The Comprehensive LaTeX Symbol List Guide

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 164

DownloadThe Comprehensive LaTeX Symbol List Guide
Open PDF In BrowserView PDF
The Comprehensive LATEX Symbol List
Scott Pakin ∗
9 November 2009

Abstract
This document lists 5913 symbols and the corresponding LATEX commands that produce them. Some
of these symbols are guaranteed to be available in every LATEX 2ε system; others require fonts and packages
that may not accompany a given distribution and that therefore need to be installed. All of the fonts
and packages used to prepare this document—as well as this document itself—are freely available from the
Comprehensive TEX Archive Network (http://www.ctan.org/).

Contents
Contents

1

1

Introduction
1.1 Document Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Frequently Requested Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8
8
8

2

Body-text symbols
Table 1:
LATEX 2ε Escapable “Special” Characters . . . . . . . . . . . . . . . .
Table 2:
Predefined LATEX 2ε Text-mode Commands . . . . . . . . . . . . . .
Table 3:
LATEX 2ε Commands Defined to Work in Both Math and Text Mode
Table 4:
AMS Commands Defined to Work in Both Math and Text Mode . .
Table 5:
Non-ASCII Letters (Excluding Accented Letters) . . . . . . . . . . .
Table 6:
Letters Used to Typeset African Languages . . . . . . . . . . . . . .
Table 7:
Letters Used to Typeset Vietnamese . . . . . . . . . . . . . . . . . .
Table 8:
Punctuation Marks Not Found in OT1 . . . . . . . . . . . . . . . . .
Table 9:
pifont Decorative Punctuation Marks . . . . . . . . . . . . . . . . . .
Table 10: tipa Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 11: tipx Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 12: wsuipa Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . . .
Table 13: wasysym Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . .
Table 14: phonetic Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . .
Table 15: t4phonet Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . .
Table 16: semtrans Transliteration Symbols . . . . . . . . . . . . . . . . . . . .
Table 17: Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 18: tipa Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . . .
Table 19: extraipa Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . .
Table 20: wsuipa Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . .
Table 21: phonetic Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . .
Table 22: metre Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . .
Table 23: t4phonet Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . .
Table 24: arcs Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . . .
Table 25: semtrans Accents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 26: ogonek Accents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 27: combelow Accents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

9
9
9
9
10
10
10
10
10
10
11
12
13
13
13
14
14
14
15
16
16
16
17
17
17
17
17
17

∗ The original version of this document was written by David Carlisle, with several additional tables provided by Alexander
Holt. See Section 8.8 on page 118 for more information about who did what.

1

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
3

28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

wsuipa Diacritics . . . . . . . . . . . . . . .
textcomp Diacritics . . . . . . . . . . . . . .
textcomp Currency Symbols . . . . . . . . .
marvosym Currency Symbols . . . . . . . . .
wasysym Currency Symbols . . . . . . . . .
ChinA2e Currency Symbols . . . . . . . . . .
teubner Currency Symbols . . . . . . . . . .
eurosym Euro Signs . . . . . . . . . . . . . .
fourier Euro Signs . . . . . . . . . . . . . . .
textcomp Legal Symbols . . . . . . . . . . .
cclicenses Creative Commons License Icons .
textcomp Old-style Numerals . . . . . . . . .
Miscellaneous textcomp Symbols . . . . . . .
Miscellaneous wasysym Text-mode Symbols

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

18
18
18
18
18
19
19
19
19
19
19
20
20
20

Mathematical symbols
Table 42: Math-Mode Versions of Text Symbols . . . . .
Table 43: cmll Unary Operators . . . . . . . . . . . . . .
Table 44: Binary Operators . . . . . . . . . . . . . . . .
Table 45: AMS Binary Operators . . . . . . . . . . . .
Table 46: stmaryrd Binary Operators . . . . . . . . . . .
Table 47: wasysym Binary Operators . . . . . . . . . . .
Table 48: txfonts/pxfonts Binary Operators . . . . . . .
Table 49: mathabx Binary Operators . . . . . . . . . . .
Table 50: MnSymbol Binary Operators . . . . . . . . . .
Table 51: mathdesign Binary Operators . . . . . . . . .
Table 52: cmll Binary Operators . . . . . . . . . . . . .
Table 53: shuffle Binary Operators . . . . . . . . . . . .
Table 54: ulsy Geometric Binary Operators . . . . . . .
Table 55: mathabx Geometric Binary Operators . . . . .
Table 56: MnSymbol Geometric Binary Operators . . . .
Table 57: Variable-sized Math Operators . . . . . . . .
Table 58: AMS Variable-sized Math Operators . . . . .
Table 59: stmaryrd Variable-sized Math Operators . . .
Table 60: wasysym Variable-sized Math Operators . . .
Table 61: mathabx Variable-sized Math Operators . . .
Table 62: txfonts/pxfonts Variable-sized Math Operators
Table 63: esint Variable-sized Math Operators . . . . . .
Table 64: MnSymbol Variable-sized Math Operators . .
Table 65: mathdesign Variable-sized Math Operators . .
Table 66: cmll Large Math Operators . . . . . . . . . .
Table 67: Binary Relations . . . . . . . . . . . . . . . .
Table 68: AMS Binary Relations . . . . . . . . . . . . .
Table 69: AMS Negated Binary Relations . . . . . . . .
Table 70: stmaryrd Binary Relations . . . . . . . . . . .
Table 71: wasysym Binary Relations . . . . . . . . . . .
Table 72: txfonts/pxfonts Binary Relations . . . . . . . .
Table 73: txfonts/pxfonts Negated Binary Relations . . .
Table 74: mathabx Binary Relations . . . . . . . . . . .
Table 75: mathabx Negated Binary Relations . . . . . .
Table 76: MnSymbol Binary Relations . . . . . . . . . .
Table 77: MnSymbol Negated Binary Relations . . . . .
Table 78: mathtools Binary Relations . . . . . . . . . . .
Table 79: turnstile Binary Relations . . . . . . . . . . . .
Table 80: trsym Binary Relations . . . . . . . . . . . . .
Table 81: trfsigns Binary Relations . . . . . . . . . . . .
Table 82: cmll Binary Relations . . . . . . . . . . . . . .
Table 83: colonequals Binary Relations . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

21
21
21
22
22
22
23
23
23
23
24
24
24
24
25
25
25
26
26
26
26
27
28
29
30
30
30
30
31
31
31
31
31
32
32
32
33
34
35
36
36
36
36

2

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:

fourier Binary Relations . . . . . . . . . . . .
Subset and Superset Relations . . . . . . . . .
AMS Subset and Superset Relations . . . . .
stmaryrd Subset and Superset Relations . . . .
wasysym Subset and Superset Relations . . . .
txfonts/pxfonts Subset and Superset Relations
mathabx Subset and Superset Relations . . . .
MnSymbol Subset and Superset Relations . .
Inequalities . . . . . . . . . . . . . . . . . . .
AMS Inequalities . . . . . . . . . . . . . . . .
wasysym Inequalities . . . . . . . . . . . . . .
txfonts/pxfonts Inequalities . . . . . . . . . . .
mathabx Inequalities . . . . . . . . . . . . . .
MnSymbol Inequalities . . . . . . . . . . . . .
AMS Triangle Relations . . . . . . . . . . . .
stmaryrd Triangle Relations . . . . . . . . . .
mathabx Triangle Relations . . . . . . . . . .
MnSymbol Triangle Relations . . . . . . . . .
Arrows . . . . . . . . . . . . . . . . . . . . . .
Harpoons . . . . . . . . . . . . . . . . . . . .
textcomp Text-mode Arrows . . . . . . . . . .
AMS Arrows . . . . . . . . . . . . . . . . . .
AMS Negated Arrows . . . . . . . . . . . . .
AMS Harpoons . . . . . . . . . . . . . . . . .
stmaryrd Arrows . . . . . . . . . . . . . . . . .
txfonts/pxfonts Arrows . . . . . . . . . . . . .
mathabx Arrows . . . . . . . . . . . . . . . . .
mathabx Negated Arrows . . . . . . . . . . . .
mathabx Harpoons . . . . . . . . . . . . . . .
MnSymbol Arrows . . . . . . . . . . . . . . . .
MnSymbol Negated Arrows . . . . . . . . . . .
MnSymbol Harpoons . . . . . . . . . . . . . .
MnSymbol Negated Harpoons . . . . . . . . .
harpoon Extensible Harpoons . . . . . . . . .
chemarrow Arrows . . . . . . . . . . . . . . . .
fge Arrows . . . . . . . . . . . . . . . . . . . .
MnSymbol Spoons . . . . . . . . . . . . . . . .
MnSymbol Pitchforks . . . . . . . . . . . . . .
MnSymbol Smiles and Frowns . . . . . . . . .
ulsy Contradiction Symbols . . . . . . . . . .
Extension Characters . . . . . . . . . . . . . .
stmaryrd Extension Characters . . . . . . . . .
txfonts/pxfonts Extension Characters . . . . .
mathabx Extension Characters . . . . . . . . .
Log-like Symbols . . . . . . . . . . . . . . . .
AMS Log-like Symbols . . . . . . . . . . . . .
ChinA2e Number Sets . . . . . . . . . . . . . .
Greek Letters . . . . . . . . . . . . . . . . . .
AMS Greek Letters . . . . . . . . . . . . . . .
txfonts/pxfonts Upright Greek Letters . . . . .
upgreek Upright Greek Letters . . . . . . . . .
fourier Variant Greek Letters . . . . . . . . . .
txfonts/pxfonts Variant Latin Letters . . . . .
AMS Hebrew Letters . . . . . . . . . . . . . .
MnSymbol Hebrew Letters . . . . . . . . . . .
Letter-like Symbols . . . . . . . . . . . . . . .
AMS Letter-like Symbols . . . . . . . . . . .

3

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

36
36
36
37
37
37
37
37
37
38
38
38
38
39
39
40
40
40
41
41
41
41
41
41
42
42
42
42
43
43
44
46
46
47
47
47
47
47
48
48
48
48
48
49
49
49
49
50
50
50
51
51
51
51
51
51
52

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:

txfonts/pxfonts Letter-like Symbols . . . . .
mathabx Letter-like Symbols . . . . . . . . .
MnSymbol Letter-like Symbols . . . . . . . .
trfsigns Letter-like Symbols . . . . . . . . . .
mathdesign Letter-like Symbols . . . . . . .
fge Letter-like Symbols . . . . . . . . . . . .
fourier Letter-like Symbols . . . . . . . . . .
AMS Delimiters . . . . . . . . . . . . . . . .
stmaryrd Delimiters . . . . . . . . . . . . . .
mathabx Delimiters . . . . . . . . . . . . . .
nath Delimiters . . . . . . . . . . . . . . . .
Variable-sized Delimiters . . . . . . . . . . .
Large, Variable-sized Delimiters . . . . . . .
AMS Variable-sized Delimiters . . . . . . .
stmaryrd Variable-sized Delimiters . . . . . .
mathabx Variable-sized Delimiters . . . . . .
MnSymbol Variable-sized Delimiters . . . . .
mathdesign Variable-sized Delimiters . . . .
nath Variable-sized Delimiters (Double) . . .
nath Variable-sized Delimiters (Triple) . . .
fourier Variable-sized Delimiters . . . . . . .
textcomp Text-mode Delimiters . . . . . . .
metre Text-mode Delimiters . . . . . . . . .
Math-mode Accents . . . . . . . . . . . . .
AMS Math-mode Accents . . . . . . . . . .
MnSymbol Math-mode Accents . . . . . . .
fge Math-mode Accents . . . . . . . . . . .
yhmath Math-mode Accents . . . . . . . . .
Extensible Accents . . . . . . . . . . . . . .
overrightarrow Extensible Accents . . . . . .
yhmath Extensible Accents . . . . . . . . . .
AMS Extensible Accents . . . . . . . . . . .
MnSymbol Extensible Accents . . . . . . . .
mathtools Extensible Accents . . . . . . . .
mathabx Extensible Accents . . . . . . . . .
fourier Extensible Accents . . . . . . . . . .
esvect Extensible Accents . . . . . . . . . .
undertilde Extensible Accents . . . . . . . .
ushort Extensible Accents . . . . . . . . . .
AMS Extensible Arrows . . . . . . . . . . .
mathtools Extensible Arrows . . . . . . . . .
chemarr Extensible Arrows . . . . . . . . . .
chemarrow Extensible Arrows . . . . . . . .
extarrows Extensible Arrows . . . . . . . . .
extpfeil Extensible Arrows . . . . . . . . . .
DotArrow Extensible Arrows . . . . . . . . .
trfsigns Extensible Transform Symbols . . .
holtpolt Non-commutative Division Symbols
Dots . . . . . . . . . . . . . . . . . . . . . .
AMS Dots . . . . . . . . . . . . . . . . . . .
wasysym Dots . . . . . . . . . . . . . . . . .
MnSymbol Dots . . . . . . . . . . . . . . . .
mathdots Dots . . . . . . . . . . . . . . . . .
yhmath Dots . . . . . . . . . . . . . . . . . .
teubner Dots . . . . . . . . . . . . . . . . . .
mathcomp Math Symbols . . . . . . . . . . .
marvosym Digits . . . . . . . . . . . . . . . .

4

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

52
52
52
52
52
53
53
53
53
53
53
54
54
54
54
55
55
56
56
57
57
57
57
57
58
58
58
58
59
59
59
59
60
60
60
60
61
61
61
61
62
62
62
62
63
63
63
63
63
64
64
64
64
64
64
65
65

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
4

5

198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:

fge Digits . . . . . . . . . . . . . . . . . . . . . .
dozenal Base-12 Digits . . . . . . . . . . . . . . .
mathabx Mayan Digits . . . . . . . . . . . . . . .
Miscellaneous LATEX 2ε Math Symbols . . . . . .
Miscellaneous AMS Math Symbols . . . . . . . .
Miscellaneous wasysym Math Symbols . . . . . .
Miscellaneous txfonts/pxfonts Math Symbols . . .
Miscellaneous mathabx Math Symbols . . . . . .
Miscellaneous MnSymbol Math Symbols . . . . .
Miscellaneous Internal MnSymbol Math Symbols
Miscellaneous textcomp Text-mode Math Symbols
Miscellaneous marvosym Math Symbols . . . . . .
Miscellaneous fge Math Symbols . . . . . . . . .
Miscellaneous mathdesign Math Symbols . . . . .
Miscellaneous arev Math Symbols . . . . . . . . .
Math Alphabets . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

65
65
65
65
66
66
66
66
66
67
67
67
67
67
67
68

Science and technology symbols
Table 214: gensymb Symbols Defined to Work in Both Math and Text
Table 215: wasysym Electrical and Physical Symbols . . . . . . . . . .
Table 216: ifsym Pulse Diagram Symbols . . . . . . . . . . . . . . . .
Table 217: ar Aspect Ratio Symbol . . . . . . . . . . . . . . . . . . .
Table 218: textcomp Text-mode Science and Engineering Symbols . .
Table 219: steinmetz Extensible Phasor Symbol . . . . . . . . . . . .
Table 220: wasysym Astronomical Symbols . . . . . . . . . . . . . . .
Table 221: marvosym Astronomical Symbols . . . . . . . . . . . . . .
Table 222: mathabx Astronomical Symbols . . . . . . . . . . . . . . .
Table 223: wasysym APL Symbols . . . . . . . . . . . . . . . . . . . .
Table 224: wasysym APL Modifiers . . . . . . . . . . . . . . . . . . .
Table 225: marvosym Computer Hardware Symbols . . . . . . . . . .
Table 226: keystroke Computer Keys . . . . . . . . . . . . . . . . . . .
Table 227: ascii Control Characters (CP437) . . . . . . . . . . . . . .
Table 228: milstd Logic Gates . . . . . . . . . . . . . . . . . . . . . .
Table 229: marvosym Communication Symbols . . . . . . . . . . . . .
Table 230: marvosym Engineering Symbols . . . . . . . . . . . . . . .
Table 231: wasysym Biological Symbols . . . . . . . . . . . . . . . . .
Table 232: marvosym Biological Symbols . . . . . . . . . . . . . . . .
Table 233: marvosym Safety-related Symbols . . . . . . . . . . . . . .
Table 234: feyn Feynman Diagram Symbols . . . . . . . . . . . . . . .

Mode
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

70
70
70
70
70
70
70
71
71
71
71
71
72
72
72
73
73
73
73
74
74
74

Dingbats
Table 235:
Table 236:
Table 237:
Table 238:
Table 239:
Table 240:
Table 241:
Table 242:
Table 243:
Table 244:
Table 245:
Table 246:
Table 247:
Table 248:
Table 249:
Table 250:
Table 251:

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

75
75
75
75
75
75
75
76
76
76
76
76
76
76
76
77
77
77

bbding Arrows . . . . . . . .
pifont Arrows . . . . . . . .
universal Arrows . . . . . . .
marvosym Scissors . . . . . .
bbding Scissors . . . . . . .
pifont Scissors . . . . . . . .
dingbat Pencils . . . . . . .
bbding Pencils and Nibs . .
pifont Pencils and Nibs . . .
dingbat Fists . . . . . . . . .
bbding Fists . . . . . . . . .
pifont Fists . . . . . . . . . .
fourier Fists . . . . . . . . .
bbding Crosses and Plusses .
pifont Crosses and Plusses .
bbding Xs and Check Marks
pifont Xs and Check Marks

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
6

7

252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:

wasysym Xs and Check Marks . . . . . . .
universal Xs . . . . . . . . . . . . . . . . .
pifont Circled Numbers . . . . . . . . . . .
wasysym Stars . . . . . . . . . . . . . . . .
bbding Stars, Flowers, and Similar Shapes
pifont Stars, Flowers, and Similar Shapes .
fourier Ornaments . . . . . . . . . . . . . .
wasysym Geometric Shapes . . . . . . . . .
MnSymbol Geometric Shapes . . . . . . .
ifsym Geometric Shapes . . . . . . . . . .
bbding Geometric Shapes . . . . . . . . . .
pifont Geometric Shapes . . . . . . . . . .
universa Geometric Shapes . . . . . . . . .
universal Geometric Shapes . . . . . . . . .
Miscellaneous dingbat Dingbats . . . . . .
Miscellaneous bbding Dingbats . . . . . . .
Miscellaneous pifont Dingbats . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

77
77
77
77
78
78
78
78
79
79
80
80
80
80
80
80
80

Ancient languages
Table 269: phaistos Symbols from the Phaistos Disk . . . . . .
Table 270: protosem Proto-Semitic Characters . . . . . . . . .
Table 271: hieroglf Hieroglyphics . . . . . . . . . . . . . . . . .
Table 272: linearA Linear A Script . . . . . . . . . . . . . . . .
Table 273: linearb Linear B Basic and Optional Letters . . . .
Table 274: linearb Linear B Numerals . . . . . . . . . . . . . .
Table 275: linearb Linear B Weights and Measures . . . . . . .
Table 276: linearb Linear B Ideograms . . . . . . . . . . . . . .
Table 277: linearb Unidentified Linear B Symbols . . . . . . .
Table 278: cypriot Cypriot Letters . . . . . . . . . . . . . . . .
Table 279: sarabian South Arabian Letters . . . . . . . . . . .
Table 280: teubner Archaic Greek Letters and Greek Numerals

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

81
81
81
82
82
85
85
85
86
86
86
87
87

Other symbols
Table 281: textcomp Genealogical Symbols .
Table 282: wasysym General Symbols . . . .
Table 283: wasysym Circles . . . . . . . . . .
Table 284: wasysym Musical Symbols . . . .
Table 285: arev Musical Symbols . . . . . . .
Table 286: harmony Musical Symbols . . . .
Table 287: harmony Musical Accents . . . . .
Table 288: manfnt Dangerous Bend Symbols
Table 289: Miscellaneous manfnt Symbols . .
Table 290: marvosym Navigation Symbols . .
Table 291: marvosym Laundry Symbols . . .
Table 292: marvosym Information Symbols .
Table 293: Other marvosym Symbols . . . . .
Table 294: Miscellaneous universa Symbols .
Table 295: Miscellaneous universal Symbols .
Table 296: Miscellaneous fourier Symbols . .
Table 297: ifsym Weather Symbols . . . . . .
Table 298: ifsym Alpine Symbols . . . . . . .
Table 299: ifsym Clocks . . . . . . . . . . . .
Table 300: Other ifsym Symbols . . . . . . .
Table 301: clock Clocks . . . . . . . . . . . .
Table 302: epsdice Dice . . . . . . . . . . . .
Table 303: hhcount Dice . . . . . . . . . . . .
Table 304: hhcount Tally Markers . . . . . .
Table 305: skull Symbols . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

88
88
88
88
88
88
89
89
89
89
90
90
90
90
90
90
91
91
91
91
92
92
92
92
92
93

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
6

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
8

306:
307:
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:

Non-Mathematical mathabx Symbols . . .
skak Chess Informator Symbols . . . . . .
skak Chess Pieces and Chessboard Squares
igo Go Stones . . . . . . . . . . . . . . . .
metre Metrical Symbols . . . . . . . . . .
metre Small and Large Metrical Symbols .
teubner Metrical Symbols . . . . . . . . . .
dictsym Dictionary Symbols . . . . . . . .
simpsons Characters from The Simpsons .
pmboxdraw Box-Drawing Symbols . . . . .
staves Magical Staves . . . . . . . . . . . .
pigpen Cipher Symbols . . . . . . . . . . .
ChinA2e Phases of the Moon . . . . . . . .
Other ChinA2e Symbols . . . . . . . . . . .
recycle Recycling Symbols . . . . . . . . .

Additional Information
8.1 Symbol Name Clashes . . . . . . . .
8.2 Resizing symbols . . . . . . . . . . .
8.3 Where can I find the symbol for . . . ?
8.4 Math-mode spacing . . . . . . . . . .
8.5 Bold mathematical symbols . . . . .
8.6 ASCII and Latin 1 quick reference .
8.7 Unicode characters . . . . . . . . . .
8.8 About this document . . . . . . . . .
8.9 Copyright and license . . . . . . . .

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

93
93
94
94
95
95
95
96
96
97
97
98
98
98
99

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

100
100
100
100
112
113
114
117
118
121

References

122

Index

123

7

1

Introduction

Welcome to the Comprehensive LATEX Symbol List! This document strives to be your primary source of LATEX
symbol information: font samples, LATEX commands, packages, usage details, caveats—everything needed to
put thousands of different symbols at your disposal. All of the fonts covered herein meet the following criteria:
1. They are freely available from the Comprehensive TEX Archive Network (http://www.ctan.org).
2. All of their symbols have LATEX 2ε bindings. That is, a user should be able to access a symbol by name,
not just by \charhnumber i.
These are not particularly limiting criteria; the Comprehensive LATEX Symbol List contains samples of 5913
symbols—quite a large number. Some of these symbols are guaranteed to be available in every LATEX 2ε system;
others require fonts and packages that may not accompany a given distribution and that therefore need to
be installed. See http://www.tex.ac.uk/cgi-bin/texfaq2html?label=instpackages+wherefiles for help
with installing new fonts and packages.

1.1

Document Usage

Each section of this document contains a number of font tables. Each table shows a set of symbols, with the
corresponding LATEX command to the right of each symbol. A table’s caption indicates what package needs to
be loaded in order to access that table’s symbols. For example, the symbols in Table 39, “textcomp Old-Style
Numerals”, are made available by putting “\usepackage{textcomp}” in your document’s preamble. “AMS”
means to use the AMS packages, viz. amssymb and/or amsmath. Notes below a table provide additional
information about some or all the symbols in that table.
One note that appears a few times in this document, particularly in Section 2, indicates that certain
symbols do not exist in the OT1 font encoding (Donald Knuth’s original, 7-bit font encoding, which is the
default font encoding for LATEX) and that you should use fontenc to select a different encoding, such as T1
(a common 8-bit font encoding). That means that you should put “\usepackage[hencodingi]{fontenc}” in
your document’s preamble, where hencodingi is, e.g., T1 or LY1. To limit the change in font encoding to the
current group, use “\fontencoding{hencodingi}\selectfont”.
Section 8 contains some additional information about the symbols in this document. It discusses how
certain mathematical symbols can vary in height, shows which symbol names are not unique across packages,
gives examples of how to create new symbols out of existing symbols, explains how symbols are spaced in
math mode, compares various schemes for boldfacing symbols, presents LATEX ASCII and Latin 1 tables,
shows how to input and output Unicode characters, and provides some information about this document itself.
The Comprehensive LATEX Symbol List ends with an index of all the symbols in the document and various
additional useful terms.

1.2

Frequently Requested Symbols

There are a number of symbols that are requested over and over again on comp.text.tex. If you’re looking
for such a symbol the following list will help you find it quickly.
.

, as in “Spaces are significant.”

........

9

ı́, ı̀, ı̄, ı̂, etc. (versus ı́, ı̀, ī, and ı̂)

........

14

¢

...............................

18

e

L, F, etc.

..............................

18

N, Z, R, etc.

©, ®, and ™
‰

∴

..

..............................

°, as in “180°” or “15℃”

64

..............

67

........................

68

......................

68
68

......................

19

r

...............................

..............................

20

R

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

..............................

27

ā´, `ê, etc. (i.e., several accents per character)

...............................

30

B and F

.........................

31

. and &

.........................

38

−

<, >, and | (instead of ¡, ¿, and —)
ˆ and ˜ (or ∼)

8

107

. . . . . . 114

. . . . . . . . . . . . . . . . . . . . . 115

2

Body-text symbols

This section lists symbols that are intended for use in running text, such as punctuation marks, accents,
ligatures, and currency symbols.

Table 1: LATEX 2ε Escapable “Special” Characters
$

%

\$
∗

\_ ∗

\%

}

&

\}

\&

#

{

\#

\{

The underscore package redefines “_” to produce an underscore in text mode (i.e., it
makes it unnecessary to escape the underscore character).

Table 2: Predefined LATEX 2ε Text-mode Commands

c

ˆ
˜
∗
\
|
{
}
•
©
†
‡
$
...
—
–
¡
>

\textasciicircum∗
\textasciitilde∗
\textasteriskcentered
\textbackslash
\textbar
\textbraceleft†
\textbraceright†
\textbullet
\textcopyright†
\textdagger†
\textdaggerdbl†
\textdollar†
\textellipsis†
\textemdash
\textendash
\textexclamdown
\textgreater

a
o

r
TM

<
ª
º
¶
·
¿
“
”
‘
’
®
§
£
™

\textless
\textordfeminine
\textordmasculine
\textparagraph†
\textperiodcentered
\textquestiondown
\textquotedblleft
\textquotedblright
\textquoteleft
\textquoteright
\textregistered
\textsection†
\textsterling†
\texttrademark
\textunderscore†
\textvisiblespace

Where two symbols are present, the left one is the “faked” symbol that LATEX 2ε
provides by default, and the right one is the “true” symbol that textcomp makes
available.
∗

\^{} and \~{} can be used instead of \textasciicircum and \textasciitilde.
See the discussion of “˜” on page 115.

†

It’s generally preferable to use the corresponding symbol from Table 3 because the
symbols in that table work properly in both text mode and math mode.

Table 3: LATEX 2ε Commands Defined to Work in Both Math and Text Mode
$
¶
§

\$
\P
\S

c

©
†

\_
\copyright
\dag

‡
...
£

\ddag
\dots
\pounds

{
}

\{
\}

Where two symbols are present, the left one is the “faked” symbol that LATEX 2ε
provides by default, and the right one is the “true” symbol that textcomp makes
available.

9

Table 4: AMS Commands Defined to Work in Both Math and Text Mode
X

\checkmark

r

z

\circledR

\maltese

Table 5: Non-ASCII Letters (Excluding Accented Letters)
å
Å
Æ
æ
∗

Ð
ž
‡
§
·
—
€


\DH∗
\dh∗
\DJ∗
\dj∗

Ð
ð
Ð
đ

\aa
\AA
\AE
\ae

L
l
Ŋ
ŋ

\L
\l
\NG∗
\ng∗

ø
Ø
Œ
œ

ß
SS
Þ
þ

\o
\O
\OE
\oe

\ss
\SS
\TH∗
\th∗

Not available in the OT1 font encoding. Use the fontenc package to select an
alternate font encoding, such as T1.

\B{D}
\B{d}
\B{H}
\B{h}
\B{t}
\B{T}
\m{b}
\m{B}
\m{C}

°

ð
Ð
¡
‚
¢
ƒ
£

Table 6: Letters Used to Typeset African Languages

¤
„
†
¦
À
à
‰
©
ˆ

\m{c}
\m{D}
\M{d}
\M{D}
\m{d}
\m{E}
\m{e}
\M{E}
\M{e}

¨

­
ª
Š
‘
±
¬
Œ

\m{f}
\m{F}
\m{G}
\m{g}
\m{I}
\m{i}
\m{J}
\m{j}
\m{K}

\m{k}
\m{N}
\m{n}
\m{o}
\m{O}
\m{P}
\m{p}
\m{s}
\m{S}

»
›
º
š
®
Ž

¯
¶

\M{t}
\M{T}
\m{t}
\m{T}
\m{u}∗
\m{U}∗
\m{Y}
\m{y}
\m{z}

–
Â
â
Å
å

\m{Z}
\T{E}
\T{e}
\T{O}
\T{o}

These characters all need the T4 font encoding, which is provided by the fc package.
∗

\m{v} and \m{V} are synonyms for \m{u} and \m{U}.

Table 7: Letters Used to Typeset Vietnamese
Ơ

ơ

\OHORN

Ư

\ohorn

\UHORN

ư

\uhorn

These characters all need the T5 font encoding, which is provided by the vntex
package.

Table 8: Punctuation Marks Not Found in OT1
«
»

\guillemotleft
\guillemotright

‹
›

„
‚

\guilsinglleft
\guilsinglright

\quotedblbase
\quotesinglbase

"

\textquotedbl

To get these symbols, use the fontenc package to select an alternate font encoding,
such as T1.

Table 9: pifont Decorative Punctuation Marks
{
|

\ding{123}
\ding{124}

}
~

\ding{125}
\ding{126}

¡
¢
10

\ding{161}
\ding{162}

£

\ding{163}

Table 10: tipa Phonetic Symbols
È
b
c
d
é
g
Ü
1
ł
8
Ý
0
ì
B
ò

Å
Ñ
Æ
Þ
^
ă
ą
g
è
Û
ň
2
C
ć
ćý
š
J
ő
ť
ťC
ÿ
ý
dý
S
}
=
/
{
Ş
Ť
Ã
dz
E

\textbabygamma
\textbarb
\textbarc
\textbard
\textbardotlessj
\textbarg
\textbarglotstop
\textbari
\textbarl
\textbaro
\textbarrevglotstop
\textbaru
\textbeltl
\textbeta
\textbullseye
\textceltpal
\textchi
\textcloseepsilon
\textcloseomega
\textcloserevepsilon
\textcommatailz
\textcorner
\textcrb
\textcrd
\textcrg
\textcrh
\textcrinvglotstop
\textcrlambda
\textcrtwo
\textctc
\textctd
\textctdctzlig
\textctesh
\textctj
\textctn
\textctt
\textcttctclig
\textctyogh
\textctz
\textdctzlig
\textdoublebaresh
\textdoublebarpipe
\textdoublebarslash
\textdoublepipe
\textdoublevertline
\textdownstep
\textdyoghlig
\textdzlig
\textepsilon

P
;
ż
#
á
ê
Á
â
ä
H
Ê
Î
Ò
Ó
č
É
Ö
ß
Û
K
Ì
ń
:
ş
ę
ű
Ô
¡
M
ñ
ë
Ð
Í
ŋ
ř
_
O
%
F
|
"
ij
ğ
7
\
9
3
Q
ź

\textglotstop
\texthalflength
\texthardsign
\texthooktop
\texthtb
\texthtbardotlessj
\texthtc
\texthtd
\texthtg
\texthth
\texththeng
\texthtk
\texthtp
\texthtq
\texthtrtaild
\texthtscg
\texthtt
\texthvlig
\textinvglotstop
\textinvscr
\textiota
\textlambda
\textlengthmark
\textlhookt
\textlhtlongi
\textlhtlongy
\textlonglegr
\textlptr
\textltailm
\textltailn
\textltilde
\textlyoghlig
\textObardotlessj
\textOlyoghlig
\textomega
\textopencorner
\textopeno
\textpalhook
\textphi
\textpipe
\textprimstress
\textraiseglotstop
\textraisevibyi
\textramshorns
\textrevapostrophe
\textreve
\textrevepsilon
\textrevglotstop
\textrevyogh

ï
ó
ù
ú
ü
$
À
à
ď
å
Ë
@
I
ĺ
Ï
ð
Œ
ś
ö
A
g
V
Ú
Y
­
ž
Â
tC
Ù
T
þ
£
ţ
5
ŕ
4
ľ
Õ
W
î
ô
õ
6
Ø
2
û
L
U
Ţ

\textrtailn
\textrtailr
\textrtails
\textrtailt
\textrtailz
\textrthook
\textsca
\textscb
\textsce
\textscg
\textsch
\textschwa
\textsci
\textscj
\textscl
\textscn
\textscoelig
\textscomega
\textscr
\textscripta
\textscriptg
\textscriptv
\textscu
\textscy
\textsecstress
\textsoftsign
\textstretchc
\texttctclig
\textteshlig
\texttheta
\textthorn
\texttoneletterstem
\texttslig
\textturna
\textturncelig
\textturnh
\textturnk
\textturnlonglegr
\textturnm
\textturnmrleg
\textturnr
\textturnrrtail
\textturnscripta
\textturnt
\textturnv
\textturnw
\textturny
\textupsilon
\textupstep

(continued on next page)

11

(continued from previous page)

S
R
ě
G
Ů
Ű

Ç
Ä
~
¿
ã
í

\textesh
\textfishhookr
\textg
\textgamma
\textglobfall
\textglobrise

\textrhookrevepsilon
\textrhookschwa
\textrhoticity
\textrptr
\textrtaild
\textrtaill

Š
ğ
ů
ß
Z

\textvertline
\textvibyi
\textvibyy
\textwynn
\textyogh

tipa defines shortcut characters for many of the above. It also defines a command
\tone for denoting tone letters (pitches). See the tipa documentation for more
information.

Table 11: tipx Phonetic Symbols
"
B
.
D
2
%
&
@
)
H
G
ˇ
7
5
’
(
?
T
U
V
,
0
4

\textaolig
\textbenttailyogh
\textbktailgamma
\textctinvglotstop
\textctjvar
\textctstretchc
\textctstretchcvar
\textctturnt
\textdblig
\textdoublebarpipevar
\textdoublepipevar
\textdownfullarrow
\textfemale
\textfrbarn
\textfrhookd
\textfrhookdvar
\textfrhookt
\textfrtailgamma
\textglotstopvari
\textglotstopvarii
\textglotstopvariii
\textgrgamma
\textheng
\texthmlig

3
;
p
!
I
#
<
1
>
6
9
ˆ
˜
F
=
¨
˚
v
z
*
+
:
/

\texthtbardotlessjvar
\textinvomega
\textinvsca
\textinvscripta
\textlfishhookrlig
\textlhookfour
\textlhookp
\textlhti
\textlooptoprevesh
\textnrleg
\textObullseye
\textpalhooklong
\textpalhookvar
\textpipevar
\textqplig
\textrectangle
\textretractingvar
\textrevscl
\textrevscr
\textrhooka
\textrhooke
\textrhookepsilon
\textrhookopeno
\textrtailhth

12

´
q
r
s
t
w
x
y
˝
$
˙
¯
P
Q
R
S
E
u
{
C
A
8
˘

\textrthooklong
\textscaolig
\textscdelta
\textscf
\textsck
\textscm
\textscp
\textscq
\textspleftarrow
\textstretchcvar
\textsubdoublearrow
\textsubrightarrow
\textthornvari
\textthornvarii
\textthornvariii
\textthornvariv
\textturnglotstop
\textturnsck
\textturnscu
\textturnthree
\textturntwo
\textuncrfemale
\textupfullarrow

Table 12: wsuipa Phonetic Symbols

!


'
.
<
A
+
X
T
;
R
?


#
3
N
a
^
(

e

8

M

D
b



$
%

"

\babygamma
\barb
\bard
\bari
\barl
\baro
\barp
\barsci
\barscu
\baru
\clickb
\clickc
\clickt
\closedniomega
\closedrevepsilon
\crossb
\crossd
\crossh
\crossnilambda
\curlyc
\curlyesh
\curlyyogh
\curlyz
\dlbari
\dz
\ejective

,
d
&
I
5
G
K


Z
\

\eng
\er
\esh
\eth
\flapr
\glotstop
\hookb
\hookd
\hookg
\hookh
\hookheng
\hookrevepsilon
\hv
\inva
\invf
\invglotstop
\invh
\invlegr
\invm
\invr
\invscr
\invscripta
\invv
\invw
\invy
\ipagamma

4
/
6
E
1


\labdentalnas
\latfric
\legm
\legr
\lz
\nialpha
\nibeta
\nichi
\niepsilon
\nigamma
\niiota
\nilambda
\niomega
\niphi
\nisigma
\nitheta
\niupsilon
\nj
\oo
\openo
\reve
\reveject
\revepsilon
\revglotstop
\scd
\scg

[


)
2
>
C
O
S
V
7
@
=

f

c




*
:
J


Y
W
]


U

H
0
9
F
L
P
_
Q
B
`

\schwa
\sci
\scn
\scr
\scripta
\scriptg
\scriptv
\scu
\scy
\slashb
\slashc
\slashd
\slashu
\taild
\tailinvr
\taill
\tailn
\tailr
\tails
\tailt
\tailz
\tesh
\thorn
\tildel
\yogh

Table 13: wasysym Phonetic Symbols
D
Þ

k
U

\DH
\Thorn

\dh
\inve

l
þ

\openo
\thorn

Table 14: phonetic Phonetic Symbols
j

M
n
N
"
s
d
F

\barj
\barlambda
\emgma
\engma
\enya
\epsi
\esh
\eth
\fj

f
?
B
b
D
T
k
K
D

\flap
\glottal
\hausaB
\hausab
\hausad
\hausaD
\hausak
\hausaK
\hookd

ī
c

h̄
U


m

r

\ibar
\openo
\planck
\pwedge
\revD
\riota
\rotm
\rotOmega
\rotr

13

A
w
y
e
p

u
u
a
G

\rotvara
\rotw
\roty
\schwa
\thorn
\ubar
\udesc
\vara
\varg

i

C

v
˚
h

x

\vari
\varomega
\varopeno
\vod
\voicedh
\yogh

ž
§
¢
¬

°

Table 15: t4phonet Phonetic Symbols

¡
¨
±
º
à
©
ª

\textcrd
\textcrh
\textepsilon
\textesh
\textfjlig
\texthtb
\texthtc

\texthtd
\texthtk
\texthtp
\texthtt
\textiota
\textltailn
\textopeno

|
ð
»
¡
¬
œ
¶

\textpipe
\textrtaild
\textrtailt
\textschwa
\textscriptv
\textteshlig
\textyogh

The idea behind the t4phonet package’s phonetic symbols is to provide an interface
to some of the characters in the T4 font encoding (Table 6 on page 10) but using
the same names as the tipa characters presented in Table 10 on page 11.

Table 16: semtrans Transliteration Symbols
-

,

\Alif

\Ayn

Table 17: Text-mode Accents
Ää
Áá
Ȧȧ
Āā
Ââ

\"{A}\"{a}
\’{A}\’{a}
\.{A}\.{a}
\={A}\={a}
\^{A}\^{a}
a
A

Àà

A¿ ¿a

Ãã
Aa
¯¯
A̧a̧

A
. a.

\‘{A}\‘{a}
\|{A}\|{a}‡
\~{A}\~{a}
\b{A}\b{a}
\c{A}\c{a}

\newtie{A}\newtie{a}∗

AŸ Ÿa

Ảả
A̋a̋
Ąą
Aa

\d{A}\d{a}
\G{A}\G{a}‡
\h{A}\h{a}§
\H{A}\H{a}
\k{A}\k{a}†

Åå
 a
A
Ăă

A¼ ¼a
Ǎǎ

\r{A}\r{a}
\t{A}\t{a}
\u{A}\u{a}
\U{A}\U{a}‡
\v{A}\v{a}

\textcircled{A}\textcircled{a}

∗

Requires the textcomp package.

†

Not available in the OT1 font encoding. Use the fontenc package to select an
alternate font encoding, such as T1.

‡

Requires the T4 font encoding, provided by the fc package.

§

Requires the T5 font encoding, provided by the vntex package.

Also note the existence of \i and \j, which produce dotless versions of “i” and “j”
(viz., “ı” and “”). These are useful when the accent is supposed to replace the
dot in encodings that need to composite (i.e., combine) letters and accents. For
example, “na\"{\i}ve” always produces a correct “naı̈ve”, while “na\"{i}ve”
yields the rather odd-looking “naïve” when using the OT1 font encoding and older
versions of LATEX. Font encodings other than OT1 and newer versions of LATEX
properly typeset “na\"{i}ve” as “naı̈ve”.

14

Table 18: tipa Text-mode Accents
´´
Ā
ā
´
Ǎ´
ǎ

\textacutemacron{A}\textacutemacron{a}

A
ffi affi
A
a
<<
˘
˘
Āā
Ż
AŻ
a
ˆ
Ȧˆ
ȧ

\textadvancing{A}\textadvancing{a}

§a
A§
˙ ă˙
Ă

\textacutewedge{A}\textacutewedge{a}
\textbottomtiebar{A}\textbottomtiebar{a}
\textbrevemacron{A}\textbrevemacron{a}
\textcircumacute{A}\textcircumacute{a}
\textcircumdot{A}\textcircumdot{a}
\textdotacute{A}\textdotacute{a}
\textdotbreve{A}\textdotbreve{a}

‚a
A‚
İa
Aİ

\textdoublegrave{A}\textdoublegrave{a}

Ža
AŽ
đa
Ađ
``
Ā
ā

\textgravecircum{A}\textgravecircum{a}

Źa
AŹ

\textgravemid{A}\textgravemid{a}

A
„a
„

\textinvsubbridge{A}\textinvsubbridge{a}

A
fl afl
Ÿ
AŸ
a

\textlowering{A}\textlowering{a}

‰a
A‰
——
Aa
A
˛ a˛

\textovercross{A}\textovercross{a}

A
fi afi
A
ffl affl
˚
Ā˚
ā
“
A“
a

\textraising{A}\textraising{a}

\textdoublevbaraccent{A}\textdoublevbaraccent{a}
\textgravedot{A}\textgravedot{a}
\textgravemacron{A}\textgravemacron{a}

\textmidacute{A}\textmidacute{a}
\textoverw{A}\textoverw{a}
\textpolhook{A}\textpolhook{a}
\textretracting{A}\textretracting{a}
\textringmacron{A}\textringmacron{a}
\textroundcap{A}\textroundcap{a}

A
a


\textseagull{A}\textseagull{a}

Aa
››
Aa
““
Aa
¯¯
A
”a
”

\textsubacute{A}\textsubacute{a}

Aa
ˆˆ
Aa
˙˙
Aa
‹‹
A
– a–
A
ff aff

\textsubcircum{A}\textsubcircum{a}

A
» a»
Aa
˚˚
A
«a
«
Aa
˜˜
Aa
¨¨

\textsubrhalfring{A}\textsubrhalfring{a}

\textsubarch{A}\textsubarch{a}
\textsubbar{A}\textsubbar{a}
\textsubbridge{A}\textsubbridge{a}
\textsubdot{A}\textsubdot{a}
\textsubgrave{A}\textsubgrave{a}
\textsublhalfring{A}\textsublhalfring{a}
\textsubplus{A}\textsubplus{a}
\textsubring{A}\textsubring{a}
\textsubsquare{A}\textsubsquare{a}
\textsubtilde{A}\textsubtilde{a}
\textsubumlaut{A}\textsubumlaut{a}

(continued on next page)

15

(continued from previous page)

A
—a
—

\textsubw{A}\textsubw{a}

Aa
ˇˇ
A
a
&&
Aa
"
˜" ˜
Ȧ
ȧ
>>
Aa

\textsubwedge{A}\textsubwedge{a}

IJa
AIJ

\textvbaraccent{A}\textvbaraccent{a}

\textsuperimposetilde{A}\textsuperimposetilde{a}
\textsyllabic{A}\textsyllabic{a}
\texttildedot{A}\texttildedot{a}
\texttoptiebar{A}\texttoptiebar{a}

tipa defines shortcut sequences for many of the above. See the tipa documentation
for more information.

Table 19: extraipa Text-mode Accents
””
A
”a
”
Ŕ Ŕ
Ãã
.. .
Ãã.
˜ ã
˜
Ã
A»a»
ˇˇ
A»a»
˚˚
a
–A
ˇ–ˇ
a
–A
”–˚
”
˚
Aa
a
–A
ˇ»–ˇ»

\partvoiceless{A}\partvoiceless{a}

\crtilde{A}\crtilde{a}

–A»–a»
˚˚
Āā

\dottedtilde{A}\dottedtilde{a}

Ȧȧ

\spreadlips{A}\spreadlips{a}

\doubletilde{A}\doubletilde{a}

Aa
^^
Aa
¯¯
Aa
"" ""
Aa
¡¡
Aa
¿¿
A
a
Ţ Ţ

\subcorner{A}\subcorner{a}

\bibridge{A}\bibridge{a}

\finpartvoice{A}\finpartvoice{a}
\finpartvoiceless{A}\finpartvoiceless{a}
\inipartvoice{A}\inipartvoice{a}
\inipartvoiceless{A}\inipartvoiceless{a}
\overbridge{A}\overbridge{a}

\sliding{A}\sliding{a}

\subdoublebar{A}\subdoublebar{a}
\subdoublevert{A}\subdoublevert{a}
\sublptr{A}\sublptr{a}
\subrptr{A}\subrptr{a}
\whistle{A}\whistle{a}

\partvoice{A}\partvoice{a}

Table 20: wsuipa Text-mode Accents
A
g ag

\dental{A}\dental{a}

A
 a

\underarch{A}\underarch{a}

Table 21: phonetic Text-mode Accents
Aa

\hill{A}\hill{a}

Aa

\rc{A}\rc{a}

Aa
˚
{˚
A
a{

\od{A}\od{a}

Aa

\syl{A}\syl{a}

\ohill{A}\ohill{a}

A
a
.. ..

\td{A}\td{a}

{ {

Aa
˜˜

\ut{A}\ut{a}

The phonetic package provides a few additional macros for linguistic accents.
\acbar and \acarc compose characters with multiple accents; for example,
\acbar{\’}{a} produces “´
ā” and \acarc{\"}{e} produces “¨ē”. \labvel joins
_
two characters with an arc: \labvel{mn} → “mn”.
\upbar is intended to go
between characters as in “x\upbar{}y’’ → “x y”. Lastly, \uplett behaves like
\textsuperscript but uses a smaller font. Contrast “p\uplett{h}’’ → “ph ”
with “p\textsuperscript{h}’’ → “ph ”.
16

Table 22: metre Text-mode Accents
Áá
Ăă
Ãã
Ää
Àà
Āā

AŸ Ÿa
A¿ ¿a
A¼ ¼a

\acutus{A}\acutus{a}
\breve{A}\breve{a}
\circumflexus{A}\circumflexus{a}
\diaeresis{A}\diaeresis{a}
\gravis{A}\gravis{a}
\macron{A}\macron{a}

Table 23: t4phonet Text-mode Accents
\textdoublegrave{A}\textdoublegrave{a}
\textvbaraccent{A}\textvbaraccent{a}
\textdoublevbaraccent{A}\textdoublevbaraccent{a}

The idea behind the t4phonet package’s text-mode accents is to provide an interface
to some of the accents in the T4 font encoding (accents marked with “‡” in Table 17
on page 14) but using the same names as the tipa accents presented in Table 18 on
page 15.

Table 24: arcs Text-mode Accents
__

Aa

\overarc{A}\overarc{a}

Aa

^^

\underarc{A}\underarc{a}

The accents shown above scale only to a few characters wide. An optional macro
argument alters the effective width of the accented characters. See the arcs documentation for more information.

Table 25: semtrans Accents
Aa
¨¨

Aa
˘˘

\D{A}\D{a}

\U{A}\U{a}

\T{A}\T{a}∗

aA

\T is not actually an accent but a command that rotates its argument 180° using
the graphicx package’s \rotatebox command.

Table 26: ogonek Accents
A, a,

\k{A}\k{a}

Table 27: combelow Accents
A
, a,

\cb{A}\cb{a}

\cb places a comma above letters with descenders. Hence, while “\cb{s}” produces
“s,”, “\cb{g}” produces “g‘”.
17

Table 28: wsuipa Diacritics

s
k
u
m
p

\ain
\corner
\downp
\downt
\halflength

v
n
q
{
z

\leftp
\leftt
\length
\midtilde
\open

x
~
w
o
i

h
j
r
y
|

\overring
\polishhook
\rightp
\rightt
\secstress

}
t
l

\stress
\syllabic
\underdots

\underwedge
\upp
\upt

\underring
\undertilde

The wsuipa package defines all of the above as ordinary characters, not as accents.
However, it does provide \diatop and \diaunder commands, which are used to
compose diacritics with other characters. For example, \diatop[\overring|a]
produces “x
a ”, and \diaunder[\underdots|a] produces “r
a”. See the wsuipa documentation for more information.

Table 29: textcomp Diacritics
˝
´
˘

\textacutedbl
\textasciiacute
\textasciibreve

ˇ
¨
`

¯


\textasciicaron
\textasciidieresis
\textasciigrave

\textasciimacron
\textgravedbl

The textcomp package defines all of the above as ordinary characters, not as accents.

Table 30: textcomp Currency Symbols
฿
¢

₡
¤

\textbaht
\textcent
\textcentoldstyle
\textcolonmonetary
\textcurrency
∗

$

₫
€
ƒ

\textdollar∗
\textdollaroldstyle
\textdong
\texteuro
\textflorin


₤
₦
‘
£

\textguarani
\textlira
\textnaira
\textpeso
\textsterling∗

₩
¥

\textwon
\textyen

It’s generally preferable to use the corresponding symbol from Table 3 on page 9
because the symbols in that table work properly in both text mode and math mode.

Table 31: marvosym Currency Symbols
¢


\Denarius
\Ecommerce

e
d

\EUR
\EURcr

D
c

\EURdig
\EURhv

e
¦

\EURtm
\EyesDollar

£
¡

\Pfund
\Shilling

The different euro signs are meant to be visually compatible with different fonts—
Courier (\EURcr), Helvetica (\EURhv), Times Roman (\EURtm), and the marvosym
digits listed in Table 197 (\EURdig). The mathdesign package redefines \texteuro
to be visually compatible with one of three additional fonts: Utopia (€), Charter (€), or Garamond (€).

Table 32: wasysym Currency Symbols
¢

\cent

¤
18

\currency

Table 33: ChinA2e Currency Symbols

ÿ

þ

\Euro

\Pound

Table 34: teubner Currency Symbols
Ε
Δ

Α
῝

\denarius
\dracma

\hemiobelion
\stater

Β

\tetartemorion

Table 35: eurosym Euro Signs
A
C

\geneuro

B
C

C
C

\geneuronarrow

\geneurowide

e

\officialeuro

\euro is automatically mapped to one of the above—by default, \officialeuro—
based on a eurosym package option. See the eurosym documentation for more
information. The \geneuro. . . characters are generated from the current body
font’s “C” character and therefore may not appear exactly as shown.

Table 36: fourier Euro Signs
(

\eurologo

€

\texteuro

Table 37: textcomp Legal Symbols
℗
«

\textcircledP
\textcopyleft

c
r

©
®

\textcopyright
\textregistered

TM

℠
™

\textservicemark
\texttrademark

Where two symbols are present, the left one is the “faked” symbol that LATEX 2ε
provides by default, and the right one is the “true” symbol that textcomp makes
available.
See http://www.tex.ac.uk/cgi-bin/texfaq2html?label=tradesyms for solutions to common problems that occur when using these symbols (e.g., getting a “ r ”
when you expected to get a “®”).

Table 38: cclicenses Creative Commons License Icons

∗

\ccby

$

\

BY:

\ccnc∗

=

\ccnd

C

\cc

CC

\ccsa∗

These symbols utilize the rotating package and therefore display improperly in some
DVI viewers.

19

Table 39: textcomp Old-style Numerals





\textzerooldstyle
\textoneoldstyle
\texttwooldstyle
\textthreeoldstyle






\textfouroldstyle
\textfiveoldstyle
\textsixoldstyle
\textsevenoldstyle




\texteightoldstyle
\textnineoldstyle

Rather than use the bulky \textoneoldstyle, \texttwooldstyle, etc. commands
shown above, consider using \oldstylenums{. . .} to typeset an old-style number.

Table 40: Miscellaneous textcomp Symbols
∗
‖
○
␢
¦
•
†
‡

œ
℮
‽
•
♪
№
◦

\textasteriskcentered
\textbardbl
\textbigcircle
\textblank
\textbrokenbar
\textbullet
\textdagger∗
\textdaggerdbl∗
\textdblhyphen
\textdblhyphenchar
\textdiscount
\textestimated
\textinterrobang
\textinterrobangdown
\textmusicalnote
\textnumero
\textopenbullet

a
o

ª
º
¶
·
‱
‰
¶
'
‚
„
“
※
§

~


\textordfeminine
\textordmasculine
\textparagraph∗
\textperiodcentered
\textpertenthousand
\textperthousand
\textpilcrow
\textquotesingle
\textquotestraightbase
\textquotestraightdblbase
\textrecipe
\textreferencemark
\textsection∗
\textthreequartersemdash
\texttildelow
\texttwelveudash

Where two symbols are present, the left one is the “faked” symbol that LATEX 2ε
provides by default, and the right one is the “true” symbol that textcomp makes
available.
∗

It’s generally preferable to use the corresponding symbol from Table 3 on page 9
because the symbols in that table work properly in both text mode and math mode.

Table 41: Miscellaneous wasysym Text-mode Symbols
h

\permil

20

3

Mathematical symbols

Most, but not all, of the symbols in this section are math-mode only. That is, they yield a “Missing $
inserted” error message if not used within $. . .$, \[. . .\], or another math-mode environment. Operators
marked as “variable-sized” are taller in displayed formulas, shorter in in-text formulas, and possibly shorter
still when used in various levels of superscripts or subscripts.
Alphanumeric symbols (e.g., “L ” and “š”) are usually produced using one of the math alphabets in
Table 213 rather than with an explicit symbol command. Look there first if you need a symbol for a transform,
number set, or some other alphanumeric.
Although there have been many requests on comp.text.tex for a contradiction symbol, the ensuing discussion invariably reveals innumerable ways to represent contradiction in a proof, including “ ” (\blitza),
“⇒⇐” (\Rightarrow\Leftarrow), “⊥” (\bot), “=” (\nleftrightarrow), and “※” (\textreferencemark).
Because of the lack of notational consensus, it is probably better to spell out “Contradiction!” than to use a
symbol for this purpose. Similarly, discussions on comp.text.tex have revealed that there are a variety of
ways to indicate the mathematical notion of “is defined as”. Common candidates include “,” (\triangleq),
def
“≡” (\equiv), “B” (various 1 ), and “ =” (\stackrel{\text{\tiny def}}{=}). See also the
` example of
\equalsfill on page 108. Depending upon the context, disjoint union may be represented as “ ” (\coprod),
· (\dotcup), “⊕” (\oplus), or any of a number of other symbols.2 Finally, the average
“t” (\sqcup), “∪”
value of a variable x is written by some people as “x” (\overline{x}), by some people as “hxi” (\langle x
\rangle), and by some people as “x” or “∅x” (\diameter x or \varnothing x). The moral of the story is
that you should be careful always to explain your notation to avoid confusing your readers.

Table 42: Math-Mode Versions of Text Symbols
$
...

\mathdollar
\mathellipsis

¶
§

\mathparagraph
\mathsection

£

\mathsterling
\mathunderscore

It’s generally preferable to use the corresponding symbol from Table 3 on page 9
because the symbols in that table work properly in both text mode and math mode.

Table 43: cmll Unary Operators
!
˜
∗

\oc∗
\shift

ˆ
´

\shneg
\shpos

?

\wn∗

\oc and \wn differ from “!” and “?” in terms of their math-mode spacing: $A=!B$
produces “A =!B”, for example, while $A=\oc B$ produces “A = !B”.

1 In txfonts, pxfonts, and mathtools the symbol is called \coloneqq. In mathabx and MnSymbol it’s called \coloneq. In
colonequals it’s called \colonequals.
2 Bob Tennent listed these and other disjoint-union symbol possibilities in a November 2007 post to comp.text.tex.

21

Table 44: Binary Operators
q
∗
5
4
•
∩
·
◦
∗

\amalg
\ast
\bigcirc
\bigtriangledown
\bigtriangleup
\bullet
\cap
\cdot
\circ

∪
†
‡

÷
C
∓

\cup
\dagger
\ddagger
\diamond
\div
\lhd∗
\mp
\odot
\ominus

⊕
⊗
±
B
\
u
t
?

\oplus
\oslash
\otimes
\pm
\rhd∗
\setminus
\sqcap
\sqcup
\star

×
/
.
E
D
]
∨
∧
o

\times
\triangleleft
\triangleright
\unlhd∗
\unrhd∗
\uplus
\vee
\wedge
\wr

Not predefined in LATEX 2ε . Use one of the packages latexsym, amsfonts, amssymb,
txfonts, pxfonts, or wasysym.

Table 45: AMS Binary Operators
Z



e

~
∗

\barwedge
\boxdot
\boxminus
\boxplus
\boxtimes
\Cap
\centerdot
\circledast

}

d
g
f
>
u
[

\circledcirc
\circleddash
\Cup
\curlyvee
\curlywedge
\divideontimes
\dotplus
\doublebarwedge

|
h
n
i
o
r
Y

\intercal∗
\leftthreetimes
\ltimes
\rightthreetimes
\rtimes
\smallsetminus
\veebar

Some people use a superscripted \intercal for matrix transpose:
“A^\intercal” 7→ “A| ”. (See the May 2009 comp.text.tex thread, “raising math symbols”, for suggestions about altering the height of the superscript.)
\top (Table 139 on page 51), T, and \mathsf{T} are other popular choices: “A> ”,
“AT ”, “AT ”.

Table 46: stmaryrd Binary Operators

N
O
i
k

j


l
.
/
'
&
)
#
(

\baro
\bbslash
\binampersand
\bindnasrepma
\boxast
\boxbar
\boxbox
\boxbslash
\boxcircle
\boxdot
\boxempty
\boxslash
\curlyveedownarrow
\curlyveeuparrow
\curlywedgedownarrow
\curlywedgeuparrow
\fatbslash
\fatsemi
\fatslash

9
2
!

`
:
@
;
=
<
>
?
3
8
,


\interleave
\leftslice
\merge
\minuso
\moo
\nplus
\obar
\oblong
\obslash
\ogreaterthan
\olessthan
\ovee
\owedge
\rightslice
\sslash
\talloblong
\varbigcirc
\varcurlyvee
\varcurlywedge
22






5
4




6
7
"





\varoast
\varobar
\varobslash
\varocircle
\varodot
\varogreaterthan
\varolessthan
\varominus
\varoplus
\varoslash
\varotimes
\varovee
\varowedge
\vartimes
\Ydown
\Yleft
\Yright
\Yup

Table 47: wasysym Binary Operators
C


\lhd
\LHD

#
B

\ocircle
\rhd


E

D

\RHD
\unlhd

\unrhd

Table 48: txfonts/pxfonts Binary Operators
V
W
U

\circledbar
\circledbslash
\circledvee

T
M


\circledwedge
\invamp
\medbullet

\medcirc
\sqcapplus
\sqcupplus


}
|

Table 49: mathabx Binary Operators



X


X





Y
O

\ast
\Asterisk
\barwedge
\bigstar
\bigvarstar
\blackdiamond
\cap
\circplus
\coasterisk
\coAsterisk
\convolution
\cup
\curlyvee

N




Z
\
]

\curlywedge
\divdot
\divideontimes
\dotdiv
\dotplus
\dottimes
\doublebarwedge
\doublecap
\doublecup
\ltimes
\pluscirc
\rtimes
\sqbullet

[
\

^
_

]



Z

_

Y
[
^

\sqcap
\sqcup
\sqdoublecap
\sqdoublecup
\square
\squplus
\udot
\uplus
\varstar
\vee
\veebar
\veedoublebar
\wedge

Many of the above glyphs go by multiple names. \centerdot is equivalent to
\sqbullet, and \ast is equivalent to *. \asterisk produces the same glyph as
\ast, but as an ordinary symbol, not a binary operator. Similarly, \bigast produces a large-operator version of the \Asterisk binary operator, and \bigcoast
produces a large-operator version of the \coAsterisk binary operator.

Table 50: MnSymbol Binary Operators
∐
∗

&
●
∩
⩀
?
⋅
○

\amalg
\ast
\backslashdiv
\bowtie
\bullet
\cap
\capdot
\capplus
\cdot
\circ

⩏
⩔
⩕
∵
+
"

ˆ

⌜

\doublesqcup
\doublevee
\doublewedge
\downtherefore
\downY
\dtimes
\fivedots
\hbipropto
\hdotdot
\lefthalfcap

⋌
(
⋊

∏
⊓
E
G
⊔

\righttherefore
\rightthreetimes
\rightY
\rtimes
\slashdiv
\smallprod
\sqcap
\sqcapdot
\sqcapplus
\sqcup

(continued on next page)

23

(continued from previous page)

¾
¼
∪
⊍
⊎
⋎
5
⋏
4

÷


⋒
⋓
7
6
⩎

⌞

\closedcurlyvee
\closedcurlywedge
\cup
\cupdot
\cupplus
\curlyvee
\curlyveedot
\curlywedge
\curlywedgedot
\ddotdot
\diamonddots
\div
\dotmedvert
\dotminus
\doublecap
\doublecup
\doublecurlyvee
\doublecurlywedge
\doublesqcap

⋋
*
⋉
∖
◯
∕
∣

−

∓
‰
‹
+
±
⌝
⌟

\lefthalfcup
\lefttherefore
\leftthreetimes
\leftY
\ltimes
\medbackslash
\medcircle
\medslash
\medvert
\medvertdot
\minus
\minusdot
\mp
\neswbipropto
\nwsebipropto
\plus
\pm
\righthalfcap
\righthalfcup

D
F
∷
×

∴
)
$
Š
∶
∨
/
⧖

∧
.
≀

\sqcupdot
\sqcupplus
\squaredots
\times
\udotdot
\uptherefore
\upY
\utimes
\vbipropto
\vdotdot
\vee
\veedot
\vertbowtie
\vertdiv
\wedge
\wedgedot
\wreath

MnSymbol defines \setminus and \smallsetminus as synonyms
\medbackslash; \Join as a synonym for \bowtie; \wr as a synonym
\wreath; \shortmid as a synonym for \medvert; \Cap as a synonym
\doublecap; \Cup as a synonym for \doublecup; and, \uplus as a synonym
\cupplus.

for
for
for
for

Table 51: mathdesign Binary Operators
_

\dtimes

]

\udtimes

^

\utimes

The mathdesign package additionally provides versions of each of the binary operators shown in Table 45 on page 22.

Table 52: cmll Binary Operators
`
∗

&

\parr

\with∗

\with differs from “&” in terms of its math-mode spacing: $A \& B$ produces
“A&B”, for example, while $A \with B$ produces “A & B”.

Table 53: shuffle Binary Operators



\cshuffle



\shuffle

Table 54: ulsy Geometric Binary Operators



\odplus
24


ž
Ÿ
œ
f
n
k
e
g
c
d
h
a
`

Table 55: mathabx Geometric Binary Operators
\blacktriangledown
\blacktriangleleft
\blacktriangleright
\blacktriangleup
\boxasterisk
\boxbackslash
\boxbot
\boxcirc
\boxcoasterisk
\boxdiv
\boxdot
\boxleft
\boxminus
\boxplus

i
m
b
j
o
l
f
n
k
e
g
c
d
h

\boxright
\boxslash
\boxtimes
\boxtop
\boxtriangleup
\boxvoid
\oasterisk
\obackslash
\obot
\ocirc
\ocoasterisk
\odiv
\odot
\oleft

a
`
i
m
b
j
o
l

™
š
›
˜

\ominus
\oplus
\oright
\oslash
\otimes
\otop
\otriangleup
\ovoid
\smalltriangledown
\smalltriangleleft
\smalltriangleright
\smalltriangleup

Table 56: MnSymbol Geometric Binary Operators
⧅
⧈
⊡
⊟
⊞
⧄
⊠
q
{

⟐
x
|
z
}
y
Â
◆
∎

\boxbackslash
\boxbox
\boxdot
\boxminus
\boxplus
\boxslash
\boxtimes
\boxvert
\diamondbackslash
\diamonddiamond
\diamonddot
\diamondminus
\diamondplus
\diamondslash
\diamondtimes
\diamondvert
\downslice
\filleddiamond
\filledmedsquare

▼
◀
▶
▲
◾
★
▾
◂
▸
▴
◇
◻
☆
▽
◁
▷
△
⊛
⦸

\filledmedtriangledown
\filledmedtriangleleft
\filledmedtriangleright
\filledmedtriangleup
\filledsquare
\filledstar
\filledtriangledown
\filledtriangleleft
\filledtriangleright
\filledtriangleup
\meddiamond
\medsquare
\medstar
\medtriangledown
\medtriangleleft
\medtriangleright
\medtriangleup
\oast
\obackslash

⊚
⊙
⊖
⊕
⊘
⍟
⊗
d
⦶
„
◇
◽
☆
▿
◃
▹
▵
⋆
À

\ocirc
\odot
\ominus
\oplus
\oslash
\ostar
\otimes
\otriangle
\overt
\pentagram
\smalldiamond
\smallsquare
\smallstar
\smalltriangledown
\smalltriangleleft
\smalltriangleright
\smalltriangleup
\thinstar
\upslice

MnSymbol defines \blacksquare as a synonym for \filledmedsquare; \square
and \Box as synonyms for \medsquare; \diamond as a synonym for \smalldiamond;
\Diamond as a synonym for \meddiamond; \star as a synonym for \thinstar;
\circledast as a synonym for \oast; \circledcirc as a synonym for \ocirc;
and, \circleddash as a synonym for \ominus.

T \
S [
JK
LM

Table 57: Variable-sized Math Operators
NO
V^
\bigcap
\bigotimes
\bigwedge
F G
`a
\bigcup
\bigsqcup
\coprod
Z
R
U ]
\bigodot
\biguplus
\int
I
H
W _
\bigoplus
\bigvee
\oint
25

QY

\prod

PX

\sum

Table 58: AMS Variable-sized Math Operators
ZZ
ZZZ
RR
RRR
\iint
\iiint
RRRR

em
bj
ck

ZZZZ
\iiiint

R

···

R

Z

Z
···

\idotsint

Table 59: stmaryrd Variable-sized Math
g o
\bigbox
\biginterleave

\bigcurlyvee
\bignplus
n
f
\bigcurlywedge
\bigparallel

Operators

\bigsqcap
h
`
\bigtriangledown
i
a
\bigtriangleup

Table 60: wasysym Variable-sized Math Operators
r w

\int

r w

\varint∗

†

! "
u z

\iint
\varoint∗

# $

\iiint



\oiint

None of the preceding symbols are defined when wasysym is passed the nointegrals
option.
∗

Not defined when wasysym is passed the integrals option.

†

Defined only when wasysym is passed the integrals option. Otherwise, the default
LATEX \int glyph (as shown in Table 57) is used.

Table 61: mathabx Variable-sized Math Operators

œ¬
–¦
›«
Öö

\bigcurlyvee
\bigsqcap
\bigcurlywedge
\bigboxasterisk

Ýý
Òò
Úú
ßÿ

\bigboxslash
\bigboxtimes
\bigboxtop
\bigboxtriangleup

Éé
Íí
Êê
Ïï

\bigoright
\bigoslash
\bigotop
\bigotriangleup

(continued on next page)

26

(continued from previous page)

Þþ
Ûû
Õõ
×÷
Óó
Ôô
Øø
Ññ
Ðð
Ùù

\bigboxbackslash
\bigboxbot
\bigboxcirc
\bigboxcoasterisk
\bigboxdiv
\bigboxdot
\bigboxleft
\bigboxminus
\bigboxplus
\bigboxright

Üü
’ ¢
Ææ
Îî
Ëë
Åå
Çç
Ãã
Èè
Áá

\bigboxvoid
\bigcomplementop
\bigoasterisk
\bigobackslash

Ìì

˜¨
‘¡
µ½

\bigobot

´ ¼

\bigocirc
\bigocoasterisk

³ »
· ¿

\bigodiv

¶ ¾

\bigoleft

\bigovoid
\bigplus
\bigsquplus
\bigtimes
\iiint
\iint
\int
\oiint
\oint

\bigominus

Table 62: txfonts/pxfonts Variable-sized Math Operators









>

?

\ointclockwise

\bigsqcupplus

\ointctrclockwise
R S

\fint

' (
% &
#

\bigsqcapplus

P Q

\idotsint



\iiiint

$

\sqiint



F G

\iiint

\sqiiint

\sqint
\varoiiintclockwise

(continued on next page)

27

(continued from previous page)

!

"

L

M

D

E

)

*

H

I

@

A

N O

\iint

B C

\oiiintclockwise

J K

\oiiintctrclockwise
\oiiint
\oiintclockwise

.

+

,

\varoiintclockwise
\varoiintctrclockwise
\varointclockwise
\varointctrclockwise

 

\oiintctrclockwise



-

\varoiiintctrclockwise

\varprod

\oiint

Table 63: esint Variable-sized Math Operators
¯

˙
\dotsint

ffl
ˇ
˝
˜
%
#
‚

\fint
˘
\iiiint
˚
\iiint
¨
\iint
&
\landdownint
$
\landupint

ı

”
›
!
ff
fl

‹
\oiint

28


\ointclockwise
‰
\ointctrclockwise
„
\sqiint
“
\sqint
"
\varoiint
fi
\varointclockwise
ffi
\varointctrclockwise

Table 64: MnSymbol Variable-sized Math Operators
⋂

⋂

\bigcap

⊖

⊖

\bigominus

∁

∁

\complement

⩀

⩀

\bigcapdot

⊕

⊕

\bigoplus

∐

∐

\coprod

$

%

\bigcapplus

⊘

⊘

\bigoslash

∫…∫

∫…∫

\idotsint

◯

◯

\bigcircle

⍟

⍟

\bigostar

⨌

⨌

\iiiint

⋃

⋃

\bigcup

⊗

⊗

\bigotimes

∭

∭

\iiint

⊍

⊍

\bigcupdot

F

G

\bigotriangle

∬

∬

\iint

⊎

⊎

\bigcupplus∗

⦶

⦶

\bigovert

∫

∫

\int

⋎

⋎

\bigcurlyvee

+

+

\bigplus

⨚

⨚

\landdownint





\bigcurlyveedot

⊓

⊓

\bigsqcap

⨙

⨙

\landupint

⋏

⋏

\bigcurlywedge

,

-

\bigsqcapdot

∲

∲

\lcircleleftint





\bigcurlywedgedot

0

1

\bigsqcapplus

∲

∲

\lcirclerightint





\bigdoublecurlyvee

⊔

⊔

\bigsqcup

∯

∯

\oiint





\bigdoublecurlywedge

.

/

\bigsqcupdot

∮

∮

\oint

⩔

⩔

\bigdoublevee

2

3

\bigsqcupplus

∏

∏

\prod

⩕

⩕

\bigdoublewedge

⨉

⨉

\bigtimes

∳

∳

\rcircleleftint

⊛

⊛

\bigoast

⋁

⋁

\bigvee

∳

∳

\rcirclerightint

⦸

⦸

\bigobackslash

\bigveedot

⨏

⨏

\strokedint

⊚

⊚

\bigocirc

⋀

\bigwedge

∑

∑

\sum

⊙

⊙

\bigodot



\bigwedgedot

⨋

⨋

\sumint

∗

⋀

MnSymbol defines \biguplus as a synonym for \bigcupplus.

29

Table 65: mathdesign Variable-sized Math Operators


€

„

\intclockwise

ˆ ‰

\ointclockwise
ƒ

‚

\oiiint

\ointctrclockwise

‡

†

\oiint

The mathdesign package provides three versions of each integral—in
fact,R of evR
ery symbol—to accompany different text fonts: Utopia ( ), Garamond ( ), and
R
Charter ( ).

Table 66: cmll Large Math Operators
˙

˘

\bigparr

\bigwith

Table 67: Binary Relations
≈

./

a


\approx
\asymp
\bowtie
\cong
\dashv
\doteq

≡
_
Z
|
|=
k

\equiv
\frown
\Join∗
\mid†
\models
\parallel

⊥
≺

∝
∼
'

\perp
\prec
\preceq
\propto
\sim
\simeq

^


`

\smile
\succ
\succeq
\vdash

∗

Not predefined in LATEX 2ε . Use one of the packages latexsym, amsfonts, amssymb,
mathabx, txfonts, pxfonts, or wasysym.

†

The difference between \mid and | is that the former is a binary relation while
the latter is a math ordinal. Consequently, LATEX typesets the two with different
surrounding spacing. Contrast “P(A | B)” 7→ “P (A|B)” with “P(A \mid B)” 7→
“P (A | B)”.

Table 68: AMS Binary Relations
u

v
w
∵
G
m
l
$
2
3
+

\approxeq
\backepsilon
\backsim
\backsimeq
\because
\between
\Bumpeq
\bumpeq
\circeq
\curlyeqprec
\curlyeqsucc
\doteqdot

P
;
(
t
w
4
:
p
q
a
`

\eqcirc
\fallingdotseq
\multimap
\pitchfork
\precapprox
\preccurlyeq
\precsim
\risingdotseq
\shortmid
\shortparallel
\smallfrown
\smallsmile
30

v
<
%
∴
≈
∼
∝



\succapprox
\succcurlyeq
\succsim
\therefore
\thickapprox
\thicksim
\varpropto
\Vdash
\vDash
\Vvdash

Table 69: AMS Negated Binary Relations

∦
⊀

.

\ncong
\nmid
\nparallel
\nprec
\npreceq
\nshortmid

/
/


2
0

\nshortparallel
\nsim
\nsucc
\nsucceq
\nvDash
\nvdash

3





\nVDash
\precnapprox
\precnsim
\succnapprox
\succnsim

Table 70: stmaryrd Binary Relations
A

\inplus

B

\niplus

Table 71: wasysym Binary Relations

Z

\invneg
\Join

{


\leadsto
\logof



\wasypropto

Table 72: txfonts/pxfonts Binary Relations
S
R

D
H
F
B


I
E
C
G
h
∗

\circledgtr
\circledless
\colonapprox
\Colonapprox
\coloneq
\Coloneq
\Coloneqq
\coloneqq∗
\Colonsim
\colonsim
\Eqcolon
\eqcolon
\eqqcolon
\Eqqcolon
\eqsim

X
\
(

•



˜

—
–


[

\lJoin
\lrtimes
\multimap
\multimapboth
\multimapbothvert
\multimapdot
\multimapdotboth
\multimapdotbothA
\multimapdotbothAvert
\multimapdotbothB
\multimapdotbothBvert
\multimapdotbothvert
\multimapdotinv
\multimapinv
\openJoin

]
y


Y
K
J
L


∥


\opentimes
\Perp
\preceqq
\precneqq
\rJoin
\strictfi
\strictif
\strictiff
\succeqq
\succneqq
\varparallel
\varparallelinv
\VvDash

As an alternative to using txfonts/pxfonts, a “:=” symbol can be constructed with
“\mathrel{\mathop:}=”.

Table 73: txfonts/pxfonts Negated Binary Relations
6
*
+
(
)
.
7

\napproxeq
\nasymp
\nbacksim
\nbacksimeq
\nbumpeq
\nBumpeq
\nequiv
\nprecapprox

$
9

;
8
%
:


\npreccurlyeq
\npreceqq
\nprecsim
\nsimeq
\nsuccapprox
\nsucccurlyeq
\nsucceqq
\nsuccsim
31

5
h
g

1

\nthickapprox
\ntwoheadleftarrow
\ntwoheadrightarrow
\nvarparallel
\nvarparallelinv
\nVdash

Table 74: mathabx Binary Relations







¶
·
)
)

-

\between
\botdoteq
\Bumpedeq
\bumpedeq
\circeq
\coloneq
\corresponds
\curlyeqprec
\curlyeqsucc
\DashV
\Dashv
\dashVv








Ï
Î
Æ
¤
Ì

À

\divides
\dotseq
\eqbumped
\eqcirc
\eqcolon
\fallingdotseq
\ggcurly
\llcurly
\precapprox
\preccurlyeq
\precdot
\precsim


Ç
¥
Í

Á
6

(
,

(
,

\risingdotseq
\succapprox
\succcurlyeq
\succdot
\succsim
\therefore
\topdoteq
\vDash
\Vdash
\VDash
\Vvdash

Table 75: mathabx Negated Binary Relations



¸
¹
+
/
'

+
/





\napprox
\ncong
\ncurlyeqprec
\ncurlyeqsucc
\nDashv
\ndashV
\ndashv
\nDashV
\ndashVv
\neq
\notasymp
\notdivides
\notequiv

M

¢
È
¦
ª
Â



£
É
§
«
Ã

\notperp
\nprec
\nprecapprox
\npreccurlyeq
\npreceq
\nprecsim
\nsim
\nsimeq
\nsucc
\nsuccapprox
\nsucccurlyeq
\nsucceq
\nsuccsim

*

*
.
&

.
Ê
¬
Ä
Ë
­
Å

\nvDash
\nVDash
\nVdash
\nvdash
\nVvash
\precnapprox
\precneq
\precnsim
\succnapprox
\succneq
\succnsim

The \changenotsign command toggles the behavior of \not to produce either a
vertical or a diagonal slash through a binary operator. Thus, “$a \not= b$” can
be made to produce either “a = b” or “a = b”.

Table 76: MnSymbol Binary Relations
≈
≊


≌
∽
⋍

”

\approx
\approxeq
\backapprox
\backapproxeq
\backcong
\backeqsim
\backsim
\backsimeq
\backtriplesim
\between


≖
⩦
≂
=
Ý
≡
Þ
≒
≙

\eqbump
\eqcirc
\eqdot
\eqsim
\equal
\equalclosed
\equiv
\equivclosed
\fallingdotseq
\hateq

}
å
õ
“
Ó
×
Ý
í
≺

\nwfootline
\nwfree
\nwmodels
\nwModels
\nwsecrossing
\nwseline
\Nwseline
\nwvdash
\nwVdash
\prec

(continued on next page)

32

ï
∥
∼
≃
≻
⪸
≽
⪰
≿
~

\seVdash
\shortparallel
\sim
\simeq
\succ
\succapprox
\succcurlyeq
\succeq
\succsim
\swfootline

(continued from previous page)

≏
≎
≗
Ü
½
»
∶=
≅
⋞
⋟
≐
≑
{
⫝
ã
ó

⊤
⍑

\bumpeq
\Bumpeq
\circeq
\closedequal
\closedprec
\closedsucc
\coloneq
\cong
\curlyeqprec
\curlyeqsucc
\doteq
\Doteq
\downfootline
\downfree
\downmodels
\downModels
\downpropto
\downvdash
\downVdash


z
‚
â
ò
∝
Ð
Ô
⪦
⊣
ê
|
„
ä
ô
Ò
Ö
Ü
ì

⪷
≼
⪯
≾
x
€
⊧
⊫
Ž
⪧
⊢
⊩
≓

‡
ç
÷
•
ß

\hcrossing
\leftfootline
\leftfree
\leftmodels
\leftModels
\leftpropto
\leftrightline
\Leftrightline
\leftslice
\leftvdash
\leftVdash
\nefootline
\nefree
\nemodels
\neModels
\neswline
\Neswline
\nevdash
\neVdash

\precapprox
\preccurlyeq
\preceq
\precsim
\rightfootline
\rightfree
\rightmodels
\rightModels
\rightpropto
\rightslice
\rightvdash
\rightVdash
\risingdotseq
\sefootline
\sefree
\semodels
\seModels
\separated
\sevdash

†
æ
ö
Þ
î
≋
∣
∥
y

á
ñ

⊥
⍊
’
⊪

\swfree
\swmodels
\swModels
\swvdash
\swVdash
\triplesim
\updownline
\Updownline
\upfootline
\upfree
\upmodels
\upModels
\uppropto
\upvdash
\upVdash
\vcrossing
\Vvdash

MnSymbol additionally defines synonyms for some of the preceding symbols:
⊣
Ó
Ò
Ò
≑
⊧
∥
⊥
∝
Ð
Ô
∝
⊧
⊫
⊢
⊩

\dashv
\diagdown
\diagup
\divides
\doteqdot
\models
\parallel
\perp
\propto
\relbar
\Relbar
\varpropto
\vDash
\VDash
\vdash
\Vdash

(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same

as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as

\leftvdash)
\nwseline)
\neswline)
\updownline)
\Doteq)
\rightmodels)
\Updownline)
\upvdash)
\leftpropto)
\leftrightline)
\Leftrightline)
\leftpropto)
\rightmodels)
\rightModels)
\rightvdash)
\rightVdash)

Table 77: MnSymbol Negated Binary Relations
≉
≊̸
̸
̸
≌̸
̸
∽̸

\napprox
\napproxeq
\nbackapprox
\nbackapproxeq
\nbackcong
\nbackeqsim
\nbacksim

≂̸
≠
̸
≢
̸
‘
≒̸

\neqsim
\nequal
\nequalclosed
\nequiv
\nequivclosed
\neswcrossing
\nfallingdotseq

̸
̸
̸
̸
̸
⊀
⪷̸

\nnwModels
\nnwseline
\nNwseline
\nnwvdash
\nnwVdash
\nprec
\nprecapprox

(continued on next page)

33

⊁
⪸̸
⋡
⪰̸
≿̸
̸
̸

\nsucc
\nsuccapprox
\nsucccurlyeq
\nsucceq
\nsuccsim
\nswfootline
\nswfree

(continued from previous page)

⋍̸
̸
≏̸
≎̸
≗̸
̸
≇
⋞̸
⋟̸
≐̸
≑̸
̸
⫝̸
̸
̸
⊤̸
⍑̸
̸
≖̸
⩦̸

\nbacksimeq
\nbacktriplesim
\nbumpeq
\nBumpeq
\ncirceq
\nclosedequal
\ncong
\ncurlyeqprec
\ncurlyeqsucc
\ndoteq
\nDoteq
\ndownfootline
\ndownfree
\ndownmodels
\ndownModels
\ndownvdash
\ndownVdash
\neqbump
\neqcirc
\neqdot

≙̸
̸
̸
̸
̸
̸
̸
⊣̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸

⋠
⪯̸
≾̸
̸
̸
⊭
⊯
⊬
⊮
≓̸
̸
̸
̸
̸
̸
̸
∤
∦
≁
≄

\nhateq
\nleftfootline
\nleftfree
\nleftmodels
\nleftModels
\nleftrightline
\nLeftrightline
\nleftvdash
\nleftVdash
\nnefootline
\nnefree
\nnemodels
\nneModels
\nneswline
\nNeswline
\nnevdash
\nneVdash
\nnwfootline
\nnwfree
\nnwmodels

\npreccurlyeq
\npreceq
\nprecsim
\nrightfootline
\nrightfree
\nrightmodels
\nrightModels
\nrightvdash
\nrightVdash
\nrisingdotseq
\nsefootline
\nsefree
\nsemodels
\nseModels
\nsevdash
\nseVdash
\nshortmid
\nshortparallel
\nsim
\nsimeq

̸
̸
̸
̸
≋̸
∤
∦
̸
̸
̸
̸
⊥̸
⍊̸
⪹
⋨
⪺
⋩

\nswmodels
\nswModels
\nswvdash
\nswVdash
\ntriplesim
\nupdownline
\nUpdownline
\nupfootline
\nupfree
\nupmodels
\nupModels
\nupvdash
\nupVdash
\precnapprox
\precnsim
\succnapprox
\succnsim

MnSymbol additionally defines synonyms for some of the preceding symbols:
⊣̸
̸
̸
∤
≠
≠
∤
⊭
∦
⊥̸
̸
̸
⊭
⊬
⊮
⊯

\ndashv
\ndiagdown
\ndiagup
\ndivides
\ne
\neq
\nmid
\nmodels
\nparallel
\nperp
\nrelbar
\nRelbar
\nvDash
\nvdash
\nVdash
\nVDash

(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same

as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as

\nleftvdash)
\nnwseline)
\nneswline)
\nupdownline)
\nequal)
\nequal)
\nupdownline)
\nrightmodels)
\nUpdownline)
\nupvdash)
\nleftrightline)
\nLeftrightline)
\nrightmodels)
\nrightvdash)
\nrightVdash)
\nrightModels)

Table 78: mathtools Binary Relations
::≈
:≈
:=
::=
::−

\Colonapprox
\colonapprox
\coloneqq
\Coloneqq
\Coloneq

:−
:∼
::∼
::
−:

\coloneq
\colonsim
\Colonsim
\dblcolon
\eqcolon

−::
=:
=::

\Eqcolon
\eqqcolon
\Eqqcolon

Similar symbols can be defined using mathtools’s \vcentcolon, which produces a
colon centered on the font’s math axis:

=:=
“=:=”

=: =

vs.

“=\vcentcolon=”
34

Table 79: turnstile Binary Relations
def

def

\dddtstile{abc}{def}

def
abc

\nntstile{abc}{def}

\ddststile{abc}{def}

def
abc

\nnttstile{abc}{def}

\ddtstile{abc}{def}

def
abc

\nsdtstile{abc}{def}

\ddttstile{abc}{def}

def
abc

\nsststile{abc}{def}

def
abc

\dndtstile{abc}{def}

def
abc

\nststile{abc}{def}

def
abc

\dnststile{abc}{def}

def
abc

\nsttstile{abc}{def}

def
abc

\dntstile{abc}{def}

def
abc

\dnttstile{abc}{def}

def
abc

\dsdtstile{abc}{def}

def
abc

\dsststile{abc}{def}

def
abc

\dststile{abc}{def}

def
abc

\dsttstile{abc}{def}

abc
def
abc
def
abc
def
abc

abc
def
abc
def
abc

abc
def
abc
abc

abc

abc

abc

\tdtstile{abc}{def}

abc

\tdttstile{abc}{def}

\ntttstile{abc}{def}

def
abc

\tnststile{abc}{def}

\sddtstile{abc}{def}

def
abc

\tntstile{abc}{def}

\sdststile{abc}{def}

def
abc

\tnttstile{abc}{def}

\sdtstile{abc}{def}

def
abc

\tsdtstile{abc}{def}

\sdttstile{abc}{def}

def
abc

\tsststile{abc}{def}

def
abc

\sndtstile{abc}{def}

def
abc

\tststile{abc}{def}

\dtttstile{abc}{def}

def
abc

\snststile{abc}{def}

def
abc

\tsttstile{abc}{def}

def

\sntstile{abc}{def}

\ndststile{abc}{def}

def
abc

\snttstile{abc}{def}

\ndtstile{abc}{def}

def
abc

\ssdtstile{abc}{def}

\ndttstile{abc}{def}

def
abc

\ssststile{abc}{def}

def
abc

\nndtstile{abc}{def}

def
abc

\sststile{abc}{def}

def
abc

\nnststile{abc}{def}

def
abc

\ssttstile{abc}{def}

def

def

def
abc

\tdststile{abc}{def}

\tndtstile{abc}{def}

def
abc

abc

abc

def
abc

\nddtstile{abc}{def}

abc

\tddtstile{abc}{def}

\dttstile{abc}{def}

def
abc

abc

\nttstile{abc}{def}

def

\dtststile{abc}{def}

\stttstile{abc}{def}

def

\ntststile{abc}{def}

def

\dtdtstile{abc}{def}

abc

\sttstile{abc}{def}

def

\ntdtstile{abc}{def}

def
abc

abc
def

\stststile{abc}{def}

def

def

def
abc
def

abc
def

abc
def

\stdtstile{abc}{def}

def

def
abc
def

abc
def

abc
def
abc
def
abc
def
abc

\ttdtstile{abc}{def}
\ttststile{abc}{def}
\tttstile{abc}{def}
\ttttstile{abc}{def}

Each of the above takes an optional argument that controls the size of the upper
and lower expressions. See the turnstile documentation for more information.

35




Table 80: trsym Binary Relations



\InversTransformHoriz
\InversTransformVert

\TransformHoriz
\TransformVert

Table 81: trfsigns Binary Relations
....

....

\dfourier
\fourier
\laplace
\ztransf

....

\Dfourier
\Fourier
\Laplace
\Ztransf

....

Table 82: cmll Binary Relations
¨
˚

˝
ˇ

\coh
\incoh

\scoh
\sincoh

Table 83: colonequals Binary Relations
≈:
≈::
:≈
::
::≈
::=

\approxcolon
\approxcoloncolon
\colonapprox
\coloncolon
\coloncolonapprox
\coloncolonequals

::−
::∼
:=
:−
:∼
=:

=::
−:
−::
:
∼:
∼::

\coloncolonminus
\coloncolonsim
\colonequals
\colonminus
\colonsim
\equalscolon

\equalscoloncolon
\minuscolon
\minuscoloncolon
\ratio
\simcolon
\simcoloncolon

Table 84: fourier Binary Relations
Ô

\nparallelslant Ë

\parallelslant

Table 85: Subset and Superset Relations
@
v
A
∗

\sqsubset∗
\sqsubseteq
\sqsupset∗

w
⊂
⊆

\sqsupseteq
\subset
\subseteq

⊃
⊇

\supset
\supseteq

Not predefined in LATEX 2ε . Use one of the packages latexsym, amsfonts, amssymb,
mathabx, txfonts, pxfonts, or wasysym.

Table 86: AMS Subset and Superset Relations
*
+
#
@
A
b

\nsubseteq
\nsupseteq
\nsupseteqq
\sqsubset
\sqsupset
\Subset

j
(
$
c
k
)

\subseteqq
\subsetneq
\subsetneqq
\Supset
\supseteqq
\supsetneq
36

%
&
!
'

\supsetneqq
\varsubsetneq
\varsubsetneqq
\varsupsetneq
\varsupsetneqq

Table 87: stmaryrd Subset and Superset Relations
\subsetplus
\subsetpluseq

D
F

\supsetplus
\supsetpluseq

E
G

Table 88: wasysym Subset and Superset Relations
@

A

\sqsubset

\sqsupset

Table 89: txfonts/pxfonts Subset and Superset Relations
\nsqsubset
\nsqsubseteq
\nsqsupset

a
@
b

‚
–
†
Ž
ƒ
—
‡


‚
–
†
Ž

\nsqsupseteq
\nSubset
\nsubseteqq

A
>
"

?

\nSupset

Table 90: mathabx Subset and Superset Relations
\nsqsubset
\nsqSubset
\nsqsubseteq
\nsqsubseteqq
\nsqsupset
\nsqSupset
\nsqsupseteq
\nsqsupseteqq
\nsubset
\nSubset
\nsubseteq
\nsubseteqq

ƒ
—
‡


€
”
„
Œ
ˆ

•


\nsupset
\nSupset
\nsupseteq
\nsupseteqq
\sqsubset
\sqSubset
\sqsubseteq
\sqsubseteqq
\sqsubsetneq
\sqsubsetneqq
\sqSupset
\sqsupset

\sqsupseteq
\sqsupseteqq
\sqsupsetneq
\sqsupsetneqq
\subset
\Subset
\subseteq
\subseteqq
\subsetneq
\subsetneqq
\supset
\Supset


‰
‘

€
”
„
Œ
ˆ


•

\supseteq
\supseteqq
\supsetneq
\supsetneqq
\varsqsubsetneq
\varsqsubsetneqq
\varsqsupsetneq
\varsqsupsetneqq
\varsubsetneq
\varsubsetneqq
\varsupsetneq
\varsupsetneqq


‰
‘

Š
’
‹
“

Š
’
‹
“

Table 91: MnSymbol Subset and Superset Relations
̸
⊏̸
⋢
̸
̸
⊐̸
⋣
̸
⋐̸
⊄

\nSqsubset
\nsqsubset
\nsqsubseteq
\nsqsubseteqq
\nSqsupset
\nsqsupset
\nsqsupseteq
\nsqsupseteqq
\nSubset
\nsubset

⊈
⫅̸
⋑̸
⊅
⊉
⫆̸
^
⊏
⊑
\

⋤
ö
_
⊐
⊒
]
⋥
÷
⋐
⊂

\nsubseteq
\nsubseteqq
\nSupset
\nsupset
\nsupseteq
\nsupseteqq
\Sqsubset
\sqsubset
\sqsubseteq
\sqsubseteqq

\sqsubsetneq
\sqsubsetneqq
\Sqsupset
\sqsupset
\sqsupseteq
\sqsupseteqq
\sqsupsetneq
\sqsupsetneqq
\Subset
\subset

⊆
⫅
⊊
⫋
⋑
⊃
⊇
⫆
⊋
⫌

\subseteq
\subseteqq
\subsetneq
\subsetneqq
\Supset
\supset
\supseteq
\supseteqq
\supsetneq
\supsetneqq

MnSymbol additionally defines \varsubsetneq as a synonym for \subsetneq,
\varsubsetneqq as a synonym for \subsetneqq, \varsupsetneq as a synonym
for \supsetneq, and \varsupsetneqq as a synonym for \supsetneqq.

Table 92: Inequalities
≥

\geq



\gg

≤

\leq
37



\ll

,

\neq

Table 93: AMS Inequalities
1

\eqslantgtr

m

\gtrdot

Q

\lesseqgtr



\ngeq

0

\eqslantless

R

\gtreqless

S

\lesseqqgtr



\ngeqq

=

\geqq

T

\gtreqqless

≶

\lessgtr

>

\geqslant

≷

\gtrless

.

\lesssim

≯

\ngtr

≫

\ggg

&

\gtrsim

≪

\lll



\nleq



\gnapprox



\gvertneqq



\lnapprox



\nleqq

\gneq

5

\leqq

\gneqq

6

\leqslant



\lneqq



\gnsim

/

\lessapprox



\lnsim

'

\gtrapprox

l

\lessdot

\ngeqslant

\lneq

\nleqslant
≮

\nless

\lvertneqq

Table 94: wasysym Inequalities
?

>

\apprge

\apprle

Table 95: txfonts/pxfonts Inequalities
4
#
&

\ngg
\ngtrapprox
\ngtrless

!
"
'

\ngtrsim
\nlessapprox
\nlessgtr

3

\nlesssim
\nll

Table 96: mathabx Inequalities
·

\eqslantgtr

½

\gtreqless

À

\lesssim

£

\ngtr

¶

\eqslantless

¿

\gtreqqless

!

\ll

É

\ngtrapprox

¥

\geq

»

\gtrless

Î

\lll

Ã

\ngtrsim

¯

\geqq

Á

\gtrsim

Ê

\lnapprox

¦

\nleq

"

\gg

µ

\gvertneqq

¬

\lneq

°

\nleqq

Ï

\ggg

¤

\leq

²

\lneqq

¢

\nless

Ë

\gnapprox

®

\leqq

Ä

\lnsim

È

\nlessapprox

­

\gneq

Æ

\lessapprox

´

\lvertneqq

Â

\nlesssim

³

\gneqq

Ì

\lessdot

¹

\neqslantgtr

«

\nvargeq

Å

\gnsim

¼

\lesseqgtr

¸

\neqslantless

ª

\nvarleq

Ç

\gtrapprox

¾

\lesseqqgtr

§

\ngeq

©

\vargeq

Í

\gtrdot

º

\lessgtr

±

\ngeqq

¨

\varleq

mathabx defines \leqslant and \le as synonyms for \leq, \geqslant and \ge as
synonyms for \geq, \nleqslant as a synonym for \nleq, and \ngeqslant as a
synonym for \ngeq.
38

Table 97: MnSymbol Inequalities
⪖

\eqslantgtr

⪌

\gtreqqless

≲

\lesssim

⋛̸

\ngtreqless

⪕

\eqslantless

≷

\gtrless

≪

\ll

̸

\ngtreqlessslant

≥

\geq

ó

\gtrneqqless

⋘

\lll

⪌̸

\ngtreqqless

⊵

\geqclosed

≳

\gtrsim

⪉

\lnapprox

≹

\ngtrless

u
≧
⩾
⪀

≫

⋙
⪊
≩
≵
>

\geqdot

≤
⊴

\geqq

t

\geqslant
\geqslantdot
\gg

≦
⩽
⩿

\ggg

<
⪅

\gnapprox
\gneqq

⊲

\gnsim
\gtr

⋖

⪆

\gtrapprox

⊳
⋗
⋛
O

≨

\leq

≴

\leqclosed

⪖̸

\leqdot

⪕̸

\leqq

≱

\leqslant

⋭

\leqslantdot

̸
≧̸

\less
\lessapprox

≱

\lessclosed
\lessdot

⪀̸

⋚

\lesseqgtr

\gtrclosed

N

\gtrdot

⪋

\gtreqless

≶

\gtreqlessslant

ò

≰

\lneqq

⋬

\lnsim
\neqslantgtr
\neqslantless
\ngeq

̸

≦̸
≰

⩿̸

\ngeqclosed

≮
⋪

\ngeqdot
\ngeqq

⋖̸

\ngeqslant

\nleq
\nleqclosed
\nleqdot
\nleqq
\nleqslant
\nleqslantdot
\nless
\nlessclosed
\nlessdot

\ngeqslantdot

⋚̸

≫̸

\ngg

̸

\nlesseqgtrslant

\lesseqgtrslant

⋙̸

\nggg

⪋̸

\nlesseqqgtr

\lesseqqgtr

≯

\ngtr

≸

\nlessgtr

\lessgtr

⋫

\lessneqqgtr

⋗̸

\ngtrclosed

≪̸

\ngtrdot

⋘̸

\nlesseqgtr

\nll
\nlll

MnSymbol additionally defines synonyms for some of the preceding symbols:
⋙
≩
⊲
⋘
≨
⋬
⋪
⋭
⋫
⊳
⊴
⊵
⊴
⊵
⊲
⊳

\gggtr
\gvertneqq
\lhd
\llless
\lvertneqq
\ntrianglelefteq
\ntriangleleft
\ntrianglerighteq
\ntriangleright
\rhd
\trianglelefteq
\trianglerighteq
\unlhd
\unrhd
\vartriangleleft
\vartriangleright

(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same

as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as

\ggg)
\gneqq)
\lessclosed)
\lll)
\lneqq)
\nleqclosed)
\nlessclosed)
\ngeqclosed)
\ngtrclosed)
\gtrclosed)
\leqclosed)
\geqclosed)
\leqclosed)
\geqclosed)
\lessclosed)
\gtrclosed)

Table 98: AMS Triangle Relations
J
I
6
5

\blacktriangleleft
\blacktriangleright
\ntriangleleft
\ntrianglelefteq

7
4
E
,

\ntriangleright
\ntrianglerighteq
\trianglelefteq
\triangleq

39

D
C
B

\trianglerighteq
\vartriangleleft
\vartriangleright

Table 99: stmaryrd Triangle Relations
P
R

\trianglelefteqslant
\ntrianglelefteqslant

Q
S

\trianglerighteqslant
\ntrianglerighteqslant

Table 100: mathabx Triangle Relations
š
ž
›

\ntriangleleft
\ntrianglelefteq
\ntriangleright

Ÿ
˜
œ

™

˜

\ntrianglerighteq
\triangleleft
\trianglelefteq

\triangleright
\trianglerighteq
\vartriangleleft

™

\vartriangleright

Table 101: MnSymbol Triangle Relations
▼
◀
▶
▲
▾
◂
▸
▴
▽
◁
▷

\filledmedtriangledown
\filledmedtriangleleft
\filledmedtriangleright
\filledmedtriangleup
\filledtriangledown
\filledtriangleleft
\filledtriangleright
\filledtriangleup
\largetriangledown
\largetriangleleft
\largetriangleright

△
▽
◁
▷
△
≜̸
⋪
⋬
⋫
⋭
d

\largetriangleup
\medtriangledown
\medtriangleleft
\medtriangleright
\medtriangleup
\ntriangleeq
\ntriangleleft
\ntrianglelefteq
\ntriangleright
\ntrianglerighteq
\otriangle

▿
◃
▹
▵
≜
⊴
⊵
⊲
⊳

\smalltriangledown
\smalltriangleleft
\smalltriangleright
\smalltriangleup
\triangleeq
\trianglelefteq
\trianglerighteq
\vartriangleleft
\vartriangleright

MnSymbol additionally defines synonyms for many of the preceding symbols: \triangleq is a synonym for \triangleeq; \lhd and \lessclosed
are synonyms for \vartriangleleft; \rhd and \gtrclosed are synonyms for \vartriangleright;
\unlhd and \leqclosed are synonyms for \trianglelefteq; \unrhd and \geqclosed are synonyms
for
\trianglerighteq;
\blacktriangledown,
\blacktriangleleft,
\blacktriangleright, and \blacktriangle [sic] are synonyms for,
respectively,
\filledmedtriangledown,
\filledmedtriangleleft,
\filledmedtriangleright, and \filledmedtriangleup; \triangleright
is a synonym for \medtriangleright; \triangle, \vartriangle, and
\bigtriangleup are synonyms for \medtriangleup; \triangleleft is a
synonym for \medtriangleleft; \triangledown and \bigtriangledown are synonyms for \medtriangledown; \nlessclosed is a synonym for \ntriangleleft;
\ngtrclosed is a synonym for \ntriangleright; \nleqclosed is a synonym for
\ntrianglelefteq; and \ngeqclosed is a synonym for \ntrianglerighteq.
The title “Triangle Relations” is a bit of a misnomer here as only \triangleeq
and \ntriangleeq are defined as TEX relations (class 3 symbols).
The
\largetriangle. . . symbols are defined as TEX “ordinary” characters (class 0)
and all of the remaining characters are defined as TEX binary operators (class 2).

40

Table 102: Arrows
⇓
↓
←,→
{
←
⇐
⇔
↔

←−
⇐=
←→
⇐⇒
7−→
=⇒
−→
7→
%

\Downarrow
\downarrow
\hookleftarrow
\hookrightarrow
\leadsto∗
\leftarrow
\Leftarrow
\Leftrightarrow
\leftrightarrow

⇒
→
&
.
↑
⇑
l
m

\longleftarrow
\Longleftarrow
\longleftrightarrow
\Longleftrightarrow
\longmapsto
\Longrightarrow
\longrightarrow
\mapsto
\nearrow†

\nwarrow
\Rightarrow
\rightarrow
\searrow
\swarrow
\uparrow
\Uparrow
\updownarrow
\Updownarrow

∗

Not predefined in LATEX 2ε . Use one of the packages latexsym, amsfonts, amssymb,
txfonts, pxfonts, or wasysym.

†

See the note beneath Table 169 for information about how to put a diagonal arrow
0
~ ”) .
across a mathematical expression (as in “∇ · B

Table 103: Harpoons
)
(

+
*

\leftharpoondown
\leftharpoonup

\rightharpoondown
\rightharpoonup

*
)

\rightleftharpoons

Table 104: textcomp Text-mode Arrows
↓
←

\textdownarrow
\textleftarrow

→
↑

\textrightarrow
\textuparrow

Table 105: AMS Arrows

x
y
c
d



⇔

!
W
"
#



\circlearrowleft
\circlearrowright
\curvearrowleft
\curvearrowright
\dashleftarrow
\dashrightarrow
\downdownarrows
\leftarrowtail

\leftleftarrows
\leftrightarrows
\leftrightsquigarrow
\Lleftarrow
\looparrowleft
\looparrowright
\Lsh
\rightarrowtail


⇒





\rightleftarrows
\rightrightarrows
\rightsquigarrow
\Rsh
\twoheadleftarrow
\twoheadrightarrow
\upuparrows

Table 106: AMS Negated Arrows
:
8

\nLeftarrow
\nleftarrow

<
=

\nLeftrightarrow
\nleftrightarrow

\nRightarrow
\nrightarrow

;
9

Table 107: AMS Harpoons



\downharpoonleft
\downharpoonright

\leftrightharpoons
\rightleftharpoons
41




\upharpoonleft
\upharpoonright

Table 108: stmaryrd Arrows
^
]
⇐=\
←−[
=⇒

\leftarrowtriangle
\leftrightarroweq
\leftrightarrowtriangle
\lightning
\Longmapsfrom
\longmapsfrom
\Longmapsto

⇐\
←[
⇒
1
0
_


\Mapsfrom
\mapsfrom
\Mapsto
\nnearrow
\nnwarrow
\rightarrowtriangle
\shortdownarrow



%
$

\shortleftarrow
\shortrightarrow
\shortuparrow
\ssearrow
\sswarrow

Table 109: txfonts/pxfonts Arrows
‹
ƒ
‚
Š
‰

€
ˆ
”

ö
÷
ó
õ
ô
ð
ò
ñ
ê
Ó
ÿ
×
ë

\boxdotLeft
\boxdotleft
\boxdotright
\boxdotRight
\boxLeft
\boxleft
\boxright
\boxRight
\circleddotleft

“
’
‘
e

‡
†
Ž


\circleddotright
\circleleft
\circleright
\dashleftrightarrow
\DiamonddotLeft
\Diamonddotleft
\Diamonddotright
\DiamonddotRight
\DiamondLeft

„
Œ
f
t
v
V
u
w

\Diamondleft
\Diamondright
\DiamondRight
\leftsquigarrow
\Nearrow
\Nwarrow
\Rrightarrow
\Searrow
\Swarrow

Table 110: mathabx Arrows
\circlearrowleft
\circlearrowright
\curvearrowbotleft
\curvearrowbotleftright
\curvearrowbotright
\curvearrowleft
\curvearrowleftright
\curvearrowright
\dlsh
\downdownarrows
\downtouparrow
\downuparrows
\drsh

Ð

Ð
Ø

Ô
ú
ø
ü
î
ï
ì
í
è
Õ

\leftarrow
\leftleftarrows
\leftrightarrow
\leftrightarrows
\leftrightsquigarrow
\leftsquigarrow
\lefttorightarrow
\looparrowdownleft
\looparrowdownright
\looparrowleft
\looparrowright
\Lsh
\nearrow

Ô
æ
Ñ

Õ
Ñ
ù
ý
é
×
Ö

Ö
þ
Ò

\nwarrow
\restriction
\rightarrow
\rightleftarrows
\rightrightarrows
\rightsquigarrow
\righttoleftarrow
\Rsh
\searrow
\swarrow
\updownarrows
\uptodownarrow
\upuparrows

Table 111: mathabx Negated Arrows
ö
Ú

\nLeftarrow
\nleftarrow

Ü
ø

\nleftrightarrow
\nLeftrightarrow

42

Û
÷

\nrightarrow
\nRightarrow

Þ
ß
Û
å
ç
ë

Ü
â

Table 112: mathabx Harpoons
\barleftharpoon
\barrightharpoon
\downdownharpoons
\downharpoonleft
\downharpoonright
\downupharpoons
\leftbarharpoon
\leftharpoondown

à

Ø
à
è

Ý
ã
á

á

\leftharpoonup
\leftleftharpoons
\leftrightharpoon
\leftrightharpoons
\rightbarharpoon
\rightharpoondown
\rightharpoonup
\rightleftharpoon

é

Ù
ê
ä
æ

Ú

\rightleftharpoons
\rightrightharpoons
\updownharpoons
\upharpoonleft
\upharpoonright
\upupharpoons

Table 113: MnSymbol Arrows
Ë
È
Ì
Í
Ê
Ï
Î
É
⇣
⇠
d
e
⇢
g
f
⇡
⇓
↓
#
⇊
£
↧
«

ÿ
⤾
⟳
↻
⤸
º
¼
½
↷
¿
¾
¹
⇐

\curvearrowdownup
\curvearrowleftright
\curvearrownesw
\curvearrownwse
\curvearrowrightleft
\curvearrowsenw
\curvearrowswne
\curvearrowupdown
\dasheddownarrow
\dashedleftarrow
\dashednearrow
\dashednwarrow
\dashedrightarrow
\dashedsearrow
\dashedswarrow
\dasheduparrow
\Downarrow
\downarrow
\downarrowtail
\downdownarrows
\downlsquigarrow
\downmapsto
\downrsquigarrow
\downuparrows
\lcirclearrowdown
\lcirclearrowleft
\lcirclearrowright
\lcirclearrowup
\lcurvearrowdown
\lcurvearrowleft
\lcurvearrowne
\lcurvearrownw
\lcurvearrowright
\lcurvearrowse
\lcurvearrowsw
\lcurvearrowup
\Leftarrow

←Ð
⇐Ô
←→
⇐⇒
z→
Ð→
Ô⇒
↫
↬
↰
↗
⇗
$
¤
,
”
¬
⤡

š
↖
⇖
%
¥
•
­
⤢

›
∲
∲
∳
∳
∲
∲
∳

\longleftarrow
\Longleftarrow
\longleftrightarrow
\Longleftrightarrow
\longmapsto
\longrightarrow
\Longrightarrow
\looparrowleft
\looparrowright
\Lsh
\nearrow
\Nearrow
\nearrowtail
\nelsquigarrow
\nemapsto
\nenearrows
\nersquigarrow
\neswarrow
\Neswarrow
\neswarrows
\nwarrow
\Nwarrow
\nwarrowtail
\nwlsquigarrow
\nwmapsto
\nwnwarrows
\nwrsquigarrow
\nwsearrow
\Nwsearrow
\nwsearrows
\partialvardlcircleleftint∗
\partialvardlcirclerightint∗
\partialvardrcircleleftint∗
\partialvardrcirclerightint∗
\partialvartlcircleleftint∗
\partialvartlcirclerightint∗
\partialvartrcircleleftint∗

⤦
9
→
⇒
↣
⇄
↝
↦
⇉
¨
⇛
↱
↘
⇘
'
§
/
Ÿ
¯
—
³
↭
´
µ
²
·
¶
±
↙
⇙
&
¦
.
ž
®
–
↡

\rhookswarrow
\rhookuparrow
\rightarrow
\Rightarrow
\rightarrowtail
\rightleftarrows
\rightlsquigarrow
\rightmapsto
\rightrightarrows
\rightrsquigarrow
\Rrightarrow
\Rsh
\searrow
\Searrow
\searrowtail
\selsquigarrow
\semapsto
\senwarrows
\sersquigarrow
\sesearrows
\squigarrowdownup
\squigarrowleftright
\squigarrownesw
\squigarrownwse
\squigarrowrightleft
\squigarrowsenw
\squigarrowswne
\squigarrowupdown
\swarrow
\Swarrow
\swarrowtail
\swlsquigarrow
\swmapsto
\swnearrows
\swrsquigarrow
\swswarrows
\twoheaddownarrow

(continued on next page)

43

(continued from previous page)

←
↢
⇇
¢
↤
↔
⇔
⇆
↜
3
2
4
⤣
↪
⤥
6
1
☇
⇚

\leftarrow
\leftarrowtail
\leftleftarrows
\leftlsquigarrow
\leftmapsto
\leftrightarrow
\Leftrightarrow
\leftrightarrows
\leftrsquigarrow
\lhookdownarrow
\lhookleftarrow
\lhooknearrow
\lhooknwarrow
\lhookrightarrow
\lhooksearrow
\lhookswarrow
\lhookuparrow
\lightning
\Lleftarrow

∳
û
⟲
⤿
↺
⤹
↶
Ä
Å
À
Ç
Æ
Á
;
↩
⤤
=
8
?

\partialvartrcirclerightint∗
\rcirclearrowdown
\rcirclearrowleft
\rcirclearrowright
\rcirclearrowup
\rcurvearrowdown
\rcurvearrowleft
\rcurvearrowne
\rcurvearrownw
\rcurvearrowright
\rcurvearrowse
\rcurvearrowsw
\rcurvearrowup
\rhookdownarrow
\rhookleftarrow
\rhooknearrow
\rhooknwarrow
\rhookrightarrow
\rhooksearrow

↞


↠


↟
↑
⇑
!
↕
⇕
™
¡
↥
©
⇈

\twoheadleftarrow
\twoheadnearrow
\twoheadnwarrow
\twoheadrightarrow
\twoheadsearrow
\twoheadswarrow
\twoheaduparrow
\uparrow
\Uparrow
\uparrowtail
\updownarrow
\Updownarrow
\updownarrows
\uplsquigarrow
\upmapsto
\uprsquigarrow
\upuparrows

MnSymbol additionally defines synonyms for some of the preceding symbols:
↺
↻
↶
↷
⇠
⇢
↩
↪
↝
↭
↦
↝
∗

\circlearrowleft
\circlearrowright
\curvearrowleft
\curvearrowright
\dashleftarrow
\dashrightarrow
\hookleftarrow
\hookrightarrow
\leadsto
\leftrightsquigarrow
\mapsto
\rightsquigarrow

(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same

as
as
as
as
as
as
as
as
as
as
as
as

\rcirclearrowup)
\lcirclearrowup)
\rcurvearrowleft)
\lcurvearrowright)
\dashedleftarrow)
\dashedrightarrow)
\rhookleftarrow)
\lhookrightarrow)
\rightlsquigarrow)
\squigarrowleftright)
\rightmapsto)
\rightlsquigarrow)

The \partialvar. . . int macros are intended to be used internally by MnSymbol
to produce various types of integrals.

Table 114: MnSymbol Negated Arrows
̸
̸
̸
̸
̸
̸
̸
̸

\ncurvearrowdownup
\ncurvearrowleftright
\ncurvearrownesw
\ncurvearrownwse
\ncurvearrowrightleft
\ncurvearrowsenw
\ncurvearrowswne
\ncurvearrowupdown

⤣̸
↪̸
⤥̸
̸
̸
⇚̸
↗̸
⇗̸

\nlhooknwarrow
\nlhookrightarrow
\nlhooksearrow
\nlhookswarrow
\nlhookuparrow
\nLleftarrow
\nnearrow
\nNearrow

⇄̸
↝̸
↦̸
⇉̸
̸
⇛̸
⇘̸
↘̸

\nrightleftarrows
\nrightlsquigarrow
\nrightmapsto
\nrightrightarrows
\nrightrsquigarrow
\nRrightarrow
\nSearrow
\nsearrow

(continued on next page)

44

(continued from previous page)

⇣̸
⇠̸
̸
̸
⇢̸
̸
̸
⇡̸
↓̸
⇓̸
̸
⇊̸
̸
↧̸
̸
̸
̸
⤾̸
⟳̸
↻̸
⤸̸
̸
̸
̸
↷̸
̸
̸
̸
⇍
↚
↢̸
⇇̸
̸
↤̸
↮
⇎
⇆̸
↜̸
̸
̸
̸

\ndasheddownarrow
\ndashedleftarrow
\ndashednearrow
\ndashednwarrow
\ndashedrightarrow
\ndashedsearrow
\ndashedswarrow
\ndasheduparrow
\ndownarrow
\nDownarrow
\ndownarrowtail
\ndowndownarrows
\ndownlsquigarrow
\ndownmapsto
\ndownrsquigarrow
\ndownuparrows
\nlcirclearrowdown
\nlcirclearrowleft
\nlcirclearrowright
\nlcirclearrowup
\nlcurvearrowdown
\nlcurvearrowleft
\nlcurvearrowne
\nlcurvearrownw
\nlcurvearrowright
\nlcurvearrowse
\nlcurvearrowsw
\nlcurvearrowup
\nLeftarrow
\nleftarrow
\nleftarrowtail
\nleftleftarrows
\nleftlsquigarrow
\nleftmapsto
\nleftrightarrow
\nLeftrightarrow
\nleftrightarrows
\nleftrsquigarrow
\nlhookdownarrow
\nlhookleftarrow
\nlhooknearrow

̸
̸
̸
̸
̸
̸
⤡̸
̸
⇖̸
↖̸
̸
̸
̸
̸
̸
⤢̸
̸
̸
̸
⟲̸
⤿̸
↺̸
⤹̸
↶̸
̸
̸
̸
̸
̸
̸
̸
↩̸
⤤̸
̸
̸
̸
⤦̸
̸
↛
⇏
↣̸

\nnearrowtail
\nnelsquigarrow
\nnemapsto
\nnenearrows
\nnersquigarrow
\nNeswarrow
\nneswarrow
\nneswarrows
\nNwarrow
\nnwarrow
\nnwarrowtail
\nnwlsquigarrow
\nnwmapsto
\nnwnwarrows
\nnwrsquigarrow
\nnwsearrow
\nNwsearrow
\nnwsearrows
\nrcirclearrowdown
\nrcirclearrowleft
\nrcirclearrowright
\nrcirclearrowup
\nrcurvearrowdown
\nrcurvearrowleft
\nrcurvearrowne
\nrcurvearrownw
\nrcurvearrowright
\nrcurvearrowse
\nrcurvearrowsw
\nrcurvearrowup
\nrhookdownarrow
\nrhookleftarrow
\nrhooknearrow
\nrhooknwarrow
\nrhookrightarrow
\nrhooksearrow
\nrhookswarrow
\nrhookuparrow
\nrightarrow
\nRightarrow
\nrightarrowtail

̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
↙̸
⇙̸
̸
̸
̸
̸
̸
̸
↡̸
↞̸
̸
̸
↠̸
̸
̸
↟̸
↑̸
⇑̸
̸
↕̸
⇕̸
̸
̸
↥̸
̸
⇈̸

\nsearrowtail
\nselsquigarrow
\nsemapsto
\nsenwarrows
\nsersquigarrow
\nsesearrows
\nsquigarrowdownup
\nsquigarrowleftright
\nsquigarrownesw
\nsquigarrownwse
\nsquigarrowrightleft
\nsquigarrowsenw
\nsquigarrowswne
\nsquigarrowupdown
\nswarrow
\nSwarrow
\nswarrowtail
\nswlsquigarrow
\nswmapsto
\nswnearrows
\nswrsquigarrow
\nswswarrows
\ntwoheaddownarrow
\ntwoheadleftarrow
\ntwoheadnearrow
\ntwoheadnwarrow
\ntwoheadrightarrow
\ntwoheadsearrow
\ntwoheadswarrow
\ntwoheaduparrow
\nuparrow
\nUparrow
\nuparrowtail
\nupdownarrow
\nUpdownarrow
\nupdownarrows
\nuplsquigarrow
\nupmapsto
\nuprsquigarrow
\nupuparrows

MnSymbol additionally defines synonyms for some of the preceding symbols:

45

↺̸
↻̸
↶̸
↷̸
⇢̸
⇠̸
⇢̸
↚
↩̸
↪̸
↝̸
̸
↦̸
↝̸
↛

\ncirclearrowleft
\ncirclearrowright
\ncurvearrowleft
\ncurvearrowright
\ndasharrow
\ndashleftarrow
\ndashrightarrow
\ngets
\nhookleftarrow
\nhookrightarrow
\nleadsto
\nleftrightsquigarrow
\nmapsto
\nrightsquigarrow
\nto

(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same

as
as
as
as
as
as
as
as
as
as
as
as
as
as
as

\nrcirclearrowup)
\nlcirclearrowup)
\nrcurvearrowleft)
\nlcurvearrowright)
\ndashedrightarrow)
\ndashedleftarrow)
\ndashedrightarrow)
\nleftarrow)
\nrhookleftarrow)
\nlhookrightarrow)
\nrightlsquigarrow)
\nsquigarrowleftright)
\nrightmapsto)
\nrightlsquigarrow)
\nrightarrow)

Table 115: MnSymbol Harpoons
⇂
⇃
⥯
↽
↼
⥊
⇋
⥋
D
L
R

\downharpoonccw∗
\downharpooncw∗
\downupharpoons
\leftharpoonccw∗
\leftharpooncw∗
\leftrightharpoondownup
\leftrightharpoons
\leftrightharpoonupdown
\neharpoonccw
\neharpooncw
\neswharpoonnwse
∗

Z
V
E
M
S
_
W
⇀
⇁
⇌
G

\neswharpoons
\neswharpoonsenw
\nwharpoonccw
\nwharpooncw
\nwseharpoonnesw
\nwseharpoons
\nwseharpoonswne
\rightharpoonccw∗
\rightharpooncw∗
\rightleftharpoons
\seharpoonccw

O
[
F
N
^
Q
U
⥮
↿
↾

\seharpooncw
\senwharpoons
\swharpoonccw
\swharpooncw
\swneharpoons
\updownharpoonleftright
\updownharpoonrightleft
\updownharpoons
\upharpoonccw∗
\upharpooncw∗

Where marked, the “ccw” suffix can be replaced with “up” and the “cw” suffix can be replaced with “down”. (In addition, \upharpooncw can be written as
\restriction.)

Table 116: MnSymbol Negated Harpoons
⇂̸
⇃̸
⥯̸
↽̸
↼̸
⥊̸
⇋̸
⥋̸
̸
̸
̸

∗

\ndownharpoonccw
\ndownharpooncw∗
\ndownupharpoons
\nleftharpoonccw∗
\nleftharpooncw∗
\nleftrightharpoondownup
\nleftrightharpoons
\nleftrightharpoonupdown
\nneharpoonccw
\nneharpooncw
\nneswharpoonnwse
∗

̸
̸
̸
̸
̸
̸
̸
⇀̸
⇁̸
⇌̸
̸

\nneswharpoons
\nneswharpoonsenw
\nnwharpoonccw
\nnwharpooncw
\nnwseharpoonnesw
\nnwseharpoons
\nnwseharpoonswne
\nrightharpoonccw∗
\nrightharpooncw∗
\nrightleftharpoons
\nseharpoonccw

̸
̸
̸
̸
̸
̸
̸
⥮̸
↿̸
↾̸

\nseharpooncw
\nsenwharpoons
\nswharpoonccw
\nswharpooncw
\nswneharpoons
\nupdownharpoonleftright
\nupdownharpoonrightleft
\nupdownharpoons
\nupharpoonccw∗
\nupharpooncw∗

Where marked, the “ccw” suffix can be replaced with “up” and the “cw” suffix
can be replaced with “down”. (In addition, \nupharpooncw can be written as
\nrestriction.)

46

Table 117: harpoon Extensible Harpoons

(
abc
)
abc
*
abc

\overleftharp{abc}

+
abc

\overrightharpdown{abc}

\overleftharpdown{abc}

abc

\underleftharp{abc}

\overrightharp{abc}

(
abc
)

abc

*
abc
+

\underrightharp{abc}
\underrightharpdown{abc}

\underleftharpdown{abc}

All of the harpoon symbols are implemented using the graphics package (specifically,
graphics’s \resizebox command). Consequently, only TEX backends that support
graphical transformations (e.g., not Xdvi) can properly display these symbols.

Table 118: chemarrow Arrows
A

\chemarrow

Table 119: fge Arrows
!

\fgerightarrow

"

\fgeuparrow

Table 120: MnSymbol Spoons
s
⫰
r
⟜
̸
⫰̸
t
l
̸
⟜̸
̸
∗

\downfilledspoon
\downspoon
\leftfilledspoon
\leftspoon
\ndownfilledspoon
\ndownspoon
\nefilledspoon
\nespoon
\nleftfilledspoon
\nleftspoon
\nnefilledspoon

̸
̸
̸
̸
⊸̸
̸
̸
̸
̸
̸
⫯̸

\nnespoon
\nnwfilledspoon
\nnwspoon
\nrightfilledspoon
\nrightspoon∗
\nsefilledspoon
\nsespoon
\nswfilledspoon
\nswspoon
\nupfilledspoon
\nupspoon

u
m
p
⊸
w
o
v
n
q
⫯

\nwfilledspoon
\nwspoon
\rightfilledspoon
\rightspoon∗
\sefilledspoon
\sespoon
\swfilledspoon
\swspoon
\upfilledspoon
\upspoon

MnSymbol defines \multimap as a synonym for \rightspoon and \nmultimap as
a synonym for \nrightspoon.

Table 121: MnSymbol Pitchforks
⫛
Š
⫛̸
Œ
̸
̸
∗

\downpitchfork
\leftpitchfork
\ndownpitchfork
\nepitchfork
\nleftpitchfork
\nnepitchfork

̸
̸
̸
̸
⋔̸


\nnwpitchfork
\nrightpitchfork
\nsepitchfork
\nswpitchfork
\nuppitchfork
\nwpitchfork

ˆ

Ž
⋔

\rightpitchfork
\sepitchfork
\swpitchfork
\uppitchfork

MnSymbol defines \pitchfork as a synonym for \uppitchfork and \npitchfork
as a synonym for \nuppitchfork.

47

Table 122: MnSymbol Smiles and Frowns

%

$
#
"
⌢
!
'

)
̸
̸
̸
̸
̸
̸
⌢̸
̸
̸
̸
̸
⌣̸
∗

̸
̸
≭
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
⌣

\doublefrown
\doublefrowneq
\doublesmile
\doublesmileeq
\eqfrown
\eqsmile
\frown
\frowneq
\frowneqsmile
\frownsmile
\frownsmileeq
\ndoublefrown
\ndoublefrowneq
\ndoublesmile
\ndoublesmileeq
\neqfrown
\neqsmile
\nfrown
\nfrowneq
\nfrowneqsmile
\nfrownsmile
\nfrownsmileeq
\nsmile

\nsmileeq
\nsmileeqfrown
\nsmilefrown
\nsmilefrowneq
\nsqdoublefrown
\nsqdoublefrowneq
\nsqdoublesmile
\nsqdoublesmileeq
\nsqeqfrown
\nsqeqsmile
\nsqfrown
\nsqfrowneq
\nsqfrowneqsmile
\nsqfrownsmile
\nsqsmile
\nsqsmileeq
\nsqsmileeqfrown
\nsqsmilefrown
\nsqtriplefrown
\nsqtriplesmile
\ntriplefrown
\ntriplesmile
\smile

&
≍
(
7
,
6
5
4
+
3
9
1
*
2
8
0
/
.



\smileeq
\smileeqfrown
\smilefrown
\smilefrowneq
\sqdoublefrown
\sqdoublefrowneq
\sqdoublesmile
\sqdoublesmileeq
\sqeqfrown
\sqeqsmile
\sqfrown
\sqfrowneq
\sqfrowneqsmile
\sqfrownsmile
\sqsmile
\sqsmileeq
\sqsmileeqfrown
\sqsmilefrown
\sqtriplefrown
\sqtriplesmile
\triplefrown
\triplesmile

MnSymbol defines \smallsmile as a synonym for \smile, \smallfrown as a synonym for \frown, \asymp as a synonym for \smilefrown, and \nasymp as a synonym for \nsmilefrown.

Table 123: ulsy Contradiction Symbols
\blitza

\blitzb

\blitzc

\blitzd

\blitze

Table 124: Extension Characters
−

=

\relbar

\Relbar

Table 125: stmaryrd Extension Characters
X

Y

\Arrownot
\arrownot
[

\Mapsfromchar
\mapsfromchar
\



\Mapstochar



Table 126: txfonts/pxfonts Extension Characters
\Mappedfromchar
\mappedfromchar




\Mmappedfromchar
\mmappedfromchar

48




\Mmapstochar
\mmapstochar

Table 127: mathabx Extension Characters
û

ß

Þ

\mapsfromchar
\Mapsfromchar
ú

\mapstochar
\Mapstochar

Table 128: Log-like Symbols
\arccos
\arcsin
\arctan
\arg

\cos
\cosh
\cot
\coth

\csc
\deg
\det
\dim

\exp
\gcd
\hom
\inf

\ker
\lg
\lim
\liminf

\limsup
\ln
\log
\max

\min
\Pr
\sec
\sin

\sinh
\sup
\tan
\tanh

Calling the above “symbols” may be a bit misleading.3 Each log-like symbol merely
produces the eponymous textual equivalent, but with proper surrounding spacing. See Section 8.4 for more information about log-like symbols. As \bmod and
\pmod are arguably not symbols we refer the reader to the Short Math Guide for
LATEX [Dow00] for samples.

Table 129: AMS Log-like Symbols
inj lim

\injlim

proj lim

\projlim

lim
−→
lim

\varinjlim

lim

\varlimsup

\varliminf

lim
←−

\varprojlim

Load the amsmath package to get these symbols. See Section 8.4 for some additional
comments regarding log-like symbols. As \mod and \pod are arguably not symbols
we refer the reader to the Short Math Guide for LATEX [Dow00] for samples.

Ã
»
3 Michael

\Complex
\COMPLEX

Ú
¿

Table 130: ChinA2e Number Sets
\Integer
\INTEGER

Î
¼

\Natural
\NATURAL

Ñ
½

J. Downes prefers the more general term, “atomic math objects”.

49

\Rational
\RATIONAL

Ò
¾

\Real
\REAL

Table 131: Greek Letters
α
β
γ
δ

ε
ζ
η

\alpha
\beta
\gamma
\delta
\epsilon
\varepsilon
\zeta
\eta

θ
ϑ
ι
κ
λ
µ
ν
ξ

\theta
\vartheta
\iota
\kappa
\lambda
\mu
\nu
\xi

o
π
$
ρ
%
σ
ς

o
\pi
\varpi
\rho
\varrho
\sigma
\varsigma

τ
υ
φ
ϕ
χ
ψ
ω

\tau
\upsilon
\phi
\varphi
\chi
\psi
\omega

Γ
∆
Θ

\Gamma
\Delta
\Theta

Λ
Ξ
Π

\Lambda
\Xi
\Pi

Σ
Υ
Φ

\Sigma
\Upsilon
\Phi

Ψ
Ω

\Psi
\Omega

The remaining Greek majuscules can be produced with ordinary Latin letters. The
symbol “M”, for instance, is used for both an uppercase “m” and an uppercase “µ”.
See Section 8.5 for examples of how to produce bold Greek letters.
The symbols in this table are intended to be used in mathematical typesetting.
Greek body text can be typeset using the babel package’s greek (or polutonikogreek)
option—and, of course, a font that provides the glyphs for the Greek alphabet.

Table 132: AMS Greek Letters
z

\digamma

\varkappa

κ

Table 133: txfonts/pxfonts Upright Greek Letters
α
β
γ
δ

ε
ζ
η

\alphaup
\betaup
\gammaup
\deltaup
\epsilonup
\varepsilonup
\zetaup
\etaup

θ
ϑ
ι
κ
λ
µ
ν
ξ

\thetaup
\varthetaup
\iotaup
\kappaup
\lambdaup
\muup
\nuup
\xiup

50

π
$
ρ
%
σ
ς
τ
υ

\piup
\varpiup
\rhoup
\varrhoup
\sigmaup
\varsigmaup
\tauup
\upsilonup

φ
ϕ
χ
ψ
ω

\phiup
\varphiup
\chiup
\psiup
\omegaup

Table 134: upgreek Upright Greek Letters
α
β
γ
δ
ε
ε
ζ
η

\upalpha
\upbeta
\upgamma
\updelta
\upepsilon
\upvarepsilon
\upzeta
\upeta

θ
ϑ
ι
κ
λ
µ
ν
ξ

\uptheta
\upvartheta
\upiota
\upkappa
\uplambda
\upmu
\upnu
\upxi

π
ϖ
ρ
ρ
σ
σ
τ
υ

\uppi
\upvarpi
\uprho
\upvarrho
\upsigma
\upvarsigma
\uptau
\upupsilon

φ
ϕ
χ
ψ
ω

\upphi
\upvarphi
\upchi
\uppsi
\upomega

Γ
∆
Θ

\Upgamma
\Updelta
\Uptheta

Λ
Ξ
Π

\Uplambda
\Upxi
\Uppi

Σ
Υ
Φ

\Upsigma
\Upupsilon
\Upphi

Ψ
Ω

\Uppsi
\Upomega

upgreek utilizes upright Greek characters from either the PostScript Symbol font
(depicted above) or Euler Roman. As a result, the glyphs may appear slightly
different from the above. Contrast, for example, “Γ∆Θαβγ” (Symbol) with
“Γ∆Θαβγ” (Euler).

Table 135: fourier Variant Greek Letters
π
$
È

\pi
\varpi
\varvarpi

ρ
%
Æ

\rho
\varrho
\varvarrho

Table 136: txfonts/pxfonts Variant Latin Letters
1

3

\varg

4

\varv

2

\varw

\vary

Pass the varg option to txfonts/pxfonts to replace g, v, w, and y with 1, 3, 4, and 2
in every mathematical expression in your document.

Table 137: AMS Hebrew Letters
i

\beth

‫ג‬

\gimel

\daleth

k

\aleph (ℵ) appears in Table 201 on page 65.

Table 138: MnSymbol Hebrew Letters
ℵ

\aleph

ℶ

\beth

ℷ

\gimel

ℸ

\daleth

Table 139: Letter-like Symbols
⊥
`
∃

\bot
\ell
\exists

∀
~
=

\forall
\hbar
\Im

ı
∈


\imath
\in
\jmath
51

3
∂
<

\ni
\partial
\Re

>
℘

\top
\wp

Table 140: AMS Letter-like Symbols
{
`
a

\Bbbk
\circledR
\circledS

k
r
s

\complement
\Finv
\Game

~
}
@

\hbar
\hslash
\nexists

Table 141: txfonts/pxfonts Letter-like Symbols
¢
∗

\mathcent

\mathsterling∗

£

<

\notin

=

\notni

It’s generally preferable to use the corresponding symbol from Table 3 on page 9
because the symbols in that table work properly in both text mode and math mode.

Table 142: mathabx Letter-like Symbols
V
A
D
F
G

\barin
\complement
\exists
\Finv
\Game

P
E
M
R
S

\in
\nexists
\notbot
\notin
\notowner

L
Q
W
B
C

T
U

\nottop
\owns
\ownsbar
\partial
\partialslash

\varnotin
\varnotowner

Table 143: MnSymbol Letter-like Symbols
–
∃
∀
∗

\bot
\exists
\forall

∈
∄
∉

\in
\nexists
\nin∗

∌
∋
℘

\nowns∗
\owns
\powerset

⊺
℘

\top
\wp

MnSymbol provides synonyms \notin for \nin, \ni for \owns, and \intercal for
\top.

Table 144: trfsigns Letter-like Symbols
e

j

\e

\im

Table 145: mathdesign Letter-like Symbols
∈
6
∈



\in
\notin
\notsmallin
\notsmallowns

3


\owns
\smallin
\smallowns

The mathdesign package additionally provides versions of each of the letter-like
symbols shown in Table 140.

52

Table 146: fge Letter-like Symbols
A
c
p
e
∗

\fgeA
\fgec
\fged
\fgee

ı
F
f
”

D
C
B
s

\fgeeszett
\fgeF
\fgef
\fgelb∗

U

\fgeleftB
\fgeleftC
\fgerightB
\fges

\fgeU

The fge package defines \fgeeta, \fgeN, and \fgeoverU as synonyms for \fgelb.

Table 147: fourier Letter-like Symbols
∂
Ç

\partial
\varpartialdiff

Table 148: AMS Delimiters
p
x

q
y

\ulcorner
\llcorner

\urcorner
\lrcorner

Table 149: stmaryrd Delimiters
P
V
L

\Lbag
\llceil
\llparenthesis

Q
W
M

\Rbag
\rrceil
\rrparenthesis

N
T

\lbag
\llfloor

Table 150: mathabx Delimiters

v

\lcorners

w

\rcorners

x
z

\ulcorner
\llcorner

y
{

\urcorner
\lrcorner

Table 151: nath Delimiters
\niv

\vin

53

O
U

\rbag
\rrfloor

↓
h



y
D

d

l

b

j

(



/

.

\downarrow

⇓

\langle

i

\lceil
\lfloor
(
/

w
w

E

e

m

c

k

)



\

/

Table 152: Variable-sized Delimiters
h
\Downarrow
[
[
|

\rangle
\rceil

↑

\rfloor

l

)

{

|
x


x

y
n

i

]

]

k

\uparrow

⇑

\updownarrow

m

\{

}

\|
~
w
w
~
w

o

\Uparrow
\Updownarrow
\}

\backslash

When used with \left and \right, these symbols expand to the height of the
enclosed math expression. Note that \vert is a synonym for |, and \Vert is a
synonym for \|.
ε-TEX provides a \middle analogue to \left and \right. \middle can be used, for
example, to make an internal “|” expand to the height of the surrounding \left and
\right symbols. (This capability is commonly needed when typesetting adjacent
bras and kets in Dirac notation: “hφ|ψi”). A similar effect can be achieved in
conventional LATEX using the braket package.


















\lmoustache

\arrowvert

Table 153: Large, Variable-sized Delimiters


 
 


 
 


 \lgroup
 \rmoustache

w




w w


w

w w \Arrowvert
\bracevert

 

w













\rgroup

These symbols must be used with \left and \right. The mathabx package, however, redefines \lgroup and \rgroup so that those symbols can work without \left
and \right.

Table 154: AMS Variable-sized Delimiters
|

\lvert

|

\rvert

k

\lVert

k

\rVert

According to the amsmath documentation [AMS99], the preceding symbols are
intended to be used as delimiters (e.g., as in “|−z|”) while the \vert and \Vert
symbols (Table 152) are intended to be used as operators (e.g., as in “p|q”).

Table 155: stmaryrd Variable-sized Delimiters


~
\llbracket

\rrbracket
54

Table 156: mathabx Variable-sized Delimiters

1

v

77
77



7

~

9

w

\ldbrack

\rdbrack

??
?? \rfilet

~  \vvvert
?

\lfilet
\thickvert

Table 157: MnSymbol Variable-sized Delimiters

⌈
⌊
^^
^
_
_
_
(

⎡⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎣
^^
^^
^^
^
_
_
_
_
_
_
_
(

⟦
⎧
⎪
⎭
/
[
∣
RR
R

L
P
P
P
P
P
N
⎧
⎪
⎪
⎪
⎪
⎪
⎭
/

\lceil

⌉

\lfloor

⌋

\lwavy

^^
^

\lWavy

_
_
_

(

)

\lsem

⟧

)

⎫
⎪
⎩

\lmoustache

/

/

⎡⎢
⎢⎢
⎢⎢
⎣
RR
RR
RR
R

[

]

|

∥

RR
RR
RR
R

\arrowvert

⎤⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎦
^^
^^
^^
^
_
_
_
_
_
_
_

M
Q
Q
Q
Q
Q
O
⎫
⎪
⎪
⎪
⎪
⎪
⎩
/

X
X
X

\rceil

⌜

⌜

\ulcorner

⌝

⌝

\urcorner

\rfloor

⌞

⌞

\llcorner

⌟

⌟

\lrcorner

\rwavy

⟨

⟨

\langle

⟩

⟩

\rangle

\rWavy

k

n

\langlebar

p

s

\ranglebar

\rsem

⟪

\rmoustache

{

\backslash

⟨

]

3

⎤⎥
⎥⎥
⎥⎥
⎦
X
X
X
X
X
X
X

\|

X
X
X
X
X
X
X

\Arrowvert

⎧
⎪
⎪
⎪
⎪
⎪
⎩

⎧
⎪
⎩

)

⟪

55

⟫

\lbrace

}

⟨

<

⟩

⟩

>

6

\ullcorner

8

;

\ulrcorner

⎪
⎪
⎪
⎪
⎪
⎪
⎪

\bracevert

⟫

\rgroup

\llangle

⎧
⎪
⎪
⎨
⎪
⎪
⎩

⎪
⎪
⎪

⎫
⎪
⎪
⎪
⎪
⎪
⎭

⎫
⎪
⎭

\lgroup

⎫
⎪
⎪
⎬
⎪
⎪
⎭

\rrangle

\rbrace

\vert is a synonym for |. \Vert is a synonym for \|. \mid and \mvert produce
the same symbol as \vert but designated as math relations instead of ordinals.
\divides produces the same symbol as \vert but designated as a binary operator
instead of an ordinal. \parallel and \mVert produce the same symbol as \Vert
but designated as math relations instead of ordinals.

Table 158: mathdesign Variable-sized Delimiters
Ð
Ð
Ð
Ð
Ñ
Ñ
Ñ
Ñ

Ð

Ñ

\leftwave

Ð

\leftevaw

Ñ

Ð
Ð
Ð
Ð
Ñ
Ñ
Ñ
Ñ

\rightwave
\rightevaw

The definitions of these symbols include a preceding \left or \right. It is therefore
an error to specify \left or \right explicitly. The internal, “primitive” versions
of these symbols are called \lwave, \rwave, \levaw, and \revaw.

Table 159: nath Variable-sized Delimiters (Double)
hh

DD

[[

hh

dd

ll

bb

jj

||
∗

\lAngle

ii

EE

\lBrack

]]

ii

\lCeil

ee

mm

\lFloor

cc

kk

\lVert∗

||

\rAngle
\rBrack
\rCeil
\rFloor
\rVert∗

nath redefines all of the above to include implicit \left and \right commands.
Hence, separate \lVert and \rVert commands are needed to disambiguate whether
“|” is a left or right delimiter.
All of the symbols in Table 159 can also be expressed using the \double macro.
See the nath documentation for examples and additional information.

56

Table 160: nath Variable-sized Delimiters (Triple)
hhh

DDD

[[[

hhh

|||
∗

\triple<

iii

EEE

\triple[

]]]

iii

\ltriple|∗

|||

\triple>
\triple]
\rtriple|∗

Similar to \lVert and \rVert in Table 159, \ltriple and \rtriple must be used
instead of \triple to disambiguate whether “|” is a left or right delimiter.
Note that \triple—and the corresponding \double—is actually a macro that
takes a delimiter as an argument.

Table 161: fourier Variable-sized Delimiters
‹

Œ

\llbracket
“
“
“
“

“
“

†

\rrbracket

\VERT

Table 162: textcomp Text-mode Delimiters
〈
〚
⁅

〉
〛
⁆

\textlangle
\textlbrackdbl
\textlquill

\textrangle
\textrbrackdbl
\textrquill

Table 163: metre Text-mode Delimiters
}
{
i
h

\alad
\alas
\angud
\angus

} \Alad
{ \Alas

†

i
h

[[

]]

\Angud
\Angus

\crux
\quadrad
\quadras

†
]]
[[

\Crux
\Quadrad
\Quadras

Table 164: Math-mode Accents
á
ā
ă

\acute{a}
\bar{a}
\breve{a}

ǎ
ä
ȧ

\check{a}
\ddot{a}
\dot{a}

à
â
å

\grave{a}
\hat{a}
\mathring{a}

ã
~a

\tilde{a}
\vec{a}

Also note the existence of \imath and \jmath, which produce dotless versions of
“i ” and “j ”. (See Table 201 on page 65.) These are useful when the accent is
supposed to replace the dot. For example, “\hat{\imath}” produces a correct
“ ı̂ ”, while “\hat{i}” would yield the rather odd-looking “ î ”.
57

Table 165: AMS Math-mode Accents
...
....
a \dddot{a}
a \ddddot{a}
These accents are also provided by the mathabx and accents packages and are
redefined by the mathdots package if the amsmath and amssymb packages have previously been loaded. All of the variations except for the original AMS ones tighten
...
the space between the dots (from a to ˙˙˙
a). The mathabx and mathdots...
versions also
˙˙˙
a
a
function properly within subscripts and superscripts (x instead of x ) .

Table 166: MnSymbol Math-mode Accents
a
⃗

\vec{a}

Table 167: fge Math-mode Accents
–
A–
a
∗

\spirituslenis{A}\spirituslenis{a}∗

When fge is passed the crescent option, \spirituslenis instead uses a crescent
accent as in “ —a ”.

Table 168: yhmath Math-mode Accents
å

\ring{a}

This symbol is largely obsolete, as standard LATEX 2ε has supported \mathring
since June, 1998 [LAT98].

58

Table 169: Extensible Accents
›
abc
←−
abc

\widehat{abc}∗

\overleftarrow{abc}†

”
abc
−→
abc

\overline{abc}

abc

\underline{abc}

\overbrace{abc}

abc
|{z}

\underbrace{abc}

\widetilde{abc}∗

abc
z}|{
abc
√
abc

\overrightarrow{abc}†

\sqrt{abc}‡

As demonstrated in a 1997 TUGboat article about typesetting long-division problems [Gib97], an extensible long-division sign (“ )abc ”) can be faked by putting a
“\big)” in a tabular environment with an \hline or \cline in the preceding row.
The article also presents a piece of code (uploaded to CTAN as longdiv.tex) that
automatically solves and typesets—by putting an \overline atop “\big)” and
the desired text—long-division problems. See also the polynom package, which automatically solves and typesets polynomial-division problems in a similar manner.
∗

These symbols are made more extensible by the MnSymbol package and even more
extensible by the yhmath package.

†

If you’re looking for an extensible diagonal line or arrow to be used for canceling or
5
reducing mathematical subexpressions (e.g., “x + −x” or “3 + 2 ”) then consider
using the cancel package.

‡

With an optional argument,
\sqrt typesets nth roots.
For√ example,
√
3
n
“\sqrt[3]{abc}” produces “ abc ” and “\sqrt[n]{abc}” produces “ abc ”.

Table 170: overrightarrow Extensible Accents
=⇒
abc \Overrightarrow{abc}

Table 171: yhmath Extensible Accents
ˆ
abc

\wideparen{abc}

˚
ˆ
abc

\widering{abc}

È
abc

\widetriangle{abc}

Table 172: AMS Extensible Accents
←
→
abc

\overleftrightarrow{abc}

abc
←−

\underleftarrow{abc}

abc
←
→
abc
−→

59

\underleftrightarrow{abc}
\underrightarrow{abc}

Table 173: MnSymbol Extensible Accents

«
abc
³¹¹ ¹ ¹µ
abc

\overbrace{abc}

abc
°

\underbrace{abc}

\overgroup{abc}

\undergroup{abc}

zx
abc
↼Ð
abc

abc
´¹¹ ¹ ¹¶

\overlinesegment{abc}

\underlinesegment{abc}

\overleftharpoon{abc}

abc
zx
Ð⇀
abc

̂
abc

\widehat{abc}

̃
abc

Í
abc

\wideparen{abc}

\overrightharpoon{abc}
\widetilde{abc}

Table 174: mathtools Extensible Accents

∗

z}|{
abc

\overbrace{abc}

abc

\overbracket{abc}∗

abc
|{z}
abc

\underbrace{abc}
\underbracket{abc}∗

\overbracket and \underbracket accept optional arguments that specify the
bracket height and thickness. See the mathtools documentation for more information.

hkkikkj

Table 175: mathabx Extensible Accents

hkkk j

\overbrace{abc}

„
abc

\widebar{abc}

abc

\overgroup{abc}

|
abc

\widecheck{abc}

looabc
moon \underbrace{abc}

Œ
abc

\wideparen{abc}

abc
lo
oo n
ˆ
abc

˚
Œ
abc

\widering{abc}

abc

\undergroup{abc}
\widearrow{abc}

The braces shown for \overbrace and \underbrace appear in their minimum size.
They can expand arbitrarily wide, however.

Table 176: fourier Extensible Accents
Ù
abc

\widearc{abc}

–
abc

\wideparen{abc}

å
abc

\wideOarc{abc}

˚
–
abc

\widering{abc}

60

Table 177: esvect Extensible Accents
#”
abc \vv{abc} with package option a
#„
abc \vv{abc} with package option b
#«
abc \vv{abc} with package option c
#»
abc \vv{abc} with package option d
#–
abc \vv{abc} with package option e
#—
abc \vv{abc} with package option f
#
abc \vv{abc} with package option g
#‰
abc \vv{abc} with package option h
esvect also defines a \vv* macro which is used to typeset arrows over vector variables with subscripts. See the esvect documentation for more information.

Table 178: undertilde Extensible Accents
abc
›

\utilde{abc}

Because \utilde is based on \widetilde it is also made more extensible by the
yhmath package.

Table 179: ushort Extensible Accents
abc

\ushortdw{abc}

abc

\ushortw{abc}

\ushortw and \ushortdw are intended to be used with multi-character arguments (“words”) while \ushortand \ushortd are intended to be used with singlecharacter arguments.
The underlines produced by the ushort commands are shorter than those produced by the \underline command. Consider the output from the expression “\ushort{x}\ushort{y}\underline{x}\underline{y}”, which looks like
“xyxy”.

Table 180: AMS Extensible Arrows
abc

←−−

abc

−−→

\xleftarrow{abc}

61

\xrightarrow{abc}

Table 181: mathtools Extensible Arrows
abc

←−−abc

,−−→
abc

⇐==
abc

)−−
abc

(−−
abc

←−→
abc

⇐=⇒

abc

(
−
−
−
−
+

\xhookleftarrow{abc}

abc

\xhookrightarrow{abc}

7−−→

\xLeftarrow{abc}

==⇒

abc

abc

\xleftharpoondown{abc}

−−+

\xleftharpoonup{abc}

−−*

abc
abc

−
−
*
)
−
−

\xleftrightarrow{abc}

\xleftrightharpoons{abc}
\xmapsto{abc}
\xRightarrow{abc}
\xrightharpoondown{abc}
\xrightharpoonup{abc}
\xrightleftharpoons{abc}

\xLeftrightarrow{abc}

Table 182: chemarr Extensible Arrows
abc

−−
*
)
−
−

\xrightleftharpoons{abc}

Table 183: chemarrow Extensible Arrows
abc
DGGGGGGG
def

\autoleftarrow{abc}{def}

abc
GGGGGGGA
def

\autorightarrow{abc}{def}

abc
E
GG
GGGGGGGC
def

\autoleftrightharpoons{abc}{def}

abc
GGGGGGGB
F
GG
def

\autorightleftharpoons{abc}{def}

In addition to the symbols shown above, chemarrow also provides \larrowfill,
\rarrowfill, \leftrightharpoonsfill, and \rightleftharpoonsfill macros.
Each of these takes a length argument and produces an arrow of the specified
length.

Table 184: extarrows Extensible Arrows
abc

⇐=⇒
abc

←−→
abc

====
abc

⇐==
abc

←−−

\xLeftrightarrow{abc}
\xleftrightarrow{abc}
\xlongequal{abc}
\xLongleftarrow{abc}

abc

⇐=
=⇒
abc

←−
−→
abc

==⇒
abc

−−→

\xlongleftarrow{abc}

62

\xLongleftrightarrow{abc}
\xlongleftrightarrow{abc}
\xLongrightarrow{abc}
\xlongrightarrow{abc}

Table 185: extpfeil Extensible Arrows
abc

====
abc

abc

7−−→

\xlongequal{abc}

−−−−

\xmapsto{abc}

abc

−−−−

\xtwoheadleftarrow{abc}

\xtwoheadrightarrow{abc}

The extpfeil package also provides a \newextarrow command to help you define
your own extensible arrow symbols. See the extpfeil documentation for more information.

Table 186: DotArrow Extensible Arrows
a



\dotarrow{a}

The DotArrow package provides mechanisms for lengthening the arrow, adjusting
the distance between the arrow and its symbol, and altering the arrowhead. See
the DotArrow documentation for more information.

Table 187: trfsigns Extensible Transform Symbols
\dft{a}

a

\DFT{a}

a

Table 188: holtpolt Non-commutative Division Symbols
abc
def

\holter{abc}{def}

abc
def

\polter{abc}{def}

Table 189: Dots
·

\cdotp

···

\cdots

:
..

.

\colon∗

.

\ldotp

\ddots†

...

\ldots

..
.

\vdots†

∗

While “:” is valid in math mode, \colon uses different surrounding spacing. See
Section 8.4 and the Short Math Guide for LATEX [Dow00] for more information on
math-mode spacing.

†

The mathdots package redefines \ddots and \vdots to make them scale properly
with font size. (They normally scale horizontally but not vertically.) \fixedddots
and \fixedvdots provide the original, fixed-height functionality of LATEX 2ε ’s
\ddots and \vdots macros.

63

Table 190: AMS Dots
∵
···
...
∗

\because∗
\dotsb
\dotsc

···
···
...

\dotsi
\dotsm
\dotso

∴

\therefore∗

\because and \therefore are defined as binary relations and therefore also appear
in Table 68 on page 30.
The AMS \dots symbols are named according to their intended usage: \dotsb
between pairs of binary operators/relations, \dotsc between pairs of commas,
\dotsi between pairs of integrals, \dotsm between pairs of multiplication signs,
and \dotso between other symbol pairs.

Table 191: wasysym Dots
∴

\wasytherefore

Table 192: MnSymbol Dots
⋅

⋱
∵


\cdot
\ddotdot
\ddots
\diamonddots
\downtherefore
\fivedots


⋯
∷


\hdotdot
\hdots
\lefttherefore
\righttherefore
\squaredots
\udotdot

⋰
∴
∶
⋮

\udots
\uptherefore
\vdotdot
\vdots

MnSymbol defines \therefore as \uptherefore and \because as
\downtherefore. Furthermore, \cdotp and \colon produce the same glyphs as
\cdot and \vdotdot respectively but serve as TEX math punctuation (class 6
symbols) instead of TEX binary operators (class 2).
All of the above except \hdots and \vdots are defined as binary operators and
therefore also appear in Table 50 on page 23. Also, unlike most of the other dot
symbols in this document, MnSymbol’s dots are defined as single characters instead
of as composites of multiple single-dot characters.

Table 193: mathdots Dots
.
..
\iddots

Table 194: yhmath Dots
..

..

\:

.

\adots

Table 195: teubner Dots
..
..
.. \?
. \;
.. .. \antilabe
64

Table 196: mathcomp Math Symbols
℃
µ

\tccentigrade
\tcmu

Ω
‱

\tcohm
\tcpertenthousand

‰

\tcperthousand

Table 197: marvosym Digits
0
1

\MVZero
\MVOne

2
3

4
5

\MVTwo
\MVThree

6
7

\MVFour
\MVFive

\MVSix
\MVSeven

8
9

\MVEight
\MVNine

Table 198: fge Digits
0

1

\fgestruckzero

\fgestruckone

Table 199: dozenal Base-12 Digits

X

0
1

E

\x

\e

Table 200: mathabx Mayan Digits
\maya{0}
\maya{1}

2
3

\maya{2}
\maya{3}

4
5

\maya{4}
\maya{5}

Table 201: Miscellaneous LATEX 2ε Math Symbols
ℵ
6

\

♣

\aleph
\angle
\backslash
\Box∗,†
\clubsuit

^
♦
∅
[
♥

\Diamond∗
\diamondsuit
\emptyset‡
\flat
\heartsuit

∞
f
∇
\
¬

\infty
\mho∗
\nabla
\natural
\neg

0
]
♠
`
4

\prime
\sharp
\spadesuit
\surd
\triangle

∗

Not predefined in LATEX 2ε . Use one of the packages latexsym, amsfonts, amssymb,
txfonts, pxfonts, or wasysym. Note, however, that amsfonts and amssymb define
\Diamond to produce the same glyph as \lozenge (“♦”); the other packages produce a squarer \Diamond as depicted above.

†

To use \Box—or any other symbol—as an end-of-proof (Q.E.D.) marker, consider
using the ntheorem package, which properly juxtaposes a symbol with the end of
the proof text.

‡

Many people prefer the look of AMS’s \varnothing (“∅”, Table 202) to that of
LATEX’s \emptyset.

65

Table 202: Miscellaneous AMS Math Symbols
∠
8
F


N

\angle
\backprime
\bigstar
\blacklozenge
\blacksquare
\blacktriangle

H


ð
♦
]

\blacktriangledown
\diagdown
\diagup
\eth
\lozenge
\measuredangle

f
^

O
∅
M

\mho
\sphericalangle
\square
\triangledown
\varnothing
\vartriangle

Table 203: Miscellaneous wasysym Math Symbols

∗

2

\Box

3

\Diamond

f

\mho∗



\varangle

wasysym also defines an \agemO symbol, which is the same glyph as \mho but is
intended for use in text mode.

Table 204: Miscellaneous txfonts/pxfonts Math Symbols
_

o

\Diamondblack
\Diamonddot
\lambdabar

n
p
q

\lambdaslash
\varclubsuit
\vardiamondsuit

r
s

\varheartsuit
\varspadesuit

Table 205: Miscellaneous mathabx Math Symbols
0

å
ä
I

\degree
\diagdown
\diagup
\diameter

4
#
8

$

\fourth
\hash
\infty
\leftthreetimes

>
&
9

%

\measuredangle
\pitchfork
\propto
\rightthreetimes

2

?
3

#

\second
\sphericalangle
\third
\varhash

Table 206: Miscellaneous MnSymbol Math Symbols
∠
⌐
‵
✓
♣
∅

\angle
\backneg
\backprime
\checkmark
\clubsuit
\diameter

♢
♭
♡
∞
⨽
⨼

\diamondsuit
\flat
\heartsuit
\infty
\invbackneg
\invneg

✠
∡
∇
♮
¬
′

\maltese
\measuredangle
\nabla
\natural
\neg
\prime

♯
∫
♠
∢

\sharp
\smallint
\spadesuit
\sphericalangle

MnSymbol defines \emptyset and \varnothing as synonyms for \diameter; \lnot
and \minushookdown as synonyms for \neg; \minushookup as a synonym for
\invneg; \hookdownminus as a synonym for \backneg; and, \hookupminus as
a synonym for \invbackneg.

66

Table 207: Miscellaneous Internal MnSymbol Math Symbols
∫…∫
⨚
⨙
∲
∲
∯
∮
∳
∳
⨏
⨋

∫…∫
⨚
⨙
∲
∲
∯
∮
∳
∳
⨏
⨋

\partialvardint
\partialvardlanddownint
\partialvardlandupint
\partialvardlcircleleftint
\partialvardlcirclerightint
\partialvardoiint
\partialvardoint
\partialvardrcircleleftint
\partialvardrcirclerightint
\partialvardstrokedint
\partialvardsumint

\partialvartint
\partialvartlanddownint
\partialvartlandupint
\partialvartlcircleleftint
\partialvartlcirclerightint
\partialvartoiint
\partialvartoint
\partialvartrcircleleftint
\partialvartrcirclerightint
\partialvartstrokedint
\partialvartsumint

These symbols are intended to be used internally by MnSymbol to construct the
integrals appearing in Table 64 on page 29 but can nevertheless be used in isolation.

Table 208: Miscellaneous textcomp Text-mode Math Symbols
°
÷
⁄
¬
−

\textdegree∗
\textdiv
\textfractionsolidus
\textlnot
\textminus

½
¼
¹
±
√

\textonehalf†
\textonequarter†
\textonesuperior
\textpm
\textsurd

¾
³
×
²

\textthreequarters†
\textthreesuperior
\texttimes
\texttwosuperior

∗

If you prefer a larger degree symbol you might consider defining one as
“\ensuremath{^\circ}” (“◦ ”).

†

nicefrac (part of the units package) or the newer xfrac package can be used to
construct vulgar fractions like “1/2”, “1/4”, “3/4”, and even “c/o”.

Table 209: Miscellaneous marvosym Math Symbols
W
=

\Anglesign
\Corresponds

÷
p

P

\Squaredot
\Vectorarrow

\Vectorarrowhigh

Table 210: Miscellaneous fge Math Symbols
K
M
O

\fgebackslash
\fgebaracute
\fgebarcap

S
Q
N

\fgecap
\fgecapbar
\fgecup

R
P
i

\fgecupacute
\fgecupbar
\fgeinfty

h
L

Table 211: Miscellaneous mathdesign Math Symbols
∟

\rightangle

Table 212: Miscellaneous arev Math Symbols
♨
♧

\steaming
\varclub

♦
♥

\vardiamond
\varheart
67

♤

\varspade

\fgelangle
\fgeupbracket

Table 213: Math Alphabets
Font sample

Generating command

Required package

ABCdef123
ABCdef123
ABCdef 
ABC
ABC
or
ABC
or
ABCdef123
ABC
‚ƒ

\mathrm{ABCdef123}
\mathit{ABCdef123}
\mathnormal{ABCdef123}
\mathcal{ABC}
\mathscr{ABC}
\mathcal{ABC}
\mathcal{ABC}
\mathscr{ABC}
\mathpzc{ABCdef123}
\mathbb{ABC}
\varmathbb{ABC}
\mathbb{ABCdef123}
\mathbb{ABCdef123}
\mathbbm{ABCdef12}
\mathbbmss{ABCdef12}
\mathbbmtt{ABCdef12}
\mathds{ABC1}
\mathds{ABC1}
\symA\symB\symC
\mathfrak{ABCdef123}
\textfrak{ABCdef123}
\textswab{ABCdef123}
\textgoth{ABCdef123}

none
none
none
none
mathrsfs
calrsfs
euscript with the mathcal option
euscript with the mathscr option
none; manually defined∗
amsfonts,§ amssymb, txfonts, or pxfonts
txfonts or pxfonts
bbold or mathbbol†
mbboard†
bbm
bbm
bbm
dsfont
dsfont with the sans option
china2e‡
eufrak
yfonts¶
yfonts¶
yfonts¶

ABCdef123
ABCdef123

ABCdef12
ABCdef12

ABCdef12
ABC1
ABC1

ÁÂÃ

ABCdef123
ABCdef123
ABCdef123
ABCˇf123
∗

Put “\DeclareMathAlphabet{\mathpzc}{OT1}{pzc}{m}{it}” in your document’s preamble to make \mathpzc typeset its argument in Zapf Chancery.
As a similar trick, you can typeset the Calligra font’s script “r ” (or other
calligraphic symbols) in math mode by loading the calligra package and
putting
“\DeclareMathAlphabet{\mathcalligra}{T1}{calligra}{m}{n}”
in your document’s preamble to make \mathcalligra typeset its
argument in the Calligra font.
(You may also want to specify
“\DeclareFontShape{T1}{calligra}{m}{n}{<->s*[2.2]callig15}{}”
to
set Calligra at 2.2 times its design size for a better blend with typical body fonts.)

†

The mathbbol package defines some additional blackboard bold characters:
parentheses, square brackets, angle brackets, and—if the bbgreekl option
is passed to mathbbol—Greek letters.
For instance, “<[(
)]>” is produced by “\mathbb{\Langle\Lbrack\Lparen\bbalpha\bbbeta\bbgamma\Rparen
\Rbrack\Rangle}”.
mbboard extends the blackboard bold symbol set significantly further.
It
supports not only the Greek alphabet—including “Greek-like” symbols such
as \bbnabla (“š”)—but also all punctuation marks, various currency symbols such as \bbdollar (“$”) and \bbeuro (“û”), and the Hebrew alphabet (e.g., “\bbfinalnun\bbyod\bbqof\bbpe” → “ÏÉ×Ô”).

‡

The \sym. . . commands provided by the ChinA2e package are actually text-mode
commands. They are included in Table 213 because they resemble the blackboardbold symbols that appear in the rest of the table. In addition to the 26 letters
of the English alphabet, ChinA2e provides three umlauted blackboard-bold letters:
\symAE (“ ”), \symOE (“ ”), and \symUE (“ ”). Note that ChinA2e does provide
math-mode commands for the most common number-set symbols. These are presented in Table 130 on page 49.

Û

Ü

Ý

68

¶

As their \text. . . names imply, the fonts provided by the yfonts package are
actually text fonts. They are included in Table 213 because they are frequently
used in a mathematical context.

§

An older (i.e., prior to 1991) version of the AMS’s fonts rendered C, N, R, S,
and Z as C, N, R, S, and Z. As some people prefer the older glyphs—much to
the AMS’s surprise—and because those glyphs fail to build under modern versions
of METAFONT, Berthold Horn uploaded PostScript fonts for the older blackboardbold glyphs to CTAN, to the fonts/msym10 directory. As of this writing, however,
there are no LATEX 2ε packages for utilizing the now-obsolete glyphs.

69

4

Science and technology symbols
This section lists symbols that are employed in various branches of science and engineering.

Table 214: gensymb Symbols Defined to Work in Both Math and Text Mode
℃
°

µ
Ω

\celsius
\degree

‰

\micro
\ohm

\perthousand

Table 215: wasysym Electrical and Physical Symbols
:

!
&

\AC

@

::::

\VHF

F

\photon

QPPPPPPR

\HF

Table 216: ifsym Pulse Diagram Symbols

'
$

\FallingEdge
\LongPulseHigh

%

\LongPulseLow
\PulseHigh

"
#

\PulseLow
\RaisingEdge

\gluon

\ShortPulseHigh
\ShortPulseLow

In addition, within \textifsym{. . .}, the following codes are valid:

l
L

l
L

m
M

m
M

h
H

d
D

h
H

d
D

<
=

<
<<

>
?

>
>>

mmmm

This enables one to write “\textifsym{mmmm}” to get “
” or
“\textifsym{L|H|L|H|L}” to get “
”. See also the timing package,
which provides a wide variety of pulse-diagram symbols within an environment
designed specifically for typesetting pulse diagrams.

L|H|L|H|L

Finally, \textifsym supports the display of segmented digits, as would appear
on an LCD: “\textifsym{-123.456}” produces “
”. “\textifsym{b}”
outputs a blank with the same width as an “ ”.

-123.456

8

Table 217: ar Aspect Ratio Symbol

A

\AR

Table 218: textcomp Text-mode Science and Engineering Symbols
℃

\textcelsius

℧

\textmho

µ

\textmu

Ω

\textohm

Table 219: steinmetz Extensible Phasor Symbol
abc

\phase{abc}

The \phase command uses the pict2e package to draw a horizontally and vertically scalable Steinmetz phasor symbol. Consequently, \phase works only with
those TEX backends supported by pict2e. See the pict2e documentation for more
information.
70

Table 220: wasysym Astronomical Symbols
'
♀

♁
♂

\mercury
\venus

\earth
\mars

X
Y

\jupiter
\saturn

Z
[

\uranus
\neptune

\

\pluto

\newmoon

%

\rightmoon



\vernal

\astrosun

#

\fullmoon

$

\leftmoon


]
^

\aries
\taurus
\gemini

_

`

\cancer
\leo
\virgo

a
b
c

\libra
\scorpio
\sagittarius

e
d
f

\aquarius
\capricornus
\pisces



\ascnode



\descnode

V

\conjunction

W

\opposition

Table 221: marvosym Astronomical Symbols
Â
Ã

\Mercury
\Venus

Ê
Ä

\Earth
\Mars

Á

\Moon

À

\Sun

à
á
â

\Aries
\Taurus
\Gemini

ã
ä
å

\Cancer
\Leo
\Virgo

Å
Æ

\Jupiter
\Saturn

Ç
È

\Uranus
\Neptune

É

æ
ç
è

\Libra
\Scorpio
\Sagittarius

é
ê
ë

\Capricorn
\Aquarius
\Pisces

\Pluto

Note that \Aries . . . \Pisces can also be specified with \Zodiac{1} . . .
\Zodiac{12}.

A
B

\Mercury
\Venus

C
D

M

\fullmoon

P

\Aries

Table 222: mathabx Astronomical Symbols
\Earth
\Mars

E
F

\Jupiter
\Saturn

G
H

\Uranus
\Neptune

I
J

\Pluto
\varEarth

K

\leftmoon

N

\newmoon

L

\rightmoon

@

\Sun

Q

\Taurus

R

\Gemini

mathabx also defines \girl as an alias for \Venus, \boy as an alias for \Mars, and
\Moon as an alias for \leftmoon.

Table 223: wasysym APL Symbols
~

F
o
}

\APLbox
\APLcomment
\APLdown
\APLdownarrowbox
\APLinput

÷
~
p

−
q

\APLinv
\APLleftarrowbox
\APLlog
\APLminus
\APLrightarrowbox

E

n
−
\
−
/

\APLstar
\APLup
\APLuparrowbox
\notbackslash
\notslash

Table 224: wasysym APL Modifiers
◦ \APLcirc{}

∼ \APLnot{}
71

|

\APLvert{}

Table 225: marvosym Computer Hardware Symbols
Í
Ï

\ComputerMouse
\Keyboard

Ñ
Ò

\ParallelPort
\Printer

Î
Ð

\SerialInterface
\SerialPort

Table 226: keystroke Computer Keys
Alt

\Alt

Enter

\Enter∗

PrtSc

\PrtSc∗

AltGr

\AltGr

Esc

\Esc∗

→

\RArrow

∗

∗

Break

\Break

Home

\Home

←-

\Return

→−7

\BSpace†

Ins

\Ins∗

Scroll

\Scroll∗

Ctrl

\Ctrl∗

←

\LArrow

Shift ⇑

\Shift∗

↓

\DArrow

Num

\NumLock

Del

\Del∗

Page ↓

\PgDown∗

End

∗

\End

\Spacebar

∗

\PgUp

Page ↑

→
−
−
−
−
→

\Tab†

↑

\UArrow

∗

Changes based on the language option passed to the keystroke package. For example, the german option makes \Del produce “ Entf ” instead of “ Del ”.

†

These symbols utilize the rotating package and therefore display improperly in most
DVI viewers.
The \keystroke command draws a key with an arbitrary label. For example,
“\keystroke{F7}” produces “ F7 ”.

Table 227: ascii Control Characters (CP437)
␁
␂
␃
␄
␅
␆
␇

\SOH
\STX
\ETX
\EOT
\ENQ
\ACK
\BEL

␡

\DEL

␈
␉
␊
␋
␌
␍
␎

\BS
\HT
\LF
\VT
\FF
\CR
\SO

␏
␐
␑
␒
␓
␔
␕

\SI
\DLE
\DCa
\DCb
\DCc
\DCd
\NAK

␖
␗
␘
␙
␚
␛
␜

\SYN
\ETB
\CAN
\EM
\SUB
\ESC
\FS

\NBSP

␀

\NUL

¦

\splitvert

␝
␞
␟

\GS
\RS
\US

Code Page 437 (CP437), which was first utilized by the original IBM PC, uses the
symbols \SOH through \US to depict ASCII characters 1–31 and \DEL to depict
ASCII character 127. The \NUL symbol, not part of CP437, represents ASCII
character 0. \NBSP, also not part of CP437, represents a nonbreaking space.
\splitvert is merely the “|” character drawn as it was on the IBM PC.

72

Table 228: milstd Logic Gates



\ANDd



\ANDl



\ANDr





\BUFu



\NANDl

\ORd

\BusWidth



\NANDr

\ORl



\INVd



\NANDu

\ORr

\ANDu



\INVl



\NORd

\ORu



\BUFd



\INVr



\NORl



\BUFl



\INVu



\BUFr



\NANDd

\NORr



\NORu

The milstd package, which provides the digital logic-gate symbols specified by the
U.S. Department of Defense’s MIL-STD-806 standard, was written as a LATEX 2.09
.tex file, not as a LATEX 2ε package. Consequently, it must be loaded into a
document with \input milstd, not with the more modern \usepackage{milstd}.

Table 229: marvosym Communication Symbols
k
z

\Email
\Emailct

t
u

\fax
\FAX

v
B

\Faxmachine
\Letter

E
H

\Lightning
\Mobilefone

A
T

\Pickup
\Telefon

Table 230: marvosym Engineering Symbols
"
#
›
•
%
–

\Beam
\Bearing
\Circpipe
\Circsteel
\Fixedbearing
\Flatsteel
∗

l
’
&
L
$
™

‘
˜
”
'
Ÿ


\Force
\Hexasteel
\Lefttorque
\Lineload
\Loosebearing
\Lsteel

\Octosteel
\Rectpipe
\Rectsteel
\Righttorque
\RoundedLsteel∗
\RoundedTsteel∗

ž
—
“
œ
š

\RoundedTTsteel
\Squarepipe
\Squaresteel
\Tsteel
\TTsteel

\RoundedLsteel and \RoundedTsteel seem to be swapped, at least in the
2000/05/01 version of marvosym.

Table 231: wasysym Biological Symbols
♀

\female

73

♂

\male

Table 232: marvosym Biological Symbols
~

„

…
}
€

\Female
\FEMALE
\FemaleFemale

\FemaleMale
\Hermaphrodite
\HERMAPHRODITE

‚
|
ƒ

{

\MALE
\Male
\MaleMale

\Neutral

Table 233: marvosym Safety-related Symbols
h
n

\Biohazard
\BSEfree

C
J

\CEsign
\Estatically

`
a

\Explosionsafe
\Laserbeam

j
!

\Radioactivity
\Stopsign

Table 234: feyn Feynman Diagram Symbols

{
[

a
c
f
d

\bigbosonloopV
\gvcropped

k

e

\feyn{a}

b

\feyn{c}
\feyn{f}
\feyn{fd}
\feyn{fl}

o

l

\bigbosonloopA



l

k

\bigbosonloop

\feyn{flS}
\feyn{fs}

q

g
v
y
{



\hfermion

|

\shfermion

\

\smallbosonloop

\smallbosonloopV

d
m

\wfermion
\whfermion

\smallbosonloopA

|

\feyn{fu}

\feyn{glS}

z

\feyn{fv}

u

\feyn{g}

}

\feyn{g1}

h
j

\feyn{gl}
\feyn{glB}

\feyn{gu}
\feyn{gv}

}s

\feyn{gd}

\feyn{glu}

K
i
m
p
P

\feyn{gvs}
\feyn{h}
\feyn{hd}

x

\feyn{hs}
\feyn{hu}
\feyn{m}
\feyn{ms}
\feyn{p}
\feyn{P}
\feyn{x}

?

All other arguments to the \feyn command produce a “ ” symbol.
The feyn package provides various commands for composing the preceding symbols
into complete Feynman diagrams. See the feyn documentation for examples and
additional information.

74

5

Dingbats

Dingbats are symbols such as stars, arrows, and geometric shapes. They are commonly used as bullets in
itemized lists or, more generally, as a means to draw attention to the text that follows.
The pifont dingbat package warrants special mention. Among other capabilities, pifont provides a LATEX
interface to the Zapf Dingbats font (one of the standard 35 PostScript fonts). However, rather than name each
of the dingbats individually, pifont merely provides a single \ding command, which outputs the character that
lies at a given position in the font. The consequence is that the pifont symbols can’t be listed by name in this
document’s index, so be mindful of that fact when searching for a particular symbol.

y
{

Table 235: bbding Arrows

z
w

\ArrowBoldDownRight
\ArrowBoldRightCircled

\ArrowBoldRightShort
\ArrowBoldRightStrobe

x

\ArrowBoldUpRight

Table 236: pifont Arrows
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü

\ding{212}
\ding{213}
\ding{214}
\ding{215}
\ding{216}
\ding{217}
\ding{218}
\ding{219}
\ding{220}

Ý
Þ
ß
à
á
â
ã
ä
å

\ding{221}
\ding{222}
\ding{223}
\ding{224}
\ding{225}
\ding{226}
\ding{227}
\ding{228}
\ding{229}

æ
ç
è
é
ê
ë
ì
í
î

\ding{230}
\ding{231}
\ding{232}
\ding{233}
\ding{234}
\ding{235}
\ding{236}
\ding{237}
\ding{238}

ï
ñ
ò
ó
ô
õ
ö
÷
ø

\ding{239}
\ding{241}
\ding{242}
\ding{243}
\ding{244}
\ding{245}
\ding{246}
\ding{247}
\ding{248}

ù
ú
û
ü
ý
þ

Table 237: universal Arrows
\bauarrow

\bauwhitearrow

Table 238: marvosym Scissors
s
r






\Cutleft
\Cutline

q
R

\Cutright
\Kutline

S
Q

\Leftscissors
\Rightscissors

Table 239: bbding Scissors
\ScissorHollowLeft
\ScissorHollowRight
\ScissorLeft
\ScissorLeftBrokenBottom





\ScissorLeftBrokenTop
\ScissorRight
\ScissorRightBrokenBottom
\ScissorRightBrokenTop

Table 240: pifont Scissors
!

\ding{33}

"

#

\ding{34}
75

\ding{35}

$

\ding{36}

\ding{249}
\ding{250}
\ding{251}
\ding{252}
\ding{253}
\ding{254}

Table 241: dingbat Pencils

W

P

\largepencil

\smallpencil

Table 242: bbding Pencils and Nibs





\NibLeft
\NibRight
\NibSolidLeft
\NibSolidRight









\PencilLeft
\PencilLeftDown
\PencilLeftUp
\PencilRight

\PencilRightDown
\PencilRightUp

Table 243: pifont Pencils and Nibs
.

\ding{46}

/

\ding{47}

0

\ding{48}

1

Table 244: dingbat Fists

R
D
U

\leftpointright
\leftthumbsdown
\leftthumbsup




L
d
u

\rightpointleft





N

2

\ding{50}

\rightpointright

\rightthumbsdown
\rightthumbsup

Table 245: bbding Fists
\HandCuffLeft
\HandCuffLeftUp
\HandCuffRight

\ding{49}

\HandCuffRightUp
\HandLeft
\HandLeftUp





\HandPencilLeft
\HandRight
\HandRightUp

Table 246: pifont Fists
*

\ding{42}

+

,

\ding{43}

\ding{44}

-

\ding{45}

Table 247: fourier Fists
t

*
4
.

\lefthand

u

\righthand

Table 248: bbding Crosses and Plusses
\Cross
\CrossBoldOutline
\CrossClowerTips
\CrossMaltese

+
,
'
(

\CrossOpenShadow
\CrossOutline
\Plus
\PlusCenterOpen
76

&
)

\PlusOutline
\PlusThinCenterOpen

Table 249: pifont Crosses and Plusses
9
:

!
"

\ding{57}
\ding{58}

;
<

\ding{59}
\ding{60}

=
>

?
@

\ding{61}
\ding{62}

\ding{63}
\ding{64}

Table 250: bbding Xs and Check Marks
\Checkmark
\CheckmarkBold

#
$

%

\XSolid
\XSolidBold

\XSolidBrush

Table 251: pifont Xs and Check Marks
3
4

\ding{51}
\ding{52}

5
6

7
8

\ding{53}
\ding{54}

\ding{55}
\ding{56}

Table 252: wasysym Xs and Check Marks
2


\CheckedBox



\Square

4

\XBox

Table 253: universal Xs



\baucross

Table 254: pifont Circled Numbers
¬
­
®
¯
°
±
²
³
´
µ

\ding{172}
\ding{173}
\ding{174}
\ding{175}
\ding{176}
\ding{177}
\ding{178}
\ding{179}
\ding{180}
\ding{181}

¶
·
¸
¹
º
»
¼
½
¾
¿

À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É

\ding{182}
\ding{183}
\ding{184}
\ding{185}
\ding{186}
\ding{187}
\ding{188}
\ding{189}
\ding{190}
\ding{191}

\ding{192}
\ding{193}
\ding{194}
\ding{195}
\ding{196}
\ding{197}
\ding{198}
\ding{199}
\ding{200}
\ding{201}

Ê
Ë
Ì
Í
Î
Ï
Ð
Ñ
Ò
Ó

\ding{202}
\ding{203}
\ding{204}
\ding{205}
\ding{206}
\ding{207}
\ding{208}
\ding{209}
\ding{210}
\ding{211}

pifont (part of the psnfss package) provides a dingautolist environment which
resembles enumerate but uses circled numbers as bullets.4 See the psnfss documentation for more information.

Table 255: wasysym Stars

4 In

C

\davidsstar

A

\hexstar

B

\varhexstar

fact, dingautolist can use any set of consecutive Zapf Dingbats symbols.

77

N
A
B
X
C
D
0
/
Z
S
Y
H
I
F
E
R

Table 256: bbding Stars, Flowers, and Similar Shapes
\Asterisk
\AsteriskBold
\AsteriskCenterOpen
\AsteriskRoundedEnds
\AsteriskThin
\AsteriskThinCenterOpen
\DavidStar
\DavidStarSolid
\EightAsterisk
\EightFlowerPetal
\EightFlowerPetalRemoved
\EightStar
\EightStarBold
\EightStarConvex
\EightStarTaper
\FiveFlowerOpen

P
8
;
?
7
9
:
<
=
>
@
1
V
W
5
6

\FiveFlowerPetal
\FiveStar
\FiveStarCenterOpen
\FiveStarConvex
\FiveStarLines
\FiveStarOpen
\FiveStarOpenCircled
\FiveStarOpenDotted
\FiveStarOutline
\FiveStarOutlineHeavy
\FiveStarShadow
\FourAsterisk
\FourClowerOpen
\FourClowerSolid
\FourStar
\FourStarOpen

2
3
O
U
M
Q
L
[
G
K
`
^
_
]
\
J

\JackStar
\JackStarBold
\SixFlowerAlternate
\SixFlowerAltPetal
\SixFlowerOpenCenter
\SixFlowerPetalDotted
\SixFlowerPetalRemoved
\SixFlowerRemovedOpenPetal
\SixStar
\SixteenStarLight
\Snowflake
\SnowflakeChevron
\SnowflakeChevronBold
\Sparkle
\SparkleBold
\TwelweStar

Table 257: pifont Stars, Flowers, and Similar Shapes
A
B
C
D
E
F
G
H
I

\ding{65}
\ding{66}
\ding{67}
\ding{68}
\ding{69}
\ding{70}
\ding{71}
\ding{72}
\ding{73}

J
K
L
M
N
O
P
Q
R

\ding{74}
\ding{75}
\ding{76}
\ding{77}
\ding{78}
\ding{79}
\ding{80}
\ding{81}
\ding{82}

S
T
U
V
W
X
Y
Z
[

\ding{83}
\ding{84}
\ding{85}
\ding{86}
\ding{87}
\ding{88}
\ding{89}
\ding{90}
\ding{91}

\
]
^
_
`
a
b
c
d

\ding{92}
\ding{93}
\ding{94}
\ding{95}
\ding{96}
\ding{97}
\ding{98}
\ding{99}
\ding{100}

e
f
g
h
i
j
k

\ding{101}
\ding{102}
\ding{103}
\ding{104}
\ding{105}
\ding{106}
\ding{107}

Table 258: fourier Ornaments
o
m
n
j
[
\

\aldine
\aldineleft
\aldineright
\aldinesmall
\decofourleft
\decofourright

X
]
Y
Z
a
b

\decoone
\decosix
\decothreeleft
\decothreeright
\decotwo
\floweroneleft

c
g
f
h
d

\floweroneright
\leafleft
\leafNE
\leafright
\starredbullet

Table 259: wasysym Geometric Shapes
7

\hexagon

8

\octagon

D

78

\pentagon

9

\varhexagon

Table 260: MnSymbol Geometric Shapes
☀
⧫
⧫
◯

\filledlargestar
\filledlozenge
\filledmedlozenge
\largecircle

◇
◊
◻

\largediamond
\largelozenge
\largepentagram
\largesquare

☆
✡
◊
✡

\largestar
\largestarofdavid
\medlozenge
\medstarofdavid

◊

\smalllozenge

MnSymbol defines \bigcirc as a synonym for \largecircle; \bigstar as a synonym for \filledlargestar; \lozenge as a synonym for \medlozenge; and,
\blacklozenge as a synonym for \filledmedlozenge.

Table 261: ifsym Geometric Shapes

%
&

_
/
#
"
$
!

5




6
U
V
P
S
R

\BigCircle
\BigCross
\BigDiamondshape
\BigHBar
\BigLowerDiamond
\BigRightDiamond
\BigSquare
\BigTriangleDown
\BigTriangleLeft
\BigTriangleRight
\BigTriangleUp
\BigVBar
\Circle
\Cross
\DiamondShadowA
\DiamondShadowB
\DiamondShadowC
\Diamondshape
\FilledBigCircle
\FilledBigDiamondshape
\FilledBigSquare
\FilledBigTriangleDown
\FilledBigTriangleLeft

T
Q
e

f
u
v
p
s
r
t
q
`


c
b
d
a

o
?

\FilledBigTriangleRight
\FilledBigTriangleUp
\FilledCircle
\FilledDiamondShadowA
\FilledDiamondShadowC
\FilledDiamondshape
\FilledSmallCircle
\FilledSmallDiamondshape
\FilledSmallSquare
\FilledSmallTriangleDown
\FilledSmallTriangleLeft
\FilledSmallTriangleRight
\FilledSmallTriangleUp
\FilledSquare
\FilledSquareShadowA
\FilledSquareShadowC
\FilledTriangleDown
\FilledTriangleLeft
\FilledTriangleRight
\FilledTriangleUp
\HBar
\LowerDiamond
\RightDiamond

E

F


O
@
C
B
D
A

*
)
0


3
2
4
1


\SmallCircle
\SmallCross
\SmallDiamondshape
\SmallHBar
\SmallLowerDiamond
\SmallRightDiamond
\SmallSquare
\SmallTriangleDown
\SmallTriangleLeft
\SmallTriangleRight
\SmallTriangleUp
\SmallVBar
\SpinDown
\SpinUp
\Square
\SquareShadowA
\SquareShadowB
\SquareShadowC
\TriangleDown
\TriangleLeft
\TriangleRight
\TriangleUp
\VBar

The ifsym documentation points out that one can use \rlap to combine
some of the above into useful, new symbols. For example, \BigCircle and
\FilledSmallCircle combine to give “ ”. Likewise, \Square and \Cross combine to give “ ”. See Section 8.3 for more information about constructing new
symbols out of existing symbols.

0

%u

79

d
a
p
b
e
c
s
r

Table 262: bbding Geometric Shapes

u
v
t
f
k
m
l
h

\CircleShadow
\CircleSolid
\DiamondSolid
\Ellipse
\EllipseShadow
\EllipseSolid
\HalfCircleLeft
\HalfCircleRight

\Rectangle
\RectangleBold
\RectangleThin
\Square
\SquareCastShadowBottomRight
\SquareCastShadowTopLeft
\SquareCastShadowTopRight
\SquareShadowBottomRight

j
i
g
o
n

\SquareShadowTopLeft
\SquareShadowTopRight
\SquareSolid
\TriangleDown
\TriangleUp

Table 263: pifont Geometric Shapes
l
m
n

o
p
q

\ding{108}
\ding{109}
\ding{110}



\ding{111}
\ding{112}
\ding{113}

u
w
x

\ding{114}
\ding{115}
\ding{116}

\ding{117}
\ding{119}
\ding{120}

\baucircle



\bausquare

\ding{121}
\ding{122}

\bautriangle

Table 265: universal Geometric Shapes
\baucircle
\baueclipse



\bauhole
\baupunct

†


\bausquare
\bautriangle

Table 266: Miscellaneous dingbat Dingbats

E

\anchor
\carriagereturn
\checkmark

C
I

S
B
Z

\eye
\filledsquarewithdots
\satellitedish

Table 267: Miscellaneous bbding Dingbats

q

y
z

Table 264: universa Geometric Shapes




O
C
D

r
s
t

\Envelope
\OrnamentDiamondSolid




\Peace
\Phone

\PhoneHandset
\Plane

T

\Sborder
\squarewithdots
\Zborder

\SunshineOpenCircled
\Tape

Table 268: Miscellaneous pifont Dingbats
%
&
'

\ding{37}
\ding{38}
\ding{39}

(
)
v

\ding{40}
\ding{41}
\ding{118}

¤
¥
¦

\ding{164}
\ding{165}
\ding{166}

80

§
¨
ª

\ding{167}
\ding{168}
\ding{170}

«
©

\ding{171}
\ding{169}

6

Ancient languages

This section presents letters and ideograms from various ancient scripts. Some of these symbols may also be
useful in other typesetting contexts.
Table 269: phaistos Symbols from the Phaistos Disk
J

\PHarrow

e

\PHeagle

B

\PHplumedHead

h

\PHbee

o

\PHflute

d

\PHram

X

\PHbeehive

H

\PHgaunlet

l

\PHrosette

R

\PHboomerang

p

\PHgrater

P

\PHsaw

K

\PHbow

G

\PHhelmet

L

\PHshield

b

\PHbullLeg

a

\PHhide

Y

\PHship

D

\PHcaptive

Z

\PHhorn

V

\PHsling

S

\PHcarpentryPlane

Q

\PHlid

r

\PHsmallAxe

c

\PHcat

m

\PHlily

q

\PHstrainer

E

\PHchild

N

\PHmanacles

C

\PHtattooedHead

M

\PHclub

O

\PHmattock

I

\PHtiara

W

\PHcolumn

n

\PHoxBack

g

\PHtunny

U

\PHcomb

k

\PHpapyrus

j

\PHvine

T

\PHdolium

A

\PHpedestrian

s

\PHwavyBand

f

\PHdove

i

\PHplaneTree

F

\PHwoman

Table 270: protosem Proto-Semitic Characters
a
A
b
B
g
d
D
e

\Aaleph
\AAaleph
\Abeth
\AAbeth
\Agimel
\Adaleth
\AAdaleth
\Ahe

E
z
w
H
h
T
y
Y

\AAhe
\Azayin
\Avav
\Aheth
\AAheth
\Ateth
\Ayod
\AAyod

k
K
l
L
m
n
o
O

\Akaph
\AAkaph
\Alamed
\AAlamed
\Amem
\Anun
\Aayin
\AAayin

s
p
P
x
X
q
Q
r

\Asamekh
\Ape
\AApe
\Asade
\AAsade
\Aqoph
\AAqoph
\Aresh

R
S
v
V
t

\AAresh
\Ashin
\Ahelmet
\AAhelmet
\Atav

The protosem package defines abbreviated control sequences for each of the above.
In addition, single-letter shortcuts can be used within the argument to the
\textproto command (e.g., “\textproto{Pakyn}” produces “Pakyn”). See
the protosem documentation for more information.

81

Table 271: hieroglf Hieroglyphics
A

\HA

I

\HI

n

\Hn

T

\HT

a

\Ha

i

\Hi

O

\HO

t

\Ht

B

\HB

˝

\Hibl

o

\Ho

˘

\Htongue

b

\Hb

ˆ

\Hibp

p

\Hp

U

\HU

c

\Hc

¨

\Hibs

P

\HP

u

\Hu

C

\HC

˜

\Hibw

˙

\Hplural

V

\HV

D

\HD

J

\HJ

+

\Hplus

v

\Hv

d

\Hd

j

\Hj

Q

\HQ

|

\Hvbar

¸

\Hdual

k

\Hk

q

\Hq

w

\Hw

e
E

\He
\HE

K
L

\HK
\HL

?
R

\Hquery
\HR

W
X

\HW
\HX

f

\Hf

l

\Hl

r

\Hr

x

\Hx

F

\HF

m

\Hm

s

\Hs

Y

\HY

G

\HG

M

\HM

S

\HS

y

\Hy

g

\Hg

ˇ

\Hman

¯

\Hscribe

z

\Hz

h

\Hh

´

\Hms

/

\Hslash

Z

\HZ

H

\HH

N

\HN

˚

\Hsv

|

\Hone

3

\Hhundred

5

\HXthousand

7

\Hmillion

2

\Hten

4

\Hthousand

6

\HCthousand

The hieroglf package defines alternate control sequences and single-letter shortcuts
for each of the above which can be used within the argument to the \textpmhg
command (e.g., “\textpmhg{Pakin}” produces “Pakin”). See the hieroglf
documentation for more information.

Table 272: linearA Linear A Script









\LinearAI
\LinearAII
\LinearAIII
\LinearAIV
\LinearAV
\LinearAVI
\LinearAVII
\LinearAVIII
\LinearAIX
\LinearAX
\LinearAXI
\LinearAXII
\LinearAXIII

b
c
d
e
f
g
h
i
j
k
l
m
n

\LinearAXCIX
\LinearAC
\LinearACI
\LinearACII
\LinearACIII
\LinearACIV
\LinearACV
\LinearACVI
\LinearACVII
\LinearACVIII
\LinearACIX
\LinearACX
\LinearACXI















\LinearACXCVII
\LinearACXCVIII
\LinearACXCIX
\LinearACC
\LinearACCI
\LinearACCII
\LinearACCIII
\LinearACCIV
\LinearACCV
\LinearACCVI
\LinearACCVII
\LinearACCVIII
\LinearACCIX

t
u
v
w
x
y
z
{
|
}
~

€

\LinearACCXCV
\LinearACCXCVI
\LinearACCXCVII
\LinearACCXCVIII
\LinearACCXCIX
\LinearACCC
\LinearACCCI
\LinearACCCII
\LinearACCCIII
\LinearACCCIV
\LinearACCCV
\LinearACCCVI
\LinearACCCVII

(continued on next page)

82

(continued from previous page)



















!
"
#
$
%
&
'
(
)
*
+
,
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?
@

\LinearAXIV
\LinearAXV
\LinearAXVI
\LinearAXVII
\LinearAXVIII
\LinearAXIX
\LinearAXX
\LinearAXXI
\LinearAXXII
\LinearAXXIII
\LinearAXXIV
\LinearAXXV
\LinearAXXVI
\LinearAXXVII
\LinearAXXVIII
\LinearAXXIX
\LinearAXXX
\LinearAXXXI
\LinearAXXXII
\LinearAXXXIII
\LinearAXXXIV
\LinearAXXXV
\LinearAXXXVI
\LinearAXXXVII
\LinearAXXXVIII
\LinearAXXXIX
\LinearAXL
\LinearAXLI
\LinearAXLII
\LinearAXLIII
\LinearAXLIV
\LinearAXLV
\LinearAXLVI
\LinearAXLVII
\LinearAXLVIII
\LinearAXLIX
\LinearAL
\LinearALI
\LinearALII
\LinearALIII
\LinearALIV
\LinearALV
\LinearALVI
\LinearALVII
\LinearALVIII
\LinearALIX
\LinearALX
\LinearALXI
\LinearALXII
\LinearALXIII
\LinearALXIV
\LinearALXV

o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

€

‚
ƒ
„
†
‡
ˆ
‰
Š
‹
Œ

Ž


‘
’
“
”
•
–
—
˜
™
š
›
œ

ž
Ÿ
¡
¢

\LinearACXII
\LinearACXIII
\LinearACXIV
\LinearACXV
\LinearACXVI
\LinearACXVII
\LinearACXVIII
\LinearACXIX
\LinearACXX
\LinearACXXI
\LinearACXXII
\LinearACXXIII
\LinearACXXIV
\LinearACXXV
\LinearACXXVI
\LinearACXXVII
\LinearACXXVIII
\LinearACXXIX
\LinearACXXX
\LinearACXXXI
\LinearACXXXII
\LinearACXXXIII
\LinearACXXXIV
\LinearACXXXV
\LinearACXXXVI
\LinearACXXXVII
\LinearACXXXVIII
\LinearACXXXIX
\LinearACXL
\LinearACXLI
\LinearACXLII
\LinearACXLIII
\LinearACXLIV
\LinearACXLV
\LinearACXLVI
\LinearACXLVII
\LinearACXLVIII
\LinearACXLIX
\LinearACL
\LinearACLI
\LinearACLII
\LinearACLIII
\LinearACLIV
\LinearACLV
\LinearACLVI
\LinearACLVII
\LinearACLVIII
\LinearACLIX
\LinearACLX
\LinearACLXI
\LinearACLXII
\LinearACLXIII


!
"
#
$
%
&
'
(
)
*
+
,
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R

\LinearACCX
\LinearACCXI
\LinearACCXII
\LinearACCXIII
\LinearACCXIV
\LinearACCXV
\LinearACCXVI
\LinearACCXVII
\LinearACCXVIII
\LinearACCXIX
\LinearACCXX
\LinearACCXXI
\LinearACCXXII
\LinearACCXXIII
\LinearACCXXIV
\LinearACCXXV
\LinearACCXXVI
\LinearACCXXVII
\LinearACCXXVIII
\LinearACCXXIX
\LinearACCXXX
\LinearACCXXXI
\LinearACCXXXII
\LinearACCXXXIII
\LinearACCXXXIV
\LinearACCXXXV
\LinearACCXXXVI
\LinearACCXXXVII
\LinearACCXXXVIII
\LinearACCXXXIX
\LinearACCXL
\LinearACCXLI
\LinearACCXLII
\LinearACCXLIII
\LinearACCXLIV
\LinearACCXLV
\LinearACCXLVI
\LinearACCXLVII
\LinearACCXLVIII
\LinearACCXLIX
\LinearACCL
\LinearACCLI
\LinearACCLII
\LinearACCLIII
\LinearACCLIV
\LinearACCLV
\LinearACCLVI
\LinearACCLVII
\LinearACCLVIII
\LinearACCLIX
\LinearACCLX
\LinearACCLXI


‚
ƒ
„
†
‡
ˆ
‰
Š
‹
Œ

Ž


‘
’
“
”
•
–
—
˜
™
š
›
œ

ž
Ÿ
¡
¢
£
¤
¥
¦
§
¨
©
ª
«
¬
­
®
¯
°
±
²
³
´

\LinearACCCVIII
\LinearACCCIX
\LinearACCCX
\LinearACCCXI
\LinearACCCXII
\LinearACCCXIII
\LinearACCCXIV
\LinearACCCXV
\LinearACCCXVI
\LinearACCCXVII
\LinearACCCXVIII
\LinearACCCXIX
\LinearACCCXX
\LinearACCCXXI
\LinearACCCXXII
\LinearACCCXXIII
\LinearACCCXXIV
\LinearACCCXXV
\LinearACCCXXVI
\LinearACCCXXVII
\LinearACCCXXVIII
\LinearACCCXXIX
\LinearACCCXXX
\LinearACCCXXXI
\LinearACCCXXXII
\LinearACCCXXXIII
\LinearACCCXXXIV
\LinearACCCXXXV
\LinearACCCXXXVI
\LinearACCCXXXVII
\LinearACCCXXXVIII
\LinearACCCXXXIX
\LinearACCCXL
\LinearACCCXLI
\LinearACCCXLII
\LinearACCCXLIII
\LinearACCCXLIV
\LinearACCCXLV
\LinearACCCXLVI
\LinearACCCXLVII
\LinearACCCXLVIII
\LinearACCCXLIX
\LinearACCCL
\LinearACCCLI
\LinearACCCLII
\LinearACCCLIII
\LinearACCCLIV
\LinearACCCLV
\LinearACCCLVI
\LinearACCCLVII
\LinearACCCLVIII
\LinearACCCLIX

(continued on next page)

83

(continued from previous page)

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_
`
a

\LinearALXVI
\LinearALXVII
\LinearALXVIII
\LinearALXIX
\LinearALXX
\LinearALXXI
\LinearALXXII
\LinearALXXIII
\LinearALXXIV
\LinearALXXV
\LinearALXXVI
\LinearALXXVII
\LinearALXXVIII
\LinearALXXIX
\LinearALXXX
\LinearALXXXI
\LinearALXXXII
\LinearALXXXIII
\LinearALXXXIV
\LinearALXXXV
\LinearALXXXVI
\LinearALXXXVII
\LinearALXXXVIII
\LinearALXXXIX
\LinearALXXXX
\LinearAXCI
\LinearAXCII
\LinearAXCIII
\LinearAXCIV
\LinearAXCV
\LinearAXCVI
\LinearAXCVII
\LinearAXCVIII

£
¤
¥
¦
§
¨
©
ª
«
¬
­
®
¯
°
±














\LinearACLXIV
\LinearACLXV
\LinearACLXVI
\LinearACLXVII
\LinearACLXVIII
\LinearACLXIX
\LinearACLXX
\LinearACLXXI
\LinearACLXXII
\LinearACLXXIII
\LinearACLXXIV
\LinearACLXXV
\LinearACLXXVI
\LinearACLXXVII
\LinearACLXXVIII
\LinearACLXXIX
\LinearACLXXX
\LinearACLXXXI
\LinearACLXXXII
\LinearACLXXXIII
\LinearACLXXXIV
\LinearACLXXXV
\LinearACLXXXVI
\LinearACLXXXVII
\LinearACLXXXVIII
\LinearACLXXXIX
\LinearACLXXXX
\LinearACXCI
\LinearACXCII
\LinearACXCIII
\LinearACXCIV
\LinearACXCV
\LinearACXCVI

S
T
U
V
W
X
Y
Z
[
\
]
^
_
`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s

84

\LinearACCLXII
\LinearACCLXIII
\LinearACCLXIV
\LinearACCLXV
\LinearACCLXVI
\LinearACCLXVII
\LinearACCLXVIII
\LinearACCLXIX
\LinearACCLXX
\LinearACCLXXI
\LinearACCLXXII
\LinearACCLXXIII
\LinearACCLXXIV
\LinearACCLXXV
\LinearACCLXXVI
\LinearACCLXXVII
\LinearACCLXXVIII
\LinearACCLXXIX
\LinearACCLXXX
\LinearACCLXXXI
\LinearACCLXXXII
\LinearACCLXXXIII
\LinearACCLXXXIV
\LinearACCLXXXV
\LinearACCLXXXVI
\LinearACCLXXXVII
\LinearACCLXXXVIII
\LinearACCLXXXIX
\LinearACCLXXXX
\LinearACCXCI
\LinearACCXCII
\LinearACCXCIII
\LinearACCXCIV

µ
¶
·
¸
¹
º
»
¼
½
¾
¿
À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï
Ð
Ñ
Ò

\LinearACCCLX
\LinearACCCLXI
\LinearACCCLXII
\LinearACCCLXIII
\LinearACCCLXIV
\LinearACCCLXV
\LinearACCCLXVI
\LinearACCCLXVII
\LinearACCCLXVIII
\LinearACCCLXIX
\LinearACCCLXX
\LinearACCCLXXI
\LinearACCCLXXII
\LinearACCCLXXIII
\LinearACCCLXXIV
\LinearACCCLXXV
\LinearACCCLXXVI
\LinearACCCLXXVII
\LinearACCCLXXVIII
\LinearACCCLXXIX
\LinearACCCLXXX
\LinearACCCLXXXI
\LinearACCCLXXXII
\LinearACCCLXXXIII
\LinearACCCLXXXIV
\LinearACCCLXXXV
\LinearACCCLXXXVI
\LinearACCCLXXXVII
\LinearACCCLXXXVIII
\LinearACCCLXXXIX

Table 273: linearb Linear B Basic and Optional Letters
a
;
<
=
d
D
f
g
x
>
?
e
i

\Ba
\Baii
\Baiii
\Bau
\Bda
\Bde
\Bdi
\Bdo
\Bdu
\Bdwe
\Bdwo
\Be
\Bi

j
J
b
L
k
K
c
h
v
m
M
y
A

\Bja
\Bje
\Bjo
\Bju
\Bka
\Bke
\Bki
\Bko
\Bku
\Bma
\Bme
\Bmi
\Bmo

B
n
N
C
E
F
@
o
p
[
P
G
H

]
I
\
q
Q
X
8
r
^
_
R
O
U

\Bmu
\Bna
\Bne
\Bni
\Bno
\Bnu
\Bnwa
\Bo
\Bpa
\Bpaiii
\Bpe
\Bpi
\Bpo

\Bpte
\Bpu
\Bpuii
\Bqa
\Bqe
\Bqi
\Bqo
\Bra
\Braii
\Braiii
\Bre
\Bri
\Bro

‘
V
s
S
Y
1
2
{
|
t
}
T
3

\Broii
\Bru
\Bsa
\Bse
\Bsi
\Bso
\Bsu
\Bswa
\Bswi
\Bta
\Btaii
\Bte
\Bti

4
5
~
u
w
W
6
7
z
Z
9

\Bto
\Btu
\Btwo
\Bu
\Bwa
\Bwe
\Bwi
\Bwo
\Bza
\Bze
\Bzo

These symbols must appear either within the argument to \textlinb or
following the \linbfamily font-selection command within a scope. Singlecharacter shortcuts are also supported: Both “\textlinb{\Bpa\Bki\Bna}” and
“\textlinb{pcn}” produce “pcn”, for example. See the linearb documentation
for more information.

Table 274: linearb Linear B Numerals
´
ˆ
˜
¨
˝
˚

\BNi
\BNii
\BNiii
\BNiv
\BNv
\BNvi

ˇ
˘
¯
˙
¸
˛

\BNvii
\BNviii
\BNix
\BNx
\BNxx
\BNxxx

‚
‹
›
“
”
„

\BNxl
\BNl
\BNlx
\BNlxx
\BNlxxx
\BNxc

«
»
–
—
‌
‰

\BNc
\BNcc
\BNccc
\BNcd
\BNd
\BNdc

ı
ȷ
ff
fi

\BNdcc
\BNdccc
\BNcm
\BNm

These symbols must appear either within the argument to \textlinb or following
the \linbfamily font-selection command within a scope.

Table 275: linearb Linear B Weights and Measures
Ď
Ĺ

\BPtalent
\BPvola

Ľ
Ł

\BPvolb
\BPvolcd

Ń
Ă

\BPvolcf
\BPwta

Ą
Ć

\BPwtb
\BPwtc

Č

\BPwtd

These symbols must appear either within the argument to \textlinb or following
the \linbfamily font-selection command within a scope.

85

Table 276: linearb Linear B Ideograms
Ž
ij
Ş
ť
ľ
Ű
ň
đ
§
ÿ

ź
Ř
ŋ
Ÿ
š
ě
ş
Ź
Ů
ď

\BPamphora
\BParrow
\BPbarley
\BPbilly
\BPboar
\BPbronze
\BPbull
\BPcauldroni
\BPcauldronii
\BPchariot

ă
ț
Ț
ń
ĺ
ś
ř
ł
¡
ż

\BPchassis
\BPcloth
\BPcow
\BPcup
\BPewe
\BPfoal
\BPgoat
\BPgoblet
\BPgold
\BPhorse

Š
ž
Ť
Ż
IJ
İ
ą
Ś

\BPman
\BPnanny
\BPolive
\BPox
\BPpig
\BPram
\BPsheep
\BPsow
\BPspear
\BPsword

\BPwheat
\BPwheel
\BPwine
\BPwineiih
\BPwineiiih
\BPwineivh
\BPwoman
\BPwool

These symbols must appear either within the argument to \textlinb or following
the \linbfamily font-selection command within a scope.

Table 277: linearb Unidentified Linear B Symbols
fl
ffi
ffl

\BUi
\BUii
\BUiii

␣
!
"

\BUiv
\BUv
\BUvi

#
$
%

\BUvii
\BUviii
\BUix

&
’
­

\BUx
\BUxi
\BUxii

­

\Btwe

These symbols must appear either within the argument to \textlinb or following
the \linbfamily font-selection command within a scope.

Table 278: cypriot Cypriot Letters
a
e
g
i
j
b
k
K
c
h

\Ca
\Ce
\Cga
\Ci
\Cja
\Cjo
\Cka
\Cke
\Cki
\Cko

v
l
L
d
f
q
m
M
y
A

\Cku
\Cla
\Cle
\Cli
\Clo
\Clu
\Cma
\Cme
\Cmi
\Cmo

B
n
N
C
E
F
o
p
P
G

H
I
r
R
O
U
V
s
S
Y

\Cmu
\Cna
\Cne
\Cni
\Cno
\Cnu
\Co
\Cpa
\Cpe
\Cpi

\Cpo
\Cpu
\Cra
\Cre
\Cri
\Cro
\Cru
\Csa
\Cse
\Csi

1
2
t
T
3
4
5
u
w
W

\Cso
\Csu
\Cta
\Cte
\Cti
\Cto
\Ctu
\Cu
\Cwa
\Cwe

6
7
x
X
j
b
g
9

\Cwi
\Cwo
\Cxa
\Cxe
\Cya
\Cyo
\Cza
\Czo

These symbols must appear either within the argument to \textcypr or
following the \cyprfamily font-selection command within a scope. Singlecharacter shortcuts are also supported: Both “\textcypr{\Cpa\Cki\Cna}” and
“\textcypr{pcn}” produce “pcn”, for example. See the cypriot documentation
for more information.

86

Table 279: sarabian South Arabian Letters
a
b
g
d
h
w

\SAa
\SAb
\SAg
\SAd
\SAh
\SAw

z
H
T
y
k
l

\SAz
\SAhd
\SAtd
\SAy
\SAk
\SAl

m
n
s
f
‘
o

\SAm
\SAn
\SAs
\SAf
\SAlq
\SAo

x
q
r
S
t
I

D
J
G
Z
X
B

\SAsd
\SAq
\SAr
\SAsv
\SAt
\SAhu

\SAdb
\SAtb
\SAga
\SAzd
\SAsa
\SAdd

These symbols must appear either within the argument to \textsarab or
following the \sarabfamily font-selection command within a scope. Singlecharacter shortcuts are also supported: Both “\textsarab{\SAb\SAk\SAn}” and
“\textsarab{bkn}” produce “bkn”, for example. See the sarabian documentation
for more information.

Table 280: teubner Archaic Greek Letters and Greek Numerals
Ϙ
ϙ
ϝ

\Coppa†
\coppa†
\digamma∗,‡

Ϝ
ϟ
Ϡ

\Digamma∗
\koppa∗
\Sampi

ϡ
Ϛ
ϛ

\sampi∗
\Stigma
\stigma∗

ϛ

\varstigma

∗

Technically, these symbols do not require teubner; it is sufficient to load the babel
package with the greek option (upon which teubner depends)—but use \qoppa for
\koppa and \ddigamma for \digamma.

†

For compatibility with other naming conventions teubner defines \Koppa as a synonym for \Coppa and \varcoppa as a synonym for \coppa.

‡

If both teubner and amssymb are loaded, teubner’s \digamma replaces amssymb’s
\digamma, regardless of package-loading order.

87

7

Other symbols

The following are all the symbols that didn’t fit neatly or unambiguously into any of the previous sections.
(Do weather symbols belong under “Science and technology”? Should dice be considered “mathematics”?)
While some of the tables contain clearly related groups of symbols (e.g., musical notes), others represent motley
assortments of whatever the font designer felt like drawing.

Table 281: textcomp Genealogical Symbols
b
d

\textborn
\textdied

c
l

m

\textdivorced
\textleaf

\textmarried

Table 282: wasysym General Symbols
m

1
|


\ataribox
\bell
\blacksmiley
\Bowtie
\brokenvert
\checked



L
/

6

\clock
\diameter
\DOWNarrow
\frownie
\invdiameter
\kreuz





\LEFTarrow
\lightning
\phone
\pointer
\recorder
\RIGHTarrow




,
☼
K
◊

\smiley
\sun
\UParrow
\wasylozenge

!

\rightturn

Table 283: wasysym Circles
#
G

\CIRCLE
\Circle
\LEFTCIRCLE

#
G
I
H

#
H
J
"

\LEFTcircle
\Leftcircle
\RIGHTCIRCLE

\RIGHTcircle
\Rightcircle
\leftturn

Table 284: wasysym Musical Symbols
\eighthnote



\halfnote

\twonotes



\fullnote

♩

\quarternote

See also \flat, \sharp, and \natural (Table 201 on page 65).

Table 285: arev Musical Symbols
♩

\quarternote

♪

\eighthnote

♬

\sixteenthnote

See also \flat, \sharp, and \natural (Table 201 on page 65).

88

Table 286: harmony Musical Symbols

==
ˇ “ˇ “
“
=ˇ=(
ˇ “ ==
ˇ“
?
DD

\AAcht

D
/D

\Acht
\AchtBL
\AchtBR
\AcPa
\DD

/D
ss
SS

¯
<

\DDohne
\Dohne
\Ds
\DS
\Ganz
\GaPa

˘“
<

==
ˇ“
==
ˇ “=

\Halb
\HaPa
\Pu
\Sech
\SechBL
\SechBl

‰
ˇ“
==ˇ ) “
===“
ˇ

@
<

ˇ“
>

\SechBR

>

\VM

\SechBr
\SePa
\UB
\Vier
\ViPa

ˇ “*
A

\Zwdr
\ZwPa

The musixtex package must be installed to use harmony.

Table 287: harmony Musical Accents
.a
.
a
Aa
\Ferli{A}\Ferli{a}∗
.a
.
a
Aa
\Fermi{A}\Fermi{a}
Alal \Kr{A}\Kr{a}
∗

/A/a

\Ohne{A}\Ohne{a}∗

g
Ag
a \Umd{A}\Umd{a}∗

These symbols take an optional argument which shifts the accent either horizontally
or vertically (depending on the command) by the given distance.
In addition to the accents shown above, \HH is a special accent command
which accepts five period-separated characters and typesets them such that
b
c
“\HH.X.a.b.c.d.” produces “Xa d”. All arguments except the first can be omitted: “\HH.X.....” produces “X”. \Takt takes two arguments and composes them
into a musical time signature. For example, “\Takt{12}{8}” produces “ 12
8 ”. As
two special cases, “\Takt{c}{0}” produces “S ” and “\Takt{c}{1}” produces “R ”.
The musixtex package must be installed to use harmony.

Table 288: manfnt Dangerous Bend Symbols


\dbend

~

\lhdbend

\reversedvideodbend

Note that these symbols descend far beneath the baseline. manfnt also defines nondescending versions, which it calls, correspondingly, \textdbend, \textlhdbend,
and \textreversedvideodbend.

Table 289: Miscellaneous manfnt Symbols

$
%
#

y
!





\manboldkidney
\manconcentriccircles
\manconcentricdiamond
\mancone
\mancube
\manerrarrow
\manfilledquartercircle
\manhpennib
\manimpossiblecube
\mankidney
\manlhpenkidney


&
'
"


7
x
6

89

\manpenkidney
\manquadrifolium
\manquartercircle
\manrotatedquadrifolium
\manrotatedquartercircle
\manstar
\mantiltpennib
\mantriangledown
\mantriangleright
\mantriangleup
\manvpennib

Table 290: marvosym Navigation Symbols
·
¸
¹

»
º
¶

\Forward
\ForwardToEnd
\ForwardToIndex

´
µ
½

\MoveDown
\MoveUp
\Rewind

\RewindToIndex
\RewindToStart
\ToBottom

¼

\ToTop

Table 291: marvosym Laundry Symbols
Ø
Ó
Õ
Ë
«
¾
¿
¬
­
Ý

\AtForty
\AtNinetyFive
\AtSixty
\Bleech
\CleaningA
\CleaningF
\CleaningFF
\CleaningP
\CleaningPP
\Dontwash

Ü
¯
°
±
Ì
¨
²

×
Ù

\Handwash
\IroningI
\IroningII
\IroningIII
\NoBleech
\NoChemicalCleaning
\NoIroning
\NoTumbler
\ShortFifty
\ShortForty

Ô
Ö
Û
Ú

‰
Š
‹

\ShortNinetyFive
\ShortSixty
\ShortThirty
\SpecialForty
\Tumbler
\WashCotton
\WashSynthetics
\WashWool

Table 292: marvosym Information Symbols
®
V
U
K
X

\Bicycle
\Checkedbox
\Clocklogo
\Coffeecup
\Crossedbox

o
x
I
i
y

\Football
\Gentsroom
\Industry
\Info
\Ladiesroom

Z
w
b

\Pointinghand
\Wheelchair
\Writinghand

Table 293: Other marvosym Symbols
ˆ
ý
¥
‡
ª

\Ankh
\Bat
\Bouquet
\Celtcross
\CircledA

†
F
f
§
Ž

Œ
ÿ
m
@
:

\Cross
\FHBOlogo
\FHBOLOGO
\Frowny
\FullFHBO

\Heart
\MartinVogel
\Mundus
\MVAt
\MVRightarrow

©
þ
Y

\Smiley
\Womanface
\Yinyang

Table 294: Miscellaneous universa Symbols






\bauforms



\bauhead

Table 295: Miscellaneous universal Symbols
\baudash
\bauequal
\bauface

„

\bauforms
\bauhead
\bauplus

90




\bauquarter
\bauquestion
\bauwindow

ƒ

\varQ

Table 296: Miscellaneous fourier Symbols
L
B
∗

\bomb
\danger

\grimace
\noway

M
A

\textthing∗
\textxswdown∗

N
U

T

\textxswup∗

fourier defines math-mode aliases for a few of the preceding symbols:
\thething (“N”), \xswordsup (“T”), and \xswordsdown (“U”).

Table 297: ifsym Weather Symbols

!
#
"


\Cloud
\FilledCloud
\FilledRainCloud
\FilledSunCloud
\FilledWeakRainCloud
\Fog



\Hail
\HalfSun
\Lightning
\NoSun
\Rain
\RainCloud














\Sleet
\Snow
\SnowCloud
\Sun
\SunCloud
\ThinFog



$

\WeakRain
\WeakRainCloud
\FilledSnowCloud

In addition, \Thermo{0}. . .\Thermo{6} produce thermometers that are between
0/6 and 6/6 full of mercury:

   

Similarly, \wind{hsuni}{hanglei}{hstrengthi} will draw wind symbols with a given
amount of sun (0–4), a given angle (in degrees), and a given strength in km/h (0–
100). For example, \wind{0}{0}{0} produces “ 0 ”, \wind{2}{0}{0} produces
“ 0 ”, and \wind{4}{0}{100} produces “ : ”.





 
™
˜

\SummitSign
\StoneMan
\Hut
\FilledHut
\Village

\Interval
\StopWatchEnd







—
–

Table 298: ifsym Alpine Symbols
\Summit
\Mountain
\IceMountain
\VarMountain
\VarIceMountain







\SurveySign
\Joch
\Flag
\VarFlag
\Tent




Table 299: ifsym Clocks
\StopWatchStart
\Taschenuhr

›
”

\VarClock

\HalfFilledHut
\VarSummit

š

\Wecker

\VarTaschenuhr

ifsym also exports a \showclock macro. \showclock{hhoursi}{hminutesi} outputs
a clock displaying the corresponding time. For instance, “\showclock{5}{40}”
produces “ ”. hhoursi must be an integer from 0 to 11, and hminutesi must be an
integer multiple of 5 from 0 to 55.

D

91




:
:

Table 300: Other ifsym Symbols
\FilledSectioningDiamond
\Fire
\Irritant
\Cube{1}
\Cube{2}
\StrokeOne
\StrokeTwo





::
::



(

\Letter
\PaperLandscape
\PaperPortrait
\Cube{3}
\Cube{4}

\Radiation
\SectioningDiamond
\Telephone
\Cube{5}
\Cube{6}

;

\StrokeThree
\StrokeFour

\StrokeFive

Table 301: clock Clocks

i
’
12ii’’
3i’

\ClockStyle

\ClockFramefalse

0
1
2
3

0
i
’
0012ii’’
03i’

\ClockFrametrue

The clock package provides a \clock command to typeset an arbitrary time on
an analog clock (and \clocktime to typeset the document’s build time). For
example, the clocks in the above table were produced with \clock{15}{41}. Clock
symbols are composed from a font of clock-face fragments using one of four values
for \ClockStyle and either \ClockFrametrue or \ClockFrametrue as illustrated
above. See the clock documentation for more information.

Table 302: epsdice Dice
\epsdice{1}
\epsdice{2}

\epsdice{3}
\epsdice{4}

\epsdice{5}
\epsdice{6}

Table 303: hhcount Dice
\fcdice{1}
\fcdice{2}

\fcdice{3}
\fcdice{4}

\fcdice{5}
\fcdice{6}

The \fcdice command accepts values larger than 6. For example, “\fcdice{47}”
produces “
”.

Table 304: hhcount Tally Markers
\fcscore{1}
\fcscore{2}

\fcscore{3}
\fcscore{4}

\fcscore{5}

The \fcscore command accepts values larger than 5.
“\fcscore{47}” produces “
”.
92

For example,

Table 305: skull Symbols

A

\skull

Table 306: Non-Mathematical mathabx Symbols

O

\rip

Table 307: skak Chess Informator Symbols
g
i
b
a
e
X
O
I
+
RR
P
l
n
V
t
G

\bbetter
\bdecisive
\betteris
\bishoppair
\bupperhand
\capturesymbol
\castlingchar
\castlinghyphen
\centre
\checksymbol
\chesscomment
\chessetc
\chesssee
\compensation
\counterplay
\devadvantage
\diagonal

d
L
j
H
O
O-O-O
x
y
m
S
U
N
F
o
r
M
s

\doublepawns
\ending
\equal
\file
\kside
\longcastling
\markera
\markerb
\mate
\morepawns
\moreroom
\novelty
\onlymove
\opposbishops
\passedpawn
\qside
\samebishops

93

q
O-O
T
k
u
R
f
h
J
v
A
E
C
w
c
D

\seppawns
\shortcastling
\timelimit
\unclear
\unitedpawns
\various
\wbetter
\wdecisive
\weakpt
\with
\withattack
\withidea
\withinit
\without
\wupperhand
\zugzwang

Table 308: skak Chess Pieces and Chessboard Squares

a
b
Z
j
k
m
n
o
p
l
q

\BlackBishopOnWhite

s
r

\BlackEmptySquare

B

\symbishop

\BlackKingOnBlack

K

\symking

\BlackKingOnWhite

N

\symknight

\BlackKnightOnBlack

p

\sympawn

\BlackKnightOnWhite

Q

\symqueen

\BlackPawnOnBlack

R

\symrook

\BlackBishopOnBlack

\BlackPawnOnWhite
\BlackQueenOnBlack
\BlackQueenOnWhite

A
B
0

\BlackRookOnBlack
\BlackRookOnWhite

\WhiteBishopOnBlack
\WhiteBishopOnWhite

J
K
M
N
O
P
L
Q
S
R

\WhiteKingOnBlack
\WhiteKingOnWhite
\WhiteKnightOnBlack
\WhiteKnightOnWhite
\WhitePawnOnBlack
\WhitePawnOnWhite
\WhiteQueenOnBlack
\WhiteQueenOnWhite
\WhiteRookOnBlack
\WhiteRookOnWhite

\WhiteEmptySquare

The skak package also provides commands for drawing complete chessboards. See
the skak documentation for more information.

}
|
~


Table 309: igo Go Stones

}
|
~


\blackstone[\igocircle]
\blackstone[\igocross]
\blackstone[\igonone]
\blackstone[\igosquare]
\blackstone[\igotriangle]

\whitestone[\igocircle]
\whitestone[\igocross]
\whitestone[\igonone]
\whitestone[\igosquare]
\whitestone[\igotriangle]

In addition to the symbols shown above, igo’s \blackstone and \whitestone
commands accept numbers from 1 to 99 and display them circled as , , , . . .
and , , , . . . , respectively.

c





c

The igo package is intended to typeset Go boards (goban). See the igo documentation for more information.

94

Table 310: metre Metrical Symbols
×

´˘
˘
´˘˘
˘´˘
˘˘
˘˘´
˘˘
˘˘˘
¯˘´¯˘
×

¯˘¯˘´
¯˘´¯˘
¯˘˘¯˘˘
¯˘¯
¯˘˘¯¯¯˘
˘
´¯˘¯

\a
\B
\b
\Bb
\BB
\bb
\bB
\bba
\bbb
\BBm

\bBm
\bbm
\Bbm
\bbmb
\bbmx
\bm
\Bm
\c
\C
\Cc

¯
´¯
¯
¯´˘
¯˘
¯˘´¯˘
¯˘¯˘´
¯˘¯˘
×

\cc
\Ccc
\m
\M
\ma
\Mb
\mb
\mBb
\mbB
\mbb

¯˘´¯˘
¯˘¯¯˘¯˘
◦◦

\Mbb
\mbbx
\oo
\p
\pm
\pp
\Pp
\ppm
\ppp
\Ppp

˙
¯˙
˙˙
˙˙
¯˙˙˙
˙
˙˙˙
˙

˙˙
˙
˙˙˙
˙˙
˙˙
˙˙
˙˙
∼
∼

⊗

\Pppp
\pppp
\Ppppp
\ppppp
\ps
\pxp
\Pxp
\R
\r
\T

⊗

¯˙
¯˙
˙˙˙˙

\t
\tsbm
\tsmb
\tsmm
\vppm
\vpppm
\x

The preceding symbols are valid only within the argument to the metre command.

Table 311: metre Small and Large Metrical Symbols
÷

<
·
<
·
⊃

×
····
∧

>
·
>
·

··
∼
⊗
⊕

\anaclasis
\antidiple
\antidiple*
\antisigma
\asteriscus
\catalexis
\diple
\diple*
\obelus
\obelus*
\respondens
\terminus
\terminus*

÷

<
·
<
·
⊃

×
····
∧

>
>··
··
∼
⊗
⊕

\Anaclasis
\Antidiple
\Antidiple*
\Antisigma
\Asteriscus
\Catalexis
\Diple
\Diple*
\Obelus
\Obelus*
\Respondens
\Terminus
\Terminus*

Table 312: teubner Metrical Symbols
Ι
Θ
Κ
Ξ
Ζ
Ψ
θ

\aeolicbii
\aeolicbiii
\aeolicbiv
\anceps
\ancepsdbrevis
\banceps
\barbbrevis

ι
ς
β
γ
 ̮
Ϙ
H

\barbrevis
\bbrevis
\brevis
\catal
\corona
\coronainv
\hiatus

η
λ
ε
δ
φ
κ

\ipercatal
\longa
\ubarbbrevis
\ubarbrevis
\ubarsbrevis
\ubrevislonga

The teubner package provides a \newmetrics command that helps users combine
the preceding symbols as well as other teubner symbols. For example, the predefined
\pentam symbol uses \newmetrics to juxtapose six \longas, two \barbbrevises,
four \brevises, and a \dBar into “λθλθλ||λββλββλ”. See the teubner documentation for more information.

95

Table 313: dictsym Dictionary Symbols
a
G
A
B
C

\dsaeronautical
\dsagricultural
\dsarchitectural
\dsbiological
\dschemical

c
H
J
L
M

\dscommercial
\dsheraldical
\dsjuridical
\dsliterary
\dsmathematical

m
X
R
T

\dsmedical
\dsmilitary
\dsrailways
\dstechnical

Table 314: simpsons Characters from The Simpsons



\Bart



\Homer

\Burns



\Lisa

\Maggie





\SNPP

\Marge

The location of the characters’ pupils can be controlled with the \Goofy command.
See A METAFONT of ‘Simpsons’ characters [Che97] for more information. Also,
each of the above can be prefixed with \Left to make the character face left instead
of right:



\Left\Bart

96

Table 315: pmboxdraw Box-Drawing Symbols
\textblock

\textSFli

\textSFxli

\textSFxxiii

\textdkshade

\textSFlii

\textSFxlii

\textSFxxiv

\textdnblock
\textlfblock

\textSFliii
\textSFliv

\textSFxliii
\textSFxliv

\textSFxxv
\textSFxxvi

\textltshade

\textSFv

\textSFxlix

\textSFxxvii

\textrtblock

\textSFvi

\textSFxlv

\textSFxxviii

\textSFi

\textSFvii

\textSFxlvi

\textSFxxxix

\textSFii

\textSFviii

\textSFxlvii

\textSFxxxvi

\textSFiii

\textSFx

\textSFxlviii

\textSFxxxvii

\textSFiv

\textSFxi

\textSFxx

\textSFxxxviii

\textSFix

\textSFxix

\textSFxxi

\textshade

\textSFl

\textSFxl

\textSFxxii

\textupblock

Code Page 437 (CP437), which was first utilized by the original IBM PC, contains
the set of box-drawing symbols (sides, corners, and intersections of single- and
double-ruled boxes) shown above in character positions 176–223. These symbols
also appear in the Unicode Box Drawing and Block Element tables.
The pmboxdraw package draws the CP437 box-drawing symbols using TEX rules
(specifically, \vrule) instead of with a font and thereby provides the ability to
alter both rule width and the separation between rules. See the pmboxdraw documentation for more information.

Table 316: staves Magical Staves
\staveI



\staveXXIV

.

\staveXLVII



\staveII



\staveXXV

/

\staveXLVIII



\staveIII



\staveXXVI

0

\staveXLIX



\staveIV



\staveXXVII

1

\staveL



\staveV



\staveXXVIII

2

\staveLI



\staveVI



\staveXXIX

3

\staveLII



\staveVII



\staveXXX

4

\staveLIII



\staveVIII



\staveXXXI

5

\staveLIV



\staveIX



\staveXXXII

6

\staveLV

\staveXXXIII

7

\staveLVI

\staveXXXIV

8

\staveLVII

\staveX
\staveXI

!

(continued on next page)

97

(continued from previous page)

\staveXII

"

\staveXXXV

9

\staveLVIII

\staveXIII

#

\staveXXXVI

:

\staveLIX

\staveXIV

$

\staveXXXVII

;

\staveLX



\staveXV

%

\staveXXXVIII

<

\staveLXI



\staveXVI

&

\staveXXXIX

=

\staveLXII



\staveXVII

'

\staveXL

>

\staveLXIII



\staveXVIII

(

\staveXLI

?

\staveLXIV



\staveXIX

)

\staveXLII

@

\staveLXV



\staveXX

*

\staveXLIII

A

\staveLXVI



\staveXXI

+

\staveXLIV

B

\staveLXVII



\staveXXII

,

\staveXLV

C

\staveLXVIII



\staveXXIII

-

\staveXLVI

The meanings of these symbols are described on the Web site for the Museum of Icelandic Sorcery and Witchcraft at http://www.galdrasyning.is/
index.php?option=com content&task=category§ionid=5&id=18&Itemid=
60 (TinyURL: http://tinyurl.com/25979m). For example, \staveL (“1”) is
intended to ward off ghosts and evil spirits.

Table 317: pigpen Cipher Symbols
A
B
C
D
E
F
G
H
I

{

{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont

A}
B}
C}
D}
E}
F}
G}
H}
I}

J
K
L
M
N
O
P
Q
R

{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont

J}
K}
L}
M}
N}
O}
P}
Q}
R}

S
T
U
V
W
X
Y
Z

Table 318: ChinA2e Phases of the Moon
\MoonPha{1}


<

|

\MoonPha{2}

}

\MoonPha{3}

{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont

~

Table 319: Other ChinA2e Symbols
\Greenpoint
\Info

#
>

\Postbox
\Request
98

@

\Telephone

S}
T}
U}
V}
W}
X}
Y}
Z}

\MoonPha{4}

A

A

Table 320: recycle Recycling Symbols

A

\recycle

\Recycle

\RECYCLE

The METAFONT code that implements the recycling symbols shown above is,
in the words of its author, “awful code [that] doesn’t even put the logo
in a box (properly)”. Expect to receive “Inconsistent equation (off by
hnumber i)” errors from METAFONT. Fortunately, if you tell METAFONT to proceed past those errors (e.g., by pressing Enter after each one or by specifying
“-interaction=nonstopmode” on the METAFONT command line) it should produce a valid font.
The commands listed above should be used within a group (e.g., “{\recycle}”)
because they exhibit the side effect of changing the font to the recycle font.

99

8

Additional Information

Unlike the previous sections of this document, Section 8 does not contain new symbol tables. Rather, it provides
additional help in using the Comprehensive LATEX Symbol List. First, it draws attention to symbol names used
by multiple packages. Next, it provides some guidelines for finding symbols and gives some examples regarding
how to construct missing symbols out of existing ones. Then, it comments on the spacing surrounding symbols
in math mode. After that, it presents an ASCII and Latin 1 quick-reference guide, showing how to enter all of
the standard ASCII/Latin 1 symbols in LATEX. And finally, it lists some statistics about this document itself.

8.1

Symbol Name Clashes

Unfortunately, a number of symbol names are not unique; they appear in more than one package. Depending
on how the symbols are defined in each package, LATEX will either output an error message or replace an
earlier-defined symbol with a later-defined symbol. Table 321 on the following page presents a selection of
name clashes that appear in this document.
Using multiple symbols with the same name in the same document—or even merely loading conflicting
symbol packages—can be tricky but, as evidenced by the existence of Table 321, not impossible. The general
procedure is to load the first package, rename the conflicting symbols, and then load the second package.
Examine the LATEX source for this document (symbols.tex) for examples of this and other techniques for
handling symbol conflicts. Note that symbols.tex’s \savesymbol and \restoresymbol macros have been
extracted into the savesym package, which can be downloaded from CTAN.
txfonts and pxfonts redefine a huge number of symbols—essentially, all of the symbols defined by latexsym,
textcomp, the various AMS symbol sets, and LATEX 2ε itself. Similarly, mathabx redefines a vast number of
math symbols in an attempt to improve their look. The txfonts, pxfonts, and mathabx conflicts are not listed
in Table 321 because they are designed to be compatible with the symbols they replace. Table 322 on page 102
illustrates what “compatible” means in this context.
To use the new txfonts/pxfonts symbols without altering the document’s main font, merely reset the default
font families back to their original values after loading one of those packages:
\renewcommand\rmdefault{cmr}
\renewcommand\sfdefault{cmss}
\renewcommand\ttdefault{cmtt}

8.2

Resizing symbols

Mathematical symbols listed in this document as “variable-sized” are designed to stretch vertically. Each
variable-sized symbol comes in one or more basic sizes plus a variation comprising both stretchable and
nonstretchable segments. Table 323 on page 102 presents the symbols \} and \uparrow in their default size,
in their \big, \Big, \bigg, and \Bigg sizes, in an even larger size achieved using \left/\right, and—for
contrast—in a large size achieved by changing the font size using LATEX 2ε ’s \fontsize command. Because
the symbols shown belong to the Computer Modern family, the type1cm package needs to be loaded to support
font sizes larger than 24.88 pt.
Note how \fontsize makes the symbol wider and thicker. (The graphicx package’s \scalebox or
\resizebox commands would produce a similar effect.) Also, the \fontsize-enlarged symbol is vertically
centered relative to correspondingly large text, unlike the symbols enlarged using \big et al. or \left/\right,
which all use the same math axis regardless of symbol size. However, \fontsize is not limited to mathematical
delimiters. Also, \scalebox and \resizebox are more robust to poorly composed symbols (e.g., two symbols
made to overlap by backspacing a fixed distance) but do not work with every TEX backend and will produce
jagged symbols when scaling a bitmapped font.
All variable-sized delimiters are defined (by the corresponding .tfm file) in terms of up to five segments, as
illustrated by Figure 1 on page 102. The top, middle, and bottom segments are of a fixed size. The top-middle
and middle-bottom segments (which are constrained to be the same character) are repeated as many times as
necessary to achieve the desired height.

8.3

Where can I find the symbol for . . . ?

If you can’t find some symbol you’re looking for in this document, there are a few possible explanations:

100

101

\baro
\bigtriangledown
\bigtriangleup
\checkmark
\Circle
\Cross
\ggg
\Letter
\lightning
\Lightning
\lll
\Square
\Sun
\TriangleDown
\TriangleUp

Symbol
5
4

LATEX 2ε

≪

≫

X

AMS
`
a

stmaryrd





#

wasysym

@

Î

Ï

mathabx

À

E

B

†

marvosym

Table 321: Symbol Name Clashes

f
o
n

*

bbding

0

3
1



5


ifsym

D

dingbat

<

wsuipa

Table 322: Example of a Benign Name Clash
Symbol

Default
(Computer Modern)

txfonts
(Times Roman)

R
“

R
“

R
\textrecipe

Table 323: Sample resized delimiters
Symbol

\}

Default size

\big

\Big

\bigg

™

o

}

\Bigg

\left / \right

)



















\uparrow

↑











































−→

x




x



x


x







top



top-middle (extensible)



middle



middle-bottom (extensible)



bottom

x













Figure 1: Implementation of variable-sized delimiters

102

\fontsize

}
↑

• The symbol isn’t intuitively named. As a few examples, the ifsym command to draw dice is “\Cube”; a
plus sign with a circle around it (“exclusive or” to computer engineers) is “\oplus”; and lightning bolts
in fonts designed by German speakers may have “blitz” in their names as in the ulsy package. The moral
of the story is to be creative with synonyms when searching the index.
• The symbol is defined by some package that I overlooked (or deemed unimportant). If there’s some
symbol package that you think should be included in the Comprehensive LATEX Symbol List, please send
me e-mail at the address listed on the title page.
• The symbol isn’t defined in any package whatsoever.
Even in the last case, all is not lost. Sometimes, a symbol exists in a font, but there is no LATEX binding
for it. For example, the PostScript Symbol font contains a “↵” symbol, which may be useful for representing
a carriage return, but there is no package (as far as I know) for accessing that symbol. To produce an
unnamed symbol, you need to switch to the font explicitly with LATEX 2ε ’s low-level font commands [LAT00]
and use TEX’s primitive \char command [Knu86a] to request a specific character number in the font.5 In fact,
\char is not strictly necesssary; the character can often be entered symbolically. For example, the symbol
for an impulse train or Tate-Shafarevich group (“ ”) is actually an uppercase sha in the Cyrillic alphabet.
(Cyrillic is supported by the OT2 font encoding, for instance). While a sha can be defined numerically as
“{\fontencoding{OT2}\selectfont\char88}” it may be more intuitive to use the OT2 font encoding’s “SH”
ligature: “{\fontencoding{OT2}\selectfont SH}”.

X

Reflecting and rotating existing symbols
A common request on comp.text.tex is for a reversed or rotated version of an existing symbol.
As a last resort, these effects can be achieved with the graphicx (or graphics) package’s \reflectbox and
\rotatebox macros.
For example, \textsuperscript{\reflectbox{?}} produces an irony mark (“ ? ”;
cf. http://en.wikipedia.org/wiki/Irony mark), and \rotatebox[origin=c]{180}{$\iota$} produces the
definite-description operator (“ ”). The disadvantage of the graphicx/graphics approach is that not every TEX
backend handles graphical transformations.6 Far better is to find a suitable font that contains the desired
symbol in the correct orientation. For instance, if the phonetic package is available, then \textit{\riota}
will yield a backend-independent “ ”. Similarly, tipa’s \textrevepsilon (“3”) or wsuipa’s \revepsilon (“”)
may be used to express the mathematical notion of “such that” in a cleaner manner than with \reflectbox
or \rotatebox.7
ι

Joining and overlapping existing symbols
Symbols that do not exist in any font can sometimes be fabricated out of existing symbols. The LATEX 2ε source
file fontdef.dtx contains a number of such definitions. For example, \models (see Table 67 on page 30) is
defined in that file with:
\def\models{\mathrel|\joinrel=}
where \mathrel and \joinrel are used to control the horizontal spacing. \def is the TEX primitive upon
which LATEX’s \newcommand is based. See The TEXbook [Knu86a] for more information on all three of those
commands.
With some simple pattern-matching, one can easily define a backward \models sign (“=|”):
\def\ismodeledby{=\joinrel\mathrel|}
In general, arrows/harpoons, horizontal lines (“=”, “-”, “\relbar”, and “\Relbar”), and the various mathextension characters can be combined creatively with miscellaneous other characters to produce a variety of
new symbols. Of course, new symbols can be composed from any set of existing characters. For instance, LATEX
defines \hbar (“~”) as a “¯” character (\mathchar’26) followed by a backspace of 9 math units (\mkern-9mu),
followed by the letter “h”:
\def\hbar{{\mathchar’26\mkern-9muh}}
5 pifont

defines a convenient \Pisymbol command for accessing symbols in PostScript fonts by number.
“\Pisymbol{psy}{191}” produces “↵”.
6 As an example, Xdvi ignores both \reflectbox and \rotatebox.
7 More common symbols for representing “such that” include “|”, “:”, and “s.t.”.

103

For example,

We can just as easily define other barred letters:
\def\bbar{{\mathchar’26\mkern-9mu b}}
\def\dbar{{\mathchar’26\mkern-12mu d}}
(The space after the “mu” is optional but is added for clarity.) \bbar and \dbar define “b̄” and “¯
d”, respectively.
Note that \dbar requires a greater backward math kern than \bbar; a −9 mu kern would have produced the
less-attractive “d̄” glyph.
The amsmath package provides \overset and \underset commands for placing one symbol respectively
G
above or below another. For example, \overset{G}{\sim}8 produces “∼” (sometimes used for “equidecomposable with respect to G”).
Sometimes an ordinary tabular environment can be co-opted into juxtaposing existing symbols into a new
symbol. Consider the following definition of \asterism (“**
* ”) from a June 2007 post to comp.text.tex by
Peter Flynn:
\newcommand{\asterism}{\smash{%
\raisebox{-.5ex}{%
\setlength{\tabcolsep}{-.5pt}%
\begin{tabular}{@{}cc@{}}%
\multicolumn2c*\\[-2ex]*&*%
\end{tabular}}}}
Note how the space between columns (\tabcolsep) and rows (\\[. . . ]) is made negative to squeeze the
asterisks closer together.
There is a TEX primitive called \mathaccent that centers one mathematical symbol atop another. For
·
example, one can define \dotcup (“∪”)—the
composition of a \cup and a \cdot—as follows:
\newcommand{\dotcup}{\ensuremath{\mathaccent\cdot\cup}}
The catch is that \mathaccent requires the accent to be a “math character”. That is, it must be a character
in a math font as opposed to a symbol defined in terms of other symbols. See The TEXbook [Knu86a] for more
information.
Another TEX primitive that is useful for composing symbols is \vcenter. \vcenter is conceptually similar
to “\begin{tabular}{l}” in LATEX but takes a list of vertical material instead of \\-separated rows. Also,
it vertically centers the result on the math axis. (Many operators, such as “+” and “−” are also vertically
centered on the math axis.) Enrico Gregorio posted the following symbol definition to comp.text.tex in
March 2004 in response to a query about an alternate way to denote equivalence:
\newcommand*{\threesim}{%
\mathrel{\vcenter{\offinterlineskip
\hbox{$\sim$}\vskip-.35ex\hbox{$\sim$}\vskip-.35ex\hbox{$\sim$}}}}
The \threesim symbol, which vertically centers three \sim (“∼”) symbols with 0.35 x-heights of space between
∼
them, is rendered as “∼
∼”. \offinterlineskip is a macro that disables implicit interline spacing. Without
it, \threesim would have a full line of vertical spacing between each \sim. Because of \vcenter, \threesim
∼
aligns properly with other math operators: a ÷ b ∼
∼ c × d.
A related LATEX command, borrowed from Plain TEX, is \ooalign. \ooalign vertically overlaps symbols
and works both within and outside of math mode. Essentially, it creates a single-column tabular environment
with zero vertical distance between rows. However, because it is based directly on TEX’s \ialign primitive,
\ooalign uses TEX’s tabular syntax instead of LATEX’s (i.e., with \cr as the row terminator instead of \\). The
◦
following example of \ooalign, a macro that defines a standard-state symbol (\stst, “−
”) as a superscripted
9
Plimsoll line (\barcirc, “−
◦ ”), is due to an October 2007 comp.text.tex post by Donald Arseneau:
\makeatletter
\providecommand\barcirc{\mathpalette\@barred\circ}
\def\@barred#1#2{\ooalign{\hfil$#1-$\hfil\cr\hfil$#1#2$\hfil\cr}}
\newcommand\stst{^{\protect\barcirc}}
\makeatother
8L
AT

EX’s \stackrel command is similar but is limited to placing a symbol above a binary relation.
\barcirc illustrates how to combine symbols using \ooalign, the stmaryrd package’s \minuso command (Table 46 on
page 22) provides a similar glyph (“ ”) as a single, indivisible symbol.
9 While

104

In the preceding code, note the \ooalign call’s use of \hfil to horizontally center a minus sign (“−”) and
a \circ (“◦”).
As another example of \ooalign, consider the following code (due to Enrico Gregorio in a June 2007 post
to comp.text.tex) that overlaps a \ni (“3”) and two minus signs (“−
−”) to produce “3
−
−”, an obscure variation
on the infrequently used “3” symbol for “such that”discussed on page 103:
\newcommand{\suchthat}{%
\mathrel{\ooalign{$\ni$\cr\kern-1pt$-$\kern-6.5pt$-$}}}
The slashed package, although originally designed for producing Feynman slashed-character notation, in
fact facilitates the production of arbitrary overlapped symbols. The default behavior is to overwrite a given
/
character with “/”. For example, \slashed{D} produces “D”.
However, the \declareslashed command
provides the flexibility to specify the mathematical context of the composite character (operator, relation,
punctuation, etc., as will be discussed in Section 8.4), the overlapping symbol, horizontal and vertical adjustments in symbol-relative units, and the character to be overlapped. Consider, for example, the symbol for
reduced quadrupole moment (“I”).
This can be declared as follows:
\newcommand{\rqm}{{%
\declareslashed{}{\text{-}}{0.04}{0}{I}\slashed{I}}}
\declareslashed{·}{·}{·}{·}{I} affects the meaning of all subsequent \slashed{I} commands in the same
scope. The preceding definition of \rqm therefore uses an extra set of curly braces to limit that scope to
a single \slashed{I}. In addition, \rqm uses amstext’s \text macro (described on the next page) to make
\declareslashed use a text-mode hyphen (“-”) instead of a math-mode minus sign (“−”) and to ensure that
the hyphen scales properly in size in subscripts and superscripts. See slashed’s documentation (located in
slashed.sty itself) for a detailed usage description of the \slashed and \declareslashed commands.
Somewhat simpler than slashed is the centernot package. centernot provides a single command, \centernot,
which, like \not, puts a slash over the subsequent mathematical symbol. However, instead of putting the slash
at a fixed location, \centernot centers the slash over its argument. \centernot might be used, for example,
to create a “does not imply” symbol:
6=⇒

\not\Longrightarrow
vs.

=⇒
6

\centernot\Longrightarrow

See the centernot documentation for more information.
Making new symbols work in superscripts and subscripts
To make composite symbols work properly within subscripts and superscripts, you may need to use TEX’s
\mathchoice primitive. \mathchoice evaluates one of four expressions, based on whether the current math
style is display, text, script, or scriptscript. (See The TEXbook [Knu86a] for a more complete description.) For example, the following LATEX code—posted to comp.text.tex by Torsten Bronger—composes
a sub/superscriptable “⊥
>” symbol out of \top and \bot (“>” and “⊥”):
\def\topbotatom#1{\hbox{\hbox to 0pt{$#1\bot$\hss}$#1\top$}}
\newcommand*{\topbot}{\mathrel{\mathchoice{\topbotatom\displaystyle}
{\topbotatom\textstyle}
{\topbotatom\scriptstyle}
{\topbotatom\scriptscriptstyle}}}
The following is another example that uses \mathchoice to construct symbols in different math modes.
The code defines a principal value integral symbol, which is an integral sign with a line through it.
\def\Xint#1{\mathchoice
{\XXint\displaystyle\textstyle{#1}}%
{\XXint\textstyle\scriptstyle{#1}}%
{\XXint\scriptstyle\scriptscriptstyle{#1}}%
{\XXint\scriptscriptstyle\scriptscriptstyle{#1}}%
105

\!\int}
\def\XXint#1#2#3{{\setbox0=\hbox{$#1{#2#3}{\int}$}
\vcenter{\hbox{$#2#3$}}\kern-.5\wd0}}
\def\ddashint{\Xint=}
\def\dashint{\Xint-}
(The preceding code was taken verbatim from the UK TERX Users’ Group FAQ at http://www.tex.ac.uk/
faq.) R\dashint produces a single-dashed integral sign (“−”), while \ddashint produces a double-dashed
R
one (“=”). The \Xint macro Rdefined above can also be usedR to generate a wealthR of new integrals: “”
(\Xint\circlearrowright), “ ” (\Xint\circlearrowleft), “⊂” (\Xint\subset), “∞” (\Xint\infty), and
so forth.
LATEX 2ε provides a simple wrapper for \mathchoice that sometimes helps produce terser symbol definitions. The macro is called \mathpalette and it takes two arguments. \mathpalette invokes the first
argument, passing it one of “\displaystyle”, “\textstyle”, “\scriptstyle”, or “\scriptscriptstyle”,
followed by the second argument. \mathpalette is useful when a symbol macro must know which math
style is currently in use (e.g., to set it explicitly within an \mbox). Donald Arseneau posted the following
\mathpalette-based definition of a probabilistic-independence symbol (“⊥
⊥”) to comp.text.tex in June 2000:
\newcommand\independent{\protect\mathpalette{\protect\independenT}{\perp}}
\def\independenT#1#2{\mathrel{\rlap{$#1#2$}\mkern2mu{#1#2}}}
The \independent macro uses \mathpalette to pass the \independenT helper macro both the current math
style and the \perp symbol. \independenT typesets \perp in the current math style, moves two math units to
the right, and finally typesets a second—overlapping—copy of \perp, again in the current math style. \rlap,
which enables text overlap, is described later on this page.
√
”) as this helps visually distinguish
Some people like their square-root signs with a trailing “hook” (i.e., “
√
√
expressions like “ 3x ” from those like “ 3x”. In March 2002, Dan Luecking posted a \mathpalette-based
definition of a hooked square-root symbol to comp.text.tex:
\def\hksqrt{\mathpalette\DHLhksqrt}
\def\DHLhksqrt#1#2{\setbox0=\hbox{$#1\sqrt{#2\,}$}\dimen0=\ht0
\advance\dimen0-0.2\ht0
\setbox2=\hbox{\vrule height\ht0 depth -\dimen0}%
{\box0\lower0.4pt\box2}}
Notice how \DHLhksqrt uses \mathpalette to recover the outer math style (argument #1) from within an
\hbox. The rest of the code is simply using TEX primitives to position a hook of height 0.2 times the \sqrt
height at the right of the \sqrt. See The TEXbook [Knu86a] for more understanding of TEX “boxes” and
“dimens”.
Sometimes, however, amstext’s \text macro is all that is necessary to make composite symbols appear
correctly in subscripts and superscripts, as in the following definitions of \neswarrow (“%
.”) and \nwsearrow
(“&”):10
\newcommand{\neswarrow}{\mathrel{\text{$\nearrow$\llap{$\swarrow$}}}}
\newcommand{\nwsearrow}{\mathrel{\text{$\nwarrow$\llap{$\searrow$}}}}
\text resembles LATEX’s \mbox command but shrinks its argument appropriately when used within a subscript
or superscript. \llap (“left overlap”) and its counterpart, \rlap (“right overlap”), appear frequently when
creating composite characters. \llap outputs its argument to the left of the current position, overlapping
whatever text is already there. Similarly, \rlap overlaps whatever text would normally appear to the right
of its argument. For example, “A\llap{B}” and “\rlap{A}B” each produce “A
B”. However, the result of the
former is the width of “A”, and the result of the latter is the width of “B”—\llap{. . . } and \rlap{. . . } take
up zero space.
In a June 2002 post to comp.text.tex, Donald Arseneau presented a general macro for aligning an arbitrary
number of symbols on their horizontal centers and vertical baselines:
10 Note

that if your goal is to typeset commutative diagrams or pushout/pullback diagrams, then you should probably be using

XY-pic.

106

\makeatletter
\def\moverlay{\mathpalette\mov@rlay}
\def\mov@rlay#1#2{\leavevmode\vtop{%
\baselineskip\z@skip \lineskiplimit-\maxdimen
\ialign{\hfil$#1##$\hfil\cr#2\crcr}}}
\makeatother
The \makeatletter and \makeatother commands are needed to coerce LATEX into accepting “@” as
part of a macro name. \moverlay takes a list of symbols separated by \cr (TEX’s equivalent of
LATEX’s \\). For example, the \topbot command defined on page 105 could have been expressed as
“\moverlay{\top\cr\bot}” and the \neswarrow command defined on the previous page could have been
expressed as “\moverlay{\nearrow\cr\swarrow}”.
The basic concept behind \moverlay’s implementation is that \moverlay typesets the given symbols in a
table that utilizes a zero \baselineskip. This causes every row to be typeset at the same vertical position.
See The TEXbook [Knu86a] for explanations of the TEX primitives used by \moverlay.
Modifying LATEX-generated symbols
Oftentimes, symbols composed in the LATEX 2ε source code can be modified with minimal effort to produce
useful variations. For example, fontdef.dtx composes the \ddots symbol (see Table 189 on page 63) out of
three periods, raised 7 pt., 4 pt., and 1 pt., respectively:
\def\ddots{\mathinner{\mkern1mu\raise7\p@
\vbox{\kern7\p@\hbox{.}}\mkern2mu
\raise4\p@\hbox{.}\mkern2mu\raise\p@\hbox{.}\mkern1mu}}
\p@ is a LATEX 2ε shortcut for “pt” or “1.0pt”.
The remaining commands are defined in The
TEXbook [Knu86a]. To draw a version of \ddots with the dots going along the opposite diagonal, we merely
have to reorder the \raise7\p@, \raise4\p@, and \raise\p@:
\makeatletter
\def\revddots{\mathinner{\mkern1mu\raise\p@
\vbox{\kern7\p@\hbox{.}}\mkern2mu
\raise4\p@\hbox{.}\mkern2mu\raise7\p@\hbox{.}\mkern1mu}}
\makeatother
\revddots is essentially identical to the mathdots package’s \iddots command or the yhmath package’s \adots
command.
Producing complex accents
Accents are a special case of combining existing symbols to make new symbols. While various tables in
this document show how to add an accent to an existing symbol, some applications, such as transliterations from non-Latin alphabets, require multiple accents per character. For instance, the creator of pdfTEX
writes his name as “Hàn Th´ê Thành”. The dblaccnt package enables LATEX to stack accents, as in “H\‘an
Th\’{\^e} Th\‘anh” (albeit not in the OT1 font encoding). In addition, the wsuipa package defines \diatop
and \diaunder macros for putting one or more diacritics or accents above or below a given character. For
example, \diaunder[{\diatop[\’|\=]}|\textsubdot{r}] produces “´r̄”. See the wsuipa documentation for
˙
more information.
The accents package facilitates the fabrication of accents in math mode. Its \accentset command en?
ables any character to be used as an accent. For instance, \accentset{\star}{f} produces “f ” and
e
\accentset{e}{X} produces “X”. \underaccent does the same thing, but places the accent beneath the
character. This enables constructs like \underaccent{\tilde}{V}, which produces “V ”. accents provides
˜
other accent-related features as well; see the documentation for more information.
Creating extensible symbols
A relatively simple example of creating extensible symbols stems from a comp.text.tex post by Donald
Arseneau (June 2003). The following code defines an equals sign that extends as far to the right as possible,
just like LATEX’s \hrulefill command:
107

\makeatletter
\def\equalsfill{$\m@th\mathord=\mkern-7mu
\cleaders\hbox{$\!\mathord=\!$}\hfill
\mkern-7mu\mathord=$}
\makeatother
TEX’s \cleaders and \hfill primitives are the key to understanding \equalsfill’s extensibility. Essentially, \equalsfill repeats a box containing “=” plus some negative space until it fills the maximum available horizontal space. \equalsfill is intended to be used with LATEX’s \stackrel command, which stacks
one mathematical expression (slightly reduced in size) atop another. Hence, “\stackrel{a}{\rightarrow}”
a

definition

produces “→” and “X \stackrel{\text{definition}}{\hbox{\equalsfill}} Y” produces “X ======= Y ”.
If all that needs to extend are horizontal and vertical lines—as opposed to repeated symbols such as the
“=” in the previous example—LATEX’s array or tabular environments may suffice. Consider the following
code (due to a February 1999 comp.text.tex post by Donald Arseneau and subsequent modifications by Billy
Yu and Scott Pakin) for typesetting annuity and life-insurance symbols:
\DeclareRobustCommand{\actuarial}[2][]{%
\def\arraystretch{0}%
\setlength\arraycolsep{0.5pt}%
\setlength\arrayrulewidth{0.5pt}%
\setbox0=\hbox{$\scriptstyle#1#2$}%
\begin{array}[b]{*2{@{}>{\scriptstyle}c}|}
\cline{2-2}%
\rule[1.25pt]{0pt}{\ht0}%
#1 & #2%
\end{array}%
}
Using the preceding definition, one can type, e.g., “$a_{\actuarial{n}}$” to produce “an ” and
“$a_{\actuarial[x:]{n}}$” to produce “ax:n ”
A more complex example of composing accents is the following definition of extensible \overbracket,
\underbracket, \overparenthesis, and \underparenthesis symbols, taken from a May 2002
comp.text.tex post by Donald Arseneau:
\makeatletter
\def\overbracket#1{\mathop{\vbox{\ialign{##\crcr\noalign{\kern3\p@}
\downbracketfill\crcr\noalign{\kern3\p@\nointerlineskip}
$\hfil\displaystyle{#1}\hfil$\crcr}}}\limits}
\def\underbracket#1{\mathop{\vtop{\ialign{##\crcr
$\hfil\displaystyle{#1}\hfil$\crcr\noalign{\kern3\p@\nointerlineskip}
\upbracketfill\crcr\noalign{\kern3\p@}}}}\limits}
\def\overparenthesis#1{\mathop{\vbox{\ialign{##\crcr\noalign{\kern3\p@}
\downparenthfill\crcr\noalign{\kern3\p@\nointerlineskip}
$\hfil\displaystyle{#1}\hfil$\crcr}}}\limits}
\def\underparenthesis#1{\mathop{\vtop{\ialign{##\crcr
$\hfil\displaystyle{#1}\hfil$\crcr\noalign{\kern3\p@\nointerlineskip}
\upparenthfill\crcr\noalign{\kern3\p@}}}}\limits}
\def\downparenthfill{$\m@th\braceld\leaders\vrule\hfill\bracerd$}
\def\upparenthfill{$\m@th\bracelu\leaders\vrule\hfill\braceru$}
\def\upbracketfill{$\m@th\makesm@sh{\llap{\vrule\@height3\p@\@width.7\p@}}%
\leaders\vrule\@height.7\p@\hfill
\makesm@sh{\rlap{\vrule\@height3\p@\@width.7\p@}}$}
\def\downbracketfill{$\m@th
\makesm@sh{\llap{\vrule\@height.7\p@\@depth2.3\p@\@width.7\p@}}%
\leaders\vrule\@height.7\p@\hfill
\makesm@sh{\rlap{\vrule\@height.7\p@\@depth2.3\p@\@width.7\p@}}$}
\makeatother

108

Table 324 showcases these accents. The TEXbook [Knu86a] or another book on TEX primitives is indispensible
for understanding how the preceding code works. The basic idea is that \downparenthfill, \upparenthfill,
\downbracketfill, and \upbracketfill do all of the work; they output a left symbol (e.g., \braceld [“z”]
for \downparenthfill), a horizontal rule that stretches as wide as possible, and a right symbol (e.g., \bracerd
[“{”] for \downparenthfill). \overbracket, \underbracket, \overparenthesis, and \underparenthesis
merely create a table whose width is determined by the given text, thereby constraining the width of the
horizontal rules.
Table 324: Manually Composed Extensible Accents
z {
abc \overbracket{abc}
abc \overparenthesis{abc}
abc

\underbracket{abc}

abc
| }

\underparenthesis{abc}

Note that the simplewick package provides mechanisms for typesetting Wick contractions, which utilize \overbracket- and \underbracket-like brackets of variable width and height (or depth). For example, “\acontraction{}{A}{B}{C}\acontraction[2ex]{A}{B}{C}{D}\bcontraction{}{A}{BC}{D}ABCD”
produces
ABCD

.

See the simplewick documentation for more information.
Developing new symbols from scratch
Sometimes is it simply not possible to define a new symbol in terms of existing symbols. Fortunately, most, if
not all, TEX distributions are shipped with a tool called METAFONT which is designed specifically for creating
fonts to be used with TEX. The METAFONTbook [Knu86b] is the authoritative text on METAFONT. If you
plan to design your own symbols with METAFONT, The METAFONTbook is essential reading. You may also
want to read the freely available METAFONT primer located at http://metafont.tutorial.free.fr/. The
following is an extremely brief tutorial on how to create a new LATEX symbol using METAFONT. Its primary
purpose is to cover the LATEX-specific operations not mentioned in The METAFONTbook and to demonstrate
that symbol-font creation is not necessarily a difficult task.
Suppose we need a symbol to represent a light bulb (“A”).11 The first step is to draw this in METAFONT.
It is common to separate the font into two files: a size-dependent file, which specifies the design size and
various font-specific parameters that are a function of the design size; and a size-independent file, which draws
characters in the given size. Figure 2 shows the METAFONT code for lightbulb10.mf. lightbulb10.mf
specifies various parameters that produce a 10 pt. light bulb then loads lightbulb.mf. Ideally, one should
produce lightbulbhsizei.mf files for a variety of hsizeis. This is called “optical scaling”. It enables, for
example, the lines that make up the light bulb to retain the same thickness at different font sizes, which looks
much nicer than the alternative—and default—“mechanical scaling”. When a lightbulbhsizei.mf file does
not exist for a given size hsizei, the computer mechanically produces a wider, taller, thicker symbol:

A
10 pt.

vs.

A

20 pt.

vs.

A

30 pt.

vs.

A

vs.

40 pt.

A A
vs.

50 pt.

60 pt.

vs.

A
70 pt.

lightbulb.mf, shown in Figure 3, draws a light bulb using the parameters defined in lightbulb10.mf.
Note that the the filenames “lightbulb10.mf” and “lightbulb.mf” do not follow the Berry font-naming
scheme [Ber01]; the Berry font-naming scheme is largely irrelevant for symbol fonts, which generally lack bold,
italic, small-caps, slanted, and other such variants.
The code in Figures Figure 2 and Figure 3 is heavily commented and should demonstrate some of the
basic concepts behind METAFONT usage: declaring variables, defining points, drawing lines and curves, and
preparing to debug or fine-tune the output. Again, The METAFONTbook [Knu86b] is the definitive reference
on METAFONT programming.
11 I’m

not a very good artist; you’ll have to pretend that “A” looks like a light bulb.

109

font identifier := "LightBulb10";
font size 10pt#;
em# := 10pt#;
cap# := 7pt#;
sb# := 1/4pt#;
o# := 1/16pt#;

% Name the font.
% Specify the design size.
% “M” width is 10 points.
% Capital letter height is 7 points above the baseline.
% Leave this much space on the side of each character.
% Amount that curves overshoot borders.

input lightbulb

% Load the file that draws the actual glyph.

Figure 2: Sample METAFONT size-specific file (lightbulb10.mf)

mode setup;

% Target a given printer.

define pixels(em, cap, sb);
define corrected pixels(o);

% Convert to device-specific units.
% Same, but add a device-specific fudge factor.

%% Define a light bulb at the character position for “A”
%% with width 1/2em#, height cap#, and depth 1pt#.
beginchar("A", 1/2em#, cap#, 1pt#); "A light bulb";
pickup pencircle scaled 1/2pt;
%% Define the points we need.
top z1 = (w/2, h + o);
rt z2 = (w + sb + o − x4 , y4 );
bot z3 = (z1 − (0, w − sb − o));
lft z4 = (sb − o, 1/2[y1 , y3 ]);
path bulb;
bulb = z1 . . z2 . . z3 . . z4 . . cycle;

% Use a pen with a small, circular tip.

% z1 is at the top of a circle.
% z2 is at the same height as z4 but the opposite side.
% z3 is at the bottom of the circle.
% z4 is on the left of the circle.
% Define a path for the bulb itself.
% The bulb is a closed path.

z5 = point 2 − 1/3 of bulb;
% z5 lies on the bulb, a little to the right of z3 .
z6 = (x5 , 0);
% z6 is at the bottom, directly under z5 .
z7 = (x8 , 0);
% z7 is at the bottom, directly under z8 .
z8 = point 2 + 1/3 of bulb;
% z8 lies on the bulb, a little to the left of z3 .
bot z67 = ( 1/2[x6 , x7 ], pen bot − o − 1/8pt); % z67 lies halfway between z6 and z7 but a jot lower.
%% Draw the bulb and the base.
draw bulb;
draw z5 - - z6 . . z67 . . z7 - - z8 ;

% Draw the bulb proper.
% Draw the base of the bulb.

%% Display key positions and points to help us debug.
makegrid(0, sb, w/2, w − sb)(0, −1pt, y2 , h);
% Label “interesting” x and y coordinates.
penlabels(1, 2, 3, 4, 5, 6, 67, 7, 8);
% Label control points for debugging.
endchar;
end
Figure 3: Sample METAFONT size-independent file (lightbulb.mf)

110

METAFONT can produce “proofs” of fonts—large, labeled versions that showcase the logical structure of
each character. In fact, proof mode is METAFONT’s default mode. To produce a proof of lightbulb10.mf,
issue the following commands at the operating-system prompt:
⇐
⇐

prompt > mf lightbulb10.mf
prompt > gftodvi lightbulb10.2602gf

Produces lightbulb10.2602gf
Produces lightbulb10.dvi

You can then view lightbulb10.dvi with any DVI viewer. The result is shown in Figure 4. Observe how the
grid defined with makegrid at the bottom of Figure 3 draws vertical lines at positions 0, sb, w/2, and w − sb
and horizontal lines at positions 0, −1pt, y2 , and h. Similarly, observe how the penlabels command labels all
of the important coordinates: z1 , z2 , . . . , z8 and z67 , which lightbulb.mf defines to lie between z6 and z7 .
1

4

2

8

7

3

67

5

6

Figure 4: Proof diagram of lightbulb10.mf
Most, if not all, TEX distributions include a Plain TEX file called testfont.tex which is useful for testing
new fonts in a variety of ways. One useful routine produces a table of all of the characters in the font:
prompt > tex testfont
This is TeX, Version 3.14159 (Web2C 7.3.1)
(/usr/share/texmf/tex/plain/base/testfont.tex
Name of the font to test = lightbulb10
Now type a test command (\help for help):)
*\table
*\bye
[1]
Output written on testfont.dvi (1 page, 1516 bytes).
Transcript written on testfont.log.
The resulting table, stored in testfont.dvi and illustrated in Figure 5, shows every character in the font.
To understand how to read the table, note that the character code for “A”—the only character defined by
lightbulb10.mf—is 41 in hexadecimal (base 16) and 101 in octal (base 8).
The LightBulb10 font is now usable by TEX. LATEX 2ε , however, needs more information before documents
can use the font. First, we create a font-description file that tells LATEX 2ε how to map fonts in a given font
family and encoding to a particular font in a particular font size. For symbol fonts, this mapping is fairly simple.
Symbol fonts almost always use the “U” (“Unknown”) font encoding and frequently occur in only one variant:
normal weight and non-italicized. The filename for a font-description file important; it must be of the form
“hencodingihfamilyi.fd”, where hencodingi is the lowercase version of the encoding name (typically “u” for
symbol fonts) and hfamilyi is the name of the font family. For LightBulb10, let’s call this “bulb”. Figure 6 lists
the contents of ubulb.fd. The document “LATEX 2ε Font Selection” [LAT00] describes \DeclareFontFamily
and \DeclareFontShape in detail, but the gist of ubulb.fd is first to declare a U-encoded version of the bulb
font family and then to specify that a LATEX 2ε request for a U-encoded version of bulb with a (m)edium font

111

Test of lightbulb10 on March 11, 2003 at 1127

´0
´10x
´11x
˝8

´1
A

´2

˝9

˝A

´3

´4

´5

´6

´7
˝4x

˝B

˝C

˝D

˝E

˝F

Figure 5: Font table produced by testfont.tex
\DeclareFontFamily{U}{bulb}{}
\DeclareFontShape{U}{bulb}{m}{n}{<-> lightbulb10}{}
Figure 6: LATEX 2ε font-description file (ubulb.fd)
series (as opposed to, e.g., bold) and a (n)ormal font shape (as opposed to, e.g., italic) should translate into a
TEX request for lightbulb10.tfm mechanically scaled to the current font size.
The final step is to write a LATEX 2ε style file that defines a name for each symbol in the font. Because
we have only one symbol our style file, lightbulb.sty (Figure 7), is rather trivial. Note that instead of
typesetting “A” we could have had \lightbulb typeset “\char65”, “\char"41”, or “\char’101” (respectively,
decimal, hexadecimal, and octal character offsets into the font). For a simple, one-character symbol font
such as LightBulb10 it would be reasonable to merge ubulb.fd into lightbulb.sty instead of maintaining
two separate files. In either case, a document need only include “\usepackage{lightbulb}” to make the
\lightbulb symbol available.
\newcommand{\lightbulb}{{\usefont{U}{bulb}{m}{n}A}}
Figure 7: LATEX 2ε style file (lightbulb.sty)
METAFONT normally produces bitmapped fonts. However, it is also possible, with the help of some
external tools, to produce PostScript Type 1 fonts. These have the advantages of rendering better in Adobe®
Acrobat® (at least in versions prior to 6.0) and of being more memory-efficient when handled by a PostScript
interpreter. See http://www.tex.ac.uk/cgi-bin/texfaq2html?label=textrace for pointers to tools that can
produce Type 1 fonts from METAFONT.

8.4

Math-mode spacing

Terms such as “binary operators”, “relations”, and “punctuation” in Section 3 primarily regard the surrounding
spacing. (See the Short Math Guide for LATEX [Dow00] for a nice exposition on the subject.) To use a symbol
for a different purpose, you can use the TEX commands \mathord, \mathop, \mathbin, \mathrel, \mathopen,
\mathclose, and \mathpunct. For example, if you want to use \downarrow as a variable (an “ordinary”
symbol) instead of a delimiter, you can write “$3 x + \mathord{\downarrow}$” to get the properly spaced
˙ that
“3x + ↓” rather than the awkward-looking “3x+ ↓”. Similarly, to create a dotted-union symbol (“∪”)
spaces like the ordinary set-union symbol (\cup) it must be defined with \mathbin, just as \cup is. Contrast
˙
˙
“$A \dot{\cup} B$” (“A∪B”)
with “$A \mathbin{\dot{\cup}} B$” (“A ∪B”).
See The TEXbook [Knu86a]
for the definitive description of math-mode spacing.
The purpose of the “log-like symbols” in Table 128 and Table 129 is to provide the correct amount of
spacing around and within multiletter function names. Table 325 on the following page contrasts the output of
the log-like symbols with various, naı̈ve alternatives. In addition to spacing, the log-like symbols also handle
subscripts properly. For example, “\max_{p \in P}” produces “maxp∈P ” in text, but “max” as part of a
p∈P

displayed formula.
The amsmath package makes it straightforward to define new log-like symbols:
\DeclareMathOperator{\atan}{atan}
\DeclareMathOperator*{\lcm}{lcm}
112

Table 325: Spacing Around/Within Log-like Symbols
LATEX expression

Output

$r
$r
$r
$r

r sin θ
rsinθ
rsinθ
rsinθ

\sin \theta$
sin \theta$
\mbox{sin} \theta$
\mathrm{sin} \theta$

(best)

The difference between \DeclareMathOperator and \DeclareMathOperator* involves the handling of subscripts. With \DeclareMathOperator*, subscripts are written beneath log-like symbols in display style and
to the right in text style. This is useful for limit operators (e.g., \lim) and functions that tend to map over
a set (e.g., \min). In contrast, \DeclareMathOperator tells TEX that subscripts should always be displayed
to the right of the operator, as is common for functions that take a single parameter (e.g., \log and \cos).
Table 326 contrasts symbols declared with \DeclareMathOperator and \DeclareMathOperator* in both text
style ($. . .$) and display style (\[. . .\]).12
Table 326: Defining new log-like symbols
Declaration function

$\newlogsym {p \in P}$

\[ \newlogsym {p \in P} \]

\DeclareMathOperator

newlogsymp∈P

newlogsymp∈P

\DeclareMathOperator*

newlogsymp∈P

newlogsym
p∈P

It is common to use a thin space (\,) between the words of a multiword operators, as in
“\DeclareMathOperator*{\argmax}{arg\,max}”. \liminf, \limsup, and all of the log-like symbols shown
in Table 129 utilize this spacing convention.

8.5

Bold mathematical symbols

LATEX does not normally use bold symbols when typesetting mathematics. However, bold symbols are occasionally needed, for example when naming vectors. Any of the approaches described at http://www.tex.ac.uk/
cgi-bin/texfaq2html?label=boldgreek can be used to produce bold mathematical symbols. Table 327
contrasts the output produced by these various techniques. As the table illustrates, these techniques exhibit
variation in their formatting of Latin letters (upright vs. italic), formatting of Greek letters (bold vs. normal),
formatting of operators and relations (bold vs. normal), and spacing.
Table 327: Producing bold mathematical symbols
Package

Code

Output

none
none
none
amsbsy
amsbsy
bm
fixmath

$\alpha + b = \Gamma \div D$
$\mathbf{\alpha + b = \Gamma \div D}$
\boldmath$\alpha + b = \Gamma \div D$
$\pmb{\alpha + b = \Gamma \div D}$
$\boldsymbol{\alpha + b = \Gamma \div D}$
$\bm{\alpha + b = \Gamma \div D}$
$\mathbold{\alpha + b = \Gamma \div D}$

α+b=Γ÷D
α+b=Γ÷D
α+b=Γ÷D
α+b=Γ÷D
α+b=Γ÷D
α+b=Γ÷D
α+b=Γ ÷D

(no bold)

(faked bold)

12 Note that \displaystyle can be used to force display style within $. . .$ and \textstyle can be used to force text style
within \[. . .\].

113

8.6

ASCII and Latin 1 quick reference

Table 328 amalgamates data from various other tables in this document into a convenient reference for
LATEX 2ε typesetting of ASCII characters, i.e., the characters available on a typical U.S. computer keyboard.
The first two columns list the character’s ASCII code in decimal and hexadecimal. The third column shows
what the character looks like. The fourth column lists the LATEX 2ε command to typeset the character as a text
character. And the fourth column lists the LATEX 2ε command to typeset the character within a \texttt{. . .}
command (or, more generally, when \ttfamily is in effect).
Table 328: LATEX 2ε ASCII Table
Dec

Hex

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
..
.
57
58
59
60
61

21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
..
.
39
3A
3B
3C
3D

Char

Body text

!
"
#
$
%
&
’
(
)
*
+
,
.
/
0
1
2
..
.
9
:
;
<
=

!
\textquotedbl
\#
\$
\%
\&
’
(
)
*
+
,
.
/
0
1
2
..
.
9
:
;
\textless
=

\texttt

Dec

Hex

!
"
\#
\$
\%
\&
’
(
)
*
+
,
.
/
0
1
2
..
.
9
:
;
<
=

62
63
64
65
66
67
..
.
90
91
92
93
94
95
96
97
98
99
..
.
122
123
124
125
126

3E
3F
40
41
42
43
..
.
5A
5B
5C
5D
5E
5F
60
61
62
63
..
.
7A
7B
7C
7D
7E

Char

Body text

\texttt

>
?
@
A
B
C
..
.
Z
[
\
]
ˆ

\textgreater
?
@
A
B
C
..
.
Z
[
\textbackslash
]
\^{}
\_
‘
a
b
c
..
.
z
\{
\textbar
\}
\~{}

>
?
@
A
B
C
..
.
Z
[
\char‘\\
]
\^{}
\char‘\_
‘
a
b
c
..
.
z
\char‘\{
|
\char‘\}
\~{}

‘
a
b
c
..
.
z
{
|
}
˜

The following are some additional notes about the contents of Table 328:
• “"” is not available in the OT1 font encoding.
• Table 328 shows a close quote for character 39 for consistency with the open quote shown for character 96.
A straight quote can be typeset using \textquotesingle (cf. Table 40).
• The characters “<”, “>”, and “|” do work as expected in math mode, although they produce, respectively,
“¡”, “¿”, and “—” in text mode when using the OT1 font encoding.13 The following are some alternatives
for typesetting “<”, “>”, and “|”:
– Specify a document font encoding other than OT1 (as described on page 8).
– Use the appropriate symbol commands from Table 2 on page 9, viz. \textless, \textgreater,
and \textbar.
– Enter the symbols in math mode instead of text mode, i.e., $<$, $>$, and $|$.
Note that for typesetting metavariables many people prefer \textlangle and \textrangle to \textless
and \textgreater; i.e., “hfilenamei” instead of “”.
13 Donald

Knuth didn’t think such symbols were important outside of mathematics so he omitted them from his text fonts.

114

• Although “/” does not require any special treatment, LATEX additionally defines a \slash command
which outputs the same glyph but permits a line break afterwards. That is, “increase/decrease” is
always typeset as a single entity while “increase\slash{}decrease” may be typeset with “increase/”
on one line and “decrease” on the next.
• \textasciicircum can be used instead of \^{}, and \textasciitilde can be used instead of \~{}.
Note that \textasciitilde and \~{} produce raised, diacritic tildes. “Text” (i.e., vertically centered)
tildes can be generated with either the math-mode \sim command (shown in Table 67 on page 30),
which produces a somewhat wide “∼”, or the textcomp package’s \texttildelow (shown in Table 40
on page 20), which produces a vertically centered “~” in most fonts but a baseline-oriented “~” in
Computer Modern, txfonts, pxfonts, and various other fonts originating from the TEX world. If your
goal is to typeset tildes in URLs or Unix filenames, your best bet is to use the url package, which has a
number of nice features such as proper line-breaking of such names.
• The various \char commands within \texttt are necessary only in the OT1 font encoding. In other
encodings (e.g., T1), commands such as \{, \}, \_, and \textbackslash all work properly.
• The code page 437 (IBM PC) version of ASCII characters 1 to 31 can be typeset using the ascii package.
See Table 227 on page 72.
• To replace “‘” and “’” with the more computer-like (and more visibly distinct) “`” and “'” within
a verbatim environment, use the upquote package. Outside of verbatim, you can use \char18 and
\char13 to get the modified quote characters. (The former is actually a grave accent.)
Similar to Table 328, Table 329 on the next page is an amalgamation of data from other tables in this
document. While Table 328 shows how to typeset the 7-bit ASCII character set, Table 329 shows the Latin 1
(Western European) character set, also known as ISO-8859-1.
The following are some additional notes about the contents of Table 329:
• A “(tc)” after a symbol name means that the textcomp package must be loaded to access that symbol.
A “(T1)” means that the symbol requires the T1 font encoding. The fontenc package can change the
font encoding document-wide.
• Many of the \text. . . accents can also be produced using the accent commands shown in Table 17 on
page 14 plus an empty argument. For instance, \={} is essentially the same as \textasciimacron.
• The commands in the “LATEX 2ε ” columns work both in body text and within a \texttt{. . .} command
(or, more generally, when \ttfamily is in effect).
• The “£” and “$” glyphs occupy the same slot (36) of the OT1 font encoding, with “£” appearing in italic
fonts and “$” appearing in roman fonts. A problem with LATEX’s default handling of this double-mapping
is that “{\sffamily\slshape\pounds}” produces “$”, not “£”. Other font encodings use separate slots
for the two characters and are therefore robust to the problem of “£”/”$” conflicts. Authors who use
\pounds should select a font encoding other than OT1 (as explained on page 8) or use the textcomp
package, which redefines \pounds to use the TS1 font encoding.
• Character 173, \-, is shown as “-” but is actually a discretionary hyphen; it appears only at the end of
a line.
Microsoft® Windows® normally uses a superset of Latin 1 called “Code Page 1252” or “CP1252” for
short. CP1252 introduces symbols in the Latin 1 “invalid” range (characters 128–159). Table 330 presents the
characters with which CP1252 augments the standard Latin 1 table.
The following are some additional notes about the contents of Table 330:
• As in Table 329, a “(tc)” after a symbol name means that the textcomp package must be loaded to access
that symbol. A “(T1)” means that the symbol requires the T1 font encoding. The fontenc package can
change the font encoding document-wide.
• Not all characters in the 128–159 range are defined.
• Look up “euro signs” in the index for alternatives to \texteuro.

115

Table 329: LATEX 2ε Latin 1 Table

Dec

Hex

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF
D0

Char
¡
¢
£
¤
¥
¦
§
¨
©
ª
«
¬
®
¯
°
±
²
³
´
µ
¶
·
¸
¹
º
»
¼
½
¾
¿
À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï
Ð

LATEX 2ε
!‘
\textcent
\pounds
\textcurrency
\textyen
\textbrokenbar
\S
\textasciidieresis
\textcopyright
\textordfeminine
\guillemotleft
\textlnot
\\textregistered
\textasciimacron
\textdegree
\textpm
\texttwosuperior
\textthreesuperior
\textasciiacute
\textmu
\P
\textperiodcentered
\c{}
\textonesuperior
\textordmasculine
\guillemotright
\textonequarter
\textonehalf
\textthreequarters
?‘
\‘{A}
\’{A}
\^{A}
\~{A}
\"{A}
\AA
\AE
\c{C}
\‘{E}
\’{E}
\^{E}
\"{E}
\‘{I}
\’{I}
\^{I}
\"{I}
\DH

(tc)
(tc)
(tc)
(tc)
(tc)

(T1)
(tc)

(tc)
(tc)
(tc)
(tc)
(tc)
(tc)
(tc)

(tc)
(T1)
(tc)
(tc)
(tc)

(T1)

116

Dec

Hex

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

Char
Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Ý
Þ
ß
à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
ı̀
ı́
ı̂
ı̈
ð
ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü
ý
þ
ÿ

LATEX 2ε
\~{N}
\‘{O}
\’{O}
\^{O}
\~{O}
\"{O}
\texttimes
\O
\‘{U}
\’{U}
\^{U}
\"{U}
\’{Y}
\TH
\ss
\‘{a}
\’{a}
\^{a}
\~{a}
\"{a}
\aa
\ae
\c{c}
\‘{e}
\’{e}
\^{e}
\"{e}
\‘{ı}
\’{ı}
\^{ı}
\"{ı}
\dh
\~{n}
\‘{o}
\’{o}
\^{o}
\~{o}
\"{o}
\textdiv
\o
\‘{u}
\’{u}
\^{u}
\"{u}
\’{y}
\th
\"{y}

(tc)

(T1)

(T1)

(tc)

(T1)

Table 330: LATEX 2ε Code Page 1252 Table
Dec

Hex

128
130
131
132
133
134
135
136
137
138
139
140
142

80
82
83
84
85
86
87
88
89
8A
8B
8C
8E

Char
€
‚
f
„
...
†
‡
ˆ
‰
Š
‹
Œ
Ž

LATEX 2ε
\texteuro
\quotesinglbase
\textit{f}
\quotedblbase
\dots
\dag
\ddag
\textasciicircum
\textperthousand
\v{S}
\guilsinglleft
\OE
\v{Z}

(tc)
(T1)
(T1)

(tc)
(T1)

Dec

Hex

145
146
147
148
149
150
151
152
153
154
155
156
158
159

91
92
93
94
95
96
97
98
99
9A
9B
9C
9E
9F

Char
‘
’
“
”
•
–
—
˜
™
š
›
œ
ž
Ÿ

LATEX 2ε
‘
’
‘‘
’’
\textbullet
---\textasciitilde
\texttrademark
\v{s}
\guilsinglright
\oe
\v{z}
\"{Y}

(T1)

While too large to incorporate into this document, a listing of ISO 8879:1986 SGML/XML character entities
and their LATEX equivalents is available from http://www.bitjungle.com/~isoent/. Some of the characters
presented there make use of isoent, a LATEX 2ε package (available from the same URL) that fakes some of the
missing ISO glyphs using the LATEX picture environment.14

8.7

Unicode characters

Unicode is a “universal character set”—a standard for encoding (i.e., assigning unique numbers to) the symbols
appearing in many of the world’s languages. While ASCII can represent 128 symbols and Latin 1 can represent
256 symbols, Unicode can represent an astonishing 1,114,112 symbols.
Because TEX and LATEX predate the Unicode standard and Unicode fonts by almost a decade, support for
Unicode has had to be added to the base TEX and LATEX systems. Note first that LATEX distinguishes between
input encoding—the characters used in the .tex file—and output encoding—the characters that appear in the
generated .dvi, .pdf, etc. file.
Inputting Unicode characters
To include Unicode characters in a .tex file, load the ucs package and load the inputenc package with the utf8x
(“UTF-8 extended”) option.15 These packages enable LATEX to translate UTF-8 sequences to LATEX commands,
which are subsequently processed as normal. For example, the UTF-8 text “Copyright © 2009”—“©” is not
an ASCII character and therefore cannot be input directly without packages such as ucs/inputenc—is converted
internally by inputenc to “Copyright \textcopyright{} 2009” and therefore typeset as “Copyright © 2009”.
The ucs/inputenc combination supports only a tiny subset of Unicode’s million-plus symbols.
Additional symbols can be added manually using the \DeclareUnicodeCharacter command.
\DeclareUnicodeCharacter takes two arguments: a Unicode number and a LATEX command to execute
when the corresponding Unicode character is encountered in the input. For example, the Unicode character
“degree celsius” (“ ℃ ”) appears at character position U+2103.16 However, “ ℃ ” is not one of the characters
that ucs and inputenc recognize. The following document shows how to use \DeclareUnicodeCharacter to
tell LATEX that the “ ℃ ” character should be treated as a synonym for \textcelsius:
\documentclass{article}
\usepackage{ucs}
\usepackage[utf8x]{inputenc}
14 isoent is not featured in this document, because it is not available from CTAN and because the faked symbols are not “true”
characters; they exist in only one size, regardless of the body text’s font size.
15 UTF-8 is the 8-bit Unicode Transformation Format, a popular mechanism for representing Unicode symbol numbers as
sequences of one to four bytes.
16 The Unicode convention is to express character positions as “U+hhexadecimal number i”.

117

\usepackage{textcomp}
\DeclareUnicodeCharacter{"2103}{\textcelsius}

% Enable direct input of U+2103.

\begin{document}
It was a balmy 21℃.
\end{document}
which produces
It was a balmy 21℃.
See the ucs documentation for more information and for descriptions of the various options that control
ucs’s behavior.
Outputting Unicode characters
Orthogonal to the ability to include Unicode characters in a LATEX input file is the ability to include a given
Unicode character in the corresponding output file. By far the easiest approach is to use XELATEX instead of
pdfLATEX or ordinary LATEX. XELATEX handles Unicode input and output natively and can utilize system fonts
directly without having to expose them via .tfm, .fd, and other such files. To output a Unicode character,
a XELATEX document can either include that character directly as UTF-8 text or use TEX’s \char primitive,
which XELATEX extends to accept numbers larger than 255.
Suppose we want to output the symbols for versicle (“ ”) and response (“ ”) in a document. The Unicode
charts list “versicle” at position U+2123 and “response” at position U+211F. We therefore need to install a
font that contains those characters at their proper positions. One such font that is freely available from CTAN
is Junicode Regular (Junicode-Regular.ttf) from the junicode package. The fontspec package makes it easy
for a XELATEX document to utilize a system font. The following example defines a \textjuni command that
uses fontspec to typeset its argument in Junicode Regular:
\documentclass{article}
\usepackage{fontspec}
\newcommand{\textjuni}[1]{{\fontspec{Junicode-Regular}#1}}
\begin{document}
We use ‘‘\textjuni{\char"2123}’’ for a versicle
and ‘‘\textjuni{\char"211F}’’ for a response.
\end{document}
which produces
We use “ ” for a versicle and “ ” for a response.
(Typesetting the entire document in Junicode Regular would be even easier. See the fontspec documentation
for more information regarding font selection.) Note how the preceding example uses \char to specify a
Unicode character by number. The double quotes before the number indicate that the number is represented
in hexadecimal instead of decimal.

8.8

About this document

History David Carlisle wrote the first version of this document in October, 1994. It originally contained
all of the native LATEX symbols (Table 44, Table 57, Table 67, Table 102, Table 128, Table 131, Table 152,
Table 153, Table 164, Table 169, Table 201, and a few tables that have since been reorganized) and was designed
to be nearly identical to the tables in Chapter 3 of Leslie Lamport’s book [Lam86]. Even the table captions
and the order of the symbols within each table matched! The AMS symbols (Table 45, Table 68, Table 69,
Table 105, Table 106, Table 132, Table 137, Table 148, and Table 202) and an initial Math Alphabets table
(Table 213) were added thereafter. Later, Alexander Holt provided the stmaryrd tables (Table 46, Table 59,
Table 70, Table 108, Table 125, and Table 149).
In January, 2001, Scott Pakin took responsibility for maintaining the symbol list and has since implemented
a complete overhaul of the document. The result, now called, “The Comprehensive LATEX Symbol List”,
includes the following new features:
118

• the addition of a handful of new math alphabets, dozens of new font tables, and thousands of new
symbols
• the categorization of the symbol tables into body-text symbols, mathematical symbols, science and
technology symbols, dingbats, ancient languages, and other symbols, to provide a more user-friendly
document structure
• an index, table of contents, hyperlinks, and a frequently-requested symbol list, to help users quickly
locate symbols
• symbol tables rewritten to list the symbols in alphabetical order
• appendices providing additional information relevant to using symbols in LATEX
• tables showing how to typeset all of the characters in the ASCII and Latin 1 font encodings
Furthermore, the internal structure of the document has been completely altered from David Carlisle’s original
version. Most of the changes are geared towards making the document easier to extend, modify, and reformat.
Build characteristics Table 331 lists some of this document’s build characteristics. Most important is the list
of packages that LATEX couldn’t find, but that symbols.tex otherwise would have been able to take advantage
of. Complete, prebuilt versions of this document are available from CTAN (http://www.ctan.org/ or one
of its many mirror sites) in the directory tex-archive/info/symbols/comprehensive. Table 332 shows the
package date (specified in the .sty file with \ProvidesPackage) for each package that was used to build this
document and that specifies a package date. Packages are not listed in any particular order in either Table 331
or Table 332.
Table 331: Document Characteristics
Characteristic

Value

Source file:
Build date:
Symbols documented:
Packages included:

symbols.tex
November 9, 2009
5913
textcomp latexsym amssymb stmaryrd euscript wasysym
pifont manfnt bbding undertilde ifsym tipa tipx extraipa
wsuipa phonetic ulsy ar metre txfonts mathabx fclfont
skak ascii dingbat skull eurosym esvect yfonts yhmath
esint mathdots trsym universa upgreek overrightarrow
chemarr chemarrow nath trfsigns mathtools phaistos arcs
vietnam t4phonet holtpolt semtrans dictsym extarrows
protosem harmony hieroglf cclicenses mathdesign arev
MnSymbol cmll extpfeil keystroke fge turnstile simpsons
epsdice feyn universal staves igo colonequals shuffle fourier
dozenal pmboxdraw pigpen clock teubner linearA linearb
cypriot sarabian china2e harpoon steinmetz milstd recycle
DotArrow ushort hhcount ogonek combelow accents
nicefrac bm mathrsfs chancery calligra bbold mbboard
dsfont bbm
none

Packages omitted:

Table 332: Package versions used in the preparation of this document
Name

Date

textcomp
latexsym

2005/09/27
1998/08/17

(continued on next page)

119

(continued from previous page)

Name

Date

amssymb
stmaryrd
euscript
wasysym
pifont
manfnt
bbding
undertilde
ifsym
tipa
tipx
wsuipa
metre
txfonts
mathabx
skak
ascii
dingbat
skull
eurosym
yfonts
mathdots
trsym
universa
upgreek
chemarr
mathtools
phaistos
arcs
t4phonet
semtrans
dictsym
extarrows
protosem
harmony
hieroglf
cclicenses
arev
MnSymbol
extpfeil
keystroke
fge
turnstile
epsdice
feyn
universal
colonequals
shuffle
pmboxdraw
pigpen
clock
teubner

2002/01/22
1994/03/03
2001/10/01
2003/10/30
2005/04/12
1999/07/01
1999/04/15
2000/08/08
2000/04/18
2002/08/08
2003/01/01
1994/07/16
2001/12/05
2008/01/22
2003/07/29
2008/10/09
2006/05/30
2001/04/27
2002/01/23
1998/08/06
2003/01/08
2006/03/16
2000/06/25
98/08/01
2003/02/12
2006/02/20
2008/08/01
2004/04/23
2004/05/09
2004/06/01
1998/02/10
2004/07/26
2008/05/15
2005/03/18
2007/05/03
2000/09/23
2005/05/20
2005/06/14
2007/01/21
2006/07/27
2003/08/15
2007/06/03
2007/06/23
2007/02/15
2008/02/29
97/12/24
2006/08/01
2008/10/27
2006/05/03
2008/12/07
2001/04/10
2008/02/10

(continued on next page)

120

(continued from previous page)

8.9

Name

Date

linearA
linearb
cypriot
sarabian
china2e
harpoon
steinmetz
DotArrow
ushort
hhcount
ogonek
combelow
accents
nicefrac
bm
calligra

2006/03/13
2005/06/22
1999/06/20
2005/11/12
1997/06/01
1994/11/02
2009/06/14
2007/02/12
2001/06/13
1995/03/31
95/07/17
2009/08/23
2006/05/12
1998/08/04
2004/02/26
1996/07/18

Copyright and license

The Comprehensive LATEX Symbol List
Copyright © 2009, Scott Pakin
This work may be distributed and/or modified under the conditions of the LATEX Project Public License, either
version 1.3c of this license or (at your option) any later version. The latest version of this license is in
http://www.latex-project.org/lppl.txt
and version 1.3c or later is part of all distributions of LATEX version 2006/05/20 or later.
This work has the LPPL maintenance status “maintained”.
The current maintainer of this work is Scott Pakin.

121

References
[AMS99] American Mathematical Society. User’s Guide for the amsmath Package (Version 2.0), December 13,
1999. Available from ftp://ftp.ams.org/pub/tex/doc/amsmath/amsldoc.pdf.
[Ber01]

Karl Berry. Fontname: Filenames for TEX fonts, June 2001. Available from http://www.ctan.org/
tex-archive/info/fontname.

[Che97]

Raymond Chen. A METAFONT of ‘Simpsons’ characters. Baskerville, 4(4):19, September
1997. ISSN 1354-5930. Available from http://tug.ctan.org/usergrps/uktug/baskervi/4 4/
bask4 4.ps.

[Dow00] Michael Downes. Short math guide for LATEX, July 19, 2000. Version 1.07. Available from http://
www.ams.org/tex/short-math-guide.html.
[Gib97]

Jeremy Gibbons. Hey—it works! TUGboat, 18(2):75–78, June 1997. Available from http://
www.tug.org/TUGboat/Articles/tb18-2/tb55works.pdf.

[Knu86a] Donald E. Knuth. The TEXbook, volume A of Computers and Typesetting. Addison-Wesley, Reading,
MA, USA, 1986.
[Knu86b] Donald E. Knuth. The METAFONTbook, volume C of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986.
[Lam86] Leslie Lamport. LATEX: A document preparation system. Addison-Wesley, Reading, MA, USA, 1986.
[LAT98]

LATEX3 Project Team. A new math accent. LATEX News. Issue 9, June 1998. Available from
http://www.ctan.org/tex-archive/macros/latex/doc/ltnews09.pdf (also included in many TEX
distributions).

[LAT00]

LATEX3 Project Team. LATEX 2ε font selection, January 30, 2000. Available from http://
www.ctan.org/tex-archive/macros/latex/doc/fntguide.ps (also included in many TEX distributions).

122

Index
If you’re having trouble locating a symbol, try looking under “T” for “\text. . .”. Many text-mode commands begin
with that prefix. Also, accents are shown over/under a gray box (e.g., “ á ” for “\’”).
Some symbol entries appear to be listed repeatedly. This happens when multiple packages define identical (or nearly
identical) glyphs with the same symbol name.17

\" (ä)
\# (#)
\$ ($)
\% (%)
\& (&)
\’ (á)
( (() .

..
.
..
.
.
..
..

Symbols
........
........
........
........
........
........
........

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

. . . 14
9, 114
9, 114
9, 114
9, 114
. . . 14
. . . 54

( (() . . . . . . . . . . . . . . . . . . 55
) ()) . . . . . . . . . . . . . . . . . . 54
) ()) . . . . . . . . . . . . . . . . . . 55
* (*) .
\, . . .
\- (-)
\. (ȧ)
/ (/) .

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

. . . . 23
. . . 113
115, 116
. . . . 14
. . . . 54

/ (/) . . . . . . . . . . . . . . . . . 55
\:
\;

( ..) . . . . . . . . . . . . . . . . . 64
.
( ..) . . . . . . . . . . . . . . . . . 64

< (⟨) . . .
..
\? ( ..) . .
[ ([) . . .
⎡⎢
[ ( ⎢⎢⎢) . .
\\ .⎢⎣. . . .
] (]) . . .
⎤⎥
] ( ⎥⎥⎥) . .
⎥⎦ . .
\^ (â)
\^{} (ˆ)
\| (k) . .
\| (k) . .
\| (a
¿) . .
\= (ā) . .
\={} (¯)
RR
RR
| ( RRR) . .
| (|) . . .
\_ ( ) . .
\{ ({) . .
\} (}) . .
\‘ (à) . .
\~ (ã) . .
\~{} (˜)

. . . . . . . . . . . . . . . 55
. . . . . . . . . . . . . . . 64
. . . . . . . . . . . . . . . 54
. . . . . . . . . . . . . . . 55
. . . . . . . . . . . . . . 104
. . . . . . . . . . . . . . . 54
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

. . . . . . . . 55
30, 54, 56, 57
. . . . . 9, 115
. . . 9, 54, 115
. . . 9, 54, 115
. . . . . . . . 14
. . . . . . . . 14
. . . . . 9, 115

A
a (esvect package option)
\a (×) . . . . . . . . . . . . . .
\AA (Å) . . . . . . . . . . . . .
\aa (å) . . . . . . . . . . . . .
17 This

. . . 55
. . . 14
9, 115
. . . 54
54, 56
. . . 14
. . . 14
. . 115

.
.
.
.

.
.
.
.

.
.
.
.

61
95
10
10

\AAaleph (A) . . . . . . . . . . . 81
\AAayin (O) . . . . . . . . . . . . 81
\AAbeth (B) . . . . . . . . . . . . 81

==

\AAcht (ˇ “ ˇ “ ) . . . . . . . . . . . . . 89
\AAdaleth (D) . . . . . . . . . . . 81
\AAhe (E) . . . . . . . . . . . . . . 81
\AAhelmet (V) . . . . . . . . . . 81
\AAheth (h) . . . . . . . . . . . . 81
\AAkaph (K) . . . . . . . . . . . . 81
\AAlamed (L) . . . . . . . . . . . 81
\Aaleph (a) . . . . . . . . . . . . 81
\AApe (P) . . . . . . . . . . . . . . 81
\AAqoph (Q) . . . . . . . . . . . . 81
\AAresh (R) . . . . . . . . . . . . 81
\AAsade (X) . . . . . . . . . . . . 81
\Aayin (o) . . . . . . . . . . . . . 81
\AAyod (Y) . . . . . . . . . . . . . 81
\Abeth (b) . . . . . . . . . . . . . 81
absolute value . see \lvert and
\rvert
abzüglich . . see \textdiscount
\AC (:) . . . . . . . . . . . . . . . . 70
\acarc . . . . . . . . . . . . . . . . 16
\acbar . . . . . . . . . . . . . . . . 16
accents . . 14–18, 57–61, 71, 89,
107–109
acute (á) . . . . . . 14–18, 57
any character as . . . . . 107
a) . . . . . 14–17, 59, 60
arc (
breve (ă) . . . . . . 14–18, 57
caron (ǎ) . . . 14, 18, 57, 60
cedilla (¸) . . . . . . . . . . 14
circumflex (â) 14–16, 57, 59,
60
comma-below (a,) . . . . . 17
diæresis (ä)
14, 17, 18, 57,
68
dot (ȧ or . ) . . . . 14–16, 57
double acute (a̋) . . . 14, 18
extensible . . . . 59–61, 63,
108–109
grave (à) . . . . . . 14–18, 57
háček . . see accents, caron
hook (ả) . . . . . . . . . . . 14
Hungarian umlaut . . . see
accents, double acute
kroužek . . see accents, ring
macron (ā) . 14, 17, 18, 57,
59, 60
multiple per character 15–16,
107
ogonek ( ˛) . . . . . . . 14–17
ring (å) . 14–16, 18, 57, 58

occurs frequently between amssymb and mathabx, for example.

123

Romanian comma-belo accent . . . . . . . see accents,
comma-below
trema see accents, diæresis
umlaut see accents, diæresis
accents (package) . 58, 107, 119,
121
\accentset . . . . . . . . . . . . 107
\Acht (ˇ “( )== . . . . . . . . . . . . . . 89

\AchtBL ( ˇ “ )== . . . . . . . . . . . . 89

\AchtBR ( ˇ “ ) . . . . . . . . . . . . 89
\ACK (␆) . . . . . . . . . . . . . . . 72
\acontraction . . . . . . . . . 109
\AcPa (? ) . . . . . . . . . . . . . . 89
\actuarial ( ) . . . . . . . . . 108
actuarial symbols . . . . . . . 108
\acute (´) . . . . . . . . . . . . . 57
acute (á) . . . . . . . . see accents
\acutus (á) . . . . . . . . . . . . . 17
\Adaleth (d) . . . . . . . . . . . 81
adeles (A) . see alphabets, math
adjoint (†) . . . . . . . . . see \dag
Adobe Acrobat . . . . . . . . . 112
.
\adots ( . . ) . . . . . . . . 64, 107
advancing . see \textadvancing
\AE (Æ) . . . . . . . . . . . . . . . 10
\ae (æ) . . . . . . . . . . . . . . . . 10
\aeolicbii (Ι) . . . . . . . . . . 95
\aeolicbiii (Θ) . . . . . . . . 95
\aeolicbiv (Κ) . . . . . . . . 95
\agemO (0) . . . . . . . . . . . . . 66
\Agimel (g) . . . . . . . . . . . . 81
\Ahe (e) . . . . . . . . . . . . . . . 81
\Ahelmet (v) . . . . . . . . . . . 81
\Aheth (H) . . . . . . . . . . . . . 81
\ain (s) . . . . . . . . . . . . . . . . 18
\Akaph (k) . . . . . . . . . . . . . 81
\Alad (}) . . . . . . . . . . . . . . 57
\alad (}) . . . . . . . . . . . . . . 57
\Alamed (l) . . . . . . . . . . . . 81
\Alas ({) . . . . . . . . . . . . . . 57
\alas ({) . . . . . . . . . . . . . . 57
\aldine (o) . . . . . . . . . . . . 78
\aldineleft (m) . . . . . . . . . 78
\aldineright (n) . . . . . . . . 78
\aldinesmall (j) . . . . . . . . 78
\aleph (ℵ) . . . . . . . . . . 51, 65
\aleph (ℵ) . . . . . . . . . . . . . 51
\Alif (-) . . . . . . . . . . . . . . . 14
\alpha (α) . . . . . . . . . . . . . 50
alphabets
African . . . . . . . . . . . . 10

Cypriot . . . . . . . . . . . . 86
Cyrillic . . . . . . . . . . . 103
Greek . . . . . 50, 51, 68, 87
Hebrew . . . . . . . . . 51, 68
hieroglyphic . . . . . . . . . 82
Linear A . . . . . . . . . . . 82
Linear B . . . . . . . . . . . 85
math . . . . . . . . . . . . . . 68
phonetic . . . . . . . . 11–14
proto-Semitic . . . . . . . . 81
South Arabian . . . . . . . 87
Vietnamese . . . . . . . . . 10
\alphaup (α) . . . . . . . . . . . . 50
alpine symbols . . . . . . . . . . . 91
\Alt ( Alt ) . . . . . . . . . . . . 72
alternative denial . see \uparrow
and |
\AltGr ( AltGr ) . . . . . . . . . 72
\amalg (q) . . . . . . . . . . . . . 22
\amalg (∐) . . . . . . . . . . . . . 23
\Amem (m) . . . . . . . . . . . . . . 81
ampersand . . . . . . . . . . see \&
AMS . 8, 10, 22, 26, 30, 31, 36,
38, 39, 41, 49–54, 58, 59, 61,
64–66, 69, 100, 118
amsbsy (package) . . . . . . . . 113
amsfonts (package) 22, 30, 36, 41,
65, 68
amsmath (package) . . 8, 49, 58,
104, 112
amssymb (package) 8, 22, 30, 36,
41, 58, 65, 68, 87, 119, 120,
123
amstext (package) . . . . 105, 106
\Anaclasis (÷) . . . . . . . . . . 95
\anaclasis (÷) . . . . . . . . . . 95
\anceps (Ξ) . . . . . . . . . . . . . 95
\ancepsdbrevis (Ζ) . . . . . . . 95

O

\anchor ( ) . . . . . . . . . . . 80
ancient-language symbols 81–87
and . . . . . . . . . . . . . see \wedge
AND gates . . . . . . . . . . . . . 73
\ANDd () . . . . . . . . . . . 73
\ANDl () . . . . . . . . . . 73
\ANDr () . . . . . . . . . . 73
\ANDu () .
\angle (∠) . . .
\angle (6 ) . . .
\angle (∠) . . .
angle notation .
angles . . . . . . .
\Anglesign (W)
Ångström unit
math mode
text mode

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.

. . 73
. . 66
. . 65
. . 66
. . 70
65–67
. . . 67

see \mathring
. . . . . . see \AA

\Angud (i) . . . . . . . . . . . . . . 57
\angud (i) . . . . . . . . . . . . . . 57
angular minutes . . . . see \prime
angular seconds . . . see \second
\Angus (h) . . . . . . . . . . . . . . 57
\angus (h) . . . . . . . . . . . . . . 57
animals . . . . . . . . . . . 81, 82, 86
\Ankh (ˆ) . . . . . . . . . . . . . . 90
annuity symbols . . . . . . . . 108
\Antidiple (<) . . . . . . . . . . 95
\antidiple (<) . . . . . . . . . . 95
· ) . . . . . . . . . 95
\Antidiple* (<
·
·
\antidiple* (<
· ) . . . . . . . . . 95
\antilabe (.. .. ) . . . . . . . . . . 64
\Antisigma (⊃) . . . . . . . . . . 95
\antisigma (⊃) . . . . . . . . . . 95
\Anun (n) . . . . . . . . . . . . . . 81
\Ape (p) . . . . . . . . . . . . . . . 81
APL
modifiers . . . . . . . . . . . 71
symbols . . . . . . . . . . . . 71
\APLbox (~) . . . . . . . . . . . . 71
\APLcirc (◦) . . . . . . . . . . . . 71
\APLcomment () . . . . . . . . . 71
\APLdown (F) . . . . . . . . . . . 71
\APLdownarrowbox (o) . . . . 71
\APLinput (}) . . . . . . . . . . 71
\APLinv (÷
~) . . . . . . . . . . . . 71
\APLleftarrowbox (p) . . . . 71
\APLlog () . . . . . . . . . . . . 71
\APLminus (−) . . . . . . . . . . 71
\APLnot (∼) . . . . . . . . . . . . . 71
\APLrightarrowbox (q) . . . . 71
\APLstar (E) . . . . . . . . . . . 71
\APLup ( ) . . . . . . . . . . . . . 71
\APLuparrowbox (n) . . . . . . 71
\APLvert ( | ) . . . . . . . . . . . . 71
\apprge (?) . . . . . . . . . . . . 38
\apprle (>) . . . . . . . . . . . . 38
\approx (≈) . . . . . . . . . . . . 30
\approx (≈) . . . . . . . . . . . . . 32
\approxcolon (≈:) . . . . . . . 36
\approxcoloncolon (≈::) . . . 36
\approxeq (u) . . . . . . . . . . 30
\approxeq (≊) . . . . . . . . . . . 32
\Aqoph (q) . . . . . . . . . . . . . 81
\Aquarius (ê) . . . . . . . . . . 71
\aquarius (e) . . . . . . . . . . 71
\AR ( ) . . . . . . . . . . . . . . . 70
ar (package) . . . . . . . . 70, 119
arc (
a) . . . . . . . . . see accents
\arccos (arccos) . . . . . . . . . 49
arcminutes . . . . . . . see \prime
arcs (package) . . . . 17, 119, 120
arcseconds . . . . . . . see \second
\arcsin (arcsin) . . . . . . . . . 49
\arctan (arctan) . . . . . . . . . 49
\Aresh (r) . . . . . . . . . . . . . 81
arev (package) . 67, 88, 119, 120
\arg (arg) . . . . . . . . . . . . . . 49
\Aries (P) . . . . . . . . . . . . . 71
\Aries (à) . . . . . . . . . . . . . 71
\aries () . . . . . . . . . . . . . 71

A

124

y
{
z
w
x

\ArrowBoldDownRight ( ) . 75
\ArrowBoldRightCircled ( ) 75
\ArrowBoldRightShort ( ) . . 75
\ArrowBoldRightStrobe ( ) 75
\ArrowBoldUpRight ( ) . . . 75
\Arrownot (Y) . . . . . . . . . . . . 48
\arrownot (X) . . . . . . . . . . . . 48
arrows 41–43, 47, 61–63, 72, 75,
81, 86, 90, 103
diagonal, for reducing subexpressions . . . . . . . . . . 59
dotted . . . . . . . . . . . . . 63
double-headed, diagonal 106
extensible . . . . . . . 59–63
fletched . . . . . . . . . 47, 75
negated w. . . . . . . 41, 42, 44
\Arrowvert (w) . . . . . . . . . 54
X
X
X
X
\Arrowvert (X
X
X) . . . . . . . . . 55
\arrowvert () . . . . . . . . . . 54
RR
RR
\arrowvert ( RRR) . . . . . . . . . . 55
Arseneau, Donald
104, 106–108
\Asade (x) . . . . . . . . . . . . . 81
\Asamekh (s) . . . . . . . . . . . 81
ASCII . . 8, 10, 72, 100, 114–115,
117, 119
table . . . . . . . . . . . . . 114
ascii (package) 72, 115, 119, 120
\ascnode () . . . . . . . . . . . 71
\Ashin (S) . . . . . . . . . . . . . 81
aspect ratio . . . . . . . . . . . . . 70
\ast () . . . . . . . . . . . . . . . 23
\ast (∗) . . . . . . . . . . . . . . . 22
\ast (∗) . . . . . . . . . . . . . . . 23
\Asteriscus (×
····) . . . . . . . . . 95
\asteriscus (×
····) . . . . . . . . . 95
\Asterisk () . . . . . . . . . . 23
\Asterisk ( ) . . . . . . . . . . 78
\asterisk () . . . . . . . . . . . 23
\AsteriskBold ( ) . . . . . . . 78
\AsteriskCenterOpen ( ) . . 78
\AsteriskRoundedEnds ( ) . 78
asterisks . . . . . . . . . . . . 23, 78
\AsteriskThin ( ) . . . . . . . 78
\AsteriskThinCenterOpen ( )
. . . . . . . . . 78
\asterism (**
* ) . . . . . . . . . 104
astrological symbols . . . . . . . 71
astronomical symbols . . . 71, 98
\astrosun ( ) . . . . . . . . . . 71
\asymp () . . . . . . . . . . . . . 30
\asymp (≍) . . . . . . . . . . . . . 48
\atan (atan) . . . . . . . . . . . 113
\ataribox (m) . . . . . . . . . . . 88
\Atav (t) . . . . . . . . . . . . . . 81
\Ateth (T) . . . . . . . . . . . . . 81
\AtForty (Ø) . . . . . . . . . . 90
\AtNinetyFive (Ó) . . . . . . 90
atomic math objects . . 49, 113
\AtSixty (Õ) . . . . . . . . . . 90

N

A
C

B
X

D

\autoleftarrow (DGGGGG) . . . 62
\autoleftrightharpoons
GG )
(E
GGGGGC

. . . . . . . . . . . 62

\autorightarrow (GGGGGA)

. . 62

\autorightleftharpoons
GGGGGB
(F
GG )
\Avav (w) . .
average . . . .
\Ayn (,) . . .
\Ayod (y) . .
\Azayin (z)

. . . . . . . . . . . 62
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

B
\B . . . . . . . . . . . . . . . . .
\B (´) . . . . . . . . . . . . . .
˘
b (esvect package option)
\b (a) . . . . . . . . . . . . . .
¯
\b ( ) . . . . . . . . . . . . . .
˘
\Ba (a) . . . . . . . . . . . .
babel (package) . . . . . . .
\babygamma (!) . . . . . . .
\backapprox () . . . . . .
\backapproxeq () . . . .
\backcong (≌) . . . . . . . .
\backepsilon () . . . . .
\backeqsim ( ) . . . . . . .
\backneg (⌐) . . . . . . . . .
\backprime (8) . . . . . . .
\backprime (‵) . . . . . . .
\backsim (v) . . . . . . . .
\backsim (∽) . . . . . . . . .
\backsimeq (w) . . . . . .
\backsimeq (⋍) . . . . . . .
\backslash (\) . . . . . . .
\backslash (/)

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

81
21
14
81
81

.
.
.
.
.
.

..
..
..
..
..
..
50,
..
..
..
..
..
..
..
..
..
..
..
..
..
54,

10
95
61
14
95
85
87
13
32
32
32
30
32
66
66
66
30
32
30
32
65

.
.
.
.
.
.
.
.
.
.
.
.
.

. . . . . . . . . 55

\backslashdiv () . . . . . . . 23
\backtriplesim () . . . . . . . 32
\Baii (;) . . . . . . . . . . . . . 85
\Baiii (<) . . . . . . . . . . . . 85
banana brackets . . . . . . . . . . .
. see \llparenthesis and
\rrparenthesis
\banceps (Ψ) . . . . . . . . . . . . 95
\bar (¯) . . . . . . . . . . . . . . . 57
\barb () . . . . . . . . . . . . . . 13
\barbbrevis (θ) . . . . . . . . 95
\barbrevis (ι) . . . . . . . . . . 95
\barcirc (−
◦ ) . . . . . . . . . . 104
\bard () . . . . . . . . . . . . . . 13
\bari (') . . . . . . . . . . . . . . . 13
\barin (V) . . . . . . . . . . . . . 52
\barj (j) . . . . . . . . . . . . . . . 13
\barl (.) . . . . . . . . . . . . . . . 13
\barlambda () . . . . . . . . . . 13
\barleftharpoon (Þ) . . . . . 43
\baro ( ) . . . . . . . . . . . . . . 22
\baro ( vs. <) . . . . . . . . . 101

\baro (<) . . . . . . . . . .
\barp (A) . . . . . . . . . .
barred letters . . . . . . .
\barrightharpoon (ß)
\barsci (+) . . . . . . . . .
\barscu (X) . . . . . . . .



\Bart (
)
\baru (T) . . . . .
\barwedge (X) .
\barwedge (Z) . .
base-twelve digits
\Bat (ý) . . . . . .
\Bau (=) . . . . .
\bauarrow ( ) .
\baucircle ( ) .
\baucircle ( )
\baucross ( ) .
\baudash ( ) . .
\baueclipse ( )
\bauequal ( ) .
\bauface ( ) . .
\bauforms ( ) .







„



.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

. 13
. 13
104
. 43
. 13
. 13

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

96
13
23
22
65
90
85
75
80
80
77
90
80
90
90
90

\bauforms (
) . . . . . . . . . 90
\bauhead ( ) . . . . . . . . . . . 90



\bauhead (
) . . . . . . . . . . 90
\bauhole ( ) . . . . . . . . . . . 80
\bauplus ( ) . . . . . . . . . . . 90
\baupunct ( ) . . . . . . . . . . 80
\bauquarter ( ) . . . . . . . . . 90
\bauquestion ( ) . . . . . . . . 90
\bausquare ( ) . . . . . . . . . . 80
\bausquare ( ) . . . . . . . . . 80
\bautriangle ( ) . . . . . . . . 80
\bautriangle ( ) . . . . . . . . 80
\bauwhitearrow ( ) . . . . . . 75
\bauwindow ( ) . . . . . . . . . . 90
\BB ( ´) . . . . . . . . . . . . . . . . 95
˘˘
\Bb (´ ) . . . . . . . . . . . . . . . . 95
˘˘
\bB ( ´) . . . . . . . . . . . . . . . . 95
˘˘
\bb ( ) . . . . . . . . . . . . . . . . 95
˘˘
\bba (˘×˘) . . . . . . . . . . . . . . . 95
\bbalpha ( ) . . . . . . . . . . . . 68
\bbar (b̄) . . . . . . . . . . . . . 104
\bbb (˘˘) . . . . . . . . . . . . . . . 95
˘
\bbbeta ( ) . . . . . . . . . . . . . 68
\Bbbk (k) . . . . . . . . . . . . . . 52
bbding (package) 75–78, 80, 101,
119, 120
\bbdollar ($) . . . . . . . . . . . 68
\bbetter (g) . . . . . . . . . . . 93
\bbeuro (û) . . . . . . . . . . . . 68
\bbfinalnun (Ï) . . . . . . . . . 68
\bbgamma ( ) . . . . . . . . . . . . 68
bbgreekl (mathbbol package option) . . . . . . . . . . . . . 68
\BBm ( ´ ) . . . . . . . . . . . . . . 95
˘¯˘) . . . . . . . . . . . . . . 95
\Bbm (¯
˘´˘) . . . . . . . . . . . . . . 95
\bBm (¯¯
¯˘¯˘´
bbm (package)
. . . . . . . 68, 119



†









125

\bbm ( ) . . . . . . . . . . . . . . 95
˘˘ ) . . . . . . . . . . . . . . 95
\bbmb ¯(¯
¯˘˘¯˘
\bbmx ( ¯¯) . . . . . . . . . . . . . 95
¯˘˘¯˘(š) . . . . . . . . . . . 68
\bbnabla
bbold (package) . . . . . . 68, 119
\bbpe (Ô) . . . . . . . . . . . . . . 68
\bbqof (×) . . . . . . . . . . . . . 68
\bbrevis (ς) . . . . . . . . . . . 95
\bbslash ( ) . . . . . . . . . . . 22
\bbyod (É) . . . . . . . . . . . . . . 68
\bcontraction . . . . . . . . . 109
\Bda (d) . . . . . . . . . . . . . . . 85
\Bde (D) . . . . . . . . . . . . . . 85
\bdecisive (i) . . . . . . . . . 93
\Bdi (f) . . . . . . . . . . . . . . . 85
\Bdo (g) . . . . . . . . . . . . . . . 85
\Bdu (x) . . . . . . . . . . . . . . . 85
\Bdwe (>) . . . . . . . . . . . . . 85
\Bdwo (?) . . . . . . . . . . . . . 85
\Be (e) . . . . . . . . . . . . . . . 85
\Beam (") . . . . . . . . . . . . . . 73
\Bearing (#) . . . . . . . . . . . 73
\because (∵) . . . . . . . . 30, 64
\because (∵) . . . . . . . . . . . . 64
\BEL (␇) . . . . . . . . . . . . . . . 72
\bell ( ) . . . . . . . . . . . . . . 88
Berry, Karl . . . . . . . . . . . . 122
\beta (β) . . . . . . . . . . . . . . 50
\betaup (β) . . . . . . . . . . . . . 50
\beth (i) . . . . . . . . . . . . . . 51
\beth (ℶ) . . . . . . . . . . . . . . 51
\betteris (b) . . . . . . . . . . 93
\between ( ) . . . . . . . . . . . . 32
\between (G) . . . . . . . . . . . . 30
\between (”) . . . . . . . . . . . 32
\Bi (i) . .”. . . . . . . . . . . . . 85
\bibridge (a
”) . . . . . . . . . . . 16
biconditional . . . . . . . . . . . . . .
. see \leftrightarrow and
\equiv
\Bicycle (®) . . . . . . . . . . . 90
\Big . . . . . . . . . . . . . . 100, 102
\big . . . . . . . . . . . . . . 100, 102
big O (O) . see alphabets, math
\bigast () . . . . . . . . . . . . 23

{

\bigbosonloop ()

[

. . . . . . . . 74

\bigbosonloopA ()



. . . . . . . 74

\bigbosonloopV
() . . . .
e
\bigbox ( ) . . . .Ö
.....
\bigboxasterisk ( Þ
) ..
\bigboxbackslash
(
) .
Û
\bigboxbot ( Õ
) ......
\bigboxcirc ( ) . .×
...
\bigboxcoasterisk
(
)
Ó
\bigboxdiv (Ô) . . . . . .
\bigboxdot ( Ø
) ......
\bigboxleft ( Ñ
) .....
\bigboxminus Ð
( ) ....
\bigboxplus ( ) . . . . .

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

74
26
26
27
27
27
27
27
27
27
27
27

Ù

\bigboxright (Ý) . . . . . . . 27
\bigboxslash (Ò) . . . . . . . 26
\bigboxtimesÚ( ) . . . . . . . 26
\bigboxtop ( ) . . .ß
. . . . . . 26
\bigboxtriangleup
(
) . . . 26
Ü
\bigboxvoid
(
)
.
.
.
. . . . . 27
T
\bigcap ( ) . . . . . . . . . . . . 25
\bigcap (⋂) . . . . . . . . . . . . 29
\bigcapdot (⩀) . . . . . . . . . . 29
\bigcapplus ($) . . . . . . . . . 29
\bigcirc ( ) . . . . . . . . . . . 22
\bigcirc (◯) . . . . . . . . . . . 79
\BigCircle ( ) . . . . . . . . . 79
\bigcircle (◯) . . . . . . . . . 29
\bigcoast () . . .’. . . . . . . 23
\bigcomplementop ( ) . . . . . 27
\BigCrossS( ) . . . . . . . . . . 79
\bigcup ( ) . . . . . . . . . . . . 25
\bigcup (⋃) . . . . . . . . . . . . 29
\bigcupdot (⊍) . . . . . . . . . . 29
\bigcupplus (⊎) . . . . . . . . 29
\bigcupplus (⊎)
. . . . . . . . . 29
œ
\bigcurlyvee (b ) . . . . . . . . 26
\bigcurlyvee ( ) . . . . . . . . 26
\bigcurlyvee (⋎) . . . . . . . . 29
\bigcurlyveedot ›
() . . . . . 29
\bigcurlywedge (c ) . . . . . . 26
\bigcurlywedge ( ) . . . . . . 26
\bigcurlywedge (⋏) . . . . . . 29
\bigcurlywedgedot () . . . . 29
\BigDiamondshape ( ) . . . . 79
\bigdoublecurlyvee () . . . 29
\bigdoublecurlywedge () . 29
\bigdoublevee (⩔) . . . . . . . 29
\bigdoublewedge (⩕) . . . . . 29
\Bigg . . . . . . . . . . . . . 100, 102
\bigg . . . . . . . . . . . . . 100, 102
\BigHBar ( ) . . g. . . . . . . . . 79
\biginterleave ( ) . . . . . . 26
\BigLowerDiamond ( ) . . . . 79
\bignplus ( ) . . . . . . . . . . 26
\bigoast (⊛) . Æ
. . . . . . . . . . 29
\bigoasterisk ( Î
) . . . . . . . 27
\bigobackslash ( ) . . . . . . 27
\bigobackslash
(⦸) . . . . . . 29
Ë
\bigobot ( Å
) . . . . . . . . . . . 27
\bigocirc ( ) . . . . . . . . . . 27
\bigocirc (⊚) . .Ç
. . . . . . . . 29
\bigocoasterisk
(
) . . . . . 27
Ã
\bigodiv (J) . . . . . . . . . . . 27
\bigodot ( ) . . . . . . . . . . . 25
\bigodot (⊙)
. . . . . . . . . . . 29
È
\bigoleft ( Á
) . . . . . . . . . . 27
\bigominus ( ) . . . . . . . . . 27
\bigominus L
(⊖) . . . . . . . . . 29
\bigoplus ( ) . . . . . . . . . . 25
\bigoplus (⊕)
. . . . . . . . . . 29
É
\bigoright (Í) . . . . . . . . . 26
\bigoslash ( ) . . . . . . . . . 26
\bigoslash (⊘) . . . . . . . . . 29
\bigostar (⍟) . . . . . . . . . . 29

%

&



_

N

\bigotimes ( ) . . . . . . . . . 25
\bigotimesÊ(⊗) . . . . . . . . . 29
\bigotop ( ) . . . . . . . . . . . 26
\bigotriangle (F)Ï. . . . . . . 29
\bigotriangleup ( ) . . . . . 26
\bigovert (⦶)
. . . . . . . . . . 29
Ì
\bigovoid ( ) f . . . . . . . . . . 27
\bigparallel
˙ ( ) . . . . . . . . 26
\bigparr () . . . . . . . . . . . 30
\bigplus ( ) . . . . . . . . . . . 27
\bigplus (+) . . . . . . . . . . . 29
\BigRightDiamond
( ) . . . . 79
–
\bigsqcap ( ) . . . . . . . . . . 26

\bigsqcap ( ) . . . . . . . . . . 26
\bigsqcap (⊓) . . . . . . . . . . . 29
\bigsqcapdot (,) . . . . . . . . 29

\bigsqcapplus ( ) . . . . . . . 27
\bigsqcapplus
F (0) . . . . . . . 29
\bigsqcup ( ) . . . . . . . . . . 25
\bigsqcup (⊔) . . . . . . . . . . . 29
\bigsqcupdot (.) . . . . . . . . 29

\bigsqcupplus ( ) . . . . . . . 27
\bigsqcupplus (2) . . . . . . . 29
\BigSquare ( ˜) . . . . . . . . . 79
\bigsquplus ( ) . . . . . . . . . 27
\bigstar () . . . . . . . . . . . 23
\bigstar (F) . . . . . . . . . . . 66
\bigstar (☀)
. . . . . . . . . . . 79
‘
\bigtimes ( ) . . . . . . . . . . 27
\bigtimes (⨉) . . . . . . . . . . . 29
\BigTriangleDown (` ) . . . . 79
\bigtriangledown ( ) . `
. . . 26
\bigtriangledown (5 vs. ) 101
\bigtriangledown (5) . . . . 22
\bigtriangledown (▽) . . . . 40
\BigTriangleLeft ( ) . . . . 79
\BigTriangleRight ( ) . . . 79
\BigTriangleUp (a ) . . . . . . 79
\bigtriangleup ( ) . .a. . . . 26
\bigtriangleup (4 vs. )
101
\bigtriangleup (4) . . . . . . 22
\bigtriangleup
U (△) . . . . . . 40
\biguplus ( ) . . . . . . . . . . 25
\biguplus (⊎) . . . . . . . . . . 29
\bigvarstar () . . . . . . . . . 23
\BigVBar W
( ) . . . . . . . . . . . 79
\bigvee ( ) . . . . . . . . . . . . 25
\bigvee (⋁) . . . . . . . . . . . . 29
\bigveedot V
( ) . . . . . . . . . . 29
\bigwedge ( ) . . . . . . . . . . 25
\bigwedge (⋀) . . . . . . . . . . . 29
\bigwedgedot
˘ () . . . . . . . . 29
\bigwith ( ) . . . . . . . . . . . 30
\binampersand (N) . . . . . . . 22
binary operators . . . . . . 22–25
binary relations . . 30–32, 34–39,
47, 48
negated . . . . . . . . . 31–33
\bindnasrepma (O) . . . . . . . 22
\Biohazard (h) . . . . . . . . . 74
biological symbols . . . . . . . . 74

/

#

!



126

"
$

birds . . . . . . . . .
bishop . . . . . . . .
\bishoppair (a)
\Bja (j) . . . . . .
\Bje (J) . . . . . .
\Bjo (b) . . . . . .
\Bju (L) . . . . .
\Bka (k) . . . . .
\Bke (K) . . . . .
\Bki (c) . . . . .
\Bko (h) . . . . . .
\Bku (v) . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

a)
\BlackBishopOnWhite (b)

\BlackBishopOnBlack (

82
94
93
85
85
85
85
85
85
85
85
85
94

94
blackboard bold
see alphabets,
math
\blackdiamond ( ) . . . . . . . 23

Z) .
\BlackKingOnBlack (j) .
\BlackKingOnWhite (k) .
\BlackKnightOnBlack (m)
\BlackKnightOnWhite (n)

\BlackEmptySquare (

94
94
94
94

94
\blacklozenge () . . . . . . . 66
\blacklozenge (⧫) . . . . . . . 79

o) .
\BlackPawnOnWhite (p) .
\BlackQueenOnBlack (l)
\BlackQueenOnWhite (q)
\BlackRookOnBlack (s) .
\BlackRookOnWhite (r) .
\BlackPawnOnBlack (

\blacksmiley (-) . . . . . .
\blacksquare () . . . . . .
\blacksquare (∎) . . . . . .
\blackstone . . . . . . . . . .
\blacktriangle (N) . . . .
\blacktriangle (▲) . . . .
\blacktriangledown () .
\blacktriangledown (H) .
\blacktriangledown (▼) .
\blacktriangleleft (ž) .
\blacktriangleleft (J) .
\blacktriangleleft (◀) .
\blacktriangleright (Ÿ)
\blacktriangleright (I)
\blacktriangleright (▶)
\blacktriangleup (œ) . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

94
94
94
94
94
94
88
66
25
94
66
40
25
66
40
25
39
40
25
39
40
25

blank . . . . . . . see \textblank
\Bleech (Ë) . . . . . . . . . . . . 90
\blitza ( ) . . . . . . . . . 21, 48
\blitzb ( ) . . . . . . . . . . . . 48
\blitzc ( ) . . . . . . . . . . . . 48
\blitzd ( ) . . . . . . . . . . . . 48
\blitze ( ) . . . . . . . . . . . . 48
block-element symbols . . . . . 97
\Bm (´) . . . . . . . . . . . . . . . . 95
˘¯
bm (package)
. . . . 113, 119, 121
\bm . . . . . . . . . . . . . . . . . . 113
\bm ( ) . . . . . . . . . . . . . . . . 95
¯˘
\Bma (m) . . . . . . . . . . . . . . 85
\Bme (M) . . . . . . . . . . . . . . 85
\Bmi (y) . . . . . . . . . . . . . . 85
\Bmo (A) . . . . . . . . . . . . . . . 85
\bmod . . . . . . . . . . . . . . . . . 49
\Bmu (B) . . . . . . . . . . . . . . 85
\Bna (n) . . . . . . . . . . . . . . . 85
\BNc («) . . . . . . . . . . . . . . . 85
\BNcc (») . . . . . . . . . . . . . . 85
\BNccc (–) . . . . . . . . . . . . 85
\BNcd (—) . . . . . . . . . . . . . 85
\BNcm (ff) . . . . . . . . . . . 85
\BNd (‌) . . . . . . . . . . . . . 85
\BNdc (‰) . . . . . . . . . . . . 85
\BNdcc (ı) . . . . . . . . . . . 85
\BNdccc (ȷ) . . . . . . . . . . 85
\Bne (N) . . . . . . . . . . . . . . 85
\BNi (´) . . . . . . . . . . . . . . . 85
\Bni (C) . . . . . . . . . . . . . . . 85
\BNii (ˆ) . . . . . . . . . . . . . . 85
\BNiii (˜) . . . . . . . . . . . . . 85
\BNiv (¨) . . . . . . . . . . . . . . 85
\BNix (¯) . . . . . . . . . . . . . 85
\BNl (‹) . . . . . . . . . . . . . . 85
\BNlx (›) . . . . . . . . . . . . . 85
\BNlxx (“) . . . . . . . . . . . . 85
\BNlxxx (”) . . . . . . . . . . . 85
\BNm (fi) . . . . . . . . . . . . . . 85
\Bno (E) . . . . . . . . . . . . . . 85
\Bnu (F) . . . . . . . . . . . . . . . 85
\BNv (˝) . . . . . . . . . . . . . . . 85
\BNvi (˚) . . . . . . . . . . . . . . 85
\BNvii (ˇ) . . . . . . . . . . . . . 85
\BNviii (˘) . . . . . . . . . . . . 85
\Bnwa (@) . . . . . . . . . . . . . 85
\BNx (˙) . . . . . . . . . . . . . . . 85
\BNxc („) . . . . . . . . . . . . . 85
\BNxl (‚) . . . . . . . . . . . . . 85
\BNxx (¸) . . . . . . . . . . . . . . 85
\BNxxx (˛) . . . . . . . . . . . . . 85
\Bo (o) . . . . . . . . . . . . . . . 85
body-text symbols . . . . . . 9–20

bold symbols . . . . . . . . . . . 113
\boldmath . . . . . . . . . . . . . 113
\boldsymbol . . . . . . . . . . . 113
\bomb (L) . . . . . . . . . . . . . . 91
Boolean domain (B) . . . . . see
alphabets, math
Boolean logic gates . . . . . . . 73
born . . . . . . . . . see \textborn
bosons . . . . . . . . . . . . . . . . 74
\bot (⊥) . . . . . . . . . 21, 51, 105
\bot (–) . . . . . . . . . . . . . . . 52
\botdoteq () . . . . . . . . . . 32
\Bouquet (¥) . . . . . . . . . . . 90
\Bowtie (1) . . . . . . . . . . . . 88
\bowtie (./) . . . . . . . . . . . . 30
\bowtie (&) . . . . . . . . . 23, 24
\Box () . . . . . . . . . . . . . . . 65
\Box (2) . . . . . . . . . . . . . . . 66
\Box (◻) . . . . . . . . . . . . . . . 25
box-drawing symbols . . . . . . 97
\boxast (i) . . . . . . . . . . . . 22
\boxasterisk (f) . . . . . . . . 25
\boxbackslash (n) . . . . . . . 25
\boxbackslash (⧅) . . . . . . . 25
\boxbar (k) . . . . . . . . . . . . 22
\boxbot (k) . . . . . . . . . . . . 25
\boxbox () . . . . . . . . . . . . 22
\boxbox (⧈) . . . . . . . . . . . . 25
\boxbslash (j) . . . . . . . . . . 22
\boxcirc (e) . . . . . . . . . . . 25
\boxcircle () . . . . . . . . . . 22
\boxcoasterisk (g) . . . . . . 25
\boxdiv (c) . . . . . . . . . . . . 25
\boxdot (d) . . . . . . . . . . . . 25
\boxdot ( ) . . . . . . . . . . . . 22
\boxdot (⊡) . . . . . . . . . . . . 25
\boxdotLeft (‹) . . . . . . . . 42
\boxdotleft (ƒ) . . . . . . . . 42
\boxdotRight (Š) . . . . . . . 42
\boxdotright (‚) . . . . . . . 42
\boxempty () . . . . . . . . . . 22
\boxLeft (‰) . . . . . . . . . . 42
\boxleft (h) . . . . . . . . . . . 25
\boxleft () . . . . . . . . . . 42
\boxminus (a) . . . . . . . . . . 25
\boxminus ( ) . . . . . . . . . . 22
\boxminus (⊟) . . . . . . . . . . . 25
\boxplus (`) . . . . . . . . . . . 25
\boxplus () . . . . . . . . . . . 22
\boxplus (⊞) . . . . . . . . . . . . 25
\boxRight (ˆ) . . . . . . . . . 42
\boxright (i) . . . . . . . . . . 25
\boxright (€) . . . . . . . . . 42
\boxslash (m) . . . . . . . . . . 25
\boxslash (l) . . . . . . . . . . . 22
\boxslash (⧄) . . . . . . . . . . . 25
\boxtimes (b) . . . . . . . . . . 25
\boxtimes () . . . . . . . . . . 22
\boxtimes (⊠) . . . . . . . . . . . 25
\boxtop (j) . . . . . . . . . . . . 25
\boxtriangleup (o) . . . . . . 25
\boxvert (q) . . . . . . . . . . . . 25
\boxvoid (l) . . . . . . . . . . . 25

127

\boy (D) . . . . . . . .
\Bpa (p) . . . . . . . .
\Bpaiii ([) . . . . .
\BPamphora (Ž) . . .
\BParrow (ij) . . . .
\BPbarley (Ş) . . . .
\BPbilly (ť) . . . .
\BPboar (ľ) . . . . .
\BPbronze (Ű) . . .
\BPbull (ň) . . . . .
\BPcauldroni (đ)
\BPcauldronii (§)
\BPchariot (ÿ) .
\BPchassis (ź) .
\BPcloth (Ř) . . . .
\BPcow (ŋ) . . . . .
\BPcup (Ÿ) . . . . .
\Bpe (P) . . . . . . . .
\BPewe (š) . . . . .
\BPfoal (ě) . . . .
\BPgoat (ş) . . . . .
\BPgoblet (Ź) . . .
\BPgold (Ů) . . . . .
\BPhorse (ď) . . .
\Bpi (G) . . . . . . . .
\BPman (ă) . . . . . .
\BPnanny (ț) . . . .
\Bpo (H) . . . . . . . .
\BPolive (Ț) . . . .
\BPox (ń) . . . . . .
\BPpig (ĺ) . . . . .
\BPram (ś) . . . . .
\BPsheep (ř) . . . .
\BPsow (ł) . . . . .
\BPspear (¡) . . . .
\BPsword (ż) . . . . .
\BPtalent (Ď) . .
\Bpte (]) . . . . . .
\Bpu (I) . . . . . . . .
\Bpuii (\) . . . . .
\BPvola (Ĺ) . . . .
\BPvolb (Ľ) . . . . .
\BPvolcd (Ł) . . . .
\BPvolcf (Ń) . . . .
\BPwheat (Š) . . . .
\BPwheel (ž) . . . .
\BPwine (Ť) . . . . .
\BPwineiih (Ż) . .
\BPwineiiih (IJ) .
\BPwineivh (İ) . .
\BPwoman (ą) . . . .
\BPwool (Ś) . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

71
85
85
86
86
86
86
86
86
86
86
86
86
86
86
86
86
85
86
86
86
86
86
86
85
86
86
85
86
86
86
86
86
86
86
86
85
85
85
85
85
85
85
85
86
86
86
86
86
86
86
86

\BPwtc (Ć) . . . . . . . . . . . . 85
\BPwtd (Č)

. . . . . . . . . . . . . 85

\Bqa (q) . . . . . . . . . . . . . . 85
\Bqe (Q) . . . . . . . . . . . . . . 85
\Bqi (X) . . . . . . . . . . . . . . 85
\Bqo (8) . . . . . . . . . . . . . . . 85
\Bra (r) . . . . . .
bra . . . . . . . . . .
\braceld (z) . . .
\bracerd ({) . . .


\bracevert (
)
⎪
⎪
⎪
⎪
\bracevert ( ⎪
⎪
⎪)
brackets . . . . . .

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

. 85
. 54
109
109
. 54

. . . . . . . . . 55
. see delimiters

\Braii (^) . . . . . . . . . . . . . 85

\BUFr ()

. . . . . . . . . . . . 73

\BUFu () . . . . . . . . . . . . 73
\BUi (fl) . . . . . . . . . . . . . . . 86
\BUii (ffi) . . . . . . . . . . . . . . 86
\BUiii (ffl) . . . . . . . . . . . . 86
\BUiv (␣) . . . . . . . . . . . . . . 86
\BUix (%) . . . . . . . . . . . . . 86
\bullet (•) . . . . . . . . . . . . . 22
\bullet (●) . . . . . . . . . . . . . 23
bullseye . . . see \textbullseye
\Bumpedeq () . . . . . . . . . . 32
\bumpedeq () . . . . . . . . . . 32
\Bumpeq (m) . . . . . . . . . . . . 30
\Bumpeq (≎) . . . . . . . . . . . . . 33
\bumpeq (l) . . . . . . . . . . . . 30
\bumpeq (≏) . . . . . . . . . . . . . 33
\bupperhand (e) . . . . . . . . . 93

\Braiii (_) . . . . . . . . . . . . 85
braket (package) . . . . . . . . . 54
\Bre (R) . . . .
\Break ( Break
\breve (˘) . .
\breve (ă) . .
breve (ă) . . . .
\brevis (β) .

..
)
..
..
..
..

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.

...
...
...
...
see
....

. . . 85
. . . 72
. . . 57
. . . 17
accents
. . . 95

\Bri (O) . . . . . . . . . . . . . . . 85
\Bro (U) . . . . . . . . . . . . . . . 85
\Broii (‘) . . . . . . . . . . . . . 85
\brokenvert (|) . . . . . . . . . . 88
Bronger, Torsten . . . . . . . . 105
\Bru (V) . . . . . . . . . . . . . . . 85
\BS (␈) . . . . . . . . . . . . . . . . 72
\Bsa (s) . . . . . . . . . . . . . . . 85
\Bse (S) . . . . . . . . . . . . . . . 85
\BSEfree (n) . . . . . . . . . . . 74
\Bsi (Y) . . . . . . . . . . . . . . . 85
\Bso (1) . . . . . . . . . . . . . . . 85
\BSpace ( →−7 ) . . . . . . . . . 72
\Bsu (2) . . . . . . . . . . . . . . . 85
\Bswa ({) . . . . . . . . . . . . . . 85
\Bswi (|)

. . . . . . . . . . . . . 85

\Bta (t) . . . . . . . . . . . . . . . 85
\Btaii (})

. . . . . . . . . . . . 85

\Bte (T) . . . . . . . . . . . . . . . 85
\Bti (3) . . . . . . . . . . . . . . . 85
\Bto (4) . . . . . . . . . . . . . . . 85
\Btu (5) . . . . . . . . . . . . . . . 85
\Btwe (­) . . . . . . . . . . . . . . 86
\Btwo (~)
\Bu (u)

. . . . . . . . . . . . . 85

. . . . . . . . . . . . . . . 85

\BUFd () . . . . . . . . . . . . 73
buffers . . . . . . . . . . . . . . . . 73
\BUFl ()

. . . . . . . . . . . . 73

\Burns (
\BusWidth ( )
\BUv (!) . . . .
\BUvi (") . . .
\BUvii (#) .
\BUviii ($)
\BUx (&) . . .
\BUxi (’) . .
\BUxii (­) . .
\Bwa (w) . . . .
\Bwe (W) . . . .
\Bwi (6) . . . .
\Bwo (7) . . . .
\Bza (z) . . .
\Bze (Z) . . . .
\Bzo (9) . . . .

)
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

96
73
86
86
86
86
86
86
86
85
85
85
85
85
85
85

C
\C ( ) . . . . . . . . . . . . . . . . . 95
c (esvect package option) . . . 61
\c (a̧) . . . . . . . . . . . . . 14, 116
\c ( ) . . . . . . . . . . . . . . . . 95
\Ca (a) . . . . . . . . . . . . . . . 86
calligra (package) . . 68, 119, 121
Calligra (font) . . . . . . . . . . . 68
calrsfs (package) . . . . . . . . . 68
\CAN (␘) . . . . . . . . . . . . . . . 72
cancel (package) . . . . . . . . . 59
\Cancer (ã) . . . . . . . . . . . . 71
\cancer (_) . . . . . . . . . . . . 71
\Cap (e) . . . . . . . . . . . . . . . 22
\Cap (⋒) . . . . . . . . . . . . . . . 24
\cap (X) . . . . . . . . . . . . . . . 23
\cap (∩) . . . . . . . . . . . . . . . 22
\cap (∩) . . . . . . . . . . . . . . . 23
\capdot (⩀) . . . . . . . . . . . . 23
\capplus (?) . . . . . . . . . . . . 23
\Capricorn (é) . . . . . . . . . . 71

128

\capricornus (d) . . . . . . . . 71
\capturesymbol (X) . . . . . . 93
card suits . . . . . . . . . 65–67, 80
cardinality . . . . . . . see \aleph
care of (c/o) . . . . . . . . . . . . . 67
caret . . . . . . . . . . . . . . . see \^
Carlisle, David . . . . 1, 118, 119
caron (ǎ) . . . . . . . . see accents
carriage return . . . . 72, 80, 103
\carriagereturn ( ) . . . . . 80
Cartesian product . . see \times
castle . . . . . . . . . . . . . . . . . 94
\castlingchar (O) . . . . . . . 93
\castlinghyphen (-) . . . . . . 93
\catal (γ) . . . . . . . . . . . . . 95
\Catalexis (∧) . . . . . . . . . . 95
\catalexis (∧) . . . . . . . . . . 95
catamorphism . . . . . . . . . . . . .
. see \llparenthesis and
\rrparenthesis
\cb (a,) . . . . . . . . . . . . . . . . 17
\Cc ( ) . . . . . . . . . . . . . . . . 95
\cc ( CC ) . . . . . . . . . . . . . 19
\cc ( ) . . . . . . . . . . . . . . . 95
\ccby ( BY: ) . . . . . . . . . . . 19
\Ccc ( ) . . . . . . . . . . . . . . . 95
cclicenses (package) 19, 119, 120
\ccnc ( $ ) . . . . . . . . . . . 19
\ccnd ( = ) . . . . . . . . . . . 19
\ccsa (
) . . . . . . . . . . . . . 19
\cdot (·) . . . . . . . . . . . 22, 104
\cdot (⋅) . . . . . . . . . . . . 23, 64
\cdotp (·) . . . . . . . . . . . . . . 63
\cdotp (⋅) . . . . . . . . . . . . . . 64
\cdots (· · · ) . . . . . . . . . . . . 63
\Ce (e) . . . . . . . . . . . . . . . 86
Cedi . see \textcolonmonetary
cedilla (¸) . . . . . . . see accents
celestial bodies . . . . . . . 71, 98
\celsius (℃) . . . . . . . . . . . 70
\Celtcross (‡) . . . . . . . . . . 90
\cent (¢) . . . . . . . . . . . . . . 18
\centerdot ( ) . . . . . . . . . . 23
\centerdot () . . . . . . . . . . 22
centernot (package) . . . . . . 105
\centernot . . . . . . . . . . . . 105
centigrade . . . see \textcelsius
\centre (I) . . . . . . . . . . . . 93
cents . . . . . . . . . see \textcent
\CEsign (C) . . . . . . . . . . . . 74
\Cga (g) . . . . . . . . . . . . . . 86
chancery (package) . . . . . . . 119
\changenotsign . . . . . . . . . 32
\char . . . . 8, 103, 112, 115, 118
Charter (font) . . . . . . . . 18, 30
\check (ˇ) . . . . . . . . . . . . . 57
check marks . 10, 66, 77, 80, 88,
90, 101
\checked () . . . . . . . . . . . 88
\CheckedBox (2
) . . . . . . . . . 77
\Checkedbox (V) . . . . . . . . . 90
\Checkmark ( ) . . . . . . . . . 77

C

\

\BPwtb (Ą) . . . . . . . . . . . . . 85

C

\BPwta (Ă) . . . . . . . . . . . . . 85

!

\checkmark (X) . . . . . . . . . 10
\checkmark (✓) . . . . . . . . . 66
\checkmark (X vs. ) . . . . 101
\checkmark ( ) . . . . . . . . . 80
\CheckmarkBold ( ) . . . . . . 77
\checksymbol (+) . . . . . . . . 93
chemarr (package) . 62, 119, 120
chemarrow (package) 47, 62, 119
\chemarrow (A) . . . . . . . . . 47
Chen, Raymond . . . . . . . . 122
chess symbols . . . . . . . . 93, 94
\chesscomment (RR) . . . . . . 93
\chessetc (P) . . . . . . . . . . . 93
\chesssee (l) . . . . . . . . . . 93
\chi (χ) . . . . . . . . . . . . . . . 50
china2e (package) 19, 49, 68, 98,
119, 121
\chiup (χ) . . . . . . . . . . . . . . 50
\Ci (i) . . . . . . . . . . . . . . . 86
cipher symbols . . . . . . . . . . 98
\circ (◦) . . . . . . . . 22, 67, 105
\circ (○) . . . . . . . . . . . . . . 23
\circeq () . . . . . . . . . . . . 32
\circeq ($) . . . . . . . . . . . . 30
\circeq (≗) . . . . . . . . . . . . . 33
\CIRCLE ( ) . . . . . . . . . . . . 88
\Circle ( ) . . . . . . . . . . . . 79
\Circle (# vs. ) . . . . . . 101
\Circle (#) . . . . . . . . . . . . 88
\circlearrowleft (ö) . . . . 42
\circlearrowleft ( ) . . . . 41
\circlearrowleft (↺) . . . . 44
\circlearrowright (÷) . . . . 42
\circlearrowright () . . . 41
\circlearrowright (↻) . . . 44
circled numbers . . . . . . . 77, 94
\CircledA (ª) . . . . . . . . . . 90
\circledast (~) . . . . . . . . . 22
\circledast (⊛) . . . . . . . . . 25
\circledbar (V) . . . . . . . . . 23
\circledbslash (W) . . . . . . 23
\circledcirc (}) . . . . . . . . 22
\circledcirc (⊚) . . . . . . . . 25
\circleddash () . . . . . . . . 22
\circleddash (⊖) . . . . . . . . 25
\circleddot . . . . . . see \odot
\circleddotleft (”) . . . . 42
\circleddotright (“) . . . . 42
\circledgtr (S) . . . . . . . . . 31
\circledless (R) . . . . . . . . 31
\circledminus . . . see \ominus
\circledotleft . . . . . . . . see
\circleddotleft
\circledotright . . . . . . . see
\circleddotright
\circledplus . . . . . see \oplus
\circledR (r) . . . . . . . 10, 52
\circledS (s) . . . . . . . . . . 52
\circledslash . . . see \oslash
\circledtimes . . . see \otimes
\circledvee (U) . . . . . . . . . 23

D

5

D

"

5

\circledwedge (T) . . . . . . . 23
\circleleft (’) . . . . . . . . 42
\circleright (‘) . . . . . . . 42
circles . . . . . . . . . 79–80, 88, 94
\CircleShadow ( ) . . . . . . . 80
\CircleSolid ( ) . . . . . . . . 80
\Circpipe (›) . . . . . . . . . . 73
\circplus () . . . . . . . . . . 23
\Circsteel (•) . . . . . . . . . 73
circumflex (â) . . . . see accents
\circumflexus (ã) . . . . . . . 17
\Cja (j) . . . . . . . . . . . . . . . 86
\Cjo (b) . . . . . . . . . . . . . . 86
\Cka (k) . . . . . . . . . . . . . . . 86
\Cke (K) . . . . . . . . . . . . . . 86
\Cki (c) . . . . . . . . . . . . . . 86
\Cko (h) . . . . . . . . . . . . . . 86
\Cku (v) . . . . . . . . . . . . . . 86
\Cla (l) . . . . . . . . . . . . . . 86
\Cle (L) . . . . . . . . . . . . . . . 86
\CleaningA («) . . . . . . . . . . 90
\CleaningF (¾) . . . . . . . . . . 90
\CleaningFF (¿) . . . . . . . . . 90
\CleaningP (¬) . . . . . . . . . . 90
\CleaningPP (­) . . . . . . . . . 90
\Cli (d) . . . . . . . . . . . . . . . 86
\clickb (;) . . . . . . . . . . . . 13
\clickc ( ) . . . . . . . . . . . . . 13
\clickt (R) . . . . . . . . . . . . . 13
\Clo (f) . . . . . . . . . . . . . . . 86
clock (package) . . . 92, 119, 120

d
a

1i’

\clock (
) . . . . . . . . . . . . 92
\clock () . . . . . . . . . . . . . 88
clock symbols . . . . . . 88, 90–92
\ClockFramefalse . . . . . . . . 92
\ClockFrametrue . . . . . . . . 92
\Clocklogo (U) . . . . . . . . . . 90
\ClockStyle . . . . . . . . . . . . 92
\clocktime . . . . . . . . . . . . . 92
\closedcurlyvee (¾) . . . . . . 24
\closedcurlywedge (¼) . . . . 24
\closedequal (Ü) . . . . . . . . 33
\closedniomega (?) . . . . . . 13
\closedprec (½) . . . . . . . . . 33
\closedrevepsilon () . . . . 13
\closedsucc (») . . . . . . . . . 33
\Cloud ( ) . . . . . . . . . . . . . 91
clovers . . . . . . . . . . . . . . . . 78
\Clu (q) . . . . . . . . . . . . . . 86
clubs (suit) . . . . . . . . 65–67, 80
\clubsuit (♣) . . . . . . . . . . 65
\clubsuit (♣) . . . . . . . . . . . 66
\Cma (m) . . . . . . . . . . . . . . 86
\Cme (M) . . . . . . . . . . . . . . 86
\Cmi (y) . . . . . . . . . . . . . . 86
cmll (package) 21, 24, 30, 36, 119
\Cmo (A) . . . . . . . . . . . . . . 86
\Cmu (B) . . . . . . . . . . . . . . 86



129

\Cna (n) . . . . . . . . . . . . . . . 86
\Cne (N) . . . . . . . . . . . . . . . 86
\Cni (C) . . . . . . . . . . . . . . 86
\Cno (E) . . . . . . . . . . . . . . 86
\Cnu (F) . . . . . . . . . . . . . . . 86
\Co (o) . . . . . . . . . . . . . . . 86
\coAsterisk () . . . . . . . . . 23
\coasterisk () . . . . . . . . . 23
code page 1252 . . . . . . . . . 115
table . . . . . . . . . . . . . 117
code page 437 . . . . . 72, 97, 115
\Coffeecup (K) . . . . . . . . . 90
\coh (¨) . . . . . . . . . . . . . . . 36
coins, ancient . . . . . . . . . . . 19
\colon . . . . . . . . . . . . . . . . 63
\colon ( : ) . . . . . . . . . . . . . 63
\colon (∶) . . . . . . . . . . . . . . 64
\Colonapprox () . . . . . . . 31
\Colonapprox (::≈) . . . . . . . 34
\colonapprox (:≈) . . . . . . . 36
\colonapprox (:≈) . . . . . . . . 34
\colonapprox ( ) . . . . . . . . 31
\coloncolon (::) . . . . . . . . . 36
\coloncolonapprox (::≈) . . . 36
\coloncolonequals (::=) . . . 36
\coloncolonminus (::−) . . . . 36
\coloncolonsim (::∼) . . . . . 36
\Coloneq (H) . . . . . . . . . . . 31
\Coloneq (::−) . . . . . . . . . . . 34
\coloneq () . . . . . . . . 21, 32
\coloneq (:−) . . . . . . . . . . . 34
\coloneq (D) . . . . . . . . . . . 31
\coloneq (∶=) . . . . . . . . . . . 33
\Coloneqq (F) . . . . . . . . . . 31
\Coloneqq (::=) . . . . . . . . . . 34
\coloneqq (:=) . . . . . . . . . . 34
\coloneqq (B) . . . . . . . 21, 31
colonequals (package) 21, 36, 119,
120
\colonequals (:=) . . . . 21, 36
\colonminus (:−) . . . . . . . . 36
\Colonsim () . . . . . . . . . . 31
\Colonsim (::∼) . . . . . . . . . . 34
\colonsim (:∼) . . . . . . . . . . 36
\colonsim (:∼) . . . . . . . . . . 34
\colonsim () . . . . . . . . . . 31
combelow (package) 17, 119, 121
combinatorial logic gates . . . 73
comma-below accent (a,) . . . see
accents
communication symbols . . . . 73
commutative diagrams . . . . 106
comp.text.tex (newsgroup) . 8,
21, 22, 103–108
\compensation (n) . . . . . . . 93
\complement (A) . . . . . . . . . 52
\complement ({) . . . . . . . . . 52
\complement (∁) . . . . . . . . . 29
complete shuffle product ( ) 24
\COMPLEX ( ) . . . . . . . . . . . . 49
\Complex ( ) . . . . . . . . . . . . 49

»
Ã



complex numbers (C) . . . . see
alphabets, math
composited accents . . . . . . . 14
Comprehensive TEX Archive Network . . 1, 8, 59, 69, 100,
117–119
computer hardware symbols . 72
computer keys . . . . . . . . . . . 72
Computer Modern (font) . . 100,
102, 115
\ComputerMouse (Í) . . . . . . . 72
\cong () . . . . . . . . . . . . . . 30
\cong (≅) . . . . . . . . . . . . . . 33
congruent . . . . . . . . see \equiv
\conjunction (V) . . . . . . . . 71
conjunction, logical . see \wedge
and \&
consequence relations . . . . . . 35
contradiction symbols . . 21, 48
control characters . . . . . . . . 72
converse implication . . . . . see
\leftarrow and \subset
converse nonimplication . . . see
\nleftarrow and \nsubset
\convolution ( ) . . . . . . . . 23
\Coppa (Ϙ) . . . . . . . . . . . . . 87
\coppa (ϙ)` . . . . . . . . . . . . . 87
\coprod ( ) . . . . . . . . . 21, 25
\coprod (∐) . . . . . . . . . . . . 29
copyright . . . . . . . . . 9, 19, 116
\copyright (©) . . . . . . . . . . 9
\corner (k) . . . . . . . . . . . . . 18
corners, box . . . . . . . . . . . . 97
\corona ( ̮) . . . . . . . . . . . . 95
\coronainv (Ϙ) . . . . . . . . . . 95
\Corresponds (=) . . . . . . . . 67
\corresponds () . . . . . . . . 32
\cos (cos) . . . . . . . . . . 49, 113
\cosh (cosh) . . . . . . . . . . . . 49
\cot (cot) . . . . . . . . . . . . . . 49
\coth (coth) . . . . . . . . . . . . 49
\counterplay (V) . . . . . . . . 93
Courier (font) . . . . . . . . . . . 18
CP1252 . . . . see code page 1252
CP437 . . . . . see code page 437
\Cpa (p) . . . . . . . . . . . . . . . 86
\Cpe (P) . . . . . . . . . . . . . . . 86
\Cpi (G) . . . . . . . . . . . . . . 86
\Cpo (H) . . . . . . . . . . . . . . 86
\Cpu (I) . . . . . . . . . . . . . . 86
\CR (␍) . . . . . . . . . . . . . . . . 72
\cr . . . . . . . . . . . . . . . . . . 104
\Cra (r) . . . . . . . . . . . . . . . 86
\Cre (R) . . . . . . . . . . . . . . 86
Creative Commons licenses . 19
crescent (fge package option) 58
\Cri (O) . . . . . . . . . . . . . . 86
\Cro (U) . . . . . . . . . . . . . . . 86
\Cross ( ) . . . . . . . . . . . . . 79
\Cross († vs. vs. ) . . . . 101



* 

*

\Cross ( ) . . . . . . . . . . . . . 76
\Cross (†) . . . . . . . . . . . . . 90
cross ratio . . . see \textrecipe
\crossb () . . . . . . . . . . . . . 13
\CrossBoldOutline ( ) . . . . 76
\CrossClowerTips ( ) . . . . 76
\crossd ( ) . . . . . . . . . . . . . 13
\Crossedbox (X) . . . . . . . . . 90
crosses . . . . . . . . 76, 77, 90, 94
\crossh (#) . . . . . . . . . . . . . 13
\CrossMaltese ( ) . . . . . . . 76
\crossnilambda (3) . . . . . . 13
\CrossOpenShadow ( ) . . . . . 76
\CrossOutline ( ) . . . . . . . 76
crotchet . . see musical symbols
Ŕ
\crtilde (ã) . . . . . . . . . . . . 16
\Cru (V) . . . . . . . . . . . . . . . 86
crucifixes . . . . . . . . . . 76, 77, 90
\Crux (†) . . . . . . . . . . . . . . 57
\crux (†) . . . . . . . . . . . . . . 57
\Csa (s) . . . . . . . . . . . . . . . 86
\csc (csc) . . . . . . . . . . . . . . 49
\Cse (S) . . . . . . . . . . . . . . . 86
\cshuffle ( ) . . . . . . . . . . 24
\Csi (Y) . . . . . . . . . . . . . . . 86
\Cso (1) . . . . . . . . . . . . . . 86
\Csu (2) . . . . . . . . . . . . . . 86
\Cta (t) . . . . . . . . . . . . . . . 86
CTAN
see Comprehensive TEX
Archive Network
\Cte (T) . . . . . . . . . . . . . . . 86
\Cti (3) . . . . . . . . . . . . . . . 86
\Cto (4) . . . . . . . . . . . . . . . 86
\Ctrl ( Ctrl ) . . . . . . . . . . . 72

4

.
,

+



\Ctu (5) . . . . . . . . . . . . . . . 86
\Cu (u) . . . . . . . . . . . . . . . 86
\Cube (
) 92, 103
cube root . . . . . . . . see \sqrt
\Cup (d) . . . . . . . . . . . . . . . 22
\Cup (⋓) . . . . . . . . . . . . . . . 24
\cup (Y) . . . . . . . . . . . . . . . 23
\cup (∪) . . . . . . . . 22, 104, 112
\cup (∪) . . . . . . . . . . . . . . . 24
\cupdot (⊍) . . . . . . . . . . . . 24
\cupplus (⊎) . . . . . . . . . . . . 24
\curlyc ( ) . . . . . . . . . . . . . 13
\curlyeqprec (¶) . . . . . . . . 32
\curlyeqprec (2) . . . . . . . . 30
\curlyeqprec (⋞) . . . . . . . . 33
\curlyeqsucc (·) . . . . . . . . 32
\curlyeqsucc (3) . . . . . . . . 30
\curlyeqsucc (⋟) . . . . . . . . 33
\curlyesh (N) . . . . . . . . . . . 13
\curlyvee (O) . . . . . . . . . . 23
\curlyvee (g) . . . . . . . . . . 22
\curlyvee (⋎) . . . . . . . . . . . 24
\curlyveedot (5) . . . . . . . . 24
\curlyveedownarrow (.) . . . 22
\curlyveeuparrow (/) . . . . . 22



130

\curlywedge (N) . . . . . . . . . 23
\curlywedge (f) . . . . . . . . . 22
\curlywedge (⋏) . . . . . . . . . 24
\curlywedgedot (4) . . . . . . 24
\curlywedgedownarrow (') . 22
\curlywedgeuparrow (&) . . . 22
\curlyyogh (a) . . . . . . . . . . 13
\curlyz (^) . . . . . . . . . . . . . 13
\currency (¤) . . . . . . . . . . . 18
currency symbols . . . . 18, 19, 68
\curvearrowbotleft (ó) . . 42
\curvearrowbotleftright (õ)
. . . . . . . . . 42
\curvearrowbotright (ô) . . 42
\curvearrowdownup (Ë) . . . . 43
\curvearrowleft (ð) . . . . . 42
\curvearrowleft (x) . . . . . 41
\curvearrowleft (↶) . . . . . 44
\curvearrowleftright (ò) . 42
\curvearrowleftright (È) . 43
\curvearrownesw (Ì) . . . . . 43
\curvearrownwse (Í) . . . . . 43
\curvearrowright (ñ) . . . . 42
\curvearrowright (y) . . . . 41
\curvearrowright (↷) . . . . 44
\curvearrowrightleft (Ê) . 43
\curvearrowsenw (Ï) . . . . . 43
\curvearrowswne (Î) . . . . . 43
\curvearrowupdown (É) . . . . 43
\Cutleft (s) . . . . . . . . . . . 75
\Cutline (r) . . . . . . . . . . . 75
cutoff subtraction . see \dotdiv
\Cutright (q) . . . . . . . . . . 75
\Cwa (w) . . . . . . . . . . . . . . 86
\Cwe (W) . . . . . . . . . . . . . . . 86
\Cwi (6) . . . . . . . . . . . . . . 86
\Cwo (7) . . . . . . . . . . . . . . . 86
\Cxa (x) . . . . . . . . . . . . . . . 86
\Cxe (X) . . . . . . . . . . . . . . . 86
\Cya (j) . . . . . . . . . . . . . . . 86
\Cyo (b) . . . . . . . . . . . . . . 86
\cyprfamily . . . . . . . . . . . . 86
Cypriot . . . . . . . . . . . . . . . . 86
cypriot (package) . . 86, 119, 121
\Cza (g) . . . . . . . . . . . . . . 86
\Czo (9) . . . . . . . . . . . . . . . 86
D
\D (a) . . . . . . . . . . . . . .
¨
d (esvect
package option)
\d (a.) . . . . . . . . . . . . . .
\dag (†) . . . . . . . . . . . .
\dagger (†) . . . . . . . . . .
\daleth (k) . . . . . . . . .
\daleth (ℸ) . . . . . . . . .
\danger (B) . . . . . . . . .
dangerous bend symbols
\DArrow ( ↓ ) . . . . . . .
\dasharrow . . . . . . . . . .
\dashrightarrow
\dasheddownarrow (⇣) . .

. . . 17
. . . 61
. . . 14
9, 117
. . . 22
. . . 51
. . . 51
. . . 91
. . . 89
. . . 72
. . see
. . . 43

0

/

)
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.

. . 43
. . 43
. . 43
. . 43
. . 43
. . 43
. . 43
. 106
. . 41
. . 44
. . 42
. . 41
. . 44
. . 32
. . 32
. . 30
. . 33
. . 32
. . 77
. . 78
. . 78
. . 95
. 104
. . 89
. 107
. . 34
. . 72
. . 72
. . 72
. . 72
. . 89
9, 117
. . 22
. 106
. . 58
. . 58
..
..
..
..
24,

35
87
89
57
64

\dddtstile (
\ddigamma (ϝ)
\DDohne (D
/D) .
\ddot (¨) . . .
\ddotdot () .
.
\ddots ( . . ) .
\ddots (⋱) . .

. . . . . . . 63, 107
. . . . . . . . . . . 64

\ddststile (

) . . . . . . . . . 35

\ddtstile (

) . . . . . . . . . . 35

.
.
.
.

\ddttstile (
) .......
\DeclareFontFamily . . . . .
\DeclareFontShape . . . . . .
\DeclareMathOperator . . .
\DeclareMathOperator* . .
\declareslashed . . . . . . .
\DeclareUnicodeCharacter
\decofourleft ([) . . . . . .
\decofourright (\) . . . . .
\decoone (X) . . . . . . . . . .
\decosix (]) . . . . . . . . . .
\decothreeleft (Y) . . . . .
\decothreeright (Z) . . . .
\decotwo (a) . . . . . . . . . .

. 35
111
111
113
113
105
117
. 78
. 78
. 78
. 78
. 78
. 78
. 78

definite-description operator ( )
. . . . . . . . 103
definition symbols . . . . 21, 108
\deg (deg) . . . . . . . . . . . . . 49
\degree (0) . . . . . . . . . . . . . 66
\degree (°) . . . . . . . . . . . . . 70
degrees . . . . . see \textdegree
\DEL (␡) . . . . . . . . . . . . . . . 72
\Del ( Del ) . . . . . . . . . . . . 72
\Deleatur . . . . . see \Denarius
delimiters . . . . . . . . . . . 53–57
text-mode . . . . . . . . . . 57
variable-sized . . . . . 54–57
wavy-line . . . . . . . . 55, 56
\Delta (∆) . . . . . . . . . . . . . 50
\delta (δ) . . . . . . . . . . . . . 50
\deltaup (δ) . . . . . . . . . . . . 50
demisemiquaver . . . see musical
symbols
\Denarius (¢) . . . . . . . . . . 18
\denarius (Ε) . . . . . . . . . . 19
\dental (ag ) . . . . . . . . . . . . . 16
derivitive, partial . see \partial
\descnode () . . . . . . . . . . 71
\det (det) . . . . . . . . . . . . . . 49
\devadvantage (t) . . . . . . . 93
ι

\dashedleftarrow (⇠) . .
\dashednearrow (d) . . . .
\dashednwarrow (e) . . . .
\dashedrightarrow (⇢) . .
\dashedsearrow (g) . . . .
\dashedswarrow (f) . . . .
\dasheduparrow
(⇡) . . . . .
R
\dashint (− ) . . . . . . . . .
\dashleftarrow (c) . . . .
\dashleftarrow (⇠) . . . .
\dashleftrightarrow (e)
\dashrightarrow (d) . . .
\dashrightarrow (⇢) . . .
\DashV ()) . . . . . . . . . . .
\Dashv ()) . . . . . . . . . . .
\dashv (a) . . . . . . . . . . .
\dashv (⊣) . . . . . . . . . . .
\dashVv (-) . . . . . . . . . .
\davidsstar (C) . . . . . . .
\DavidStar ( ) . . . . . . .
\DavidStarSolid ( ) . . .
\dBar (||) . . . . . . . . . . . .
\dbar (¯
d) . . . . . . . . . . . . .
\dbend () . . . . . . . . . .
dblaccnt (package) . . . . . .
\dblcolon (::) . . . . . . . . .
\DCa (␑) . . . . . . . . . . . . .
\DCb (␒) . . . . . . . . . . . . .
\DCc (␓) . . . . . . . . . . . . .
\DCd (␔) . . . . . . . . . . . . .
\DD (D
D) . . . . . . . . . . . . .
\ddag (‡) . . . . . . . . . . .
\ddagger (‡)R . . . . . . . . . .
\ddashint (= ) . . . . . . . . .
....
\ddddot ( ) . . . . . . . . . .
...
\dddot ( ) . . . . . . . . . . .

\Dfourier (

....

)

. . . . . . . . 36

\dfourier (

....

)

. . . . . . . . 36

\DFT (

) . . . . . . . . . . . . . 63

\dft (
) ..........
\DH (D) . . . . . . . . . . . . .
\DH (Ð) . . . . . . . . . . . .
\dh (k) . . . . . . . . . . . . .
\dh (ð) . . . . . . . . . . . .
diacritics . . . . . . . . see
\diaeresis (ä) . . . . . . .
diæresis (ä) . . . . . . see
\diagdown (å) . . . . . . .
\diagdown () . . . . . . .
\diagdown (Ó) . . . . . . .
\diagonal (G) . . . . . . .
\diagup (ä) . . . . . . . . .
\diagup () . . . . . . . . .
\diagup (Ò) . . . . . . . . .
\diameter (I) . . . . . . .
\diameter () . . . . . . .
\diameter (∅) . . . . . . . .
\diameter () . . . . . . .
\Diamond (^) . . . . . . . .
\Diamond (3) . . . . . . . .
\Diamond (◇) . . . . . . . .
\diamond () . . . . . . . . .
\diamond (◇) . . . . . . . . .
\diamondbackslash ({) .
\Diamondblack (_) . . . .
\diamonddiamond () . .
\Diamonddot () . . . . . .
\diamonddot (⟐) . . . . . .
\DiamonddotLeft () .
\Diamonddotleft (‡) .
\DiamonddotRight (Ž) .
\Diamonddotright (†) .

131

. . . 63
. . . 13
10, 116
. . . 13
10, 116
accents
. . . 17
accents
. . . 66
. . . 66
. . . 33
. . . 93
. . . 66
. . . 66
. . . 33
. . . 66
. . . 21
. . . 66
. . . 88
. . . 65
. . . 66
. . . 25
. . . 22
. . . 25
. . . 25
. . . 66
. . . 25
. . . 66
. . . 25
. . . 42
. . . 42
. . . 42
. . . 42

\diamonddots ( ) . . . . . 24, 64
\DiamondLeft () . . . . . . . 42
\Diamondleft ( ) . . . . . . . 42
\diamondminus (x) . . . . . . . 25
\diamondplus (|) . . . . . . . . 25
\DiamondRight (Œ) . . . . . . 42
\Diamondright („) . . . . . . 42
diamonds . . . . . . . . . . . 79–80
diamonds (suit) . . . . . 65–67, 80
\DiamondShadowA ( ) . . . . . 79
\DiamondShadowB ( ) . . . . . 79
\DiamondShadowC ( ) . . . . . 79
\Diamondshape ( ) . . . . . . . 79
\diamondslash (z) . . . . . . . 25
\DiamondSolid ( ) . . . . . . . 80
\diamondsuit (♦) . . . . . . . . 65
\diamondsuit (♢) . . . . . . . . 66
\diamondtimes (}) . . . . . . . 25
\diamondvert (y) . . . . . . . . 25
\diatop . . . . . . . . . . . 18, 107
\diaunder . . . . . . . . . . 18, 107
dice . . . . . . . . . . . . . . 92, 103
dictionary symbols . . . 11–14, 96
dictsym (package) . 96, 119, 120
died . . . . . . . . . see \textdied
differential, inexact . see \dbar
\Digamma (Ϝ) . . . . . . . . . . . 87
\digamma (z) . . . . . . . . 50, 87
\digamma (ϝ) . . . . . . . . . . . . 87
digital logic gates . . . . . . . . 73
digits . . . . . . . . . . . . . . . . . 65
LCD . . . . . . . . . . . . . . 70
Mayan . . . . . . . . . . . . . 65
old-style . . . . . . . . . . . . 20
segmented . . . . . . . . . . 70
\dim (dim) . . . . . . . . . . . . . 49
\ding . . . . . . . . . 10, 75–78, 80
dingautolist . . . . . . . . . . . 77
dingbat (package) . . 76, 80, 101,
119, 120
dingbat symbols . . . . . . 75–80
\Diple (>) . . . . . . . . . . . . . 95
\diple (>) . . . . . . . . . . . . . 95
\Diple* (>·· ) . . . . . . . . . . . . 95
\diple* (>·· ) . . . . . . . . . . . . 95
Dirac notation . . . . . . . . . . . 54
discount . . . see \textdiscount
discretionary hyphen . . . . . 115
disjoint union . . . . . . . . . . . 21
disjunction . . . . . . . . see \vee
\displaystyle . . 105, 106, 108,
113
ditto marks . see \textquotedbl
\div (÷) . . . . . . . . . . . . . . . 22
\div (÷) . . . . . . . . . . . . . . . 24
\divdot () . . . . . . . . . . . . 23
\divideontimes ( ) . . . . . . 23
\divideontimes (>) . . . . . . 22
\divides () . . . . . . . . . . . . 32
\divides (Ò) . . . . . . . . . . . 33
division . . . . . . . . . . . . . 22, 59
non-commutative . . . . . 63

6

p





division times . . . . . . . . . . see
\divideontimes
divorced . . . see \textdivorced
\DJ (Ð) . . . . . . . . . . . . . . . . 10
\dj (đ) . . . . . . . . . . . . . . . . 10
\dlbari (() . . . . . . . . . . . . . 13
\DLE (␐) . . . . . . . . . . . . . . . 72
\dlsh (ê) . . . . . . . . . . . . . . 42
\dndtstile ( ) . . . . . . . . . 35
\dnststile ( ) . . . . . . . . . 35
\dntstile ( ) . . . . . . . . . . 35
) . . . . . . . . 35
\dnttstile (
do not enter . . . . . . see \noway
does not divide . . . . see \nmid
does not exist . . . see \nexists
does not imply . . . . . . . . . 105
\Dohne (D
/ ) . . . . . . . . . . . . . 89
dollar . . . . . . see \textdollar
dollar sign . . . . . . . . . . . see \$
\Dontwash (Ý) . . . . . . . . . . 90
\dot ( ˙ ) . . . . . . . . . . . . . . . 57
dot accent (ȧ or . ) . see accents
dot symbols . . . . 9, 63, 64, 107
DotArrow (package) 63, 119, 121
 )
. . . . . . . . 63
\dotarrow (
·
\dotcup (∪)
. . . . . . . . 21, 104
\dotdiv () . . . . . . . . . . . . 23
\Doteq . . . . . . . see \doteqdot
\Doteq (≑) . . . . . . . . . . . . . 33
\doteq () . . . . . . . . . . . . . 30
\doteq (≐) . . . . . . . . . . . . . 33
\doteqdot (+) . . . . . . . . . . 30
\doteqdot (≑) . . . . . . . . . . . 33
dotless j ()
text mode . . . . . . . . . . 14
dotless i (ı)
math mode . . . . . . 57, 65
text mode . . . . . . . . . . 14
dotless j ()
math mode . . . . . . 57, 65
\dotmedvert () . . . . . . . . . 24
\dotminus () . . . . . . . . . . . 24
\dotplus ( ) . . . . . . . . . . . 23
\dotplus (u) . . . . . . . . . . . 22
\dots (. . . ) . . . . . . . . . . 9, 117
dots (ellipses) . . . 9, 63–65, 107
\dotsb (· · · ) . . . . . . . . . . . . 64
\dotsc (. . .) . . . . . . . . . . . . 64
\dotseq () . . . . . . . . . . . . 32
\dotsi (· · ·¯
) . . . . . . . . . . . . 64
\dotsint ( ) . . . . . . . . . . 28
\dotsm (· · · ) . . . . . . . . . . . . 64
\dotso (. . .) . . . . . . . . . . . . 64
dotted arrows . . . . . . . . . . . 63
˙ . . . . . . . . 112
dotted union (∪)
.. . . . . . . . . 16
\dottedtilde (ã)
\dottimes () . . . . . . . . . . 23
\double . . . . . . . . . . . . 56, 57
double acute (a̋) . . see accents
\doublebarwedge (Z) . . . . . 23
\doublebarwedge ([) . . . . . 22

\doublecap . . . . . . . .
\doublecap (\) . . . . . .
\doublecap (⋒) . . . . . .
\doublecup . . . . . . . .
\doublecup (]) . . . . . .
\doublecup (⋓) . . . . . .
\doublecurlyvee (7) .
\doublecurlywedge (6)
\doublefrown () . . . .
\doublefrowneq (%) . . .
\doublepawns (d) . . . .
\doublesmile () . . . .
\doublesmileeq ($) . . .
\doublesqcap (⩎) . . . .
\doublesqcup (⩏) . . . .
\doubletilde (˜
ã) . . . .
\doublevee (⩔) . . . . . .
\doublewedge (⩕) . . . .
\DOWNarrow (L) . . . . . .
\Downarrow (⇓) . . . . . .
\Downarrow (⇓) . . . . . .
\downarrow . . . . . . . . .
\downarrow (↓) . . . . . .
\downarrow (↓) . . . . . .
\downarrowtail (#) . . .
\downbracketfill . . . .
\downdownarrows (Ó) .
\downdownarrows () .
\downdownarrows (⇊) .
\downdownharpoons (Û)
Downes, Michael J. . . .
\downfilledspoon (s) .
\downfootline ({) . . . .
\downfree (⫝) . . . . . . .
\downharpoonccw (⇂) . .
\downharpooncw (⇃) . . .
\downharpoonleft (å) .
\downharpoonleft () .
\downharpoonright (ç)
\downharpoonright ()
\downlsquigarrow (£) .
\downmapsto (↧) . . . . .
\downModels (ó) . . . . .
\downmodels (ã) . . . . .
\downp (u) . . . . . . . . . .
\downparenthfill . . . .
\downpitchfork (⫛) . . .
\downpropto () . . . . .
\downrsquigarrow («) .
\downslice (Â) . . . . . .
\downspoon (⫰) . . . . . .
\downt (m) . . . . . . . . . .
\downtherefore (∵) . .
\downtouparrow (ÿ) . .
\downuparrows (×) . . .
\downuparrows () . . .
\downupharpoons (ë) . .
\downupharpoons (⥯) . .
\downVdash (⍑) . . . . . .
\downvdash (⊤) . . . . . .
\downY (+) . . . . . . . . .
dozenal (package) . . . . .
dozenal digits . . . . . . .

132

see \Cap
. . . . 23
. . . . 24
see \Cup
. . . . 23
. . . . 24
. . . . 24
. . . . 24
. . . . 48
. . . . 48
. . . . 93
. . . . 48
. . . . 48
. . . . 24
. . . . 23
. . . . 16
. . . . 23
. . . . 23
. . . . 88
. 41, 54
. . . . 43
. . . 112
. 41, 54
. . . . 43
. . . . 43
. . . 109
. . . . 42
. . . . 41
. . . . 43
. . . . 43
49, 122
. . . . 47
. . . . 33
. . . . 33
. . . . 46
. . . . 46
. . . . 43
. . . . 41
. . . . 43
. . . . 41
. . . . 43
. . . . 43
. . . . 33
. . . . 33
. . . . 18
. . . 109
. . . . 47
. . . . 33
. . . . 43
. . . . 25
. . . . 47
. . . . 18
. 23, 64
. . . . 42
. . . . 42
. . . . 43
. . . . 43
. . . . 46
. . . . 33
. . . . 33
. . . . 23
65, 119
. . . . 65

\dracma (Δ) . . . . . . . .
\drsh (ë) . . . . . . . . .
\DS (SS) . . . . . . . . . . .
\Ds (ss) . . . . . . . . . . .
\dsaeronautical (a)
\dsagricultural (G)
\dsarchitectural (A)
\dsbiological (B) . .
\dschemical (C) . . . .
\dscommercial (c) . .

.
.
.
.
.
.
.
..
..
..

\dsdtstile ( ) . . .
dsfont (package) . . .
\dsheraldical (H) .
\dsjuridical (J) . .
\dsliterary (L) . . .
\dsmathematical (M)
\dsmedical (m) . . . .
\dsmilitary (X) . . .
\dsrailways (R) . . .

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

19
42
89
89
96
96
96
96
96
96

. . . . 35
68, 119
. . . . 96
. . . . 96
. . . . 96
. . . . 96
. . . . 96
. . . . 96
. . . . 96

\dsststile ( ) . . . . . . . . . 35
\dstechnical (T) . . . . . . . . 96
\dststile (

) . . . . . . . . . . 35

\dsttstile (

) . . . . . . . . 35

\dtdtstile (

) . . . . . . . . . 35

\dtimes (_) . . . . . . . . . . . . 24
\dtimes (") . . . . . . . . . . . . 23
\dtststile (

) . . . . . . . . . 35

\dttstile (

) . . . . . . . . . . 35

\dtttstile (

) . . . . . . . . 35

duodecimal (base-12) digits . 65
DVI . . . . . . . . . . . . 19, 72, 111
\dz () . . . . . . . . . . . . . . . 13
E
e (esvect package option) . . . 61
\e (e ) . . . . . . . . . . . . . . . . . 52
\e (E) . . . . . . . . . . . . . . . . . 65
ε-TEX . . . . . . . . . . . . . . . . . 54
\Earth (C) . . . . . . . . . . . . . 71
\Earth (Ê) . . . . . . . . . . . . . 71
\earth (♁) . . . . . . . . . . . . . 71
\Ecommerce () . . . . . . . . . 18
\EightAsterisk ( ) . . . . . . 78
\EightFlowerPetal ( ) . . . 78
\EightFlowerPetalRemoved ( )
. . . . . . . . . 78
eighth note see musical symbols
\eighthnote (♪) . . . . . . . . . 88
\eighthnote ( ) . . . . . . . . . 88
\EightStar ( ) . . . . . . . . . 78
\EightStarBold ( ) . . . . . . 78
\EightStarConvex ( ) . . . . 78
\EightStarTaper ( ) . . . . . 78
\ejective (e) . . . . . . . . . . . 13
electrical symbols . . . . . . . . 70
electromotive force (E) . . . . see
alphabets, math
element of . . . . . . . . . . see \in

Z

H

S

I
F
E

Y

\ell (`) . . . . . . . . . . . . . . . 51
\Ellipse ( ) . . . . . . . . . . . 80
ellipses (dots) . . . 9, 63–65, 107
ellipses (ovals) . . . . . . . . . . . 80
\EllipseShadow ( ) . . . . . . 80
\EllipseSolid ( ) . . . . . . . 80
\EM (␙) . . . . . . . . . . . . . . . . 72
\Email (k) . . . . . . . . . . . . . 73
\Emailct (z) . . . . . . . . . . . 73
\emgma (M) . . . . . . . . . . . . . 13
\emptyset (∅) . . . . . . . . . . . 65
\emptyset (∅) . . . . . . . . . . . 66
\End ( End ) . . . . . . . . . . . . 72
end of proof . . . . . . . . . . . . 65
\ending (L) . . . . . . . . . . . . 93
\eng (8) . . . . . . . . . . . . . . . 13
engineering symbols . . . . 70, 73
\engma (n) . . . . . . . . . . . . . 13
\ENQ (␅) . . . . . . . . . . . . . . . 72
entails . . . . . . . . . . see \models
\Enter ( Enter ) . . . . . . . . . 72

b

e
c

\Envelope ( ) . . . . . . . . . . . 80
envelopes . . . . . . . . . . . 80, 98
\enya (N) . . . . . . . . . . . . . . 13
\EOT (␄) . . . . . . . . . . . . . . . 72
epsdice (package) . . 92, 119, 120
) . . . . . 92
\epsdice (
\epsi (") . . . . . . . . . . . . . . 13
\epsilon () . . . . . . . . . . . . 50
\epsilonup () . . . . . . . . . . 50
\eqbump () . . . . . . . . . . . . . 32
\eqbumped () . . . . . . . . . . 32
\eqcirc () . . . . . . . . . . . . 32
\eqcirc (P) . . . . . . . . . . . . 30
\eqcirc (≖) . . . . . . . . . . . . . 32
\Eqcolon (I) . . . . . . . . . . . 31
\Eqcolon (−::) . . . . . . . . . . . 34
\eqcolon () . . . . . . . . . . . 32
\eqcolon (−:) . . . . . . . . . . . 34
\eqcolon (E) . . . . . . . . . . . 31
\eqdot (⩦) . . . . . . . . . . . . . 32
\eqfrown (#) . . . . . . . . . . . . 48
\Eqqcolon (G) . . . . . . . . . . 31
\Eqqcolon (=::) . . . . . . . . . . 34
\eqqcolon (=:) . . . . . . . . . . 34
\eqqcolon (C) . . . . . . . . . . 31
\eqsim (h) . . . . . . . . . . . . . 31
\eqsim (≂) . . . . . . . . . . . . . 32
\eqslantgtr (·) . . . . . . . . . 38
\eqslantgtr (1) . . . . . . . . . 38
\eqslantgtr (⪖) . . . . . . . . . 39
\eqslantless (¶) . . . . . . . . 38
\eqslantless (0) . . . . . . . . 38
\eqslantless (⪕) . . . . . . . . 39
\eqsmile (") . . . . . . . . . . . . 48
\equal (=) . . . . . . . . . . . . . 32
\equal (j) . . . . . . . . . . . . . 93
\equalclosed (Ý) . . . . . . . . 32
\equalscolon (=:) . . . . . . . 36
\equalscoloncolon (=::) . . . 36
\equalsfill . . . . . . . . 21, 108
equidecomposable . . . . . . . 104

equilibrium . . . . . . . . . . . . see
\rightleftharpoons
\equiv (≡) . . . . . . . . . . 21, 30
\equiv (≡) . . . . . . . . . . . . . 32
equivalence . . . . . . . . . . . . see
\equiv, \leftrightarrow,
and \threesim
\equivclosed (Þ) . . . . . . . . 32
\er () . . . . . . . . . . . . . . . . 13
es-zet . . . . . . . . . . . . . see \ss
\ESC (␛) . . . . . . . . . . . . . . . 72
\Esc ( Esc ) . . . . . . . . . . . . 72
escapable characters . . . . . . . 9
\esh (M) . . . . . . . . . . . . . . . 13
\esh (s) . . . . . . . . . . . . . . . 13
esint (package) . . . . . . . 28, 119
\Estatically (J) . . . . . . . . 74
estimated . see \textestimated
esvect (package) . . . . . . 61, 119
\eta (η) . . . . . . . . . . . . . . . 50
\etaup (η) . . . . . . . . . . . . . 50
\ETB (␗) . . . . . . . . . . . . . . . 72
\eth (ð) . . . . . . . . . . . . . . . 66
\eth () . . . . . . . . . . . . . . . 13
\eth (d) . . . . . . . . . . . . . . . 13
\ETX (␃) . . . . . . . . . . . . . . . 72
eufrak (package) . . . . . . . . . 68
Euler Roman . . . . . . . . . . . . 51
\EUR (e ) . . . . . . . . . . . . . . . 18
\EURcr (d) . . . . . . . . . . . . . 18
\EURdig (D) . . . . . . . . . . . . 18
\EURhv (c) . . . . . . . . . . . . . 18
\Euro ( ) . . . . . . . . . . . . . . 19
\euro . . . . . . . . . . . . . . . . . 19
euro signs . . . . . . . . . . . 18, 19
blackboard bold . . . . . . 68
\eurologo (() . . . . . . . . . . . 19
eurosym (package) . 19, 119, 120
\EURtm (e) . . . . . . . . . . . . . 18
euscript (package) . 68, 119, 120
evaluated at . . . . . . see \vert
evil spirits . . . . . . . . . . . . . . 98
exclusive disjunction . . . . . . . .
. . . see \nleftrightarrow
\nequiv, and \oplus
exclusive or . . . . . . . . . . . . 103
\exists (D) . . . . . . . . . . . . . 52
\exists (∃) . . . . . . . . . . . . . 51
\exists (∃) . . . . . . . . . . . . . 52
\exp (exp) . . . . . . . . . . . . . 49
\Explosionsafe (`) . . . . . . 74
extarrows (package) 62, 119, 120
extensible accents . . 59–61, 63,
108–109
extensible arrows . . . . . . 59–63
extensible symbols, creating 107–
109
extensible tildes . . . . . . . 59, 61
extension characters . . . 48, 49
extpfeil (package) . . 63, 119, 120
extraipa (package) . . . . 16, 119
\eye (
) . . . . . . . . . . . . . 80

ÿ

E

133

\EyesDollar (¦) . . . . . . . . . 18
F
f (esvect package option) . . . 61
faces . . 72, 81, 88, 90, 91, 96, 98
\fallingdotseq () . . . . . . 32
\fallingdotseq (;) . . . . . . 30
\fallingdotseq (≒) . . . . . . . 32
\FallingEdge ( ) . . . . . . . . 70
\fatbslash ()) . . . . . . . . . . 22
\fatsemi (#) . . . . . . . . . . . . 22
\fatslash (() . . . . . . . . . . . 22
\FAX (u) . . . . . . . . . . . . . . 73
\fax (t) . . . . . . . . . . . . . . . 73
\Faxmachine (v) . . . . . . . . 73
fc (package) . . . . . . . . . 10, 14
\fcdice (
) . . . . 92
fclfont (package) . . . . . . . . 119
) . . . . . . 92
\fcscore (
feet . . . . . . . . . see \prime and
\textquotesingle
\FEMALE () . . . . . . . . . . . . 74
\Female (~) . . . . . . . . . . . . 74
female . . . . . . . . . 12, 71, 73, 74
\female (♀) . . . . . . . . . . . . . 73
\FemaleFemale („) . . . . . . . 74
\FemaleMale (…) . . . . . . . . . 74
.
a
\Ferli (a) . . . . . . . . . . . . . 89
.
a
\Fermi (a) . . . . . . . . . . . . . 89
fermions . . . . . . . . . . . . . . . 74
feyn (package) . . . . 74, 119, 120
Feynman slashed character notation . . . . . . . . . . . . . 105
Feynman-diagram symbols . . 74
\feyn{a} () . . . . . . . . . . . . . 74
\feyn{c} ( ) . . . . . . . . . . . 74
\feyn{fd} ( ) . . . . . . . . . . . 74
\feyn{flS} () . . . . . . . . . . . 74
\feyn{fl} () . . . . . . . . . . . . 74
\feyn{fs} ( ) . . . . . . . . . . . 74
\feyn{fu} ( ) . . . . . . . . . . . 74
\feyn{fv} () . . . . . . . . . . . . 74
\feyn{f} ( ) . . . . . . . . . . . 74
\feyn{g1} () . . . . . . . . . . . . 74
\feyn{gd} ( ) . . . . . . . . . . . 74

!

a

c
d
o
l
k
e
b
f
q
v
\feyn{glB} (){ . . . . . . . . . . .
\feyn{glS} ()| . . . . . . . . . . .
\feyn{glu} ()z . . . . . . . . . . .
\feyn{gl} ()y . . . . . . . . . . . .
\feyn{gu} (u) . . . . . . . . . . .
\feyn{gvs} ()}s . . . . . . . . . . .
\feyn{gv} ()} . . . . . . . . . . . .
\feyn{g} (g) . . . . . . . . . . .
\feyn{hd} (j) . . . . . . . . . . .
\feyn{hs} (K) . . . . . . . . . . .
\feyn{hu} (i) . . . . . . . . . . .
\feyn{h} (h) . . . . . . . . . . .
\feyn{ms} ( ) . . . . . . . . . . .
\feyn{m} (m) . . . . . . . . . . .
\feyn{P} (P) . . . . . . . . . . .

74
74
74
74
74
74
74
74
74
74
74
74
74
74
74

p

\feyn{p} ( ) . . . . . . . . . . . 74
\feyn{x} () . . . . . . . . . . . . . 74
\FF (␌) . . . . . . . . . . . . . . . . 72
fge (package) . 47, 53, 58, 65, 67,
119, 120
fge-digits . . . . . . . . . . . . . . . 65
\fgeA (A) . . . . . . . . . . . . . . 53
\fgebackslash (K) . . . . . . . . 67
\fgebaracute (M) . . . . . . . . 67
\fgebarcap (O) . . . . . . . . . . 67
\fgec (c) . . . . . . . . . . . . . . 53
\fgecap (S) . . . . . . . . . . . . 67
\fgecapbar (Q) . . . . . . . . . . 67
\fgecup (N) . . . . . . . . . . . . 67
\fgecupacute (R) . . . . . . . . 67
\fgecupbar (P) . . . . . . . . . . 67
\fged (p) . . . . . . . . . . . . . . 53
\fgee (e) . . . . . . . . . . . . . . 53
\fgeeszett (ı) . . . . . . . . . . 53
\fgeeta (”) . . . . . . . . . . . . 53
\fgeF (F) . . . . . . . . . . . . . . 53
\fgef (f) . . . . . . . . . . . . . . 53
\fgeinfty (i) . . . . . . . . . . 67
\fgelangle (h) . . . . . . . . . . 67
\fgelb . . . . . . . . . . . . . . . . 53
\fgelb (”) . . . . . . . . . . . . . 53
\fgeleftB (D) . . . . . . . . . . . 53
\fgeleftC (C) . . . . . . . . . . . 53
\fgeN (”) . . . . . . . . . . . . . . 53
\fgeoverU (”) . . . . . . . . . . . 53
\fgerightarrow (!) . . . . . 47
\fgerightB (B) . . . . . . . . . . 53
\fges (s) . . . . . . . . . . . . . . . 53
\fgestruckone (1) . . . . . . . . 65
\fgestruckzero (0) . . . . . . . 65
\fgeU (U) . . . . . . . . . . . . . . 53
\fgeuparrow (") . . . . . . . . . 47
\fgeupbracket (L) . . . . . . . 67
\FHBOLOGO (f) . . . . . . . . . . . 90
\FHBOlogo (F) . . . . . . . . . . . 90
field (F) . . see alphabets, math
\file (H) . . . . . . . . . . . . . . 93
\FilledBigCircle ( ) . . . . 79
\FilledBigDiamondshape ( ) 79
\FilledBigSquare ( ) . . . . 79
\FilledBigTriangleDown ( ) 79
\FilledBigTriangleLeft ( ) 79
\FilledBigTriangleRight ( )
. . . . . . . . . 79
\FilledBigTriangleUp ( ) . 79
\FilledCircle ( ) . . . . . . . 79
\FilledCloud ( ) . . . . . . . . 91
\filleddiamond (◆) . . . . . . . 25
\FilledDiamondShadowA ( ) 79
\FilledDiamondShadowC ( ) 79
\FilledDiamondshape ( ) . . 79
\FilledHut ( ) . . . . . . . . . . 91
\filledlargestar (☀) . . . . 79
\filledlozenge (⧫) . . . . . . . 79
\filledmedlozenge (⧫) . . . . 79

x

U
P

e

V
S
R
T

Q





f

\filledmedsquare (∎) . . . . . 25
\filledmedtriangledown (▼) 25,
40
\filledmedtriangleleft (◀) 25,
40
\filledmedtriangleright (▶)
. . . . . . . 25, 40
\filledmedtriangleup (▲)
25,
40
\FilledRainCloud ( ) . . . . 91
\FilledSectioningDiamond ( )
. . . . . . . . . 92
\FilledSmallCircle ( ) . . 79
\FilledSmallDiamondshape ( )
. . . . . . . . . 79
\FilledSmallSquare ( ) . . 79
\FilledSmallTriangleDown ( )
. . . . . . . . . 79
\FilledSmallTriangleLeft ( )
. . . . . . . . . 79
\FilledSmallTriangleRight
( ) . . . . . . . . . . . . . . 79
\FilledSmallTriangleUp ( ) 79
\FilledSnowCloud ( ) . . . . 91
\FilledSquare ( ) . . . . . . . 79
\filledsquare (◾) . . . . . . . . 25
\FilledSquareShadowA ( ) . 79
\FilledSquareShadowC ( ) . 79

!



u

v

p

s
r

t

`

q

$




C

\filledsquarewithdots ( ) 80
\filledstar (★) . . . . . . . . . 25
\FilledSunCloud ( ) . . . . . 91
\FilledTriangleDown ( ) . . 79
\filledtriangledown (▾) 25, 40
\FilledTriangleLeft ( ) . . 79
\filledtriangleleft (◂) 25, 40
\FilledTriangleRight ( ) . 79
\filledtriangleright (▸)
25,
40
\FilledTriangleUp ( ) . . . 79
\filledtriangleup (▴) . 25, 40
\FilledWeakRainCloud ( ) . 91
finger, pointing . . . . . . see fists
finite field (F) . . see alphabets,
math
\finpartvoice (a») . . . . . . . 16
ˇ (a) . . . . 16
\finpartvoiceless
»
>
˚
\fint ( ) . . . . . . . . . . . . . . 27
ffl
\fint ( ) . . . . . . . . . . . . . . 28
\Finv (F) . . . . . . . . . . . . . . 52
\Finv (`) . . . . . . . . . . . . . . 52
\Fire ( ) . . . . . . . . . . . . . . 92
fish hook . . . . . . see \strictif
fists . . . . . . . . . . . . . . . . . . 76
\fivedots () . . . . . . . . 23, 64
\FiveFlowerOpen ( ) . . . . . 78
\FiveFlowerPetal ( ) . . . . 78
\FiveStar ( ) . . . . . . . . . . 78
\FiveStarCenterOpen ( ) . . 78

#

c
b
d

a

8

134

"

R
P

;

?
7
9

\FiveStarConvex ( ) . . . . . 78
\FiveStarLines ( ) . . . . . . 78
\FiveStarOpen ( ) . . . . . . . 78
\FiveStarOpenCircled ( ) . 78
\FiveStarOpenDotted ( ) . . 78
\FiveStarOutline ( ) . . . . 78
\FiveStarOutlineHeavy ( ) 78
\FiveStarShadow ( ) . . . . . 78
\Fixedbearing (%) . . . . . . . 73
.
\fixedddots ( . . ) . . . . . . . . 63
.
\fixedvdots (..) . . . . . . . . . . 63
fixmath (package) . . . . . . . 113
\fj (F) . . . . . . . . . . . . . . . . 13
\Flag ( ) . . . . . . . . . . . . . . 91
\flap (f) . . . . . . . . . . . . . . 13
\flapr (D) . . . . . . . . . . . . . . 13
\flat ([) . . . . . . . . . . . 65, 88
\flat (♭) . . . . . . . . . . . . . . . 66
\Flatsteel (–) . . . . . . . . . . 73
fletched arrows . . . . . . . 47, 75
fleurons . . . . . . . . . . . . . 78, 80
florin . . . . . . see \textflorin
\floweroneleft (b) . . . . . . 78
\floweroneright (c) . . . . . 78
flowers . . . . . . . . . . . . . . . . 78
Flynn, Peter . . . . . . . . . . . 104
\Fog ( ) . . . . . . . . . . . . . . 91
font encodings
Latin 1 . . . . . . . . . . . 119
font encodings . . . . . 8, 114, 115
7-bit . . . . . . . . . . . . . . . 8
8-bit . . . . . . . . . . . . . . . 8
ASCII . . . . . . . . . . . . 119
document . . . . . . . . . . 115
limiting scope of . . . . . . . 8
LY1 . . . . . . . . . . . . . . . . 8
OT1 8, 10, 14, 107, 114, 115
OT2 . . . . . . . . . . . . . 103
T1 . . . . . . . . 8, 10, 14, 115
T4 . . . . . . . . . . . 10, 14, 17
T5 . . . . . . . . . . . . . 10, 14
TS1 . . . . . . . . . . . . . . 115
fontdef.dtx (file) . . . . 103, 107
fontenc (package) . 8, 10, 14, 115
\fontencoding . . . . . . . . . . . 8
fonts
Calligra . . . . . . . . . . . . 68
Charter . . . . . . . . . 18, 30
Computer Modern 100, 102,
115
Courier . . . . . . . . . . . . 18
Garamond . . . . . . . 18, 30
Helvetica . . . . . . . . . . . 18
Symbol . . . . . . . . 51, 103
Times Roman . . . 18, 102
Type 1 . . . . . . . . . . . 112
Utopia . . . . . . . . . . 18, 30
Zapf Chancery . . . . . . . 68
Zapf Dingbats . . . . 75, 77

:
<
=
>
@





\fontsize . . . . . . . . . .
fontspec (package) . . . .
\Football (o) . . . . . . .
\forall (∀) . . . . . . . . .
\forall (∀) . . . . . . . .
\Force (l) . . . . . . . . .
\Forward (·) . . . . . . . .
\ForwardToEnd (¸) . . .
\ForwardToIndex (¹)
\FourAsterisk ( ) . . .
\FourClowerOpen ( ) .
\FourClowerSolid ( )

1

V
W

100, 102
. . . 118
. . . . 90
. . . . 51
. . . . 52
. . . . 73
. . . . 90
. . . . 90
. . . . 90
. . . . 78
. . . . 78
. . . . 78

\Fourier (
) . . . . . . . . . 36
fourier (package)
19, 36, 51, 53,
57, 60, 76, 78, 91, 119
\fourier (
) . . . . . . . . . 36
Fourier transform (F) . . . . see
alphabets, math
\FourStar ( ) . . . . . . . . . . 78
\FourStarOpen ( ) . . . . . . . 78
\fourth (4) . . . . . . . . . . . . 66
fractions . . . . . . . . . . . . . . . 67
fraktur . . . see alphabets, math
Freemason’s cipher . . . . . . . 98
Frege logic symbols 47, 53, 65, 67
\frown (_) . . . . . . . . . . . . . 30
\frown (⌢) . . . . . . . . . . . . . 48
frown symbols . . . . . . . . . . . 48
\frowneq (!) . . . . . . . . . . . . 48
\frowneqsmile (') . . . . . . . 48
\frownie (/) . . . . . . . . . . . 88
\frownsmile () . . . . . . . . . 48
\frownsmileeq ()) . . . . . . . 48
\Frowny (§) . . . . . . . . . . . . 90
frowny faces . . . . 72, 88, 90, 91
\FS (␜) . . . . . . . . . . . . . . . . 72
\FullFHBO (Ž) . . . . . . . . . . 90
\fullmoon (M) . . . . . . . . . . 71
\fullmoon (#) . . . . . . . . . . 71
\fullnote () . . . . . . . . . . . 88

5

6

G
\G (a
Ÿ) . . . . . . . . . . . . . . . . . 14
g (esvect package option) . . . 61
\Game (G) . . . . . . . . . . . . . . 52
\Game (a) . . . . . . . . . . . . . . 52
\Gamma (Γ) . . . . . . . . . . . . . 50
\gamma (γ) . . . . . . . . . . . . . 50
\gammaup (γ) . . . . . . . . . . . . 50
\Ganz (¯ ) . . . . . . . . . . . . . . 89
\GaPa (<) . . . . . . . . . . . . . . 89
Garamond (font) . . . . . . 18, 30
\gcd (gcd) . . . . . . . . . . . . . 49
\ge . . . . . . . . . . . . . . see \geq
\Gemini (R) . . . . . . . . . . . . 71
\Gemini (â) . . . . . . . . . . . . 71
\gemini (^) . . . . . . . . . . . . 71
genealogical symbols . . . . . . 88
\geneuro (A
C) . . . . . . . . . . . 19
\geneuronarrow (B
C) . . . . . . 19
\geneurowide (C
C) . . . . . . . . 19
gensymb (package) . . . . . . . . 70

\Gentsroom (x) . . . . . . . . . . 90
geometric shapes . . . . 78–80, 94
\geq (¥) . . . . . . . . . . . . . . . 38
\geq (≥) . . . . . . . . . . . . 37, 38
\geq (≥) . . . . . . . . . . . . . . . 39
\geqclosed (⊵) . . . . . . . 39, 40
\geqdot (u) . . . . . . . . . . . . . 39
\geqq (¯) . . . . . . . . . . . . . . 38
\geqq (=) . . . . . . . . . . . . . . 38
\geqq (≧) . . . . . . . . . . . . . . 39
\geqslant (>) . . . . . . . . . . 38
\geqslant (⩾) . . . . . . . . . . . 39
\geqslantdot (⪀) . . . . . . . . 39
german (keystroke package option)
. . . . . . . . . 72
\gets . . . . . . . see \leftarrow
\gg (") . . . . . . . . . . . . . . . . 38
\gg () . . . . . . . . . . . . . . . 37
\gg (≫) . . . . . . . . . . . . . . . 39
\ggcurly (Ï) . . . . . . . . . . . 32
\ggg (Ï) . . . . . . . . . . . . . . . 38
\ggg (≫) . . . . . . . . . . . . . . 38
\ggg (≫ vs. Ï) . . . . . . . . 101
\ggg (⋙) . . . . . . . . . . . . . . 39
\gggtr . . . . . . . . . . . see \ggg
\gggtr (⋙) . . . . . . . . . . . . 39
ghosts . . . . . . . . . . . . . . . . . 98
Gibbons, Jeremy . . . . . . . . 122
\gimel (‫ )ג‬. . . . . . . . . . . . . 51
\gimel (ℷ) . . . . . . . . . . . . . . 51
\girl (B) . . . . . . . . . . . . . . 71
globe . . . . . . . . . . . . . . . . . 90
\glotstop (b) . . . . . . . . . . . 13
\glottal (?) . . . . . . . . . . . . 13
\gluon (QPPPPPPR) . . . . . . . . . . 70
gluons . . . . . . . . . . . . . . . . . 74
\gnapprox (Ë) . . . . . . . . . . 38
\gnapprox () . . . . . . . . . . 38
\gnapprox (⪊) . . . . . . . . . . . 39
\gneq (­) . . . . . . . . . . . . . . 38
\gneq ( ) . . . . . . . . . . . . . . 38
\gneqq (³) . . . . . . . . . . . . . 38
\gneqq ( ) . . . . . . . . . . . . . 38
\gneqq (≩) . . . . . . . . . . . . . 39
\gnsim (Å) . . . . . . . . . . . . . 38
\gnsim () . . . . . . . . . . . . . 38
\gnsim (≵) . . . . . . . . . . . . . 39
Go boards . . . . . . . . . . . . . . 94
Go stones . . . . . . . . . . . . . . 94
goban . . . . . . . . . . . . . . . . . 94
\Goofy . . . . . . . . . . . . . . . . 96
graphics (package) . . . . 47, 103
graphicx (package) . 17, 100, 103
\grave (`) . . . . . . . . . . . . . 57
grave (à) . . . . . . . . see accents
\gravis (à) . . . . . . . . . . . . . 17
greater-than signs . . . . . . . see
inequalities
greatest lower bound see \sqcap
Greek . . . . . . . . . . . . . . 50, 51
blackboard bold . . . . . . 68
bold . . . . . . . . . . 50, 113
polytonic . . . . . . . . . . . 50

135

upright . . . . . . . . . 50, 51
greek (babel package option) 50,
87
Greek coins . . . . . . . . . . . . . 19
\Greenpoint ( ) . . . . . . . . . 98
Gregorio, Enrico . . . . . 104, 105
\grimace (M) . . . . . . . . . . . 91
\GS (␝) . . . . . . . . . . . . . . . . 72
\gtr (>) . . . . . . . . . . . . . . . 39
\gtrapprox (Ç) . . . . . . . . . . 38
\gtrapprox (') . . . . . . . . . 38
\gtrapprox (⪆) . . . . . . . . . . 39
\gtrclosed (⊳) . . . . . . . 39, 40
\gtrdot (Í) . . . . . . . . . . . . 38
\gtrdot (m) . . . . . . . . . . . . 38
\gtrdot (⋗) . . . . . . . . . . . . . 39
\gtreqless (½) . . . . . . . . . . 38
\gtreqless (R) . . . . . . . . . 38
\gtreqless (⋛) . . . . . . . . . . 39
\gtreqlessslant (O) . . . . . . 39
\gtreqqless (¿) . . . . . . . . . 38



\gtreqqless (T) . . . . . . . . . 38
\gtreqqless (⪌)
\gtrless (») . .
\gtrless (≷) . .
\gtrless (≷) . . .

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

39
38
38
39

\gtrneqqless (ó) . . . . . . . . 39
\gtrsim (Á) . . . . . .
\gtrsim (&) . . . . . .
\gtrsim (≳) . . . . . . .
\guillemotleft («) .
\guillemotright (»)
\guilsinglleft (‹) .
\guilsinglright (›)
\gvcropped ( ) . . .
\gvertneqq (µ) . . . .
\gvertneqq () . . .
\gvertneqq (≩) . . . .



.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

. . . . 38
. . . . 38
. . . . 39
10, 116
10, 116
10, 117
10, 117
. . . . 74
. . . . 38
. . . . 38
. . . . 39

H
\H (a̋) . . . . . . . . . . . . . .
h (esvect package option)
\h (ả) . . . . . . . . . . . . . .
\HA (A) . . . . . . . . . . .

.
.
.
.

.
.
.
.

.
.
.
.

14
61
14
82

\Ha (a) . . . . . . . . . . . . . . . 82
háček (ǎ) . . . . . . . see accents
\Hail ( ) . . . . . . . . . . . . . . 91
\Halb (˘ “ ) . . . . . . . . . . . . . . 89
half note . . see musical symbols
\HalfCircleLeft ( ) . . . . . . 80
\HalfCircleRight ( ) . . . . . 80
\HalfFilledHut ( ) . . . . . . 91
\halflength (p) . . . . . . . . . 18
\halfnote ( ) . . . . . . . . . . . 88
\HalfSun ( ) . . . . . . . . . . . 91
Hamiltonian (H) see alphabets,
math
\HandCuffLeft ( ) . . . . . . . 76
\HandCuffLeftUp ( ) . . . . . 76



s



r






\HandCuffRight ( ) . . . . . . 76
\HandCuffRightUp ( ) . . . . 76
\HandLeft ( ) . . . . . . . . . . 76
\HandLeftUp ( ) . . . . . . . . 76
\HandPencilLeft ( ) . . . . . 76
\HandRight ( ) . . . . . . . . . 76
\HandRightUp ( ) . . . . . . . 76
hands . . . . . . . . . . . . . see fists
\Handwash (Ü) . . . . . . . . . . 90
\HaPa (<) . . . . . . . . . . . . . . 89
harmony (package) . 89, 119, 120
harpoon (package) . 47, 119, 121
harpoons . . . . . . . 41, 43, 46, 47
\hash (#) . . . . . . . . . . . . . . 66
hash mark . . . . . . . . . . . see \#
\hat (ˆ) . . . . . . . . . . . . . . . 57
\hateq (≙) . . . . . . . . . . . . . 32
\hausaB (B) . . . . . . . . . . . . 13
\hausab (b) . . . . . . . . . . . . 13
\hausaD (T) . . . . . . . . . . . . 13
\hausad (D) . . . . . . . . . . . . 13
\hausaK (K) . . . . . . . . . . . . 13
\hausak (k) . . . . . . . . . . . . 13
\HB (B) . . . . . . . . . . . . . . . . 82









\Hb (b) . . . . .
\HBar ( ) . . . .
\hbar (~) . . . .
\hbipropto (ˆ)
\HC (C) . . . . . .



....
....
....
...
....

. . . . . . 82
. . . . . . 79
51, 52, 103
. . . . . . 23
. . . . . . 82

\Hc (c) . . . . . . . . . . . . . . . . 82
\hcrossing () . . . . . . . . . . 33
\HCthousand (6) . . . . . . . . 82
\HD (D) . . . . . . . . . . . . . . . 82
\Hd (d) . . . . . . . . .
\hdotdot () . . . . . .
\hdots (⋯) . . . . . . .
\Hdual (¸) . . . . . . .
\HE (E) . . . . . . . . .
\He (e) . . . . . . . . .
heads . . . . . . . . . . .
\Heart (Œ) . . . . . . .
hearts (suit) . . . . . .
\heartsuit (♥) . . . .
\heartsuit (♡) . . . .
Hebrew . . . . . . . . . .
Helvetica (font) . . . .
\hemiobelion (Α) . .
\HERMAPHRODITE (€)
\Hermaphrodite (})
\hexagon (7) . . . . .
\Hexasteel (’) . . . .
\hexstar (A) . . . . .
\HF (F) . . . . . . . . . .
\HF (F) . . . . . . . .
\Hf (f) . . . . . . . .
\hfermion ( ) . . . . .
\hfil . . . . . . . . . . .
\HG (G) . . . . . . . . . .
\Hg (g) . . . . . . . . .

k

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

. . . . 82
. 23, 64
. . . . 64
. . . . 82
. . . . 82
. . . . 82
see faces
. . . . . 90
65–67, 80
. . . . . 65
. . . . . 66
. . 51, 68
. . . . . 18
. . . . . 19
. . . . . 74
. . . . . 74
. . . . . 78
. . . . . 73
. . . . . 77
. . . . . 70
. . . . . 82
. . . . . 82
. . . . . 74
. . . . 105
. . . . . 82
. . . . . 82

\HH . . . . . . . . . . . . . . . . . . . 89
\HH (H) . . . . . . . .
\Hh (h) . . . . . . .
hhcount (package)
\Hhundred (3) . . .

.
.
.
.

. . . . . . . 82
. . . . . . . 82
92, 119, 121
. . . . . . . 82

\HI (I) . . . . . . . . . . . . . . . 82
\Hi (i) . . . . . . . . . . . . . . . . 82
\hiatus (H ) . . . . . . . . . . . . 95
\Hibl (˝) . . . . . . . . . . . . 82
\Hibp (ˆ) . . . . . . . . . . . . . 82
\Hibs (¨) . . . . . . . . . . . . . 82
\Hibw (˜) . . . .
hieroglf (package)
hieroglyphics . . .
Hilbert space (H)
math
\hill (a) . . . . .

. . . . . . . . . 16

\HJ (J) . . .
\Hj (j) . .
\HK (K) . . .
\Hk (k) √
..
\hksqrt (
\HL (L) . .
\Hl (l) . .
\HM (M) . .

.
.
.
.
.
.
.
.

{

.
.
.
.

.
.
.
.
)
..
..
..

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

. . . . . . . . . 82
. 82, 119, 120
. . . . . . . . . 82
see alphabets,

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.

82
82
82
82
106
. 82
. 82
. 82

\Hm (m) . . . . . . . . . . . . . . . 82
\Hman (ˇ) . . . . . . . . . . . . . 82
\Hmillion (7) . . . . . . . . . . 82
\Hms (´)
\HN (N)
\Hn (n)
\HO (O) .

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

82
82
82
82

\Ho (o) . . . . . . . . . . . . . . . 82
Holt, Alexander . . . . . . . 1, 118

Horn, Berthold
\HP (P) . . .
\Hp (p) . . . . .
\Hplural (˙)

..
...
...
..

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

69
82
82
82

\Hplus (+) . . . . . . . . . . . . . 82
\HQ (Q) . . . . . . . . . . . . . . . 82
\Hq (q) . . . . . . . . . . . . . . . . 82
\Hquery (?)
\HR (R) . .
\Hr (r) .
\HS (S) . .

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

82
82
82
82

\Hs (s) . . . . . . . . . . . . . . . . 82
\Hscribe (¯) . . . . . . . . . . . 82
\Hslash (/)
\hslash (})
\Hsv (˚) .
\HT (T) . .
\HT (␉) . . .
\Ht (t) . .
\Hten (2) .

..
.
..
..
..
..
..

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

82
52
82
82
72
82
82

\Hthousand (4) . . . . . . . . . . 82
\Htongue (˘) . . . . . . . . . . 82
\HU (U) . . . . . . . . . . . . . . . . 82
\Hu (u) . . . . . . . . . . . . . . . . 82
Hungarian umlaut (a̋) see accents
\Hut ( ) . . . . . . . . . . . . . . . 91



\HV (V) . .
\Hv (v) .
\hv (") . .
\Hvbar (|)
\HW (W) . .

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

82
82
13
82
82

\Hw (w) . . . . . . . . . . . . . . . 82
\HX (X) . . . . . . . . . . . . . . . . 82
\Hx (x) . . . . . . . . . . . . . . . . 82

) . . . . . . . . . . . 63

\HXthousand (5) . . . . . . . . . 82

holtpolt (package) . . . . 63, 119
\hom (hom) . . . . . . . . . . . . . 49
\Home ( Home ) . . . . . . . . . 72

\HY (Y) . . . . . . . . . . . . . . . 82

\holter (



\Homer (
) .....
\Hone (|) . . . . . . . . . . . .
hook accent (ả) . . . see
\hookb () . . . . . . . . . .
\hookd () . . . . . . . . . .
\hookd (D) . . . . . . . . . .
\hookdownminus (⌐) . . .
\hookg () . . . . . . . . . .
\hookh ($) . . . . . . . . . .
\hookheng (%) . . . . . . . .
\hookleftarrow (←-) . . .
\hookleftarrow (↩) . . .
\hookrevepsilon () . . .
\hookrightarrow (,→) . .
\hookrightarrow (↪) . .
\hookupminus (⨽) . . . . .

136

\Hy (y) . . . . . . . . . . . . . . . 82
hyphen, discretionary . . . . . 115
\HZ (Z) . . . . . . . . . . . . . . . 82
\Hz (z) . . . . . . . . . . . . . . 82

. . . 96
. . . 82
accents
. . . 13
. . . 13
. . . 13
. . . 66
. . . 13
. . . 13
. . . 13
. . . 41
. . . 44
. . . 13
. . . 41
. . . 44
. . . 66

I
ï . . . . . . . . . . . . . . . . . . . . . 14
\i (ı) . . . . . . . . . . . . . . . . . 14
\ialign . . . . . . . 104, 106, 108
\ibar (¯i ) . . . . . . . . . . . . . . 13
IBM PC . . . . . . . . . 72, 97, 115
Icelandic staves . . . . . . . . . . 97
\IceMountain ( ) . . . . . . . . 91
.
\iddots ( . . ) . . . . . . . . . . . . 64
\iddots () R. . . R. . . . . . . . . 107
\idotsint ( ··· ) . . . . . . . 26
'
\idotsint (
) . . . . . . . . 27



\idotsint (∫…∫) . . . . . . . . . . 29
\iff . see \Longleftrightarrow

ifsym (package) . 70, 79, 91, 92,
101, 103, 119, 120
igo (package) . . . . . . . . 94, 119
\igocircle ( ) . . . . . . . . . 94
\igocircle ( ) . . . . . . . . . 94
\igocross ( ) . . . . . . . . . . 94
\igocross ( ) . . . . . . . . . . 94
\igonone ( ) . . . . . . . . . . . 94
\igonone ( ) . . . . . . . . . . . 94
\igosquare ( ) . . . . . . . . . 94
\igosquare ( ) . . . . . . . . . 94
\igotriangle ( ) . . . . . . . . 94
\igotriangle
RRRR( ) . . . . . . . . 94
\iiiint (
) . . . . . . . . . 26
%
\iiiint (
) . . . . . . . . . . . 27
ˇ
\iiiint ( ) . . . . . . . . . . . 28
\iiiint µ
(⨌) . . . . . . . . . . . 29
\iiint (RRR
) . . . . . . . . . . . . 27
\iiint (
) . . . . . . . . . . . 26
#
\iiint ( ) . . . . . . . . . 26, 27
˝
\iiint ( ) . . . . . . . . . . . . 28
\iiint ´
(∭) . . . . . . . . . . . . . 29
\iint (RR) . . . . . . . . . . . . . . 27
\iint ( ) . . . . . . . . . . . . . 26
!
\iint ( ) . . . . . . . . . . . 26, 28
˜
\iint ( ) . . . . . . . . . . . . . . 28
\iint (∬) . . . . . . . . . . . . . . 29
\Im (=) . . . . . . . . . . . . . . . . 51
\im (j) . . . . . . . . . . . . . . . . 52
\imath (ı) . . . . . . . . . . . 51, 57
\impliedby see \Longleftarrow
\implies
see \Longrightarrow
and \vdash
impulse train . . . . . . . . see sha
\in (P) . . . . . . . . . . . . . . . . 52
\in (∈) . . . . . . . . . . . . . . . . 51
\in (∈) . . . . . . . . . . . . . . . . 52
\in (∈) . . . . . . . . . . . . . . . . 52
inches . . . . . . . see \second and
\textquotedbl
\incoh (˚) . . . . . . . . . . . . . 36
independence
probabilistic . . . . . . . . 106
statistical . . . . . . . . . . 106
stochastic . . . . . see \bot
\independent (⊥
⊥) . . . . . . . 106
\Industry (I) . . . . . . . . . . 90
inequalities . . . . . . . . . 9, 37–39
inexact differential . . see \dbar
\inf (inf) . . . . . . . . . . . . . . 49
infimum . see \inf and \sqcap
infinity (∞) . . . . . . . see \infty
\Info ( ) . . . . . . . . . . . . . . 98
\Info (i) . . . . . . . . . . . . . . 90
information symbols . . . . . . 90
informator symbols . . . . . . . 93
\infty (8) . . . . . . . . . . . . . 66
\infty (∞) . . . . . . . . . . . . . 65
\infty (∞) . . . . . . . . . . . . . 66
\inipartvoice (a
–ˇ) . . . . . . . 16
\inipartvoiceless
(a
– ) . . . . 16
˚

}
}
|
|
~
~

<




\injlim (inj lim) .
\inplus (A) . . . .
inputenc (package)
\Ins ( Ins ) . . . .
³
\int ( ) . . . . . . .
R
\int ( ) . . . . . . .
r
\int ( ) . . . . . . .

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.

. . 49
. . 31
. 117
. . 72
. . 27
25, 26
. . . 26

\int (∫) . . . . . . . . . . . . . . . 29
€
\intclockwise ( ) . . . . . . . 30

¿
Ú

\INTEGER ( ) . . . . . . . . . . . . 49
\Integer ( ) . . . . . . . . . . . . 49
integers (Z) see alphabets, math
integrals . . . 25–30, 66, 105–106
integrals (wasysym package option) . . . . . . . . . . . . . 26
\intercal (|) . . . . . . . . . . . 22
\intercal (⊺) . . . . . . . . . . . 52
\interleave (9) . . . . . . . . . 22
intersection . . . . . . . . see \cap

™

\Interval ( ) .
\inva ( ) . . . . .
\invamp (M) . . .
\invbackneg (⨽)

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

91
13
23
66

\INVd () . . . . . . . . . . . . 73
\invdiameter () . . . . . . . . 88
\inve (U) . . . . . . . . . . . . . . 13
inverse limit . see \varprojlim
\InversTransformHoriz (
) 36




\InversTransformVert ( ) . 36
inverted symbols 11–13, 17, 103
inverters . . . . . . . . . . . . . . . 73
\invf (,) . . . . . . . . . . . . . . . 13
\invglotstop (d) . . . . . . . . 13
\invh (&) . . . . . . . . . . . . . . 13
\INVl ()
\invlegr (I)
\invm (5) . .
\invneg ()
\invneg (⨼)

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

73
13
13
31
66

\INVr () . . .
\invr (G) . . . . .
\invscr (K) . . .
\invscripta ()

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

73
13
13
13

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

\INVu () . . .
\invv () . . . . .
\invw (Z) . . . . .
\invy (\) . . . . .
\iota (ι) . . . . . .
iota, upside-down
\iotaup (ι) . . . .
\ipagamma ( ) . .
\ipercatal (η) .
\IroningI (¯) .
\IroningII (°)
\IroningIII (±)
irony mark (? ) . .

137

.
.
.
.
.
.

73
13
13
13
50
103
. 50
. 13
. 95
. 90
. 90
. 90
103

irrational numbers (J)
alphabets, math
\Irritant ( ) . . . . .
\ismodeledby (=|) . . .
ISO character entities
isoent (package) . . . . .

....
.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

see
. 92
103
117
117

J
\j () . . . . . . . . . . . . . . . . . 14
\JackStar ( ) . . . . . . . . . . 78
\JackStarBold ( ) . . . . . . . 78
Jewish star . . . . . . . . . . 77, 78
\jmath () . . . . . . . . . . . 51, 57
\Joch ( ) . . . . . . . . . . . . . . 91
\Join (Z) . . . . . . . . . . . 30, 31
\Join (&) . . . . . . . . . . . . . . 24
\joinrel . . . . . . . . . . . . . 103
joint denial . . . see \downarrow
junicode (package) . . . . . . . 118
Junicode-Regular.ttf (file) 118
\Jupiter (E) . . . . . . . . . . . 71
\Jupiter (Å) . . . . . . . . . . . . 71
\jupiter (X) . . . . . . . . . . . 71

2

3



K
.
.
.
.
.
....
\k (a)
,
\k ( ˛) . . . . . . . . .
\kappa (κ) . . . . .
\kappaup (κ) . . . .
\ker (ker) . . . . . .
ket . . . . . . . . . . .
\Keyboard (Ï) . .
keyboard symbols
keys, computer . .
keystroke (package)
\keystroke (
)
king . . . . . . . . . .
knight . . . . . . . . .
Knuth, Donald E.
symbols by . .
\Koppa (Ϙ) . . . . .
\koppa (ϟ) . . . . . .
\Kr ( l
) ......
\kreuz (6) . . . . .
Kronecker product
Kronecker sum . .
kroužek (å) . . . . .
\kside (O) . . . . .
\Kutline (R) . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

. . . . . . 17
. . . . . . 14
. . . . . . 50
. . . . . . 50
. . . . . . 49
. . . . . . 54
. . . . . . 72
. . . . . . 72
. . . . . . 72
72, 119, 120
. . . . . . . 72
. . . . . . . 94
. . . . . . . 94
. 8, 114, 122
. . . . . . . 89
. . . . . . . 87
. . . . . . . 87
. . . . . . . 89
. . . . . . . 88
see \otimes
. see \oplus
see accents
. . . . . . . 93
. . . . . . . 75

L
\L (L) . . . . . . . . . . . . . . . . . 10
\l (l) . . . . . . . . . . . . . . . . . 10
\labdentalnas (4) . . . . . . . 13
\labvel . . . . . . . . . . . . . . . 16
\Ladiesroom (y) . . . . . . . . . 90
Lagrangian (L) . see alphabets,
math
\Lambda (Λ) . . . . . . . . . . . . 50
\lambda (λ) . . . . . . . . . . . . 50
\lambdabar (o) . . . . . . . . . . 66
\lambdaslash (n) . . . . . . . . 66

\lambdaup (λ) . .
Lamport, Leslie .
\land . . . . . . %. .
\landdownint ( )
\landdownint# (⨚)
\landupint ( ) .
\landupint (⨙) .
\Langle (<) . . .
\lAngle (hh) . . . .
\langle (h) . . . .

. . . . . . . . . 50
. . . . . 118, 122
. . . see \wedge
. . . . . . . . 28
. . . . . . . . 29
. . . . . . . . . 28
. . . . . . . . . 29
. . . . . . . . . 68
. . . . . . . . . 56
. . . . . . 21, 54

\langle (⟨) . . . . . . . . . . . . . 55
\langlebar (n) . . . . . . . . . . 55
\Laplace (

) . . . . . . . . . 36

\laplace (
) . . . . . . . . . 36
Laplace transform (L) . . . . see
alphabets, math
Laplacian (∆) . . . . . see \Delta
Laplacian (∇2 ) . . . . see \nabla
\largecircle (◯) . . . . . . . . 79
\largediamond (◇) . . . . . . 79
\largelozenge (◊) . . . . . . . 79

\largepencil (

W)

. . . . . . . 76

\largepentagram ( ) . . . . . 79
\largesquare (◻) . . . . . . . . 79
\largestar (☆) . . . . . . . . . 79
\largestarofdavid (✡) . . . 79
\largetriangledown (▽) . . 40
\largetriangleleft (◁) . . 40
\largetriangleright (▷) . 40
\largetriangleup (△) . . . . 40
\LArrow ( ← ) . . . . . . . . . . 72
\larrowfill . . . . . . . . . . . . 62
\Laserbeam (a) . . . . . . . . 74
LATEX . . 1, 8, 14, 26, 30, 49, 54,
63, 65, 73, 75, 100, 103–109,
112, 113, 115, 117–119, 121,
122
LATEX 2ε . . . . . . . . . . . . . 1, 8,
9, 19, 20, 22, 30, 36, 41, 58,
63, 65, 69, 73, 100, 101, 103,
106, 107, 111, 112, 114–117,
122
latexsym (package) 22, 30, 36, 41,
65, 100, 119
\latfric (/) . . . . . . . . . . . . 13
Latin 1 . . . . . . . . . . 8, 115, 119
table . . . . . . . . . . . . . 116
laundry symbols . . . . . . . . . 90
\Lbag (P) . . . . . . . . . . . . . . 53
\lbag (N) . . . . . . . . . . . . . . . 53
⎧
⎪
⎪
\lbrace ( ⎨) . . . . . . . . . . . 55
⎪
⎩ . . . . . . . . . . . . . 68
\Lbrack ([)⎪
\lBrack ([[) . . . . . . . . . . . . . 56
LCD digits . . . . . . . . . . . . . 70
\lCeil (dd) . . . . . . . . . . . . . . 56
\lceil (d) . . . . . . . . . . . . . . 54

⎡⎢
\lceil ( ⎢⎢⎢) . . . . . . . . . . . . . 55
⎢⎢
\lcirclearrowdown
(ÿ) . . . 43
\lcirclearrowleft (⤾) . . . 43
\lcirclearrowright (⟳) . . 43
\lcirclearrowup (↻) . . . . . 43
\lcircleleftint (∲) . . . . . . 29
\lcirclerightint (∲) . . . . . 29
\lcm (lcm) . . . . . . . . . . . . 113
\lcorners (v) . . . . . . . . . . . 53
\lcurvearrowdown (⤸) . . . . . 43
\lcurvearrowleft (º) . . . . 43
\lcurvearrowne (¼) . . . . . . 43
\lcurvearrownw (½) . . . . . . 43
\lcurvearrowright (↷) . . . . 43
\lcurvearrowse (¿) . . . . . . 43
\lcurvearrowsw (¾) . . . . . . 43
\lcurvearrowup (¹) . . . . . . . 43
\ldbrack (v) . . . . . . . . . . . . 55
\ldotp (.) . . . . . . . . . . . . . . 63
\ldots (. . .) . . . . . . . . . . . . 63
\le . . . . . . . . . . . . . . see \leq
\leadsto ({) . . . . . . . . 31, 41
\leadsto (↝) . . . . . . . . . . . 44
leaf . . . . . . . . . . see \textleaf
\leafleft (g) . . . . . . . . . . 78
\leafNE (f) . . . . . . . . . . . . 78
\leafright (h) . . . . . . . . . 78
leaves . . . . . . . . . . . . . . 78, 80
Lefschetz motive (L) . . . . . see
alphabets, math
\Left . . . . . . . . . . . . . . . . . 96
\left . . . . . . . 54, 56, 100, 102
\LEFTarrow () . . . . . . . . . . 88
\Leftarrow (⇐) . . . . . . 21, 41
\Leftarrow (⇐) . . . . . . . . . 43
\leftarrow (Ð) . . . . . . . . . 42
\leftarrow (←) . . . . . . . . . 41
\leftarrow (←) . . . . . . . . . . 44
\leftarrowtail () . . . . . 41
\leftarrowtail (↢) . . . . . . 44
\leftarrowtriangle (^) . . 42
\leftbarharpoon (Ü) . . . . . 43
\LEFTCIRCLE (G) . . . . . . . . . 88
\LEFTcircle (G
#) . . . . . . . . . 88
\Leftcircle Ñ(I) . . . . . . . . . 88
Ñ
\leftevaw ( ÑÑ) . . . . . . . . . . 56
\leftfilledspoon (r)
\leftfootline (z) . . .
\leftfree (‚) . . . . . .
\lefthalfcap (⌜) . . . .
\lefthalfcup (⌞) . . . .
\lefthand (t) . . . . . .
\leftharpoonccw (↽) .
\leftharpooncw (↼) . .
\leftharpoondown (â)
\leftharpoondown ())
\leftharpoonup (à) . .
\leftharpoonup (() . .
\leftleftarrows (Ð) .
\leftleftarrows (⇔) .

138

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

47
33
33
23
24
76
46
46
43
41
43
41
42
41

\leftleftarrows (⇇) . . . . . 44
\leftleftharpoons (Ø) . . . 43
\leftlsquigarrow (¢) . . . . 44
\leftmapsto (↤) . . . . . . . . . 44
\leftModels (ò) . . . . . . . . . 33
\leftmodels (â) . . . . . . . . . 33
\leftmoon (K) . . . . . . . . . . . 71
\leftmoon ($) . . . . . . . . . . 71
\leftp (v) . . . . . . . . . . . . . . 18
\leftpitchfork (Š) . . . . . . 47
\leftpointright (
) . . . . 76
\leftpropto (∝) . . . . . . . . . 33
\Leftrightarrow (⇔) . . . . . 41
\Leftrightarrow (⇔) . . . . . 44
\leftrightarrow (Ø) . . . . . 42
\leftrightarrow (↔) . . . . . 41
\leftrightarrow (↔) . . . . . 44
\leftrightarroweq (-) . . . . 42
\leftrightarrows (Ô) . . . . 42
\leftrightarrows () . . . . 41
\leftrightarrows (⇆) . . . . 44
\leftrightarrowtriangle (])
. . . . . . . . . 42
\leftrightharpoon (à) . . . 43
\leftrightharpoondownup (⥊)
. . . . . . . . . 46
\leftrightharpoons (è) . . 43
\leftrightharpoons ( ) . . 41
\leftrightharpoons (⇋) . . . 46
\leftrightharpoonsfill . . . 62
\leftrightharpoonupdown (⥋)
. . . . . . . . . 46
\Leftrightline (Ô) . . . . . . 33
\leftrightline (Ð) . . . . . . 33
\leftrightsquigarrow (ú) 42
\leftrightsquigarrow (!) 41
\leftrightsquigarrow (↭) . 44
\leftrsquigarrow (↜) . . . . 44
\Leftscissors (S) . . . . . . . 75
\leftslice (2) . . . . . . . . . . 22
\leftslice (⪦) . . . . . . . . . . 33
\leftspoon (⟜) . . . . . . . . . 47
\leftsquigarrow (ø) . . . . 42
\leftsquigarrow (f) . . . . . 42
\leftt (n) . . . . . . . . . . . . . . 18
\lefttherefore ( ) . . . 24, 64
\leftthreetimes ($) . . . . . 66
\leftthreetimes (h) . . . . . 22
\leftthreetimes (⋋) . . . . . . 24
\leftthumbsdown (
) . . . . 76
\leftthumbsup (
) . . . . . . 76
\lefttorightarrow (ü) . . . 42
\Lefttorque (&) . . . . . . . . 73
\leftturn (") . . . . . . . . . . 88
\leftVdash (ê) . . . . . . . . . . 33
\leftvdash (⊣)
Ð . . . . . . . . . . 33
Ð
\leftwave ( ÐÐ) . . . . . . . . . . 56

R

D
U

\leftY (*) .
legal symbols
\legm (6) . .
\legr (E) . .

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

. . . . . 24
9, 19, 116
. . . . . 13
. . . . . 13

\length (q) . . . . . . .
\Leo (ä) . . . . . . . . .
\leo () . . . . . . . . .
\leq (¤) . . . . . . . . .
\leq (≤) . . . . . . . . .
\leq (≤) . . . . . . . . .
\leqclosed (⊴) . . . .
\leqdot (t) . . . . . . .
\leqq (®) . . . . . . . .
\leqq (5) . . . . . . . .
\leqq (≦) . . . . . . . .
\leqslant (6) . . . .
\leqslant (⩽) . . . . .
\leqslantdot (⩿) . .
\less (<) . . . . . . . .
less-than signs . . see
\lessapprox (Æ) . . .
\lessapprox (/) . . .
\lessapprox (⪅) . . .
\lessclosed (⊲) . . .
\lessdot (Ì) . . . . .
\lessdot (l) . . . . .
\lessdot (⋖) . . . . . .
\lesseqgtr (¼) . . . .
\lesseqgtr (Q) . . .
\lesseqgtr (⋚) . . . .
\lesseqgtrslant (N)
\lesseqqgtr (¾) . . .

. . . . . . 18
. . . . . . 71
. . . . . . 71
. . . . . . 38
. . . 37, 38
. . . . . . 39
. . . 39, 40
. . . . . . 39
. . . . . . 38
. . . . . . 38
. . . . . . 39
. . . . . . 38
. . . . . . 39
. . . . . . 39
. . . . . . 39
inequalities
. . . . . . 38
. . . . . . 38
. . . . . . 39
. . . 39, 40
. . . . . . 38
. . . . . . 38
. . . . . . 39
. . . . . . 38
. . . . . . 38
. . . . . . 39
. . . . . . 39
. . . . . . 38

\lesseqqgtr (S) . . . . . . . . . 38
\lesseqqgtr (⪋)
\lessgtr (º) . .
\lessgtr (≶) . .
\lessgtr (≶) . . .

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

39
38
38
39

\lessneqqgtr (ò) . . . . . . . . 39
\lesssim (À) . . .
\lesssim (.) . . .
\lesssim (≲) . . . .
\Letter ( ) . . . .
\Letter (B vs. )
\Letter (B) . . . .
letter-like symbols
letters . . . . . . . . .
barred . . . . .
non-ASCII . .
slashed . . . .
variant
Ñ Latin
Ñ
\levaw ( ÑÑ) . . . . .

.
.
.
.

. . . . . . . 38
. . . . . . . 38
. . . . . . . 39
. . . . . . . 92
. . . . . . 101
. . . . . . . . 73
. . . . . 51–53
see alphabets
. . . . . . . 104
. . . . . . . . 10
. . . . . . . 105
. . . . . . . . 51
. . . . . . . . 56

\LF (␊) . 7. . . . . . . . . . . . . . . 72
7

\lfilet (77) . . . . . . . . . . . . . 55
\lFloor (bb) .
\lfloor (b) .
⎢⎢
\lfloor ( ⎢⎢⎢)
\lg (lg) . 
.⎢⎣. .

. . . . . . . . . . . . 56
. . . . . . . . . . . . 54
. . . . . . . . . . . . 55
. . . . . . . . . . . . 49

\lgroup () . . . . . . . . . . . . 54
⎧
⎪
⎪
⎪
\lgroup ( ⎪
) . . . . . . . . . . . 55
⎪
⎩
\LHD () . . . . . . . . . . . . . . . 23

\lhd (C) . . . . . . . . . . . . 22, 23
\lhd (⊲) . . . . . . . . . . . . 39, 40
\lhdbend (~) . . . . . . . . . . 89
\lhookdownarrow (3) . . . . . . 44
\lhookleftarrow (2) . . . . . 44
\lhooknearrow (4) . . . . . . . 44
\lhooknwarrow (⤣) . . . . . . . 44
\lhookrightarrow (↪) . . . . 44
\lhooksearrow (⤥) . . . . . . . 44
\lhookswarrow (6) . . . . . . . 44
\lhookuparrow (1) . . . . . . . . 44
\Libra (æ) . . . . . . . . . . . . . 71
\libra (a) . . . . . . . . . . . . 71
Lie derivative (L) see alphabets,
math
life-insurance symbols . . . . 108
\lightbulb (A) . . . . . . . . . 112
lightbulb.mf (file) . . . 109–111
lightbulb.sty (file) . . . . . 112
lightbulb10.2602gf (file) . 111
lightbulb10.dvi (file) . . . 111
lightbulb10.mf (file) . 109–111
lightbulb10.tfm (file) . . . 112
\Lightning (E vs. ) . . . . 101
\Lightning ( ) . . . . . . . . . 91
\Lightning (E) . . . . . . . . . . 73
\lightning ( ) . . . . . . . . . . 42
\lightning ( vs. ) . . . . . 101
\lightning (☇) . . . . . . . . . . 44
\lightning () . . . . . . . . . . 88
\lim (lim) . . . . . . . . . . 49, 113
\liminf (lim inf) . . . . . 49, 113
limits . . . . . . . . . . . . . . . . . 49
\limsup (lim sup) . . . . 49, 113
\linbfamily . . . . . . . . . 85, 86
Linear A . . . . . . . . . . . . . . . 82
Linear B . . . . . . . . . . . . 85, 86
linear implication see \multimap
linear logic symbols . 21–23, 25,
29–30, 36, 51, 52
linearA (package) . . 82, 119, 121
\LinearAC (c) . . . . . . . . . . . 82
\LinearACC () . . . . . . . . . . 82
\LinearACCC (y) . . . . . . . . . 82
\LinearACCCI (z) . . . . . . . . . 82
\LinearACCCII ({) . . . . . . . 82
\LinearACCCIII (|) . . . . . . 82
\LinearACCCIV (}) . . . . . . . 82
\LinearACCCIX (‚) . . . . . . . 83
\LinearACCCL («) . . . . . . . . 83
\LinearACCCLI (¬) . . . . . . . 83
\LinearACCCLII (­) . . . . . . 83
\LinearACCCLIII (®) . . . . . . 83
\LinearACCCLIV (¯) . . . . . . . 83
\LinearACCCLIX (´) . . . . . . 83
\LinearACCCLV (°) . . . . . . . 83
\LinearACCCLVI (±) . . . . . . 83
\LinearACCCLVII (²) . . . . . 83
\LinearACCCLVIII (³) . . . . . 83
\LinearACCCLX (µ) . . . . . . . 84
\LinearACCCLXI (¶) . . . . . . 84
\LinearACCCLXII (·) . . . . . . 84



139



\LinearACCCLXIII (¸) . . .
\LinearACCCLXIV (¹) . . .
\LinearACCCLXIX (¾) . . . .
\LinearACCCLXV (º) . . . .
\LinearACCCLXVI (») . . . .
\LinearACCCLXVII (¼) . . .
\LinearACCCLXVIII (½) . .
\LinearACCCLXX (¿) . . . . .
\LinearACCCLXXI (À) . . .
\LinearACCCLXXII (Á) . .
\LinearACCCLXXIII (Â) .
\LinearACCCLXXIV (Ã) . . .
\LinearACCCLXXIX (È) . .
\LinearACCCLXXV (Ä) . . . .
\LinearACCCLXXVI (Å) . .
\LinearACCCLXXVII (Æ) . .
\LinearACCCLXXVIII (Ç) .
\LinearACCCLXXX (É) . . . .
\LinearACCCLXXXI (Ê) . . .
\LinearACCCLXXXII (Ë) . .
\LinearACCCLXXXIII (Ì) .
\LinearACCCLXXXIV (Í) .
\LinearACCCLXXXIX (Ò) .
\LinearACCCLXXXV (Î) . . .
\LinearACCCLXXXVI (Ï) . .
\LinearACCCLXXXVII (Ð) .
\LinearACCCLXXXVIII (Ñ)
\LinearACCCV (~) . . . . . . .
\LinearACCCVI () . . . . .
\LinearACCCVII (€) . . . .
\LinearACCCVIII () . . .
\LinearACCCX (ƒ) . . . . . .
\LinearACCCXI („) . . . . .
\LinearACCCXII ( ) . . . .
\LinearACCCXIII (†) . . .
\LinearACCCXIV (‡) . . . .
\LinearACCCXIX (Œ) . . . .
\LinearACCCXL (¡) . . . . .
\LinearACCCXLI (¢) . . . .
\LinearACCCXLII (£) . . . .
\LinearACCCXLIII (¤) . . .
\LinearACCCXLIV (¥) . . .
\LinearACCCXLIX (ª) . . . .
\LinearACCCXLV (¦) . . . .
\LinearACCCXLVI (§) . . .
\LinearACCCXLVII (¨) . . .
\LinearACCCXLVIII (©) . .
\LinearACCCXV (ˆ) . . . . .
\LinearACCCXVI (‰) . . . . .
\LinearACCCXVII (Š) . . . .
\LinearACCCXVIII (‹) . .
\LinearACCCXX () . . . . .
\LinearACCCXXI (Ž) . . . .
\LinearACCCXXII () . . . .
\LinearACCCXXIII () . . .
\LinearACCCXXIV (‘) . . . .
\LinearACCCXXIX (–) . . . .
\LinearACCCXXV (’) . . . .
\LinearACCCXXVI (“) . . . .
\LinearACCCXXVII (”) . . .
\LinearACCCXXVIII (•) . .
\LinearACCCXXX (—) . . . .
\LinearACCCXXXI (˜) . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
82
82
82
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83

\LinearACCCXXXII (™) .
\LinearACCCXXXIII (š) .
\LinearACCCXXXIV (›) . .
\LinearACCCXXXIX ( ) . .
\LinearACCCXXXV (œ) . . .
\LinearACCCXXXVI () . .
\LinearACCCXXXVII (ž)
\LinearACCCXXXVIII (Ÿ)
\LinearACCI () . . . . . .
\LinearACCII () . . . . .
\LinearACCIII () . . . .
\LinearACCIV () . . . .
\LinearACCIX () . . . . .
\LinearACCL (G) . . . . . .
\LinearACCLI (H) . . . . .
\LinearACCLII (I) . . . .
\LinearACCLIII (J) . . . .
\LinearACCLIV (K) . . . . .
\LinearACCLIX (P) . . . . .
\LinearACCLV (L) . . . . .
\LinearACCLVI (M) . . . . .
\LinearACCLVII (N) . . . .
\LinearACCLVIII (O) . .
\LinearACCLX (Q) . . . . .
\LinearACCLXI (R) . . . . .
\LinearACCLXII (S) . . . .
\LinearACCLXIII (T) . . .
\LinearACCLXIV (U) . . .
\LinearACCLXIX (Z) . . .
\LinearACCLXV (V) . . . .
\LinearACCLXVI (W) . . . .
\LinearACCLXVII (X) . . .
\LinearACCLXVIII (Y) . .
\LinearACCLXX ([) . . . .
\LinearACCLXXI (\) . . . .
\LinearACCLXXII (]) . . .
\LinearACCLXXIII (^) .
\LinearACCLXXIV (_) . . .
\LinearACCLXXIX (d) . . .
\LinearACCLXXV (`) . . .
\LinearACCLXXVI (a) . . .
\LinearACCLXXVII (b) . .
\LinearACCLXXVIII (c) .
\LinearACCLXXX (e) . . .
\LinearACCLXXXI (f) . . .
\LinearACCLXXXII (g) . .
\LinearACCLXXXIII (h) .
\LinearACCLXXXIV (i) .
\LinearACCLXXXIX (n) . .
\LinearACCLXXXV (j) . .
\LinearACCLXXXVI (k) . .
\LinearACCLXXXVII (l) .
\LinearACCLXXXVIII (m)
\LinearACCLXXXX (o) . .
\LinearACCV () . . . . . .
\LinearACCVI () . . . . .
\LinearACCVII () . . . .
\LinearACCVIII () . . . .
\LinearACCX () . . . . . .
\LinearACCXCI (p) . . . .
\LinearACCXCII (q) . . .
\LinearACCXCIII (r) . . .
\LinearACCXCIV (s) . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

83
83
83
83
83
83
83
83
82
82
82
82
82
83
83
83
83
83
83
83
83
83
83
83
83
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
82
82
82
82
83
84
84
84
84

\LinearACCXCIX (x) . .
\LinearACCXCV (t) . . .
\LinearACCXCVI (u) . .
\LinearACCXCVII (v) . .
\LinearACCXCVIII (w)
\LinearACCXI ( ) . . . .
\LinearACCXII (!) . . .
\LinearACCXIII (") . .
\LinearACCXIV (#) . . .
\LinearACCXIX (() . . .
\LinearACCXL (=) . . . .
\LinearACCXLI (>) . . .
\LinearACCXLII (?) . . .
\LinearACCXLIII (@) .
\LinearACCXLIV (A) . . .
\LinearACCXLIX (F) . .
\LinearACCXLV (B) . . .
\LinearACCXLVI (C) . .
\LinearACCXLVII (D) . .
\LinearACCXLVIII (E) .
\LinearACCXV ($) . . . .
\LinearACCXVI (%) . . . .
\LinearACCXVII (&) . . .
\LinearACCXVIII (') . .
\LinearACCXX ()) . . . .
\LinearACCXXI (*) . . .
\LinearACCXXII (+) . .
\LinearACCXXIII (,) . .
\LinearACCXXIV (-) . . .
\LinearACCXXIX (2) . .
\LinearACCXXV (.) . . .
\LinearACCXXVI (/) . .
\LinearACCXXVII (0) .
\LinearACCXXVIII (1)
\LinearACCXXX (3) . . .
\LinearACCXXXI (4) . . .
\LinearACCXXXII (5) . .
\LinearACCXXXIII (6) .
\LinearACCXXXIV (7) .
\LinearACCXXXIX (<) .
\LinearACCXXXV (8) . . .
\LinearACCXXXVI (9) . .
\LinearACCXXXVII (:)
\LinearACCXXXVIII (;)
\LinearACI (d) . . . . . .
\LinearACII (e) . . . . .
\LinearACIII (f) . . . .
\LinearACIV (g) . . . . .
\LinearACIX (l) . . . . .
\LinearACL (•) . . . . . .
\LinearACLI (–) . . . . .
\LinearACLII (—) . . . .
\LinearACLIII (˜) . . .
\LinearACLIV (™) . . . .
\LinearACLIX (ž) . . . .
\LinearACLV (š) . . . . .
\LinearACLVI (›) . . . .
\LinearACLVII (œ) . . .
\LinearACLVIII () . .
\LinearACLX (Ÿ) . . . . .
\LinearACLXI ( ) . . . .
\LinearACLXII (¡) . . .

140

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

82
82
82
82
82
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
82
82
82
82
82
83
83
83
83
83
83
83
83
83
83
83
83
83

\LinearACLXIII (¢) . . .
\LinearACLXIV (£) . . .
\LinearACLXIX (¨) . . .
\LinearACLXV (¤) . . . .
\LinearACLXVI (¥) . .
\LinearACLXVII (¦) . .
\LinearACLXVIII (§) .
\LinearACLXX (©) . . . .
\LinearACLXXI (ª) . . .
\LinearACLXXII («) . .
\LinearACLXXIII (¬) .
\LinearACLXXIV (­) . .
\LinearACLXXIX ( ) . . .
\LinearACLXXV (®) . . .
\LinearACLXXVI (¯) . .
\LinearACLXXVII (°) . .
\LinearACLXXVIII (±) .
\LinearACLXXX () . . .
\LinearACLXXXI () . .
\LinearACLXXXII () . .
\LinearACLXXXIII () .
\LinearACLXXXIV () .
\LinearACLXXXIX ( ) . .
\LinearACLXXXV () . . .
\LinearACLXXXVI () .
\LinearACLXXXVII () .
\LinearACLXXXVIII ( )
\LinearACLXXXX ( ) . .
\LinearACV (h) . . . . . .
\LinearACVI (i) . . . . .
\LinearACVII (j) . . . .
\LinearACVIII (k) . . .
\LinearACX (m) . . . . . .
\LinearACXCI ( ) . . . .
\LinearACXCII ( ) . . .
\LinearACXCIII () . . .
\LinearACXCIV () . . .
\LinearACXCIX () . . .
\LinearACXCV () . . . . .
\LinearACXCVI () . . .
\LinearACXCVII () . .
\LinearACXCVIII () . .
\LinearACXI (n) . . . . .
\LinearACXII (o) . . . .
\LinearACXIII (p) . . .
\LinearACXIV (q) . . . .
\LinearACXIX (v) . . . .
\LinearACXL (‹) . . . . .
\LinearACXLI (Œ) . . . .
\LinearACXLII () . . .
\LinearACXLIII (Ž) . .
\LinearACXLIV () . . .
\LinearACXLIX (”) . . .
\LinearACXLV () . . . .
\LinearACXLVI (‘) . . .
\LinearACXLVII (’) . .
\LinearACXLVIII (“) .
\LinearACXV (r) . . . . .
\LinearACXVI (s) . . . .
\LinearACXVII (t) . . .
\LinearACXVIII (u) . . .
\LinearACXX (w) . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

83
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
82
82
82
82
82
84
84
84
84
82
84
84
82
82
82
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83

\LinearACXXI (x) . . .
\LinearACXXII (y) . .
\LinearACXXIII (z) .
\LinearACXXIV ({) . .
\LinearACXXIX (€) . .
\LinearACXXV (|) . . .
\LinearACXXVI (}) . .
\LinearACXXVII (~) .
\LinearACXXVIII ()
\LinearACXXX () . . .
\LinearACXXXI (‚) . .
\LinearACXXXII (ƒ) .
\LinearACXXXIII („) .
\LinearACXXXIV ( ) . .
\LinearACXXXIX (Š) .
\LinearACXXXV (†) . .
\LinearACXXXVI (‡) .
\LinearACXXXVII (ˆ) .
\LinearACXXXVIII (‰)
\LinearAI ( ) . . . . . .
\LinearAII () . . . . .
\LinearAIII () . . . .
\LinearAIV () . . . . .
\LinearAIX () . . . . .
\LinearAL (1) . . . . . .
\LinearALI (2) . . . . .
\LinearALII (3) . . . .
\LinearALIII (4) . . .
\LinearALIV (5) . . . .
\LinearALIX (:) . . . .
\LinearALV (6) . . . . .
\LinearALVI (7) . . . .
\LinearALVII (8) . . .
\LinearALVIII (9) . .
\LinearALX (;) . . . . .
\LinearALXI (<) . . . .
\LinearALXII (=) . . .
\LinearALXIII (>) . .
\LinearALXIV (?) . . .
\LinearALXIX (D) . . .
\LinearALXV (@) . . . .
\LinearALXVI (A) . . .
\LinearALXVII (B) . .
\LinearALXVIII (C) . .
\LinearALXX (E) . . . .
\LinearALXXI (F) . . .
\LinearALXXII (G) . .
\LinearALXXIII (H) .
\LinearALXXIV (I) . .
\LinearALXXIX (N) . .
\LinearALXXV (J) . . .
\LinearALXXVI (K) . .
\LinearALXXVII (L) .
\LinearALXXVIII (M) .
\LinearALXXX (O) . . .
\LinearALXXXI (P) . .
\LinearALXXXII (Q) . .
\LinearALXXXIII (R) .
\LinearALXXXIV (S) .
\LinearALXXXIX (X) .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
82
82
82
82
82
83
83
83
83
83
83
83
83
83
83
83
83
83
83
83
84
83
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84

\LinearALXXXV (T) . . . . . . . . 84
\LinearALXXXVI (U) . . . . . . 84
\LinearALXXXVII (V) . . . . . . 84
\LinearALXXXVIII (W) . . . . . 84
\LinearALXXXX (Y) . . . . . . . 84
\LinearAV () . . . . . . . . . . . 82
\LinearAVI () . . . . . . . . . . 82
\LinearAVII () . . . . . . . . . 82
\LinearAVIII () . . . . . . . . 82
\LinearAX ( ) . . . . . . . . . . . 82
\LinearAXCI (Z) . . . . . . . . . 84
\LinearAXCII ([) . . . . . . . . 84
\LinearAXCIII (\) . . . . . . . 84
\LinearAXCIV (]) . . . . . . . . 84
\LinearAXCIX (b) . . . . . . . . 82
\LinearAXCV (^) . . . . . . . . . 84
\LinearAXCVI (_) . . . . . . . . 84
\LinearAXCVII (`) . . . . . . . . 84
\LinearAXCVIII (a) . . . . . . . 84
\LinearAXI ( ) . . . . . . . . . . 82
\LinearAXII ( ) . . . . . . . . . 82
\LinearAXIII ( ) . . . . . . . . 82
\LinearAXIV ( ) . . . . . . . . . 83
\LinearAXIX () . . . . . . . . . 83
\LinearAXL (') . . . . . . . . . . 83
\LinearAXLI (() . . . . . . . . . 83
\LinearAXLII ()) . . . . . . . . 83
\LinearAXLIII (*) . . . . . . . 83
\LinearAXLIV (+) . . . . . . . . 83
\LinearAXLIX (0) . . . . . . . . 83
\LinearAXLV (,) . . . . . . . . . 83
\LinearAXLVI (-) . . . . . . . . 83
\LinearAXLVII (.) . . . . . . . 83
\LinearAXLVIII (/) . . . . . . 83
\LinearAXV () . . . . . . . . . . 83
\LinearAXVI () . . . . . . . . . 83
\LinearAXVII () . . . . . . . . 83
\LinearAXVIII () . . . . . . . 83
\LinearAXX () . . . . . . . . . . 83
\LinearAXXI () . . . . . . . . . 83
\LinearAXXII () . . . . . . . . 83
\LinearAXXIII () . . . . . . . 83
\LinearAXXIV () . . . . . . . . 83
\LinearAXXIX () . . . . . . . . 83
\LinearAXXV () . . . . . . . . . 83
\LinearAXXVI () . . . . . . . . 83
\LinearAXXVII () . . . . . . . 83
\LinearAXXVIII () . . . . . . . 83
\LinearAXXX () . . . . . . . . . 83
\LinearAXXXI () . . . . . . . . 83
\LinearAXXXII () . . . . . . . 83
\LinearAXXXIII ( ) . . . . . . 83
\LinearAXXXIV (!) . . . . . . . 83
\LinearAXXXIX (&) . . . . . . . 83
\LinearAXXXV (") . . . . . . . . 83
\LinearAXXXVI (#) . . . . . . . 83
\LinearAXXXVII ($) . . . . . . 83
\LinearAXXXVIII (%) . . . . . . 83
linearb (package) 85, 86, 119, 121
\Lineload (L) . . . . . . . . . . 73
linguistic symbols . . . . . 11–14

141

)

\Lisa (
\lJoin (X)
\ll (!) . . .
\ll () . .
\ll (≪) . .

.
.
.
.

.
.
.
.

\llangle (⟪)

.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

96
31
38
37
39

. . . . . . . . . . . 55

\llap . . . . . . . . . . . . . . . . 106
\llbracket (~) . . . . . . . . . . 54
‹

\llbracket ( ) . . . . . . . . . . 57
\llceil (V) . . . . . . . . . . . . . 53
\llcorner (z) . . . . . . . . . . . 53
\llcorner (x) . . . . . . . . . . . 53
\llcorner (⌞) . . . . . . . . . . . 55
\llcurly (Î) . . . .
\Lleftarrow (W) .
\Lleftarrow (⇚) .
\llfloor (T) . . . . .
\lll (Î) . . . . . . . .
\lll (≪) . . . . . . .
\lll (≪ vs. Î) . .
\lll (⋘) . . . . . . .
\llless . . . . . . . .
\llless (⋘) . . . .
\llparenthesis
 (L)

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

. . . . 32
. . . . 41
. . . . 44
. . . . 53
. . . . 38
. . . . 38
. . . 101
. . . . 39
see \lll
. . . . . 39
. . . . . 53

\lmoustache () . . . . . . . . 54
⎧
⎪
⎪
⎪
\lmoustache ( ⎪
) . . . . . . . . 55
⎪
⎭
\ln (ln) . . . . . . . . . . . . . . . 49
\lnapprox (Ê) . . . . . . . . . . 38
\lnapprox () . . . . . . . . . . 38
\lnapprox (⪉) . . . . . . . . . . . 39
\lneq (¬) . . . . . . . . . . . . . . 38
\lneq ( ) . . . . . . . . . . . . . . 38
\lneqq (²) . . . . . . . . . . . . . 38
\lneqq () . . . . . . . . . . . . . 38
\lneqq (≨) . . . . . . . . . . . . . 39
\lnot . . . . . . . . . . . . see \neg
\lnot (¬) . . . . . . . . . . . . . . 66
\lnsim (Ä) . . . . . . . . . . . . . 38
\lnsim () . . . . . . . . . . . . . 38
\lnsim (≴) . . . . . . . . . . . . . 39
local ring (O) . . see alphabets,
math
\log (log) . . . . . . . . . . 49, 113
log-like symbols . . . . . . 49, 113
logic gates . . . . . . . . . . . . . . 73
logical operators
and . . . . . . . . . see \wedge
not . . . see \neg and \sim
or . . . . . . . . . . . see \vee
\logof () . . . . . . . . . . . . . 31
lollipop . . . . . . . see \multimap
long division . . . . . . . . . . . . 59
\longa (λ) . . . . . . . . . . . . . 95
\longcastling (O-O-O) . . . 93
longdiv (package) . . . . . . . . . 59

\Longleftarrow (⇐=) . . . . . 41
\Longleftarrow (⇐Ô) . . . . . 43
\longleftarrow (←Ð) . . . . . 43
\longleftarrow (←−) . . . . . 41
\Longleftrightarrow (⇐⇒) 41
\Longleftrightarrow (⇐⇒) 43
\longleftrightarrow (←→) . 43
\longleftrightarrow (←→) 41
\Longmapsfrom (⇐=\) . . . . . . 42
\longmapsfrom (←−[) . . . . . . 42
\Longmapsto (=⇒) . . . . . . . 42
\longmapsto (z→) . . . . . . . . 43
\longmapsto (7−→) . . . . . . . 41
\LongPulseHigh (
) . . . . . 70
\LongPulseLow (
) . . . . . 70
\Longrightarrow (=⇒) . . . . 41
\Longrightarrow (Ô⇒) . . . . 43
\longrightarrow (Ð→) . . . . 43
\longrightarrow (−→) . . . . 41
\looparrowdownleft (î) . . 42
\looparrowdownright (ï) . . 42
\looparrowleft (ì) . . . . . . 42
\looparrowleft (") . . . . . . 41
\looparrowleft (↫) . . . . . . 43
\looparrowright (í) . . . . . 42
\looparrowright (#) . . . . . 41
\looparrowright (↬) . . . . . 43
\Loosebearing ($) . . . . . . . 73
\lor . . . . . . . . . . . . . see \vee
\LowerDiamond ( ) . . . . . . . 79
lowering . . . see \textlowering
\lozenge (♦) . . . . . . . . 65, 66
\lozenge (◊) . . . . . . . . . . . . 79
\Lparen (() . . . . . . . . . . . . . 68
\lrcorner ({) . . . . . . . . . . . 53
\lrcorner (y) . . . . . . . . . . . 53

&
'

o

\lrcorner (⌟) . . . . . . . . . . . 55
\lrJoin . . . . .
\lrtimes (\) . .
L
P
) ...
\lsem ( P
P
P
P
\lsemantic
N ...
\Lsh (è) . . . . .
\Lsh () . . . . .
\Lsh (↰) . . . . .
\Lsteel (™) . .
\ltimes ( ) . .
\ltimes (n) . .
\ltimes (⋉) . .
\ltriple . . . .
Luecking, Dan .
\lVert (k) . . .
\lVert (||) . . . .
\lvert (|) . . . .
\lvertneqq (´)
\lvertneqq ( )
\lvertneqq
Ð (≨)
Ð
\lwave ( ÐÐ) . . .
_
_
\lWavy ( _
)
_
_
_
_

. . . . see \Join
. . . . . . . . . . 31
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

. . . . . . . . 55
see \ldbrack
. . . . . . . . 42
. . . . . . . . 41
. . . . . . . . 43
. . . . . . . . 73
. . . . . . . . 23
. . . . . . . . 22
. . . . . . . . 24
. . . . . . . . 57
. . . . . . . 106
. . . . . . . . 54
. . . . . . . . 56
. . . . . . . . 54
. . . . . . . . 38
. . . . . . . . 38
. . . . . . . . 39

. . . . . . . . . . 56

. . . . . . . . . . . . 55

^^
\lwavy ( ^^^) . . . . . . . . . . . . . 55
\lz (1) .^^. . . . . . . . . . . . . . . 13

\M . . . . . . .
\M (´) . . . .
\m .¯. . . . . .
\m ( ) . . . .
\ma ¯(¯
×) . . .
\macron (ā)
macron (ā)

.
.
.
.
.
.
.

M
..
..
..
..
..
..
..

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.

...
...
...
...
...
...
see

. . . 10
. . . 95
. . . 10
. . . 95
. . . 95
. . . 17
accents

\Maggie (
) . . . . . . . . . 96
magical signs . . . . . . . . . . . . 97
majuscules . . . . . . . . . . . . . 50
\makeatletter . . . . . . . . . 107
\makeatother . . . . . . . . . . 107
\MALE (‚) . . . . . . . . . . . . . . 74
\Male (|) . . . . . . . . . . . . . . 74
male . . . . . . . . . . . . . 71, 73, 74
\male (♂) . . . . . . . . . . . . . . 73
\MaleMale (ƒ) . . . . . . . . . . 74
\maltese (z) . . . . . . . . . . . 10
\maltese (✠) . . . . . . . . . . . 66
man . . . . . . . . . . . . . . . 81, 90
\manboldkidney () . . . . . . . 89
\manconcentriccircles ($) 89
\manconcentricdiamond (%) 89
\mancone (#) . . . . . . . . . . . 89
\mancube () . . . . . . . . . . . 89
\manerrarrow (y) . . . . . . . 89
\manfilledquartercircle (!) 89
manfnt (package) . . 89, 119, 120
\manhpennib () . . . . . . . . . 89
\manimpossiblecube () . . . 89
\mankidney () . . . . . . . . . . 89
\manlhpenkidney () . . . . . . 89
\manpenkidney () . . . . . . . 89
\manquadrifolium (&) . . . . 89
\manquartercircle ( ) . . . . 89
\manrotatedquadrifolium (')
. . . . . . . . . 89
\manrotatedquartercircle (")
. . . . . . . . . 89
\manstar () . . . . . . . . . . . 89
\mantiltpennib () . . . . . . 89
\mantriangledown (7) . . . . . 89
\mantriangleright (x) . . . . 89
\mantriangleup (6) . . . . . . 89
\manvpennib () . . . . . . . . . . 89
\Mappedfromchar () . . . . . . . 48
\mappedfromchar () . . . . . . . 48
\Mapsfrom (⇐\) . . . . . . . . . . 42
\mapsfrom (←[) . . . . . . . . . . 42
\Mapsfromchar (û) . . . . . . . . 49
\Mapsfromchar (\) . . . . . . . . 48
\mapsfromchar (ß) . . . . . . . . 49
\mapsfromchar ([) . . . . . . . . 48
\Mapsto (⇒) . . . . . . . . . . . . 42
\mapsto (7→) . . . . . . . . . . . . 41
\mapsto (↦) . . . . . . . . . . . . 44

142

\Mapstochar (ú) . . . . . . . . . . 49
\Mapstochar () . . . . . . . . . . 48
\mapstochar (Þ) . . . . . . . . . . 49



\Marge (
) . . . . . . . . . 96
\markera (x) . . . . . . . . . . . 93
\markerb (y) . . . . . . . . . . . 93
married . . . . . see \textmarried
\Mars (D) . . . . . . . . . . . . . . 71
\Mars (Ä) . . . . . . . . . . . . . . 71
\mars (♂) . . . . . . . . . . . . . . 71
\MartinVogel (ÿ) . . . . . . . . 90
marvosym (package) . 18, 65, 67,
71–75, 90, 101
masonic cipher . . . . . . . . . . 98
\mate (m) . . . . . . . . . . . . . . 93
material biconditional . . . . . . .
. see \leftrightarrow and
\equiv
material conditional . . . . . . see
\rightarrow and \supset
material equivalence . . . . . . . .
. see \leftrightarrow and
\equiv
material implication . . . . . . see
\rightarrow and \supset
material nonimplication . . . . . .
. . . see \nrightarrow and
\nsupset
math alphabets . . . . . . . . . . 68
mathabx (package) 21, 23, 25, 26,
30, 32, 36–38, 40, 42, 43, 49,
52–55, 58, 60, 65, 66, 71, 93,
100, 101, 119, 120, 123
\mathaccent . . . . . . . . . . . 104
\mathbb . . . . . . . . . . . . . . . 68
\mathbbm . . . . . . . . . . . . . . 68
\mathbbmss . . . . . . . . . . . . . 68
\mathbbmtt . . . . . . . . . . . . . 68
mathbbol (package) . . . . . . . 68
\mathbf . . . . . . . . . . . . . . 113
\mathbin . . . . . . . . . . . . . 112
\mathbold . . . . . . . . . . . . . 113
mathcal (euscript package option)
. . . . . . . . . 68
\mathcal . . . . . . . . . . . . . . 68
\mathcent (¢) . . . . . . . . . . . 52
\mathchoice . . . . . . . . 105, 106
\mathclose . . . . . . . . . . . . 112
mathcomp (package) . . . . . . 65
mathdesign (package) 18, 24, 30,
52, 56, 67, 119
\mathdollar ($) . . . . . . . . . 21
mathdots (package) . 58, 63, 64,
107, 119, 120
\mathds . . . . . . . . . . . . . . . 68
\mathellipsis (. . .) . . . . . . 21
mathematical symbols . . 21–69
\mathfrak . . . . . . . . . . . . . . 68

\mathit . . . . . . . . . . . . . . . 68
\mathnormal . . . . . . . . . . . . 68
\mathop . . . . . . . . . . . . . . 112
\mathopen . . . . . . . . . . . . . 112
\mathord . . . . . . . . . . . . . 112
\mathpalette . . . . . . . . . . 106
\mathparagraph (¶) . . . . . . 21
\mathpunct . . . . . . . . . . . . 112
\mathpzc . . . . . . . . . . . . . . 68
\mathrel . . . . . . . . . . 103, 112
\mathring (˚) . . . . . . . . 57, 58
\mathrm . . . . . . . . . . . . . . . 68
mathrsfs (package) . . . . 68, 119
mathscr (euscript package option)
. . . . . . . . . 68
\mathscr . . . . . . . . . . . . . . 68
\mathsection (§) . . . . . . . . 21
\mathsterling (£) . . . . . . . . 52
\mathsterling (£) . . . . . . . 21
mathtools (package) . 21, 34, 60,
62, 119, 120
\mathunderscore ( ) . . . . . . 21
\max (max) . . . . . . . . . . . . . 49
Maxwell-Stefan diffusion coefficient . . . . . . . . . . . . see
\DH
\maya . . . . . . . . . . . . . . . . . 65
\Mb (´
˘¯) . . . . . . . . . . . . . . . . 95
\mb (¯) . . . . . . . . . . . . . . . . 95
˘ ) . . . . . . . . . . . . . . 95
\Mbb (¯´
˘¯˘) . . . . . . . . . . . . . . 95
\mBb (¯
˘´¯˘) . . . . . . . . . . . . . . 95
\mbB (¯¯
˘˘´
\mbb (¯¯) . . . . . . . . . . . . . . 95
˘˘
mbboard (package) . . . . 68, 119
\mbbx (¯¯ ) . . . . . . . . . . . . . 95
˘˘˘
\mbox .¯.¯. . . . . . . . . . . . . . 106
\measuredangle (>) . . . . . . 66
\measuredangle (]) . . . . . . 66
\measuredangle (∡) . . . . . . 66
mechanical scaling . . . . 109, 112
\medbackslash (∖) . . . . . . . 24
\medbullet () . . . . . . . . . . 23
\medcirc () . . . . . . . . . . . . 23
\medcircle (◯) . . . . . . . . . . 24
\meddiamond (◇) . . . . . . . . . 25
\medlozenge (◊) . . . . . . . . . 79
\medslash (∕) . . . . . . . . . . . 24
\medsquare (◻) . . . . . . . . . . 25
\medstar (☆) . . . . . . . . . . . 25
\medstarofdavid (✡) . . . . . 79
\medtriangledown (▽) . 25, 40
\medtriangleleft (◁) . 25, 40
\medtriangleright (▷) . 25, 40
\medtriangleup (△) . . . 25, 40
\medvert (∣) . . . . . . . . . . . . 24
\medvertdot () . . . . . . . . . 24
membership . . . . . . . . see \in
\Mercury (A) . . . . . . . . . . . . 71
\Mercury (Â) . . . . . . . . . . . . 71
\mercury (') . . . . . . . . . . . . 71
\merge (!) . . . . . . . . . . . . . 22
METAFONT . . . . . . 69, 109–112
METAFONTbook symbols . . . 89

metre (package) . 17, 57, 95, 119,
120
metre . . . . . . . . . . . . . . . . . 95
metrical symbols . . . . . . . . . 95
\mho (f) . . . . . . . . . . . . 65, 66
micro . . . . . . . . . . see \textmu
\micro (µ) . . . . . . . . . . . . . 70
Microsoft® Windows® . . . 115
\mid (|) . . . . . . . . . . . . . 30, 56
\middle . . . . . . . . . . . . . . . 54
\midtilde ({) . . . . . . . . . . . 18
MIL-STD-806 . . . . . . . . . . . 73
millesimal sign . . . . . . . . . see
\textperthousand
milstd (package) . . . . . . 73, 119
\min (min) . . . . . . . . . 49, 113
minim . . . . see musical symbols
minus . . . . . . . see \textminus
\minus (−) . . . . . . . . . . . . . 24
\minuscolon (−:) . . . . . . . . 36
\minuscoloncolon (−::) . . . . 36
\minusdot () . . . . . . . . . . . 24
\minushookdown (¬) . . . . . . 66
\minushookup (⨼) . . . . . . . . 66
\minuso ( ) . . . . . . . . 22, 104
minutes, angular . . . see \prime
miscellaneous symbols 65–67, 80,
88–99
“Missing $ inserted” . . . . 21
\Mmappedfromchar () . . . . . . 48
\mmappedfromchar () . . . . . . 48
\Mmapstochar () . . . . . . . . . 48
\mmapstochar () . . . . . . . . . 48
MnSymbol (package) . . . . . 21,
23–25, 29, 32–34, 37, 39, 40,
43–48, 51, 52, 55, 58–60, 64,
66, 67, 79, 119, 120
\Mobilefone (H) . . . . . . . . . 73
\mod . . . . . . . . . . . . . . . . . . 49
\models (|=) . . . . . . . . 30, 103
\models (⊧) . . . . . . . . . . . . 33
moduli space . . . see alphabets,
math
monetary symbols . . . 18, 19, 68
monus . . . . . . . . . . see \dotdiv
\moo () . . . . . . . . . . . . . . . 22
\Moon (K) . . . . . . . . . . . . . . 71
\Moon (Á) . . . . . . . . . . . . . . 71
\MoonPha . . . . . . . . . . . . . . 98
\morepawns (S) . . . . . . . . . . 93
\moreroom (U) . . . . . . . . . . 93
\Mountain ( ) . . . . . . . . . . 91
mouse . . . . see \ComputerMouse
\MoveDown (») . . . . . . . . . . . 90
\moverlay . . . . . . . . . . . . . 107
\MoveUp (º) . . . . . . . . . . . . 90
\mp (∓) . . . . . . . . . . . . . . . . 22
\mp (∓) . . . . . . . . . . . . . . . . 24
\mu (µ) . . . . . . . . . . . . . . . . 50
\multimap (() . . . . . . . 30, 31
\multimap (⊸) . . . . . . . . . . 47
\multimapboth () . . . . . . 31



143

\multimapbothvert (•) . . . . 31
\multimapdot () . . . . . . . . 31
\multimapdotboth () . . . . 31
\multimapdotbothA () . . . 31
\multimapdotbothAvert (˜) . 31
\multimapdotbothB () . . . 31
\multimapdotbothBvert (—) . 31
\multimapdotbothvert (–) . . 31
\multimapdotinv () . . . . . 31
\multimapinv () . . . . . . . . 31
multiple accents per character 107
multiplicative disjunction . . . . .
. . . . . see \bindnasrepma,
\invamp, and \parr
\Mundus (m) . . . . . . . . . . . . 90
Museum of Icelandic Sorcery and
Witchcraft . . . . . . . . . 98
musical symbols
20, 65, 66, 88,
89
musixtex (package) . . . . . . . . 89
\muup (µ) . . . . . . . . . . . . . . 50
\MVAt (@) . . . . . . . . . . . . . . 90
\MVEight (8) . . . . . . . . . . . . 65
\MVFive (5) . . . . . . . . . . . . 65
\MVFour (4) . . . . . . . . . . . . 65
\MVNine (9) . . . . . . . . . . . . 65
\MVOne (1) . . . . . . . . . . . . . 65
\MVRightarrow (:) . . . . . . . 90
\MVSeven (7) . . . . . . . . . . . . 65
\MVSix (6) . . . . . . . . . . . . . 65
\MVThree (3) . . . . . . . . . . . . 65
\MVTwo (2) . . . . . . . . . . . . . 65
\MVZero (0) . . . . . . . . . . . . 65

\nabla (∇) .
\nabla (∇) .
\NAK (␕) . . .
NAND gates

N
..
..
..
..

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

65
66
72
73

\NANDd () . . . . . . . . . . 73
\NANDl ()

. . . . . . . . . 73

\NANDr ()

. . . . . . . . . 73

\NANDu ()
\napprox () .
\napprox (≉) . .
\napproxeq (6)
\napproxeq (≊̸)
\nasymp (-) . .
\nasymp (≭) . . .
nath (package) .
\NATURAL ( ) . .
\Natural ( ) . .
\natural (\) . .
\natural (♮) . .
natural numbers
alphabets,

. . . . . . . . . . 73
. . . . . . . . . . 32
. . . . . . . . . . 33
. . . . . . . . . . 31
. . . . . . . . . . 33
. . . . . . . . . . 31
. . . . . . . . . . 48
. 53, 56, 57, 119
. . . . . . . . . . 49
. . . . . . . . . . 49
. . . . . . . 65, 88
. . . . . . . . . . 66
(N) . . . . . see
math

¼
Î

navigation symbols . . . . . . .
\nbackapprox (̸) . . . . . . . .
\nbackapproxeq (̸) . . . . . . .
\nbackcong (≌̸) . . . . . . . . . .
\nbackeqsim (̸) . . . . . . . . .
\nbacksim (*) . . . . . . . . . . .
\nbacksim (∽̸) . . . . . . . . . . .
\nbacksimeq (+) . . . . . . . . .
\nbacksimeq (⋍̸) . . . . . . . . .
\nbacktriplesim (̸) . . . . . .
\NBSP ( ) . . . . . . . . . . . . . .
\nBumpeq ()) . . . . . . . . . . . .
\nBumpeq (≎̸) . . . . . . . . . . . .
\nbumpeq (() . . . . . . . . . . . .
\nbumpeq (≏̸) . . . . . . . . . . . .
\ncirceq (≗̸) . . . . . . . . . . . .
\ncirclearrowleft (↺̸) . . .
\ncirclearrowright (↻̸) . .
\nclosedequal (̸) . . . . . . .
\ncong () . . . . . . . . . . . . .
\ncong () . . . . . . . . . . . . .
\ncong (≇) . . . . . . . . . . . . .
\ncurlyeqprec (¸) . . . . . . .
\ncurlyeqprec (⋞̸) . . . . . . .
\ncurlyeqsucc (¹) . . . . . . .
\ncurlyeqsucc (⋟̸) . . . . . . .
\ncurvearrowdownup (̸) . . .
\ncurvearrowleft (↶̸) . . . .
\ncurvearrowleftright (̸)
\ncurvearrownesw (̸) . . . .
\ncurvearrownwse (̸) . . . .
\ncurvearrowright (↷̸) . . . .
\ncurvearrowrightleft (̸)
\ncurvearrowsenw (̸) . . . .
\ncurvearrowswne (̸) . . . .
\ncurvearrowupdown (̸) . . .
\ndasharrow (⇢̸) . . . . . . . . .
\ndasheddownarrow (⇣̸) . . . .
\ndashedleftarrow (⇠̸) . . . .
\ndashednearrow (̸) . . . . .
\ndashednwarrow (̸) . . . . .
\ndashedrightarrow (⇢̸) . . .
\ndashedsearrow (̸) . . . . .
\ndashedswarrow (̸) . . . . .
\ndasheduparrow (⇡̸) . . . . . .
\ndashleftarrow (⇠̸) . . . . .
\ndashrightarrow (⇢̸) . . . .
\nDashV (+) . . . . . . . . . . . .
\nDashv (+) . . . . . . . . . . . .
\ndashV (/) . . . . . . . . . . . .
\ndashv (') . . . . . . . . . . . .
\ndashv (⊣̸) . . . . . . . . . . . .
\ndashVv (/) . . . . . . . . . . .

90
33
33
33
33
31
33
31
34
34
72
31
34
31
34
34
46
46
34
32
31
34
32
34
32
34
44
46
44
44
44
46
44
44
44
44
46
45
45
45
45
45
45
45
45
46
46
32
32
32
32
34
32

\nddtstile ( ) . . .
\ndiagdown (̸) . . .
\ndiagup (̸) . . . . .
\ndivides (∤) . . . . .
\nDoteq (≑̸) . . . . . . .
\ndoteq (≐̸) . . . . . . .
\ndoublefrown (̸) .
\ndoublefrowneq (̸)
\ndoublesmile (̸) .

35
34
34
34
34
34
48
48
48

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

\ndoublesmileeq (̸) . .
\nDownarrow (⇓̸) . . . . .
\ndownarrow (↓̸) . . . . .
\ndownarrowtail (̸) . .
\ndowndownarrows (⇊̸) .
\ndownfilledspoon (̸)
\ndownfootline (̸) . . .
\ndownfree (⫝̸) . . . . . .
\ndownharpoonccw (⇂̸) .
\ndownharpooncw (⇃̸) . .
\ndownlsquigarrow (̸)
\ndownmapsto (↧̸) . . . .
\ndownModels (̸) . . . .
\ndownmodels (̸) . . . .
\ndownpitchfork (⫛̸) .
\ndownrsquigarrow (̸)
\ndownspoon (⫰̸) . . . . .
\ndownuparrows (̸) . .
\ndownupharpoons (⥯̸) .
\ndownVdash (⍑̸) . . . . .
\ndownvdash (⊤̸) . . . . .
\ndststile (

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

48
45
45
45
45
47
34
34
46
46
45
45
34
34
47
45
47
45
46
34
34

) . . . . . . . . . 35

\ndtstile ( ) . . . . . . . . . . 35
\ndttstile ( ) . . . . . . . . . 35
\ne . . . . . . . . . . . . . . see \neq
\ne (≠) . . . . . . . . . . . . . . . . 34
\Nearrow (t) . . . . . . . . . . . 42
\Nearrow (⇗) . . . . . . . . . . . 43
\nearrow (Õ) . . . . . . . . . . . 42
\nearrow (%) . . . . 41, 106, 107
\nearrow (↗) . . . . . . . . . . . 43
\nearrowtail ($) . . . . . . . . 43
\nefilledspoon (t) . . . . . . 47
\nefootline (|) . . . . . . . . . 33
\nefree („) . . . . . . . . . . . . 33
\neg (¬) . . . . . . . . . . . . . . . 65
\neg (¬) . . . . . . . . . . . . . . . 66
negation . . . see \neg and \sim
\neharpoonccw (D) . . . . . . . 46
\neharpooncw (L) . . . . . . . . 46
\nelsquigarrow (¤) . . . . . . 43
\nemapsto (,) . . . . . . . . . . 43
\neModels (ô) . . . . . . . . . . 33
\nemodels (ä) . . . . . . . . . . 33
\nenearrows (”) . . . . . . . . 43
\nepitchfork (Œ) . . . . . . . . 47
\Neptune (H) . . . . . . . . . . . 71
\Neptune (È) . . . . . . . . . . . 71
\neptune ([) . . . . . . . . . . . . 71
\neq () . . . . . . . . . . . . . . . 32
\neq (,) . . . . . . . . . . . . . . . 37
\neq (≠) . . . . . . . . . . . . . . . 34
\neqbump (̸) . . . . . . . . . . . . 34
\neqcirc (≖̸) . . . . . . . . . . . . 34
\neqdot (⩦̸) . . . . . . . . . . . . . 34
\neqfrown (̸) . . . . . . . . . . . 48
\neqsim (≂̸) . . . . . . . . . . . . . 33
\neqslantgtr (¹) . . . . . . . . 38
\neqslantgtr (⪖̸) . . . . . . . . 39
\neqslantless (¸) . . . . . . . 38
\neqslantless (⪕̸) . . . . . . . 39

144

\neqsmile (̸) . . . . . .
\nequal (≠) . . . . . . . .
\nequalclosed (̸) . .
\nequiv (.) . . . . . . .
\nequiv (≢) . . . . . . . .
\nequivclosed (̸) . .
\nersquigarrow (¬) .
\nespoon (l) . . . . . .
\Neswarrow () . . . .
\neswarrow (%
.) . . . .
\neswarrow (⤡) . . . .
\neswarrows (š) . . .
\neswbipropto (‰) . .
\neswcrossing (‘) . .
\neswharpoonnwse (R)
\neswharpoons (Z) . .
\neswharpoonsenw (V)
\Neswline (Ö) . . . . .
\neswline (Ò) . . . . .
\Neutral ({) . . . . . .
\neVdash (ì) . . . . . .
\nevdash (Ü) . . . . . .
\newextarrow . . . . . .
\newmetrics . . . . . . .
\newmoon (N) . . . . . .
\newmoon ( ) . . . . . .
\newtie (
a) . . . . . . . .
\nexists (E) . . . . . . .
\nexists (@) . . . . . . .
\nexists (∄) . . . . . . .
\nfallingdotseq (≒̸) .
\nfrown (⌢̸) . . . . . . . .
\nfrowneq (̸) . . . . . .
\nfrowneqsmile (̸) . .
\nfrownsmile (̸) . . .
\nfrownsmileeq (̸) . .
\NG (Ŋ) . . . . . . . . . . .
\ng (ŋ) . . . . . . . . . . .
\ngeq (§) . . . . . . . . .
\ngeq () . . . . . . . . .
\ngeq (≱) . . . . . . . . .
\ngeqclosed (⋭) . . . .
\ngeqdot (̸) . . . . . . .
\ngeqq (±) . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

. . . . 48
. . . . 33
. . . . 33
. . . . 31
. . . . 33
. . . . 33
. . . . 43
. . . . 47
. . . . 43
106, 107
. . . . 43
. . . . 43
. . . . 24
. . . . 33
. . . . 46
. . . . 46
. . . . 46
. . . . 33
. . . . 33
. . . . 74
. . . . 33
. . . . 33
. . . . 63
. . . . 95
. . . . 71
. . . . 71
. . . . 14
. . . . 52
. . . . 52
. . . . 52
. . . . 33
. . . . 48
. . . . 48
. . . . 48
. . . . 48
. . . . 48
. . . . 10
. . . . 10
. . . . 38
. . . . 38
. . . . 39
. 39, 40
. . . . 39
. . . . 38

\ngeqq () . . . . .
\ngeqq (≧̸) . . . . .
\ngeqslant ( ) .
\ngeqslant (≱) . .
\ngeqslantdot (⪀̸)
\ngets (↚) . . . . .
\ngg (4) . . . . . .
\ngg (≫̸) . . . . . . .
\nggg (⋙̸) . . . . .
\ngtr (£) . . . . . .
\ngtr (≯) . . . . . .
\ngtr (≯) . . . . . .
\ngtrapprox (É) .
\ngtrapprox (#) .
\ngtrclosed (⋫) .
\ngtrdot (⋗̸) . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
39,
...

38
39
38
39
39
46
38
39
39
38
38
39
38
38
40
39

\ngtreqless (⋛̸) . . . . . . . . . 39

\ngtreqlessslant (̸) . . . . . 39
\ngtreqqless (⪌̸) . . . . . . . . 39
\ngtrless (&) . . . . . . . . . . . 38
\ngtrless (≹) . . . . . . . . . . . 39
\ngtrsim (Ã) . . . . . . . . . . . 38
\ngtrsim (!) . . . . . . . . . . . . 38
\nhateq (≙̸) . . . . . . . . . . . . . 34
\nhookleftarrow (↩̸) . . . . . 46
\nhookrightarrow (↪̸) . . . . 46
\ni (3) . . . . . . . . . . . . 51, 105
\ni (∋) . . . . . . . . . . . . . . . . 52
\nialpha () . . . . . . . . . . . . 13
\nibar . . . . . . . . see \ownsbar
\nibeta ( ) . . . . . . . . . . . . . 13
\NibLeft ( ) . . . . . . . . . . . 76
\NibRight ( ) . . . . . . . . . . 76
nibs . . . . . . . . . . . . . . . . . . 76
\NibSolidLeft ( ) . . . . . . . 76
\NibSolidRight ( ) . . . . . . 76
nicefrac (package) . 67, 119, 121
\nichi ([) . . . . . . . . . . . . . 13
\niepsilon () . . . . . . . . . . 13
\nigamma () . . . . . . . . . . . . 13
\niiota ()) . . . . . . . . . . . . . 13
\nilambda (2) . . . . . . . . . . . 13
\nin (∉) . . . . . . . . . . . . . . . 52
\niomega (>) . . . . . . . . . . . . 13
\niphi (C) . . . . . . . . . . . . . 13
\niplus (B) . . . . . . . . . . . . 31
\nisigma (O) . . . . . . . . . . . . 13
\nitheta (S) . . . . . . . . . . . . 13
\niupsilon (V) . . . . . . . . . . 13
\niv ( ) . . . . . . . . . . . . . . . 53
\nj (7) . . . . . . . . . . . . . . . . 13
\nlcirclearrowdown (̸) . . 45
\nlcirclearrowleft (⤾̸) . . 45
\nlcirclearrowright (⟳̸) . 45
\nlcirclearrowup (↻̸) . . . . 45
\nlcurvearrowdown (⤸̸) . . . . 45
\nlcurvearrowleft (̸) . . . . 45
\nlcurvearrowne (̸) . . . . . 45
\nlcurvearrownw (̸) . . . . . 45
\nlcurvearrowright (↷̸) . . . 45
\nlcurvearrowse (̸) . . . . . 45
\nlcurvearrowsw (̸) . . . . . 45
\nlcurvearrowup (̸) . . . . . . 45
\nleadsto (↝̸) . . . . . . . . . . 46
\nLeftarrow (ö) . . . . . . . . 42
\nLeftarrow (:) . . . . . . . . 41
\nLeftarrow (⇍) . . . . . . . . 45
\nleftarrow (Ú) . . . . . . . . 42
\nleftarrow (8) . . . . . . . . 41
\nleftarrow (↚) . . . . . . . . . 45
\nleftarrowtail (↢̸) . . . . . 45
\nleftfilledspoon (̸) . . . 47
\nleftfootline (̸) . . . . . . 34
\nleftfree (̸) . . . . . . . . . . 34
\nleftharpoonccw (↽̸) . . . . 46
\nleftharpooncw (↼̸) . . . . . 46
\nleftleftarrows (⇇̸) . . . . 45
\nleftlsquigarrow (̸) . . . . 45






\nleftmapsto (↤̸) . . . . . . . . 45
\nleftModels (̸) . . . . . . . . 34
\nleftmodels (̸) . . . . . . . . 34
\nleftpitchfork (̸) . . . . . 47
\nLeftrightarrow (ø) . . . . 42
\nLeftrightarrow (<) . . . . 41
\nLeftrightarrow (⇎) . . . . 45
\nleftrightarrow (Ü) . . . . 42
\nleftrightarrow (=) . 21, 41
\nleftrightarrow (↮) . . . . 45
\nleftrightarrows (⇆̸) . . . . 45
\nleftrightharpoondownup (⥊̸)
. . . . . . . . . 46
\nleftrightharpoons (⇋̸) . . 46
\nleftrightharpoonupdown (⥋̸)
. . . . . . . . . 46
\nLeftrightline (̸) . . . . . 34
\nleftrightline (̸) . . . . . 34
\nleftrightsquigarrow (̸) 46
\nleftrsquigarrow (↜̸) . . . . 45
\nleftspoon (⟜̸) . . . . . . . . 47
\nleftVdash (̸) . . . . . . . . . 34
\nleftvdash (⊣̸) . . . . . . . . . 34
\nleq (¦) . . . . . . . . . . . . . . 38
\nleq () . . . . . . . . . . . . . . 38
\nleq (≰) . . . . . . . . . . . . . . 39
\nleqclosed (⋬) . . . . . . 39, 40
\nleqdot (̸) . . . . . . . . . . . . 39
\nleqq (°) . . . . . . . . . . . . . 38
\nleqq () . . . . .
\nleqq (≦̸) . . . . .
\nleqslant ( ) .
\nleqslant (≰) . .
\nleqslantdot (⩿̸)
\nless (¢) . . . . .
\nless (≮) . . . . .
\nless (≮) . . . . .
\nlessapprox (È)
\nlessapprox (")
\nlessclosed (⋪)
\nlessdot (⋖̸) . . .

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

..
..
..
..
..
..
..
..
..
..
39,
...

38
39
38
39
39
38
38
39
38
38
40
39

\nlesseqgtr (⋚̸) . . . . . . . . . 39
\nlesseqgtrslant (̸) . . . . . 39
\nlesseqqgtr (⪋̸) . . . . . . . . 39
\nlessgtr (') . . . . . . .
\nlessgtr (≸) . . . . . . .
\nlesssim (Â) . . . . . .
\nlesssim ( ) . . . . . . .
\nlhookdownarrow (̸) .
\nlhookleftarrow (̸)
\nlhooknearrow (̸) . .
\nlhooknwarrow (⤣̸) . .
\nlhookrightarrow (↪̸)
\nlhooksearrow (⤥̸) . .
\nlhookswarrow (̸) . .
\nlhookuparrow (̸) . . .
\nll (3) . . . . . . . . . .
\nll (≪̸) . . . . . . . . . . .
\nLleftarrow (⇚̸) . . . .
\nlll (⋘̸) . . . . . . . . .

145

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

38
39
38
38
45
45
45
44
44
44
44
44
38
39
44
39

\nmapsto (↦̸) . . . . . . .
\nmid (-) . . . . . . . . . . .
\nmid (∤) . . . . . . . . . .
\nmodels (⊭) . . . . . . . .
\nmultimap (⊸̸) . . . . .
\nndtstile ( ) . . . . .
\nNearrow (⇗̸) . . . . . .
\nnearrow (1) . . . . . . .
\nnearrow (↗̸) . . . . . .
\nnearrowtail (̸) . . .
\nnefilledspoon (̸) .
\nnefootline (̸) . . . .
\nnefree (̸) . . . . . . .
\nneharpoonccw (̸) . .
\nneharpooncw (̸) . . .
\nnelsquigarrow (̸) .
\nnemapsto (̸) . . . . .
\nneModels (̸) . . . . .
\nnemodels (̸) . . . . .
\nnenearrows (̸) . . .
\nnepitchfork (̸) . . .
\nnersquigarrow (̸) .
\nnespoon (̸) . . . . . .
\nNeswarrow (̸) . . . .
\nneswarrow (⤡̸) . . . .
\nneswarrows (̸) . . .
\nneswharpoonnwse (̸)
\nneswharpoons (̸) . .
\nneswharpoonsenw (̸)
\nNeswline (̸) . . . . .
\nneswline (̸) . . . . .
\nneVdash (̸) . . . . . .
\nnevdash (̸) . . . . . .
\nnststile ( ) . . . . .
\nntstile ( ) . . . . . .
\nnttstile ( ) . . . . .
\nNwarrow (⇖̸) . . . . . .
\nnwarrow (0) . . . . . . .
\nnwarrow (↖̸) . . . . . .
\nnwarrowtail (̸) . . .
\nnwfilledspoon (̸) .
\nnwfootline (̸) . . . .
\nnwfree (̸) . . . . . . .
\nnwharpoonccw (̸) . .
\nnwharpooncw (̸) . . .
\nnwlsquigarrow (̸) .
\nnwmapsto (̸) . . . . .
\nnwModels (̸) . . . . .
\nnwmodels (̸) . . . . .
\nnwnwarrows (̸) . . .
\nnwpitchfork (̸) . . .
\nnwrsquigarrow (̸) .
\nNwsearrow (̸) . . . .
\nnwsearrow (⤢̸) . . . .
\nnwsearrows (̸) . . .
\nnwseharpoonnesw (̸)
\nnwseharpoons (̸) . .
\nnwseharpoonswne (̸)
\nNwseline (̸) . . . . .
\nnwseline (̸) . . . . .
\nnwspoon (̸) . . . . . .
\nnwVdash (̸) . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

46
31
34
34
47
35
44
42
44
45
47
34
34
46
46
45
45
34
34
45
47
45
47
45
45
45
46
46
46
34
34
34
34
35
35
35
45
42
45
45
47
34
34
46
46
45
45
33
34
45
47
45
45
45
45
46
46
46
33
33
47
33

\nnwvdash (̸) . . . . . . . . . . 33
no entry . . . . . . . . . see \noway
\NoBleech (Ì) . . . . . . . . . . 90
\NoChemicalCleaning (¨) . . 90
nointegrals (wasysym package option) . . . . . . . . . . . . . 26
\NoIroning (²) . . . . . . . . . 90
non-commutative division . . 63
nonbreaking space . . . . . . . . 72
NOR gates . . . . . . . . . . . . . 73
\NORd () . . . . . . . . . . . 73
\NORl () . . . . . . . . . . 73
norm . . see \lVert and \rVert
\NORr (

) . . . . . . . . . . 73

\NORu () . . . . . . . . . . . 73
\NoSun ( ) . . . . . . . . . . . . . 91
not . . . . . . . . . . . . . . see \neg
\not . . . . . . . . . . . . . . 32, 105
not equal (= vs. =) . . . . . . . 32
\notasymp () . . . . . . . . . . 32
\notbackslash (−)
\ . . . . . . . 71
\notbot (M) . . . . . . . . . . . . 52
\notdivides () . . . . . . . . . 32
\notequiv () . . . . . . . . . . 32
\notin (R) . . . . . . . . . . . . . 52
\notin (<) . . . . . . . . . . . . . 52
\notin (6∈) . . . . . . . . . . . . . 52
\notin (∉) . . . . . . . . . . . . . . 52
\notni (=) . . . . . . . . . . . . . 52
\notowner (S) . . . . . . . . . . . 52
\notowns . . see \notowner and
\notni
\notperp (M) . . . . . . . . . . . 32
\notslash (−)
/
. . . . . . . . . . 71
\notsmallin () . . . . . . . . . 52
\notsmallowns () . . . . . . . . 52
\nottop (L) . . . . . . . . . . . . 52
\NoTumbler () . . . . . . . . . . 90
\novelty (N) . . . . . . . . . . . 93
\noway (A) . . . . . . . . . . . . . 91
\nowns (∌) . . . . . . . . . . . . . . 52
\nparallel (∦) . . . . . . . . . . 31
\nparallel (∦) . . . . . . . . . . 34
\nparallelslant (Ô) . . . . . 36
\nperp (⊥̸) . . . . . . . . . . . . . 34
\npitchfork (⋔̸) . . . . . . . . . 47
\nplus (`) . . . . . . . . . . . . . 22
\nprec (¢) . . . . . . . . . . . . . 32
\nprec (⊀) . . . . . . . . . . . . . 31
\nprec (⊀) . . . . . . . . . . . . . 33
\nprecapprox (È) . . . . . . . . 32
\nprecapprox (7) . . . . . . . . 31
\nprecapprox (⪷̸) . . . . . . . . 33
\npreccurlyeq (¦) . . . . . . . 32
\npreccurlyeq ($) . . . . . . . 31
\npreccurlyeq (⋠) . . . . . . . 34



\npreceq (ª) . . . . . . . . .
\npreceq () . . . . . . . . .
\npreceq (⪯̸) . . . . . . . . . .
\npreceqq (9) . . . . . . . . .
\nprecsim (Â) . . . . . . . .
\nprecsim () . . . . . . . . .
\nprecsim (≾̸) . . . . . . . . .
\nrcirclearrowdown (̸)
\nrcirclearrowleft (⟲̸)
\nrcirclearrowright (⤿̸)
\nrcirclearrowup (↺̸) . .
\nrcurvearrowdown (⤹̸) . .
\nrcurvearrowleft (↶̸) . .
\nrcurvearrowne (̸) . . .
\nrcurvearrownw (̸) . . .
\nrcurvearrowright (̸) .
\nrcurvearrowse (̸) . . .
\nrcurvearrowsw (̸) . . .
\nrcurvearrowup (̸) . . . .
\nRelbar (̸) . . . . . . . . .
\nrelbar (̸) . . . . . . . . .
\nrestriction (↾̸) . . . . .
\nrhookdownarrow (̸) . . .
\nrhookleftarrow (↩̸) . .
\nrhooknearrow (⤤̸) . . . .
\nrhooknwarrow (̸) . . . .
\nrhookrightarrow (̸) . .
\nrhooksearrow (̸) . . . .
\nrhookswarrow (⤦̸) . . . .
\nrhookuparrow (̸) . . . . .
\nRightarrow (÷) . . . . . .
\nRightarrow (;) . . . . .
\nRightarrow (⇏) . . . . . .
\nrightarrow (Û) . . . . . .
\nrightarrow (9) . . . . .
\nrightarrow (↛) . . . . . .
\nrightarrowtail (↣̸) . .
\nrightfilledspoon (̸)
\nrightfootline (̸) . . .
\nrightfree (̸) . . . . . . .
\nrightharpoonccw (⇀̸) . .
\nrightharpooncw (⇁̸) . .
\nrightleftarrows (⇄̸) . .
\nrightleftharpoons (⇌̸)
\nrightlsquigarrow (↝̸) .
\nrightmapsto (↦̸) . . . . .
\nrightModels (⊯) . . . . .
\nrightmodels (⊭) . . . . .
\nrightpitchfork (̸) . .
\nrightrightarrows (⇉̸) .
\nrightrsquigarrow (̸) .
\nrightspoon (⊸̸) . . . . . .
\nrightsquigarrow (↝̸) . .
\nrightVdash (⊮) . . . . . .
\nrightvdash (⊬) . . . . . .
\nrisingdotseq (≓̸) . . . . .
\nRrightarrow (⇛̸) . . . . .
\nsdtstile ( ) . . . .
\nSearrow (⇘̸) . . . . .
\nsearrow (↘̸) . . . . .
\nsearrowtail (̸) . .
\nsefilledspoon (̸)

146

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

32
31
34
31
32
31
34
45
45
45
45
45
45
45
45
45
45
45
45
34
34
46
45
45
45
45
45
45
45
45
42
41
45
42
41
45
45
47
34
34
46
46
44
46
44
44
34
34
47
44
44
47
46
34
34
34
44

.
.
.
.
.

.
.
.
.
.

35
44
44
45
47

\nsefootline (̸) . . . .
\nsefree (̸) . . . . . . .
\nseharpoonccw (̸) . .
\nseharpooncw (̸) . . .
\nselsquigarrow (̸) .
\nsemapsto (̸) . . . . .
\nseModels (̸) . . . . .
\nsemodels (̸) . . . . .
\nsenwarrows (̸) . . .
\nsenwharpoons (̸) . .
\nsepitchfork (̸) . . .
\nsersquigarrow (̸) .
\nsesearrows (̸) . . .
\nsespoon (̸) . . . . . .
\nseVdash (̸) . . . . . .
\nsevdash (̸) . . . . . .
\nshortmid (.) . . . . . .
\nshortmid (∤) . . . . . .
\nshortparallel (/) . .
\nshortparallel (∦) . .
\nsim () . . . . . . . . . .
\nsim (/) . . . . . . . . . .
\nsim (≁) . . . . . . . . . .
\nsimeq () . . . . . . . .
\nsimeq (;) . . . . . . . .
\nsimeq (≄) . . . . . . . . .
\nsmile (⌣̸) . . . . . . . . .
\nsmileeq (̸) . . . . . . .
\nsmileeqfrown (̸) . . .
\nsmilefrown (≭) . . . .
\nsmilefrowneq (̸) . . .
\nsqdoublefrown (̸) . .
\nsqdoublefrowneq (̸)
\nsqdoublesmile (̸) . .
\nsqdoublesmileeq (̸)
\nsqeqfrown (̸) . . . . .
\nsqeqsmile (̸) . . . . .
\nsqfrown (̸) . . . . . . .
\nsqfrowneq (̸) . . . . .
\nsqfrowneqsmile (̸) .
\nsqfrownsmile (̸) . . .
\nsqsmile (̸) . . . . . . .
\nsqsmileeq (̸) . . . . .
\nsqsmileeqfrown (̸) .
\nsqsmilefrown (̸) . . .
\nSqsubset (̸) . . . . . .
\nsqSubset (–) . . . . . .
\nsqsubset (‚) . . . . . .
\nsqsubset (a) . . . . . .
\nsqsubset (⊏̸) . . . . . .
\nsqsubseteq (†) . . . .
\nsqsubseteq (@) . . . .
\nsqsubseteq (⋢) . . . .
\nsqsubseteqq (Ž) . . .
\nsqsubseteqq (̸) . . .
\nSqsupset (̸) . . . . . .
\nsqSupset (—) . . . . . .
\nsqsupset (ƒ) . . . . . .
\nsqsupset (b) . . . . . .
\nsqsupset (⊐̸) . . . . . .
\nsqsupseteq (‡) . . . .
\nsqsupseteq (A) . . . .
\nsqsupseteq (⋣) . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

34
34
46
46
45
45
34
34
45
46
47
45
45
47
34
34
31
34
31
34
32
31
34
32
31
34
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37

\nsqsupseteqq () . . . . . . .
\nsqsupseteqq (̸) . . . . . . .
\nsqtriplefrown (̸) . . . . . .
\nsqtriplesmile (̸) . . . . . .
\nsquigarrowdownup (̸) . .
\nsquigarrowleftright (̸)
\nsquigarrownesw (̸) . . . .
\nsquigarrownwse (̸) . . . . .
\nsquigarrowrightleft (̸)
\nsquigarrowsenw (̸) . . . .
\nsquigarrowswne (̸) . . . .
\nsquigarrowupdown (̸) . . .
\nsststile (

37
37
48
48
45
45
45
45
45
45
45
45

) . . . . . . . . . 35

\nststile ( ) . . . . . . . . . . 35
\nsttstile ( ) . . . .
\nSubset (–) . . . . . .
\nSubset (>) . . . . . . .
\nSubset (⋐̸) . . . . . . .
\nsubset (‚) . . . . . .
\nsubset (⊄) . . . . . . .
\nsubseteq (†) . . . . .
\nsubseteq (*) . . . .
\nsubseteq (⊈) . . . . .
\nsubseteqq (Ž) . . . .
\nsubseteqq (") . . . .
\nsubseteqq (⫅̸) . . . .
\nsucc (£) . . . . . . . .
\nsucc () . . . . . . . .
\nsucc (⊁) . . . . . . . .
\nsuccapprox (É) . . .
\nsuccapprox (8) . . .
\nsuccapprox (⪸̸) . . .
\nsucccurlyeq (§) . .
\nsucccurlyeq (%) . .
\nsucccurlyeq (⋡) . .
\nsucceq («) . . . . . .
\nsucceq () . . . . . .
\nsucceq (⪰̸) . . . . . . .
\nsucceqq (:) . . . . . .
\nsuccsim (Ã) . . . . .
\nsuccsim () . . . . . .
\nsuccsim (≿̸) . . . . . .
\nSupset (—) . . . . . .
\nSupset (?) . . . . . . .
\nSupset (⋑̸) . . . . . . .
\nsupset (ƒ) . . . . . .
\nsupset (⊅) . . . . . . .
\nsupseteq (‡) . . . . .
\nsupseteq (+) . . . .
\nsupseteq (⊉) . . . . .
\nsupseteqq () . . . .
\nsupseteqq (#) . . . .
\nsupseteqq (⫆̸) . . . .
\nSwarrow (⇙̸) . . . . .
\nswarrow (↙̸) . . . . .
\nswarrowtail (̸) . .
\nswfilledspoon (̸)
\nswfootline (̸) . . .
\nswfree (̸) . . . . . .
\nswharpoonccw (̸) .
\nswharpooncw (̸) . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

35
37
37
37
37
37
37
36
37
37
37
37
32
31
33
32
31
33
32
31
33
32
31
33
31
32
31
33
37
37
37
37
37
37
36
37
37
36
37
45
45
45
47
33
33
46
46

\nswlsquigarrow (̸)
\nswmapsto (̸) . . . .
\nswModels (̸) . . . .
\nswmodels (̸) . . . .
\nswnearrows (̸) . .
\nswneharpoons (̸) .
\nswpitchfork (̸) . .
\nswrsquigarrow (̸)
\nswspoon (̸) . . . . .
\nswswarrows (̸) . .
\nswVdash (̸) . . . . .
\nswvdash (̸) . . . . .
\ntdtstile (

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

) . . . . . . . . . 35

ntheorem (package) . . . . . . .
\nthickapprox (5) . . . . . . .
\nto (↛) . . . . . . . . . . . . . . .
\ntriangleeq (≜̸) . . . . . . . .
\ntriangleleft (š) . . . . . .
\ntriangleleft (6) . . . . . .
\ntriangleleft (⋪) . . . . 39,
\ntrianglelefteq (ž) . . . .
\ntrianglelefteq (5) . . . .
\ntrianglelefteq (⋬) . . 39,
\ntrianglelefteqslant (R)
\ntriangleright (›) . . . . .
\ntriangleright (7) . . . . .
\ntriangleright (⋫) . . . 39,
\ntrianglerighteq (Ÿ) . . . .
\ntrianglerighteq (4) . . .
\ntrianglerighteq (⋭) . 39,
\ntrianglerighteqslant (S)
\ntriplefrown (̸) . . . . . . .
\ntriplesim (≋̸) . . . . . . . . .
\ntriplesmile (̸) . . . . . . .
\ntststile (

45
45
34
34
45
46
47
45
47
45
34
34
65
31
46
40
40
39
40
40
39
40
40
40
39
40
40
39
40
40
48
34
48

) . . . . . . . . . 35

\nttstile ( ) . . . . . . . . . . 35
\ntttstile (

) . . . . . . . . . 35

\ntwoheaddownarrow (↡̸) . . . 45
\ntwoheadleftarrow (h) . . . 31
\ntwoheadleftarrow (↞̸) . . 45
\ntwoheadnearrow (̸) . . . . 45
\ntwoheadnwarrow (̸) . . . . 45
\ntwoheadrightarrow (g) . . 31
\ntwoheadrightarrow (↠̸) . . 45
\ntwoheadsearrow (̸) . . . . 45
\ntwoheadswarrow (̸) . . . . 45
\ntwoheaduparrow (↟̸) . . . . . 45
\nu (ν) . . . . . . . . . . . . . . . . 50
nuclear power plant . see \SNPP
\NUL (␀) . . . . . . . . . . . . . . . 72
null infinity see alphabets, math
null set . . . . . . . . . . . . . 65, 66
number sets see alphabets, math
number sign . see \textnumero
numbers . . . . . . . . . . see digits
circled . . . . . . . . . . 77, 94
numerals
Linear B . . . . . . . . . . . 85
old style . . . . . . . . . . . . 20
\NumLock ( Num ) . . . . . . . . 72

147

\nUparrow (⇑̸) . . . . . . . . . . . 45
\nuparrow (↑̸) . . . . . . . . . . . 45
\nuparrowtail (̸) . . . . . . . 45
\nUpdownarrow (⇕̸) . . . . . . . 45
\nupdownarrow (↕̸) . . . . . . . 45
\nupdownarrows (̸) . . . . . . 45
\nupdownharpoonleftright (̸)
. . . . . . . . . 46
\nupdownharpoonrightleft (̸)
. . . . . . . . . 46
\nupdownharpoons (⥮̸) . . . . . 46
\nUpdownline (∦) . . . . . . . . 34
\nupdownline (∤) . . . . . . . . 34
\nupfilledspoon (̸) . . . . . . 47
\nupfootline (̸) . . . . . . . . 34
\nupfree (̸) . . . . . . . . . . . . 34
\nupharpoonccw (↿̸) . . . . . . . 46
\nupharpooncw (↾̸) . . . . . . . 46
\nuplsquigarrow (̸) . . . . . . 45
\nupmapsto (↥̸) . . . . . . . . . . 45
\nupModels (̸) . . . . . . . . . 34
\nupmodels (̸) . . . . . . . . . . 34
\nuppitchfork (⋔̸) . . . . . . . 47
\nuprsquigarrow (̸) . . . . . . 45
\nupspoon (⫯̸) . . . . . . . . . . . 47
\nupuparrows (⇈̸) . . . . . . . . 45
\nupVdash (⍊̸) . . . . . . . . . . 34
\nupvdash (⊥̸) . . . . . . . . . . . 34
\nuup (ν) . . . . . . . . . . . . . . 50
\nvargeq («) . . . . . . . . . . . 38
\nvarleq (ª) . . . . . . . . . . . 38
\nvarparallel ( ) . . . . . . . 31
\nvarparallelinv ( ) . . . . . 31
\nVDash (*) . . . . . . . . . . . . 32
\nVDash (3) . . . . . . . . . . . . 31
\nVDash (⊯) . . . . . . . . . . . . 34
\nVdash (.) . . . . . . . . . . . . 32
\nVdash (1) . . . . . . . . . . . . 31
\nVdash (⊮) . . . . . . . . . . . . 34
\nvDash (*) . . . . . . . . . . . . 32
\nvDash (2) . . . . . . . . . . . . 31
\nvDash (⊭) . . . . . . . . . . . . 34
\nvdash (&) . . . . . . . . . . . . 32
\nvdash (0) . . . . . . . . . . . . 31
\nvdash (⊬) . . . . . . . . . . . . 34
\nVvash (.) . . . . . . . . . . . . 32
\Nwarrow (v) . . . . . . . . . . . 42
\Nwarrow (⇖) . . . . . . . . . . . 43
\nwarrow (Ô) . . . . . . . . . . . 42
\nwarrow (-) . . . . . . . 41, 106
\nwarrow (↖) . . . . . . . . . . . 43
\nwarrowtail (%) . . . . . . . . 43
\nwfilledspoon (u) . . . . . . 47
\nwfootline (}) . . . . . . . . . 32
\nwfree ( ) . . . . . . . . . . . . 32
\nwharpoonccw (E) . . . . . . . 46
\nwharpooncw (M) . . . . . . . . 46
\nwlsquigarrow (¥) . . . . . . 43
\nwmapsto (-) . . . . . . . . . . 43
\nwModels (õ) . . . . . . . . . . 32
\nwmodels (å) . . . . . . . . . . 32
\nwnwarrows (•) . . . . . . . . 43
\nwpitchfork () . . . . . . . . 47

\nwrsquigarrow (­) .
\Nwsearrow () . . . .
\nwsearrow (&) . . . .
\nwsearrow (⤢) . . . .
\nwsearrows (›) . . .
\nwsebipropto (‹) . .
\nwsecrossing (“) . .
\nwseharpoonnesw (S)
\nwseharpoons (_) . .
\nwseharpoonswne (W)
\Nwseline (×) . . . . .
\nwseline (Ó) . . . . .
\nwspoon (m) . . . . . .
\nwVdash (í) . . . . . .
\nwvdash (Ý) . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

. 43
. 43
106
. 43
. 43
. 24
. 32
. 46
. 46
. 46
. 32
. 32
. 47
. 32
. 32

O
\O (Ø) . . . . . . . . . . . . . . . . 10
\o (ø) . . . . . . . . . . . . . . . . . 10
o (o) . . . . . . . . . . . . . . . . . . 50
\oast (⊛) . . . . . . . . . . . . . . 25
\oasterisk (f) . . . . . . . . . . 25
\obackslash (n) . . . . . . . . . 25
\obackslash (⦸) . . . . . . . . . 25
\obar (:) . . . . . . . . . . . . . . 22
\Obelus (
) . . . . . . . . . . . 95
\obelus ( ) . . . . . . . . . . . 95
\Obelus* ( ·· ) . . . . . . . . . . . 95
\obelus* ( ·· ) . . . . . . . . . . . 95
\oblong (@) . . . . . . . . . . . . 22
\obot (k) . . . . . . . . . . . . . . 25
\obslash (;) . . . . . . . . . . . 22
\oc () . . . . . . . . . . . . . . . . . 21
\ocirc (e) . . . . . . . . . . . . . 25
\ocirc (⊚) . . . . . . . . . . . . . 25
\ocircle (#) . . . . . . . . . . . 23
\ocoasterisk (g) . . . . . . . . 25
\octagon (8) . . . . . . . . . . . 78
octonions (O) . . see alphabets,
math
\Octosteel (‘) . . . . . . . . . . 73
\od (a) . . . . . . . . . . . . . . . . 16
\odiv˚(c) . . . . . . . . . . . . . . 25
\odot (d) . . . . . . . . . . . . . . 25
\odot ( ) . . . . . . . . . . . . . . 22
\odot (⊙) . . . . . . . . . . . . . . 25
\odplus ( ) . . . . . . . . . . . . 24
\OE (Œ) . . . . . . . . . . . 10, 117
\oe (œ) . . . . . . . . . . . . 10, 117
\officialeuro (e) . . . . . . . 19
\offinterlineskip . . . . . . 104
ogonek (package) . . 17, 119, 121
ogonek ( ˛) . . . . . . see accents
\ogreaterthan (=) . . . . . . . 22
{
\ohill (a)
. . . . . . . . . . . . . 16
ohm . . . . . . . . . . see \textohm
\ohm (Ω) . . . . . . . . . . . . . . . 70
\Ohne (a
/ ) . . . . . . . . . . . . . . 89
\OHORN (Ơ) . . . . . . . . . . . . . 10
\ohorn (ơ)) . . . . . . . . . . . . . 10
\oiiint ( ) . . . . . . . . . . . 28
ˆ
\oiiint ( ) . . . . . . . . . . . 30



L
\oiiintclockwise ( )D. . . .
\oiiintctrclockwise ( ) .
·
\oiint () . . . . . . . . . . . . .
\oiint ( ) . . . . . . . . . . 26,
‚
\oiint ( ) . . . . . . . . . . . . .
†
\oiint ( ) . . . . . . . . . . . . .

28
28
27
28
28
30

\oiint (∯) . . . . .H. . . . . . . . 29
\oiintclockwise ( ) @. . . . . 28
\oiintctrclockwise ( ) . . 28
¶
\oint (H) . . . . . . . . . . . . . . 27
\oint ( ) . . . . . . . . . . . . . . 25
\oint (∮) . . . . . . . . . . . . . . 29
\ointclockwise ( ) . . . . . . 27
ı
\ointclockwise ( ) . . . . . . . 28
„
\ointclockwise ( ) . . . . . . . 30
\ointctrclockwise ( ) . . . . 27

\ointctrclockwise ( ) . . . . 28
‚
\ointctrclockwise ( ) . . . . 30
old-style digits . . . . . . . . . . . 20
\oldstylenums . . . . . . . . . . 20
\oleft (h) . . . . . . . . . . . . . 25
\olessthan (<) . . . . . . . . . . 22
\Omega (Ω) . . . . . . . . . . . . . 50
\omega (ω) . . . . . . . . . . . . . 50
\omegaup (ω) . . . . . . . . . . . 50
\ominus (a) . . . . . . . . . . . . 25
\ominus ( ) . . . . . . . . . . . . 22
\ominus (⊖) . . . . . . . . . . . . 25
\onlymove (F) . . . . . . . . . . 93
\oo (◦◦) . . . . . . . . . . . . . . . 95
\oo (@) . . . . . . . . . . . . . . . 13
\ooalign . . . . . . . . . . 104, 105
\open (z) . . . . . . . . . . . . . . 18
open unit disk (D) . . . . . . see
alphabets, math
\openJoin ([) . . . . . . . . . . . 31
\openo (=) . . . . . . . . . . . . . . 13
\openo (c) . . . . . . . . . . . . . 13
\openo (l) . . . . . . . . . . . . . 13
\opentimes (]) . . . . . . . . . . 31
operators
binary . . . . . . . . . . 22–25
logical see logical operators
set . . . . . see set operators
unary . . . . . . . . . . . . . 21
\oplus (`) . . . . . . . . . . . . . 25
\oplus (⊕) . . . . . . . 21, 22, 103
\oplus (⊕) . . . . . . . . . . . . . 25
\opposbishops (o) . . . . . . . 93
\opposition (W) . . . . . . . . 71
optical scaling . . . . . . . . . . 109
options . . . see package options
or . . . . . . . . . . . . . . . see \vee
OR gates . . . . . . . . . . . . . . 73

\ORd (
) . . . . . . . . . . . . 73
\oright (i) . . . . . . . . . . . . 25
\ORl (

) . . . . . . . . . . . 73

148

q

\OrnamentDiamondSolid ( ) 80
ornaments . . . . . . . . . . . 78, 80
\ORr (
) . . . . . . . . . . . 73
orthogonal to . . . . . . see \bot

\ORu (
) ....
\oslash (m) . . . .
\oslash ( ) . . . .
\oslash (⊘) . . . .
\ostar (⍟) . . . . .
\otimes (b) . . . .
\otimes (⊗) . . . .
\otimes (⊗) . . . .
\otop (j) . . . . . .
\otriangle (d) . .
\otriangleup (o)
ovals . . . . . . . . . .
\ovee (>) . . . . . .
_
\overarc (a
) ....
hkkikkj

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

..
..
..
..
..
..
..
..
..
25,
..
..
..
..

73
25
22
25
25
25
22
25
25
40
25
80
22
17

\overbrace (
) . . . . . . . 60
©
\overbrace ( ) . . . . . . . . . . 60
\overbrace (

z}|{

) . . . . . . . . 60

z}|{

) . . . . . . . . 59
\overbrace (
\overbracket ( ) . . . . . . . . 60
\overbracket ”( ) . . . . 108, 109
\overbridge (a) . . . . . . . . . 16
hkkk j

\overgroup (

) ........
³µ
\overgroup ( ) . . . . . . . . .
−) . . . . . .
\overleftarrow (←
(
\overleftharp ( ) . . . . . . .
\overleftharpdown ()) . . . .
Ð) . . . .
\overleftharpoon (↼
→) .
\overleftrightarrow (←
\overline ( ) . . . . . . . . 21,
x) . . . .
\overlinesegment (z

z{

\overparenthesis ( )
⇒) .
\Overrightarrow (=
overrightarrow (package)
→) .
\overrightarrow (−
\overrightharp (*) . . .
\overrightharpdown (+)
⇀)
\overrightharpoon (Ð
\overring (x) . . . . . .
\overset . . . . . . . . . .
\overt (⦶) . . . . . . . . .
\ovoid (l) . . . . . . . . .
\owedge (?) . . . . . . . .
\owns . . . . . . . . . . . . .
\owns (Q) . . . . . . . . . .
\owns (3) . . . . . . . . . .
\owns (∋) . . . . . . . . . .
\ownsbar (W) . . . . . . . .

60
60
59
47
47
60
59
59
60

108, 109
. . . . 59
59, 119
. . . . 59
. . . . 47
. . . 47
. . . . 60
. . . . 18
. . . 104
. . . . 25
. . . . 25
. . . . 22
see \ni
. . . . 52
. . . . 52
. . . . 52
. . . . 52

P
\P (¶) . . . . . . . . . . . . . . 9, 116
\p ( ) . . . . . . . . . . . . . . . . . 95
\p@ ˙ . . . . . . . . . . . . . . . . . . 107

package options
a (esvect) . . . . . . . . . . . 61
b (esvect) . . . . . . . . . . . 61
bbgreekl (mathbbol) . . . 68
c (esvect) . . . . . . . . . . . 61
crescent (fge) . . . . . . . . 58
d (esvect) . . . . . . . . . . . 61
e (esvect) . . . . . . . . . . . 61
f (esvect) . . . . . . . . . . . 61
g (esvect) . . . . . . . . . . . 61
german (keystroke) . . . . 72
greek (babel) . . . . . 50, 87
h (esvect) . . . . . . . . . . . 61
integrals (wasysym) . . . . 26
mathcal (euscript) . . . . . 68
mathscr (euscript) . . . . . 68
nointegrals (wasysym) . . 26
polutonikogreek (babel) . 50
sans (dsfont) . . . . . . . . . 68
utf8x (inputenc) . . . . . 117
varg (txfonts/pxfonts) . . 51
packages
longdiv . . . . . . . . . . . . . 59
accents . . 58, 107, 119, 121
amsbsy . . . . . . . . . . . . 113
amsfonts 22, 30, 36, 41, 65,
68
amsmath 8, 49, 58, 104, 112
amssymb . 8, 22, 30, 36, 41,
58, 65, 68, 87, 119, 120, 123
amstext . . . . . . . . 105, 106
ar . . . . . . . . . . . . 70, 119
arcs . . . . . . . . 17, 119, 120
arev . . . . . 67, 88, 119, 120
ascii . . . . 72, 115, 119, 120
babel . . . . . . . . . . . 50, 87
bbding 75–78, 80, 101, 119,
120
bbm . . . . . . . . . . . 68, 119
bbold . . . . . . . . . . 68, 119
bm . . . . . . . 113, 119, 121
braket . . . . . . . . . . . . . 54
calligra . . . . . . 68, 119, 121
calrsfs . . . . . . . . . . . . . 68
cancel . . . . . . . . . . . . . 59
cclicenses . . . . 19, 119, 120
centernot . . . . . . . . . . 105
chancery . . . . . . . . . . . 119
chemarr . . . . . 62, 119, 120
chemarrow . . . . 47, 62, 119
china2e 19, 49, 68, 98, 119,
121
clock . . . . . . . 92, 119, 120
cmll . . . 21, 24, 30, 36, 119
colonequals 21, 36, 119, 120
combelow . . . . 17, 119, 121
cypriot . . . . . . 86, 119, 121
dblaccnt . . . . . . . . . . . 107
dictsym . . . . . 96, 119, 120
dingbat 76, 80, 101, 119, 120
DotArrow . . . . 63, 119, 121
dozenal . . . . . . . . 65, 119
dsfont . . . . . . . . . 68, 119

epsdice . . . . . . 92, 119, 120
esint . . . . . . . . . . 28, 119
esvect . . . . . . . . . 61, 119
eufrak . . . . . . . . . . . . . 68
eurosym . . . . . 19, 119, 120
euscript . . . . . 68, 119, 120
extarrows . . . . 62, 119, 120
extpfeil . . . . . . 63, 119, 120
extraipa . . . . . . . . 16, 119
fc . . . . . . . . . . . . . 10, 14
fclfont . . . . . . . . . . . . 119
feyn . . . . . . . . 74, 119, 120
fge . 47, 53, 58, 65, 67, 119,
120
fixmath . . . . . . . . . . . 113
fontenc . . . . 8, 10, 14, 115
fontspec . . . . . . . . . . . 118
fourier 19, 36, 51, 53, 57, 60,
76, 78, 91, 119
gensymb . . . . . . . . . . . . 70
graphics . . . . . . . . 47, 103
graphicx . . . . . 17, 100, 103
harmony . . . . . 89, 119, 120
harpoon . . . . . 47, 119, 121
hhcount . . . . . 92, 119, 121
hieroglf . . . . . 82, 119, 120
holtpolt . . . . . . . . 63, 119
ifsym . . 70, 79, 91, 92, 101,
103, 119, 120
igo . . . . . . . . . . . . 94, 119
inputenc . . . . . . . . . . . 117
isoent . . . . . . . . . . . . . 117
junicode . . . . . . . . . . . 118
keystroke . . . . 72, 119, 120
latexsym . 22, 30, 36, 41, 65,
100, 119
linearA . . . . . . 82, 119, 121
linearb . . . 85, 86, 119, 121
manfnt . . . . . . 89, 119, 120
marvosym 18, 65, 67, 71–75,
90, 101
mathabx . . . 21, 23, 25, 26,
30, 32, 36–38, 40, 42, 43, 49,
52–55, 58, 60, 65, 66, 71, 93,
100, 101, 119, 120, 123
mathbbol . . . . . . . . . . . 68
mathcomp . . . . . . . . . . 65
mathdesign . 18, 24, 30, 52,
56, 67, 119
mathdots . . 58, 63, 64, 107,
119, 120
mathrsfs . . . . . . . . 68, 119
mathtools . . 21, 34, 60, 62,
119, 120
mbboard . . . . . . . . 68, 119
metre . 17, 57, 95, 119, 120
milstd . . . . . . . . . 73, 119
MnSymbol . . . . . . . . . 21,
23–25, 29, 32–34, 37, 39, 40,
43–48, 51, 52, 55, 58–60, 64,
66, 67, 79, 119, 120
musixtex . . . . . . . . . . . . 89
nath . . . . . . 53, 56, 57, 119

149

nicefrac . . . . . 67, 119, 121
ntheorem . . . . . . . . . . . 65
ogonek . . . . . . 17, 119, 121
overrightarrow . . . . 59, 119
phaistos . . . . . 81, 119, 120
phonetic . . 13, 16, 103, 119
pict2e . . . . . . . . . . . . . 70
pifont . . 10, 75–78, 80, 103,
119, 120
pigpen . . . . . . 98, 119, 120
pmboxdraw . . . 97, 119, 120
polynom . . . . . . . . . . . . 59
protosem . . . . 81, 119, 120
psnfss . . . . . . . . . . . . . 77
pxfonts . . 21–23, 27, 30, 31,
36–38, 41, 42, 48, 50–52, 65,
66, 68, 100, 115
recycle . . . . . . . . . 99, 119
rotating . . . . . . . . . 19, 72
sarabian . . . . . 87, 119, 121
savesym . . . . . . . . . . . 100
semtrans . 14, 17, 119, 120
shuffle . . . . . . 24, 119, 120
simplewick . . . . . . . . . 109
simpsons . . . . . . . 96, 119
skak . . . . . 93, 94, 119, 120
skull . . . . . . . . 93, 119, 120
slashed . . . . . . . . . . . . 105
staves . . . . . . . . . 97, 119
steinmetz . . . . 70, 119, 121
stmaryrd . . . 22, 26, 31, 37,
40, 42, 48, 53, 54, 101, 104,
118–120
t4phonet . 14, 17, 119, 120
teubner 19, 64, 87, 95, 119,
120
textcomp 8, 9, 14, 18–20, 41,
57, 67, 70, 88, 100, 115, 119
timing . . . . . . . . . . . . . 70
tipa 11, 12, 14–17, 103, 119,
120
tipx . . . . . . . . 12, 119, 120
trfsigns . . . . 36, 52, 63, 119
trsym . . . . . . . 36, 119, 120
turnstile . . . . . 35, 119, 120
txfonts . . . . . . . . . . 21–23,
27, 30, 31, 36–38, 41, 42, 48,
50–52, 65, 66, 68, 100, 102,
115, 119, 120
type1cm . . . . . . . . . . . 100
ucs . . . . . . . . . . . 117, 118
ulsy . . . . . 24, 48, 103, 119
underscore . . . . . . . . . . . 9
undertilde . . . . 61, 119, 120
units . . . . . . . . . . . . . . 67
universa . . 80, 90, 119, 120
universal 75, 77, 80, 90, 119,
120
upgreek . . . . . 51, 119, 120
upquote . . . . . . . . . . . 115
url . . . . . . . . . . . . . . . 115
ushort . . . . . . 61, 119, 121
vietnam . . . . . . . . . . . 119

vntex . . . . . . . . . . . 10, 14
wasysym . . . . . . 13, 18, 20,
22, 23, 26, 30, 31, 36–38, 41,
64–66, 70, 71, 73, 77, 78, 88,
101, 119, 120
wsuipa 13, 16, 18, 101, 103,
107, 119, 120
xfrac . . . . . . . . . . . . . . 67
yfonts . . . 68, 69, 119, 120
yhmath 58, 59, 61, 64, 107,
119
Pakin, Scott . . . . . . 1, 108, 118
\PaperLandscape ( ) . . . . . 92




\PaperPortrait ( ) . . . . . . 92
par see \bindnasrepma, \invamp,
and \parr
paragraph mark . . . . . . . see \P
\parallel (k) . . . . . . . . 30, 56
\parallel (∥) . . . . . . . . . . . 33
\ParallelPort (Ñ) . . . . . . . 72
\parallelslant (Ë) . . . . . . . 36
\parr (`) . . . . . . . . . . . . . . 24
\partial (B ) . . . . . . . . . . . . 52
\partial (∂) . . . . . . . . . . . . 51
\partial (∂) . . . . . . . . . . . . 53
\partialslash (C ) . . . . . . . 52
\partialvardint (∫…∫) . . . . 67
\partialvardlanddownint (⨚) 67
\partialvardlandupint (⨙) 67
\partialvardlcircleleftint
(∲) . . . . . . . . . . . . . . 43
\partialvardlcircleleftint
(∲) . . . . . . . . . . . . . . 67
\partialvardlcirclerightint
(∲) . . . . . . . . . . . . . . 43
\partialvardlcirclerightint
(∲) . . . . . . . . . . . . . . 67
\partialvardoiint (∯) . . . 67
\partialvardoint (∮) . . . . . 67
\partialvardrcircleleftint
(∳) . . . . . . . . . . . . . . 43
\partialvardrcircleleftint
(∳) . . . . . . . . . . . . . . 67
\partialvardrcirclerightint
(∳) . . . . . . . . . . . . . . 43
\partialvardrcirclerightint
(∳) . . . . . . . . . . . . . . 67
\partialvardstrokedint (⨏) 67
\partialvardsumint (⨋) . . . 67
\partialvartint (∫…∫) . . . . . 67
\partialvartlanddownint (⨚) 67
\partialvartlandupint (⨙) 67
\partialvartlcircleleftint
(∲) . . . . . . . . . . . . . . 43
\partialvartlcircleleftint
(∲) . . . . . . . . . . . . . . 67
\partialvartlcirclerightint
(∲) . . . . . . . . . . . . . . 43
\partialvartlcirclerightint
(∲) . . . . . . . . . . . . . . 67
\partialvartoiint (∯) . . . 67
\partialvartoint (∮) . . . . . 67

\partialvartrcircleleftint
(∳) . . . . . . . . . . . . . . 43
\partialvartrcircleleftint
(∳) . . . . . . . . . . . . . . 67
\partialvartrcirclerightint
(∳) . . . . . . . . . . . . . . 44
\partialvartrcirclerightint
(∳) . . . . . . . . . . . . . . 67
\partialvartstrokedint (⨏) 67
\partialvartsumint (⨋) . . . 67
particle-physics symbols . . . . 74
parts per thousand . . . . . . see
\textperthousand
\partvoice (a
–ˇ») . . . . . . . . . . 16
\partvoiceless
(a
– ») . . . . . . . 16
˚
\passedpawn (r) . . . . . . . . . 93
pawn . . . . . . . . . . . . . . . . . 94
pdfLATEX . . . . . . . . . . . . . 118
\Peace ( ) . . . . . . . . . . . . . 80
\PencilLeft ( ) . . . . . . . . 76
\PencilLeftDown ( ) . . . . . 76
\PencilLeftUp ( ) . . . . . . . 76
\PencilRight ( ) . . . . . . . 76
\PencilRightDown ( ) . . . . 76
\PencilRightUp ( ) . . . . . . 76
pencils . . . . . . . . . . . . . . . . 76
\pentagon (D) . . . . . . . . . . 78
\pentagram („) . . . . . . . . . . 25
\pentam (λθλθλ||λββλββλ)
. . . . . . . . . 95
people . . . . . . . . . . . . see faces
percent sign . . . . . . . . . see \%
\permil (h) . . . . . . . . . . . . 20
\Perp (y) . . . . . . . . . . . . . . 31
\perp (⊥) . . . . . . . . . . 30, 106
\perp (⊥) . . . . . . . . . . . . . . 33
\perthousand (‰) . . . . . . . 70
\Pfund (£) . . . . . . . . . . . . . 18
\PgDown ( Page ↓ ) . . . . . . . 72
\PgUp ( Page ↑ ) . . . . . . . . . 72
phaistos (package) . 81, 119, 120
Phaistos disk . . . . . . . . . . . . 81
pharmaceutical prescription
see
\textrecipe










\PHchild (E) . . . . . . . . . . . 81
\PHclub (M) . . . . . . . . . . . . . 81
\PHcolumn (W) . . . . . . . . . . . 81
\PHcomb (U) . . . . . . . . . . . . 81
\PHdolium (T) . . . . . . . . . . 81
\PHdove (f) . . . . . . . . . . . 81
\PHeagle (e) . . . . . . . . . . . 81
\PHflute (o)

. . . . . . . . . . . 81

\PHgaunlet (H) . . . . . . . . . 81
\PHgrater (p)

. . . . . . . . . . 81

\PHhelmet (G) . . . . . . . . . . 81
\PHhide (a) . . . . . . . . . . . 81
\PHhorn (Z)
\Phi (Φ) . .
\phi (φ) . .
\phiup (φ)

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

81
50
50
50

\PHlid (Q) . . . . . . . . . . . . . 81
\PHlily (m)

. . . . . . . . . . . . 81

\PHmanacles (N)

. . . . . . . . 81

\PHmattock (O) . . . . . . . . . 81



\Phone ( ) . . . . . . . . . . . . . 80
\phone () . . . . . . . . . . . . . 88
\PhoneHandset ( )
phonetic (package) .
119
phonetic symbols . .
\photon (::::) . .
photons . . . . . . . .

. . . . . . . 80
13, 16, 103,
. . . . 11–14
. . . . . . . 70
. . . . . . . 74

\PHoxBack (n) . . . . . . . . . . 81
\PHpapyrus (k) . . . . . . . . . . 81
\PHpedestrian (A) . . . . . . 81
\PHplaneTree (i) . . . . . . . . 81

\PHarrow (J) . . . . . . . . . . . . 81
\phase ( ) . . . . . . . . . . . . . 70
phasor . . . . . . . . . . . . . . . . 70

\PHplumedHead (B) . . . . . 81

\PHbee (h)

\PHram (d) . . . . . . . . . . . . 81

. . . . . . . . . . . . 81

\PHrosette (l) . . . . . . . . . 81
\PHbeehive (X) . . . . . . . . 81
\PHboomerang (R) . . . . . . . 81

\PHsaw (P) . . . . . . . . . . . . . 81
\PHshield (L) . . . . . . . . . . 81

\PHbow (K) . . . . . . . . . . . . . . 81

\PHship (Y) . . . . . . . . . . . 81

\PHbullLeg (b) . . . . . . . . . . 81

\PHsling (V) . . . . . . . . . . . 81

\PHcaptive (D) . . . . . . . . . 81

\PHsmallAxe (r) . . . . . . . . 81

\PHcarpentryPlane (S) . . . 81

\PHstrainer (q)

\PHcat (c) . . . . . . . . . . . . 81

\PHtattooedHead (C) . . . . 81

150

. . . . . . . 81

\PHtiara (I) . . . . . . . . . . . 81
\PHtunny (g) . . . . . . . . . . 81
\PHvine (j) . . . . . . . . . . . . 81
\PHwavyBand (s) . . . . . . . . . 81
\PHwoman (F) . . . . . . . . . . . 81
physical symbols . . . . . . . . . 70
\Pi (Π) . . . . . . . . . . . . . . . . 50
\pi (π) . . . . . . . . . . . . . . . . 50
\pi (π) . . . . . . . . . . . . . . . . 51
\Pickup (A) . . . . . . . . . . . . 73
pict2e (package) . . . . . . . . . . 70
pifont (package) . . 10, 75–78, 80,
103, 119, 120
pigpen (package) . . 98, 119, 120
pigpen cipher . . . . . . . . . . . 98
{\pigpenfont A} (A) . . . . . 98
{\pigpenfont B} (B) . . . . . 98
{\pigpenfont C} (C) . . . . . 98
{\pigpenfont D} (D) . . . . . 98
{\pigpenfont E} (E) . . . . . 98
{\pigpenfont F} (F) . . . . . 98
{\pigpenfont G} (G) . . . . . 98
{\pigpenfont H} (H) . . . . . 98
{\pigpenfont I} (I) . . . . . 98
{\pigpenfont J} (J) . . . . . 98
{\pigpenfont K} (K) . . . . . 98
{\pigpenfont L} (L) . . . . . 98
{\pigpenfont M} (M) . . . . . 98
{\pigpenfont N} (N) . . . . . 98
{\pigpenfont O} (O) . . . . . 98
{\pigpenfont P} (P) . . . . . 98
{\pigpenfont Q} (Q) . . . . . 98
{\pigpenfont R} (R) . . . . . 98
{\pigpenfont S} (S) . . . . . 98
{\pigpenfont T} (T) . . . . . 98
{\pigpenfont U} (U) . . . . . 98
{\pigpenfont V} (V) . . . . . 98
{\pigpenfont W} (W) . . . . . 98
{\pigpenfont X} (X) . . . . . 98
{\pigpenfont Y} (Y) . . . . . 98
{\pigpenfont Z} (Z) . . . . . 98
pilcrow . . . . . . . . . . . . . see \P
pipe . . . . . . . . . see \textpipe
\Pisces (ë) . . . . . . . . . . . . 71
\pisces (f) . . . . . . . . . . . . 71
\Pisymbol . . . . . . . . . . . . . 103
\pitchfork (&) . . . . . . . . . . 66
\pitchfork (t) . . . . . . . . . . 30
\pitchfork (⋔) . . . . . . . . . . 47
pitchfork symbols . . . 30, 47, 66
Pitman’s base-12 symbols . . 65
\piup (π) . . . . . . . . . . . . . . 50
\planck (h̄) . . . . . . . . . . . . 13
\Plane ( ) . . . . . . . . . . . . . 80

planets . . . . . . . . . . . . . . . . 71
playing cards . . . . see card suits
Plimsoll line . . . . . . . . . . . 104
\Plus ( ) . . . . . . . . . . . . . . 76
\plus (+) . . . . . . . . . . . . . . 24
plus-or-minus sign . . . . see \pm
\PlusCenterOpen ( ) . . . . . 76
\pluscirc ( ) . . . . . . . . . . 23
\PlusOutline ( ) . . . . . . . . 76
plusses . . . . . . . . . . . . . 76, 77
\PlusThinCenterOpen ( ) . . 76
\Pluto (I) . . . . . . . . . . . . . 71
\Pluto (É) . . . . . . . . . . . . . 71
\pluto (\) . . . . . . . . . . . . . 71
\pm (±) . . . . . . . . . . . . . . . . 22
\pm (±) . . . . . . . . . . . . . . . . 24
\pm ( ) . . . . . . . . . . . . . . . . 95
˙
\pmb ¯. . . . . . . . . . . . . . . . . 113
pmboxdraw (package) . . 97, 119,
120
\pmod . . . . . . . . . . . . . . . . . 49
\pod . . . . . . . . . . . . . . . . . . 49
\pointer ( ) . . . . . . . . . . . . 88
pointing finger . . . . . . . see fists
\Pointinghand (Z) . . . . . . . 90
\polishhook (~) . . . . . . . . . 18

'

&

\polter (

(

)

) . . . . . . . . . . . 63

polutonikogreek (babel package option) . . . . . . . . . . . . . 50
polygons . . . . . . . . . . . . 78, 79
polynom (package) . . . . . . . . 59
polynomial division . . . . . . . 59
polytonic Greek . . . . . . . . . . 50
\Postbox ( ) . . . . . . . . . . . 98
PostScript . 51, 69, 75, 103, 112
PostScript fonts . . . . . . 75, 103
\Pound ( ) . . . . . . . . . . . . . 19
\pounds (£) . . . . . . 9, 115, 116
power set . see alphabets, math
\powerset (℘) . . . . . . . . . . . 52
\Pp (˙) . . . . . . . . . . . . . . . . 95
\pp (˙˙ ) . . . . . . . . . . . . . . . 95
\ppm (˙ ) . . . . . . . . . . . . . . . 95
˙˙) . . . . . . . . . . . . . . . 95
\Ppp (¯
˙˙
\ppp (˙˙ ) . . . . . . . . . . . . . . 95
˙
\Pppp (˙˙) . . . . . . . . . . . . . . . 95
˙
\pppp ( ˙ ) . . . . . . . . . . . . . 95
˙
\Ppppp (˙) . . . . . . . . . . . . . . 95
˙
\ppppp (˙˙ ) . . . . . . . . . . . . . 95
˙
\Pr (Pr) ˙ . . . . . . . . . . . . . . . 49
\prec (≺) . . . . . . . . . . . . . . 30
\prec (≺) . . . . . . . . . . . . . . 32
\precapprox (Æ) . . . . . . . . . 32
\precapprox (w) . . . . . . . . . 30
\precapprox (⪷) . . . . . . . . . 33
\preccurlyeq (¤) . . . . . . . . 32
\preccurlyeq (4) . . . . . . . . 30
\preccurlyeq (≼) . . . . . . . . 33
\precdot (Ì) . . . . . . . . . . . 32
\preceq () . . . . . . . . . . . . 30

#

þ

151

\preceq (⪯) . . . . . . . . . . . . . 33
\preceqq () . . . . . . . . . . . . 31
\precnapprox (Ê) . . . . . . . . 32
\precnapprox () . . . . . . . . 31
\precnapprox (⪹) . . . . . . . . 34
\precneq (¬) . . . . . . . . . . . 32
\precneqq () . . . . . . . . . . 31
\precnsim (Ä) . . . . . . . . . . 32
\precnsim () . . . . . . . . . . 31
\precnsim (⋨) . . . . . . . . . . . 34
\precsim (À) . . . . . . . . . . . 32
\precsim (-) . . . . . . . . . . . 30
\precsim (≾) . . . . . . . . . . . . 33
prescription . . see \textrecipe
present-value symbols . . . . 108
\prime (0) . . . . . . . . . . . . . . 65
\prime (′) . . . . . . . . . . . . . . 66
\Printer (Ò) . . . . . . . . . . . 72
printer’s fist . . . . . . . . see fists
probabilistic
Q independence . 106
\prod ( ) . . . . . . . . . . . . . 25
\prod (∏) . . . . . . . . . . . . . . 29
projective space (P) . . . . . see
alphabets, math
\projlim (proj lim) . . . . . . . 49
pronunciation symbols . . . . see
phonetic symbols
proof, end of . . . . . . . . . . . . 65
proper subset/superset . . . . see
\subsetneq/\supsetneq
proper vertices . . . . . . . . . . 74
\propto (9) . . . . . . . . . . . . 66
\propto (∝) . . . . . . . . . . . . 30
\propto (∝) . . . . . . . . . . . . 33
proto-Semitic symbols . . . . . 81
protosem (package) 81, 119, 120
\ProvidesPackage . . . . . . . 119
\PrtSc ( PrtSc ) . . . . . . . . . 72
\ps ( ) . . . . . . . . . . . . . . . 95
pseudographics . . . . . . . . . . 97
\Psi (Ψ) . . . . . . . . . . . . . . . 50
\psi (ψ) . . . . . . . . . . . . . . . 50
\psiup (ψ) . . . . . . . . . . . . . 50
psnfss (package) . . . . . . . . . . 77
\Pu (‰ ) . . . . . . . . . . . . . . . . 89
pullback diagrams . . . . . . . 106
pulse diagram symbols . . . . . 70
\PulseHigh ( ) . . . . . . . . . 70
\PulseLow ( ) . . . . . . . . . 70
punctuation . . . . . . . . . . . . 10
pushout diagrams . . . . . . . 106
\pwedge (U) . . . . . . . . . . . . 13
pxfonts (package) . 21–23, 27, 30,
31, 36–38, 41, 42, 48, 50–52,
65, 66, 68, 100, 115
\Pxp (˙) . . . . . . . . . . . . . . . 95
\pxp (˙˙ ) . . . . . . . . . . . . . . 95

$
%

˙

Q.E.D. . . . .
\qoppa (ϟ) . .
\qside (M) .
\Quadrad (]])

Q
..
..
..
..

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

65
87
93
57

\quadrad (]]) . . . . . . . . . . . . 57
\Quadras ([[) . . . . . . . . . . . . 57
\quadras ([[) . . . . . . . . . . . . 57
quarter note see musical symbols
\quarternote (♩) . . . . . . . . 88
\quarternote (♩) . . . . . . . . . 88
quaternions (H)
see alphabets,
math
quaver . . . see musical symbols
queen . . . . . . . . . . . . . . . . . 94
\quotedblbase („) . . . . 10, 117
\quotesinglbase (‚) . . 10, 117
R
\R (∼) . . . . . . . . . . . . . . . . 95
\r (å) . . . . . . . . . . . . . . . . . 14
\r (∼) . . . . . . . . . . . . . . . . . 95
\Radiation ( ) . . . . . . . . . 92
radicals . . see \sqrt and \surd
\Radioactivity (j) . . . . . . 74
\Rain ( ) . . . . . . . . . . . . . . 91
\RainCloud ( ) . . . . . . . . . 91
raising . . . . . see \textraising
\RaisingEdge ( ) . . . . . . . . 70
\Rangle (>) . . . . . . . . . . . . 68
\rAngle (ii) . . . . . . . . . . . . . 56
\rangle (i) . . . . . . . . . . 21, 54







\rangle (⟩) . . . . . . . . . . . . . 55
\ranglebar (s) . . . . . . . . . . 55
\RArrow ( → ) . . . . . . . . .
\rarrowfill . . . . . . . . . . .
\ratio (:) . . . . . . . . . . . . .
\RATIONAL ( ) . . . . . . . . . .
\Rational ( ) . . . . . . . . . .
rational numbers (Q) . . . . .
alphabets, math
rationalized Planck constant
\hbar
\Rbag (Q) . . . . . . . . . . . . .
\rbag (O) . . . . . . . . . . . . . .
⎫
⎪
⎪
\rbrace ( ⎬) . . . . . . . . . .
⎪
⎭............
\Rbrack (])⎪
\rBrack (]]) . . . . . . . . . . . .
\rc (a) . . . . . . . . . . . . . . .
\rCeil (ee) . . . . . . . . . . . . .
\rceil (e) . . . . . . . . . . . . .
⎤⎥
\rceil ( ⎥⎥⎥) . . . . . . . . . . . .
⎥⎥
\rcirclearrowdown
(û) . .
\rcirclearrowleft (⟲) . .
\rcirclearrowright (⤿) .
\rcirclearrowup (↺) . . . .
\rcircleleftint (∳) . . . . .
\rcirclerightint (∳) . . . .
\rcorners (w) . . . . . . . . . .
\rcurvearrowdown (⤹) . . . .
\rcurvearrowleft (↶) . . .
\rcurvearrowne (Ä) . . . . .

½
Ñ

.
.
.
.
.

72
62
36
49
49
see
see

. 53
. 53
.
.
.
.
.
.

55
68
56
16
56
54

.
.
.
.
.
.
.
.
.
.
.

55
44
44
44
44
29
29
53
44
44
44

\rcurvearrownw (Å) . . . . . . 44
\rcurvearrowright (À) . . . . 44
\rcurvearrowse (Ç) . . . . . . 44
\rcurvearrowsw (Æ) . . . . . . 44
\rcurvearrowup (Á) . . . . . . . 44
\rdbrack (w) . . . . . . . . . . . . 55
\Re (<) . . . . . . . . . . . . . . . . 51
\REAL ( ) . . . . . . . . . . . . . . 49
\Real ( ) . . . . . . . . . . . . . . 49
real numbers (R) see alphabets,
math
recipe . . . . . . see \textrecipe
\recorder () . . . . . . . . . . . 88
\Rectangle ( ) . . . . . . . . . . 80
\RectangleBold ( ) . . . . . . . 80
rectangles . . . . . . . . . . . . . . 80
\RectangleThin ( ) . . . . . . . 80
\Rectpipe (˜) . . . . . . . . . . . 73
\Rectsteel (”) . . . . . . . . . . 73
recycle (package) . . . . . 99, 119

¾
Ò

u

v
t

A

\recycle (
) . . . . . . 99
recycling symbols . . . . . 98, 99
reduced quadrupole moment see
\rqm
\reflectbox . . . . . . . . . . . 103
registered trademark . . . . . see
\textregistered
relational symbols . . . . . . . . 30
binary 30–32, 34–39, 47, 48
negated binary . . . . 31–33
triangle . . . . . . . . . 39, 40
\Relbar (=) . . . . . . . . 48, 103
\Relbar (Ô) . . . . . . . . . . . . 33
\relbar (−) . . . . . . . . 48, 103
\relbar (Ð) . . . . . . . . . . . . 33
\Request ( ) . . . . . . . . . . . 98
\resizebox . . . . . . . . . 47, 100
\Respondens (∼) . . . . . . . . . 95
\respondens ( ∼) . . . . . . . . . 95
response ( ) . . . . . . . . . . . 118
\restoresymbol . . . . . . . . 100
\restriction . . . . . . . . . . see
\upharpoonright
\restriction (æ) . . . . . . . . 42
\restriction (↾) . . . . . . . . 46
retracting see \textretracting
\Return ( ←- ) . . . . . . . . . . 72
return . .Ñ. . . see carriage return
Ñ
\revaw ( ÑÑ) . . . . . . . . . . . . . 56

>

\revD () . . . . . . . . .
.
\revddots ( . . ) . . . . .
\reve () . . . . . . . . .
\reveject (f) . . . . . .
\revepsilon () . . . .
reverse solidus . . . . . .
\textbackslash
reversed symbols . . . .

152

.
.
.
.
.
.

.
.
.
.

. . . 13
. . 107
. . . 13
. . . 13
13, 103
. . . see

. . . . 103

\reversedvideodbend (
\revglotstop (c) . . . .
\Rewind (¶) . . . . . . . .
\RewindToIndex (´) .
\RewindToStart
(µ) . .
?

.
.
.
.

)
..
..
..
..

.
.
.
.
.

89
13
90
90
90

?

\rfilet (??) . . . . . . . . . . . . . 55
\rFloor (cc) . . . . . . . . . . . . . 56
\rfloor (c) . . . . . . . . . . . . . 54
⎥⎥
\rfloor (⎥⎥⎥) . . . . . . . . . . . . 55
⎥
\rgroup (⎦) . . . . . . . . . . . . 54
⎫
⎪
⎪
⎪
) . . . . . . . . . . . 55
\rgroup ( ⎪
⎪
⎭
\RHD () . . . . . . . . . . . . . . . 23
\rhd (B) . . . . . . . . . . . . 22, 23
\rhd (⊳) . . . . . . . . . . . . 39, 40
\rho (ρ) . . . . . . . . . . . . . . . 50
\rho (ρ ) . . . . . . . . . . . . . . . 51
\rhookdownarrow (;) . . . . . . 44
\rhookleftarrow (↩) . . . . . 44
\rhooknearrow (⤤) . . . . . . . 44
\rhooknwarrow (=) . . . . . . . 44
\rhookrightarrow (8) . . . . 44
\rhooksearrow (?) . . . . . . . 44
\rhookswarrow (⤦) . . . . . . . 43
\rhookuparrow (9) . . . . . . . . 43
\rhoup (ρ) . . . . . . . . . . . . . 50
\right . . . . . . 54, 56, 100, 102
\rightangle (∟) . . . . . . . . . 67
\RIGHTarrow () . . . . . . . . . 88
\Rightarrow (⇒) . . . . . 21, 41
\Rightarrow (⇒) . . . . . . . . 43
\rightarrow (Ñ) . . . . . . . . 42
\rightarrow (→) . . . . . . . . 41
\rightarrow (→) . . . . . . . . . 43
\rightarrowtail () . . . . . 41
\rightarrowtail (↣) . . . . . 43
\rightarrowtriangle (_) . . 42
\rightbarharpoon (Ý) . . . . 43
\RIGHTCIRCLE (H) . . . . . . . . 88
\RIGHTcircle (H
#) . . . . . . . . 88
\Rightcircle (J) . . . . . . . . 88
\RightDiamondÑ ( ) . . . . . . . 79
Ñ
\rightevaw ( ÑÑ) . . . . . . . . . . 56

?

\rightfilledspoon (p)
\rightfootline (x) . .
\rightfree (€) . . . . . .
\righthalfcap (⌝) . . .
\righthalfcup (⌟) . . .
\righthand (u) . . . . .
\rightharpoonccw (⇀)
\rightharpooncw (⇁) .
\rightharpoondown (ã)
\rightharpoondown (+)
\rightharpoonup (á) .
\rightharpoonup (*) .
\rightleftarrows (Õ)
\rightleftarrows ()
\rightleftarrows (⇄)
\rightleftharpoon (á)

.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

47
33
33
24
24
76
46
46
43
41
43
41
42
41
43
43

\rightleftharpoons (é)
\rightleftharpoons ( )
\rightleftharpoons (*
))
\rightleftharpoons (⇌)
\rightleftharpoonsfill
\rightlsquigarrow (↝) .
\rightmapsto (↦) . . . . .
\rightModels (⊫) . . . . .
\rightmodels (⊧) . . . . .
\rightmoon (L) . . . . . . .
\rightmoon (%) . . . . . . .
\rightp (w) . . . . . . . . . .
\rightpitchfork (ˆ) . .
\rightpointleft (
) .

L

N

.
.
.
.
.
.
.
.
.
.
.

\rightpointright (
) .
\rightpropto (Ž) . . . . . .
\rightrightarrows (Ñ) .
\rightrightarrows (⇒) .
\rightrightarrows (⇉) . .
\rightrightharpoons (Ù)
\rightrsquigarrow (¨) . .
\Rightscissors (Q) . . . .
\rightslice (3) . . . . . . .
\rightslice (⪧) . . . . . . .
\rightspoon (⊸) . . . . . .
\rightsquigarrow (ù) .
\rightsquigarrow ( ) . .
\rightsquigarrow (↝) . .
\rightt (o) . . . . . . . . . . .
\righttherefore ( ) . . .
\rightthreetimes (%) . .
\rightthreetimes (i) . .
\rightthreetimes (⋌) . . .
\rightthumbsdown (
) .
\rightthumbsup (
) ...
\righttoleftarrow (ý) .
\Righttorque (') . . . . . .
\rightturn (!) . . . . . . .
\rightVdash (⊩) . . . . . . .
\rightvdash (⊢)
.......
Ð
Ð
\rightwave ( ÐÐ) . . . . . . . .

d
u

\rightY (() . . . . .
\ring (˚) . . . . . . .
ring (å) . . . . . . . . .
ring equal to . . . . .
ring in equal to . . .
\riota ( ) . . . . . . .
\rip (O) . . . . . . . .
\risingdotseq ()
\risingdotseq (:)
\risingdotseq (≓)
\rJoin (Y) . . . . . .
\rlap . . . . . .. . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

43
41
41
46
62
43
43
33
33
71
71
18
47
76

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
23,
..
..
..
..
..
..
..
..
..
..

76
33
42
41
43
43
43
75
22
33
47
42
41
44
18
64
66
22
23
76
76
42
73
88
33
33

. . 56

. . . . . . . 23
. . . . . . . 58
see accents
see \circeq
see \eqcirc
. . . . . . . 13
. . . . . . . 93
. . . . . . . 32
. . . . . . . 30
. . . . . . . 33
. . . . . . . 31
. . . 79, 106

\rmoustache () . . . . . . . . 54
⎫
⎪
⎪
⎪
\rmoustache ( ⎪
) . . . . . . . . 55
⎪
⎩
Roman coins . . . . . . . . . . . . 19
Romanian comma-belo accent (a,)
. . . . . see accents
rook . . . . . . . . . . . . . . . . . . 94

roots . . . . . . . . . . . . see \sqrt
\rotatebox . . . . . . . . . 17, 103
rotated symbols . 11–13, 17, 103
rotating (package) . . . . . 19, 72
\rotm (m) . . . . . . . . . . . . . . 13
\rotOmega ( ) . . . . . . . . . . . 13
\rotr (r) . . . . . . . . . . . . . . 13
\rotvara (A) . . . . . . . . . . . . 13
\rotw (w) . . . . . . . . . . . . . . 13
\roty (y) . . . . . . . . . . . . . . 13
\RoundedLsteel (Ÿ) . . . . . . 73
\RoundedTsteel () . . . . . . . 73
\RoundedTTsteel (ž) . . . . . . 73
\Rparen ()) . . . . . . . . . . . . . 68
- . . . . . . . . . . . . . . 105
\rqm (I)
\rrangle (⟫)

. . . . . . . . . . . 55

\rrbracket () . . . . . . . . . . 54
Œ

\rrbracket ( ) . . . . . . . . . . 57
\rrceil (W) . . . . . . . . . . . . . 53
\rrfloor (U) . . . . . . . . . . . . 53
\Rrightarrow (V) . . . . . . . 42
\Rrightarrow (⇛) . . . . . . . . 43
\rrparenthesis (M) . . . . . . . 53
\RS (␞) . . . . . . . . . . . . . . . . 72
M
Q
) . . . . . . . . . . . . . 55
\rsem ( Q
Q
Q
Q
\rsemantic
O . . . . . see \rdbrack
\Rsh (é) . . . . . . . . . . . . . . . 42
\Rsh () . . . . . . . . . . . . . . . 41
\Rsh (↱) . . . . . . . . . . . . . . . 43
\rtimes ( ) . . . . . . . . . . . . 23
\rtimes (o) . . . . . . . . . . . . 22
\rtimes (⋊) . . . . . . . . . . . . 23
\rtriple . . . . . . . . . . . . . . 57
\rVert (||) . . . . . . . . . . . . . . 56
\rVert (k) . . . . . . . . . . . . . 54
\rvert (|)Ð . . . . . . . . . . . . . . 54
Ð
\rwave ( ÐÐ) . . . . . . . . . . . . . 56
_
_
\rWavy ( _
_
_) . . . . . . . . . . . . 55
^^_
_
\rwavy ( ^^^) . . . . . . . . . . . . . 55
^^
S
\S (§) . . . . . . . . . . . . . . 9, 116
\SAa (a) . . . . . . . . . . . . . . . 87
\SAb (b) . . . . . . . . . . . . . . . 87
\SAd (d) . . . . . . . . . . . . . . . 87
\SAdb (D) . . . . . . . . . . . . . . 87
\SAdd (B) . . . . . . . . . . . . . . 87
\SAf (f) . . . . . . . . . . . . . . . 87
safety-related symbols . . . . . 74
\SAg (g) . . . . . . . . . . . . . . . 87
\SAga (G) . . . . . . . . . . . . . . 87
\Sagittarius (è) . . . . . . . . 71
\sagittarius (c) . . . . . . . . 71
\SAh (h) . . . . . . . . . . . . . . . 87
\SAhd (H) . . . . . . . . . . . . . . 87
\SAhu (I) . . . . . . . . . . . . . . 87

153

\SAk (k) . . . . . . . . . . . . . . . 87
\SAl (l) . . . . . . . . . . . . . . . 87
\SAlq (‘) . . . . . . . . . . . . . . 87
\SAm (m) . . . . . . . . . . . . . . . 87
\samebishops (s) . . . . . . . . 93
\Sampi (Ϡ) . . . . . . . . . . . . . 87
\sampi (ϡ) . . . . . . . . . . . . . 87
\SAn (n) . . . . . . . . . . . . . . . 87
sans (dsfont package option) . 68
\SAo (o) . . . . . . . . . . . . . . . 87
\SAq (q) . . . . . . . . . . . . . . . 87
\SAr (r) . . . . . . . . . . . . . . . 87
\sarabfamily . . . . . . . . . . . 87
sarabian (package) . 87, 119, 121
\SAs (s) . . . . . . . . . . . . . . . 87
\SAsa (X) . . . . . . . . . . . . . . 87
\SAsd (x) . . . . . . . . . . . . . . 87
\SAsv (S) . . . . . . . . . . . . . . 87
\SAt (t) . . . . . . . . . . . . . . . 87
\SAtb (J) . . . . . . . . . . . . . . 87
\SAtd (T) . . . . . . . . . . . . . . 87

I

\satellitedish ( ) . . . . . . 80
satisfies . . . . . . . . . see \models
\Saturn (F) . . . . . . . . . . . . 71
\Saturn (Æ) . . . . . . . . . . . . 71
\saturn (Y) . . . . . . . . . . . . 71
savesym (package) . . . . . . . 100
\savesymbol . . . . . . . . . . . 100
\SAw (w) . . . . . . . . . . . . . . . 87
\SAy (y) . . . . . . . . . . . . . . . 87
\SAz (z) . . . . . . . . . . . . . . . 87
\SAzd (Z) . . . . . . . . . . . . . . 87
\Sborder ( ) . . . . . . . . . . . 80
\scalebox . . . . . . . . . . . . . 100
scaling
mechanical . . . . . . 109, 112
optical . . . . . . . . . . . . 109
\scd () . . . . . . . . . . . . . . . 13
\scg () . . . . . . . . . . . . . . . 13
\schwa () . . . . . . . . . . . . . . 13
\schwa (e) . . . . . . . . . . . . . 13
Schwartz distribution spaces see
alphabets, math
\sci (*) . . . . . . . . . . . . . . . 13
scientific symbols . . . . . . 70–74
\ScissorHollowLeft ( ) . . 75
\ScissorHollowRight ( ) . 75
\ScissorLeft ( ) . . . . . . . 75
\ScissorLeftBrokenBottom ( )
. . . . . . . . . 75
\ScissorLeftBrokenTop ( ) 75
\ScissorRight ( ) . . . . . . . 75
\ScissorRightBrokenBottom
( ) . . . . . . . . . . . . . . 75
\ScissorRightBrokenTop ( ) 75
scissors . . . . . . . . . . . . . . . . 75
\scn (:) . . . . . . . . . . . . . . . 13
\scoh (˝) . . . . . . . . . . . . . . 36
\Scorpio (ç) . . . . . . . . . . . 71
\scorpio (b) . . . . . . . . . . . 71
\scr (J) . . . . . . . . . . . . . . . 13

S














script letters see alphabets, math
\scripta () . . . . . . . . . . . . 13
\scriptg () . . . . . . . . . . . . 13
\scriptscriptstyle . . 105, 106
\scriptstyle . . . . . . . 105, 106
\scriptv (Y) . . . . . . . . . . . . 13
\Scroll ( Scroll ) . . . . . . . . 72
\scu (W) . . . . . . . . . . . . . . . 13
\scy (]) . . . . . . . . . . . . . . . 13
\sddtstile (

) . . . . . . . . . 35

\sdststile (

) . . . . . . . . . 35

\sdtstile (

) . . . . . . . . . . 35

\sdttstile ( ) .
seagull . . . . . see
\Searrow (u) . . .
\Searrow (⇘) . . .
\searrow (×) . . .
\searrow (&) . . .
\searrow (↘) . . .
\searrowtail (')
\sec (sec) . . . . . .

. . . . . . . . 35
\textseagull
. . . . . . . . 42
. . . . . . . . 43
. . . . . . . . 42
. . . . 41, 106
. . . . . . . . 43
. . . . . . . . 43
. . . . . . . . 49

\Sech (ˇ “) )== . . . . . . . . . . . . . . 89

==
=
\SechBl ( ˇ “ )
==
\SechBR ( ˇ “ ==)
=
\SechBr ( ˇ “ )
\SechBL (==ˇ “ )

. . . . . . . . . . . . 89

. . . . . . . . . . . . 89
. . . . . . . . . . . . 89

. . . . . . . . . . . . 89
\second (2) . . . . . . . . . . . . . 66
seconds, angular . . see \second
\secstress (i) . . . . . . . . . . . 18
section mark . . . . . . . . . see \S
\SectioningDiamond ( ) . . 92
sedenions (S) . . see alphabets,
math
\sefilledspoon (w) . . . . . . 47
\sefootline () . . . . . . . . . 33
\sefree (‡) . . . . . . . . . . . . 33
segmented digits . . . . . . . . . 70
\seharpoonccw (G) . . . . . . . 46
\seharpooncw (O) . . . . . . . . 46
\selectfont . . . . . . . . . . . . . 8
\selsquigarrow (§) . . . . . . 43
semantic valuation . . . . . 54–57
\semapsto (/) . . . . . . . . . . 43
semibreve . see musical symbols
semidirect products . . 22, 23, 66
semiquaver see musical symbols
semitic transliteration . . 14, 17
\seModels (÷) . . . . . . . . . . 33
\semodels (ç) . . . . . . . . . . 33
semtrans (package) . 14, 17, 119,
120
\senwarrows (Ÿ) . . . . . . . . 43
\senwharpoons ([) . . . . . . . 46



\SePa ( @ ) . . . . . . . . .
\separated (•) . . . . .
\sepitchfork () . . .
\seppawns (q) . . . . .
\SerialInterface (Î)
\SerialPort (Ð) . . . .

.
.
.
.

.
.
.
.
.
..

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

89
33
47
93
72
72

\sersquigarrow (¯) . . . . . . 43
\sesearrows (—) . . . . . . . . 43
\sespoon (o) . . . . . . . . . . . 47
set operators
intersection . . . . see \cap
membership . . . . . see \in
union . . . . . . . . . see \cup
\setminus (\) . . . . . . . . . . . 22
\setminus (∖) . . . . . . . . . . . 24
\seVdash (ï) . . . . . . . . . . . 32
\sevdash (ß) . . . . . . . . . . . 33
SGML . . . . . . . . . . . . . . . 117
sha ( ) . . . . . . . . . . . . . . 103
\sharp (]) . . . . . . . . . . . 65, 88
\sharp (♯) . . . . . . . . . . . . . . 66
\shfermion () . . . . . . . . . . . 74
\Shift ( Shift ⇑ ) . . . . . . . . 72
\shift (˜) . . . . . . . . . . . . . 21
\Shilling (¡) . . . . . . . . . . . 18
\shneg (ˆ) . . . . . . . . . . . . . 21
\shortcastling (O-O) . . . . 93
\shortdownarrow () . . . . . . 42
\ShortFifty (×) . . . . . . . . 90
\ShortForty (Ù) . . . . . . . . 90
\shortleftarrow ( ) . . . . . 42
\shortmid (p) . . . . . . . . . . . 30
\shortmid (∣) . . . . . . . . . . . 24
\ShortNinetyFive (Ô) . . . . 90
\shortparallel (q) . . . . . . . 30
\shortparallel (∥) . . . . . . 32
\ShortPulseHigh ( ) . . . . . 70
\ShortPulseLow ( ) . . . . . . 70
\shortrightarrow () . . . . 42
\ShortSixty (Ö) . . . . . . . . 90
\ShortThirty (Û) . . . . . . . 90
\shortuparrow () . . . . . . . 42
\showclock . . . . . . . . . . . . . 91
\shpos (´) . . . . . . . . . . . . . 21
shuffle (package) . . 24, 119, 120
\shuffle ( ) . . . . . . . . . . . 24
shuffle product ( ) . . . . . . . 24
\SI (␏) . . . . . . . . . . . . . . . . 72
\Sigma (Σ) . . . . . . . . . . . . . 50
\sigma (σ) . . . . . . . . . . . . . 50
\sigmaup (σ) . . . . . . . . . . . . 50
\sim (∼) . . . . . . . . 30, 104, 115
\sim (∼) . . . . . . . . . . . . . . . 32
\simcolon (∼:) . . . . . . . . . . 36
\simcoloncolon (∼::) . . . . . 36
\simeq (') . . . . . . . . . . . . . 30
\simeq (≃) . . . . . . . . . . . . . 32
simplewick (package) . . . . . 109
simpsons (package) . . . . 96, 119
Simpsons characters . . . . . . . 96
\sin (sin) . . . . . . . . . . . . . . 49
\sincoh (ˇ) . . . . . . . . . . . . 36
\sinh (sinh) . . . . . . . . . . . . 49

X

l

"
#





O) . .
\SixFlowerAltPetal (U) . .
\SixFlowerOpenCenter (M) .
\SixFlowerPetalDotted (Q)
\SixFlowerAlternate (

154

78
78
78
78

L

\SixFlowerPetalRemoved ( ) 78
\SixFlowerRemovedOpenPetal
( ) . . . . . . . . . . . . . . 78
\SixStar ( ) . . . . . . . . . . . 78
\SixteenStarLight ( ) . . . 78
sixteenth note . . . . see musical
symbols
\sixteenthnote (♬) . . . . . . 88
skak (package) . 93, 94, 119, 120
skull (package) . . . . 93, 119, 120
\skull ( ) . . . . . . . . . . . . . 93
\slash (/) . . . . . . . . . . . . 115
\slashb () . . . . . . . . . . . . . 13
\slashc ( ) . . . . . . . . . . . . . 13
\slashd () . . . . . . . . . . . . . 13
\slashdiv () . . . . . . . . . . . 23
slashed (package) . . . . . . . . 105
\slashed . . . . . . . . . . . . . 105
slashed letters . . . . . . . . . . 105
slashed.sty (file) . . . . . . . 105
\slashu (U) . . . . . . . . . . . . . 13
\Sleet ( ) . . . . . . . . . . . . . 91
\sliding (ā) . . . . . . . . . . . . 16
\smallbosonloop () . . . . . . . 74
\smallbosonloopA () . . . . . . 74
\smallbosonloopV () . . . . . . 74
\SmallCircle ( ) . . . . . . . . 79
\SmallCross ( ) . . . . . . . . 79
\smalldiamond (◇) . . . . . . . 25
\SmallDiamondshape ( ) . . 79
\smallfrown (a) . . . . . . . . . 30
\smallfrown (⌢) . . . . . . . . . 48
\SmallHBar ( ) . . . . . . . . . 79
\smallin ( ) . . . . . . . . . . . . 52
\smallint (∫) . . . . . . . . . . . 66
\SmallLowerDiamond ( ) . . 79
\smalllozenge (◊) . . . . . . . . 79
\smallowns () . . . . . . . . . . 52
\smallpencil (
) . . . . . . 76
\smallprod (∏) . . . . . . . . . . 23
\SmallRightDiamond ( ) . . 79
\smallsetminus (r) . . . . . . 22
\smallsetminus (∖) . . . . . . 24
\smallsmile (`) . . . . . . . . . 30
\smallsmile (⌣) . . . . . . . . . 48
\SmallSquare ( ) . . . . . . . . 79
\smallsquare (◽) . . . . . . . . 25
\smallstar (☆) . . . . . . . . . . 25
\SmallTriangleDown ( ) . . 79
\smalltriangledown (™) . . . 25
\smalltriangledown (▿)
25, 40
\SmallTriangleLeft ( ) . . 79
\smalltriangleleft (š) . . . 25
\smalltriangleleft (◃)
25, 40
\SmallTriangleRight ( ) . . 79
\smalltriangleright (›) . . 25
\smalltriangleright (▹) 25, 40
\SmallTriangleUp ( ) . . . . 79
\smalltriangleup (˜) . . . . . 25

[

G

K

A



|

E


\


F





P

O

@

C
B

D

A

\smalltriangleup (▵) . .
\SmallVBar ( ) . . . . . . .
\smile (^) . . . . . . . . . . .
\smile (⌣) . . . . . . . . . . .
smile symbols . . . . . . . . .
\smileeq ( ) . . . . . . . . . .
\smileeqfrown (&) . . . . .
\smilefrown (≍) . . . . . . .
\smilefrowneq (() . . . . .
\Smiley (©) . . . . . . . . . .
\smiley (,) . . . . . . . . . .
smiley faces . . . . . 72, 88,
\sndtstile ( ) . . . . . . .
\Snow ( ) . . . . . . . . . . . .
\SnowCloud ( ) . . . . . . .
\Snowflake ( ) . . . . . . .
\SnowflakeChevron ( ) .
\SnowflakeChevronBold (
snowflakes . . . . . . . . . . . .







`

^



25,
..
..
..
..
..
..
..
..
..
..
90,
..
..
..
..
..
)
..

_

40
79
30
48
48
48
48
48
48
90
88
98
35
91
91
78
78
78
78

\SNPP ( ) . . . . . . . . . . . . . 96
\snststile ( ) . . . . . . . . . 35
\sntstile ( ) . . . . . . . . . . 35
\snttstile ( ) . . . . . . . . . 35
\SO (␎) . . . . . . . . . . . . . . . . 72
\SOH (␁) . . . . . . . . . . . . . . . 72
South Arabian alphabet . . . . 87
space
thin . . . . . . . . . . . . . . 113
visible . . . . . . . . . . . . see
\textvisiblespace
\Spacebar (
) . . . . 72
spades (suit) . . . . . . . 65–67, 80
\spadesuit (♠) . . . . . . . . . . 65
\spadesuit (♠) . . . . . . . . . . 66
\Sparkle ( ) . . . . . . . . . . . 78
\SparkleBold ( ) . . . . . . . . 78
sparkles . . . . . . . . . . . . . . . 78
“special” characters . . . . . . . . 9
\SpecialForty (Ú) . . . . . . 90
\sphericalangle (?) . . . . . 66
\sphericalangle (^) . . . . . 66
\sphericalangle (∢) . . . . . 66
\SpinDown () . . . . . . . . . . . . 79
\SpinUp () . . . . . . . . . . . . . 79
–) . . . . . . . 58
\spirituslenis (a
\spirituslenis (—) . . . . . . . 58
\splitvert (¦) . . . . . . . . . . 72
spoon symbols . . . . . . . . . . . 47
\spreadlips (ȧ) . . . . . . . . . 16
\sqbullet ( ) . . . . . . . . . . . 23
\sqcap ([) . . . . . . . . . . . . . 23
\sqcap (u) . . . . . . . . . . . . . 22
\sqcap (⊓) . . . . . . . . . . . . . 23
\sqcapdot (E) . . . . . . . . . . . 23
\sqcapplus (}) . . . . . . . . . . 23
\sqcapplus (G) . . . . . . . . . . 23
\sqcup (\) . . . . . . . . . . . . . 23
\sqcup (t) . . . . . . . . . . 21, 22
\sqcup (⊔) . . . . . . . . . . . . . 23

]

)

*

\

\sqcupdot (D) . . . . . .
\sqcupplus (|) . . . . .
\sqcupplus (F) . . . . .
\sqdoublecap (^) . . .
\sqdoublecup (_) . . .
\sqdoublefrown (-) . .
\sqdoublefrowneq (7)
\sqdoublesmile (,) . .
\sqdoublesmileeq (6)
\sqeqfrown (5) . . . . .
\sqeqsmile (4) . . . . .
\sqfrown (+) . . . . . . .
\sqfrowneq (3) . . . . .
\sqfrowneqsmile (9) .
\sqfrownsmile
R (1) . .
\sqiiint ( ) . . . . .
P
\sqiint ( ) . . . . . . .
”
\sqiint ( ) . . . . . . .
\sqint ( ) . . . . . . . .
›
\sqint (√) . . . . . . . . .
\sqrt (
) ........
\sqsmile (*) . . . . . . .
\sqsmileeq (2) . . . . .
\sqsmileeqfrown (8) .
\sqsmilefrown (0) . .
\Sqsubset (^) . . . . . .
\sqSubset (”) . . . . .
\sqsubset (€) . . . . .
\sqsubset (@) . . . . .
\sqsubset (⊏) . . . . . .
\sqsubseteq („) . . . .
\sqsubseteq (v) . . . .
\sqsubseteq (⊑) . . . .
\sqsubseteqq (Œ) . . .
\sqsubseteqq (\) . . .
\sqsubsetneq (ˆ) . . .
\sqsubsetneq (⋤) . . .
\sqsubsetneqq () . .
\sqsubsetneqq (ö) . .
\Sqsupset (_) . . . . . .
\sqSupset (•) . . . . .
\sqsupset () . . . . .
\sqsupset (A) . . . . .
\sqsupset (⊐) . . . . . .
\sqsupseteq ( ) . . . .
\sqsupseteq (w) . . . .
\sqsupseteq (⊒) . . . .
\sqsupseteqq () . . .
\sqsupseteqq (]) . . .
\sqsupsetneq (‰) . . .
\sqsupsetneq (⋥) . . .
\sqsupsetneqq (‘) . .
\sqsupsetneqq (÷) . .
\sqtriplefrown (/) . .
\sqtriplesmile (.) . .
\Square ( ) . . . . . . .
\Square ( vs.
vs.
\Square () . . . . . . .
\Square ( ) . . . . . . .
\square () . . . . . . . .
\square () . . . . . . .

0

f

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
)
..
..
..
..

f 0

155

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

. . . 24
. . . 23
. . . 24
. . . 23
. . . 23
. . . 48
. . . 48
. . . 48
. . . 48
. . . 48
. . . 48
. . . 48
. . . 48
. . . 48
. . . 48
. . . 27
. . . 27
. . . 28
. . . 27
. . . 28
59, 106
. . . 48
. . . 48
. . . 48
. . . 48
. . . 37
. . . 37
. . . 37
36, 37
. . . 37
. . . 37
. . . 36
. . . 37
. . . 37
. . . 37
. . . 37
. . . 37
. . . 37
. . . 37
. . . 37
. . . 37
. . . 37
36, 37
. . . 37
. . . 37
. . . 36
. . . 37
. . . 37
. . . 37
. . . 37
. . . 37
. . . 37
. . . 37
. . . 48
. . . 48
. . . 79
. . 101
. . . 77
. . . 80
. . . 23
. . . 66

\square (◻) . . . . . . . . . . . . 25
square root . . . . . . . see \sqrt
hooked . . . . . see \hksqrt
\SquareCastShadowBottomRight
( ) . . . . . . . . . . . . . . 80
\SquareCastShadowTopLeft ( )
. . . . . . . . . 80
\SquareCastShadowTopRight
( ) . . . . . . . . . . . . . . 80
\Squaredot (÷) . . . . . . . . . . 67
\squaredots (∷) . . . . . . 24, 64
\Squarepipe (—) . . . . . . . . . 73
squares . . . . . . . . . . . 79–80, 94
\SquareShadowA ( ) . . . . . . 79
\SquareShadowB ( ) . . . . . . 79
\SquareShadowBottomRight ( )
. . . . . . . . . 80
\SquareShadowC ( ) . . . . . . 79
\SquareShadowTopLeft ( ) . 80
\SquareShadowTopRight ( ) 80
\SquareSolid ( ) . . . . . . . . 80
\Squaresteel (“) . . . . . . . . 73

k

m

l





g

B

h

j
i

\squarewithdots ( ) . . . .
\squigarrowdownup (³) . .
\squigarrowleftright (↭)
\squigarrownesw (´) . . . .
\squigarrownwse (µ) . . . . .
\squigarrowrightleft (²)
\squigarrowsenw (·) . . . .
\squigarrowswne (¶) . . . .
\squigarrowupdown (±) . . .
\squplus (]) . . . . . . . . . .
\SS (SS) . . . . . . . . . . . . . .
\ss (ß) . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.

80
43
43
43
43
43
43
43
43
23
10
10

\ssdtstile ( ) . . . . . . . . . 35
\ssearrow (%) . . . . . . . . . . . 42
\sslash ( ) . . . . . . . . . . . . 22
\ssststile (

) . . . . . . . . . 35

\sststile (

) . . . . . . . . . . 35

\ssttstile ( ) . . . . . . . . . 35
\sswarrow ($) . . . . . . . . . . . 42
\stackrel . . . . . . . 21, 104, 108
standard state . . . . . . . . . . 104
\star (?) . . . . . . . . . . 22, 107
\star (⋆) . . . . . . . . . . . . . . 25
Star of David . . . . . . . . 77, 78
\starredbullet (d) . . . . . . . 78
stars . . . . . . . . . . . . . 66, 77–79
\stater (῝) . . . . . . . . . . . . . 19
statistical independence . . . 106
\staveI (

) . . . . . . . . . . 97

\staveII () . . . . . . . . . . 97
\staveIII () . . . . . . . . 97
\staveIV () . . . . . . . . . 97
\staveIX () . . . . . . . . . . 97
\staveL (1) . . . . . . . 97, 98

\staveLI (2) . . . . . . . . . 97
\staveLII (3) . . . . . . . . 97
\staveLIII (4) . . . . . . . . 97

\staveXLVIII (/) . . . . . 97
\staveXV () . . . . . . . . . 98
\staveXVI () . . . . . . . . . 98

:
:::
::

\StrokeOne ( ) . .
\StrokeThree ( )
\StrokeTwo ( ) .
◦
\stst (−
) .....

..
.
..
..

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

. 92
. 92
. 92
104

\staveLIV (5) . . . . . . . . 97
\staveLIX (:) . . . . . . . . 98

\staveXVII () . . . . . . . . 98

\stststile (

) . . . . . . . . . 35

\staveXVIII () . . . . . . . 98

\sttstile (

) . . . . . . . . . . 35

\staveLV (6) . . . . . . . . . . 97

\staveXX () . . . . . . . . . 98
\staveXXI () . . . . . . . . 98

\stttstile (

\staveLVI (7) . . . . . . . . . 97
\staveXXII () . . . . . . . . 98
\staveLVII (8) . . . . . . . . 97
\staveLVIII (9) . . . . . . . 98
\staveLX (;) . . . . . . . 98

\staveXXIII () . . . . . 98

\staveLXI (<) . . . . . . . . . 98

\staveXXIV () . . . . . . . . 97
\staveXXIX () . . . . . . . 97
\staveXXV () . . . . . . . . 97

\staveLXII (=) . . . . . . . . 98

\staveXXVI () . . . . . . . 97

\staveLXIII (>) . . . . . . . 98

\staveXXVII () . . . . . . . 97

\staveLXIV (?) . . . . . . . . . 98
\staveLXV (@) . . . . . . . . . 98
\staveLXVI (A) . . . . . . . . 98
\staveLXVII (B) . . . . . . . . 98
\staveLXVIII (C) . . . . . . . 98
staves . . . . . . . . . . . . . . . . . 97
staves (package) . . . . . . 97, 119
\staveV () . . . . . . . . . . 97
\staveVI () . . . . . . . . . 97
\staveVII () . . . . . . . . 97
\staveVIII () . . . . . . . 97
\staveX (

)

. . . . . . . . . . 97

\staveXI (

)

. . . . . . . . . . 97

\staveXII (

) . . . . . . . . . 98

\staveXIII (

) . . . . . . . . 98

\staveXIV (
) . . . . . . . . 98
\staveXIX () . . . . . . . . 98
\staveXL (') . . . . . . . . . . 98
\staveXLI (() . . . . . . . . . 98
\staveXLII ())

. . . . . . . 98

\staveXLIII (*) . . . . . . . . 98
\staveXLIV (+) . . . . . . . 98
\staveXLIX (0) . . . . . . . . 97
\staveXLV (,) . . . . . . . . 98
\staveXLVI (-)

. . . . . . . . 98

\staveXLVII (.) . . . . . . . 97

\staveXXVIII () . . . . . . 97
\staveXXX ()

. . . . . . . . 97

\staveXXXI () . . . . . . . . 97
\staveXXXII () . . . . . . 97
\staveXXXIII (

) . . . . . . . 97

\staveXXXIV (!) . . . . . . 97
\staveXXXIX (&) . . . . . . 98
\staveXXXV (")

. . . . . . . 98

\staveXXXVI (#) . . . . . . 98
\staveXXXVII ($) . . . . . 98
\staveXXXVIII (%) . . . . 98
) . . . . . . . . . 35

\stdtstile (

\steaming (♨) . . . . . . . . . . 67
steinmetz (package) 70, 119, 121
Steinmetz phasor notation . . 70
sterling . . . . . . . . . see \pounds
stick figures . . . . . . . . . . . . . 81
\Stigma (Ϛ) . . . . . . . . . . . . 87
\stigma (ϛ) . . . . . . . . . . . . . 87
stmaryrd (package) 22, 26, 31, 37,
40, 42, 48, 53, 54, 101, 104,
118–120
stochastic independence see \bot
\StoneMan ( ) . . . . . . . . . . . 91
\Stopsign (!) . . . . . . . . . . 74



˜

\StopWatchEnd ( ) . . . . . . . 91

—) . . . . .

\StopWatchStart (
\stress (h) . . . . .
\strictfi (K) . .
\strictif (J) . .
\strictiff (L) .
\strokedint (⨏) .
\StrokeFive ( )
\StrokeFour ( ) .

;
::::

156

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

91
18
31
31
31
29
92
92

) . . . . . . . . . 35

\STX (␂) . . . . . . . . . . . .
\SUB (␚) . . . . . . . . . . . .
subatomic particles . . . .
\subcorner (a) . . . . . . .
^ (a) . . . .
\subdoublebar
¯
\subdoublevert (a) . . . .
\sublptr (a) . . . "". . . . . .
\subrptr (a¡ ) . . . . . . . . .
subscripts ¿
new symbols used in
\Subset (”) . . . . . . . . .
\Subset (b) . . . . . . . . .
\Subset (⋐) . . . . . . . . . .
\subset (€) . . . . . . . . .
\subset (⊂) . . . . . . . . .
\subset (⊂) . . . . . . . . . .
\subseteq („) . . . . . . .
\subseteq (⊆) . . . . . . .
\subseteq (⊆) . . . . . . . .
\subseteqq (Œ) . . . . . . .
\subseteqq (j) . . . . . .
\subseteqq (⫅) . . . . . . .
\subsetneq (ˆ) . . . . . . .
\subsetneq (() . . . . . .
\subsetneq (⊊) . . . . . . .
\subsetneqq () . . . . . .
\subsetneqq ($) . . . . . .
\subsetneqq (⫋) . . . . . .
\subsetplus (D) . . . . . .
\subsetpluseq (F) . . . .
subsets . . . . . . . . . . . . .
\succ () . . . . . . . . . . .
\succ (≻) . . . . . . . . . . .
\succapprox (Ç) . . . . . .
\succapprox (v) . . . . . .
\succapprox (⪸) . . . . . .
\succcurlyeq (¥) . . . . .
\succcurlyeq (<) . . . . .
\succcurlyeq (≽) . . . . .
\succdot (Í) . . . . . . . .
\succeq () . . . . . . . . .
\succeq (⪰) . . . . . . . . . .
\succeqq () . . . . . . . . .
\succnapprox (Ë) . . . . .
\succnapprox () . . . . .
\succnapprox (⪺) . . . . .
\succneq (­) . . . . . . . .
\succneqq () . . . . . . .
\succnsim (Å) . . . . . . .
\succnsim () . . . . . . .
\succnsim (⋩) . . . . . . . .
\succsim (Á) . . . . . . . .
\succsim (%) . . . . . . . .

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

. 105
. . 37
. . 36
. . 37
. . 37
. . 36
. . 37
. . 37
. . 36
. . 37
. . 37
. . 36
. . 37
. . 37
. . 36
. . 37
. . 37
. . 36
. . 37
. . 37
. . 37
36, 37
. . 30
. . 32
. . 32
. . 30
. . 32
. . 32
. . 30
. . 32
. . 32
. . 30
. . 32
. . 31
. . 32
. . 31
. . 34
. . 32
. . 31
. . 32
. . 31
. . 34
. . 32
. . 30

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

72
72
74
16
16
16
16
16










T



\swrsquigarrow (®) . . . . . . 43
\swspoon (n) . . . . . . . . . . . 47
\swswarrows (–) . . . . . . . . 43
swung dash . . . . . . . . see \sim
\swVdash (î) . . . . . . . . . . . 33
\swvdash (Þ) . . . . . . . . . . . 33
\syl (a) . . . . . . . . . . . . . . . 16
\syllabic (j) . . . . . . . . . . . 18
\symA ( ) . . . . . . . . . . . . . . 68
\symAE ( ) . . . . . . . . . . . . . 68
\symB ( ) . . . . . . . . . . . . . . 68
\symbishop (B) . . . . . . . . . 94
Symbol (font) . . . . . . . 51, 103
symbols
actuarial . . . . . . . . . . 108
alpine . . . . . . . . . . . . . 91
ancient language . . 81–87
annuity . . . . . . . . . . . 108
APL . . . . . . . . . . . . . . 71
astrological . . . . . . . . . 71
astronomical . . . . . 71, 98
biological . . . . . . . . . . . 74
block-element . . . . . . . . 97
body-text . . . . . . . . . 9–20
bold . . . . . . . . . . . . . 113
box-drawing . . . . . . . . . 97
chess . . . . . . . . . . . 93, 94
cipher . . . . . . . . . . . . . 98
clock . . . . . . . . . 88, 90–92
communication . . . . . . . 73
computer hardware . . . . 72
contradiction . . . . . 21, 48
currency . . . . . . 18, 19, 68
dangerous bend . . . . . . 89
definition . . . . . . . 21, 108
dictionary . . . . . 11–14, 96
dingbat . . . . . . . . . 75–80
dot . . . . . . . 9, 63, 64, 107
electrical . . . . . . . . . . . 70
engineering . . . . . . 70, 73
extensible . . 47, 59–63, 70,
102, 107–109
Feynman diagram . . . . . 74
Frege logic . . 47, 53, 65, 67
frown . . . . . . . . . . . . . . 48
gates, digital logic . . . . 73
genealogical . . . . . . . . . 88
general . . . . . . . . . . . . 88
Go stones . . . . . . . . . . 94
information . . . . . . . . . 90
informator . . . . . . . . . . 93
inverted . . . 11–13, 17, 103
keyboard . . . . . . . . . . . 72
Knuth’s . . . . . . . . . . . . 89
laundry . . . . . . . . . . . . 90
legal . . . . . . . . . 9, 19, 116
letter-like . . . . . . . . 51–53
life insurance . . . . . . . 108
linear logic . . . . 21–23, 25,
29–30, 36, 51, 52
linguistic . . . . . . . . 11–14
log-like . . . . . . . . 49, 113

Á
Û
Â

157

logic . . . . . . . . . . . . . . 73
magical signs . . . . . . . . 97
mathematical . . . . . 21–69
METAFONTbook . . . . . 89
metrical . . . . . . . . . . . . 95
miscellaneous . . 65–67, 80,
88–99
monetary . . . . . . 18, 19, 68
musical . 20, 65, 66, 88, 89
navigation . . . . . . . . . . 90
non-commutative division 63
particle physics . . . . . . 74
Phaistos disk . . . . . . . . 81
phonetic . . . . . . . . 11–14
physical . . . . . . . . . . . . 70
pitchfork . . . . . . 30, 47, 66
Pitman’s base-12 . . . . . 65
present value . . . . . . . 108
proto-Semitic . . . . . . . . 81
pulse diagram . . . . . . . 70
recycling . . . . . . . . 98, 99
relational . . . . . . . . . . . 30
reversed . . . . . . . . . . . 103
rotated . . . 11–13, 17, 103
safety-related . . . . . . . . 74
scientific . . . . . . . . 70–74
Simpsons characters . . . 96
smile . . . . . . . . . . . . . . 48
spoon . . . . . . . . . . . . . 47
staves . . . . . . . . . . . . . 97
subset and superset
36, 37
technological . . . . . 70–74
TEXbook . . . . . . . . . . . 89
transliteration . . . . . . . 14
upside-down 11–13, 17, 103,
114
variable-sized . 25–30, 100,
102
weather . . . . . . . . . . . . 91
zodiacal . . . . . . . . . . . . 71
symbols.tex (file) . . . . 100, 119
\symC ( ) . . . . . . . . . . . . . . 68
\symking (K) . . . . . . . . . . . 94
\symknight (N) . . . . . . . . . 94
\symOE ( ) . . . . . . . . . . . . . 68
\sympawn (p) . . . . . . . . . . . 94
\symqueen (Q) . . . . . . . . . . 94
\symrook (R) . . . . . . . . . . . 94
\symUE ( ) . . . . . . . . . . . . . 68
\SYN (␖) . . . . . . . . . . . . . . . 72

Ã

Ü

Ý

T
\T . . . . . . . . . . . .
\T ( ) . . . . . . . . .
\T (⊗) . . . . . . . .
 .........
\t (a)
\t (⊗) . . . . . . . . .
t4phonet (package)
120
→
−
− ) ...
\Tab ( −
−
→
\tabcolsep . . . . .
tacks . . . . . . . . . .
a

\succsim (≿) . . . . . . . . . . . . 32
such that . . . . . . . . . . 103, 105
\suchthat
− ) . . . . . . . . . 105
P (3
\sum ( ) . . . . . . . . . . . . . . 25
\sum (∑) . . . . . . . . . . . . . . . 29
\sumint (⨋) . . . . . . . . . . . . . 29
\Summit ( ) . . . . . . . . . . . . 91
\SummitSign ( ) . . . . . . . . . 91
\Sun (@) . . . . . . . . . . . . . . . 71
\Sun (À vs.
vs. @) . . . . 101
\Sun ( ) . . . . . . . . . . . . . . 91
\Sun (À) . . . . . . . . . . . . . . . 71
\sun (☼) . . . . . . . . . . . . . . . 88
\SunCloud ( ) . . . . . . . . . . 91
\SunshineOpenCircled ( ) . 80
\sup (sup) . . . . . . . . . . . . . 49
superscripts
new symbols used in . . 105
supersets . . . . . . . . . . . . 36, 37
supremum . . . . . . . . . see \sup
\Supset (•) . . . . . . . . . . . . 37
\Supset (c) . . . . . . . . . . . . 36
\Supset (⋑) . . . . . . . . . . . . . 37
\supset () . . . . . . . . . . . . 37
\supset (⊃) . . . . . . . . . . . . 36
\supset (⊃) . . . . . . . . . . . . . 37
\supseteq ( ) . . . . . . . . . . 37
\supseteq (⊇) . . . . . . . . . . 36
\supseteq (⊇) . . . . . . . . . . . 37
\supseteqq () . . . . . . . . . . 37
\supseteqq (k) . . . . . . . . . 36
\supseteqq (⫆) . . . . . . . . . . 37
\supsetneq (‰) . . . . . . . . . . 37
\supsetneq ()) . . . . . . . . . 36
\supsetneq (⊋) . . . . . . . . . . 37
\supsetneqq (‘) . . . . . . . . . 37
\supsetneqq (%) . . . . . . . . . 36
\supsetneqq (⫌) . . . . . . . . . 37
\supsetplus (E) . . . . . . . . . 37
\supsetpluseq (G) . . . . . . . 37
`
\surd ( ) . . . . . . . . . . . . . . 65
\SurveySign ( ) . . . . . . . . . 91
\Swarrow (w) . . . . . . . . . . . 42
\Swarrow (⇙) . . . . . . . . . . . 43
\swarrow (Ö) . . . . . . . . . . . 42
\swarrow (.) . . . . 41, 106, 107
\swarrow (↙) . . . . . . . . . . . 43
\swarrowtail (&) . . . . . . . . 43
\swfilledspoon (v) . . . . . . 47
\swfootline (~) . . . . . . . . . 32
\swfree (†) . . . . . . . . . . . . 33
\swharpoonccw (F) . . . . . . . 46
\swharpooncw (N) . . . . . . . . 46
\swlsquigarrow (¦) . . . . . . 43
\swmapsto (.) . . . . . . . . . . 43
\swModels (ö) . . . . . . . . . . 33
\swmodels (æ) . . . . . . . . . . 33
\swnearrows (ž) . . . . . . . . 43
\swneharpoons (^) . . . . . . . 46
swords . . . . . . . . . . . . . . . . 91
\swpitchfork (Ž) . . . . . . . . 47

.
.
.
.
.
.

.
.
.
.
.

. . . . . . 10
. . . . . . 17
. . . . . . 95
. . . . . . 14
. . . . . . 95
14, 17, 119,

. . . . . . . . 72
. . . . . . . 104
. . . . . 30, 51

\taild () . . .
\tailinvr (H) .
\taill (0) . . . .
\tailn (9) . . .
\tailr (F) . . . .
\tails (L) . . . .
\tailt (P) . . . .
\tailz (_) . . .
\Takt . . . . . . .
\talloblong (8)
tally markers . .
\tan (tan) . . . .
\tanh (tanh) . .
\Tape ( ) . . . .

.
.
.
.
.
.
.
.
.

–

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

..
..
..
..
..
..
..
..
..
..
85,
...
...
...

13
13
13
13
13
13
13
13
89
22
92
49
49
80

\Taschenuhr ( ) . . . . . . . . 91
Tate-Shafarevich group
see sha
\tau (τ ) . . . . . . . . . . . . . . . 50
\Taurus (Q) . . . . . . . . . . . . 71
\Taurus (á) . . . . . . . . . . . . 71
\taurus (]) . . . . . . . . . . . . 71
tautology . . . . . . . . . see \top
\tauup (τ) . . . . . . . . . . . . . . 50
\tccentigrade (℃) . . . . . . . 65
\tcmu (µ) . . . . . . . . . . . . . . 65
\tcohm (Ω) . . . . . . . . . . . . . 65
\tcpertenthousand (‱) . . 65
\tcperthousand (‰) . . . . . . 65
\td (a
..) . . . . . . . . . . . . . . . . 16
\tddtstile (
) . . . . . . . . 35
\tdststile (
\tdtstile (

) . . . . . . . . . 35
)

. . . . . . . . . 35

) . . . . . . . . 35
\tdttstile (
technological symbols . . 70–74
\Telefon (T) . . . . . . . . . . . 73
\Telephone (
) . . . . . . . . 92
\Telephone ( ) . . . . . . . . . 98
Tennent, Bob . . . . . . . . . . . 21
\Tent ( ) . . . . . . . . . . . . . . 91
\Terminus (⊗) . . . . . . . . . . 95
\terminus (⊗) . . . . . . . . . . . 95
\Terminus* (⊕) . . . . . . . . . . 95
\terminus* (⊕) . . . . . . . . . . 95
\tesh (Q) . . . . . . . . . . . . . . 13
testfont.dvi (file) . . . . . . 111
testfont.tex (file) . . . 111, 112
\tetartemorion (Β) . . . . . . . 19
teubner (package) 19, 64, 87, 95,
119, 120
TEX . . . 40, 47, 64, 70, 97, 100,
103–109, 111–113, 115, 117,
118, 122
TEXbook, The 103–107, 109, 112
symbols from . . . . . . . . 89
\text . . . . . . . . . . 21, 105, 106
\textacutedbl (˝) . . . . . . . 18
\textacutemacron (´
ā) . . . . . 15
\textacutewedge (´
ǎ) . . . . . . 15
\textadvancing (affi) . . . . . . . 15
\textaolig (") . . . . . . . . . . 12
\textasciiacute (´) . . 18, 116

(
@



\textasciibreve (˘) . . . . . . 18
\textasciicaron (ˇ) . . . . . . 18
\textasciicircum (ˆ) . . 9, 115,
117
\textasciidieresis (¨) 18, 116
\textasciigrave (`) . . . . . . 18
\textasciimacron . . . . . . . 115
\textasciimacron (¯)
18, 116
\textasciitilde (˜) 9, 115, 117
\textasteriskcentered (∗) . 9,
20
\textbabygamma (È) . . . . . . . 11
\textbackslash (\) . 9, 114, 115
\textbaht (฿) . . . . . . . . . . . 18
\textbar (|) . . . . . . . . . 9, 114
\textbarb (b) . . . . . . . . . . . 11
\textbarc (c) . . . . . . . . . . . 11
\textbard (d) . . . . . . . . . . . 11
\textbardbl (‖) . . . . . . . . . 20
\textbardotlessj (é) . . . . . 11
\textbarg (g) . . . . . . . . . . . 11
\textbarglotstop (Ü) . . . . . 11
\textbari (1) . . . . . . . . . . . 11
\textbarl (ł) . . . . . . . . . . . 11
\textbaro (8) . . . . . . . . . . . 11
\textbarrevglotstop (Ý) . . 11
\textbaru (0) . . . . . . . . . . . 11
\textbeltl (ì) . . . . . . . . . . 11
\textbenttailyogh (B) . . . . 12
\textbeta (B) . . . . . . . . . . . 11
\textbigcircle (○) . . . . . . 20
\textbktailgamma (.) . . . . . 12
\textblank (␢) . . . . . . . . . . 20
\textblock ( ) . . . . . . . . . . 97
\textborn (b) . . . . . . . . . . . 88
\textbottomtiebar (a
<) . . . . 15
\textbraceleft ({) . . . . . . . . 9
\textbraceright (}) . . . . . . . 9
\textbrevemacron (˘
ā) . . . . . 15
\textbrokenbar (¦) . . . 20, 116
\textbullet (•) . . . . 9, 20, 117
\textbullseye (ò) . . . . . . . 11
\textcelsius (℃) . . . . 70, 117
\textceltpal ( ) . . . . . . . . . 11
\textcent (¢) . . . . . . . 18, 116
\textcentoldstyle () . . . . 18
\textchi ( . . . . . . . . . . . . . 11
\textcircled ( ) . . . . . . . . 14
\textcircledP (℗) . . . . . . 19
\textcircumacute (Ż
a) . . . . . 15
\textcircumdot (ˆ
ȧ) . . . . . . . 15
\textcloseepsilon (Å) . . . . 11
\textcloseomega (Ñ) . . . . . . 11
\textcloserevepsilon (Æ) . . 11
\textcolonmonetary (₡) . . . 18
\textcommatailz (Þ) . . . . . . 11
textcomp (package) . . . . . . . 8,
9, 14, 18–20, 41, 57, 67, 70,
88, 100, 115, 119
\textcopyleft («) . . . . . . 19
\textcopyright (©) . 9, 19, 116
\textcorner (^) . . . . . . . . . . 11

)

158

\textcrb (ă) . . . . . . . . . . . . 11
\textcrd (ą) . . . . . . . . . . . . 11
\textcrd (ž) . . . . . . . . . . . . 14
\textcrg (g) . . . . . . . . . . . . 11
\textcrh (è) . . . . . . . . . . . . 11
\textcrh (§) . . . . . . . . . . . . 14
\textcrinvglotstop (Û) . . . 11
\textcrlambda (ň) . . . . . . . 11
\textcrtwo (2) . . . . . . . . . . 11
\textctc (C) . . . . . . . . . . . . 11
\textctd (ć) . . . . . . . . . . . . 11
\textctdctzlig (ćý) . . . . . . 11
\textctesh (š) . . . . . . . . . . 11
\textctinvglotstop (D) . . . 12
\textctj (J) . . . . . . . . . . . . 11
\textctjvar (2) . . . . . . . . . 12
\textctn (ő) . . . . . . . . . . . . 11
\textctstretchc (%) . . . . . . 12
\textctstretchcvar (&) . . . 12
\textctt (ť) . . . . . . . . . . . . 11
\textcttctclig (ťC) . . . . . . 11
\textctturnt (@) . . . . . . . . . 12
\textctyogh (ÿ) . . . . . . . . . 11
\textctz (ý) . . . . . . . . . . . . 11
\textcurrency (¤) . . . 18, 116
\textcypr . . . . . . . . . . . . . . 86
\textdagger (†) . . . . . . . 9, 20
\textdaggerdbl (‡) . . . . . 9, 20

\textdbend ( ) . . . . . . . . . 89
\textdblhyphen (-) . . . . . . . 20
\textdblhyphenchar () . . . . 20
\textdblig ()) . . . . . . . . . 12
\textdctzlig (dý) . . . . . . . . 11
\textdegree (°) . . . . . 67, 116
\textdied (d) . . . . . . . . . . . 88
\textdiscount (œ) . . . . . . . 20
\textdiv (÷) . . . . . . . . . . . 67
\textdivorced (c) . . . . . . . 88
\textdkshade ( ) . . . . . . . . 97
\textdnblock ( ) . . . . . . . . 97
\textdollar ($) . . . . . . . 9, 18
\textdollaroldstyle () . . 18
\textdong (₫) . . . . . . . . . . . 18
\textdotacute (§
a) . . . . . . . 15
˙
\textdotbreve (ă)
. . . . . . . 15
\textdoublebaresh (S) . . . . 11
\textdoublebarpipe (}) . . . 11
\textdoublebarpipevar (H) . 12
\textdoublebarslash (=
/ ) . . 11
\textdoublegrave (‚
a) . . . . . 15
\textdoublegrave (a
Ÿ) . . . . . 17
\textdoublepipe ({) . . . . . . 11
\textdoublepipevar (G) . . . 12
\textdoublevbaraccent (İ
a) . 15
\textdoublevbaraccent (a
¼) . 17
\textdoublevertline (Ş) . . 11
\textdownarrow (↓) . . . . . . . 41
\textdownfullarrow (ˇ) . . . 12
\textdownstep (Ť) . . . . . . . . 11
\textdyoghlig (Ã) . . . . . . . 11
\textdzlig (dz) . . . . . . . . . . 11
\texteightoldstyle () . . . 20

\textellipsis (. . . ) . . . . . . . 9
\textemdash (—) . . . . . . . . . 9
\textendash (–) . . . . . . . . . . 9
\textepsilon (E) . . . . . . . . 11
\textepsilon (¢) . . . . . . . . 14
\textesh (S) . . . . . . . . . . . . 12
\textesh (¬) . . . . . . . . . . . . 14
\textestimated (℮) . . . . . . 20
\texteuro (€) . . . . . . . . . . . 19
\texteuro (€) . . . . . . . . . . . 18
\texteuro (€) . . . 18, 115, 117
\textexclamdown (¡) . . . . . . . 9
\textfemale (7) . . . . . . . . . 12
\textfishhookr (R) . . . . . . . 12
\textfiveoldstyle () . . . . 20
\textfjlig () . . . . . . . . . . 14
\textflorin (ƒ) . . . . . . . . . . 18
\textfouroldstyle () . . . . 20
\textfractionsolidus (⁄) . . 67
\textfrak . . . . . . . . . . . . . . 68
\textfrbarn (5) . . . . . . . . . 12
\textfrhookd (’) . . . . . . . . 12
\textfrhookdvar (() . . . . . . 12
\textfrhookt (?) . . . . . . . . 12
\textfrtailgamma (-) . . . . . 12
\textg (ě) . . . . . . . . . . . . . 12
\textgamma (G) . . . . . . . . . . 12
\textglobfall (Ů) . . . . . . . 12
\textglobrise (Ű) . . . . . . . 12
\textglotstop (P) . . . . . . . 11
\textglotstopvari (T) . . . . 12
\textglotstopvarii (U) . . . 12
\textglotstopvariii (V) . . 12
\textgoth . . . . . . . . . . . . . . 68
\textgravecircum (Ž
a) . . . . . 15
\textgravedbl () . . . . . . . 18
\textgravedot (đ
a) . . . . . . . 15
\textgravemacron (`
ā) . . . . . 15
\textgravemid (Ź
a) . . . . . . . 15
\textgreater (>) . . . . . 9, 114
\textgrgamma (,) . . . . . . . . 12
\textguarani () . . . . . . . . 18
\texthalflength (;) . . . . . . 11
\texthardsign (ż) . . . . . . . 11
\textheng (0) . . . . . . . . . . . 12
\texthmlig (4) . . . . . . . . . 12
\texthooktop (#) . . . . . . . . . 11
\texthtb (á) . . . . . . . . . . . . 11
\texthtb ( ) . . . . . . . . . . . . 14
\texthtbardotlessj (ê) . . . . 11
\texthtbardotlessjvar (3) . 12
\texthtc (Á) . . . . . . . . . . . . 11
\texthtc (°) . . . . . . . . . . . . 14
\texthtd (â) . . . . . . . . . . . . 11
\texthtd (¡) . . . . . . . . . . . 14
\texthtg (ä) . . . . . . . . . . . . 11
\texthth (H) . . . . . . . . . . . . 11
\texththeng (Ê) . . . . . . . . . 11
\texthtk (Î) . . . . . . . . . . . . 11
\texthtk (¨) . . . . . . . . . . . . 14
\texthtp (Ò) . . . . . . . . . . . . 11
\texthtp (±) . . . . . . . . . . . . 14
\texthtq (Ó) . . . . . . . . . . . . 11

\texthtrtaild (č) . . . . . . . 11
\texthtscg (É) . . . . . . . . . . 11
\texthtt (Ö) . . . . . . . . . . . . 11
\texthtt (º) . . . . . . . . . . . . 14
\texthvlig (ß) . . . . . . . . . . 11
\textifsym . . . . . . . . . . . . . 70
\textinterrobang (‽) . . . . . 20
\textinterrobangdown (•) . . 20
\textinvglotstop (Û) . . . . . 11
\textinvomega (;) . . . . . . . 12
\textinvsca (p) . . . . . . . . . 12
\textinvscr (K) . . . . . . . . . 11
\textinvscripta (!) . . . . . . 12
\textinvsubbridge (a
„) . . . . 15
\textiota (Ì) . . . . . . . . . . . 11
\textiota (à) . . . . . . . . . . . 14
\textlambda (ń) . . . . . . . . . 11
\textlangle (〈) . . . . . 57, 114
\textlbrackdbl (〚) . . . . . . . 57
\textleaf (l) . . . . . . . . . . 88
\textleftarrow (←) . . . . . . 41
\textlengthmark (:) . . . . . . 11
\textless (<) . . . . . . . 9, 114
\textlfblock ( ) . . . . . . . . 97
\textlfishhookrlig (I) . . . 12
~
\textlhdbend ( ) . . . . . . . 89
\textlhookfour (#) . . . . . . . 12
\textlhookp (<) . . . . . . . . . 12
\textlhookt (ş) . . . . . . . . . 11
\textlhti (1) . . . . . . . . . . . 12
\textlhtlongi (ę) . . . . . . . . 11
\textlhtlongy (ű) . . . . . . . 11
\textlinb . . . . . . . . . . . 85, 86
\textlira (₤) . . . . . . . . . . . 18
\textlnot (¬) . . . . . . . 67, 116
\textlonglegr (Ô) . . . . . . . . 11
\textlooptoprevesh (>) . . . . 12
\textlowering (afl) . . . . . . . 15
\textlptr (¡) . . . . . . . . . . . 11
\textlquill (⁅) . . . . . . . . . 57
\textltailm (M) . . . . . . . . . 11
\textltailn (ñ) . . . . . . . . . 11
\textltailn (©) . . . . . . . . . 14
\textltilde (ë) . . . . . . . . . 11
\textltshade ( ) . . . . . . . . 97
\textlyoghlig (Ð) . . . . . . . 11
\textmarried (m) . . . . . . . . 88
\textmho (℧) . . . . . . . . . . . 70
\textmidacute (Ÿ
a) . . . . . . . 15
\textminus (−) . . . . . . . . . . 67
\textmu (µ) . . . . . . . . . 70, 116
\textmusicalnote (♪) . . . . . 20
\textnaira (₦) . . . . . . . . . . 18
\textnineoldstyle () . . . . 20
\textnrleg (6) . . . . . . . . . . 12
\textnumero (№) . . . . . . . . . 20
\textObardotlessj (Í) . . . . 11
\textObullseye (9) . . . . . . 12
\textohm (Ω) . . . . . . . . . . . 70
\textOlyoghlig (ŋ) . . . . . . . 11
\textomega (ř) . . . . . . . . . . 11
\textonehalf (½) . . . . 67, 116

159

\textoneoldstyle . . . . . . . . 20
\textoneoldstyle () . . . . . 20
\textonequarter (¼) . . 67, 116
\textonesuperior (¹) . 67, 116
\textopenbullet (◦) . . . . . . 20
\textopencorner (_) . . . . . . 11
\textopeno (O) . . . . . . . . . . 11
\textopeno (ª) . . . . . . . . . . 14
\textordfeminine (ª) 9, 20, 116
\textordmasculine (º) . . 9, 20,
116
\textovercross
a) . . . . . . . 15
— (‰
\textoverw (a) . . . . . . . . . . 15
\textpalhook (%) . . . . . . . . . 11
\textpalhooklong (ˆ) . . . . . 12
\textpalhookvar (˜) . . . . . . 12
\textparagraph (¶) . . . . 9, 20
\textperiodcentered (·) . 9, 20,
116
\textpertenthousand (‱) . 20
\textperthousand (‰) 20, 117
\textpeso (‘) . . . . . . . . . . . 18
\textphi (F) . . . . . . . . . . . . 11
\textpilcrow (¶) . . . . . . . . 20
\textpipe (|) . . . . . . . . . . . 11
\textpipe (|) . . . . . . . . . . . 14
\textpipevar (F) . . . . . . . . . 12
\textpm (±) . . . . . . . . 67, 116
\textpmhg . . . . . . . . . . . . . . 82
\textpolhook (a˛ ) . . . . . . . . 15
\textprimstress (") . . . . . . 11
\textproto . . . . . . . . . . . . . 81
\textqplig (=) . . . . . . . . . 12
\textquestiondown (¿) . . . . . 9
\textquotedbl (") . . . 10, 114
\textquotedblleft (“) . . . . . 9
\textquotedblright (”) . . . . 9
\textquoteleft (‘) . . . . . . . . 9
\textquoteright (’) . . . . . . . 9
\textquotesingle (') . 20, 114
\textquotestraightbase (‚) 20
\textquotestraightdblbase („)
. . . . . . . . . 20
\textraiseglotstop (ij) . . . 11
\textraisevibyi (ğ) . . . . . . 11
\textraising (afi) . . . . . . . . 15
\textramshorns (7) . . . . . . . 11
\textrangle (〉) . . . . . 57, 114
\textrbrackdbl (〛) . . . . . . . 57
\textrecipe (“) . . . . . 20, 102
\textrectangle (¨) . . . . . . . 12
\textreferencemark (※) 20, 21
\textregistered (®) 9, 19, 116
\textretracting (affl) . . . . . . 15
\textretractingvar (˚) . . . 12
\textrevapostrophe (\) . . . . 11
\textreve (9) . . . . . . . . . . . 11
\textrevepsilon (3) . . 11, 103
\textreversedvideodbend ( )
. . . . . . . . . 89
\textrevglotstop (Q) . . . . . 11
\textrevscl (v) . . . . . . . . . 12

\textrevscr (z) . . . . . . .
\textrevyogh (ź) . . . . . .
\textrhooka ( ) . . . . . . .
\textrhooke (*) . . . . . . .
\textrhookepsilon (+) . .
\textrhookopeno (:) . . . .
\textrhookrevepsilon (Ç)
\textrhookschwa (Ä) . . . .
\textrhoticity (~) . . . . .
\textrightarrow (→) . . .
\textringmacron (˚
ā) . . . .
\textroundcap (“
a) . . . . .
\textrptr (¿) . . . . . . . . .
\textrquill (⁆) . . . . . . .
\textrtaild (ã) . . . . . . .
\textrtaild (ð) . . . . . . .
\textrtailhth (/) . . . . .
\textrtaill (í) . . . . . . . .
\textrtailn (ï) . . . . . . .
\textrtailr (ó) . . . . . . .
\textrtails (ù) . . . . . . .
\textrtailt (ú) . . . . . . .
\textrtailt (») . . . . . . .
\textrtailz (ü) . . . . . . .
\textrtblock ( ) . . . . . .
\textrthook ($) . . . . . . . .
\textrthooklong (´) . . . .
\textsarab . . . . . . . . . . .
\textsca (À) . . . . . . . . . .
\textscaolig (q) . . . . . .
\textscb (à) . . . . . . . . . .
\textscdelta (r) . . . . . .
\textsce (ď) . . . . . . . . . .
\textscf (s) . . . . . . . . . .
\textscg (å) . . . . . . . . . .
\textsch (Ë) . . . . . . . . . .
\textschwa (@) . . . . . . . .
\textschwa (¡) . . . . . . . .
\textsci (I) . . . . . . . . . .
\textscj (ĺ) . . . . . . . . . .
\textsck (t) . . . . . . . . . .
\textscl (Ï) . . . . . . . . . .
\textscm (w) . . . . . . . . .
\textscn (ð) . . . . . . . . . .
\textscoelig (Œ) . . . . . .
\textscomega (ś) . . . . . .
\textscp (x) . . . . . . . . . .
\textscq (y) . . . . . . . . . .
\textscr (ö) . . . . . . . . . .
\textscripta (A) . . . . . .
\textscriptg (g) . . . . . .
\textscriptv (V) . . . . . .
\textscriptv (¬) . . . . . . .
\textscu (Ú) . . . . . . . . . .
\textscy (Y) . . . . . . . . . .
\textseagull (a
) . . . . . .
\textsecstress (­) . . . . .
\textsection (§) . . . . . .
\textservicemark (℠) . . .
\textsevenoldstyle () .
\textSFi ( ) . . . . . . . . . .
\textSFii ( ) . . . . . . . . .
\textSFiii ( ) . . . . . . . .

.
.
.
.
.
.

.
.
.
.
.
.
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
9,
..
..
..
..
..

12
11
12
12
12
12
12
12
12
41
15
15
12
57
12
14
12
12
11
11
11
11
14
11
97
11
12
87
11
12
11
12
11
12
11
11
11
14
11
11
12
11
12
11
11
11
12
12
11
11
11
11
14
11
11
15
11
20
19
20
97
97
97

\textSFiv ( ) . . . . . . . . . . . 97
\textSFix ( ) . . . . . . . . . . . 97
\textSFl ( ) . . . . . . . . . . . . 97
\textSFli ( ) . . . . . . . . . . . 97
\textSFlii ( ) . . . . . . . . . . 97
\textSFliii ( ) . . . . . . . . . 97
\textSFliv ( ) . . . . . . . . . . 97
\textSFv ( ) . . . . . . . . . . . . 97
\textSFvi ( ) . . . . . . . . . . . 97
\textSFvii ( ) . . . . . . . . . . 97
\textSFviii ( ) . . . . . . . . . 97
\textSFx ( ) . . . . . . . . . . . . 97
\textSFxi ( ) . . . . . . . . . . . 97
\textSFxix ( ) . . . . . . . . . . 97
\textSFxl ( ) . . . . . . . . . . . 97
\textSFxli ( ) . . . . . . . . . . 97
\textSFxlii ( ) . . . . . . . . . 97
\textSFxliii ( ) . . . . . . . . 97
\textSFxliv ( ) . . . . . . . . . 97
\textSFxlix ( ) . . . . . . . . . 97
\textSFxlv ( ) . . . . . . . . . . 97
\textSFxlvi ( ) . . . . . . . . . 97
\textSFxlvii ( ) . . . . . . . . 97
\textSFxlviii ( ) . . . . . . . 97
\textSFxx ( ) . . . . . . . . . . . 97
\textSFxxi ( ) . . . . . . . . . . 97
\textSFxxii ( ) . . . . . . . . . 97
\textSFxxiii ( ) . . . . . . . . 97
\textSFxxiv ( ) . . . . . . . . . 97
\textSFxxv ( ) . . . . . . . . . . 97
\textSFxxvi ( ) . . . . . . . . . 97
\textSFxxvii ( ) . . . . . . . . 97
\textSFxxviii ( ) . . . . . . . 97
\textSFxxxix ( ) . . . . . . . . 97
\textSFxxxvi ( ) . . . . . . . . 97
\textSFxxxvii ( ) . . . . . . . 97
\textSFxxxviii ( ) . . . . . . . 97
\textshade ( ) . . . . . . . . . . 97
\textsixoldstyle () . . . . . 20
\textsoftsign (ž) . . . . . . . . 11
\textspleftarrow (˝) . . . . . 12
\textsterling (£) . . . . . 9, 18
\textstretchc (Â) . . . . . . . 11
\textstretchcvar ($) . . . . . 12
\textstyle . . . . . 105, 106, 113
\textsubacute (a) . . . . . . . 15
\textsubarch (a)› . . . . . . . . 15
\textsubbar (a)“ . . . . . . . . . 15
¯
\textsubbridge (a
”) . . . . . . . 15
\textsubcircum (a) . . . . . . . 15
\textsubdot (a) ˆ. . . . . . . . . 15
˙
\textsubdoublearrow
(˙) . . 12
\textsubgrave (a) . . . . . . . 15
‹ (a) . . . . 15
\textsublhalfring
–
\textsubplus (aff) . . . . . . . . 15
\textsubrhalfring (a» ) . . . . 15
\textsubrightarrow (¯) . . . 12
\textsubring (a) . . . . . . . . 15
\textsubsquare˚(a
«) . . . . . . . 15
\textsubtilde (a) . . . . . . . 15
\textsubumlaut ˜(a) . . . . . . . 15
\textsubw (a
—) . . ¨. . . . . . . . . 16
\textsubwedge (a) . . . . . . . 16
ˇ

160

\textsuperimposetilde (a
&) . 16
\textsuperscript . . . . . . . . 16
\textsurd (√) . . . . . . . . . . . 67
\textswab . . . . . . . . . . . . . . 68
\textsyllabic (a) . . . . . . . 16
\texttctclig (tC)" . . . . . . . . 11
\textteshlig (Ù) . . . . . . . . 11
\textteshlig (œ) . . . . . . . . 14
\texttheta (T) . . . . . . . . . . 11
\textthing (N) . . . . . . . . . . 91
\textthorn (þ) . . . . . . . . . . 11
\textthornvari (P) . . . . . . . 12
\textthornvarii (Q) . . . . . . 12
\textthornvariii (R) . . . . . 12
\textthornvariv (S) . . . . . . 12
\textthreeoldstyle () . . . 20
\textthreequarters (¾) 67, 116
\textthreequartersemdash ()
. . . . . . . . . 20
\textthreesuperior (³) 67, 116
\texttildedot (˜
ȧ) . . . . . . . 16
\texttildelow (~) . . . 20, 115
\texttimes (×) . . . . . . . . . . 67
\texttoneletterstem (£) . . . 11
\texttoptiebar (>
a) . . . . . . . 16
\texttrademark (™) . 9, 19, 117
\texttslig (ţ) . . . . . . . . . . 11
\textturna (5) . . . . . . . . . . 11
\textturncelig (ŕ) . . . . . . 11
\textturnglotstop (E) . . . . 12
\textturnh (4) . . . . . . . . . . 11
\textturnk (ľ) . . . . . . . . . . 11
\textturnlonglegr (Õ) . . . . 11
\textturnm (W) . . . . . . . . . 11
\textturnmrleg (î) . . . . . . 11
\textturnr (ô) . . . . . . . . . . 11
\textturnrrtail (õ) . . . . . . 11
\textturnsck (u) . . . . . . . . 12
\textturnscripta (6) . . . . . 11
\textturnscu ({) . . . . . . . . 12
\textturnt (Ø) . . . . . . . . . . 11
\textturnthree (C) . . . . . . . 12
\textturntwo (A) . . . . . . . . 12
\textturnv (2) . . . . . . . . . . 11
\textturnw (û) . . . . . . . . . . 11
\textturny (L) . . . . . . . . . . 11
\texttwelveudash () . . . . . 20
\texttwooldstyle . . . . . . . . 20
\texttwooldstyle () . . . . . 20
\texttwosuperior (²) . 67, 116
\textuncrfemale (8) . . . . . . 12
\textunderscore ( ) . . . . . . . 9
\textuparrow (↑) . . . . . . . . 41
\textupblock ( ) . . . . . . . . 97
\textupfullarrow (˘) . . . . . 12
\textupsilon (U) . . . . . . . . 11
\textupstep (Ţ) . . . . . . . . . 11
\textvbaraccent (IJ
a) . . . . . . 16
\textvbaraccent (a
¿) . . . . . . 17
\textvertline (Š) . . . . . . . . 12
\textvibyi (ğ) . . . . . . . . . . 12
\textvibyy (ů) . . . . . . . . . . 12

\textvisiblespace ( ) . . . . . 9
\textwon (₩) . . . . . . . . . . . 18
\textwynn (ß) . . . . . . . . . . . 12
\textxswdown (U) . . . . . . . . 91
\textxswup (T) . . . . . . . . . 91
\textyen (¥) . . . . . . . 18, 116
\textyogh (Z) . . . . . . . . . . . 12
\textyogh (¶) . . . . . . . . . . . 14
\textzerooldstyle () . . . . 20
\TH (Þ) . . . . . . . . . . . . 10, 116
\th (þ) . . . . . . . . . . . . 10, 116
Thành, Hàn Th´ê . . . . . . . . 107
\therefore (6) . . . . . . . . . . 32
\therefore (∴) . . . . . . . 30, 64
\therefore (∴) . . . . . . . . . . 64
\Thermo . . . . . . . . . . . . . . . 91
\Theta (Θ) . . . . . . . . . . . . . 50
\theta (θ) . . . . . . . . . . . . . 50
\thetaup (θ) . . . . . . . . . . . . 50
\thething (N) . . . . . . . . . . 91
\thickapprox (≈) . . . . . . . . 30
\thicksim (∼) . . . . . . . . . . 30
\thickvert (~) . . . . . . . . . . 55
thin space . . . . . . . . . . . . . 113
\ThinFog ( ) . . . . . . . . . . . 91
\thinstar (⋆) . . . . . . . . . . . 25
\third (3) . . . . . . . . . . . . . 66
thirty-second note . see musical
symbols
\Thorn (Þ) . . . . . . . . . . . . . 13
\thorn (B) . . . . . . . . . . . . . 13
\thorn (p) . . . . . . . . . . . . . 13
\thorn (þ) . . . . . . . . . . . . . 13
thousandths . . . . . . . . . . . see
\textperthousand
∼
\threesim (∼
∼) . . . . . . . . . 104
tick . . . . . . . . . see check marks
tilde 9, 11, 13, 15–16, 18, 20, 57,
59, 61, 107, 115
extensible . . . . . . . 59, 61
vertically centered . . . 115
\tilde (˜) . . . . . . . . . 57, 107
\tildel (-) . . . . . . . . . . . . 13
time of day . . . . . . . . . . 91, 92
\timelimit (T) . . . . . . . . . 93
\times (×) . . . . . . . . . . . . . 22
\times (×) . . . . . . . . . . . . . 24
Times Roman (font) . . 18, 102
timing (package) . . . . . . . . . 70
tipa (package) 11, 12, 14–17, 103,
119, 120
tipx (package) . . . . 12, 119, 120
\tndtstile (
) . . . . . . . . 35
\tnststile ( ) . . . . . . . . . 35
\tntstile ( ) . . . . . . . . . 35
\tnttstile (
) . . . . . . . . 35
\to . . . . . . . . see \rightarrow
\ToBottom (½) . . . . . . . . . . . 90
\tone . . . . . . . . . . . . . . . . . 12
\top (>) . . . . . . . . . 22, 51, 105
\top (⊺) . . . . . . . . . . . . . . . 52



\topbot (⊥
>) . . . . . . . . 105, 107
\topdoteq () . . . . . . . . . . 32
torus (T) . see alphabets, math
\ToTop (¼) . . . . . . . . . . . . . 90
trademark . see \texttrademark
\TransformHoriz (
) . . . . 36
transforms . . . . . . . . . . 36, 63



\TransformVert ( ) . . . . . . 36
transliteration
semitic . . . . . . . . . . 14, 17
transliteration symbols . . . . 14
transpose . . . . . . . . . . . . . . 22
transversal intersection . . . see
\pitchfork
trema (ä) . . . . . . . see accents
trfsigns (package) 36, 52, 63, 119
\triangle (4) . . . . . . . . . . 65
\triangle (△) . . . . . . . . . . 40
triangle relations . . . . . . 39, 40
\TriangleDown ( ) . . . . . . . 79
\TriangleDown ( vs. ) . 101
\TriangleDown ( ) . . . . . . . 80
\triangledown (O) . . . . . . . 66
\triangledown (▽) . . . . . . . 40
\triangleeq (≜) . . . . . . . . . 40
\TriangleLeft ( ) . . . . . . . 79
\triangleleft (˜) . . . . . . . 40
\triangleleft (/) . . . . . . . 22
\triangleleft (◁) . . . . . . . 40
\trianglelefteq (œ) . . . . . 40
\trianglelefteq (E) . . . . . 39
\trianglelefteq (⊴) . . . 39, 40
\trianglelefteqslant (P) . 40
\triangleq (,) . . . . . . 21, 39
\triangleq (≜) . . . . . . . . . . 40
\TriangleRight ( ) . . . . . . 79
\triangleright (™) . . . . . . 40
\triangleright (.) . . . . . . . 22
\triangleright (▷) . . . . . . 40
\trianglerighteq () . . . . 40
\trianglerighteq (D) . . . . 39
\trianglerighteq (⊵) . . 39, 40
\trianglerighteqslant (Q) 40
triangles . . . . 66, 73, 79–80, 94
\TriangleUp ( ) . . . . . . . . 79
\TriangleUp ( vs. ) . . . 101
\TriangleUp ( ) . . . . . . . . 80
\triple . . . . . . . . . . . . . . . 57
\triplefrown () . . . . . . . . 48
\triplesim (≋) . . . . . . . . . . 33
\triplesmile () . . . . . . . . 48
trsym (package) . . . 36, 119, 120
\tsbm ( ) . . . . . . . . . . . . . . 95

3

o 3
o
2

4

1

n 1
n

\tsdtstile (
) . . . . . . . . 35
\tsmb ( ) . . . . . . . . . . . . . . 95
\tsmm ( ) . . . . . . . . . . . . . . 95
\tsststile ( ) . . . . . . . . . 35
\Tsteel (œ) . . . . . . . . . . . . 73
\tststile (

)

\tsttstile (

. . . . . . . . . 35
) . . . . . . . . 35

161

\ttdtstile (

) . . . . . . . . 35

\TTsteel (š) . . . . . . . . . . . 73
\ttststile (
\tttstile (

) . . . . . . . . . 35
)

\ttttstile (

. . . . . . . . . 35
) . . . . . . . . 35

TUGboat . . . . . . . . . . . . . . 59
\Tumbler () . . . . . . . . . . . 90
turnstile (package) . 35, 119, 120
\TwelweStar ( ) . . . . . . . . 78
twiddle . . . . . . . . . . . see tilde
\twoheaddownarrow (↡) . . . . 43
\twoheadleftarrow () . . . 41
\twoheadleftarrow (↞) . . . 44
\twoheadnearrow () . . . . . 44
\twoheadnwarrow () . . . . . 44
\twoheadrightarrow () . . 41
\twoheadrightarrow (↠) . . 44
\twoheadsearrow () . . . . . 44
\twoheadswarrow () . . . . . 44
\twoheaduparrow (↟) . . . . . . 44
\twonotes () . . . . . . . . . . . 88
txfonts (package) . . . . . . 21–23,
27, 30, 31, 36–38, 41, 42, 48,
50–52, 65, 66, 68, 100, 102,
115, 119, 120
type1cm (package) . . . . . . . 100
Type 1 (font) . . . . . . . . . . 112

J

U
\U (a) . . . . . . . . . .
\U (a
¼˘) . . . . . . . . . .
\u (ă) . . . . . . . . . .
\UArrow ( ↑ ) . . .
\UB (<) . . . . . . . . .
\ubar (u) . . . . . . .
\ubarbbrevis (ε)
\ubarbrevis (δ) . .
\ubarsbrevis (φ)
\ubrevislonga (κ)
ubulb.fd (file) . . .
ucs (package) . . . . .
\udesc (u) . . . . . .
\udot () . . . . . . . .
\udotdot () . . . . .
\udots (⋰) . . . . . .
\udtimes (]) . . . .
\UHORN (Ư) . . . . . .
\uhorn (ư) . . . . . .
\ulcorner (x) . . . .
\ulcorner (p) . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

. . . . 17
. . . . 14
. . . . 14
. . . . 72
. . . . 89
. . . . 13
. . . . 95
. . . . 95
. . . . 95
. . . . 95
111, 112
117, 118
. . . . 13
. . . . 23
. 24, 64
. . . . 64
. . . . 24
. . . . 10
. . . . 10
. . . . 53
. . . . 53

\ulcorner (⌜) . . . . . . . . . . . 55
\ullcorner (6) . . . . . . . . . . 55
\ulrcorner (;) . . . . . . . . . . 55
ulsy (package) . 24, 48, 103, 119
\Umd (g
a) . . . . . . . . . . . . . . 89
umlaut (ä) . . . . . . see accents

unary operators . . . .
\unclear (k) . . . . .
\underaccent . . . . .
\underarc (a
) .....
^
\underarch (a
) . . . .
\underbrace (loomoon)

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

. 21
. 93
107
. 17
. 16
. 60

\underbrace ( ) . . . . . . . . . 60
®
\underbrace (|{z}) . . . . . . . 60

\underbrace (|{z}) . . . . . . . 59
\underbracket ( )

. . . . . . . 60

\underbracket ( )

. . . 108, 109

\underdots (r) . . . . . . . . . . 18
\undergroup (looo n) . . . . . . . 60
\undergroup ( ) . . . . . . . . 60
´¶
\underleftarrow (←
−) . . . . . 59
\underleftharp (() . . . . . . . 47
\underleftharpdown ()) . . . 47
\underleftrightarrow (←
→) 59
underline . . . . . . . 9, 21, 59, 61
\underline ( ) . . . . . . . . . . 59
\underlinesegment ( ) . . . . 60
z
x
\underparenthesis (|}) 108, 109

\underrightarrow (−
→) . . . . 59
\underrightharp (*) . . . . . . 47
\underrightharpdown (+) . . 47
\underring (y) . . . . . . . . . . 18
underscore . . . . . see underline
underscore (package) . . . . . . . 9
\underset . . . . . . . . . . . . . 104
undertilde (package) 61, 119, 120
\undertilde (|) . . . . . . . . . 18
\underwedge (}) . . . . . . . . . 18
Unicode . . . . . . 8, 97, 117–118
union . . . . . . . . . . . . see \cup
unit disk (D) . . . see alphabets,
math
\unitedpawns (u) . . . . . . . . 93
units (package) . . . . . . . . . . 67
unity (1) . . see alphabets, math
universa (package) . 80, 90, 119,
120
universal (package) 75, 77, 80, 90,
119, 120
\unlhd (E) . . . . . . . . . . 22, 23
\unlhd (⊴) . . . . . . . . . . 39, 40
\unrhd (D) . . . . . . . . . . 22, 23
\unrhd (⊵) . . . . . . . . . . 39, 40
\upalpha (α) . . . . . . . . . . . . 51
\UParrow (K) . . . . . . . . . . . . 88
\Uparrow (⇑) . . . . . . . . . 41, 54
\Uparrow (⇑) . . . . . . . . . . . . 44
\uparrow (↑) . . . . . . 41, 54, 100
\uparrow (↑) . . . . . . . . . . . . 44
\uparrowtail (!) . . . . . . . . 44
\upbar . . . . . . . . . . . . . . . . 16
\upbeta (β) . . . . . . . . . . . . . 51
\upbracketfill . . . . . . . . 109
\upchi (χ) . . . . . . . . . . . . . 51

\Updelta (∆) . . . . . . . . . . . . 51
\updelta (δ) . . . . . . . . . . . . 51
\Updownarrow (m) . . . . . 41, 54
\Updownarrow (⇕) . . . . . . . . 44
\updownarrow (l) . . . . . 41, 54
\updownarrow (↕) . . . . . . . . 44
\updownarrows (Ö) . . . . . . . 42
\updownarrows (™) . . . . . . . 44
\updownharpoonleftright (Q) 46
\updownharpoonrightleft (U) 46
\updownharpoons (ê) . . . . . . 43
\updownharpoons (⥮) . . . . . . 46
\Updownline (∥) . . . . . . . . . 33
\updownline (∣) . . . . . . . . . 33
\upepsilon (ε) . . . . . . . . . . 51
\upeta (η) . . . . . . . . . . . . . 51
\upfilledspoon (q) . . . . . . . 47
\upfootline (y) . . . . . . . . . 33
\upfree () . . . . . . . . . . . . 33
\Upgamma (Γ) . . . . . . . . . . . . 51
\upgamma (γ) . . . . . . . . . . . . 51
upgreek (package) . 51, 119, 120
\upharpoonccw (↿) . . . . . . . . 46
\upharpooncw (↾) . . . . . . . . 46
\upharpoonleft (ä) . . . . . . . 43
\upharpoonleft () . . . . . . . 41
\upharpoonright (æ) . . . . . . 43
\upharpoonright () . . . . . . 41
\upiota (ι) . . . . . . . . . . . . . 51
\upkappa (κ) . . . . . . . . . . . . 51
\Uplambda (Λ) . . . . . . . . . . . 51
\uplambda (λ) . . . . . . . . . . . 51
\uplett . . . . . . . . . . . . . . . 16
\uplsquigarrow (¡) . . . . . . . 44
\uplus (Z) . . . . . . . . . . . . . 23
\uplus (]) . . . . . . . . . . . . . 22
\uplus (⊎) . . . . . . . . . . . . . 24
\upmapsto (↥) . . . . . . . . . . . 44
\upModels (ñ) . . . . . . . . . . . 33
\upmodels (á) . . . . . . . . . . . 33
\upmu (µ) . . . . . . . . . . . . . . 51
\upnu (ν) . . . . . . . . . . . . . . 51
\Upomega (Ω) . . . . . . . . . . . 51
\upomega (ω) . . . . . . . . . . . 51
\upp (t) . . . . . . . . . . . . . . . 18
\upparenthfill . . . . . . . . 109
\Upphi (Φ) . . . . . . . . . . . . . 51
\upphi (φ) . . . . . . . . . . . . . 51
\Uppi (Π) . . . . . . . . . . . . . . 51
\uppi (π) . . . . . . . . . . . . . . 51
\uppitchfork (⋔) . . . . . . . . 47
\uppropto () . . . . . . . . . . . 33
\Uppsi (Ψ) . . . . . . . . . . . . . 51
\uppsi (ψ) . . . . . . . . . . . . . 51
upquote (package) . . . . . . . 115
\uprho (ρ) . . . . . . . . . . . . . 51
upright Greek letters . . . 50, 51
\uprsquigarrow (©) . . . . . . . 44
upside-down symbols . . . . . 114
upside-down symbols 11–13, 17,
103
\Upsigma (Σ) . . . . . . . . . . . . 51
\upsigma (σ) . . . . . . . . . . . . 51

162

\Upsilon (Υ) . . . .
\upsilon (υ) . . . . .
\upsilonup (υ) . . .
\upslice (À) . . . .
\upspoon (⫯) . . . . .
\upt (l) . . . . . . . .
\uptau (τ) . . . . . . .
\uptherefore (∴) .
\Uptheta (Θ) . . . .
\uptheta (θ) . . . . .
\uptodownarrow (þ)
\upuparrows (Ò) . .
\upuparrows () .
\upuparrows (⇈) . .
\upupharpoons (Ú)
\Upupsilon (Υ) . . .
\upupsilon (υ) . . .
\upvarepsilon (ε) .
\upvarphi (ϕ) . . . .
\upvarpi (ϖ) . . . .
\upvarrho (ρ) . . . .
\upvarsigma (σ) . .
\upvartheta (ϑ) . .
\upVdash (⍊) . . . .
\upvdash (⊥) . . . . .
\Upxi (Ξ) . . . . . . .
\upxi (ξ) . . . . . . .
\upY ()) . . . . . . . .
\upzeta (ζ) . . . . . .
\Uranus (G) . . . . .
\Uranus (Ç) . . . . . .
\uranus (Z) . . . . . .
\urcorner (y) . . . .
\urcorner (q) . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
..
..
..
..
..
..
24,
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

50
50
50
25
47
18
51
64
51
51
42
42
41
44
43
51
51
51
51
51
51
51
51
33
33
51
51
24
51
71
71
71
53
53

\urcorner (⌝) . . . . . . . . . . . 55
url (package) . . . . . . . . . . . 115
\US (␟) . . . . . . . . . . . . . . . . 72
\usepackage . . . . . . . . . . . . . 8
ushort (package) . . 61, 119, 121
\ushort ( ) . . . . . . . . . . . . . 61
\ushortdw ( ) . . . . . . . . . . . 61
\ushortw ( ) . . . . . . . . . . . . 61
\ut (a) . . . . . . . . . . . . . . . . 16
˜ . . . . . . . . . . . . 117, 118
UTF-8
utf8x (inputenc package option) .
. . . . . . . . 117
\utilde ( ) . . . . . . . . . . . . . 61
e
\utimes (^) . . . . . . . . . . . . 24
\utimes ($) . . . . . . . . . . . . 24
Utopia (font) . . . . . . . . . 18, 30
V
\v (ǎ) . . . . . . . . .
\vara (a) . . . . . .
\varangle () . .
\varbigcirc (,)
\VarClock ( ) . .
\varclub (♧) . . .
\varclubsuit (p)
\varcoppa (ϙ) . . .
\varcurlyvee ()

›

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

14
13
66
22
91
67
66
87
22

\varcurlywedge ( ) . . . . . . 22
\vardiamond (♦) . . . . . . . . . 67
\vardiamondsuit (q) . . . . . . 66
\varEarth (J) . . . . . . . . . . . 71
\varepsilon (ε) . . . . . . . . . 50
\varepsilonup (ε) . . . . . . . . 50
\VarFlag ( ) . . . . . . . . . . . 91
varg (txfonts/pxfonts package option) . . . . . . . . . . . . . 51
\varg (1) . . . . . . . . . . . . . . 51
\varg (G) . . . . . . . . . . . . . . 13
\vargeq (©) . . . . . . . . . . . . 38
\varhash (#) . . . . . . . . . . . 66
\varheart (♥) . . . . . . . . . . 67
\varheartsuit (r) . . . . . . . 66
\varhexagon (9) . . . . . . . . . 78
\varhexstar (B) . . . . . . . . . 77
\vari (i) . . . . . . . . . . . . . . . 13
variable-sized symbols . . 25–30,
100, 102
\VarIceMountain ( ) . . . . . 91
\varinjlim (lim) . . . . . . . . . 49
r −→
\varint ( ) . . . . . . . . . . . . 26
\various (R) . . . . . . . . . . . 93
\varkappa (κ) . . . . . . . . . . 50
\varleq (¨) . . . . . . . . . . . . 38
\varliminf (lim) . . . . . . . . . 49
\varlimsup (lim) . . . . . . . . . 49
\varmathbb . . . . . . . . . . . . . 68
\VarMountain ( ) . . . . . . . . 91
\varnothing (∅) . . . . 21, 65, 66
\varnothing (∅) . . . . . . . . . 66
\varnotin (T) . . . . . . . . . . . 52
\varnotowner (U) . . . . . . . . 52
\varoast () . . . . . . . . . . . 22
\varobar () . . . . . . . . . . . 22
\varobslash () . . . . . . . . . 22
\varocircle () . . . . . . . . . 22
\varodot () . . . . . . . . . . . 22
\varogreaterthan (5) F. . . . 22
\varoiiintclockwise ( ) . 27
N
\varoiiintctrclockwise ( )
. . . . .!. . . . 28
\varoiint ( ) . . . . B
. . . . . . 28
\varoiintclockwise ( ) . . 28
J
\varoiintctrclockwise ( ) 28
u
\varoint ( ) . . . . .- . . . . . . 26
\varointclockwise ( ) . . . . 28
ff
\varointclockwise ( ) +. . . . 28
\varointctrclockwise ( ) . 28
fl
\varointctrclockwise ( ) . . 28
\varolessthan (4) . . . . . . . 22
\varomega () . . . . . . . . . . . 13
\varominus () . . . . . . . . . . 22
\varopeno (C) . . . . . . . . . . . 13
\varoplus () . . . . . . . . . . 22
\varoslash () . . . . . . . . . . 22
\varotimes () . . . . . . . . . . 22
\varovee (6) . . . . . . . . . . . 22
\varowedge (7) . . . . . . . . . . 22
\varparallel (∥) . . . . . . . . 31







\varparallelinv ( ) .
\varpartialdiff (Ç) .
\varphi (ϕ) . . . . . . .
\varphiup (ϕ) . . . . . .
\varpi ($) . . . . . . . .
\varpi ($) . . . . . . . .
\varpiup ($) . . . . . .

\varprod ( ) . . . . . .
\varprojlim (lim) . . .
←−
\varpropto (∝) . . . .
\varpropto (∝) . . . . .
\varQ ( ) . . . . . . . . .
\varrho (%) . . . . . . . .
\varrho (%) . . . . . . . .
\varrhoup (%) . . . . . .
\varsigma (ς) . . . . . .
\varsigmaup (ς) . . . .
\varspade (♤) . . . . .
\varspadesuit (s) . .
\varsqsubsetneq (Š)
\varsqsubsetneqq (’)
\varsqsupsetneq (‹)
\varsqsupsetneqq (“)
\varstar () . . . . . . .
\varstigma (ϛ) . . . . .
\varsubsetneq (Š) . .
\varsubsetneq ( ) . .
\varsubsetneq (⊊) . .
\varsubsetneqq (’) .
\varsubsetneqq (&) .
\varsubsetneqq (⫋) . .
\VarSummit ( ) . . . .
\varsupsetneq (‹) . .
\varsupsetneq (!) . .
\varsupsetneq (⊋) . .
\varsupsetneqq (“) .
\varsupsetneqq (') .
\varsupsetneqq (⫌) . .

ƒ



”

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

\VarTaschenuhr ( ) . .
\vartheta (ϑ) . . . . . . .
\varthetaup (ϑ) . . . . .
\vartimes (") . . . . . . .
\vartriangle (M) . . . .
\vartriangle (△) . . . .
\vartriangleleft (˜)
\vartriangleleft (C)
\vartriangleleft (⊲) .
\vartriangleright (™)
\vartriangleright (B)
\vartriangleright (⊳)
\varv (3) . . . . . . . . . .
\varvarpi (È) . . . . . .
\varvarrho (Æ) . . . . . .
\varw (4) . . . . . . . . . .
\vary (2) . . . . . . . . . .
\VBar ( ) . . . . . . . . . .
\vbipropto (Š) . . . . . .
\vcentcolon (:) . . . . . .
\vcenter . . . . . . . . . .
\vcrossing (’) . . . . . .
\VDash (() . . . . . . . . .



163

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

. . 91
. . 50
. . 50
. . 22
. . 66
. . 40
. . 40
. . 39
39, 40
. . 40
. . 39
39, 40
. . 51
. . 51
. . 51
. . 51
. . 51
. . 79
. . 24
. . 34
. 104
. . 33
. . 32

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

31
53
50
50
50
51
50
28
49
30
33
90
50
51
50
50
50
67
66
37
37
37
37
23
87
37
36
37
37
36
37
91
37
36
37
37
36
37

\VDash (⊫) . . . . . . .
\Vdash (,) . . . . . . .
\Vdash ( ) . . . . . . .
\Vdash (⊩) . . . . . . .
\vDash (() . . . . . . .
\vDash () . . . . . . .
\vDash (⊧) . . . . . . .
\vdash (`) . . . . . . .
\vdash (⊢) . . . . . . .
\vdotdot (∶) . . . . . .
.
\vdots (..) . . . . . . . .
\vdots (⋮) . . . . . . . .
\vec (⃗) . . . . . . . . .
\vec (~) . . . . . . . . .
\Vectorarrow (p) . . .
\Vectorarrowhigh (P)
\vee (_) . . . . . . . . .
\vee (∨) . . . . . . . . .
\vee (∨) . . . . . . . . .
\veebar (Y) . . . . . .
\veebar (Y) . . . . . .
\veedot (/) . . . . . .
\veedoublebar ([) .
\Venus (B) . . . . . . .
\Venus (Ã) . . . . . . .
\venus (♀) . . . . . . .
\vernal () . . . . . .
versicle “( ) . . . . . . .

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

..
..
..
..
..
..
..
..
..
24,

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

33
32
30
33
32
30
33
30
33
64

63
64
58
57
67
67
23
22
24
23
22
24
23
71
71
71
71
118

“

\VERT (“
“) . . . . . . . . . . . . . . 57
\Vert (k) . . . . .
\vert (|) . . . . . .
\vertbowtie (⧖)
\vertdiv () . . .
\VHF (@) . . . . . .
\Vier (ˇ “ ) . . . . .
vietnam (package)

.
.
.
.
.
.

 

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.

54, 56
54, 56
. . 24
. . 24
. . 70
. . 89
. 119

\Village (
) . . . . . . . . 91
\vin ( ) . . . . . . . . . . . . . . . 53
vinculum . . . . . . see \overline
\ViPa (> ) . . . .
\Virgo (å) . . .
\virgo (`) . .
\VM (>) . . . . . .
vntex (package)
\vod (v) . . . . .
˚
\voicedh (h) . .
\vppm ( ˙ ) . . . .
\vpppm ¯( ˙ ) . . .
\vrule ¯. . . . . .
\VT (␋) . . . . . .
\vv ( #») . . . . .
\VvDash () . .
\Vvdash (,) . .
\Vvdash () . .
\Vvdash (⊪) . .
\vvvert (~) . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
..
..
..
10,
..
..
..
..
..
..
..
..
..
..
..
..

89
71
71
89
14
13
13
95
95
97
72
61
31
32
30
33
55

W
\WashCotton (‰) . . . . . . . . 90
\WashSynthetics (Š) . . . . 90

\WashWool (‹) . . . . . . . . . . 90
\wasylozenge (◊) . . . . . . . . 88
\wasypropto () . . . . . . . . . 31
wasysym (package) . . 13, 18, 20,
22, 23, 26, 30, 31, 36–38, 41,
64–66, 70, 71, 73, 77, 78, 88,
101, 119, 120
\wasytherefore (∴) . . . . . . 64
wavy-line delimiters . . . . 55, 56
\wbetter (f) . . . . . . . . . . . 93
\wdecisive (h) . . . . . . . . . 93
\weakpt (J) . . . . . . . . . . . . 93
\WeakRain ( ) . . . . . . . . . . 91
\WeakRainCloud ( ) . . . . . . 91
weather symbols . . . . . . . . . 91





š

\Wecker ( ) . . . . . .
\wedge (^) . . . . . . . .
\wedge (∧) . . . . . . . .
\wedge (∧) . . . . . . . .
\wedgedot (.) . . . . . .
Weierstrass ℘ function
\wfermion ( ) . . . . . .
\Wheelchair (w) . . . .
\whfermion ( ) . . . .
\whistle (aŢ ) . . . . . . .

d
m

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

. . . 91
. . . 23
. . . 22
. . . 24
. . . 24
see \wp
. . . 74
. . . 90
. . . 74
. . . 16

A)
\WhiteBishopOnWhite (B)
\WhiteEmptySquare (0) .
\WhiteKingOnBlack (J) .
\WhiteKingOnWhite (K) .
\WhiteKnightOnBlack (M)
\WhiteKnightOnWhite (N)
\WhitePawnOnBlack (O) .
\WhitePawnOnWhite (P) .
\WhiteQueenOnBlack (L)
\WhiteQueenOnWhite (Q)
\WhiteRookOnBlack (S) .
\WhiteRookOnWhite (R) .
\WhiteBishopOnBlack (

94
94
94
94
94

\wideparen ( ”)
\wideparen (Ì)
\wideparen (Û)
\widering (ů) .
\widering (˚
”) .

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

60
60
59
60
60

\widering (Û̊) . . . . . . . . . . . 59
\widetilde (̃) . . . . . . . . . . 60
\widetilde (e) . . . . . . . 59, 61
\widetriangle (Ê) . . . . . . . 59
\wind . . . . . . . . . . . . . . . . . 91
window . . . . . . . . . . . . . . . . 90
Windows® . . . . . . . . . . . . 115
\with (&) . . . . . . . . . . . . . . 24
\with (v) . . . . . . . . . . . . . . 93
\withattack (A) . . . . . . . . . 93
\withidea (E) . . . . . . . . . . 93
\withinit (C) . . . . . . . . . . . 93
\without (w) . . . . . . . . . . . 93
\wn (?) . . . . . . . . . . . . . . . . 21
woman . . . . . . . . . . . . . 81, 90
\Womanface (þ) . . . . . . . . . 90
won . . . . . . . . . . see \textwon
world . . . . . . . . . . . . . . . . . 90
\wp (℘) . . . . . . . . . . . . . . . . 51
\wp (℘) . . . . . . . . . . . . . . . . 52
\wr (o) . . . . . . . . . . . . . . . . 22
\wr (≀) . . . . . . . . . . . . . . . . 24
\wreath (≀) . . . . . . . . . . . . . 24
wreath product . . . . . . see \wr
\Writinghand (b) . . . . . . . . 90
wsuipa (package) 13, 16, 18, 101,
103, 107, 119, 120
\wupperhand (c) . . . . . . . . . 93

94

X
\x (X) . . . . . . .
\x (˙˙) . . . . . . .
˙˙ (4) . . . .
\XBox
Xdvi . . . . . . . .
XELATEX . . . . .
xfrac (package)

94

\xhookleftarrow (←
−-) . . . . . 62

94
94

94
94

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

\xhookrightarrow (,−
→)
\Xi (Ξ) . . . . . . . . . . . .
\xi (ξ) . . . . . . . . . . . .
\xiup (ξ) . . . . . . . . . .
=)
\xLeftarrow (⇐

. . . . 65
. . . . 95
. . . . 77
47, 103
. . . 118
. . . . 67

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

62
50
50
50

. . . . . . . . 62

94

\xleftarrow (←
−) . . . . . . . . 61

94
\whitestone . . . . . . . . . . . . 94
whole note see musical symbols
Wick contractions . . . . . . . 109
\widearc (Ø) . . . . . . . . . . . . 60
\widearrow (t) . . . . . . . . . . 60
\widebar (s) . . . . . . . . . . . . 60
\widecheck (q) . . . . . . . . . . 60
\widehat (̂) . . . . . . . . . . . . 60
\widehat (b) . . . . . . . . . . . . 59
\wideOarc (ä) . . . . . . . . . . . 60
\wideparen (u) . . . . . . . . . . 60

\xleftharpoondown ()
−) . . . 62
\xleftharpoonup ((
−) . . . . . 62
\xLeftrightarrow (⇐
⇒)

. . . 62

\xLeftrightarrow (⇐
⇒)

. . . 62

\xleftrightarrow (←
→)

. . . 62

\xleftrightarrow (←
→)

. . . 62

\xLongleftarrow (⇐=
=) . . . . 62
−) . . . . 62
\xlongleftarrow (←−
\xLongleftrightarrow (⇐=
=⇒)
. . . . . . . . . 62
\xlongleftrightarrow (←−
−→)
. . . . . . . . . 62
\xLongrightarrow (=
=⇒) . . . 62
\xlongrightarrow (−
−→) . . . 62
\xmapsto (7−→)

. . . . . . . . . . 62

\xmapsto (7−→) . . . . . . . . . . 63
XML . . . . . . . . . . . . . . . . 117
\xRightarrow (=
⇒) . . . . . . . . 62
\xrightarrow (−
→) . . . . . . . 61
+) . . 62
\xrightharpoondown (−
\xrightharpoonup (−
*) . . . . 62
*
\xrightleftharpoons (−
)
−) . 62
−
*
\xrightleftharpoons ()
−) . 62
Xs . . . . . . . . . . .
\XSolid ( ) . . . .
\XSolidBold ( )
\XSolidBrush ( )
\xswordsdown (U)
\xswordsup (T) .

#

$
%

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.

77,
..
..
..
..
..

\xtwoheadleftarrow (−−−)

90
77
77
77
91
91
63

\xtwoheadrightarrow (−−−) 63
XY-pic . . . . . . . . . . . . . . . . 106
Y
\Ydown () . . . . . . . . . . . . . 22
yen . . . . . . . . . . . see \textyen
yfonts (package) 68, 69, 119, 120
yhmath (package) 58, 59, 61, 64,
107, 119
\Yinyang (Y) . . . . . . . . . . . 90
\Yleft () . . . . . . . . . . . . . 22
\yogh (`) . . . . . . . . . . . . . . 13
\yogh (x) . . . . . . . . . . . . . . 13
\Yright () . . . . . . . . . . . . 22
Yu, Billy . . . . . . . . . . . . . . 108
\Yup () . . . . . . . . . . . . . . . 22
Z
Zapf Chancery (font)
Zapf Dingbats (font)
\Zborder ( ) . . . . .
\zeta (ζ) . . . . . . . .
\zetaup (ζ) . . . . . . .
\Zodiac . . . . . . . . .
zodiacal symbols . . .

Z

\Ztransf (

....

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

...
75,
...
...
...
...
...

68
77
80
50
50
71
71

) . . . . . . . . . 36

....

(
−) . 62
\xleftrightharpoons (−
+

\ztransf (
) . . . . . . . . . 36
\zugzwang (D) . . . . . . . . . . 93

\xlongequal (===) . . . . . . . . 63

\Zwdr (ˇ “* ) . . . . . . . . . . . . . . 89

\xlongequal (===) . . . . . . . . 62

\ZwPa ( A ) . . . . . . . . . . . . . . 89

164



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.6
Linearized                      : Yes
Author                          : Scott Pakin 
Create Date                     : 2009:11:09 18:39:27-07:00
Keywords                        : LaTeX;, symbols;, glyphs;, characters;, typesetting;, macros;, commands;, accents;, phonetics;, mathematics;, operators;, arrows;, harpoons;, astronomy;, dingbats;, geometry
Modify Date                     : 2009:11:09 19:07:26-07:00
PTEX Fullbanner                 : This is pdfTeX, Version 3.1415926-1.40.9-2.2 (Web2C 7.5.7) kpathsea version 3.5.7
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:08:04
Creator Tool                    : LaTeX with hyperref package
Metadata Date                   : 2009:11:09 19:07:26-07:00
Producer                        : pdfTeX-1.40.9
Trapped                         : Unknown
PTEX Fullbanner                 : This is pdfTeX, Version 3.1415926-1.40.9-2.2 (Web2C 7.5.7) kpathsea version 3.5.7
Caption Writer                  : Scott Pakin 
Web Statement                   : http://www.latex-project.org/lppl.txt
Startup Profile                 : Print
Format                          : application/pdf
Creator                         : Scott Pakin 
Description                     : List of 5913 symbols that can be typeset using LaTeX
Title                           : The Comprehensive LaTeX Symbol List
Subject                         : LaTeX, symbols, glyphs, characters, typesetting, macros, commands, accents, phonetics, mathematics, operators, arrows, harpoons, astronomy, dingbats, geometry
Document ID                     : uuid:ab1e5fbf-ca22-44e3-bd42-4fd7b0c0ca8e
Instance ID                     : uuid:13633a36-e893-434e-a382-56735cc26228
Page Mode                       : UseOutlines
Page Count                      : 164
EXIF Metadata provided by EXIF.tools

Navigation menu