Fundamentals Of Microelectronics Solution Manual
User Manual:
Open the PDF directly: View PDF .
Page Count: 1115
Download | |
Open PDF In Browser | View PDF |
Solutions Manual to Accompany Fundamentals of Microelectronics, 1st Edition Book ISBN: 978‐0‐471‐47846‐1 Razavi All materials copyrighted and published by John Wiley & Sons, Inc. Not for duplication or distribution 2.1 (a) k = 8.617 × 10−5 eV/K 15 3/2 ni (T = 300 K) = 1.66 × 10 (300 K) exp − 0.66 eV 2 (8.617 × 10−5 eV/K) (300 K) cm−3 exp − 0.66 eV 2 (8.617 × 10−5 eV/K) (600 K) cm−3 = 2.465 × 1013 cm−3 15 3/2 ni (T = 600 K) = 1.66 × 10 (600 K) = 4.124 × 1016 cm−3 Compared to the values obtained in Example 2.1, we can see that the intrinsic carrier concentration 13 in Ge at T = 300 K is 2.465×10 1.08×1010 = 2282 times higher than the intrinsic carrier concentration in Si at T = 300 K. Similarly, at T = 600 K, the intrinsic carrier concentration in Ge is 26.8 times higher than that in Si. 4.124×1016 1.54×1015 = (b) Since phosphorus is a Group V element, it is a donor, meaning ND = 5 × 1016 cm−3 . For an n-type material, we have: n = ND = 5 × 1016 cm−3 2 [ni (T = 300 K)] = 1.215 × 1010 cm−3 n [ni (T = 600 K)]2 = 3.401 × 1016 cm−3 p(T = 600 K) = n p(T = 300 K) = 2.3 (a) Since the doping is uniform, we have no diffusion current. Thus, the total current is due only to the drift component. Itot = Idrif t = q(nµn + pµp )AE n = 1017 cm−3 p = n2i /n = (1.08 × 1010 )2 /1017 = 1.17 × 103 cm−3 µn = 1350 cm2 /V · s µp = 480 cm2 /V · s 1V E = V /d = 0.1 µm = 105 V/cm A = 0.05 µm × 0.05 µm = 2.5 × 10−11 cm2 Since nµn ≫ pµp , we can write Itot ≈ qnµn AE = 54.1 µA (b) All of the parameters are the same except ni , which means we must re-calculate p. ni (T = 400 K) = 3.657 × 1012 cm−3 p = n2i /n = 1.337 × 108 cm−3 Since nµn ≫ pµp still holds (note that n is 9 orders of magnitude larger than p), the hole concentration once again drops out of the equation and we have Itot ≈ qnµn AE = 54.1 µA 2.4 (a) From Problem 1, we can calculate ni for Ge. ni (T = 300 K) = 2.465 × 1013 cm−3 Itot = q(nµn + pµp )AE n = 1017 cm−3 p = n2i /n = 6.076 × 109 cm−3 µn = 3900 cm2 /V · s µp = 1900 cm2 /V · s 1V E = V /d = 0.1 µm = 105 V/cm A = 0.05 µm × 0.05 µm = 2.5 × 10−11 cm2 Since nµn ≫ pµp , we can write Itot ≈ qnµn AE = 156 µA (b) All of the parameters are the same except ni , which means we must re-calculate p. ni (T = 400 K) = 9.230 × 1014 cm−3 p = n2i /n = 8.520 × 1012 cm−3 Since nµn ≫ pµp still holds (note that n is 5 orders of magnitude larger than p), the hole concentration once again drops out of the equation and we have Itot ≈ qnµn AE = 156 µA 2.5 Since there’s no electric field, the current is due entirely to diffusion. If we define the current as positive when flowing in the positive x direction, we can write dn dp Itot = Idif f = AJdif f = Aq Dn − Dp dx dx A = 1 µm × 1 µm = 10−8 cm2 Dn = 34 cm2 /s Dp = 12 cm2 /s 5 × 1016 cm−3 dn =− = −2.5 × 1020 cm−4 dx 2 × 10−4 cm dp 2 × 1016 cm−3 = = 1020 cm−4 dx 2 × 10−4 cm Itot = 10−8 cm2 1.602 × 10−19 C 34 cm2 /s −2.5 × 1020 cm−4 − 12 cm2 /s 1020 cm−4 = −15.54 µA 2.8 Assume the diffusion lengths Ln and Lp are associated with the electrons and holes, respectively, in this material and that Ln , Lp ≪ 2 µm. We can express the electron and hole concentrations as functions of x as follows: n(x) = N e−x/Ln p(x) = P e(x−2)/Lp Z 2 an(x)dx # of electrons = 0 = Z 2 aN e−x/Ln dx 0 2 = −aN Ln e−x/Ln 0 −2/Ln −1 = −aN Ln e Z 2 # of holes = ap(x)dx 0 = Z 2 aP e(x−2)/Lp dx 0 2 = aP Lp e(x−2)/Lp 0 −2/Lp = aP Lp 1 − e Due to our assumption that Ln , Lp ≪ 2 µm, we can write e−2/Ln ≈ 0 e−2/Lp ≈ 0 # of electrons ≈ aN Ln # of holes ≈ aP Lp 2.10 (a) nn = ND = 5 × 1017 cm−3 pn = n2i /nn = 233 cm−3 pp = NA = 4 × 1016 cm−3 np = n2i /pp = 2916 cm−3 (b) We can express the formula for V0 in its full form, showing its temperature dependence: " # NA ND kT ln V0 (T ) = q (5.2 × 1015 )2 T 3 e−Eg /kT V0 (T = 250 K) = 906 mV V0 (T = 300 K) = 849 mV V0 (T = 350 K) = 789 mV Looking at the expression for V0 (T ), we can expand it as follows: V0 (T ) = kT ln(NA ) + ln(ND ) − 2 ln 5.2 × 1015 − 3 ln(T ) + Eg /kT q Let’s take the derivative of this expression to get a better idea of how V0 varies with temperature. k dV0 (T ) ln(NA ) + ln(ND ) − 2 ln 5.2 × 1015 − 3 ln(T ) − 3 = dT q 15 From this expression, we can see that if ln(N ) + ln(N ) < 2 ln 5.2 × 10 + 3 ln(T ) + 3, or A D h i 15 2 3 equivalently, if ln(NA ND ) < ln 5.2 × 10 T − 3, then V0 will decrease with temperature, which we observe in this case. In order for this not to be true (i.e., in order for V0 to increase with temperature), we must have either very high doping concentrations or very low temperatures. 2.11 Since the p-type side of the junction is undoped, its electron and hole concentrations are equal to the intrinsic carrier concentration. nn = ND = 3 × 1016 cm−3 pp = ni = 1.08 × 1010 cm−3 N D ni V0 = VT ln n2i ND = (26 mV) ln ni = 386 mV 2.12 (a) r qǫSi NA ND 1 2 NA + ND V0 Cj0 Cj = p 1 − VR /V0 Cj0 = NA = 2 × 1015 cm−3 ND = 3 × 1016 cm−3 VR = −1.6 V NA ND = 701 mV V0 = VT ln n2i Cj0 = 14.9 nF/cm2 Cj = 8.22 nF/cm2 = 0.082 fF/cm2 (b) Let’s write an equation for Cj′ in terms of Cj assuming that Cj′ has an acceptor doping of NA′ . Cj′ = 2Cj s qǫSi NA′ ND 1 = 2Cj 2 NA′ + ND VT ln(NA′ ND /n2i ) − VR 1 qǫSi NA′ ND = 4Cj2 ′ ′ 2 NA + ND VT ln(NA ND /n2i ) − VR NA′ qǫSi NA′ ND = 8Cj2 (NA′ + ND )(VT ln(NA′ ND /n2i ) − VR ) qǫSi ND − 8Cj2 (VT ln(NA′ ND /n2i ) − VR ) = 8Cj2 ND (VT ln(NA′ ND /n2i ) − VR ) NA′ = 8Cj2 ND (VT ln(NA′ ND /n2i ) − VR ) qǫSi ND − 8Cj2 (VT ln(NA′ ND /n2i ) − VR ) We can solve this by iteration (you could use a numerical solver if you have one available). Starting with an initial guess of NA′ = 2 × 1015 cm−3 , we plug this into the right hand side and solve to find a new value of NA′ = 9.9976 × 1015 cm−3 . Iterating twice more, the solution converges to NA′ = 1.025 × 1016 cm−3 . Thus, we must increase the NA by a factor of NA′ /NA = 5.125 ≈ 5 . 2.16 (a) The following figure shows the series diodes. ID + D1 VD D2 − Let VD1 be the voltage drop across D1 and VD2 be the voltage drop across D2 . Let IS1 = IS2 = IS , since the diodes are identical. VD = VD1 + VD2 ID ID + VT ln = VT ln IS IS ID = 2VT ln IS ID = IS eVD /2VT Thus, the diodes in series act like a single device with an exponential characteristic described by ID = IS eVD /2VT . (b) Let VD be the amount of voltage required to get a current ID and VD′ the amount of voltage required to get a current 10ID . ID VD = 2VT ln IS 10ID ′ VD = 2VT ln IS ID 10ID ′ − ln VD − VD = 2VT ln IS IS = 2VT ln (10) = 120 mV 2.19 VX = IX R1 + VD1 IX IX = IX R1 + VT ln IS VT IX VX − ln = R1 R1 IS For each value of VX , we can solve this equation for IX by iteration. Doing so, we find IX (VX = 0.5 V) = 0.435 µA IX (VX = 0.8 V) = 82.3 µA IX (VX = 1 V) = 173 µA IX (VX = 1.2 V) = 267 µA Once we have IX , we can compute VD via the equation VD = VT ln(IX /IS ). Doing so, we find VD (VX = 0.5 V) = 499 mV VD (VX = 0.8 V) = 635 mV VD (VX = 1 V) = 655 mV VD (VX = 1.2 V) = 666 mV As expected, VD varies very little despite rather large changes in ID (in particular, as ID experiences an increase by a factor of over 3, VD changes by about 5 %). This is due to the exponential behavior of the diode. As a result, a diode can allow very large currents to flow once it turns on, up until it begins to overheat. 2.22 VX /2 = IX R1 = VD1 = VT ln(IX /IS ) VT IX = ln(IX /IS ) R1 IX = 367 µA (using iteration) VX = 2IX R1 = 1.47 V 3.1 (a) IX = ( VX R1 0 VX < 0 VX > 0 IX VX (V) Slope = 1/R1 3.2 IX = ( VX R1 0 VX < 0 VX > 0 Plotting IX (t), we have 0 0 −V0 /R1 −π/ω 0 t π/ω −V0 VX (t) (Dotted) IX (t) for VB = 1 V (Solid) V0 3.3 IX = ( 0 VX −VB R1 VX < VB VX > VB Plotting IX vs. VX for VB = −1 V and VB = 1 V, we get: IX VB = −1 V VB = 1 V Slope = 1/R1 −1 Slope = 1/R1 1 VX (V) 3.4 IX = ( 0 VX −VB R1 VX < VB VX > VB Let’s assume V0 > 1 V. Plotting IX (t) for VB = −1 V, we get (V0 − VB )/R1 0 0 VB −π/ω Plotting IX (t) for VB = 1 V, we get 0 t π/ω −V0 VX (t) (Dotted) IX (t) for VB = −1 V (Solid) V0 IX (t) for VB = 1 V (Solid) (V0 − VB )/R1 0 0 −π/ω 0 t π/ω −V0 VX (t) (Dotted) V0 VB 3.5 IX = ( VX −VB R1 ∞ VX < 0 VX > 0 Plotting IX vs. VX for VB = −1 V and VB = 1 V, we get: IX IX for VB = −1 V IX for VB = 1 V 1/R1 Slope = 1/R1 −1 VX (V) −1/R1 Slope = 1/R1 3.6 First, note that ID1 = 0 always, since D1 is reverse biased by VB (due to the assumption that VB > 0). We can write IX as IX = (VX − VB )/R1 Plotting this, we get: IX VB VX (V) Slope = 1/R1 3.7 IX = IR1 = ( VX −VB R1 VX −VB R1 kR2 VX < VB VX > VB VX − VB R1 Plotting IX and IR1 for VB = −1 V, we get: IX IX for VB = −1 V IR1 for VB = −1 V Slope = 1/R1 + 1/R2 −1 Slope = 1/R1 Plotting IX and IR1 for VB = 1 V, we get: VX (V) IX IX for VB = 1 V IR1 for VB = 1 V Slope = 1/R1 + 1/R2 1 VX (V) Slope = 1/R1 3.8 IX = ( 0 IR1 = ( VX R1 + VB R1 +R2 VX R1 VX −VB R2 VX < VX > VX < VX > VB R1 +R2 R1 VB R1 +R2 R1 VB R1 +R2 R1 VB R1 +R2 R1 Plotting IX and IR1 for VB = −1 V, we get: IX for VB = −1 V IR1 for VB = −1 V Slope = 1/R1 + 1/R2 −VB /R2 Slope = 1/R1 VB R R1 +R2 1 VB R1 +R2 Plotting IX and IR1 for VB = 1 V, we get: VX (V) IX for VB = 1 V IR1 for VB = 1 V Slope = 1/R1 + 1/R2 Slope = 1/R1 VB R1 +R2 VB R R1 +R2 1 VX (V) 3.9 (a) Vout (V) Vout = ( VB Vin Vin < VB Vin > VB 5 Slope = 1 4 3 2 1 0 −5 −4 −3 −2 −1 0 1 (b) Vout ( Vin − VB = 0 Vin < VB Vin > VB 2 3 4 5 Vin (V) Vout (V) 2 1 0 −5 −4 −3 −2 −1 0 1 2 3 4 −1 5 Vin (V) −2 −3 Slope = 1 −4 −5 −6 −7 (c) Vout (V) Vout = Vin − VB 3 Slope = 1 2 1 0 −5 −4 −3 −2 −1 −1 −2 −3 −4 −5 −6 −7 0 1 2 3 4 5 Vin (V) Vout = ( Vout (V) (d) 2 Vin VB Vin < VB Vin > VB 1 0 −5 −4 −3 −2 −1 0 1 −1 Slope = 1 −2 −3 −4 −5 (e) Vout ( 0 = Vin − VB Vin < VB Vin > VB 2 3 4 5 Vin (V) Vout (V) 3 Slope = 1 2 1 0 −5 −4 −3 −2 −1 0 1 2 3 4 5 Vin (V) 3.11 For each part, the dotted line indicates Vin (t), while the solid line indicates Vout (t). Assume V0 > VB . (a) Vout (t) (V) Vout = ( VB Vin Vin < VB Vin > VB V0 VB π/ω −π/ω t −V0 (b) Vout ( Vin − VB = 0 Vin < VB Vin > VB Vout (t) (V) V0 VB π/ω −π/ω t −V0 −V0 − VB (c) Vout (t) (V) Vout = Vin − VB V0 VB V0 − VB π/ω −π/ω t −V0 −V0 − VB (d) Vout (t) (V) Vout = ( Vin VB Vin < VB Vin > VB V0 VB π/ω −π/ω t −V0 (e) Vout ( 0 = Vin − VB Vin < VB Vin > VB Vout (t) (V) V0 VB V0 − VB π/ω −π/ω t −V0 3.12 For each part, the dotted line indicates Vin (t), while the solid line indicates Vout (t). Assume V0 > VB . (a) Vout (t) (V) Vout ( Vin − VB = 0 Vin < VB Vin > VB V0 VB π/ω −π/ω t −V0 −V0 − VB (b) Vout = ( Vin VB Vin < VB Vin > VB Vout (t) (V) V0 VB π/ω −π/ω t −V0 Vout ( 0 = Vin − VB Vout (t) (V) (c) V0 Vin < VB Vin > VB VB V0 − VB π/ω −π/ω t −V0 (d) Vout (t) (V) Vout = Vin − VB V0 VB V0 − VB π/ω −π/ω t −V0 −V0 − VB (e) Vout = ( VB Vin Vin < VB Vin > VB Vout (t) (V) V0 VB π/ω −π/ω t −V0 3.16 (a) IR1 = ( Iin VD,on R1 Iin < Iin > VD,on R1 VD,on R1 IR1 VD,on /R1 VD,on /R1 Iin Slope = 1 (b) IR1 = ( Iin VD,on +VB R1 Iin < Iin > VD,on +VB R1 VD,on +VB R1 IR1 (VD,on + VB ) /R1 (VD,on + VB ) /R1 Iin Slope = 1 (c) IR1 = ( Iin VD,on −VB R1 Iin < Iin > VD,on −VB R1 VD,on −VB R1 IR1 (VD,on − VB ) /R1 Iin (VD,on − VB ) /R1 Slope = 1 (d) IR1 = ( Iin VD,on R1 Iin < Iin > VD,on R1 VD,on R1 IR1 VD,on /R1 VD,on /R1 Iin Slope = 1 3.17 (a) Vout = ( Iin R1 VD,on Iin < Iin > VD,on R1 VD,on R1 VD,on /R1 VD,on 0 0 −I0 R1 0 t −π/ω π/ω (b) Vout = ( Iin R1 VD,on + VB Iin < Iin > VD,on +VB R1 VD,on +VB R1 −I0 Iin (t) (Dotted) Vout (t) (Solid) I0 I0 (VD,on+VB )/R1 0 0 Iin (t) (Dotted) Vout (t) (Solid) VD,on + VB −I0 R1 0 t −π/ω −I0 π/ω (c) Vout = ( Iin R1 + VB VD,on Iin < Iin > VD,on −VB R1 VD,on −VB R1 VD,on 0 0 −I0 R1 + VB (VD,on − VB ) /R1 −π/ω 0 t π/ω −I0 Iin (t) (Dotted) Vout (t) (Solid) I0 (d) Vout = ( Iin R1 + VB VD,on + VB Iin < Iin > VD,on R1 VD,on R1 I0 VD,on /R1 0 0 −I0 R1 + VB −π/ω 0 t π/ω −I0 Iin (t) (Dotted) Vout (t) (Solid) VD,on + VB 3.20 (a) Vout = ( Iin R1 VB − VD,on Iin > Iin < VB −VD,on R1 VB −VD,on R1 I0 I0 R1 VB − VD,on 0 0 0 t −π/ω π/ω (b) Vout = ( Iin R1 + VB −VD,on V +V B Iin > − D,on R1 VD,on +VB Iin < − R1 −I0 Iin (t) (Dotted) Vout (t) (Solid) (VB − VD,on ) /R1 I0 0 Iin (t) (Dotted) Vout (t) (Solid) I0 R1 + VB 0 −VD,on −(VD,on +VB )/R1 0 t −π/ω π/ω −I0 (c) Vout = ( Iin R1 + VB VB − VD,on V Iin > − D,on R1 V Iin < − D,on R1 I0 VB − VD,on 0 0 −VD,on /R1 −π/ω 0 t π/ω −I0 Iin (t) (Dotted) Vout (t) (Solid) I0 R1 + VB 3.23 (a) R2 R1 +R2 Vin VD,on Vout (V) Vout = ( Vin < Vin > R1 +R2 R2 VD,on R1 +R2 R2 VD,on VD,on R1 +R2 VD,on R2 Vin (V) Slope = R2 / (R1 + R2 ) (b) Vout = ( R2 R1 +R2 Vin Vin − VD,on Vin < Vin > R1 +R2 R1 VD,on R1 +R2 R1 VD,on Vout (V) Slope = 1 R2 V R1 D,on Slope = R2 / (R1 + R2 ) R1 +R2 VD,on R1 Vin (V) 3.24 (a) IR1 = ( Vin R1 +R2 Vin −VD,on R1 ID1 = ( 0 Vin −VD,on R1 Vin < Vin > − VD,on R2 R1 +R2 R2 VD,on R1 +R2 R2 VD,on Vin < Vin > R1 +R2 R2 VD,on R1 +R2 R2 VD,on IR1 ID1 Slope = 1/R1 Slope = 1/R1 VD,on /R2 R1 +R2 VD,on R2 Vin (V) Slope = 1/ (R1 + R2 ) (b) IR1 = ( Vin R1 +R2 VD,on R1 ID1 = ( 0 Vin < Vin > Vin −VD,on R2 − R1 +R2 R1 VD,on R1 +R2 R1 VD,on VD,on R1 Vin < Vin > R1 +R2 R1 VD,on R1 +R2 R1 VD,on VD,on /R1 IR1 ID1 Slope = 1/R2 R1 +R2 VD,on R1 Vin (V) Slope = 1/ (R1 + R2 ) 3.25 (a) 2 VB + R1R+R (Vin − VB ) 2 Vin − VD,on Vin < VB + Vin > VB + R1 +R2 R1 VD,on R1 +R2 R1 VD,on Vout (V) Vout = ( Slope = 1 VB + R2 V R1 D,on VB + Slope = R2 / (R1 + R2 ) R1 +R2 VD,on R1 Vin (V) (b) Vout = ( R2 R1 +R2 Vin Vin − VD,on − VB Vin < Vin > R1 +R2 R1 R1 +R2 R1 (VD,on + VB ) (VD,on + VB ) Vout (V) Slope = 1 R2 R1 (VD,on + VB ) VB + Slope = R2 / (R1 + R2 ) R1 +R2 R1 (VD,on + VB ) Vin (V) (c) R2 R1 +R2 (Vin − VB ) Vin > VB + Vin + VD,on − VB Vin < VB + Vout (V) Vout = ( R1 +R2 R1 VD,on R1 +R2 R1 VD,on Slope = R2 / (R1 + R2 ) R2 V R1 D,on VB + R1 +R2 VD,on R1 Vin (V) Slope = 1 (d) R2 R1 +R2 (Vin − VB ) Vin < VB + Vin − VD,on Vin > VB + R1 +R2 R1 R1 +R2 R1 Vout (V) Vout = ( (VD,on − VB ) (VD,on − VB ) Slope = 1 R2 V R1 D,on VB + Slope = R2 / (R1 + R2 ) R1 +R2 R1 (VD,on − VB ) Vin (V) 3.26 (a) IR1 = ( Vin −VB R1 +R2 VD,on R1 ID1 = ( 0 Vin < VB + Vin > VB + Vin −VD,on −VB R2 IR1 ID1 − R1 +R2 R1 VD,on R1 +R2 R1 VD,on Vin < VB + Vin > VB + VD,on R1 R1 +R2 R1 VD,on R1 +R2 R1 VD,on VD,on /R1 Slope = 1/R2 VB + R1 +R2 VD,on R1 Vin (V) Slope = 1/ (R1 + R2 ) (b) IR1 = ( Vin R1 +R2 VD,on +VB R1 ID1 = ( 0 Vin < Vin > Vin −VD,on −VB R2 − R1 +R2 R1 R1 +R2 R1 (VD,on + VB ) (VD,on + VB ) VD,on +VB R1 Vin < Vin > R1 +R2 R1 R1 +R2 R1 (VD,on + VB ) (VD,on + VB ) (VD,on + VB ) /R1 IR1 ID1 Slope = 1/R2 R1 +R2 R1 (VD,on + VB ) Vin (V) Slope = 1/ (R1 + R2 ) (c) IR1 = ( Vin −VB R1 +R2 V − D,on R1 ID1 = ( 0 V +VD,on +VB − in R − 2 Vin > VB − Vin < VB − R1 +R2 R1 VD,on R1 +R2 R1 VD,on VD,on R1 Vin > VB − Vin < VB − R1 +R2 R1 VD,on R1 +R2 R1 VD,on IR1 ID1 Slope = −1/R2 Slope = 1/ (R1 + R2 ) VB + R1 +R2 VD,on R1 Vin (V) −VD,on /R1 (d) IR1 = ( Vin −VB R1 +R2 VD,on −VB R1 ID1 = ( 0 Vin −VD,on R2 Vin < VB + Vin > VB + − VD,on −VB R1 R1 +R2 R1 R1 +R2 R1 (VD,on − VB ) (VD,on − VB ) Vin < VB + Vin > VB + R1 +R2 R1 R1 +R2 R1 (VD,on − VB ) (VD,on − VB ) IR1 ID1 VB + Slope = 1/R2 R1 +R2 R1 (VD,on − VB ) (VD,on − VB ) /R1 Slope = 1/ (R1 + R2 ) Vin (V) 3.27 (a) 0 R2 R1 +R2 (Vin − VD,on ) Vin < VD,on Vin > VD,on Vout (V) Vout = ( Slope = R2 / (R1 + R2 ) VD,on Vin (V) (b) Vout −VD,on 2 = R1R+R Vin 2 Vin − VD,on 2 VD,on Vin < − R1R+R 2 R1 +R2 − R2 VD,on < Vin < 2 Vin > R1R+R VD,on 1 R1 +R2 R1 VD,on Vout (V) Slope = 1 R2 V R1 D,on Slope = R2 / (R1 + R2 ) 2 VD,on − R1R+R 2 R1 +R2 VD,on R1 Vin (V) −VD,on (c) R2 R1 +R2 (Vin + VD,on ) − VD,on Vin Vin < −VD,on Vin > −VD,on Vout (V) Vout = ( Slope = 1 −VD,on −VD,on Slope = R2 / (R1 + R2 ) Vin (V) (d) 0 R2 R1 +R2 (Vin − VD,on ) Vin < VD,on Vin > VD,on Vout (V) Vout = ( Slope = R2 / (R1 + R2 ) VD,on VD,on Vin (V) (e) Vout = ( R2 R1 +R2 0 (Vin + VD,on ) Vin < −VD,on Vin > −VD,on Vout (V) −VD,on Vin (V) Slope = R2 / (R1 + R2 ) 3.28 (a) IR1 = ( 0 ID1 = ( 0 Vin −VD,on R1 +R2 Vin −VD,on R1 +R2 Vin < VD,on Vin > VD,on Vin < VD,on Vin > VD,on IR1 ID1 Slope = 1/ (R1 + R2 ) VD,on Vin (V) (b) IR1 = ID1 V +V in D,on R1 Vin R1 +R2 VD,on R1 0 = 0 Vin −VD,on R2 2 Vin < − R1R+R VD,on 2 R1 +R2 − R2 VD,on < Vin < 2 Vin > R1R+R VD,on 1 − VD,on R1 R1 +R2 R1 VD,on 2 VD,on Vin < − R1R+R 2 R1 +R2 − R2 VD,on < Vin < 2 Vin > R1R+R VD,on 1 R1 +R2 R1 VD,on IR1 ID1 VD,on /R1 Slope = 1/ (R1 + R2 ) Slope = 1 R1 +R2 VD,on R1 2 VD,on − R1R+R 2 −VD,on /R2 Vin (V) Slope = 1/R1 (c) IR1 = ( 0 ID1 = ( 0 Vin < −VD,on 0 Vin > −VD,on Vin +VD,on R1 +R2 Vin < −VD,on Vin > −VD,on IR1 ID1 −VD,on Vin (V) Slope = 1/ (R1 + R2 ) (d) IR1 = ( 0 ID1 = ( 0 Vin −VD,on R1 +R2 Vin −VD,on R1 +R2 Vin < VD,on Vin > VD,on Vin < VD,on Vin > VD,on IR1 ID1 Slope = 1/ (R1 + R2 ) VD,on Vin (V) (e) IR1 = ( 0 ID1 = ( 0 Vin < −VD,on 0 Vin > −VD,on Vin +VD,on R1 +R2 Vin < −VD,on Vin > −VD,on IR1 ID1 −VD,on Vin (V) Slope = 1/ (R1 + R2 ) 3.29 (a) Vout (V) Vout Vin < VD,on Vin 2 2 = VD,on + R1R+R (V − V ) VD,on < Vin < VD,on + R1R+R (VD,on + VB ) in D,on 2 1 R1 +R2 Vin − VD,on − VB Vin > VD,on + R1 (VD,on + VB ) Slope = 1 VD,on + R2 R1 (VD,on + VB ) Slope = R2 / (R1 + R2 ) VD,on Slope = 1 VD,on VD,on + R1 +R2 R1 (VD,on + VB ) Vin (V) (b) Vout = ( Vin + VD,on − VB R2 R1 +R2 (Vin − VD,on ) Vin < VD,on + Vin > VD,on + R1 +R2 R1 R1 +R2 R1 (VB − 2VD,on ) (VB − 2VD,on ) Vout (V) Slope = R2 / (R1 + R2 ) R2 R1 (VB − 2VD,on ) VD,on + R1 +R2 R1 (VB − 2VD,on ) Vin (V) Slope = 1 (c) Vout (V) Vout = ( Vin VD,on + VB Vin < VD,on + VB Vin > VD,on + VB VD,on + VB VD,on + VB Vin (V) Slope = 1 (d) Vout (V) Vout = 0 Vin < VD,on 2 (Vin − VD,on ) VD,on < Vin < VD,on + R1R+R (VB + VD,on ) 2 R1 +R2 VD,on + VB Vin > VD,on + R2 (VB + VD,on ) R2 R1 +R2 VD,on + VB Slope = R2 / (R1 + R2 ) VD,on VD,on + R1 +R2 R2 (VB + VD,on ) Vin (V) 3.30 (a) IR1 = 0 ID1 = ( Vin −VD,on R1 +R2 VD,on +VB R1 Vin < VD,on 2 VD,on < Vin < VD,on + R1R+R (VD,on + VB ) 1 R1 +R2 Vin > VD,on + R1 (VD,on + VB ) 0 Vin −2VD,on −VB R2 − VD,on +VB R1 Vin < VD,on + Vin > VD,on + R1 +R2 R1 R1 +R2 R1 (VD,on + VB ) (VD,on + VB ) IR1 ID1 VD,on + VB Slope = 1/ (R1 + R2 ) Slope = 1/R2 VD,on VD,on + R1 +R2 R1 (VD,on + VB ) Vin (V) (b) If VB < 2VD,on : IR1 = ID1 = ( 0 Vin −VD,on R1 +R2 Vin < VD,on Vin > VD,on IR1 ID1 Slope = 1/ (R1 + R2 ) VD,on Vin (V) If VB > 2VD,on : IR1 = ID1 = ( VB −2VD,on R1 Vin −VD,on R1 +R2 Vin < VD,on + Vin > VD,on + R1 +R2 R1 R1 +R2 R1 (VB − 2VD,on ) (VB − 2VD,on ) IR1 ID1 Slope = 1/ (R1 + R2 ) VB −2VD,on R1 VD,on + R1 +R2 R1 (VB − 2VD,on ) Vin (V) (c) IR1 = ID1 ( 0 Vin −VD,on −VB R1 0 = 0 Vin −2VD,on −VB R2 Vin < VD,on + VB Vin > VD,on + VB Vin < VD,on + VB VD,on + VB < Vin < 2VD,on + VB Vin > 2VD,on + VB IR1 ID1 Slope = 1/R1 Slope = 1/R2 VD,on + VB 2VD,on + VB Vin (V) (d) IR1 = 0 Vin < VD,on 2 VD,on < Vin < VD,on + R1R+R (VB + VD,on ) 2 R1 +R2 Vin > VD,on + R2 (VB + VD,on ) ID1 = 0 Vin < VD,on 2 VD,on < Vin < VD,on + R1R+R (VB + VD,on ) 2 R1 +R2 Vin > VD,on + R2 (VB + VD,on ) Vin −VD,on R1 +R2 Vin −2V D,on −VB R1 Vin −VD,on R1 +R2 Vin −2V D,on −VB R1 IR1 ID1 Slope = 1/R2 VB +VD,on R2 Slope = 1/ (R1 + R2 ) VD,on VD,on + R1 +R2 R2 (VB + VD,on ) Vin (V) 3.31 (a) Vin − VD,on = 1.6 mA R1 VT = = 16.25 Ω ID1 R1 = ∆Vin = 98.40 mV rd + R1 ID1 = rd1 ∆Vout (b) Vin − 2VD,on = 0.8 mA R1 VT = rd2 = = 32.5 Ω ID1 R1 + rd2 = ∆Vin = 96.95 mV R1 + rd1 + rd2 ID1 = ID2 = rd1 ∆Vout (c) Vin − 2VD,on = 0.8 mA R1 VT = rd2 = = 32.5 Ω ID1 rd2 ∆Vin = 3.05 mV = rd1 + R1 + rd2 ID1 = ID2 = rd1 ∆Vout (d) Vin − VD,on VD,on − = 1.2 mA R1 R2 VT = = 21.67 Ω ID2 R2 k rd2 = ∆Vin = 2.10 mV R1 + R2 k rd2 ID2 = rd2 ∆Vout 3.32 (a) ∆Vout = ∆Iin R1 = 100 mV (b) ID1 = ID2 = Iin = 3 mA VT rd1 = rd2 = = 8.67 Ω ID1 ∆Vout = ∆Iin (R1 + rd2 ) = 100.867 mV (c) ID1 = ID2 = Iin = 3 mA VT rd1 = rd2 = = 8.67 Ω ID1 ∆Vout = ∆Iin rd2 = 0.867 mV (d) ID2 = Iin − rd2 = VD,on = 2.6 mA R2 VT = 10 Ω ID2 ∆Vout = ∆Iin (R2 k rd2 ) = 0.995 mV 3.34 Vin (t) Vout (t) Vp Vp − VD,on VD,on + 0.5 V 0.5 V π/ω 2π/ω t −Vp 3.35 Vin (t) Vout (t) Vp 0.5 V −VD,on + 0.5 V π/ω 2π/ω t −Vp + VD,on −Vp 3.36 Vp − VD,on RL C1 fin Vp = 3.5 V VR ≈ RL = 100 Ω C1 = 1000 µF fin = 60 Hz VR = 0.45 V 3.37 IL ≤ 300 mV C1 fin = 60 Hz VR = fin IL = 0.5 A C1 ≥ IL = 27.78 mF (300 mV) fin 3.38 Shorting the input and output grounds of a full-wave rectifier shorts out the diode D4 from Fig. 3.38(b). Redrawing the modified circuit, we have: D3 + Vin + D2 RL Vout D1 − − On the positive half-cycle, D3 turns on and forms a half-wave rectifier along with RL (and CL , if included). On the negative half-cycle, D2 shorts the input (which could cause a dangerously large current to flow) and the output remains at zero. Thus, the circuit behaves like a half-wave recifier. The plots of Vout (t) are shown below. Vin (t) = V0 sin(ωt) Vout (t) (without a load capacitor) Vout (t) (with a load capacitor) V0 V0 − VD,on VD,on π/ω 2π/ω t −V0 3.39 Note that the waveforms for VD1 and VD2 are identical, as are the waveforms for VD3 and VD4 . Vin (t) = V0 sin(ωt) Vout (t) VD1 (t), VD2 (t) VD3 (t), VD4 (t) V0 V0 − 2VD,on 2VD,on VD,on π/ω −VD,on −2VD,on −V0 + 2VD,on −V0 + VD,on −V0 2π/ω t 3.40 During the positive half-cycle, D2 and D3 will remain reverse-biased, causing Vout to be zero as no current will flow through RL . During the negative half-cycle, D1 and D3 will short the input (potentially causing damage to the devices), and once again, no current will flow through RL (even though D2 will turn on, there will be no voltage drop across RL ). Thus, Vout always remains at zero, and the circuit fails to act as a rectifier. 3.42 Shorting the negative terminals of Vin and Vout of a full-wave rectifier shorts out the diode D4 from Fig. 3.38(b). Redrawing the modified circuit, we have: D3 + D2 Vin RL + Vout D1 − − On the positive half-cycle, D3 turns on and forms a half-wave rectifier along with RL (and CL , if included). On the negative half-cycle, D2 shorts the input (which could cause a dangerously large current to flow) and the output remains at zero. Thus, the circuit behaves like a half-wave recifier. The plots of Vout (t) are shown below. Vin (t) = V0 sin(ωt) Vout (t) (without a load capacitor) Vout (t) (with a load capacitor) V0 π/ω 2π/ω t −V0 3.44 (a) We know that when a capacitor is discharged by a constant current at a certain frequency, the ripple voltage is given by CfIin , where I is the constant current. In this case, we can calculate the V −5V current as approximately p R1D,on (since Vp − 5VD,on is the voltage drop across R1 , assuming R1 carries a constant current). This gives us the following: 1 Vp − 5VD,on 2 RL C1 fin Vp = 5 V VR ≈ RL = 1 kΩ C1 = 100 µF fin = 60 Hz VR = 166.67 mV (b) The bias current through the diodes is the same as the bias current through R1 , which is Vp −5VD,on = 1 mA. Thus, we have: R1 VT = 26 Ω ID 3rd = VR = 12.06 mV R1 + 3rd rd = VR,load 3.45 ID1 = ( 0 ID2 = ( Vin +VD,on +VB2 R1 Vin −VD,on −VB1 R1 0 Vin < VD,on + VB1 Vin > VD,on + VB1 Vin < −VD,on − VB2 Vin > −VD,on − VB2 Vin (t) ID1 (t) ID2 (t) V0 V0 −VB1 −VD,on R1 0 0 −V0 +VB1 +VD,on R1 −VD,on − VB2 −V0 −π/ω 0 t π/ω ID1 (t) and ID2 (t) Vin (t) VD,on + VB1 4.4 According to Equation (4.8), we have AE qDn n2i VBE /VT −1 e NB WB 1 ∝ WB IC = We can see that if WB increases by a factor of two, then IC decreases by a factor of two . 4.11 VBE = 1.5 V − IE (1 kΩ) ≈ 1.5 V − IC (1 kΩ) (assuming β ≫ 1) IC = VT ln IS IC = 775 µA VX ≈ IC (1 kΩ) = 775 mV 4.12 Since we have only integer multiples of a unit transistor, we need to find the largest number that divides both I1 and I2 evenly (i.e., we need to find the largest x such that I1 /x and I2 /x are integers). This will ensure that we use the fewest transistors possible. In this case, it’s easy to see that we should pick x = 0.5 mA, meaning each transistor should have 0.5 mA flowing through it. Therefore, I1 should be made up of 1 mA/0.5 mA = 2 parallel transistors, and I2 should be made up of 1.5 mA/0.5 mA = 3 parallel transistors. This is shown in the following circuit diagram. I1 VB I2 + − Now we have to pick VB so that IC = 0.5 mA for each transistor. IC VB = VT ln IS 5 × 10−4 A = (26 mV) ln 3 × 10−16 A = 732 mV 4.15 VB − VBE = IB R1 IC = β β [VB − VT ln(IC /IS )] IC = R1 IC = 786 µA 4.17 First, note that VBE1 = VBE2 = VBE . VB = (IB1 + IB2 )R1 + VBE R1 = (IX + IY ) + VT ln(IX /IS1 ) β 5 IS2 = IS1 3 5 ⇒ IY = IX 3 8R1 VB = IX + VT ln(IX /IS1 ) 3β IX = 509 µA IY = 848 µA 4.21 (a) VBE = 0.8 V IC = IS eVBE /VT = 18.5 mA VCE = VCC − IC RC = 1.58 V Q1 is operating in forward active. Its small-signal parameters are gm = IC /VT = 710 mS rπ = β/gm = 141 Ω ro = ∞ The small-signal model is shown below. B C + rπ gm vπ vπ − E (b) IB = 10 µA IC = βIB = 1 mA VBE = VT ln(IC /IS ) = 724 mV VCE = VCC − IC RC = 1.5 V Q1 is operating in forward active. Its small-signal parameters are gm = IC /VT = 38.5 mS rπ = β/gm = 2.6 kΩ ro = ∞ The small-signal model is shown below. B C + rπ gm vπ vπ − E (c) VCC − VBE 1+β = IC RC β β VCC − VT ln(IC /IS ) IC = 1+β RC IE = IC = 1.74 mA VBE = VT ln(IC /IS ) = 739 mV VCE = VBE = 739 mV Q1 is operating in forward active. Its small-signal parameters are gm = IC /VT = 38.5 mS rπ = β/gm = 2.6 kΩ ro = ∞ The small-signal model is shown below. B C + rπ gm vπ vπ − E 4.22 (a) IB = 10 µA IC = βIB = 1 mA VBE = VT ln(IC /IS ) = 739 mV VCE = VCC − IE (1 kΩ) 1+β (1 kΩ) = VCC − β = 0.99 V Q1 is operating in forward active. Its small-signal parameters are gm = IC /VT = 38.5 mS rπ = β/gm = 2.6 kΩ ro = ∞ The small-signal model is shown below. B C + rπ gm vπ vπ − E (b) 1+β VCC − VBE = IC 1 kΩ β β VCC − VT ln(IC /IS ) IC = 1+β 1 kΩ IE = IC = 1.26 mA VBE = VT ln(IC /IS ) = 730 mV VCE = VBE = 730 mV Q1 is operating in forward active. Its small-signal parameters are gm = IC /VT = 48.3 mS rπ = β/gm = 2.07 kΩ ro = ∞ The small-signal model is shown below. B C + rπ gm vπ vπ − E (c) IE = 1 mA β IC = IE = 0.99 mA 1+β VBE = VT ln(IC /IS ) = 724 mV VCE = VBE = 724 mV Q1 is operating in forward active. Its small-signal parameters are gm = IC /VT = 38.1 mS rπ = β/gm = 2.63 kΩ ro = ∞ The small-signal model is shown below. B C + rπ gm vπ vπ − E (d) IE = 1 mA β IC = IE = 0.99 mA 1+β VBE = VT ln(IC /IS ) = 724 mV VCE = VBE = 724 mV Q1 is operating in forward active. Its small-signal parameters are gm = IC /VT = 38.1 mS rπ = β/gm = 2.63 kΩ ro = ∞ The small-signal model is shown below. B C + rπ gm vπ vπ − E 4.31 IC = IS eVBE /VT IC,T otal = nIC VCE 1+ VA = nIS eVBE /VT 1+ ∂IC ∂VBE IS = n eVBE /VT VT IC ≈n VT = ngm VCE VA gm,T otal = IB,T otal rπ,T otal ro,T otal = n × 0.4435 S 1 = IC,T otal β −1 ∂IB,T otal = ∂VBE −1 IC,T otal ≈ βVT −1 nIC = βVT rπ = n 225.5 Ω = (assuming β = 100) n −1 ∂IC,T otal = ∂VCE −1 IC,T otal ≈ VA VA = nIC ro = n 693.8 Ω = n The small-signal model is shown below. B C + rπ,T otal gm,T otal vπ vπ − E ro,T otal 4.32 (a) VBE = VCE (for Q1 to operate at the edge of saturation) VT ln(IC /IS ) = VCC − IC RC IC = 885.7 µA VB = VBE = 728.5 mV ′ ′ (b) Let IC′ , VB′ , VBE , and VCE correspond to the values where the collector-base junction is forward biased by 200 mV. ′ ′ VBE = VCE + 200 mV VT ln(IC′ /IS ) = VCC − IC′ RC + 200 mV IC′ = 984.4 µA VB′ = 731.3 mV Thus, VB can increase by VB′ − VB = 2.8 mV if we allow soft saturation. 4.34 VBE = VCC − IB RB VT ln(IC /IS ) = VCC − IC RB /β IC = 1.67 mA VBC = VCC − IB RB − (VCC − IC RC ) < 200 mV IC RC − IB RB < 200 mV 200 mV + IB RB RC < IC 200 mV + IC RB /β = IC RC < 1.12 kΩ 4.41 VCC VEB = VEC (for Q1 to operate at the edge of saturation) − IB RB = VCC − IC RC IC RB /β = IC RC RB /β = RC β = RB /RC = 100 4.44 (a) IB = 2 µA IC = βIB = 200 µA VEB = VT ln(IC /IS ) = 768 mV VEC = VCC − IE (2 kΩ) 1+β = VCC − IC (2 kΩ) β = 2.1 V Q1 is operating in forward active. Its small-signal parameters are gm = IC /VT = 7.69 mS rπ = β/gm = 13 kΩ ro = ∞ The small-signal model is shown below. B C + rπ gm vπ vπ − E (b) IE = VCC − VEB 5 kΩ VCC − VT ln(IC /IS ) 1+β IC = β 5 kΩ IC = 340 µA VEB = 782 mV VEC = VEB = 782 mV Q1 is operating in forward active. Its small-signal parameters are gm = IC /VT = 13.1 mS rπ = β/gm = 7.64 kΩ ro = ∞ The small-signal model is shown below. B C + rπ gm vπ vπ − E (c) IE = 1+β IC = 0.5 mA β IC = 495 µA VEB = 971 mV VEC = VEB = 971 mV Q1 is operating in forward active. Its small-signal parameters are gm = IC /VT = 19.0 mS rπ = β/gm = 5.25 kΩ ro = ∞ The small-signal model is shown below. B C + rπ gm vπ vπ − E 4.49 The direction of current flow in the large-signal model (Fig. 4.40) indicates the direction of positive current flow when the transistor is properly biased. The direction of current flow in the small-signal model (Fig. 4.43) indicates the direction of positive change in current flow when the base-emitter voltage vbe increases. For example, when vbe increases, the current flowing into the collector increases, which is why ic is shown flowing into the collector in Fig. 4.43. Similar reasoning can be applied to the direction of flow of ib and ie in Fig. 4.43. 4.53 (a) VCB2 < 200 mV IC2 RC < 200 mV IC2 < 400 µA VEB2 = VE2 = VT ln(IC2 /IS2 ) < 741 mV β2 IE2 RC 1 + β2 β2 1 + β1 IC1 RC 1 + β2 β1 IC1 VBE1 Vin < 200 mV < 200 mV < 396 µA = VT ln(IC1 /IS1 ) < 712 mV = VBE1 + VEB2 < 1.453 V (b) IC1 = 396 µA IC2 = 400 µA gm1 = 15.2 mS rπ1 = 6.56 kΩ ro1 = ∞ gm2 = 15.4 mS rπ2 = 3.25 kΩ ro2 = ∞ The small-signal model is shown below. + vin rπ1 − B1 + vπ1 C1 gm1 vπ1 − E1 /E2 rπ2 − vπ2 + B2 gm2 vπ2 vout C2 RC 4.55 (a) VBE2 − (VCC VBC2 < 200 mV − IC2 RC ) < 200 mV VT ln(IC2 /IS2 ) + IC2 RC − VCC < 200 mV IC2 < 3.80 mA VBE2 < 799.7 mV 1 + β1 IC1 = IB2 = IC2 /β2 IE1 = β1 IC1 < 75.3 µA VBE1 < 669.2 mV Vin = VBE1 + VBE2 < 1.469 V (b) IC1 = 75.3 µA IC2 = 3.80 mA gm1 = 2.90 mS rπ1 = 34.5 kΩ ro1 = ∞ gm2 = 146.2 mS rπ2 = 342 Ω ro2 = ∞ The small-signal model is shown below. B1 + + vin rπ1 − C1 gm1 vπ1 vπ1 − E1 /B2 C2 vout + rπ2 gm2 vπ2 vπ2 − E2 RC 5.3 (a) Looking into the base of Q1 we see an equivalent resistance of rπ1 , so we can draw the following equivalent circuit for finding Rin : R1 R2 rπ1 Rin Rin = R1 + R2 k rπ1 (b) Looking into the emitter of Q1 we see an equivalent resistance of following equivalent circuit for finding Rin : 1 gm1 R1 1 gm1 k rπ1 , so we can draw the k rπ1 Rin Rin = R1 k 1 k rπ1 gm1 (c) Looking down from the emitter of Q1 we see an equivalent resistance of the following equivalent circuit for finding Rin : 1 gm2 k rπ2 , so we can draw VCC Q1 Rin 1 gm2 Rin = rπ1 + (1 + β1 ) k rπ2 1 gm2 k rπ2 (d) Looking into the base of Q2 we see an equivalent resistance of rπ2 , so we can draw the following equivalent circuit for finding Rin : VCC Q1 Rin rπ2 Rin = rπ1 + (1 + β1 )rπ2 5.4 (a) Looking into the collector of Q1 we see an equivalent resistance of ro1 , so we can draw the following equivalent circuit for finding Rout : ro1 R1 Rout Rout = ro1 k R1 (b) Let’s draw the small-signal model and apply a test source at the output. RB + rπ1 vπ1 + gm1 vπ1 ro1 it vt − − it = gm1 vπ1 + vt ro1 vπ1 = 0 vt it = ro1 vt Rout = = ro1 it (c) Looking down from the emitter of Q1 we see an equivalent resistance of can draw the following equivalent circuit for finding Rout : Rout Q1 1 gm2 k rπ2 k ro2 1 k rπ2 k ro2 Rout = ro1 + (1 + gm1 ro1 ) rπ1 k gm2 1 gm2 k rπ2 k ro2 , so we (d) Looking into the base of Q2 we see an equivalent resistance of rπ2 , so we can draw the following equivalent circuit for finding Rout : Rout Q1 rπ2 Rout = ro1 + (1 + gm1 ro1 ) (rπ1 k rπ2 ) 5.5 (a) Looking into the base of Q1 we see an equivalent resistance of rπ1 , so we can draw the following equivalent circuit for finding Rin : R1 R2 rπ1 Rin Rin = R1 + R2 k rπ1 (b) Let’s draw the small-signal model and apply a test source at the input. + rπ1 gm1 vπ1 vπ1 R1 − + it vt − vπ1 − gm1 vπ1 rπ1 vπ1 = −vt vt + gm1 vt it = rπ1 1 it = vt gm1 + rπ1 it = − Rin = vt 1 = k rπ1 it gm1 (c) From our analysis in part (b), we know that looking into the emitter we see a resistance of 1 gm2 k rπ2 . Thus, we can draw the following equivalent circuit for finding Rin : VCC Q1 Rin 1 gm2 Rin = rπ1 + (1 + β1 ) k rπ2 1 gm2 k rπ2 (d) Looking up from the emitter of Q1 we see an equivalent resistance of the following equivalent circuit for finding Rin : 1 gm2 k rπ2 , so we can draw VCC 1 gm2 k rπ2 Q1 Rin Rin = rπ1 + (1 + β1 ) 1 gm2 k rπ2 (e) We know that looking into the base of Q2 we see Rin = rπ2 if the emitter is grounded. Thus, transistor Q1 does not affect the input impedance of this circuit. 5.6 (a) Looking into the collector of Q1 we see an equivalent resistance of ro1 , so we can draw the following equivalent circuit for finding Rout : ro1 RC Rout Rout = RC k ro1 (b) Looking into the emitter of Q2 we see an equivalent resistance of the following equivalent circuit for finding Rout : 1 gm2 k rπ2 k ro2 , so we can draw Rout Q1 RE = 1 gm2 k rπ2 k ro2 1 Rout = ro1 + (1 + gm1 ro1 ) rπ1 k k rπ2 k ro2 gm2 5.7 (a) VCC − IB (100 kΩ) = VBE = VT ln(IC /IS ) 1 VCC − IC (100 kΩ) = VT ln(IC /IS ) β IC = 1.754 mA VBE = VT ln(IC /IS ) = 746 mV VCE = VCC − IC (500 Ω) = 1.62 V Q1 is operating in forward active. (b) IE1 = IE2 ⇒ VBE1 = VBE2 VCC − IB1 (100 kΩ) = 2VBE1 1 VCC − IC1 (100 kΩ) = 2VT ln(IC1 /IS ) β IC1 = IC2 = 1.035 mA VBE1 = VBE2 = 733 mV VCE2 = VBE2 = 733 mV VCE1 = VCC − IC (1 kΩ) − VCE2 = 733 mV Both Q1 and Q2 are at the edge of saturation. (c) VCC − IB (100 kΩ) = VBE + 0.5 V 1 VCC − IC (100 kΩ) = VT ln(IC /IS ) + 0.5 V β IC = 1.262 mA VBE = 738 mV VCE = VCC − IC (1 kΩ) − 0.5 V = 738 mV Q1 is operating at the edge of saturation. 5.8 See Problem 7 for the derivation of IC for each part of this problem. (a) IC1 = 1.754 mA gm1 = IC1 /VT = 67.5 mS rπ1 = β/gm1 = 1.482 kΩ 100 kΩ + rπ1 vπ1 gm1 vπ1 500 Ω − (b) IC1 = IC2 = 1.034 mA gm1 = gm2 = IC1 /VT = 39.8 mS rπ1 = rπ2 = β/gm1 = 2.515 kΩ 100 kΩ + rπ1 vπ1 gm1 vπ1 1 kΩ − + rπ2 vπ2 gm2 vπ2 − (c) IC1 = 1.26 mA gm1 = IC1 /VT = 48.5 mS rπ1 = β/gm1 = 2.063 kΩ 100 kΩ + rπ1 vπ1 − gm1 vπ1 1 kΩ 5.9 (a) VCC − VBE VBE IC − = IB = 34 kΩ 16 kΩ β VT ln(IC /IS ) VCC − VT ln(IC /IS ) −β IC = β 34 kΩ 16 kΩ IC = 677 µA VBE = 726 mV VCE = VCC − IC (3 kΩ) = 468 mV Q1 is in soft saturation. (b) IE1 = IE2 VCC − 2VBE 9 kΩ ⇒ IC1 = IC2 ⇒ VBE1 = VBE2 = VBE 2VBE IC1 − = IB1 = 16 kΩ β 2VT ln(IC1 /IS ) VCC − 2VT ln(IC1 /IS ) −β IC1 = β 9 kΩ 16 kΩ IC1 = IC2 = 1.72 mA VBE1 = VBE2 = VCE2 = 751 mV VCE1 = VCC − IC1 (500 Ω) − VCE2 = 890 mV Q1 is in forward active and Q2 is on the edge of saturation. (c) IC VCC − VBE − 0.5 V VBE + 0.5 V − = IB = 12 kΩ 13 kΩ β VT ln(IC /IS ) + 0.5 V VCC − VT ln(IC /IS ) − 0.5 V −β IC = β 12 kΩ 13 kΩ IC = 1.01 mA VBE = 737 mV VCE = VCC − IC (1 kΩ) − 0.5 V = 987 mV Q1 is in forward active. 5.10 See Problem 9 for the derivation of IC for each part of this problem. (a) IC = 677 µA gm = IC /VT = 26.0 mS rπ = β/gm = 3.84 kΩ + (34 kΩ) k (16 kΩ) rπ vπ gm vπ 3 kΩ − (b) IC1 = IC2 = 1.72 mA gm1 = gm2 = IC1 /VT = 66.2 mS rπ1 = rπ2 = β/gm1 = 1.51 kΩ + (9 kΩ) k (16 kΩ) rπ1 vπ1 − gm1 vπ1 500 Ω + rπ2 vπ2 − gm2 vπ2 (c) IC = 1.01 mA gm = IC /VT = 38.8 mS rπ = β/gm = 2.57 kΩ (12 kΩ) k (13 kΩ) rπ + vπ − gm vπ 1 kΩ 5.11 (a) VCC VCC VCE ≥ VBE (in order to guarantee operation in the active mode) − IC (2 kΩ) ≥ VBE VCC − IC (2 kΩ) ≥ VT ln(IC /IS ) IC ≤ 886 µA VCC − VBE VBE IC − = IB = RB 3 kΩ β − VT ln(IC /IS ) VT ln(IC /IS ) IC − = RB 3 kΩ β VT ln(IC /IS ) IC = VCC − VT ln(IC /IS ) + RB β 3 kΩ VCC − VT ln(IC /IS ) RB = I VT ln(IC /IS ) C β + 3 kΩ RB ≥ 7.04 kΩ (b) VCC − VBE VBE IC − = IB = RB 3 kΩ β VT ln(IC /IS ) VCC − VT ln(IC /IS ) −β IC = β RB 3 kΩ IC = 1.14 mA VBE = 735 mV VCE = VCC − IC (2 kΩ) = 215 mV VBC = VBE − VCE = 520 mV 5.13 We know the input resistance is Rin = R1 k R2 k rπ . Since we want the minimum values of R1 and R2 such that Rin > 10 kΩ, we should pick the maximum value allowable for rπ , which means picking the minimum value allowable for gm (since rπ ∝ 1/gm ), which is gm = 1/260 S. 1 S 260 IC = gm VT = 100 µA VBE = VT ln(IC /IS ) = 760 mV IC IB = = 1 µA β VBE − = IB R2 VCC − VBE R1 = IB + VRBE 2 gm = VCC − VBE R1 β = 26 kΩ gm = R1 k R2 k rπ rπ = Rin = VCC − VBE IB + VRBE 2 > 10 kΩ R2 > 23.57 kΩ R1 > 52.32 kΩ ! k R2 k rπ 5.14 IC 1 ≥ S VT 26 β rπ = = 2.6 kΩ gm Rin = R1 k R2 k rπ ≤ rπ gm = According to the above analysis, Rin cannot be greater than 2.6 kΩ. This means that the requirement that Rin ≥ 10 kΩ cannot be met. Qualitatively, the requirement for gm to be large forces rπ to be small, and since Rin is bounded by rπ , it puts an upper bound on Rin that, in this case, is below the required 10 kΩ. 5.15 Rout = RC = R0 Av = −gm RC = −gm R0 = − IC R0 = −A0 VT A0 VT R0 VT R0 rπ = β =β IC A0 IC = VBE = VT ln(IC /IS ) = VT ln VBE IC VCC − VBE − = IB = R1 R2 β VCC − VBE R1 = IC VBE β + R2 A0 VT R0 IS Rin = R1 k R2 k rπ 0 VT VCC − VT ln A R0 IS R k R2 k β 0 = IC A0 VT VT A 0 β + R2 ln R0 IS In order to maximize Rin , we can let R2 → ∞. This gives us Rin,max = β VCC − VT ln IC A0 VT R0 IS k β R0 A0 5.16 (a) VBE VCC − VBE − IE RE − R1 IC = 0.25 mA VBE = 696 mV + IE RE IC = IB = R2 β R1 = VCC − VBE − IC β + 1+β β IC RE VBE + 1+β β IC RE R2 = 22.74 kΩ (b) First, consider a 5 % increase in RE . VCC − VBE − IE RE VBE − R1 VCC − VT ln(IC /IS ) − 1+β β IC RE R1 − VT ln(IC /IS ) + R2 RE = 210 Ω + IE RE IC = IB = R2 β 1+β β IC RE IC β IC = 243 µA = IB = IC − IC,nom × 100 = −2.6 % IC,nom Now, consider a 5 % decrease in RE . RE = 190 Ω IC = 257 µA IC − IC,nom × 100 = +2.8 % IC,nom 5.17 VCC VBE VCC − VBE − IE RE − 30 kΩ VCE ≥ VBE (in order to guarantee operation in the active mode) − IC RC ≥ VT ln(IC /IS ) IC ≤ 833 µA IC + IE RE = IB = R2 β VBE + IE RE R2 = VCC −VBE −IE RE − 30 kΩ = VT ln(IC /IS ) IC β + 1+β β IC RE VCC −VT ln(IC /IS )− 1+β β IC RE 30 kΩ R2 ≤ 20.66 kΩ − IC β 5.18 (a) First, note that VBE1 = VBE2 = VBE , but since IS1 = 2IS2 , IC1 = 2IC2 . Also note that β1 = β2 = β = 100. IB1 = IC1 VBE + (IE1 + IE2 )RE VCC − VBE − (IE1 + IE2 )RE − = β R1 R2 IC1 = β VCC − VT ln(IC1 /IS1 ) − 3 1+β 2 β IC1 RE R1 − VT ln(IC1 /IS1 ) + 3 1+β 2 β IC1 RE R2 IC1 = 707 µA IC2 = IC1 = 354 µA 2 (b) The small-signal model is shown below. RC + R1 R2 rπ1 vπ1 + rπ2 − gm1 vπ1 vπ2 − RE We can simplify the small-signal model as follows: RC + R1 k R2 rπ1 k rπ2 gm1 vπ vπ − RE gm2 vπ2 gm2 vπ2 gm1 = IC1 /VT = 27.2 mS rπ1 = β1 /gm1 = 3.677 kΩ gm2 = IC2 /VT = 13.6 mS rπ2 = β2 /gm2 = 7.355 kΩ 5.19 (a) VCC − 2VBE1 9 kΩ IE1 = IE2 ⇒ VBE1 = VBE2 2VBE1 IC1 − = IB1 = 16 kΩ β1 2VT ln(IC1 /IS1 ) VCC − 2VT ln(IC1 /IS1 ) − β1 IC1 = β1 9 kΩ 16 kΩ IC1 = IC2 = 1.588 mA VBE1 = VBE2 = VT ln(IC1 /IS1 ) = 754 mV VCE2 = VBE2 = 754 mV VCE1 = VCC − IC1 (100 Ω) − VCE2 = 1.587 V (b) The small-signal model is shown below. (9 kΩ) k (16 kΩ) rπ1 + vπ1 gm1 vπ1 100 Ω − rπ2 + vπ2 gm2 vπ2 − IC1 = 61.1 mS VT β1 = 1.637 kΩ = gm1 gm1 = gm2 = rπ1 = rπ2 5.22 VCC − IE (500 Ω) − IB (20 kΩ) − IE (400 Ω) = VBE 1+β 1 VCC − IC (500 Ω + 400 Ω) − IC (20 kΩ) = VT ln(IC /IS ) β β IC = 1.584 mA VBE = VT ln(IC /IS ) = 754 mV VCE = VCC − IE (500 Ω) − IE (400 Ω) 1+β IC (500 Ω + 400 Ω) = 1.060 V = VCC − β Q1 is operating in forward active. 5.23 VCC − IE (1 kΩ) − IB RB − (VCC VBC ≤ 200 mV − IE (1 kΩ) − IC (500 Ω)) ≤ 200 mV IC (500 Ω) − IB RB ≤ 200 mV IB RB ≥ IC (500 Ω) − 200 mV VCC − IE (1 kΩ) − IB RB = VBE = VT ln(IC /IS ) VCC − 1+β IC (1 kΩ) − IC (500 Ω) + 200 mV ≤ VT ln(IC /IS ) β IC ≥ 1.29 mA RB ≥ IC (500 Ω) − 200 mV ≥ 34.46 kΩ IC β 5.25 (a) VCC IC1 = 1 mA VCC − (IE1 + IE2 )(500 Ω) = VT ln(IC2 /IS2 ) 1+β 1+β − IC1 + IC2 (500 Ω) = VT ln(IC2 /IS2 ) β β IC2 = 2.42 mA VB − (IE1 + IE2 )(500 Ω) = VT ln(IC1 /IS1 ) 1+β 1+β IC1 + IC2 (500 Ω) = VT ln(IC1 /IS1 ) VB − β β VB = 2.68 V (b) The small-signal model is shown below. 200 Ω rπ1 + vπ1 − rπ2 + vπ2 gm1 vπ1 − 500 Ω gm1 = IC1 /VT = 38.5 mS rπ1 = β1 /gm1 = 2.6 kΩ gm2 = IC2 /VT = 93.1 mS rπ2 = β2 /gm2 = 1.074 kΩ gm2 vπ2 5.26 (a) VCC VCC − IB (60 kΩ) = VEB 1 − IC (60 kΩ) = VT ln(IC /IS ) βpnp IC = 1.474 mA VEB = VT ln(IC /IS ) = 731 mV VEC = VCC − IC (200 Ω) = 2.205 V Q1 is operating in forward active. (b) VCC − VT ln βnpn 1 + βnpn VCC − VBE1 − IB2 (80 kΩ) = VEB2 VCC − VT ln(IC1 /IS ) − IB2 (80 kΩ) = VT ln(IC2 /IS ) βnpn IE1 IC1 = 1 + βnpn βnpn IE2 = 1 + βnpn βnpn 1 + βpnp = · IC2 1 + βnpn βpnp 1 1 + βpnp IC2 − · · IC2 (80 kΩ) = VT ln(IC2 /IS ) βpnp IS βpnp IC2 = 674 µA VBE2 = VT ln(IC2 /IS ) = 711 mV IC1 = 680 µA VBE1 = VT ln(IC1 /IS ) = 711 mV VCE1 = VBE1 = 711 mV VCE2 = VCC − VCE1 − IC2 (300 Ω) = 1.585 V Q1 is operating on the edge of saturation. Q2 is operating in forward active. 5.27 See Problem 26 for the derivation of IC for each part of this problem. (a) The small-signal model is shown below. 60 kΩ + rπ gm vπ vπ − IC = 1.474 mA IC gm = = 56.7 mS VT β = 1.764 kΩ rπ = gm (b) The small-signal model is shown below. + rπ1 vπ1 gm1 vπ1 − − rπ2 vπ2 gm2 vπ2 + 80 kΩ 300 Ω IC1 = 680 µA IC1 = 26.2 mS gm1 = VT βnpn rπ1 = = 3.824 kΩ gm1 IC2 = 674 µA IC2 gm2 = = 25.9 mS VT βpnp rπ2 = = 1.929 kΩ gm2 200 Ω 5.30 VCC − IC (1 kΩ) = VEC = VEB (in order for Q1 to operate at the edge of saturation) = VT ln(IC /IS ) VCC − VEB RB IC = 1.761 mA VEB = 739 mV VEB IC − = IB = 5 kΩ β RB = 9.623 kΩ First, let’s consider when RB is 5 % larger than its nominal value. RB = 10.104 kΩ IC VCC − VT ln(IC /IS ) VT ln(IC /IS ) − = RB 5 kΩ β IC = 1.411 mA VEB = 733 mV VEC = VCC − IC (1 kΩ) = 1.089 V VCB = −355 mV (the collector-base junction is reverse biased) Now, let’s consider when RB is 5 % smaller than its nominal value. RB = 9.142 kΩ IC VCC − VT ln(IC /IS ) VT ln(IC /IS ) − = RB 5 kΩ β IC = 2.160 mA VEB = 744 mV VEC = VCC − IC (1 kΩ) = 340 mV VCB = 405 mV (the collector-base junction is forward biased) 5.31 VBC + IC (5 kΩ) VCC − VBC − IC (5 kΩ) IC − = IB = 10 kΩ 10 kΩ β VBC = 300 mV IC = 194 µA VCC VEB = VT ln(IC /IS ) = 682 mV VCC − IE RE − IC (5 kΩ) = VEC = VEB + 300 mV 1+β − IC RE − IC (5 kΩ) = VEB + 300 mV β RE = 2.776 kΩ Let’s look at what happens when RE is halved. RE = 1.388 kΩ β VCC VCC − IE RE − VEB VCC − (VCC − IE RE − VEB ) IC − = IB = 10 kΩ 10 kΩ β 1+β VCC − VCC − β IC RE − VT ln(IC /IS ) − 1+β β IC RE − VT ln(IC /IS ) −β = IC 10 kΩ 10 kΩ IC = 364 µA VEB = 698 µV VEC = 164 µV Thus, when RE is halved, Q1 operates in deep saturation. 5.32 VCC VCC − IB (20 kΩ) − IE (1.6 kΩ) = VBE = VT ln(IC /IS ) IC 1+β − (20 kΩ) − IC (1.6 kΩ) = VBE = VT ln(IC /IS ) β β IC i IS = h I VCC − βC (20 kΩ)− 1+β β IC (1.6 kΩ) /VT e IC = 1 mA IS = 3 × 10−14 A 5.38 (a) Av = −gm1 1 gm2 k rπ2 Rin = rπ1 Rout = 1 k rπ2 gm2 (b) 1 Av = −gm1 R1 + k rπ2 gm2 Rin = rπ1 Rout = R1 + 1 k rπ2 gm2 (c) 1 k rπ2 Av = −gm1 RC + gm2 Rin = rπ1 Rout = RC + 1 k rπ2 gm2 (d) Let’s determine the equivalent resistance seen looking up from the output by drawing a smallsignal model and applying a test source. RC + vt + it rπ2 gm2 vπ2 vπ2 − − vπ2 + gm2 vπ2 rπ2 vπ2 = vt 1 it = vt + gm2 rπ2 1 vt = k rπ2 it gm2 it = Av = −gm1 1 gm2 Rin = rπ1 Rout = 1 k rπ2 gm2 k rπ2 1 k rπ2 . If we find (e) From (d), we know the gain from the input to the collector of Q1 is −gm1 gm2 the gain from the collector of Q1 to vout , we can multiply these expressions to find the overall gain. Let’s draw the small-signal model to find the gain from the collector of Q1 to vout . I’ll refer to the collector of Q1 as node X in the following derivation. RC + vX rπ2 − vout + vπ2 gm2 vπ2 − vX − vout = gm2 vπ2 RC vπ2 = vX vX − vout = gm2 vX RC vout 1 − gm2 = vX RC RC vout = 1 − gm2 RC vX Thus, we have Av = −gm1 1 gm2 k rπ2 (1 − gm2 RC ) Rin = rπ1 To find the output resistance, let’s draw the small-signal model and apply a test source at the output. Note that looking into the collector of Q1 we see infinite resistance, so we can exclude it from the small-signal model. RC + rπ2 vπ2 − + gm2 vπ2 it vt − it = gm2 vπ2 + vπ2 rπ2 rπ2 vt rπ2 + RC rπ2 1 vt it = gm2 + rπ2 rπ2 + RC vt Rout = it rπ2 + RC 1 = k rπ2 gm2 rπ2 vπ2 = 5.39 (a) 1 Av = −gm1 ro1 k k rπ2 k ro2 gm2 Rin = rπ1 Rout = ro1 k 1 k rπ2 k ro2 gm2 (b) 1 k rπ2 k ro2 Av = −gm1 ro1 k R1 + gm2 Rin = rπ1 Rout = ro1 k 1 R1 + k rπ2 k ro2 gm2 (c) Av = −gm1 ro1 1 k RC + k rπ2 k ro2 gm2 Rin = rπ1 Rout = ro1 1 k rπ2 k ro2 k RC + gm2 (d) Let’s determine the equivalent resistance seen looking up from the output by drawing a smallsignal model and applying a test source. RC + vt + it − X rπ2 vπ2 − gm2 vπ2 ro2 it = vπ2 vt − vX + rπ2 RC vX vX − vt + gm2 vπ2 + =0 RC ro2 vπ2 = vt 1 1 1 vX = vt + − gm2 RC ro2 RC 1 vX = vt − gm2 (ro2 k RC ) RC 1 vt 1 vt + − vt − gm2 (ro2 k RC ) it = rπ2 RC RC RC 1 1 1 1 = vt + − − gm2 (ro2 k RC ) rπ2 RC RC RC 1 1 ro2 1 + + gm2 − = vt rπ2 RC RC ro2 + RC # " vt 1 ro2 + RC = rπ2 k RC k it ro2 gm2 − R1C Av = −gm1 ro1 k rπ2 " 1 ro2 + RC k RC k ro2 gm2 − 1 RC #! Rin = rπ1 Rout = ro1 k rπ2 " ro2 + RC 1 k RC k ro2 gm2 − 1 RC # C (e) From (d), we know the gain from the input to the collector of Q1 is −gm1 ro1 k rπ2 k RC k ro2r+R o2 If we find the gain from the collector of Q1 to vout , we can multiply these expressions to find the overall gain. Let’s draw the small-signal model to find the gain from the collector of Q1 to vout . I’ll refer to the collector of Q1 as node X in the following derivation. RC + vX rπ2 − + vπ2 − vout gm2 vπ2 ro2 1 gm2 − R1 C . vout − vX vout + gm2 vπ2 + =0 RC ro2 vπ2 = vX vout − vX vout + gm2 vX + =0 RC ro2 1 1 1 = vX + − gm2 vout RC ro2 RC vout 1 = − gm2 (RC k ro2 ) vX RC Thus, we have Av = −gm1 ro1 k rπ2 " ro2 + RC 1 k RC k ro2 gm2 − 1 RC #! 1 − gm2 (RC k ro2 ) RC Rin = rπ1 To find the output resistance, let’s draw the small-signal model and apply a test source at the output. Note that looking into the collector of Q1 we see ro1 , so we replace Q1 in the small-signal model with this equivalent resistance. Also note that ro2 appears from the output to ground, so we can remove it from this analysis and add it in parallel at the end to find Rout . RC + + ro1 rπ2 vπ2 − it = gm2 vπ2 + gm2 vπ2 vt it − vπ2 rπ2 k ro1 rπ2 k ro1 vt rπ2 k ro1 + RC 1 rπ2 k ro1 it = gm2 + vt rπ2 k ro1 rπ2 k ro1 + RC vt Rout = ro2 k it rπ2 k ro1 + RC 1 = ro2 k k rπ2 k ro1 gm2 rπ2 k ro1 vπ2 = 5.43 Av = − 1 gm = − VT IC RC + (200 Ω) RC + (200 Ω) = −100 VT RC = 100 + 100(200 Ω) IC IC RC − IE (200 Ω) = VCE = VBE = VT ln(IC /IS ) 1+β VT + 100(200 Ω) − IC (200 Ω) = VT ln(IC /IS ) IC 100 IC β We can see that this equation has no solution. For example, if we let IC = 0, we see that according to the left side, we should have VBE = 2.6 V, which is clearly an infeasible value. Qualitatively, we know that in order to achieve a large gain, we need a large value for RC . However, increasing RC will result in a smaller value of VCE , eventually driving the transistor into saturation. When Av = −100, there is no value of RC that will provide such a large gain without driving the transistor into saturation. 5.46 (a) Av = − R1 + 1 gm2 1 gm1 k rπ2 + RE Rin = rπ1 + (1 + β1 )RE Rout = R1 + 1 k rπ2 gm2 (b) RC Av = − 1 gm1 + 1 gm2 k rπ2 Rin = rπ1 + (1 + β1 ) 1 gm2 k rπ2 k rπ2 Rout = RC (c) RC Av = − 1 gm1 + 1 gm2 k rπ2 Rin = rπ1 + (1 + β1 ) 1 gm2 Rout = RC (d) Av = − 1 gm1 + RC gm2 k rπ2 + 1 Rin = RB + rπ1 + (1 + β1 ) RB 1+β1 1 gm2 k rπ2 k rπ2 Rout = RC (e) Av = − 1 gm1 + RC gm2 k rπ2 + 1 Rin = RB + rπ1 + (1 + β1 ) Rout = RC RB 1+β1 1 gm2 5.47 (a) Av = − RC + 1 gm2 1 gm1 k rπ2 + RE Rin = rπ1 + (1 + β1 ) RE Rout = RC + 1 k rπ2 gm2 (b) Av = − 1 gm2 RC + 1 gm1 = − 1 gm2 1 gm1 k rπ2 + RE · 1 gm2 RC + k rπ2 1 gm2 k rπ2 k rπ2 + RE Rin = rπ1 + (1 + β1 ) RE Rout = 1 k rπ2 gm2 (c) Av = − RC + 1 1 gm2 + gm1 k rπ2 1 gm3 krπ3 Rin = rπ1 + (1 + β1 ) Rout = RC + 1 gm2 1 gm3 k rπ3 k rπ2 (d) Av = − RC k rπ2 1 gm1 + RE Rin = rπ1 + (1 + β1 ) RE Rout = RC k rπ2 5.49 (a) Looking into the emitter of Q2 we see an equivalent resistance of the following equivalent circuit for finding Rout : 1 gm2 k rπ2 k ro2 , so we can draw Rout Q1 1 gm2 Rout k rπ2 k ro2 1 = ro1 + (1 + gm1 ro1 ) rπ1 k k rπ2 k ro2 gm2 +RB (b) Looking into the emitter of Q2 we see an equivalent resistance of ro2 k rπ2 1+β2 (ro2 simply appears in parallel with the resistance seen when VA = ∞), so we can draw the following equivalent circuit for finding Rout : Rout Q1 ro2 k rπ2 +RB 1+β2 Rout = ro1 + (1 + gm1 ro1 ) rπ1 k ro2 rπ2 + RB k 1 + β2 (c) Looking down from the emitter of Q1 we see an equivalent resistance of R1 k rπ2 , so we can draw the following equivalent circuit for finding Rout : Rout Q1 R1 k rπ2 Rout = ro1 + (1 + gm1 ro1 ) (rπ1 k R1 k rπ2 ) 5.50 (a) Looking into the emitter of Q1 we see an equivalent resistance of the following equivalent circuit for finding Rout : 1 gm1 k rπ1 k ro1 , so we can draw VCC 1 gm1 k rπ1 k ro1 Q2 Rout 1 k rπ1 k ro1 Rout = ro2 + (1 + gm2 ro2 ) rπ2 k gm1 (b) Looking into the emitter of Q1 we see an equivalent resistance of ro1 , so we can draw the following equivalent circuit for finding Rout : VCC ro1 Q2 Rout Rout = ro2 + (1 + gm2 ro2 ) (rπ2 k ro1 ) Comparing this to the solution to part (a), we can see that the output resistance is larger because instead of a factor of 1/gm1 dominating the parallel resistors in the expression, rπ2 dominates (assuming ro1 ≫ rπ2 ). 5.52 (a) VCC VCC − IB (100 kΩ) − IE (100 Ω) = VBE = VT ln(IC /IS ) 1 1+β − IC (100 kΩ) − IC (100 Ω) = VT ln(IC /IS ) β β IC = 1.6 mA 1 kΩ Av = − 1 gm + 100 Ω gm = 61.6 mS Av = −8.60 (b) VCC − IB (50 kΩ) − IE (2 kΩ) = VT ln(IC /IS ) IC = 708 µA Av = − 1 kΩ 1 gm + (1 kΩ)k(50 kΩ) 1+β gm = 27.2 mS Av = −21.54 (c) IB = IC VCC − VBE − IE (2.5 kΩ) VBE + IE (2.5 kΩ) = − β 14 kΩ 11 kΩ IC = β VCC − VT ln(IC /IS ) − 1+β β IC (2.5 kΩ) 14 kΩ IC = 163 µA Av = − 10 kΩ 1 gm + 500 Ω + gm = 6.29 mS Av = −14.98 (1 kΩ)k(14 kΩ)k(11 kΩ) 1+β −β VT ln(IC /IS ) + 1+β β IC (2.5 11 kΩ kΩ) 5.53 (a) VCC − 1.5 V RC = 4 mA IC = VBE = VT ln(IC /IS ) = 832 mV VCC − VBE = 66.7 µA IB = RB IC β= = 60 IB (b) Assuming the speaker has an impedance of 8 Ω, the gain of the amplifier is Av = −gm (RC k 8 Ω) IC =− (RC k 8 Ω) VT = −1.19 Thus, the circuit provides greater than unity gain. 5.54 (a) Av = gm RC IC gm = = 76.9 mS VT Av = 38.46 1 Rin = k rπ gm β = 1.3 kΩ rπ = gm Rin = 12.87 Ω Rout = RC = 500 Ω (b) Since Av = gm RC and gm is fixed for a given value of IC , RC should be chosen as large as possible to maximize the gain of the amplifier. Vb should be chosen as small as possible to maximize the headroom of the amplifier (since in order for Q1 to remain in forward active, we require Vb < VCC − IC RC ). 5.56 (a) Looking into the emitter of Q2 we see an equivalent resistance of following equivalent circuit for finding Rin : 1 gm2 k rπ2 , so we can draw the VCC R1 Q1 1 gm2 k rπ2 Rin Rin = rπ1 + 1 gm2 k rπ2 1 + β1 (b) Looking right from the base of Q1 we see an equivalent resistance of R2 , so we can draw the following equivalent circuit for finding Rin : VCC R1 Q1 R2 Rin Rin = rπ1 + R2 1 + β1 (c) Looking right from the base of Q1 we see an equivalent resistance of R2 k draw the following equivalent circuit for finding Rin : 1 gm2 k rπ2 , so we can VCC R1 Q1 R2 k 1 gm2 k rπ2 Rin Rin = rπ1 + R2 k 1 gm2 k rπ2 1 + β1 (d) Looking right from the base of Q1 we see an equivalent resistance of R2 k rπ2 , so we can draw the following equivalent circuit for finding Rin : VCC R1 Q1 R2 k rπ2 Rin Rin = rπ1 + R2 k rπ2 1 + β1 5.58 (a) IB = IC VCC − VBE − IE (400 Ω) VBE + IE (400 Ω) = − β 13 kΩ 12 kΩ IC = β VCC − VT ln(IC /IS ) − 1+β β IC (400 Ω) 13 kΩ −β IC = 1.02 mA VBE = VT ln(IC /IS ) = 725 mV VCE = VCC − IC (1 kΩ) − IE (400 Ω) = 1.07 V Q1 is operating in forward active. (b) Av = gm (1 kΩ) gm = 39.2 mS Av = 39.2 VT ln(IC /IS ) + 1+β β IC (400 12 kΩ Ω) 5.61 For small-signal analysis, we can draw the following equivalent circuit. R1 vout Q1 vin Av = gm R1 Rin = 1 k rπ gm Rout = R1 5.61 For small-signal analysis, we can draw the following equivalent circuit. R1 vout Q1 vin Av = gm R1 Rin = 1 k rπ gm Rout = R1 5.63 Since IS1 = 2IS2 and they’re biased identically, we know that IC1 = 2IC2 , which means gm1 = 2gm2 . vout1 = gm1 RC = 2gm2 RC vin vout2 = gm2 RC vin vout1 vout2 ⇒ =2 vin vin 5.67 rπ + RS 1+β βVT /IC + RS = 1+β ≤5Ω β β IC = IE = I1 1+β 1+β Rout = β(1+β)VT βI1 + RS 1+β = (1+β)VT I1 + RS 1+β ≤5Ω I1 ≥ 8.61 mA 5.68 (a) Looking into the collector of Q2 we see an equivalent resistance of ro2 = ∞, so we can draw the following equivalent circuit: VCC vin Q1 vout ∞ Av = 1 Rin = ∞ Rout = 1 k rπ1 gm1 (b) Looking down from the emitter of Q1 we see an equivalent resistance of the following equivalent circuit: 1 gm2 k rπ2 , so we can draw VCC vin Q1 vout 1 gm2 Av = 1 gm2 1 gm1 + k rπ2 k rπ2 1 gm2 k rπ2 Rin = rπ1 + (1 + β1 ) Rout = 1 gm2 k rπ2 1 1 k rπ1 k k rπ2 gm1 gm2 (c) Looking into the emitter of Q2 we see an equivalent resistance of following equivalent circuit: rπ2 +RS 1+β2 , so we can draw the VCC vin Q1 vout rπ2 +RS 1+β2 Av = Rin Rout rπ2 +RS 1+β2 rπ2 +RS 1 + gm1 1+β2 rπ2 + RS = rπ1 + (1 + β1 ) 1 + β2 rπ2 + RS 1 = k rπ1 k gm1 1 + β2 (d) Looking down from the emitter of Q1 we see an equivalent resistance of RE + can draw the following equivalent circuit: 1 gm2 k rπ2 , so we VCC vin Q1 vout RE + Av = RE + 1 gm1 Rin Rout 1 gm2 + RE + 1 gm2 k rπ2 k rπ2 1 gm2 k rπ2 1 = rπ1 + (1 + β1 ) RE + gm2 1 1 = k rπ1 k RE + gm1 gm2 (e) Looking into the emitter of Q2 we see an equivalent resistance of following equivalent circuit: 1 gm2 k rπ2 , so we can draw the VCC vin Q1 RE vout 1 gm2 Av = RE + 1 + RE + gm1 1 gm2 = 1 gm1 Rin 1 gm2 k rπ2 k rπ2 1 gm2 · k rπ2 RE + + RE + 1 gm1 k rπ2 1 gm2 k rπ2 1 gm2 k rπ2 = rπ1 + (1 + β1 ) RE + Rout = 1 gm2 k rπ1 + RE k 1 gm2 k rπ2 1 k rπ2 gm2 k rπ2 5.69 (a) Looking into the base of Q2 we see an equivalent resistance of rπ2 (assuming the emitter of Q2 is grounded), so we can draw the following equivalent circuit for finding the impedance at the base of Q1 : VCC Q1 Req rπ2 Req = rπ1 + (1 + β1 )rπ2 1 k rπ1 (assuming the base of (b) Looking into the emitter of Q1 we see an equivalent resistance of gm1 Q1 is grounded), so we can draw the following equivalent circuit for finding the impedance at the emitter of Q2 : VCC 1 gm1 k rπ1 Q2 Req Req = rπ2 + 1 gm1 k rπ1 1 + β2 (c) β1 IB1 + β2 (1 + β1 )IB1 IC1 + IC2 = IB1 IB1 = β1 + β2 (1 + β1 ) If we assume that β1 , β2 ≫ 1, then this simplifies to β1 β2 , meaning a Darlington pair has a current gain approximately equal to the product of the current gains of the individual transistors. 5.70 (a) RCS = ro2 + (1 + gm2 ro2 ) (rπ2 k RE ) (b) Av = ro2 + (1 + gm2 ro2 ) (rπ2 k RE ) gm1 + ro2 + (1 + gm2 ro2 ) (rπ2 k RE ) 1 Rin = rπ1 + (1 + β1 ) [ro2 + (1 + gm2 ro2 ) (rπ2 k RE )] Rout = 1 gm1 k rπ1 k [ro2 + (1 + gm2 ro2 ) (rπ2 k RE )] 5.72 (a) Looking into the base of Q2 we see an equivalent resistance of rπ2 , so we can draw the following equivalent circuit for finding Rin : VCC Q1 Rin RE k rπ2 Rin = rπ1 + (1 + β1 ) (RE k ro1 ) Looking into the collector of Q2 we see an equivalent resistance of ro2 . Thus, Rout = RC k ro2 (b) Looking into the base of Q2 we see an equivalent resistance of rπ2 , so we can draw the following equivalent circuit for finding vX /vin : VCC vin Q1 vX RE k rπ2 vX = vin RE k rπ2 k ro1 gm1 + RE k rπ2 k ro1 1 We can find vout /vX by inspection. vout = −gm2 (RC k ro2 ) vX vX vout Av = · vin vX = −gm2 (RC k ro2 ) RE k rπ2 k ro1 gm1 + RE k rπ2 k ro1 1 5.73 (a) Looking into the emitter of Q2 we see an equivalent resistance of following equivalent circuit for finding Rin : 1 gm2 k rπ2 , so we can draw the VCC Q1 Rin Rin RE k 1 gm2 k rπ2 1 = rπ1 + (1 + β1 ) RE k k rπ2 gm2 Looking into the collector of Q2 , we see an equivalent resistance of ∞ (because VA = ∞), so we have Rout = RC (b) Looking into the emitter of Q2 we see an equivalent resistance of following equivalent circuit for finding vX /vin : VCC vin Q1 vX RE k vX = vin 1 gm2 1 gm2 k 1 1 gm1 +E k gm2 RE k k rπ2 rπ2 k rπ2 We can find vout /vX by inspection. vout = gm2 RC vX vX vout · Av = vin vX = gm2 RC 1 gm2 k 1 1 gm1 +E k gm2 RE k rπ2 k rπ2 1 gm2 k rπ2 , so we can draw the 5.74 Rout = RC = 1 kΩ Av = −gm RC = −10 gm = 10 mS IC = gm VT = 260 µA VCC − VBE IC = IB = RB β VCC − VT ln(IC /IS ) RB = β IC = 694 kΩ Rin = RB k rπ = 9.86 kΩ > 5 kΩ In sizing CB , we must consider the effect a finite impedance in series with the input will have on the circuit parameters. Any series impedance will cause Rin to increase and will not impact Rout . However, 1 a series impedance can cause gain degradation. Thus, we must ensure that |ZB | = jωC does not B degrade the gain significantly. If we include |ZB | in the gain expression, we get: Av = − Thus, we want 1 1+β |ZB | ≪ 1 gm RC 1 gm + (|ZB |)kRB 1+β to ensure the gain is not significantly degraded. 1 1 1 ≪ 1 + β jωCB gm 1 1 1 1 = 1 + β 2πf CB 10 gm CB = 788 nF 5.75 Rout = RC ≤ 500 Ω To maximize gain, we should maximize RC . RC = 500 Ω VCC − IC RC ≥ VBE − 400 mV = VT ln(IC /IS ) − 400 mV IC ≤ 4.261 mA To maximize gain, we should maximize IC . IC = 4.261 mA VCC − VBE IC = IB = β RB IC VCC − VT ln(IC /IS ) = = β RB RB = 40.613 kΩ 5.76 Rout = RC = 1 kΩ |Av | = gm RC IC RC = VT ≥ 20 IC ≥ 520 µA In order to maximize Rin = RB k rπ , we need to maximize rπ , meaning we should minimize IC (since T rπ = βV IC ). IC = 520 µA IC VCC − VBE IB = = β RB VCC − VT ln(IC /IS ) = RB RB = 343 kΩ 5.77 Rout = RC = 2 kΩ Av = −gm RC IC RC =− VT = −15 IC = 195 µA VBE = VT ln(IC /IS ) = 689.2 mV VCE ≥ VBE − 400 mV = 289.2 mV To minimize the supply voltage, we should minimize VCE . VCE = 289.2 mV VCC − VCE = IC RC VCC = 679.2 mV Note that this value of VCC is less than the required VBE . This means that the value of VCC is constrained by VBE , not VCE . In theory, we could pick VCC = VBE , but in this case, we’d have to set RB = 0 Ω, which would short the input to VCC . Thus, let’s pick a reasonable value for RB , RB = 100 Ω . IC VCC − VBE = IB = RB β VCC = 689.4 mV 5.78 |Av | = gm RC IC RC = VT = A0 Rout = RC IC Rout A0 = VT A0 VT IC = Rout P = IC VCC = A0 VT VCC Rout Thus, we must trade off a small output resistance with low power consumption (i.e., as we decrease Rout , power consumption increases and vice-versa). 5.79 P = (IB + IC )VCC 1+β = IC VCC β = 1 mW IC = 396 µA VCC − VBE IC = IB = RB β VCC − VT ln(IC /IS ) RB = β IC = 453 kΩ Av = −gm RC IC RC =− VT = −20 RC = 1.31 kΩ 5.81 Rout = RC ≥ 1 kΩ To maximize gain, we should maximize Rout . RC = 1 kΩ VCC − IC RC − IE RE = VCE ≥ VBE − 400 mV VCC − IC RC − 200 mV ≥ VT ln(IC /IS ) − 400 mV IC ≤ 1.95 mA To maximize gain, we should maximize IC . IC = 1.95 mA 1+β IC RE = 200 mV IE RE = β VCC RE = 101.5 Ω − 10IB R1 − IE RE = VBE = VT ln(IC /IS ) R1 = 7.950 kΩ 9IB R2 − IE RE = VBE = VT ln(IC /IS ) R2 = 5.405 kΩ 5.82 P = (10IB + IC ) VCC IC = 10 + IC VCC β = 5 mW IC = 1.82 mA 1+β IC RE = 200 mV IE RE = β RE = 109 Ω RC Av = − 1 gm + RE RC IC + RE = − VT = −5 RC = 616 Ω VCC − 10IB R1 − 200 mV = VBE = VT ln(IC /IS ) R1 = 8.54 kΩ 9IB R2 − 200 mV = VBE = VT ln(IC /IS ) R2 = 5.79 kΩ 5.83 1 = 50 Ω (since RE doesn’t affect Rin ) gm = 20 mS Rin = gm IC = gm VT = 520 µA 1+β IC RE = 260 mV IE RE = β RE = 495 Ω Av = gm RC = 20 RC = 1 kΩ VCC − 10IB R1 − IE RE = VBE = VT ln(IC /IS ) R1 = 29.33 kΩ 9IB R2 − IE RE = VBE = VT ln(IC /IS ) R2 = 20.83 kΩ To pick CB , we must consider its effect on Av . If we assume the capacitor has an impedance ZB and |ZB | ≪ R1 , R2 , then we have: Av = Thus, we should choose 1 1+β |ZB | ≪ RC 1 gm + |ZB | 1+β 1 gm . 1 1 1 1 1 = |ZB | = 1+β 1 + β 2πf CB 10 gm CB = 1.58 µF 5.84 Rout = RC = 500 Ω Av = gm RC = 8 gm = 16 mS IC = gm VT = 416 µA 1+β IC RE = 260 mV IE RE = β RE = 619 Ω VCC − 10IB R1 − IE RE = VBE = VT ln(IC /IS ) R1 = 36.806 kΩ 9IB R2 − IE RE = VBE = VT ln(IC /IS ) R2 = 25.878 kΩ To pick CB , we must consider its effect on Av . If we assume the capacitor has an impedance ZB and |ZB | ≪ R1 , R2 , then we have: Av = Thus, we should choose 1 1+β |ZB | ≪ RC 1 gm + |ZB | 1+β 1 gm . 1 1 1 1 1 = |ZB | = 1+β 1 + β 2πf CB 10 gm CB = 1.26 µF 5.85 Rout = RC = 200 Ω IC RC = 20 Av = gm RC = VT IC = 2.6 mA P = VCC (10IB + IC ) IC = VCC 10 + IC β = 7.15 mW 5.86 P = (IC + 10IB ) VCC IC = IC + 10 VCC β = 5 mW IC = 1.82 mA Av = gm RC IC RC = VT = 10 RC = 143 Ω 1+β IE RE = IC RE = 260 mV β VCC RE = 141.6 Ω − 10IB R1 − IE RE = VBE = VT ln(IC /IS ) R1 = 8.210 kΩ 9IB R2 − IE RE = VBE = VT ln(IC /IS ) R2 = 6.155 kΩ To pick CB , we must consider its effect on Av . If we assume the capacitor has an impedance ZB and |ZB | ≪ R1 , R2 , then we have: Av = Thus, we should choose 1 1+β |ZB | ≪ RC 1 gm + |ZB | 1+β 1 gm . 1 1 1 1 1 = |ZB | = 1+β 1 + β 2πf CB 10 gm CB = 5.52 µF 5.87 1 = 50 Ω (since RE doesn’t affect Rin ) gm = 20 mS Rin = gm IC = gm VT = 520 µA Av = gm RC = 20 RC = 1 kΩ 1+β IE RE = IC RE = 260 mV β RE = 495 Ω To minimize the supply voltage, we should allow Q1 to operate in soft saturation, i.e., VBC = 400 mV. VBE = VT ln(IC /IS ) = 715 mV VCE = VBE − 400 mV = 315 mV VCC − IC RC − IE RE = VCE VCC VCC = 1.095 V − 10IB R1 − IE RE = VBE R1 = 2.308 kΩ 9IB R2 − IE RE = VBE R2 = 20.827 kΩ To pick CB , we must consider its effect on Av . If we assume the capacitor has an impedance ZB and |ZB | ≪ R1 , R2 , then we have: Av = Thus, we should choose 1 1+β |ZB | ≪ RC 1 gm + |ZB | 1+β 1 gm . 1 1 1 1 1 = |ZB | = 1+β 1 + β 2πf CB 10 gm CB = 1.58 µF 5.90 As stated in the hint, let’s assume that IE RE ≫ VT . Given this assumption, we can assume that RE does not affect the gain. IE RE = 10VT = 260 mV RL Av = 1 = 0.8 gm + RL gm = 80 mS IC = gm VT = 2.08 mA 1+β IC RE = 260 mV β RE = 124 Ω VCC − IB R1 − IE RE = VBE = VT ln(IC /IS ) R1 = 71.6 kΩ To pick C1 , we must consider its effect on Av . If we assume the capacitor has an impedance Z1 and |Z1 | ≪ R1 , then we have: Av = Thus, we should choose 1 1+β |Z1 | ≪ RE 1 gm + RE + |Z1 | 1+β 1 gm . 1 1 1 1 1 = |Z1 | = 1+β 1 + β 2πf C1 10 gm C1 = 12.6 pF To pick C2 , we must also consider its effect on Av . Since the capacitor appears in series with RL , we need to ensure that |Z2 | ≪ RL , assuming the capacitor has impedance Z2 . |Z2 | = 1 1 = RL 2πf C2 10 C2 = 318 pF 6.4 (a) Q(x) Q(x) = W Cox (VGS − V (x) − VT H ) = W Cox (VGS − VT H ) − W Cox V (x) W Cox (VGS − VT H ) Increasing VDS L x The curve that intersects the axis at x = L (i.e., the curve for which the channel begins to pinch off) corresponds to VDS = VGS − VT H . (b) 1 µQ(x) RLocal (x) RLocal (x) ∝ Increasing VDS L x Note that RLocal diverges at x = L when VDS = VGS − VT H . 6.15 ID Increasing VDS VT H VGS Initially, when VGS is small, the transistor is in cutoff and no current flows. Once VGS increases beyond VT H , the curves start following the square-law characteristic as the transistor enters saturation. However, once VGS increases past VDS + VT H (i.e., when VDS < VGS − VT H ), the transistor goes into triode and the curves become linear. As we increase VDS , the transistor stays in saturation up to larger values of VGS , as expected. 6.17 1 W µn Cox (VGS − VT H )α , α < 2 2 L ∂ID , ∂VGS α W α−1 = µn Cox (VGS − VT H ) 2 L αID = VGS − VT H ID = gm 6.21 Since they’re being used as current sources, assume M1 and M2 are in saturation for this problem. To find the maximum allowable value of λ, we should evaluate λ when 0.99ID2 = ID1 and 1.01ID2 = ID1 , i.e., at the limits of the allowable values for the currents. However, note that for any valid λ (remember, λ should be non-negative), we know that ID2 > ID1 (since VDS2 > VDS1 ), so the case where 1.01ID2 = ID1 (which implies ID2 < ID1 ) will produce an invalid value for λ (you can check this yourself). Thus, we need only consider the case when 0.99ID2 = ID1 . W 1 2 (VB − VT H ) (1 + λVDS2 ) 0.99ID2 = 0.99 µn Cox 2 L = ID1 1 W 2 = µn Cox (VB − VT H ) (1 + λVDS1 ) 2 L 0.99 (1 + λVDS2 ) = 1 + λVDS1 λ = 0.02 V−1 5.27 VDD − ID RD = VGS = VT H + s 2ID µn Cox W L 2ID 2 = (VDD − VT H − ID RD ) W µn Cox L i W h 1 2 2 2 (VDD − VT H ) − 2ID RD (VDD − VT H ) + ID RD ID = µn Cox 2 L We can rearrange this to the standard quadratic form as follows: 1 W 2 W W 1 2 2 µn Cox RD ID − µn Cox RD (VDD − VT H ) + 1 ID + µn Cox (VDD − VT H ) = 0 2 L L 2 L Applying the quadratic formula, we have: q 2 2 R (V − V ) + 1 ± µn Cox W − 4 21 µn Cox W µn Cox W DD TH L D L RD (VDD − VT H ) + 1 L RD (VDD − VT H ) ID = 2 2 21 µn Cox W L RD q 2 2 W µn Cox W − µn Cox W µn Cox L RD (VDD − VT H ) + 1 ± L RD (VDD − VT H ) + 1 L RD (VDD − VT H ) = 2 µn Cox W L RD q µn Cox W 1 + 2µn Cox W L RD (VDD − VT H ) + 1 ± L RD (VDD − VT H ) = 2 µn Cox W L RD Note that mathematically, there are two possible solutions for ID . However, since M1 is diodeconnected, we know it will either be in saturation or cutoff. Thus, we must reject the value of ID that does not match these conditions (for example, a negative value of ID would not match cutoff or saturation, so it would be rejected in favor of a positive value). 6.33 (a) Assume M1 is operating in saturation. VGS = 1 V 1 W 2 VDS = VDD − ID RD = VDD − µn Cox (VGS − VT H ) (1 + λVDS ) RD 2 L VDS = 1.35 V > VGS − VT H , which verifies our assumption ID = 4.54 mA W (VGS − VT H ) = 13.333 mS gm = µn Cox L 1 = 2.203 kΩ ro = λID + vgs gm vgs ro RD − (b) Since M1 is diode-connected, we know it is operating in saturation. W 1 2 (VGS − VT H ) (1 + λVGS ) RD VGS = VDS = VDD − ID RD = VDD − µn Cox 2 L VGS = VDS = 0.546 V ID = 251 µA W (VGS − VT H ) = 3.251 mS gm = µn Cox L 1 = 39.881 kΩ ro = λID + vgs gm vgs ro RD − (c) Since M1 is diode-connected, we know it is operating in saturation. ID = 1 mA r gm = ro = 2µn Cox W ID = 6.667 mS L 1 = 10 kΩ λID + vgs gm vgs ro − (d) Since M1 is diode-connected, we know it is operating in saturation. VGS = VDS 1 W µn Cox (VGS − VT H )2 (1 + λVGS ) (2 kΩ) 2 L = 0.623 V VDD − VGS = ID (2 kΩ) = VGS = VDS ID = 588 µA W gm = µn Cox (VGS − VT H ) = 4.961 mS L 1 ro = = 16.996 kΩ λID + gm vgs vgs ro 2 kΩ − (e) Since M1 is diode-connected, we know it is operating in saturation. ID = 0.5 mA r gm = ro = 2µn Cox W ID = 4.714 mS L 1 = 20 kΩ λID + vgs − gm vgs ro 6.38 (a) vout + vgs2 gm2 vgs2 ro2 gm1 vgs1 ro1 RD − vin + vgs1 − (b) vin vout + vgs1 gm1 vgs1 ro1 RD − + gm2 vgs2 ro2 vgs2 − (c) vin vout + vgs1 gm1 vgs1 ro1 gm2 vgs2 ro2 − + vgs2 − (d) RD vin + vgs1 gm1 vgs1 ro1 − vout + vgs2 gm2 vgs2 ro2 − (e) vout + vgs1 gm1 vgs1 ro1 RD − vin + gm2 vgs2 ro2 vgs2 − 6.43 (a) Assume M1 is operating in triode (since |VGS | = 1.8 V is large). |VGS | = 1.8 V i W h 1 2 2 (|VGS | − |VT H |) |VDS | − |VDS | (500 Ω) µp Cox 2 L |VDS | = 0.418 V < |VGS | − |VT H | , which verifies our assumption VDD − |VDS | = |ID | (500 Ω) = |ID | = 2.764 mA (b) Since M1 is diode-connected, we know it is operating in saturation. |VGS | = |VDS | 1 W 2 µp Cox (|VGS | − |VT H |) (1 kΩ) 2 L |VGS | = |VDS | = 0.952 V VDD − |VGS | = |ID |(1 kΩ) = |ID | = 848 µA (c) Since M1 is diode-connected, we know it is operating in saturation. |VGS | = |VDS | |VGS | = VDD − |ID |(1 kΩ) = VDD − |ID |(1 kΩ) = |VGS | = |VGS | = 0.952 V |ID | = 848 µA 1 W 2 µp Cox (|VGS | − |VT H |) (1 kΩ) 2 L 6.44 (a) IX Saturation Cutoff VDD − VT H VDD VX VDD VX M1 goes from saturation to cutoff when VX = VDD − VT H = 1.4 V. (b) IX 1 + VT H Saturation M1 goes from saturation to triode when VX = 1 + VT H = 1.4 V. (c) Triode IX VDD − VT H Saturation VDD VX VDD VX Cutoff M1 goes from saturation to cutoff when VX = VDD − VT H = 1.4 V. (d) IX Saturation Cutoff VT H M1 goes from cutoff to saturation when VX = VT H = 0.4 V. 7.1 VGS = VDD = 1.8 V VDS > VGS − VT H (in order for M1 to operate in saturation) VDS = VDD − ID (1 kΩ) W 1 2 (VGS − VT H ) (1 kΩ) = VDD − µn Cox 2 L > VGS − VT H W < 2.04 L 7.3 VGS = VDD − ID (100 Ω) VDS = VDD − ID (1 kΩ + 100 Ω) > VGS − VT H (in order for M1 to operate in saturation) VDD − ID (1 kΩ + 100 Ω) > VDD − ID (100 Ω) − VT H ID (1 kΩ + 100 Ω) < ID (100 Ω) + VT H ID (1 kΩ) < VT H ID < 400 µA Since gm increases with ID , we should pick the maximum ID to determine the maximum transconductance that M1 can provide. ID,max = 400 µA 2ID,max gm,max = VGS − VT H 2ID,max = VDD − ID,max (100 Ω) − VT H = 0.588 mS 7.5 ID1 = 0.5 mA VGS = VT H + s 2ID1 µn Cox W L = 0.612 V 1 ID1 R2 VGS = 10 R2 = 12.243 kΩ 11 1 VGS = VDD − ID1 R1 − ID1 RS 10 10 R1 = 21.557 kΩ 7.6 ID = 1 mA 2ID 1 gm = = VGS − VT H 100 VGS = 0.6 V VGS = VDD − ID RD RD = 1.2 kΩ 7.8 First, let’s analyze the circuit excluding RP . 20 kΩ VDD = 1.2 V 10 kΩ + 20 kΩ = VG − ID RS = VDS = VDD − ID (1 kΩ + 200 Ω) VG = VGS ID = 600 µA VGS = 1.08 V 2ID W = = 12.9758 ≈ 13 L µn Cox (VGS − VT H )2 Now, let’s analyze the circuit with RP . VDD 10 kΩ ID + IRP 1 kΩ M1 20 kΩ RS IRP RP 200 Ω VG = 1.2 V VDD − VDS ID + IRP = 1 kΩ + 200 Ω VGS = VG − (ID + IRP ) RS = VDS + VT H VDD − VDS VG − RS = VDS + VT H 1 kΩ + 200 Ω VDS = 0.6 V VGS = 1 V W 1 2 (VGS − VT H ) ID = µn Cox 2 L = 467 µA VDS VDD − VDS ID + IRP = ID + = RP 1 kΩ + 200 Ω RP = 1.126 kΩ 7.9 First, let’s analyze the circuit excluding RP . VGS = VDD = 1.8 V VDS = VDD − ID (2 kΩ) = VGS − 100 mV W 1 2 (VGS − VT H ) (2 kΩ) = VGS − 100 mV VDD − µn Cox 2 L W = 0.255 L Now, let’s analyze the circuit with RP . VDD 30 kΩ 2 kΩ RP IRP M1 VGS = VDD − IRP (30 kΩ) VGS − VDS 50 mV IRP = = RP RP VGS = VDD − (ID − IRP ) (2 kΩ) + 50 mV W 1 2 µn Cox (VGS − VT H ) − IRP (2 kΩ) + 50 mV VDD − IRP (30 kΩ) = VDD − 2 L 1 W 2 VDD − IRP (30 kΩ) = VDD − µn Cox (VDD − IRP (30 kΩ) − VT H ) − IRP (2 kΩ) + 50 mV 2 L IRP = 1.380 µA 50 mV = 36.222 kΩ RP = IRP 7.12 Since we’re not given VDS for the transistors, let’s assume λ = 0 for large-signal calculations. Let’s also assume the transistors operate in saturation, since they’re being used as current sources. IX = 1 W1 2 (VB1 − VT H ) = 0.5 mA µn Cox 2 L1 W1 = 3.47 µm IY = W2 1 (VB2 − VT H )2 = 0.5 mA µn Cox 2 L2 W2 = 1.95 µm 1 = 20 kΩ λIX 1 = 20 kΩ = λIY Rout1 = ro1 = Rout2 = ro2 Since IX = IY and λ is the same for each current source, the output resistances of the current sources are the same. 7.13 Looking into the source of M1 we see a resistance of 1 gm . Including λ in our analysis, we have 1 1 = gm (V − V − |VT H |) (1 + λVX ) µp Cox W X B1 L = 372 Ω 7.17 (a) Assume M1 is operating in saturation. ID = 0.5 mA VGS = VT H + s 2ID µn Cox W L = 0.573 V VDS = VDD − ID RD = 0.8 volt > VGS − VT H , verifying that M1 is in saturation (b) Av = −gm RD 2ID RD =− VGS − VT H = −11.55 7.18 (a) Assume M1 is operating in saturation. ID = 0.25 mA s VGS = VT H + 2ID µn Cox W L = 0.55 V VDS = VDD − ID RD = 1.3 V > VGS − VT H , verifying that M1 is in saturation (b) VGS = 0.55 V VDS > VGS − VT H (to ensure M1 remains in saturation) VDD − ID RD > VGS − VT H W 1 2 (VGS − VT H ) RD > VGS − VT H VDD − µn Cox 2 L W 2 (VDD − VGS + VT H ) < L µn Cox (VGS − VT H )2 RD = 366.67 20 = 3.3 0.18 Thus, W/L can increase by a factor of 3.3 while M1 remains in saturation. Av = −gm RD W (VGS − VT H ) RD L W (VGS − VT H ) RD = −µn Cox L max = −µn Cox Av,max = −22 7.19 P = VDD ID < 1 mW ID < 556 µA Av = −gm RD r = − 2µn Cox = −5 W 20 < L 0.18 RD > 1.006 kΩ W ID RD L 7.20 (a) ID1 = ID2 = 0.5 mA Av = −gm1 (ro1 k ro2 ) s W 1 1 = − 2µn Cox ID1 k L 1 λ1 ID1 λ2 ID2 = −10 W L = 7.8125 1 (b) VDD − VB = VT H + VB = 1.1 V s 2 |ID2 | µp Cox W L 2 p 7.22 (a) If ID1 and ID2 remain constant while W and L double, then gm1 ∝ (W/L)1 ID1 will not change 1 1 (since it depends only on the ratio W/L), ro1 ∝ ID1 will not change, and ro2 ∝ ID2 will not change. Thus, Av = −gm1 (ro1 k ro2 ) will not change . p √ 1 (b) If ID1 , ID2 , W , and L double, then gm1 ∝ (W/L)1 ID1 will increase by a factor of 2, ro1 ∝ ID1 1 will halve, and ro2 ∝ ID2 will halve. This means that ro1 k ro2 will halve as well, meaning √ Av = −gm1 (ro1 k ro2 ) will decrease by a factor of 2 . 7.26 (a) ID1 = ID2 = 0.5 mA s 2ID1 VGS1 = VT H + µn Cox W L 1 = 0.7 V VDS1 = VGS1 − VT H (in order of M1 to operate at the edge of saturation) = VDD − VGS2 s 2ID2 VGS2 = VDD − VGS1 + VT H = VT H + µn Cox W L 2 W = 4.13 L 2 (b) gm1 gm2 q 2µn Cox = −q 2µn Cox v u W u L 1 = −t W Av = − L W L 1 ID1 W L 2 ID2 2 = −3.667 (c) Since (W/L)1 is fixed, we must minimize (W/L)2 in order to maximize the magnitude of the gain (based on the expression derived in part (b)). If we pick the size of M2 so that M1 operates at the edge of saturation, then if M2 were to be any smaller, VGS2 would have to be larger (given the same ID2 ), driving M1 into triode. Thus, (W/L)2 is its smallest possible value (without driving M1 into saturation) when M1 is at the edge of saturation, meaning the gain is largest in magnitude with this choice of (W/L)2 . 7.27 (a) gm1 gm2 q 2µn Cox = −q 2µn Cox v u W u L 1 = −t W Av = − L W L 1 ID1 W L 2 ID2 2 = −5 W L = 277.78 1 (b) VDD − VT H VDS1 > VGS1 − VT H (to ensure M1 is in saturation) VDD − VGS2 > VGS1 − VT H s s 2ID2 2ID1 > − W µn Cox L 2 µn Cox W L 1 ID1 = ID2 < 1.512 mA 7.28 For this problem, recall that looking into the drain of a transistor with a grounded gate and source we see a resistance of ro , and looking into either terminal of a diode-connected transistor we see a resistance of g1m k ro . (a) 1 k ro2 Av = −gm1 ro1 k gm2 (b) 1 k ro3 Av = −gm1 ro1 k ro2 k gm3 (c) 1 Av = −gm1 ro1 k ro2 k k ro3 gm3 (d) 1 k ro3 Av = −gm2 ro2 k ro1 k gm3 (e) 1 k ro3 Av = −gm2 ro2 k ro1 k gm3 (f) Let’s draw a small-signal model to find the equivalent resistance seen looking up from the output. RD + + vt it − gm2 vgs2 vgs2 ro2 − it = gm2 vgs2 + vt − it RD ro2 vgs2 = vt vt − it RD it = gm2 vt + ro2 1 RD = vt gm2 + it 1 + ro2 ro2 R D 1 + ro2 vt ro2 + RD = = it 1 + gm2 ro2 gm2 + r1o2 ro2 + RD Av = −gm1 ro1 k 1 + gm2 ro2 7.30 (a) Assume M1 is operating in saturation. ID = 1 mA ID RS = 200 mV RS = 200 Ω RD Av = − 1 gm + RS =− RD 1 2µn Cox W L ID √ = −4 W = 1000 L s VGS = VT H + VDS + RS 2ID µn Cox W L = 0.5 V = VDD − ID RD − ID RS = 0.6 V > VGS − VT H , verifying that M1 is in saturation Yes , the transistor operates in saturation. (b) Assume M1 is operating in saturation. 50 W = L 0.18 RS = 200 Ω Av = − √ RD 1 2µn Cox W L ID + RS = −4 RD = 1.179 kΩ s VGS = VT H + VDS 2ID µn Cox W L = 0.590 V = VDD − ID RD − ID RS = 0.421 V > VGS − VT H , verifying that M1 is in saturation Yes , the transistor operates in saturation. 7.42 (a) Rout = RD = 500 Ω VG = VDD VD > VG − VT H (in order for M1 to operate in saturation) VDD − ID RD > VDD − VT H ID < 0.8 mA (b) ID = 0.8 mA 1 Rin = gm 1 =q 2µn Cox W L ID = 50 Ω W = 1250 L (c) Av = gm RD 1 gm = S 50 RD = 500 Ω Av = 10 7.43 (a) ID = I1 = 1 mA VG = VDD VD = VG − VT H + 100 mV VDD − ID RD = VG − VT H + 100 mV RD = 300 Ω (b) RD = 300 Ω Av = gm RD r = 2µn Cox =5 W = 694.4 L W ID RD L 7.44 For this problem, recall that looking into the drain of a transistor with a grounded gate and source we see a resistance of ro , and looking into either terminal of a diode-connected transistor we see a resistance of g1m k ro . (a) Referring to Eq. (7.109) with RD = 1 gm2 and gm = gm1 , we have Av = 1 gm2 1 gm1 + RS (b) Let’s draw a small-signal model to find the equivalent resistance seen looking up from the output. RD + + vt it gm2 vgs2 vgs2 − − it = gm2 vgs2 vgs2 = vt it = gm2 vt 1 vt = it gm2 gm1 Av = gm2 (c) Referring to Eq. (7.119) with RD = 1 gm2 , Av = R3 = R1 , and gm = gm1 , we have R1 k 1 gm1 RS + R1 k 1 gm1 gm1 gm2 (d) 1 k ro3 Av = gm1 RD + gm2 (e) 1 Av = gm1 RD + gm2 7.45 (a) vX 1 = −gm1 RD1 k vin gm2 vout = gm2 RD2 vX vout vX vout = vin vin vX 1 = −gm1 gm2 RD2 RD1 k gm2 (b) lim RD1 →∞ −gm1 gm2 RD2 RD1 k 1 gm2 = −gm1 RD2 This makes sense because the common-source stage acts as a transconductance amplifier with a transconductance of gm1 . The common-gate stage acts as a current buffer with a current gain of 1. Thus, the current gm1 vin flows through RD2 , meaning vout = −gm1 vin RD2 , so that vout vin = −gm1 RD2 . This type of amplifier (with RD1 = ∞) is known as a cascode and will be studied in detail in Chapter 9. 7.40 ID = 0.5 mA 1 Rin = gm 1 =q 2µn Cox W L ID VDD = 50 Ω W = 2000 L VD > VG − VT H (in order for M1 to operate in saturation) − ID RD > Vb − VT H RD < 2.4 kΩ Since |Av | ∝ RD , we need to maximize RD in order to maximize the gain. Thus, we should pick RD = 2.4 kΩ . This corresponds to a voltage gain of Av = −gm RD = −48. 7.42 (a) Rout = RD = 500 Ω VG = VDD VD > VG − VT H (in order for M1 to operate in saturation) VDD − ID RD > VDD − VT H ID < 0.8 mA (b) ID = 0.8 mA 1 Rin = gm 1 =q 2µn Cox W L ID = 50 Ω W = 1250 L (c) Av = gm RD 1 gm = S 50 RD = 500 Ω Av = 10 7.43 (a) ID = I1 = 1 mA VG = VDD VD = VG − VT H + 100 mV VDD − ID RD = VG − VT H + 100 mV RD = 300 Ω (b) RD = 300 Ω Av = gm RD r = 2µn Cox =5 W = 694.4 L W ID RD L 7.44 For this problem, recall that looking into the drain of a transistor with a grounded gate and source we see a resistance of ro , and looking into either terminal of a diode-connected transistor we see a resistance of g1m k ro . (a) Referring to Eq. (7.109) with RD = 1 gm2 and gm = gm1 , we have Av = 1 gm2 1 gm1 + RS (b) Let’s draw a small-signal model to find the equivalent resistance seen looking up from the output. RD + + vt it gm2 vgs2 vgs2 − − it = gm2 vgs2 vgs2 = vt it = gm2 vt 1 vt = it gm2 gm1 Av = gm2 (c) Referring to Eq. (7.119) with RD = 1 gm2 , Av = R3 = R1 , and gm = gm1 , we have R1 k 1 gm1 RS + R1 k 1 gm1 gm1 gm2 (d) 1 k ro3 Av = gm1 RD + gm2 (e) 1 Av = gm1 RD + gm2 7.45 (a) vX 1 = −gm1 RD1 k vin gm2 vout = gm2 RD2 vX vout vX vout = vin vin vX 1 = −gm1 gm2 RD2 RD1 k gm2 (b) lim RD1 →∞ −gm1 gm2 RD2 RD1 k 1 gm2 = −gm1 RD2 This makes sense because the common-source stage acts as a transconductance amplifier with a transconductance of gm1 . The common-gate stage acts as a current buffer with a current gain of 1. Thus, the current gm1 vin flows through RD2 , meaning vout = −gm1 vin RD2 , so that vout vin = −gm1 RD2 . This type of amplifier (with RD1 = ∞) is known as a cascode and will be studied in detail in Chapter 9. 7.48 For small-signal analysis, we can short the capacitors, producing the following equivalent circuit. R2 k R3 k RD vout M1 vin R4 Av = gm (R2 k R3 k RD ) 7.49 VGS = VDS 1 W 2 VGS = VDD − ID RS = VDD − µn Cox (VGS − VT H ) (1 + λVGS ) RS 2 L VGS = VDS = 0.7036 V ID = 1.096 mA Av = gm = ro = 1 gm ro k RS + ro k RS r 2µn Cox W ID = 6.981 mS L 1 = 9.121 kΩ λID Av = 0.8628 7.50 Av = 1 gm RS + RS = µn Cox W L RS 1 (VGS −VT H ) + RS = 0.8 VGS = 0.64 V 1 W 2 ID = µn Cox (VGS − VT H ) 2 L = 960 µA VG = VGS + VS = VGS + ID RS = 1.12 V 7.55 For this problem, recall that looking into the drain of a transistor with a grounded gate and source we see a resistance of ro , and looking into either terminal of a diode-connected transistor we see a resistance of g1m k ro . (a) Av = ro1 k (RS + ro2 ) gm1 + ro1 k (RS + ro2 ) 1 (b) Looking down from the output we see an equivalent resistance of ro2 + (1 + gm2 ro2 ) RS by Eq. (7.110). ro1 k [ro2 + (1 + gm2 ro2 ) RS ] Av = 1 gm1 + ro1 k [ro2 + (1 + gm2 ro2 ) RS ] (c) Av = ro1 k 1 gm1 1 gm2 + ro1 k 1 gm2 (d) Let’s draw a small-signal model to find the equivalent resistance seen looking down from the output. R1 + R2 + gm2 vgs2 vgs2 ro2 vt vt + gm2 vgs2 + R1 + R2 ro2 R2 = vt R1 + R2 R2 vt vt + gm2 vt + = R1 + R2 R1 + R2 ro2 1 gm2 R2 1 = vt + + R1 + R2 R1 + R2 ro2 R1 + R2 k ro2 = (R1 + R2 ) k gm2 R2 1 +R2 k ro2 ro1 k (R1 + R2 ) k Rgm2 R2 = R1 +R2 1 k ro2 + r k (R + R ) k o1 1 2 gm1 gm2 R2 it = it it vt it Av vt − − vgs2 it (e) Av = ro2 k ro3 k 1 gm2 1 gm1 + ro2 k ro3 k 1 gm1 (f) Looking up from the output we see an equivalent resistance of ro2 + (1 + gm2 ro2 ) ro3 by Eq. (7.110). ro1 k [ro2 + (1 + gm2 ro2 ) ro3 ] Av = 1 gm1 + ro1 k [ro2 + (1 + gm2 ro2 ) ro3 ] 7.58 P = VDD ID = 2 mW ID = 1.11 mA RD ID = 1 V RD = 900 Ω Av = −gm RD r =− 2µn Cox = −5 W = 69.44 L W ID RD L 7.60 Let’s let R1 and R2 consume exactly 5 % of the power budget (which means the branch containing RD , M1 , and RS will consume 95 % of the power budget). Let’s also assume Vov = VGS − VT H = 300 mV exactly. ID VDD = 0.95(2 mW) ID = 1.056 mA ID RS = 200 mV RS = 189.5 Ω Vov = VGS − VT H = 300 mV W 2 1 ID = µn Cox Vov 2 L W = 117.3 L RD Av = − 1 gm + RS =− RD 1 √ 2µn Cox W L ID + RS = −4 RD = 1.326 kΩ 2 VDD = 0.05(2 mW) R1 + R2 2 VDD R1 + R2 = 0.1 mW VG = VGS + ID RS = Vov + VT H + ID RS = 0.9 V R2 VG = VDD R1 + R2 R2 = V2 = 0.9 V DD 0.1 mW R2 = 29.16 kΩ R1 = 3.24 kΩ 7.61 Let’s let R1 and R2 consume exactly 5 % of the power budget (which means the branch containing RD , M1 , and RS will consume 95 % of the power budget). RD = 200 Ω ID VDD = 0.95(6 mW) ID = 3.167 mA ID RS = Vov = VGS − VT H Vov RS = ID 2ID gm = Vov RD Av = − 1 gm + RS RD Vov 2ID + ID = − Vov = −5 Vov = 84.44 mV RS = 26.67 Ω 2ID W = 4441 = 2 L µn Cox Vov 2 VDD = 0.05(6 mW) R1 + R2 2 VDD R1 + R2 = 0.3 mW VG = VGS + ID RS = Vov + VT H + ID RS = 0.5689 V R2 VG = VDD R1 + R2 R2 = V2 = 0.5689 V DD 0.3 mW R2 = 6.144 kΩ R1 = 4.656 kΩ 7.62 Rin = R1 = 20 kΩ P = VDD ID = 2 mW ID = 1.11 mA VDS = VGS − VT H + 200 mV VDD − ID RD = VDD − VT H + 200 mV RD = 180 Ω Av = −gm RD r 2µn Cox =− W ID RD L = −6 W = 2500 L s VGS = VT H + 2ID µn Cox W L = 0.467 V VGS = VDD − ID RS RS 1 2πf C1 1 2πf C1 f = 1.2 kΩ ≪ R1 1 R1 10 = 1 MHz = C1 = 79.6 pF 1 1 k RS ≪ 2πf CS gm 1 1 1 = 2πf CS 10 gm r gm = 2µn Cox CS = 52.9 nF W ID = 33.33 mS L 7.64 (a) Av = −gm1 (ro1 k RG k ro2 ) (b) P = VDD ID1 = 3 mW ID1 = |ID2 | = 1.67 mA VDD |VGS2 | = |VDS2 | = VDS = 2 W 1 (|VGS2 | − |VT H |)2 (1 + λp |VDS2 |) |ID2 | = µp Cox 2 L 2 W = 113 L 2 Av = −gm1 (ro1 k RG k ro2 ) RG = 10 (ro1 k ro2 ) 1 ro1 = = 6 kΩ λn ID1 1 = 3 kΩ ro2 = λp |ID2 | RG = 10 (ro1 k ro2 ) = 20 kΩ s W Av = − 2µn Cox ID1 (ro1 k RG k ro2 ) L 1 = −15 W L = 102.1 1 VIN = VGS1 = VT H + = 0.787 V s µn Cox 2I D (1 + λn VDS1 ) W L 1 7.66 P = VDD ID1 = 1 mW ID1 = |ID2 | = 556 µA p W Vov1 = VGS1 − VT H = 2ID µn Cox = 200 mV L 1 W = 138.9 L 1 gm1 Av = − gm2 q 2µn Cox W L 1 ID1 = −q 2µn Cox W L 2 |ID2 | v u W u L 1 = −t W L 2 = −4 W L = 8.68 2 VIN = VGS1 = Vov1 + VT H = 0.6 V 7.67 P = VDD ID = 3 mW ID = I1 = 1.67 mA 1 1 =q Rin = gm 2µ C n W ox L ID W = 600 L Av = gm RD = RD = 250 Ω 1 RD = 5 50 Ω = 50 Ω 7.68 P = VDD ID = 2 mW ID = 1.11 mA VD = VG − VT H + 100 mV VDD − ID RD = VG − VT H + 100 mV VG = VDD 2ID RD = 4 VGS − VT H VGS − VT H RD = Av 2ID VGS − VT H = VDD − VT H + 100 mV − ID Av 2ID VGS = 0.55 V Av = gm RD = VDD RD = 270 Ω VS = VDD − VGS = ID RS RS = 1.125 kΩ 2ID W = 2 = 493.8 L µn Cox (VGS − VT H ) 7.73 P = VDD ID1 = 3 mW ID1 = ID2 = 1.67 mA Av = = ro1 k ro2 gm1 + ro1 k ro2 1 ro1 k ro2 1 q + ro1 2µn Cox ( W L ) ID1 k ro2 1 = 0.9 1 = 6 kΩ ro1 = ro2 = λID1 W = 13.5 L 1 Let Vov2 = VGS2 − VT H = 0.3 V. Let’s assume that VOUT = VDS2 = Vov2 . VGS2 = Vb = Vov2 + VT H = 0.7 V 2ID2 W = 2 L 2 µn Cox (VGS2 − VT H ) (1 + λVDS2 ) = 161 VGS1 = VT H + s µn Cox 2ID1 W L 1 (1 VDS1 = VDD − VDS2 = 1.5 V VGS1 = 1.44 V VIN = VGS1 + VDS2 = 1.74 V + λVDS1 ) Vout (V) 8.1 2 1 −5 −4 −3 −2 −1 0 0 1 2 3 4 Vin −1 −2 5 (mV) 8.11 V− = V+ = Vin R2 R4 k (R2 + R3 ) Vout = Vin R1 + R4 k (R2 + R3 ) R2 + R3 −1 R2 R4 k (R2 + R3 ) = R1 + R4 k (R2 + R3 ) R2 + R3 V− = Vout Vin = (R2 + R3 ) [R1 + R4 k (R2 + R3 )] R2 [R4 k (R2 + R3 )] If R1 → 0, we expect the result to be: R2 Vout R2 + R3 R2 + R3 R3 = =1+ R2 R2 Vin = Vout Vin R1 =0 Taking limit of the original expression as R1 → 0, we have: (R2 + R3 ) [R1 + R4 k (R2 + R3 )] (R2 + R3 ) [R4 k (R2 + R3 )] = R1 →0 R2 [R4 k (R2 + R3 )] R2 [R4 k (R2 + R3 )] R3 =1+ R2 lim This agrees with the expected result. Likewise, if R3 → 0, we expect the result to be: R2 k R4 Vout R1 + R2 k R4 R1 + R2 k R4 = R2 k R4 R1 =1+ R2 k R4 Vin = Vout Vin R3 =0 Taking the limit of the original expression as R3 → 0, we have: lim R3 →0 (R2 + R3 ) [R1 + R4 k (R2 + R3 )] R2 (R1 + R2 k R4 ) = R2 [R4 k (R2 + R3 )] R2 (R2 k R4 ) R1 + R2 k R4 = R2 k R4 R1 =1+ R2 k R4 This agrees with the expected result. 8.14 We need to derive the closed-loop gain of the following circuit: R1 R2 Rout + + vin −A0 vX vX − vout + − − R2 + vin R1 + R2 R1 + R2 + vin = (−A0 vX − vin ) Rout + R1 + R2 R1 + R2 R2 + vin − vin + vin = −A0 (vout − vin ) R1 + R2 Rout + R1 + R2 vX = (vout − vin ) vout Grouping terms, we have: R2 R1 + R2 R2 R1 + R2 Rout + R1 + R2 vout 1 + A0 = vin A0 − A0 − 1 + R1 + R2 Rout + R1 + R2 Rout + R1 + R2 R1 + R2 R1 + R2 R1 + R2 R1 Rout + R1 + R2 = vin − A0 −1 Rout + R1 + R2 R1 + R2 R1 + R2 1 [Rout + R1 + R2 − A0 R1 − R1 − R2 ] = vin Rout + R1 + R2 A0 R1 + R1 + R2 = vin 1 − Rout + R1 + R2 R1 +R1 +R2 1 − AR0out vout +R1 +R2 = 0 R2 vin 1 + RoutA+R 1 +R2 = = Rout + R1 + R2 − A0 R1 − R1 − R2 Rout + R1 + R2 + A0 R2 Rout − A0 R1 Rout + R1 + (1 + A0 ) R2 To find the output impedance, we must find Zout = vt it for the following circuit: R1 R2 Rout + + − + −A0 vX vX − it vt − vt vt + A0 vX + Rout R1 + R2 R2 vX = vt R1 + R2 2 vt vt + A0 R1R+R vt 2 + it = Rout R1 + R2 A0 R2 1 1 + + = vt Rout Rout (R1 + R2 ) R1 + R2 R1 + (1 + A0 ) R2 + Rout = vt Rout (R1 + R2 ) it = Zout = Rout (R1 + R2 ) vt = it R1 + (1 + A0 ) R2 + Rout 8.15 Refer to the analysis for Fig. 8.42. Vout R1 = =4 Vin R2 Rin ≈ R2 = 10 kΩ R1 = 4R2 = 40 kΩ From Eq. (8.99), we have E =1− A0 − 1+ A0 = 1000 Rout = 1 kΩ E = 0.51 % Rout R2 Rout R1 + A0 + R1 R2 8.17 V+ = V− (since A0 = ∞) Vin Vout R3 k R4 =− R2 R3 R1 + R3 k R4 Vout R3 R1 + R3 k R4 = − Vin R2 R3 k R4 If R1 → 0 or R3 → 0, we expect the amplifier to reduce to the standard inverting amplifier. Vout Vin Vout Vin The gain reduces to the expected expressions. =− R3 R2 =− R1 R2 R1 →0 R3 →0 8.18 V+ = V− (since A0 = ∞) R3 R2 VX = Vout = (Vout − Vin ) + Vin R3 + R4 R1 + R2 R3 R2 R2 Vout = Vin 1 − − R3 + R4 R1 + R2 R1 + R2 R1 R3 (R1 + R2 ) − R2 (R3 + R4 ) = Vin Vout (R1 + R2 ) (R3 + R4 ) R1 + R2 Vout R1 (R3 + R4 ) = Vin R3 (R1 + R2 ) − R2 (R3 + R4 ) 8.22 We must find the transfer function of the following circuit: C1 R1 vout + vin Rin − + vX + − − −A0 vX vout = −A0 vX 1 vX − vin vX vX = vout − + sC1 Rin R1 vin 1 1 = vout + + vX 1 + sRin C1 sR1 C1 sR1 C1 sR1 Rin C1 vout + Rin vin vX = sR1 Rin C1 + R1 + Rin sR1 Rin C1 vout + Rin vin vout = −A0 sR1 Rin C1 + R1 + Rin Rin sR1 Rin C1 = −A0 vin vout 1 + A0 sR1 Rin C1 + R1 + Rin sR1 Rin C1 + R1 + Rin vout −A0 Rin sR1 Rin C1 + R1 + Rin = · vin sR1 Rin C1 + R1 + Rin sR1 Rin C1 + R1 + Rin + sR1 Rin C1 A0 −A0 Rin = sR1 Rin C1 + R1 + Rin + sR1 Rin C1 A0 −A0 Rin = sR1 Rin C1 (1 + A0 ) + R1 + Rin −A0 Rin = 1 (1+A0 ) 1 + s R1 RRin1C+R in = −A0 Rin / (R1 + Rin ) 1 + s (R1 k Rin ) C1 (1 + A0 ) sp = − 1 (R1 k Rin ) C1 (1 + A0 ) Comparing this to the result in Eq. (8.37), we can see that we can simply replace R1 with R1 k Rin , effectively increasing the pole frequency (since R1 k Rin < R1 for finite Rin ). We can also write the result as sp = − 1 R1 C1 (1 + A0 ) 1+ R1 Rin In this form, it’s clear that the pole frequency increases by 1 + R1 /Rin . 8.23 We must find the transfer function of the following circuit: C1 R1 Rout + + vin −A0 vX vX − vout + − − vout = −A0 vX + vin − vout Rout R1 + sC1 1 R1 (vout − vin ) R1 + sC1 1 " # R1 vin − vout vout = −A0 vin + (vout − vin ) + Rout R1 + sC1 1 R1 + sC1 1 " " # # A0 R1 + Rout A0 R1 + Rout vout 1 + = vin −A0 + R1 + sC1 1 R1 + sC1 1 vX = vin + vout R1 + 1 sC1 + A0 R1 + Rout R1 + 1 sC1 = vin −A0 R1 − A0 sC1 1 + A0 R1 + Rout R1 + 1 sC1 vout {1 + sC1 [(1 + A0 ) R1 + Rout ]} = −vin {A0 − sC1 Rout } A0 − sC1 Rout vout = − vin 1 + sC1 [(1 + A0 ) R1 + Rout ] sp = − 1 C1 [(1 + A0 ) R1 + Rout ] Comparing this to the result in Eq. (8.37), we can see that the pole gets reduced in magnitude due to Rout . 8.26 We must find the transfer function of the following circuit: R1 C1 vout + vin + Rin + −A0 vX vX − − − vout = −A0 vX vX − vout vX = (vin − vX ) sC1 − Rin R1 Rin Rin = vin sRin C1 + vout vX 1 + sRin C1 + R1 R1 vX = vin sRin C1 + vout RRin 1 1 + sRin C1 + vout = −A0 " vout 1 + A0 RRin 1 1 + sRin C1 + Rin R1 Rin R1 vin sRin C1 + vout RRin 1 1 + sRin C1 + = −vin sRin C1 A0 1 + sRin C1 + RRin 1 # = −vin sRin C1 A0 1 + sRin C1 + RRin 1 vout 1 + sRin C1 + (1 + A0 ) vout Rin 1 + sRin C1 + (1 + A0 ) = −vin sRin C1 A0 R1 1 + sRin C1 + Rin R1 # " Rin R1 Rin R1 vout sR1 Rin C1 A0 = − vin R1 + sR1 Rin C1 + (1 + A0 ) Rin vout lim = −sR1 C1 A0 →∞ vin Comparing this to Eq. (8.42), we can see that if we let A0 → ∞, the result actually reduces to Eq. (8.42). 8.27 We must find the transfer function of the following circuit: R1 C1 Rout + + vin −A0 vX vX − − − vout = −A0 vX + vX = vin + vin − vout Rout R1 + sC1 1 1 sC1 R1 + " vout = −A0 vin + " vout 1 + vout R1 + 1 sC1 A0 sC1 1 + Rout R1 + 1 sC1 # + A0 sC1 1 + Rout R1 + 1 sC1 " = vin −A0 + = vin vout + 1 sC1 (vout − vin ) 1 sC1 R1 + 1 sC1 (vout − vin ) + A0 sC1 1 + Rout R1 + # 1 sC1 vin − vout Rout R1 + sC1 1 # −A0 R1 − A0 sC1 1 + A0 sC1 1 + Rout R1 + 1 sC1 vout {1 + A0 + sC1 (R1 + Rout )} = −vin {sC1 (A0 R1 − Rout )} vout sC1 (A0 R1 − Rout ) = − vin 1 + A0 + sC1 (R1 + Rout ) vout = −sR1 C1 lim A0 →∞ vin Comparing this to Eq. (8.42), we can see that if we let A0 → ∞, the result actually reduces to Eq. (8.42). 8.28 vout = −A0 v− v− = vin + (vout − vin ) 1 sC1 1 sC1 k R1 vout = −A0 vin + (vout − vin ) 1 sC1 k R1 + sC1 2 k R2 k R1 k R1 + sC1 2 k R2 1 sC1 1 k R1 sC1 k R1 = −vin A0 1 − vout 1 + A0 1 1 1 1 + + k R k R k R k R 1 2 1 2 sC1 sC2 sC1 sC2 1 1 1 1 1 1 k R k R k R k R k R k R + + A + − 1 2 1 1 2 1 0 sC1 sC1 sC2 sC1 sC2 sC1 = −vin A0 vout 1 1 1 1 sC1 k R1 + sC2 k R2 sC1 k R1 + sC2 k R2 1 1 1 vout (1 + A0 ) = −vin A0 k R1 + k R2 k R2 sC1 sC2 sC2 1 sC1 1 k R2 vout sC2 = −A0 vin (1 + A0 ) sC1 1 k R1 + sC1 2 k R2 Unity gain occurs when the numerator and denominator are the same (note that we can drop the negative sign since we only care about the magnitude of the gain): 1 1 1 k R2 = (1 + A0 ) k R1 + k R2 A0 sC2 sC1 sC2 1 1 k R2 = (1 + A0 ) k R1 (A0 − 1) sC2 sC1 1 sC2 k R2 A +1 = 0 1 A 0−1 kR sC1 1 It is possible to obtain unity gain by choosing the resistors and capacitors according to the above formula. 8.31 vout = −A0 vX v1 − vX v2 − vX vX − vout + = R2 R1 RF vout v1 v2 vX + + = RF R2 R1 R1 k R2 k RF vout v1 v2 vout = −A0 (R1 k R2 k RF ) + + RF R2 R1 v2 v1 (R1 k R2 k RF ) = −A0 (R1 k R2 k RF ) + vout 1 + A0 RF R2 R1 v1 v2 R2 + R1 vout = −A0 (R1 k R2 k RF ) 2 kRF ) 1 + A0 (R1 kR RF = −A0 RF (R1 k R2 k RF ) = − v1 v2 + R2 R1 v1 R2 + v2 R1 RF + A0 (R1 k R2 k RF ) [RF k A0 (R1 k R2 k RF )] 8.32 For A0 = ∞, we know that v+ = v− , meaning that no current flows through RP . Thus, RP will have no effect on vout . vout = −RF v1 v2 + R2 R1 , A0 = ∞ For A0 < ∞, we have to include the effects of RP . vout = −A0 vX v2 − vX vout − vX v1 − vX RP + + vX = R2 R1 RF 1 v1 1 1 1 v2 vout vX = + + + + + RP R1 R2 RF R2 R1 RF v2 vout v1 (R1 k R2 k RF k RP ) + + vX = R2 R1 RF v1 v2 vout vout = −A0 (R1 k R2 k RF k RP ) + + R2 R1 RF v1 v2 A0 (R1 k R2 k RF k RP ) (R1 k R2 k RF k RP ) = −A0 + vout 1 + RF R2 R1 v1 v2 (R1 k R2 k RF k RP ) vout = −A0 + A0 R2 R1 1 + R (R1 k R2 k RF k RP ) F v1 v2 RF A0 (R1 k R2 k RF k RP ) =− + R2 R1 RF + A0 (R1 k R2 k RF k RP ) v1 v2 [RF k A0 (R1 k R2 k RF k RP )] , A0 < ∞ + = − R2 R1 8.33 We must find vout for the following circuit: v1 R2 RF Rout v2 + R1 vout + −A0 vX vX − − v1 − vX v2 − vX vout = −A0 vX + Rout + R2 R1 v1 Rout v2 Rout + Rout + + = −vX A0 + R1 R2 R2 R1 v1 − vX v2 − vX vX = vout + RF + R2 R1 vout 1 1 v1 v2 1 = + + + + vX RF R1 R2 RF R2 R1 vout v1 v2 vX = (R1 k R2 k RF ) + + RF R2 R1 v1 Rout v1 v2 Rout v2 vout (R1 k R2 k RF ) A0 + + Rout + + + + vout = − RF R2 R1 R1 R2 R2 R1 Grouping terms, we have: (R1 k R2 k RF ) A0 + vout 1 + RF Rout R1 kR2 v1 Rout v2 (R1 k R2 k RF ) A0 + + Rout + R1 k R2 R2 R1 Rout v2 v1 (R1 k R2 k RF ) A0 + + Rout + =− R2 R1 R1 k R2 Rout v1 v2 Rout + (R1 k R2 k RF ) A0 + R1 kR2 = −RF + R2 R1 R + (R k R k R ) A + Rout F 1 2 F 0 R1 kR2 =− vout v2 v1 + R2 R1 8.34 We must find vout for the following circuit: v1 R2 RF vout v2 + R1 Rin + −A0 vX vX − − RP vout = −A0 vX v1 − vX 1 + vX = R1 RP Rin + v2 − vX 1 + R2 Grouping terms, we have: 1 RP 1 vX = + 1+ Rin Rin R1 k R2 k RF (R1 k R2 k RF ) + RP + Rin vX = Rin (R1 k R2 k RF ) vX vout RP Rin + vout − vX 1 + RF RP Rin Rin v1 v2 vout + + R2 R1 RF v1 v2 vout + + R2 R1 RF v2 vout Rin (R1 k R2 k RF ) v1 + + = R2 R1 RF (R1 k R2 k RF ) + RP + Rin v1 v2 vout Rin (R1 k R2 k RF ) = −A0 + + R2 R1 RF (R1 k R2 k RF ) + RP + Rin Grouping terms, we have: A0 Rin (R1 k R2 k RF ) v2 v1 A0 Rin (R1 k R2 k RF ) =− vout 1 + + RF (R1 k R2 k RF ) + RP + Rin R2 R1 (R1 k R2 k RF ) + RP + Rin v1 v2 A0 Rin (R1 k R2 k RF ) RF [(R1 k R2 k RF ) + RP + Rin ] + A0 Rin (R1 k R2 k RF ) =− + vout RF [(R1 k R2 k RF ) + RP + Rin ] R2 R1 (R1 k R2 k RF ) + RP + Rin Simplifying, we have: vout = − v1 v2 + R2 R1 A0 RF Rin (R1 k R2 k RF ) RF [(R1 k R2 k RF ) + RP + Rin ] + A0 Rin (R1 k R2 k RF ) 8.35 ID1 = ( Vin R1 0 Vin > 0 Vin < 0 Plotting ID1 (t), we have ID1 (t) V0 /R1 0 0 −π/ω 0 t π/ω −V0 Vin (t) = V0 cos(ωt) (Dotted) V0 8.36 ID1 = ( Vin R1 0 Vin > 0 Vin < 0 Plotting ID1 (t), we have ID1 (t) V0 /R1 0 0 −π/ω 0 t π/ω −V0 Vin (t) = V0 cos(ωt) (Dotted) V0 8.37 VY = ( Vin − VD,on VDD Vin < 0 Vout Vin > 0 = ( Vin 0 Vin < 0 ID1 = Vin > 0 ( Vin R1 0 Vin < 0 Vin > 0 Plotting VY (t) and Vout (t), we have Vin (t) = V0 cos(ωt) VY (t) Vout (t) VDD V0 −π/ω 0 0 π/ω t −V0 Plotting ID1 (t), we have: ID1 (t) V0 /R1 0 −π/ω 0 t π/ω V0 0 −V0 Vin (t) = V0 cos(ωt) (Dotted) 8.38 Since the negative feedback loop is never broken (even when the diode is off, RP provides negative feedback), V+ = V− will always hold, meaning VX = Vin . We must determine when D1 turns on/off to determine VY . We know that for Vin < 0, the diode will be off, and VX will follow Vin . As Vin begins to go positive, the diode will remain off until Vin RP > VD,on R1 Once the diode turns on, VY will be fixed at Vin + VD,on . Thus, we can write: VX = Vin ( R1 P Vin < VD,on R Vin 1 + R R1 P VY = R1 Vin + VD,on Vin > VD,on R P Plotting VY (t) and Vout (t), we have Vin (t) = V0 cos(ωt) VX (t) VY (t) V0 + VD,on V0 −π/ω 0 0 π/ω t −V0 −V0 (1 + RP /R1 ) 8.40 Note that although in theory the output is unbounded (i.e., by Eq. (8.66), we can take the logarithm of an arbitrarily small positive number), in reality the output will be limited by the positive supply rail, as shown in the following plot. Vout VX VDD −1 0 −1 0 R1 IS 1 Vin (V) 8.42 When Vin > 0, the feedback loop will be broken, and the output will go to the positive rail. When Vin < 0, we have: Vin = IS eVBE /VT = IS e−Vout /VT R1 Vin = −VT ln − R1 IS IC = − Vout Vout (V) This gives us the following plot of Vout vs. Vin : −1 −R1 IS VDD 0 0 Note that this circuit fails to behave as a non-inverting logarithmic amplifier. 1 Vin (V) 8.44 (a) Vin Vout = −VT ln R1 IS 1V −0.2 V = −VT ln R1 IS R1 IS = 456 µV (b) dVout dVin Vin =1 V VT =− Vin Vin =1 V Av = = −0.026 8.45 When Vin < VT H , the output goes to the positive rail. When Vin > VT H , we have: ID = Vin − VT H R1 VGS = −Vout = VT H + Vout = −VT H − s s W L 2ID µn Cox 2 (Vin − VT H ) R1 W L µn Cox s R1 W 2 1 dVout L µn Cox =− dVin 2 2 (Vin − VT H ) R1 W L µn Cox s 1 = − , Vin > VT H 2R1 W µ C L n ox (Vin − VT H ) 8.46 When Vin > 0, the output goes to the negative rail. When Vin < 0, we have: ID = − Vin R1 VSG = Vout = |VT H | + Vout = VT H + s − s 2 |ID | µp Cox W L 2Vin , Vin < 0 R1 W L µp Cox 8.49 We model an input offset with a series voltage source at one of the inputs. R1 R2 − Vout Vin + − + Vos + − Vin − Vos Vout = Vin − (R1 + R2 ) R2 R1 + R2 R1 + R2 + Vos = Vin 1 − R2 R2 R1 R1 = − Vin + 1 + Vos R2 R2 Note that even when Vin = 0, Vout = (1 + R1 /R2 ) Vos . 8.54 Let Vin = 0. V+ = −IB1 (R1 k R2 ) = − (IB2 + ∆I) (R1 k R2 ) = V− V− Vout = V− + IB2 + R1 R2 (IB2 + ∆I) (R1 k R2 ) R1 = − (IB2 + ∆I) (R1 k R2 ) + IB2 − R2 R1 = − (IB2 + ∆I) (R1 k R2 ) 1 + + IB2 R1 R2 = −∆IR1 If the magnitude of the error must be less than ∆V , we have: ∆IR1 < ∆V R1 < Note that this does not depend on R2 . ∆V ∆I 8.57 Vout = − A0 V− 1 + ωs0 V− = Vin + Vout − Vin R1 R1 + sC1 1 Vout − Vin Vin + R1 Vout R1 + sC1 1 " # # " A0 A0 R1 R1 Vout 1 + = −1 Vin 1 + ωs0 R1 + sC1 1 1 + ωs0 R1 + sC1 1 1 + ωs0 R1 + sC1 1 + A0 R1 A0 sC1 1 = −Vin Vout 1 + ωs0 1 + ωs0 R1 + sC1 1 R1 + sC1 1 A0 =− 1 + ωs0 A0 sC1 1 s R1 + sC1 1 + A0 R1 ω0 Vout = − Vin 1+ = − A0 s ω0 1+ =− (1 + sR1 C1 ) + sA0 R1 C1 A0 1 + s R1 C1 + = − If ω0 ≫ 1 R1 C1 , 1 ω0 1 + A0 R1 C1 + s2 Rω1 C 0 A0 h 1 + s (1 + A0 ) R1 C1 + we have: Vout =− Vin =− ≈− 1 h 1 A0 +s 1 A0 +s 1+ 1+ 1 A0 1 A0 1 R1 C1 + 1 ω0 i 1 C1 + s2 R A0 ω 0 1 C1 R1 C1 + s2 R A0 ω 0 1 (assuming A0 ≫ 1) 1 C1 sR1 C1 + s2 R A0 ω 0 = − 1 sR1 C1 1 + s A0 ω 0 ! 1 ω0 i 1 + s2 Rω1 C 0 8.61 Let E refer to the gain error. R1 =8 R2 R1 = 8 kΩ R2 = 1 kΩ A0 − RRout R1 vout 1 =− vin R2 1 + RRout + A0 + 2 R1 (1 − E) R2 A0 − RRout 1 E =1− + A 1 + RRout 0+ 2 R1 R2 (Eq. 8.99) =− R1 R2 = 0.1 % A0 = 9103 Note that we can pick any R1 , R2 such that their ratio is 8 (i.e., this solution is not unique). However, A0 will change depending on the values chosen. 8.66 dVout dVin Vin R1 IS R1 IS 1 = −VT Vin R1 IS VT =− Vin Vout = −VT ln out T No, it is not possible to satisfy both requirements. As shown above, dV , meaning for a = VVin dVin specified temperature and input, the gain is fixed. Assuming we could fix the temperature as part of the design, we could still only meet one of the two constraints, since the temperatures at which the constraints are met are not equal. 9.7 Let R2 be the resistance seen looking into the collector of Q2 . Rout = ro1 + (1 + gm1 ro1 ) (rπ1 k R2 ) Note that this expressoin is maximized as R2 → ∞. This gives us Rout,max = ro1 + (1 + gm1 ro1 ) rπ1 9.9 1 VA βVA VT (Eq. 9.9) IC1 VT VA + βVT 1 VA βVT = IC1 VT βVA = IC1 Rout ≈ = βro This resembles Eq. (9.12) because the assumption that VA ≫ βVT can be equivalently expressed as VT VA ≫β IC IC ro ≫ rπ This is the same assumption used in arriving at Eq. (9.12). 9.12 ID = 0.5 mA Rout = ro1 + (1 + gm1 ro1 ) ro2 ! r 1 1 1 W = + 1 + 2 µn Cox ID λID L λID λID ≥ 50 kΩ λ ≤ 0.558 V−1 9.15 (a) VD1 = VDD − ID RD = 1.3 V > VG1 − VT H = Vb1 − VT H Vb1 < 1.7 V (b) Vb1 = 1.7 V VGS1 = Vb1 − VX s = VT H + = 0.824 V VX = 0.876 V 2I D µn Cox W L 1 9.16 (a) Looking down from the source of M1 , we see an equivalent resistance of Rout = gm1 ro1 1 gm2 k ro2 1 gm2 k ro2 . Thus, we have (b) Rout = gm1 ro1 ro2 (c) Putting two transistors in parallel, their transconductances will add and their output resistances will be in parallel (i.e., we can treat M1 and M3 as a single transistor with gm = gm1 + gm3 and ro = ro1 k ro3 ). This can be seen from the small-signal model. Rout = (gm1 + gm3 ) (ro1 k ro3 ) ro2 (d) Let’s draw the small-signal model and apply a test source to find Rout . + + vgs1 gm1 vgs1 ro1 − vgs2 − gm2 vgs2 + it vt − ro2 vgs1 vgs2 + vgs1 = gm1 vgs1 + ro2 ro1 vgs1 = gm2 ro2 vt − it ro2 vt + gm2 ro2 vt − it ro2 it = gm1 (gm2 ro2 vt − it ro2 ) + ro1 ro2 1 + gm2 ro2 it 1 + gm1 ro2 + = vt gm1 gm2 ro2 + ro1 ro1 it = gm2 vgs2 − it (gm1 ro1 ro2 ) = vt (gm1 gm2 ro1 ro2 ) Rout = 1 vt = it gm2 9.17 ID = 0.5 mA Rout = ro1 + (1 + gm1 ro1 ) ro2 s ! W 1 1 1 = µp Cox ID + 1+ 2 λID L 1 λID λID W L 1 = 40 kΩ W = = 8 L 2 9.20 (a) Gm = gm1 Rout = 1 k ro1 gm2 Av = −gm1 1 gm2 k ro1 (b) Gm = −gm2 Rout = 1 k ro2 k ro1 gm2 Av = gm2 1 gm2 k ro2 k ro1 (c) Let’s draw the small-signal model to find Gm . iout vin rπ1 + vπ1 gm1 vπ1 − RE ro1 vin − vπ1 vπ1 + rπ1 RE vπ1 = vin + (iout − gm1 vπ1 ) ro1 vπ1 (1 + gm1 ro1 ) = vin + iout ro1 vin + iout ro1 vπ1 = 1 + gm1 ro1 vin + iout ro1 vin vin + iout ro1 − + iout = − rπ1 (1 + gm1 ro1 ) RE RE (1 + gm1 ro1 ) ro1 1 1 ro1 1 iout 1 + = vin − + − rπ1 (1 + gm1 ro1 ) RE (1 + gm1 ro1 ) RE rπ1 (1 + gm1 ro1 ) RE (1 + gm1 ro1 ) rπ1 RE (1 + gm1 ro1 ) + ro1 RE + ro1 rπ1 rπ1 (1 + gm1 ro1 ) − RE − rπ1 iout = vin rπ1 RE (1 + gm1 ro1 ) rπ1 RE (1 + gm1 ro1 ) iout [rπ1 RE (1 + gm1 ro1 ) + ro1 RE + ro1 rπ1 ] = vin [rπ1 (1 + gm1 ro1 ) − RE − rπ1 ] iout Gm = vin iout = − rπ1 (1 + gm1 ro1 ) − RE − rπ1 rπ1 RE (1 + gm1 ro1 ) + ro1 RE + ro1 rπ1 gm1 (if rπ1 , ro1 are large) ≈ 1 + gm1 RE = ro2 k [ro1 + (1 + gm1 ro1 ) (rπ1 k RE )] = Rout Av = − rπ1 RE (1 + gm1 ro1 ) − RE − rπ1 {ro2 k [ro1 + (1 + gm1 ro1 ) (rπ1 k RE )]} rπ1 RE (1 + gm1 ro1 ) + ro1 RE + ro1 rπ1 (d) Gm = gm2 Rout = ro2 k [ro1 + (1 + gm1 ro1 ) (rπ1 k RE )] Av = −gm2 {ro2 k [ro1 + (1 + gm1 ro1 ) (rπ1 k RE )]} (e) Let’s draw the small-signal model to find Gm . iout + vgs1 gm1 vgs1 − RS vin ro1 Since the gate and drain are both at AC ground, the dependent current source looks like a resistor with value 1/gm1 . Thus, we have: Gm = 1 iout =− 1 vin k ro1 RS + gm1 =− 1 RS + ro1 1+gm1 ro1 1 + gm1 ro1 ro1 + RS + gm1 ro1 RS gm1 ≈− (if ro1 is large) 1 + gm1 RS = [ro2 + (1 + gm2 ro2 ) RE ] k [ro1 + (1 + gm1 ro1 ) RS ] = − Rout Av = 1 + gm1 ro1 {[ro2 + (1 + gm2 ro2 ) RE ] k [ro1 + (1 + gm1 ro1 ) RS ]} ro1 + RS + gm1 ro1 RS (f) We can use the result from part (c) to find Gm here. If we simply let rπ → ∞ (and obviously we replace the subscripts as appropriate) in the expression for Gm from part (c), we’ll get the result we need here. rπ2 RE (2 + gm2 ro2 ) − RE − rπ2 rπ2 RE (2 + gm2 ro2 ) + ro2 RE + ro2 rπ2 gm2 ro2 = ro2 + RE + gm2 ro2 RE gm2 ≈ (if ro2 is large) 1 + gm2 RE = [ro2 + (1 + gm2 ro2 ) RE ] k [ro1 + (1 + gm1 ro1 ) RS ] Gm = lim rπ2 →∞ Rout Av = − gm2 ro2 {[ro2 + (1 + gm2 ro2 ) RE ] k [ro1 + (1 + gm1 ro1 ) RS ]} ro2 + RE + gm2 ro2 RE (g) Once again, we can use the result from part (c) to find Gm here (replacing subscripts as appropriate). rπ2 RE (1 + gm2 ro2 ) − RE − rπ2 rπ2 RE (1 + gm2 ro2 ) + ro2 RE + ro2 rπ2 gm2 ≈ (if rπ2 , ro2 are large) 1 + gm2 RE = RC k [ro2 + (1 + gm2 ro2 ) (rπ2 k RE )] Gm = Rout Av = − rπ2 RE (1 + gm2 ro2 ) − RE − rπ2 {RC k [ro2 + (1 + gm2 ro2 ) (rπ2 k RE )]} rπ2 RE (1 + gm2 ro2 ) + ro2 RE + ro2 rπ2 9.22 Av = −gm1 [ro2 + (1 + gm2 ro2 ) (rπ2 k ro1 )] IC1 ≈ IC2 = I1 VA1 = VA2 = VA I1 VA VA βVT VA Av ≈ − + 1+ k VT I1 VT I1 I1 = −500 VA1 = VA2 = 0.618 V−1 9.23 (a) Although the output resistance of this stage is the same as that of a cascode, the transconductance of this stage is lower than that of a cascode stage. A cascode has Gm = gm , where as this stage m2 has Gm = 1+ggm2 ro1 . (b) Gm = gm2 1 + gm2 ro1 Rout = ro2 + (1 + gm2 ro2 ) (rπ2 k ro1 ) Av = −Gm Rout = − gm2 [ro2 + (1 + gm2 ro2 ) (rπ2 k ro1 )] 1 + gm2 ro1 9.24 Gm = −gm1 Rout = ro2 + (1 + gm2 ro2 ) (rπ2 k ro1 ) Av = gm1 [ro2 + (1 + gm2 ro2 ) (rπ2 k ro1 )] 9.25 (a) Gm = gm2 RP k rπ1 gm1 + RP k rπ1 1 Rout = ro1 + (1 + gm1 ro1 ) (rπ1 k ro2 k RP ) Av = −gm2 RP k rπ1 [ro1 + (1 + gm1 ro1 ) (rπ1 k ro2 k RP )] gm1 + RP k rπ1 1 (b) Gm = gm2 Rout = ro1 k RP + [1 + gm1 (ro1 k RP )] (rπ1 k ro2 ) Av = −gm2 {ro1 k RP + [1 + gm1 (ro1 k RP )] (rπ1 k ro2 )} (c) gm2 1 + gm2 RE = ro1 + (1 + gm1 ro1 ) [rπ1 k (ro2 + (1 + gm2 ro2 ) (rπ2 k RE ))] Gm = Rout Av = − gm2 {ro1 + (1 + gm1 ro1 ) [rπ1 k (ro2 + (1 + gm2 ro2 ) (rπ2 k RE ))]} 1 + gm2 RE (d) Gm = gm2 Rout = ro1 + (1 + gm1 ro1 ) (rπ1 k ro2 k ro3 ) Av = −gm2 [ro1 + (1 + gm1 ro1 ) (rπ1 k ro2 k ro3 )] 9.26 Av = −gm1 {[ro2 + (1 + gm2 ro2 ) (rπ2 k ro1 )] k [ro3 + (1 + gm3 ro3 ) (rπ3 k ro4 )]} IC VA,N VA,P VA,N βN VT VA,N VA,P βP VT VA,P =− k + 1+ k + 1+ k VT IC VT IC IC IC VT IC IC i h i h VA,P VA,N VA,N VA,P VA,P VA,N βN VT βP VT k IC k IC IC + 1 + VT IC IC + 1 + VT IC IC i h i h =− V V V VA,P βN VT βP VT VT VA,N + 1 + VA,N + IA,P k A,N + 1 + VA,P IC VT IC IC IC k IC C T #" # " βN VT VA,N βP VT VA,P VA,P VA,N VA,P VA,N ” ” “ “ V VA,P βN VT βP VT IC + 1 + VT IC + 1 + VT 2 2 IC IC + A,N IC IC IC + IC IC # " # " =− VT V β V V β V V V V V N T A,N P T A,P A,P A,N A,P A,N ” + ” “ “ VA,N VA,P βN VT βP VT IC + 1 + VT IC + 1 + VT 2 2 IC h IC + IC IC IC + IC ih i V βN VT VA,N βP VT VA,P VA,P 1 VA,N + 1 + VA,N V + 1 + 2 A,P β V +V V β V +V IC IC T N T A,N T P T A,P h i h i =− VT 1 VA,N + 1 + VA,N βN VT VA,N + 1 VA,P + 1 + VA,P βP VT VA,P IC VT βN VT +VA,N IC VT βP VT +VA,P h ih i VA,N VA,P βN VT VA,N βP VT VA,P V + 1 + V + 1 + A,N A,P VT βN VT +VA,N VT βP VT +VA,P 1 h i h i = − VA,N VA,P βN VT VA,N βP VT VA,P VT V + 1 + + V + 1 + A,N A,P VT βN VT +VA,N VT βP VT +VA,P The result does not depend on the bias current. 9.28 |Av | Av ≈ −gm1 gm2 ro1 ro2 (Eq. 9.69) s s 2 W W 1 =− 2 µn Cox ID 2 µn Cox ID L 1 L 2 λID s 2 W 1 W = −2µn Cox ID L 1 L 2 λID s 1 1 W W = −2µn Cox 2 ID λ L 1 L 2 ID 9.30 From Problem 28, we have 1 1 Av = −2µn Cox ID λ2 s W L 1 W L 2 If we increase the transistor widths by a factor of N , we will get a new voltage gain A′v : s W W 1 1 ′ 2 N Av = −2µn Cox ID λ2 L 1 L 2 s 1 1 W W = −2N µn Cox 2 ID λ L 1 L 2 = N Av Thus, the gain increases by a factor of N . 9.31 From Problem 28, we have 1 1 Av = −2µn Cox ID λ2 s W L 1 W L 2 If we decrease the transistor widths by a factor of N , we will get a new voltage gain A′v : s W W 1 1 1 ′ Av = −2µn Cox ID λ2 N 2 L 1 L 2 s 1 W 1 1 W = −2 µn Cox 2 N ID λ L 1 L 2 = 1 Av N Thus, the gain decreases by a factor of N . 9.32 Gm = −gm2 Rout = ro2 k [ro3 + (1 + gm3 ro3 ) ro4 ] Av = gm2 {ro2 k [ro3 + (1 + gm3 ro3 ) ro4 ]} 9.33 Av = −gm1 {[ro2 + (1 + gm2 ro3 ) ro1 ] k [ro3 + (1 + gm3 ro3 ) ro4 ]} = −500 s W gm1 = gm2 = 2 µn Cox ID L s W µp Cox ID gm3 = gm4 = 2 L 1 λn ID 1 = λp ID ro1 = ro1 = ro3 = ro4 ID = 1.15 mA 9.34 (a) Gm = gm1 Rout = [(ro2 k RP ) + (1 + gm2 (ro2 k RP )) ro1 ] k [ro3 + (1 + gm3 ro3 ) ro4 ] Av = −gm1 {[(ro2 k RP ) + (1 + gm2 (ro2 k RP )) ro1 ] k [ro3 + (1 + gm3 ro3 ) ro4 ]} (b) Gm = gm1 ro1 k RP gm2 + ro1 k RP 1 Rout = [ro2 + (1 + gm2 ro2 ) (ro1 k RP )] k [ro3 + (1 + gm3 ro3 ) ro4 ] Av = −gm1 ro1 k RP {[ro2 + (1 + gm2 ro2 ) (ro1 k RP )] k [ro3 + (1 + gm3 ro3 ) ro4 ]} gm2 + ro1 k RP 1 (c) Gm = gm5 Rout = [ro2 + (1 + gm2 ro2 ) (ro1 k ro5 )] k [ro3 + (1 + gm3 ro3 ) ro4 ] Av = −gm5 {[ro2 + (1 + gm2 ro2 ) (ro1 k ro5 )] k [ro3 + (1 + gm3 ro3 ) ro4 ]} (d) Gm = gm5 Rout = [ro2 + (1 + gm2 ro2 ) ro1 ] k [ro3 + (1 + gm3 ro3 ) (ro4 k ro5 )] Av = −gm5 {[ro2 + (1 + gm2 ro2 ) ro1 ] k [ro3 + (1 + gm3 ro3 ) (ro4 k ro5 )]} 9.36 2 1 R2 W I1 = µn Cox (Eq. 9.85) VDD − VT H 2 L R1 + R2 ∂I1 R2 R2 W = VDD − VT H µn Cox ∂VDD L R1 + R2 R1 + R2 = R2 gm R1 + R2 ∂I1 . Since VGS is Intuitively, we know that gm is the derivative of I1 with respect to VGS , or gm = ∂V GS ∂VGS is a linearly dependent on VDD by the relationship established by the voltage divider (meaning ∂V DD ∂I1 ∂I1 ∂VGS ∂I1 ∂VGS constant), we’d expect ∂VDD to also be proportional to gm , since ∂VDD = ∂VDD · ∂VGS = ∂VDD gm . 9.37 2 R2 (Eq. 9.85) VDD − VT H R1 + R2 R2 W = −µn Cox VDD − VT H L R1 + R2 1 W I1 = µn Cox 2 L ∂I1 ∂VT H The sensitivity of I1 to VT H becomes a more serious issue at low supply voltages because as VDD becomes smaller with respect to VT H , VT H has more control over the sensitivity. When VDD is large enough, it dominates the last term of the expression, reducing the control of VT H over the sensitivity. 9.38 As long as VREF > 0, the circuit operates in negative feedback, so that V+ = V− = 0 V. VREF IC1 = IS1 e−V1 /VT = R 1 VREF V1 = −VT ln = VBE2 R1 IS1 If VREF > R1 IS1 , then we have VBE2 < 0, and IX = 0. If VREF < R1 IS1 , then we have: IX = IS2 e −VT ln “ VREF R1 IS1 ” /VT “ ” V − ln REF R1 IS1 = IS2 e R1 IS1 = IS2 VREF Thus, if VREF > R1 IS1 (which will typically be true, since IS1 is typically very small), then we get no output, i.e., IX = 0. When VREF < R1 IS1 , we get an inverse relationship between IX and VREF . 9.39 As long as VREF > 0, the circuit operates in negative feedback, so that V+ = V− = 0 V. VREF IC1 = IS1 e−V1 /VT = R 1 VREF V1 = −VT ln = −VBE2 R1 IS1 If VREF < R1 IS1 , then we have VBE2 < 0, and IX = 0. If VREF > R1 IS1 , then we have: V ln “ VREF R1 IS1 IX = IS2 e T VREF = IS2 R1 IS1 IS2 VREF = IS1 R1 IS2 = IC1 IS1 ” /VT Thus, if VREF < R1 IS1 , then we get no output, i.e., IX = 0. When VREF > R1 IS1 (which will typically be true, since IS1 is typically very small), we get a current mirror relationship between Q1 and Q2 (ensured by the op-amp). (with IX copying IC1 ), where the reference current for Q1 is VREF R1 9.46 (a) Icopy = 5IC,REF IREF = IC,REF + IB,REF + IB1 IC,REF Icopy = IC,REF + + β β IC,REF 5IC,REF = IC,REF + + β β 5 1 = IC,REF 1 + + β β Icopy 6 + β = 5 β β Icopy = 5IREF 6+β (b) IC,REF 5 = IC,REF + IB,REF + IB1 IC,REF Icopy = IC,REF + + β β IC,REF IC,REF + = IC,REF + β 5β 1 1 = IC,REF 1 + + β 5β 6 + 5β = 5Icopy 5β IREF 5β = 6 + 5β 5 Icopy = IREF Icopy (c) 3 IC,REF 2 5 I2 = IC,REF 2 IREF = IC,REF + IB,REF + IB1 + IB2 IC,REF Icopy I2 = IC,REF + + + β β β 3IC,REF 5IC,REF IC,REF + + = IC,REF + β 2β 2β 3 5 1 + = IC,REF 1 + + β 2β 2β 2 10 + 2β = Icopy 3 2β 3 2β IREF Icopy = 10 + 2β 2 Icopy = 9.49 VGS,REF = VT H + s 2IREF µn Cox W L VGS1 = VGS,REF − I1 RP s 2IREF − I1 RP = VT H + µn Cox W L s 2IREF IREF RP − = VT H + 2 µn Cox W L !2 s W IREF 1 2IREF RP − I1 = µn Cox 2 L 2 µn Cox W L IREF s2 IREF IREF RP = − 2 µn Cox W L s s IREF 2IREF IREF RP = − W 2 µn Cox W µ n Cox L L s √ IREF = 2−1 µn Cox W L √ 2 2−1 RP = q IREF µn Cox W L = s 2IREF µn Cox W L Given this choice of RP , I1 does not change if the threshold voltages of the transistors change by the same amount ∆V . Looking at the expression for I1 in the derivation above, we can see that it has no dependence on VT H (note that RP does not depend on VT H either). 9.54 IC1 = 1 mA 1 + βn IE1 RE = IC1 RE = 0.5 V βn RE == 0.5 V RE = 495.05 Ω Rout,a = ro1 + (1 + gm1 ro1 ) (rπ1 k RE ) Rout,b = 85.49 kΩ = ro1 + (1 + gm1 ro1 ) (rπ1 k ro2 ) = 334.53 kΩ The output impedance of the circuit in Fig. 9.72(b) is significantly larger than the output impedance of the circuit in Fig. 9.72(a) (by a factor of about 4). 9.56 (a) Rout = ro1 + (1 + gm1 ro1 ) ro2 = 200 kΩ 1 ro1 = ro2 = λID r W gm1 = gm2 = 2 µn Cox ID L W W = = 1.6 L 1 L 2 (b) Vb2 = VGS2 = VT H + = 2.9 V s W L 2ID µn Cox 9.57 (a) Assume IC1 ≈ IC2 , since β ≫ 1. Av = −gm1 [ro2 + (1 + gm2 ro2 ) (rπ2 k ro1 )] I1 gm1 = gm2 = VT VA ro1 = ro2 = I1 VT rπ1 = rπ2 = β I " 1 # β VIT1 VIA1 VA I1 VA + 1+ Av = − VT I1 VT β VIT + VIA 1 1 1 VA βVT VA =− VA + 1 + VT VT βVT + VA = −500 VA = 0.618 V (b) Vin = VBE1 = VT ln I1 IS1 = 714 mV (c) Vb1 = VBE2 + VCE1 = VBE2 + 500 mV I1 + 500 mV = VT ln IS2 = 1.214 V 9.58 Assume all of the collector currents are the same, since β ≫ 1. P = IC VCC = 2 mW IC = 0.8 mA IC Vin = VT ln = 726 mV IS Vb1 = VBE2 + VCE1 IC = VT ln + VBE1 − VBC1 IS = 1.252 V Vb3 = VCC − VT ln IC IS = 1.774 V Vb2 = VCC − VEC4 − VEB3 = VCC − (VEB4 − VCB4 ) − VT ln IC IS = 1.248 V Av = −gm1 {[ro2 + (1 + gm2 ro2 ) (rπ2 k ro1 )] k [ro3 + (1 + gm3 ro3 ) (rπ3 k ro4 )]} = 4887 9.62 Rout = RC = 500 Ω IC RC = 20 Av = gm2 RC = VT IC = 1.04 mA P = (IC + IREF ) VCC = 3 mW IREF = 0.16 mA AE1 IC = IREF AE,REF AE1 = 6.5 AE,REF AE,REF = AE AE1 = 6.5AE 9.63 Icopy = nIC,REF IREF = IC,REF + IB,REF + IB1 IC,REF Icopy = IC,REF + + β β IC,REF nIC,REF = IC,REF + + β β n 1 = IC,REF 1 + + β β Icopy n + 1 + β = n β β nIREF Icopy = n+1+β β Since nIREF is the nominal value of Icopy , the error term, n+1+β , must be between 0.99 and 1.01 so that the actual value of Icopy is within 1 % of the nominal value. Since the upper constraint (that the error term must be less than 1.01) results in a negative value of n (meaning that we can only get less than the nominal current if we include the error term), we only care about the lower error bound. β ≥ 0.99 n+1+β n ≤ 0.0101 IREF ≥ 50 mA We can see that in order to decrease the error term, we must use a smaller value for n (in the ideal β ). However, the smaller value of case, we have n approaching zero and the error term approaching 1+β n we use, the larger value we must use for IREF , meaning the more power we must consume. Thus, we have a direct trade-off between accuracy and power consumption. 9.64 IC,M = AE,M IC,REF 1 AE,REF 1 IREF 1 = IC,REF 1 + IB,REF 1 + IB,M IC,REF 1 IC,M = IC,REF 1 + + βn βn AE,M IC,REF 1 IC,REF 1 + = IC,REF 1 + βn AE,REF 1 βn 1 AE,M = IC,REF 1 1 + + βn AE,REF 1 βn AE,REF 1 AE,REF 1 βn + AE,REF 1 + AE,M = IC,M AE,M AE,REF 1 βn AE,M AE,REF 1 βn IREF IC,M = AE,REF 1 βn + AE,REF 1 + AE,M AE,REF 1 Using a similar derivation to find IC2 , we have: AE2 AE,REF 2 βp IC,M IC1 = IC2 = AE,REF 2 βp + AE,REF 2 + AE2 AE,REF 2 AE2 AE,REF 2 βp AE,M AE,REF 1 βp · IREF = AE,REF 1 βp + AE,REF 1 + AE,M AE,REF 2 βp + AE,REF 2 + AE2 AE,REF 1 AE,REF 2 We want the error term to be between 0.90 and 1.10 so that IC2 is within 10 % of its nominal value. Since the error term cannot exceed 1 (since we only lose current through the base), we only have to worry about the lower bound. AE,REF 1 βn AE,REF 2 βp ≥ 0.90 AE,REF 1 βn + AE,REF 1 + AE,M AE,REF 2 βp + AE,REF 2 + AE2 Let’s let the reference transistors QREF 1 and QREF 2 have unit size AE . Then we have: ! ! βn βp > 0.90 A βp + 1 + AAE2 βn + 1 + AE,M E E We can pick any AE,M and AE2 such that this constraint is satisfied. One valid solution is AE,M = AE , AE2 = 3.466AE , and IREF = 0.2885 mA. This gives a nominal value for IC2 of 1 mA with an error of 10 %. This solution is not unique (for example, another solution would be AE,M = AE2 = AE and IREF = 1 mA, which gives a nominal current of 1 mA and an error of 5.73 %). 9.68 Av = gm1 ro3 = gm1 1 = 20 λp ID1 1 k ro2 gm1 ro2 = 1 + gm1 ro2 Rin = = gm1 1 λn ID1 1 + gm1 λn 1ID1 = 50 Ω = 19.5 mS ID1 = 4.88 mA s W ID1 gm1 = 2µn Cox L 1 W = 390 L 1 We need to size the rest of the transistors to ensure they provide the correct bias current to the amplifier and to ensure they are all in saturation. VG3 will be important in determining how we should bias VG5 , since in order for M5 to be in saturation, we require VG3 > VG5 − VT Hn , and VG3 is fixed by the previously calculated value of ID1 . ! s 2ID1 VG3 = VDD − VSG3 = VDD − |VT Hp | + µp Cox W L 3 = 0.363 V Let’s let IREF = ID5 = 1 mA (which ensures we meet our power constraint, since P = (IREF + ID5 + ID1 ) VDD = 12.4 mW) and VGS,REF = VGS5 = 0.5 V (which ensures M5 operates in saturation). Then we have W 1 2 (VGS,REF − VT H ) IREF = µn Cox 2 L REF W W 360 = = L REF L 5 0.18 (W/L)3 ID3 = (W/L)4 ID4 8.2 W = L 4 0.18 (W/L)2 ID2 = (W/L)REF IREF W 1756 = L 2 0.18 10.3 (a) Looking into the collector of Q1 , we see an infinite impedance (assuming IEE is an ideal source). Thus, the gain from VCC to Vout is 1 . (b) Looking into the drain of M1 , we see an impedance of ro1 + (1 + gm1 ro1 ) RS . Thus, the gain from VCC to Vout is ro1 + (1 + gm1 ro1 ) RS RD + ro1 + (1 + gm1 ro1 ) RS (c) Let’s draw the small-signal model. + rπ1 gm1 vπ1 vπ1 ro1 vcc − vout vout = −vπ1 vcc − vout rπ1 vout = gm1 vπ1 + ro1 vcc − vout = −gm1 vout + rπ1 ro1 rπ1 rπ1 = vcc vout 1 + gm1 rπ1 + ro1 ro1 vout rπ1 = vcc 1 + β + rπ1 r o1 = ro1 rπ1 ro1 (1 + β) + rπ1 (d) Let’s draw the small-signal model. + vgs1 gm1 vgs1 − vout RS ro1 vcc vout = −vgs1 vcc − vout RS vout = gm1 vgs1 + ro1 vcc − vout RS = −gm1 vout + ro1 RS RS vout 1 + gm1 RS + = vcc ro1 ro1 vout RS = vcc ro1 1 + gm1 RS + RS ro1 = RS ro1 (1 + gm1 RS ) + RS 10.8 VX (t) VY (t) 2I0 RC 1.8I0 RC I0 RC 0.8I0 RC π/ω −π/ω −0.2I0 RC X and Y are not true differential signals, since their common-mode values differ. t 10.9 (a) VX = VCC − I1 RC VY = VCC − (I2 + IT ) RC VX (t) VY (t) VCC VCC − IT RC VCC − I0 RC VCC − (I0 + IT ) RC VCC − 2I0 RC VCC − (2I0 + IT ) RC π/ω −π/ω t (b) VX = VCC − (I1 − IT ) RC VY = VCC − (I2 + IT ) RC VX (t) VY (t) VCC + IT RC VCC − (I0 − IT ) RC VCC − IT RC VCC − (2I0 − IT ) RC VCC − (I0 + IT ) RC VCC − (2I0 + IT ) RC −π/ω π/ω t (c) VX − VY VX = VCC − I1 + RC RP VY RC = VCC − I1 − RC VX 1 + RP RP VY RC VCC − I1 − R P VX = RC 1+ R P VCC RP − (I1 RP − VY ) RC R + RC P VY − VX RC VY = VCC − I2 + RP VX RC = VCC − I2 − RC VY 1 + RP RP VX VCC − I2 − R RC P VY = RC 1+ R P = = VX = = VX 1− 2 RC (RP + RC )2 2 VX 2 (RP + RC ) − RC RP + RC VCC RP − (I2 RP − VX ) RC RP + RC 2 RP −VX )RC RC VCC RP − I1 RP − VCC RP −(I RP +RC RP + RC VCC RP − I1 RP RC + VCC RP RC −I2 RP R2C +VX R2C RP +RC RP + RC ! = ! = VCC RP − I1 RP RC + VCC RP − I1 RP RC + VCC RP RC −I2 RP R2C RP +RC RP + RC 2 VCC RP RC − I2 RP RC RP + RC 2 VX RP2 + 2RP RC = VCC RP (RP + RC ) − I1 RP RC (RP + RC ) + VCC RP RC − I2 RP RC 2 VCC RP (RP + RC ) − I1 RP RC (RP + RC ) + VCC RP RC − I2 RP RC 2 RP + 2RP RC VCC RP (2RC + RP ) − RP RC [I1 (RP + RC ) + I2 RC ] = RP (2RC + RP ) VX = Substituting I1 and I2 , we have: VCC RP (2RC + RP ) − RP RC [(I0 + I0 cos (ωt)) (RP + RC ) + (I0 − I0 cos (ωt)) RC ] RP (2RC + RP ) VCC RP (2RC + RP ) − RP RC [I0 (2RC + RP ) + I0 cos (ωt) RP ] = RP (2RC + RP ) RC RP = VCC − I0 RC + I0 cos (ωt) 2RC + RP VX = By symmetry, we can write: VY = VCC − I0 RC − I0 cos (ωt) RC RP 2RC + RP VX (t) VY (t) RP VCC − I0 RC + I0 2RRCC+R P VCC − I0 RC RP VCC − I0 RC − I0 2RRCC+R P π/ω −π/ω t (d) VX = VCC − I1 RC VY RC VY = VCC − I2 + RP RC VY 1 + = VCC − I2 RC RP VCC − I2 RC VY = C 1+ R RP = VCC RP − I2 RC RP RP + RC VX (t) VY (t) VCC VCC − I0 RC P VCC RPR+R C VCC RP −I0 RC RP RP +RC VCC − 2I0 RC VCC RP −2I0 RC RP RP +RC −π/ω π/ω t 10.11 Note that since the circuit is symmetric and IEE is an ideal source, no matter what value of VCC we have, the current through Q1 and Q2 must be IEE /2. That means if the supply voltage increases by some amount ∆V , VX and VY must also increase by the same amount to ensure the current remains the same. ∆VX = ∆V ∆VY = ∆V ∆ (VX − VY ) = 0 We can say that this circuit rejects supply noise because changes in the supply voltage (i.e., supply noise) do not show up as changes in the differential output voltage VX − VY . 10.23 If the temperature increases from 27 ◦ C to 100 ◦ C, then VT will increase from 25.87 mV to 32.16 mV. Will will cause the curves to stretch horizontally, since the differential input will have to be larger in magnitude in order to drive the current to one side of the differential pair. This stretching is shown in the following plots. IC1 , T IC1 , T IC2 , T IC2 , T = 27 ◦ C = 100 ◦ C = 27 ◦ C = 100 ◦ C IEE IEE 2 Vin1 − Vin2 Vout1 , T Vout1 , T Vout2 , T Vout2 , T = 27 ◦ C = 100 ◦ C = 27 ◦ C = 100 ◦ C VCC VCC − IEE RC /2 VCC − IEE RC Vin1 − Vin2 Vout1 − Vout2 , T = 27 ◦ C Vout1 − Vout2 , T = 100 ◦ C IEE RC Vin1 − Vin2 −IEE RC 10.33 (a) Treating node P as a virtual ground, we can draw the small-signal model to find Gm . iout + vin rπ vπ gm vπ ro − RE vin − vπ vπ + rπ RE vπ = vin − (−iout + gm vπ ) ro iout = − vπ (1 + gm ro ) = vin + iout ro vin + iout ro vπ = 1 + gm ro vin + iout ro vin + iout ro vin iout = − − + rπ (1 + gm ro ) RE RE (1 + gm ro ) ro 1 1 ro 1 = vin iout 1 + − + − rπ (1 + gm ro ) RE (1 + gm ro ) RE rπ (1 + gm ro ) RE (1 + gm ro ) rπ (1 + gm ro ) − RE − rπ rπ RE (1 + gm ro ) + ro (rπ + RE ) = vin iout rπ RE (1 + gm ro ) rπ RE (1 + gm ro ) iout rπ (1 + gm ro ) − RE − rπ Gm = = vin rπ RE (1 + gm ro ) + ro (rπ + RE ) Rout = RC k [ro + (1 + gm ro ) (rπ k RE )] Av = − rπ (1 + gm ro ) − RE − rπ {RC k [ro + (1 + gm ro ) (rπ k RE )]} rπ RE (1 + gm ro ) + ro (rπ + RE ) (b) The result is identical to the result from part (a), except R1 appears in parallel with ro . Av = − rπ (1 + gm (ro k R1 )) − RE − rπ {RC k [(ro k R1 ) + (1 + gm (ro k R1 )) (rπ k RE )]} rπ RE (1 + gm (ro k R1 )) + (ro k R1 ) (rπ + RE ) 10.36 VDD − ISS RD > VCM − VT H,n 2 VDD > VCM − VT H,n + VDD > 1 V ISS RD 2 10.38 Let JD be the current density of a MOSFET, as defined in the problem statement. ID 11 = µn Cox (VGS − VT H )2 W 2 L s 2ID = W L µn Cox s 2JD = 1 µ L n Cox JD = (VGS − VT H )equil The equilibrium overdrive voltage increases as the square root of the current density. 10.39 Let id1 , id2 , and vP denote the changes in their respective values given a small differential input of vin (+vin to Vin1 and −vin to Vin2 ). id1 = gm (vin − vP ) id2 = gm (−vin − vP ) vP = (id1 + id2 ) RSS = −2gm vP RSS ⇒ vP = 0 Note that we can justify the last step by noting that if vP 6= 0, then we’d have 2gm RSS = −1, which makes no sense, since all the values on the left side must be positive. Thus, since the voltage at P does not change with a small differential input, node P acts as a virtual ground. 10.41 P = ISS VDD = 2 mW ISS = 1 mA VCM,out = VDD − ISS RD = 1.6 V 2 RD = 800 Ω |Av | = gm RD s W = 2 µn Cox ID RD L 1 W L 1 =5 W = = 390.625 L 2 Let’s formulate the trade-off between VDD and W/L, let’s assume we’re trying to meet an output common-mode level of VCM,out . Then we have: ISS = P VDD ISS RD 2 P RD = VDD − 2V DD VDD − VCM,out RD = 2VDD P VCM,out = VDD − |Av | = gm RD r W µn Cox ISS RD = L r W VDD − VCM,out P = 2VDD µn Cox L VDD P To meet a certain gain, W/L and VDD must be adjusted according to the above equation. We can see that if we decrease VDD , we’d have to increase W/L in order to meet the same gain. 10.55 Let’s draw the half circuit. vout Q3 vin Gm = gm1 RP 2 = gm1 RP 2 Q1 k ro1 k rπ3 k ro1 k rπ3 + RP 2 k gm3 R2P gm3 RP /2 1 gm3 ro1 k rπ3 k ro1 k rπ3 RP Rout = ro3 + (1 + gm3 ro3 ) rπ3 k k ro1 2 RP gm3 2 k ro1 k rπ3 RP Av = −gm1 k r r + (1 + g r ) r k o1 o3 m3 o3 π3 2 1 + gm3 R2P k ro1 k rπ3 1+ 10.60 Assume IC = IEE 2 for all of the transistors (since β ≫ 1). Av = −gm1 {[ro3 + (1 + gm3 ro3 ) (rπ3 k ro1 )] k [ro5 + (1 + gm5 ro5 ) (rπ5 k ro7 )]} h ih i VA,n VA,p βn VT VA,n βp VT VA,p V + 1 + V + 1 + A,n A,p VT βn VT +VA,n VT βp VT +VA,p 1 h i h i =− V V β V V βp VT VA,p A,n A,p n T A,n VT VA,n + 1 + + VA,p + 1 + VT = −800 VA,n = 2.16 V VA,p = 1.08 V βn VT +VA,n VT βp VT +VA,p 10.61 1 Av = −gm1 [ro3 + (1 + gm3 ro3 ) (rπ3 k ro1 )] k ro5 + (1 + gm5 ro5 ) rπ5 k k rπ7 k ro7 gm7 This topology is not a telescopic cascode. The use of NPN transistors for Q7 and Q8 drops the output resistance of the structure from that of the typical telescopic cascode. 10.73 (a) VN = VDD − VSG3 s = VDD − I SS W L 3 µp Cox − |VT Hp | (b) By symmetry, we know that ID for M3 and M4 is the same, and we also know that their VSG values are the same. Thus, their VSD values must also be equal, meaning VY = VN . (c) If VDD changes by ∆V , then both VY and VN will change by ∆V . 10.83 P = VCC IEE = 1 mW IEE = 0.4 mA Av = −gm1 (ro1 k ro3 k R1 ) = −100 R1 = R2 = 59.1 kΩ 10.92 P = VCC IEE = 3 mW IEE = 1.2 mA Av = gm,n (ro,n k ro,p ) = 200 VA,n = 15.6 V VA,p = 7.8 V 11.1 Vout 1 (jω) = −gm RD k Vin jωCL gm RD =− 1 + jωCL RD gm RD Vout (jω) = q Vin 1 + (ωCL RD )2 gm RD q = 0.9gmRD 2 1 + (ω−1 dB CL RD ) ω−1 dB = 4.84 × 108 rad/s ω−1 dB f−1 dB = = 77.1 MHz 2π 11.3 (a) ω−3 dB = 1 1 gm2 k rπ2 CL (b) ω−3 dB = 1 rπ2 +RB 1+β CL ≈ 1 1 gm2 + RB 1+β (c) ω−3 dB = 1 (ro1 k ro2 ) CL (d) ω−3 dB = ro1 k 1 1 gm2 k ro2 CL CL Vout (jω) Vin 11.4 Since all of these circuits are have one pole, all of the Bode plots will look qualitatively identical, with some DC gain at low frequencies that rolls off at 20 dB/dec after hitting the pole at ω−3 dB . This is shown in the following plot: 20 log |Av | Slope = −20 dB/dec ω−3 dB ω For each circuit, we’ll derive |Av | and ω−3 dB , from which the Bode plot can be constructed as in the figure. (a) |Av | = gm1 ω−3 dB = 1 gm2 k rπ2 1 1 gm2 k rπ2 CL (b) |Av | = gm1 ω−3 dB = rπ2 + RB 1+β 1 rπ2 +RB 1+β CL ≈ gm1 ≈ 1 gm2 RB 1+β 1 1 gm2 + RB 1+β (c) |Av | = gm1 (ro1 k ro2 ) ω−3 dB = + 1 (ro1 k ro2 ) CL CL (d) 1 |Av | = gm1 ro1 k k ro2 gm2 ω−3 dB = 1 ro1 k 1 gm2 k ro2 CL Assuming the transfer function is of the form we get the following Bode plot: Vout (jω) = Vin Av 1 + j ωωp1 2 Vout (jω) Vin 11.5 20 log |Av | ωp1 ω Slope = −40 dB/dec Vout (jω) Vin 11.6 20 log |Av | Slope = −20 dB/dec Slope = −20 dB/dec 2π × 108 2π × 109 2π × 1010 ω Vout (jω) Vin 11.7 The gain at arbitrarily low frequencies approaches infinity. Slope = −20 dB/dec ω Vout (jω) Vin 11.8 The gain at arbitrarily high frequencies approaches infinity. ω Slope = +20 dB/dec 11.16 Using Miller’s theorem, we can split the resistor RF as follows: VCC RC Vout Vin RB RF 1+ gm1R Q1 C RF 1+gm RC Av = −gm RF 1+gm RC rπ k 1+gRmFRC rπ k RB + ! RF RC k 1 + gm1RC ! 11.17 Using Miller’s theorem, we can split the resistor RF as follows: VDD Vin RS M1 RF gm RL 1− 1+g mR Vout L RL Av = RF g R m L 1− 1+g mR L RS + RF gm RL 1− 1+g m RL 1− RF 1+gm RL gm RL RF m RL gm RL k 1− 1+g gm RL RF 1 + gm RL k 1+gm RL 1− gm RL 11.18 Using Miller’s theorem, we can split the resistor ro as follows: VCC RC ro 1− gm1R Vout C Q1 Vb RB Vin ro 1−gm RC Av = gm 1 gm RB + ro 1−gm RC rπ k 1−grmo RC k rπ k 1 gm k ! RC k ro 1− 1 gm RC ! 11.20 Using Miller’s theorem, we can split the capacitor CF as follows (note that the DC gain is Av = gm ro 1+gm ro ): VDD M1 CF 1 − gm ro 1+gm ro CF 1 − 1+gm ro gm ro Thus, we have Cin = CF 1− gm ro 1 + gm ro As λ → 0, ro → ∞, meaning the gain approaches 1. When this happens, the input capacitance goes to zero. 11.26 At high frequencies (such as fT ), we can neglect the effects of rπ and ro , since the low impedances of the capacitors will dominate at high frequencies. Thus, we can draw the following small-signal model to find fT (for BJTs): Cµ Iin + vπ − Cπ Iout gm vπ Iin = jωvπ (Cπ + Cµ ) Iin Iπ = jω (Cπ + Cµ ) Iout = gm vπ − jωCµ vπ Iout Iin Iout Iin q 2 + (ω C )2 gm T µ ωT (Cπ + Cµ ) = vπ (gm − jωCµ ) Iin = (gm − jωCµ ) jω (Cπ + Cµ ) gm − jωCµ = jω (Cπ + Cµ ) q 2 + (ωC )2 gm µ = ω (Cπ + Cµ ) =1 2 gm + ωT2 Cµ2 = ωT2 Cπ2 + 2Cπ Cµ + Cµ2 2 gm = ωT2 Cπ2 + 2Cπ Cµ gm ωT = p 2 Cπ + 2Cπ Cµ fT = gm p 2 2π Cπ + 2Cπ Cµ The derivation of fT for a MOSFET is identical to the derivation of fT for a BJT, except we have CGS instead of Cπ and CGD instead of Cµ . Thus, we have: fT = 2π gm p 2 + 2C CGS GS CGD 11.37 Using Miller’s theorem to split Cµ1 , we have: ωp,in = ωp,out = 1 (RS k rπ1 ) {Cπ1 + Cµ1 [1 + gm1 (ro1 k ro2 )]} (ro1 1 h n k ro2 ) Cµ2 + CCS1 + CCS2 + Cµ1 1 + rπ1 g m1 rπ1 +RS (ro1 k ro2 ) Vout (s) = − s s Vin 1 + ωp,out 1 + ωp,in 1 gm1 (ro1 kro2 ) io 11.39 (a) 1 = 3.125 × 1010 rad/s RS [CGS + CGD (1 + gm RD )] 1 i = 3.846 × 1010 rad/s h = 1 RD CDB + CGD 1 + gm RD ωp,in = ωp,out (b) (CGD s − gm ) RD Vout (s) = VT hev as2 + bs + 1 a = RS RD (CGS CGD + CDB CGD + CGS CDB ) = 2.8 × 10−22 b = (1 + gm RD ) CGD RS + RS CGS + RD (CGD + CDB ) = 5.7 × 10−11 Setting the denominator equal to zero and solving for s, we have: √ −b ± b2 − 4a s= 2a |ωp1 | = 1.939 × 1010 rad/s |ωp2 | = 1.842 × 1011 rad/s We can see substantial differences between the poles calculated with Miller’s approximation and the poles calculated from the transfer function directly. We can see that Miller’s approximation does a reasonably good job of approximating the input pole (which corresponds to |ωp1 |). However, the output pole calculated with Miller’s approximation is off by nearly an order of magnitude when compared to ωp2 . 11.40 (a) Note that the DC gain is Av = −∞ if we assume VA = ∞. ωp,in = 1 = 0 (RS k rπ ) [Cπ + Cµ (1 − Av )] ωp,out = 0 (b) Vout (Cµ s − gm ) RL (s) = lim RL →∞ as2 + bs + 1 VT hev a = (RS k rπ ) RL (Cπ Cµ + CCS Cµ + Cπ CCS ) b = (1 + gm RL ) Cµ (RS k rπ ) + (RS k rπ ) Cπ + RL (Cµ + CCS ) lim RL →∞ Cµ s − gm (Cµ s − gm ) RL = as2 + bs + 1 [(RS k rπ ) (Cπ Cµ + CCS Cµ + Cπ CCS )] s2 + [gm Cµ (RS k rπ ) + Cµ + CCS ] s Cµ s − gm = s {(RS k rπ ) (Cπ Cµ + CCS Cµ + Cπ CCS ) s + [gm Cµ (RS k rπ ) + Cµ + CCS ]} |ωp1 | = 0 |ωp2 | = gm Cµ (RS k rπ ) + Cµ + CCS (RS k rπ ) (Cπ Cµ + CCS Cµ + Cπ CCS ) We can see that the Miller approximation correctly predicts the input pole to be at DC. However, it incorrectly estimates the output pole to be at DC as well, when in fact it is not, as we can see from the direct analysis. 11.41 1 = 0 RL →∞ (1 + gm RL ) Cµ (RS k rπ ) + (RS k rπ ) Cπ + RL (Cµ + CCS ) (RS k rπ ) RL (Cπ Cµ + CCS Cµ + Cπ CCS ) |ωp2 | = lim RL →∞ (1 + gm RL ) Cµ (RS k rπ ) + (RS k rπ ) Cπ + RL (Cµ + CCS ) |ωp1 | = lim = (RS k rπ ) (Cπ Cµ + CCS Cµ + Cπ CCS ) gm Cµ (RS k rπ ) + Cµ + CCS The dominant-pole approximation gives the same results as analyzing the transfer function directly, as in Problem 40(b). 11.49 ωp1 = ≈ 1 io h n 1 k rπ2 (RB k rπ1 ) Cπ1 + Cµ1 1 + gm1 gm2 1 n h (RB k rπ1 ) Cπ1 + Cµ1 1 + IC1 = 4IC2 ⇒ gm1 = 4gm2 ωp1 = ωp2 ≈ ωp3 = io 1 (RB k rπ1 ) (Cπ1 + 5Cµ1 ) 1 gm2 = gm1 gm2 1 h CCS1 + CCS3 + Cµ3 + Cπ2 + Cµ1 1 + gm2 CCS1 + CCS3 + Cµ3 + Cπ2 + 45 Cµ1 gm2 gm1 i 1 RC (CCS2 + Cµ2 ) Miller’s effect is more significant here than in a standard cascode. This is because the gain in the common-emitter stage is increased to four in this topology, where it is about one in a standard cascode. This means that the capacitor Cµ1 will be multiplied by a larger factor when using Miller’s theorem. 11.58 ID = 1 2 W L 2 µn Cox Vov = 0.5 mA 1 (W/L)1 = (W/L)2 = 250 W1 = W2 = 45 µm W µn Cox Vov = 5 mS gm1 = gm2 = L CGD1 = CGD2 = C0 W = 9 fF 2 CGS1 = CGS2 = W LCox = 64.8 fF 3 1 o = 2π × 5 GHz n ωp,in = m1 RG CGS1 + CGD1 1 + ggm2 RG = 384 Ω 1 = 2π × 10 GHz ωp,out = RD CGD2 RD = 1.768 kΩ Av = −gm1 RD = −8.84 12.1 (a) Y = A1 (X − KA2 Y ) Y (1 + KA1 A2 ) = A1 X A1 Y = X 1 + KA1 A2 (b) Y = X − KY − A1 (X − KY ) Y (1 + K − A1 K) = X (1 − A1 ) 1 − A1 Y = X 1 + K (1 − A1 ) (c) Y = A2 X − A1 (X − KY ) Y (1 − A1 K) = X (A2 − A1 ) Y A2 − A1 = X 1 − A1 K (d) Y = X − (KY − Y ) − A1 [X − (KY − Y )] Y = X − KY + Y − A1 X + KA1 Y − A1 Y Y [A1 (1 − K) + K] = X (1 − A1 ) 1 − A1 Y = X A1 (1 − K) + K 12.5 The loop gains calculated in Problem 4 are used. (a) AOL = A1 Aloop = KA1 R2 R1 + R2 A1 Y = X 2 1 + KA1 R1R+R 2 (b) AOL = −A1 Aloop = gm3 RD A1 R2 R1 + R2 Y A1 = − X 2 1 + gm3 RD A1 R1R+R 2 (c) AOL = −A1 Aloop = gm3 RD A1 Y A1 = − X 1 + gm3 RD A1 (d) gm1 R2 AOL = A1 1 + gm1 R2 gm1 R2 Aloop = A1 1 + gm1 R2 gm1 R2 A 1 1+gm1 R2 Y = gm1 R2 X 1 + A1 1+g m1 R2 12.8 AOL = −gm ro r 1 W = − 2 µn Cox ID L λID r 1 W 2 µn Cox =− √ L λ ID AOL Vout = Vin 1 + KAOL We want to look at the maximum and minimum deviations that VVout will have from the base value in given the variations in λ and µn Cox . First, let’s consider what happens when λ decreases by 20 % and √ 1.1 µn Cox increases by 10 %. This causes AOL to increase in magnitude by a factor of 0.8 = 1.311. We want VVout to change by less than 5 % given this deviation in AOL . in AOL 1.311AOL < 1.05 1 + 1.311KAOL 1 + KAOL KAOL > 3.982 Next, let’s consider what happens when λ increases by 20 % and µn Cox decreases by 10 %. This causes √ 0.9 AOL to decrease in magnitude by a factor of 1.2 = 0.7906. We want VVout to change by less than 5 % in given this deviation in AOL . AOL 0.7906AOL < 0.95 1 + 0.7906KAOL 1 + KAOL KAOL > 4.033 Thus, to satisfy the constraints on both the maximum and minimum deviations, we require KAOL > 4.033 . 12.10 AOL = −gm ro k 1 sCL gm ro 1 + sro CL AOL = 1 + KAOL gm ro − 1+sr o CL = gm ro 1 − K 1+sr o CL gm ro =− 1 + sro CL − Kgm ro =− Vout Vin Setting the denominator equal to zero and solving for s gives us the bandwidth B. B= Kgm ro − 1 ro CL K= 1 + Bro CL gm ro 12.11 (a) • • • • Feedforward system: M1 and RD (which act as a common-gate amplifier) Sense mechanism: C1 and C2 (which act as a capacitive divider) Feedback network: C1 and C2 Comparison mechanism: M1 (which amplifies the difference between the fed back signal and the input) (b) AOL = gm RD Aloop = gm RD C1 C1 + C2 gm RD vout = vin 1 1 + gm RD C1C+C 2 (c) Rin,open = Rin,closed = 1 gm 1 + gm RD gm C1 C1 +C2 Rout,open = RD Rout,closed = RD 1 1 + gm RD C1C+C 2 12.15 (a) 1/gm2 vin vout + −gm1 RD vin − (b) 1/gm2 iin 1 gm1 vout + −RD iin − (c) vin gm vin (d) iin 1 gm1 −iin ro 12.18 (a) • Sense mechanism: Voltage at the source of M3 • Return mechanism: Voltage at the gate of M2 (b) • Sense mechanism: Voltage at the source of M3 • Return mechanism: Voltage at the gate of M2 (c) • Sense mechanism: Current Ωowing through R1 • Return mechanism: Voltage at the gate of M2 (d) • Sense mechanism: Current Ωowing through R1 • Return mechanism: Voltage at the gate of M2 (e) • Sense mechanism: Voltage divider formed by R1 and R2 • Return mechanism: Voltage at the gate of M2 (f) • Sense mechanism: Voltage at the source of M3 • Return mechanism: Voltage at the gate of M2 12.20 (a) • Sense mechanism: Voltage at the gate of M2 • Return mechanism: Current through M2 (b) • Sense mechanism: Voltage at the gate of M2 • Return mechanism: Current through M2 (c) • Sense mechanism: Voltage at the source of M2 • Return mechanism: Current through M2 (d) • Sense mechanism: Voltage at the gate of M2 • Return mechanism: Current through M2 21. 22. 12.23 If Iin increases, then the voltage at the gate of M1 will increase, meaning ID1 will increase. This will cause the drain voltage of M1 to decrease, meaning ID2 will decrease and Vout will increase. This will cause the voltage at the gate of M1 to decrease, which counters the original increase, meaning there is negative feedback . 12.24 Fig. 12.83 (a) Vin ↑, VS1 ↑, VG3 ↑, Vout ↓, VG3 ↓⇒ negative feedback . (b) Vin ↑, VS1 ↑, VG3 ↑, Vout ↓, VG3 ↑⇒ positive feedback . (c) Same as (b), positive feedback . (d) Same as (a), negative feedback . (e) Vin ↑, VS1 ↑, Vout ↑, VG2 ↑, Vout ↓⇒ negative feedback . (f) Vin ↑, VS1 ↑, VG3 ↑, Vout ↓, VG3 ↑⇒ positive feedback . Fig. 12.84 (a) Vin ↑, VG2 ↑, Vout ↑, VG2 ↓⇒ negative feedback . (b) Vin ↑, VG2 ↑, Vout ↓, VG2 ↑⇒ positive feedback . (c) Same as (b), positive feedback . (d) Vin ↑, VG2 ↑, Vout ↓, VG2 ↑⇒ positive feedback . Fig. 12.85 (a) Iin ↑, VG1 ↑ (consider Iin Ωows through an equivalent small-signal resistance of 1/gm2 at the gate of M1 ), Vout ↓, VG1 ↓⇒ negative feedback . (b) Iin ↑, VG1 ↑, Vout ↓, VG1 ↑⇒ positive feedback . (c) Iin ↑, VG1 ↑, Vout ↓, VG1 ↓⇒ negative feedback . (d) Iin ↑, VS1 ↑, Vout ↑, VS1 ↓⇒ negative feedback . Fig. 12.86 (a) Iin ↑, VBE1 ↑, Vout ↓, VBE1 ↓⇒ negative feedback . (b) Iin ↑, VG3 ↑, Vout ↑, VG3 ↑⇒ positive feedback . 25. 26. 12.27 AOL = gm1 (ro2 k ro4 ) gm5 ro5 1 + gm5 ro5 K = 1 (since the output is fed back directly to the inverting input) gm5 ro5 gm1 (ro2 k ro4 ) 1+g r vout m5 o5 = gm5 ro5 vin 1 + gm1 (ro2 k ro4 ) 1+gm5 ro5 Rout,open = Rout,closed = 1 k ro5 gm5 1 gm5 1 + gm1 (ro2 k ro5 gm5 ro5 k ro4 ) 1+g m5 ro5 Let’s recall the gain and output impedance of a simple source follower, as shown in the following diagram. VCC vin M1 vout Ibias gm1 ro1 1 + gm1 ro1 1 = k ro1 gm1 Av = Rout We can see that the gain of the circuit in Fig. 12.90 is the gain of a simple source follower multiplied by a factor of gm1 (ro2 k ro4 ) gm5 ro5 1 + gm1 (ro2 k ro4 ) 1+g m5 ro5 This factor is less than 1, which means that the gain is reduced. However, we do get an improvement in output resistance, which is reduced by a factor of gm5 ro5 1 + gm1 (ro2 k ro4 ) 1 + gm5 ro5 12.28 (a) Vin ↑, VG5 ↑, Vout ↓, VG5 ↑⇒ positive feedback. (b) Aloop = −gm1 gm5 (ro2 k ro4 ) ro5 Since the loop gain is negative, the feedback is positive. 12.29 AOL = gm1 gm5 (ro1 k ro3 ) ro5 K=1 vout gm1 gm5 (ro1 k ro3 ) ro5 = vin 1 + gm1 gm5 (ro1 k ro3 ) ro5 Rin,open = Rin,closed = ∞ Rout,open = ro5 Rout,closed = ro5 1 + gm1 gm5 (ro1 k ro3 ) ro5 Like the circuit in Problem 12.27, the closed loop gain is approximately (but slightly less than) 1. Looking at the equations, the closed loop gain of this circuit will typically be larger than the closed loop gain of the circuit in Problem 12.27. The output impedance of this circuit is not quite as small as the output impedance of the circuit in Problem 12.27. Despite the loop gain being larger, the open loop output impedance is significantly higher than that of Problem 12.27, so that overall, the output impedance is slightly higher in this circuit. 12.30 (a) Iin ↑, VG2 ↑, Vout ↑, VS1 ↑, VG2 ↑⇒ positive feedback. (b) Aloop 1 gm1 gm2 RD RF + gm1 i = −h 1 1 + gm2 RF + gm1 (1 + gm1 RF ) Since the loop gain is negative, the feedback is positive. 31. 32. 33. 34. 35. 36. 37. 38. 39. 12.40 (a) AOL = gm2 (RC k rπ2 ) gm1 gm2 (RF k RM ) (RC k rπ2 ) 1 + gm1 RF gm2 (RF k RM ) (RC k rπ2 ) = 1 gm1 + RF Aloop = RF k RM (since RF is very large) RF ≈ gm2 (RC k rπ2 ) gm2 (RC k rπ2 ) iout = M iin 1 + gm2 (RC k rπ2 ) RFRkR F Rin,open = Rin,closed = 1 k rπ1 gm1 1 gm2 k rπ1 M 1 + gm2 (RC k rπ2 ) RFRkR F Rout,open = Rout,closed = ∞ (since VA = ∞) (b) AOL = −gm2 RM (RC k rπ2 ) Aloop ≈ gm2 (RC k rπ2 ) RF k RM (same as (a)) RF −gm2 RM (RC k rπ2 ) vout = − M iin 1 + gm2 (RC k rπ2 ) RFRkR F Rin,open = Rin,closed = 1 k rπ1 gm1 1 gm1 k rπ1 M 1 + gm2 (RC k rπ2 ) RFRkR F Rout,open = RM k RF Rout,closed = RM k RF M 1 + gm2 (RC k rπ2 ) RFRkR F 41. 12.42 We can break the feedback network as shown here: VCC RC vout R1 Q1 vin R1 R2 R2 AOL = K= RC k (R1 + R2 ) 1 gm1 + R1 kR2 1+β R2 R1 + R2 vout = vin 1+ RC k(R1 +R2 ) R1 kR2 1 + 1+β g m1 RC k(R1 +R2 ) R2 R1 +R2 1 + R1 kR2 gm1 1+β rπ1 + R1 k R2 1+β ! R2 RC k (R1 + R2 ) rπ1 + R1 k R2 1+ = 1 1+β R1 + R2 + R1 kR2 Rin,open = Rin,closed gm1 Rout,open = RC k (R1 + R2 ) Rout,closed = RC k (R1 + R2 ) 1+ RC k(R1 +R2 ) R2 R1 +R2 1 + R1 kR2 gm1 1+β 1+β 12.43 We can break the feedback network as shown here: VCC vout R1 Q1 vin R1 R2 R2 AOL = R1 + R2 1 gm1 K= + R1 kR2 1+β R2 R1 + R2 R1 +R2 R1 kR2 1 vout gm1 + 1+β = vin 1 + 1 RR2 1 kR2 gm1 + 1+β rπ1 + R1 k R2 1+β rπ1 + R1 k R2 1+ = 1+β Rin,open = Rin,closed Rout,open = R1 + R2 Rout,closed = R1 + R2 1 + 1 RR2 1 kR2 gm1 + 1+β R2 1 gm1 + R1 kR2 1+β ! 12.44 We can break the feedback network as shown here: VDD RD1 vout M2 vin R1 M1 R2 R1 R2 gm1 gm2 RD1 (R1 + R2 ) 1 + gm1 (R1 k R2 ) R2 K= R1 + R2 AOL = gm1 gm2 RD1 (R1 +R2 ) vout 1+gm1 (R1 kR2 ) = gm1 gm2 RD1 R2 vin 1 + 1+g m1 (R1 kR2 ) Rin,open = Rin,closed = ∞ Rout,open = R1 + R2 Rout,closed = 1+ R1 + R2 gm1 gm2 RD1 R2 1+gm1 (R1 kR2 ) 12.45 We can break the feedback network as shown here: VDD RD1 vout Q2 vin R1 Q1 RP R1 R2 R2 gm1 gm2 [RD1 k (rπ2 + (1 + β) RP )] (R1 + R2 ) [1 + gm1 (R1 k R2 )] (1 + gm2 RP ) R2 K= R1 + R2 AOL = gm1 gm2 [RD1 k(rπ2 +(1+β)RP )](R1 +R2 ) [1+gm1 (R1 kR2 )](1+gm2 RP ) gm1 gm2 [RD1 k(rπ2 +(1+β)RP )]R2 [1+gm1 (R1 kR2 )](1+gm2 RP ) vout = vin 1+ Rin,open = rπ1 + (1 + β) (R1 k R2 ) Rin,closed gm1 gm2 [RD1 k (rπ2 + (1 + β) RP )] R2 = {rπ1 + (1 + β) (R1 k R2 )} 1 + [1 + gm1 (R1 k R2 )] (1 + gm2 RP ) Rout,open = R1 + R2 Rout,closed = 1+ R1 + R2 gm1 gm2 [RD1 k(rπ2 +(1+β)RP )]R2 [1+gm1 (R1 kR2 )](1+gm2 RP ) 12.46 We can break the feedback network as shown here: VCC vout vin Q1 R1 Q2 R1 R2 R2 AOL = K= vout = vin Rin,open Rin,closed rπ2 +R1 kR2 1+β2 rπ2 +R1 kR2 1 + gm1 1+β2 R2 R1 + R2 rπ2 +R1 kR2 1+ ! 1 gm2 1+β2 rπ2 +R1 kR2 1 gm1 + 1+β2 rπ2 +R1 kR2 1+β2 rπ2 +R1 kR2 1 gm1 + 1+β2 R1 + R2 1 gm2 + rπ2 +R1 kR2 1+β2 R1 +R2 r +R kR + π21+β1 2 1 gm2 2 R2 + rπ2 +R1 kR2 1+β2 ! rπ2 + R1 k R2 = rπ1 + (1 + β1 ) 1 + β2 " rπ2 + R1 k R2 = rπ1 + (1 + β1 ) 1+ 1 + β2 Rout,open = R1 + R2 Rout,closed = 1+ R1 + R2 rπ2 +R1 kR2 1+β2 rπ2 +R1 kR2 1 + gm1 1+β2 R2 1 gm2 + rπ2 +R1 kR2 1+β2 rπ2 +R1 kR2 1+β2 rπ2 +R1 kR2 1 gm1 + 1+β2 ! R2 1 gm2 + rπ2 +R1 kR2 1+β2 !# 12.47 We can break the feedback network as shown here: VDD RD1 vout M2 M1 R1 Vb RF iin R2 R2 RF R1 AOL = −gm2 [ro2 k (R1 + R2 k RF )] RD1 RF + R1 k R2 gm1 + RF + R1 k R2 1 To find the feedback factor K, we can use the following diagram: R1 vx + − R2 ix RF K= ix R2 R2 k RF =− =− vx (R1 + R2 k RF ) (R2 + RF ) RF (R1 + R2 k RF ) vout = − iin Rin,open = Rin,closed = gm2 [ro2 k (R1 + R2 k RF )] RD1 1 + gm2 [ro2 k (R1 + R2 k RF )] RD1 RF +R1 kR2 +RF +R1 kR2 1 gm1 RF +R1 kR2 1 +RF +R1 kR2 g m1 1 k (RF + R1 k R2 ) gm1 n R2 kRF RF (R1 +R2 kRF ) 1 gm1 k (RF + R1 k R2 ) n o R2 kRF F +R1 kR2 1 + gm2 [ro2 k (R1 + R2 k RF )] RD1 1 R+R RF (R1 +R2 kRF ) +R kR gm1 F 1 2 Rout,open = ro2 k (R1 + R2 k RF ) Rout,closed = ro2 k (R1 + R2 k RF ) n o R2 kRF F +R1 kR2 1 + gm2 [ro2 k (R1 + R2 k RF )] RD1 1 R+R RF (R1 +R2 kRF ) +R kR gm1 F 1 2 o 48. 49. 50. 51. 52. 53. 12.54 We can break the feedback network as shown here: VCC Q2 iout Q1 Vb iin RF AOL = −β2 K = −1 (by inspection) β2 iout = − iin 1 + β2 Rin,open = Rin,closed = 1 gm1 1 gm1 k rπ1 k rπ1 1 + β2 Rout,open = Rout,closed = ∞ (since VA = ∞) 12.55 We can break the feedback network as shown here: VCC RC Q2 Q1 iout iin RF We can find AOL = iiout by using current dividers to determine how much of iin goes to iout . Let’s in assume the device has some small-signal resistance RL . RC RC + rπ2 + (1 + β2 ) (RL + RF ) K = −1 (by inspection) AOL = −β1 β2 RC β1 β2 RC +rπ2 +(1+β iout 2 )(RL +RF ) = − RC iin 1 + β1 β2 RC +rπ2 +(1+β 2 )(RL +RF ) Rin,open = rπ1 Rin,closed = RC 1 + β1 β2 RC +rπ2 +(1+β 2 )(RL +RF ) rπ2 + RC + RF 1 + β2 RC 1 + + RF ≈ gm2 1 + β2 RC rπ2 + RC 1 + β1 β2 + RF = 1 + β2 RC + rπ2 + (1 + β2 ) (RL + RF ) Rout,open = Rout,closed rπ1 12.56 (a) We can break the feedback network as shown here: VDD I1 M2 M2 vout M1 iin AOL = −gm1 ro1 1 gm2 k ro2 To find the feedback factor K, we can use the following diagram: VDD M2 vx ix K= vx = −gm2 ix 1 k ro2 gm1 ro1 gm2 vout = − 1 iin 1 + gm1 gm2 ro1 gm2 k ro2 Rin,open = Rin,closed = 1 k ro2 gm2 1 gm2 1 + gm1 gm2 ro1 Rout,open = ro1 Rout,closed = k ro2 1 gm2 k ro2 1 k ro2 ro1 1 + gm1 gm2 ro1 gm2 (b) We can break the feedback network as shown here: VDD I1 vout M2 M2 M1 iin AOL 1 = −gm1 ro2 ro1 k k ro2 gm2 To find the feedback factor K, we can use the following diagram: vx M2 ix K= vout iin vx = −gm2 ix 1 gm1 ro2 ro1 k gm2 k ro2 = − 1 k ro2 1 + gm1 gm2 ro2 ro1 k gm2 Rin,open = ro2 Rin,closed = ro2 1 + gm1 gm2 ro2 ro1 k Rout,open = ro1 k Rout,closed = 1 gm2 1 gm2 k ro2 k ro2 k ro2 ro1 k 1 gm2 k ro2 1 + gm1 gm2 ro2 ro1 k 1 gm2 (c) We can break the feedback network as shown here: VDD I1 M2 M2 vout M1 Vb iin AOL = gm1 ro1 1 gm1 k ro2 To find the feedback factor K, we can use the following diagram: VDD M2 vx ix K= ix = gm2 vx gm1 ro1 1 k ro2 gm1 vout = 1 iin k ro2 1 + gm1 gm2 ro1 gm1 Rin,open = Rin,closed = 1 gm1 k ro2 1 gm1 k ro2 1 + gm1 gm2 ro1 1 gm1 Rout,open = ro1 + (1 + gm1 ro1 ) ro2 Rout,closed = k ro2 ro1 + (1 + gm1 ro1 ) ro2 1 k ro2 1 + gm1 gm2 ro1 gm1 57. 58. 12.59 Let’s draw the small-signal model and find vout vin (s). CF RG vout + vin vgs gm vgs RD − vin − vgs = (vgs − vout ) sCF RG vout (vgs − vout ) sCF = gm vgs + ro1 1 + sCF vgs (sCF − gm ) = vout ro1 1 + sCF ro1 vgs = ro1 (sCF − gm ) vin 1 = vgs + sCF − vout sCF RG RG 1 + sCF ro1 1 vin = vout + sCF − sCF RG ro1 (sCF − gm ) RG 1 + sCF ro1 vin = vout (1 + sCF RG ) − sCF RG ro1 (sCF − gm ) (1 + sCF ro1 ) (1 + sCF RG ) − sCF RG ro1 (sCF − gm ) vin = vout ro1 (sCF − gm ) ro1 (sCF − gm ) vout (s) = vin (1 + sCF ro1 ) (1 + sCF RG ) − sCF RG ro1 (sCF − gm ) From the transfer function, we can see that we’ll have one zero and two poles (since the numerator is of degree 1 and the denominator is of degree 2). 0◦ −45◦ −90◦ Slope = −20 dB/dec −135◦ −180◦ −225◦ −270◦ ωp1 ωp2 ω ωz H(jω) (Dotted) Slope = −40 dB/dec 6 |H(jω)| (Solid) Slope = −20 dB/dec 60. 61. 62. 12.63 We’ll drop the negative sign in H(s) as done in Example 12.38. (gm RD )3 H(s) = 3 1 + ωsp ω −1 ∠H(jω) = −3 tan ωp ωP X −1 = −180 −3 tan ωp √ ωP X = 3ωp 3 (gm RD ) <1 3 ωP X 1 + ωp |KH(jωP X )| = 0.1 r gm RD < √ 3 80 = 4.31 64. 12.65 H(s) = A0 1 + ωs0 |KH (ωGX )| = r A0 ωGX ω0 2 = 1 1+ q ωGX = ω0 A20 − 1 ωGX ∠H(jωGX ) = − tan−1 ω0 ! p ω0 A20 − 1 −1 = − tan ω0 q −1 2 A0 − 1 = − tan Phase Margin = ∠H(jωGX ) + 180◦ q ◦ −1 2 A0 − 1 = 180 − tan The phase margin can be anything from 90◦ to 180◦ , depending on the value of A0 (smaller A0 means larger phase margin). 12.66 H(s) = A0 1 + ωs0 |KH (ωGX )| = 0.5 r A0 ωGX ω0 2 = 1 1+ s 2 A0 ωGX = ω0 −1 2 ωGX ∠H(jωGX ) = − tan−1 ω0 q A0 2 − 1 ω 0 2 = − tan−1 ω0 s 2 A 0 = − tan−1 − 1 2 Phase Margin = ∠H(jωGX ) + 180◦ s = 180◦ − tan−1 A0 2 2 − 1 The phase margin can be anything from 90◦ to 180◦ , depending on the value of A0 (smaller A0 means larger phase margin). 67. 12.68 With a factor of K = 0.5, the magnitude Bode plot of KH will simply be the magnitude plot of H shifted down by 6 dB (since 20 log 0.5 = −6 dB). Since the slope of the magnitude plot between ωp1 6 and ωp2 is −20 dB/dec, this means that ωGX will be shifted left by 20 = 0.3 decades, or a factor of 0.3 10 = 2. ′ ′ Thus, the new value of ωGX , which we’ll call ωGX , is ωGX = ωGX 2 = ωp2 2 . Now, we need to find ∠H(jωGX ). ω ω −1 ∠H(jω) = − tan − tan ωp1 ωp2 ω p2 ∠H(jωGX ) = ∠H j 2 ωp2 ωGX −1 −1 = − tan − tan 2ωp1 2ωp2 −1 = −90◦ − tan−1 (0.5) = −116◦ Phase Margin = 180◦ + ∠H(jωGX ) = 180◦ − 116◦ = 63◦ 69. 0◦ 0 dB −45◦ −90◦ −135◦ Slope = −40 dB/dec −180◦ −225◦ −270◦ 1 RD (C1 +CC ) ω 1 RD C1 H(jω) (Dotted) Slope = −20 dB/dec 6 |H(jω)| (Solid) 12.70 The compensation capacitor allowsus to push the pole associated with that node to a lower frequency (while the other poles do not change). This will cause the gain to start dropping sooner, so that ωGX decreases. By adjusting CC properly, we can reduce ωGX enough so that the phase is at −135◦ at ωGX . This results in the following Bode plots: 12.71 AOL ≈ gm1 (ro2 k ro4 ) 2 2 = gm1 k λn ISS λp ISS = 50 gm1 = 3.75 mS R2 R2 = K= R1 + R2 10 (ro2 k ro4 ) vout gm1 (ro2 k ro4 ) = R2 vin 1 + gm1 10(ro2 kro4 ) (ro2 k ro4 ) =4 R2 = 30.667 kΩ R1 = 102.667 kΩ 72. 12.73 AOL = −gm2 RD1 RD2 = −10 kΩ 1 K=− RF vout gm2 RD1 RD2 =− RD2 iin 1 + gm2 RRD1 F =− 10 kΩ 1 + 10RkΩ F = −1 kΩ RF = 1.111 kΩ 1 Rin,open = gm1 −1 1 gm2 RD1 RD2 Rin,closed = 1+ gm1 RF −1 10 kΩ 1 1+ = gm1 1.111 kΩ = 50 Ω gm1 = 2 mS Rout,open = RD2 Rout,closed = = 1+ RD2 gm2 RD1 RD2 RF RD2 1+ 10 kΩ 1.111 kΩ = 200 Ω RD2 = 2 kΩ AOL gm2 = RD1 RD2 = 5 mS 74. 75. 12.76 See Problem 44 for derivations of the following expressions. AOL = gm1 gm2 RD1 (R1 + R2 ) = 20 1 + gm1 (R1 k R2 ) gm1 gm2 RD1 (R1 +R2 ) vout 1+gm1 (R1 kR2 ) = gm1 gm2 RD1 R2 vin 1 + 1+g m1 (R1 kR2 ) = 1 + 20 20 R2 R1 +R2 =4 R2 = 0.2 R1 + R2 Rout,open = R1 + R2 = 2 kΩ R2 = 400 Ω R1 = 1.6 kΩ Lacking any additional constraints, we can pick any gm1 , gm2 , and RD1 so that AOL = 20. Let’s pick gm1 = gm2 = 2 mS . This gives us RD1 = 4.1 kΩ . If we are also required to minimize the power consumption of the amplifier, we need to minimize the current consumption of each stage. This requires minimizing gm1 and gm2 and maximizing RD1 while keeping all transistors in saturation. 12.77 See Problem 46 for derivations of the following expressions. 1 2 gm1 gm2 gm2 + Rβ12kR +1 (R1 + R2 ) = 2 AOL = R1 kR2 1 1 + gm1 gm2 + β2 +1 gm1 = gm2 = 1 ISS = S 2VT 52 R2 R1 + R2 R1 + R2 = 1 + KAOL R1 + R2 = 2 1 + R12R +R2 K= Rout,closed 2 = (R1 + R2 ) 1 + 3R2 Looking at this expression for Rout,closed , we can see that it will be minimized for very small values of R1 . This will force R2 to be larger in order to meet the required AOL , but since Rout depends more strongly on R1 than R2 , we should focus on minimizing R1 . In fact, we can actually set R1 = 0 . We can then solve the AOL equation to find R2 = 208 Ω , which means Rout = 69.33 Ω. 12.78 See Problem 50 for derivations of the following expressions. Assume β = 100. gm1 gm2 (RF k rπ1 ) RF {RC k [rπ2 + (1 + β) RF ]} 1 + gm2 RF AOL = = −1 kΩ 1 − AROL F AOL = − vout iin RF k rπ1 = 50 Ω 1 − AROL F 1 Ω = gm2 = 26 β = rπ2 = = 2.6 kΩ gm Rin = gm1 rπ1 = −1 kΩ and Rin = 50 Ω) and two unknowns (RF and AOL ). Solving, We have two equations ( viout in we get: RF = 1.071 kΩ AOL = 15167 RC = 535.2 Ω Razavi 1e – Fundamentals of Microelectronics CHAPTER 16 SOLUTIONS MANUAL ***For Chapter 16 solutions, please refer to Chapter 7 as the questions are identical in each chapter.
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.6 Linearized : Yes Tagged PDF : No XMP Toolkit : Adobe XMP Core 4.0-c316 44.253921, Sun Oct 01 2006 17:14:39 Modify Date : 2010:03:26 09:47:55-04:00 Create Date : 2010:03:26 09:47:55-04:00 Metadata Date : 2010:03:26 09:47:55-04:00 Creator Tool : Adobe Acrobat 8.1 Combine Files Format : application/pdf Creator : emcinerney Document ID : uuid:96818e99-afe4-4bd1-af20-5bf45e8991f6 Instance ID : uuid:1ddfa312-fa12-42ea-b3c7-911354870d61 Producer : Adobe Acrobat 8.1 Has XFA : No Page Count : 1115 Author : emcinerneyEXIF Metadata provided by EXIF.tools