The power transmitted to the brake resistor is calculated as a percentage,

choose if you want the frequency converter to give a warning or an alarm

as a mean value over the last 120 s, on the basis of the resistance value

when the counter reaches 100% in par. 1-90 Motor Thermal Protection.

of the brake resistor (par. 2-11 Brake Resistor (ohm)) and the intermedi-

Check that the thermistor is connected correctly between terminal 53 or

ate circuit voltage. The warning is active when the dissipated braking

54 (analog voltage input) and terminal 50 (+ 10 V supply), or between

power is higher than 90%. If Trip [2] has been selected in par. 2-13 Brake

terminal 18 or 19 (digital input PNP only) and terminal 50. If aKTY sen-

Power Monitoring, the frequency converter cuts out and issues this alarm,

soris used, check for correct connection between terminal 54 and 55.

when the dissipated braking power is higher than 100%.

WARNING/ALARM 12, Torque limit:

WARNING/ALARM 27, Brake chopper fault:

The torque is higher than the value in par. 4-16 Torque Limit Motor

The brake transistor is monitored during operation and if it short-circuits,

Mode (in motor operation) or the torque is higher than the value in

the brake function disconnects and the warning comes up. The frequency

par. 4-17 Torque Limit Generator Mode (in regenerative operation).

converter is still able to run, but since the brake transistor has short-

WARNING/ALARM 13, Over Current:

circuited, substantial power is transmitted to the brake resistor, even if it

The inverter peak current limit (approx. 200% of the rated current) is

is inactive.

exceeded. The warning will last approx. 8-12 sec., then the frequency

Turn off the frequency converter and remove the brake resistor.

converter trips and issues an alarm. Turn off the frequency converter and

This alarm/ warning could also occur should the brake resistor overheat.

check if the motor shaft can be turned and if the motor size matches the

Terminal 104 to 106 are available as brake resistor. Klixon inputs, see

frequency converter.

section Brake Resistor Temperature Switch.

6

If extended mechanical brake control is selected, trip can be reset externally.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

103

VLT®AutomationDrive FC 300 Operating
Instructions

6 Troubleshooting

Warning: There is a risk of substantial power being
transmitted to the brake resistor if the brake transistor
is short-circuited.

WARNING/ALARM 28, Brake check failed:
Brake resistor fault: the brake resistor is not connected/working.
ALARM 29, Drive over temperature:
If the enclosure is IP 20 or IP 21/Type 1, the cut-out temperature of the
heat-sink is 95 ºC +5 ºC. The temperature fault cannot be reset, until the
temperature of the heatsink is below 70 ºC +5 ºC.
The fault could be:
-

Ambient temperature too high

-

Too long motor cable

ALARM 30, Motor phase U missing:

6

Motor phase U between the frequency converter and the the motor is
missing.
Turn off the frequency converter and check motor phase U.
ALARM 31, Motor phase V missing:
Motor phase V between the frequency converter and the motor is missing.
Turn off the frequency converter and check motor phase V.
ALARM 32, Motor phase W missing:
Motor phase W between the frequency converter and the motor is missing.
Turn off the frequency converter and check motor phase W.
ALARM 33, Inrush fault:
Too many power ups have occured within a short time period. See the
chapter General Specifications for the allowed number of power ups within one minute.
WARNING/ALARM 34, Fieldbus communication fault:
The fieldbus on the communication option card is not working correctly.
Please check parameters associated with the module and make sure
module is properly inserted in Slot A of the drive. Check the wiring for
fieldbus.
WARNING/ALARM 36, Mains failure:
This warning/alarm is only active if the supply voltage to the frequency
converter is lost and par. 14-10 Mains Failure is NOT set to OFF. Possible
correction: check the fuses to the frequency converter
ALARM 37, Phase imbalance:
There is a current imbalance between the power units

ALARM 38, Internal fault:
By this alarm it may be necessary to contact your Danfoss supplier. Some
typical alarm messages:
0 The serial port cannot be initialized. Serious hardware
failure
256 The power EEPROM data is defect or too old
512 The control board EEPROM data is defect or too old
513 Communication time out Reading EEPROM data
514 Communication time out Reading EEPROM data
515 The Application Orientated Control cannot recognize the
EEPROM data
516 Cannot write write to the EEPROM because a write command is on progress
517 The write command is under time out
518 Failure in the EEPROM
519 Missing or invalid BarCode data in EEPROM 1024 – 1279
CAN telegram cannot be sent. (1027 indicate a possible
hardware failure)
1281 Digital Signal Processor flash time-out
1282 Power micro software version mismatch
1283 Power EEPROM data version mismatch
1284 Cannot read Digital Signal Processor software version
1299 Option SW in slot A is too old
1300 Option SW in slot B is too old
1311 Option SW in slot C0 is too old
1312 Option SW in slot C1 is too old
1315 Option SW in slot A is not supported (not allowed)
1316 Option SW in slot B is not supported (not allowed)
1317 Option SW in slot C0 is not supported (not allowed)
1318 Option SW in slot C1 is not supported (not allowed)
1536 An exception in the Application Orientated Control is
registered. Debug information written in LCP
1792 DSP watchdog is active. Debugging of power part data
Motor Orientated Control data not transferred correctly
2049 Power data restarted
2315 Missing SW version from power unit
2816 Stack overflow Control board module
2817 Scheduler slow tasks
2818 Fast tasks
2819 Parameter thread
2820 LCP stack overflow
2821 Serial port overflow
2822 USB port overflow
3072- Parameter value is outside its limits. Perform a initiali5122 zation. Parameter number causing the alarm: Subtract
the code from 3072. Ex Error code 3238: 3238-3072 =
166 is outside the limit
5123 Option in slot A: Hardware incompatible with Control
board hardware
5124 Option in slot B: Hardware incompatible with Control
board hardware
5125 Option in slot C0: Hardware incompatible with Control
board hardware
5126 Option in slot C1: Hardware incompatible with Control
board hardware
5376- Out of memory
6231
ALARM 39, Heatsink sensor
No feedback from the heatsink temperature sensor.
The signal from the IGBT thermal sensor is not available on the power
card. The problem could be on the power card, on the gate drive card,
or the ribbon cable between the power card and gate drive card.
WARNING 40, Overload of Digital Output Terminal 27
Check the load connected to terminal 27 or remove short-circuit connection. Check par. 5-00 Digital I/O Mode and par. 5-01 Terminal 27 Mode.
WARNING 41, Overload of Digital Output Terminal 29:
Check the load connected to terminal 29 or remove short-circuit connection. Check par. 5-00 Digital I/O Mode and par. 5-02 Terminal 29 Mode.
WARNING 42, Overload of Digital Output On X30/6 :
Check the load connected to X30/6 or remove short-circuit connection.
Check par. 5-32 Term X30/6 Digi Out (MCB 101).

104

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

6 Troubleshooting

WARNING 42, Overload of Digital Output On X30/7 :

WARNING 60, External interlock

Check the load connected to X30/7 or remove short-circuit connection.

External interlock has been activated. To resume normal operation, apply

Check par. 5-33 Term X30/7 Digi Out (MCB 101).

24 V DC to the terminal programmed for external interlock and reset the

ALARM 45, Earth fault 2:

frequency converter (via serial communication, digital I/O, or by pressing

There is a discharge from the output phases to earth, either in the cable

reset button on keypad).

between the frequency converter and the motor or in the motor it-

WARNING/ALARM 61, Feedback Error:

self.Turn off the frequency converter and remove the earth fault. This

An error between calculated speed and speed measurement from feed-

alarm is detected under the start-up test sequence.

back device. The function Warning/Alarm/Disabling setting is in
par. 4-30 Motor Feedback Loss Function. Accepted error setting in

ALARM 46, Power card supply

par. 4-31 Motor Feedback Speed Error and the allowed time the error

The supply on the power card is out of range.
There are three power supplies generated by the switch mode power
supply (SMPS) on the power card: 24 V, 5V, +/- 18V. When powered with
24 VDC with the MCB 107 option, only the 24 V and 5 V supplies are

occur setting in par. 4-32 Motor Feedback Loss Timeout. During a commissioning procedure the function may be effective.
WARNING 62, Output Frequency at Maximum Limit:

monitored. When powered with three phase mains voltage, all three sup-

The output frequency is higher than the value set in par. 4-19 Max Output

plied are monitored.

Frequency. This is a warning in VVCplus mode and an alarm (trip) in Flux
mode.

WARNING 47, 24 V supply low:
The external 24 V DC backup power supply may be overloaded, otherwise

ALARM 63, Mechanical Brake Low:

Contact your Danfoss supplier.

The actual motor current has not exceeded the “release brake” current
within the “Start delay” time window.

WARNING 48, 1.8 V supply low:

6

WARNING 64, Voltage Limit:

Contact your Danfoss supplier.

The load and speed combination demands a motor voltage higher than

WARNING 49, Speed limit:
The speed is not within the specified range in par. 4-11 Motor Speed Low

Limit [RPM] and par. 4-13 Motor Speed High Limit [RPM].

the actual DC link voltage.
WARNING/ALARM/TRIP 65, Control Card Over Temperature:
Control card over temperature: The cut-out temperature of the control

ALARM 50, AMA calibration failed:
The motor is not suitable for the particular size of drive. Start the AMA

card is 80° C.

procedure once again by par. 1-29 Automatic Motor Adaptation (AMA),

WARNING 66, Heatsink Temperature Low:

eventually with a reduced AMA function. If still failing; check the motor

The heat sink temperature is measured as 0° C. This could indicate that

data.

the temperature sensor is defect and thus the fan speed is increased to
the maximum in case the power part or control card is very hot.

ALARM 51, AMA check Unom and Inom:
The setting of motor voltage, motor current, and motor power is pre-

ALARM 67, Option Configuration has Changed:

sumably wrong. Check the settings.

One or more options has either been added or removed since the last
power down.

ALARM 52, AMA low Inom:

ALARM 68, Safe Stop:

The motor current is too low. Check the settings.

Safe Stop has been activated. To resume normal operation, apply 24 V

ALARM 53, AMA motor too big:
The motor is too big for the AMA to be carried out.

DC to T-37. Press reset button on LCP.
WARNING 68, Safe Stop:

ALARM 54, AMA motor too small:
The motor is too small for the AMA to be carried out.
ALARM 55, AMA par. out of range:
The motor parameter values found from the motor are outside acceptable
range.

Safe Stop has been activated. Normal operation is resumed when Safe
Stop is disabled. Warning: Automatic Restart!
ALARM 69, Power card temperature
The temperature sensor on the power card is either too hot or too cold.
Troubleshooting:

ALARM 56, AMA interrupted by user:

Check the operation of the door fans.

The AMA has been interrupted by the user.

Check that the filters for the door fans are not blocked.

ALARM 57, AMA timeout:
Try to start the AMA again a number of times, until the AMA is carried

Check that the gland plate is properly installed on IP 21 and IP

out. Please note that repeated runs may heat the motor to a level where

54 (NEMA 1 and NEMA 12) drives.

the resistance Rs and Rr are increased. In most cases, however, this is

ALARM 70, Illegal FC Configuration:

not critical.

Actual combination of control board and power board is illegal.

ALARM 58, AMA internal fault:

ALARM 71, PTC 1 Safe Stop:

Contact your Danfoss supplier.

Safe Stop has been activated from the MCB 112 PTC Thermistor Card

WARNING 59, Current limit:

(motor too warm). Normal operation can be resumed when the MCB 112

The current is higher than the value in par. 4-18 Current Limit.

applies 24 V DC to T-37 again (when the motor temperature reaches an
acceptable level) and when the Digital Input from the MCB 112 is deactivated. When that happens, a reset signal must be is be sent (via Bus,
Digital I/O, or by pressing [RESET]).

MG.33.AG.02 - VLT® is a registered Danfoss trademark

105

VLT®AutomationDrive FC 300 Operating
Instructions

6 Troubleshooting
WARNING 71, PTC 1 Safe Stop:

ALARM 79, Illegal power section configuration

Safe Stop has been activated from the MCB 112 PTC Thermistor Card

The scaling card is the incorrect part number or not installed. Also MK102

(motor too warm). Normal operation can be resumed when the MCB 112

connector on the power card could not be installed.

applies 24 V DC to T-37 again (when the motor temperature reaches an

ALARM 80, Drive Initialised to Default Value:

acceptable level) and when the Digital Input from the MCB 112 is deac-

Parameter settings are initialised to default setting after a manual (three-

tivated. Warning: Automatic Restart.

finger) reset.

ALARM 72, Dangerous Failure:

ALARM 81, CSIV corrupt:

Safe Stop with Trip Lock. The Dangerous Failure Alarm is issued if the
combination of safe stop commands is unexpected. This is the case if the
MCB 112 VLT PTC Thermistor Card enables X44/ 10 but safe stop is
somehow not enabled. Furthermore, if the MCB 112 is the only device

ALARM 82, CSIV parameter error:
CSIV failed to init a parameter.

using safe stop (specified through selection [4] or [5] in par. 5-19), an

ALARM 85, Dang fail PB:

unexpected combination is activation of safe stop without the X44/ 10

Profibus/Profisafe Error.

being activated. The following table summarizes the unexpected combi-

ALARM 86, Dang fail DI:

nations that lead to Alarm 72. Note that if X44/ 10 is activated in selection

Sensor Error.

2 or 3, this signal is ignored! However, the MCB 112 will still be able to

6

CSIV file has syntax errors.

activate Safe Stop.
Function

Check the connection to encoder/ resolver option and eventually replace
No.

X44/ 10 (DI) Safe Stop
T37

PTC 1 Warning
PTC 1 Alarm

ALARM 90, Feedback Monitor:

[4]
[5]

the MCB 102or MCB 103.
ALARM 91, Analogue Input 54 Wrong Settings:
Switch S202 has to be set in position OFF (voltage input) when a KTY

+

-

-

+

+

-

ALARM 243, Brake IGBT

-

+

This alarm is only for F Frame drives. It is equivalent to Alarm 27. The

sensor is connected to analogue input terminal 54.

PTC 1 & Relay A

[6]

+

-

report value in the alarm log indicates which power module generated

PTC 1 & Relay W

[7]

+

-

the alarm:

PTC 1 & RelayA/ W

[8]

+

-

PTC 1 & Relay W/A

[9]

+

-

1 = left most inverter module.
2 = middle inverter module in F2 or F4 drive.

+ = activated

2 = right inverter module in F1 or F3 drive.

- = Not activated

3 = right inverter module in F2 or F4 drive.

WARNING 73, Safe stop auto restart

5 = rectifier module.

Safe stopped. Note that with automatic restart enabled, the motor may
start when the fault is cleared.

ALARM 244, Heatsink temperature
This alarm is only for F Frame drives. It is equivalent to Alarm 29. The

WARNING 76, Power Unit Setup

report value in the alarm log indicates which power module generated

The required number of power units does not match the detected number
of active power units.

the alarm:
1 = left most inverter module.

Troubleshooting:

2 = middle inverter module in F2 or F4 drive.

When replacing an F-frame module, this will occur if the power specific
data in the module power card does not match the rest of the drive.

2 = right inverter module in F1 or F3 drive.

Please confirm the spare part and its power card are the correct part

3 = right inverter module in F2 or F4 drive.

number.

5 = rectifier module.

WARNING 77, Reduced power mode:
This warning indicates that the drive is operating in reduced power mode
(i.e. less than the allowed number of inverter sections). This warning will
be generated on power cycle when the drive is set to run with fewer
inverters and will remain on.
ALARM 78, Tracking Error:
The difference between set point value and actual value has exceeded
the value in par. 4-35 Tracking Error. Disable the function by
par. 4-34 Tracking Error Function or select an alarm/warning also in
par. 4-34 Tracking Error Function. Investigate the mechanics around the
load and motor, Check feedback connections from motor – encoder – to
drive. Select motor feedback function in par. 4-30 Motor Feedback Loss

Function. Adjust tracking error band in par. 4-35 Tracking Error and
par. 4-37 Tracking Error Ramping.

106

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

6 Troubleshooting

ALARM 245, Heatsink sensor

ALARM 247, Power card temperature

This alarm is only for F Frame drives. It is equivalent to Alarm 39. The

This alarm is only for F Frame drives. It is equivalent to Alarm 69. The

report value in the alarm log indicates which power module generated

report value in the alarm log indicates which power module generated

the alarm:

the alarm:

1 = left most inverter module.

1 = left most inverter module.

2 = middle inverter module in F2 or F4 drive.

2 = middle inverter module in F2 or F4 drive.

2 = right inverter module in F1 or F3 drive.

2 = right inverter module in F1 or F3 drive.

3 = right inverter module in F2 or F4 drive.

3 = right inverter module in F2 or F4 drive.

5 = rectifier module.

5 = rectifier module.

ALARM 246, Power card supply

ALARM 248, Illegal power section configuration

This alarm is only for F Frame drives. It is equivalent to Alarm 46. The

This alarm is only for F Frame drives. It is equivalent to Alarm 79. The

report value in the alarm log indicates which power module generated

report value in the alarm log indicates which power module generated

the alarm:

the alarm:

1 = left most inverter module.

1 = left most inverter module.

2 = middle inverter module in F2 or F4 drive.

2 = middle inverter module in F2 or F4 drive.

2 = right inverter module in F1 or F3 drive.

2 = right inverter module in F1 or F3 drive.

3 = right inverter module in F2 or F4 drive.

3 = right inverter module in F2 or F4 drive.

5 = rectifier module.

6

5 = rectifier module.
ALARM 250, New Spare Part:
The power or Switch Mode Power Supply has been exchanged. The frequency converter type code must be restored in the EEPROM. Select the
correct type code in par. 14-23 Typecode Setting according to the label
on unit. Remember to select ‘Save to EEPROM’ to complete.
ALARM 251, New Type Code:
The Frequency Converter has got a new type code.

MG.33.AG.02 - VLT® is a registered Danfoss trademark

107

Index

VLT®AutomationDrive FC 300 Operating
Instructions

Index
A
Abbreviations

5

Access To Control Terminals

32

Activate Brake Delay 2-23

54

[Activate Brake Speed Hz] 2-22

54

[Activate Brake Speed Rpm] 2-21

54

Alarm Messages

99

Ama

39

Analog Inputs

94

Analog Output

95

Approvals

4

Automatic Motor Adaptation (ama)

39, 47

B
Brake Check 2-15

53

Brake Control

103

Brake Function 2-10

52

Brake Power Limit (kw) 2-12

52

Brake Power Monitoring 2-13

52

Brake Release Time 2-25

55

Brake Resistor (ohm) 2-11

52

C
Cable Lengths And Cross Sections

96

Cable Lengths And Cross Sections-continued

96

Catch Up

61

Checklist

15

Communication Option

104

Connection To Mains

22

Control Cables

36

Control Card Performance

96

Control Card, +10 V Dc Output

95

Control Card, 24 V Dc Output

95

Control Card, Rs 485 Serial Communication

95

Control Card, Usb Serial Communication

95

Control Characteristics

96

Control Terminals

33

Cooling

50

Cooling Conditions

18

D
Dc Backup

3

Dc Link

102

Decoupling Plate

26

Default Settings

70

Devicenet

3

Digital I/o Mode 5-00

58

Digital Inputs:

93

Digital Output

95

Disposal Instruction

5

E
Electrical Installation

33, 36

Electrical Terminals

36

Electronic Terminal Relay

50

Etr

103

F
Function Relay 5-40

65

Fuses

29

108

MG.33.AG.02 - VLT® is a registered Danfoss trademark

VLT®AutomationDrive FC 300 Operating
Instructions

Index

G
Gain Boost Factor 2-28

55

General Warning

9

Graphical Display

43

I
Intermediate Circuit

102

Ip21 / Type 1

3

J
[Jog Speed Hz] 3-11

56

K
Kty Sensor

103

L
Language 0-01

45

Language Package 1

45

Language Package 2

45

Language Package 3

45

Language Package 4

45

Lcp Copy 0-50

49

Leakage Current

9

Leds

43

Local Control Panel

43

M
Main Reactance

47

Mains Supply (l1, L2, L3)

93

Maximum Reference 3-03

48

Mcb 113

65

Mct 10

3

Mechanical Brake Control

41

Mechanical Dimensions

16

Mechanical Mounting

18

Minimum Reference 3-02

48

Motor Connection

26

Motor Current 1-24

46

Motor Frequency 1-23

46

Motor Name Plate

39

Motor Nominal Speed 1-25

46

Motor Output

93

[Motor Power Kw] 1-20

46

Motor Protection

50, 97

Motor Speed Unit 0-02

49

Motor Thermal Protection

42, 50

Motor Voltage 1-22

46

N
Name Plate Data

39

Non Ul Compliance

29

Numerical Display

43

O
Operation Mode 14-22

68

Output Performance (u, V, W)

93

Overload Mode 1-04

50

P
Panel Through Mounting

19

MG.33.AG.02 - VLT® is a registered Danfoss trademark

109

Index

VLT®AutomationDrive FC 300 Operating
Instructions

Parallel Connection Of Motors

41

Potentiometer Reference

35

Preset Reference 3-10

56

Profibus

3

Protection

29

Protection And Features

97

Protection Mode

8

Pulse Start/stop

34

Pulse/encoder Inputs

94

R
Ramp 1 Ramp Down Time 3-42

48

Ramp 1 Ramp Up Time 3-41

48

Reference Resource 1 3-15

56

Reference Resource 2 3-16

57

Reference Resource 3 3-17

57

Relay Outputs

63

Relay Outputs

95

Release Brake Current 2-20

54

Removal Of Knockouts For Extra Cables

22

Repair Work

9

Residual Current Device

9

Rfi Filter 14-50

69

S
Safe Stop

9

Safety Precautions

7

Screened/armoured

21, 26, 37

Serial Communication

95

Shaft Performance Levels.

3

Side-by-side Installation

18

Sine-wave Filter

29

Software Version 15-43

69

Speed Up/down

35

Start/stop

34

Stator Leakage Reactance

47

Status Messages

43

Stop Delay 2-24

55

Surroundings

96

Switches S201, S202, And S801

38

Symbols

4

T
Terminal 27 Mode 5-01

58

Terminal 29 Mode 5-02

58

Thermistor

50

Thermistor Source 1-93

51

Torque Characteristics 1-03

49, 93

Torque Ramp Time 2-27

55

Torque Ref 2-26

55

V
Voltage Level

93

Voltage Reference Via A Potentiometer

35

W
Warnings

110

99

MG.33.AG.02 - VLT® is a registered Danfoss trademark



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
Linearized                      : No
Page Mode                       : UseNone
XMP Toolkit                     : Adobe XMP Core 5.1.0-jc003
Format                          : application/pdf
Producer                        : Acrobat Distiller 7.0 (Windows); modified using iTextSharp™ 5.5.2 ©2000-2014 iText Group NV (AGPL-version)
Create Date                     : 2010:03:16 10:01:33+01:00
Creator Tool                    : XSL Formatter V4.3 MR8 (4,3,2009,0626) for Windows
Modify Date                     : 2015:06:01 18:37:35+02:00
Creator                         : sa_kgu
Title                           : VLT AutomationDrive FC 300
Page Count                      : 110
PDF Version                     : 1.5
Author                          : sa_kgu
Document Type                   : Operating guide
Language                        : en-GB
Archive Date                    : D:20141128000000+01'00'
Product Group 1                 : Frequency Converters
Product Family 1                : VLT AutomationDrive
Product Type 1                  : FC 301
Product Type 2                  : FC 302
Division                        : PE
Literature Number               : MG33AG02
EXIF Metadata provided by EXIF.tools

Navigation menu