GPDD User Guide

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 19

DownloadGPDD-User-Guide
Open PDF In BrowserView PDF
	
  
	
  
	
  

The	
  Global	
  Population	
  Dynamics	
  Database	
  
(GPDD)	
  

	
  
	
  

	
  
	
  
User	
  Guide	
  
Version	
  2	
  
July	
  2010	
  
	
  
	
  
NERC	
  Centre	
  for	
  Population	
  Biology	
  
Division	
  of	
  Biology,	
  Imperial	
  College	
  London,	
  Silwood	
  Park	
  Campus	
  
Ascot,	
  Berkshire,	
  UK	
  SL5	
  7PY
1

Contents	
  
	
  
	
  
Topic	
  

Pages	
  

Contents	
  

2	
  

Credits	
  

3	
  

Contact	
  Information	
  

3	
  

Citing	
  the	
  GPDD	
  

3	
  

Introduction	
  

4	
  

History	
  of	
  the	
  GPDD	
  

4-­‐5	
  

Data	
  Sources	
  

6	
  

Relationship	
  to	
  other	
  time	
  series	
  databases	
  	
  

6	
  

Data	
  capture	
  	
  

7	
  

Quality	
  control	
  

7-­‐8	
  

Temporal	
  referencing	
  

8-­‐9	
  

Spatial	
  referencing	
  

9	
  

Minimal	
  use	
  of	
  Nulls	
  

9	
  

Accessing	
  the	
  GPDD	
  

10	
  

(including	
  the	
  MSAccess	
  Version)	
  
Restricted	
  access	
  series	
  	
  

10	
  

GPDD	
  Data	
  Structure	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

11	
  

Database	
  fields	
  as	
  data	
  types	
  

12-­‐18	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Main	
  table	
  

12	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Data	
  table	
  

13	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Datasource	
  table	
  

13	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Location	
  table	
  

14	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Taxon	
  table	
  

15	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Timeperiod	
  table	
  

15	
  

Appendix:	
  Detail	
  of	
  changes	
  between	
  GPDD	
  v1.0	
  
and	
  v2.0	
  

15-­‐18	
  

References	
  

19	
  

	
  
	
  

2

Credits	
  
The	
  GPDD	
  was	
  initially	
  compiled	
  by	
  John	
  Prendargast,	
  Ellen	
  Bazeley-­‐White?,	
  Owen	
  Smith,	
  
John	
  Lawton	
  and	
  Pablo	
  Inchausti	
  and	
  released	
  in	
  1999.	
  Version	
  2.0	
  was	
  released	
  in	
  2010	
  
following	
  a	
  substantial	
  restructuring	
  of	
  the	
  database	
  and	
  the	
  addition	
  of	
  123	
  new	
  series	
  by	
  
David	
  Kidd	
  and	
  Sarah	
  Knight.	
  
	
  

Contact	
  
Department	
  of	
  Biology,	
  Imperial	
  College	
  London,	
  Silwood	
  Park	
  campus,	
  Ascot,	
  Berkshire,	
  SL5	
  
7PY,	
  U.K.	
  
Telephone	
  
FAX	
  
E-­‐mail	
  
	
  

44	
  (0)20	
  7594	
  2346	
  
44	
  (0)1344	
  873173	
  
cpb-­‐gpdd-­‐dl@imperial.ac.uk	
  

	
  

Citing	
  the	
  GPDD	
  
NERC	
  Centre	
  for	
  Population	
  Biology,	
  Imperial	
  College	
  (2010)	
  The	
  Global	
  Population	
  
Dynamics	
  Database	
  v2.0.	
  http://www.sw.ic.ac.uk/cpb/cpb/gpdd.html.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Front	
  cover:	
  2900	
  abundance	
  time-­‐series	
  from	
  the	
  Global	
  Population	
  Dynamics	
  Database¹.	
  	
  
Series	
  abundances	
  are	
  standardized	
  and	
  displayed	
  with	
  increasing	
  abundance	
  to	
  the	
  east	
  (right)	
  and	
  
decreasing	
  abundance	
  to	
  the	
  west	
  (left).	
  Time	
  series	
  intersect	
  layers	
  of	
  annual	
  mean	
  temperature	
  in	
  1921	
  and	
  
1981²	
  and	
  land	
  use	
  in	
  1900	
  and	
  1950³.	
  
¹NERC	
  Centre	
  for	
  Population	
  Biology,	
  Imperial	
  College	
  (1999)	
  The	
  Global	
  Population	
  Dynamics	
  Database.	
  
http://www.sw.ic.ac.uk/cpb/cpb/gpdd.htm.	
  2	
  Mitchell,	
  T.	
  D.,	
  Carter,	
  T.	
  R.,	
  Jones,	
  P.	
  D.,	
  Hulme,	
  M.	
  &	
  New,	
  M.	
  
(2004)	
  
²A	
  Comprehensive	
  Set	
  of	
  High-­‐Resolution	
  Grids	
  of	
  Monthly	
  Climate	
  for	
  Europe	
  and	
  the	
  Globe:	
  The	
  Observed	
  
Record	
  (1901-­‐2000)	
  and	
  16	
  Scenarios	
  (2001-­‐2100)	
  (Tyndall	
  Centre	
  for	
  Climate	
  Change	
  Res.,	
  Norwich,	
  U.K.),	
  
Working	
  Paper	
  55.	
  
³Global	
  Historical	
  Land	
  Cover	
  and	
  Land	
  Use	
  Estimates	
  (1700-­‐1990)	
  ,	
  Klein	
  Goldewijk,	
  K.,	
  2001.	
  Estimating	
  global	
  
land	
  use	
  change	
  over	
  the	
  past	
  300	
  years:	
  The	
  HYDE	
  database,	
  Global	
  Biogeochemical	
  Cycles	
  15(2):	
  417-­‐433.	
  

3

Introduction
Understanding	
  the	
  way	
  in	
  which	
  populations	
  of	
  wild	
  plants	
  and	
  animals	
  behave	
  over	
  long	
  
periods	
  of	
  time	
  is	
  crucial	
  to	
  unravelling	
  the	
  way	
  in	
  which	
  communities	
  are	
  assembled	
  and	
  
the	
  way	
  in	
  which	
  they	
  respond	
  to	
  disturbance,	
  control	
  or	
  harvesting.	
  The	
  implications	
  for	
  
conservation	
  and	
  agriculture	
  are	
  legion.	
  Aside	
  from	
  practicalities,	
  population	
  variation	
  is	
  
also	
  intrinsically	
  interesting,	
  and	
  provides	
  a	
  wealth	
  of	
  opportunity	
  for	
  mathematical	
  
innovation	
  or	
  exploration,	
  especially	
  when	
  populations	
  have	
  particular	
  cyclic,	
  outbreaking	
  or	
  
chaotic	
  properties.	
  For	
  most	
  students	
  of	
  population	
  behaviour,	
  the	
  limiting	
  factor	
  in	
  
investigating	
  any	
  of	
  these	
  phenomena,	
  and	
  the	
  development	
  of	
  theory	
  to	
  explain	
  them,	
  is	
  
the	
  availability	
  of	
  suitable	
  data.	
  Usually,	
  where	
  analyses	
  are	
  performed	
  and	
  published,	
  
authors	
  work	
  on	
  data	
  that	
  they	
  have	
  collected	
  themselves.	
  By	
  definition,	
  the	
  collection	
  of	
  
population	
  time	
  series	
  is	
  a	
  lengthy	
  process,	
  and	
  many	
  ecologists	
  have	
  committed	
  
themselves	
  to	
  a	
  lifetime	
  of	
  work	
  in	
  order	
  to	
  accumulate	
  detailed	
  information	
  on	
  populations	
  
at	
  certain	
  sites	
  over	
  many	
  years.	
  	
  
Studies	
  of	
  population	
  behaviour	
  tend	
  to	
  address	
  a	
  number	
  of	
  themes,	
  each	
  with	
  a	
  typical	
  
taxonomic	
  flavour.	
  Thus,	
  students	
  of	
  the	
  chaotic	
  vs	
  cyclic	
  question	
  tend	
  to	
  focus	
  on	
  small	
  
mammals,	
  those	
  with	
  an	
  interest	
  in	
  the	
  effects	
  of	
  harvesting	
  or	
  culling	
  generally	
  study	
  
fisheries	
  or	
  large	
  mammal	
  data	
  respectively	
  and	
  analyses	
  of	
  insect	
  populations	
  tend	
  to	
  
dominate	
  the	
  literature	
  on	
  pest	
  control.	
  
Analysis	
  and	
  subsequent	
  publication	
  can	
  only	
  take	
  place	
  once	
  time	
  series	
  of	
  adequate	
  length	
  
have	
  been	
  amassed,	
  but	
  frequently	
  authors	
  will	
  continue	
  to	
  collect	
  data	
  after	
  publication	
  
and	
  may	
  follow	
  the	
  first	
  paper	
  with	
  an	
  updated	
  or	
  extended	
  version,	
  or	
  a	
  book	
  or	
  book	
  
chapter	
  at	
  a	
  later	
  date.	
  There	
  are	
  examples	
  of	
  data	
  sets	
  that	
  have	
  been	
  assiduously	
  
collected	
  but	
  from	
  which	
  no	
  publications	
  have	
  resulted,	
  or	
  from	
  which	
  internal,	
  private	
  or	
  
unpublished	
  documents	
  have	
  been	
  generated.	
  
The	
  result	
  of	
  all	
  this	
  fragmentary	
  activity	
  in	
  population	
  dynamics,	
  where	
  data	
  sets	
  are	
  often	
  
analysed	
  individually,	
  or	
  in	
  line	
  with	
  certain	
  taxonomic	
  conventions,	
  is	
  that	
  it	
  has	
  been	
  
difficult	
  to	
  a)	
  formulate	
  general	
  theory	
  and	
  b)	
  investigate	
  large	
  scale	
  pattern,	
  both	
  spatially	
  
and	
  taxonomically.	
  The	
  general	
  unavailability	
  of	
  data	
  has	
  also	
  led	
  to	
  the	
  development	
  of	
  
theory	
  through	
  the	
  repeated	
  analysis	
  of	
  the	
  same	
  data	
  sets.	
  The	
  celebrated	
  Canadian	
  
lynx/snowshoe	
  hare	
  cycle	
  has	
  been	
  the	
  subject	
  of	
  analyses	
  and	
  publications	
  almost	
  too	
  
numerous	
  to	
  count.	
  There	
  is	
  an	
  obvious	
  danger	
  that	
  if	
  individual	
  data	
  sets	
  such	
  as	
  this	
  
happen	
  not	
  to	
  be	
  representative	
  of	
  the	
  way	
  in	
  which	
  most	
  populations	
  behave	
  then	
  
theoretical	
  understanding	
  may	
  suffer.	
  	
  
	
  

History	
  of	
  the	
  GPDD	
  
Initiated	
  in	
  1994,	
  as	
  a	
  collaborative	
  venture	
  between	
  the	
  NERC	
  Centre	
  for	
  Population	
  
Biology	
  at	
  Imperial	
  College	
  and	
  The	
  Department	
  of	
  Ecology	
  and	
  Evolution,	
  University	
  of	
  
Tennessee,	
  and	
  subsequently	
  in	
  collaboration	
  with	
  the	
  National	
  Center	
  for	
  Ecological	
  
Analysis	
  and	
  Synthesis,	
  Santa	
  Barbara,	
  the	
  GPDD	
  is	
  one	
  of	
  the	
  largest	
  collections	
  of	
  animal	
  
and	
  plant	
  population	
  data	
  in	
  the	
  world,	
  bringing	
  together	
  over	
  5000	
  time	
  series	
  in	
  one	
  
database.	
  The	
  type	
  of	
  data	
  contained	
  in	
  the	
  GPDD	
  varies	
  enormously,	
  from	
  annual	
  counts	
  of	
  
mammals	
  or	
  birds	
  at	
  individual	
  sampling	
  sites,	
  to	
  weekly	
  counts	
  of	
  zooplankton	
  and	
  other	
  

4

marine	
  fauna.	
  Time-­‐series'	
  run	
  for	
  a	
  minimum	
  of	
  10	
  years	
  for	
  over	
  1800	
  animal	
  species	
  
across	
  the	
  globe	
  and	
  have	
  been	
  recorded	
  from	
  a	
  variety	
  of	
  sources,	
  such	
  as	
  scientific	
  
journals	
  and	
  unpublished	
  data.	
  
The	
  intention	
  is	
  that	
  the	
  GPDD	
  will	
  become	
  a	
  widely	
  available	
  resource	
  to	
  be	
  used	
  to	
  
investigate	
  general	
  questions	
  in	
  population	
  biology.	
  As	
  of	
  2010	
  the	
  database	
  has	
  been	
  cited	
  
in	
  over	
  20	
  papers(Brook	
  et	
  al.	
  2006;	
  Collen	
  et	
  al.	
  2008;	
  Doncaster	
  2006;	
  Eberhardt	
  et	
  al.	
  
2008;	
  Fagan	
  2001;	
  Getz	
  and	
  Lloyd-­‐Smith	
  2006;	
  Halley	
  and	
  Stergiou	
  2005;	
  Heering	
  and	
  Reed	
  
2005;	
  Holmes	
  et	
  al.	
  2007;	
  Inchausti	
  and	
  Halley	
  2001;	
  John	
  Halley	
  2002;	
  Kendall	
  et	
  al.	
  1998;	
  
Lotts	
  et	
  al.	
  2004;	
  Peacock	
  and	
  Garshelis	
  2006;	
  Reed	
  and	
  Hobbs	
  2004;	
  Reed	
  et	
  al.	
  2003;	
  Ross	
  
2006;	
  Sibly	
  et	
  al.	
  2005;	
  Sibly	
  et	
  al.	
  2006a;	
  Sibly	
  et	
  al.	
  2006b;	
  Valone	
  and	
  Barber	
  2008)	
  as	
  well	
  
as	
  providing	
  a	
  resource	
  of	
  data	
  for	
  teaching	
  purposes.	
  For	
  a	
  thorough	
  and	
  penetrative	
  
analysis	
  on	
  the	
  behaviour	
  of	
  individual	
  populations	
  to	
  be	
  performed,	
  more	
  information	
  than	
  
can	
  be	
  provided	
  in	
  the	
  GPDD	
  may	
  be	
  required.	
  Clearly	
  there	
  is	
  a	
  limit	
  to	
  the	
  type	
  and	
  
quantity	
  of	
  information	
  that	
  can	
  be	
  supplied	
  via	
  general	
  resource	
  such	
  as	
  the	
  GPDD.	
  We	
  
have	
  therefore	
  not	
  included	
  any	
  extensive	
  life	
  history	
  or	
  demographic	
  data,	
  even	
  where	
  this	
  
information	
  is	
  presented	
  in	
  the	
  original	
  publication.	
  	
  
	
  
Version	
  1.0	
  (released	
  in	
  1999)	
  has	
  now	
  been	
  superseded	
  by	
  v2.0	
  which	
  includes	
  the	
  
following	
  enhancements,	
  
	
  
A	
  consistent	
  definition	
  of	
  a	
  time-­‐series.	
  
Consistent	
  metadata.	
  
! Units.	
  
! Sampling	
  protocol.	
  
Consistent	
  temporal	
  coding.	
  
Addition	
  of	
  missing	
  location	
  information,	
  the	
  spatial	
  bounds	
  of	
  study	
  areas	
  and	
  a	
  
spatial	
  accuracy	
  index.	
  
Abundance	
  data	
  are	
  supplied	
  ‘retro-­‐transformed’	
  as	
  well	
  as	
  in	
  the	
  published	
  source	
  
units.	
  
Improved	
  documentation.	
  
123	
  additional	
  time-­‐series	
  are	
  included,	
  courtesy	
  of	
  Barry	
  Brook	
  (University	
  of	
  
Adelaide).	
  
Removal	
  of	
  un-­‐cited	
  associated	
  data	
  including	
  body	
  size	
  and	
  biotope	
  information.
	
  
See	
  the	
  Appendix	
  for	
  full	
  details	
  of	
  change	
  between	
  versions.	
  
	
  
	
  

5

Data	
  Sources	
  
The	
  time	
  series	
  in	
  the	
  database	
  come	
  from	
  both	
  published	
  and	
  unpublished	
  sources.	
  They	
  
have	
  been	
  located	
  in	
  a	
  variety	
  of	
  ways:	
  
1. By	
  systematically	
  searching	
  back	
  issues	
  of	
  the	
  predominant	
  ecological	
  and	
  science	
  
journals.	
  	
  
2. By	
  following	
  citation	
  trails	
  -­‐	
  when	
  a	
  suitable	
  time	
  series	
  is	
  located	
  in	
  a	
  publication,	
  there	
  
are	
  usually	
  one	
  or	
  more	
  references	
  to	
  similar	
  or	
  comparable	
  studies	
  in	
  the	
  citations	
  list	
  -­‐	
  
every	
  paper	
  tends	
  to	
  lead	
  to	
  another	
  paper.	
  	
  
3. By	
  searching	
  the	
  World	
  Wide	
  Web,	
  where	
  an	
  increasing	
  number	
  of	
  ecological	
  datasets	
  
are	
  being	
  made	
  available.	
  
4. By	
  searching	
  promising	
  book	
  titles.	
  The	
  vintage	
  literature	
  often	
  contains	
  a	
  wealth	
  of	
  
tabulated	
  data	
  of	
  varying	
  types,	
  and	
  we	
  have	
  drawn	
  extensively	
  upon	
  the	
  resources	
  of	
  
the	
  Imperial	
  College	
  library	
  and	
  the	
  British	
  Library	
  to	
  locate	
  many	
  long-­‐out-­‐of-­‐print	
  
volumes.	
  
5. By	
  negotiating	
  access	
  to	
  unpublished	
  data.	
  Through	
  our	
  network	
  of	
  professional	
  
contacts	
  we	
  have	
  endeavoured	
  to	
  locate	
  unpublished	
  data	
  which	
  collectors	
  are	
  
prepared	
  to	
  contribute	
  to	
  the	
  project.	
  Quite	
  often,	
  and	
  quite	
  understandably,	
  collectors	
  
prefer	
  to	
  retain	
  data	
  for	
  their	
  own	
  use,	
  at	
  least	
  until	
  they	
  have	
  published.	
  We	
  have,	
  
however	
  been	
  delighted	
  at	
  the	
  selfless	
  response	
  of	
  several	
  collectors,	
  who	
  have	
  donated	
  
unpublished	
  data	
  with	
  no,	
  or	
  minimal,	
  restrictions.	
  
6. Data	
  from	
  Barry	
  Brook	
  (MainID	
  20527	
  –	
  20663).	
  As	
  part	
  of	
  the	
  upgrade	
  from	
  v1.0	
  to	
  the	
  
current	
  v2.0	
  123	
  time	
  series	
  collated	
  from	
  a	
  variety	
  of	
  sources	
  and	
  published	
  as	
  a	
  
supplement	
  to	
  an	
  Ecology	
  Letters	
  paper	
  (Brook	
  et	
  al.	
  2006)	
  were	
  added	
  to	
  the	
  GPDD.	
  
The	
  GPDD	
  supplies	
  these	
  data	
  as	
  published	
  by	
  Brook	
  et	
  al.	
  as	
  such	
  they	
  may	
  be	
  
derivations	
  of	
  the	
  original	
  source	
  material.	
  Users	
  should	
  refer	
  to	
  the	
  original	
  sources	
  
listed	
  in	
  supplementary	
  table	
  S3	
  of	
  (Brook	
  et	
  al.	
  2006)	
  sm004.doc	
  	
  on	
  
http://www3.interscience.wiley.com/journal/118634071/suppinfo.	
  Barry	
  Brook’s	
  ID	
  can	
  
be	
  found	
  in	
  the	
  Main	
  table	
  in	
  the	
  Notes	
  column	
  for	
  cross-­‐reference.	
  
As	
  the	
  search	
  protocol	
  followed	
  for	
  v1.0	
  was	
  not	
  undertaken	
  for	
  v2.0	
  and	
  the	
  Brook	
  data	
  
was	
  collated	
  under	
  a	
  different	
  protocol	
  other	
  series	
  that	
  meet	
  the	
  GPDD	
  criteria	
  and	
  have	
  
been	
  published	
  after	
  1999	
  undoubtedly	
  exist.	
  Users	
  should	
  always	
  refer	
  to	
  the	
  original	
  
source	
  material	
  to	
  confirm	
  data	
  are	
  fit	
  for	
  purpose.	
  	
  

	
  
Relationship	
  to	
  other	
  time	
  series	
  databases	
  
The	
  GPDD	
  contains	
  some	
  data	
  that	
  also	
  resides	
  in	
  other	
  time	
  series	
  collations.	
  For	
  example,	
  
the	
  Living	
  Planet	
  Index	
  (Collen	
  et	
  al.	
  2008),	
  held	
  at	
  the	
  Institute	
  of	
  Zoology,	
  Zoological	
  
Society	
  of	
  London,	
  that	
  provides	
  a	
  measure	
  of	
  global	
  biodiversity	
  contains	
  some	
  series	
  
extracted	
  from	
  the	
  GPDD	
  as	
  well	
  as	
  other	
  online-­‐resources	
  and	
  scientific	
  literature.	
  It	
  differs	
  
from	
  the	
  GPDD	
  by	
  holding	
  vertebrate-­‐only	
  data	
  and	
  with	
  a	
  reduced	
  minimum	
  time-­‐series	
  
length	
  of	
  2	
  years.	
  	
  Other	
  series	
  may	
  overlap	
  with	
  data	
  held	
  by	
  the	
  British	
  Trust	
  for	
  
Ornithology	
  or	
  the	
  US	
  Bird	
  Census.	
  When	
  amalgamating	
  data	
  from	
  different	
  repositories	
  
users	
  should	
  check	
  source	
  metadata	
  to	
  prevent	
  duplication.	
  
6

Data	
  capture	
  
Population	
  data	
  are	
  presented	
  in	
  published	
  material	
  in	
  many	
  ways.	
  Obviously,	
  it	
  is	
  easiest	
  to	
  
extract	
  data	
  from	
  a	
  table	
  of	
  numbers.	
  However,	
  population	
  trends	
  and	
  variations	
  are	
  best	
  
depicted	
  in	
  a	
  line	
  plot	
  or	
  histogram	
  and	
  it	
  is	
  in	
  these	
  graphical	
  forms	
  that	
  most	
  data	
  are	
  
published.	
  In	
  some	
  cases	
  it	
  has	
  been	
  possible	
  to	
  retrieve	
  the	
  raw	
  data	
  from	
  the	
  author(s)	
  in	
  
question,	
  but	
  in	
  others	
  it	
  has	
  been	
  necessary	
  to	
  reconstruct	
  the	
  data	
  from	
  the	
  graphics.	
  This	
  
has	
  its	
  limitations,	
  and	
  the	
  accuracy	
  of	
  the	
  derived	
  numbers	
  may	
  be	
  compromised	
  where	
  
logarithmic	
  scales	
  are	
  used	
  or	
  where	
  printed	
  copy	
  is	
  of	
  poor	
  quality	
  or	
  is	
  very	
  small.	
  
Commercial	
  scanning	
  and	
  data	
  retrieval	
  software	
  was	
  used	
  for	
  this	
  purpose	
  and,	
  generally	
  
speaking,	
  we	
  believe	
  that	
  errors	
  due	
  to	
  data	
  extraction	
  are	
  within	
  acceptable	
  limits.	
  Users	
  
will	
  need	
  to	
  draw	
  their	
  own	
  conclusions	
  about	
  data	
  accuracy.	
  

	
  
Quality	
  control	
  
The	
  GPDD	
  only	
  contains	
  time	
  series	
  with	
  ten	
  or	
  more	
  records.	
  Usually,	
  this	
  means	
  ten	
  years.	
  
Occasionally,	
  where	
  data	
  sets	
  are	
  particularly	
  interesting—they	
  may	
  be	
  of	
  a	
  very	
  poorly	
  
studied	
  species,	
  for	
  example—we	
  have	
  included	
  time	
  series	
  which	
  are	
  at	
  least	
  ten	
  years	
  
from	
  the	
  beginning	
  to	
  the	
  end	
  of	
  sampling,	
  i.e.	
  they	
  just	
  fulfil	
  our	
  minimum	
  series	
  length	
  
criterion,	
  but	
  which	
  also	
  have	
  one	
  or	
  more	
  missing	
  data	
  points.	
  	
  
Most	
  of	
  the	
  datasets	
  are	
  of	
  natural,	
  i.e.	
  unmanaged	
  populations,	
  or	
  of	
  the	
  unmanipulated	
  
controls	
  from	
  experimental	
  studies.	
  Even	
  apparently	
  unmanaged	
  populations	
  may	
  be	
  
subject	
  to	
  human	
  intervention,	
  for	
  example	
  some	
  of	
  the	
  primate	
  populations	
  contained	
  in	
  
the	
  database	
  have	
  been	
  supported	
  by	
  supplemental	
  feeding	
  in	
  some	
  years.	
  In	
  spite	
  of	
  this	
  
we	
  have	
  included	
  them	
  because	
  primate	
  data	
  are	
  comparatively	
  rare.	
  Notes	
  in	
  the	
  database	
  
record	
  this	
  fact,	
  and	
  the	
  user	
  is	
  referred	
  to	
  the	
  original	
  source	
  to	
  determine	
  whether	
  or	
  to	
  
what	
  extent,	
  this	
  is	
  likely	
  to	
  prejudice	
  any	
  analysis.	
  Population	
  data	
  from	
  some	
  laboratory	
  
experiments	
  are	
  also	
  included,	
  and	
  are	
  marked	
  as	
  such.	
  
Including,	
  as	
  it	
  does,	
  population	
  counts	
  from	
  a	
  very	
  wide	
  range	
  of	
  sources,	
  there	
  is	
  
considerable	
  variation	
  in	
  the	
  quality	
  of	
  the	
  data.	
  Although	
  it	
  does	
  not	
  guarantee	
  accuracy,	
  
the	
  peer	
  review	
  process	
  which	
  is	
  applied	
  to	
  much	
  published	
  work	
  may	
  filter	
  out	
  some	
  of	
  the	
  
more	
  unreliable	
  data.	
  It	
  is	
  usually	
  difficult	
  to	
  obtain	
  an	
  accurate,	
  objective	
  measure	
  of	
  data	
  
quality,	
  and	
  it	
  is	
  often	
  necessary	
  to	
  fall	
  back	
  on	
  a	
  subjective	
  assessment.	
  This	
  we	
  have	
  done,	
  
based	
  on	
  criteria	
  such	
  as	
  the	
  type	
  of	
  environment	
  or	
  habitat	
  sampled,	
  the	
  species	
  in	
  
question,	
  the	
  area	
  of	
  the	
  sampling	
  site,	
  and	
  the	
  method	
  of	
  sampling.	
  Each	
  dataset	
  has	
  been	
  
ranked,	
  on	
  a	
  scale	
  of	
  1	
  (low)	
  to	
  5	
  (high),	
  for	
  apparent	
  data	
  quality.	
  For	
  example,	
  the	
  
database	
  contains	
  numerous	
  very	
  long	
  datasets	
  of	
  fur	
  trapping	
  and	
  export	
  records	
  from	
  
North	
  America.	
  As	
  animal	
  population	
  data	
  they	
  are	
  highly	
  unreliable,	
  because	
  the	
  numbers	
  
of	
  skins	
  exported	
  depend	
  heavily	
  on	
  factors	
  other	
  than	
  the	
  numbers	
  of	
  animals	
  available	
  for	
  
trapping.	
  Nevertheless	
  they	
  are	
  unique,	
  and	
  have	
  been	
  included	
  to	
  provide	
  a	
  context	
  for	
  
other	
  contemporaneous	
  datasets,	
  rather	
  than	
  as	
  hard	
  ecological	
  data	
  themselves.	
  These	
  we	
  
have	
  given	
  a	
  rank	
  of	
  1.	
  At	
  the	
  other	
  end	
  of	
  the	
  scale,	
  the	
  database	
  contains	
  a	
  number	
  of	
  UK	
  
estuarine	
  datasets	
  collected	
  by	
  automatic	
  sieve	
  sampling,	
  which	
  has	
  been	
  completely	
  
consistent	
  over	
  the	
  entire	
  sampling	
  period	
  (17	
  years).	
  They	
  exemplify	
  the	
  highest	
  possible	
  
quality	
  of	
  sampled	
  population	
  data,	
  and	
  these	
  we	
  have	
  ranked	
  as	
  5.	
  In	
  all	
  cases	
  the	
  ranking	
  

7

is	
  provided	
  as	
  a	
  guide	
  only,	
  and	
  it	
  will	
  be	
  for	
  the	
  user	
  of	
  each	
  dataset	
  to	
  determine	
  whether	
  
or	
  not	
  it	
  meets	
  his/her	
  specific	
  requirements.	
  	
  
The	
  collecting	
  of	
  ecological	
  data,	
  especially	
  over	
  long	
  periods	
  of	
  time,	
  may	
  be	
  subject	
  to	
  all	
  
sorts	
  of	
  difficulties	
  and	
  variation	
  as	
  circumstances	
  change	
  over	
  the	
  years.	
  Usually,	
  where	
  
such	
  changes	
  are	
  relevant	
  they	
  are	
  referred	
  to	
  in	
  the	
  published	
  material,	
  and	
  we	
  have	
  
endeavoured	
  to	
  mirror	
  any	
  warnings,	
  caveats	
  or	
  similar	
  points	
  in	
  the	
  Notes	
  field	
  for	
  each	
  
dataset.	
  
	
  

Temporal	
  Referencing	
  
The	
  GPDD	
  contains	
  time	
  series	
  of	
  abundance	
  records	
  however	
  there	
  is	
  considerable	
  in	
  how	
  
data	
  are	
  temporal	
  referenced.	
  Studies	
  rarely	
  adhere	
  to	
  ridged	
  sampling	
  regimes	
  or	
  publish	
  
complete	
  information	
  on	
  sampling	
  as	
  even	
  if	
  a	
  systematic	
  sampling	
  method	
  is	
  aimed	
  for	
  
circumstance	
  often	
  intervenes	
  resulting	
  in	
  slight	
  differences	
  between	
  the	
  desired	
  regime	
  
and	
  reality.	
  	
  
The	
  majority	
  of	
  series	
  are	
  referenced	
  to	
  absolute	
  time	
  by	
  year	
  or	
  year	
  +	
  sub-­‐annual	
  time	
  
period.	
  A	
  minority	
  of	
  series,	
  mostly	
  from	
  lab-­‐based	
  experiments,	
  are	
  only	
  referenced	
  to	
  
relative	
  time.	
  For	
  example,	
  generation	
  1,	
  generation	
  2,	
  etc.	
  or	
  day	
  1,	
  day	
  2,	
  day	
  3,	
  etc.	
  	
  
Series	
  referenced	
  to	
  absolute	
  time	
  differ	
  in	
  the	
  length	
  of	
  the	
  sampling	
  period	
  and	
  the	
  
precision	
  with	
  which	
  the	
  sampling	
  period	
  is	
  recorded.	
  The	
  GPDD	
  does	
  not	
  store	
  exact	
  
sampling	
  dates,	
  even	
  when	
  provided	
  in	
  the	
  source.	
  Instead	
  observations	
  are	
  temporally	
  
coded	
  to	
  whatever	
  temporal	
  unit	
  the	
  data	
  was	
  presented	
  in	
  on	
  the	
  source	
  graph	
  or	
  tables	
  
from	
  which	
  it	
  was	
  extracted.	
  Thus,	
  for	
  example	
  data	
  in	
  the	
  GPDD	
  labelled	
  as	
  being	
  from	
  
‘May	
  1965’	
  may	
  be	
  a	
  composite	
  of	
  observations	
  throughout	
  the	
  month	
  or	
  data	
  from	
  any	
  
single	
  day	
  in	
  that	
  month;	
  similarly	
  data	
  for	
  ‘1965’	
  may	
  encompass	
  sampling	
  across	
  any	
  
subset	
  of	
  that	
  year.	
  The	
  majority	
  of	
  data	
  in	
  the	
  GPDD	
  is	
  temporally	
  referenced	
  to	
  a	
  year	
  or	
  
month	
  and	
  year.	
  Other	
  data	
  is	
  referenced	
  to	
  3-­‐month,	
  4-­‐week	
  period,	
  season	
  or	
  other	
  
period.	
  GPDD	
  metadata	
  and	
  the	
  original	
  sources	
  should	
  be	
  examined	
  if	
  for	
  further	
  
information	
  on	
  temporal	
  sampling.	
  
	
  
The	
  GPDD	
  provides	
  three	
  modes	
  of	
  temporal	
  referencing	
  (fig	
  1).	
  
1. Timeperiod	
  text	
  description.	
  All	
  data	
  points	
  have	
  a	
  Timeperiod	
  which	
  provides	
  a	
  text	
  
description	
  of	
  the	
  time	
  period	
  of	
  the	
  sample	
  such	
  as	
  a	
  month,	
  season	
  or	
  sequential	
  day	
  
number.	
  Timeperiods	
  are	
  grouped	
  into	
  groups	
  such	
  as	
  quarters,	
  months,	
  weeks	
  and	
  
days	
  and,	
  where	
  appropriate,	
  ordered	
  within	
  groups.	
  To	
  obtain	
  a	
  text	
  description	
  of	
  the	
  
time	
  of	
  a	
  data	
  record	
  referenced	
  in	
  absolute	
  time	
  concatenate	
  the	
  integer	
  year	
  in	
  the	
  
data	
  table	
  to	
  the	
  Timeperiod.	
  Data	
  referenced	
  to	
  relative	
  time	
  only	
  have	
  -­‐9999	
  in	
  year.	
  
2. Series	
  step	
  provides	
  a	
  relative	
  integer	
  time	
  stamp	
  for	
  data	
  within	
  a	
  series.	
  The	
  first	
  data	
  
value	
  in	
  the	
  series	
  has	
  seriesstep	
  0.	
  Subsequent	
  values	
  have	
  an	
  increasing	
  seriesstep	
  
proportional	
  to	
  the	
  temporal	
  period	
  between	
  the	
  samples.	
  	
  
3. Decimal	
  Year	
  provides	
  an	
  estimate	
  of	
  absolute	
  dating	
  across	
  all	
  time	
  series	
  .	
  
DecimalYearBegin	
  is	
  the	
  beginning	
  of	
  the	
  period	
  within	
  which	
  sampling	
  occurred,	
  it	
  is	
  
simply	
  calculated	
  as	
  year	
  +	
  fraction	
  of	
  the	
  year	
  to	
  the	
  start	
  of	
  the	
  sampling	
  period.	
  

8

Similarly	
  DecimalYearEnd	
  is	
  year	
  +	
  fraction	
  of	
  the	
  year	
  to	
  the	
  end	
  of	
  the	
  sampling	
  period.	
  
Thus	
  an	
  annual	
  value	
  has	
  DecimalYearBegin	
  =	
  Year	
  and	
  DecimalYearEnd	
  =	
  Year	
  +	
  1,	
  while	
  
a	
  monthly	
  value	
  for	
  June	
  has	
  DecimalYearBegin	
  =	
  Year	
  +	
  (5	
  *	
  1/12)	
  and	
  DecimalYearEnd	
  
=	
  Year	
  +	
  (6	
  *	
  1/12).	
  

	
  
Figure	
  1.	
  Temporal	
  referencing	
  in	
  the	
  GPDD.	
  
	
  

Spatial	
  Referencing	
  
The	
  location	
  contains	
  information	
  defining	
  the	
  spatial	
  location	
  of	
  the	
  populations	
  the	
  time	
  
series	
  relate	
  to.	
  If	
  provided	
  coordinates	
  were	
  extracted	
  from	
  the	
  source,	
  otherwise	
  they	
  
were	
  estimated	
  from	
  atlases	
  and	
  Google	
  Earth.	
  The	
  SpatialAccuracy	
  column	
  provides	
  a	
  
qualitative	
  estimate	
  of	
  accuracy	
  for	
  the	
  coordinates.	
  Where	
  series	
  relate	
  to	
  extensive	
  
geographical	
  areas	
  the	
  given	
  coordinates	
  approximate	
  the	
  centroid	
  of	
  the	
  sampled	
  area.	
  
Additional	
  information	
  of	
  the	
  geographical	
  extent	
  of	
  a	
  location	
  is	
  encoded	
  in	
  the	
  Area	
  
(contains	
  many	
  nulls),	
  LocationExtent	
  and	
  spatial	
  bounding	
  box	
  columns	
  (North,	
  East,	
  South	
  
and	
  West	
  
	
  

Minimal	
  use	
  of	
  Nulls	
  
The	
  use	
  of	
  null	
  values	
  has	
  been	
  minimised	
  in	
  text	
  fields	
  wherever	
  possible.	
  Instead,	
  ‘none’	
  is	
  
used	
  where	
  the	
  data	
  source	
  states	
  that	
  there	
  is	
  no	
  information,	
  	
  ‘not	
  specified’	
  where	
  the	
  
data	
  source	
  fails	
  to	
  state	
  the	
  information,	
  ‘unknown’	
  where	
  we	
  were	
  unable	
  access	
  the	
  full	
  
data	
  source	
  and	
  ‘not	
  applicable’	
  where	
  not	
  relevant.	
  	
  In	
  numerical	
  fields,	
  usually	
  relating	
  to	
  
a	
  calendar	
  year,	
  ‘9999’	
  indicates	
  a	
  null	
  value.	
  
	
  

9

Accessing	
  the	
  GPDD	
  
The	
  GPDD	
  data	
  may	
  be	
  queried	
  and	
  downloaded	
  from	
  the	
  Web	
  portal	
  

https://www.imperial.ac.uk/cpb/gpdd2/gpdd.aspx.	
  	
  
Once	
  logged	
  in	
  to	
  v2,	
  the	
  entire	
  database	
  (excluding	
  restricted	
  series)	
  can	
  be	
  downloaded	
  as	
  a	
  
Microsoft	
  Access	
  database	
  using	
  the	
  link	
  on	
  the	
  left-­‐hand	
  side	
  of	
  the	
  page	
  (fig	
  2).	
  
	
  

	
  

Figure	
  1.	
  Downloading	
  the	
  GPDD	
  as	
  an	
  MSAccess	
  database.	
  
	
  

Restricted	
  access	
  series	
  
Due	
  to	
  licensing	
  restrictions	
  686	
  series	
  from	
  6	
  sources	
  cannot	
  be	
  distributed	
  without	
  the	
  
permission	
  of	
  the	
  owner.	
  These	
  are	
  data	
  from	
  the	
  British	
  Trust	
  for	
  Ornithology’s	
  Common	
  
Bird	
  Census	
  (97)	
  and	
  Constant	
  Effort	
  Recording	
  Scheme	
  (32),	
  Rothamstead	
  Experimental	
  
Station,	
  UK	
  (9),	
  the	
  National	
  monitoring	
  programme	
  for	
  wintering	
  wildfowl	
  in	
  Norway	
  1980	
  
–	
  93	
  (T.	
  Nygard,	
  23),	
  Phalacrocorax	
  carbo	
  (Great	
  cormorant)	
  and	
  Somateria	
  mollissima	
  
(Common	
  eider)	
  series	
  supplied	
  by	
  N.	
  Rov	
  (2)	
  and	
  data	
  from	
  insect	
  light	
  trapping	
  supplied	
  by	
  
H.	
  Wolda	
  (523).	
  	
  
	
  

10

GPDD	
  Data	
  Structure	
  
The	
  GPDD	
  is	
  a	
  relational	
  database	
  comprised	
  of	
  six	
  tables	
  (Fig.	
  3).	
  
	
  

	
  
	
  

Figure	
  3.	
  	
  GPDD	
  tables	
  and	
  relations.	
  
	
  

Database	
  table	
  fields	
  and	
  data	
  types	
  
Size	
  =	
  size	
  of	
  field,	
  p	
  =	
  precision.	
  
MS	
  Access	
  data	
  types	
  
adInteger	
  
	
  
adVarWChar	
  
	
  
adDouble	
  
	
  
adSmallInt	
  
	
  
adBoolean	
  
	
  
adNumeric	
  
	
  
adLongVarWChar	
  	
  

four-­‐byte	
  signed	
  integer	
  (DBTYPE_I4).	
  
Null-­‐terminated	
  Unicode	
  character	
  string.	
  
Double-­‐precision	
  floating-­‐point	
  value	
  (DBTYPE_R8).	
  
Two-­‐byte	
  signed	
  integer	
  (DBTYPE_I2).	
  
Boolean	
  value	
  (DBTYPE_BOOL).	
  
Exact	
  numeric	
  value	
  with	
  a	
  fixed	
  precision	
  and	
  scale	
  (DBTYPE_NUMERIC).	
  
Long	
  null-­‐terminated	
  Unicode	
  string	
  value.	
  

	
  

11

MAIN	
  table	
  
A	
  MAIN	
  record	
  is	
  a	
  ‘time	
  series’	
  which	
  is	
  unique	
  Taxon/Location/LifeCycle	
  combination.	
  
Sequential	
  data	
  for	
  multiple	
  life	
  stages	
  (e.g.	
  eggs,	
  larve	
  and	
  adults)	
  are	
  split	
  into	
  different	
  
Main	
  records	
  and	
  must	
  be	
  amalgamated	
  to	
  create	
  a	
  single	
  time	
  series.	
  Where	
  more	
  than	
  
one	
  adult	
  generation	
  occurs	
  per	
  year	
  generation	
  is	
  identified	
  in	
  the	
  generation	
  column	
  of	
  
the	
  data	
  table.	
  	
  	
  
Name	
  

Type	
  

Size	
  

P	
  

Description	
  

MainID	
  

adInteger	
  	
  

	
  

10	
  

Automatic	
  unique	
  ID	
  

TaxonID	
  

adInteger	
  

	
  

10	
  

ID	
  Number	
  in	
  Taxon	
  table	
  

DataSourceID	
  

adInteger	
  

	
  

10	
  

ID	
  Number	
  in	
  Datasource	
  table	
  

BiotopeID	
  

adInteger	
  

	
  

10	
  

ID	
  Number	
  in	
  Biotope	
  table	
  

LocationID	
  

adInteger	
  

	
  

10	
  

ID	
  Number	
  in	
  Location	
  table	
  

SamplingUnits	
  

adVarWChar	
  

255	
  

	
  

The	
  entity	
  observed.	
  Entries	
  include,	
  ‘adults’,	
  ‘cells’,	
  ‘egg	
  
masses’,	
  and	
  ‘pelts’.	
  	
  

SamplingProtocol	
  

adVarWChar	
  

255	
  

	
  

How	
  entities	
  were	
  sampled.	
  Values	
  are	
  ‘Count’,	
  ‘Count	
  
(millions)’,	
  ‘Harvest’,	
  ‘Index	
  of	
  abundance’,	
  ‘Index	
  of	
  territories’,	
  
‘Leaf	
  area’,	
  ‘Mean	
  Count’,	
  ‘Not	
  Specified’,	
  ‘Percent	
  cover’	
  and	
  
‘Sample’.	
  

SourceDimension	
  

adVarWChar	
  

255	
  

	
  

The	
  dimension	
  of	
  source	
  table	
  or	
  graph.	
  Values	
  are	
  Area	
  
coverage,	
  Biomass,	
  Catch,	
  Count,	
  Count	
  (estimated),	
  Density,	
  
Density	
  (estimated),	
  Index,	
  Index	
  -­‐	
  CPUE,	
  Mean	
  Area	
  Coverage,	
  
Mean	
  Biomass,	
  Mean	
  concentration,	
  Mean	
  Count,	
  Mean	
  
Density,	
  Mean	
  Harvest,	
  Minimum	
  Count,	
  Not	
  Specified,	
  Percent	
  
Count,	
  Relative	
  Density,	
  Transformed	
  Biomass,	
  Transformed	
  
Count,	
  Transformed	
  Density	
  and	
  Unknown.	
  

SamplingEffort	
  

adVarWChar	
  

255	
  

	
  

The	
  sampling	
  effort.	
  Usually	
  a	
  measure	
  of	
  temporal	
  effort	
  but	
  
also	
  census,	
  density,	
  harvest.	
  	
  

SpatialDensity	
  

adVarWChar	
  

255	
  

	
  

The	
  spatial	
  unit	
  of	
  a	
  density.	
  

SourceTransform	
  

adVarWChar	
  

255	
  

	
  

Any	
  transformation	
  of	
  the	
  data.	
  

SourceTransformReference	
  

adVarWChar	
  

255	
  

	
  

Details	
  of	
  the	
  reference	
  value	
  of	
  any	
  data	
  transformation.	
  
Base	
  Year,	
  Log,	
  None,	
  Not	
  Specified,	
  Proportion,	
  Unknown,	
  x	
  
1000	
  lbs.	
  

AssociatedDataSets	
  

adVarWChar	
  

255	
  

	
  

Comma	
  separated	
  list	
  of	
  MainID	
  of	
  other	
  series	
  from	
  the	
  same	
  
study	
  or	
  to	
  which	
  the	
  series	
  can	
  be	
  directly	
  compared.	
  

Reliability	
  

adDouble	
  

	
  

15	
  

Subjective	
  Rank	
  1-­‐5,	
  1	
  =	
  least	
  reliable,	
  5	
  =	
  most	
  reliable	
  (see	
  
Quality	
  Control).	
  

StartYear	
  

adInteger	
  

	
  

10	
  

The	
  year	
  in	
  which	
  sampling	
  commenced.	
  

EndYear	
  

adInteger	
  

	
  

10	
  

Insert	
  the	
  year	
  in	
  which	
  sampling	
  ended.	
  

SamplingFrequency	
  

adVarWChar	
  

50	
  

	
  

Approximate	
  number	
  of	
  samples	
  per	
  year.	
  

DatasetLength	
  

adDouble	
  

	
  

15	
  

Total	
  number	
  of	
  samples.	
  

Notes	
  

adLongVarWChar	
  

	
  

	
  

Notes	
  

SiblyFittedTheta	
  

adDouble	
  

	
  

15	
  

Calculated	
  as	
  per	
  (Sibly	
  et	
  al.	
  2005).	
  

SiblyThetaCILower	
  

adDouble	
  

	
  

15	
  

Calculated	
  as	
  per	
  (Sibly	
  et	
  al.	
  2005).	
  

SiblyThetaCIUpper	
  

adDouble	
  

	
  

15	
  

Calculated	
  as	
  per	
  (Sibly	
  et	
  al.	
  2005).	
  

SiblyExtremeNEffect	
  

adBoolean	
  

2	
  

	
  

Calculated	
  as	
  per	
  (Sibly	
  et	
  al.	
  2005).	
  

SiblyReturnRate	
  

adDouble	
  

	
  

15	
  

Calculated	
  as	
  per	
  (Sibly	
  et	
  al.	
  2005).	
  

SiblyCarryingCapacity	
  

adDouble	
  

	
  

15	
  

Calculated	
  as	
  per	
  (Sibly	
  et	
  al.	
  2005).	
  

	
  
12

DATA	
  table	
  
The	
  Data	
  table	
  stores	
  the	
  individual	
  time	
  series	
  abundance	
  records.	
  	
  	
  
	
  
Name	
  

Type	
  

Size	
  

P	
  

Description	
  

DataID	
  

adInteger	
  

	
  

10	
  

Automatic	
  unique	
  ID	
  

MainID	
  

adInteger	
  

	
  

10	
  

Foreign	
  key	
  from	
  MAIN	
  

Population	
  

adDouble	
  

	
  

15	
  

Population	
  data	
  as	
  published	
  

PopulationUntransformed	
  

adDouble	
  

	
  

15	
  

Retro-­‐transformed	
  population	
  data	
  

SampleYear	
  

adInteger	
  

	
  

10	
  

Year	
  of	
  sample	
  (9999	
  if	
  not	
  applicable)	
  

TimePeriodID	
  

adInteger	
  

	
  

10	
  

Foreign	
  key	
  from	
  TimePeriod	
  giving	
  the	
  time	
  of	
  year	
  or	
  sequence	
  
of	
  sampling.	
  

Generation	
  

adInteger	
  

	
  

10	
  

Generation	
  number	
  if	
  more	
  than	
  1	
  generation	
  per	
  year.	
  Values	
  1,	
  
2	
  or	
  null.	
  

SeriesStep	
  

adInteger	
  

	
  

10	
  

Time-­‐scaled	
  time-­‐series	
  step.	
  Series	
  begin	
  at	
  zero	
  and	
  then	
  
increments	
  by	
  the	
  minimum	
  time	
  step	
  required	
  to	
  define	
  all	
  
periods	
  between	
  samples.	
  

DecimalYearBegin	
  

adDouble	
  

	
  

15	
  

Decimal	
  year	
  of	
  the	
  beginning	
  of	
  the	
  sampling	
  period	
  o	
  

DecimalYearEnd	
  

adDouble	
  

	
  

15	
  

Decimal	
  year	
  of	
  the	
  end	
  of	
  the	
  sampling	
  period	
  o	
  

DATASOURCE	
  table	
  
Information	
  on	
  where	
  the	
  data	
  was	
  obtained	
  from,	
  relating	
  to	
  the	
  Main	
  table	
  through	
  a	
  
unique	
  DatasourceID.	
  	
  Sources	
  of	
  data	
  include	
  published	
  journals,	
  books	
  and	
  unpublished	
  
datasets	
  and	
  the	
  references	
  details	
  are	
  held	
  here.	
  	
  The	
  table	
  also	
  contains	
  information	
  
regarding	
  access	
  restrictions,	
  contact	
  details	
  and	
  in	
  what	
  medium	
  the	
  data	
  was	
  obtained.	
  
	
  
Name	
  

Type	
  

Size	
  

P	
  

Description	
  

DataSourceID	
  

adInteger	
  

	
  

10	
  

Automatic	
  unique	
  ID	
  

Author	
  

adVarWChar	
  

255	
  

	
  

Author(s)	
  

Year	
  

adVarWChar	
  

255	
  

	
  

Year	
  of	
  publication	
  

Title	
  

adVarWChar	
  

255	
  

	
  

Title	
  

Reference	
  

adVarWChar	
  

255	
  

	
  

Reference	
  or	
  citation	
  

Availability	
  

adVarWChar	
  

255	
  

	
  

Public	
  or	
  restricted	
  access	
  

ContactAddress	
  

adVarWChar	
  

255	
  

	
  

Contact	
  details	
  

DataMedium	
  

adVarWChar	
  

255	
  

	
  

Format	
  of	
  data	
  acquired	
  

Notes	
  

adLongVarWChar	
  

	
  

	
  

Notes	
  

	
  

13

LOCATION	
  table	
  
Name	
  

Type	
  

Size	
  

P	
  

Description	
  

LocationID	
  

adInteger	
  

	
  

10	
  

Automatic	
  unique	
  ID	
  

ExactName	
  

adVarWChar	
  

255	
  

	
  

Name	
  of	
  Location	
  

TownName	
  

adVarWChar	
  

255	
  

	
  

Town	
  

CountyStateProvince	
  

adVarWChar	
  

80	
  

	
  

County	
  or	
  State	
  

Country	
  

adVarWChar	
  

255	
  

	
  

Country	
  

Continent	
  

adVarWChar	
  

50	
  

	
  

Continent	
  

Ocean	
  

adVarWChar	
  

50	
  

	
  

Ocean	
  

LongitudeDegrees	
  

adDouble	
  

	
  

15	
  

Longitude	
  degrees	
  of	
  location/centroid	
  

LongitudeMinutes	
  

adDouble	
  

	
  

15	
  

Longitude	
  minutes	
  of	
  location/centroid	
  

EorW	
  

adVarWChar	
  

255	
  

	
  

East	
  or	
  West	
  

LatitudeDegrees	
  

adDouble	
  

	
  

15	
  

Latitude	
  degrees	
  of	
  location/centroid	
  

LatitudeMinutes	
  

adDouble	
  

	
  

15	
  

Latitude	
  degrees	
  of	
  location/centroid	
  

NorS	
  

adVarWChar	
  

255	
  

	
  

North	
  or	
  South	
  

LongDD	
  

adDouble	
  

	
  

15	
  

Longitude	
  as	
  a	
  decimal	
  degrees	
  

LatDD	
  

adDouble	
  

	
  

15	
  

Latititude	
  as	
  a	
  decimal	
  degrees	
  

North	
  

adNumeric	
  

	
  

18	
  

Bounding	
  box	
  northern	
  extent	
  

East	
  

adNumeric	
  

	
  

18	
  

Bounding	
  box	
  eastern	
  extent	
  

South	
  

adNumeric	
  

	
  

18	
  

Bounding	
  box	
  southern	
  extent	
  

West	
  

adNumeric	
  

	
  

18	
  

Bounding	
  box	
  western	
  extent	
  

Altitude	
  

adDouble	
  

	
  

15	
  

Altitude	
  in	
  metres	
  

Area	
  

adDouble	
  

	
  

15	
  

Area	
  in	
  ha	
  

Notes	
  

adVarWChar	
  

255	
  

	
  

Notes	
  

SpatialAccuracy	
  

adInteger	
  

	
  

10	
  

Value	
  between	
  0	
  -­‐	
  6	
  indicating	
  the	
  accuracy	
  of	
  the	
  location	
  given.	
  0	
  
=	
  Unknown,	
  1	
  =	
  >100	
  km	
  radius,	
  2	
  =	
  10	
  -­‐	
  <100km,	
  3	
  =	
  1	
  -­‐	
  <9km,	
  4	
  =	
  
0.1	
  -­‐	
  1km,	
  5	
  =	
  10	
  -­‐	
  100m,	
  6	
  =	
  accurate	
  survey	
  (incl.	
  GPS)	
  <=	
  10m.	
  

LocationExtent	
  

adInteger	
  

	
  

10	
  

A	
  value	
  between	
  1	
  -­‐	
  4	
  indicating	
  the	
  size	
  of	
  the	
  study	
  site.	
  Where	
  
available	
  absolute	
  size	
  is	
  recorded	
  in	
  the	
  Area	
  field.	
  1	
  =	
  Region	
  >10	
  
km	
  radius,	
  2	
  =	
  Local	
  Area	
  1-­‐10	
  km	
  radius,	
  3	
  =	
  Extended	
  Site	
  0.1-­‐1	
  
km	
  radius,	
  4	
  =	
  Precise	
  Site	
  <0.1	
  km	
  radius.	
  

14

TAXON	
  table	
  
The	
  taxon	
  table	
  stores	
  the	
  taxonomic	
  names	
  relating	
  to	
  Main	
  records.	
  It	
  is	
  links	
  to	
  the	
  MAIN	
  
table	
  with	
  a	
  unique	
  TaxonID.	
  	
  Most	
  series	
  are	
  for	
  species.	
  	
  Some	
  extra	
  information	
  regarding	
  
breeding	
  habitats	
  etc	
  may	
  be	
  found	
  in	
  the	
  notes	
  column.	
  
	
  	
  
Name	
  

Type	
  

Size	
  

P	
  

Description	
  

TAXON	
  

	
  

	
  

	
  

	
  

TaxonID	
  

adInteger	
  

	
  

10	
  

Automatic	
  ID	
  number	
  (Range	
  1-­‐12151,	
  1896	
  rows)	
  

TaxonName	
  

adVarWChar	
  

255	
  

	
  

Name	
  of	
  taxon.	
  May	
  be	
  binomial,	
  higher	
  taxon	
  rank	
  or	
  user-­‐defined	
  

WoldaCode	
  

adVarWChar	
  

50	
  

	
  

Code	
  used	
  by	
  H.	
  Wolda	
  to	
  identify	
  unnamed/indentified	
  species	
  

Authority	
  

adVarWChar	
  

255	
  

	
  

Taxon	
  definition	
  authority	
  (many	
  missing).	
  

TaxonomicLevel	
  

adVarWChar	
  

255	
  

	
  

Species,	
  Genus,	
  Family	
  etc.	
  plus	
  ‘Virus’	
  

CommonName	
  

adVarWChar	
  

255	
  

	
  

Single	
  common	
  name	
  

Taxonomic	
  Phylum	
  

adVarWChar	
  

255	
  

	
  

Taxonomic	
  	
  Phylum	
  

Taxonomic	
  Class	
  

adVarWChar	
  

255	
  

	
  

Taxonomic	
  	
  Class	
  

TaxonomicOrder	
  

adVarWChar	
  

255	
  

	
  

Taxonomic	
  Order	
  

Taxonomic	
  Family	
  

adVarWChar	
  

255	
  

	
  

Taxonomic	
  	
  Family	
  

Taxonomic	
  Genus	
  

adVarWChar	
  

255	
  

	
  

Taxonomic	
  	
  Genus	
  

Notes	
  

adVarWChar	
  

255	
  

	
  

Notes	
  

	
  
TIMEPERIOD	
  table	
  
TimePeriod	
  is	
  a	
  look-­‐up	
  table	
  that	
  provides	
  text	
  descriptions	
  of	
  the	
  temporal	
  period	
  the	
  
sample	
  relates	
  to	
  such	
  as	
  ‘January’,	
  ‘Spring’,	
  ‘Week	
  1’	
  and	
  ‘Day	
  1’.	
  
	
  

	
  
Name	
  

	
  
Type	
  

	
  
Size	
  

	
  
P	
  

Description	
  

TIMEPERIOD	
  

	
  

	
  

	
  

	
  

TimePeriodID	
  

adInteger	
  

	
  

10	
  

Automatic	
  ID	
  number	
  (range	
  1-­‐408,	
  407	
  rows)	
  

TimePeriod	
  

adVarWChar	
  

255	
  

	
  

Time	
  period	
  name	
  

TimePeriodGroup	
  

adVarWChar	
  

255	
  

	
  

Group	
  time	
  period	
  belongs	
  to,	
  e.g.	
  month,	
  quarter,	
  season,	
  wet/dry	
  
etc.	
  

TimePeriodOrder	
  

adInteger	
  

	
  

10	
  

Order	
  of	
  timeperiod	
  within	
  time	
  period	
  group,	
  e.g.	
  January	
  =	
  1,	
  
February	
  =	
  2,	
  etc.	
  within	
  the	
  month	
  group.	
  Some	
  groups	
  do	
  not	
  
have	
  orders	
  e.g	
  wet/dry.	
  

Begin	
  

adDouble	
  

	
  

15	
  

Decimal	
  year	
  of	
  the	
  beginning	
  of	
  the	
  time	
  period	
  

End	
  

adDouble	
  

	
  

15	
  

Decimal	
  year	
  of	
  the	
  end	
  of	
  the	
  time	
  period	
  

	
  

15

Appendix	
  
	
  
Detail	
  of	
  GPDD	
  change	
  between	
  v1.0	
  to	
  v2.0	
  
	
  

Main	
  table	
  
1) ID	
  column	
  renamed	
  MainID.	
  
2) BiotopeID	
  column	
  deleted	
  –	
  Biotope	
  table	
  deleted.	
  
3) DataType,	
  SamplingUnits,	
  SourceUnits	
  –	
  Unit	
  columns	
  updated.	
  
4) Zeros,	
  NumberOfMissingValues,	
  Native,	
  Introduced,	
  Average,	
  Variance,	
  Maximum,	
  
Minimum,	
  Mode,	
  Median,	
  Autocorrelation,	
  DensityDependence,	
  Trends,	
  Attractors,	
  
CoefficientOfVariation	
  and	
  HurstConstant	
  columns	
  removed	
  –	
  redundant	
  fields	
  with	
  
large	
  volumes	
  of	
  missing	
  information.	
  
5) OldDataID	
  column	
  deleted	
  –	
  redundant	
  data.	
  
6) New	
  units	
  columns	
  created	
  -­‐	
  SamplingUnits,	
  SamplingProtocol,	
  SourceDimension,	
  
SamplingEffort,	
  SpatialDensity,	
  SourceTransform,	
  SourceTransformReference.	
  
7) AssociatedData	
  column	
  –	
  empty	
  entries	
  filled	
  with	
  “None”.	
  
8) StartData	
  and	
  EndDate	
  columns	
  renamed	
  to	
  StartYear	
  and	
  EndYear	
  for	
  clarity.	
  	
  
Missing	
  values	
  entered	
  if	
  found,	
  ‘9999’	
  if	
  unknown.	
  
9) SamplingFrequency	
  –	
  missing	
  values	
  entered	
  if	
  found,	
  ‘Generations’	
  used	
  instead	
  of	
  
iterative	
  count	
  when	
  calendar	
  dates	
  are	
  not	
  applicable.	
  
10) DatasetLength	
  –	
  missing	
  values	
  entered.	
  
11) Notes	
  –	
  Barry	
  Brook’s	
  ID	
  added	
  to	
  new	
  datasets.	
  
12) Main	
  ID	
  9912-­‐9916	
  deleted	
  –	
  erroneous	
  data	
  with	
  incorrect	
  and	
  untraceable	
  data	
  
source	
  information.	
  
13) Main	
  ID	
  20670	
  added	
  –	
  erroneously	
  missed	
  from	
  the	
  previous	
  version.	
  
14) All	
  spelling	
  and	
  grammar	
  errors	
  corrected.	
  
	
  
Data	
  table	
  
1) PopulationUntransformed	
  column	
  created	
  –	
  this	
  is	
  a	
  copy	
  of	
  the	
  Population	
  column	
  
but	
  with	
  transformations	
  removed	
  where	
  applicable	
  (such	
  as	
  logarithms	
  and	
  
multiplication).	
  	
  Several	
  datasets	
  are	
  entered	
  as	
  indexes	
  and	
  have	
  not	
  been	
  
untransformed.	
  	
  This	
  column	
  may	
  be	
  useful	
  for	
  statistical	
  analyses.	
  
2) TimeOfSample	
  renamed	
  to	
  SampleYear	
  –	
  where	
  generative	
  datasets	
  apply	
  instead	
  of	
  
calendar	
  months,	
  the	
  values	
  mirror	
  the	
  SeriesStep.	
  
3) TimePeriod	
  column	
  created	
  –	
  refers	
  to	
  a	
  look	
  up	
  table	
  that	
  specifies	
  
day/week/season	
  of	
  sampling.	
  

16

4) Generation	
  column	
  created	
  to	
  differentiate	
  between	
  generations	
  within	
  the	
  same	
  
Main	
  ID.	
  	
  This	
  is	
  applicable	
  to	
  species	
  such	
  as	
  butterflies	
  (e.g.	
  Main	
  ID	
  9285-­‐6).	
  
5) SeriesStep	
  column	
  created	
  –	
  sequential	
  values	
  within	
  each	
  MainID	
  to	
  indicate	
  
chronology	
  irrespective	
  of	
  sampling	
  time	
  regime.	
  
6) Flag	
  column	
  deleted	
  –	
  empty	
  and	
  redundant	
  column.	
  
	
  
Datasource	
  table	
  
1) SourceNo.	
  Column	
  deleted	
  –	
  contained	
  only	
  zeros.	
  
2) Flag	
  column	
  deleted	
  –	
  empty.	
  
3) Author,	
  Year,	
  Title,	
  Reference	
  columns	
  –	
  missing	
  information	
  entered	
  if	
  found.	
  
4) All	
  spelling	
  and	
  grammar	
  errors	
  corrected.	
  
	
  
Location	
  table	
  
1) BiogeographicalZone	
  column	
  deleted	
  –	
  unknown	
  source.	
  
2) Flag	
  column	
  deleted	
  –	
  empty.	
  
3) Bounding	
  box	
  coordinates	
  –	
  4	
  new	
  columns	
  (North,	
  East,	
  South,	
  West)	
  
4) SpatialAccuracy	
  column	
  created	
  –	
  a	
  value	
  ranging	
  0-­‐6	
  indicating	
  the	
  level	
  of	
  accuracy	
  
of	
  the	
  bounding	
  box	
  to	
  the	
  site	
  of	
  sampling.	
  
5) LocationExtent	
  column	
  created	
  –	
  a	
  value	
  ranging	
  1-­‐4	
  indicating	
  the	
  size	
  of	
  the	
  site	
  of	
  
sampling.	
  
6) All	
  missing	
  information	
  entered	
  if	
  found.	
  
7) All	
  spelling	
  and	
  grammar	
  errors	
  corrected.	
  
	
  
Taxon	
  table	
  
1) BodyLength,	
  BodyWeight,	
  TrophicLevel,	
  FeedingMethod,	
  SexualDimorphism,	
  
Palaearctic,	
  Nearctic,	
  Ethiopian,	
  Madagascan,	
  Oriental,	
  Neotropical,	
  Notogaea,	
  
Wallacea,	
  BiogeographicStatus,	
  ConservationInformation,	
  Taxoncheck	
  and	
  
our_comments	
  all	
  deleted.	
  
2) Missing	
  information	
  entered	
  if	
  found.	
  
3) All	
  spelling	
  and	
  grammar	
  errors	
  corrected.	
  
	
  
Timeperiod	
  table	
  
1) New	
  table	
  created	
  containing	
  TimeperiodID	
  and	
  TimePeriod	
  columns.	
  
	
  
Biotope	
  table	
  
	
  
17

1) Deleted	
  as	
  un-­‐cited	
  information.	
  	
  It	
  contained	
  information	
  on	
  the	
  habitat	
  that	
  the	
  
series	
  originates,	
  and	
  is	
  dated	
  and	
  without	
  source	
  information.	
  Local	
  habitat	
  
descriptions	
  are	
  grouped	
  into	
  25	
  ‘biotope	
  type’	
  classes;	
  Aerial,	
  Agricultural,	
  Arid,	
  
Coastal,	
  Coniferous	
  forest,	
  Deciduous	
  forest,	
  Evergreen	
  forest,	
  Fluvial,	
  Grassland,	
  
Heath	
  or	
  Moor,	
  Island,	
  Largely	
  unvegetated,	
  Limnetic,	
  Marine,	
  Mixed	
  habitat,	
  Mixed	
  
or	
  unspecified	
  forest,	
  Montane,	
  Polar,	
  Savanna,	
  Scrub,	
  Specified	
  plants	
  as	
  habitat,	
  
Tidal/Intertidal,	
  Unspecified	
  habitat	
  or	
  no	
  information,	
  Urban/Suburban,	
  Wetland.	
  

	
  

18

References	
  
Brook,	
  B.	
  W.,	
  L.	
  W.	
  Traill,	
  and	
  C.	
  J.	
  A.	
  Bradshaw.	
  2006.	
  Minimum	
  viable	
  population	
  sizes	
  and	
  global	
  
extinction	
  risk	
  are	
  unrelated.	
  Ecology	
  Letters	
  9:375-­‐382.	
  
Collen,	
  B.,	
  J.	
  Loh,	
  S.	
  Holbrook,	
  L.	
  McRae,	
  R.	
  Amin,	
  and	
  J.	
  E.	
  M.	
  Baillie.	
  2008.	
  Monitoring	
  Change	
  in	
  
Vertebrate	
  Abundance:	
  the	
  Living	
  Planet	
  Index.	
  Conservation	
  Biology	
  9999.	
  
Coulson,	
  T.,	
  and	
  S.	
  Tuljapurkar.	
  2008.	
  The	
  Dynamics	
  of	
  a	
  Quantitative	
  Trait	
  in	
  an	
  Age-­‐structured	
  
Population	
  Living	
  in	
  a	
  Variable	
  Environment.	
  American	
  Naturalist	
  172:599-­‐612.	
  
Doncaster,	
  C.	
  P.	
  2006.	
  Comment	
  on	
  "On	
  the	
  Regulation	
  of	
  Populations	
  of	
  Mammals,	
  Birds,	
  Fish,	
  and	
  
Insects"	
  III,	
  Pages	
  1100c-­‐.	
  
Eberhardt,	
  L.	
  L.,	
  J.	
  M.	
  Breiwick,	
  and	
  D.	
  P.	
  Demaster.	
  2008.	
  Analyzing	
  population	
  growth	
  curves.	
  Oikos	
  
117:1240-­‐1246.	
  
Fagan,	
  M.	
  P.	
  F.	
  K.	
  2001.	
  Characterizing	
  population	
  vulnerability	
  for	
  758	
  species.	
  Ecology	
  Letters	
  
4:132-­‐138.	
  
Getz,	
  W.	
  M.,	
  and	
  J.	
  O.	
  Lloyd-­‐Smith.	
  2006.	
  Comment	
  on	
  "On	
  the	
  Regulation	
  of	
  Populations	
  of	
  
Mammals,	
  Birds,	
  Fish,	
  and	
  Insects"	
  I,	
  Pages	
  1100a-­‐.	
  
Halley,	
  J.	
  M.,	
  and	
  K.	
  I.	
  Stergiou.	
  2005.	
  The	
  implications	
  of	
  increasing	
  variability	
  of	
  fish	
  landings.	
  Fish	
  
and	
  Fisheries	
  6:266-­‐276.	
  
Heering,	
  T.	
  E.,	
  and	
  D.	
  H.	
  Reed.	
  2005.	
  Modeling	
  Extinction:	
  Density-­‐Dependent	
  Changes	
  in	
  the	
  
Variance	
  of	
  Population	
  Growth	
  Rates.	
  Journal	
  of	
  the	
  Mississippi	
  Academy	
  of	
  Sciences	
  
50:183-­‐194.	
  
Holmes,	
  E.	
  E.,	
  J.	
  L.	
  Sabo,	
  S.	
  V.	
  Viscido,	
  and	
  W.	
  F.	
  Fagan.	
  2007.	
  A	
  statistical	
  approach	
  to	
  quasi-­‐
extinction	
  forecasting.	
  Ecological	
  Letters	
  10:1182-­‐1198.	
  
Inchausti,	
  P.,	
  and	
  J.	
  Halley.	
  2001.	
  Investigating	
  Long-­‐Term	
  Ecological	
  Variability	
  Using	
  the	
  Global	
  
Population	
  Dynamics	
  Database.	
  Science	
  293:655-­‐657.	
  
John	
  Halley,	
  P.	
  I.	
  2002.	
  Lognormality	
  in	
  ecological	
  time	
  series.	
  Oikos	
  99:518-­‐530.	
  
Kendall,	
  B.	
  E.,	
  J.	
  Prendergast,	
  and	
  O.	
  N.	
  Bjørnstad.	
  1998.	
  The	
  macroecology	
  of	
  population	
  dynamics:	
  
taxonomic	
  and	
  biogeographic	
  patterns	
  in	
  population	
  cycles.	
  Ecological	
  Letters	
  1:160-­‐164.	
  
Lotts,	
  K.	
  C.,	
  T.	
  A.	
  Waite,	
  and	
  J.	
  A.	
  Vucetich.	
  2004.	
  Reliability	
  of	
  Absolute	
  and	
  Relative	
  Predictions	
  of	
  
Population	
  Persistence	
  Based	
  on	
  Time	
  Series.	
  Conservation	
  Biology	
  18:1224-­‐1232.	
  
Peacock,	
  E.,	
  and	
  D.	
  L.	
  Garshelis.	
  2006.	
  Comment	
  on	
  "On	
  the	
  Regulation	
  of	
  Populations	
  of	
  Mammals,	
  
Birds,	
  Fish,	
  and	
  Insects"	
  IV,	
  Pages	
  45a-­‐.	
  
Reed,	
  D.	
  H.,	
  and	
  G.	
  R.	
  Hobbs.	
  2004.	
  The	
  relationship	
  between	
  population	
  size	
  and	
  temporal	
  
variability	
  in	
  population	
  size.	
  Animal	
  Conservation	
  7:1-­‐8.	
  
Reed,	
  D.	
  H.,	
  J.	
  J.	
  O'Grady,	
  J.	
  D.	
  Ballou,	
  and	
  R.	
  Frankham.	
  2003.	
  The	
  frequency	
  and	
  severity	
  of	
  
catastrophic	
  die-­‐offs	
  in	
  vertebrates.	
  Animal	
  Conservation	
  6:109-­‐114.	
  
Ross,	
  J.	
  V.	
  2006.	
  Comment	
  on	
  "On	
  the	
  Regulation	
  of	
  Populations	
  of	
  Mammals,	
  Birds,	
  Fish,	
  and	
  
Insects"	
  II,	
  Pages	
  1100b-­‐.	
  
Sibly,	
  R.	
  M.,	
  D.	
  Barker,	
  M.	
  C.	
  Denham,	
  J.	
  Hone,	
  and	
  M.	
  Pagel.	
  2005.	
  On	
  the	
  Regulation	
  of	
  Populations	
  
of	
  Mammals,	
  Birds,	
  Fish,	
  and	
  Insects.	
  Science	
  309:607-­‐610.	
  
—.	
  2006a.	
  Response	
  to	
  Comment	
  on	
  "On	
  the	
  Regulation	
  of	
  Populations	
  of	
  Mammals,	
  Birds,	
  Fish,	
  and	
  
Insects",	
  Pages	
  45b-­‐.	
  
—.	
  2006b.	
  Response	
  to	
  Comments	
  on	
  "On	
  the	
  Regulation	
  of	
  Populations	
  of	
  Mammals,	
  Birds,	
  Fish,	
  
and	
  Insects",	
  Pages	
  1100d-­‐.	
  
Valone,	
  T.	
  J.,	
  and	
  N.	
  A.	
  Barber.	
  2008.	
  An	
  empirical	
  evaluation	
  of	
  the	
  insurance	
  hypothesis	
  in	
  diversity-­‐
stability	
  models.	
  Ecology	
  89:522-­‐531.	
  

19



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
Linearized                      : No
Page Count                      : 19
PDF Version                     : 1.4
Title                           : GPDD-User-Guide
Author                          : Jessica L Couture
Subject                         : 
Producer                        : Mac OS X 10.10.1 Quartz PDFContext
Creator                         : Word
Create Date                     : 2015:03:24 00:39:51Z
Modify Date                     : 2015:03:24 00:39:51Z
Apple Keywords                  : 
EXIF Metadata provided by EXIF.tools

Navigation menu